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Abstract

In today’s industrial environments, quality control is essential for ensuring product
reliability and operational effectiveness. Despite the widespread of automatic data col-
lection and the use of data-driven models in quality processes, certain key variables
still require manual entry due to laboratory analysis requirements, introducing errors
stemming from human involvement. While research has addressed data entry errors in
other domains, industrial contexts present distinct challenges that require data-driven
solutions, in contrast with the manual methods presented in the literature.

This dissertation focuses on the development and application of two methodologies, one
leveraging Soft Sensors (SS) and another based on Principal Component Analysis (PCA),
to detect data entry errors in quality control variables. The developed work resulted in a
framework for designing Soft Sensors, that stands out for the implementation of feature
expansion to introduce non-linearity in the field variables and for the implementation and
comparison of several variable selection methods and regression models.

Furthermore, the two methodologies to detect data entry errors were developed and
tested in three different datasets with laboratory data from industrial facilities. Through
a comprehensive characterization of entry data errors across various categories, such as
blank spaces, doubles, measurement errors, order errors and extra number errors, this
study provides valuable insights into the capabilities and limitations of the developed
methodologies. The performance of the SS-based and the PCA-based methodologies
was compared using classification metrics, such as precision, sensitivity, F1-score and
specificity.

The performed tests revealed that the PCA-based methodology may not be adequate
for all datasets as it performs poorly for cases with low variability within the target
variable. On the other hand, the methodology leveraging Soft Sensors presented good
overall results with exceptional performance for blank spaces and order errors. A common
difficulty in detecting doubles was detected in both methodologies. This dissertation
culminated in the recommendation of the SS-based approach for the implementation in
real industrial scenarios, given its best overall performance and easy interpretability by
the operator (relevant factor to guarantee the operator cooperation in real setups).

Keywords: data entry errors, error detection, PCA, Soft Sensors, industrial application,
quality control.
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Resumo

Nos contextos industriais atuais, o controlo de qualidade é essencial para garantir a
confiabilidade dos produtos e a eficácia operacional. Apesar da disseminação da recolha
automática de dados e do uso de modelos de inteligência computacional nos processos de
qualidade, certas variáveis-chave ainda requerem entrada manual devido a requisitos de
análise laboratorial, o que introduz erros decorrentes do envolvimento humano. Enquanto
os erros de inserção de dados já foram estudados noutras áreas, os contextos industriais
apresentam desafios distintos que requerem soluções baseadas em dados, em contraste
com os métodos manuais apresentados na literatura.

Esta dissertação foca-se no desenvolvimento e aplicação de duas metodologias, uma
aproveitando Sensores Virtuais e outra baseada na Análise de Componentes Principais,
para detetar erros de inserção de dados em variáveis de controlo de qualidade. O trabalho
desenvolvido resultou num framework para o design de Sensores Virtuais, que se destaca
pela implementação de expansão de variáveis para introduzir não-linearidade nas variáveis
de campo e pela implementação e comparação de vários métodos de seleção de variáveis e
modelos de regressão.

Além disso, as duas metodologias usadas para detetar erros de inserção de dados
foram desenvolvidas e testadas em três datasets diferentes com dados de laboratório de
instalações industriais. Através de uma caracterização abrangente de erros de inserção
de dados em várias categorias, como espaços em branco, duplos, erros de medição, erros
de ordem e números extra, este estudo fornece perceções valiosas sobre as capacidades e
limitações das metodologias desenvolvidas. O desempenho das metodologias foi comparado
usando métricas de classificação, como precisão, sensibilidade, F1-score e especificidade.

Os testes realizados revelaram que a metodologia baseada na Análise de Componentes
Principais pode não ser adequada para todos os datasets, pois apresenta baixo desempenho
para casos com baixa variabilidade na variável alvo. Por outro lado, a metodologia que
recorre a Sensores Virtuais apresentou bons resultados gerais com desempenho excepcional
para espaços em branco e erros de ordem. Uma dificuldade comum na deteção de duplos
foi detetada em ambas as metodologias. Esta dissertação culminou na recomendação da
abordagem baseada em Sensores Virtuais para a implementação em cenários industriais
reais, dada sua melhor performance geral e fácil interpretabilidade pelo operador (fator
relevante para garantir a cooperação do operador em cenários reais).

Palavras-chave: erros de inserção de dados, deteção de erros, Análise de Componentes
Principais, Sensores virtuais, aplicação industrial, controlo de qualidade.
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Chapter 1

Introduction

1.1 Problem statement and motivation

The digital transformation within industrial sectors is now indispensable, offering
solutions to numerous challenges towards more sustainable and greener operations. Among
these challenges, quality control stands out as a critical pillar in industrial processes, ensur-
ing product reliability, employee safety, and operational efficiency, while also contributing
to energy saving and cost reduction. However, the evolving complexity of industrial
operations has introduced new layers of difficulty to quality control processes. In response,
technology and data have emerged as powerful tools to address this challenge. Industrial
facilities today leverage data-driven models as indispensable techniques for quality control
across their operations [1], integrating various sensors and amassing vast amounts of data
to enable effective process monitoring and error detection. Yet, despite these technological
advancements, certain crucial quality control variables need manual acquisition through
laboratory analysis. In these instances, operators typically perform measurements and
input them manually into systems such as spreadsheets or online platforms, thereby
increasing the risk of errors due to human involvement.

Indeed, research has already addressed the impact of and strategies to prevent data
entry errors in social science research environments [2] and clinical settings [3]. However,
there is a notable gap in research concerning how to prevent such errors in industrial
contexts. Moreover, existing techniques predominantly rely on manual methods, such as
double entry strategies or visual checking techniques [4], with no exploration of data-driven
models. These manual techniques have inherent limitations, primarily relying on human
intervention and often overlooking certain types of errors, such as measurement errors
arising from improper use of measurement machinery.

Although there already exist systems in industrial settings that would detect an entry
data error as a fault in the middle of a process, preventing errors from being inserted into
the system at the insertion stage is preferable as it avoids downstream repercussions and
minimizes the potential for cascading effects throughout the production process. Upfront
detection at the data entry stage reduces the likelihood of erroneous data propagating
further, mitigating the need for costly corrective measures. Thus, it is crucial to identify
these errors, particularly for quality control variables.

Acknowledging the research gap highlighted earlier and the criticality of detecting
data entry errors, particularly for quality control variables, this work aims to deploy
computational intelligence techniques for entry data error detection. To accomplish this
goal, the approach involves leveraging established data-driven models commonly utilized

1



Chapter 1. Introduction 2

in industrial settings for process monitoring, namely Soft Sensor (SS) and Principal
Components Analysis (PCA). Through the implementation of these techniques, the model
should autonomously detect erroneous data entries as operators input measurements into
a spreadsheet or a designated system. Upon identification of a potential error, the system
promptly notifies the operator in real-time, allowing for immediate correction.

It is important to notice, it is not only the technical challenge that needs to be faced.
It is equally imperative to consider the human factor in deploying these models. As this
methodology is intended to assist operators in preventing erroneous data entries, it is
essential for operators to trust and embrace the new system. In fact, Industry 5.0 envisions
a collaborative relationship between humans and smart machines, where human expertise
is augmented by technological capabilities [5]. For this vision to materialize, operators
must have confidence in the efficacy of these systems. Simply providing new technologies
is not sufficient, operators must comprehend how these innovations can enhance their
work processes. Failure to foster this understanding may lead to resistance and reluctance
to adopt the new tools, potentially hindering their effectiveness [6].

1.2 Objectives

The primary objective of this work is to investigate the implementation of two different
approaches, one leveraging SS and and another based on PCA, for the detection of entry
data errors related to quality control variables. To achieve this goal, specific objectives
are outlined as follows:

• Characterize types of detectable errors: understand what types of data entry errors
can be effectively detected by the implemented data-driven models. This involves
discerning if the models are capable of detecting doubles, errors arising from erroneous
measurements, or simply typing errors, such as inserting an extra number.

• Compare the performance of the two different approaches. The first is based on
a data-driven regression model using the concept of SS. Other, not based on a
regression model, is a PCA-based methodology. And conduct a comparative analysis
to evaluate their respective performance in detecting data entry errors.

• Recommend for implementation: based on the findings and insights obtained, and
having into account the interpretability of both approaches, define the best suitable
methodology and parameters to be implemented in practice.

1.3 Main contributions and developed work

In order to achieve the defined goals, the developed work resulted in the following key
contributions:

• Proposal of a framework to design a Soft Sensor, implementing several variable
selection methods and regression models for Soft Sensor applications, culminating
in an accepted conference paper titled “Soft Sensors for Industrial Applications:
Comparison of Variable Selection Methods and Regression Models”, presented at
the 2023 International Conference on Control, Automation and Diagnosis (ICCAD)
[7] (see Appendix A). The proposed framework uses the following methods/steps:
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– Feature Expansion: to introduce nonlinearity in the models, the dataset was
extended by adding the square, the inverse, and the root mean squared of each
input variable, as well as the product between each two input variables.

– Input variable selection: three variable selection methods were implemented.
The well-known Pearson’s correlation that measures the linear dependence
between pairs of variables. The Mutual Information (MI) which measures the
dependency between variables taking into account the probabilistic distribution
of the variables. The fastTracker algorithm, a recent and efficient real-time
algorithm that tracks the process behavior’s changes by measuring sensitivity
indices between variables.

– Regression model: to implement the SS were used Multiple Linear Regression
(MLR), Ridge Regression (RR), Least Absolute Shrinkage and Selection Op-
erator (LASSO), Elastic Net (EN), Support Vector Regression (SVR), and
Gaussian Mixture Regression (GMR) models.

The main contributions of this work are the implementation of the Feature Expansion
in the framework, and the implementation and comparison of several regression
models and variable selection methods. In order to test the proposed framework,
3 datasets were used, two benchmark datasets and a third dataset provided by a
cement industry. Each model for each dataset was learned/tested with 8 different
sets of input variables (from the variable selection methods) for two datasets and 9
sets of input variables for another dataset. Each learning process was executed 30
times. Thus, 5250 tests were performed.

• Development and adaptation of two data-driven methodologies (SS and PCA) to
detect data entry errors, in contrast with the traditional manual methods.

• Comprehensive characterization of entry data errors, offering valuable insights into
the capabilities and limitations of the developed methodologies. Five error categories
were studied: blank spaces, order errors, doubles, measurement errors and extra
number errors.

• Comparative evaluation of the two methodologies across three laboratory datasets,
assessing their performance using metrics such as precision, sensitivity, f1-score, and
specificity.

In order to test the two proposed methodologies, 3 datasets were used. For each
dataset, 6 variations were created: one for each error category, containing exclusively
that specific error type, and a general simulation comprising all error categories in
equal proportion. To test the SS-based methodology, 4 thresholds (SSth) were tested.
Hence, resulting in a total of 90 tests performed. Furthermore, for specific error
categories (measurement errors, order errors and extra number errors), a deeper
analysis was conducted, to study how the subtypes of errors impacted the sensitivity
of the model.

• Provision of recommendations on the most suitable method for implementation
in real industrial scenarios, considering interpretability to ensure the operator’s
cooperation;
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1.4 Project structure

The document is structured into seven chapters, each focusing on distinct aspects re-
lated to the detection of entry data errors and the utilization of SS and PCA methodologies.
The organization of the remaining chapters is outlined as follows:

• Chapter 2 provides a comprehensive literature review on the impact of entry data
errors and methodologies to prevent them, as well as an overview of SS application
in quality control and, lastly, an introduction of PCA as a Process Monitoring and
Fault Detection (PMFD) method.

• Chapter 3 delves into the steps to design a Soft Sensor. This includes data prepro-
cessing, various variable selection methods, regression models, and a framework for
designing and testing the Soft Sensor framework.

• Chapter 4 offers a thorough examination of Principal Components Analysis principles,
followed by a description of a commonly used methodology that leverages PCA for
PMFD.

• In Chapter 5, the process of simulating and inserting data entry errors into datasets
is outlined, along with the metrics devised to evaluate SS performances and the ones
chosen to assess how well the methodologies captured entry data errors. Additionally,
the chapter presents the methodologies developed based on SS and PCA for detecting
entry data errors.

• Chapter 6 focuses on the datasets utilized and the experimental tests conducted to
assess the performance of the developed methodologies. It includes the tests results
as well as a discussion on their implications.

• Finally, Chapter 7 offers concluding remarks, providing a comprehensive evaluation
of the developed methodologies, recommendations for their practical implementation,
and insights into potential limitations and future research.



Chapter 2

Literature review on data entry
errors and concepts

This chapter presents the background for the work developed and the literature review,
being organized in three sections. Section 2.1 delves into well-known methods for detecting
errors in entry data and discusses their recognized impacts on data quality. Following this,
Section 2.2 and Section 2.3 provide backgrounds on the specific methodologies, Soft Sensor
and PCA, respectively. Both of these methodologies have been used in industrial contexts
for quality control and fault detection and were chosen as foundational frameworks for
the error detection methodologies developed in this work.

2.1 Data entry errors

Basic data entry errors wield significant impact, both in applied contexts and research
domains. These inaccuracies can not only compromise reliability but also diminish
statistical power [8]. Studies even suggest that such errors can make significant findings less
probable [9], potentially revoking moderate correlations and even invalidating statistical
analyses entirely. In industrial settings, data entry errors can incur substantial costs,
while in medical scenarios, for example, they may lead to incorrect treatments, posing
severe risks to patients. In research, for instance, inserting 55 instead of 5 can transform
a statistically significant correlation into a near zero and non-significant correlation [2].

Given the potential devastating consequences of data entry errors, numerous efforts
have emerged to mitigate their effects. One prevalent method involves data cleaning
[10], wherein samples undergo a robust analysis post-entry. Various techniques, such
as histogram analysis, boxplots, and z-score analysis, are employed to detect outliers.
However, these methods are not flawless, and detecting errors post-entry may be too
late, especially in quality control scenarios. Consequently, significant efforts have been
dedicated to preventing errors outright, leading to innovations like alternative keyboard
designs [11] and innovative data input methods such as voice recognition systems [12, 13],
optical character recognition (OCR) [14], and barcodes [15].

Some of these technologies have demonstrated reduced error rates compared to manual
data entry. For instance, a study by Smyth et al. [3] revealed that automated procedures,
utilizing optical scanning, achieved an accuracy rate of 99.98% compared to 98.76% for
manual entry methods. However, adopting such technologies often entails substantial
initial investments. Costs include equipment procurement, software acquisition, operator
training, and ongoing maintenance expenses.

5
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Thus, several manual data entry methods have been studied due to their cost-
effectiveness and easy application. Among the most commonly employed and researched
methods are single entry with visual checking [2], reading aloud [4], and double entry [16].
It’s worth noting that many of these methods were originally designed for scenarios where
data is already recorded on paper (e.g. surveys) and needs to be transferred into a digital
system or spreadsheet, often originating from social sciences research or clinical contexts
[4, 3, 8]. In a laboratory setting, the paper record could be replaced with data directly
obtained from the measurement equipment.

In the visual checking method, an operator has the data recorded on paper and then
enters it into a digital format, typically a spreadsheet like Excel or a statistical program,
like SPSS. After data entry, they compare their entries with the original paper records,
correcting any discrepancies they find. However, this method is prone to errors due to
the need for close attention and can be tedious. In fact, a study from K. Bachard and
L. Pace [2] showed that visual checking was no more accurate than a single entry (just
inserting the value with no verification of the paper sheet).

The read-aloud technique presents a variation of the previous method. In this approach,
a second individual reads the entries aloud while the first person verifies by comparing the
spoken value with the one recorded in the original paper sheet to ensure data accuracy [4].
Another variant involves the program itself reading out the entered data audibly. Both
variations show promising performance compared to single entry. In a study by Kawado
et al. [4], the read-aloud method with a second operator detected approximately 60%
of errors occurring in a single data entry. It was also noted that the method performed
marginally better with two operators compared to having the software read the data
post-input.

Lastly, double entry stands as the recommended gold standard method for data entry,
involving the insertion of data twice [17]. Typically, a spreadsheet is set up to receive
two entries and compare them instantly: if a mismatch occurs, the cell highlights in red,
drawing the operator’s attention to verify and rectify the discrepancy. Additionally, this
method can include range limits in cell formatting to warn the operator if an inserted value
falls outside the allowable or predictive interval. Some researchers even employ a second
operator in the process, where one person registers the value in one spreadsheet, and
another person enters the same measurements in the second spreadsheet. All these alerts
can be easily configured within software like Excel. However, other software solutions
with these features tend to be costly [2].

Among the three methods discussed, double entry emerges as the most effective. In the
study by Kawado et al. [4], double entry exhibited significantly better results compared to
the reading aloud method. With two operators, double entry achieved an 88.3% detection
error rate, whereas with a single operator, it achieved 69.0%. In contrast, the reading
aloud method resulted in a detection error rate of 59.5% with different operators and
39.9% with a single operator. Similarly, in a study by Barchard et al. [8], double entry
outperformed visual checking. In this study, 77.4% of participants using the double
entry condition achieved perfect accuracy, whereas only 17.1% using visual checking did.
Participants using double entry made an average of 0.34 errors across 1260 entries, while
those using visual checking made an average of 10.39 errors. Moreover, participants in
the single entry condition made an average of 12.03 errors. The study also found that
participants using the double entry method were significantly more likely to obtain correct
values for statistical analyses such as correlation and t-tests.

After extensive analysis, it becomes evident that the methods discussed previously
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Figure 2.1: Double-entry system in Excel (taken from [2]).

are either not applicable to laboratory or industrial contexts — for instance, barcodes
are not suitable — or they are expensive and necessitate operator training, such as the
OCR method. Even manual entry data methods, like double entry, while demonstrating
effectiveness, still exhibit shortcomings. For instance, if an operator erroneously records a
measurement and inputs it into the system, the error may go undetected. Additionally,
valid value ranges may not be informative if a variable experiences significant fluctuations.
For example, if a variable ranges from 2 to 80, an error inserting 15 instead of 51 in both
entries would not be flagged. This underscores a research gap in understanding these
errors within an industrial context and utilizing data-driven methods for error detection
in entry data.

As a result, the subsequent sections introduce two computational intelligence methods
commonly used in industrial settings, which could be leveraged to identify entry errors
effectively.

2.2 Soft Sensors for quality control

In the context of digitized industries aiming for sustainability, predictive models have
become crucial for inferring quality variables [18]. Soft Sensor, serving as inferential models,
predict physical quantities online (eg. prediction of variables that cannot be automatically
measured and are obtained using a laboratory analysis) in industrial processes based
on field variables, typically obtained through sensors, and knowledge [19, 20]. SS find
widespread application in quality control and in comprehending complex processes beyond
the capabilities of models based solely on process knowledge [21]. Their significance
has been recognized in various industries over the years [22, 18, 20, 23], contributing to
advancements in quality monitoring and process understanding.

The first step of SS design involves selecting data from the plant’s operating system
(field variables) targeted for the model application. According to Kadlec [24], these are
the most common challenges faced at this stage:
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Soft Sensor Hard-to-measure
variables

Easy-to-measure
variables

Prediction

Figure 2.2: Illustration of how Soft Sensors work.

• Missing values may manifest as ∞, zeros, or constant values unrelated to the
measured quantity.

• Outliers are values outside typical ranges or violating physical and sensor limitations,
such as velocities exceeding the speed of light.

• Drifting data can arise from environmental changes or internal processes like sensor
abrasion.

• Data collinearity, stemming from redundant sensor arrangements, can create a
“data-rich but information-poor” environment [25], increasing the model complexity.

• Sampling rates and measurement delays result from acquiring data at different time
rates, forcing sensor synchronization.

Lastly, the prevalent lack of data in some industrial settings, often tied to the preceding
challenges, significantly impacts model training and testing [26]. Data is collected and
pre-processed with the objective of dealing with the issues above presented. To do that
strategies like outlier detection, removing missing value samples and deleting non numeric
values are applied.

After processing the data, the next step involves selecting the field variables to be
used in the model. As previously mentioned, collinearity might be present in the collected
data, and the model is specifically interested in variables that can elucidate the variability
of the target variable [19]. While the selection could be informed by the understanding
of the physical process, these processes are often too intricate for someone to accurately
identify the most pertinent variables. Consequently, computational and mathematical
methods are commonly employed to discern the most relevant variables.

Subsequently, the next step implicates selecting and training a model. Typically, a
portion of the dataset is reserved for the validation step, where various model options are
assessed. The models can be categorized into linear and nonlinear. It is often advisable to
initially explore linear models such as MLR or RR due to their enhanced interpretability
[19]. Despite the growing popularity of Deep Learning (DL) models, particularly with
increased data availability and their high accuracy, their application in the Soft Sensor
context is restricted by data limitations in industrial environments and the resulting loss
of interpretability [26].

Next, the model undergoes validation using a distinct test dataset, employing metrics
like the Root Mean Squared Error (RMSE) or the Determination Coefficient (R2). If
the metrics fail to align, it signals that the model is not well-suited to the dataset. This
discrepancy may also prompt a reassessment of the pre-processing step, as poor results
can result from outliers and other data-related issues.

Finally, the SS necessitates ongoing maintenance and adaptation, especially in the
event of process changes or data drifting, as previously mentioned.
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Figure 2.3: Example of a Shewhart monitoring chart (taken from [30]).

Chapter 3 gives more details on how SS are designed and presents several variable
selection methods and regression models.

2.3 PCA for process monitoring and fault detection

Process Monitoring and Fault Detection plays an essential role in industrial settings,
ensuring product quality, uninterrupted production, and operator and machinery safety [27].
Monitoring was defined by the SAFEPROCESS Technical Committee as “a continuous
real-time task of determining the conditions of a physical system by recording information,
recognizing, and indicating anomalies in behavior” [28]. Similarly, a fault is understood as
“an unpermitted deviation of at least one characteristic property or parameter of the system
from the acceptable/usual/standard condition”. Therefore, process monitoring involves
continuously observing and analyzing various variables and conditions in a production
process to ensure they fulfill defined standards. Additionally, when a fault is detected,
there needs to be performed a fault diagnosis which involves isolating and identifying the
fault and its implications.

Process monitoring has its origins in the 1930s with the development of the Shewhart
monitoring charts [29], as represented in Figure 2.3. Over time, manufacturing facilities
and equipment have become increasingly complex, requiring advanced PMFD methods.
This need has led to the development of high-end data acquisition systems capable of
capturing numerous field variables at minute frequencies, resulting in vast multivariate
real-time databases [31]. However, without proper processing, these databases often
suffer from being “data-rich” but “information-poor”. To address this challenge, various
multivariate statistical approaches have been studied and applied, with a particular
emphasis on Principal Components Analysis. PCA aims to reduce the dimensionality of
the collected data by projecting it into a new subspace that only encapsulates the most
relevant information.
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Figure 2.4: Example of a monitoring chart for PCA applied to the fed-batch penicillin
fermentation process (taken from [40]).

In fact, PCA and its variations have been proven to perform well in several industries
for PMFD [32, 33, 34, 35, 36, 37, 38]. Usually, PCA is applied by projecting data collected
from industrial facilities into a reduced subspace defined by Principal Components (PCs).
This new subspace encapsulates the most significant information and is constructed using
historical plant data. Periodically, this subspace is updated through PCA or its variants,
tailored to the specific characteristics of the data [31, 39]. This initial fault-free state
serves as the basis for establishing reference metrics, such as the Squared Prediction Error
(SPE) and Hotelling’s T 2, which are utilized for sample classification. Upon the entry of
a new sample into the system, it is projected onto the new subspace, and the reference
metrics are computed. Samples that conform to the reference metrics are classified as
fault-free, while those that deviate from the reference are flagged as faulty.

Figure 2.4 illustrates a monitoring chart utilizing PCA alongside SPE and T 2 to detect
faults in a fed-batch penicillin fermentation process, a well-known benchmark process [40].
Faults are identified when both the statistical line of the SPE chart and the T 2 chart
intersect the predetermined threshold.

Chapter 4 provides a comprehensive exploration of PCA and a structured methodology
for fault detection.



Chapter 3

Soft Sensors for target variable
prediction

SS are inferential models widely employed for estimating physical quantities in industrial
settings. Their proven and extensively studied effectiveness in predicting laboratory
variables [41] makes them a natural choice for the methodology used for data entry error
detection described in Figure 3.1.

Historical data Soft Sensor design

Field variables Prediction of ŷ

Registered y

Classification of y:
true value or error

Model

Figure 3.1: Methodology to detect data entry errors using SS.

SS uses historical data, encompassing information from the plant’s operating system
and laboratory records, to train and validate a model aiming to accurately predict the
target variable ŷ. Then, when an operator makes a measurement of y, the model is
employed with the corresponding field variables to predict ŷ. A comparison is then made
between the predicted and the registered values, classifying the operator-inserted value as
either an “error” or a “true value”. Further details on this methodology are presented in
Chapter 5.

This chapter explores the application of Soft Sensor as a predictive tool for physical
quantities in industrial processes. The chapter unfolds in the following sections: Section
3.1 brings the adopted notation; Section 3.2 provides an overview of the steps to design
of the SS; Section 3.3 introduces the data pre-processing methods applied; Section 3.4
presents the implemented variable selection methods on the proposed SS design; Section
3.5 presents the implemented regression models on the proposed SS design, and finally,

11
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Section 3.6 introduces the framework used for SS design. The algorithm employed in this
chapter for SS design, along with the variable selection methods and regression models
presented herein, contributed to a comparative study resulting in a conference paper [7]
[see Appendix A].

3.1 Notation

In this work the following notation is employed:

• Variables and their corresponding values are designated by capital and lowercase
letters, respectively. For example, variable A is associated with the value a.

• Matrices and vectors are indicated by bold capital and lowercase letters, such as
A = [ak,j]K×m and a = [a1, . . . , am], respectively.

• Ŷ denotes the prediction for the target variable Y , and X = X1, . . . , Xm represents
the input variables with values xk,j ∈ Xj where k = 1, . . . , K and j = 1, . . . ,m.
Additionally, xk = [xk,1, . . . , xk,m], X = [xk,j]K×m, and Y = [yk]K×1. The regression
coefficients are denoted by β0, and β = [β1, . . . , βm]

T .

3.2 Soft Sensors design

As explained in Chapter 1, in industrial processes, certain critical quality control
variables cannot be measured by conventional physical sensors. Instead, they are analyzed
in a laboratory, which involves costs and human resources, as an operator is frequently
required for the measurements. This results in data being obtained at a low frequency,
specially when compared to physical sensors [22]. For instance, in the petrochemical
industry, laboratory samples can take half an hour to one hour to be analyzed, with only
one or two samples taken per day [42].

The main steps of the design of the Soft Sensor to predict a target variable are
summarized using the diagram depicted in Figure 3.2.

Data pre-processing
(Section 3.3)

Variable selection
(Section 3.4)

Model choice and training
(Section 3.5)

Model validation
(Section 3.6)

Figure 3.2: SS design.
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3.3 Data pre-processing

During the data pre-processing stage, the goal is to ready the data for subsequent
steps, enhancing its suitability for models and improving their effectiveness. This involves
removing empty or partially filled columns, and eliminating non-numeric data as well as
outlier samples. Additionally, variable names undergo a transformation. Field variables
are renamed as X1, . . . , Xm, with m representing the total number of field variables, while
the target variable is designated as Y .

In this work, Feature Expansion (FE) was incorporated into the Soft Sensor design as
a means to introduce non-linearity to the model. FE is a technique employed to introduce
non-linearity to models by transforming the original feature space into a new space. In
this process, various operations are applied to each original input variable vector xj and
the dataset is expanded by adding the inverse, the root mean squared and the square of
xj as well as the product between each two input variables:

xj −→ xj,
1
xj
,
√
xi,x

2
j and xj · xi

Where xi is a input variable with j = [1, . . . ,m] and i = [1, . . . ,m], excluding j. The
parameter m denotes the total number of input variables. To prevent data inaccuracies,
the inverse transformation is not applied to variables xj with values equal to zero, and
the root mean squared transformation is also omitted for variables with negative values.

3.4 Variable selection methods

The effectiveness of a Soft Sensor heavily relies on the choice of variables used to
infer the target variable. In order to test the performance of different variable selection
methods, two well-known methods and a recent method were used for the selection of
input variables:

• Pearson’s correlation, a well-known method, gauges linearity between variables [43].
Described in Subsection 3.4.1.

• Mutual Information (MI) assesses the probabilistic distribution of variables to
measure their dependency [44]. Described in Subsection 3.4.2.

• fastTracker [45] is a recent and efficient algorithm that identifies process variability
using sensitivity indices between variables. Described in Subsection 3.4.3.

This section proceeds with the description of the methods employed for variable
selection.

3.4.1 Pearson’s correlation

Pearson’s correlation, denoted by r, measures the linear dependency between variable
pairs, providing insights into the strength of their relationship [43]. The values of r span
from −1 to 1, with r = 1 signifying a perfect positive correlation and r = −1 indicating a
perfect negative correlation. A value of r = 0 suggests that the analyzed variables lack
correlation [46]. The Pearson’s correlation between variables Xj and Y is mathematically
expressed by the Equation (3.1):
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r =
ΣK

k=1[(xk,j − µXj
)(yk − µY )]√

ΣK
k=1(xk,j − µXj

)2
√
ΣK

k=1(yk − µy)2
, (3.1)

where µXj
and µY are the arithmetic means of the variables Xj and Y , respectively,

j = [1, . . . ,m], with m representing the number of input variables, and K is the total
number of observations.

3.4.2 Mutual Information

Mutual Information (MI) is a non-linear measure that considers the probability
distribution of variables and utilizes entropy measurements to discern the dependency
between variables. The MI between two discrete variables X and Y is expressed by
Equation (3.2) [47].

I(Y,X) = H(Y ) +H(X)−H(X;Y ) (3.2)

H(X) =
N∑

b=1

−log[P (xb)]P (xb) (3.3)

H(X, Y ) =
N∑

b=1

N∑

k=1

−log[P (xb, yk)]P (xb, yk) (3.4)

Where H(X) and H(X, Y ) represent Shannon’s Entropy, N denotes the number of bins,
P (xb) is the probability density function, and P (xb, yk) is the joint probability mass
function of X and Y .

3.4.3 Fast tracker

fastTracker [45] is an algorithm for real-time causal-effect sensitivity analysis that
tracks process variability. This objective is achieved by calculating sensitivity indices
between input variables and the target variable. The primary steps of fastTracker are
outlined in algorithm 1, where X = [X1, . . . , Xm] represents a set of input variables, Y
stands for the target variable, k = 1, . . . , K are the sample time, TT j (j = 1, . . . ,m)
and ET are the trigger and event thresholds, respectively, and n signifies the number of
batches per analysis span. The output of fastTracker consists of sensitivity indices, nSIj

(j = 1, . . . ,m), corresponding to each input variable. More details are presented in [45].

3.5 Regression models

The choice of the model for the SS significantly influences the prediction results for
the target variable. Consequently, various models were assessed for their suitability in
fulfilling the SS function: Multiple Linear Regression (MLR), Ridge Regression (RR),
Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net (EN), Support
Vector Regression (SVR), and Gaussian Mixture Regression (GMR).

MLR, RR, LASSO, and EN were selected for their interpretability and success in
capturing linear relations. Furthermore, RR, LASSO and EN are regularization models
widely used to address multicollinearity and sparsity. Then, SVR is employed given its
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Algorithm 1 fastTracker methodology [45].

Procedure:
1: for k = 1, . . . , K (for all data) do
2: for each input variable Xj do
3: Perform the trigger-event detection of two consecutive batches, i.e. determine if a

variable represents a real change in the system state or not.
4: Determine the XNOR, i.e. verify the simultaneous existence or nonexistence of

a change in each batch.
5: Obtain the sensitive index SIjk for instant k.
6: Obtain the normalized sensitivity index, nSIjk for instant k.
7: end for
8: end for

suitability when it comes to datasets with nonlinear relationships, providing flexibility for
intricate patterns. And lastly, GMR is chosen for its effectiveness in handling complex
patterns and mixed distribution types.

These models are presented respectively in the next subections.

3.5.1 Multiple Linear Regression

Multiple Linear Regression (MLR) is employed to identify a linear function that
connects two or more independent variables with a single dependent variable. Due to
its straightforward interpretation and implementation [48], MLR stands out as one of
the most widely used statistical techniques and can be expressed mathematically using
Equation (3.5).

ŷ = β0 + β1x1 + · · ·+ βjxj + · · ·+ βmxm + ε (3.5)

Here, ε denotes the model’s error term, and the regression coefficients β0 and βj are
determined through the Least Squares method [49].

3.5.2 Ridge Regression

Ridge Regression (RR) stands as a regularization model, a variation of the conventional
MLR, incorporating a penalty term into the linear least squares loss function. This penalty
corresponds to the L2-norm of the coefficients, and the regularization strength is governed
by the hyperparameter λ. RR, along with other regularization techniques, is primarily
employed when there is high collinearity among independent variables, often leading
to over-fitting [50]. The regularization serves to diminish the variance of the estimated
parameters, mitigating the over-fitting effect [51]. In RR, this is achieved by minimizing
the penalized residual sum of squares, as depicted in Equation (3.6).

K∑

k=1

(
yk − β0 −

m∑

j=1

xk,jβj

)2
+ λ

m∑

j=1

β2
j (3.6)

Where K represents the number of observations, m denotes the number of variables, β0

and βj are the coefficients and λ is the regularization term. Minimizing Equation (3.6)
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and utilizing centered xk,j yields Equation (3.7).

β = (XTX+ λI)−1XTY (3.7)

Where β contains the regression coefficients and I represents the identity matrix.

3.5.3 Least Absolute Shrinkage and Selection Operator

The Least Absolute Shrinkage and Selection Operator (LASSO) is another widely
utilized regulation method that distinguishes itself from RR by employing the L1-norm of
the coefficients as the penalty term [52]. This property can lead less important variables
to have null coefficients, making LASSO an effective feature selection method as well
[53]. The regularization strength is controlled by the hyperparameter λ, as expressed in
Equation (3.8) [53].

β = argmin
β

{1
2

K∑

k=1

(
y(k)− β0 −

m∑

j=1

xj(k)βj

)2
+ + λ

m∑

j=1

|βj|
}

(3.8)

Where K represents the number of observations, m denotes the number of variables and
β0 and βj are the regression coefficients, β = [β1, . . . , βm]

T .

3.5.4 Elastic Net

Elastic Net (EN) integrates both LASSO’s L1-norm penalty and L2-norm penalty
from RR to shrink prediction coefficients, offering a blend of LASSO’s variable selection
capabilities and RR’s prediction performance [54]. The model is estimated by minimizing
Equation (3.9).

argmin
β0,β

{
1

K

K∑

k=1

yk (β0 + xkβ)− log
(
1 + eβ0+xkβ

)
+λ

(
(1− α)||β||2

2
+ α||β||

)}
(3.9)

Where α and λ are the hyperparameters responsible for tuning the model. The parameter
α balances the effect of LASSO and RR penalties, ranging from 0 to 1, with 0 turning EN
into RR and 1 into LASSO. Meanwhile, λ regulates the overall strength of regularization,
influencing the trade-off between bias and variance in the estimated parameters. Again,
K represents the number of observations and β0 and β are the regression coefficients,
β = [β1, . . . , βm]

T , with m denoting the number of input variables.

3.5.5 Support Vector Regression

SVR finds application in cases where the relationship between input variables and the
target variable is nonlinear or displays intricate patterns, scenarios where conventional
linear regression models tend to struggle. SVR employs a regression function that involves
Lagrange multipliers, represented by α∗

k and αk, and a kernel function Ke mapping the
problem to different dimensions [55], as shown in Equation (3.10).

f(X) =
K∑

k,k′=1

(α∗
k − αk)Ke(Xk′ , Xk) + b (3.10)
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Where b is a constant. The Lagrange multipliers α∗
k and αk are determined by maximizing

the function W (α∗
k, αk), as expressed in Equation (3.11).

W (α∗
k, αk) = −1

2

K∑

k,k′=1

(α∗
k − αk)(α

∗
k − αk)Ke(Xk, Xk′)+

+
K∑

k=1

yk(α
∗
k − αk)− ε

K∑

k=1

(αk + αk).

(3.11)

Here, ε serves as a regularization parameter, K is the total number of observations, and
the function adheres to the constraints:

∑K
k α∗

k =
∑K

k αk and 0 ≤ α∗
k, αk ≤ C, where C

is a cost parameter determined through cross-validation [55].

3.5.6 Gaussian Mixture for Regression

GMM for regression is a probabilistic model that assumes the data is generated from
a mixture of several Gaussian distributions and each Gaussian component represents a
different local pattern or cluster in the data. This enables GMM to capture complex
relationships and variations frequently found in real-world data [56]. The superposition is
composed of probabilistic models and is obtained by Equation (3.12) [57].

p(X, Y ) =
G∑

g=1

πgNg(xk, yk|µg
XY ,Σ

g
XY ) (3.12)

Where the joint probability distribution p(X, Y ) is obtained by Expectation-Maximization
method [57], G is the number of Gaussian components, where the g-th component N g(·) is
represented by the mean µg

XY , and variance Σg
XY . π

g, with
∑K

g=1 π
g = 1, is the component

weight.

For prediction, the Gaussian Mixture Regression (GMR) calculates the conditional
distribution p(Y |X) for a given sample using Equation (3.13) [57].

p(Y |X) =
G∑

g=1

πg
Y |XNg(Y |µg

Y |X ,Σ
g
Y |X) (3.13)

The component weight πg
Y |X is determined by Equation (3.14).

πg
Y |X =

Ng(X|µg
x,Σ

g
X)∑G

l=1Nl(xk|µl
X ,Σ

l
X)

(3.14)

3.6 Framework to design a Soft Sensor

In this section, the framework formulated for designing a SS is presented, aligning with
the key steps introduced in Section 3.2. The main stages of the framework are outlined
in Algorithm 2, and can be split into the following phases: data pre-processing (Step 1
and 2), variable selection (Step 3), model selection (Steps 4 and 5) and subsequent model
training and testing (Step 6 to 15).
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Algorithm 2 Soft Sensor Methodology.

Input: dataset.
Procedure:
1: Pre-process the dataset (delete outliers, non numeric variables, and empty variables).
2: Perform the feature expansion.
3: Select the variable selection method (Section 3.4): Pearson’s correlation, MI, or

fastTracker.
4: Define the model to be used (Section 3.5): MLR, RR, LASSO, EN, SVR, or GMR.
5: Define hyperparameters for the selected model.
6: for it = 1, . . . , itmax: do
7: Split randomly the dataset in train (70%) and test (30 %).
8: Tune hyperparameters using Grid Search and k-fold Cross-Validation, with k = 10.
9: Fit the model using the best hyperparameters (from step 7) to the training dataset.

10: Predict the target variable Y for the test dataset.
11: Calculate the error metrics.
12: Save the model and hyperparameters values.
13: end for
14: Obtain the average of the error metrics.
15: Select the model with the best error metrics.

Steps 1 and 2:

The initial step involves pre-processing the dataset, which includes removing non-
numeric columns, as well as empty or partially empty columns. Outliers are identified using
the z-score, a statistical measure indicating how many standard deviations a data point
deviates from the population mean. The z-score for each features’s sample is calculated
using Equation (3.15).

z =
x− µ

σ
(3.15)

Where µ represents the mean and σ is the standard deviation. In this context, a sample is
assumed as being an outlier if z > 3. Subsequently, outliers are scrutinized and removed,
along with samples containing empty values.

Subsequently, the dataset is split into input variables (X) and output variable (Y ).
The input variables undergo feature expansion, generating the square, inverse, and root
mean squared values of each variable Xj , along with the products of each pair of variables.
To mitigate potential data inaccuracies, two exceptions are implemented: the root mean
squared is omitted if an original variable contains negative values, and the inverse is
excluded in the presence of zero values.

Step 3:

Following this phase, one of the variable selection methods outlined in Section 3.4 is
applied — either Pearson’s correlation, Mutual Information, or fastTracker.
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Steps 4 and 5:

Following variable selection, a model is selected from the options detailed in Section
3.5: MLR, RR, LASSO, EN, SVR, or GMR. After that, based on the chosen model,
appropriate values for hyperparameters are defined.

Steps 6 to 15:

To mitigate potential biases stemming from dataset division and ensure robust model
description, the training and testing process is repeated for a total of itmax iterations.
During each iteration, the dataset is randomly split into a training set (70%) and a test
set (30%).

Within each iteration, hyperparameters are fine-tuned using a Grid Search with K-folds
Cross-Validation (where K = 10) to prevent overfitting. GridSearch is a widely employed
technique for hyperparameter optimization. For every hyperparameter combination, the
algorithm undergoes training and validation using K-Fold Cross-Validation. The training
dataset is partitioned into K equally-sized subsets (folds), with K-1 folds used for model
training and the remaining subset for validation in each iteration. This process yields K
performance scores, and their mean is calculated for comparison across all hyperparameter
combinations. The combination with the lowest Mean Squared Error (MSE) is chosen
and used to fit the model to the training dataset.

Once the model parameters are determined, predictions for the target variable Y are
made using the input variables from the test dataset. The predicted values are then
compared with the actual values of Y , and error metrics, as well as the model itself and
its hyperparameters, are computed and stored.

Upon completion of all iterations (itmax), the average of the error metrics is calculated,
and the model with the best metrics is selected as the final Soft Sensor.
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Chapter 4

Principal Component Analysis for
process monitoring and fault
detection

Principal Components Analysis (PCA) stands out as a prominent linear technique
for dimension reduction, dividing data information into its most significant patterns
[58, 32]. Due to its versatility, PCA finds widespread applications in data analysis, such
as image processing, feature extraction, and pattern recognition [59]. Among its various
applications, fault detection stands out as a particularly significant and well-studied area
[60, 61, 62, 63]. Consequently, PCA has been selected for the purpose of data entry error
detection.

The upcoming chapter is organized into two sections. Section 4.1 explores the mathe-
matical foundations of PCA, providing a comprehensive understanding of its principles.
Subsequently, Section 4.2 outlines a methodology leveraging PCA for Process Monitoring
and Fault Detection that will be applied to data entry error detection.

4.1 Introduction to PCA

The fundamental idea behind PCA is to reduce the dimensionality of a dataset while
preserving the most relevant information [64]. This is achieved by projecting the data
into a new subspace defined by Principal Components (PCs). These components are
uncorrelated and prioritize capturing the majority of the variability within the original data.
Figure 4.1 provides a visual representation of the transformation process, showcasing how
50 data points are mapped from their original two-dimensional space to a new subspace
delineated by the principal components z1 and z2, where the principal component z1
captures the majority of the data variability.

The initial step of PCA involves an observation matrix X ∈ RK×m, where each column
expresses a variable, and each row represents a sample. Matrix X is then normalized to
zero mean and unit variance, creating a normalized observation matrix X = [xk,j]K×m,
with each xk = [xk,1, . . . , xk,m] with k = 1, . . . , K denoting the k-th normalized observation
vector.

Next, the covariance matrix (Σ ∈ Rm×m) is computed using Equation (4.1).

Σ =
XTX

K − 1
(4.1)
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(a) Plot of 50 observations on two variables
x1 and x2.

(b) Plot of the 50 observations with respect
to their PCs z1 and z2.

Figure 4.1: PCA in practice with 2 variables [64].

Where K is the total number of observations. Covariance matrix is a square matrix where
diagonal elements contain the variances [65] of individual variables, and the off-diagonal
elements represent the covariance between pairs of variables, given by:

Σ =




Var(X1) Cov(X1, X2) . . . Cov(X1, Xm)
Cov(X2, X1) Var(X2) . . . Cov(X2, Xm)

...
...

. . .
...

Cov(Xm, X1) Cov(Xm, X2) . . . Var(Xm)


 ,

where Var(·) is the variance, representing the measure of the dispersion of a single random
variable around its mean, and Cov(·, ·) is covariance, indicating the measure of the
extent to which two random variables change together, reflecting their joint variability
and relationship. For a comprehensive understanding of how to calculate variance and
covariance, refer to Navidi’s “Statistics for Engineers and Scientists” [66].

Subsequently, the eigenvectors and eigenvalues [67] of Σ need to be calculated. Eigen-
values and eigenvectors are the scalar and vector quantities respectively associated with
matrices used for linear transformations. Eigenvectors remain in the same direction after
a linear transformation is applied to it and eigenvalues are scalars attached to them.
Thus, Σ is decomposed using Singular Value Decomposition (SVD) [68], as presented in
Equation (4.2).

Σ = PΛPT (4.2)

Where Λ ∈ Rm×m is a diagonal matrix that contains the eigenvalues (λj) of Σ, i.e.,
Λ = diag(λ1, ..., λm) with λ1 ≥ ... > λm ≥ 0, and P ∈ Rm×m is known as the loadings
matrix and comprises the eigenvectors of Σ corresponding to the eigenvalues in Λ. Each
column of P represents a new coordinate axis, the Principal Components, and rows
represent the original variables. Consequently, the values in the loading matrix P serve
as coefficients (or weights), indicating the contribution of each original variable to the
PCs. The following matrix represents the loadings matrix, with pk,j being the weight of
the original variable Xj on the jth Principal Component,



23 4.1. Introduction to PCA

PC1 PC2 . . . PCm

X1 p1,1 p1,2 . . . p1,m
X2 p2,1 p2,2 . . . p2,m
...

...
...

. . .
...

Xm pm,1 pm,2 . . . pm,m

.

The eigenvalues within matrix Λ quantify the variability along the PCs.
The following step involves selecting the number of PCs, l, to consider and use in the

data transformation. A common criteria is based on the cumulative explained variance [69].
The explained variance refers to the proportion of the total variance in the original data
that is captured by a Principal Component and it quantifies how much of the variability
in the dataset explained by that specific PC. Explained variance is calculated using the
obtained eigenvalues. For each eigenvalue, the explained variance is computed by dividing
it by the total sum of eigenvalues. Mathematically, this can be expressed as shown in
Equation (4.3).

Explained Variance(λj) =
λj∑m
j=1 λj

(4.3)

Where λj is the jth eigenvalue of Λ, corresponding to the jth PC, and m is the total
number of original variables.

Subsequently, the cumulative explained variance represents the total amount of variance
in the original data that is explained by a given number of PCs. It is obtained by calculating
the cumulative sum of the explained variances, providing a measure of the total variance
explained as the number of PCs increases. This process is represented by the Equation
(4.4).

Cumulative Explained Variance =
l∑

j=1

Explained Variance(λj) (4.4)

Where l is the ideal number of PCs. The selection of l is determined based on the condition
that the cumulative explained variance is equal to or higher than a specified threshold,
e.g. 90%, as Equation (4.5) shows.

argmin
l

{
l∑

j=1

Explained Variance(λj) ≥ 0, 9

}
(4.5)

With the number of Principal Components defined, matrix P is divided according to
the selected l, P = [PpcPres]. Here, Ppc ∈ Rm×l is the part of the loading matrix that
contains the PCs that capture the most significant variations in the data. Ppc is then
used to project the data into the new coordinate system where the axes are aligned with
the selected PCs. Conversely, Pres ∈ Rm×(m−l) includes the eigenvectors that map the
residual subspace, capturing directions with less variability in the data. Data projected
into Pres is often treated as noise or outliers.

Matrix Λ is also decomposed into two matrices:

Λ =

[
Λpc 0
0 Λres

]
.

Here, Λpc is the diagonal matrix containing the eigenvalues up to the selected number
of components, denoted as Λpc = diag(λ1, ..., λl), while Λres includes the eigenvalues
corresponding to the residual subspace, expressed as Λres = diag(λl+1, ..., λm).
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Algorithm 3 PCA methodology for fault detection [59].

Input: Dataset X (train data), significant level α
Offline Stage:
1: Normalize dataset X to zero mean and unit variance.
2: Determine the covariance matrix Σ (Equation (4.1)).
3: Determine the loadings matrix P and the eigenvalues Λ using SVD (Equation (4.2)).
4: Select the number of Principal Components (l) that explain 90% of the variance

(Equation (4.5)).
5: Determine the SPE threshold, δ2α (Equation (4.10)).
6: Determine the T 2 threshold for the selected significant level α, T 2

α (Equation (4.14)).
Online Stage:
7: For each new sample, determine SPE and T 2 and classify it:
8: if SPE ≤ δ2α and T 2 ≤ T 2

α then
9: sample is fault-free.
10: else
11: sample is faulty.
12: end if

Finally, the dataset is projected onto the new subspace. This operation is achieved by
multiplying matrix X by the transpose of Ppc, as illustrated in Equation (4.6).

Z = XPT
pc (4.6)

Where Z contains the scores along the selected Principal Components for each sample,
resulting in a reduced-dimension representation that effectively captures the majority of
the variance in X while minimizing the impact of noise.

4.2 PCA methodology for process monitoring and

fault detection

This section explores one of the commonly employed algorithms, leveraging PCA as a
classification method to identify faults [59].

The main steps of the methodology are outlined in Algorithm 3. The procedure can be
categorized into the selection and normalization of K samples (Step 1), the application of
Singular Value Decomposition to the covariance matrix (Steps 2 and 3), the determination
of the number of Principal Components, l (Step 4), the definition of thresholds (Steps 5
and 6), and classification of each new sample using Squared Prediction Error (SPE) and
Hotelling’s T 2 (Steps 7 to 12).

Step 1:

Initially, the samples are gathered and arranged in an observation matrix X ∈ RK×m,
where K denotes the number of samples, and m represents the number of variables. This
matrix is then normalized to zero mean and unit variance.
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Steps 2 and 3:

Subsequently, the standard PCA procedure is followed, involving the determination of
the covariance matrix Σ through Equation (4.1). The SVD is then applied to Σ using
Equation (4.2), resulting in the extraction of the loadings matrix P and the diagonal
matrix Λ. As elaborated in Section 4.1, the columns of P represent Principal Components,
while the diagonal values of Λ (eigenvalues of Σ) quantify the variability along these PCs.

Step 4:

The number of PCs, l, is determined based on the eigenvalues, aiming to identify the
minimum number of components that ensures a specific Cumulative Explained Variance,
as depicted in Equation (4.5). In this work, l components had to explain 90% of the
variance.

With l defined, matrix Λ is divided (as shown in Matrix 4.1) into Λpc = diag(λ1, ..., λl),
containing the top-l eigenvalues, and Λres = diag(λl+1, ..., λm), encompassing the eigenval-
ues linked to the residual subspace (as explained in Section 4.1).

The loadings matrix P is also partitioned based on the selected l, resulting in P =
[PpcPres], where Ppc ∈ Rm×l includes the PCs utilized to project the data into the new
coordinate axes. Additionally, Pres ∈ Rm×(m−l) comprises the eigenvectors that map the
residual subspace, generating noise and outliers when used for data projection. Matrix
Ppc is subsequently employed to project new samples into the new subspace.

Steps 5-6:

To classify the samples as “fault-free” or “fault”, the literature suggests using SPE and
Hotelling’s T 2 [59, 70, 71]. SPE measures the difference between the original observation
matrix X and its approximation using the PCs (projection using Ppc and Equation
(4.6)). This index can be computed, at the sample k, by projecting the sample row
xk ∈ Rm (xk = [xk,1, . . . , xk,m]) onto the residual subspace (utilizing Pres) and subsequently
calculating its squared Euclidean norm. Equation (4.7) illustrates the projection of a
normalized vector sample xk into the residual subspace, while Equation (4.8) outlines the
computation of the SPE.

zk = xk ·Pres (4.7)

SPE = ||zk||2 (4.8)

Here, ||·|| denotes the Euclidean norm, and zk ∈ Rm−l, where m is the number of variables
and l is the number of PCs, represents the sample projected into the residual subspace.
Equation (4.8) is equivalent to Equation (4.9).

SPE = xT
kPresP

T
resxk (4.9)

Where xk is the normalized row with the sample measurements and Pres contains the PCs
that map the residual subspace.

SPE provides a measure of how well a sample can be represented in the new subspace
defined by the Principal Components. A lower SPE value is desirable, indicating that
the sample aligns well with the detected patterns and is well represented by the model.
Conversely, a higher SPE value suggests that the new sample (xk) behaves like an outlier
and deviates significantly from the patterns captured by the PCs. To assess whether the
SPE of a new sample is within a normal range, a threshold must be defined, denoted as
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δ2α. Jackson and Mudholkar [72] developed an expression for this threshold that can be
seen in Equation (4.10).

δ2α = θ1

(
cα
√

2θ2h2
0

θ1
+ 1 +

θ2h0(h0 − 1)

θ21

) 1
h0

(4.10)

Where cα represents the confidence interval corresponding to the 1− α percentile of the
normal distribution, where α is the significance level. The coefficients θi are computed
using the eigenvalues (λj) associated with the residual subspace, as expressed in Equation
(4.11). The parameter h0 is determined by combining θ1, θ2, and θ3 as outlined in Equation
(4.12).

θi =
m∑

j=l+1

λi
j, i = 1, 2, 3 (4.11)

h0 = 1− 2θ1θ3
3θ22

(4.12)

A normal SPE value is lower than or equal to δ2α. Detection of an anomaly (SPE > δ2α)
indicates that one or more variables are no longer varying as predicted by the Principal
Components.

Since faults can manifest in various ways, a more robust detection system incorporates
Hotelling’s T 2 as a metric for identifying potential errors. While SPE is sensitive to
deviations orthogonal to the PCs (in the residual subspace), T 2 provides information
about deviations along the PC directions. T 2 evaluates how far a sample deviates from
the mean of the observation matrix in the principal subspace and can be calculated using
Equation (4.13) [70].

T 2 = xT
kPpcΛ

−1
pc P

T
pcxk (4.13)

Where xk contains the measurements for the kth sample, Ppc is the matrix containing
the Principal Components and Λ−1

pc is the inverse of the diagonal matrix containing the
eigenvalues that correspond to the selected PCs.

Assuming that the data follows a multivariable normal distribution, the T 2 statistic is
related to an F distribution [73]. Leveraging this correlation and assuming the mean is
known, an upper control limit for T 2, T 2

α, can be defined for a given significance level α
using Equation (4.14) [74].

T 2
α =

l(K − 1)

K − l
Fl,K−l;α (4.14)

Where Fl,K−l;α is an F distribution with l and K − l degrees of freedom, K is the number
of samples collected, and l is the selected number of PCs.

Steps 7 to 12:

While SPE captures deviations orthogonal to the PCs axes, T 2 provides insights about
possible faults along the PCs. Consequently, considering both metrics offers a more robust
approach to identify faults that might be overlooked if only one of them is considered.
With the metrics and thresholds defined, for every new sample, the SPE and T 2 are
computed using Equations (4.9) and (4.13), respectively. Based on these measures, the
sample is classified using the following rule:

if SPE ≤ δ2α and T 2 ≤ T 2
α −→ fault free

otherwise −→ faulty



Chapter 5

Methodology to detect data entry
errors

In this chapter, it is proposed a methodology designed to identify errors within entry
data. The chapter unfolds as follows: Section 5.1 delineates the artificial insertion of errors
into the dataset; Section 5.2 expounds on the metrics employed to assess the model’s
performance, and Section 5.3 concludes by providing an description of the defined models
for error detection using a Soft Sensor methodology and a PCA methodology.

5.1 Artificial errors

To test the methodology proposed in Section 5.3, the datasets were manipulated in
order to replicate artificially data entry errors. Since there are no available ready-to-use
datasets with this characteristic, the errors were artificially inserted into the selected
datasets. There were considered five distinct error categories: blank spaces, order errors,
doubles, measurement errors and extra numbers.

Blank spaces are a prevalent error type that can be encountered in various datasets,
including those without manually entered data. In an industrial context, these errors may
occur when a laboratory operator unintentionally skips a sample, resulting in a gap. To
simulate this scenario, the target variable is replaced by a zero.

Order errors manifest when an operator mistakenly swaps the positions of two digits
while recording a value. For instance, instead of inputting 195, one might mistakenly
record 159. The impact of these errors on results depends on the specific digits involved.
For example, confusing 195 with 159 may have a less significant impact than erroneously
entering 915. Therefore, order errors can be analyzed in terms of the change in the order
of magnitude that they cause. For instance, replacing a value of 1.35 with 13.5 induces a
change in the order of magnitude of +1.

Doubles represent another common error, occurring when a operator records the same
value twice. Simulating this scenario within a dataset involves duplicating the target
variable value of the sample immediately preceding the selected one. It’s important to
note that, to prevent the introduction of duplicated errors, the chosen dataset samples
were intentionally non-successive.

Measurement errors constitute well-explored errors, particularly in the context of
laboratory instruments. This issue arises not only from the improper use of instruments
but also holds significance in the areas of metrology and instrument construction. In this
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study, the assumption is that the error stems from the misapplication of the instrument
by the user only. Thereby, three subcategories were created:

• measurement error: 5 to 10 %

• measurement error: 10 to 25 %

• measurement error: 25 to 50 %

For the selected sample within each subcategory, an error value is randomly generated.
For instance, in the case of measurement errors ranging from 5 to 10 %, a value is chosen
between 0.9 and 0.95 (representing an error of -5 to -10 %) and 1.05 and 1.1 (indicating
an error of 5 to 10 %). Subsequently, the target variable value is multiplied by the error
value.

Lastly, extra number errors may manifest during data entry when an operator repeats
a digit. For instance, the value 324 could be mistakenly entered as 3224, 3244, or 3324.
In this simulation, for each selected value, a digit is randomly chosen and duplicated.
In cases involving decimal numbers, the impact of the error may vary. For instance, if
the original number is 15.9 and the introduced error is 15.99, the difference is nearly
imperceptible. However, when the duplicated digit is integral, such as the 5 (becoming
155.9), the disparity becomes substantial. Recognizing the significance of this difference
in results analysis, the possible change in the order of magnitude is registered. It’s worth
noting that decimal points were intentionally excluded from duplication to avoid having
non numeric values (such as 15..9).

5.2 Metrics

To properly evaluate the performance of the proposed algorithms, it is crucial to estab-
lish robust metrics. In this work, two categories of metrics are essential: regression metrics,
measuring the accuracy of Soft Sensor in predicting the target variable, and classification
metrics, assessing the algorithms’ ability to predict whether a sample represents an error
or a true value.

5.2.1 Regression metrics

Three metrics were used: Root Mean Squared Error (RMSE), Normalized Root Mean
Squared Error (NRMSE), and the Determination Coefficient (denoted as R²).

RMSE is a regression metric frequently applied to quantify the accuracy of model
predictions by providing a measure of the average magnitude of the errors between
predicted and actual values. It is calculated by taking the square root of the mean of the
squared differences between predicted (Ŷ ) and actual (Y ) values across all samples:

RMSE =

√√√√ 1

K

K∑

k=1

(ŷk − yk)2. (5.1)

Here, K represents the total number of samples.
A lower RMSE value indicates better predictive performance, since it reflects smaller

errors. Thereby, it is considered a valuable metric for assessing how well a model aligns
with the observed values.
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The NRMSE is the normalized version of the Root Mean Squared Error. By normalizing
the error values it provides a relative measure of the predictive performance. Being so, it is
particularly useful for comparing models with different scale of target variables. NRMSE
is calculated by dividing the RMSE by the range of the actual values, and its values fall
between 0 and 1:

NRMSE =

(
RMSE

max(y)−min(y)

)
. (5.2)

Where y is the vector of the target variable.
Just as with the RMSE, a reduced NRMSE indicates better model performance,

reflecting a smaller percentage of error in relation to the overall range of actual values.
Finally, R2 is a statistical measure that assesses how much of the variability in the

target variable can be explained by the independent variables. In other terms, it quantifies
the extent to which the model’s predictions capture the fluctuations observed in the target
variable. It can be determined as follows:

R2 = 1−
∑K

k=1(ŷk − yk)
2

∑K
k=1(yk − ȳ)2

(5.3)

Where K stands for the total number of samples and ȳ represents the mean of y.
R2 ranges from 0 to 1, where 1 indicates a perfect fit. A higher value implies that a

greater proportion of the target variable variance is elucidated by the model’s predictions,
indicating a better fit of the Soft Sensor to the data. It is important to keep in mind that
a negative value for R² can exist. That result indicates that a flat curve describes better
the data than the tested model.

The metrics described above can be used to understand how well a model describes
the data. To pick the best Soft Sensor, a mix of the R2 and the NRMSE was used. The
best model will be the one with the lowest NRMSE and the highest R2, and consequently
obtains the lowest value in Equation 5.4.

(1−R2) + NRMSE

2
(5.4)

5.2.2 Classification metrics

Unlike regression metrics, that intend to assess how well model’s predictions align
with observed values, the classification metrics goal is to measure the model’s ability to
correctly classify instances into their respective categories. In this case, into the categories
of “errors” and “true values”.

In a binary classification case, metrics frequently rely on the concept of True Positives
(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). Since the
goal of the applied algorithm is to identify errors, the above terms are defined as follows:

• TP: samples that are correctly classified as “error”;

• TN: samples that are correctly classified as “true value”;

• FP: samples that are incorrectly classified as “error” when they are actually “true
value”;

• FN: samples that are incorrectly classified as “true value” when they are actually
“error”.



Chapter 5. Methodology to detect data entry errors 30

Table 5.1: Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive TP FN

Actual Negative FP TN

These terms can show the number of correct and incorrect predictions for each class and
are organized in a confusion matrix presented in Table 5.1.

Having the confusion matrix, four metrics were selected: Precision, Sensitivity, F1-score,
and Specificity.

Precision, also referred to as Positive Predictive Value, measures the accuracy of the
positive predictions made by the model. It’s the proportion of true positive predictions
among all positive predictions and it ranges between 0 and 1, given by:

Precision =
TP

TP + FP
. (5.5)

In this scenario, precision indicates the proportion of correctly predicted “error” samples
relative to all the “error” predictions (both correct and incorrect). High precision (values
closer to 1) implies that the model’s positive predictions are highly accurate and there is
a low rate of False Positives (FP).

Sensitivity, also known as True Positive Rate or Recall, gauges the proportion of
positive instances accurately identified by the model. It offers insights into how well the
model captures positive instances within the dataset and its numeric values span from 0
to 1, given by:

Sensitivity =
TP

TP + FN
. (5.6)

In this context, sensitivity reflects the fraction of accurately predicted “error” samples in
relation to all “error” instances, including samples identified as “true value” that were
indeed “error”. Sensitivity closer to 1 means that the model is effective at detecting most
of the positive samples (even if it results in more false positives)

To balance precision and sensitivity, the F1-score considers both false positives and
false negatives. It can be determined using Equation (5.7).

F1 score =
2× Sensitivity× Precision

Sensitivity + Precision
(5.7)

F1 score ranges from 0 to 1, where 0 indicates poor performance or complete misclassifica-
tion and 1 represents perfect precision and sensitivity. A higher score is desirable as it
signifies a better trade-off between precision and recall and it indicates a more balanced
classification performance.

Lastly, specificity, commonly referred to as True Negative Rate, is a metric similar
to the precision but focused on the negative values, since it evaluates the ability of a
classification model to correctly identify negative instances. Its values are confined to the
range of 0 to 1 and can be calculated through Equation (5.8).

Specificity =
TN

TN + FP
(5.8)

Within this framework, specificity measures the proportion of actual “true value” instances
that are correctly identified by the model. A higher specificity value indicates that
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the model is effective at identifying negative instances, minimizing the occurrence of
false positives, and it complements precision and sensitivity when evaluating a model’s
performance.

5.3 Setup of the methodologies for data entry error

detection

Having outlined the procedure for artificially introducing errors to simulate human
data entry mistakes, and with the defined metrics in place, two methodologies were created
to detect entry data errors. The first methodology takes advantage of the Soft Sensor
approach mentioned in Chapter 3, while the second uses the PCA algorithm described in
Chapter 4.

5.3.1 Soft Sensors

In accordance with the concepts detailed in Chapter 3, Soft Sensor serve as inferential
models employed to predict physical quantities, proving to be a robust tool for estimating
laboratory variables in industrial settings. Consequently, they have been integrated into a
methodology designed to identify data entry errors.

The key steps of this methodology are outlined in Algorithm 4 and can be divided into
the following main phases: selection of the Soft Sensor (Step 1), data pre-processing (Step
2), error artificial insertion (Step 3), variable selection (Step 4 and 5), model training and
testing (Step 6 to 11), and samples classification (Step 12 to 23).

Step 1:

The initial step is to determine the SS model that best characterizes the chosen dataset.
This entails the selection of a model formed by combining a variable selection method
and a regression model. To identify the optimal combination, every variable selection
method and regression model described in Chapter 3 is systematically tested following
Algorithm 2. Besides, tests are also performed without any variable selection method
and applying only Feature Expansion. From these tests, the average NRMSE and R2

are extracted. The subsequent selection of the best combination considers a metric that
incorporates both NRMSE and R2, as defined by Equation 5.4. This measure aligns with
the objective outlined in Section 5.2, where the aim is to find a model with a lowest
NRMSE (closer to zero) and an R2 as close to one as possible. Models with a negative R2

value are preemptively excluded due to their implication of a poor fit to the dataset, which
could potentially impact the results. Additionally, the R2 and NRMSE are independently
verified to confirm the selection of the soft sensor model.

Step 2:

Following the selection of the SS model, and before proceeding to the subsequent
steps, it’s important to highlight that certain procedures, such as pre-processing, variable
selection, and model fitting, carried out in Step 1, will need to be re-executed as part of
the ensuing stages.

With the SS selected, the dataset is pre-processed. Here, columns and samples with
non numeric data are eliminated as well as the ones that are empty or semi-empty and
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Algorithm 4 Soft Sensor for error detection methodology.

Input: Dataset, error proportion, error categories to be studied, Soft Sensors models, the
set of values of SSth to be studied.

Procedure:
1: Select the Soft Sensor model that better fits the dataset using Algorithm 2.
2: Pre-process dataset (remove outliers, non-numeric variables, empty variables, rename

columns, reset indexes).
3: Insert artificial errors according to error categories and error proportion.
4: Variable division: create the input variables X, Y for regression (Yreg), and Y for

classification (Yclas).
5: Select variables using the elected variable selection method (from Step 1).
6: Split the dataset into train (70%) and test (30%), selecting all errors data for the test

dataset.
7: Tune hyperparameters using Grid Search and k-fold Cross-Validation in the training

dataset.
8: Fit the model (chosen in Step 1) using the best hyperparameters (from Step 5) on the

training dataset.
9: Predict the target variable Yreg for the test dataset.
10: Calculate regression metrics (NRMSE and R2).
11: Save the model and metrics.
12: for each test sample k = 1, . . . , K do
13: for each possible SSth do
14: Classify k sample for the test dataset:
15: if yreg(k) ∈ ŷpred(k)× [1− SSth, 1 + SSth] then
16: yclas(k) is “true value”
17: else
18: yclas(k) is “error”
19: end if
20: Calculate the classification metrics.
21: end for
22: Save classification metrics for each SSth.
23: end for

outlier samples are removed. Furthermore, the indexes are reset, and the columns are
systematically renamed (designated as X1, X2, ..., Xm and Y ). Finally, two new columns
are introduced: “classification”, that labels each samples as “true value” or “error”, and
“error category”, which encapsulates the type of error associated with each error sample.

Step 3:

Moving forward, the artificial errors are inserted into the prepared dataset. The
number of errors to insert is determined by the input variable “error proportion”. For
instance, if that value is 0.15, then 15% of the samples will be converted into errors. The
selection of those samples is done randomly but repeatable. The number of indexes to
select is rounded up to an integer and the samples selected are never adjacent (to ensure
that in doubles the repeated value is not an error). In case the error categories include
more than one error type, the number of samples per error category is the total number
of errors divided by the number of categories (rounded down to an integer and the rest of
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the division is split into the categories). For example, if all five categories are selected
and there are 26 samples to be converted into errors, four categories will have five error
samples and one category will have six. As described in Section 5.1, the error categories
in study are: blank spaces, order errors, doubles, measurement errors and extra number
errors. Each of these samples is classified as an “error” (in the “classification” column)
and the categories are registered in the “error category” column.

Steps 4 and 5:

Then, the dataset is separated into X and Y. Y is also split into two categories: Y for
regression (Yreg) that includes the y values and Y for classification (Yclas) that contains
the “classification” column previously created. This is also the stage where the variable
selection method, previously selected in Step 1, is implemented to X.

Step 6:

Subsequently, the dataset is split into train (70%) and test (30%), with the training
dataset exclusively incorporating “true value” samples. All errors are included in the
test dataset, making it crucial to maintain an error proportion of approximately 15%.
Otherwise, the test dataset will be unbalanced and have either an excess of “error” samples
or “true values”.

Step 7:

Then, if the selected Soft Sensor model (from Step 1) involves hyperparameters
(applicable to all models except MLR), these parameters undergo fine-tuning through
Grid Search and k-fold Cross-Validation, as detailed in Chapter 3. This optimization
process is only applied to the training dataset.

Steps 8 to 11:

Upon selecting the optimal hyperparameters, the model is fitted to the training dataset
and subsequently employed to predict Y for the test dataset. Following this prediction,
R2, RMSE and NRMSE are computed using Equations (5.3), (5.1) and (5.2). They
compare the predicted values, ŷtest, with the original values ytest before error insertion.
This approach ensures the confirmation of the model’s performance (if the errors were
considered in this step, the metrics would not assess the real dataset). Lastly, both the
metrics and the model itself are saved.

Steps 12 to 23:

After this step, for each potential SSth under consideration, the test samples undergo
classification. In this process, the predicted y (ŷpred(k)) is treated as a reliable approx-
imation of the true y(k) value. Utilizing SSth, upper and lower limits of the interval
are determined, classifying the sample as a “true value” within this range. The interval
is defined as a span around the predicted value ŷpred(k), stretching from (1 − SSth) ×
ŷpred(k) to (1 + SSth) × ypred(k). For each sample in the test dataset, if the yreg(k) falls
within this interval, the sample is classified as a “true value”. Conversely, if the yreg(k)
lies outside the designated interval, the sample is classified as an “error”.
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Algorithm 5 PCA for data entry error detection methodology.

Input: Dataset, error proportion, error categories, significance level α.
Procedure:
1: Pre-process dataset (remove outliers, non-numeric variables, empty variables, rename

columns, reset indexes).
2: Insert artificial errors according to error categories and error proportion.
3: Variable division: create X and Y for classification (Yclas).
4: Split the dataset into train (70%) and test (30%), selecting all errors for the test

dataset.
5: Determine the number of PCs, l, that explain 90% of the cumulative explained variance

(employing Equation (4.5)).
6: Determine SPE threshold, δ2α (Equation (4.10)), and T 2 threshold, T 2

α (Equation
(4.14)), using the training dataset.

7: for each test sample k = 1, . . . , K do
8: Determine SPE (using Equation (4.9)) and T 2 (through Equation (4.13)) for each

sample of the test dataset and classify yclas(k):
9: if SPE <= δ2α and T 2 <= T 2

α then
10: yclas(k) is “true value”
11: else
12: yclas(k) is “error”
13: end if
14: Calculate the classification metrics.
15: end for
16: Save classification metrics.

Subsequently, using the actual label of the samples and the predicted classification, the
confusion matrix is computed, and precision (Equation (5.5)), sensitivity (Equation (5.6)),
f1-score (Equation (5.7)), and specificity (Equation (5.8)) are determined as outlined in
Section 5.2. These results are then preserved for further analysis.

In cases where the error categories under investigation are specifically measurement
errors, order errors or extra numbers, a more intricate analysis needs to be taken due to the
existence of subcategories (as detailed in Section 5.1). In addition to the aforementioned
metrics, the error records are isolated and further categorized into existing subcategories.
For instance, in the case of measurement errors, they are split into errors from 5% to 10%,
10% to 25% and 25% to 50%. For each subcategory, the sensitivity is determined. Given
that only positive samples (“errors”) are analyzed in this scenario, sensitivity is the sole
meaningful metric among the four used.

5.3.2 PCA

As detailed in Chapter 4, PCA is a valuable tool for fault detection. The main steps
of this tailored approach are elucidated in Algorithm 5, which is based on Algorithm 3.

Steps 1 and 2:

The initial steps involve pre-processing the dataset and introducing artificial errors.
These phases are integral components of the methodology employed for detecting data
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entry errors with Soft Sensor, detailed thoroughly in Section 5.3.1. Two new columns are
created: “classification” and “error category”.

Step 3 and 4:

Upon artificially incorporating errors, the variables undergo division. The data is
divided into X, that contains the values of the field variables (Xj) and the target variable
(Y ), and Y for classification, denoted as Yclas, that contains the “classification” column
only. Following this division, the samples are further segregated into training (70%)
and test (30%) subsets. Once again, errors are entirely integrated into the test dataset,
ensuring that the training phase exclusively utilizes “true value” samples.

Step 5

Subsequently, using solely the training dataset, Algorithm 5 is executed. In essence,
the number of PCs, l, is determined based on the count required to explain 90% of the
dataset variability as presented in Equation 4.5.

Step 6

The Principal Components are identified, and thresholds δ2α and T 2
α are calculated

using Equation (4.10) and Equation (4.14), respectively.

Steps 7 to 15

Moving forward, for each sample in the test dataset, SPE and T 2 are computed
using Equation (4.9) and Equation (4.13), respectively. If these values fall below their
predetermined thresholds, the sample is classified as a “true value”; otherwise, it is deemed
an “error”.

Step 16

Following this classification for the entire test dataset, the confusion matrix and
classification metrics, outlined in Section 5.2.2, are computed, encompassing precision,
sensitivity, F1-score, and specificity.

To conclude, subcategories of measurement errors, order errors and extra numbers
are scrutinized separately, employing the same approach elucidated in Section 5.3.1. For
these categories, only “error” samples are considered, and sensitivity is the only metric
calculated.
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Chapter 6

Results

In this chapter, the results of the proposed methodologies in Algorithms 4 and 5 are
presented and discussed. The chapter is organized into four sections. Section 6.1 provides
a description of the considered datasets. Section 6.2 clarifies the experimental procedures
and the input values used to evaluate the two methodologies. Subsequently, Section 6.3
details the results obtained for each methodology, and Section 6.4 analyzes in detail the
outcomes for each dataset and algorithm.

6.1 Datasets

Three datasets were used to test the methodologies: one publicly available dataset
(Concrete), another dataset from a real urban Wastewater Treatment Plant (WTP), and
a third dataset provided by a cement industry (Cement).

Concrete dataset is a publicly available online benchmark dataset provided by the
UCI Machine Learning Repository [75]. The dataset contains 1030 samples obtained from
civil engineering practices [23] where the target variable, Y , the compressive strength of
concrete, is measured in a laboratory and it’s considered a function of eight field variables
related to the concrete components and its age. The variables are described in Table 6.1.

Table 6.1: Variables of concrete dataset.

Variable Description

X1 Cement;
X2 Blast furnace slag;
X3 Fly ash;
X4 Water;
X5 Superplasticizer;
X6 Coarse aggregate;
X7 Fine aggregate;
X8 Age of testing;
Y Concrete compressive strength.

WTP dataset comes from a real-world urban wastewater treatment plant. It has 11
field variable (X1, . . ., X11) measured by physical sensors and a target variable, Y , that is
measured in a laboratory. Field variables correspond to physical attributes, such as pH,
turbidity, and color of the water, and they are measured online by the plant sensors with a
sampling time of 2 hours. The target variable is the fluoride concentration in the effluent

37
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and it is determined by laboratory analysis once a day. All the variables are described in
Table 6.2.

Table 6.2: Variables of water treatment plant dataset.

Variable Description

X1 Chlorine in the raw water;
X2 Chlorine in the effluent;
X3 Turbidity in the raw water;
X4 Turbidity in the coagulated water;
X5 Turbidity in the effluent;
X6 pH in the raw water;
X7 pH in the coagulated water;
X8 pH in the effluent;
X9 Color in the raw water;
X10 Color in the coagulated water;
X11 Color in the effluent;
Y Fluoride in the effluent.

The wastewater treatment is a long process that can take up to 24 hours since the
incoming water (called raw water) goes from the influent until it reaches the effluent,
where Y is measured [76]. Consequently, variables assessed at the influent point (X1,
X3, X4, X6, X7, X9 and X10) must account for potential time lags within the range of
18-26 hours. Variables measured at the effluent (X2, X5, X8 and X11) may exhibit time
lags ranging from 0-8 hours. Thus, the permissible time lags for variables are denoted by
nXj

= {9, 10, 11, 12, 13} for the variables Xj = 1, 3, 4, 6, 7, 9, 10 and nXj
= {0, 1, 2, 3, 4} for

the variables Xj = 2, 5, 8, 11, where nXj
is the maximum time-lag considered for variable

Xj [77]. Given these transformations, the number of input variables increases to |X| = 55.

Lastly, the Cement dataset was provided by a cement factory and it comprises 263
samples and 23 field variables. The target variable (Y ) is the compressive strength
measured in a laboratory for 2 days. The compressive strength test is crucial in the cement
industry for quality control and it is performed every few days. The field variables were
assessed by physical sensors and encompassed the cement properties.

Table 6.3 provides a summary of the main characteristics of the dataset, where K
denotes the number of samples, |X| represents the count of input variables, Y stands for
the mean of variable Y and min(Y ) and max(Y ) present the minimum and maximum
values of Y , respectively.

Table 6.3: Main characteristics of the datasets.

Dataset K |X| Y min(Y ) max(Y )

Concrete 1030 8 35,82 2,33 82,60
WTP 352 55 0,19 0,11 0,30
Cement 263 23 31,02 27,50 34,60
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Table 6.4: Hyperparameters for the regression models to be chosen by the Grid Search
procedure.

Models Hyperparameters

MLR - -

RR λ 1e-10, 1e-4, 1e-3, 1e-2, 1, 2, 5, 10, 20

LASSO λ 1e-10, 1e-4, 1e-3, 1e-2, 1, 2, 5, 10, 20

EN
λ 1e-10, 1e-4, 1e-3, 1e-2, 1, 2, 5, 10, 20
α 0:1 (0.1)

SVR (linear)
C 1e-2, 1e-1, 1, 10, 100, 1000
ϵ 1e-3, 1e-2, 1e-1

SVR (rbf)
C 1e-2, 1e-1, 1, 10, 100, 1000
ϵ 1e-3, 1e-2, 1e-1
γ 1e-4, 1e-3, 1e-2, 1e-1, 1, 10

GMM G 5, 10, 20, 50

6.2 Experimental tests

Having established the methodologies and presented the datasets, the next step
involves the model’s validation and performance assessment in detecting data entry errors.
This section delineates the experimental setup devised for testing both methodologies.
Subsection 6.2.1 elucidates the experiments conducted with the SS-based methodology,
encompassing the framework designed for SS in Chapter 3, while Subsection 6.2.2 outlines
the tests conducted using the PCA-based methodology for data entry error detection.

6.2.1 Experimental setup for the Soft Sensors methodology

To evaluate the performance of the SS-based methodology in detecting data entry
errors, Algorithm 4 must be executed. Since the first step consists in selecting the SS
model that better fits the dataset in analysis, before elaborating on the experimental
structure, it’s important to outline the SS model selection process.

For each dataset detailed in Section 6.1, the optimal SS model is determined through
an exhaustive exploration of variable selection methods and regression models introduced
in Chapter 3. Algorithm 2 guides these tests. Each dataset undergoes the data pre-
processing steps and feature expansion is applied. Tests are performed with 1) no variable
selection (using only the original input variables), 2) original variables plus expanded
ones without selection (only applied to Concrete dataset, given the WTP and Cement
datasets extensive number of variables), and 3) selection methods detailed in Section
3.4 — Pearson’s correlation, MI, and fastTracker — applied to the expanded datasets.
Subsequently, the possible hyperparameters for each model are defined, as presented in
Table 6.4, to be fine-tuned using Grid Search and k-Fold Cross Validation, with k = 10.

Training encompasses every regression model from Section 3.5: MLR, RR, LASSO,
EN, SVR with linear kernel, SVR with Radial Basis Function (RBF) kernel, and GMR.
The training and testing are performed 30 times (itmax = 30) for each variable selection
method and regression model. In each iteration, the dataset is split randomly into 70%
for training and 30% for testing, and the average metrics (NRMSE and R2 as described
in Section 5.2) are calculated across all iterations to ensure reliable results independent of
dataset partitioning.
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The SS model with the optimal combination of both mean NRMSE and mean R2 is
identified by applying Equation (5.4) and selecting the combination with the lowest value.

After establishing the SS model, rigorous testing is conducted to evaluate its effec-
tiveness in detecting various data entry errors using Algorithm 4. This evaluation covers
all defined error categories: blank spaces, doubles, extra number errors, measurement
errors, and order errors, as detailed in Section 5.1. These categories are simulated by
introducing errors into the selected datasets, replacing a portion of the original samples.
Thus, six variations were created for each dataset outlined in Section 6.1: one for each
error category, containing exclusively that specific error type, and a general simulation
comprising all error categories in equal proportion.

With an error proportion set at 15%, the dataset is divided into training and testing
sets, with a 70% and 30% split, respectively. Hence, half of the test dataset exclusively
comprised error samples, as all error samples were included in the testing set. This
approach ensures a balanced representation of categories (true values and errors) for the
subsequent classification process. Figure 6.1 illustrates the test datasets with inserted
errors encompassing all categories, depicted as red crosses, against their original values
shown as green crosses, allowing for a direct comparison. True values are additionally
marked as black dots for comprehensive visualization of the entire test dataset.

The model is trained again using the training datasets and applied to predict Y for
the test dataset, using NRMSE and R2 as regression metrics. In the classification phase,
four potential values for the threshold SSth are considered: 0.05, 0.1, 0.15 and 0.2. These
threshold values were selected based on the NRMSE of the selected models (exposed
in Subsection 6.3.1). At last, after the classification step is performed, the precision,
sensitivity, f1-score and specificity are calculated. For tests with only measurement errors,
extra number errors and order errors inserted, a more detailed analysis is conducted, and
sensitivity is calculated for the existent error’s subcategories.

6.2.2 Experimental setup for the PCA methodology

To evaluate the effectiveness of the PCA methodology detailed in Section 5.3.2,
experiments were conducted in accordance with Algorithm 5. Similar to the procedure for
the SS methodology, six variants of each dataset described in Section 6.1 were generated
and tested, five representing each error category exclusively and a general simulation with
all error categories equally represented.

A significance level α = 0.05 was considered when determining the SPE threshold,
δ2α, ad the T 2 threshold, T 2

α. The evaluation metrics mirrored those chosen for assessing
the SS methodology, namely precision, sensitivity, f1-score, and specificity, facilitating
a direct comparison between the methodologies. Furthermore, a more detailed analysis
was performed for measurement error, extra number errors and order errors using the
sensitivity metric.

6.3 Experimental results

This section provides the results of the experimental tests outlined in Section 6.2,
which are divided into two parts. Subsection 6.3.1 presents the outcomes of experiments
conducted with the Soft Sensor methodology, subdivided into regression results (Sub-
subsection 6.3.1.1) and classification results for data entry detection (Sub-subsection
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(a) Insertion of errors in the Concrete dataset.
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(b) Insertion of errors in the WTP dataset.

0 50 100 150 200 250
Samples

0
50

100
150
200
250
300

y 
va

lu
es

True Value
Error
Previous Value

(c) Insertion of errors in the Cement dataset.

Figure 6.1: Insertion of errors in the selected datasets.

6.3.1.2). Lastly, Section 6.3.2 presents the results obtained using the PCA methodology
for data entry error detection.

6.3.1 Soft Sensors results

6.3.1.1 Regression results

Tables 6.5 and 6.6 display the outcomes of regression tests conducted to determine
the optimal Soft Sensor model for each dataset. Table 6.5 showcases the R2 metric, while
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Table 6.5: R2 results for each dataset.

Dataset
Variable
Selection

|X| MLR RR LASSO EN
SVR

(linear)
SVR
(rbf)

GMR

Concrete

without VS 8 0,604 0,604 0,604 0,604 0,581 0,865 0,716

FE

- 57 0,869 0,869 0,859 0,858 0,852 0,908 -48,641

PC = 0,2 32 0,842 0,842 0,837 0,837 0,824 0,886 -4,916

PC = 0,3 26 0,835 0,834 0,834 0,834 0,826 0,887 0,619

PC = 0,4 11 0,726 0,726 0,726 0,726 0,713 0,829 0,777

MI = 1,0 26 0,406 0,407 0,410 0,410 0,396 0,420 -0,481

MI = 1,3 14 0,589 0,589 0,579 0,579 0,542 0,790 0,634

fT = 0,5 26 0,832 0,832 0,820 0,821 0,807 0,883 -10,762

fT = 0,6 13 0,572 0,571 0,573 0,573 0,534 0,810 -1,862

WTP

without VS 55 0,616 0,690 0,695 0,693 0,643 0,758 0,553

FE

PC = 0,7 52 0,522 0,621 0,598 0,592 0,553 0,689 -6,101

PC = 0,72 26 0,546 0,567 0,553 0,569 0,532 0,674 -1,089

PC = 0,73 11 0,554 0,565 0,557 0,567 0,543 0,679 0,398

MI = 0,85 51 0,626 0,695 0,680 0,680 0,676 0,712 -0,326

MI = 0,87 22 0,668 0,683 0,676 0,682 0,662 0,701 0,042

fT = 0,725 46 0,619 0,667 0,663 0,665 0,665 0,661 -2,060

fT = 0,73 21 0,578 0,575 0,576 0,572 0,571 0,598 0,098

Cement

without VS 22 0,378 0,387 0,395 0,394 0,329 0,336 0,200

FE

PC = 0,3 60 0,076 0,359 0,369 0,350 0,213 0,318 -1,378

PC = 0,4 22 0,343 0,351 0,349 0,354 0,310 0,345 -2,445

PC = 0,45 13 0,305 0,299 0,308 0,309 0,251 0,259 -0,130

MI = 2,55 37 0,252 0,362 0,345 0,353 0,246 0,337 -10,946

MI = 2,62 14 0,304 0,313 0,298 0,310 0,237 0,277 -0,044

fT = 0,93 31 0,302 0,362 0,337 0,358 0,267 0,353 -3,215

fT = 0,935 10 0,329 0,324 0,326 0,325 0,306 0,326 0,128

Table 6.6 presents the NRMSE results. In the ‘Variable Selection” column of both
tables, “without VS” denotes the use of original input variables, while “FE” indicates the
use of expanded variables. The labels “PC”, “MI”, and “fT” with their respective values
represent thresholds chosen for Pearson’s correlation, Mutual Information, and fastTracker,
respectively. The third column (|X|) indicates the number of selected variables. The
remaining columns list the tested regression models. Bold values highlight the best metrics
for each dataset, indicating the optimal SS model based on the table’s metric. Thus,
the highest R2 values imply superior results in Table 6.5, while in Table 6.6 bold values
represent the lowest NRMSE metrics. Further discussion on these findings is provided in
Section 6.4.

Figure 6.2 contains the results of the predictions made with the best model (from
the thirty iterations) found for each regression model for 80 random samples of the test
dataset.

Based on the results provided by Tables 6.5 and 6.6, the optimal Soft Sensor model
was determined using Equation (5.4), selecting the combination with the lowest value.
The successful combinations for each dataset were:

• Concrete: SVR with RBF kernel with FE;

• WTP: SVR with RBF kernel without variable selection;

• Cement: LASSO without variable selection.
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Table 6.6: NRMSE results for each dataset.

Dataset
Variable
Selection

|X| MLR RR LASSO EN
SVR

(linear)
SVR
(rbf)

GMR

Concrete

without VS 8 0,130 0,130 0,130 0,130 0,134 0,076 0,110

FE

- 57 0,075 0,075 0,078 0,078 0,079 0,063 0,929

PC = 0,2 32 0,082 0,082 0,083 0,083 0,087 0,070 0,264

PC = 0,3 26 0,084 0,084 0,084 0,084 0,086 0,069 0,111

PC = 0,4 11 0,108 0,108 0,108 0,108 0,111 0,085 0,097

MI = 1,0 26 0,133 0,133 0,134 0,134 0,140 0,095 0,295

MI = 1,3 14 0,159 0,159 0,159 0,159 0,161 0,158 0,242

fT = 0,5 26 0,085 0,085 0,087 0,087 0,091 0,070 0,171

fT = 0,6 13 0,135 0,135 0,135 0,135 0,141 0,090 0,124

WTP

without VS 55 0,126 0,111 0,111 0,111 0,121 0,100 0,132

FE

PC = 0,7 52 0,137 0,121 0,126 0,126 0,132 0,111 0,474

PC = 0,72 26 0,137 0,132 0,132 0,132 0,137 0,116 0,263

PC = 0,73 11 0,132 0,132 0,132 0,132 0,137 0,116 0,153

MI = 0,85 51 0,121 0,111 0,116 0,116 0,111 0,111 0,216

MI = 0,87 22 0,116 0,111 0,111 0,111 0,116 0,111 0,179

fT = 0,725 46 0,121 0,116 0,116 0,116 0,116 0,116 0,332

fT = 0,73 21 0,132 0,132 0,132 0,132 0,132 0,126 0,179

Cement

without VS 22 0,159 0,156 0,156 0,156 0,157 0,157 0,157

FE

PC = 0,3 60 0,197 0,158 0,155 0,161 0,162 0,161 0,256

PC = 0,4 22 0,162 0,156 0,155 0,155 0,154 0,157 0,175

PC = 0,45 13 0,158 0,156 0,156 0,156 0,159 0,154 0,172

MI = 2,55 37 0,186 0,164 0,161 0,162 0,171 0,165 0,244

MI = 2,62 14 0,172 0,172 0,169 0,169 0,170 0,169 0,191

fT = 0,93 31 0,166 0,163 0,164 0,163 0,166 0,163 0,206

fT = 0,935 10 0,171 0,167 0,171 0,169 0,171 0,170 0,178

Table 6.7: Regression results for each dataset.

Dataset RMSE NRMSE R2

Concrete 4,85 0,06 0,91
WTP 0,016 0,09 0,83
Cement 1,20 0,18 0,44

6.3.1.2 SS results for data entry errors detection

The selected SS models were trained and tested again when applying Algorithm 4.
The regression metrics RMSE, NRMSE, and R2 were saved for each dataset, as presented
in Table 6.7.

Table 6.8 and Table 6.9 depict the classification outcomes from the implementation of
the SS-based methodology across different dataset variations. While Table 6.8 provides
insights into precision, sensitivity, and f1-score, Table 6.9 specifically focuses on specificity.
Metrics were separated in distinct tables given that specificity is influenced solely by
actual true values, making it inappropriate to analyze alongside the “Error categories”
column that denotes the type of error introduced in Table 6.8. For both tables, the
“SSth” column denotes the applied threshold for the classification process, as stipulated in
Algorithm 4, with subsequent columns showcasing the employed classification metrics.

To complement the interpretation of the results presented in Table 6.8, a series of
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(a) SS predictions for Concrete dataset.
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(b) SS predictions for WTP dataset.
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(c) SS predictions for Cement dataset.

Figure 6.2: Predictions made with the best model found for each regression model.

plots were generated. Figures 6.3, 6.4 and 6.5 specifically focus on actual errors. Each
plot illustrates the original value of the sample, accompanied by the corresponding SS
predicted value. The margins for classifying a sample as a “true value” are also depicted
based on the defined SSth. Additionally, the inserted error values are represented as
crosses, distinguishing between values correctly classified as errors (with the color red)
and false negatives (with the color black). These plots offer valuable insights into the
model’s behavior, and provide a visual aid in understanding the predictive capabilities
of the SS. Figures 6.3, 6.4, and 6.5 depict the analysis of datasets containing all error
categories, and to enhance visibility, the y-axis has been scaled. This adjustment was
necessary due to the presence of samples with significantly higher values. For plots with
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Table 6.8: Classification results for data entry error detection using the Soft Sensor
methodology.

Dataset Error categories SSth Precision Sensitivity F1-score

Concrete

All categories

0,05 0,62 0,93 0,74
0,1 0,71 0,88 0,78
0,15 0,76 0,85 0,8
0,2 0,84 0,79 0,81

Blank spaces

0,05 0,63 1 0,78
0,1 0,73 1 0,85
0,15 0,79 1 0,88
0,2 0,87 1 0,93

Doubles

0,05 0,6 0,86 0,7
0,1 0,67 0,74 0,71
0,15 0,71 0,65 0,68
0,2 0,79 0,57 0,66

Extra number

0,05 0,59 0,84 0,69
0,1 0,67 0,74 0,71
0,15 0,72 0,67 0,69
0,2 0,8 0,63 0,7

Measurement error

0,05 0,59 0,84 0,69
0,1 0,67 0,75 0,71
0,15 0,69 0,6 0,64
0,2 0,75 0,46 0,57

Order error

0,05 0,63 0,99 0,77
0,1 0,73 0,99 0,84
0,15 0,79 0,99 0,88
0,2 0,86 0,98 0,92

WTP

All categories

0,05 0,61 0,79 0,69
0,1 0,72 0,72 0,72
0,15 0,92 0,62 0,74
0,2 0,97 0,57 0,71

Blank spaces

0,05 0,66 1 0,8
0,1 0,78 1 0,88
0,15 0,95 1 0,97
0,2 0,98 1 0,99

Doubles

0,05 0,49 0,49 0,49
0,1 0,42 0,21 0,28
0,15 0,5 0,06 0,1
0,2 0,67 0,04 0,07

Extra number

0,05 0,57 0,68 0,62
0,1 0,59 0,42 0,49
0,15 0,84 0,3 0,44
0,2 0,93 0,26 0,41

Measurement error

0,05 0,63 0,87 0,73
0,1 0,72 0,74 0,73
0,15 0,91 0,6 0,73
0,2 0,97 0,57 0,71

Order error

0,05 0,66 1 0,8
0,1 0,78 1 0,88
0,15 0,95 1 0,97
0,2 0,98 1 0,99

Cement

All categories

0,05 0,82 0,79 0,81
0,1 1 0,72 0,84
0,15 1 0,67 0,8
0,2 1 0,67 0,8

Blank spaces

0,05 0,85 1 0,92
0,1 1 1 1
0,15 1 1 1
0,2 1 1 1

Doubles

0,05 0,61 0,28 0,39
0,1 1 0,08 0,14
0,15 0 0 0
0,2 0 0 0

Extra number

0,05 0,82 0,79 0,81
0,1 1 0,74 0,85
0,15 1 0,74 0,85
0,2 1 0,74 0,85

Measurement error

0,05 0,84 0,95 0,89
0,1 1 0,74 0,85
0,15 1 0,56 0,72
0,2 1 0,49 0,66

Order error

0,05 0,85 1 0,92
0,1 1 1 1
0,15 1 1 1
0,2 1 1 1

predictions for datasets with a single error category refer to Appendix B.1.

Additionally, the classification outcomes for datasets with all error categories are
illustrated in Figures 6.6, 6.7 and 6.8. In these figures, symbols denote the actual category
of the samples, with crosses representing errors and dots representing true values. The
color of each symbol corresponds to its classification by the model, where green indicates
a correct classification, and red denotes an incorrect one. As clarified in Section 5.2, TP
refers to True Positives, signifying errors correctly classified as such, TN corresponds to
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Table 6.9: Specificity for data entry error detection using the Soft Sensor methodology.

Dataset SSth Specificity

Concrete

0,05 0,42

0,1 0,64

0,15 0,74

0.2 0,85

WTP

0,05 0,49

0,1 0,72

0,15 0,94

0,2 0,98

Cement

0,05 0,82

0,1 1

0,15 1

0,2 1

True Negatives, representing true values correctly classified, FP stands for False Positives,
indicating samples wrongly classified as errors, and FN represents False Negatives, which
are errors misclassified as true values. Furthermore, predictions for datasets with individual
error categories can be found in Appendix B.2.

Subsequently, a more comprehensive examination was carried out, focusing on datasets
containing only measurement errors, extra number errors and order errors. In Table 6.10,
the sensitivity is presented for datasets exclusively filled with measurement errors. The
results are further categorized based on the subtypes of errors, specifically errors between
5 to 10%, 10 to 25%, and 25 to 50%, and column “SSth” presents the threshold applied.
Additionally, the table provides the count of errors inserted by subcategory (column
“Nerror”).

Lastly, Tables 6.11 and 6.12 present the sensitivity of the model for each dataset,
considering the error subtypes resulting from extra number errors and order errors,
respectively. In “Error subtype” column, “o.m.” stands for order of magnitude. Thus,
if the error subtype is “-1 o.m.”, it indicates a change of -1 in the order of magnitude (for
example, the original value was 100 and the inserted error is 10). Additionally, the tables
provide the count of errors inserted by subcategory (“Nerror”).

6.3.2 PCA results for data entry errors detection

Through the cumulative explained variance calculated using Equation (4.5), the number
of PCs chosen for each dataset was the following:

• Concrete: l = 6;

• WTP: l = 14;

• Cement: l = 12.

Figure 6.9 presents the cumulative explained variance by the number of PCs for each
dataset.

The composition of Principal Components holds crucial information for further conclu-
sions and explaining results in the future. Therefore, Tables 6.13, 6.14 and 6.15 present
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(d) SSth = 0, 2.

Figure 6.3: SS predictions and classification for error samples in Concrete dataset with all
error categories (scaled).

the five most influential variables for each selected PC along with their corresponding
weights. The weight serves as a measure of variance, indicating the extent to which a
variable contributes to the PC. A larger absolute value signifies greater relevance, and a
positive value suggests a positive correlation, while a negative value implies a negative
relationship.

The results of the experiments conducted with the PCA methodology to detect data
entry errors are presented in Tables 6.16 and 6.17. Table 6.16 presents precision, sensitivity
and f1-score and Table 6.17 shows the obtained specificity.

Moreover, to enrich the analysis of Tables 6.16 and 6.17, classification results can
be visualized in various plots. Figures 6.10a, 6.10b and 6.10c depict the classification
outcomes for datasets with all error categories included, and Appendix B.3 encompasses
the plots illustrating the classification results for data entry errors detection for datasets
with individual error categories using the PCA methodology. Once again, TP, TN, FP,
and FN adhere to the definitions outlined in Section 5.2, symbols represent the actual
category of a sample (crosses for errors and dots for true values), and color is green if the
model classification is correct and red if it is incorrect.

A comprehensive examination of the subcategories within measurement errors, extra
number errors, and order errors was conducted, replicating the analysis performed in Sec-
tion 6.3.1.2. Thus, Table 6.18 presents the sensitivity for a dataset exclusively comprising
measurement errors. The results are further differentiated based on the subtypes of errors
and the table includes the count of errors inserted by subcategory (column “Nerror”) as
well.

Lastly, Tables 6.19 and 6.20 present the performance details of the PCA methodology
in detecting subtypes of errors from the extra number error and order error categories,
respectively. The analysis takes into account the resulting changes in the order of
magnitude of the Y values. Both tables provide the sensitivity of the model for each
dataset, considering the error subtypes (changes in the order of magnitude, “o.m.”), along
with the count of errors inserted by each subcategory (column “Nerror”).
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Figure 6.4: SS predictions and classification for error samples in WTP dataset with all
error categories (scaled).

6.4 Discussion

This section delves into the analysis and interpretation of the results presented in
Section 6.3 and it is divided into three subsections. Subsection 6.4.1 analyzes the re-
sults achieved using the Soft Sensor-based methodology, Subsection 6.4.2 focuses on the
outcomes obtained through the PCA-based methodology, and the last one, Subsection
6.4.3, undertakes a comparative analysis of the two methodologies, followed by an overall
discussion about their efficacy. Moreover, the initial subsection is split into two segments.
The first segment (Subsubsection 6.4.1.1) delves into the analysis of the developed Soft
Sensor framework and the comparison tests conducted. The second segment (Subsubsec-
tion 6.4.1.2) focuses on evaluating the efficacy of the Soft Sensor-based methodology in
detecting data entry errors.

6.4.1 Analysis of Soft Sensor results

6.4.1.1 Analysis of Soft Sensors regression results

Table 6.6 provides insights into the performance of different regression models across
various datasets. Particularly, for the Concrete and WTP datasets, the SVR model with
RBF kernel stands out, showcasing the lowest NRMSE values across all variable selection
methods. Notably, this model achieved remarkable scores of 6.3% for the Concrete dataset
with expanded variables and 10% for the WTP dataset without any variable selection.
Although the performance on the Cement dataset was not as robust as the other two, the
linear models with penalizations (RR, LASSO and EN) demonstrated the lowest NRMSE
values at 15.6%.

Table 6.5 highlights the variability in the R2 values across different datasets. For the
Concrete dataset, the SVR model with a RBF method stands out with an excellent value
of 0.908, showcasing high performance. The WTP dataset presents more consistent but
generally mediocre results, where the SVR model with a RBF kernel again leads with a
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Figure 6.5: SS predictions and classification for error samples in Cement dataset with all
error categories (scaled).

value of 0.758. However, the R2 values for the Cement dataset are notably low, indicating
that the models may not adequately explain the variability within the target variable.
This could be due to the models not being a good fit for the data or the field variables
not being strongly correlated with the response variable.

From the analysis of the results, it is evident that SVR with an RBF kernel consistently
outperforms the other models, whereas GMR generally underperforms and does not align
well with the use case at hand.

Regarding variable selection, for the Concrete dataset, the best outcomes were achieved
using expanded variables, while for WTP and Cement datasets, no variable selection
method yielded the best results. However, it is challenging to definitively rank the variable
selection methods as the efficacy varies across datasets. Notably, the fastTracker method
stands out for its speed. Additionally, certain regression models are more reliant on input
variables than others; for instance, the performance of GMR significantly varies with the
number of input variables, usually exhibiting worse predictions with higher |X|. In the
case of the Concrete dataset, the variable expansion notably improved model performance.

In conclusion, the selected SS models demonstrate excellent results for the Concrete
and WTP datasets, indicating a strong fit with the data. However, for the Cement dataset,
the model displayed a reasonable NRMSE but a low R2, hinting at potentially inferior
error detection capabilities for this dataset.

6.4.1.2 Analysis of results using the Soft Sensors-based methodology

In this section, the performance of the Soft Sensor methodology in detecting data
entry errors is analyzed, based on the results presented in Subsection 6.3.1. To facilitate
comprehension, the analysis follows a structured approach: each metric is assessed across
the three datasets and the different error categories, culminating in a concise summary
stating the most relevant patterns and insights.
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Figure 6.6: Classification results for Concrete dataset with all error categories, using Soft
Sensors.

Precision

According to Table 6.8, precision exhibits elevated values, displaying slight variations
across different datasets. Since precision has into account TP and FP (Equation (5.5)),
this high scores indicate the methodology is good at not classifying actual true values
as errors. In the Concrete dataset, precision presents moderate to good results, ranging
between 0.6 and 0.8. For the WTP dataset precision presents better overall scores with
high variability (ranging nearly from 0,6 to 0,98) for each error category, except for the
double category, which displays lower scores.

Notably, in these two datasets (except for doubles in WTP case) an upward trend
in precision is observed with increasing classification threshold (SSth). This aligns with
expectations, as a larger threshold reduces false positives (actual true values misclassified
as errors). In fact, false positives depend solely on the threshold, since actual true values
are unaffected by the error category inserted. Figure 6.11 visually depicts this trend,
showcasing an actual true value, a Soft Sensor prediction, and intervals defined by two SSth

values. In this scenario, a threshold of 0.05 misses the true value classification, while 0.15
successfully captures it. Thus, the variability in precision across error categories reflects the
variability within True Positives and hence, the model’s capability to accurately identify
various error types.. For Concrete dataset, the model appears slightly more proficient
in handling all error categories, exclusively blank spaces, and order errors, although the
distinction is not substantial compared to other error categories. For WTP, the results
are consistent between error categories, except for doubles, as previously mentioned.

The doubles exception in WTP dataset can be attributed to the limited variability in
Y values, making the difference between errors and preceding values imperceptible, as
depicted in Figure B.5. With higher thresholds, more errors are misclassified, consistent
which the observed decrease in sensitivity (higher number of false negatives).

In the Cement dataset, precision consistently reaches one (indicating no FP detected)
for all applied errors except doubles and for all applied thresholds except SSth = 0, 05.
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Figure 6.7: Classification results for WTP dataset with all error categories, using Soft
Sensors.

Doubles stand out due to interesting results. For SSth = 0.05, it presents a reasonable
value, indicating the detection of some true positives along with some false positives.
For SSth = 0.1, precision is maximum with no false positives, despite low sensitivity.
For higher thresholds, both precision and sensitivity are zero, indicating no error is well
classified. This indicates that although higher thresholds lead to less FP, they can also lead
to less TP and higher FN. It’s essential to note the small dataset size with only 39 actual
error samples, introducing higher uncertainty in metrics like precision and sensitivity.

Sensitivity

Shifting the focus to sensitivity, Tables 6.8, 6.10, 6.12 and 6.11 present generally
favorable results, despite with variations between datasets. A consistent trend observed
across all datasets in Table 6.8 is that, for variants with blank spaces and order errors,
sensitivity consistently registers one or nearly one, suggesting that in such cases, no actual
error was mistakenly classified as a true value (avoiding false negatives). This highlights
the model’s ability to recognize a these two error categories.

Another pattern captured in Table 6.8 is that sensitivity has a decline with increasing
SSth across all categories, except for blank spaces and order errors. This implies a rise in
false negatives (actual errors misclassified of true values) with wider classification intervals
for true values (caused by larger thresholds). This can be visualized when comparing
Figure B.10a to Figure B.10d, for example.

Overall, the three datasets demonstrate great performance in tests covering all error
categories, with Concrete achieving the best results (ranging from 0.79 to 0.93), and good
results were also achieved for the tests with lower thresholds with the remaining error
categories. However, exceptions to this pattern are evident, with doubles in WTP and
Cement datasets, and tests involving extra number errors in WTP, resulting in poor
performance, especially in cases of doubles.

Upon closer examination of these discrepancies, the doubles can again be attributed
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Figure 6.8: Classification results for Cement dataset with all error categories, using Soft
Sensors.
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(a) Concrete dataset.
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(b) WTP dataset.
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(c) Cement dataset.

Figure 6.9: Cumulative explained variance by the number of PCs for each dataset.

to the limited variability in Y values for WTP and Cement, leading to increased false
negatives as more samples fall within the “true value” classification with higher thresholds.
For the Cement dataset, Figure B.6 shows that almost all error samples are misclassified
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Table 6.10: Measurement error analysis using the Soft Sensor methodology.

Dataset Error subtype Nerror SSth Sensitivity

Concrete

5 to 10 % 51

0,05 0,69

0,1 0,47

0,15 0,27

0,2 0,16

10 to 25 % 51

0,05 0,84

0,1 0,78

0,15 0,57

0,2 0,33

25 to 50 % 53

0,05 0,98

0,1 0,98

0,15 0,94

0,2 0,87

WTP

5 to 10 % 17

0,05 0,65

0,1 0,29

0,15 0,06

0,2 0,06

10 to 25 % 17

0,05 0,94

0,1 0,88

0,15 0,71

0,2 0,59

25 to 50 % 19

0,05 1

0,1 1

0,15 1

0,2 1

Cement

5 to 10 % 13

0,05 0,85

0,1 0,23

0,15 0

0,2 0

10 to 25 % 13

0,05 1

0,1 1

0,15 0,69

0,2 0,46

25 to 50 % 13

0,05 1

0,1 1

0,15 1

0,2 1

as “true value”, particularly for higher values of SSth.

Measurement errors and extra number errors can also be further analyzed using Tables
6.10 and 6.11, respectively. As depicted in Table 6.10, the subcategory with higher
magnitude errors (25 to 50 %) demonstrates significantly better results than the others.
This subcategory consistently achieves a maximum sensitivity score (sensitivity = 1) for
datasets WTP and Cement. In contrast, the sensitivity for errors between 5 to 10 % and
10 to 25 % is highly influenced by the applied threshold, with a noticeable decrease in
sensitivity as the thresholds increase.

Regarding the analysis of extra number errors, Table 6.11 demonstrates that the model
performs optimally when the inserted error causes an increase of one order of magnitude.
However, when there is no change in the order of magnitude, the results vary between
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Table 6.11: Extra number error analysis in terms of change of order of magnitude (o.m.)
using the Soft Sensor methodology.

Dataset Error subtype Nerror SSth Sensitivity

Concrete

1 o.m. 86

0,05 1

0,1 1

0,15 1

0,2 1

0 o.m. 69

0,05 0,64

0,1 0,42

0,15 0,26

0,2 0,16

WTP 0 o.m. 53

0,05 0,68

0,1 0,42

0,15 0,3

0,2 0,26

Cement

1 o.m. 29

0,05 1

0,1 1

0,15 1

0,2 1

0 o.m. 10

0,05 0,2

0,1 0

0,15 0

0,2 0

datasets. For Concrete and WTP, sensitivity presents similar results, with satisfactory
scores for a low threshold, but poorer results as SSth increases, as can be observed in
Figures B.10 and B.11. Conversely, for the Cement dataset, extra numbers that caused
no change in the order of magnitude are not detected by the model.

F1-score

Following the precision and sensitivity analysis, a perceptible pattern emerges: in the
majority of conducted tests, when precision increased, sensitivity decreased. This observed
tendency is both common and expected. In fact, if the model classified all samples as
errors, sensitivity would be 1, but precision would be poor since the number of false
positives would very high. Conversely, a model could detect no false positives but classify
numerous samples as false negatives. To provide a balanced evaluation of the model’s
performance, it is crucial to analyze the F1-score.

Table 6.8 demonstrates overall strong results for F1-score with variations across
datasets. For tests encompassing all error categories, Concrete exhibits the highest value
at SSth = 0.2 with a score of 0.81. A noteworthy trend is observed in which the F1-score
increases as the threshold increases, indicating that for this dataset, precision increases
more rapidly than sensitivity declines. This pattern, however, is not replicated in WTP,
which attains its best value (0.74) at SSth = 0.15, nor for the Concrete dataset, which
reaches its peak (0.84) for SSth = 0, 1.

Order errors and blank spaces yield the highest scores, with F1-score rising as SSth

increases. This trend aligns with expectations, as sensitivity for these tests consistently
approaches or reaches 1, while precision increases with the threshold.

On the opposite side, doubles stand out given its poor results in WTP and Cement
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Table 6.12: Order error analysis in terms of change of order of magnitude (o.m.) using
the Soft Sensor methodology.

Dataset Error subtype Nerror SSth Sensitivity

Concrete

-1 o.m. 62

0,05 1

0,1 1

0,15 1

0,2 1

0 o.m. 48

0,05 0,98

0,1 0,98

0,15 0,96

0,2 0,94

1 o.m. 45

0,05 1

0,1 1

0,15 1

0,2 1

WTP

-1 o.m. 24

0,05 1

0,1 1

0,15 1

0,2 1

1 o.m. 29

0,05 1

0,1 1

0,15 1

0,2 1

Cement

-1 o.m. 26

0,05 1

0,1 1

0,15 1

0,2 1

0 o.m. 13

0,05 1

0,1 1

0,15 1

0,2 1

and the trend to decrease with the increase of the threshold. For the Cement dataset,
with SSth = 0, 15 and SSth = 0, 2, tests performed on doubles presented null F1-scores,
indicating the model’s inability to detect these types of errors.

Specificity

The final metric to assess is specificity, which evaluates the model’s ability to identify
actual true values. This analysis is independent of the errors inserted and results can be
seen in Table 6.9. For Concrete and WTP datasets, specificity increases with the threshold
elevation. Cement exhibits the highest specificity values, scoring 1 for all thresholds except
the first (SSth = 0.05), where it achieves 0.82. In contrast, Concrete results range from
0.42 to 0.85, and WTP ranges from 0.49 to 0.98. This indicates that lower thresholds
capture more false positives, in alignment with the results seen for precision.

In summary, for the results from Soft Sensor methodology, these were the most relevant
patterns observed for the three datasets:

• Precision consistently improves with higher classification thresholds (SSth) across
datasets;
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Table 6.13: Principal Components (PCs) composition for Concrete dataset.

PC X Weight PC X Weight

PC 1

X4 0,57

PC 4

X3 0,58
X5 -0,55 X7 -0,48
X3 -0,37 X8 0,42
X7 -0,33 X1 -0,35
X8 0,22 X6 0,26

PC 2

Y 0,62

PC 5

X8 0,6
X1 0,54 X7 0,48
X7 -0,28 X6 -0,47
X8 0,28 X2 -0,32
X3 -0,26 X4 0,23

PC 3

X2 -0,68

PC6

X6 0,41
X6 0,56 X3 -0,4
X1 0,36 X8 0,38
X5 -0,24 X4 -0,37
X8 0,16 X7 0,37

• Sensitivity values are generally favorable across datasets, with best results often
observed at SSth = 0.05, indicating lower thresholds reduce false negatives;

• While F1-score suggests overall strong model performance, a distinct pattern is not
evident in the results. Notably, for tests covering all error categories, the Concrete
dataset peaks at SSth = 0.2, WTP at SSth = 0.15, and Cement at SSth = 0.15.

• Specificity, evaluating the model’s ability to identify true values, increases with the
elevation of the threshold across datasets.

• Blank spaces and order errors are the categories that are best captured by the model
and the best results were obtained using SSth = 0, 2.

• Doubles are the most difficult error category to capture in datasets with a low
variability in Y .

• Lower thresholds are optimal for measurement errors in datasets with low Y vari-
ability. Measurement errors between 25 and 50 % are easily detected by the model.

6.4.2 Analysis of results using the PCA-based methodology

Moving on to assess the effectiveness of the PCA-based methodology in identifying data
entry errors, it’s crucial to consider the composition of principal components as outlined
in Tables 6.13, 6.14, and 6.15. These tables exclusively highlight the five most impactful
variables, identified by their higher absolute weights. The magnitude of these weights
reflects the contribution of each original variable to the PCs, with the sign indicating
the direction of the correlation (positive or negative). Upon inspection, an expectation
emerges that Cement would yield superior results, given its representation of Y in three
principal components (2nd, 3rd, and 9th). In contrast, Concrete features Y prominently
in its 2nd PC with substantial weight, while WTP incorporates Y only in the 5th PC.

The insights from Table 6.16 show that the model’s overall performance is lower than
the expected.
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Table 6.14: Principal Components (PCs) composition for WTP dataset.

PC X Weight PC X Weight

PC 1

X3 -0,18

PC 8

X43 0,55
X21 -0,18 X40 -0,49
X22 -0,18 X41 0,28
X23 -0,18 X5 0,22
X24 -0,18 X46 -0,19

PC 2

X11 0,28

PC 9

X42 0,52
X10 0,27 X2 0,42
X12 0,27 X47 -0,39
X13 0,27 X41 -0,26
X14 0,27 X44 0,25

PC 3

X5 0,27

PC 10

X40 0,58
X7 0,27 X1 -0,54
X8 0,27 X42 -0,34
X6 0,26 X41 0,23
X1 -0,25 X2 0,18

PC 4

X6 0,34

PC 11

X41 -0,61
X7 0,33 X43 0,41
X8 0,33 X40 0,33
X5 0,3 X42 -0,25
X9 0,25 X1 0,24

PC 5

X43 -0,29

PC 12

X42 -0,36
X41 -0,27 X40 -0,29
X36 0,25 X29 -0,27
X35 0,24 X5 -0,25
Y 0,22 X41 -0,24

PC 6

X39 -0,27

PC 13

X55 0,36
X54 -0,25 X45 -0,35
X38 -0,24 X44 -0,25
X53 -0,23 X43 -0,24
X26 -0,22 X46 -0,24

PC 7

X1 -0,53

PC 14

X5 0,3
X42 0,43 X39 0,29
X2 -0,32 X1 -0,27
X43 0,32 X38 0,25
X41 -0,23 X44 -0,24

Precision

When considering precision, it is important to acknowledge that false positives remain
consistent within a dataset (as these samples represent actual true values unaffected
by error insertion). Precision scores range between 0.51 and 0.75, reflecting varying
capabilities in detecting true positives (as false positives are constant). In tests covering all
error categories, WTP leads in precision (0.68), followed by Cement (0.63), and Concrete
(0.61). Notably, blank spaces and order errors present the highest scores for WTP and
Cement, with similarly high scores within the Concrete dataset. Conversely, doubles error
consistently display low precision across all datasets, indicating challenges in identifying
duplicates as errors.

Sensitivity

In terms of sensitivity, Concrete demonstrates poor results, while Cement achieves
excellent performance across all tests except for doubles, and WTP shows mixed results,
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Table 6.15: Principal Components (PCs) composition for Cement dataset.

PC X Weight PC X Weight

PC 1

X5 0,39

PC 7

X2 0,53

X4 -0,35 X1 -0,44

X10 -0,34 X9 0,35

X7 -0,29 X17 -0,28

X18 -0,29 X6 -0,22

PC 2

X11 -0,4

PC 8

X17 0,53

X14 0,37 X1 -0,49

X12 0,36 X3 -0,37

X15 0,3 X8 0,32

Y -0,29 X9 -0,26

PC 3

X20 -0,46

PC 9

X3 0,58

X19 0,37 X17 0,42

X12 -0,3 Y -0,36

X21 0,29 X2 0,33

Y -0,29 X9 -0,28

PC 4

X6 -0,53

PC 10

X22 0,43

X7 0,37 X1 0,41

X10 0,32 X9 0,41

X1 0,28 X17 0,32

X19 -0,25 X7 -0,3

PC 5

X22 -0,62

PC 11

X8 0,75

X9 0,4 X17 -0,35

X17 0,32 X7 -0,24

X3 0,21 X9 -0,22

Y 0,21 X16 0,2

PC 6

X18 0,45

PC 12

X13 0,51

X16 0,43 X21 -0,46

X20 -0,36 X2 0,43

X9 -0,31 X3 -0,23

X1 0,24 X15 -0,23

performing excellently for half of the tests and poorly for the remaining half. Analyzing
the error categories, doubles consistently display low sensitivity across all datasets and
measurement errors present low scores for Concrete and WTP but remarkably high
performance for Cement (0.92). Cement’s success in this category is evident in Table
6.18, where errors with larger magnitudes achieve the best result (1), and those between 5
to 10% have a good score (0.77). In contrast, Concrete and WTP struggle with errors
ranging from 25 to 50%, with scores of 0.45 and 0.47, respectively. This might result
from the lower prevalence of Y in the PCs composition and the distribution of Y in these
datasets.

When looking at sensitivity with respect to extra numbers, the tests conducted with
the WTP dataset yield a low score of 0.4, whereas the Concrete and Cement datasets
record higher scores of 0.72 and 0.82, respectively. Table 6.19 consistently shows that
errors in an order of magnitude higher than the original values are well identified by the
model (sensitivity = 1). However, when there is no change in the order of magnitude,
the model struggles to detect errors, as it happens for the WTP dataset. The seemingly
high sensitivity in Cement may result from significantly fewer instances with no change in



59 6.4. Discussion

Table 6.16: Classification results for data entry errors detection using PCA methodology

Dataset Error categories Precision Sensitivity F1-score

Concrete

All categories 0,61 0,62 0,62

Blank space 0,61 0,61 0,61

Double 0,51 0,41 0,46

Extra number 0,65 0,72 0,68

Measurement error 0,52 0,43 0,47

Order error 0,64 0,7 0,67

WTP

All categories 0,68 0,72 0,7

Blank space 0,75 1 0,85

Double 0,53 0,38 0,44

Extra number 0,54 0,4 0,46

Measurement error 0,56 0,43 0,49

Order error 0,75 1 0,85

Cement

All categories 0,63 0,82 0,71

Blank space 0,67 1 0,8

Double 0,51 0,51 0,51

Extra number 0,63 0,82 0,71

Measurement error 0,65 0,92 0,77

Order error 0,67 1 0,8

Table 6.17: Specificity for data entry error detection using the PCA methodology.

Dataset Specificity
Concrete 0,61
WTP 0,66
Cement 0,51

Table 6.18: Measurement error analysis using the PCA methodology

Dataset Nerror Subtype Error Sensitivity

Concrete
51 5 to 10 % 0,45
51 10 to 25 % 0,37
53 25 to 50 % 0,45

WTP
17 5 to 10 % 0,18
17 10 to 25 % 0,65
19 25 to 50 % 0,47

Cement
13 5 to 10 % 0,77
13 10 to 25 % 1
13 25 to 50 % 1

order of magnitude compared to those with a change.

Order errors and blank spaces exhibit sensitivity levels of 1 in the Cement and
WTP datasets. Further insights into the order error results can be found in Table 6.20.
Cement notably excels in identifying all errors, even when the order of magnitude remains
unchanged. The Concrete dataset demonstrates a sensitivity score of 1 for errors that
cause an increase in the order of magnitude, but lower scores for cases where the order of
magnitude remains unchanged or decreases. Figures B.35 provide visual context for this
behavior in the Concrete dataset, illustrating that a change of -1 is often indistinguishable.
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(a) PCA classification results for Concrete dataset with all error categories.
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(b) PCA classification results for WTP dataset with all error categories.
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(c) PCA classification results for Cement dataset with all error categories.

Figure 6.10: Classification results for the selected datasets with all error categories, using
PCA.

F1-score

Moving forward, F1-score provides an overall evaluation of the model’s ability to
correctly label samples as errors. Cement and Wastewater Treatment Plant datasets
exhibit comparable performances, with generally strong F1-score values, except for doubles
tests and WTP also present poor results in extra number errors and measurement errors.
Notably, Concrete yields inferior results, particularly notable in doubles and measurement
error tests, which stand out for their particularly poor performance.
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Table 6.19: Extra number error analysis using the PCA methodology

Dataset Nerror Subtype Error Sensitivity

Concrete
69 0 o.m. 0,36
86 1 o.m. 1

WTP 53 0 o.m. 0,4

Cement
10 0 o.m. 0,3
29 1 o.m. 1

Table 6.20: Order error analysis using the PCA methodology

Dataset Nerror Subtype Error Sensitivity

Concrete
62 -1 o.m. 0,53
48 0 o.m. 0,62
45 1 o.m. 1

WTP
24 -1 o.m. 1
29 1 o.m. 1

Cement
13 -1 o.m. 1
26 0 o.m. 1

samples

y

SS Prediction

True Value

0,05

0,15
SS_th interval

Figure 6.11: Illustration of how increasing SSth can lead to reducing false positives

Specificity

Lastly, specificity analysis indicates how well the model identifies true negatives (true
values) and its values are presented in table 6.17. Cement presents the worst value (0.51),
while WTP exhibits the best (0.66). These results suggest the model’s low performance
in identifying true values across datasets.

To sum up the discussion around PCA-based methodology results, these were the most
notorious conclusions:

• Precision yields moderate to poor results across all datasets;

• Sensitivity and F1-scores demonstrate the methodology’s efficiency in identifying
errors for the Cement dataset, mixed results for WTP (heavily dependent on the
error category), and poor results for Concrete.

• Specificity values are low, showing a limited ability to identify true values;
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• In terms of Principal Components, Cement dataset stands out, featuring Y in three
PCs, while Concrete incorporates Y in the 2nd PC and WTP in the 5th. This
created the expectation that the Cement would present scores, followed by Concrete
and WTP. Although Cement results overcame the others, WTP dataset presented
better overall metrics than the Concrete, which invalidates the set expectation;

• Overall, results are substantially inferior to those obtained using the Soft Sensor
methodology.

6.4.3 Comparative analysis and overall discussion

After thorough analysis, it becomes evident that the Soft Sensors-based methodology
consistently delivers superior results across all evaluated metrics.

In contrast, the methodology employing PCA not only yielded unsatisfactory metrics
but also lacked transparency and a clear understanding of what caused the variability
within results, making it challenging to interpret. Furthermore, the representation of Y
in the PCs is not controllable, making it easy for the methodology to fail (if Y has low
weights on the PCs, it is clear the methodology won’t deliver good results).

On the other hand, the SS-based methodology demonstrated significantly stronger
performance, exhibiting clear patterns. It also has adjustable parameters such as the SS
model and the threshold (SSth), which enhance its adaptability to new datasets or use
cases. Precision, sensitivity, and F1-score emerged as key metrics yielding optimal results.
The most adequate SSth can be indicated for almost all error categories:

• Blank spaces and order errors were the categories best captured by the model,
especially at SSth = 0.2.

• Doubles were the most challenging error category, particularly in datasets with low
variability in Y . SSth = 0.05 proved to be the most suitable threshold, although its
results are low as well.

• Lower thresholds were optimal for measurement errors and errors between 25 and
50% were easily detected by the model. Across the three datasets, SSth = 0.05
yielded the best results.

• For extra number errors and all error categories together, there is no clear threshold
to attribute, since the results vary a lot across datasets.
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Conclusion and future work

7.1 Conclusions

Throughout this work, two methodologies were designed to detect data entry errors
within an industrial setting, utilizing data-driven models: Soft Sensor and Principal
Components Analysis. Upon analysis, the SS-based methodology demonstrated superior
overall performance across various datasets and metrics, suggesting its efficacy in error
detection.

It is important to note, that for the specific use case considered, where operators
enter new measurements into spreadsheets or system programs, the most critical metric
to consider is sensitivity. Prioritizing sensitivity ensures that false negatives (i.e., actual
errors incorrectly classified as true values) are minimized, a crucial aspect in preventing
erroneous data from entering the system. Certainly, achieving a balance among the
various metrics is also crucial for ensuring the reliability of the system and maintaining
the operator’s responsiveness to system alerts. Thus, managing false positives is also
imperative to prevent any decrease of the system’s credibility.

Given these considerations, the SS-based methodology outlined in Subsection 5.3.1
emerges as the preferred approach for detecting entry data errors in quality control
variables. Its superior sensitivity results, coupled with enhanced interpretability, render it
well-suited for operator comprehension and cooperation. Recommendations for parameter
settings are as follows:

• Error proportion should be set at 15% for initial performance evaluation, with a
dataset split of 70/30 %, to guarantee a balance of the labels;

• Among the threshold values (SSth) examined, the suggested predefined value is
0.05 to optimize sensitivity. Ideally, however, the threshold should be determined
following a thorough analysis of the dataset, considering the Soft Sensor’s capability
to characterize the data.

While the PCA-based methodology exhibited a promising performance for one of the
datasets in sensitivity (excluding the test performed only with doubles), these outcomes
appear to rely on the weighting and representation of the target variable in the Principal
Components, which cannot be controlled beforehand. Additionally, PCA is challenging to
elucidate to operators, and discerning clear patterns from the conducted tests to justify
the obtained results is difficult. Hence, the utilization of this approach is not advisable.

It is essential to acknowledge the inherent limitations of this study. Notably, the
transformation of regression models into classification models poses significant challenges,
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particularly concerning threshold determination and output interpretation. These issues,
as highlighted in prior research [78], underscore the need for further methodological
refinement and exploration in future investigations.

In conclusion, the objectives set for this study (defined in Section 1.2) have been
satisfactorily accomplished. The primary aim of developing two methodologies to detect
data entry errors in quality control variables using data-driven models has been successfully
achieved. Furthermore, the specific objectives outlined, including the characterization of
detectable errors and the comparison of the performance of Soft Sensor and PCA-based
methodologies, have also been met. Through comprehensive analysis and experimentation,
insights into the capabilities and limitations of each approach have been gained, facilitating
the recommendation of the most suitable methodology and parameters for practical
implementation in industrial settings.

7.2 Future work

In terms of future work, it would be beneficial to compare the proposed data-driven
methodology with the manual methods outlined in Section 2.1. This comparison should
encompass not only the performance of each method in detecting errors but also the
preferences of operators regarding which method or combination of methods they find
most effective.

Furthermore, enhancements to the methodology itself could be explored, such as
incorporating simple techniques already utilized in manual methods, such as detecting
duplicate entries automatically, since doubles were the error category that the developed
methodologies struggled the most with. Moreover, optimizing and automating threshold
selection could be achieved using techniques like a ROC (Receiver Operating Characteristic)
curve, which evaluates model performance across various threshold values by plotting
sensitivity against specificity [79].

Additionally, given the challenges associated with converting the Soft Sensors regression
model into a classification model, incorporating a statistical component into classification
results could be advantageous. This might involve providing a probabilistic output, such
as a confidence score, although careful consideration would be needed to balance this with
interpretability and practical usability from the operator’s perspective.

Finally, while this work has focused on establishing the theoretical foundations and
conducting experiments to assess the feasibility of the developed methodologies, future
efforts should aim to integrate the selected methodology into laboratory systems used in
real industrial settings and find strategies to update them regularly. This may involve
understanding the data registration programs employed by companies. In case they
used simple Excel spreadsheets, the integration is simple and straightforward as Excel
supports integrating Python models [80]. For other data collection programs, creating
an Application Programming Interface (API) may be necessary, although this process is
typically facilitated by the ease of integration offered by Python and the availability of
API development tools.
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[45] M. Gonçalves, P. Sousa, J. Mendes, M. Danishvar, A. Mousavi, Real-time event-driven
learning in highly volatile systems: A case for embedded machine learning for scada
systems, IEEE Access 10 (2022) 50794–50806. doi:10.1109/ACCESS.2022.3173376.

[46] S. Raschka, V. Mirjalili, Python machine learning: Machine learning and deep learning
with python, Scikit-Learn, and TensorFlow. Second edition ed 3 (2017).
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Abstract—The digitalization of industrial environments has
enabled the development of tools that make the production
process more efficient and safer. In this sense, the Soft Sensor (SS)
plays a fundamental role. Through historical data and indirect
measurements, it is possible to estimate the value of important
variables that are difficult to measure. This paper presents
the SS development process: data collection and pre-processing,
variable selection, model selection for SS implementation, model
training and testing, and performance evaluation. The selection
of variables was made with the help of Pearson Correlation,
Mutual Information, and fastTracker algorithm techniques. For
the implementation of SS have been tested several models:
Multiple Linear Regression, Ridge Regression, Least Absolute
Shrinkage and Selection Operator, Elastic Net, Support Vector
Regression and Gaussian Mixture Models. Four datasets were
used to test the development of the SS.

Index Terms—Soft Sensors, regression models, variable selec-
tion, industrial application.

I. INTRODUCTION

With the increasing demand for industrial digitization to-
ward a more sustainable and greener industrial future, infer-
ential models have been used for the online prediction of
quality variables (eg. variables that cannot be automatically
measured and are obtained by means of a laboratory analysis)
[1]. In general terms, Soft Sensor (SS) refers to inferential
models that are used to estimate certain physical quantities
or product quality in the industrial processes based on the
available measurements (field variables) and knowledge [2],
[3]. There are different approaches to designing a SS, but in
general terms, the main steps are [2]: selection of data from the
plant’s operating history that will be used by the SS, treatment
of data such as filtering and detection of outliers, selection of
the structure of the model to be used, estimations made with
the selected model, and model validation.

The elaboration of a SS depends on obtaining data from
the operating history of the plant where the SS is intended to
be used, and this is a limiting factor for its use in industrial

This research was co-financed by the European Regional Development
Fund, through Centro Regional Operational Program 2014/2020 (Centro2020),
of Portugal 2020. Project InGestAlgae (CENTRO-01-0247-FEDER-046983)
and iProMo (CENTRO-01-0247-FEDER-069730).

environments. The performance of many models used for the
implementation of the SS is associated with the existence of
sufficient data for training and testing [4], and in the industrial
environment the lack of data is common, or the existence of
poor quality data, which compromises the confidence of a
SS. Deep Learning (DL), a subset of Machine learning, are
complex models with high levels of accuracy and has become
increasingly popular due to the availability of data, however,
DL requires a huge amount of data and its interpretability
by the human expert operator is lost as presented in [5], and
this limits its use as SS in an industrial environment, as for
example, to estimate laboratory variables.

The present work presents a framework for the soft sen-
sor design and does a comparison study between several
regression models and variable selection methods, introducing
variable expansion in the framework. The proposed framework
uses the following methods/steps:

• Variable expansion: to introduce nonlinearity in the mod-
els, the dataset was extended by adding the square, the
inverse, and the root mean squared of each input variable,
as well as the product between each two input variables.

• Input variable selection: three variable selection methods
were implemented. The well-known Pearson’s correla-
tion that measures the linear dependence between pairs
of variables [6]. The Mutual Information (MI) which
measures the dependency between variables taking into
account the probabilistic distribution of the variables [7].
The fastTracker algorithm [8], a recent and efficient real-
time algorithm that tracks the process behavior’s changes
by measuring sensitivity indices between variables.

• Model: to implement the SS were used Multiple Lin-
ear Regression (MLR), Ridge Regression (RR), Least
Absolute Shrinkage and Selection Operator (LASSO),
Elastic Net (EN), Support Vector Regression (SVR), and
Gaussian Mixture Models for Regression (GMM) models.

The main contributions of this work are the implementation
of the variable expansion in the framework, and the imple-
mentation and comparison of several regression models and



variable selection methods. DL models were excluded given
the focus on the model interpretability and the small datasets
scenarios. In order to test the proposed framework, 4 bench-
mark datasets were used, where each model for each dataset
was learned/tested with 9 different sets of input variables (from
the variable selection methods) and each learning process was
executed 30 times. Thus, 7350 tests were performed.

The paper is organized as follows. Section II brings the
notations adopted in the work, Section III deals with the
methods for selecting the variables, Section IV describes the
regression models, Section V presents the methodology for SS
design, Section VI presents the experimental results, and the
conclusions are presented in Section VII.

II. NOTATION

The following notation is used in this paper. Variables
and their values are defined by capital and lowercase let-
ters, respectively, e.g. variable A and corresponding value
a. Matrices and vectors are defined by bold capital let-
ters, e.g. A = [ak,j ]K×m and bold lowercase letters, e.g.
a = [a1, . . . , am], respectively. Ŷ represents the prediction
for target variable Y , X = {X1, . . . , Xm} are the input
variables with the values xk,j ∈ Xj (k = 1, . . . ,K and
j = 1, . . . ,m), xk = [xk,1, . . . , xk,m], X = [xk,j ]K×m and
Y = [yk]K×1. The regression coefficients are represented by
β0 and β = [β1, . . . , βm]T .

III. VARIABLE SELECTION

The performance of a soft sensor depends largely on the
selection of the independent variables used to predict the target
variable. This section describes the methods used to select the
variables used in this work.

A. Pearson Correlation

Pearson’s correlation is used to determine how strong the
relationship between two or more variables is [6]. It is the
measure of the linear dependence between pairs of variables.
Pearson’s correlation, represented by r, has values ranging
from −1 to 1, where two variables have a perfect positive
correlation if r = 1, and if r = −1 the correlation is perfect
negative, while if the correlation is zero (r = 0), the analyzed
variables are not correlated [9]. Pearson’s correlation between
variables Xj and Y is given by the equation (1).

r =
ΣK

k=1[(xk,j − µXj )(yk − µY )]√
ΣK

k=1(xk,j − µXj
)2
√

ΣK
k=1(yk − µy)2

, (1)

where µXj
and µY are the arithmetic means of the variables

Xj and Y , respectively.

B. Mutual Information

Mutual Information (MI) is a non-linear measure of depen-
dency between variables that take into account the probability
distribution of the variables and is obtained through entropy
measurements. The MI between two discrete variables X and

Y is given by equation (2) [10], where H(X) and H(X,Y )
represent Shannon’s Entropy, and N the number of bins.

I(Y,X) = H(Y ) +H(X)−H(X;Y ) (2)

H(X) =
N∑

b=1

−log[P (xb)]P (xb) (3)

H(X,Y ) =
N∑

b=1

N∑

k=1

−log[P (xb, yk)]P (xb, yk) (4)

Where P (xb) is the probability density function, and P (xb, yk)
is the joint probability mass function of X and Y .

C. fastTracker Algorithm

fastTracker algorithm [8] is an efficient real-time causal-
effect sensitivity analysis algorithm that tracks the process be-
havior’s changes by measuring the sensitivity indices between
input variables and the target variable. Algorithm 1 shows the
main steps of fastTracker. Where X = [X1, . . . , Xm] is a set
of input variables, Y is the target variable, TT j (j = 1, . . . ,m)
and ET are the trigger and event thresholds, respectively, and
n is the number of batches per analysis span. The output of
fastTracker are the sensitivity indices, nSIj (j = 1, . . . ,m),
for each input variable.

Algorithm 1: fastTracker methodology [8].
Procedure:
for k = 1, . . . ,K (for all data) do

for each input variable Xj do
1. Perform the trigger-event detection of two

consecutive batches, i.e. determine if a
variable represents a real change in the system
state or not.

2. Determine the XNOR, i.e. verify the
simultaneous existence or nonexistence of a
change in each batch.

3. Obtain the sensitive index SIjk for instant k.
4. Obtain the normalized sensitivity index,
nSIjk for instant k.

IV. REGRESSION MODELS

The target of a soft sensor is to obtain the values of variables
that are difficult to measure. In the present work, several
models were evaluated to perform the SS function and they
are described below.

A. Multiple Linear Regression

The Multiple Linear Regression (MLR) is one of the most
popular statistical methods used to relate two or more vari-
ables, given its simplicity and easy interpretation and imple-
mentation [11]. The goal of MLR is to find a linear function
that relates a set of independent variables and the dependent
variable. The MLR can be expressed by the equation (5).

ŷ = β0 + β1x1 + · · ·+ βjxj + · · ·+ βmxm + ε (5)



Where ε is the model’s error term, and regression coefficients
β0 and βj are determined by the Least Squares method.

B. Ridge Regression

Ridge regression (RR) is a variant of ordinary MLR whose
goal is to circumvent the collinearity among independent
variables [12]. The RR is a regularization model in which
a penalty term is added to a linear least squares loss function.
This penalty equals the L2-norm of the coefficient and the
regularization strength is controlled by a hyperparameter λ.
This and other regularization methods are designed to prevent
over-fitting, ensuring a smaller variance in the resulting pa-
rameter estimates [13]. The objective of RR is to minimize
the penalized residual sum of squares:

K∑

k=1

(
yk − β0 −

m∑

j=1

xk,jβj

)2
+ λ

m∑

j=1

β2
j (6)

Minimizing equation (6), and using the centered xk,j ,
equation (7) is obtained, where I represents the identity matrix.

β = (XTX+ λI)−1XTY (7)

C. Least Absolute Shrinkage and Selection Operator

The Least Absolute Shrinkage and Selection Operator
(LASSO) is a regression model with a regulation method.
It is almost identical to RR, but it uses the L1-norm of the
coefficient, controlled by λ, as the penalty term, as shown in
equation (8) [14].

β = argmin
β

{1
2

K∑

k=1

(
y(k)− β0 −

m∑

j=1

xj(k)βj

)2
+

+ λ
m∑

j=1

|βj |
}

(8)

LASSO can be used as a feature selection method, as the
less important variables can have a null coefficient [14].

D. Elastic Net

The Elastic Net (EN) model combines the capability of
variable selection from LASSO and the prediction perfor-
mance from RR. The EN combines the L1-norm penalty of
the LASSO and the L2-norm penalty of RR [15]. The model
is estimated by minimizing the following objective function.

argmin
β0,β

{
1

K

K∑

k=1

yk (β0 + xkβ)− log
(
1 + eβ0+xkβ

)

+λ

(
(1− α)||β||2

2
+ α||β||

)}
(5)

Where α and λ parameters are responsible for tuning the
model, being α (α ∈ [0, 1]) responsible for the strength of
each penalty term, while non-negative λ controls the trade-off
between variance and bias in the estimated parameters.

E. Support Vector Regression

The Support Vector Regression (SVR) considers the follow-
ing regression function [16]:

f(X) =

K∑

k,k′=1

(α∗
k − αk)Ke(Xk′ , Xk) + b, (9)

where b is a constant, and Ke is the kernel that maps the
problem to different dimensions. The Lagrange multipliers α∗

k

and αk, which represent the solution to the above equation,
are obtained by maximizing the following function:

W (α∗
k, αk) = −1

2

K∑

k,k′=1

(α∗
k−αk)(α

∗
k−αk)Ke(Xk, Xk′)+

+
K∑

k=1

yk(α
∗
k − αk)− ε

K∑

k=1

(αk + αk). (10)

Subject to the following constraints:
∑K

k α∗
k =

∑K
k αk and

0 ≤ α∗
k, αk ≤ C, where C is a cost parameter whose value

comes out of cross-validation [16].

F. Gaussian Mixture for Regression

Gaussian Mixture Models (GMM), by the superposition of
two or more Gaussians, have been largely used to model real
data [17]. The superposition is composed of probabilistic mod-
els, where the joint probability distribution p(X,Y ) is obtained
by Expectation-Maximization method [18], being obtained
by equation (11) [18] where G is the number of Gaussian
components, the g-th component N g(·) is represented by the
mean µg

XY and variance Σg
XY . πg , where

∑K
g=1 π

g = 1, is
the component weight.

p(X,Y ) =
G∑

g=1

πgNg(xk, yk|µg
XY ,Σ

g
XY ) (11)

For the prediction, the Gaussian Mixture for Regression
(GMR) computes the conditional distribution p(Y |X) for a
given sample, given by equation (12) [18], in which πg

Y |X is
obtained by equation (13).

p(Y |X) =
G∑

g=1

πg
Y |XNg(Y |µg

Y |X ,Σg
Y |X) (12)

πg
Y |X =

Ng(X|µg
x,Σ

g
X)

∑G
l=1 Nl(xk|µl

X ,Σl
X)

(13)

V. SOFTSENSOR METHODOLOGY

This section presents the methodology of the proposed
framework for designing soft sensors. The main steps of the
methodology are presented in Algorithm 2, being divided
into the following steps: preprocessing, variable expansion,
variable selection, and then model training and testing.

Before being used, the dataset is preprocessed (Step 1).
Here, empty and semi-empty columns are eliminated as well
as columns with non-numeric data. Samples with empty values
are also deleted.



Algorithm 2: Soft Sensor Methodology.
Procedure:
Input: dataset.
1. Preprocess the dataset (delete outliers, non numeric

variables, and empty variables).
2. Perform the variable expansion.
3. Select the variable selection method (Section III):

Pearson’s correlation, MI, or fastTracker.
4. Define the model to be used (Section IV): MLR,

RR, LASSO, EN, SVR, or GMM.
5. Define the hyperparameters of the selected model.
for it = 1, . . . , itmax: do

6. Split randomly the dataset in train (70%) and
test (30 %).

7. Tune hyperparameters using Grid Search and
10-fold Cross-Validation.

8. Fit the model using the best hyperparameters
(from step 7) to the training dataset.

9. Predict the target variable y for the test dataset.
10. Calculate the error metrics.
11. Save the model and hyperparameters values.

12. Obtain the average of the error metrics.
13. Select the model with the best error metrics.

The dataset is divided in two parts: input variables (X) and
output variable (Y ). The input variables are then expanded
(Step 2): the square, the inverse and the root mean squared
of each variable Xj are obtained, as well as the product
between each two variables. There are two exceptions: if an
original variable has negative values the root mean squared
is not applied and if there are zero values the inverse is
also discarded. With the expanded variables obtained, one of
the variable selection methods is selected (Step 3): Pearson
Correlation, Mutual Information or fastTracker.

After the variables selection, a model is chosen (Step 4)
from the ones presented in Section IV: MLR, RR, LASSO,
EN, SVR, or GMM. According to the model selected the
possible hyperparameters values are defined (Step 5).

To ensure that the model describes the data well and that
results are not biased by the dataset division, the training and
testing process will be repeated itmax times (iterations). In
each iteration it, the dataset is randomly split (Step 6) into two
datasets: a train dataset (70 %) and a test dataset (30 %). In
this paper, was defined itmax = 30. Then, the hyperparameters
are tuned using a Grid Search with a 10-fold Cross-Validation
(Step 7), where each possible hyperparameter combination
is tested for the training dataset. The hyperparameters of
the models with the lowest Mean Squared Error (MSE) are
selected and used to fit the model to the training dataset (Step
8). With this model, the target variable Y is predicted using
the input variables from the test dataset (Step 9) and then
compared to the true Y . With these values, the error metrics
are calculated (Step 10) and saved, as well as the model itself
and their hyperparameters (Step 11).

TABLE I: Main characteristics of the datasets.

Dataset K |X| Data type

Concrete 1030 8 Numeric
Automobile Gas 348 8 Numeric/string
Box–Jenkins 296 8 Numeric
WTP 347 55 Numeric

When finishing all iterations (itmax), the average of the
error metrics is calculated (Step 12) and the model with the
best metrics is selected to be used as a soft sensor (Step 13).

VI. EXPERIMENTAL RESULTS

This section presents the description of the datasets used
for the development of the soft sensor, as well as the tests, the
considered evaluation metric, and the results obtained.

A. Datasets

For the development of the SS four datasets were used:
• Concrete: the objective is to infer the concrete compres-

sive strength, measured in the laboratory, using its age
and components.

• Automobile Gas: about the automobile gas mileage,
concerns a regression problem related to the fuel con-
sumption in miles per gallon, and seven input variables
related to the car’s characteristics.

• Box–Jenkins: the goal is to determine the carbon dioxide
(CO2) concentration from a combustion process of a
methane-air mixture.

• WTP: from a real urban water treatment plant (WTP),
the objective is to estimate the fluoride concentration in
the effluent. The sampling rate is 2 hours.

A summary of the datasets’ main characteristics is presented
in Table I, where |X| is the number of the input variables.

B. Tests and Metrics

For each dataset, the procedure explained in Section V
(Algorithm 2) was performed. The datasets were processed:
samples with missing values were deleted, as well as non-
numeric variables, and no outliers were detected. The datasets
were prepared to have the original input variables and the
defined expanded variables, with the exception of the WTP
dataset, due to computational processing limitations, it wasn’t
feasible to use all the expanded variables. Tests were per-
formed with 1) no input variables selection (i.e. using all
original input variables), 2) the original input variables and the
expanded variables with no selection, and using the selected
variables by the methods 3) Pearson Correlation, 4) Mutual
Information, and 5) fastTracker. Then, possible values for the
hyperparameters for each model were defined as presented in
Table II to be chosen by Grid Search. It was performed the
training of every regression model described in Section IV, i.e.
MLR, RR, LASSO, EN, SVR with linear kernel, SVR with
radial basis function (rbf) kernel, and GMM. The training and
testing were performed 30 times (itmax = 30) for each model
and for each input variables selection to determine the average



TABLE II: Hyperparameters (“Hyper.”) for the regression
models to be chosen by the Grid Search procedure.

Models Hyper. Values

MLR - -
RR λ 1e-10, 1e-4, 1e-3, 1e-2, 1, 2, 5, 10, 20
LASSO λ 1e-10, 1e-4, 1e-3, 1e-2, 1, 2, 5, 10, 20

EN λ 1e-10, 1e-4, 1e-3, 1e-2, 1, 2, 5, 10, 20
α 0:1 (0.1)

SVR (linear) C 1e-2, 1e-1, 1, 10, 100, 1000
ϵ 1e-3, 1e-2, 1e-1

SVR (rbf)
C 1e-2, 1e-1, 1, 10, 100, 1000
ϵ 1e-3, 1e-2, 1e-1
γ 1e-4, 1e-3, 1e-2, 1e-1, 1, 10

GMM G 5, 10, 20, 50

error. The metric used to evaluate the models on the test dataset
for the 30 iterations is the Root Mean Square Error (RMSE).

C. Results

The results are displayed in Table III, where in the
“Variable Selection” column, “without VS” represents the
use of the original input variables and “VE” the use of the
expanded variables. The labels “PC”, “MI”, “ft” and their
values represent the thresholds chosen for Pearson Correlation,
Mutual Information, and fastTracker, respectively. The third
column (|X|) indicates the number of selected variables. And,
Figure 1 contains the results of the predictions made with the
best model found for each regression model for 80 random
samples of the test dataset.

From the results, it is possible to see that, for the Con-
crete and the Automobile Gas datasets, the model with the
lowest RMSE is the SVR with rbf kernel combined with the
expanded variables. In fact, for these two datasets, the SVR
with rbf model has almost the best result for each possible
variable selection method. For Box-Jenkins dataset, MLR,
RR, LASSO, and EN had the same and best result using the
original variables. Furthermore, for the WTP Dataset the SVR
with rbf kernel combined with the original variables reach the
best model and had the best results for all the variable selection
methods. From these results, it is clear that the SVR with rbf
kernel performance stood out compared to the others (the best
result in 26 of 35) and that, in general, the GMM was the
worst option.

When looking at the variable selection methods, the ob-
servations show that the best results are achieved, generally,
when using the expanded variables (Concrete and Automobile
Gas datasets) or no variable selection method at all (Box-
Jenkins and WTP datasets). Within the three variable selection
methods, it is hard to conclude which one is the best or
worst, since results vary from dataset to dataset, however,
the fastTracker method is much faster than the others. It is
also possible to conclude that there are regression models that
depend more on the input variables than others. For example,
the GMM model performance varies significantly depending
on the number of input variables (in most cases, a higher |X|
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Fig. 1: Forecast results.

results in worse predictions). For the Concrete and Automobile
Gas datasets, the variable expansion improved the model’s
results.

VII. CONCLUSIONS

This paper presented the development process of a Soft
Sensor, doing a comparison between several regression models
(MLR, RR, LASSO, EN, SVR, and GMM) and variable
selection methods (Pearson Correlation, Mutual Information,
and fastTracker) applied to expanded variables. Four datasets
were used to compare the SS performance. From the tests,
it was concluded that SVR with rbf kernel is the most
robust model and that variable expansion tends to improve
the model’s performance.



TABLE III: RMSE results for the performed tests.

Dataset Variable Selection |X| MLR RR LASSO EN SVR (linear) SVR (rbf) GMM

Concrete

without VS 8 10.439 10.443 10.441 10.444 10.731 6.082 8.812

VE

- 57 6.002 5.994 6.230 6.234 6.374 5.024 74.599
PC = 0.2 32 6.593 6.594 6.696 6.698 6.958 5.588 21.182
PC = 0.3 26 6.739 6.759 6.749 6.760 6.923 5.570 8.870
PC = 0.4 11 8.690 8.686 8.679 8.684 8.881 6.849 7.822
MI = 1.0 26 10.641 10.636 10.773 10.764 11.213 7.604 23.669
MI = 1.3 14 12.798 12.780 12.749 12.755 12.904 12.648 19.433
fT = 0.5 26 6.792 6.786 7.023 7.022 7.273 5.650 13.741
fT = 0.6 13 10.851 10.873 10.843 10.843 11.296 7.227 9.977

Automobile Gas

without VS 7 3.446 3.452 3.448 3.452 3.600 2.885 3.201

VE

- 49 - 2.866 2.884 2.874 2.990 2.782 38.479
PC=0.7 27 - 3.085 3.199 3.197 3.348 2.990 47.759
PC=0.75 24 3.169 3.103 3.183 3.184 3.350 3.052 11.263
PC=0.8 9 4.062 4.075 4.066 4.066 4.188 4.058 26.329
MI = 1.95 24 3.140 3.168 3.173 3.198 3.249 3.083 23.185
MI = 2.22 7 3.190 3.189 3.190 3.192 3.314 3.109 3.350
fT = 0.8 22 2.987 2.957 2.911 2.920 2.981 3.005 25.113
fT = 0.84 9 3.178 3.185 3.181 3.179 3.276 3.032 3.673

Box–Jenkins

without VS 8 0.267 0.267 0.267 0.267 0.278 0.280 0.302

VE

- 52 0.304 0.278 0.273 0.273 0.278 0.296 0.868
PC = 0.7 28 0.338 0.324 0.319 0.319 0.321 0.320 1.046
PC = 0.8 23 0.339 0.321 0.318 0.319 0.322 0.320 1.199
PC = 0.9 18 0.331 0.318 0.317 0.318 0.321 0.323 0.731
MI = 2.65 28 0.337 0.317 0.317 0.317 0.326 0.314 0.815
MI = 2.75 18 0.330 0.316 0.318 0.317 0.319 0.318 0.567
fT = 0.725 28 0.283 0.272 0.272 0.270 0.292 0.274 0.722
fT = 0.74 16 0.327 0.317 0.323 0.323 0.329 0.322 0.468

WTP

without VS 55 0.024 0.021 0.021 0.021 0.023 0.019 0.025

VE

PC = 0.7 52 0.026 0.023 0.024 0.024 0.025 0.021 0.090
PC = 0.72 26 0.026 0.025 0.025 0.025 0.026 0.022 0.050
PC = 0.73 11 0.025 0.025 0.025 0.025 0.026 0.022 0.029
MI = 0.85 51 0.023 0.021 0.022 0.022 0.021 0.021 0.041
M2 = 0.87 22 0.022 0.021 0.021 0.021 0.022 0.021 0.034
fT = 0.725 46 0.023 0.022 0.022 0.022 0.022 0.022 0.063
fT = 0.73 21 0.025 0.025 0.025 0.025 0.025 0.024 0.034

In future work, other models and datasets from the industry
should be compared, and methodologies should be developed
to automatically identify which time delay of a given variable
is more representative.
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Appendix B

Classification and Regression Results
Visualization

B.1 Soft Sensor regression plots
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Figure B.1: Error prediction results for Concrete dataset with blank spaces, using Soft
Sensors.
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(c) SSth = 0, 15.
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(d) SSth = 0, 2.

Figure B.2: Error prediction results for WTP dataset with blank spaces, using Soft
Sensors.
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Figure B.3: Error prediction results for Cement dataset with blank spaces, using Soft
Sensors.
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Figure B.4: Error prediction results for Concrete dataset with doubles, using Soft Sensors.
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Figure B.5: Error prediction results for WTP dataset with doubles, using Soft Sensors.
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Figure B.6: Error prediction results for Cement dataset with doubles, using Soft Sensors.
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Figure B.7: Error prediction results for Concrete dataset with measurement errors, using
Soft Sensors.
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Figure B.8: Error prediction results for WTP dataset with measurement errors, using Soft
Sensors.
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Figure B.9: Error prediction results for Cement dataset with measurement errors, using
Soft Sensors.
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Figure B.10: Error prediction results for Concrete dataset with extra numbers, using Soft
Sensors.
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Figure B.11: Error prediction results for WTP dataset with extra numbers, using Soft
Sensors.
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Figure B.12: Error prediction results for Cement dataset with extra numbers, using Soft
Sensors.
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Figure B.13: Error prediction results for Concrete dataset with order errors, using Soft
Sensors.



Appendix B. Classification and Regression Results Visualization 86

0 50 100 150 200 250 300 350
Samples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y 
va

lu
es

Errors
Predicted as True Value
Predicted as Errors
Previous Values

(a) SSth = 0, 05.

0 50 100 150 200 250 300 350
Samples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y 
va

lu
es

Errors
Predicted as True Value
Predicted as Errors
Previous Values

(b) SSth = 0, 1.

0 50 100 150 200 250 300 350
Samples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y 
va

lu
es

Errors
Predicted as True Value
Predicted as Errors
Previous Values

(c) SSth = 0, 15.

0 50 100 150 200 250 300 350
Samples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y 
va

lu
es

Errors
Predicted as True Value
Predicted as Errors
Previous Values

(d) SSth = 0, 2.

Figure B.14: Error prediction results for WTP dataset with order errors, using Soft
Sensors.
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Figure B.15: Error prediction results for Cement dataset with order errors, using Soft
Sensors.



87 B.2. Soft Sensor classification plots

B.2 Soft Sensor classification plots

0 50 100 150 200 250 300
Samples

0
10
20
30
40
50
60
70
80

y 
va

lu
es

TP
TN
FP
FN

(a) SSth = 0, 05.

0 50 100 150 200 250 300
Samples

0
10
20
30
40
50
60
70
80

y 
va

lu
es

TP
TN
FP
FN

(b) SSth = 0, 1.

0 50 100 150 200 250 300
Samples

0
10
20
30
40
50
60
70
80

y 
va

lu
es

TP
TN
FP
FN

(c) SSth = 0, 15.

0 50 100 150 200 250 300
Samples

0
10
20
30
40
50
60
70
80

y 
va

lu
es

TP
TN
FP
FN

(d) SSth = 0, 2.

Figure B.16: Classification results for Concrete dataset with blank spaces, using Soft
Sensors.
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Figure B.17: Classification results for WTP dataset with blank spaces, using Soft Sensors.
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Figure B.18: Classification results for Cement dataset with blank spaces, using Soft
Sensors.
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Figure B.19: Classification results for Concrete dataset with doubles, using Soft Sensors.
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Figure B.20: Classification results for WTP dataset with doubles, using Soft Sensors.
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Figure B.21: Classification results for Cement dataset with doubles, using Soft Sensors.
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Figure B.22: Classification results for Concrete dataset with measurement errors, using
Soft Sensors.
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Figure B.23: Classification results for WTP dataset with measurement errors, using Soft
Sensors.
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Figure B.24: Classification results for Cement dataset with measurement errors, using
Soft Sensors.
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Figure B.25: Classification results for Concrete dataset with extra number errors, using
Soft Sensors.
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Figure B.26: Classification results for WTP dataset with extra number errors, using Soft
Sensors.
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Figure B.27: Classification results for Cement dataset with extra number errors, using
Soft Sensors.
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Figure B.28: Classification results for Concrete dataset with order errors, using Soft
Sensors.
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Figure B.29: Classification results for WTP dataset with order errors, using Soft Sensors.
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Figure B.30: Classification results for Cement dataset with order errors, using Soft Sensors.
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(a) Concrete dataset.
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Figure B.31: PCA classification results for blank spaces.
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(a) Concrete dataset.
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Figure B.32: PCA classification results for doubles.
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(a) Concrete dataset.
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(c) Cement dataset.

Figure B.33: PCA classification results for measurement errors.
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(a) Concrete dataset.
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(c) Cement dataset.

Figure B.34: PCA classification results for extra numbers.



99 B.3. PCA classification plots
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(a) Concrete dataset.
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(c) Cement dataset.

Figure B.35: PCA classification results for order errors.
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