Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/101799
DC FieldValueLanguage
dc.contributor.authorTenreiro, Carlos-
dc.date.accessioned2022-09-14T20:52:14Z-
dc.date.available2022-09-14T20:52:14Z-
dc.date.issued2022-
dc.identifier.issn1133-0686pt
dc.identifier.issn1863-8260pt
dc.identifier.urihttps://hdl.handle.net/10316/101799-
dc.description.abstractAlthough estimation and testing are different statistical problems, if we want to use a test statistic based on the Parzen--Rosenblatt estimator to test the hypothesis that the underlying density function $f$ is a member of a location-scale family of probability density functions, it may be found reasonable to choose the smoothing parameter in such a way that the kernel density estimator is an effective estimator of $f$ irrespective of which of the null or the alternative hypothesis is true. In this paper we address this question by considering the well-known Bickel--Rosenblatt test statistics which are based on the quadratic distance between the nonparametric kernel estimator and two parametric estimators of $f$ under the null hypothesis. For each one of these test statistics we describe their asymptotic behaviours for a general data-dependent smoothing parameter, and we state their limiting gaussian null distribution and the consistency of the associated goodness-of-fit test procedures for location-scale families. In order to compare the finite sample power performance of the Bickel--Rosenblatt tests based on a null hypothesis-based bandwidth selector with other bandwidth selector methods existing in the literature, a simulation study for the normal, logistic and Gumbel null location-scale models is included in this work.pt
dc.language.isoengpt
dc.publisherSpringerpt
dc.relationUIDB/00324/2020pt
dc.rightsembargoedAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectKernel density estimatorpt
dc.subjectGoodness-of-fit testspt
dc.subjectBickel--Rosenblatt testspt
dc.subjectBandwidth selectionpt
dc.titleOn automatic kernel density estimate-based tests for goodness-of-fitpt
dc.typearticle-
degois.publication.firstPage717pt
degois.publication.lastPage748pt
degois.publication.issue3pt
degois.publication.titleTESTpt
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11749-021-00799-3pt
dc.peerreviewedyespt
dc.identifier.doi10.1007/s11749-021-00799-3pt
degois.publication.volume31pt
dc.date.embargo2023-01-01*
uc.date.periodoEmbargo365pt
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.author.orcid0000-0002-5495-6644-
crisitem.project.grantnoCenter for Mathematics, University of Coimbra- CMUC-
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
dgof-author's version&suppl.pdfarticle519.59 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons