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Abstract 
 

Purpose: In radiotherapy, treatment plans must be optimised to ensure the best coverage of 

target volumes while sparing organs at risk from unnecessary radiation that could damage them. 

Since photon radiotherapy treatments are typically fractionated into multiple sessions, to 

ensure that all uncertainties are adequately considered throughout the treatment period is 

essential. Specifically, in the case of stereotactic body radiotherapy (SBRT), the treatment 

consists of a small number of fractions, with each fraction delivering a higher radiation dose than 

other techniques such as intensity-modulated radiotherapy (IMRT). This work aims to study the 

influence of uncertainties in the delivery of radiotherapy treatments, taking into consideration 

the impact of the number of fractions and irradiation directions used. It also aims at testing a 

new treatment planning approach, in which different treatment plans are applied in each daily 

fraction of the treatment, to see if this diversification strategy is able to mitigate, to a certain 

extent, the impacts of uncertainty.  

Methods: In a first phase, the impact of the number of fractions and the choice of angular 

configuration on dosimetric results was studied being uncertainty explicitly taken into account 

when evaluating these plans. In a second phase, six different treatment plans were compared in 

five cases of prostate cancer, evaluated in such a way that uncertainty is also explicitly 

considered. All the approaches tested consider treatment plans calculated automatically and 

without manual intervention by the planner. Monte Carlo simulation was used to compare these 

approaches.  

Results: From the computational experiments carried out, it was possible to observe that the 

smaller the number of fractions used, the greater the expected impact of uncertainties. It can 

therefore be considered that the use of a greater number of fractions naturally contributes to 

an increase in the robustness of the treatment plans. It was also possible to verify that the 

number of irradiation directions influences the impact that uncertainties can have, with a 

greater number of directions corresponding to an increase in the robustness of the plans and 

coverage of the target volumes. 

Conclusions: When the five prostate cases were studied, and six different treatment plans were 

compared, the main conclusion to be drawn is that even treatment plans that fulfil all the 

medical prescription constraints can correspond to treatment plans that end up not fulfilling 

these restrictions when they are evaluated with the impact of uncertainty being taken into 

account explicitly. Thus, the use of margins (Planning Target Volume) does not appear to be 

sufficient as a mitigation measure against uncertainties. The angular configuration plays a 

fundamental role in the robustness of treatment plans and the diversification of the treatment 

plan by treatment fraction could help mitigating the impact of uncertainties. 

 

 

Key words: Treatment planning optimisation, SBRT, Monte Carlo simulation. 
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Resumo 
 

Objetivo: A otimização dos planos de tratamento de radioterapia tem, como principal objetivo, 

garantir o cumprimento da prescrição médica, irradiando de forma adequada os volumes a 

tratar e poupando, o mais possível, os órgãos em risco. Os tratamentos de radioterapia são, 

habitualmente, fracionados em várias sessões e estão sujeitos à influência de incertezas de 

diferentes origens. No caso específico da radioterapia estereotáxica corporal (SBRT), o 

tratamento é composto por um número bastante reduzido de frações e, em cada uma dessas 

frações, é administrada maior dosagem de radiação do que é habitual em outros tratamentos 

com maior número de frações como a radioterapia de intensidade modulada (IMRT). Neste 

trabalho pretendeu-se analisar o impacto que a incerteza pode ter no tratamento que é 

administrado, nomeadamente tendo em conta o número de frações e as direções de irradiação 

que estão a ser consideradas.  Foi também testada uma nova abordagem de tratamento, que se 

baseia na utilização de diferentes planos de tratamento em cada fração de tratamento, para 

verificar se esta diversificação poderia ser uma medida interessante de mitigação dos impactos 

das incertezas.   

Métodos: Numa primeira fase foi estudado o impacto do número de frações e da escolha da 

configuração angular nos resultados dosimétricos quando se tem em conta, de forma explícita, 

a incerteza na avaliação destes planos. Numa segunda fase, foram comparados seis planos de 

tratamento diferentes em cinco casos de cancro de próstata, avaliados por forma a que a 

incerteza seja, também, explicitamente considerada. Todas as abordagens testadas consideram 

planos de tratamento calculados de forma automática e sem intervenção manual do planeador. 

Para comparação destas abordagens foi utilizada simulação de Monte Carlo.  

Resultados: Das experiências computacionais levadas a cabo, foi possível observar que quanto 

menor o número de frações utilizadas, maior o impacto esperado das incertezas. Assim, pode 

considerar-se que a utilização de um número maior de frações contribui, de forma natural, para 

um aumento de robustez dos planos de tratamento. Também foi possível verificar que o número 

de direções de irradiação influencia o impacto que as incertezas podem ter, sendo que um maior 

número de direções corresponde a um aumento da robustez dos planos e cobertura dos 

volumes alvo.  

Conclusão: Quando se estudaram os cinco casos de próstata, e se compararam seis planos de 

tratamento diferentes, a principal conclusão a retirar é a de que mesmo planos de tratamento 

que cumprem todas as restrições da prescrição médica podem corresponder a planos de 

tratamento que acabam por não cumprir com estas restrições quando são avaliados 

considerando de forma explícita o impacto da incerteza. Assim, a utilização de margens no 

volume tumoral parece não ser suficiente. A configuração angular tem um papel fundamental 

na robustez dos planos de tratamento e a diversificação do plano de tratamento por fração de 

tratamento poderá contribuir para a mitigação do impacto das incertezas. 

 

 

Palavras-chave: Otimização do planeamento de tratamento, SBRT, simulação de Monte Carlo.  
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Chapter 1 Introduction 
 

1.1. Motivation 
Cancer is a severe disease that affects millions of people around the world, being the second-

leading cause of death in the United States [1]. Eurostat stands that in a total of 5.29 million 

deaths in European Union (2021), around 84% were among people aged 65 years and over. Of 

these, cancer was one of the top two leading causes of death [2]. Furthermore, the World Cancer 

Research Fund International states that cancer incidence is higher in more developed countries 

and, in 2020, the first five countries with the highest cancer rate for men and women combined 

were European [3]. 

According to the World Health Organization, in 2022 there were an estimated 20 million new 

cancer cases and 9.7 million deaths related with cancer. About 1 in 5 people develop cancer 

sometime during their lifetime, and approximately 1 in 9 men and 1 in 12 women die from this 

disease [4]. Meanwhile, European Cancer Information System estimates that both cancer cases 

and deaths have increased by 2.3% and 2.4%, respectively, between 2020 and 2022 [5]. The 

European Cancer Information System predicts that from 2020 to 2040 [6], a relative increase in 

cancer incidence of 21% will happen in the 27 countries of the European Union, as well as a 

mortality relative increase of 31.8% [5]. Moreover, around the world, over 35 million new cancer 

cases are being predicted for 2050 which is a 77% increase from the estimated 20 million cases 

in 2022. Nevertheless, the high Human Development Index countries are expected to experience 

the greatest absolute increase in cancer incidence, with an additional 4.8 million new cases 

predicted in 2050 compared with 2022 [4].  

The numbers presented above show the importance of studying cancer disease and its possible 

treatments. Depending on the type and stage of cancer development, several treatments are 

commonly used, either alone or concomitantly: surgery, chemotherapy, immunotherapy, 

radiotherapy, hormone therapy, stem cell transplant (bone marrow transplant), among others. 

One of the key aspects of cancer treatments is the need to be patient-specific, taking into 

account effectiveness and all the specific patient demands. 

Radiotherapy is one of the most widely used therapies for cancer treatment and strongly relies 

on adequate treatment planning. Treatment planning plays a substantial role in the overall 

success of the entire treatment since it is responsible for all treatment parameters that must be 

considered in the treatment delivery, such as radiation intensity and direction. Therefore, 

automatic and robust treatment planning plays a significant role, being a complex procedure 

constantly pursuing further improvements in order to achieve better treatment outcomes, more 

accurate and precise plans calculated in less time with lower human intervention, and 

consequently fewer human mistakes. 
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1.2. Dissertation Objectives 
Cancer data presented above motivates further improvements regarding its treatment. The 

treatment of a disease has several steps that must be followed, but all starts with treatment 

planning. Several decisions must be taken during treatment planning, assuring proper target 

coverage and organ sparing, with inevitable compromises that may not be consensual between 

planners. Most of the time, treatment planning is a time-consuming process and depends on 

the human planners’ point of view and expertise. This dissertation aims at contributing to this 

vast research area of cancer disease by trying to improve treatment planning robustness and 

automation.  

This work starts by presenting the context associated with radiotherapy treatment planning, 

considering also the impact of uncertainties on the dosimetric results when different decisions 

are made, namely number of irradiation angles used and number of treatment fractions. 

The second research phase consists of comparing six different treatment plans in five distinct 

cases of prostate cancer for SBRT. The assessment made of all the treatment plans explicitly take 

into account uncertainties in accordance with the conclusions taken from the first phase of this 

study. Moreover, from the six treatment plans tested, five follow the current clinical practice of 

considering the same treatment plan throughout the SBRT whole treatment duration, and the 

sixth is a new treatment planning approach that aims to test the role of diversification as a 

measure to deal with uncertainty. 

The experimental part of this work is, thus, divided in two study phases, where all the tested 

approaches will consider automatically calculated treatment plans that do not rely on the 

planner’s manual intervention, as well as Monte Carlo simulations to compare all the tested 

approaches. 

 

 

1.3. Dissertation Outlines 
This dissertation is organised into five chapters. First, a brief summary of the reason for the 

conducted study and its objectives are emphasised. Secondly, a review of the state-of-the-art 

regarding the basic subjects concerning the steps of treatment planning that will be used in this 

work development or to which the knowledge and understanding are important for a better 

comprehension and enforcement of the work presented. Thirdly, the materials and methods 

used to perform this dissertation’s computational experiments are outlined. In the fourth 

chapter, the results obtained are presented and discussed, in order to provide a smoother 

reading of the analysis of these results. In the last chapter, the main conclusions of this work are 

highlighted, and future work suggestions are presented. 
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Chapter 2 External Radiotherapy 
 

2.1. Framework and Objectives 
This chapter presents a brief review of the current state-of-the-art considering external 

Radiation Therapy (RT) treatments, aiming to describe the treatment planning workflow in 

external RT for some of the most used RT techniques, presenting a general overview of these 

techniques’ characteristics and the current automation solutions developed to solve each step 

of the treatment planning process. Firstly, a contextualization of the external radiation therapy 

is provided. Secondly, a description of the general aspects of treatment workflow are briefly 

described, followed by a highlight of the most important findings regarding automated image 

segmentation and treatment planning. Thirdly, a general review of the uncertainties in RT is 

presented, along with the techniques to mitigate them, namely Robust Optimisation (RO). 

There are common treatment planning problems for external RT despite the type of RT 

technique used. Thus, the analysis of the planning problems covers different types of RT 

techniques, highlighting the common points, research questions, and problems that this 

dissertation tries to answer. 

 

2.2. Introduction 
Radiotherapy (also known as radiation therapy, RT) aims to deliver an adequate dose of 

radiation to cancerous cells to sterilise the tumour and ensure that the surrounding healthy 

organs and tissues (usually called Organs At Risk, OARs) will suffer minimal damages, preventing 

changes in their main functions from happening. In other words, radiotherapy takes advantage 

of the fact that cancerous cells are focused on fast reproduction and have lower repair capability 

than healthy cells [7].  

RT treatments can be divided in external RT and Brachytherapy. In the first, the radiation source 

is outside the patient’s body and directed to the tumour location using specific treatment units. 

The second one involves the placement of radioactive sources within or very close to the 

tumour, allowing the delivery of a high dose of radiation to the cancerous cells while sparing the 

surrounding normal tissue [8]. 

The most common form of radiotherapy is external beam radiotherapy, and two types of 

radiation can be used: photon radiation and particle radiation [7], [9].  

In radiotherapy with photons, the emission of secondary electrons will cause Deoxyribonucleic 

Acid (DNA) damage within the cancerous cells by direct or indirect effects [10]. Dose deposition 

induces cell death, i.e., emitted radiation causes cell sterilization actions by breaking DNA 

strands [10]. As illustrated in Fig. 1, there are two different types of DNA strand breaks that can 

occur: double or single. Single Strand Breaks (SSB) are usually repaired by unbroken strands due 

to the structural support. Double Strand Break (DSB) is the most effective and results from the 

break of two strands close to each other [10]. Even though each patient displays different 

treatment responses based on tumour volume, radiosensitivity of tumour cells and the repair 

mechanisms of tumour cells, it is known that for a radiation dose of 1 Gray (Gy) approximately 

105 ionizations occur per cell and the yield of DSB is about 40% [10], [11]. 

Regarding patients’ radiation resistance and insensibility to radiation therapy, several reasons 

have been suggested such as intratumoral hypoxic areas protecting carcinoma cells, mutations 
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in genes related to DNA damage and repair, affected cell cycle regulation, or compromised cell 

death machinery. Recently, the theory of Cancer Stem Cell (CSC) has been proposed, and its role 

in tumour formation, development and response to radiotherapy is under investigation. In 2015, 

the review led by Skvortsova et al. [12] concluded that ionizing radiation could not eradicate 

carcinoma cells equally due to CSCs despite the high efficiency of radiation therapy. 

 

Fig. 1. Effect of radiation therapy in cancer cells. 

To ensure the best result in cancerous cells sterilization and organ sparing, a RT treatment plan 

is made aiming to deliver a specific prescribed radiation dose to the target volume each day for 

a certain amount of time (i.e., weeks or months). Preceding treatment planning, the delineation 

of OARs and target volumes (for example, gross target volume, clinical target volume, planning 

target volume, etc.) must always be made using a Computer Tomography (CT) scan, Magnetic 

Resonance Imaging (MRI), or Positron Emission Tomography (PET) [7]. 

Conformal radiotherapy describes RT treatments that attempt to conform the dose to the 

target, i.e., treatments that use specific systems to deliver radiation from several directions and 

shape it to better conform with the volume to be treated [13]. In this domain, Three-

Dimensional Conformal Radiation Therapy (3DCRT), Volumetric Modulated Arc Therapy (VMAT), 

Intensity-Modulated Radiation Therapy (IMRT), Stereotactic Body Radiation Therapy (SBRT), and 

Intensity-Modulated Proton Therapy (IMPT) are commonly used types of conformal RT. 

Photon radiation can be from beams of X-rays or gamma rays and is mainly used in IMRT and 

SBRT. On the other hand, particle radiation can be from an electron, neutron, or proton beam, 

and is used, for example, in IMPT [9]. 

The 3DCRT is based on three-dimensional treatment planning, incorporating the use of imaging 

technologies to create 3D images of the patient. In this technique the beams are shaped 

according to the target volume outlined mainly from CT imaging. CT images allow the 3-

dimensional localization of the tumour and critical normal organ structures. Using these images 

alone or combined with MRI or PET, the radiation oncologist outlines different target structures 

with margins to safeguard uncertainties due to organs' motion and setup variations [9], [14]. 

The clinical introduction of 3DCRT shifted the RT workflow [10]. It transitioned from a simulator-

oriented "beam-adjusted" approach to an information-driven, computer-based process with a 

treatment planning system that determines machine settings for treatment delivery [10]. This 

system facilitated the inclusion of realistic dose calculations, allowing for manual optimisation 

of free variables such as beam directions, beam weights, and field shapes [10]. This technique 

showed an improvement in tumour targeting and reducing radiation in the surrounding normal 

tissues, however further improvement in dose conformity and normal tissue sparing could still 



5 
 

be accomplished [15]. This fact led to the development of other RT modalities as, for instance, 

IMRT allowing the delivery of non-uniform radiation fields, producing a highly conformal dose 

distribution to the volumes to treat. IMRT became one of the most conformal and effective 

techniques in radiotherapy [14]. 

Typically, radiation is generated by a Linear Accelerator (linac) mounted on a gantry that can 
rotate along a central axis (see Fig. 2). For the delivery of modulated radiation beams, IMRT uses 
a Multileaf Collimator (MLC), a device that equips the head of the gantry, consisting of movable 
leaves on both sides that can generate a variety of field openings. Since the patient is 
immobilised on a couch that can rotate, combining the couch and gantry rotation allows 
radiation delivery from almost any direction around the tumour. For the delivery of intensity 
modulated fields there are two distinct operation modes for an MLC. One is called dynamic 
collimation, and the other is known as multiple static collimation, depending on whether the 
MLC leaves move continuously during irradiation or not (the latter also known as “step and 
shoot mode”). The configuration of the leaves in a given moment is called an aperture. These 
apertures make it possible to discretize the beam into a set of smaller beams with a specific and 
independent fluence time or intensity. The originated small beams are called beamlets – see Fig. 
2 (b). This procedure generates a discrete set of intensity maps that allow a high degree of 
conformity and intensity modulation of the delivered dose distribution with the shape of the 
tumour [7]. This ability to conform the dose distribution to the target in IMRT is proved to 
enhance organ sparing [16]. 

 

Fig. 2. (a) Illustration of a beam exiting the head of a gantry rotating around the treatment couch that can also rotate. (b) The head 
of the gantry is equipped with a multileaf collimator with nine pairs of leaves illustrating the discretization of the beam into small 

sub-beams called beamlets. (Adapted from [17]) 

Another well-known RT technique that employs modulated fields is VMAT [14]. The VMAT 

technique delivers rotational IMRT using a conventional C-arm linear accelerator design while 

moving from both multileaf collimator leaves and gantry (arc movements) simultaneously [14]. 

Therefore, in VMAT, the gantry moves continuously [14]. VMAT has proven to be more efficient 

than 3DCRT while providing increased OAR sparing, reduced toxicity, and improved survival 

rates [18]. A primary advantage of VMAT techniques is that they can deliver treatments for each 

patient much faster than fixed-field IMRT [14]. 

In 2020, the consensus from the German Society for Radiation Oncology and the German Society 

for Medical Physics stated that, generally, stereotactic radiotherapy is defined as a method of 

percutaneous external beam radiotherapy, in which a clearly defined target volume is treated 

with high precision and accuracy with a biologically high radiation dose in one single or a few 

fractions with locally curative intent [19]. Furthermore, this consensus asserts that stereotactic 
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RT is divided into three types, which differ from each other regarding the spectrum of indication, 

fractionation, and quality requirements [19]: 

• Stereotactic Radiosurgery (SRS): a treatment of intracranial malignant or benign 

tumours and functional or vascular disorders with one single irradiation fraction. 

• Fractionated Stereotactic Radiotherapy (FSRT): for intracranial malignant or benign 

tumours and functional or vascular disorders. 

• Stereotactic Body Radiotherapy (SBRT). 

SBRT is commonly used to treat extracranial malignant or benign tumours and functional or 

vascular disorders where treatment fractions are irradiated to extracranial targets, i.e., a high 

radiation dose in one single or very few fractions are administrated with high precision and 

accuracy to a defined target volume with locally curative intent. The SBRT principles can be 

applied to both photon and particle therapy. It can use either a traditional linac equipped with 

image guidance technology, accelerators specifically adapted for SBRT or dedicated delivery 

systems, which can be performed using linacs Edge (Varian Inc., Palo Alto, CA, USA) and Versa 

HD (Elekta AB) or specific devices for this type of treatment, such as Gamma Knife (Elekta AB, 

Stockholm, Sweden), or CyberKnife (Accuray Inc., Sunny-vale, CA, USA) [19], [20]. 

This type of treatment relies on three-dimensional imaging, such as CT, MRI, and PET/CT, to 

stereotactic locate the tumour or abnormality within the body to determine the exact 

coordinates of the target. Since the radiation beams are designed to converge to the target 

volume from different directions, the images taken before the treatment procedure are vital 

since they guide treatment planning. It is essential to ensure correct patient positioning during 

the treatment sessions so, usually, SBRT relies on dedicated immobilisation systems to 

immobilise and maintain patient position. After guaranteeing the patient’s position, highly 

focused gamma-ray or x-ray beams will converge to the tumour or abnormality. Sometimes, 

Image-Guided Radiation Therapy (IGRT) is used to confirm the location of a tumour immediately 

before the treatment and, in some situations, during the delivery of radiation [19], [21], [22]. 

Proton beams were proposed for the first time in the 1950s and are increasingly being used in 

cancer treatment. Proton therapy gained popularity due to its unique absorption profile in 

tissues, which allows the deposition of maximum destructive energy at the tumour location 

while minimising the damage to healthy tissues along their path [9]. This unique depth-dose 

characteristic of proton beams comes from protons slowing down as they penetrate matter; 

their rate of energy transference increases with depth and stops abruptly right after the point 

where energy deposition is maximum, producing the so-called Bragg peak. This means that 

proton therapy does not have an exit dose to tissues beyond the Bragg peak point [23]. Excellent 

tumour irradiation can be obtained, while adjacent OARs can be significantly spared compared 

to photon beam RT [24]. Proton therapy has been associated with decreased incidence of 

secondary cancers in several paediatric cancers and has shown to be able to deliver radiation in 

adults with tumours located near critical structures [23]. 

A sophisticated mode of proton therapy is IMPT (also called “pencil beam proton therapy”). This 

treatment is analogous to IMRT; however, due to proton delivery characteristics, IMPT allows 

greater degrees of freedom to produce optimised dose distributions and can be promising for 

head and neck treatments that need dose escalation with OARs sparing. Particle accelerators, 

such as cyclotron or synchrotron, extract charged particles from hydrogen gas and accelerate 

them towards the speed of light [23]. In IMPT, a particle accelerator originates the proton 

“pencil” beams which are manipulated to treat the desired cancerous location. This 
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manipulation consists of changes in the number of protons (local dose deposition), energy (local 

penetration), and magnetic deflection (off-axis coverage) once IMPT relies on electromagnetic 

control of the beam to achieve target coverage while reducing the integral dose delivery. Despite 

the potential of this technique, still to be further explored, it also has some drawbacks, namely 

regarding the need to ensure the robustness of the treatments, since proton therapy is 

significantly vulnerable to a number of different sources of uncertainty like proton range [25]. 

New developments regarding on-board image guidance resources, robust optimisation 

algorithms, standardisation of patient-specific quality assurance programs and CT verification 

protocols, are expected to provide adequate approaches to deal with IMPT current limitations 

[26]. 

 

2.3. Radiotherapy treatment workflow 
The workflow of RT treatment planning consists of three different steps, independently of the 

treatment modality [27], Fig. 3:  

1. Immobilisation, imaging, and target volume definition. 

2. Treatment planning. 

3. Treatment delivery and set up verification. 

First, medical images of the patient need to be obtained for proper imaging and target volume 

definition (usually called planning CT). This planning CT is different from the diagnosis CT scan, 

and it is used to define the volumes to be treated, considering the clinical examination findings 

and the diagnostic images from CT scan, MRI or PET [7], [27]. 

The medical doctor decides on the medical prescription, defining admissible tolerance doses for 

OARs and prescribing dose(s) to the tumour volume(s). Based on the medical imaging and 

medical prescription, the treatment is planned. When a treatment plan is approved, then the 

treatment is delivered, requiring a setup verification [27].  

Most of the times, RT treatments are fractionated in several daily treatment sections until the 

prescribed radiation dose is totally administrated (which may take several weeks). Taking this 

into account, to ensure that the patient is correctly positioned in every treatment fraction is of 

the utmost importance. The position of the patient must be as close as possible to the position 

that corresponds to the planning CT, aiming to ensure accurate delivery during all the treatment 

sections. To reach this objective, most of the times the patient needs to be appropriately 

immobilised in a comfortable and reproducible way [27].  

Looking with more detail into step 2, several decisions need to be made, namely: 

1) Beam angle optimisation: choosing the number and directions of the radiation beams. 

2) Fluence map optimisation: calculating the optimal intensity maps for each of the 

radiation beams. 

3) Realisation: deciding on the movement of the MLC leaves. 



8 
 

 

Fig. 3. Scheme of radiotherapy treatment workflow and treatment planning steps/problems that need to be solved. 

As illustrated in Fig. 4, with the 3-dimensional images from the planning CT, it is possible to 

delineate three major mandatory target structures and their uncertainty margins. The Gross 

Tumour Volume (GTV) represents the volume of the known tumour. There is a possible 

microscopic spread in the GTV, so the Clinical Target Volume (CTV) represents the addition of 

the spread margin to the GTV. A marginal volume is added to the CTV as a safety measure to 

prevent possible inaccuracies due to organ or patient motion (known as geometrical 

uncertainties). This volume surrounding the CTV with a margin for geometric uncertainties is 

called Planning Target Volume (PTV). Around each target structure, margins are delineated to 

compensate for inaccuracies due to changes in size, shape and position of the organ, besides 

patient movement. For example, as shown in Fig. 4 Internal Target Volume (ITV) is an optional 

volume that can be delineated, and it describes CTV plus and internal margin, i.e., the margin 

for the uncertainties in size, shape and position of the CTV within the patient [7], [28]. 

The OARs represent the organs nearby the tumour that can be damaged by radiation when 

irradiated. Damages in the OARs can result in significant morbidity. Therefore, the delineation 

of these structures is mandatory in treatment planning. Furthermore, it is also possible to 

consider a margin that can be added to the OARs, accounting for uncertainties and variations in 

the OARs position. This margin is known as Planning Organ At Risk Volume (PRV) [7], [28]. 

From a treatment planning point of view, OARs can be divided into serial-like organs or parallel-

like organs. Serial-like organs are such that if even only a limited percentage of the volume is 

over irradiated the organ can lose its functionality. This means that if the absorbed dose exceeds 

the tolerance value in a certain segment of the organ, it may result in loss of function to the 

whole organ (for example, spinal cord or oesophagus). In contrast, parallel-like organs have 

functional units that act independently from each other, so damages in one segment do not 

compromise the functionality of the others, meaning that the organ can still maintain its 

functionality even if a small part is affected [28].  
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In Fig. 4, all the structures mentioned above are outlined. In summary, the GTV, CTV, and OARs 

have an anatomical basis, while ITV, PTV and PRV are built considering margins introduced to 

mitigate uncertainties. Moreover, it is important to acknowledge that PRV and PTV margins may 

overlap [28]. 

 

Fig. 4. Diagram to illustrate the volumes GTV, CTV, ITV, PTV, OAR, PRV delineated in radiotherapy planning. 

 

2.3.1. Image Segmentation 
Image segmentation is a crucial task routinely performed in RT workflow to identify patients' 

treatment targets and anatomical structures, called regions of interest, traditionally based on 

CT scans and, more recently, MR simulation scans. Moreover, the efficacy and safety of RT plans 

rely on an accurate segmentation of these regions of interest since they are used to optimise 

and evaluate the plan’s quality [29]. Depending on the technique used to perform the segments, 

segmentation methods can be divided into three categories: manual, semiautomatic, and 

automatic [30]. 

Manual segmentation is typically made by a physician and reported to be significantly time-

consuming, since regions of interest will need to be defined considering every CT slice. 

Furthermore, manual segmentation can be somewhat subjective since it is based on prior 

knowledge and experience of the expert performing it, which can lead to potential 

inconsistencies in targets and OARs segmentation that have already been reported and analysed 

in several studies [29]. Therefore, to rectify the intra and inter-observer divergences inherent 

and standardise procedures of manual segmentation, consensus guidelines were created by 

International Commission on Radiation Units and Measurements (ICRU), European Society for 

Radiotherapy and Oncology (ESTRO), etc. 

The reported variabilities that are inherent to manual segmentation can have a significant 

detrimental impact on quantitative and dosimetric analyses [29]. Therefore, to solve these 

problems, the semiautomated segmentation and then automated segmentation were 

developed. 

Semiautomatic segmentation uses algorithms to assist manual segmentation, reducing the 

effort and time required for this process [30]. Usually, the proposed semiautomated methods 

require user input for one or more of the following steps: segmentation parameters, feedback, 

or evaluation, including refinement and validation of segmentation [31]. For example, in 2018, 

Shahedi et al. [32] proposed a semiautomatic learning-based technique that uses shape and 

texture analysis to generate a three-dimensional segmentation for prostate CT images. This 



10 
 

semiautomatic segmentation method led to a faster, more accurate, and more robust 

performance than manual segmentation. 

Automatic segmentation, or auto-segmentation, does not rely on human interactions and has 

two categories: learning and nonlearning based [30]. The research field regarding automatic 

segmentation has grown over the last two decades, and its techniques have been grouped into 

first, second, third, and fourth-generation algorithms [29]. Also, it is important to note that auto-

segmentation is helpful if it leads to treatment plans comparable with or better than those 

achieved with manual segmentation but with a clinical time reduction [33]. 

Regarding the third generation, the multiatlas-based and hybrid techniques are considered 

state-of-the-art since studies from the early 2000s have shown that multiatlas segmentation 

minimised variability effects and was one of the most effective segmentation approaches in 

several grand challenges [29]. For example, in 2013, an investigation regarding the delineation 

of lymph node regions for RT planning of head and neck and prostate tumours was conducted 

by Sjöberg et al. [34], concluding that multiatlas-based segmentation achieved a reduction in 

time delineation compared to the use of single atlas segmentation, and the same quality of 

segmentation in comparison to manual segmentation. Another similar example from 2010 is a 

fully automatic multiatlas-based method for segmenting the whole heart and cardiac chambers 

implemented by Kirisli et al. [35] and evaluated using multicenter computed tomography 

angiography data, that demonstrated to be an accurate and robust method to 1420 multicenter 

data sets.  

More recently, in 2020, Vrtovec et al. [36] overviewed the existing studies for automatic 

segmentation of OARs in the head and neck region from 2008 until 2020, concluding that, in 

terms of methodology, atlas-based methods for segmentation were dominating, but current 

approaches have shifted to deep learning, which has a superior performance. Later, in 2022, in 

agreement with that overview, according to Harrison et al. [33], the commercial offerings for 

radiotherapy segmentation have been dominated by atlas-based auto-segmentation; however, 

research activities regarding deep learning methods, namely fully conventional neuronal 

networks, have been conducted and are starting to supersede. As reported by this review, the 

shift from atlas-based methods to deep learning started around 2016. For example, a study from 

2023 regarding validation of clinical acceptability of deep learning in RT treatment planning by 

Lucido et al. [37] showed that it was possible to reach highly accurate auto-segmentation of 

OARs of head and neck, demonstrating to be significantly time saving and achieving contours 

that needed only minor revisions, with potential to be used in for clinical cases. So, this work led 

to the development of an interventional clinical trial to assess the author’s model capability in 

patient care. 

Thus, the fourth generation has arrived with deep learning-based automatic segmentation 

development, which is the current state-of-the-art in radiotherapy segmentation [29]. However, 

due to the lack of standardisation of contouring protocols, robustness in small image acquisition 

changes, and trust among planners, where auto-segmentation has been used clinically, it relies 

on the combination of manual editing [33]. Despite inherent drawbacks, manual segmentation 

is still used clinically along with semiautomatic and automatic segmentation, and the choice 

between them depends on specific clinical scenarios, such as the complexity of the 

segmentation task and the available resources, as different comparison studies between all the 

segmentation categories led to independent and distinct results. For example, in 2020, for the 

specific case of quantifying vestibular schwannoma, Mcgrath et al. [31] comparison concluded 
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that semi-automated segmentation is significantly faster, less temporally and physically 

demanding, and has approximately equal performance than manual segmentation, presenting 

some improvements in accuracy but some limitations yet to overcome. Similarly, also in 2020, a 

study proposed by Kuisma et al. [38] that assessed the performance of fully automated 

segmentation in prostate cancer concluded there was a good agreement, repeatability, and 

clinical robustness when compared to manual segmentation; however, some structures remain 

needing important manual adjustments. 

Therefore, much research and development are still needed in this field of RT workflow 

automation. 

 

2.3.2. Radiotherapy treatment planning 
In external RT, treatment planning is the process of determining the number, orientation, 

intensity, and delivery of radiation beams. Usually, treatment planning is performed with the 

assistance of a computerised Treatment Planning System (TPS) [39].  

In order to design a treatment plan, the structures of interest are discretized into voxels, each 

representing a dose-point. This discretization is possible due to the CT digital medical images. 

Dose-points are points where the absorbed doses are calculated, and the total absorbed dose 

in each body region is computed as a weighted sum of the absorbed doses (expressed in Gy 

units). Typically, the dose distribution is represented graphically by an isodose distribution, 

where each set of voxels receiving a certain amount of radiation dose constitutes an isodose 

volume. The treatment plan defines the percentage of radiation dose for each isodose volume, 

aiming to ensure the quality of the treatment [7].  

The quality of the treatment plan can be evaluated using various metrics, namely coverage, 

conformity, and homogeneity. Coverage is the ratio of the PTV enclosed by the isodose surface 

prescribed to the total PTV volume. Conformity is the ratio between the volume inside the 

isodose surface prescribed and the volume of the PTV inside that isodose surface. Homogeneity 

is the ratio between the maximum and minimum dose PTV receives [7]. Furthermore, the dose 

distribution quality is often analysed with Dose-Volume Histograms (DVHs), which represent the 

absorbed dose received in specific volume structures, allowing to compare and analyse different 

plans. The DVHs can be used to determine values such as minimum dose, median dose or 

maximum dose [28], [40]. Lastly, when verifying quality, it is usual to analyse the existence of 

cold spots (the low-dose regions where the tumour can spread during treatment sessions) and 

hot spots (the high-dose regions where the structure’s function is compromised) [7], [28]. In Fig. 

5, an example of a DVH graph is presented. 

 

Fig. 5. Illustration of a DVH graph for a prostate cancer case displaying dosages in different structures. 
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The RT medical prescription is determined by what is known as the therapeutic window. The 

therapeutic window refers to the optimal dosage range where the probability of cure (Tumour 

Control Probability-TCP) is high while minimising damage to normal tissues (Normal Tissue 

Complication Probability-NTCP). The Tumour Control Probability (TPC) models are well 

stablished and provide a framework that reflects the treatment efficacy by accounting for the 

overall absorbed dose and the radiosensitivity of tumour tissue. These models distinguish 

between repairable, sub-lethal DNA SSB and unrepairable, lethal DNA DSB. Additionally, along 

with TPC, many institutions also use Normal Tissue Complication Probability (NTCP) for ranking 

competing almost equivalent treatment plans, and for evaluating candidate treatment protocols 

[10], [11]. Furthermore, there are more extensive models that incorporate other factors, such 

as tumour repopulation, tumour heterogeneity, differences in dose rate and linear energy 

transfer, and heterogeneous dose distributions [11]. 

Equivalent Uniform Dose (EUD) is a biological index, defined as the uniform dose causing equal 

cell surviving fraction, so it translates the biological responses into equivalent doses. This 

biological index is aimed for automated optimisation. On the other hand, despite not being well-

suited for automated optimisation engines, conformity indexes are important for 

characterisation of treatment plans, since they typically focus on physical dose-volume criteria, 

aiming for a homogeneous dose coverage of the target and minimal dose outside [10].  

The medical prescription, considering the therapeutic window, will establish dose-volume 

constraints for all the structures of interest.  

For reporting the treatment plan, the recommended dose-volume specification can be found on 

cumulative DVH as the dose value specified at a percent volume, where cumulative DVHs are 

histograms of the volume elements that receive at least a given absorbed dose, D. In ICRU Report 

83, a recommendation was made to report the near-maximum absorbed dose, e.g., 𝐷2, where 

2% represents a minimal absolute volume element within which the absorbed dose can be 

calculated with sufficient accuracy. This volume element is chosen to take into account the 

calculation grid size and considerations that pertain to dose-calculation accuracies in a single 

voxel. In contrast, the near-minimum dose can be given by 𝐷98 (or 𝐷95), which is the minimum 

dose that covers 98% (or 95%) of the volume. The near-minimum dose was introduced in the 

same report as the near-maximum dose, and it ensures that the volume element in which the 

low dose is calculated is sufficiently large to maintain dose-calculation accuracy, which is not 

possible in a 𝐷100 value because that dose can be influences by a single voxel and the minimum 

dose is highly sensitive to the resolution of the calculation and the accuracy of the delineation 

[28]. 

Often, in IMRT and SBRT, to achieve dose homogeneity, the absorbed dose should be as close 

as possible to the near-minimum dose 𝐷98 or 𝐷95 in the PTV [20], [28]. Therefore, regarding PTV 

doses, the recommended reporting minimum is 𝐷98, and the maximum is 𝐷2 [20].  

The dose metrics for OARs depend on whether they are parallel or serial structures. In the case 

of serial-like structures, the dose metric can be the maximum point dose (𝐷max). In contrast, for 

parallel-like organs, it is recommended to use a mean dose (𝐷mean) [28]. Additionally, other 

dose-volume specifications can be reported [28]. 

Another parameter is the Van’t Riet conformation number, which gives the volume of the 

isodose region receiving a certain amount of the dose [41]. For example, 𝑉59 is the volume that 

receives a dose larger or equal to 59 Gy [20]. This parameter may be helpful for plans that 

contain multiple targets [20]. 
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Typically, RT treatment planning is divided into three steps/problems, which are described next 

and that are usually tackled in a sequential way. 

 

2.3.2.1. Beam Angle Optimisation Problem 
One of the challenges in IMRT, IMPT, and SBRT treatment planning is appropriately deciding 

how many radiation directions should be considered and what these directions should be, i.e., 

the number of radiation beams and their angles. This challenge is known as the Beam Angle 

Optimisation (BAO) problem or geometry problem, and its solution can lead to plan quality 

improvement [25], [42], [43]. 

In current clinical practice, for IMRT treatments, the BAO problem is usually handled by the 

treatment planner with manual selection of the number of beams and their orientation, typically 

resorting to previous experience, existing institutional protocols, or based on trial-and-error 

procedures [42]. A similar procedure happens in IMPT and SBRT [25], [44]. Despite this fact, to 

overcome these issues, several studies have been conducted regarding the automation of the 

BAO problem in IMRT, IMPT, and SBRT planning.  

In IMRT, several studies concerning BAO optimisation have already been conducted. For 

example, in 2012, Breedveld et al. [45] proposed an a priori multicriteria approach to beam 

angle and intensity optimisation, named Erasmus-iCycle, achieving clinically feasible calculation 

times for a fully automated plan generation that proved to meet better the clinical goals than 

equiangular or manually selected configurations. Also, in 2022, Schipaanboord et al. [43] 

presented an approach that integrates BAO with segmentation, called TBS-BAO, that could 

automatically generate plans with reduced computational time compared with the Erasmus-

iCycle BAO approach and manually generated. However, this novel approach showed similar 

plan quality compared to both methods. Furthermore, hybrid approaches that combine local 

gradient-based search algorithms with heuristics have been explored, such as applying a 

derivative-free multi-start framework with a pattern search algorithm, proposed in 2015 by 

Rocha et al. [42] that showed to be suitable for improving treatment plan quality. More recently, 

the application of Artificial Intelligence (AI) for BAO automation is being explored, as in 2020, 

Sadeghnejad Barkousaraie et al. [41] developed a fast and flexible beam orientation selection 

method that uses Deep Learning Neural Networks, which learns the connection between the 

patient’s anatomy and the optimal set of beam orientations from the patient’s anatomical 

features. 

For IMPT, a few automation approaches for beam angle optimisation were tested and led to 

satisfactory results. For example, in a single mathematical framework developed in 2018 by Gu 

et al. [46], a novel optimisation algorithm to simultaneously select noncoplanar beam 

orientations and scanning spot intensity proved to be computationally efficient, dosimetrically 

superior, and having more delivery-friendly IMPT plans than manual planning methods for a 

brain and three unilateral head-and-neck cases. Despite needing more patient studies for 

further validation, Cao et al. [47] introduced in 2012 an uncertainty-incorporated BAO algorithm 

for IMPT that uses a deterministic scenario-based approach to account for uncertainties, 

employing a worst-case optimisation that starts with a set of initial beams and performs a local 

search to identify beams that improve dosimetric quality and robustness. This algorithm 

performed well for three prostate cancers and two skull base chordoma cases and was shown 

to be efficient. 
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For a small number of candidate beam angles in IMPT and IMRT, Lim et al. [48] developed in 

2014 an effective and robust hybrid BAO framework that takes advantage of both global and 

local search, i.e., first finds a good feasible solution through stochastic and deterministic 

methods quickly and secondly finds a locally optimal solution using Local Neighbourhood Search 

(LNS).  

Lastly, for SBRT, since the early 2000s, studies regarding automated BAO problem-solving have 

been conducted. For example, Magome et al. [49] developed in 2013 a computer-aided method 

for determination of beam arrangements based on similar cases for SBRT lung cancers, achieving 

usable automatically generated beam arrangements with no statistical differences from the 

original beam arrangement. More recently, based on that study, Haseai et al. [44] developed in 

2020 a similar-case-based automated treatment planning approach with beam angle 

optimisation using water equivalent path length considering the doses of OAR for lung SBRT, 

that revealed to be efficient avoiding organs defined as OAR and automatically generating 

treatment plans along the planners’ policies. In 2015, Rossi et al. [50] developed a beam angle 

class solution as an alternative to the time-consuming process of individualized beam angle 

selection for prostate SBRT, achieving an efficient and automated BAO that maintained plan 

quality and reduced computational time.  

All these past studies in IMRT, IMPT, and SBRT show the importance of developing automated 

treatment planning approaches for BAO problem solving and potential advantages compared to 

manual solving, which is the most used method. 

The BAO problem is a highly non-convex problem with many local minima on an ample search 

space, which makes it difficult to solve. The main objective of this problem is to find the 

minimum number and directions of beams that fulfil the treatment plan goals. The incidence 

angles can be either coplanar, i.e., angles that lay in the plane of rotation of the gantry, or non-

coplanar. However, in clinical practice, coplanar angles are predominant possibly because this 

choice simplifies the solution of the BAO problem [7], [42].  

Nevertheless, there is also evidence that non-coplanar incidence beam directions can lead to 

better treatment plans than the ones that use coplanar directions [42]. In 2003, Meedt et al. 

[51] studied beam direction optimisation in IMRT with coplanar and non-coplanar beams and 

showed that, for two cases, the non-coplanar approach outperforms the manual and the 

equispaced coplanar approaches. A similar comparative study between automated non-

coplanar and equiangular coplanar beam setups done in 2008 by Pooter et al. [52] showed that 

optimisation of non-coplanar setups leads to a substantial improvement of treatment plans in 

IMRT for SBRT. In 2020, Ventura et al. [53], using two different algorithms for BAO optimisation, 

showed plan quality improvements on non-coplanar beam geometries when compared with the 

equivalent coplanar arrangement, achieving higher target coverage and better sparing of the 

normal tissues. Furthermore, in 2015, Rocha et al. [42] obtained similar conclusions regarding 

non-coplanar BAO optimisation in IMRT using a pattern search algorithm. Lastly, for IMPT, Kamal 

Sayed et al. [54] provided a method for multicriteria optimisation of the full noncoplanar beam 

orientation in 2020 using a multimode multi-GPU cluster and Monte Carlo dose calculation 

engine, automatically achieving optimised noncoplanar beam orientation plans in less time and 

same target coverage than manually planning. 
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2.3.2.2. Fluence Map Optimisation Problem 
Fluence Map Optimisation (FMO) problem, or intensity problem, is the problem of determining 

the optimal intensity of beam profiles aiming to generate high quality treatment plans. Usually, 

this problem is handled after solving the BAO problem, since it is necessary to measure the 

impact in the dosimetric space accurately [41]. 

To handle the FMO problem it is possible to consider constrained or unconstrained models [17]. 

Typically, this problem is modelled as the minimisation of a weighted sum function where 

constraints are often implemented as objectives [42]. The constraints define dosimetric 

thresholds of the anatomical structures, such as PTVs and OARs and are, generally, dose-volume 

constraints, i.e., constraints that consider the relation between a percentage of radiation dose 

deposited on a certain percentage of the volume structure. These constraints must be respected 

for the clinical admissibility of the treatment plans [17]. One example of an objective function 

for the FMO problem is presented in equation 1. This quadratic function was used in several 

studies (for example [17], [55], [56], [57]) where 𝑁 represents the number of beamlets and 𝐷 

the dose matrix, such that 𝐷𝑖𝑗 represents the contribution of unit intensity of beamlet 𝑗 to the 

total dose deposited in voxel 𝑖. The total dose received by voxel 𝑖 is calculated as ∑ 𝐷𝑖𝑗𝑤𝑗
𝑁
𝑗=1 , 

where 𝑤𝑗 represents the weight/intensity of beamlet 𝑗. The set of structures to be considered is 

defined as 𝑆, and the upper and lower bounds associated with structure 𝑠 ∈ 𝑆 are 𝑈𝑠 and 𝐿𝑠 

respectively. Lastly, the penalty weights of underdose and overdose of structure 𝑠  are 

represented by 𝜆𝑠 and 𝜆𝑠, respectively (with 𝑠 ∈ 𝑆), and (. )+ = 𝑚𝑎𝑥{0, . }. 

𝑓(𝜔) = 𝑚𝑖𝑛𝜔≥0 ∑ ∑ [𝜆𝑠 (𝐿𝑠 − ∑ 𝐷𝑖𝑗𝑤𝑗

𝑁

𝑗=1

)

+

2

+ 𝜆𝑠 (∑ 𝐷𝑖𝑗𝑤𝑗

𝑁

𝑗=1

− 𝑈𝑠)

+

2

]

𝑖∈𝑆𝑠∈𝑆

 (1) 

For this intensity problem, many different mathematical optimisation models and algorithms 

have already been proposed, as linear models, mixed integer linear models, nonlinear models, 

and multiobjective models [7]. The planner steers these mathematical models by interacting 

with the TPS software, where the upper and lower thresholds of each structure are defined, and 

a weight is considered to penalize the deviations that may occur from those thresholds. 

However, this definition of thresholds and weights is complex and not straightforward because, 

despite knowing the dose-volume thresholds that must be respected for the treatment plan to 

be admissible, it is complicated to know the inputs that must be given to the TPS to reach that 

admissible plan [17]. This is the major drawback of the manual selection of the parameters to 

apply in the optimisation models. 

Many strategies to handle the FMO problem have been studied for the last two decades, mainly 

regarding IMRT treatments. In 2016, a study by Dias et al. [56] proposed the use of the quadratic 

unconstrained continuous programming model (1) and iteratively solve the corresponding FMO 

problem with the objective function parameters being defined by a fuzzy inference system. This 

method achieved high-quality plans within reasonable computational times. However, this 

methodology only considered equidistant beam solutions. In a more recent study from 2021, 

Eikelder et al. [58] used a conic optimisation approach to FMO that allowed nonlinear evaluation 

criteria, showing that the theoretical advantages of conic optimisation indeed translate to very 

stable convergence and good solution quality. 

Additionally, in 2014, Zaghian et al. [59] proposed to solve the FMO problem for IMPT by testing 

an iterative approach to satisfy dose-volume constraints using a multi-objective linear 
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programming model. This algorithm was tested in five lung cancer cases and one prostate cancer 

case selected from the authors’ institutional database. This method was able to satisfy the dose-

volume constraints without increasing the complexity of the problem, and it alleviated the 

tedious effort of selecting initial values of model parameters (which were iteratively chosen). 

Opposed to the automated planning process generally used and studied in the literature, few 

publications have focused on direct fluence map prediction, i.e., radiotherapy plans where 

standardised dose constraints and beam settings can be directly created by predicting the 

fluence maps without optimisation or dose mimicking. To do so, recently, approaches using 

deep learning models have been proposed, among which in 2020, Wang et al. [21] presented a 

novel deep learning framework for direct fluence map prediction using it in clinical pancreas 

SBRT cases with a single PTV. Later, in 2021, a more extensive study led by Wang et al. [60] 

presented a novel deep learning (DL) framework for pancreas SBRT treatment planning in 

scenarios involving simultaneous integrated boost (i.e., multiple PTV prescriptions). This 

framework utilizes two convolutional neural networks to predict beam dose and fluence maps 

sequentially, which enables a faster IMRT plan generation by avoiding the need for time-

consuming inverse optimisation. This study conducted a retrospective analysis of 100 pancreatic 

cancer SBRT cases, completing the DL-based planning on average in under 2 minutes, and 

achieved a similar dose distribution to benchmark plans. So, this new approach showed a rapid 

and efficient generation of high-quality IMRT plans and a valuable tool for clinical application. 

In this work, FMO will be solved with an automatic method that is based on the quadratic 

programming model (1) and is detailed in sub sub-section 2.3.3.1. 

 

2.3.2.3. Realisation Problem 
Usually, the BAO problem and FMO problem are solved sequentially, after which comes the 

challenges and difficulties of delivering the computed beam intensities effectively and 

accurately. Finding an efficient way to deliver, as close as possible, the optimised intensity 

profiles is a challenging optimisation problem. This third challenge is called the realization 

problem (or delivery problem) [7]. 

Similarly to the FMO problem, the realization problem is handled with mathematical 

optimisation models and algorithms [7]. Research regarding these mathematical methods for 

the IMRT realization problem has been done since the end of the nineties and early 2000s. 

So, concerning the IMRT realization problem, it can be solved by selecting one of the existing 

techniques (for example, [61], [62], [63], [64], [65]), aiming to create apertures and intensities 

that allow the dose that is calculated by the FMO to be delivered. Additionally, numerous studies 

presented algorithms designed to implement arbitrary fluence distributions by segmenting 

multileaf fields by overlaying beams of varying shapes to allow flexible molding of the delivered 

fluence pattern [10]. Furthermore, differences between the planned intensity optimisation 

maps and the ones that are actually delivered arise from different issues, such as leaf collision 

and leaf perturbation of the adjacent beamlet intensities, among others, and all of them have 

already been addressed (for example, [66]). Despite already being addressed, these problems 

remain a prosperous field of research.  

For example, in 2018, Baatar et al. [67] introduced a new mathematical approach to address the 

realization problem in IMRT, which consists of a lexicographic approach to find the minimum 

beam-on time and decomposing cardinality for linacs with limited MLC width. This new 
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approach showed an efficient reduction in the shape of the generated matrices compared to 

other mathematical methods, and the authors recognized that more studies must be led in the 

future regarding considerations for heuristics to tackle challenging instances. 

Several studies defend that the three problems regarding IMRT treatment planning cannot be 

solved separately, i.e., these works support the idea that there is a straightforward linkage 

between BAO and FMO problems and a more difficult linkage between FMO and Realization 

problems that will define the treatment planning quality [57], [68]. The problems regarding the 

linkage between these last two problems have been studied. For example, in 2012, Rocha et al. 

[68] showed the numerical deterioration of plan quality that occurs due to the transition from 

FMO to the realization problem and discussed this loss based on two clinical examples. 

Moreover, to overcome this issue, this study proposed a combinatorial optimisation approach 

based on dose-volume criteria and a binary probabilistic search method that showed a better 

transition and increased plan quality for two clinical cases of head and neck cancer. After, to 

show that their approach was replicable for more clinical cases, the same authors used their 

proposed formulation for more clinical cases and state that it can always achieve a better 

transition regardless of the clinical case [57].  

Other methods simultaneously tackle FMO and Realization problems instead of looking into 

them as separate and sequential problems. One of these methods was first introduced in 2002 

by Shepard et al. [69] and is called Direct Aperture Optimisation (DAO), which uses an automated 

planning system to directly optimise the shape and weights of apertures for MLC devices, 

maintaining the advantages of explicitly including the discretization of leaves movement, and is 

designed to harness the dosimetric benefits of IMRT. This innovative approach in RT planning 

revolutionized the conventional methods. Recently, other works using the DAO method are still 

being conducted; for example, in 2023, Moyano et al. [70] proposed a hybrid local search 

strategy with mathematical programming to generate RT treatment plans by solving the DAO 

and testing it in a set of prostate cases. This approach achieved acceptable delivery times and 

produced highly competitive treatment plans in terms of the obtained objective function values 

compared to the traditional IMRT sequential approach.  

Despite these advances, more studies must be conducted on this. 

 

2.3.2.4. Treatment Planning Automation 
The evolution path of RT seems to be going in the direction of faster and more complex 

treatments, with higher doses, shorter fractionation schemes, and smaller target margins [71]. 

Furthermore, TPS are required to be more accurate, increasingly automated, more sensitive to 

patient biology, and integrated with treatment machines [71]. As mentioned in the previous 

sections, several efforts to eliminate manual trial-and-error, time-consuming, and planner-

dependent procedures in treatment planning have been made. Many of these studies lead to 

works that belong to the “automatic treatment planning” classification [17]. 

Ultimately, the most challenging part of automated treatment planning is assessing the quality 

of the plans since it is patient-specific, i.e., it is a patient-dependent definition, and the plan must 

achieve clinical goals for each patient that vary with every specific situation.  

An example of a clinical available solution is the AutoPlanning in the Pinnacle TPS from Phillips, 

that relies on an automated rule implementation and reasoning system [72], [73]. 
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In 2011, Zhang et al. [74] created a new methodology to automate the treatment planning 

process of IMRT, which the authors called the mdaccAutoPlan system. The mdaccAutoPlan 

system was implemented in the Pinnacle TPS, and the authors aimed to automatically generate 

beam angles sets, planning structures, and objective/cost function parameters without manual 

adjustments. This new approach starts with a selection of the beam angles from a treatment 

plan expert database, from which 19 selected beam angles (5 noncoplanar and 14 coplanar). 

Next, the planning structures and initial objective function parameters are set up based on 

planners’ segmentation. After, an optimisation of the objective function parameters is made by 

the algorithm based on dose constraints, for instance, the mean lung dose constraint of no more 

than 22 Gy for lung cancer cases. The parameters regarding OARs could be changed during the 

process depending on the objective values of the current solution. Then, a ranking of the 19 

beams shows the 11 best beams to be selected. These 11 selected beams will be used in the 

treatment plan. Lastly, the authors demonstrated that their new methodology could generate 

treatment plans that were better or, at least, no worse than the plans designed manually by 

planners in a consistent way, improving the quality and consistency of IMRT treatment planning 

for lung cancer. 

The autoplanning solution mCycle uses an a priori multicriteria optimisation algorithm called 

Erasmus-iCycle, that was first developed and implemented in the Erasmus MC Cancer Center 

Institute, and, at the time, this algorithm needed to be converted to Monaco plans to generate 

clinical plans [45], [72]. More recently, this algorithm was implemented, for example, into 

Monaco TPS (Elekta AB, Stockholm, Sweden) [72], [73]. Actually, according to Meyer et al. [72], 

studies show that mCycle plans are considered better than manual plans in 75% of cases. In 

multicriteria opimisation approaches the objective is to generate a Pareto optimal treatment 

plan, meaning that no other plan should exist where all the objectives could be simultaneously 

improved (improvement in one objective must come at the expense of another objective). 

Erasmus-iCycle relies on a set of cost functions categorised as hard constraints or planning 

objectives with assigned priorities and goal values, which compose the wish-list that defines the 

protocol for automated plan generation, where the established constraints are never violated, 

and goal values are met as close as possible considering the constraints and ascribed priorities 

[75]. So, planning objectives are optimised sequentially based on their priorities while never 

violating the imposed constraints [75]. To ensure that the previously achieved function value is 

preserved while minimising lower-priority objectives, a new constraint is introduced to the 

optimisation problem following each objective function optimisation [75]. Wish-lists are 

treatment site-specific and developed through an iterative tuning process in collaboration with 

the treating physician [75]. 

Since 2012, the multicriteria treatment planning system Erasmus-iCycle has been clinically used 

for intensity-modulated photon RT and VMAT in its founding institution [76]. For proton beam 

scanning and IMPT optimisation, Erasmus-iCycle has already been used in several studies (and 

is still scarce), but clinical validations are still lacking [76]. 

In 2020, Bijman et al. [75] developed an automated treatment planning workflow for assessing 

patient-specific trade-offs between several treatment aims, using a set of treatment plans with 

a priori defined different balances. This study was led for fifty prostate cancer cases, where all 

treatment plans were automatically generated using Erasmus-iCycle [75]. 

Later, in 2021, Schipaanboord et al. [77] proposed a fully automated multicriterial optimisation 

(AUTO MCO) treatment planning for 2 MLC-based robotic RT and validated it for prostate SBRT 
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by comparison of the generated automated plans with high-quality, manually generated 

reference plans. This was the first fully independent system that generated deliverable plans 

integrating automated non-coplanar BAO, FMO, and segmentation all together [77]. In this novel 

treatment planning solution, plan generation was performed using Erasmus-iCycle for pencil-

beam-based FMO and BAO, followed by MLC segment generation aiming at close reproduction 

of pencil-beam optimised 3D dose distributions (AUTO MCO 3D) while taking into account every 

potential beam at once, instead of replicating the fluence maps [77]. Moreover, a stand-alone 

version of the clinical dose distribution engine is employed to accurately calculate all pencil-

beams, segment dose depositions, and final dose distributions [77]. This new automated 

optimisation workflow ensured high-quality treatment plans while reducing planning workload 

and time constraints compared to manual planning with the commercial TPS [77]. 

Additionally, the recent introduction of linacs coupled with MRI scanner, such as the MR-Linac 

treatment units, has made an increase in the demand for high-quality treatment plans, 

generating the need for faster and more accurate planning [73], [78]. In MR-Linac, the 

translational shifts can be corrected, as well as all interfraction setup errors, such as translations, 

rotations, and organ deformations that appear on the MRI scan and are translated into the daily 

recontoured PTVs and OARs, which can be corrected by reoptimisation starting from the fluence 

map [73], [78]. Due to these unique characteristics and the design of these treatment units, 

some treatment planning challenges arise in comparison to conventional treatment [73], [78]. 

With this in mind, Bijman et al. [78] developed a workflow for fully automated multicriterial 

planning using Erasmus-iCycle for IMRT at MR-Linac for rectal cancer and compared to the 

manual planning regarding planning workload and time, plan quality, treatment time, delivered 

monitor units, and dosimetric delivery accuracy. Similarly, for prostate cancer SBRT, Naccarato 

et al. [73] performed a preliminary plan comparison study of the feasibility of plans generated 

using mCycle versus expert planner (manual plans) on the MR-Linac. 

RapidPlan from Varian is a system that uses patient contours, beam setup, dose prescription, 

and an associated estimation model to provide DVHs estimations that will be used to generate 

automatic objectives for planning optimisation [72], [73]. It is an example of a knowledge-

based/atlas-based planning solution [72].  

RayStation v9B autoplanning is based on machine learning approaches. The machine learning 

process assigns a dose value to each voxel in this system. Subsequently, the generated dose map 

is transformed by a “mimicker,” converting the dose distribution into an objective function. The 

optimisation module then uses this optimised function to ensure deliverability [72]. 

In 2014, Zarepisheh et al. [79] developed an optimisation model that considered treatment 

planning optimisation based on the DVH curves of a reference plan. This reference plan can be 

chosen from a library of clinically approved and delivered plans of previously treated patients 

with similar medical conditions. A voxel-based optimisation model was used to automatically 

update an FMO objective function and navigate the dose distribution Pareto surface to approach 

a plan with similar DVHs to the ones in the reference plane, i.e., voxel weights were iteratively 

adjusted in order to fit the plan with similar DVH to the reference plan. Ultimately, the authors 

developed a novel optimisation algorithm capable of automatically adjusting the voxel weights 

and generating highly efficient clinical optimal plans, improving the plan’s quality and efficiency 

in automatic treatment planning. 

In 2019, Jia et al. [80] developed a treatment planning process that relies on an OAR-3D dose 

distribution prediction. In this approach, OAR-related constraints that support FMO are 
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determined by the dosimetric values predicted, which consider all the voxels within an OAR as 

research subjects, taking their doses as outputs and incorporating individualized geometrical 

features such as location and volumetric information as inputs. To ensure PTV coverage, this 

method employs hard constraints utilizing an artificial neuronal network to predict dose 

distributions for OAR. These predicted distributions are used as objective goals, guiding the 

current dose distribution to align as closely as possible with the predictions. This framework 

does not consider BAO, and the FMO objective function is not dynamically updated to account 

for dosimetric achievements. The results obtained in this study show that this novel automatic 

optimisation method ensures the output plan quality for IMRT, showing plan quality 

improvement with PTV dose coverage maintenance and major dose sparing of OARs. 

 

2.3.3. Fuzzy Inference System: concept 
In the materials and methods section of this work, the fluence map optimisation will be solved 

resorting to an automated algorithm that is based on a quadratic programming model (1), with 

the model parameters being iteratively changed by a fuzzy inference system [56]. This fact 

motivates this subsection, where the basic behaviour of fuzzy inference systems will be 

explained. 

In 1965, Zadeh [81] founded the mathematical theory of fuzzy sets. This was the first milestone 

of the introduction of fuzzy sets in the scientific and technological area that, in the last 60 years, 

made theoretical improvements such as fuzzy logic, fuzzy probability theory, fuzzy topology, 

fuzzy algebra, and technical progress in application systems, e.g., fuzzy control, fuzzy expert 

systems, fuzzy clustering and data mining [82]. Thus, fuzzy sets and application systems have 

become widely known in mathematics, engineering and, more recently, in quantum mechanics 

and medicine [82]. 

In the domain of medicine, particularly for RT treatment planning, the application of fuzzy logic 

techniques has been studied in several aspects, such as parameters optimisation (e.g., [17], [56], 

[83], [84], [85]), tumour tracking (e.g., [86]), margins’ estimation (e.g., [87]), etc. 

The fuzzy inference system (FIS) is a reasoning process based on fuzzy logic consisting of three 

main components: fuzzifier, inference engine, and defuzzifier [83], [84]. It was first developed 

by Mamdani and implemented in various industrial applications [83].  

In Fig. 6 a schematised illustration of FIS main components is presented. First, inputs are 

represented resorting to membership functions that allow natural language concepts to be 

represented mathematically [83]. Then, the fuzzifier processes the inputs based on their 

membership functions [83]. Subsequently, the resulting values from the fuzzifier process are 

handled in the inference engine, which computes the consequences accordingly to a base of 

fuzzy rules [83]. Lastly, the defuzzifier converts the consequences into final outputs [83].  

Thereby, the behaviour of FIS mainly relies on the components of the fuzzy rules, such as fuzzy 

sets for both the antecedent and consequent parts of each rule [83]. These fuzzy sets partition 

different spaces for input and output variables [83]. Thereafter, appropriate functions are 

established to map input/output spaces to real numbers, which are known as membership 

values, based on this partitioning [83]. 
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Fig. 6. Simple flowchart of the FIS. 

The FIS hereby is developed to perform inference similarly to humans, making it suitable to solve 

problems as parameter optimisation in inverse planning [84]. With this concept in mind, several 

authors studied optimisation in RT treatment planning. For example, Yan et al. [84] developed a 

FIS to guide the optimisation of weighting factors in an inverse treatment planning for IMRT. 

Similarly, Stieler et al. [83] introduced an automation of the parameter optimisation process for 

IMRT treatment planning based on a machine learning technique that utilises FIS for function 

approximation. This technique allowed the automation of parameter optimisation using prior 

knowledge collected from human planners’ trial-and-error processes [83]. 

Additionally, there are also studies that mix the FIS technique with AI. For example, in Yan et 

al.[85], the FIS is used to automatically modify and accomplish a compromise between weighting 

factor, dose specification, and dose prescription parameters in IMRT inverse treatment 

planning. Meanwhile, the dose distribution is automatically achieved by an AI-guided inverse 

planning system[85]. 

As mentioned in section 2.3.2.2, the method described in [56] iteratively changes IMRT 

treatment planning parameters through a FIS that mimicked the planner’s trial and error 

procedure in an efficient, optimised, and automated way. This FIS method will be used in this 

dissertation’s computational simulations, thus the following section 2.3.3.1 describes it in detail. 

All the mentioned studies attempt to help replace or reduce the time spent in the trial-and-error 

approach led by the planners, testing different combinations of parameters to achieve the best 

dose distribution possible and, consequently, a better plan’s quality. These studies emphasise 

that fuzzy logic can properly handle this aspect of human knowledge and experience and 

successfully apply it to inverse treatment planning. 
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2.3.3.1. Fuzzy Inference System for Automated FMO 
As mentioned in the previous section, fuzzy logic is based on fuzzy sets with unclear boundaries, 

which allows sets of elements to have a degree of membership [56]. The method presented in 

[56] mimics the reasoning of the human planners when they need to change parameters 

associated with the fluence map optimisation, by using a set of simple fuzzy rules. Most of the 

times, if, for a given volume of interest, the dosimetric values obtained with the current plan are 

close to the desired ones, then the corresponding parameters are only slightly changed. If the 

dose-volume metrics are far from the desired ones, then substantial changes must be 

considered. 

In this methodology, the natural language concepts used are represented by membership 

functions that are trapezoidal or triangular. These membership functions will represent 

concepts like “low”, “medium” or “large”. The percentage of deviation between the prescribed 

dose and the actual dose received is the input of the fuzzy inference mechanism. The input 

measures the extent of the constraint violation. The percentage of change in the corresponding 

bound gives the output. The methodology used is not very sensitive to the shape or the 

threshold values of the input and output membership functions. The input and output 

membership functions are connected by a set of fuzzy rules that must be evaluated 

simultaneously [56].  

In this methodology, there are three fuzzy rules as follows: if the deviation is large/medium/low, 

then the change in the corresponding parameter is large/medium/low. The FIS simultaneously 

evaluates these rules, and through a defuzzification procedure, a final crisp value is calculated, 

which is the final output of the FIS [56].  

In this case, the FMO model considers a voxel-based convex penalty non-linear model described 

in (1), where for each structure of interest, the function evaluates the sum of the weighted 

squared difference between the dose delivered to each one of the voxels belonging to the 

structure and the lower/upper bounds that have been set for that structure[17], [56]. 

First, as a standard procedure in treatment planning, a physician outlines constraints that define 

a dose prescription that must be achieved for the treatment to be considered admissible. In Dias 

et al. [56], this prescription will give the initialization parameters for the objective function’s 

upper and lower bounds that define the FMO objective function (see section 2.3.2.2). 

In this methodology, the PTVs have both upper and lower bounds, since they are generally 

associated with both maximum and minimum dose-volume constraints, while OARs only have 

upper bounds. The parameters that must be defined for FMO, namely lower and upper bounds 

and also weights, can be considered as steering parameters for the optimisation results since 

they can be seen as technical tools to guide the optimisation process toward regions where the 

treatment plan is admissible. This method chooses to change bounds first and only adjusts 

weights if is strictly needed. According to the authors, changing the bounds first produces a 

smoother iterative process, that converges faster [56]. 

The weights are considered to be exactly the same for every voxel belonging to the same volume 

The initial weights for each structure can be set as being equal to 1. The only exception is if 

structures are overlapping. In these situations, a greater weight should be assigned to the inner 

structures because each voxel within the inner structures will belong to more than one structure 

(the overlapping structures) and possibly have conflicting constraints. Thus, this methodology 

has a simple initialisation logic for the weights with one exception in the case of overlapping 
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structures where the relation between the inner and outer structures must be: the smaller the 

volume, the greater the weight [56]. 

In its original version, the FIS procedure is organised in two phases. In the first phase, the FIS 

iteratively changes the parameters associated with all the volumes of interest in order to find a 

treatment plan complying with all the existing dose-volume constraints [17]. After this 

admissible plan is calculated, then the approach will still try to improve either PV coverage or 

OAR sparing, depending on the priorities defined by the user [58], [60]. This second phase of the 

algorithm continues until no more improved solutions can be found in a determined number of 

iterations or a global maximum number of iterations is reached [56].  

In this work, only the first phase of the method is considered, meaning that the algorithm will 

stop as soon as a treatment plan complying with all the constraints defined by the medical 

prescription is found. The main reason that justifies this choice has to do with the fact that the 

objective is to study the impact of uncertainty in treatment delivery when treatment planning 

complies with the medical prescription, and bias could be introduced in the analysis and in the 

comparison of the different treatment plans if treatment planning could be even more 

demanding than the medical prescription. As an example, being more demanding with a given 

OAR could bias the result of CTV coverage when uncertainties are explicitly considered, since an 

extra effort would be made for OAR sparing during treatment plan optimisation. 

The flowchart of the described method is presented in Fig. 7. 

To the best of our knowledge, this is the first work to use the first phase of the FIS method 

described above to automate FMO in SBRT treatment planning. 
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Fig. 7. Flowchart of the first phase of the FIS method for automated FMO.  
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2.4. SBRT treatment planning  
As the focus of this work is to study SBRT treatment, this section will be emphasising the specific 

properties and characteristics of SBRT treatment. 

SBRT is commonly used to treat extracranial malignant or benign tumours and functional or 

vascular disorders [19]. The joint disease sites where this treatment is used or investigated are 

the lungs, liver, abdomen, spine, prostate, head-and-neck.  For the treatment of inoperable non-

small cell lung cancer (NSCLC), SBRT has shown a survival rate of 56% at three years, a high rate 

of local tumour control (3-year primary control rate of 98% and three-year locoregional control 

of 87%), and moderate treatment-related morbidity [88]. SBRT achieves excellent results in local 

control for locally advanced pancreatic cancer (LAPC) [89]. Studies comparing the outcome of 

SBRT delivered with different technologies, such as VMAT, helical tomotherapy and non-

coplanar static fields, have been a research field with conclusions that vary according to the 

studied organ. In the case of the lungs, VMAT SBRT showed superior conformality and better 

local control compared to helical tomotherapy and non-coplanar static fields. Despite belonging 

to the acceptable limit range, toxicity parameters had higher values for helical tomotherapy 

SBRT than the other two modalities [90]. For cervical and thoracic spine SBRT, the plan quality 

of VMAT is better than step-and-shot IMRT, with adequate target coverage, comparable delivery 

accuracy, better conformity and a lower dose to the spinal cord [91]. 

For SBRT is required MLC with leaf width inferior to 10 mm or cylindrical collimators with an 

equivalent size. However, in the case of nearby radiation-sensitive critical structures, the leaf 

width should be inferior or equal to 5 mm or cylindrical collimators of equivalent size and 

systems allowing non-coplanar beam directions [19]. In respect to treatment unit accuracy, for 

SBRT, the geometric accuracy with three-dimensional spatial dose placement requires maximum 

inaccuracies of 1.25 mm in non-moving and 1.5 mm in moving phantoms. In proximity to 

radiation-sensitive critical structures, the recommended maximum inaccuracies are 1 mm [19].  

In SBRT, advanced precision technologies are required for focused planning and delivery of a 

reduced number of high-dose radiation treatment fractions. Due to these high doses 

administrated in each fraction, it is crucial for the RT team to be aware of the importance of the 

dose-volume constraints, particularly concerning normal tissues [92]. 

Nowadays, most of SBRT is performed using conventional linear accelerators and planned on 

the same TPS as those used for three-dimensional external beam radiotherapy. However, SBRT 

is very different from three-dimensional external beam radiotherapy, especially in 

considerations such as ensuring geometric and dosimetric accuracy [92]. 

The general treatment planning process for SBRT follows the same path as the one already 

described in this section. First, there is an imaging study from which the physician defines the 

GTV. If there is too much target motion, four-dimensional imaging data should also be analysed 

to define the target motion. These analyses generate the inclusion of the ITV margin to account 

for the internal motion of the target. Lastly, the PTV must also include an additional margin 

regarding setup uncertainties [92].  

Secondly, the planning physicians or dosimetrists define the anatomical contours of the normal 

tissue and may add structures to enhance the conformity and gradient of the high-dose volume 

around the target. Therefore, the target’s specific dose and fractionation, as well as the dose 

and dose-volume limits to OARs near the target, become defined [92]. 
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Thirdly, one or more treatment plans are generated for a single patient, which may use several 

beam arrangements, including fixed fields, conformal arcs, IMRT, or VMAT delivery. The plans 

must be generated by optimisation on the basis of the dose constraints requested by the 

planning physician who is responsible to ensure that target coverage, dose gradient, and normal 

tissue dose sparing are within acceptable limits. Then, they may suggest revisions to the plan or 

approve it for patient-specific quality assurance and treatment [92]. Through treatment 

planning optimisation, it is possible to achieve higher dose conformity around irregular target 

volumes and a better ability to conform doses away from specific OARs near the target [92]. 

The steps described regarding the general treatment planning process for SBRT are illustrated 

in Fig. 8. 

 

Fig. 8. Schematic illustration of SBRT treatment planning process. 

Concerning prostate cancer treatment planning platforms, the use of SBRT techniques have 

showed to be dosimetric superior with higher dose conformity, higher PTV coverage, and lower 

doses to adjacent bladder and rectum in lieu of the use of IMRT techniques [92]. Furthermore, 

flattening-filter-free mode available on linac-based SBRT allowed achieving a reduction in overall 

treatment time contributing to more patient convenient treatments, although there is less 

awareness of the radiological implications [92]. 

Regarding fractionation schemes in prostate cancer SBRT treatment planning, a prospective and 

multi-institutional analysis of 1 100 patient showed that the most common regimens (89%) 

consist in the use of 35 to 36.25 Gy in five fractions delivered either daily or every other day [92]. 

 

2.5. Robust Optimisation  
Treatment errors can be divided into two components: systematic and random. Systematic 

errors remain constant across all treatment fractions and are typically introduced during 

treatment planning, such as an extreme position of the prostate in the planning CT scan that 

differs from the mean position of the prostate. In contrast, random errors vary daily and are 

associated with daily variations in patient anatomy and setup during fractionated treatments 

[93]. 

The most common errors in treatment planning are, for example [94]: 

• simulation errors: due to incorrect representation of the patient or the radiation 

distribution. 

• contouring errors: errors due to incorrect segmentation of target or normal tissue. 

• plan optimisation errors: for example, incorrect solving of BAO or FMO problems). 
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• delivery errors: when the treatment delivery differs from representation. 

During a RT treatment, both random and systematic uncertainties can occur due to several 

factors, such as the definition of volumes of interest, image artefacts, patient immobilisation 

and setup, organ movements between and during treatment sessions, physiological changes, or 

the process of treatment delivery itself since a machine always has uncertainties. Furthermore, 

the positions, shapes and sizes of diseased tissue can change during treatment sessions in a way 

that has not precisely been considered. Moreover, treatment time may cause involuntary 

internal motion or patient movement, leading to uncertainties. In addition, temporary changes 

can occur during a treatment, for example, if during prostate cancer therapy, the rectal or 

bladder fills up, it can create uncertainties in dose delivery [92]. 

Geometry uncertainties is the name given to changes in the patient geometry, including, for 

example, the intrafraction and interfraction motion of organs. These geometry uncertainties and 

uncertainties in dose calculation throughout the treatment are the most prominent reasons for 

the appearance of setup errors. Dose calculation errors arise from dose calculation algorithms 

and techniques, i.e., uncertainties in the dose distribution delivered to the patient arise from 

the potential discrepancies between the dose distribution shown in the treatment planning 

system and the actually delivered dose [93]. 

For all the reasons mentioned above, although treatment planning is traditionally based on the 

medical images acquired at the beginning of the RT workflow, it is clear that these images are 

not a totally accurate representation of the patient during the whole treatment duration or even 

during the time period one treatment fraction takes to be delivered.  

Thus, it must be recognised that uncertainties will inevitably be part of the treatment delivery 

and should be explicitly considered during treatment planning [92]. 

External radiation therapy treatments have uncertainties in treatment planning and delivery 

that can cause undesirable outcomes and can compromise the benefits of the treatment [95].  

The robustness of the treatment plan is defined by the resilience of the intended dose 

distribution to uncertainties and changes depending on the treatment site, technique, and 

modality [95].  

To mitigate effects of uncertainties regarding dosimetric accuracy delivery, techniques of 

geometrical margins and probabilistic optimisation have been implemented. Usually, the 

International Commission on Radiation Units and Measurements recommends a common 

benckmark of ±5% for dosimetric accuracy delivery in external RT [95]. 

Regarding the technique of geometrical margins, it consists of implementing safety margins as 

described in the section 2.3. of this work. The implementation of this margins depends on the 

treatment technique used and the image guidance schedules. In fact, studies have shown that 

the modality used for image guidance can change the magnitude of the margin, and advances 

in image guided RT techniques, such as real-time fiducial tracking and advanced anatomic 

imaging, have been developed to continuing to improve and adapt margins [95]. The concept of 

safety margins has its inherent limitations, and according to a report from 2022 about the results 

of ESTRO 2020 by Kaplan et al. [96], until a few years ago, it was the only universally used method 

to optimise and evaluate plan robustness. The major assumption of safety margins is called static 

cloud dose approximation, and it considers that the shape of the spatial dose distribution is 

unchanged under the influence of errors [96]. This assumption is possibly inadequate for highly 

modulated photon treatments [95], [96].  
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Robust Optimisation (RO) has been used to overcome the limitations of safety margins, as well 

as Robust Evaluation (RE) [96]. These two methods follow the same concept, i.e., RO directly 

calculates the dose changes induced by simulated scenarios, taking into account patient-specific 

anatomy and dose distribution characteristics. Meanwhile, RE recalculates and evaluates the 

optimised dose in a simulated error scenario [96]. It is important to note that the same error 

distributions to optimise (i.e., RO) and evaluate (i.e., RE) treatment plans may introduce an 

estimation bias. Thus, it is recommended for those error distributions to be different [96].  

The RO follows a different approach from the traditional method (i.e. margins) to achieve target 

cover and organ sparing [97]. This approach addresses uncertainties explicitly, optimising dose 

distributions for several scenarios instead of just one [97]. Each scenario represents all the 

treatment fractions (i.e. a possible treatment course) and must include the specification of all 

errors that may be present to calculate the final dose distribution. Since in fractionated 

treatments there is always random setup errors, the use of scenarios in the RO approach 

includes the setup errors in all individual fractions [97]. Lastly, the final optimised plan considers 

all the scenarios at once (using worst-case scenario or mini max approach) or a combination of 

scenarios where each one as a certain probability (using a probabilistic approach) [97]. 

Several works from the late 1990s showed that RO is a highly successful methodology for solving 

many types of optimisation problems, such as linear or non-linear problems under data 

uncertainty [98]. Furthermore, RO was first implemented in a commercial TPS in 2014 for RT 

[97] and has been routinely used in clinical proton planning with pencil beam scanning ever since 

[99]. On the other hand, there have been fewer reports on applying RO planning in photon 

therapy [99]. 

Regardless of using the traditional method or RO, the RE evaluates the way dose distribution 

changes in comparison to the nominal dose, offering the possibility of quantifying the 

uncertainties in DVHs and other dose metrics regarding variations in patient set-up and anatomy 

[97].  

Treatment plan robust optimisation can be translated into different mathematical terms that 

can be categorised as probabilistic (or stochastic) approaches, which optimises the expected 

dose distribution, and minimax approaches, which optimises the dose distribution for the worst 

error considered [93], [97]. A possible and not exhaustive schematic view of robust optimisation 

approaches to handle uncertainties is presented in Fig. 9.  
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Fig. 9. Schematic view of robust optimisation approaches based on [100] and [95]. 

The minimax optimisation method aims to minimise the objective function to ensure that the 

prescription remains valid even under the worst-case scenario (worst error considered possible) 

[101]. In minimax approaches, the worst-case method can focus on three scenarios: composite 

worst-case, objective-wise worst-case, and voxel-wise worst-case [97]. The definitions of these 

three methods are presented in Fig. 9. These three worst-case methods were evaluated, 

compared, and analysed in a study from 2014 by Fredriksson and Bokrantz [100], and a new 

technique to examine robust treatment plan optimisation was suggested. This study was 

evaluated for IMPT robust optimisation concerning treatment planning for prostate subject to 

systematic setup errors and concluded that none of the three worst-case methods was 

remarkably superior to the others, all showing different and particular behaviours. Ultimately, 

the authors recommend making a case-by-case choice guided by each method's pitfalls [100]. 

Additionally, scenario-based margins are a method for robust planning to handle setup 

uncertainties, where plan evaluation criteria is optimised over multiple scenarios, incorporating 

voxel-wise penalties weighted by distribution coefficients [102]. This method works in a way to 

be mathematically equivalent to the conventional geometric margins when the scenario doses 

are calculated using the static dose cloud approximation [102]. 

The probabilistic approaches for plan robustness evaluation are an alternative to margins for 

handling uncertainties [95]. This technique is used in photon and proton radiotherapy plans, but 

IMPT has been the primary radiotherapy method for the development of probabilistic 

robustness analysis techniques, where the dose distribution is determined under several 

uncertainty conditions [95]. This uncertainty scenarios to ensemble dose can be represented by 
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approaches such as the voxel-wise worst-case approach, the scenario-wise worst-case 

approach, or describing the simulation of scenarios according to the expectation value or 

variance of the delivered dose or using a model relating the dose to uncertainty values [95]. 

In 2020, Teoh et al. [103] used probabilistic scenarios to make a comparative study of plans 

sensitivity to setup uncertainties between IMPT and photon VMAT for locally advanced non-

small cell lung cancer. This study considered minimax RO and PTV optimised IMPT and VMAT 

nominal plans [103]. This research showed that setup errors do not influence robustness when 

analysing the whole treatment, regardless of the planning technique utilized [103]. Nonetheless, 

VMAT and minimax IMPT plans had superior fraction doses and subsequent excellent target 

robustness on the fraction level compared to PTV-IMPT plans [103]. Therefore, the authors 

concluded that VMAT and minimax IMPT plans have comparable sensitivity to setup 

uncertainties for non-small cell lung cancer. In addition, the probabilistic analysis allowed a fast 

and practical method to evaluate plan robustness in the different techniques analysed in this 

study [103]. 

In summary, it is important to note that there are several methods to quantify treatment plans' 

robustness [103]. Currently, there has not been a consensus neither for a definition of 

robustness nor for its ideal assessment metric [103]. Nevertheless, diverse studies have already 

been conducted regarding several metrics. The common point of all these methods is that they 

rely on simulating treatment plans under extreme conditions, which has the downside of 

overestimating errors [103]. 

 

2.5.1. Examples of RO techniques for uncertainties management in IMRT 
As mentioned above, there are fewer reports about the application of robust planning in photon 

therapy than in proton therapy. Nevertheless, the concept of examining dose uncertainties for 

IMRT plans and applying robust planning had been proposed over two decades ago [99]. As a 

matter of fact, studies from the early 2000s have shown that the RO approach for treatment 

planning of IMRT provided a more accurate representation of patient’s motion and setup 

uncertainties than traditional methods (such as safety margins) [104]. Consequently, the RO has 

been suggested to mitigate the effects of breathing motion uncertainty during IMRT treatment 

planning for breast and lung cancers [105]. For instance, in 2015, Mahmoudzadeh et al. [106] 

investigated the advantages of applying a RO approach for tangential breast IMRT in treating 

left-sided breast cancer. The authors' approach focused on optimising the tails of the dose 

distribution and incorporating dose-volume limits under breathing motion uncertainty [106]. 

Their study demonstrated that the RO approach had the potential for better heart-sparing in 

comparison with the clinical method at free-breathing and unravelled a path to potentially 

reduce the need for breath-hold techniques [106]. One year later, in terms of setup variation, 

Byrne et al. [107] also studied the potential of RO on breast IMRT, concluding that the achieved 

RO plan was comparable to other established planning methods when ensuring coverage of 

breast CTV with variations in patient surface position. Nonetheless, the authors considered that 

the benefits of RO in ensuring coverage in breast planning outweighted the additional 

optimisation time required compared to the other planning methods, therefore recommending 

the RO planning method in clinical use [107]. Miura et al. [108] studied the position dependence 

between full-arc and partial-arc VMAT techniques for both PTV-based and RO plans. Their 

investigation demonstrated that RO plans provided better homogeneous dose distribution for 

peripheral CTV positions than the ones achieved with conventional PTV-based plans [108]. 
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Additionally, in 2018, to test RO in OAR sparing for IMRT treatment plans, Zhang et al. [101] 

conducted a dosimetric study comparing internal target volume-based RO plans and 

conventional PTV margin-based plans. This study selected 20 lung cancer patients with tumours 

at various anatomical regions and generated plans for IMRT and VMAT. The robustness of the 

generated plans was evaluated through perturbed doses with setup error boundaries from the 

isocenter. The study showed that RO plans had better target coverage, conformity index, and 

lower OAR doses than the PTV margin-based plans. Furthermore, the RO plans required fewer 

monitor units. Thus, the study concluded that RO was a promising approach for planning lung 

cancer RT. 

Recently, in 2024, an approach regarding chest motion in RO treatment planning for chest wall 

postmastectomy RT was suggested by Myasaka et al. [109], where respiratory movement was 

considered a setup error. This study analysed 20 patients, created three treatment plans for 

each case, and compared them (RO plan, planning target volume plan, and virtual bolus plan). 

The isocenter was shifted to reproduce the chest wall movement pattern, and the doses were 

recalculated for comparison for each treatment plan. In conclusion, the authors showed that 

the RO plan demonstrates comparable tumour doses to the planning target volume plan and 

exhibited robustness for respiratory motion compared to the other two plans. Nevertheless, the 

RO plan had a slightly higher OAR dose than the other two plans, which leads to a reminder of 

careful consideration when applied to clinical use. On the other hand, the RO solutions for IMRT 

have the downside of being overconservative, only optimising for the worst-case scenario, which 

often is very unlikely to occur and its performance in non-worst-case scenarios is unclear [105]. 

So, to tackle RO downsides the Pareto RO approach was recently introduced, aiming to have 

better performance in non-worst-case scenarios than RO solutions, but maintaining the plan 

outcomes regarding worst-case scenarios [105], [110]. A subtle criticism regarding RO states that 

by only focusing on the worst-case outcomes, the minimax/maximin criteria may result in 

multiple optimal solutions, and consequently it may generate Pareto inefficiencies in the 

decision process [110]. 

In 2023, a study by Ripsman et al. [105] provided a light Pareto RO method for IMRT for five 

database left-sided breast cancer patients. It assessed its clinical viability for enhancing average-

case plan quality while preserving robustness compared to plans optimised using RO and Pareto 

RO. The results of this study showed that light Pareto RO allowed increased dose drop-offs while 

generating high-quality and viable IMRT plans without sacrificing robustness guarantees or non-

worst-case performance, which are typical downsides of RO models. This article showed that it 

is not necessary to lose robustness in order to improve dose conformity in IMRT treatment 

planning if the light Pareto RO is used. 

In Fig. 10, a schematic view of the problems solved by RO planning in IMRT as well as its 

downsides are presented. 
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Fig. 10. Schematic illustration of upsides and downsides of Robust Optimisation planning in IMRT based on the information from 
[105], [106], [109], and [110]. 

 

2.5.2. Examples of RO techniques for uncertainties management in SBRT 
In SBRT, the targets are irradiated with very large ablative fractionated doses, which makes 

setup uncertainties a significant issue. Furthermore, there is a cognizant knowledge that, even 

in systems with rigid immobilisation, there is a geometrical setup uncertainty. This uncertainty 

in positioning due to internal motion or setup error may affect OARs sparing and PTV coverage 

[92]. In fact, many automated optimisation routines are available to minimise these 

uncertainties and handle issues such as small adjustments in treatment cone size or isocenter 

position to improve target coverage or avoid abutting structures [92]. In terms of treatment plan 

evaluation, is important to carefully review and analyse both the DVH for parallel organs and 

the dose displayed on the CT image volume for serial organs to ensure a safe delivery of the 

SBRT plans [92]. 

For SBRT, studies regarding RO have been conducted since early 2000s, mainly for liver, lung, 

pancreas and head and neck cancers. For example, in 2020 a comparison study between RO and 

planning target volume-based optimised plans for VMAT SBRT concerning treatment plan 

quality, robustness, complexity and accuracy was conducted by Miura et al. [111] for ten liver 

cancer patients. This study concluded there was no significant difference between the two 

optimised plans for doses in CTV and monitor units [111]. However, RO plans showed slightly 

smaller variations in the CTV doses and lower complexity and position errors than planning 

target volume-based optimised plans. Thus, RO plans for VMAT SBRT of liver cancer is feasible 

and can be useful [111]. 

FMO can be used to account for the setup uncertainties of the delivery dosage, ensuring that 

the absorbed dose to the target meets the prescription dose, by considering the geometric 

concept of PTV in SBRT treatment planning [99]. However, in lung cancer, the PTV-based plans 

for SBRT have been questioned since the PTV contains low-density lung tissue, and margins such 

as ITV and GTV have been proposed to account for the varying dynamics of the PTV in lung SBRT 

[99]. Albeit the density issue for the prescribing target is solved, the setup uncertainty issues 

remain [99]. Thus, in 2019, Liang et al. [99] suggested the first clinical study to explore a RO for 

lung SBRT planning to simultaneously address the density issue in the ITV-to-PTV margin and the 

setup uncertainty issue. This study showed that accounting for setup uncertainties in SBRT 

planning is feasible by comparing PTV-based plans with ITV-based RO plans, where the second 

exhibited lower normal lung tissue dose, lower intermediate-to-high dose spillage to the body, 

and lower integral dose while preserving the dose coverage under setup error scenarios [99]. 

Nevertheless, to ensure the clinical effectiveness of this novel approach, the authors suggest 
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that further clinical studies must be conducted [99]. Furthermore, within the same year, 

Beldford et al. [112] studied an alternative to prescribing dose to the ITV while including the 

effects of positional uncertainties in 4D SBRT for lung. This study demonstrated that employing 

a robust probabilistic approach to planning SBRT for lung treatments leads to a dose closer to 

the intended prescription in the ITV than when using a static approach and prescription to the 

PTV. Notwithstanding this progress, the results obtained from the approaches were very close 

to each other [112]. 

Leung et al.[113] analysed the potential of RO to overcome the limitations of PTV for the median 

dose prescription for lung SBRT. This study intended to provide insights into the combination of 

SBRT planning concept and prescription method, producing the optimal dosimetric quality and 

robustness in target and organ dose during treatment. Thereby, the authors tried to improve 

consistency in dose reporting and multicenter clinical outcome assessment. The conclusions 

reached showed that both PTV-based plans and RO with worst-case method presented 

inconsistencies in GTV doses. Additionally, prescription by coverage had a major impact on the 

consistency of GTV dose, and GTV median dose can effectively decrease the inter-patient and 

inter-optimisation method variability of the GTV dose. 

In 2018, Goddard et al. [114] compared proton and photon-based SBRT dose distributions 

accounting for uncertainties in target positioning and range uncertainties in order to investigate 

which was the preferable modality for high-dose hypofraction prostate cancer treatment. This 

study led to the conclusion that the treatment plans generated with IMPT and VMAT were 

similar in terms of target coverage, target conformity, and OAR sparing when range and 

Hounsfield unit uncertainties are disregarded. On the other hand, if these last two uncertainties 

are taken into account during RO, the VMAT plans outperform the IMPT plans regarding 

achievable target conformity and OAR sparing. 
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Chapter 3 Materials and Methods 
Considering the review of the literature that was done, this work aims at exploring the impact 

that uncertainty may have on SBRT treatments namely considering the potential influence of a 

reduced number of fractions. It aims also to study whether the use of PTV as the main mitigation 

measure against uncertainty is enough, and if it is capable of guaranteeing a proper CTV 

irradiation and OAR sparing. Moreover, as most of the robust optimisation approaches consider 

the use of additional structures and/or worst-case scenario analysis, this work considers a 

different way of addressing uncertainty, inspired by what is done in decision-making situations 

under uncertainty in other areas of application. In many other application areas, diversification 

is a known mitigation measure against the effects of uncertainty. One possible example, among 

others, of using diversification as a mitigation measure can be observed in the optimisation of 

financial investments, where choosing a diversified set of financial assets with different 

characteristics is known to reduce risk. This follows a Portuguese saying: "do not put all eggs 

into the same basket". Actually, diversifying investments, resources, or options has the potential 

to mitigate overall risk, rather than concentrating everything in a single option. This helps 

protect against losses from any one option failing. In this work, instead of considering treatment 

plans that are kept constant throughout the total treatment duration, a diversified treatment 

approach is tested where a different treatment plan is considered for each treatment fraction.  

Two computational experiments were set. In a first computational experiment, to assess the 

potential impact of the small number of fractions in SBRT treatment regarding the inherent 

uncertainty that exists, namely in terms of patient positioning, IMRT treatments with varying 

numbers of fractions are considered and assessed explicitly taking uncertainty into account. In 

these first experiments, different number of irradiation directions are also tested, to understand 

if the number of beam angles can have an influence on the impact of uncertainty. Our hypothesis 

was that a higher number of fractions would contribute to decrease the impact of uncertainty, 

meaning that special care must be taken when planning SBRT treatment plans due to the 

reduced number of fractions. We also hypothesised that an increased number of beams would 

result in more robust treatment plans.  

In the second computational experiment, we consider prostate cancer cases to test the 

diversified treatment planning approach. A total of five cases were considered as a proof of 

concept, considering SBRT treatments with five daily fractions.  

All the computational simulations conducted were performed using matRad, an open-source 

software for radiation treatment planning of intensity-modulated photon, proton, and carbon 

ion therapy [115]. This software was developed for academic purposes and is entirely written in 

MATLAB [115]. It mimics the behaviour of a clinical TPS. It allows us to develop our own 

algorithms and to include them both for treatment planning and treatment assessment. All the 

work developed in this dissertation was programmed in MATLAB, version R2023b, and 

incorporated in matRad. 

The entire statistical analyses were performed using IBM® SPSS® Statistics software, version 

29.0.0.0. 
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3.1. Preliminary Study: studying the impact of uncertainty when varying the 
number of fractions and the number of irradiation directions 
In this first computational study, a case of head-and-neck cancer was chosen to analyse the 

impact of the number of beams and fractions in a RT treatment plan robustness with intensity-

modulated photons. The justification for the use of a head-and-neck case when the final 

objective is to test robust approaches for prostate cancer treatment plans has to do with the 

expected behaviour of the treatment plans in both cases. It is expected that impacts derived 

from the use of different sets of beam angles are more noticeable in a head-and-neck case that, 

most of the time, require 5 to 11 beams than in a prostate case that seldom is treated with no 

more than 5 angles. 

 

3.1.1. Materials 
This preliminary study used a head-and-neck cancer case available in the matRad examples 

library. 

Since head-and-neck cancer cases have several OARs, their treatment planning procedure is 

usually very complex. This complexity makes these cases ideal subjects for studying the impact 

of angles in RT treatment planning. 

In this cancer case, seven structures were considered: brainstem, left and right parotids, skin, 

spinal cord, PTV63 and PTV70. The first five structures mentioned are OARs, while the last two 

are PTVs. In this case, one PTV has a medical prescription of 63 Gy and the other 70 Gy, named 

PTV63 and PTV70, respectively. 

Also, a variety of dose metrics were contemplated, namely 𝐷98, 𝐷2, 𝐷mean, and 𝐷max, in order 

to ensure the dose prescription is delivered effectively. Prescribed and tolerance doses 

considered in this study are presented in Table 1 (based on [56]). 

Table 1. Prescribed and tolerance doses for a head-and-neck cancer patient in the preliminary study. 

Structure Dose constraints (Gy) 

Brainstem 𝐷𝑚𝑎𝑥 ≤ 54  

Left Parotid 𝐷𝑚𝑒𝑎𝑛 ≤ 26  

Right Parotid 𝐷𝑚𝑒𝑎𝑛 ≤ 26  

PTV63  𝐷95 ≥ 61.7 

PTV70 𝐷𝑚𝑎𝑥 ≤ 74.9 𝐷95 ≥ 68.6 

Skin 𝐷𝑚𝑎𝑥 ≤ 80  

Spinal Cord 𝐷𝑚𝑎𝑥 ≤ 45  
 

As can be seen in Table 1, in this cancer case, two distinct structures were considered as PTVs, 

each one with a different dose prescription level. The PTV70 has the higher prescribed dose (70 

Gy) while the PTV63 has the lower prescribed dose (63 Gy). The considered OARs are the ones 

that can be significantly affected by RT treatments, and that determine the main compromises 

that must be made between sparing of OAR and proper irradiation of the PTVs. Besides these 

structures, the skin is treated as a unique structure and refers to the remaining surrounding 

healthy tissue. All the delineated structures considered in this computational test are presented 

in Fig. 11. 
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(a) 

 
(b) 

Fig. 11. Display of the delineated structures in the preliminary study computational test in matRad GUI from the planes: (a) axial, 
(b) coronal. 
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3.1.2. Methods 
In order to understand the impact of uncertainty when a different number of irradiation 

directions is used, treatment plans with five, seven, and nine coplanar equidistant beam 

directions were considered. The iterative algorithm developed in [56] and described in section 

2.3.2.2 was used in this computational simulation to solve the FMO problem automatically. As 

already explained, only the first phase of FIS is used. Therefore, in this study, the weights and 

bounds are automatically changed for both PTVs and OARs until an admissible plan is achieved, 

complying with all the constraints defined by the medical prescription.  

The initial values of lower and upper bounds and weights for each structure were given following 

the results in [56] and are shown in Table 2. 

Table 2. Initial parameters for each structure’s bounds and weights used in the preliminary study. 

Structure 
Bound Weight 

Upper Lower Upper Lower 

Brainstem 54 0 5 5 

Left Parotid 26 0 1 1 

Right Parotid 26 0 1 1 

PTV63 68 59.85 5 5 

PTV70 75 66.5 5 5 

Skin 80 0 1 1 

Spinal Cord 45 0 5 5 
 

The initial parameters (weights and bounds) of the initial FMO model do not affect the quality 

of the final solution once the FIS adjusts them. Nevertheless, according to [17], considering this 

initial set of parameters reduces computational time to yield an acceptable clinical treatment 

plan. 

As equidistant coplanar beam sets are the most commonly used in clinical practice, this 

simulation tested three different sets of equidistant coplanar angles with five, seven, and nine 

beam directions. Thereby, this study used the following sets: 

• 9 angles: 0°, 40°, 80°, 120°, 160°, 200°, 240°, 280°, 320°. 

• 7 angles: 0°, 52°, 103°, 154°, 205°, 256°, 307°. 

• 5 angles: 0°, 72°, 144°, 216°, 288°. 

 

The treatment plan calculated for each one of the three sets of angles was evaluated through 

Monte Carlo simulations. These simulations allow the analysis of the dosimetric results obtained 

when uncertainty is explicitly considered.  

In this case, Monte Carlo simulations were performed for each one of the three sets of angles 

with 50 iterations. Moreover, to understand the impact of the number of fractions, 1, 3, 5, 10, 

and 15 fractions are considered. 

Uncertainty in treatment delivery can cause deviations between the planned and delivered dose 

distributions. In the Monte Carlo simulations, only positioning uncertainties are being 

considered, modelled as random variables following a normal distribution. The evaluation of 

each plan involved generating 50 scenarios, each comprising the defined number of fractions to 

represent the entire treatment duration. This approach allowed for the inclusion of both setup 

and daily positioning errors. Positioning uncertainties were simulated by shifting the isocenter 

position, assuming a normal distribution with a mean of zero and a standard deviation of 2.5 
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mm [116]. To ensure realistic scenarios, the maximum allowable positioning deviation was set 

to 5 mm [117]. 

Also, four dosimetric indicators of interest were calculated for each iteration of the simulation, 

namely 𝐷max, 𝐷mean, 𝐷98, and 𝐷2. These dosimetric indicators were calculated considering the 

dose deposited in each one of the voxels of the respective structures during each one of the 

treatment fractions. Lastly, a DVH for all the structures was created for all the iterations. 

The Monte Carlo simulations generate data that were analysed statistically. The comparison 

between means was made with ANOVA tests, while the comparison of variances used Levene’s 

tests. 

The statistical tests can be divided into two parts. First, the means and variances of the different 

fractions were compared for the same number of beam directions, considering 𝐷98 for PTV70, 

𝐷max for the spinal cord, and 𝐷mean for the right parotid, the structures more demanding for 

this particular case. Secondly, the means and variances of the different beam directions were 

compared for the same number of fractions, considering 𝐷98  for PTV70, 𝐷max  for the spinal 

cord, and 𝐷mean for the right parotid. 

The results obtained from the statistical analysis are further explored in Chapter 4. 

 

3.2. New approach for SBRT treatment planning and delivery 
The preliminary study can help us to acknowledge that uncertainties have a greater impact when 

the number of fractions decreases and that an increased number of irradiation directions would 

result in more robust treatment plans. The main preliminary hypotheses of this dissertation can 

support the need for special care when planning SBRT treatment plans. Therefore, new 

approaches for reaching SBRT treatment plans that behave well under uncertainty are of the 

utmost importance. 

In this computational study, a new approach for reaching plan robustness in SBRT is tested. The 

new approach consists of changing the treatment plan in each one of the different treatment 

fractions. In other words, the set of treatment plan angles used in each daily treatment fraction 

is changed, so there are five sets of angles to use in five fractions of a SBRT prostate cancer 

treatment.  

This study intends to evaluate whether or not a diversification strategy, accomplished by the 

change of plans in each fraction, contributes to increase treatment plan robustness. To 

accomplish that, the new approach will be compared with the results obtained when just one of 

the plans is used throughout the whole treatment. 

 

3.2.1. Materials 
This study used five different prostate cancer cases, available in the MATLAB library of cases and 

also taken from the “Fully Automated Radiotherapy Treatment Planning Challenge” [118].  

The medical prescription considered was the same for all cases. The structures considered were 

rectum, left and right femoral heads, bladder, body, CTV, and PTV. The first five structures 

mentioned are OARs, while the last two are volumes to treat.  PTV represents the usual volume 

to treat planning structure, that tries to account for uncertainty. CTV will be used when assessing 

the quality of the treatment plans under uncertainty, since the definition of the PTV tries to 

guarantee that the CTV is properly irradiated during treatment deliver. CTV is also going to be 
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assessed considering homogeneity, which is a common concern in SBRT treatment planning. 

Table 3 presents the medical prescription. 

Table 3. Prescribed and tolerance doses used for prostate cancer cases. 

Structure Dose constraints 

Rectum 𝐷50 ≤ 20  [Gy] 𝐷90 ≥ 36  [Gy] 

Right Femoral Head 𝑉20 ≤ 0.065  [%]  

CTV 𝐷𝑚𝑎𝑥 ≤ 36.8  [Gy] 𝐷98 ≥ 35  [Gy] 

PTV 𝐷𝑚𝑎𝑥 ≤ 42  [Gy] 𝐷95 ≥ 34.3  [Gy] 

Bladder 𝐷𝑚𝑎𝑥 ≤42  [Gy]  𝐷50 ≤ 20  [Gy] 

Body 𝐷𝑚𝑎𝑥 ≤ 42  [Gy]   

Left Femoral Head 𝑉20 ≤ 0.065  [%]  
 

To exemplify the delineation of all the considered structures, Fig. 12 depicts the structures for 

one of the prostate cancer cases. 

(a) (b) 

 
(c) 

Fig. 12. Delineated structures for one prostate cancer case from the viewing planes: (a) axial; (b) sagittal; (c) coronal. 
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3.2.2. Methods 
For each one of the cases, five treatment plans considering five equidistant angle configurations 

were automatically calculated using the same FIS-based FMO procedure already described.  

Table 4 presents the initial values of lower and upper bounds and weights for each structure 

used in the new approach. 

Table 4. Initial parameters for each structure’s bounds and weights used in the new approach. 

Structure 
Bound Weight 

Upper Lower Upper Lower 

Body 30 0 5 1 

Left Femoral Head 0.05 0 5 1 

Right Femoral Head 0.05 0 5 1 

Rectum 20 0 5 5 

Bladder 20 0 50 100 

CTV 35 35 250 2000 

PTV 35 35 250 2000 
 

Then, Monte Carlo simulation with 50 iterations was used so that six different treatment delivery 

alternatives are compared: each one of the five equidistant angle configurations are tested, with 

the treatment plan being always the same during the whole treatment; a new approach where 

in each day a different treatment plan is delivered. This means that in day 1, the treatment plan 

using the first equidistant angle configuration is delivered, in day 2 the treatment plan using the 

second equidistant angle configuration is delivered, and so on until day 5 (last fraction). 

The five equidistant angle configurations are: 

• Plan 1: 0°, 72°, 144°, 216°, 288°; 

• Plan 2: 14°, 86°, 158°, 230°, 302°; 

• Plan 3: 28°, 100°, 172°, 244°, 316°; 

• Plan 4: 42°, 114°, 186°, 258°, 330°; 

• Plan 5: 56°, 128°, 200°, 272°, 344°. 

It is important to note that, for each cancer case, in order to be able to compare the six 

treatment plan approaches, the random number series that are used in the Monte Carlo 

simulations are exactly the same for each case. This is to assure that any differences that are 

found are not due to differences in the random number generation.  

For each case and approach to be tested, 50 iterations where considered, with each iteration 

corresponding to a whole treatment (5 fractions).  

In each iteration, eight dosimetric indicators of interest were saved, namely 𝐷max, 𝐷mean, 𝐷98, 

𝐷95, 𝐷90, 𝐷50, 𝐷2, and 𝑉20. These dosimetric indicators were calculated considering the dose 

deposited in each one of the voxels of the respective structures during each one of the 

treatment fractions. 

The statistical analysis consisted of calculating the mean value of each dose constraint and dose 

homogeneity index for each structure. As each patient is only treated once, considering the total 

number of fractions that constitute the treatment, it is also important to understand how many 

times, out of the 50 treatments simulated, are the medical prescription constraints being 

respected. 

The results obtained from the analysis made are detailed in Chapter 4. 
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Chapter 4 Results and Discussions 
This chapter will present the main results obtained through the computational experiments 

made and will also discuss these results. 

All the values in this chapter’s tables have been rounded according to the following rule: the 

values should be presented with four significant figures. Furthermore, for rounding purposes, 

when the final digit is exactly 5, the preceding digit is only incremented if it is an odd number. 

 

4.1. Preliminary Study: studying the impact of uncertainty when varying the 
number of fractions and the number of irradiation directions 
The impact of the number of fractions was assessed considering a fixed angle configuration and 

using Monte Carlo simulation. An equidistant five angle configuration was chosen. Fig. 13 depicts 

the results obtained considering 50 Monte Carlo iterations.  

 

 
               (a) 

 
                  (b) 

 
                 (c) 

Fig. 13. Boxplots of the dosage values considering a fixed 5-angles configuration for each number of fractions for (a) PTV 70, (b) 
Spinal cord, (c) Right-side parotid. 

From the observation of Fig. 13, it is clear that an increase in the number of fractions decreases 

the range of dosimetric measures obtained for the three structures considered. This range can 

be considered as a metric of robustness: a smaller variance in these values show a better 

behaviour under uncertainty, so it corresponds to more robust treatment plans. There are 

significant differences between the means for the PTV70 and the Spinal Cord (p<0.001) where 
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more fractions imply better results. There are significant differences between the variances for 

all structures (p<0.001) where more fractions imply also better results, i.e., more robust. 

A descriptive analysis was made for each one of the three structures, allowing for the knowledge 

of the variation of the standard deviation and 95% confidence intervals for the dosage for each 

number of fractions. These values are compiled in Table 5. 

Table 5. Descriptive statistics of the dosage values considering a fixed 5-angles configuration for each number of fractions for PTV 
70, Spinal cord and Right-side parotid. 

Structure 
Number of 
Fractions 

Standard 
Deviation 

Standard 
Error 

95% Confidence Interval for 
Mean 

Lower 
Bound 

Upper 
Bound 

PTV 70 

1 1.847 0.2612 64.72 65.77 

3 1.061 0.1500 65.70 66.30 

5 0.6837 0.09669 66.16 66.55 

10 0.6039 0.08541 66.18 66.52 

15 0.3922 0.05546 66.26 66.48 

20 0.2424 0.03428 66.56 66.70 

30 0.3223 0.04558 66.54 66.72 

Spinal Cord 

1 2.418 0.3419 47.14 48.52 

3 1.214 0.1716 46.22 46.91 

5 0.8336 0.1179 45.61 46.08 

10 0.7047 0.09966 45,64 46,04 

15 0.5266 0.07447 45.56 45.86 

20 0.5091 0.07200 45.58 45.87 

30 0.4268 0.06036 45.59 45.84 

Right-side 
Parotid 

1 3.190 0.4512 23.00 24.81 

3 1.316 0.1862 23.09 23.84 

5 1.408 0.1992 23.28 24.08 

10 1.104 0.1561 23.52 24.14 

15 0.7924 0.1120 23.56 24.02 

20 0.5923 0.08377 23.28 23.61 

30 0.5572 0.07881 23.30 23.62 
 

As mentioned in the introduction of this chapter, the second part of this study’s data consisted 

of fixing the number of fractions and varying the number of angles. Thus, the boxplots in Fig. 14 

show the dosage variation as a function of the number of angles for the three studied structures 

when the treatment plan uses fifteen fractions. Equidistant angle configurations are being 

considered, beginning at 0o. 
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                                (a) 

 
                               (b) 

 
                           (c) 

Fig. 14. Boxplots for fifteen fractions of the dosage values for each number of angles for (a) PTV 70, (b) Spinal cord, (c) Right-side 
parotid. 

 

From the observation of Fig. 14, it is clear that an increase in the number of angles improves 

target coverage but not necessarily organ sparing. There are significant differences between the 

means for the PTV70 (p<0.001), the Spinal Cord (p<0.001) and the Right-side Parotid (p<0.01) 

where more angles imply better target coverage but not necessarily better organ sparing. There 

are significant differences between the variances only for spinal cord (p<0.001). 

A descriptive analysis was made for each one of the three structures, allowing for the knowledge 

of the variation of the standard deviation and 95% confidence intervals for the dosage for each 

number of angles. These values are compiled in Table 6. 
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Table 6. Compilation of the values obtained for each structure’s angles for fifteen fractions of the standard deviation, standard 
error, and 95% confidence interval. 

Structure 
Number of 

Angles 
Standard 
Deviation 

Standard 
Error 

95% Confidence Interval for 
Mean 

Lower 
Bound 

Upper 
Bound 

PTV 70 

5 0.3922 0.05546 66.26 66.48 

7 0.2988 0.04226 67.10 67.27 

9 0.2829 0.04000 67.12 67.28 

Spinal Cord 

5 0.5266 0.07447 45.56 45.86 

7 0.7999 0.1131 45.20 45.66 

9 0.5284 0.07472 45.86 46.16 

Right-side 
Parotid 

5 0.7924 0.1120 23.56 24.02 

7 0.8478 0.1199 21.54 22.02 

9 0.7362 0.1041 22.13 22.55 

Lastly, this study also assessed the variation in the delivered dosage as a function of the number 

of angles for the three studied structures when the treatment plan uses five fractions. This 

examination was conducted to support the results of the second examination. The obtained 

results are compiled in Fig. 15. 

 
                                    (a) 

 
                                   (b) 

 
                                   (c) 

Fig. 15. Boxplots for five fractions of the dosage values for each number of angles for (a) PTV 70, (b) Spinal cord, (c) Right-side 
parotid. 
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From the observation of Fig. 15, it can be seen that an increase in the number of angles 

decreases the range of dosimetric measures obtained for the three structures considered, in 

particular for spinal cord that shows significant differences between the variances (p<0.001) 

where more angles imply better results, i.e., more robust. There are significant differences 

between the means for the PTV70 (p<0.001), the Spinal Cord (p<0.001) and the Right-side 

Parotid (p<0.01) where more angles imply better target coverage but not necessarily better 

organ sparing.  

Then, a descriptive analysis was made for each one of the three structures, allowing for the 

knowledge of the variation of the standard deviation and 95% confidence intervals for the 

dosage for each number of angles. These values are compiled in Table 7. 

 

Table 7. Compilation of the values obtained for each structure’s angles for five fractions of the standard deviation, standard error, 
and 95% confidence interval. 

Structure 
Number of 

Angles 
Standard 
Deviation 

Standard 
Error 

95% Confidence Interval for 
Mean 

Lower 
Bound 

Upper 
Bound 

PTV 70 

5 0.6837 0.09669 66.16  66.55  

7 0.7046 0.09965 66.42  66.82 

9 0.4892 0.06919 66.72 67.00  

Spinal Cord 

5 0.8336 0.1179 45.61 46.08 

7 1.528 0.2162 45.17 46.04  

9 0.7716 0.1091 46.38 46.82 

Right-side 
Parotid 

5 1.408 0.1992 23.28 24.08 

7 1.655 0.2341 21.64 22.58 

9 1.372 0.1940 21.71 22.49 
 

Thereby, with the two statistical test results and the observation of both Fig. 15 and Table 7, it 

is possible to state that results are in line with the results obtained for fifteen fractions. 

In summary, the initial hypothesis was corroborated since the first study results showed that 

increasing the number of fractions leads to higher robustness and reveals better or equal 

sparing. Thus, the impact of uncertainties decreases when the number of fractions increases.  

Regarding the second hypothesis, increasing the number of angles does not always result in 

more robust treatments. For the PTV70, increasing the number of angles led to better structure 

coverage and equal robustness. On the other hand, the results for the OARs do not present a 

specific relation between the increase in the number of angles and the increase in robustness 

or sparing. This may mean that as important as the number of angles used is what are the 

irradiation directions chosen. 

Therefore, the results obtained from these examinations support the need for novel treatment 

planning robust approaches when a reduced number of fractions (and angles) is used.  
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4.2. New approach for SBRT treatment planning and delivery 
Five different prostate cancer cases were considered to understand the importance of 

uncertainty and its impact on the quality of the treatment delivered. For each one of these 

cancer cases, five treatment plans were created, all of them complying with the medical 

prescription. Each one of these plans considered a different equidistant five angle configuration. 

These five plans were compared with a different approach that tested the role of diversification 

as a measure to deal with uncertainty. In this new approach, a different plan is considered in 

each fraction: five fractions will be delivered with five different treatment plans, each one 

corresponding to one of the calculated equidistant plans. 

When using Monte Carlo simulation to assess a given treatment plan then, instead of a DVH with 

a single line for each structure, as presented in Fig. 5, a DVH with a set of lines (one for each 

simulation performed) is obtained, as illustrated in Fig. 16. 

 

Fig. 16. Example of one of the DVHs obtained in one of the tested treatment plans for prostate cancer case 1. 

 

The three more challenging structures were chosen for this study, more specifically, the CTV, 

the body, and the rectum. Each one of the structures was analysed regarding its dose constraint 

parameters. Comparison of the six treatment approaches will consider what is happening with 

these three structures for which the medical prescription is not totally fulfilled in all the 

conducted simulations. This means that its being compared 𝐷98  and 𝐷𝑚𝑎𝑥  for CTV, 𝐷𝑚𝑎𝑥  for 

body and 𝐷50 for the rectum. 

Graphs were created to analyse the data of each case for each one of the six treatment delivery 

alternatives (as mentioned in 3.2.2). These graphs show the percentage of times the rectum 

complies with 𝐷50 as a function of the percentage of times that the CTV complies with 𝐷98.  

The results from the six scenarios were obtained consider 50 Monte Carlo iterations. 
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All the statistical significances in this section were calculated through Wilcoxon Signed-Rank 

Test, since median values are being compared with a reference value. 

 

4.2.1. Prostate cancer case 1 
For prostate cancer case 1, the percentage of compliance with the dose prescription for each 

one of the six approaches is presented in Fig. 17. 

 

Fig. 17. Percentage of scenarios where the treatment delivered complied with the medical prescription for cancer case 1. 

 

By analysing Fig. 17, the OARs constraints are all being met in 100% of the scenarios considered, 

except for the treatment plan with the first equidistant angle configuration. Considering the CTV, 

𝐷98 is above the defined threshold for at least 95% of the scenarios, and this value is 100% for 

three treatment plans: the new approach being tested and equidistant configurations 3 and 4. 

Furthermore, only the new approach can respect the maximum dose admissible for the CTV in 

100% of the scenarios. 

Therefore, for cancer case 1, it is possible to conclude that the new approach is the best one, 

with all the constraints fully fulfilled and obtaining the best CTV homogeneity index value 

(1.026426 which is the smaller index between all the scenarios).  

Additionally, this cancer case obtained the best results under uncertainty out of the five cases. 

 

4.2.2. Prostate cancer case 2 
Fig. 18 presents the percentage of compliance with the dose prescription for each one of the six 

approaches for the prostate cancer case 2.  

Considering the results obtained with case 2, it is much more difficult to choose one single 

approach as being the best one, and the multiobjective nature of the treatment planning 

optimisation becomes clear. Analysing Fig. 18 and considering the values  𝐷98 for the CTV and 

𝐷50 for the rectum, it can be seen that the achieved values for the new approach, equidistant 3, 

equidistant 4 and equidistant 5, are not immediately comparable, as they present different 

compromises between the two objectives. 

0%

20%

40%

60%

80%

100%

D98 - CTV DMAX - CTV DMAX - Body D50 - Rectum

P
er

ce
n

ta
ge

 o
f 

co
m

p
lia

n
ce

 w
it

h
 t

h
e 

m
ed

ic
al

 p
re

sc
ri

ti
o

n

Dose constraints parameters

Percentage of dose compliance for each structure 
parameters

new approach equidistant 1 equidistant 2

equidistant 3 equidistant 4 equidistant 5



50 
 

It is important to note that, equidistant 5 reached 0% in both parameters, 𝐷max for the CTV and 

𝐷50 for the rectum. 

 

 

Fig. 18. Percentage of scenarios where the treatment delivered complied with the medical prescription for cancer case 2. 

 

Once again, the new approach achieved the best CTV homogeneity index value, 1.035981, the 

smaller index between all the six scenarios.  

The tradeoff between CTV coverage and rectum sparing is the most difficult and important to 

obtain and is analysed in Fig. 19. 

 

 

Fig. 19. Percentage of times complying with D50 for the rectum and D98 for CTV in case 2 (in the range of 0 to 1). 
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Considering Fig. 19, equidistant 5 is the approach that better irradiates the CTV but does not 

perform well when it comes to preserving the rectum. It has not been able to respect the defined 

medical prescription threshold in any of the scenarios considered. On the other hand, the new 

approach is the second best in terms of the number of times the desired value for CTV 𝐷98 was 

achieved, satisfying the medical prescription minimum threshold value 74% of the times. The 

median value obtained is significantly greater than the threshold (p<0.00001). It is also the 

approach presenting the best homogeneity index value. In terms of preserving the rectum, it 

only complies with the medical prescription 28% of the times but the mean value obtained, 

although statistically greater than 20Gy, is 20.39Gy. The median values obtained for the 

equidistant approach 3 and 4 are not significantly greater than 35Gy (p=0.999 and p=0.2242, 

respectively). 

Looking at the mean value of the deviations from the medical prescription when it is not being 

fulfilled, the new approach presents the best results for the maximum dose deposited in the 

body and in the CTV. The mean deviation in terms of 𝐷98 is only 0.11 Gy. Regarding 𝐷50 rectum, 

it behaves much better than equidistant 5, which presents a mean deviation of 1.13 Gy, whilst 

the new approach has a mean deviation of 0.63 Gy.  

 

4.2.3. Prostate cancer case 3 
Fig. 20 presents the percentage of compliance with the dose prescription for each one of the six 

approaches for prostate cancer case 3. 

 

 

Fig. 20. Percentage of scenarios where the treatment delivered complied with the medical prescription for cancer case 3. 

 

Considering the results obtained with case 3 and Fig. 20, it is possible to observe that the new 

approach is again one of the best approaches, although the simulation results are not favourable 

for any of the approaches considered when it comes to CTV irradiation since, for 𝐷98, both 

equidistant 2 and 3 treatment plans have a compliance percentage of 0%, followed by 8% with 

plan equidistant 1, then the new approach and equidistant 5 have a compliance percentage of 

14%, and finally the higher percentage is for equidistant 4 with a value of 16%. 
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The tradeoff between CTV coverage and rectum sparing for case 3 is presented in Fig. 21. 

 

Fig. 21. Percentage of times complying with D50 for the rectum and D98 for CTV in case 3 (in the range of 0 to 1). 

 

Analysing Fig. 21, it is possible to state that the new approach and equidistant approaches 2 and 

4 are non-comparable when looking at the number of times the respective thresholds are being 

fulfilled in the simulations for 𝐷98 for the CTV and 𝐷50 for the rectum.  

On the other hand, the new approach presents the second-best CTV coverage and the best 

homogeneity index value (equal to 1.084811). It is also the second best preserving both the 

rectum and the body. It is also the second best, considering the worst value obtained for both 

CTV coverage and 𝐷50 rectum. 

 

4.2.4. Prostate cancer case 4 
Fig. 22 presents the percentage of compliance with the dose prescription for each one of the six 

approaches for prostate cancer case 4. 

Considering case 4, the best approach seems to be equidistant 4 which presents better CTV 

coverage and OAR sparing when analysing the simulations’ results. Actually, equidistant 4 

presents a compliance of 100% for both OARs and 𝐷max for the CTV, meanwhile its 𝐷98 for the 

CTV is 50%. Nevertheless, it is the best value obtained for 𝐷98 in this simulation. Furthermore, 

the best homogeneity index is given by equidistant 4 with a value of 1.080445. 

Nevertheless, the new approach presents the second-best homogeneity index value (1.085089), 

and it is one of the three best approaches: it is clearly surpassed by the solution equidistant 4, 

but it appears right after, being difficult to compare with equidistant 1.  
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Fig. 22. Percentage of scenarios where the treatment delivered complied with the medical prescription for cancer case 4. 

 

These facts are further highlighted in Fig. 23, where approach equidistant 4 is clearly the best 

compared with the other five when looking at the number of times the respective thresholds 

are being fulfilled in the simulations for 𝐷98 for the CTV and 𝐷50 for the rectum. Also, the new 

approach presents to be the second-best regarding rectum 𝐷50 threshold fulfil and the third-

best in CTV coverage, being surpassed by equidistant 1 in this last parameter. 

 

 

Fig. 23. Percentage of times complying with D50 for the rectum and D98 for CTV in case 4 (in the range of 0 to 1). 
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4.2.5. Prostate cancer case 5 
For prostate cancer case 5, the percentage of compliance with the dose prescription for each 

one of the six approaches is presented in Fig. 24. In this case, all approaches achieved the value 

of 100% for 𝐷max of both body and CTV. Regarding CTV coverage, the best result was obtained 

with the new approach due to its higher value in CTV 𝐷98 (38%). In contrast, its rectum-sparing 

value is the fifth best, with a value of 86%, which nevertheless is an excellent result. Thus, 

analysing best OARs sparing, it was achieved with approach equidistant 5 since it achieved the 

highest percentage of 98% for 𝐷50 of the rectum. Despite presenting the best results for OARs 

sparing, the value for CTV 𝐷98 of equidistant 5 is the fourth best with a value of 22%. 

Additionally, the new approach presents the best homogeneity index value (1.018355). 

 

 

Fig. 24. Percentage of scenarios where the treatment delivered complied with the medical prescription for cancer case 5. 

 

For a better understanding of case 5, Fig. 25 can also be observed. In this case, and once again, 

the new approach is one of the best alternatives when looking at the compromises between PTV 

coverage and rectum sparing.  

Thus, this case shows that, once again, the choice of the approach will be highly dependent on 

the patient-specific multiobjectives of the treatment. 
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Fig. 25. Percentage of times complying with D50 for the rectum and D98 for CTV in case 5 (in the range of 0 to 1). 
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Chapter 5 Conclusions and Future Work 
 

5.1. Conclusions 
One very important conclusion of the experimental work that was developed is that the use of 

PTV as the main mitigation measure against uncertainty is not sufficient to guarantee that the 

desired doses are indeed being delivered. In almost all cases it was not possible to provide an 

adequate irradiation of the CTV or to appropriately spare the OARs, being the delivered radiation 

doses statistically different from the prescribed doses and doses that were achieved during 

treatment planning. 

So, it is worth it to assess treatment plans not only looking at a single DVH, but also considering 

simulations where the real impact of the uncertainty can be assessed. 

It is also clear from these computational results that beam angle choice is very important and 

can be interpreted as a measure of treatment plan robustness. There are clearly some angle 

configurations that are less prone to uncertainty impact. 

The diversification strategy that was tested shows some interesting and promising results that 

need further exploration in future works. It is not the best one for all the cases tested, but it is 

always among the best alternatives. Actually, it appears as a valid alternative in four out of the 

five cases when looking at the compromise between CTV coverage and rectum sparing, which 

does not happen with any other approach. It is also the best approach considering the average 

homogeneity index in four out of five cases.  

Looking at the situations where the medical prescription is not being respected, the new 

approach always presents the best average deviation from the prescribed value for the 

maximum CTV dose and maximum dose to the body. 

With the results presented and discussed in the previous chapter, the new approach is always 

one of the best alternatives. Nonetheless, in several cases, a final balance between the 

treatment’s objective and the patient’s specificities is necessary to choose the adequate 

treatment planning approach. 

 

5.2. Limitations of this work 
The experimental studies that were conducted present several limitations that must be 

mentioned and that limit the generalisation of the results. Only five prostate cancer cases were 

considered, which is definitely not enough for these results to be generalisable. Even so, there 

is a clear trend in the results obtained, that show that diversification can indeed be a tool that 

deserves further studies. It is also clear that care must be taken when considering only PTV as a 

mitigation strategy because, most of the times, it will not be sufficient to assure a proper CTV 

coverage. This is a valid conclusion even considering the limited number of cases tested since it 

would be sufficient to have one such case to conclude that PTV is not enough. 

During treatment planning, PRV delineated structures were not considered. The consideration 

of these structures could improve the results obtained for OAR sparing when uncertainties were 

explicitly considered in the simulations performed. 

Only uncertainties related with patient position were taken into consideration. 
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5.3. Future Works 
The code used for the simulations worked well for the first phase of the automated FMO FIS 

method, however the total time for one simulation was too long, sometimes needing between 

8 and 20 days to finish all the Monte Carlo iterations for one simulation. Thus, one main aspect 

in future works is to optimise the code used in this dissertation’s computational simulations.  

Additionally, in terms of treatment planning automation, it would be interesting to compute the 

second phase of the automated FMO FIS method and analyse whether it would bring advantages 

in target coverage or organ sparing. It would be interesting to understand the impact that 

further improvements in OAR sparing and PTV coverage during the treatment planning stage 

can have when uncertainty is explicitly taken into account in treatment assessment. 

The new approach presented in this dissertation brought excellent results in terms of the 

homogeneity index and it is always one of the best choices as a treatment planning approach, 

considering the multiobjective nature of treatment assessment. Thus, in future works, it would 

be advisable to do further tests with this new approach in other SBRT cancer cases where the 

homogeneity index of the CTV is highly relevant, such as lung, pancreatic, and liver cancers. It 

would also be interesting to perform beam angle optimisation and try other diversification 

measures considering different beam angle configurations other than the equidistant solutions. 

Besides that, it would be interesting to compare the results obtained with the new approach for 

photon and proton SBRT to verify if there is a clear advantage in using one of them. 
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