
António Pedro Correia

AI-BASED INTRUSION DETECTION
MECHANISMS FOR CLOUD-NATIVE SERVICES

July 2024

Dissertation in the context of the Masters in Informatics Security, advised by
Professor Naghmeh Ramezani Ivaki and Dr. Paulo Miguel Guimarães da Silva and
presented to the Department of Informatics Engineering of the Faculty of Sciences

and Technology of the University of Coimbra.

António Pedro Correia

AI-BASED INTRUSION DETECTION
MECHANISMS FOR CLOUD-NATIVE

SERVICES

July 2024

Dissertation in the context of the Masters in Informatics Security, advised by
Professor Naghmeh Ramezani Ivaki and Dr. Paulo Miguel Guimarães da
Silva and presented to the Department of Informatics Engineering of the

Faculty of Sciences and Technology of the University of Coimbra.

António Pedro Correia

MECANISMOS DE DETEÇÃO DE INTRUSÃO
BASEADOS EM IA PARA SERVIÇOS CLOUD

Julho 2024

Dissertação no âmbito do Mestrado em Segurança Informática, orientada pela
Professora Naghmeh Ramezani Ivaki e pelo Doutor Paulo Miguel Guimarães

da Silva e apresentada ao Departamento de Engenharia Informática da
Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

This work was carried out in the scope of the Agenda “NEXUS - Pacto de Ino-
vação – Transição Verde e Digital para Transportes, Logística e Mobilidade”, fi-
nanced by the Portuguese Recovery and Resilience Plan (PRR), with no. C645112083-
00000059 (investment project no. 53)

vii

Acknowledgements

I would like to express my gratitude to Professor Naghmeh Ramezani Ivaki and
Dr. Paulo Miguel Guimarães da Silva for their guidance, support, and feedback
throughout the entire process of conducting this research and development. Their
expertise, encouragement, and patience have been fundamental.

I am also deeply thankful to the entire team at Instituto Pedro Nunes for provid-
ing a conducive and stimulating research environment. The resources and op-
portunities provided to me significantly contributed to the successful completion
of this work.

I would also like to give a special thanks to the Department of Informatics Engi-
neering at the Faculty of Sciences and Technology of the University of Coimbra.
The academic atmosphere and collaborative environment within the department
have been essential during my whole academic progress.

I extend my appreciation to the members of the jury, Carlos Ribeiro and Tiago
Cruz, for their time, expertise, and feedback during the evaluation process.

To my friends and family, thank you for your support and understanding through-
out my whole academic journey. Your encouragement has been a source of strength
and motivation.

Finally, I would like to express my gratitude to anyone who, unbeknownst to
me, played a role in the development of this thesis, and whose contributions may
have occurred behind the scenes.

This research would not have been possible without the effort or presence of all
those mentioned above, both known and unknown. I am thankful for the diverse
contributions that have made this work possible.

ix

Abstract

This thesis focuses on developing an effective machine-learning solution tailored
for cloud applications, specifically targeting the detection of anomalies through
environmental feature analysis. Traditional security techniques often fail due to
the rapid and dynamic nature of cloud-native systems, highlighting the neces-
sity for cloud-specific strategies. To address this, models including Support Vec-
tor Machines (SVM), K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB),
and Random Forest were rigorously evaluated. A significant emphasis was placed
on feature engineering to enhance model performance. The findings show the
critical role of feature selection in constructing robust machine-learning models,
demonstrating how varying objectives may benefit from distinct feature selec-
tion methodologies. This document comprehensively outlines the objectives of
the internship, the methodology employed to achieve these goals, and provides
a detailed analysis and discussion of the testing results. It highlights the specific
advantages of each machine-learning model tested and offers insights into their
relative effectiveness in a cloud context. Additionally, the document discusses the
practical implications of these findings for the development and deployment of
security measures in cloud environments. By presenting a thorough examination
of feature engineering techniques and their impact on model performance, this
work contributes to the field of cloud security. The research illustrates the poten-
tial of machine learning in enhancing cloud security, showcasing the benefits of
tailored feature selection strategies in optimizing model accuracy, reliability, and
performance.

Keywords

Cloud Security, Intrusion Detection Systems, Artificial Intelligence, Machine Learn-
ing, Feature Engineering

xi

Resumo

Este documento foca-se no desenvolvimento de uma solução eficaz de machine-
learning, desenvolvida para aplicações em cloud, direcionada para a deteção de
anomalias através da análise de features extraidas destes ambientes. Os méto-
dos de segurança tradicionais frequentemente falham devido à natureza ráp-
ida e dinâmica dos sistemas nativos de Cloud, mostrando a necessidade de es-
tratégias desenvolvidas especificamente para estes ambientes. Para abordar este
problema, foram rigorosamente avaliados os seguintes modelos: Support Vector
Machines (SVM), K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB), e
Random Forest. Foi dada uma ênfase significativa ao processo de feature engi-
neering para melhorar o desempenho dos modelos. Os resultados mostram a
importância da seleção de características no desenvolvimento de modelos robus-
tos, demonstrando como diferentes objetivos podem beneficiar de metodologias
distintas de feature selection. Este documento aborda os objetivos deste está-
gio, a metodologia empregue para alcançar estes objetivos e fornece uma análise
detalhada e discussão dos resultados dos testes. Realça também as vantagens
específicas de cada modelo testado e analisa a sua efetividade relativa num con-
texto de cloud. Adicionalmente, o artigo discute as implicações práticas destes
resultados para o desenvolvimento e implementação de medidas de segurança
em ambientes de cloud. Ao apresentar um exame aprofundado das técnicas de
engenharia de características e o seu impacto no desempenho dos modelos, este
trabalho contribui para o campo da segurança em Cloud. A pesquisa ilustra o
potencial de machine-learning em melhorar a segurança na Cloud, evidenciando
os benefícios de estratégias de feature selection na otimização da precisão, fiabil-
idade e desempenho dos modelos.

Palavras-Chave

Segurança em Cloud, Sistemas de Detecção de Intrusão, Inteligência Artificial,
Machine Learning, Feature Engineering

xiii

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Problem Statement . 2
1.3 Objectives . 3
1.4 Document Structure . 3

2 Background 5
2.1 Cloud Security . 5

2.1.1 Challenges . 6
2.1.2 Strategies . 7
2.1.3 Technologies Shaping Cloud Security 7
2.1.4 Emerging Trends . 9

2.2 Intrusion Detection Systems . 9
2.2.1 Core Functionalities . 9
2.2.2 Types of Intrusion Detection Systems 9
2.2.3 Challenges in Intrusion Detection Systems 10

2.3 Machine Learning in Intrusion Detection Systems 11
2.3.1 Role and Benefits of Machine Learning 11
2.3.2 Challenges and Considerations 11

2.4 Feature Extraction Tools . 12
2.5 Summary . 14

3 Related Work 15
3.1 Query Strategy . 15
3.2 Cloud Security Areas . 16
3.3 Machine Learning Algorithms . 19
3.4 Datasets . 21
3.5 Model Evaluation and Analysis . 23
3.6 Summary . 24

4 Approach and Methodology 25
4.1 Expected Outcome . 25
4.2 Proposed Approach . 25
4.3 Methodology . 26

4.3.1 Model and Dataset Selection 26
4.3.2 Feature Evaluation and Selection 27
4.3.3 Evaluation Approach . 27

4.3.3.1 Fisher-RF . 28
4.3.3.2 Cross-Validated CoRF 29

xv

4.3.4 Evaluation Metrics . 31
4.3.5 Tools and Frameworks . 32

4.4 Summary . 33

5 Fisher-RF Results and Discussion 35
5.1 ML Models and Dataset . 35
5.2 Implementation and Validation . 36
5.3 Feature Engineering . 37

5.3.1 Fisher Score . 37
5.3.2 Model Coefficients . 40
5.3.3 Random Forest Feature Importance 42

5.4 Discussion . 44
5.5 Summary . 45

6 Cross-Validated CoRF Results and Discussion 47
6.1 New Datasets . 47
6.2 Results . 48

6.2.1 DDoS Dataset . 48
6.2.1.1 KNN . 49
6.2.1.2 GNB . 51
6.2.1.3 Random Forest . 53

6.2.2 EdgeIIoT-ML Dataset . 56
6.2.2.1 KNN . 57
6.2.2.2 GNB . 58
6.2.2.3 Random Forest . 60

6.2.3 EdgeIIoT-DNN Dataset . 62
6.2.3.1 KNN . 63
6.2.3.2 GNB . 65
6.2.3.3 Random Forest . 67

6.2.4 UCDataset . 69
6.2.4.1 KNN . 71
6.2.4.2 GNB . 72
6.2.4.3 Random Forest . 74

6.3 Discussion . 75
6.4 Summary . 77

7 Conclusion 79

References 81

Appendix A Paper IDs 89

xvi

Acronyms

AI Artificial Inteligence.

CASB Cloud Access Security Broker.

CC Cloud Computing.

DDoS Distributed Denial of Service.

DoS Denial of Service.

GDPR General Data Protection Regulation.

GNB Gaussian Naïve Bayes.

HIDS Host-Based Intrusion Detection System.

HIPAA Health Insurance Portability and Accountability Act.

IaaS Infrastructure as as Service.

IAM Identity and Access Management.

IDS Intrusion Detection System.

IT Information Technology.

KNN K Nearest Neighbour.

MFA Multi-factor Authentication.

ML Machine Learning.

NIDS Network-Based Intrusion Detection System.

PaaS Platform as a Service.

PCI DSS Payment Card Industry Data Security Standard.

PII Personally Identifiable Information.

SaaS Software as a Service.

SIEM Security Information and Event Management.

SVM Support Vector Machine.

VPC Virtual Private Cloud.

xvii

List of Figures

1 Cloud Computing Architecture [Muchahari and Sinha, 2013] 6
2 Zero Trust Architecture [Rose et al., 2020] 8
3 Cloud Access Security Broker Workflow [BasuMallick, 2022] 8
4 Types of IDS [Sulaiman et al., 2021] 10

5 Evaluation process . 28
6 Diagram of the second method used 30
7 Diagram of the model training portion of the second method 31
8 Evaluation metrics used [Seol et al., 2023] 32

9 Performance of the first instance of the models 36
10 Random Forest confusion matrix . 37
11 Screenshot of Fisher Score values . 38
12 Performance comparison between the different kernel options . . . 40
13 Source code of the ’_one_vs_one_coef’ function 41
14 Screenshot of Random Forest feature importance 43

15 Original data distribution of the DDoS Dataset 48
16 Graph of the KNN results on the DDoS Dataset 50
17 Rescaled graph of the KNN results on the DDoS Dataset 50
18 Fitting and Scoring graph of the KNN results on the DDoS Dataset 51
19 Graph of the GNB results on the DDoS Dataset 52
20 Fitting and Scoring graph of the GNB results on the DDoS Dataset 53
21 Graph of the Random Forest results on the DDoS Dataset 54
22 Rescaled graph of the Random Forest results on the DDoS Dataset . 55
23 Fitting and Scoring graph of the Random Forest results on the DDoS

Dataset . 55
24 Original data distribution of the EdgeIIoT-ML Dataset 56
25 Graph of the KNN results on the EdgeIIoT-ML Dataset 57
26 Fitting and Scoring graph of the KNN results on the EdgeIIoT-ML

Dataset . 58
27 Graph of the GNB results on the EdgeIIoT-ML Dataset 59
28 Fitting and Scoring graph of the GNB results on the EdgeIIoT-ML

Dataset . 60
29 Graph of the Random Forest results on the EdgeIIoT-ML Dataset . 61
30 Rescaled graph of the Random Forest results on the EdgeIIoT-ML

Dataset . 61
31 Fitting and Scoring graph of the Random Forest results on the EdgeIIoT-

ML Dataset . 62

xix

32 Original data distribution of the EdgeIIoT-DNN Dataset 62
33 Graph of the KNN results on the EdgeIIoT-DNN Dataset 63
34 Rescaled graph of the KNN results on the EdgeIIoT-DNN Dataset . 64
35 Fitting and Scoring graph of the KNN results on the EdgeIIoT-

DNN Dataset . 64
36 Graph of the GNB results on the EdgeIIoT-DNN Dataset 65
37 Fitting and Scoring graph of the GNB results on the EdgeIIoT-DNN

Dataset . 66
38 Graph of the Random Forest results on the EdgeIIoT-DNN Dataset 67
39 Rescaled graph of the Random Forest results on the EdgeIIoT-DNN

Dataset . 68
40 Fitting and Scoring graph of the Random Forest results on the EdgeIIoT-

DNN Dataset . 68
41 Original data distribution of the UC Dataset 69
42 Screenshot of feature importance outputs 70
43 Graph of the KNN results on the UC Dataset 71
44 Fitting and Scoring graph of the KNN results on the UC Dataset . . 72
45 Graph of the GNB results on the UC Dataset 73
46 Fitting and Scoring graph of the GNB results on the UC Dataset . . 73
47 Graph of the Random Forest results on the UC Dataset 74
48 Fitting and Scoring graph of the Random Forest results on the UC

Dataset . 75

xx

List of Tables

1 Cloud security areas addressed . 16
2 Summary of papers regarding anomaly detection 17
3 Summary of papers regarding intrusion detection 18
4 Summary of papers regarding DoS & DDoS 19
5 Classical Machine Learning algorithms used in the papers 20
6 Deep Learning algorithms used in the papers 20
7 Papers that used hybrid models . 21
8 Datasets used in collected papers . 21
9 Metrics used in collected papers [Nassif et al., 2021] [Kimmell et al.,

2021] [Varma et al., 2022] [Okey et al., 2023a] [Attou et al., 2023b] . 23

10 Tools and Framework versions . 33

11 Model evaluation after normalization and balancing of the dataset 36
12 Non-Hybrid models Fisher Score feature importance 39
13 Partial table with the coefficients of the Support Vector Machine

(SVM) model . 41
14 Partial table with the coefficients of the Gaussian Naïve Bayes (GNB)

model . 42
15 Hybrid model feature importance . 43
16 Feature results comparison . 44

17 Table of the KNN results on the DDoS Dataset 49
18 Table of the GNB results on the DDoS Dataset 52
19 Table of the Random Forest results on the DDoS Dataset 53
20 Table of the KNN results on the EdgeIIoT-ML Dataset 57
21 Table of the GNB results on the EdgeIIoT-ML Dataset 58
22 Table of the Random Forest results on the EdgeIIoT-ML Dataset . . 60
23 Table of the KNN results on the EdgeIIoT-DNN Dataset 63
24 Table of the GNB results on the EdgeIIoT-DNN Dataset 65
25 Table of the Random Forest results on the EdgeIIoT-DNN Dataset . 67
26 Table of the KNN results on the UC Dataset 71
27 Table of the GNB results on the UC Dataset 72
28 Table of the Random Forest results on the UC Dataset 74
29 Improvements/Loss of performance of the KNN model for each

approach . 75
30 Improvements/Loss of performance of the GNB model for each

approach . 76

xxi

31 Improvements/Loss of performance of the Random Forest model
for each approach . 76

32 Papers corresponding to each ID . 90

xxii

Chapter 1

Introduction

This chapter provides the context and motivation for this research. It also iden-
tifies the problem to be addressed and the objectives to be followed to develop a
solution for that problem. Finally, the structure of the document is presented.

1.1 Context and Motivation

In an era marked by the growth of digital evolution, the current increase in cy-
ber threats is impossible to overlook. Systems are moving towards cloud-based
solutions, offering resource-sharing and access to powerful computing resources
even for those with rudimentary setups. Yet, this transition does not come with-
out downsides, exposing systems to higher risks and fueling the rise of cyber-
crime, whose costs are skyrocketing, growing 15 percent each year, and expected
to reach a staggering 10.5 trillion USD by 2025 [Morgan, 2020].

To counter this growth, Artificial Inteligence (AI), with a particular emphasis on
the capabilities of Machine Learning (ML), is an essential tool that should be
taken in as another weapon against cybercrime. Computers, with the cutting
edge of AI capabilities, outshine their human counterparts when it comes to pat-
tern recognition, which is an indispensable skill in cyber attack detection. More-
over, these AI-driven systems operate without being subjected to fatigue, erasing
another cause of concern that is highly pronounced in human vigilance, turning
them into the best guardians for Information Technology (IT) systems. This high-
level defense mechanism is possible due to ML, a subset of AI that not only learns
from vast datasets but also adeptly identifies anomalies and dynamically adapts
to the environment.

The motivation to explore and enhance security mechanisms within cloud-native
services comes from the necessity to preserve confidentiality, integrity, and avail-
ability of digital assets in an environment characterized by its dynamicity and
complexity. Traditional security paradigms, often designed for static architec-
tures, might become outpaced by the fast dynamism of a cloud-native system,
resulting in some cloud-specific attacks that might cut through those defenses,
which poses a significant risk. In the context of the cloud, security extends be-

1

Chapter 1

yond a mere concern. It becomes an essential element in organizational risk man-
agement and strategic planning. While preventative measures remain indispens-
able, there are always more innovative attackers, making intrusion detection an
essential defense in the world of cybersecurity.

Integrating AI and intrusion detection within cloud-native environments marks
a significant advancement in cybersecurity capabilities. As mentioned before,
the capability of a ML algorithm to learn from vast datasets and adapt to their
surroundings makes it a formidable asset in security in general. As organizations
progress through their digital transformations into the cloud, the integration of
this technology becomes a great response to the escalation of problems that come
with it.

The primary purpose of this work is to study, develop, and propose a set of
machine-learning solutions that can accurately identify intrusions with data ex-
tracted from the cloud system in which it is deployed, such as container CPU
usage, packet volume, etc. This solution will be developed with cloud-native ser-
vices in mind, so it will be tailored for this purpose to make it more efficient than
traditional solutions when applied to these scenarios. By leveraging the dynamic
and contextual information provided by container and service deployment met-
rics, such as the metrics that were previously mentioned, it is theoretically possi-
ble to develop intelligent intrusion detection systems capable of detecting attacks
without the need for an extensive set of features, as shown by the results of this
thesis.

This work has been supported by Project “Agenda Mobilizadora Sines Nexus”.
ref. No. 7113), supported by the Recovery and Resilience Plan (PRR) and by the
European Funds Next Generation EU, following Notice No. 02/C05-i01/2022,
Component 5 - Capitalization and Business Innovation - Mobilizing Agendas for
Business Innovation.

1.2 Problem Statement

The widespread adoption of cloud-native architectures and containerization has
revolutionized application deployment. However, this paradigm brings a new
set of security challenges, emphasizing the need for effective Intrusion Detection
Systems (IDS). Traditional approaches rely on signature-based or rule-based de-
tection methods, which often struggle to keep up with rapidly evolving attack
vectors. Cloud-native environments often involve complex architectures with
numerous interconnected components and shared responsibilities. To address
this limitation, leveraging Artificial Intelligence (AI) techniques can enhance in-
trusion detection by automatically learning patterns and detecting anomalies in
real time.

Intrusion detection is crucial in cloud services due to cloud environments’ dy-
namic and scalable nature, which often handle vast amounts of sensitive data
and critical applications. Cloud services are more susceptible to a broader range
of threats and attacks than traditional IT infrastructures due to their distributed

2

Introduction

architecture and the shared responsibility model between service providers and
clients. This thesis aims to explore AI-based intrusion detection mechanisms for
effective and efficient detection of anomalies in cloud-native environments.

1.3 Objectives

The objectives aimed to achieve with this work are the following:

(i) Analyze the state of the art on ML-Based Intrusion Detection Systems: To
firmly understand the current machine learning-based solutions for intrusion de-
tection, analyzing the state of the art on Intrusion Detection Systems is the first
step. This is one of the most important parts, as it will define the work baseline
for the future steps.

(ii) Machine Learning Models research and experimentation: After the analysis
of the state of the art, experimenting with diverse models, such as SVM, KNN,
GNB, and Random Forest, to recreate the results of other papers is essential, as
usually no code is provided for the presented solutions.

(iii) Feature Engineering: After implementing the models, their performance
needs to be improved. This can be achieved by altering the features on the
dataset, as some of them can do more harm than good.

(iv) Implementation of the selected ML Models on data from other datasets:
Even if the improvement of the models is successful in the previous objective, the
models might not be usable with the metrics that are extracted from the system, as
the features are much more limited than the ones used in typical training datasets.
Using other datasets might show the performance of the models when dealing
with other types of features.

(v) Implement and test a functional prototype: The next step is to implement
a functional prototype and test it using any models that proved useful in the
previous objective and that can accurately identify and report intrusions with the
extracted data.

(vi) Evaluate the solution and document the results: After the implementation,
we have the evaluation of the solution and the documentation of the results ob-
tained. It is important to conclude whether the mechanisms were successful and
whether the feature selection process affects them.

1.4 Document Structure

This thesis consists of eight chapters. The first chapter is the introduction. The
first section of the chapter presents the context and motivation behind this thesis.
The second section is about the problem being addressed, followed by the third
section, which presents the objectives that need to be achieved. The last section,
this one, is to address how the document is structured.

3

Chapter 1

The second chapter is for the Background, information that is related to the topic,
which can be helpful for the reader of the thesis. The sections of this chapter are
pretty straightforward: the first section is related to cloud security in general, the
second one addresses intrusion detection systems, the third one is for machine
learning applied to intrusion detection systems, and the fourth and final one for
feature extraction.

The third chapter addresses works similar to what was done in this thesis, which
served as inspiration, guidance, and learning material. It focuses on the proce-
dures used to obtain such documents and goes over which areas of cloud security
are addressed. It then documents the models, datasets, and evaluation metrics
that were used in those papers.

The fourth chapter focuses on the approach used. The first section is for the ex-
pected outcome, and the second section outlines the proposed approach to reach
that outcome. The third section features the methodology that was used concern-
ing the model and dataset selection, the evaluation and selection of the features,
the two methods used to train and evaluate the models, the metrics used to quan-
tify those evaluations, and the tools and frameworks that were used.

The fifth chapter presents the results obtained from the first method. The first
section presents the results of the selection of the models and the dataset, while
the second one specifies how those were implemented and validated. The third
section provides the results of the process of feature engineering. The fourth
section presents some conclusions taken from those results and highlights the
limitations of the work done.

The sixth chapter is about the second and final method. The first section presents
the newly introduced datasets, the second shows the extensive results of this
method, separating them by dataset and model, and the third section discusses
those results and addresses their limitations.

The seventh and final chapter addresses the end results of this thesis, therefore,
concluding it.

4

Chapter 2

Background

This section aims to provide foundational knowledge about the topics that are
addressed in this thesis. To better understand the foundations of the area, some
research about basic topics was done, as part of the literature review portion of
the work. An in-depth analysis of cloud security, intrusion detection systems,
and machine learning is presented. A section about feature extraction is also
provided, in which the work that was done to extract the features from the con-
tainerized system will be presented.

2.1 Cloud Security

With the constant evolution of digital transformation, Cloud Computing (CC)
has become an extremely important beacon in the way businesses operate and
users interact with Information Technology (IT). As organizations migrate their
data and applications to the cloud, the importance of ensuring their safety has
never been more critical. CC is a paradigm that involves the availability of com-
puting services, such as storage, processing power, and applications, over the
internet [Mell and Grance, 2011]. Service models such as Infrastructure as as Ser-
vice (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) form the
foundation of CC. The shift to cloud computing has revolutionized the way or-
ganizations operate, providing agility, scalability, and cost-efficiency [Armbrust
et al., 2010]. Unfortunately, this shift also introduces new security challenges, as
sensitive data and critical applications are no longer housed within the usual on-
premises infrastructure. Cloud security is imperative to protect against a wide
range of threats, including unauthorized access, data breaches, and service dis-
ruptions. Additionally, compliance with regulatory requirements further under-
scores the significance of robust cloud security practices. Figure 1 shows the typ-
ical architecture of cloud computing.

5

Chapter 2

Figure 1: Cloud Computing Architecture [Muchahari and Sinha, 2013]

2.1.1 Challenges

One of the primary challenges in cloud security is the risk of data breaches and
unauthorized access [Institute, 2022], since the data is being stored in remote
servers, heightening the potential for malicious actors to gain access to it. This is
due to the shared responsibility model, wherein both the cloud service provider
and the customer have specific security responsibilities, adding complexity to
mitigating these risks [inc, 2018]. Unauthorized access may lead to data exfiltra-
tion, identity theft, or the compromise of critical business information.

Ensuring compliance with industry regulations and legal requirements also poses
another significant challenge in cloud security [PARLIAMENT, 2016]. Different
sectors and regions have varying compliance standards and organizations must
take on the complex task that is complying with the vast landscape of regulations,
such as General Data Protection Regulation (GDPR), Health Insurance Portabil-
ity and Accountability Act (HIPAA), and Payment Card Industry Data Security
Standard (PCI DSS). Failing to meet these standards can result in severe legal
consequences, financial penalties, and damage to the organization’s reputation.
Cloud Security is also intricately linked to the concept of data residency and
sovereignty. Organizations must grapple with questions of where their data is
physically stored and which jurisdiction’s laws apply to it. This is particularly
important in cases where sensitive data, such as Personally Identifiable Informa-
tion (PII), is subject to stringent data protection regulations. Just like compliance,
navigating these challenges requires a nuanced understanding of legal frame-
works and careful consideration of data governance policies.

More conventional security challenges, such as attacks like Distributed Denial
of Service (DDoS), malware injection, and many others, are also present in CC.
Although these might be harder to perform due to the cloud’s dynamic nature
and encrypted traffic, they are still possible, and these characteristics that make
it harder to attack are also what makes it a double-edged sword, also making the
process of detection difficult. Fortunately, some tools can be integrated into the
system that makes the detection process easier, which will later be mentioned.

6

Background

2.1.2 Strategies

Encryption is a cornerstone of cloud security, offering a robust defense against
unauthorized access and data breaches. By encrypting data both in transit and at
rest, organizations can ensure that even if a breach occurs, the intercepted data re-
mains unreadable without the corresponding decryption keys. Strong encryption
algorithms and securely stored encryption keys both contribute to an effective en-
cryption strategy.

Controlling access to resources and data is also fundamental to cloud security
[Alliance, 2017]. Identity and Access Management (IAM) solutions enable orga-
nizations to manage user identities, control access permissions, and enforce au-
thentication mechanisms. Implementing the principle of least privilege also helps
ensure that users only have access to the resources necessary for their respective
roles, minimizing the potential impact of compromised credentials. Multi-factor
Authentication (MFA) further enhances this aspect, requiring users to provide
multiple forms of verification before letting them access the data.

Network security also plays a pivotal role in securing cloud environments. Vir-
tual Private Cloud (VPC), firewalls, and intrusion detection systems help create
secure network architectures. Network segmentation ensures that even if an at-
tacker gains access to one segment, they are still isolated from other parts of the
network. This containment strategy limits the lateral movement of threats, re-
ducing the overall risk of a security incident. Proactive Monitoring of cloud envi-
ronments is crucial for detecting and responding to security incidents in real-time
[Dempsey et al., 2011]. Security Information and Event Management (SIEM) so-
lutions, combined with advanced threat detection mechanisms, provide organi-
zations with the capability to identify suspicious activities and potential breaches.
A well-defined incident response plan ensures that in the event of a security inci-
dent, the organization can respond swiftly, minimizing the impact and restoring
normal operations. Regular audits, however, can reduce the need for such ac-
tions, as they evaluate the effectiveness of the cloud security measures, exposing
many of the existing flaws present in the system. Conducting thorough security
assessments, vulnerability scans, and penetration testing helps identify possible
entry points for attackers. Compliance checks ensure that the organization re-
mains in adherence to industry regulations and standards.

2.1.3 Technologies Shaping Cloud Security

Many technologies are gaining prominence in the cloud security realm, such as
the Zero Trust model which is a paradigm shift in security strategy where, un-
like traditional approaches, it is assumed that threats may exist both outside and
inside the network, advocating for strict access controls, continuous verification
and the previously mentioned principle of least privilege [of Standards and Tech-
nology, 2020]. The architecture of zero trust is shown in Figure 2. Implementing
this architecture in a cloud system involves robust authentication mechanisms,
micro-segmentation, and continuous monitoring to ensure the security of every
interaction, regardless of the user’s location or device.

7

Chapter 2

Figure 2: Zero Trust Architecture [Rose et al., 2020]

Another technology is Cloud Access Security Broker (CASB), acting as an inter-
mediary between cloud service users and cloud applications, providing an addi-
tional layer of security and visibility [C. Riley, 2020]. CASBs help organizations
enforce security policies, monitor user activity, and protect data in real-time. They
play a crucial role in addressing the challenges associated with the shared respon-
sibility model, offering organizations greater control over their security approach
in the cloud. The workflow for this technology can be seen in Figure 3.

Figure 3: Cloud Access Security Broker Workflow [BasuMallick, 2022]

The adoption of containerization technologies, such as Docker and Kubernetes,
has introduced new considerations for cloud security. They provide a lightweight
and scalable way to package and deploy applications [Docker, 2020]. However,
container security involves securing the entire container lifecycle, from image
creation to runtime. Implementing container security best practices, such as im-
age scanning, runtime protection, and access control, is essential to prevent any
vulnerability and ensure the security of containerized applications in the cloud.

Serverless computing, where applications run in ephemeral containers without

8

Background

the need for managing servers, offers scalability and cost benefits, but organiza-
tions must address security concerns related to code execution, data storage, and
event triggers [Services, 2021]. Code analysis and runtime protection are com-
mon security measures for serverless environments that should not be skipped.

2.1.4 Emerging Trends

Artificial Inteligence (AI) and Machine Learning (ML) are becoming integral com-
ponents of cloud security. These technologies enable organizations to analyze
vast amounts of data, detect anomalies, and identify potential threats in real-
time. AI and ML-powered security solutions, such as the one developed with
the support of this thesis, enhance the ability to predict, prevent, and respond to
security incidents, offering a proactive approach to cloud security.

2.2 Intrusion Detection Systems

Intrusion Detection Systems (IDS) play a crucial role in safeguarding computer
networks and systems from unauthorized access, malicious activities, and cyber
threats [Roesch, 1999]. These systems actively monitor and analyze network traf-
fic, providing a critical layer of protection.

2.2.1 Core Functionalities

An IDS serves as a vigilant gatekeeper, using various methodologies to identify
potential threats in the systems they are assigned to. They engage in thorough
packet analysis, scrutinizing the contents of the network packets for suspicious
patterns or anomalies. Log analysis can also be conducted on logs generated
by network devices to discern unusual patterns or security events. Operating in
real-time, an IDS continuously monitors network traffic, enabling prompt detec-
tion and response to potential threats with immediate alerts or automated actions
based on predefined rules. These functionalities collectively create a comprehen-
sive defense mechanism, allowing the IDS to identify both known and unknown
threats, ensuring swift responses to deviations from normal behavior.

2.2.2 Types of Intrusion Detection Systems

IDSs come in two primary types: Network-Based Intrusion Detection Systems
(NIDS) and Host-Based Intrusion Detection Systems (HIDS). NIDS are strategi-
cally positioned on the network and inspect all incoming and outgoing packets,
identifying potential threats, while HIDS, on the other hand, are installed on indi-
vidual hosts or servers, monitoring activities on the host level, analyzing system
logs, file integrity, and user behavior to detect signs of compromise. NIDS pro-
vides a comprehensive view of network traffic, making it effective in identifying

9

Chapter 2

threats that traverse multiple hosts, acting as a proactive guardian at the network
perimeter, and ensuring the detention of potentially harmful activities, before
they reach individual hosts. Conversely, HIDS focuses on specific activities that
might evade network-level detection. Combining both types is often referred to
as Hybrid IDS, offering organizations a multi-layered defense strategy.

IDSs are also split into two types of deployment, Signature-Based IDS (also known
as Knowledge-Based IDS or Misuse IDS) and Anomaly-Based IDS, as seen in Fig-
ure 4. The first option relies on a database of already known attack signatures,
effectively identifying documented threats. This makes it particularly efficient
in recognizing well-established and widely documented threats, however, it may
struggle with detecting newer and unknown threats that do not match any al-
ready existing signature. Anomaly-Based IDS, on the other hand, establishes a
baseline of normal network behavior and triggers alerts when deviations occur.
This approach fills the holes of the previous one, being efficient at detecting zero-
day attacks, as it does not rely on pre-defined signatures. This type of detection is
crucial for identifying threats that signature-based systems may miss, however,
it may also generate false positives, triggering alerts for non-malicious activities
that deviate from the established baseline. For this reason, it is always best to
leave the final decision to a system administrator. A hybrid solution is also possi-
ble, combining both signature-based and anomaly-based detection methods, of-
fering a comprehensive approach that leverages the strengths of both strategies
to enhance detection accuracy. By combining the efficiency of signature-based
detection for known threats and the adaptability of anomaly-based detection for
unknown threats, organizations can achieve a more accurate IDS solution.

Figure 4: Types of IDS [Sulaiman et al., 2021]

2.2.3 Challenges in Intrusion Detection Systems

While IDS are pivotal for network security, they encounter challenges that must
be mentioned. False positives, for example, where normal activities are mistak-
enly flagged as suspicious, can lead to unnecessary alerts and potential alert fa-
tigue. It is important to fine-tune the IDS to minimize the number of false posi-
tives, without compromising its ability to detect actual threats.

Encrypted traffic also poses a challenge for IDS, as inspecting the contents of en-
crypted packets becomes difficult. Encryption ensures the privacy and integrity

10

Background

of data in transit, but it also creates blind spots for traditional IDS. This is espe-
cially relevant in Cloud environments. In this context, an IDS also faces diverse
challenges such as the dynamic nature of cloud resources, the scalability of ser-
vices, and much more. Traditional methods may struggle to accompany the fast
pace of the deployment and reconfiguration of cloud instances, so it is important
to experiment with different strategies to check what best fits the scenario.

2.3 Machine Learning in Intrusion Detection Systems

As mentioned before, as the complexity of cyber attacks evolves, traditional IDS
solutions are often insufficient. This has led to the integration of ML techniques
in intrusion detection, offering enhanced capabilities to identify and respond to
threats. In this section, the application of ML in IDSs will be explored, as well as
its impact on improving the overall security of modern IT infrastructures.

2.3.1 Role and Benefits of Machine Learning

ML techniques play a pivotal role in enhancing the efficiency and effectiveness of
IDSs. Traditionally, IDSs rely on rule-based methods, which struggle to adapt to
the dynamic evolution of cyber threats. ML, however, enables systems to learn
from data patterns and autonomously identify anomalies. Algorithms, such as
neural networks and decision trees, analyze vast datasets to discern normal net-
work behavior and detect deviations that indicate potential intrusions [Talukder
et al., 2024]. ML also contributes to the scalability of an IDS. As the volume and
complexity of data generated in a network continue to grow, ML algorithms ex-
cel at handling vast amounts of information, allowing for timely and accurate
detection of both known and unknown threats [Liu and Lang, 2019].

The adoption of ML in IDS brings a lot of benefits with it. One notable advantage
is the improved accuracy of threat detection. ML algorithms excel at recognizing
patterns and anomalies that might escape the traditional solutions. This accuracy
translates into fewer false positives and negatives, providing security teams and
admins with more reliable information [Bakhsh et al., 2023]. The speed of threat
detection is also enhanced, therefore also increasing the speed of response. The
natural speed of these systems allows them to quickly identify, and sometimes
even mitigate, security incidents in real-time, minimizing the potential damage
caused by attacks [Thakkar and Lohiya, 2023]. ML also facilitates the adaptability
of the IDS to specific environments. Unlike rigid rule-based systems, ML models
can adapt to the unique characteristics of different networks, ensuring that the
IDS is tailored to the specific needs and vulnerabilities of an organization.

2.3.2 Challenges and Considerations

While ML-based IDSs offer significant advantages, they also come with chal-
lenges. A big challenge lies in the interpretability of the models within the IDS.

11

Chapter 2

Understanding how a model reaches a specific decision is crucial for trust and
accountability. The opacity of certain ML algorithms can make it challenging to
interpret and validate the reasoning behind a detected threat, which is why eX-
plainable AI, a research field that aims to make AI systems more understandable
to humans, is gaining popularity. There are also privacy concerns that arise when
implementing ML in IDS, particularly in environments with sensitive data. The
need to collect and analyze network traffic data to train ML models may conflict
with privacy regulations or organizational policies.

Moreover, the quality of the data is also extremely important. Ensuring that the
data used to train ML is representative and unbiased is essential for the system’s
accuracy and reliability. Oversampling, for example, can easily introduce biases.
When certain classes are overrepresented, the model may become skewed to-
wards them, potentially leading to wrong predictions in threat detection. If the
training data lacks diversity, the model might also struggle to generalize effec-
tively to new and unseen threats. Additionally, the accuracy of previously ob-
tained data might pose challenges in handling the threats. If the data fed to the
model was obtained from previous versions of the system that had a slightly dif-
ferent behavior, the predictions might become incorrect, as the normal behavior
of the system would differ from the more recent one.

2.4 Feature Extraction Tools

Metric extraction tools are indispensable to an IDS, as these are what allow it
to receive the information needed for the predictions. These tools can be used
to monitor the performance and health of systems, but can also extract that in-
formation to be used as metrics for the ML models. The ones used to get the
features that are planned to be used in the models developed are Prometheus,
Node Exporter, cAdvisor, Telegraf, InfluxDB, FluentBit, and PyShark.

Prometheus is an open-source monitoring and alerting toolkit, which excels in
its ability to collect, store, and query time-series data. It was designed with a fo-
cus on reliability and scalability, making it a great option for Cloud systems, as it
tackles the scalability problem mentioned earlier and is particularly well-suited
for dynamic cloud environments. Its flexible querying language, PromQL, allows
users to easily manipulate the path of the collected metrics. It regularly scrapes
metrics from the configured targets, enabling real-time monitoring and, therefore,
extraction, facilitating the detection of performance bottlenecks or any other type
of anomaly. It can be integrated with alerting rules to further empower adminis-
trators to respond proactively to any occurring issues, ensuring the stability and
availability of the cloud service.

Node Exporter is an essential tool within the Prometheus ecosystem, designed to
collect and expose hardware and OS metrics. It allows administrators to moni-
tor various system metrics such as CPU usage, memory consumption, disk I/O,
and network statistics. It is lightweight and highly extensible, supporting a wide
range of metrics out of the box, while also allowing for custom metrics to be
added through textfile collectors.

12

Background

cAdvisor (Container Advisor) is a lightweight container monitoring tool devel-
oped by Google that specializes in providing real-time metrics about the resource
usage and performance of containers. It can be integrated seamlessly with con-
tainer orchestration platforms, such as Kubernetes, Docker, or Minikube making
it a valuable tool for organizations that pretend to leverage containerized applica-
tions in the cloud. This tool can collect and expose metrics related to CPU, mem-
ory consumption, filesystem I/O, and network activity for individual contain-
ers, allowing administrators to optimize resource allocation, troubleshoot perfor-
mance issues, etc. These values can also be exported to be used as metrics for ML
models. The integration of cAdvisor and Prometheus can further enhance the
monitoring ecosystem, allowing for a unified and comprehensive view of both
virtualized and containerized resources.

Telegraf is a powerful and flexible open-source agent designed for collecting, pro-
cessing, and sending metrics and events from various sources. Developed by In-
fluxData, Telegraf supports a wide array of input plugins to gather data from di-
verse systems, applications, and services, including databases, message queues,
cloud providers, and more. It also features numerous output plugins to route col-
lected metrics to different destinations, such as InfluxDB, Prometheus, and other
time-series databases.

InfluxDB is a high-performance, open-source time series database, also devel-
oped by InfluxData, optimized for handling large volumes of time-stamped data,
such as metrics, events, and logs. Designed to manage the time series data’s
unique characteristics efficiently, InfluxDB excels in storing, querying, and visu-
alizing time series data with precision and speed.

Fluent Bit is a lightweight and efficient open-source log processor and forwarder,
designed for collecting, processing, and shipping log data from various sources
to different destinations. As part of the Fluentd ecosystem, Fluent Bit provides a
streamlined and resource-efficient alternative, making it ideal for environments
with limited resources, such as edge computing and IoT devices.

PyShark is a Python wrapper for the popular network protocol analyzer Wire-
shark, providing a powerful tool for capturing, parsing, and analyzing network
traffic directly within Python scripts. By leveraging the capabilities of Tshark,
Wireshark’s terminal-based counterpart, PyShark allows developers and network
engineers to automate network packet analysis and integrate it into larger work-
flows or applications.

In this system, cAdvisor and Node Exporter each run per host to collect con-
tainer and host metrics, respectively, exposing them via a ’/metrics’ endpoint
in Prometheus format. Prometheus and Telegraf periodically scrape these end-
points, with Prometheus storing the data and Telegraf sending it to InfluxDB af-
ter converting the metrics. An agent using PyShark runs on each host, capturing
network packets continuously and storing them in InfluxDB. Fluent Bit collects
and forwards container logs to InfluxDB. The admin interface manages active
services and allows configuration of which metrics to monitor or drop, updating
Prometheus and Telegraf configurations accordingly.

13

Chapter 2

2.5 Summary

In this chapter, background information was presented. This information served
as a foundation of knowledge that should help the reader understand more about
the key topics addressed throughout this thesis, including cloud security, intru-
sion detection systems, machine learning, and feature extraction tools. The im-
portance of cloud security is emphasized and challenges, strategies, technologies,
and emerging trends are presented. The core functionalities of intrusion detection
systems are also addressed, as well as some challenges and considerations that
come with them. Finally, the feature extraction tools that were used are men-
tioned, presenting the diagram of the implemented solution.

14

Chapter 3

Related Work

This chapter presents the information regarding related work. First, the proce-
dure followed to obtain the papers is described. After that, the information gath-
ered is presented, such as the different types of cloud security areas addressed,
the ML algorithms and datasets used, and how the approaches were evaluated.
The goal of this section is to provide the reader with a set of examples of other
works similar to this one.

3.1 Query Strategy

The search for documents was made in the digital libraries Google Scholar and
IEEE Xplore, using the following keywords:

• Machine Learning

• ML

• Intrusion Detection System

• IDS

• Cloud

• Security

• Cloud Security

• Anomaly

• Network

These were used in combinations using Boolean logic (AND, OR, quotations,
parenthesis) to get results more tailored to the expected. A systematic review
that had the same objectives as this literature review was found, covering papers
between the dates from 2007 to 2019. The analysis made by the researchers was

15

Chapter 3

thorough and detailed, focusing on relevant information and detailing their pro-
cess, however, some of the information presented in the tables shows a lack of
knowledge in the area. Nevertheless, this doesn’t invalidate their search, which
will still be used to cover the dates previously mentioned. The data shown in
the next tables will contain information extracted from this document but will be
altered to correct the previously mentioned mistakes.

3.2 Cloud Security Areas

In the 63 papers collected "Machine Learning for Cloud Security: A Systematic
Review" [Nassif et al., 2021], together with the 10 collected from the previously
described strategy, 10 cloud security areas are addressed and researched. Table 1
shows the number of research papers in each cloud security area and the percent-
age that shows the frequency of that area.

Table 1: Cloud security areas addressed

Cloud Security Areas Frequency Percentage Description

Threat Detection 29 40%
Continuous monitoring to identify and re-
spond to potential security breaches or ma-
licious activities in cloud environments

DoS & DDoS 14 19%
Defending against Denial of Service (DoS)
and DDoS attacks to ensure uninterrupted
cloud service availability

Data Privacy 9 12%
Safeguarding sensitive information, ensur-
ing compliance with privacy regulations
and protecting user confidentiality

Malware 7 10%

Preventing, detecting, and/or removing
malicious software to secure cloud systems
and data from unauthorized access or dam-
age

Privacy Preservation 6 8%
Uphold individual privacy rights, restrict-
ing access to personal data, and ensuring
responsible data handling

Security 5 7%
Comprehensive measures to protect cloud
infrastructure, applications, and data from
various threats

Confidentiality of Data 3 4%
Ensuring that sensitive information re-
mains private and secure, employing en-
cryption and access controls

Although all of the topics are relevant, the ones that closely relate to this thesis
are the ones concerning Threat Detection and DoS & DDoS. Contained in Threat
Detection, two more specific categories are relevant for this thesis: Anomaly De-
tection and Intrusion Detection. Detection of anomalies involves finding devia-
tions from normal anticipated behavior through the analyses of patterns. A total
of 6 papers covering anomaly detection were found by the authors of the system-
atic review, with 3 of them concerning user behavior rather than system behavior.
One more was found from the research for the thesis. For the sake of easily iden-
tifying each paper, a table can be found in Appendix A addressing an ID to each

16

Related Work

one. Table 2 summarizes the contents of each paper that concerns anomaly detec-
tion:

Table 2: Summary of papers regarding anomaly detection

ID Paper summary

P1

Proposes an anomaly detection system at the hypervisor layer named Hypervisor De-
tector that uses a hybrid algorithm which is a mixture of Fuzzy C-Means clustering
algorithm and Artificial Neural Network (FCM-ANN) to improve the accuracy of the
detection system [Pandeeswari and Kumar, 2016]. It shows great results for attacks
with low frequency, however, when compared to the other models, it shows the same
or worse performance than simpler models, like Naive Bayes.

P2

Investigates both detecting and categorizing anomalies rather than just detecting,
which is a common trend in contemporary research works, using two supervised ma-
chine learning techniques, namely linear regression (LR) and random forest (RF). Al-
though the detection is very good, the categorization can be less accurate due to simi-
larities between attacks [Salman et al., 2017].

P3

Proposes a new SVM approach, named Enhanced SVM, which combines soft-margin
SVM and one-class SVM to provide unsupervised learning and low false alarm ca-
pability, similar to that of a supervised SVM approach [Shon and Moon, 2007]. The
overall goal of this approach was reached, however, it was not tested in real-world
TCP/IP traffic.

P4

Proposes a framework to utilize anomaly detection and random re-sampling tech-
niques for profiling user’s behaviors via the frequent patterns of activated system pro-
cesses [Chiu et al., 2013]. The results showed an average detection of 86%, however,
the approach is not very clear about their methodology.

P5

Presents a new mobile cloud infrastructure that combines mobile devices and cloud
services and proposes a methodology and architecture for detecting abnormal behav-
ior through the monitoring of both host and network data [Kim et al., 2012]. The
methodology and experimentation are very detailed and the testing is thorough.

P6

Proposes a new QoS that is capable of monitoring and detecting insider threats using
KNN. Also proposes a detection model for insider threats, which utilizes Facial recog-
nition and Monitoring models [Sarma et al., 2017]. Although the system is smart, using
facial recognition might be an unnecessary privacy invasion, so this would not be rec-
ommended for broad applications.

P70

Proposes an efficient Hybrid clustering and classification models for implementing an
anomaly-based IDS for malicious attack type classifications such as DoS, Probe, U2R,
and R2L using threshold-based functions [Samunnisa et al., 2023]. It presents very
detailed results and an in-depth methodology.

IDSs can be used to defend systems from different kinds of attacks and is the main
focus of this thesis. Nine of the selected papers for the systematic review take up
intrusion detection for cloud systems, while 7 other ones were then added to the
list. Summaries of the content of the collected papers can be found in Table 3.
The ones obtained from the systematic review have been concealed as the table
would be too big.

17

Chapter 3

Table 3: Summary of papers regarding intrusion detection

ID Paper summary

P65

Proposes a transfer learning IDS based on the Convolutional Neural Network (CNN)
architecture that has shown excellent results on image classification, using five pre-
trained CNN models, including VGG16, VGG19, Inception, MobileNet, and Efficient-
Nets, to train on two selected datasets: CIC-IDS2017 and CSE-CICIDS2018 [Okey et al.,
2023b]. It shows great results, as all models show results between 97 and 100% for Ac-
curacy, Precision, Recall, and F-score.

P67

Presents a cloud-based intrusion detection model based on random forest (RF) and
feature engineering. Specifically, the RF classifier is obtained and integrated to enhance
the accuracy (ACC) of the proposed detection model [Attou et al., 2023a]. The model
shows great performance, however, recall is far from ideal when tested on the NSL-
KDD dataset.

P68

Proposes the methodology of an intrusion detection scheme utilizing a deep learning
technique which is based on Fuzzy Min-Max Neural Networks-Based Intrusion Detec-
tion System (FMMNN-IDS). It also investigates the model’s performance in terms of
binary and multiclass classification, as well as the count of learning rate and neurons
that affect the model’s performance [Kumar et al., 2022]. The results shown only cover
accuracy and detection rate, which, although present good results, can be insufficient
for certain scenarios.

P69

Proposes a logistic regression-based oppositional tunicate fuzzy C-mean (LR-
OTSFCM) methodology for the detection of cloud intrusion, with a focus on attack
detection from a cloud environment [Kanimozhi and Aruldoss Albert Victoire, 2022].
The model is well tested and is compared with state-of-the-art approaches demonstrat-
ing a superior attack detection rate using four datasets.

P71

Provides an effective optimal security solution for intrusion detection in a cloud com-
puting environment using a hybrid deep learning algorithm (EOS-IDS). Unnecessary
data is removed with improved heap optimization (IHO) and feature selection is done
using chaotic red deer optimization (CRDO) [Mayuranathan et al., 2022]. Although the
proposed model provides good values for certain metrics, it still gets outperformed in
others, and the results are not very clear in that sense.

P72

Proposes a new fuzzy deep neural network (FDNN) with Honey Bader Algorithm
(HBA) for privacy-preserving intrusion detection technique, named FDNN-HBAID
for cloud environment, based on the design of an intrusion detection approach with
a blockchain-enabled privacy-preserving scheme [Jain et al., 2023]. The results pre-
sented show that the model accomplishes minimal values of training and validation
losses while achieving a performance close to 100% accuracy and f1-score. More metric
values would be useful, for an even deeper understanding of the model’s performance.

P73

Presents two models based on deep neural networks (DNNs) for this study: the first
model is built on a multi-layer perceptron (MLP) with backpropagation (BP), and the
other is trained by MLP with particle swarm optimization (PSO) [Alzughaibi and
El Khediri, 2023]. The results are well documented and present various metrics that
show the performance of the proposed models is on par with the ones mentioned in
the related works. The authors also provide some essential tips that they think are use-
ful for researchers in the field.

DoS attacks prevent lawful customers from accessing the network or other re-
sources. A DDoS is a type of DoS attack, in which the attacker increases the
number of sources to similarly increase the output of requests, resulting in even
bigger outputs of information that systems cannot handle. From the papers col-
lected in the systematic review, 13 enter this category, with 3 of them addressing
DoS in general and the other 10 focusing on DDoS. 1 other paper was then found
that also addressed this area, bringing the total to 14. Table 4 shows summaries of

18

Related Work

some of the papers from the systematic review and the one found for this thesis.

Table 4: Summary of papers regarding DoS & DDoS

ID Paper summary

P12

Presents a statistical technique to detect and filter DDOS attacks, with the requirements
of having small storage and the ability of fast detection [Shamsolmoali and Zareapoor,
2014]. The results show great performance when compared to state-of-the-art and
DDoS detection models, however, only accuracy, false alarm rate, and detection time
are used as metrics, which might be insufficient to guarantee the utility of the model
in all cases.

P15

Proposes a DoS attack detection system on the source side in the cloud, based on ma-
chine learning techniques, which leverages statistical information from both the cloud
server’s hypervisor and the virtual machines, to prevent network packages from being
sent out to the outside network [He et al., 2017]. The results show that DoS attacks
are successfully detected and the approach does not degrade the performance of the
system. It also uses various metrics to analyze the model, giving a very in-depth and
detailed performance overview.

P27

Proposes an approach to mitigate insider attacks using a host-based user profiling tech-
nique where a keystroke dynamics is used for analyzing the user behavior and a re-
training approach is also proposed as the imposter patterns are absent at the time of
registration [Bondada and Bhanu, 2014]. Although the approach can detect insider at-
tacks, using a key logger to monitor users is very privacy-invasive, which would not
fit well on a public system.

P32

Offers a solution to traceback through Cloud TraceBack (CTB) to find the source of
some of the current attacks that attackers may initiate as HTTP and XML, and intro-
duces the use of a back propagation neural network, called Cloud Protector, which was
trained to detect and filter such attack traffic [Chonka et al., 2011]. The paper presents a
very thorough explanation of two lethal attacks and the solution presents valid results,
however, these are not very clear.

P35

Uses extreme gradient boosting (XGBoost) as a detection method in SDN-based cloud
and simulates real DDoS attack environments [Chen et al., 2018]. The algorithm can
detect DDoS with higher accuracy and lower false positive rate than other popular
algorithms, and is extraordinarily quick, being able to adapt to a high-speed environ-
ment. It is also scalable, which is very important for the cloud due to its continuously
expanding network.

P48

Proposes techniques to secure a cloud environment by incorporating some of the effi-
cient approaches in intrusion detection, focusing on two major issues in IDS: efficient
detection mechanism and speed of detection [Mishra et al., 2016]. The proposed tech-
niques present great results, however the performance on U2R attacks should be in-
creased, as the detection of those falls behind the rest of the other attacks.

P66

Proposes a hybrid algorithm consisting of several machine learning techniques com-
bined to detect and classify the type of DDoS attack with greater accuracy than that
of each model [Varma et al., 2022]. The document is rather small but can fit some in-
formation into it, however, only accuracy is used to measure the performance of the
models, which is rather superficial.

3.3 Machine Learning Algorithms

In the gathered documents, many ML algorithms were applied by researchers to
their approaches. The list of the 20 algorithms can be seen in Tables 6 and 5:

19

Chapter 3

Table 5: Classical Machine Learning algorithms used in the papers

ML Models Paper IDs Training Type

SVM
P3, P8, P11, P16, P18, P25, P28,
P34, P35, P37, P38, P39, P40, P41,
P42, P48, P54, P55, P64, P66, P70

Supervised

Random Forest P2, P5, P9, P13, P40, P56, P58,
P59, P64, P66, P67, P70 Supervised

KNN P6, P35, P37, P46, P47, P48, P61,
P62, P64, P66, P70 Supervised

Decision Tree P26, P43, P44, P49, P51, P53 Supervised
Naive Bayes P59, P50, P64, P66 Supervised

K-means P17, P56, P70 Unsupervised
Linear Regression P2, P13 Supervised

Linear Means Classifier P7, P22 Supervised
Logistic Regression P29, P60 Supervised

Fuzzy C-means P38, P69 Supervised/Unsupervised
FLD CLassifier P7 Supervised

Bayes Net P10 Supervised/Unsupervised
Polynomial Regression P21 Supervised

CKNN P52 Supervised
XGBoost Classifier P36 Supervised

Gradient Boosted Classifier P64 Supervised
GMM P70 Unsupervised

Table 6: Deep Learning algorithms used in the papers

ML Models Paper IDs Training Type

Neural Network
P1, P19, P23, P24, P30, P31, P32,
P33, P45, P46, P49, P53, P55, P57,
P64, P65, P68, P71, P72, 73

Supervised/Unsupervised

LSTM P57, P71 Supervised
C2DF P12 Supervised

The most used algorithm was SVM, with some variants like LS-SVM and One-
class SVN also being used as standalone models. Neural Networks follow closely,
with 20 entries, with multiple variants across papers. Random Forest was used 12
times, with five of those using it as a standalone model, followed by KNN, which
was used as a standalone model in 6 out of 11 studies. Decision Trees were also
popular, used in 5 studies, with only one not using it as a standalone solution.
Naive Bayes came close, being used in 4 different papers. Every other model was
only featured in a smaller number of papers, however, some papers combined
more than one model to create hybrid solutions with, once again, SVM being the
most common one. Table 7 shows the hybrid models used in the papers:

20

Related Work

Table 7: Papers that used hybrid models

ID Hybrid Model
P2 Linear Regression + Random Forest

P11 SVM + Linear SVM
P13 Random Forest + Linear Regression
P37 KNN + SVM
P38 SVM + Fuzzy C-Means
P40 SVM + Random Forest
P46 ANN + KNN
P49 Neural Network + Naive Bayes + Decision Tree
P54 SVM + Neural Network
P57 CNN + LSTM
P66 SVM + KNN + Naive Bayes + Random Forest [Varma et al., 2022]

P70 K-Means + Random Forest & GMM + Random Forest & KNN +
SVM [Samunnisa et al., 2023]

P71 CNN + LSTM

3.4 Datasets

Not all papers addressed implemented models, however, those that did, required
a dataset to train those models. From the systematic review, 12 concrete datasets
were mentioned across 34 papers, with 2 other datasets being addressed in the
other documents collected. There were also datasets that were synthetically cre-
ated specifically for some papers as well as datasets that were not mentioned by
name or non-public. Table 8 represents the datasets used, along with how many
times they were mentioned across the papers.

Table 8: Datasets used in collected papers

Dataset Mentions Size
UNM 1 ?
Kyoto 2006+ 1 93591959 lines, 24 columns
NSL-KDD 7 149470 lines, 41 columns
ANTIY Laboratory 1 ?
KDDCUP 99 5 4898431 lines, 41 columns
MNIST 1 70000 images
NUS-WIDE 1 269648 images
CAIDA 2 Requires request
Real-Life Data 6 Varies
MalGenome 1 3800 lines, 216 columns
Wisconsin Breast Cancer Dataset 1 570 lines, 32 columns
UNSW 3 2540044 lines across 4 files, 49 columns
DARPA 2 ?
KDD 5 Varies
CIC-IDS2017 4 2830751 lines across 8 files, 79 columns
CSE-CICIDS2018 3 16232999 lines across 10 files, 84 columns
Non-public or non-specific datasets 7 Varies

21

Chapter 3

The most used datasets are from KDD. These can be NSL-KDD with 7 mentions,
or KDDCUP 99 with 5. "KDD" was only mentioned in many papers, although
that is not a concrete dataset, so it should fall into one of the two mentioned. The
Canadian Institute of Cybersecurity datasets were also popular, these being CIC-
IDS2017 and CSE-CICIDS2018. UNSW was mentioned in 3 papers each and CA-
DIA and DARPA were used in 2. All of the other datasets were only mentioned
once, including the ones that fit into the "Non-public or non-specific" class.

The Kyoto 2006+ dataset was built on three years of traffic data from November
2006 to August 2009. It consists of 14 features that were derived from the KDD-
CUP 99, as well as 10 additional ones. It was captured using honeypots, darknet
sensors, an email server, and a web crawler. These mechanisms were deployed on
the five networks inside and outside the Kyoto University and collected all traffic
data. There were around fifty 50 normal sessions and 43.5 million attack ses-
sions, with around 500 thousand of those being related to unknown attacks. As
mentioned, the dataset was based on the KDDCUP 99, but the authors excluded
substantially redundant and insignificant features, as they were not suitable for
network-based IDSs, the focus of this dataset.

The NSL-KDD dataset was also based on KDDCUP 99, and it was developed to
fix issues in that dataset, such as the high number of redundant records (78%) and
duplicate records (75%), which prevented the proper classification of the other
records. This dataset consists of a reasonable number of selected features from
the original dataset, containing 21 out of the 37 attacks present in the KDDCUP
99. The normal traffic consists of around 126 thousand instances, out of which
around 77 thousand consist of anomalies.

The KDDCUP 99 is a staple of anomaly detection in computer networks. It con-
sists of a collection of data transfers from virtual environments that was used on
the Competition of the Third Knowledge Discovery and Data Mining Tools in
1999. It is a subset of DARPA, a dataset that was collected by simulating the op-
eration of a typical US Air Force LAN, by the MIT Lincoln Laboratory. It consists
of 4898431 lines, each having 41 features.

The CIC-IDS2017 dataset was created by profiling the abstract human interac-
tions and generating naturalistic benign background traffic, based on the HTTP,
HTTPS, FTP, SSH, and email protocols of 25 users. It was captured across 5 days
and includes attacks such as Brute Force FTP, Brute Force SSH, DoS, etc. It con-
sists of almost 3 million lines across 8 files, each having 79 features.

CSE-CICIDS2018 is a dataset created in a collaborative project between the Com-
munications Security Establishment (CSE) and the Canadian Institute for Cyber-
security (CIC). With 79 features and around 1.5 million lines across 10 files, this
dataset features seven different attack scenarios, present on the captured traffic
of real labeled network traffic.

22

Related Work

3.5 Model Evaluation and Analysis

From the systematic review, 36 papers showed performance metrics in their re-
search, with the 10 others found in the research also mentioning them. Across all
of the papers, there are over 30 metrics, with some only being mentioned once,
therefore, those will be discarded, as they are very niche and were only used
in specific situations. Table 9 shows the number of times each metric was men-
tioned:

Table 9: Metrics used in collected papers [Nassif et al., 2021] [Kimmell et al., 2021]
[Varma et al., 2022] [Okey et al., 2023a] [Attou et al., 2023b]

Metric Mentions
True Positive Rate 27
Accuracy 24
False Positive Rate 18
Precision 15
F1 Score 9
True Negative Rate 7
Detection 6
False Negative Rate 2
Training Time 2

The most used metric was True Positive Rate, also known as Recall or Sensitiv-
ity. It measures the ability of the model to obtain all positive instances in the
dataset successfully, It calculates the ratio of correctly predicted positives to the
total number of actual positive instances. Recall is crucial when the cost of false
negatives is high ensuring that the model identifies as many positive instances as
possible. Accuracy was close, with 24 papers using it, which is a metric that mea-
sures the overall correctness of the model. It calculates the ratio of correctly pre-
dicted results to the total number of results. While it provides a general overview
of the model’s performance, accuracy may not be suitable for some datasets, such
as ones with imbalanced data, where one class significantly outnumbers the oth-
ers. False Positive Rate (or False Alarm Rate) is used in 18 papers, which is the
probability of falsely classifying a non-positive event as a positive one. 15 papers
used Precision, a metric that assesses the accuracy of positive predictions made
by the model, using the ratio of correctly predicted positives to the total num-
ber of positive predictions. This value is particularly valuable when the cost of
false positives is high and helps understand how reliable the positive predictions
are. F1 Score, which is a composite metric that combines precision and recall
into a single value was used 9 times. This allows us to easily check the balance
between precision and recall, making it particularly useful in scenarios with im-
balanced class distribution. True Negative Rate was used in 7 papers to represent
the chance of correctly identifying non-positive events as such. Detection was
used 6 times and the last two, False Negative Rate and Training Time, were used
only 2 times each.

This shows a preference for some metrics, particularly Accuracy, Precision, and

23

Chapter 3

Recall, which are frequently used together in multiple papers. This set of metrics
provides a very broad sense of how the models are performing, covering many
areas that are more or less important, depending on the purpose of the models.

3.6 Summary

This chapter provided an overview of the literature review process, outlining the
search strategy that was used to collect relevant papers on the topic. After this,
the different cloud security areas addressed in the papers are presented, focusing
on the ones that are relevant to this thesis. The various ML algorithms used were
then presented, showing trends in the use of certain models, as well as the hy-
brid solutions that were also implemented. The datasets that were used to train
these models were also shown, highlighting the popularity of the KDD datasets.
Finally, the mc common evaluation metrics employed by researchers were ad-
dressed.

24

Chapter 4

Approach and Methodology

In this chapter, the topics that are addressed are related to how the work was
done. The first section presents the expected outcome and the proposed approach
to reach that outcome. After that, a section related to the methodologies and
mechanisms follows, touching on topics such as the selection of the model and
dataset, the evaluation of features and how that influenced which ones were cho-
sen, and finally how the models were evaluated in each of the two used methods
and the version of the tools and frameworks that were used.

4.1 Expected Outcome

At the end of this thesis, it is expected to have a set of models that, in conjunction
with feature extraction tools, can be trained to detect anomalies in cloud systems.
The goal is for these models to provide the best possible results with the smallest
possible set of features, not only to reduce the size of the datasets and the time
it takes to train the models but also to reduce the amount of information that is
being tracked. The models should be easily deployable, together with the tools
that extract the data needed to feed them. To achieve this, they should be inte-
grated into the deployable product that is being developed for project NEXUS.
The work done for this project can be checked on NEXUS GitLab, although the
access must be granted on request, as it is currently closed access and requires a
VPN.

4.2 Proposed Approach

For the execution of this work, the following will be done:

1. Select Machine Learning models: The models that will be used to classify
the anomalies will be selected.

2. Select the dataset to train the models: The dataset that will be fed to the
models will be selected.

25

https://git.lis.ipn.pt/nexus/wp-7

Chapter 4

3. Implement models and dataset: Both the models and dataset will be put
together and the first tests will be executed.

4. Validation: The results of the implementation will be validated, checking,
for example, the confusion matrix, to see if the models are not always pre-
dicting the same thing.

5. Evaluation: The effectiveness of the models will be evaluated, using metrics
like accuracy and precision. The time taken to train and predict will also be
taken into account.

6. Feature Engineering: Modifications to the dataset will be done, reducing
the number of features used and trying combinations of some of them to
improve the performance of the models.

7. Refine approach: Any modifications needed to accommodate for any sug-
gestions and conclusions will be made.

4.3 Methodology

In this section, the methodology used will be discussed. Starting with the ML
models that were selected as well as the selection of the dataset that was used
to train and evaluate those models. After that, the methods used to rank the
importance of the features will be described, as well as how those evaluations
lead to the metric selections, reducing the dataset size. After that, there will be a
subsection that will touch upon the evaluation of the models, describing how the
dataset was used to train and test the models in both methods. After that, there
is a section that touches on the metrics used to measure the performance of the
models, and the last section focuses on the tools and frameworks that were used
to implement all of the mentioned work. By the end of this section, the reader
should have a clear understanding of the methods and mechanisms employed
during the practical part of this thesis.

4.3.1 Model and Dataset Selection

The model selection began during the literature review and state-of-the-art fa-
miliarization part of the plan. During this time, many documents were collected
and read with the main goal of understanding what models were currently being
used for cloud environments. Using Tables 6 and 5, it was possible to see trends
in certain models, so that was taken into account when choosing them. Another
piece of information analyzed in the literature review was the datasets used in the
collected papers, another useful piece of data. Table 8 showed that KDD datasets
and real-life datasets were the most popular ones. A second and third datasets
were later added by recommendation of the jury of the intermediate delivery of
this thesis.

26

Approach and Methodology

4.3.2 Feature Evaluation and Selection

For the feature evaluation, various methods were used, some relying on informa-
tion extracted from the models, and others using statistical information from the
dataset. One was to check the coefficients provided by the models. This gives us
a table in which for every (feature, class) pair, a value is given. This value is used
to calculate the probability of a data point belonging to each class in the classifi-
cation model. This means that, theoretically, the higher values a column has, the
more relevance it has, as it affects the decision of the model in a greater way than
one with smaller values.

Another method that was based on the information provided by the models
was Random Forest’s ’feature_importance_’ function, which directly provides
impurity-based feature importances [Pedregosa et al., 2011]. This means that the
importance of each feature is given by how much it helps to reduce impurity and
accurate predictions [Youssefi, 2023]. This method provides a more clear result
on the feature’s importance, giving a percentage to each one.

For the statistical-based methods, one of them was Fisher Score, a feature selec-
tion approach that ranks features based on their ability to differentiate various
classes in the dataset [Rosidi, 2023]. One difference from this method to the pre-
vious ones is that it only needs to be run once, due to the nature of variance,
which is what Fisher Score uses to rank the features. When removing features,
the variance of the other ones will either remain the same or go up.

For the final method, instead of trying to figure out the importance of each fea-
ture, it aims to identify the features of the dataset that follow the same pattern,
and, therefore, there should be no statistical impact if all but one of them gets
removed. To achieve this, two functions were used. The first one is the Pear-
son Correlation, which measures the linear correlation between two sets of data,
while the second one is Spearman’s Rank Correlation, a variation of the Pear-
son Correlation that assesses monotonic relationships between two sets of data.
These functions output a value between -1 and 1, and the closer it is to one of the
two ends of the spectrum, the bigger the correlation between the two features.

Having these 4 methods to use, the feature engineering process began. Based on
the outputs of the 4 different methods, features were removed from the datasets,
resulting in different results.

4.3.3 Evaluation Approach

This process had two methods, one that was used before the intermediate de-
livery of this thesis, and another one that was developed keeping in mind the
changes suggested by the jury and the advisors. To better identify these solu-
tions, the first one will be named Fisher-RF, and the second one will be named
Cross-Validated CoRF. The results of these two solutions will also be split in this
thesis. The results obtained with the first version (which was presented in the
intermediate delivery) will be presented in Chapter 5, while the results obtained
with the second and final version will be presented in Chapter 6.

27

Chapter 4

4.3.3.1 Fisher-RF

For the evaluation approach of this method, the dataset is divided into two with
a split of 80/20. The smallest split is then labeled as Testing Data, which is used
to make the final evaluation of each model. The biggest split is passed through
a scaler and labeled as Training Data. This data is then used to train the first
instances of the 3 standalone models: Support Vector Machine (SVM), Gaussian
Naïve Bayes (GNB), and K Nearest Neighbour (KNN). Additionally, it is also
passed through a Blending Ensembling Technique, being divided into an 80/20
split once again, as it will be used to both train and test three separate instances of
the previous models. The predictions of those models are then added as features
to the dataset and fed to a hybrid model that uses Random Forest. The final
4 models (the 3 initial standalone ones and the hybrid one) are then evaluated
using the smallest split that was taken away at the beginning of the process to
prevent any possible previous knowledge. This process can be seen as a diagram
in Figure 5.

Figure 5: Evaluation process

For this method, three of the four solutions presented for the feature removal
process were tested: Fisher Score, Model Coefficients, and Random Forest Fea-
ture Importance. Out of these three, Fisher Score and Random Forest Feature
Importance were implemented, while Model Coefficients were not, as it was not
ready to implement at the time of the intermediate delivery due to a time con-
straint. The goal of the removal of the features was to make the models faster
while keeping their performance, or even improving their predictions, with the
removal of possible deteriorating features.

28

Approach and Methodology

4.3.3.2 Cross-Validated CoRF

For this method, the hybrid model was dropped due to an incompatibility of the
previous code with the important introduction of cross-validation using K-fold,
however, the Random Forest model was still kept in, but running as a standalone
model. SVM, however, was completely ditched, due to its poor scaling, that was
considerably impacting the speed of the tests. To compensate for this lack of
scaling, parallellism was considered, however, no working solution was found
for SVM. This was not the case for KNN and Random Forest, with both simply
requiring the parameter ’n_jobs’ to be set to the number of CPU cores to be used
or to -1, to use the max amount of available cores.

A new column was also added to the first dataset to match the labeled columns
of the second and third ones. One that identified the specific attack, and another
one that worked binarily, with a 1 identifying an attack and a 0 meaning it was
normal network traffic, to further improve the performance of the models, as it is
easier to distinguish between two states than it is to distinguish between, in this
case, five.

Regarding the feature selection methods, following the results and observations
previously made in the first method regarding Fisher Score, this method was
dropped and replaced by the correlation solution. As for the Coefficients ap-
proach, it was implemented using the coefficients generated by the GNB model,
as it was the only of the three used models with this function available.

In terms of dataset balancing, the first method only used a limitation approach
(by removing lines from the dataset in order to balance everything by the small-
est sample of labels. This, although valid, could heavily reduce the amount of
data in the datasets, especially when the attacks are identified in a non-binary
way. To combat this, by the suggestion of one of the members of the jury, another
balancing option was added, using Smote, a technique that generates new syn-
thetic samples by interpolating between existing minority-class samples. Figure
6 shows the diagram of the new method.

When the data is imported, it first goes through the Pearson Correlation and
Spearman Correlation functions without removing any feature. It then gets pre-
pared to be fed to the models, by removing any unwanted columns, balancing
the data, and separating the column that will be used for labeling. This data
preparation is all controlled by the parameters shown in the purple box, which
can be easily changed to modify how the data is handled, making it possible to
easily switch between datasets, feature removal, data balancing, and binary or
non-binary attack identification.

The first parameter, ’Dataset’, indicates which of the three datasets to use. If it
is set to ’DDoS’, the dataset used in the first method will be used, if it is set to
’EdgeIIoT-DNN’, the bigger version of the EdgeIIoT dataset will be used, the one
meant to be used with Deep Neural Networks. When set to ’EdgeIIoT-ML’, the
dataset used will be the smaller version of the EdgeIIoT dataset and, finally, when
set to ’UCDataset’ it will use the dataset that was provided by the University of
Coimbra.

29

Chapter 4

Figure 6: Diagram of the second method used

The second parameter, ’Indexes’, is responsible for the choice of what columns
get removed from the dataset. These are identified in lists that have been man-
ually populated by training the models with the Original indexes and checking
the Pearson and Spearman Correlations, Random Forest Feature Importance, and
the GNB Coefficients, which correspond to the values ’Correlations’, ’Random-
Forest’, and ’Coefficients’, respectively.

The third parameter, ’Data’ controls how the balancing of the data is done. If this
parameter is set to ’Original’ no balancing is done. Otherwise, if set to ’Limited’,
the balancing that was used in the first method is employed, by limiting the num-
ber of instances of each label to the smallest one of them. As mentioned before,
this can have a great hit on the performance of the models, especially when used
along with non-binary labeling. This is why the third option, ’Balanced’, was in-
troduced. This one uses Smote to populate the dataset with new synthetic values
that balance it by adding instead of taking away from it.

The last parameter, ’Mode’, defines which of the two columns that identify the
attacks is used. If set to ’Attack_label’, the binary column will be used, while if
set to ’Attack_type’, the column that specifically identifies what attack is being
made will be used. Due to time restrictions, the latter was not included in the
result analysis, which was not a big loss because the performance of the models
was very weak when compared to the binary solution.

30

Approach and Methodology

After the data gets prepared, it then goes to the model training part of the code,
being fed to each model at a time. Figure 7 shows how this portion of the code
trains each model.

Figure 7: Diagram of the model training portion of the second method

First, the data gets duplicated and passed through a basic train-test split of 80/20.
This is done because, the way the K-fold is implemented, there is no access to
the predictions of the models, therefore the confusion matrix can’t be calculated.
After that, the original data is sent to a K-fold where, in this case, the K is equal
to 10.

This means that, as seen in Figure 7, the data gets split into 10 parts, out of which
one is set as the testing data, and the rest is set as training data. The model is
trained and tested, resulting in accuracy, precision, recall, and f1 scores. The part
that was used as testing data, goes back to being training data, while one of the
other ones takes its place, and the testing and training is re-done. The process
is repeated until all of the 10 parts have been used as testing data, and then the
average of the accuracy, precision, recall, and f1 scores is the result of the function.

This method is important because it provides a more reliable estimate of the mod-
els’ performance compared to a single train-test split, ensuring that the models
are consistent across different subsets of the data.

4.3.4 Evaluation Metrics

To get the prediction results, Accuracy, Precision, Recall, and F1 Score were the
main metrics used. These are calculated using the number of True Positives, True
Negatives, False Positives, and False Negatives, and can give us a better under-
standing of how the model is performing. Figure 8 shows how each of those
metrics is calculated.

31

Chapter 4

Figure 8: Evaluation metrics used [Seol et al., 2023]

Accuracy is a metric that measures the overall correctness of the model. It calcu-
lates the ratio of correctly predicted results to the total number of results. While
it provides a general overview of the model’s performance, accuracy may not be
suitable for some datasets, such as ones with imbalanced data, where one class
significantly outnumbers the others.

Precision assesses the accuracy of positive predictions made by the model, using
the ratio of correctly predicted positives to the total number of positive predic-
tions. This value is particularly valuable when the cost of false positives is high
and helps understand how reliable the positive predictions are.

Recall (also known as True Positive Rate, measures the ability of the model to
obtain all positive instances in the dataset successfully, It calculates the ratio of
correctly predicted positives to the total number of actual positive instances. Re-
call is crucial when the cost of false negatives is high ensuring that the model
identifies as many positive instances as possible.

F1 Score is a composite metric, calculated by combining precision and recall into
a single value. This allows us to easily check the balance between precision and
recall, making it particularly useful in scenarios with imbalanced class distribu-
tion.

Using these metrics, we got a sense of how the algorithm would perform in the
real world, together with the training time and prediction time.

4.3.5 Tools and Frameworks

The experimental work was implemented on a Windows 11 machine running
Python 3.11.5 on Jupyter Notebook 6.5.4.

The Pandas library, together with Numpy, was used to manage and manipulate
the data. Liac-arff was used to import the data into the environment, as it was
provided in the ’.arff’ format. Matplotlib, Seaborn, and IPython were used to
better represent tables and matrixes, providing more control over how they were
displayed. The Scikit-learn library was the most important one, as it provides all
of the functions that are related to the models, as well as the models themselves.

All of the tools and framework versions can be seen in Table 10:

32

Approach and Methodology

Table 10: Tools and Framework versions

Tool / Framework Version
Python 3.11.5
Jupyter Notebook 6.5.4
Pandas 2.0.3
Numpy 1.24.3
Liac-arff 2.5.0
Matplotlib 3.7.2
Scikit-learn 1.3.0
IPython 8.15.0
Seaborn 0.12.2

4.4 Summary

In this chapter, the approach to tackle the objective of this thesis was presented.
The expected outcome of the thesis was presented as well as the plan to reach
it. The methodology was also addressed, regarding the selection of the dataset
and the model, which were done based on information gathered in the literature
review and the suggestions of the jury in the intermediate delivery. The feature
evaluation and selection were also touched upon, addressing the four feature se-
lection methods that are implemented in this paper. The evaluation of the models
was also explained, demonstrating how the datasets are handled in each of the
two methods presented. Finally, the functions of the tools and frameworks used
were addressed, as well as their versions running on both the machines that were
used during the process.

33

Chapter 5

Fisher-RF Results and Discussion

In this chapter, the results of the work done during the first half of the thesis will
be presented and discussed. The practical implications of said results will also be
addressed, as well as the limitations of the methodology.

5.1 ML Models and Dataset

The selection of models was made based on 6, in which a high usage of SVM,
Random Forest, and KNN can be seen among classical ML models. Neural Net-
works, the most popular choice for Deep Learning, were also a valid choice, how-
ever, due to the low experience in the area and time restriction introduced by the
thesis delivery, a decision was made to stick with the classical models.

With the model selection done, the search for an implementation of these began.
One of the papers found, titled "Detection of DDOS attacks using machine learn-
ing techniques: A hybrid approach", by D Anurag Varma, Ravi Ashish, and V
Sandeep, made an implementation of these exact models with the addition of
GNB that showed promising results. Although the document is small, there is a
video on Youtube titled "Detecting DDoS Attacks by ML Technique: Hybrid Ap-
proach | KNN SVM Gaussian Naïve Bayes | Source Code" that follows the same
approach to implement these models, which served as a guide for the implemen-
tation of the first method used in this thesis.

The dataset used in both the paper and the video ended up being the first one
used for this thesis as well, as it was network-focused and, during the initial week
of the internship, it had been decided that this would be my main focus. This
dataset is "DDOS Attack Network Logs", by Jacob van Steyn, and is available
on Kaggle. It is from 2019 and contains around 2,100,000 labeled network logs
from various types of network attacks: UDP-Flood, Smurf, SIDDOS, and HTTP-
FLOOD. After some research, most of the features also looked like they were
relatively simple to extract from a cloud environment.

35

Chapter 5

5.2 Implementation and Validation

The initial implementation, as mentioned, was done with the help of a YouTube
video [Ove, 2021] that used the same models and dataset as the ones chosen. The
first implementations, shown in Figure 9, showed that the hybrid model did not
have a better performance than all the non-hybrid ones, which went against the
video and the paper on which the implementation was based.

Figure 9: Performance of the first instance of the models

After some tinkering, the dataset was normalized and balanced, which produced
results that were closerto what was shown in the paper. More metrics were also
added for a better understanding of the performance of the models, as seen in
Table 11.

Table 11: Model evaluation after normalization and balancing of the dataset

Model Accuracy Precision Recall F1
SVM 96.64 82.57 73.45 75.82
KNN 75.53 80.37 65.42 67.01
GNB 96.75 82.36 72.88 75.52
Random Forest 98.11 86.06 81.17 83.54

Figure 10 showcases the confusion matrix of a Hybrid model, that took the pre-
dictions of SVM, KNN, and GNB and used them as features in the input of the
Random Forest model. Due to the imbalance of the labels of the dataset, the diag-
onal is not significantly marked apart from the first two labels (Normal and UDP-
Flood), as those are the most prominent classifications. However, upon further
inspection, it is possible to see that the deviations from said diagonal are mini-
mal, when compared to the scale of each label’s dominance, which goes along the
values shown in Table 11.

36

Fisher-RF Results and Discussion

Figure 10: Random Forest confusion matrix

With the model successfully implemented and validated, changes that were out-
side of the work presented on the guiding material started being made.

5.3 Feature Engineering

As mentioned before, the feature engineering process was made based on feature
importance: less important features are removed to increase both the speed and
the accuracy of the models. To do so, 4 methods were used as described in Section
4.3.2.

5.3.1 Fisher Score

The first one was Fisher Score. This statistical method evaluates each feature
comparing the mean values and variances between different classes, measure-
ing their discriminatory power [Rosidi, 2023]. The higher the feature’s score, the
more separation between classes it provides, therefore, a higher feature impor-
tance is attributed to it. A screenshot of one of the outputs of Fisher Score can be
seen in Figure 11.

37

Chapter 5

Figure 11: Screenshot of Fisher Score values

Using this method to begin removing features from the dataset, a detail was made
clear: the feature importance for each feature was changing, but not significantly.
This is due to the fact that, although the Fisher Score formula itself is independent
for each feature, the statistical properties (mean and variance) used in the formula
are dependent on the overall data distribution. Thus, removing one feature can
change the distribution of the dataset, indirectly affecting the Fisher Scores of the
remaining features, resulting in small fluctuations in the score of each feature.
Table 12 shows how removing features affected the importance, as well as what
features were removed (identified with a bright red cell with a slash). As for the
other colors, yellow means no change occurred in the value, and green means it
increased.

38

Fisher-RF Results and Discussion

Table 12: Non-Hybrid models Fisher Score feature importance

For this method, the first removal was FLAGS, as it showed a 0% feature impor-
tance, which is the result of this column being full of 0’s, with no other value in it,
showing zero statistical value. After that, all of the features with a value smaller
than 1% were also removed, with the exception of SEQ_NUMBER. This feature
was left behind because, as of this test, the other methods were being run at the
same time, and this feature was deemed as important, therefore a decision was
made to keep it. However, after pondering this decision, it was also removed and
the methods were isolated for a more scientific analysis.

As seen in the table, with the removal of 6 features, although changes were seen
in the importance of many features, the increases were minimal, with the biggest
one being 0.46%. Using this method for feature evaluation, all the models either
had a performance deterioration or stagnation, with KNN being an exception that
had a very small boost in performance with the removal of one of the features.

39

Chapter 5

5.3.2 Model Coefficients

For the coefficient analysis to be possible, the parameter ’kernel’ from the SVM
model, had to be changed to linear. This not only allowed for the function ’coef_’
to be utilized but also improved the performance of the model, as shown in Figure
12.

Figure 12: Performance comparison between the different kernel options

In a multi-class SVM, Scikit-learn uses a one-vs-one strategy by default, creating
a binary classifier for every pair of classes. This means that the resulting table
will have K×(K−1)

2 , where K is the number of classes. Given that the dataset has 5
classes, the coefficient table for this model will have 5×4

2 = 10 rows, where each
row corresponds to a unique pair of classes. This is not specified in the docu-
mentation of the library online, however, upon further inspection of the source
code for the library, the function shown in Figure 13 was found to be the deciding
factor for the order of the class distribution.

This means that when requesting the coefficients for a linear kernel SVM model,
the order of the rows is obtained from a sequential distribution of classes. In this
case, where the dataset had the classes [Normal, UDP-Flood, Smurf, SIDDOS,
HTTP-FLOOD], the coefficient table is shown in Table 13.

40

Fisher-RF Results and Discussion

Figure 13: Source code of the ’_one_vs_one_coef’ function

Table 13: Partial table with the coefficients of the SVM model

41

Chapter 5

In the table, some cells are highlighted in red and green. These are the ones in
which their absolute value is bigger (green if positive, red if negative) than the
average of the absolute values of that column. Since a bigger value indicates a
bigger weight on the decision of the model (if it belongs to a class or not), the
more marked (therefore relevant) cells a column has, the bigger their feature im-
portance should be.

The same was done for GNB, using ’theta_’, the equivalent function to get the
coefficients. In this case, however, each row corresponds to one class, making it
more straightforward:

Table 14: Partial table with the coefficients of the GNB model

Looking at the table for this model, Table 14, it isn’t as clear which ones are and
are not contributing much to the predictions, as there are no columns that don’t
have any color. In this case, it would be necessary to discard the ones that con-
tributed the least.

5.3.3 Random Forest Feature Importance

The final method was the feature importance provided by the Random Forest
model directly, as shown in Figure 14. As mentioned before, the same process of
removing features used for Fisher Score was used here, with ’feature_importances_’
giving the values this time.

For the hybrid model, the size was reduced from 26+3(with the +3 being the
other model’s inputs) to 15+2. This also resulted in the removal of SVM predic-
tions, which took a long time to train and predict for a performance worse than
the other models and also limited the Hybrid one, as removing it improved the
scores. Table 15 shows the progression of importance when removing features.
This time, a new color has been added, light red, because this approach takes into
consideration the model, making it possible for an importance to go down.

42

Fisher-RF Results and Discussion

Figure 14: Screenshot of Random Forest feature importance

Table 15: Hybrid model feature importance

43

Chapter 5

5.4 Discussion

All of these modifications in the dataset had implications for the models’ perfor-
mance. Not every change was beneficial to all models, except for the hybrid one.
Table 16 shows how each of the previous sets of features affected the models. For
an easier read of the table, the cells have been painted, following the previous
color logic of the previous table.

Table 16: Feature results comparison

The results shown in the first implementation of the models were promising but,
as mentioned, were not realistic for two reasons: the dataset was not balanced,
and the only metric that was being used to measure its performance was accuracy,
which is not sufficient to tell how the model is performing. After balancing and
normalizing the data as well as adding some more evaluation metrics, the results,
shown in Table 11, were more informative.

The feature engineering provided a huge improvement in the performance of the
models. The information retrieved from the coefficients still needs to be imple-
mented into the process, however, using Fisher Score and the Random Forest Fea-
ture Importance, the performance of the hybrid model improved, and the amount
of features was also reduced.

Although these results are still using a dataset and not real information extracted
from a simulated cloud service, the preliminary conclusion taken from the met-
rics is that the performance of the models in that scenario will be, at least, relevant
enough to be usable.

The methodology used for this first method showed a lot of limitations, some
coming from a lack of experience, others imposed by time restrictions. The fol-
lowing identified limitations for this method were taken into account when de-
veloping the second one.

• Missing cross-validation: This solution had no cross-validation implemen-
tation in the evaluation of the models. This might have lead to biased results
which is not desirable when training models.

• Feature Engineering: Not all methods of feature engineering that were pro-
posed were implemented. These were also not thoroughly nor scientifically
tested, leading to possible inaccurate conclusions.

• Anomalies: The dataset used to train the models only showcased DDoS
anomalies, which is extremely limiting to the model applications.

44

Fisher-RF Results and Discussion

• Result Analysis: The whole methodology used for this first method was
very experimental, with little to no thought given to result analysis. A lot
of the experiments were run with many variables changing between them,
resulting in not very methodical processes.

5.5 Summary

In this chapter, the results obtained for the first method were shown, such as the
selected models and the dataset that was used to train them. The implementation
of those models as well as how they were validated was also addressed, as well as
the process of feature engineering that was applied to improve the results. Finally,
the discussion of the results touched upon the conclusions that were taken from
these results, mentioning their limitations.

45

Chapter 6

Cross-Validated CoRF Results and
Discussion

In this chapter, the final results of the thesis will be presented and discussed.
First, the new dataset introduced will be addressed, followed by the results ob-
tained from this new method across all datasets. The practical implications of
said results will also be addressed, as well as the limitations of the methodology.

6.1 New Datasets

For this method, two new datasets were introduced. The first one is the EdgeIIoT
dataset, which is an extensive collection of data sourced from various IoT devices
and sensors deployed within an edge computing framework. This dataset con-
sists of a wide range of data types, including sensor readings, device status logs,
and network performance metrics, making it a versatile resource for researchers
and developers working on edge computing and IoT applications [Ferrag, 2022].
Although these models are not planned to be trained with network protocol fea-
tures (which is the case in this dataset), this dataset aims to test their performance
with these types of features, as there is also a possibility that they can be extracted.
This also helps test how the models would behave in edge computing scenarios,
in case they needed to be introduced in such conditions.

This dataset comes divided in two, one that is meant for Classical Machine Learn-
ing, consisting of a smaller sample, and one meant for Deep Neural Networks,
that has a bigger amount of data, as these usually require more information,
which have both been used to test the model.

The other dataset that was introduced was requested in collaboration between
Instituto Pedro Nunes and the University of Coimbra, as the feature extraction
mechanism was not ready at the time of the delivery of this thesis. This dataset
was extracted in a very similar way to what was planned for the Nexus project
and, having many tools in common.

The purpose of this dataset was to test the performance of these models in aspects

47

Chapter 6

that were missing on the other two datasets, such as CPU usage, memory usage,
container information, etc. It also functions as a replacement of the dataset that
was meant to be created using the feature extraction mechanism that was being
developed parallel to this thesis, as it was created in very similar conditions, as
mentioned previously.

6.2 Results

In this section, the final results of the tests will be presented. For each dataset, the
data distribution will be given for each of the balancing methods, and, for each
model, the table of results will be shown, along with the time taken to fit and
score each one. Graphs comparing the diverse approaches will also be shown.

6.2.1 DDoS Dataset

This is the same dataset that was used in the first method. On the tables, the
Features column indicates which balancing method and which feature removal
process was used. For example, Original_RF<1% indicates that the dataset was
not balanced (keeping the original distribution) and the feature removal tech-
nique used was the Random Forest Feature Importance where the removed ones
were the ones under 1%. As mentioned before, the dataset was slightly altered to
include a column that binarily identified the attacks. Figure 32 shows the original
data distribution of the dataset.

Figure 15: Original data distribution of the DDoS Dataset

To balance the dataset, the limited approach will reduce the number of normal

48

Cross-Validated CoRF Results and Discussion

traffic to 224709, and the Smote approach will increase the number of malicious
traffic to 1935959.

6.2.1.1 KNN

Table 17: Table of the KNN results on the DDoS Dataset

Right away, in Table 17, it is possible to see the difference between the binary at-
tack identification and the normal one. This can be seen in the first row: with the
first method, the KNN model obtained Accuracy, Precision, Recall, and F1 scores
of 75.53, 80.37, 65.42, and 67.01, respectively, while using the binary identification,
the scores were 98.66, 99.19, 93.63, and 96.20, respectively.

Figure 16 shows the performance graph of the KNN model on each set of condi-
tions. it shows that the performance is about the same, however, if the main goal
of the model implementation is to squeeze the maximum amount possible from
the scores, this scale is not good for that. In Figure 17, the scale of the graph has
been changed from 0 to 100 to 80 to 100.

49

Chapter 6

Figure 16: Graph of the KNN results on the DDoS Dataset

Figure 17: Rescaled graph of the KNN results on the DDoS Dataset

Here we can see that the best performance of the model is with its original dis-
tribution, with the only advantage of balancing the data being the Recall when
balancing using Smote. Other than that, the only difference is that the scores get a
lot closer together, becoming more consistent with each other. If the main goal is
speedy identification, however, limiting the data might be a good choice, as seen
in Figure 18.

50

Cross-Validated CoRF Results and Discussion

Figure 18: Fitting and Scoring graph of the KNN results on the DDoS Dataset

Here we see that, with a hit of about 5 to 6% on the accuracy and precision of the
model, the scoring time can go from around 400 seconds to around 20 when using
the original feature set, but this time can go even lower when using the feature
removal techniques. Another advantage of these feature removal techniques that
can be seen is that, when using the original features or the ones indicated by
the Random Forest Feature Importance, the model takes less time to fit and more
time to score, while when using the Coefficients or Correlations approach, it takes
more time to fit but the scoring becomes much faster, all of this while keeping the
same performance. This can also be relevant for many implementations of the
model, as usually, a faster prediction is more important that a fast training.

6.2.1.2 GNB

In Table 18, it is once again possible to see the improvement of the binary identi-
fication, going from 96.75, 82.32, 72.88, and 75.52 to 97.41, 98.58, 87.56, and 92.18,
for accuracy, precision, recall and f1 score, respectively.

51

Chapter 6

Table 18: Table of the GNB results on the DDoS Dataset

Figure 19: Graph of the GNB results on the DDoS Dataset

Figure 19 keeps the previous trend, showing more stable results in the balanced
versions, but only improving the Recall score. The best overall performance is
still from the original distribution. We can also see that the performance gain
between the limited and the balanced version is non-existent, meaning that this
model probably does not benefit from more information.

52

Cross-Validated CoRF Results and Discussion

Figure 20: Fitting and Scoring graph of the GNB results on the DDoS Dataset

The times seen in Figure 20 show the potential of the feature removal techniques.
The time required to fit and score drastically decreases while the performance of
the models stays the same, with the exception of the Correlations method in the
original distribution.

6.2.1.3 Random Forest

Table 19: Table of the Random Forest results on the DDoS Dataset

The improvement of the binary identification can’t be fully seen here, as the pre-
vious method only used the Random Forest model in a hybrid solution, however,

53

Chapter 6

even without the additional information provided by the other models in that so-
lution, this standalone version of the Random Forest model is better, improving
the Accuracy, Precision, Recall, and F1 Scores from 98.11, 86.06, 81.71, and 83.54
to 98.28, 97.18, 93.43, and 95.21, respectively.

Figure 21: Graph of the Random Forest results on the DDoS Dataset

Random Forest is the first model that showed a complete improvement from a
balanced dataset, specifically from the one balanced with Smote, as seen in Figure
21. Figure 22 shows a rescaled version of the graph for a better visual of the
performance loss and gain for each set of conditions.

54

Cross-Validated CoRF Results and Discussion

Figure 22: Rescaled graph of the Random Forest results on the DDoS Dataset

Once again the Correlations technique shows a slightly bigger loss of perfor-
mance when compared with the other techniques. This can be due to a low
threshold, resulting in the loss of relevant columns that have a big correlation
between themselves, but not too big that makes them irrelevant.

Figure 23: Fitting and Scoring graph of the Random Forest results on the DDoS
Dataset

In Figure 23 the time gain of limiting the dataset is once again seen, but what
is also noticed is that removing the features using the Random Forest Feature
Importance approach actually increases both the time to fit and score the data.

55

Chapter 6

6.2.2 EdgeIIoT-ML Dataset

The second dataset was the smallest one out of the two that come in the EdgeIIoT
folder. This one is meant for classical machine learning models, as they typically
use less data than neural networks. Figure 24 shows the original data distribution
of the dataset.

Figure 24: Original data distribution of the EdgeIIoT-ML Dataset

This time, the limited approach will reduce the number of normal traffic to 24301
instances, while the Smote approach will increase the number of malicious traffic
to 133499 instances.

56

Cross-Validated CoRF Results and Discussion

6.2.2.1 KNN

Table 20: Table of the KNN results on the EdgeIIoT-ML Dataset

Contrary to the previous dataset, this one shows that balancing the data using
Smote improves the performance of the models even on the KNN model, as seen
in Figure 20. Although the accuracy takes a slight hit, all of the other metrics go
up. This is easier to spot in Figure 25.

Figure 25: Graph of the KNN results on the EdgeIIoT-ML Dataset

57

Chapter 6

On the other hand, the trend seen in the previous dataset continues, as the metrics
get a lot more consistent when the dataset is balanced.

Figure 26: Fitting and Scoring graph of the KNN results on the EdgeIIoT-ML
Dataset

In Figure 26 it is again seen the trade-off of increasing fitting time to reduce the
scoring time when using either the Correlations or the Coefficients approach.

6.2.2.2 GNB

Table 21: Table of the GNB results on the EdgeIIoT-ML Dataset

58

Cross-Validated CoRF Results and Discussion

Table 21 shows that the performance of the GNB model is not only way below the
KNN model but also way below its performance on the previous dataset. This
can be because of various reasons: the reduced number of lines, and therefore
information, could be impacting the model, or the different nature of the two
datasets, as this data consists of protocol information while the other one uses
packet information could make this model less useful for this type of data.

Figure 27: Graph of the GNB results on the EdgeIIoT-ML Dataset

In Figure 27 it’s noticeable that, just like on the previous dataset, the difference
between balancing the data using limitation or Smote is negligible. This most-
likely excludes the possibility that the model is being impacted by less data since
both methods of balancing produce the same results, even though one has con-
siderably more information than the other. This also means that, in the case of
this model and dataset, there is no reason to go for a Smote balancing, which
takes considerably more time, for no improvement, as seen in Figure 28.

59

Chapter 6

Figure 28: Fitting and Scoring graph of the GNB results on the EdgeIIoT-ML
Dataset

6.2.2.3 Random Forest

Table 22: Table of the Random Forest results on the EdgeIIoT-ML Dataset

The Random Forest model is, once again, the one with the best performance,
with no metric going under 98%, and only 5 values under 99%, as seen in Table
22. The performance is very close between all distributions and feature removal
techniques, as seen in Figure 29.

60

Cross-Validated CoRF Results and Discussion

Figure 29: Graph of the Random Forest results on the EdgeIIoT-ML Dataset

At first glance, it seems that every model is the same, however, upon rescaling
the graph, it is possible to see the differences across the different conditions.

Figure 30: Rescaled graph of the Random Forest results on the EdgeIIoT-ML
Dataset

Figure 30 once again shows the same consistency across metrics in the balanced
results, and, once again, the Smote balanced data showed better results. Looking
at the time taken to fit and score the data, Figure 31, it is also noticeable that the

61

Chapter 6

scoring time is not much higher than the original distribution, with the model
simply taking more time to fit.

Figure 31: Fitting and Scoring graph of the Random Forest results on the
EdgeIIoT-ML Dataset

6.2.3 EdgeIIoT-DNN Dataset

This is the other dataset that is present in the EdgeIIoT package. This dataset has
around 7 times the amount of data that the Classical Machine Learning dedicated
one has, due to the high demand of information Neural Networks typically have.
Figure 32 shows the original data distribution of the dataset.

Figure 32: Original data distribution of the EdgeIIoT-DNN Dataset

62

Cross-Validated CoRF Results and Discussion

Once again, the limited approach will reduce the number of normal traffic to
603558, and the Smote approach will increase the number of malicious traffic to
1615643.

6.2.3.1 KNN

Table 23: Table of the KNN results on the EdgeIIoT-DNN Dataset

In Table 23 we can see that the KNN model got a substantial boost in performance
when compared to the Classical Machine Learning version of the dataset.

Figure 33: Graph of the KNN results on the EdgeIIoT-DNN Dataset

63

Chapter 6

Figure 33 shows that, once again, the performance of the data that was balanced
with Smote is better than the original distribution.

Figure 34: Rescaled graph of the KNN results on the EdgeIIoT-DNN Dataset

When re-scaling the graphic to better show the fluctuations, as seen in Figure
34, we can not only see the usual stabilization of the metrics, but also that, in
this case, the Coefficients approach lost a lost of performance, especially on the
limited data.

Figure 35: Fitting and Scoring graph of the KNN results on the EdgeIIoT-DNN
Dataset

Although the performance of the model increased, Figure 35 shows that the time
taken to score the data got ridiculously high, taking 100 times the time that was

64

Cross-Validated CoRF Results and Discussion

needed in the Classical Machine Learning dataset. It is, however, also where we
see a great result for the feature elimination techniques, with the Coefficients ap-
proach reducing the time to score the data from 1109 to 25 seconds while keeping
the same performance on the data that was balanced with Smote.

6.2.3.2 GNB

Table 24: Table of the GNB results on the EdgeIIoT-DNN Dataset

Table 24 shows that there was a slight improvement in the model, especially on
the original distribution using the original features set as well as using the corre-
lations set.

Figure 36: Graph of the GNB results on the EdgeIIoT-DNN Dataset

65

Chapter 6

Looking at Figure 36, however, once again shows that the model does not im-
prove much when using more information, especially if the data is balanced. This
is because the results of both the limited and balanced tests were basically the
same.

Figure 37: Fitting and Scoring graph of the GNB results on the EdgeIIoT-DNN
Dataset

Looking at the times shown in Figure 37, it is also seen that they follow the same
pattern as the previous dataset, however, the fitting time has scaled together with
the amount of data.

66

Cross-Validated CoRF Results and Discussion

6.2.3.3 Random Forest

Table 25: Table of the Random Forest results on the EdgeIIoT-DNN Dataset

We once again see the Random Forest model as the best performing model, as
shown in Table 25. The performance of the model also did go up, especially on
the original distribution, where there was more space for improvement.

Figure 38: Graph of the Random Forest results on the EdgeIIoT-DNN Dataset

However, as seen on Figure 38, there is a slight loss of performance on the bal-

67

Chapter 6

anced versions of the data when using the correlations, which can better be seen
in the re-scaled version shown in Figure 39.

Figure 39: Rescaled graph of the Random Forest results on the EdgeIIoT-DNN
Dataset

The time to both fit and score the data also went up significantly, as seen in Figure
40, which might not be worth the performance gained.

Figure 40: Fitting and Scoring graph of the Random Forest results on the
EdgeIIoT-DNN Dataset

68

Cross-Validated CoRF Results and Discussion

6.2.4 UCDataset

This is the dataset that was used to test the performance of the model using met-
rics that were not only network-related. This dataset is not labelled in a similar
way to the others. Instead of only ’Normal’ and ’Attack’ identification, it has a
’pre’, ’attack’ and ’pos’ labeling, which allows us to check its ability to predict
attacks before they happen, by checking for, for example, smaller shifts in usual
performance. Figure 41 shows the original distribution of the dataset.

Figure 41: Original data distribution of the UC Dataset

During the first tests with this dataset, the models were giving very high impor-
tance to the feature ’timestamp’, which did not make much sense, as this feature
had nothing to do with the performance of the environment. Upon further in-
vestigation, the problem was found. This dataset must have been done automat-
ically, and there was no randomness introduced and, as such, all of the attacks
occurred with a consistent time between them. The model was picking up on
this, and was using it to identify the attacks instead of the system features, as
seen in Figure 42.

69

Chapter 6

Figure 42: Screenshot of feature importance outputs

To prevent this, this feature was removed, which hindered the performance of
the models, but this performance was obtained in a non-realistic scenario.

70

Cross-Validated CoRF Results and Discussion

6.2.4.1 KNN

Table 26: Table of the KNN results on the UC Dataset

When looking at Table 26, the performance of the KNN model is slightly worse
than what was shown with previous datasets, however, this could be because this
dataset consists of 1000 lines while the others are in the hundreds of thousands,
or even in the millions.

Figure 43: Graph of the KNN results on the UC Dataset

71

Chapter 6

The same behavior, however, can be seen in Figure 43, where after balancing
the data the results became more consistent, and the performance was improved
when balancing using Smote.

Figure 44: Fitting and Scoring graph of the KNN results on the UC Dataset

The time taken to fit and score the data, shown in Figure 44 also goes accordingly
to what was seen, with the balanced data taking more time to train, but producing
better results.

6.2.4.2 GNB

Table 27: Table of the GNB results on the UC Dataset

72

Cross-Validated CoRF Results and Discussion

The results of the GNB model, shown in Table 27, also go accordingly with the
previous results, with an inferior performance and very inconsistent results, which
can be seen easily in Figure 45.

Figure 45: Graph of the GNB results on the UC Dataset

As for the time to fit and score the data, seen in Figure 46, once again the balanced
model takes more time to train, however, the scoring time stayed pretty consistent
across all conditions.

Figure 46: Fitting and Scoring graph of the GNB results on the UC Dataset

73

Chapter 6

6.2.4.3 Random Forest

Table 28: Table of the Random Forest results on the UC Dataset

Finally, the Random Forest model keeps the crown as the best performance, how-
ever, this time the Correlations and Coefficients approach get a heavy hit in per-
formance, which can be easily seen in Figure 47.

Figure 47: Graph of the Random Forest results on the UC Dataset

74

Cross-Validated CoRF Results and Discussion

This is probably because these two approaches remove features that the Random
Forest deems as important, however, as this is a much smaller dataset, it cannot
compensate with other information, as it doesn’t have enough to do so.

Figure 48: Fitting and Scoring graph of the Random Forest results on the UC
Dataset

As for the time taken to score and fit, shown in Figure 48, it also is pretty consis-
tent, especially because all of the values are extremely small, once again because
the dataset is very small.

6.3 Discussion

As shown throughout the previous section, there are several improvements made
across the models and datasets. To better summarize the boosts of performance,
Table 29 shows the average difference in performance of the KNN model.

Table 29: Improvements/Loss of performance of the KNN model for each ap-
proach

The average scoring time shows that all of the approaches result in better results
from a time perspective, with the tradeoff of some classification performance and

75

Chapter 6

a bigger fitting time. For the Smote balancing, however, there is also a boost in
classification performance, showing that, on average, the model ends up with
metrics 4% higher.

Table 30: Improvements/Loss of performance of the GNB model for each ap-
proach

Table 30 also shows an improvement in all of the time related values, as well
as bigger averages for the metrics, with the exception of the Limiting approach,
which would be expected, and the Correlations approach.

Table 31: Improvements/Loss of performance of the Random Forest model for
each approach

Finally, in Table 31, we can see that, again, most of the approaches result in
smaller fitting and scoring times, with the best approach being Random Forest,
with a 7% increase in performance, which was expected since the values used
for this approach were extracted directly from the model itself. It is important to
note that, although this value is big, it is very likely influence of the enormous
Random Forest improvements on the UCDataset, as on all of the other datasets
this models was close to 99%, giving no space for a 7% increase.

Despite all of the corrections made from the first method, these results also have
its limitations, although these are not as method-related. The following are all of
the identified limitations.

• Custom Dataset: One of the objectives of this work was to test the models
with data that was extracted from a controlled environment, providing a
dataset with features that we were absolutely sure that could be extracted.
The system to extract this data was being developed alongside the work

76

Cross-Validated CoRF Results and Discussion

done for this thesis, however, it was not ready in time, which prevented
the models from being tested with that dataset, which was "replaced" by
UCDataset as a way to still test the model in similar conditions.

• Attack identification: As mentioned before, all of the tests were done us-
ing binary identification of the attacks. Although this improved the perfor-
mance of the models, there are cases where this type of identification would
not be enough, but testing the models with this type of identification would
require a lot more time, especially to balance the data with Smote, which
would increase the total lines of the datasets to 8 digits.

6.4 Summary

In this chapter, the results of the second method were presented. First, the new
dataset that was introduced was addressed, followed by the results of the second
model, which were divided into datasets and models. After that, the conclusion
of those results was presented as well as the limitations that apply to that work.

77

Chapter 7

Conclusion

In conclusion, the model with the best overall performance is Random Forest,
which, even with the original distribution and all features, can consistently score
upwards of 98% in all metrics. The other models, however, also show great
results, especially with the time taken to fit and score the data. The time to
achieve these scores, however, can be heavily reduced with the techniques shown
throughout this thesis.

Balancing the dataset by limiting the amount of data to match the smallest sample
can drastically increase the speed at which the models are trained and how long
they take to predict, costing a fraction of the performance they provide. This, in
cases where speed is more important than perfect accuracy, can be quite signifi-
cant.

If, however, the goal is to squeeze the most performance possible out of the mod-
els, using Smote to balance the dataset can be a great solution, but this will in-
crease the time required by the models to do their work, although this can be
countered by using the feature selection approaches as well, as shown in the dis-
cussion of Chapter 6.

One other great option is to binarily identify the attacks. That is, instead of iden-
tifying exactly what attack is being made, label them only as Attack and Normal.
This can both speed up the model and increase its accuracy. This can be a great
solution if the goal of the models is to only detect if an environment is under
attack without needing to specify which one, leaving that part to the admins.

The choice to be made will always depend on the main goal that is set for the
models.

As for the next steps of this work, one is to write and publish a paper that summa-
rizes all of the information obtained during this thesis. As the feature extraction
mechanism advances, it will also be possible to use it together with the models,
as planned in the beginning. Following this line, a Remote Behaviour Monitor-
ing system is also being developed, where the models will be housed when a
final implementation is developed, so making sure they are compatible with this
system should also be done in the future.

79

References

Cloud Security Alliance. Security guidance for critical areas of focus in cloud
computing v4.0. Cloud Security Alliance, 4, 2017. ISSN ? doi: ?

Saud Alzughaibi and Salim El Khediri. A cloud intrusion detection systems based
on dnn using backpropagation and pso on the cse-cic-ids2018 dataset. Applied
Sciences, 13(4), 2023. ISSN 2076-3417. doi: 10.3390/app13042276. URL https:
//www.mdpi.com/2076-3417/13/4/2276.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. A view of cloud computing, 2010. ISSN 00010782.

Hanaa Attou, Azidine Guezzaz, Said Benkirane, Mourade Azrour, and Yousef
Farhaoui. Cloud-based intrusion detection approach using machine learning
techniques. Big Data Mining and Analytics, 6(3):311–320, 2023a. doi: 10.26599/
BDMA.2022.9020038.

Hanaa Attou, Azidine Guezzaz, Said Benkirane, Mourade Azrour, and Yousef
Farhaoui. Cloud-based intrusion detection approach using machine learning
techniques. Big Data Mining and Analytics, 6(3):311–320, 2023b. doi: 10.26599/
BDMA.2022.9020038.

Shahid Allah Bakhsh, Muhammad Almas Khan, Fawad Ahmed, Mohammed S.
Alshehri, Hisham Ali, and Jawad Ahmad. Enhancing iot network secu-
rity through deep learning-powered intrusion detection system. Internet of
Things, 24:100936, 2023. ISSN 2542-6605. doi: https://doi.org/10.1016/j.iot.
2023.100936. URL https://www.sciencedirect.com/science/article/pii/
S2542660523002597.

Chiradeep BasuMallick. Cloud access security broker: Pillars, architecture, uses,
2022. URL https://www.spiceworks.com/it-security/cloud-security/
articles/what-is-casb/.

Mahesh Babu Bondada and S. Mary Saira Bhanu. Analyzing user behavior using
keystroke dynamics to protect cloud from malicious insiders. In 2014 IEEE
International Conference on Cloud Computing in Emerging Markets (CCEM), pages
1–8, 2014. doi: 10.1109/CCEM.2014.7015481.

S. & Lawson C. Riley. Magic quadrant for cloud access security brokers. Gartner,
2020.

81

https://www.mdpi.com/2076-3417/13/4/2276
https://www.mdpi.com/2076-3417/13/4/2276
https://www.sciencedirect.com/science/article/pii/S2542660523002597
https://www.sciencedirect.com/science/article/pii/S2542660523002597
https://www.spiceworks.com/it-security/cloud-security/articles/what-is-casb/
https://www.spiceworks.com/it-security/cloud-security/articles/what-is-casb/

Chapter 7

Zhuo Chen, Fu Jiang, Yijun Cheng, Xin Gu, Weirong Liu, and Jun Peng. Xgboost
classifier for ddos attack detection and analysis in sdn-based cloud. In 2018
IEEE International Conference on Big Data and Smart Computing (BigComp), pages
251–256, 2018. doi: 10.1109/BigComp.2018.00044.

Chien-Yi Chiu, Chi-Tien Yeh, and Yuh-Jye Lee. Frequent pattern based user be-
havior anomaly detection for cloud system. In 2013 Conference on Technologies
and Applications of Artificial Intelligence, pages 61–66, 2013. doi: 10.1109/TAAI.
2013.25.

Ashley Chonka, Yang Xiang, Wanlei Zhou, and Alessio Bonti. Cloud secu-
rity defence to protect cloud computing against http-dos and xml-dos at-
tacks. Journal of Network and Computer Applications, 34(4):1097–1107, 2011.
ISSN 1084-8045. doi: https://doi.org/10.1016/j.jnca.2010.06.004. URL https:
//www.sciencedirect.com/science/article/pii/S1084804510001025. Ad-
vanced Topics in Cloud Computing.

K L Dempsey, Nirali Shah Chawla, L A Johnson, Ronald Johnston, Alicia Clay
Jones, A D Orebaugh, M A Scholl, and K M Stine. Information security con-
tinuous monitoring (iscm) for federal information systems and organizations,
2011.

Docker. What is a container?, 2020.

Mohamed Amine Ferrag, 2022. URL https://www.kaggle.com/datasets/
mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot.

Zecheng He, Tianwei Zhang, and Ruby B. Lee. Machine learning based ddos
attack detection from source side in cloud. In 2017 IEEE 4th International Con-
ference on Cyber Security and Cloud Computing (CSCloud), pages 114–120, 2017.
doi: 10.1109/CSCloud.2017.58.

Amazon.com inc. Shared responsibility model - amazon web services (aws), 2018.

Ponemon Institute. Cost of a data breach report 2021. IBM Security, 2022.

Deepak Kumar Jain, Weiping Ding, and Ketan Kotecha. Training fuzzy deep
neural network with honey badger algorithm for intrusion detection in cloud
environment, 2023. ISSN 1868-808X.

P. Kanimozhi and T. Aruldoss Albert Victoire. Oppositional tunicate fuzzy
c-means algorithm and logistic regression for intrusion detection on cloud.
Concurrency and Computation: Practice and Experience, 34(4):e6624, 2022. doi:
https://doi.org/10.1002/cpe.6624. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/cpe.6624.

Taehyun Kim, Yeongrak Choi, Seunghee Han, Jae Yoon Chung, Jonghwan Hyun,
Jian Li, and James Won-Ki Hong. Monitoring and detecting abnormal behavior
in mobile cloud infrastructure. In 2012 IEEE Network Operations and Manage-
ment Symposium, pages 1303–1310, 2012. doi: 10.1109/NOMS.2012.6212067.

82

https://www.sciencedirect.com/science/article/pii/S1084804510001025
https://www.sciencedirect.com/science/article/pii/S1084804510001025
https://www.kaggle.com/datasets/mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot
https://www.kaggle.com/datasets/mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6624
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6624

References

Jeffrey C Kimmell, Mahmoud Abdelsalam, and Maanak Gupta. Analyzing ma-
chine learning approaches for online malware detection in cloud. In 2021 IEEE
International Conference on Smart Computing (SMARTCOMP), pages 189–196,
2021. doi: 10.1109/SMARTCOMP52413.2021.00046.

Anil Kumar, Rajabov Sherzod Umurzoqovich, Nguyen Duc Duong, Pratik
Kanani, Arulmani Kuppusamy, M. Praneesh, and Minh Ngyen Hieu. An in-
trusion identification and prevention for cloud computing: From the perspec-
tive of deep learning. Optik, 270:170044, 2022. ISSN 0030-4026. doi: https://
doi.org/10.1016/j.ijleo.2022.170044. URL https://www.sciencedirect.com/
science/article/pii/S003040262201302X.

Hongyu Liu and Bo Lang. Machine learning and deep learning methods for in-
trusion detection systems: A survey, 2019. ISSN 20763417.

M. Mayuranathan, S.K. Saravanan, B. Muthusenthil, and A. Samydurai. An
efficient optimal security system for intrusion detection in cloud computing
environment using hybrid deep learning technique. Advances in Engineering
Software, 173:103236, 2022. ISSN 0965-9978. doi: https://doi.org/10.1016/
j.advengsoft.2022.103236. URL https://www.sciencedirect.com/science/
article/pii/S0965997822001405.

Peter Mell and Tim Grance. The nist definition of cloud computing, 2011.

Preeti Mishra, Emmanuel S. Pilli, Vijay Varadharajan, and Udaya Tupakula. Effi-
cient approaches for intrusion detection in cloud environment. In 2016 Interna-
tional Conference on Computing, Communication and Automation (ICCCA), pages
1211–1216, 2016. doi: 10.1109/CCAA.2016.7813926.

Steve Morgan. Cybercrime To Cost The World $10.5 Trillion An-
nually By 2025, 2020. URL "https://cybersecurityventures.com/
cybercrime-damage-costs-10-trillion-by-2025/".

Monoj Muchahari and Smriti Sinha. A survey on web services and trust in cloud
computing environment, 2013.

Ali Bou Nassif, Manar Abu Talib, Qassim Nasir, Halah Albadani, and Fatima Mo-
hamad Dakalbab. Machine learning for cloud security: A systematic review.
IEEE Access, 9:20717–20735, 2021. doi: 10.1109/ACCESS.2021.3054129.

National Institute of Standards and Technology. Zero trust architecture - nist
special publication 800-207. NIST, 2020.

Ogobuchi Daniel Okey, Dick Carrillo Melgarejo, Muhammad Saadi, Re-
nata Lopes Rosa, João Henrique Kleinschmidt, and Demóstenes Zegarra Ro-
dríguez. Transfer learning approach to ids on cloud iot devices using optimized
cnn. IEEE Access, 11:1023–1038, 2023a. doi: 10.1109/ACCESS.2022.3233775.

Ogobuchi Daniel Okey, Dick Carrillo Melgarejo, Muhammad Saadi, Re-
nata Lopes Rosa, João Henrique Kleinschmidt, and Demóstenes Zegarra Ro-
dríguez. Transfer learning approach to ids on cloud iot devices using optimized
cnn. IEEE Access, 11:1023–1038, 2023b. doi: 10.1109/ACCESS.2022.3233775.

83

https://www.sciencedirect.com/science/article/pii/S003040262201302X
https://www.sciencedirect.com/science/article/pii/S003040262201302X
https://www.sciencedirect.com/science/article/pii/S0965997822001405
https://www.sciencedirect.com/science/article/pii/S0965997822001405
"https://cybersecurityventures.com/cybercrime-damage-costs-10-trillion-by-2025/"
"https://cybersecurityventures.com/cybercrime-damage-costs-10-trillion-by-2025/"

Chapter 7

Abhishek Bapu Ove, 2021. URL https://www.youtube.com/watch?v=
fGK3I8Nw0to.

N Pandeeswari and Ganesh Kumar. Anomaly detection system in cloud environ-
ment using fuzzy clustering based ann, 2016. ISSN 1572-8153.

EUropean PARLIAMENT. Regulation (eu) 2016/679 of the european parliament
and of the council. official Journal of the European Union, 119, 2016. ISSN
1664848X.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

Martin Roesch. Snort - lightweight intrusion detection for networks, 1999.

Scott Rose, Oliver Borchert, Stuart Mitchell, and Sean Connelly. Zero trust ar-
chitecture, 2020. URL https://tsapps.nist.gov/publication/get_pdf.cfm?
pub_id=930420.

Nate Rosidi, 2023. URL https://www.kdnuggets.com/2023/06/
advanced-feature-selection-techniques-machine-learning-models.html.

Tara Salman, Deval Bhamare, Aiman Erbad, Raj Jain, and Mohammed Samaka.
Machine learning for anomaly detection and categorization in multi-cloud en-
vironments. In 2017 IEEE 4th International Conference on Cyber Security and Cloud
Computing (CSCloud), pages 97–103, 2017. doi: 10.1109/CSCloud.2017.15.

K. Samunnisa, G. Sunil Vijaya Kumar, and K. Madhavi. Intrusion detection
system in distributed cloud computing: Hybrid clustering and classification
methods. Measurement: Sensors, 25:100612, 2023. ISSN 2665-9174. doi: https:
//doi.org/10.1016/j.measen.2022.100612. URL https://www.sciencedirect.
com/science/article/pii/S266591742200246X.

M Subrahmanya Sarma, Y Srinivas, M Abhiram, Lakshminarayana Ullala,
M. Sahithi Prasanthi, and J Rojee Rao. Insider threat detection with face
recognition and knn user classification. In 2017 IEEE International Conference
on Cloud Computing in Emerging Markets (CCEM), pages 39–44, 2017. doi:
10.1109/CCEM.2017.16.

Da Seol, Jeong Choi, Chan Kim, and Sang Hong. Alleviating class-imbalance data
of semiconductor equipment anomaly detection study. Electronics, 12, 2023. doi:
10.3390/electronics12030585.

Amazon Web Services. Aws lambda – serverless compute - amazon web services,
2021.

Pourya Shamsolmoali and Masoumeh Zareapoor. Statistical-based filtering sys-
tem against ddos attacks in cloud computing. In 2014 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), pages 1234–
1239, 2014. doi: 10.1109/ICACCI.2014.6968282.

84

https://www.youtube.com/watch?v=fGK3I8Nw0to
https://www.youtube.com/watch?v=fGK3I8Nw0to
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930420
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930420
https://www.kdnuggets.com/2023/06/advanced-feature-selection-techniques-machine-learning-models.html
https://www.kdnuggets.com/2023/06/advanced-feature-selection-techniques-machine-learning-models.html
https://www.sciencedirect.com/science/article/pii/S266591742200246X
https://www.sciencedirect.com/science/article/pii/S266591742200246X

References

Taeshik Shon and Jongsub Moon. A hybrid machine learning approach to net-
work anomaly detection. Information Sciences, 177(18):3799–3821, 2007. ISSN
0020-0255. doi: https://doi.org/10.1016/j.ins.2007.03.025. URL https://www.
sciencedirect.com/science/article/pii/S0020025507001648.

Noor Suhana Sulaiman, Akhyari Nasir, Wan Othman, Syahrul Fahmy, Nur Aziz,
Azliza Yacob, and Norfarina Samsudin. Intrusion detection system techniques
: A review. Journal of Physics: Conference Series, 1874:012042, 05 2021. doi: 10.
1088/1742-6596/1874/1/012042.

Md. Alamin Talukder, Md. Manowarul Islam, Md Ashraf Uddin, Khon-
dokar Fida Hasan, Selina Sharmin, Salem A. Alyami, and Mohammad Ali
Moni. Machine learning-based network intrusion detection for big and
imbalanced data using oversampling, stacking feature embedding and fea-
ture extraction, 2024. ISSN 2196-1115. URL https://doi.org/10.1186/
s40537-024-00886-w.

Ankit Thakkar and Ritika Lohiya. A review on challenges and future research
directions for machine learning-based intrusion detection system, 2023. ISSN
1886-1784. URL https://doi.org/10.1007/s11831-023-09943-8.

D Anurag Varma, Ravi Ashish, and V Sandeep. Detection of ddos attacks using
machine learning techniques: A hybrid approach, 2022.

Somayeh Youssefi. Permutation importance vs impurity-based fea-
ture importance, Sep 2023. URL https://medium.com/@syoussefi600/
permutation-importance-vs-impurity-based-feature-importance-1c1a8d027479.

85

https://www.sciencedirect.com/science/article/pii/S0020025507001648
https://www.sciencedirect.com/science/article/pii/S0020025507001648
https://doi.org/10.1186/s40537-024-00886-w
https://doi.org/10.1186/s40537-024-00886-w
https://doi.org/10.1007/s11831-023-09943-8
https://medium.com/@syoussefi600/permutation-importance-vs-impurity-based-feature-importance-1c1a8d027479
https://medium.com/@syoussefi600/permutation-importance-vs-impurity-based-feature-importance-1c1a8d027479

Appendices

87

89

Appendix A

Appendix A

Paper IDs

Table 32: Papers corresponding to each ID

ID Paper Type Year
P1 "Anomaly Detection System in Cloud Environment Using Fuzzy Clustering Based ANN" Journal 2015
P2 "Machine Learning for Anomaly Detection and Categorization in Multi-Cloud Environments" Conference 2017
P3 "A hybrid machine learning approach to network anomaly detection" Journal 2007
P4 "Frequent Pattern Based User Behavior Anomaly Detectopm for Cloud System" Conference 2014
P5 "Monitoring and detecting abnormal behavior in mobile Cloud infrastructure" Conference 2012
P6 "Insider Threat Detection with Face Recognition and KNN User Classification" Conference 2018
P7 "ML Confidential: Machine Learning on Encrypted Data" Conference 2013
P8 Trust Issues that Create Threats for Cyber Attacks in Cloud Computing" Conference 2011
P9 "Evaluation of machine learning classifiers for mobile malware detection" Journal 2014

P10 "Applying machine learning classifiers to dynamic Android malware detection at scale" Conference 2013
P11 "Combining file content and file relations for Cloud based malware detection" Conference 2011
P12 "Statistical-based filtering system against DDOS attacks in CLoud computing" Conference 2014
P13 "NvCloudIDS: A security architecture to detect intrusions at network and virtualization layer in Cloud environment" Conference 2016
P14 "Continuous security assessment of Cloud based applications using distributed hashing algorithm in SDLC" Journal 2017
P15 "Machine Learning Based DDoS Attack Detection from Source Side in Cloud" Conference 2017
P16 "Secure Data Mining in Cloud Using Homomorphic Encryption" Conference 2015
P17 "Cache-Based Application Detection in the Cloud Using Machine Learning" Conference 2017
P18 "Privacy-preserving Machine Learning in Cloud" Journal 2017
P19 "Improvement of security in Cloud systems based on steganography" Conference 2014
P20 "VLOC: An Approach to Verify the Physical Location of a Virtual Machine in Cloud" Conference 2015
P21 "Computing encrypted Cloud data efficiently under multiple keys" Conference 2013
P22 "Privacy Preserving Back-Propagation Neural Network Learning Made Practical with Cloud Computing" Journal 2013
P23 "Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning" Journal 2017
P24 "Detecting Denial of Service Attacks in the Cloud" Conference 2016
P25 "Security-Aware Information Classifications Using Supervised Learning for Cloud-Based Cyber Risk Management in Financial Big Data" Conference 2016
P26 "Self-learning method for DDoS detection model in Cloud computing" Conference 2017
P27 "Analyzing User Behavior Using Keystroke Dynamics to Protect Cloud from Malicious Insiders" Conference 2015
P28 "EXpectation Propagation LOgistic REgRession (EXPLORER): Distributed privacy-preserving online model learning" Journal 2013
P29 "Privacy Preserving Deep Computation Model on Cloud for Big Data Feature Learning" Journal 2015
P30 "PDLM: Privacy-Preserving Deep Learning Model on Cloud with Multiple Keys" Journal 2018
P31 "MSCryptoNet: Multi-Scheme Privacy-Preserving Deep Learning in Cloud Computing" Journal 2019
P32 "Cloud security defence to protect Cloud computing against HTTP-DoS and XML-DoS attacks" Journal 2011
P33 "Malware Detection in Cloud Computing Infrastructures" Journal 2015
P34 "Secure Collaborative Outsourced Data Mining with Multi-owner in Cloud Computing" Conference 2012
P35 "XGBoost Classifier for DDoS Attack Detection and Analysis in SDN-Based Cloud" Conference 2018
P36 "Incremental k-NN SVM method in intrusion detection" Conference 2018
P37 "Security Enhancement in Healthcare Cloud using Machine Learning" Conference 2018
P38 "Malicious Executables Classification Based on Behavioral Factor Analysis" Conference 2010
P39 "A comparative analysis of SVM and its stacking with other classification algorithm for intrusion detection" Conference 2016
P40 "Malware behavioural detection and vaccine development by using a support vector model classifier" Journal 2015
P41 "Designing encryption and IDS for Cloud security" Conference 2017
P42 "A novel intrusion severity analysis approach for Clouds" Journal 2013
P43 "A novel framework for intrusion detection in Cloud" Conference 20012
P44 A neural network based distributed intrusion detection system on Cloud platform" Conference 2013
P45 "Cloud-based mobile system for biometrics authentication" Conference 2013
P46 "Secure and controllable KNN query over encrypted Cloud data with key confidentiality" Journal 2016
P47 "An Efficient DDoS TCP Flood Attack Detection and Prevention System in a Cloud Environment" Journal 2017
P48 "Efficient approaches for intrusion detection in Cloud environment" Conference 2017
P49 "Secure Naive Bayesian Classification over Encrypted Data in Cloud" Conference 2016
P50 "DDoS Attacks Detection in Cloud Computing Using Data Mining Techniques" Conference 2016
P51 "Detecting DDoS attacks against data center with correlation analysis" Journal 2015
P52 "Detection of known and unknown DDoS attacks using Artificial Neural Networks" Journal 2016
P53 "A Combined Decision for Secure Cloud Computing Based on Machine Learning and Past Information" Conference 2019
P54 "Analysis and Detection of DDoS Attacks on Cloud Computing Environment using Machine Learning Techniques" Conference 2019
P55 "Machine Learning-Based EDoS Attack Detection Technique Using Execution Trace Analysis" Journal 2019
P56 "Design of network threat detection and classification based on machine learning on cloud computing" Journal 2018
P57 "VMAnalyzer: Malware Semantic Analysis using Integrated CNN and Bi-Directional LSTM for Detecting VM-level Attacks in Cloud" Conference 2019

90

Paper IDs

ID Paper Type Year
P58 "Detecting cyber-physical attacks in CyberManufacturing systems with machine learning methods" Journal 2019
P59 DeMETER in clouds: detection of malicious external thread execution in runtime with machine learning in Paas clouds" Journal 2019
P60 "A deep learning approach for proactive multi-cloud cooperative intrusion detection system" Journal 2019
P61 "K-NN classifier for data confidentiality in cloud computing" Conference 2014
P62 "A machine learning algorithm TSF k-Nn based on automated data classification for securing mobile cloud computing model" Conference 2019
P63 "Cloud based emails boundaries and vulnerabilities" Conference 2013
P64 "Analyzing Machine Learning Approaches for Online Malware Detection in Cloud" Conference 2021
P65 "Transfer Learning Approach to IDS on Cloud IoT Devices Using Optimized CNN" Journal 2023
P66 "Detection of DDOS attacks using machine learning techniques: A hybrid approach" Conference 2022
P67 "Cloud-Based Intrusion Detection Approach Using Machine Learning Techniques" Journal 2023
P68 "An intrusion identification and prevention for cloud computing: From the perspective of deep learning" Journal 2022
P69 "Oppositional tunicate fuzzy C-means algorithm and logistic regression for intrusion detection on cloud" Journal 2021
P70 "Intrusion detection system in distributed cloud computing: Hybrid clustering and classification methods" Journal 2023
P71 "An efficient optimal security system for intrusion detection in cloud computing environment using hybrid deep learning technique" Journal 2022
P72 "Training fuzzy deep neural network with honey badger algorithm for intrusion detection in cloud environment" Journal 2023
P73 "A Cloud Intrusion Detection Systems Based on DNN Using Backpropagation and PSO on the CSE-CIC-IDS2018 Dataset" Journal 2023

91

	Introduction
	Context and Motivation
	Problem Statement
	Objectives
	Document Structure

	Background
	Cloud Security
	Challenges
	Strategies
	Technologies Shaping Cloud Security
	Emerging Trends

	Intrusion Detection Systems
	Core Functionalities
	Types of Intrusion Detection Systems
	Challenges in Intrusion Detection Systems

	Machine Learning in Intrusion Detection Systems
	Role and Benefits of Machine Learning
	Challenges and Considerations

	Feature Extraction Tools
	Summary

	Related Work
	Query Strategy
	Cloud Security Areas
	Machine Learning Algorithms
	Datasets
	Model Evaluation and Analysis
	Summary

	Approach and Methodology
	Expected Outcome
	Proposed Approach
	Methodology
	Model and Dataset Selection
	Feature Evaluation and Selection
	Evaluation Approach
	Fisher-RF
	Cross-Validated CoRF

	Evaluation Metrics
	Tools and Frameworks

	Summary

	Fisher-RF Results and Discussion
	ML Models and Dataset
	Implementation and Validation
	Feature Engineering
	Fisher Score
	Model Coefficients
	Random Forest Feature Importance

	Discussion
	Summary

	Cross-Validated CoRF Results and Discussion
	New Datasets
	Results
	DDoS Dataset
	KNN
	GNB
	Random Forest

	EdgeIIoT-ML Dataset
	KNN
	GNB
	Random Forest

	EdgeIIoT-DNN Dataset
	KNN
	GNB
	Random Forest

	UCDataset
	KNN
	GNB
	Random Forest

	Discussion
	Summary

	Conclusion
	References
	Appendix Paper IDs

