

Matheus D'Eça Torquato de Melo

MODELS FOR AVAILABILITY AND

SECURITY EVALUATION OF

TIME-BASED VIRTUAL MACHINE

MIGRATION AS MOVING TARGET

DEFENSE

PhD Thesis in Informatics Engineering, Architectures, Networks and

Cybersecurity, supervised by Professor Marco Paulo Amorim Vieira, and

presented to the Department of Informatics Engineering of the Faculty of

Sciences and Technology of the University of Coimbra.

December 2023

Models for availability and
security evaluation of

time-based Virtual Machine
migration as Moving Target

Defense

Matheus D’Eça Torquato de Melo
mdmelo@dei.uc.pt

Doctoral Program in Informatics Engineering, Architectures, Networks and
Cybersecurity

PhD Thesis submitted to the University of Coimbra

Advised by Professor Marco Paulo Amorim Vieira

December, 2023

Models for availability and
security evaluation of

time-based Virtual Machine
migration as Moving Target

Defense

Matheus D’Eça Torquato de Melo
mdmelo@dei.uc.pt

Programa de Doutoramento em Engenharia Informática, Arquiteturas, Redes e
Cibersegurança

Tese de Doutoramento apresentada à Universidade de Coimbra

Orientado pelo Professor Doutor Marco Paulo Amorim Vieira

Dezembro, 2023

This work was partially supported by the Portuguese Foundation for Science
and Technology (FCT) under PhD grant SFRH/BD/146181/2019 and project
grants nº 777154, POCI-01-0247-FEDER-039676, and POCI-01-0247-FEDER-
045907.

“All models are wrong,
but some are useful.”

- George Box

Acknowledgments

”Thank God for giving me the strength to get here.”

I am grateful to all the people who directly or indirectly helped me to reach the
final step of this research. During the last years, I faced various problems that I
could not overcome without your help. Thank you!

The first person I would like to thank is Prof. Marco Vieira. Marco, as you can
tell, my Ph.D. journey was not the most linear one. Thanks for your patience and
support during the difficult times and for your guidance and brilliant ideas during
the most productive ones. Thanks for the verbal and non-verbal advice you gave
me. I hope to continue learning a little more from your experience in the next
years. I can tell you that coming to Coimbra to work with you was worth it.

I would like to thank our collaborator, Prof. Paulo Maciel, for being available to
help in the modeling process and providing insights and directions.

I would like to thank all my colleagues at CISUC - Bruno de Jesus, Charles
Gonçalves, David Lima, José Pereira, Magnus Cruz, and João Campos. A spe-
cial thanks to the Software and Systems Engineering (SSE) group members, who
warmly received me as a Ph.D. student. I would also like to thank Prof. Henrique
Madeira for the valuable moments of conversation.

Thanks also to my colleagues at IFAL Campus Arapiraca. Thanks for under-
standing my unavailable state during the Ph.D. time.

I would also like to mention, on behalf of all my friends who cheered me up during
the difficult times, Maria, Josemaria, Francisco, Edeilson, and Luís Júnior. Your
support was crucial.

I want to thank my parents, Torquato and Isabel, my sister Isabela, and my
brother (and best friend) Lucas.

Finally, I would also, and above all, like to thank my family. First, my wife,
Carla. I can not express enough how grateful I am for your help and support.
Thanks for maintaining continuous love and encouragement. My daughters Maria
Clara, Maria Cecília, and Maria Carol whose love, hugs and smiles are the best
rewards.

xi

Abstract

Cybersecurity is a top concern in modern virtualization infrastructures and cloud
computing. The growth of sophisticated cybersecurity threats imposes a heavy
burden on the current defensive mechanisms. A skilled and motivated attacker
gathers information from the system before launching an attack and, with the
knowledge acquired, boosts the attack success probability. At the same time,
defenders should protect the system from all possible threats. This unbalanced
game (also known as attacker asymmetric advantage) is intrinsic to the attack-
defense dynamics in cyberspace. Deploying a proactive and adaptive defense is of
utmost importance to mitigate this issue.

Moving Target Defense (MTD) was proposed to bring more balance to the attack-
defense game. The main goal is to apply a continuous shift in the attack surface
to confuse attackers or even to react to attacks dynamically, thus reducing that
advantage by moving or changing the configuration of the resources. For example,
in an attack from a VM targeting its host, Virtual Machine (VM) migration may
confuse the attacker as the target changes. Indeed, the current literature shows
that VM migration is among the main cloud MTD techniques. However, although
a roadblock for MTD adoption is its effectiveness evaluation, most works in the
field focus on proposing new strategies and validating them instead of providing
generic evaluation methods. Therefore, the proposal of evaluation methods to
analyze and compare VM migration-based MTD is still a research challenge.

Measuring the cost and benefit of deploying a MTD is a starting point for its adop-
tion. In cloud computing environments, a proper MTD deployment plan should
comprise the evaluation of its impact on the other metrics of interest. As the cloud
usually hosts multiple clients with their own goals, a comprehensive analysis of
MTD impact is paramount. System availability, for example, is one of the primary
metrics of interest for cloud managers and providers. It usually appears as a ba-
sic Service Level Agreement (SLA) in the majority of public Infrastructure as a
Service (IaaS) clouds. Adopting a MTD alternative, which severely affects system
availability, is not viable. This leads to the following research challenge: devis-
ing sound evaluation approaches for VM migration-based MTD while
considering aspects of its effectiveness and availability impact.

This thesis contributes towards tackling such research challenge through the pro-
posal of Stochastic Petri Net (SPN) models for evaluating availability and security
of systems with VM migration as MTD. The proposal and analysis of the models
follow a structured approach. Firstly, we empirically observe the system under
the attack-defense scenario. Secondly, the models are proposed, starting from a
baseline model for availability evaluation to a final model with MTD. Finally, a
tool for automating the scenario analysis and comparison is provided.

The key contributions of this work can be divided into two groups. The first

xiii

comprises comprehensive evaluation of systems with VM migration as software re-
juvenation. Although our goal in this part of the research was to design a baseline
model for cloud availability evaluation, we took one step further. For example,
we extend the availability model into a performability model. Therefore, we com-
pute not only availability but also reliability and performance-related metrics.
Moreover, we propose an approach for evaluating the security in the availability-
oriented models using a new metric named RiskScore. With the RiskScore,
we shift the security evaluation from an attacker perspective to a system-state
perspective, resulting in an attacker-disregard evaluation approach.

The second group of contributions comprises the evaluation of a system using VM
migration-based MTD. The contributions here range from analytical models for
a combined evaluation of the probability of attack success and availability to a
simulation-based evaluation environment (PyMTDEvaluator) with a friendly user
interface. We also propose a set of secondary metrics to reveal insights about
the MTD effectiveness, which might be useful for similar research. For example,
the tolerance level metric analyzes the probability of attack success results to find
information on how long the system can keep the probability of attack success
under a specific threshold.

In a cybersecurity landscape with ever-growing threats with inherent attacker
asymmetric advantage, the development of evaluation methods for MTD is of
utmost importance. The advent of zero trust and attack tolerance security ap-
proaches increases the importance of MTD deployments. The research presented
in this thesis intends to fill some relevant research gaps, easing the way towards
MTD adoption. Finally, considering a broadly used technique as VM migration
improves the understanding of the potential security benefits we may achieve while
using it in virtualized environments.

Keywords: Moving Target Defense, VM migration, Stochastic Petri Net, Cy-
bersecurity, Software Aging and Rejuvenation

xiv

Resumo

A cibersegurança é um dos principais desafios para as infraestruturas de virtualiz-
ação modernas e ambientes de computação em nuvem. O crescimento de ameaças
sofisticadas é um desafio para os mecanismos de defesa atuais. Através de uma
recolha prévia de informações sobre o sistema, os atacantes aumentam a proba-
bilidade de ter realizar ataques com sucesso. Por outro lado, os defensores devem
proteger o sistema de todas as ameaças. Este jogo não balanceado (também
conhecido como vantagem assimétrica do atacante) é intrínseco à dinâmica de
ataque-defesa no ciberespaço. Desenvolver defesas proativas e adaptativas é um
aspecto chave para mitigar essas ameaças.

MTD foi proposto para trazer mais equilíbrio para a dinâmica de ataque-defesa.
O principal objetivo é alterar a superfície de ataque continuamente para confundir
os atacantes ou reagir dinamicamente a ataques em curso. Esta abordagem reduz
a vantagem do atacante através da alteração da configuração dos recursos. Por
exemplo, num ataque de uma Máquina Virtual (VM) à Máquina Física (PM)
hospedeira, a utilização da migração de VMs pode confundir o atacante, pois
o alvo está em constante mudança. De facto, a literatura atual mostra que a
migração de VMs está entre as principais técnicas de MTD para a computação em
nuvem. No entanto, apesar de um desafio à adoção de MTD ser a avaliação da sua
eficácia, a maioria dos trabalhos concentra-se em propor e validar novas estratégias
de MTD, em vez de propor mecanismos de avaliação mais genéricos.

A avaliação do custo-benefício da implementação de MTD é o primeiro passo
para a sua adoção. Nos ambientes de computação em nuvem, um plano de im-
plantação de MTD adequado deve contemplar a avaliação do seu impacto em
outras métricas de interesse. Como os ambientes de nuvem geralmente hospedam
diversos clientes que possuem objetivos particulares, uma avaliação abrangente é
de extrema importância. A disponibilidade do sistema, por exemplo, é uma das
principais métricas de interesse dos fornecedores de computação em nuvem, sendo
frequentemente mencionada em acordos de nível de serviço (SLA). A adoção de
uma técnica de MTD que afete severamente a disponibilidade não é viável. Este
contexto levanta o seguinte desafio de investigação: conceber abordagens de
avaliação sólidas para MTD baseado em migração de VMs, consider-
ando aspectos de eficácia e impacto na disponibilidade.

Esta tese contribui para a diminuição do referido desafio através da proposta de
modelos de Redes de Petri Estocásticas (SPN) para a avaliação de disponibilidade
e segurança de sistemas com migração de VMs como MTD. Tal proposta e análise
segue uma abordagem estruturada. Primeiramente, observa-se o sistema em con-
textos de ataque-defesa. Depois, propõem-se os modelos de avaliação, passando
de um modelo de base para avaliação de disponibilidade até um modelo final con-
siderando MTD. Finalmente, é apresentada uma ferramenta para automatizar a
comparação e análise de cenários.

xv

As contribuições desta tese podem ser divididas em dois grupos. O primeiro
engloba uma avaliação abrangente de sistemas com migração de VMs como reju-
venescimento de software. Apesar do nosso objetivo inicial ser propor um modelo
de base para a avaliação da disponibilidade de nuvem, a tese amplia esse objeti-
vo. Por exemplo, estende o modelo de disponibilidade para um de performability,
tornando possível obter, não apenas a disponibilidade, como também a confiabi-
lidade e métricas relacionadas com o desempenho. Além disso, a tese apresenta
uma abordagem para a avaliação de segurança no mesmo contexto, utilizando a
métrica RiskScore. Esta muda o contexto da avaliação de segurança de uma
perspetiva focada no atacante para uma perspetiva focada no sistema, resultando
numa abordagem que ignora as características do atacante.

O segundo grupo de contribuições foca na avaliação de sistemas com migração
de VMs como MTD. As contribuições aqui partem de modelos analíticos para
a avaliação da probabilidade de sucesso do ataque e da disponibilidade até um
ambiente de simulação (PyMTDEvaluator) com uma interface amigável para o
utilizador. Além disso, a tese apresenta um conjunto de métricas secundárias
para caraterizar a eficácia do MTD. A métrica de nível de tolerância, por exemplo,
analisa as curvas de probabilidade de sucesso do ataque para encontrar o período
em que o sistema é capaz de manter a probabilidade de sucesso do ataque abaixo
de um certo limiar.

Num cenário de cibersegurança com ameaças crescentes e uma vantagem as-
simétrica inerente dos atacantes, o desenvolvimento de métodos de avaliação de
MTD é de fundamental importância. O advento de zero trust e attacker toler-
ance aumenta a relevância de investigação na área de MTD. Esta tese surge para
preencher algumas das lacunas no corpo de investigação atual. Finalmente, a con-
sideração de uma técnica amplamente utilizada como a migração de VMs melhora
o entendimento de potenciais benefícios de segurança advindos do seu uso.

Palavras-chave: Moving Target Defense, Migração de Máquinas Virtuais,
Redes de Petri Estocásticas, Cibersegurança, Envelhecimento e Rejuvenescimento
de Software

xvi

Foreword

The work detailed in this thesis was accomplished at the Software and Systems
Engineering (SSE) group of the Centre for Informatics and Systems of the Uni-
versity of Coimbra (CISUC), within the context of the following projects and
grants:

• ATMOSPHERE – Adaptive, Trustworthy, Manageable, Orchestrated, Se-
cure Privacy-assuring Hybrid, Ecosystem for REsilient Cloud Computing;
a 24-month project aiming at the design and development of an ecosystem
of a framework, platform and application of next generation trustworthy
cloud services on top of an intercontinental hybrid and federated resource
pool. The framework considers a broad spectrum of properties and their
measures. The platform supports the building, deployment, measuring and
evolution of trustworthy cloud resources, data network and data services.
ATMOSPHERE is funded by the European Union under the Cooperation
Programme, Horizon 2020 grant agreement No 777154.

• AIDA – Adaptive, Intelligent and Distributed Assurance Platform; the
project aims at improving a platform used by Mobileum for integral risk
management in companies. This platform ensures revenue, corporate condi-
tions and fraud control for companies. Thanks to the newest version of the
platform, developed by AIDA, companies will be able to collect and monitor
data in an extremely flexible way, with real-time guarantees, security and re-
liability. AIDA is co-financed by the European Regional Development Fund
(ERDF) through the Operational Program for Competitiveness and Inter-
nationalization – COMPETE 2020 (POCI-01-0247-FEDER-045907) and by
the Portuguese Foundation for Science and Technology under CMU Portugal
Program.

• TalkConnect – Voice Architecture over Distributed Network (POCI-01-
0247-FEDER-039676); the majority of cloud contact center providers have
the ambition to have a great geographic coverage. In order to achieve this,
these solutions are based on a model in which the communications are based
on a solution provided by a third party (CPaaS) which guarantees the de-
sired geographical coverage. Although this solution has its advantages, it
also has relevant limitations in some markets were the local regulation is
very strict. The alternative is the direct connection with local telcos. How-
ever, an analysis of these kind of solutions reveals limitations, not being an
effective answer to the identified problem. In this scenario, TalkConnect
intends to research and implement a new solution that combines multiple
direct telco connections with third party CPaaS providers with global cov-
erage. Consortium is compoesed by Talkdesk (main promoter), Vodafone,
and University of Coimbra.

• Ph.D. grant – Foundation for Science and Technology (FCT) grant

xvii

SFRH/BD/146181/2019.

The contributions of this thesis resulted in several publications in international
peer-reviewed journals and conferences:

1. Matheus Torquato, Erico Guedes, Paulo Maciel, and Marco Vieira. ‘A hier-
archical model for virtualized data center availability evaluation’. In 2019
15th European Dependable Computing Conference (EDCC), pp. 103-110.
IEEE, 2019.

2. Matheus Torquato, and Marco Vieira. ‘An experimental study of software
aging and rejuvenation in dockerd’. In 2019 15th European Dependable
Computing Conference (EDCC), pp. 1-6. IEEE, 2019. (Distinguished paper
award)

3. Matheus Torquato, Paulo Maciel, and Marco Vieira. ‘A model for availabil-
ity and security risk evaluation for systems with VMM rejuvenation enabled
by VM migration scheduling’. IEEE Access 7 (2019): 138315-138326.

4. Matheus Torquato, Lucas Torquato, Paulo Maciel, and Marco Vieira. ‘IaaS
cloud availability planning using models and genetic algorithms’. In 2019
9th Latin-American Symposium on Dependable Computing (LADC), pp.
1-10. IEEE, 2019.

5. Matheus Torquato, Paulo Maciel, and Marco Vieira. ‘Availability and reli-
ability modeling of VM migration as rejuvenation on a system under varying
workload’. Software Quality Journal 28, no. 1 (2020): 59-83.

6. Matheus Torquato, and Marco Vieira. ‘Moving target defense in cloud com-
puting: A systematic mapping study’. Computers & Security 92 (2020):
101742.

7. Matheus Torquato, Charles F. Goncalves, and Marco Vieira. ‘An Availab-
ility Model for DSS and OLTP Applications in Virtualized Environments’.
In 2020 16th European Dependable Computing Conference (EDCC), pp.
85-92. IEEE, 2020.

8. Matheus Torquato, Paulo Maciel, and Marco Vieira. ‘Security and availab-
ility modeling of vm migration as moving target defense’. In 2020 IEEE 25th
Pacific Rim International Symposium on Dependable Computing (PRDC),
pp. 50-59. IEEE, 2020.

9. Matheus Torquato, Paulo Maciel, and Marco Vieira. ‘Analysis of vm mi-
gration scheduling as moving target defense against insider attacks’. In
Proceedings of the 36th Annual ACM Symposium on Applied Computing,
pp. 194-202. 2021.

10. Matheus Torquato, and Marco Vieira. ‘VM Migration Scheduling as Moving
Target Defense against Memory DoS Attacks: An Empirical Study’. In 2021
IEEE Symposium on Computers and Communications (ISCC), pp. 1-6.
IEEE, 2021.

11. Matheus Torquato, Paulo Maciel, and Marco Vieira. ‘PyMTDEvaluator: A

xviii

Tool for Time-Based Moving Target Defense Evaluation’. In 2021 IEEE 32nd
International Symposium on Software Reliability Engineering (ISSRE), pp.
357-366. IEEE, 2021.

12. Matheus Torquato, Paulo Maciel, and Marco Vieira. ‘Model-Based Per-
formability and Dependability Evaluation of a System with VM Migration
as Rejuvenation in the Presence of Bursty Workloads’. Journal of Network
and Systems Management 30, no. 1 (2022): 1-33.

13. Matheus Torquato, Paulo Maciel, and Marco Vieira. ‘Software Rejuvena-
tion Meets Moving Target Defense: Modeling of Time-Based Virtual Ma-
chine Migration Approach’. In 2021 IEEE 32nd International Symposium
on Software Reliability Engineering (ISSRE), pp. 357-366. IEEE, 2022.

The following papers were also published in workshops and secondary tracks:

1. Matheus Torquato, and Marco Vieira. ‘Interacting SRN models for availab-
ility evaluation of VM migration as rejuvenation on a system under varying
workload’. In 2018 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), pp. 300-307. IEEE, 2018.

2. Matheus Torquato, and Marco Vieira. ‘Towards models for availability and
security evaluation of cloud computing with moving target defense’. In
2019 15th European Dependable Computing Conference (EDCC) - Student
Forum - arXiv preprint arXiv:1909.01392 (2019).

xix

Contents

Acknowledgments xi

Abstract xiii

Resumo xv

Foreword xvii

List of Figures xxvii

List of Tables xxix

Acronyms xxxi

1 Introduction 1
1.1 Problem Statement . 3
1.2 Contributions . 4
1.3 How to Read this Thesis . 6
1.4 Disambiguation . 10

2 Background and Related Work 11
2.1 Availability and Security Evaluation 11
2.2 Concepts on State Space Models 13

2.2.1 Markov Chains . 13
2.2.2 Petri Nets . 15
2.2.3 Stochastic Petri Nets . 16
2.2.4 Hierarchical Compositions 17
2.2.5 Sensitivity Analysis . 18

2.3 Software Aging and Rejuvenation 18
2.4 Moving Target Defense: A Systematic Mapping 22

2.4.1 Classification of Works . 23
2.4.2 Mapping Results . 24
2.4.3 Key Findings . 29

2.5 VM Migration-based MTD . 30
2.6 Multi Criteria Decision Making (MCDM) 32

2.6.1 MCDM based on the Euclidean Distance from an Ideal
Solution . 33

2.6.2 Technique for Order Preference by Similarity to Ideal Solu-
tion (TOPSIS) . 33

2.7 Related Works . 34
2.7.1 Software Rejuvenation . 35

xxi

Contents

2.7.2 Moving Target Defense . 36
2.8 Summary . 39

3 System Architecture 41
3.1 Virtual Machine Migration for Software Rejuvenation 43
3.2 Virtual Machine Migration as MTD 44
3.3 Case Studies . 45

3.3.1 CS #1 - Software Rejuvenation 46
3.3.2 CS #2 - Moving Target Defense 47

3.4 Threats to Validity and Limitations 53
3.5 Summary . 54

4 Performability of Virtualized Systems with VM Migration 55
4.1 Approach and Assumptions . 56

4.1.1 Failure Modes . 56
4.1.2 Bursty Workload Modeling 57

4.2 Models . 58
4.2.1 Availability Model . 59
4.2.2 Performance Model - M/M/1/k Queue 65

4.3 Case Studies . 66
4.3.1 CS #1 - Availability . 68
4.3.2 CS #2 - System Throughput 71
4.3.3 CS #3 - Reliability . 74

4.4 Threats to Validity and Limitations 76
4.5 Summary . 77

5 Availability and Security of VM Migration-Enabled Rejuvenation 79
5.1 Approach and Assumptions . 80
5.2 Model . 81
5.3 Case Studies . 85

5.3.1 CS #1 - Man-in-the-middle Attack 85
5.3.2 CS #2 - Denial of Service (DoS) Attack 89
5.3.3 CS #3 - Composition of Attacks 91

5.4 Threats to Validity and Limitations 95
5.5 Summary . 95

6 Time-based VM Migration as MTD against Persistent Attacks 97
6.1 Approach and Assumptions . 98
6.2 Model . 101
6.3 Case Studies . 105

6.3.1 CS #1 - Varying Number of Available Physical Machine Pools106
6.3.2 CS #2 - Varying VM Migration Schedule - 4N architecture 107
6.3.3 CS #3 - Validation with Simulation Results 110

6.4 Threats to Validity and Limitations 110
6.5 Summary . 112

7 Time-based VM Migration as MTD against Non-persistent Attacks 113
7.1 Approach and Assumptions . 114

xxii

Contents

7.2 Model . 116
7.3 Case Studies . 119

7.3.1 CS #1 - Varying VM Migration Scheduling 119
7.3.2 CS #2 - Varying VM Migration Failure Probability 122
7.3.3 CS #3 - Varying Attack Success Rates 125

7.4 Threats to Validity and Limitations 127
7.5 Summary . 128

8 PyMTDEvaluator: A Tool for Time-based MTD against Non-
persistent Attacks 131
8.1 PyMTDEvaluator Implementation 132

8.1.1 User Interface . 133
8.1.2 Steady-state Evaluator . 134
8.1.3 Transient Evaluator . 135
8.1.4 Plot Generator . 136

8.2 Validation against Model Results 136
8.3 Use case . 137
8.4 Threats to Validity and Limitations 140
8.5 Summary . 141

9 Modeling of Time-Based VM Migration as MTD and Rejuvenation 143
9.1 Approach and Assumptions . 144
9.2 Model . 147

9.2.1 Availability-related Model 149
9.2.2 Security-related Model . 151
9.2.3 Metrics Computation . 151

9.3 Case Studies . 152
9.3.1 CS #1 - Availability-aware VM Migration Trigger 152
9.3.2 CS #2 - MTD Protection using Availability-aware Trigger 154
9.3.3 CS #3 - Availability and MTD Protection Evaluation . . . 157

9.4 Threats to Validity and Limitations 158
9.5 Summary . 159

10 Conclusion and Future Work 161
10.1 Key Takeaways . 162
10.2 Future Work . 163

Bibliography 167

Appendixes 189
Appendix A: MTD in the Cloud: A Systematic Mapping Study 189
Appendix B: VM Migration Scheduling as MTD against Memory DoS

Attacks: An Empirical Study . 201
Appendix C: An Experimental Study of Software Aging and Rejuvena-

tion in dockerd . 208
Appendix D: PyMTDEvaluator Output Report 215

xxiii

List of Figures

1.1 Chapter contributions . 7
1.2 Relation between chapters 4 to 9 and the produced papers 9

2.1 Continuous Time Markov Chain (CTMC) availability model, re-
trieved from [Guedes, 2019] . 14

2.2 Petri Net components . 15
2.3 Flow of a SPN simple availability model 17
2.4 Chain of threats for Aging Related (AR) failure - retrieved

from [Grottke et al., 2008] . 19
2.5 Software aging general behavior 20
2.6 Cloud computing layers for software rejuvenation 21
2.7 Research area classification . 25
2.8 Evaluation approaches - Papers distribution 26
2.9 Strategy classification . 27
2.10 Relationship between Research Area and Strategy categories . . . 28
2.11 VM migration based MTD dynamics - Two Physical Machine (PM)

setup . 31
2.12 VM migration based MTD dynamics against persistent and non-

persistent tactics . 31
2.13 Hypothetical example using the Multi Criteria Decision Making

(MCDM) method based on Euclidean distance from an ideal solu-
tion . 34

3.1 System architecture . 41
3.2 VM migration as support for software rejuvenation - workflow . . 43
3.3 Dynamics of using VM migration as MTD against VM escape attacks 45
3.4 VM migration as support for software rejuvenation experiment -

Selected workload - extracted from [Torquato et al., 2018a] 46
3.5 Software aging and rejuvenation experiment results - VM migration

starts the Rejuvenation phase - extracted from [Torquato et al.,
2018a] . 48

3.6 Experiment testbed . 49
3.7 Victim VM TeaStore capacity assessment results 49
3.8 TeaStore - Throughput (req/s) - attack severity experiment . . . 50
3.9 TeaStore - Errors - attack severity experiment 50
3.10 VM migration schedule = 30 minutes 51
3.11 VM migration schedule = 45 minutes 52
3.12 VM migration schedule = 60 minutes 52
3.13 System without MTD . 53

4.1 Flow of the Research Methodology 57

xxv

List of Figures

4.2 A diagram for the Burst cycle model 58
4.3 Models relationship . 59
4.4 Availability Model . 60
4.5 Performance Model - SPN for a M/M/1/k queue 66
4.6 Availability of each scenario . 70
4.7 Downtime reduction (h/yr) . 71
4.8 Sensitivity analysis of the VM migration downtime parameter . . 71
4.9 System throughput of each scenario 72
4.10 System throughput difference comparison 73
4.11 Reliability of each scenario . 74

5.1 Illustrative example - State-machine diagram 81
5.2 SPN model . 82
5.3 Case study 1 results - Man-in-the-middle 87
5.4 Case study 1 results - Man-in-the-middle - Normalized plot 87
5.5 Case study 2 results - Denial of Service 90
5.6 Case study 2 results - Denial of Service - Normalized plot 90
5.7 Case Study 3 results - Composition 92
5.8 Case study 3 results - Composition - Normalized plot 93

6.1 System configuration - 2N architecture 99
6.2 Example of attack and defense flow - 2N architecture 101
6.3 Model for probability of attack success evaluation (2N architecture) 103
6.4 Probability of attack success - varying number of available physical

machine pools . 106
6.5 Reduction of probability of attack success due to the number of

available physical machine pools 108
6.6 Probability of attack success - varying VM migration trigger - 4N

architecture . 108
6.7 Reduction of probability of attack success due to the variation on

VM migration trigger . 109
6.8 Model and simulation results - 2N architecture 111

7.1 Example of attack and defense flow with timely VM migrations . 115
7.2 Proposed SPN model . 117
7.3 CS#1 - Probability of attack success results - different VM migra-

tion scheduling policies . 120
7.4 CS#1 - Reduction of probability of attack success - different VM

migration scheduling policies . 121
7.5 CS#2 - Probability of attack success results - different VM migra-

tion failure probabilities . 123
7.6 CS#2 - Reduction of probability of attack success - different VM

migration failure probabilities . 123
7.7 CS#2 - Impact of migFprob on the probability of attack success

(at 720h) . 124
7.8 CS#3 - Probability of attack success - different levels of attacker’s

technical abilities . 126

xxvi

List of Figures

7.9 CS#3 - Reduction of probability of attack success - different levels
of attacker’s technical abilities . 127

8.1 PyMTDEvaluator component diagram 133
8.2 PyMTDEvaluator graphical interface 134
8.3 PyMTDEvaluator results validation against SPN model results . . 137
8.4 PyMTDEvaluator - Summary of results window 138
8.5 PyMTDEvaluator results for the evaluation scenario 139

9.1 VM migration supporting software rejuvenation and diversity
MTD - workflow . 146

9.2 Proposed Models . 148
9.3 CS#1 Results . 154
9.4 CS#2 Results . 155
9.5 CS#4 Results . 157

xxvii

List of Tables

2.1 Most relevant related works comparison - a summary 40

4.1 Immediate transitions and associated guard functions 61
4.2 Transitions with marking-dependent firing delays 63
4.3 Parameters used in the timed transitions 67
4.4 Asset Classes definitions . 68
4.5 Results - Availability . 69
4.6 Summary of VM migration downtime parameter sensitivity analysis 71
4.7 Results - Sys. throughput (req/s) 73
4.8 Reliability results . 76
4.9 Depletion point results . 76

5.1 Immediate transitions and their meaning 84
5.2 Places description . 85
5.3 Parameters used in the timed transitions 86
5.4 Evaluation scenarios of Case study 1 - Man-in-the-middle 88
5.5 Evaluation scenarios of Case study 2 - Denial of Service 91
5.6 Evaluation scenarios of Case study 3 - Composition 94

6.1 Guard functions . 102
6.2 Parameters used in the timed transitions 105
6.3 When the system reaches probability of attack success of 1%, 50%,

and 90% (tolerance levels) . 107
6.4 Tolerance levels and system unavailability - Different VM migration

schedules - 4N architecture . 109

7.1 Guard functions . 116
7.2 Parameters used in the model . 119
7.3 Summary of results of CS#1 . 122
7.4 Summary of CS#2 results . 125
7.5 Attack success rates for the proposed technical abilities 126
7.6 Summary of CS#3 results . 127

9.1 Guard functions . 147
9.2 Parameters used in the timed transitions 153
9.3 Comparison between baseline and availability-aware migration

trigger results (5.1 hr) . 154
9.4 PAS(t) while using migTrigger = 5.1 hrs 155
9.5 TL results while using migTrigger = 5.1 hrs 156
9.6 Multi-criteria decision making - VM migration trigger alternatives 158

xxix

Acronyms

AHP Analytic Hierarchy Process.
AI Artificial Intelligence.
APT Advanced Persistent Threat.
AR Aging Related.
AT Attack Tree.

CPS Cyber-Physical Systems.
CPU Central Processing Unit.
CTMC Continuous Time Markov Chain.

DoS Denial of Service.
DTMC Discrete Time Markov Chain.

FT Fault Tree.

HARM Hierarchical Attack Representation Model.

IaaS Infrastructure as a Service.
IFR Increasing Failure Rate.
IoT Internet of Things.
IP Internet Protocol.
IT Information Technology.

KVM Kernel Virtual Machine.

MC Markov Chain.
MCDM Multi Criteria Decision Making.
MITM Man-in-the-middle.
ML Machine Learning.
MTD Moving Target Defense.
MTTF Mean Time to Failure.
MTTR Mean Time to Repair.

NIST United States National Institute of Standards and
Technology.

OS Operating System.

PM Physical Machine.
PN Petri Net.

xxxi

Acronyms

POST Power On Self Test.

QoS Quality of Service.

RBD Reliability Block Diagram.

SaaS Software-as-a-Service.
SBE Software Behavior Encryption.
SDN Software Defined Network.
SLA Service Level Agreement.
SMP Semi Markov Process.
SPN Stochastic Petri Net.
SRN Stochastic Reward Net.
SWARE Stress Wait Rejuvenate.

TOPSIS Technique for Order Preference by Similarity to Ideal
Solution.

TTARF Time To Aging Related Failure.

VIM Virtual Infrastructue Manager.
VM Virtual Machine.
VMM Virtual Machine Monitor.

xxxii

Chapter 1
Introduction

Cloud computing is nowadays the Information Technology (IT) foundation for
several businesses worldwide. Companies and organizations rely on cloud systems
to deploy, scale, and run their applications [Sadiku et al., 2014]. The paradigm
is so successful that several new concepts are continuously arising as a result
of its popularity (e.g., mobile cloud computing, cloud, edge and fog computing,
Software-as-a-Service (SaaS))[Francis, 2018; Huang and Wu, 2017]. In one way
or another, cloud computing is now in our daily lives. For example, we consume
cloud computing services when we upload our archives to a storage cloud or use
spreadsheets online.

In the traditional on premises IT deployment, the users have a considerable up-
front cost as they need to allocate the physical resources and all the required
apparatus (e.g., cooling, network devices). Through cloud computing, the users
can promptly run their applications by outsourcing the IT capabilities to a cloud
provider [Buyya et al., 2009]. Even companies that own and manage their data
centers are adapting the resources to run a cloud environment. This approach is
known as private cloud deployment [Goyal, 2014].

Cloud computing relies on virtualization technology in its core architecture. The
goal of virtualization is to increase the efficient resource usage [Portnoy, 2012].
To reach that goal, it enables running multiple systems inside the same Physical
Machine (PM). These multiple systems are known as Virtual Machines (VMs).
Each VM can run its own Operating System (OS), set of applications and services.
The ownership of the set of VMs in a cloud environment is, usually, not strict
for a single user. In fact, we frequently have several clients running different
applications in the same cloud environment, even sharing the same PM (i.e.,
multi-tenancy feature).

Due to multi-tenancy, in a public cloud deployment (where the client outsources
the computing capabilities to a provider instead of using on-premise virtualized
resources), the environment is open for clients to rent and use the available re-
sources. Unfortunately, this feature opens the door for malicious users to attack
the shared resources aiming at affecting the co-resident VMs. This way, the at-
tacker is no longer outside the environment but can launch attacks inside the
cloud computing environment.

Dependability and security are among the major concerns of cloud computing
users [Franklin, 2023]. Many organizations seek to improve their service depend-

— 1 —

CHAPTER 1. INTRODUCTION

ability when selecting the cloud to host their applications [Pluralsight, 2023].
Additionally, cloud computing security is at the top of challenges for cloud com-
puting [Flexera, 2023].

Although it is usual to consider that only public clouds are liable to suffer attacks
from inside users (as the private cloud deployment usually has a controlled set of
users), advances on cybersecurity1 threats lead to adopting a zero trust approach
in all contexts. Accordingly to United States National Institute of Standards
and Technology (NIST), ”Zero trust assumes there is no implicit trust granted to
assets or user accounts based solely on their physical or network location (i.e.,
local area networks versus the internet) or based on asset ownership (enterprise
or personally owned)” [Stafford, 2020].

One of the motivations for shifting to zero trust is the existence of unknown
(zero day) and multi-stage attacks and even malicious authorized users inside
the cloud. Zero day attacks exploit unknown (and probably weak defended) sys-
tem flows [Parrend et al., 2018]. This way, the system is vulnerable to attacks
in areas without known vulnerabilities and proper defensive mechanisms. Multi-
stage attacks are complex and have multiple phases. Advanced Persistent Threat
(APT)-based attacks adopt a multi-stage approach to boost attack success prob-
ability [Tatam et al., 2021]. An example of an APT attack following a multi-stage
approach is given by the cyber kill chain [Bahrami et al., 2019].

The Cyber Kill Chain has seven phases [Yadav and Rao, 2015]: i) reconnaissance
- information gathering, identification of targets; ii) weaponize - production of
a deliverable cyber weapon; iii) delivery - transmission of the cyber weapon
to the target environment; iv) exploitation - activation of the attack on the
environment; v) installation - install and maintain a backdoor; vi) command
and control - allow remote server to communicate with the target; and vii) act
on objective - data exfiltration, system disruption.

The proposal of effective defensive mechanisms is challenging in scenarios with
sophisticated and advanced threats. Furthermore, the default static security con-
figuration works in favor of the attackers as, in such contexts, they can gain know-
ledge (i.e., reconnaissance phase) about the environment to design more powerful
attacks. Cloud computing environments should leverage internal technologies to
increase protection against advanced threats. For example, Virtualization techno-
logy brings one interesting manageability feature, VM migration, that consists of
moving the VMs across the available PMs. We can deploy VM migration in a vari-
ety of scenarios: for example, for improving sustainability - by packing the VMs in
fewer PM hosts, for improving dependability - by moving VMs away from a faulty
PM host, and for improving security - moving VMs away from a compromised
host, as a Moving Target Defense (MTD) action.

MTD raises as a flexible technique for system security improvement. The United
States Department of Homeland Security defines MTD as ”the concept of con-
trolling change across multiple system dimensions to increase uncertainty and ap-

1 In the context of this thesis, we use the terms cybersecurity and security interchangeably. In
the scope of this thesis, both have the same meaning.

— 2 —

CHAPTER 1. INTRODUCTION

parent complexity for attackers, reduce their window of opportunity and increase
the costs of their probing and attack efforts.” [U.S. Department Homeland of Se-
curity , 2020].

1.1 Problem Statement
MTD consists on continuously shifting the available attack surface to confuse
attackers or to dynamically react to an ongoing attack [Jajodia et al., 2011].
Despite the variety of definitions of attack surface [Theisen et al., 2018], here
we follow the one from Manadhata and Wing [2010]: ”Intuitively, a system’s
attack surface is the set of ways in which an adversary can enter the system
and potentially cause damage”. Let us consider a practical example. An attacker
controls a set of VMs in the environment. From the VMs, the attacker runs a
malicious action against the shared resources of the PM host (i.e., a host-based
attack - an insider attack targeting the PM host). In this scenario, the triggering
of VM migration may prevent the attack success as the VMs of the attacker is
remapped to another PM host. This is an example of VM migration-based MTD
deployment. Section 2.4 presents more specific details of MTD deployments.

Recent surveys and technical reports point out MTD as a necessity for effective
cybersecurity [Ross et al., 2022][Pingree, 2023]. PICUS® 2023 Red Report [PICUS,
2023] show that about 32% of 500000 malware analyzed apply defense evasion
tactic. MITRE® ATT&CK matrix defines defense evasion tactic as the ability
to evade the known detection mechanisms [MITRE, 2023]. An effective MTD
deployment may help fight those threats as it can change the system configuration,
thus dynamically modifying the nature of the current defensive measures. As the
attacks and malicious events are (usually) unexpected, it is beneficial to deploy
such a proactive defense.

MTD is considered a proactive defensive mechanism [Cho et al., 2020][Soussi et al.,
2021]. The current cloud computing features favor the MTD development and de-
ployment as it is possible to continuously change the system configuration through
specific algorithms as a security measure. For example, VM migration is a poten-
tial solution to support cloud computing MTD. Although VM migration-based
MTD is not able to defend against all threats, it appears as a defense against
host-based attacks. It is one of the preferred MTD alternatives, as various cloud
computing platforms already offer it off-the-shelf.

There are several types of MTD deployments for cloud computing environments.
For example, in the application layer, MTD uses Software Behavior Encryption
(SBE) that consists of changing the application properties (e.g., data format or
code) at runtime to confuse attackers. In the platform layer, MTD can apply
VM migration for dynamic environment reconfiguration. Finally, in the network
layer, MTD can leverage the Software Defined Network (SDN) paradigm to change
network properties as network addresses and routes dynamically.

Previous works also showed the effectiveness of MTD deployment in environments
like the Internet of Things (IoT) [Kahla et al., 2018], Virtualized Containers [Azab
et al., 2016], SDN [Chowdhary et al., 2018], and cloud computing [Villarreal-

— 3 —

CHAPTER 1. INTRODUCTION

Vasquez et al., 2017]. In the cloud computing context, MTD techniques can
be used to thwart or reduce the impact of security attacks such as co-residency
attacks [Kashkoush et al., 2018] and Distributed Denial of Service attacks [Jia
et al., 2014].

An MTD deployment plan for cloud computing should comprise the evaluation of
possible impacts on different system attributes such as availability. Besides the
security concern, some cloud-hosted applications need high availability levels. Sev-
eral strategies to achieve high availability include failover techniques, redundancy,
and software rejuvenation. The problem is evaluating the possible availability and
security impacts of applying MTD in such scenarios.

When applying a Moving Target Defense, there is usually a trade-off between
security and availability in cloud computing systems. For example, in MTD based
on VM migration, VMs are moved from one physical machine to another. This
remapping can, for example, avoid co-residency attacks, but each VM migration
(even in a Live Migration mode) has an associated downtime [Clark et al., 2005].
If we decide to perform too frequent VM migrations, we may achieve higher levels
of system security but lower availability levels. Otherwise, if the system manager
deploys less frequent migrations, the system may reach higher availability levels,
but that decreases the MTD-related protection.

The main challenge of our research work is to study ”what are the trade-offs
between cloud computing availability and security when applying time-based VM
migration as MTD?”. In this context, we have three main evaluation ap-
proaches [Jain, 1990]: measurement, simulation, and modeling. Measurement-
based methods require a system implementation to be exposed to tests and bench-
marking routines to produce the evaluation output. Measurement-based meth-
ods have precise results but are often specific to a platform or software version.
Availability evaluation through measurement-based methods is usually prohibitive
due to the long mean time to failure of the hardware and software components.
Simulation-based evaluation methods require a platform to perform simulations.
Due to its flexibility, simulation-based evaluation seems interesting for both avail-
ability and security aspects, but simulation environments for MTD evaluation are
still an open problem. Finally, modeling is particularly interesting in scenarios
with combined evaluation metrics [Jain, 1990]: it does not require implement-
ing complex simulation environments nor deploying monitors for the events of
interest. In fact, previous works show that modeling-based methods are suitable
for cloud computing availability and security evaluation [Kim et al., 2009; Dantas
et al., 2012; Fitch and Xu, 2012].

1.2 Contributions
This work delivers a set of models for availability and security evaluation of
cloud computing when applying MTD based on VM migration. Start-
ing from a baseline model without MTD, we build up models to evaluate VM
migration-based MTD against persistent and non-persistent threats, derive a tool
from those models to facilitate the scenarios analysis and comparison, and conduct

— 4 —

CHAPTER 1. INTRODUCTION

an empirical evaluation to support the model design choices. Based on the results
of the models, it is possible to select specific policies to reach (or approximate)
the desired levels of security and availability. Our models are based on Stochastic
Petri Net (SPN) that are extensively used for cloud computing availability evalu-
ation [Maciel et al., 2021; Machida et al., 2010]. Petri Net (PN) based models (as
SPNs) are also suitable for security evaluation [Wang et al., 2013].

This thesis advances state-of-the-art on MTD by reducing the gap in the current
literature concerning the absence of combined evaluation methods for availability
and security of systems under VM migration-based MTD. We propose a series
of SPN models to overcome the existing challenges and limitations in this field.
The thesis is thus developed considering three building blocks: availability model
→availability and security model →model for MTD evaluation. The contributions
include empirical results, models and analysis, and a simulation tool.

In short, the most important contributions of this thesis are:

• Empirical observations of the system under attack-defense using
MTD based on VM migration. Unlike most model-based evaluation
works, we started with a practical evaluation to learn about the system’s
behavior. Specifically, we conducted a series of experiments with time-based
VM migration for MTD purposes to obtain knowledge to aid the model
design. This way, we empirically observed the MTD effectiveness against
real attacks. Results show that the continuous modification of attacker
position through VM migration reduces the probability of attack success.
The frequency of VM migration is the decisive factor for the survival of
the system to the attack, meaning that delayed migrations may allow the
attacker to reach attack success. In the studied scenarios, once the attack
succeeds, the system stays down even after the departure of the attacker’s
VMs to another host.

• Performability model for virtualized systems with VM migration.
We contribute to the state-of-the-art in this field by providing a comprehens-
ive performability evaluation of a virtualized system with VM migration.
The evaluation covers system availability, reliability, and service through-
put. The proposed models also take the occurrence of burst workloads into
account. Our results show that the software rejuvenation-induced perform-
ability improvement depends on the incidence of such workloads. In fact,
the VM migration-based software rejuvenation ends up producing minor
improvement in scenarios with frequent bursty workloads.

• Metric for system security evaluation. We propose the RiskScore
metric, which characterizes security not from the perspective of the attack
characteristics (i.e., attack intensity or attacker abilities) but from a system
state perspective. In other words, the RiskScore metric measures the
risk of attack success based on the system’s current state by observing the
time the system spent on risky or vulnerable states. The proposed metric
is beneficial for extracting a security evaluation perspective from unaltered
availability models.

— 5 —

CHAPTER 1. INTRODUCTION

• Models for availability and security evaluation of cloud with MTD
based on VM migration. On top of the baseline model design, we in-
cluded the intended MTD behavior by proposing models considering differ-
ent attack tactics. Specifically, we consider threats where the VM migration
totally nullifies the attack progress (i.e., non-persistent tactic) and threats
where the attacker is able to continue the attack as soon as the attacker VM
arrives in a previously visited host (i.e., persistent tactic). To enhance the
evaluations, we propose a set of secondary metrics; e.g., tolerance levels -
to measure how long the system resists until reaching a specific probability
of attack success, and transient probability of attack success - to measure
the probability of attack success in a specific point in time. Results from
the model reveal which VM migration policy is able to achieve the desired
levels of system protection. We noticed that the protective effects reduce in
scenarios with longer intervals between VM migrations. Depending on how
long is the migration interval, the MTD may reach a negligible protection
effect.

• Tool to analyze and compare scenarios of VM migration-based
MTD against non-persistent threats. We developed a simulation
tool to automate the execution of the proposed MTD models. Through
PyMTDEvaluator, the user can analyze and compare various scenarios using
their own set of parameters. The tool provides a detailed output, compiling
the results in PDF reports.

• Evaluation of the crossover of software rejuvenation and MTD
based on VM migration. We present a comprehensive evaluation of a
cloud computing environment with a multipurpose time-based VM migra-
tion deployment (i.e., software rejuvenation and MTD). We consider the
trade-offs between availability and security in the evaluations while select-
ing specific VM migration schedules.

1.3 How to Read this Thesis
One of our research design principles is modularity, meaning that each particular
advancement towards the goal should produce concrete artifacts. During our
work, we succeeded in publishing in different venues related to dependability and
security. This thesis is a compilation of those papers. Therefore, naturally, the
content of the following chapters is based on our publications.

For clarity, it is essential to highlight how the following chapters relate and cooper-
ate to reach the thesis goal. Therefore, we present below an overview of the thesis
structure, which consists of ten chapters. Each core chapter (2 to 9) presents a
concrete individual contribution that is the main result or implication from the
research that originated the chapter. Figure 1.1 summarizes those contributions
(chapters 6, 7, and 8 are starred because they represent the pinnacle of our work,
specifically related to our main goal of evaluating VM migration as MTD).

Chapter 2 presents background concepts and a comparison with related works. It
absorbs inputs from a systematic mapping of the literature [Torquato and Vie-

— 6 —

CHAPTER 1. INTRODUCTION

Figure 1.1: Chapter contributions

ira, 2020] and presents open cloud computing research opportunities related to

— 7 —

CHAPTER 1. INTRODUCTION

MTD.

Chapter 3 presents the system architecture. We detail the approaches of using
VM migration as support for software rejuvenation and as MTD. Besides that, the
chapter also provides empirical observations on the use of VM migration for both
scenarios. Specifically, we observe the VM migration-based software rejuvenation
effectiveness against hypervisor software aging, and the time-based VM migra-
tion approach effectiveness as MTD against a specific host-based attack (memory
DoS [Zhang et al., 2016b]).

Chapter 4 presents our baseline availability model from which the other models
are derived. The chapter showcases a thorough performability evaluation of a VM
migration-based rejuvenation, including bursty workload occurrence and system
throughput evaluation.

Chapter 5 proposes a model for availability and security evaluation of a cloud sys-
tem with software rejuvenation based on VM migration. It discusses our approach
to multi-criteria decision-making for availability and security analysis. One of the
most relevant outputs of the chapter is the RiskScore metric, a system state-
oriented security evaluation metric based on the current conditions of the system
that enable or facilitate an attack.

Chapter 6 presents our first model for VM migration-based MTD that considers
the persistent attack tactic, where the attacker can continue the attack as soon
as the VM returns to a previously visited host. The chapter proposes secondary
metrics for security evaluation, such as tolerance levels - time needed to reach a
specific attack success probability, and comprehensively evaluates security levels
under different scenarios.

Chapter 7 presents the evaluation of VM migration-based MTD against non-
persistent attacks. In non-persistent attacks, the attacker must restart the attack
after each migration. Specifically, the chapter makes use of the secondary metrics
from Chapter 6 and evaluates them in this different attack scenario. The chapter
also provides a comprehensive sensitivity analysis, even considering different at-
tacker capabilities (i.e., more or less skilled attackers).

Chapter 8 presents an easy-to-use interface for the model proposed in Chapter 7.
PyMTDEvaluator is a simulation tool that executes the model using the desired
user parameters. The main feature is the possibility of automating the comparison
of MTD scenarios by compiling several scenarios in a single assessment.

Chapter 9 merges the previous models to evaluate scenarios combining the use
of VM migration as software rejuvenation and MTD. As a highlight, the chapter
investigates the relationship between software rejuvenation and MTD when used
simultaneously. To our knowledge, this is the first work to provide security and
availability evaluation of such scenarios.

Chapter 10 concludes the thesis, presenting the synthesis of the contributions and
findings and putting forward a set of ideas for future works.

Appendix A reproduces (in full) our systematic mapping paper [Torquato and
Vieira, 2020], which is partially presented in the chapter of the background and

— 8 —

CHAPTER 1. INTRODUCTION

related work (Chapter 2).

Appendix B reproduces the paper [Torquato and Vieira, 2021], which presents
empirical evidence of the effectiveness VM migration as MTD in the context of a
client-server application and a Machine Learning (ML) application.

Appendix C reproduces the paper [Torquato and Vieira, 2019], which presents
empirical evidence of software aging effects in Docker container platform.

Appendix D presents an example of one of the outputs of PyMTDEvaluator
tool. The referred output is a report compiling the results from the simulation
runs.

To attain the modularity principle mentioned above, chapters 4 to 9 are intended
to be self-contained. Except for the system architecture presented in Chapter 3,
they present enough details by themselves without requiring reading the previ-
ous chapters. Nevertheless, these chapters are not isolated pieces; they connect
by providing inputs, models, or insights that will be used in developing other
chapters. Figure 1.2 highlights the relationship between chapters and the papers
that originated them.

Figure 1.2: Relation between chapters 4 to 9 and the produced papers

This thesis investigates time-based VM migration while applied as Software Re-
juvenation and MTD. At the time of this thesis writing, the intersection of these
two fields was relatively new. As some readers may be interested in only one of
the fields, we propose the following reading paths. Nevertheless, we recommend
all readers to consider Chapter 9, as it introduces the evaluation of a multipurpose
deployment of time-based VM migration considering both fields.

• Software rejuvenation

– Chapter 1 → Chapter 2 → Chapter 3 → Chapter 4 → Chapter 5 →
Chapter 9 → Chapter 10;

• Moving Target Defense

— 9 —

CHAPTER 1. INTRODUCTION

– Chapter 1 → Chapter 2 → Chapter 3 → Chapter 6 → Chapter 7 →
Chapter 8 → Chapter 9 → Chapter 10;

• Software Rejuvenation + Moving Target Defense

– All the chapters.

1.4 Disambiguation
This thesis document is a result of combining our previous works into a single
document. As mentioned earlier, the chapters are intended to be self-contained.
Here, self-contained means that except for the basic architecture presented in
Chapter 3, the reader might be able to follow each chapter without requiring the
reading of other chapters. However, as each chapter presents its context, some
terms may appear ambiguous or non-consistent, considering the thesis as a single
document. Below, we present a non-exhaustive list of these terms. We hope that
the explanation suffices to mitigate possible misunderstandings:

• Tactic, attack and threat - the security evaluation chapters presents
these terms associated with persistent and non-persistent concepts. In the
scope of this document, for variety and to avoid excessive repetition, we used
these terms interchangeably. However, they have slightly different meanings:
tactic - refers to the strategy used in the attack deployment; attack - actual
action against the system; and threat - potential attack.

• Insider, host-based, VM to host, VM to hypervisor, VM escape,
resource starvation, Memory Denial of Service (memory DoS)-
these terms are used in the chapters when referring to attacks. They have
their particular meanings, but overall, in the scope of this thesis, they serve
to highlight an attack coming from an attacker VM targeting a resource in
the same PM host. Their slightly different meanings are: insider - attack
coming from an authorized user; host-based - attack occurring inside the
PM; VM to host - similar to host-based; VM to hypervisor - attack targeting
the hypervisor component; VM escape - attacker tries to break VM isolation
to affect or control the underlying host; resource starvation - abusive use of
the resources to induce lack of resources for other users or VMs; and Memory
Denial of Service (DoS) - specific resource starvation attack targeting the
main memory of the underlying host.

• SPN and Stochastic Reward Net (SRN) - the original versions of
our papers use the term SRN. Nevertheless, after further consideration, we
decided to use SPN instead. The reason is twofold: i) to emphasize the Petri
Nets context of our models, and ii) to avoid misleading information about
the tool-set we used. For all the PN-based models, we used the TimeNET
tool [Zimmermann, 2017], which is a tool for SPN evaluation. More details
about SPN characteristics are presented in Chapter 2.

— 10 —

Chapter 2
Background and Related Work

This thesis falls into the intersection of dependability and security evaluation.
Through analytical models, our research considers several scenarios for evaluating
a virtualized system with time-based VM migration as MTD policy. Besides that,
we dedicate a considerable amount of work to cover baseline aspects, including
software aging and rejuvenation.

In the following sections, we present background concepts related to Availabil-
ity and security evaluation (Section 2.1), concepts on State Space Models (Sec-
tion 2.2), and Software Aging and Rejuvenation (Section 2.3). Then, we add two
sections related to MTD: the first presents the general concepts of the technique
with a summary of results of a systematic mapping of the literature (Section 2.4),
while the second presents the specific context of MTD based on VM migration
(Section 2.5). We also include a brief overview of Multi Criteria Decision Making
(MCDM) methods, as these are used in some of our contributions (Section 2.6).
Finally, we analyze and compare related works (Section 2.7).

2.1 Availability and Security Evaluation
Events affecting system availability and security (e.g., outages, crashes, and at-
tacks) are usually unexpected. Therefore, setting up a reliable and feasible ap-
proach to system availability and security evaluation through measurements is a
challenging task. Accelerated life testing [Nelson, 1980] and fault injection [Hsueh
et al., 1997] are alternatives to solve the evaluation of the dependability-related
metrics. These alternatives allow the insertion of specific actions to induce a
failure-prone behavior. There are a lot of benefits in accelerated experiments;
for example, observing the system reaction after a fault activation and observing
which faults lead the system to failures. With adequately designed experiments,
these techniques also help compute the system availability. However, using such
techniques usually alters the internal state of the system (e.g., forcing it into
a faulty behavior): performing a security evaluation in a system already in an
altered state could produce misleading results as these conditions may not repeat
in a real-world scenario. Another problem is security evaluation itself: it may re-
quire vulnerability, attack, or intrusion injection [Fonseca et al., 2013][Gonçalves
et al., 2023], for which we do not have sufficiently mature and generic techniques
and tools nowadays.

— 11 —

CHAPTER 2. BACKGROUND AND RELATED WORK

Model-based evaluation is an alternative solution for the dependability and secur-
ity combined assessment [Nicol et al., 2004]. Models provide flexibility to exercise
different scenarios and do not require direct intervention in a running system [Jain,
1990]. However, their results must be considered carefully, as they produce only
approximated results that depend on the input parameters. The fine-tuning of
the parameters and a proper sensitivity analysis are of utmost importance in a
comprehensive model-based evaluation. From a more generic perspective, model-
based evaluation helps understand the expected behavior of the metrics while the
input parameters change without interacting with a real system.

In the realm of models for dependability and security evaluation, it is possible
to highlight the following three types: i) combinatorial models (Reliability Block
Diagram (RBD), Attack Tree (AT), Fault Tree (FT)), ii) state-space models (SPN,
Continuous Time Markov Chain (CTMC)), and iii) hierarchical compositions (e.g.,
RBD in the upper level and CTMC in the lower level) [Trivedi et al., 2009].
During the development of this thesis, we adopted state-space models. This way,
combinatorial models are not included in this section on background concepts. We
recommend the books [Maciel, 2023] and [Trivedi and Bobbio, 2017] for a more
thorough review of such models.

Combinatorial models assume independence of the system components. Thus,
in the evaluation process, a component state change does not affect the state of
the other components, meaning that, in a scenario with complex dependencies
between the modeled components, the combinatorial models are not suitable for
the evaluation. Alternatively, state-space models can represent the interaction
of the components. In the modeling of cloud and virtualized environments, we
can leverage both model types in a hierarchical composition as presented in our
previous work [Torquato et al., 2019a].

Due to the complexity of our target systems, we decided to adopt state-space
models, as the combinatorial models cannot capture component dependency. Our
approach uses models capable of evaluating both metrics (availability and secur-
ity), resulting in a unified evaluation. Also, such models take account of com-
ponent dependency (e.g., a VM depends on its physical machine host to run) and
interactions (e.g., a VM migration from one physical machine to another). Due
to its features, we selected a space model based on SPNs. SPNs are a subtype
of PNs, which provides a subset of needed features for our evaluation [Marsan,
1988]. Section 2.2 provides additional details of SPN models. Previous research
highlighted the application of PN models for availability [Melo et al., 2013a] and
security [Wang et al., 2012].

For the scope of this thesis work, we focus mainly on evaluating two metrics: avail-
ability and security. Availability is the system property related to the readiness
for correct service delivery [Avizienis et al., 2004]. We usually measure availability
(A) as a proportion of the time that the system is ready to deliver the correct
service (uptime) in its complete life-cycle (i.e., uptime + downtime). Thus, we
can obtain availability using the equation 2.1.

— 12 —

CHAPTER 2. BACKGROUND AND RELATED WORK

A = uptime

uptime + downtime
(2.1)

From the security perspective, we used several metrics in the evaluation process.
Firstly, we propose a metric related to the security risk. Security risk evaluation is
usually part of a technical management process known as risk management [Ross
et al., 2016]. Usually, security risk evaluation takes account of two system aspects:
the system conditions that enable (or improve the chance of) an attack success
(e.g., in general, a system with a disabled firewall is exposed to a higher security
risk than a system with an enabled firewall), and the importance of the asset
hosted by the system (e.g., generally, a virtual machine that runs applications
to support credit card operations is exposed to a higher security risk than a
virtual machine that runs a simple calculator). In Chapter 5, we propose the
RiskScore metric, which focuses on the first aspect of security risk evaluation -
assess how much the internal state of the system may favor (or enable) an attack
success.

For the MTD evaluation, we mainly use the probability of attack success, repres-
enting the chance of the ongoing attack reaching its objective. Additionally, we
propose a set of secondary metrics, which are detailed at Chapters 6, 7, and 9.
For example, the Tolerance Level - metric which measures how long the system
takes to reach a specific probability of attack success, the Effectiveness Limit -
point in time where the MTD does not produce defensive effects, and the In-
creased Resistance - protection levels comparison of the systems with and without
MTD.

2.2 Concepts on State Space Models
The models presented in this thesis are based on PN. A necessary introduction
for PN must start from the Markov Chain (MC) formalism. The MCs are an
essential element of the SPN-based evaluation methods. Roughly, the solution of
SPN models involves mapping them into MC models [Bobbio, 1990]. For that
reason, the first subsection below presents the fundamental concepts of MCs.
The rest of the sections are as follows. Section 2.2.2 presents the concepts of PN,
Section 2.2.3 discusses the particularities of SPN, and Section 2.2.4 introduces the
hierarchical model composition. Finally, Section 2.2.5 closes, presenting a concise
view of how to apply sensitivity analysis in the model-based evaluations.

2.2.1 Markov Chains
Proposed in 1907 by Andrei Andreevich Markov, the MC have been widely ad-
opted for dependability evaluation since the fifties [Maciel et al., 2010]. The first
step in their knowledge is to understand the stochastic processes.

A stochastic process is a set of random variables X(t) in a sample space. The
variables X(t) values are the states. The set of all possible states is the state space.
The state space can be discrete or continuous. In the former case, the stochastic

— 13 —

CHAPTER 2. BACKGROUND AND RELATED WORK

process is a chain.

Following the Markovian definitions [Ching and Ng, 2006], if the state of a
stochastic process is only dependent on its immediate predecessor, then the
stochastic process is a Markov process. From a perspective, the current state
stores all the data needed to determine the next state. Markov processes with
discrete (i.e., countable) state space are known as MCs. Here, we have two addi-
tional classifications, Discrete Time Markov Chain (DTMC), where the parameter
space of the MC is discrete, and CTMC, with a continuous parameter space.

Graphically, the MC diagrams consist of directed graphs in which the nodes rep-
resent the system states, and the arcs represent the transitions between states.
Each arc has a label to assign the probability or rate related to the events leading
to a state transition.

Under the assumption of a CTMC for availability evaluation, the transitions occur
observing a rate instead of a probability [Guedes, 2019]. The usual way to derive
steady-state and transient CTMC solutions is through its transition matrix Q
(i.e., infinitesimal generator matrix). The elements in the Q matrix are related
to the transitions between the states. And the elements in the main diagonal
are equal to the negative sum of the rest of the elements in the line (i.e., qii =
− ∑

j:j 6=i qij) [Trivedi and Bobbio, 2017].

Up Down

Repair

0.05

0.70.1

Figure 2.1: CTMC availability model, retrieved from [Guedes, 2019]

Consider, for example, the CTMC model in Figure 2.1. Where the rates repres-
ent failures (transition from Up to Down), detection (transition from Down to
Repair), and repairs (transition from Repair to Up) per second. In this case, its
generator matrix Q, considering the state space S = Up, Down, Repair = 0, 1, 2
is as follows.

Q =

q00 q01 q02
q10 q11 q12
q20 q21 q22

 =

−0.05 0.05 0
0 −0.7 0.7

0.1 0.1 −0.1

Through the CTMC solution methods, which are omitted here for the sake of
simplicity, we find the following equations for the transient (Equation 2.2) and
steady-state solution (Equation 2.3), respectively. More details of CTMC solution
methods are in reference [Bolch et al., 2006].

— 14 —

CHAPTER 2. BACKGROUND AND RELATED WORK

π′(t) = π(t)Q, given π(0) (2.2)

πQ = 0,
∑
i∈S

πi = 1 (2.3)

In the CTMCs, all the transitions follow the exponential distribution. The
exponential-only behavior may be a limitation for some systems evaluation, as
the events may occur in different distributions. To mitigate this problem, we
can apply phase approximation, using specific structures to represent different
probability distributions [Trivedi, 2008].

2.2.2 Petri Nets
Since their original proposal by Carl Adam Petri in 1962 [Petri, 1962], the PNs
have been used in various scenarios. Ranging from electrical engineering [Castel-
lanos Contreras and Rodríguez Urrego, 2023], telecommunication systems [Bou-
bour et al., 1997] to computer science and manufacturing [Pawlewski, 2012],
the mathematical formalism serves as support for system analysis and evalu-
ation.

The PNs models provide a powerful abstraction of the studied system. In general,
the graphical representation of PN makes it possible to understand the system
behavior and the interactions between the system’s components. Due to its pop-
ularity, there are nowadays several tools to draw, analyze, and execute PN-based
models [Zimmermann, 2017][Maciel et al., 2017][Paolieri et al., 2019]. The graph-
ical representation of PN has four main components, as presented in Figure 2.2.
In summary, the elements refer to:

• Token - stored inside the places, they move accordingly to the transition
firing;

• Places - are the passive element of the model. They offer and collect tokens
from the transitions;

• Transitions - represents the event occurrence in the system. Their firing
depends on some pre-conditions determined by the input arcs;

• Arcs - directed edges indicating the token flow in the net. Depending on the
scenario, they may have a weight to indicate how many tokens are flowing
upon the transitions firing.

tokenplace arctransition
Figure 2.2: Petri Net components

— 15 —

CHAPTER 2. BACKGROUND AND RELATED WORK

Formally, a PN is a 5-tuple PN = (P, T, Pre, Post, M0), where: P = p1, p2, ..., pn

is a finite set of places, T = t1, t2, ..., tn is a finite set of transitions, Pre : P ×T →
N is the input incidence function, Post : P × P → N is the output incidence
function, and M0 : P → N is the initial marking. Marking is the distribution of
tokens in the net places [Küngas, 2005].

The PN dynamics depend on the occurrence of transition firing. A transition
firing changes the net state. A transition is enabled if the corresponding marking
M provides enough tokens for the respective input arcs (i.e., ∀p ∈ P, M(p) ≥
Pre(p, t), where Pre(p, t) is the weight of the arc(p, t)).

A specific marking Mx is reachable from a given marking M ′ if a sequence of
transitions s is capable of bringing the net from M ′ to Mx. In the PN realm,
the problem of finding a specific s from the initial marking M0 to a hypothetical
marking Mx is known as reachability problem.

2.2.3 Stochastic Petri Nets
The original concept of PN lacks the notion of timed transitions. The introduction
of time events and parameters in the PN results in a timed Petri Net. Precisely,
where all the times and delays considered in the modeling obey the exponential
distribution, we have a SPN. SPN evaluation process comprises the transformation
of the SPN into a CTMC model. Specifically, after exploring all the reachable
markings, we produce a reachability graph. The reachability graph structure is
indeed a CTMC where the nodes are the net markings, and the transitions are
related to the SPN transitions triggering. In the past years, the SPN models
have been extensively used in the dependability evaluation [Trivedi and Bobbio,
2017][Maciel, 2023].

Throughout the years, the development and adaptation of SPN models resulted
in several new concepts as Generalized SPN, Extended Deterministic SPN and
SRN [Heiner et al., 2009][German, 2000][Muppala and Trivedi, 1991]. Therefore,
for the sake of simplicity, we decided to stick to the term SPN. In this thesis,
we consider that the models: i) can have immediate transitions (i.e., firing with
zero time); ii) have inhibitor arcs - arcs that prevent (instead of enabling) trans-
ition firing; iii) can have deterministic transitions (i.e., transitions which follow
the deterministic distribution instead of exponential distribution); iv) are able
to represent transition firing priority, and v) provide guard functions features
(i.e., additional conditions, besides the input arcs, to enable transition firing). In
a more advanced modeling technique presented in Chapter 4, we also consider
marking-dependent firing rates, i.e., dynamic adjustments in the transition para-
meters depending on the state of the net.

Let us consider the flow of a simple SPN availability model in Figure 2.3. In the
initial state, the system is running, presented by the token in the UP place. The
transition MTTF represents the system Mean Time to Failure (MTTF). MTTF firing
represents a system failure occurrence. The same transition moves the token from
UP place to the DW place. The system repair is represented by the MTTR transition
(Mean Time to Repair (MTTR)). MTTR transition firing returns the model to its

— 16 —

CHAPTER 2. BACKGROUND AND RELATED WORK

initial state.

MTTF

DW

MTTR
MTTF

DW

UP
MTTR

UP

System
Failure

System
Repair

Figure 2.3: Flow of a SPN simple availability model

We can compute the system availability using the following reward measure
Availability = P{UP > 0}, which captures the probability of tokens presence
in the UP place.

2.2.4 Hierarchical Compositions
It is possible to adopt multi-layered models to describe more complex systems.
These multi-layered models obey a hierarchy. For that reason, they are usually
known as hierarchical models. Throughout the years, the hierarchical models
have been extensively used in availability and reliability evaluation [Ammar et al.,
1987][Clemente et al., 2022][Nguyen et al., 2019][Trivedi and Bobbio, 2017].

In the hierarchical models, the bottom-layer model solutions or extracted metrics
are used as input for the top-layer models. It is possible to have multiple layers
with heterogeneous model composition. For example, in our previous work [Melo
et al., 2013b], we used a composition of RBD at the bottom layer and SPN at the
top layer to model the VM migration as support for software rejuvenation problem.
We presented another approach for the same problem in the paper [Torquato and
Vieira, 2018]. In that one, we used SRN models in two layers. The same idea
is applied in the Chapter 4 of this thesis. Finally, it is worth highlighting one
of the previous studies that focused on the availability evaluation of large cloud
computing environments [Torquato et al., 2019a]. In that model, we mixed RBD
and SRN models.

Hierarchical modeling allows the separation of the sub-component or subsystem
in a dedicated model. Therefore, applying modifications without changing the
entire model structure is possible, leading to easier model scalability. In general,
hierarchical modeling decreases the solution obtainment time, as presented in our
previous paper [Torquato and Vieira, 2018].

Even with increasing computing power, solving large models may be impractic-
able. As stated previously, the solution method for SPN involves the obtainment
of the reachability graph. Large SPN models tend to suffer from the state-space
explosion problem. Any complex system, for example, cloud computing, has nu-
merous states. Usually, the number of states grows exponentially with the number

— 17 —

CHAPTER 2. BACKGROUND AND RELATED WORK

of considered variables, components, and processes [Valmari, 1996][Muppala and
Lin, 1996][Kot, 2003]. In such cases, obtaining the reachability graph may be
prohibitive or impracticable.

Longo et al. [2011] highlighted an interesting problem solution through hierarchical
composition. The composition is a bit more advanced in their case, as the layers
have cyclic dependencies. As they are applying SRN models, this specific model
composition is named interacting models. In their paper, they show that they
cannot compute large scenarios without the use of the composition. Their results
support the use of hierarchical compositions not only to simplify some scenarios
but also to enable the solution obtainment of highly complex models.

2.2.5 Sensitivity Analysis
Sensitivity analysis methods aim to understand how much a parameter variation
or a set of parameters affects the model output [Mainkar et al., 1993]. This type of
analysis, widely adopted in dependability models, helps find possible bottlenecks
and barriers in the system behavior [Matos et al., 2012c].

There are a variety of methods for sensitivity analysis, such as differential ana-
lysis, correlation analysis, regression, or perturbation analysis [Iooss and Lemaître,
2015]. Nevertheless, in the scope of this thesis, we used the most straightforward
method, the graphical sensitivity analysis. We use graphical sensitivity analysis
methods to obtain visual indicators of the parameter variation effect in the ob-
served metric [Christopher Frey and Patil, 2002]. The visual indication comes
from the model’s output plots.

2.3 Software Aging and Rejuvenation
A software may pass an extensive test phase before its release version [Pan, 1999].
The test phase is an essential step in the software development process and usually
encompasses the verification of the software behavior under different workloads
and conditions [Royce, 1970]. However, some bugs and errors may go undetected
even after extensive testing [Grottke and Trivedi, 2007]. The phenomenon of bug
activation may occur after a long time of execution of the software. Therefore,
defining the roots of the faults and failures to solve the problem becomes difficult.
These types of bugs are known as Mandelbugs [Grottke and Trivedi, 2005] [Gray
and Reuter, 1993].

The aging-related bugs have a similar nature to that Mandelbugs. Nevertheless,
the aging-related bugs activation depends on specific system conditions (e.g., lack
of computational resources) which are difficult to reproduce [Vaidyanathan and
Trivedi, 2001]. Following the classical definition of the chain of threats from Aviz-
ienis et al. [2004], Grottke et al. [2008] proposed a ”chain of threats” for Aging
Related (AR) failures (see Figure 2.4).

The AR failure occurs from the propagation of AR errors accumulation in con-
junction with specific system-internal environment conditions. The AR failure
occurrence has an increasing probability as long as the system runs. Specifically,

— 18 —

CHAPTER 2. BACKGROUND AND RELATED WORK

AR fault/bug

aging factors

AR failure

system-internal
environment

error accumulation
AR error

propagationactivation

Figure 2.4: Chain of threats for AR failure - retrieved from [Grottke et al., 2008]

the AR errors that do not yet cause a AR failure accumulate in the internal state
of the system in the presence of successive AR faults. The accumulation of AR
errors leads the system to a state where they propagate into a AR failure. The
aging factors are the activation patterns that trigger an AR bug.

One of the most critical metrics in software aging studies is the Time To Aging
Related Failure (TTARF). The TTARF is the expected time between system star-
tup and an AR failure occurrence. The TTARF probability distribution is highly
influenced by the workload submitted to the system [Bovenzi et al., 2011][Cotro-
neo et al., 2014]. Specifically, the intensity of the workload may accelerate or
enable the occurrence of aging factors.

AR bugs activation leads the system to a degraded state. The degraded state
is the result of the accumulation of software aging effects. The software aging
effects bring the system from a reliable condition to a failure-probable state. The
software aging effects may generally be perceived even before a AR failure. For
example, software aging effects may be related to resource leakage, numerical error
accrual, and data corruption. Finally, if no countermeasure is taken, the system
reaches the AR failure. Figure 2.5 depicts the general behavior of a system under
software aging.

Huang et al. [1995] presented the first definitions of software rejuvenation. Their
paper defines software rejuvenation as a proactive technique to prevent aging ef-
fects from reaching critical levels. The rejuvenation actions rely on gracefully
terminating and restarting an application to conduct it to a clean state without
accumulation of effects of aging. Standard techniques usually consist of an op-
erating system reboot or application restart. Therefore, in the usual scenario,
software rejuvenation imposes system downtime.

Software rejuvenation may be triggered using periodic intervals obtained from
analytical models. The main goal is to improve the overall system availability by
controlling the accumulated downtime due to software rejuvenation action in rela-
tion to the possible system downtime due AR failures [Grottke et al., 2008].

Previous research shows that cloud software is liable to suffer from AR bugs.
The works from Araujo et. al. [Araujo et al., 2011] [Araujo et al., 2014] [Matos
et al., 2012b] highlighted AR effects in the Virtual Infrastructue Manager (VIM)
software. The VIM software is responsible for managing the cloud platform in
a macro perspective, including the PMs, VMs, and other virtualized resources

— 19 —

CHAPTER 2. BACKGROUND AND RELATED WORK

Software
Failure
Rate

Software Failure

Normal execution with
proper use of resources

Performance degraded and
software internal state compromised

Time (from hours to months)

Accumulation of software aging effects

Figure 2.5: Software aging general behavior

(e.g., OpenStack, OpenNebula). Specifically, they detected that the software for
managing the VM storage, as well as the software in charge of managing the VM
life cycle, suffer from software aging.

Matos et al. [2012a] investigated software aging evidence in the Virtual Machine
Monitor (VMM)1 software. The VMM software is the middleware between the
VM and the underlying PM. In their work, they found AR effects in Kernel Virtual
Machine (KVM) hypervisor. Machida et al. [2012] also investigated AR effects,
but in another VMM, in this case, the Xen hypervisor.

More recently, software aging has also been detected in virtualized containers
and in applications running in the cloud. Due to the relevance of this topic,
one of the research efforts was devoted to conducting an investigation in this
field. The investigation resulted in a previous work [Torquato and Vieira, 2019],
which suggests AR effects in Docker container software. The evidence was further
confirmed by other authors in the field [Vinícius et al., 2022][Oliveira et al., 2020].
Costa et al. [2023] show AR effects evidence in Kubernetes software. Besides
that, Andrade et al. [2021] show AR evidence in image classifiers running in the
cloud.

As a final remark, all the cloud computing software may suffer from AR effects
coming from the underlying OS platform. Previous studies highlighted such effects
in the Linux OS [Cotroneo et al., 2010][Matias et al., 2010]. The effects are also
present in Windows OS software [Umesh et al., 2017].

The papers highlighted above are only a partial observation of AR bugs evidence
in cloud computing software. We notice that, across the cloud layers, the lit-
erature suggests AR bugs existence. Therefore, the proposal of proper software

1 In this thesis, we use the terms VMM and hypervisor interchangeably.

— 20 —

CHAPTER 2. BACKGROUND AND RELATED WORK

rejuvenation actions for such platforms is of utmost importance.

Due to the complexity of cloud computing software, it is usual to propose soft-
ware rejuvenation actions according to the cloud layers [Alonso and Trivedi, 2015].
Here, we highlight four layers to consider in cloud computing rejuvenation actions
(see Figure 2.6). This layer organization suggests that the software rejuvenation
of the bottom layers also affects the upper layers. For example, OS software
rejuvenation actions usually comprise the rejuvenation of the hypervisor, VM,
and the application running inside the VM. Usually, the software aging effects
of a bottom-layer component end up affecting upper-layer components. For ex-
ample, hypervisor AR effects affect the performance of applications running in a
VM.

Application

Virtual Machine

Hypervisor

Operating System

Figure 2.6: Cloud computing layers for software rejuvenation

We can highlight the following rejuvenation actions for the proposed layers:

• Application - restart the application and its related modules.

• Virtual Machine - complete re-initialization of VM, including its applic-
ations and OS.

• Hypervisor - restart the hypervisor software. Note that the hypervisor
restart implies the hosted VMs downtime.

• OS - reboot the OS. This action usually requires firmware restart and op-
erating system, a re-run of Power On Self Test (POST), and a reboot of
the kernel and its services. Usually, this type of rejuvenation is able to
completely clean up the accumulated AR effects in the platform.

The usual rejuvenation actions presented above may impose unacceptable down-
time for more critical applications. Therefore, some alternatives are available to
reduce rejuvenation-related downtime. One of these alternative techniques is the
microreboot or microrejuvenation [Candea et al., 2004] [Cotroneo et al., 2022].
The microreboot consists of selecting specific service elements to restart instead
of the entire application or OS.

For the bottom layers (i.e., hypervisor and OS), we can leverage Virtual Machine
migration to reduce rejuvenation-related downtime. With its roots in the warm-
VM reboot approach [Kourai and Chiba, 2010], which consists of suspending and
resuming VMs, the VM migration-based rejuvenation aims at moving VMs away

— 21 —

CHAPTER 2. BACKGROUND AND RELATED WORK

from the host under aging before rebooting or restarting the system. Previous
works show the applicability of VM migration-based rejuvenation from theoret-
ical [Bai et al., 2020] and practical [Torquato et al., 2018a] perspectives.

Previous studies highlight the analytical modeling approach to evaluate software
aging and rejuvenation impact[Trivedi et al., 2000] [Garg et al., 1995] [Vaidy-
anathan and Trivedi, 2005]. Some papers propose scheduling of software reju-
venation actions [Machida et al., 2013] [Melo et al., 2013a] to determine when to
perform rejuvenation actions to maximize overall system availability.

2.4 Moving Target Defense: A Systematic Mapping
Moving Target Defense (MTD) consists of a system reconfiguration to dynamically
change the attack surface available for malicious users (e.g., VM migration, Inter-
net Protocol (IP) address shuffling). MTD relies on environment reconfiguration
to confuse attackers and nullify the knowledge of the attackers about the system
state or to react to a detected attack. Basically, its foundation is to assume that
the perfect system security is unattainable [U.S. Department Homeland of Secur-
ity , 2020]. MTD aims to produce an attack surface that appears chaotic [Chong
et al., 2009]. Therefore, MTD substantially increases the effort of the attacker
to conduct the attack as the target environment is changing continuously [Ja-
jodia et al., 2011]. MTD actions triggering usually follow scheduling with fixed or
variable intervals [Sengupta et al., 2020].

In order to better understand the challenges and current limitations on the MTD
in the cloud research area, we conducted a structured analysis of the state-of-
the-art. This analysis follows the systematic mapping approach [Petersen et al.,
2008][Petersen et al., 2015]. The systematic mapping aims to bring an overview
of such state-of-the-art, usually focusing on specific aspects of the literature. Dif-
ferent from systematic reviews, which discuss the related papers in detail, the
systematic mappings focus on particular elements and perform a more concise
analysis of the papers. The main advantage of systematic mappings is to usually
provide faster results, as they focus on the key aspects of the papers analyzed.
Besides that, the visual data (maps) facilitates the understanding of the state of
the literature. Below, we bring the highlights of our systematic mapping find-
ings. The entire content was published in [Torquato and Vieira, 2020] and is also
provided in Appendix A.

The main goal of the systematic mapping study is to provide an overview of recent
research on Moving Target Defense mechanisms in cloud computing environments.
The main research question we aim to answer is: What are the most researched
techniques for moving target defense on cloud computing? In the process of an-
swering this question, we find relevant information about the current status of the
MTD research.

We considered five major computer science-related databases (i.e., ACM Digital
Library, IEEE Xplore Digital Library, ScienceDirect, SpringerLink, and Online
Wiley Library) in which we used the following search string ”moving target de-
fense” AND ”cloud”. The search was made in July 2019 and considered the papers

— 22 —

CHAPTER 2. BACKGROUND AND RELATED WORK

published in the past ten years. After the screening and selection of the papers,
we ended up with 95 papers to classify.

2.4.1 Classification of Works
The first task after the papers screening is the proposal of classifications for the
MTD research. Following the classification presented in [Cai et al., 2016b] and
[Okhravi et al., 2013], we propose a classification with three categories: i) MTD
research area; ii) MTD strategy; iii) evaluation metrics. These categories aim
to cover the meaningful aspects of each paper, considering our research ques-
tions. Our classification approach is transverse in all the proposed categories,
meaning that a paper classification can comprise more than one group of each
proposed category. The details of each category are discussed in the following
paragraphs.

2.4.1.1 Moving Target Defense (MTD) Research Area

In this category, we aim to classify the type of research published by observing
the classification proposed by [Cai et al., 2016b]. The category has three groups:
Theory, Strategy, and Evaluation, as follows:

• Theory - Find answers to fundamental questions regarding MTD tech-
niques.

– How to create effective MTD system?

– What capabilities and features are essential to MTD systems?

• Strategy - Propose a technique for MTD.

• Evaluation - Measure the effectiveness of existing (or proposed) strategies.

As mentioned before, we consider that a paper can be classified into more than
one category. For example, some papers propose and evaluate a mechanism for
MTD on the cloud. Therefore, these papers are classified as Strategy + Evaluation
(S+E).

2.4.1.2 Moving Target Defense (MTD) Strategies

While the research area category is quite generic, we assume that MTD strategies
are more focused on cloud computing environments. Here, we highlight two pro-
posed classifications present in the current literature.

Hong and Kim [2015] proposes a classification for MTD actions. They suggest
three different categories. Shuffle - reshuffle of a system configuration (e.g., IP
address or port reassignment through software-defined networking). Diversity -
replace a system component with a variant able to perform the same task (e.g.,
VM migration between heterogeneous hypervisors). Redundancy - enlargement of
attack surface to deal with incoming attacks (e.g., VM replication).

Okhravi et al. [2013] also propose the following taxonomy for MTD tech-
niques:

— 23 —

CHAPTER 2. BACKGROUND AND RELATED WORK

• Dynamic Runtime Environment - Techniques that focus on changing
the environment used by the applications in a dynamic manner.

– Address Space Randomization - Changing the memory layout.
The randomization may include the location of the program code, lib-
raries, and other elements stored in the memory.

– Instruction Set Randomization - Changing the OS interface
presented to the application.

• Dynamic Software - It consists of changing the software code dynamically.
Specifically, it is possible to change the instructions, their order, grouping,
and format.

• Dynamic Data - It aims at changing the application data dynamically
(e.g., format, syntax, encoding, representation).

• Dynamic Networks - It alters the network configuration and properties
dynamically (i.e., network addresses and ports).

• Dynamic Platform - Changing the platform properties as OS, Central
Processing Unit (CPU) dynamically. In a virtualized setup, it is possible
to achieve dynamic platform MTD through VM migration across different
hypervisors.

Observing the current literature, we decided to simplify the classification presented
in [Okhravi et al., 2013]: Dynamic Application - which comprises dynamic
data, dynamic software, and dynamic runtime environment; Dynamic Platform
and Dynamic Network.

2.4.1.3 Evaluation Metrics

The deployment of an MTD mechanism implies costs for system performance
while improving the system security. Therefore, we intend to understand which
evaluation metrics are currently used in MTD in cloud research. We propose only
two groups for this category:

• Performance, evaluation comprises performance metrics, such as response
time, system overhead, etc;

• Security, evaluation covers security aspects, such as attack success rate,
survivability, etc.

2.4.2 Mapping Results
This section provides an overview of Moving Target Defense in cloud computing
research. We present charts and diagrams with the distribution of publications
regarding the classification mentioned earlier.

— 24 —

CHAPTER 2. BACKGROUND AND RELATED WORK

2.4.2.1 Research Area - Papers Distribution

The first map is a Venn Diagram of the distribution of papers in terms of theory,
strategy, and evaluation (see Figure 2.7). We noticed that most papers propose an
MTD strategy and present its assessment. As we have books and seminal papers
to support MTD theory [Jajodia et al., 2011, 2012; Zhuang et al., 2014], the
scientific community seeks to offer more approaches to enhance the available set
of MTD mechanisms. However, theoretical papers usually provide more generic
contributions on the use of MTD in other scenarios (not only cloud computing).
For example, Leslie et al. [2015] proposes a model based on game theory to support
resource configuration to reduce the likelihood of a security attack. Lei et al. [2018]
also suggests an approach based on game theory. Their proposal consists of an
incomplete information Markov game theory comprising a moving attack surface
and optimal strategy selection. The papers [Song et al., 2019], [Peng et al., 2014],
and [Wang et al., 2016] are at the intersection between theory, strategy, and
evaluation. Besides proposing an MTD strategy and its evaluation, they present
a robust theoretical framework with models and algorithms.

Papers that propose generic evaluation methods are helpful to support the com-
parison of MTD techniques. Alavizadeh et al. [2018b, 2017, 2018a] provide a
modeling framework for the evaluation of MTD in cloud environments. The au-
thors cover relevant security aspects such as return on the attack, attack cost,
and the probability of attack success. Their results also comprise a comparison
between a system with and without MTD deployments.

Theory
Strategy
Evaluation

1

7035

10

6

Figure 2.7: Research area classification

2.4.2.2 Evaluation Metrics - Papers Distribution

Figure 2.8 presents a Venn diagram with the distribution of the metrics found in
the selected papers. We noticed a balanced distribution of papers in the proposed
classification. Papers that include a performance evaluation usually focus on the
overhead caused by the proposed (or evaluated) MTD strategy. For example, Yang

— 25 —

CHAPTER 2. BACKGROUND AND RELATED WORK

and Cheng [2018] present an MTD based on Software Defined Network (SDN).
Among their results, the authors compared the response time of the application
when using their proposal with the traditional MTD strategies. Wang et al. [2016]
propose a cost-effective MTD against Distributed Denial of Service (DDoS) and
Covert Channel Attacks. Their performance evaluation covers the cost per minute
of using different variations of MTD algorithms.

Performance
Security

2629
24

Figure 2.8: Evaluation approaches - Papers distribution

The specific assumptions of each research impose barriers to the comparison of
different MTD strategies. The security evaluation metrics considered in the works
analyzed tend to be related to specific aspects to characterize the proposed MTD
effectiveness. The metrics are usually defined by the authors and applied in their
particular context. For example, the study from Sianipar et al. [2018] is focused
on the Meltdown and Spectre vulnerabilities. Therefore, their results are based on
Spectre and Meltdown’s effectiveness while applying their approach. Wang et al.
[2014] propose an MTD solution as a DDoS defense. The evaluation comprises
the percentage of clients saved based on the number of shuffles. Wahab et al.
[2019] propose a comprehensive framework for MTD deployment in the cloud.
Their framework comprises several techniques and methods, including a risk as-
sessment methodology and a machine learning approach to collect information
from malicious activities. In the evaluation, the authors use two primary metrics:
percentage of attack detection and survived services.

The most recurrent security metric is related to the MTD impact in the attack
success rate [Nguyen et al., 2018; Ma et al., 2016; Zhang et al., 2016a; Debroy
et al., 2016]. However, it is still challenging to set up a direct comparison between
the papers due to their particular assumptions. The development of a unified
approach for MTD evaluation is an open problem.

— 26 —

CHAPTER 2. BACKGROUND AND RELATED WORK

2.4.2.3 Strategy - Papers Distribution

This section presents an overview of the type of MTD strategies applied in cloud
computing. The results presented here provide answers to the proposed research
question: ”What are the most researched techniques for moving target defense on
cloud computing?” Figure 2.9 presents a Venn diagram with the distribution of the
proposed MTD strategies. Each set in the Venn diagram corresponds to MTD
strategies related to the dynamic application, dynamic network, and dynamic
platform.

We noticed that most of the MTD techniques leverage cloud computing’s inher-
ent features. For example, MTD based on the dynamic platform usually relies on
VM migration for the environment reconfiguration. In this context, VM migra-
tion is typically used to defend against side-channel attacks [Moon et al., 2015;
Zhang et al., 2012; Azab et al., 2017; Kashkoush et al., 2018; Adili et al., 2017;
Yang et al., 2019]. Liu et al. [2018] present an MTD approach against side-channel
attacks based on dynamically scheduling VM computing resources. Agarwal and
Duong [2019] propose a different MTD solution to defend against side-channel
attacks using a VM placement technique. They propose an algorithm to reduce
the probability of malicious VM co-location. Also, using VM placement tech-
niques, Ahmed and Bhargava [2016] propose a MTD framework based on the
creation and deletion (reincarnation) of VMs. To improve security, the authors
dynamically change the OS instance on the VM in each reincarnation round. Jia
et al. [2014] present an MTD mechanism to isolate attacked servers from benign
clients during DDoS attacks. Their approach consists of turning victim servers
into moving targets. Penner and Guirguis [2017] leverage on both VM migration
and VM placement techniques to provide a comprehensive MTD mechanism for
cloud computing.

Application
Network
Platform

1

2 7

1

17
24

40

Figure 2.9: Strategy classification

Dynamic network approaches are usually based on network address hopping tech-

— 27 —

CHAPTER 2. BACKGROUND AND RELATED WORK

niques [Groat et al., 2013; Luo et al., 2016; El Mir et al., 2017]. Kurra et al. [2013]
present an MTD mechanism based on data partitioning and key hopping. Using
key hopping mechanisms, the authors can reduce the length of keys to improve
system performance while maintaining system security levels. Fleck et al. [2018]
propose dynamic changes on the IP addresses of proxies to thwart the recon-
naissance phase of attacks. Lysenko et al. [2018] also propose dynamic network
configurations to protect a Corporate Area Network.

Regarding MTD techniques related to the dynamic application approach, we high-
light that the most used technique is SBE. SBE is usually applied using a dynamic
selection of functionally equivalent software variants at runtime [Dsouza et al.,
2013; Le Goues et al., 2013; Hosseinzadeh et al., 2015]. The oldest paper in
our classification [Azab and Eltoweissy, 2011] also applies SBE in the context of
Cyber-Physical Systems (CPS). The authors used the ChameleonSoft, a biological-
inspired MTD framework that provides software diversity at runtime.

Finally, we highlight that just one paper [Chung et al., 2015] proposes a framework
(SeReNe) comprising all three layers (application, network, and platform). How-
ever, SeReNe is still in the conceptual phase and lacks practical implementation
and evaluation.

2.4.2.4 Research Area and Strategy - Classification Relationship

The bubble chart in Figure 2.10 presents the relationship between the research
area and strategy categories of the selected papers. Bubble charts simplify the
identification of research gaps and the areas that received the most attention from
the research community.

Research Area

S
tr

at
eg

y

DynamicApplication

DynamicApplication+DynamicNetwork

DynamicApplication+DynamicNetwork+DynamicPlatform

DynamicApplication+DynamicPlatform

DynamicNetwork

DynamicNetwork+DynamicPlatform

DynamicPlatform

DynamicPlatform+DynamicNetwork

N/A

Evaluation S+E Strategy T+S T+S+E Theory

1

1

1

3

4

1

1

4

12

1

21

31

5

1

1

3

1

1

2

0

5

10

15

20

25

30

Figure 2.10: Relationship between Research Area and Strategy categories

As mentioned earlier, most papers propose an MTD strategy and its evaluation.
Moreover, among these papers, the majority use dynamic platform strategies.
There are three theoretical papers [Leslie et al., 2015][Lei et al., 2018][Bazm et al.,
2017] that study generic MTD theory without focusing on specific strategies. Some
papers propose MTD strategies but lack the evaluation of their effectiveness. MTD
Theory receives less attention than the other areas from the research community.
The paper from Casola et al. [2018] was classified as a theory and strategy because,

— 28 —

CHAPTER 2. BACKGROUND AND RELATED WORK

besides presenting a security SLA-driven MTD framework, it presents a strong
theory about cloud applications and security SLAs.

2.4.3 Key Findings
While applying or proposing MTD mechanisms for cloud computing, the research-
ers leverage cloud and virtualization features as VM placement or migration tech-
niques. The problem with this approach is that these MTD techniques rely only
on platform modification. Therefore, more well-prepared attackers may develop
security attacks for higher layers, such as application confidentiality or user pri-
vacy. However, the use of cloud and virtualization capabilities reduces the cost
for MTD implementation, as such techniques use cloud-embedded features.

There is a significant research effort in expanding the MTD in cloud computing
to other platforms. The relationship between the cloud and these platforms is
mutual. In some cases, the works use the cloud to enable an MTD in another
specific platform (like CPS and IoT). In other cases, the papers use different
platforms to improve security levels in an MTD in the cloud (like some papers
using SDN).

Research opportunity 1 - Developing theoretical research about MTD in
Cloud. The majority of theoretical papers are generic. The development of
MTD theories, which comprise the characteristics of the cloud and its virtualized
environment, is a research opportunity. For example, a relevant MTD problem
is the MTD timing problem where we try to define optimal schedules to perform
MTD actions taking into account the desired system attributes (e.g., security,
performance or sustainability).

Research opportunity 2 - Developing a unified framework for MTD evalu-
ation. The development of security benchmark tools is a challenging task because
of the inherent unpredictability of the actions of the attacker. However, previous
research [Vieira and Madeira, 2005][Dumitraş and Shou, 2011] provides directions
for the design of such benchmarks. The current MTD in cloud research focuses
on proposing new techniques to avoid (or reduce the likelihood of) specific secur-
ity threats. The problem is that, without unified evaluation metrics, it is hard
to compare and decide among the available MTD methods. Proposing a unified
MTD evaluation approach may be an insurmountable challenge. However, start-
ing to prove evaluation approaches for specific scenarios (e.g., MTD in the cloud,
which applies VM migration to avoid attacks) seems to be an interesting research
opportunity.

Research opportunity 3 - Developing multi-layer MTD. As mentioned earlier,
the MTD in cloud researchers explored mainly the cloud features as enabling mech-
anisms for MTD deployments. There is still a gap in the development of multi-
layer MTD frameworks for cloud computing. Just applying dynamic platform and
network techniques is not enough to mitigate sophisticated attacks that aim at
the system’s confidentiality or users’ privacy. The development of a self-adaptive
framework capable of dynamic multi-layer MTD selection is an interesting research
challenge.

— 29 —

CHAPTER 2. BACKGROUND AND RELATED WORK

Research opportunity 4 - Study the impact of MTD in context-oriented
clouds. As presented in [Buyya et al., 2018], there is a need for holistic evaluations
in cloud computing environments. Applying MTD in context-oriented clouds may
impose severe system overhead. The development of strategies to evaluate the
tradeoffs when using MTD in the cloud is a relevant future research line.

As a final remark, we highlight a simplified answer for the proposed research ques-
tion (what are the most investigated techniques in moving target defense on cloud
computing research?). In the dynamic platform papers, the most used technique
is VM migration. In dynamic network papers, the most used technique is net-
work address randomization. A significant number of dynamic network papers
rely on SDN flexibility to perform dynamic network changes. Finally, the most
used technique in dynamic application papers is SBE.

2.5 VM Migration-based MTD
We highlight that our thesis contributions fall into two research opportunities
from our systematic map study: first, about MTD theoretical field. Our model-
ing framework provides information for MTD timing problem solving in specific
cases. Second, about the development of a unified framework for MTD evalu-
ation. Our thesis work proposes a model capable of evaluating the availability
and security of a cloud computing environment. Through the proposed models
and PyMTDEvaluator tool, it is possible to analyze and compare different MTD
policies. Furthermore, we selected the VM migration-based MTD as it appears as
a highly used technique in dynamic platform approach. Besides that, VM migra-
tion tends to be easier to apply, as it is a usual management task and is usually
available in a variety of cloud computing platforms.

To analyze the VM migration-based MTD effectiveness, we need to select a suit-
able security threat. Note that VM migration-based MTD has a limited range of
protection, as the VM and its applications states must remain the same after the
process. This way, the VM migration is useful to defend against specific host-based
threats [Zhang and Lee, 2017]. Basically, in the host-based attacks, the attacker
controls a set of VMs and conducts attacks against its own PM host. In the scope
of this thesis, we use the time-based VM migration with fixed interval as MTD.
The approach is to swap the attacker position periodically to increase the security
of the system.

Figure 2.11 presents the dynamics of a VM migration-based MTD against a host-
based attack. In this example, the attacker runs a single VM in a two-PM virtu-
alized setup. We have three stages. The switch between the stages is triggered by
the VM migration. In the Stage 1, the attacker is in the Host A, and the Host B
is free from attack. Then, in the Stage 2, after the triggering of VM migration,
the attacker arrives in the Host B. During the attacker VM stay on the Host B,
the attack effects on Host A cease. Finally, in the Stage 3, the attacker returns
to Host A. Depending on the threat, the attacker may be able to continue the
attack, or the attack needs to be restarted.

Inspired by the definitions of MITRE Corporation [2023], we named the two types

— 30 —

CHAPTER 2. BACKGROUND AND RELATED WORK

•

•
•

•

•

•

Figure 2.11: VM migration based MTD dynamics - Two PM setup

of threats as persistent tactic and non-persistent tactic. In the persistent tactic,
the attacker accumulates knowledge and is able to continue the attack as soon
as the VMs arrives in a previously visited PM. On the other hand, in the non-
persistent tactic, the attacker needs to restart the attack after each movement of
the VMs.

Returning to the example depicted in Figure 2.11, let us consider the behavior of
Host A. For the sake of simplicity, we consider that the attack progress is linear
during the time in this illustration. Note that this example is an abstraction
and that in real-world scenarios, the attack progress may vary according to the
considered threats. Figure 2.12 presents the expected attack progress line in Host
A in three different situations: a) systems without MTD, b) systems with MTD
and under a persistent threat, and c) system with MTD and under a non-persistent
threat.

Figure 2.12: VM migration based MTD dynamics against persistent and non-
persistent tactics

— 31 —

CHAPTER 2. BACKGROUND AND RELATED WORK

In the plot in Figure 2.12, the black line represents the attack progress. The ver-
tical dashed lines correspond to the stage limits. The gray dashed arrow illustrates
the expected MTD effect in each of the considered scenarios. The scenario with
the absence of MTD (Figure 2.12 a)) shows that the attack progresses normally
until it reaches success (i.e., attack progress of 100%).

In the scenario under a persistent threat, the behavior is as follows (Figure 2.12
b)). The attack progress is interrupted while the attacker is away from the Host
A. Then, when the attacker returns to Host A, the attack continues its progress.
Finally, in the scenario under a non-persistent threat, the behavior is the following
(Figure 2.12 c)). The attack progress is nullified after the VM migration. The
attack needs to be restarted when the attacker returns to Host A.

On the threats with potential defense through VM migration, we highlight the
memory Denial of Service (memory DoS). Leveraging on issues in the hardware
memory isolation [Li et al., 2020], memory Dos targets the memory of the VM
launching the attack, trying to affect the co-resident VM availability by overload-
ing shared memory.

The inspiring work Zhang et al. [2017] provided memory DoS background (in-
cluding the attack source code). Li et al. [2020] provided insights on the memory
DoS attack detection. Although both papers mentioned VM migration as a po-
tential defense for memory DoS, the authors followed different approaches from
ours. Zhang et al. [2017] dealt with the problem using execution throttling. [Li
et al., 2020] focused on the memory DoS detection instead of the MTD pro-
posal.

Chapter 3 presents our empirical observation results of using VM migration-based
MTD against memory DoS. Appendix B provides additional empirical results
showing the impact of memory DoS in different applications running inside the
VM. In summary, existing studies confirmed the MTD effectiveness and high-
lighted that the MTD timing function (i.e., when to apply MTD) is a decisive
factor in preventing attack success.

2.6 Multi Criteria Decision Making (MCDM)
In the development of this thesis, we used some MCDM methods to support
the selection of time-based VM migration policies according to the user priorities.
These methods are specifically in the Chapters 5 and 9. The use of MCDM in this
context helps in answering questions such as: ”Which VM migration scheduling
policy do I need to select when to prioritize availability over security?” or ”How
often do I need to migrate VMs to find a policy with 30% for availability importance
and 70% for security importance?”.

There are numerous MCDM methods available [Ishizaka and Nemery, 2013]. From
more rudimentary methods based only on the Euclidean distance from an optimal
solution to more sophisticated methods considering the criteria to criteria com-
parison (e.g., Analytic Hierarchy Process (AHP) method [Asadabadi et al., 2019]).
During our research, we used such methods at two levels of maturity. In Chapter 5,

— 32 —

CHAPTER 2. BACKGROUND AND RELATED WORK

we used simpler methods based on the Euclidean distance, and in Chapter 9, we
decided to use a more elaborated method based on the Technique for Order Pref-
erence by Similarity to Ideal Solution (TOPSIS) method [Pavić and Novoselac,
2013].

2.6.1 MCDM based on the Euclidean Distance from an Ideal
Solution

For the understanding of this MCDM method, let us consider an illustrative ex-
ample below. After the computation of a hypothetical example, the evaluation
output suggests three VM migration policies P1, P2, and P3. P1 policy achieves
0.001 of Unavailability (UA) and 70% of Probability of Attack Success (PAS). P2
has the following results UA = 0.0004 and PAS = 80%. And P3, UA = 0.0002
and PAS = 90%. The question now is how to decide which one of these policies
is the best one when considering both metrics equally (i.e., both with the same
weight for the decision-making).

The first step is to normalize the data. Here, we apply the method of dividing
each element by the maximum obtained value (i.e., xnorm = x/max(x)). After the
obtainment of the normalized values, it is necessary to propose an ideal solution.
In this scenario, the ideal solution is the one that produces no unavailability and
keeps the probability of attack success at 0% (i.e., origin point (0,0) of a xy plot
with x=UA and y=PAS). Finally, we compute the Euclidean Distance2 from each
one of the normalized points to the ideal solution. In this scenario, we search
for the shortest distance to the ideal solution. In this hypothetical example, the
policy P2 is the best solution. Figure 2.13 summarizes the approach.

2.6.2 Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS)

Following the footsteps of [Araujo et al., 2018], we applied the TOPSIS [Chen and
Hwang, 1992] method for selecting the policies in the software rejuvenation and
MTD scenario. Different from the previous method, TOPSIS allows the inclusion
of weights in the criteria used in the decision-making.

TOPSIS method has six steps as follows [Jahanshahloo et al., 2006]:

1. Compute the normalized decision matrix. The normalized value nij is ob-
tained through the following.

nij = xij/

√√√√ m∑
i=1

x2
ij, i = 1, ..., m, j = 1, ..., n.

2. Obtain the weighted normalized decision matrix. Considering wj as the
weight of the ith criteria, and that ∑n

j=1 wj = 1, the weighted value vij is

2d(p, q) =
√∑n

i=1(qi − pi)2, where p, q are two points in the Euclidean n-space, qi, pi are the
Euclidean vectors and n is the n-space.

— 33 —

CHAPTER 2. BACKGROUND AND RELATED WORK

•

•

•

𝒙𝒏𝒐𝒓𝒎 = 𝒙/𝐦𝐚𝐱(𝒙)

Figure 2.13: Hypothetical example using the MCDM method based on Euclidean
distance from an ideal solution

obtained using
vij = wjnij, i = 1, ..., m, j = 1, ..., n,

3. Find the positive and negative ideal solutions. Consider I associated with
benefit criteria and J associated with loss (cost) criteria.

A+ = {v+
1 , ..., v+

n } = {(maxjvij|i ∈ I), (minjvij|i ∈ J)}

A− = {v−
1 , ..., v−

n } = {(minjvij|i ∈ I), (maxjvij|i ∈ J)}

4. Compute the Euclidean distance from each normalized solution to the pos-
itive (d+

i) and negative (d−
i) ideal solutions.

5. Obtain the relative closeness to the ideal solution. The relative closeness
from alternative Ai to A+ is the following.

Ri = d−
i /(d+

i + d−
i) i = 1, ..., m.

6. Ranking using decreasing order the evaluated alternatives.

2.7 Related Works
The contributions of this thesis range from performability models of cloud systems
with software rejuvenation to security models of MTD-enabled systems. In the
current literature, we were unable to find related works with a similar range of
contributions. Therefore, below, we categorize the related works in two sections,
the first one for software rejuvenation-related works and the second one for the

— 34 —

CHAPTER 2. BACKGROUND AND RELATED WORK

MTD related works.

2.7.1 Software Rejuvenation
The works Machida et al. [2010, 2013] provide helpful insights into our availability
modeling strategy. For example, we used their modeling strategy for our Clock
and Availability models. Specifically, we adopt deterministic transitions for the
Clock model and a hypo-exponential distribution to represent the software aging
accumulation in the Availability model. Unlike their work, we also include the
possibility of failure in the VM migration target host. Besides that, our model
also covers the influence of software aging status in the VM migration pre-copy
phase duration.

Thein and Park [2009] (one of the first works to propose evaluation through
Markov Chains), Wang et al. [2007] (inclusion of performability metrics), also
provide insights into the modeling process. However, none of these, or the others
mentioned above, include the relationship between Moving Target Defense and
Software Rejuvenation.

Bai et al. [2020] present a Semi Markov Process (SMP) for VM migration-based
software rejuvenation. They analyze system availability and job completion time
metrics. The main strength of their work is the possibility of using different
probability distributions for the model’s transitions. Different from their work,
we consider several additional aspects, such as bursty workload occurrence and
the security evaluation of a system using time-based VM migration. Furthermore,
unlike their paper, we present empirical background to highlight VM migration
effectiveness as software rejuvenation.

Liu et al. [2015] theoretically show a VM migration rejuvenation with a proactive
error detection approach. Their proposed rejuvenation action comprises addi-
tional system entities to support the fault tolerance process, namely, the aging
failure detector, which analyzes the physical resource status, and the aging degree
evaluator used to store the context of aging failures. In the paper, the authors neg-
lect to present experimental validation of their proposed technique. Unlike their
work, we highlight previously obtained practical results of VM migration tech-
nique against VMM software aging. Besides that, we exercise different scenarios
to find proper rejuvenation scheduling.

In an approach similar to [Bai et al., 2020], Okamura et al. [2014] theoretically
analyzes software rejuvenation policies using a phase-type expansion approach.
One of the highlights of their paper is the use of Markov Regenerative Stochastic
Petri Nets (MRSPNs) to allow transient evaluation. In this field, the majority of
the works focus on steady-state evaluation metrics. Different from their approach,
our modeling ends up comprising more system details such as VM migration pre-
copy details, bursty workload occurrence, and security evaluation.

Another interesting work of time-based software rejuvenation was proposed in Pa-
ing and Thein [2012]. In their work, they also considered the VM migration tech-
nique. Through SRN models, they compute rejuvenation policies that maximize
the desired metrics. Interestingly, they carefully present a set of closed forms for

— 35 —

CHAPTER 2. BACKGROUND AND RELATED WORK

metrics computation. As in some of the previously mentioned related works, our
thesis comprises additional aspects of the system as well as the security evalu-
ation.

Following a different approach from the majority of the works in this field, Fakhrol-
mobasheri et al. [2018] took a step further in analyzing not only availability but
also performance and power consumption. They compute the overall power con-
sumption and probability of VMM failure under different circumstances. Besides
the differences in the research scope of our work and theirs, we highlight that,
unlike their work, our models take the VM migration overhead impact into con-
sideration.

It is important to highlight the works from Levitin et al. [2018] and Dohi
et al. [2001], which provide significant contributions to the software rejuvena-
tion scheduling field. Their theoretical contributions improve the overall under-
standing of how to optimize the policies and how to estimate the scheduling for
rejuvenation.

As a final remark on software rejuvenation modeling papers, we highlight the
additional works Bai et al. [2023a,b], which exercise the rejuvenation-enabled sys-
tem with specific applications (namely, multi-access edge computing and vehicle
platooning). From a perspective, our approach of merging MTD and software re-
juvenation. However, unlike their work, we present the application-related metrics
(e.g., probability of attack success, tolerance levels)

2.7.2 Moving Target Defense
Alavizadeh et al. in the papers [Alavizadeh et al., 2018a, 2019b, 2020, 2021]
provide a comprehensive security assessment of MTD on cloud computing. The
evaluation is based on modeling and analysis of MTD techniques. The authors
evaluate four security metrics: system risk, attack cost, return on attack, and
availability. The main contribution of their work is an approach to evaluate the
effectiveness of combined MTD. They provided models for evaluating the combin-
ation of Shuffle, Diversity, and Redundancy MTD techniques in cloud computing
environments. The assessment uses Hierarchical Attack Representation Model
(HARM) models Hong and Kim [2015] for combined MTD techniques. HARM ef-
fectively evaluate MTD strategies as they combine Attack trees in the bottom layer
and Attack graphs in the upper layer. However, they are often specific for certain
scenarios as they require network topology description. Unlike their approach,
we use SPN in the security evaluation, as these provide a different perspective on
security evaluation, focusing on how stochastic events affect the system status.
Additionally, through the SPN models, we can cover aspects such as the influence
of software aging in the MTD system. Besides that, we extend our contributions
proposing PyMTDEvaluator, to enhance the model-based evaluation usability by
providing a user interface.

We highlight another work Alavizadeh et al. [2019a], which proposes an automa-
tion framework for MTD deployment on cloud computing. Like PyMTDEvaluator,
their work also provides a user interface to interact with the engine of the secur-

— 36 —

CHAPTER 2. BACKGROUND AND RELATED WORK

ity evaluation framework. Their framework is capable of communicating and
deploying MTD on OpenStack-based clouds. While their work goal is to de-
liver a well-rounded solution for automated deployment of MTD on the cloud,
PyMTDEvaluator is more focused on providing means for evaluating and com-
paring time-based MTD alternatives. The inspiring work from Alavizadeh et al.
is nicely compiled in his Ph.D. Thesis [Alavizadeh, 2020].

Thebeau II et al. [2014] provides a theoretical point-of-view of how to measure
the resiliency of a cloud that applies SBE MTD. SBE uses software diversity to
improve system security, survivability, and resilience. The paper describes some
of the essential concepts of security evaluation, such as integrity, availability, sur-
vivability, and confidentiality. Finally, the paper proposes a model for resiliency
quantification in scenarios with SBE-based MTD. Unlike their work, we deliver
models covering different MTD deployments on Cloud Computing. Such deploy-
ments are based on VM migration.

Ahmed and Bhargava [2016] propose Mayflies MTD framework for distributed
systems. Mayflies use a specific policy of VM placement as MTD. The idea is
to perform VM substitution through creation and deletion cycles, obeying cer-
tain time intervals. Every cycle of substitution changes a VM characteristic. In
Mayflies, VMs are created to use a different operating system from the previously
deleted VM. The strategy avoids attack progress or the spread of an undetected
attack. The authors evaluate their proposed framework through experiments in a
real testbed. However, different from our approach, the paper does not present a
security analysis of the proposed technique.

Chung et al. [2015] propose SeReNe, a platform to deliver Network-Security-as-
a-Service (NSaaS) for multi-tenant data center environments. SeReNe plans to
apply MTD using diversity techniques to mitigate software vulnerabilities such
as Bohrbugs, Mandelbugs, and aging-related bugs. However, SeReNe is still in
a conceptual phase, and the paper lacks its practical implementation and evalu-
ation.

Mendonça et al. [2020] presented a model for performability evaluation of a sys-
tem with a time-based Moving Target Defense. The proposed MTD leverages
Software-Defined Networking (SDN) to perform the environment modifications.
The authors neglect the security improvement assessment due to MTD deploy-
ment. Unlike their work, we focus on the security evaluation regarding the prob-
ability of attack success.

Chen et al. [2020] presented a SRN model for job finish time evaluation of a sys-
tem with MTD based on VM Migration. The paper offered relevant insights into
our model design and parameterization. The presented results focus on the job
finish time under different conditions. Unlike their work, we focused on evaluating
the MTD effectiveness under different architectures and VM migration schedul-
ing policies. By effectiveness, we mean a reduction in the probability of attack
success.

The papers [Cai et al., 2016a; Moody et al., 2014] were among the initial works
about MTD evaluation using PN. Their research was one of the first efforts to use

— 37 —

CHAPTER 2. BACKGROUND AND RELATED WORK

PN in the context of Moving Target Defense. Their work focuses on the MTD
deployment in a Web Server. Their metrics of interest are related to performance
(e.g., the average delay of service, system throughput, and operational efficiency).
The authors decided to present their results showing the aspects of the model
(e.g., number of tokens on a place, throughput of timed transitions, and sojourn
times for tangible states). By adopting these results, it is possible to extract the
desired metrics. Unlike this approach, we decided to deliver the results directly
instead of showing the model’s aspects. We hope that this approach reduces the
obstacles to understanding our results. Finally, different from the authors, we
present a security and availability evaluation instead of a performance evaluation.
PyMTDEvaluator tries to simplify (and hopefully increase the understandabil-
ity of) the results presentation by using end-user metrics as probability of attack
success and availability.

Connell papers [Connell et al., 2018][Connell et al., 2017] presented comprehensive
models for availability, security, and performance evaluation of an environment
with MTD. In these works, the authors also covered the probability of attack
success and availability in the evaluations. They presented optimal reconfiguration
rate results. Different from their work, we cover scenarios with different levels of
probability of VM migration failure. Moreover, our modeling approach is different
as we decide to represent the attack progress Increasing Failure Rate (IFR) using
an Erlang sub-net. Instead of investigating specific scenarios, PyMTDEvaluator
aims to provide mechanisms for the users to analyze and compare their own MTD
deployment alternatives.

Chang et al. [2020] provided an SRN model for job completion time evaluation
in an MTD system that considers a virtualized platform with Software Defined
Networking capabilities. They also computed the availability and probability of
attack success. The main goal of their paper is to investigate the MTD impact on
job protection and performance. The significant difference between our approach
and theirs is the threat model. In their work, they consider the attacker to select
the attack targets without accumulating knowledge. In their threat model, the
attacker is trying to compromise a specific job. Besides, different from their work,
we also present the tolerance levels results, aiming to support managers’ decision-
making.

It is important to mention the work [Sianipar et al., 2018], which investigated the
MTD technique to protect the system against live memory dumping, specter, and
meltdown attacks. They proposed an MTD based on moving data in physical
memory. Their paper gave us valuable insights into the threat model considered
in Chapter 7.

Anderson et al. [2016] proposed a Stochastic Petri Net to evaluate MTD effective-
ness. The authors considered a metric named probability of Information Operation
(IO) success. This metric has a similar meaning to our probability of attack suc-
cess. Like our work, theirs also presents an analysis of the impact due to the
variation of the parameters of the models. Differently from their work, we also
covered the system availability in our work. Besides that, we also deliver a set of
different metrics as tolerance levels and effectiveness limit.

— 38 —

CHAPTER 2. BACKGROUND AND RELATED WORK

Distefano et al. [2020] present a Petri Net model for Moving Target Defense evalu-
ation. Their work also includes security and availability metrics in the evaluation
and considers a multi-stage attack. Different from their work, we propose specific
metrics to evaluate MTD as ETTL, PAS(t) and IR.

Enoch et al. [2022] present an approach for MTD evaluation using models and
multi-objective algorithms. Their approach also covers availability and security
metrics. They also use Petri Net models to evaluate system availability. Their
defensive mechanism consists of node isolation and application disabling. Unlike
them, we use VM migration to support diversity MTD.

Alhozaimy and Menascé [2022] provide a formal analysis of task reconfiguration
(i.e., MTD) using regular and irregular intervals. Their evaluation presents the
tradeoffs between performance and security metrics, and the work focuses on
studying how regular and irregular intervals of MTD affect the capability of the
attacker to successfully finish the reconnaissance phase of the attack. Unlike their
work, the MTD technique we consider intends to counteract the attack phase
instead of the reconnaissance phase. Besides, their work neglects the influence of
software aging and rejuvenation on MTD deployment.

2.8 Summary
Table 2.1 presents a concise comparison between this thesis and the most relevant
related works. The table and all the discussion in this chapter reveal a research gap
on comprehensive MTD evaluation mechanisms comprising aspects of availability
and security in a VM migration-enabled environment. Specifically, the findings
of the systematic mapping study motivate the research in the MTD evaluation
topic. The proposal of a MTD unified evaluation framework is still a relevant
research challenge. Our starting point to tackle this problem is to use a well-known
modeling framework (i.e., SPN) for the evaluation of one of the main cloud MTD
techniques (i.e., VM migration). From this point on, the question is how to fill
the existing gap.

The first effort, presented in the following chapter, is to clarify what are the
intricacies of VM migration as MTD. One effective method to reach this goal
is to analyze the system behavior under such circumstances. The knowledge
obtained from this observation may support the model design. For that reason,
the following chapter brings the system behavior details while using VM migration
as software rejuvenation and MTD. The chapter also includes empirical results,
which highlight the effectiveness of the proposed technique for both scenarios. It
is one of the core chapters of this thesis, as it presents the system architecture
adopted in the next chapters.

— 39 —

C
H

A
PT

ER
2.

B
A

C
K

G
R

O
U

N
D

A
N

D
R

ELAT
ED

W
O

R
K

Table 2.1: Most relevant related works comparison - a summary

Work Availability
evaluation

Software
aging and
rejuvenation

Security eval-
uation

Moving Tar-
get Defense

Tool proposal Empirical
Results

[Alaviza-
deh et al.,
2018a][Alav-
izadeh et al.,
2019b][Alav-
izadeh et al.,
2020][Alaviz-
adeh et al.,
2021] [Enoch
et al., 2022] [Al-
hozaimy and
Menascé, 2022]

Yes No Yes Yes No No

[Alavizadeh
et al., 2019a]

No No Yes Yes Yes Yes

[Machida et al.,
2010][Machida
et al., 2013]

Yes, some of
them also in-
clude perform-
ance metrics

Yes No No No No

This work Yes, including
also performab-
ility metrics

Yes Yes Yes Yes Yes

—
40

—

Chapter 3
System Architecture

The size of virtualized environments may vary from a single PM to a large data-
center with hundreds of servers. Therefore, it is important to clarify what is the
specific virtualized environment deployment that we consider in our work. In
practice, the baseline system architecture (see Figure 3.1) consists of a virtualized
environment with two physical machines: Main Node and Standby Node. Main
Node runs the VMs. It is possible to perform VM migration from Main Node to
Standby Node and back. HW+OS refers to the hardware components and the
Operating System, which are treated as a single component in the availability
evaluations. VMM (hypervisor) refers to the VMM component.

The VM migration triggering observes a schedule with regular intervals between
migrations (i.e., time-based VM migration policy). The adopted VM migration
follows the live migration pre-copy approach [Clark et al., 2005] that has specific
stages (namely, stop-and-copy and commitment) in which the VM goes out of
service. Therefore, each VM migration has an associated downtime. In the model-
based evaluation (next chapters), we take into account the impact of the VM
migration-related downtime on the availability.

Figure 3.1: System architecture

The system becomes non-operational after a VM failure, and it returns to oper-
ation after a VM repair. As the VM depends on the Main Node to perform its
operations, failures on the Main Node affect the VM availability. After a Main
Node failure, the system turns operational again by performing a two-step recov-
ery: repair the Main Node and restart the VM. Failures on the Standby Node
do not represent a system failure. However, Standby Node failures prevent the

— 41 —

CHAPTER 3. SYSTEM ARCHITECTURE

VM migration. The VMM component is prone to suffer software aging. The pro-
posed evaluations also consider failures that are not related to software aging (e.g.,
hardware or OS failures).

We selected this architecture for our experimentation and modeling for the fol-
lowing reasons:

1. This is the baseline architecture for virtualized environments. The
proposed architecture is the fundamental building block for a VM migration-
enabled environment. From small to large datacenters, we need at least
two available PMs to enable VM migration. Nevertheless, nowadays, a
cloud deployment may be as simple as a single PM, as is the case of the
MicroStack deployment that can be used in different scenarios [Sarwar et al.,
2022; Kielland et al., 2022; Jyotinagar and Meshram, 2023].

2. Control the model complexity. State space-based models may suffer
from largeness problems. Even with the use of PN-based models (which
are usually adopted as a largeness avoidance technique), it is necessary to
carefully select what components to include in the availability and security
evaluation.

3. Easier instantiating in a real testbed. The selection of a reduced ar-
chitecture simplifies its instantiating in a real testbed. This is particularly
appropriate for our experiments as we need a dedicated setup to run the
workloads.

4. Increased research reproducibility. The adoption of a simplified archi-
tecture facilitates the process of experimental results verification.

This chapter also presents the results from empirical observations of VM migration
as support for software rejuvenation and MTD. We applied VM migration to
counteract hypervisor software aging. The main goal is to verify whether the
migration can remove the accumulated AR effects. The observation results show,
in a practical manner, the validity of using the VM migration as support for
software rejuvenation. In the MTD observation, we put the VM migration-based
MTD technique to test against a host-based attack. The obtained results also
proved the validity of the technique for cybersecurity defense purposes.

These empirical observations are necessary to properly understand the behavior
of the system, providing insightful information to guide the model design and to
justify the modeling of VM migration and MTD in the studied scenarios. The-
oretically, migration is able to support hypervisor software rejuvenation and to
protect the system against host-based attacks. However, our goal here is to verify
these proprieties in a real-world scenario. Furthermore, the empirical observation
also sheds light on details that might be missing from prior knowledge. For ex-
ample, the software rejuvenation experiment results highlighted the AR effects in
the applications running inside the VM. Besides that, an interesting insight from
the MTD experiment is that the target application does not recover even after
the migration of the attacker VM to another host.

The rest of this chapter is organized as follows. Section 3.1 presents the details

— 42 —

CHAPTER 3. SYSTEM ARCHITECTURE

of time-based VM migration as support for software rejuvenation. Section 3.2
explains the general strategy of using time-based VM migration as MTD. Sec-
tion 3.3 presents two case studies on the use of VM migration for both purposes
(i.e., software rejuvenation and MTD). Section 3.4 presents the limitations and
threats to validity. Finally, Section 3.5 concludes this chapter.

3.1 Virtual Machine Migration for Software Rejuvenation
Also known as Migrate-VM rejuvenation [Machida et al., 2010], the rejuvenation
approach consists of moving the VMs away from a host with software aging accu-
mulation to a host without aging accumulation (the technique targets the aging
accumulation of the PM hosting the VMs). Specifically, we aim to counteract
software aging accumulation in the VMM component, as previous works [Machida
et al., 2012; Matos et al., 2012a; Torquato et al., 2018a] found empirical evidence
of aging bugs in major VMM software as Xen[Xen, nd] and KVM[KVM, nd].

Main Node

VMM

VM

Standby Node

VMM

Stage 1
Main Node

VMM

Standby Node

VMM

Stage 2

VM

Main Node

VMM

Standby Node

VMM

Stage 3

VM

Standby Node

VMM

Stage 4

VM

Rej
uve
nat
ion

Figure 3.2: VM migration as support for software rejuvenation - workflow

Figure 3.2 summarizes the adopted Migrate-VM rejuvenation approach. It works
in a cycle and has four stages:

• Stage 1 - In the first stage, the VMs are running in Main Node and Standby
Node is idle, waiting to receive migration.

• Stage 2 - as time passes, Main Node VMM component starts to accumulate
software aging effects. As the VMs depends on the VMM to run, the aging
effects also affect the VMs execution. Then, the system enters a degraded
state of execution, which may reach failure in the case of the lack of timely
software rejuvenation.

— 43 —

CHAPTER 3. SYSTEM ARCHITECTURE

• Stage 3 - At this stage, the system triggers the scheduled VM migration.
The main goal is to restore the VM execution state. To assure the inten-
ded restoration, migration moves the VMs from the under-aging VMM to
the fresh-state VMM. Bovenzi et al. [2011] highlights the influence of the
workload in software aging, showing that heavy workloads accelerate aging
accumulation compared to light workloads. Therefore, although the VMM
of Standby Node has been running, its aging accumulation is negligible.

• Stage 4 - After VM migration completion, Standby Node assumes the role
of Main Node (i.e., in charge of VM running). In this stage, Main Node
passes through software rejuvenation (i.e., software restart or OS reboot).
After rejuvenation completion, Main Node turns into Standby Node (i.e.,
waits as the target for the next VMs migration). Then, the cycle restarts
to Stage 1.

3.2 Virtual Machine Migration as MTD
Following the classical definitions of Okhravi et al. [2013], VM migration-based
MTD is a dynamic platform technique. In the scope of our work, MTD serves
as a defense against specific host-based attacks (e.g., VM to host (or hypervisor)
attacks as specific resource starvation attacks, and VM escape attacks [Patil and
Modi, 2019]). The goal is to continuously shift the attack target by moving the
VMs across the available physical hosts. Note that, for specific VM to VM threats,
the VM migration movement may suffice to defend the system. For example,
in the case of RowHammer threat, a VM tries to compromise the co-resident
VMs through the shared memory. In such cases, the complete remapping of VM
placement may prevent the success of an attack.

In Chapters 6 and 7, we analyze the time-based VM migration as MTD against
threats using persistent and non-persistent tactics, respectively. As stated before,
the general principle is that, in both scenarios, the goal of the attacker is to
compromise the physical host and consequently the set of co-residents VMs. In
the persistent tactic, the attacker can continue the attack as soon as the VM
arrives in a previously visited physical host. Alternatively, in the non-persistent
tactic, the attack must restart the attack after each VM migration. We provide
more details about the attack and defense models in each chapter, as needed.

Migration can be used as MTD against persistent and non-persistent threats.
The context discussed previously is focused on VM migration as a defense against
host-based attacks. This type of threat is further investigated in Section 3.3.2,
through an empirical observation of the validity of the technique. Nevertheless,
it is also interesting to highlight that the VM migration-based MTD may act
as a competent defense against VM escape attacks. In the MITRE ATT&CK
matrix [MITRE, 2023], we find the defense evasion tactic. In this tactic, the
attacker tries to avoid the usual detection mechanisms. A usual way to perform
such evasion is through the abuse of trusted processes (e.g., their own authorized
VMs). In the VM escape attack, the malware bypasses the hypervisor layer to
access the host and consequently the co-resident VMs. To reach this specific goal,

— 44 —

CHAPTER 3. SYSTEM ARCHITECTURE

the attacker may capitalize upon specific hypervisor vulnerabilities. This type
of threat is highlighted as highly relevant in the PICUS Red Report [PICUS,
2023]. In that report, the authors analyzed half a million malware to find the
specific tactics applied. They found the virtualization/sandbox evasion, which is
similar to the VM escape, in more than 10% (i.e., about 50000) malware. As VM
migration is a dynamic platform technique, it might be useful to mitigate those
threats moving VMs across multiple hypervisors.

Figure 3.3 shows the dynamics of using VM migration-based MTD against VM
escape attacks. In this hypothetical scenario, the attacker targets a victim VM in
the environment. The attack necessarily passes through the underlying hypervisor
to reach the target. In an environment with heterogeneous hypervisor VM migra-
tion [Kargatzis et al., 2017], it is possible to move the VMs across PM hosts with
different hypervisors. The technique leverages the multi-hypervisor environment
to continuously shift the attacker position. In the Stage 1, the VMs are in a
host with KVM hypervisor. In Stage 2, we move the VMs to the Xen hypervisor.
This migration may stop the progress of the attack under the KVM hypervisor,
as these attacks are dependent on the presence of VM in the targeted host. For
example, they may use MAC addresses or CPU identification to find out which
hypervisor hosts the VM. Finally, whenever possible, the next migration should
arrive in a different hypervisor (for example, in the VMWare ESXi in Stage 3).
When all the hypervisor variants are visited, the cycle may restart (i.e., moving
from Stage 3 back to Stage 1).

Figure 3.3: Dynamics of using VM migration as MTD against VM escape attacks

3.3 Case Studies
The results presented below come from empirical observations of the VM migra-
tion technique applied in both considered scenarios: software rejuvenation and
MTD. These observations are mainly to verify the validity of the proposed ap-
proach in a real-world setup. Therefore, they should not be considered as valida-
tion for the proposed models, as such validation experiments would require a more
extensive statistical analysis of the obtained results. The conclusions from these
observations serve as inputs for the modeling process in the next chapters.

— 45 —

CHAPTER 3. SYSTEM ARCHITECTURE

3.3.1 CS #1 - Software Rejuvenation
In previous works [Torquato et al., 2017, 2018a], we proposed the Stress Wait
Rejuvenate (SWARE) approach for software aging and rejuvenation experiments.
Since then, the approach has been applied in other contexts, such as for vir-
tualized containers software aging research [Torquato and Vieira, 2019; Vinícius
et al., 2022] (for convenience, we reproduced the paper [Torquato and Vieira, 2019]
in Appendix C). In the SWARE paper, we used a VM migration as a rejuvenation
experiment to validate the proposed approach. The results below are a summary
from that original paper [Torquato et al., 2018a].

In the experiment, we adopt an infrastructure similar to the one presented before
(Figure 3.1). Based on the environmental limitations and previous knowledge,
we select a specific workload to accelerate possible aging-related bug activation.
The main idea is not to submit a realistic workload to the system. Instead, the
goal is to overload the system, forcing it to an increasing allocation of resources.
Although we need a heavy workload, we must also be careful to avoid premature
failures. This way, we consider a workload based on mounting and unmounting
15 disks in a VM running a web server (henceforth, aging workload). Besides the
aging workload, the web server responds to a constant workload of 2000 requests
per second1. Figure 3.4 summarizes the workflow.

Volume 1

Volume 15

...

VM

Mount
Disks

Unmount
Disks

Web Server2000 req/s

Autobench
(httperf)

Figure 3.4: VM migration as support for software rejuvenation experiment - Se-
lected workload - extracted from [Torquato et al., 2018a]

SWARE has tree phases:

• Stress - This phase aims to stress the system with aging workload. The
stress workload leads to system internal state degradation.

• Wait - Starts after the Stress phase. The idea is to observe the system
behavior after aging workload exposure. There are two possibilities: i) the
system recovers without intervention - which provides no evidence of soft-
ware aging; and ii) the system stays in a degraded state - providing evidence
of software aging accumulation.

• Rejuvenation - Starts with the submission of software rejuvenation action.
The objective is to observe the impact of such rejuvenation action on the
internal system state. Ultimately, this phase reveals whether the proposed
software rejuvenation was effective or not.

1Obtained through a capacity test. More details in the original paper [Torquato et al., 2018a]

— 46 —

CHAPTER 3. SYSTEM ARCHITECTURE

Figure 3.5 presents the main results. As expected, the Web Server suffers effects
from the high workload exposure in the Stress Phase. Response Time and Amount
of Errors increased during that phase. In the Wait Phase, results show that Errors
and Response Time remain at high levels. The rejuvenation phase brings the
system to a stable state.

In a normal setup, without aging workload exposure, the web server can respond
to 2000 requests per second with a negligible amount of errors and a minimum
response time. However, in our experiments, we noticed a degraded behavior
accumulated after the aging workload exposure. Finally, VM migration triggering
brings the system back to normal levels. The peak of errors and response time
right after VM migration is due to the downtime phase of the pre-copy migration
algorithm. This clearly shows the effectiveness of using VM migration against
KVM software aging, highlighting the prompt recovery of the application-related
metrics after the migration. In the original paper [Torquato et al., 2018a], we
also present the results of CPU and memory usage of the PMs), showing VM
migration also resulting in a complete removal of aging-related effects.

3.3.2 CS #2 - Moving Target Defense
As mentioned before, the use of VM migration as MTD lies in the dynamic plat-
form technique [Cai et al., 2016c]. Specifically, we consider host-based attacks,
which aim to affect the underlying physical host and, consequently, the co-resident
VMs. MTD seeks to interrupt the attack progress by moving the VMs across the
available PMs.

We conducted an experimental evaluation for a better understanding of VM mi-
gration as a MTD technique. In other words, we aim to verify the effectiveness
of the time-based VM migration policy as MTD against host-based attacks. To
reach this goal, we conducted an host-based attack campaign in a real testbed.
This host-based attack campaign includes two experiments:

1. Attack severity experiment - to investigate the host-based attack impact
in a system without MTD. For comparison purposes, we added Golden
run results. Golden run consists of an observation of the system baseline
behavior (i.e., without attack and MTD).

2. MTD experiment - Aim at investigating the system behavior with time-
based MTD enabled. We applied different scheduling policies of MTD
against an ongoing host-based attack. Also, we added the results for the
system without MTD (OnlyAttack) for comparison purposes.

The details and results are described below. Although the results refer to a single
run of each experiment, we performed additional runs to confirm the observations.
At the time of this thesis writing, we were able to perform ten runs for the attack
severity experiment and five runs of attacks in an MTD-enabled environment. The
results presented below come from Torquato et al. [2021b]. We present additional
evidence of VM migration as MTD in another publication [Torquato and Vieira,
2021], which is, for convenience, reproduced in Appendix B.

— 47 —

CHAPTER 3. SYSTEM ARCHITECTURE

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 200000 400000 600000 800000 1e+06

R
e
sp

o
n
se

 T
im

e
 (

m
s)

Time (s)

Stress Wait Rej.

Response Time (ms)

(a) Response Time (ms)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 200000 400000 600000 800000 1e+06

E
rr

o
rs

Time (s)

Stress Wait Rej.

Errors

(b) Errors

Figure 3.5: Software aging and rejuvenation experiment results - VM migration
starts the Rejuvenation phase - extracted from [Torquato et al., 2018a]

Figure 3.6 presents the experimental testbed, which includes three physical ma-
chines: Client (Intel i5 8250U + 16GB of RAM) - responsible for stressing the
Victim VM; Main Node (Intel Xeon E5-2620 2.00GHz + 16 GB of RAM with
Error Correction Code enabled) - main host of the Victim VM and Attacker VM;
Standby Node (Intel Core i7-9700 3.00GHz + 16GB of RAM) - host for receiving
VM migration. Attacker VM and Victim VM are KVM VMs with a homogeneous
configuration: single-core processor + 3 GB of RAM. The Main Node and Standby
Node run Ubuntu Server 20.04.2 with kernel 5.4.0-72 and KVM 4.2.1. The Victim
VM runs the TeaStore microservice architecture [von Kistowski et al., 2018], which
emulates a basic web store.

To investigate the system behavior under a host-based attack, we exercise our
testbed with a DoS attack from an insider VM. We aim to observe the attack
impact in a co-resident VM running a standard client-server application. This

— 48 —

CHAPTER 3. SYSTEM ARCHITECTURE

Figure 3.6: Experiment testbed

way, the first step in the attack severity experiment is to define a proper workload
for the Victim VM. Using the httperf tool [Mosberger and Jin, 1998], we conducted
a capacity assessment of that VM. Figure 3.7 presents the results, where the X-
axis corresponds to the demanded request rate, and the Y-axis corresponds to the
system reply rate.

As 190 requests per second (req/s) is the threshold for a performance drop, we
decided to select a lighter workload to provide room for expected performance
oscillations due to the host-based attack. Thus, we arbitrarily configured the
Client to send a steady workload of 150 req/s to Victim VM.

Figure 3.7: Victim VM TeaStore capacity assessment results

With knowledge about the Victim VM capacity, we can set up the attack load
of the attack severity experiment. The specific host-based attack is a memory
DoS [Zhang et al., 2017] attack from the Attacker VM running inside Main Node.
In practice, the Attacker VM runs an infinite loop of unalign atomic accesses [Zhang
et al., 2017] (unalignAttk) against its own memory. We then analyze the possible
impact of such an attack in the Victim VM TeaStore service.

We performed the attack severity experiment for 30 minutes. The golden run
results are included for comparison. Figure 3.8 presents the TeaStore throughput

— 49 —

CHAPTER 3. SYSTEM ARCHITECTURE

results, and Figure 3.9 presents the number of observed errors. The errors are
related to connection timeout (i.e., the server is offline).

Figure 3.8: TeaStore - Throughput (req/s) - attack severity experiment

Figure 3.9: TeaStore - Errors - attack severity experiment

We can see an immediate drop in the throughput when the Attacker VM is running
the unalignAttk. After five minutes, we noticed a substantial increase in the num-
ber of observed errors, suggesting server unavailability. Therefore, in our specific
scenario, the unalignAttk successfully compromises the TeaStore availability after
five minutes.

The goal of the second experiment, the MTD experiment, is to verify the VM
migration effectiveness in the presence of the unalignAttk attack. We applied dif-
ferent VM migration schedules to observe their possible impact on the desired

— 50 —

CHAPTER 3. SYSTEM ARCHITECTURE

metrics. In practice, we consider four scenarios: 30 minutes between migrations,
45 minutes between migrations, 60 minutes between migrations, and the system
without MTD. We observe the Teastore server throughput while receiving a con-
stant workload of 150 req/s. Note that, in some preliminary runs, we noticed that
early attack triggering (during the Teastore warm-up phase) might cause prema-
ture failures. Therefore, we wait for the system to reach the expected throughput
rate (i.e., 150 req/s) before the attack initiation. The warm-up varied from 8 to
15 minutes, depending on the scenario.

Results are presented in the figures below. Each MTD-enabled experiment plot
presents vertical lines highlighting the VM migration trigger event. As mentioned
before, although the presented results come from a single experiment run, we per-
formed confirmation runs (at least two per scenario) to verify the results. The
obtained results in all the experiment runs are similar, and in all scenarios, we no-
ticed an immediate and severe drop in the throughput upon the attack triggering.
The green shaded area corresponds to the warm-up phase. The gray shaded area
represents the period that the system is under attack. The area without shade
is related to the period when the attacker VM is running on the other PM (i.e.,
Standby Node).

Figure 3.10: VM migration schedule = 30 minutes

Figure 3.10 confirms the theoretical expected result - a squared wave of throughput
based on attack presence or absence. In the intervals of attack absence, the service
maintains the expected throughput. On the other hand, in the intervals of attack
presence, the service delivers degraded throughput. However, the results for the
less frequent migrations (Figures 3.11 and 3.12) contradict the theoretical expected
result. In these cases, the system does not recover its expected throughput even
with VM migration. These results are comparable to the system without MTD
(Figure 3.13). The specific reason for this persistent failure is outside the scope
of this discussion. However, we presume the system drops the connection when
perceiving consistent degraded service quality.

— 51 —

CHAPTER 3. SYSTEM ARCHITECTURE

Figure 3.11: VM migration schedule = 45 minutes

Figure 3.12: VM migration schedule = 60 minutes

We highlight the following conclusions:

1. Timing plays a crucial role in the VM migration-based MTD effectiveness.

2. In some scenarios, as presented in our experiment results, the system does
not recover even after MTD deployment.

3. There is a specific schedule that minimizes the VM migration frequency
while keeping the system alive during the attack. In our case, this specific
schedule is between 30 and 45 minutes of VM migration interval.

— 52 —

CHAPTER 3. SYSTEM ARCHITECTURE

Figure 3.13: System without MTD

3.4 Threats to Validity and Limitations
The empirical observations discussed in this chapter are subject to threats to
validity and limitations. Although we put our best effort into selecting and testing
a pertinent setup, our results might be under some non-negligible limitations.
Below, we comment on some of these limitations.

Testbed size

The considered testbed is minimal when compared to large data centers. Actu-
ally, it comprises only the necessary components to conduct the experiment and
to guide the model design in the next chapters. As one may argue about the
experiment’s validity, we emphasize that the considered environment is a build-
ing block for larger virtualized environments. In fact, to allow VM migration,
we need at least two physical hosts and one VM. As stated previously, there are
advantages to using small-sized environments, such as the easier reproduction and
instantiating of the proposed experimental campaign.

KVM-oriented aging workload

The software aging experiment adopts only a workload based on KVM hypervisor.
Machida et al. [2012] also highlighted software aging indicators in a different hyper-
visor (Xen). It is not possible to ensure that the software aging behavior repeats
in all available hypervisors. Nevertheless, KVM and Xen are among the most
popular hypervisors nowadays, which increases the relevance of VM migration as
software rejuvenation.

— 53 —

CHAPTER 3. SYSTEM ARCHITECTURE

Selected attack workload

The proposed attack workload adopts only a non-persistent tactic, meaning that
the attack progress does not resist VM migration. Besides that, here we are
only considering a VM to host the attack. In a more comprehensive setting, the
experimental campaign should include persistent tactic attacks as well as VM-
targeted attacks.

3.5 Summary
This chapter introduced our baseline system architecture. We presented the de-
tails of using the VM migration technique as support for software rejuvenation and
MTD. Whenever needed, the following chapters may include additional details of
specific scenarios particularly analyzed in their context. Besides the fundamentals
of VM migration technique, this chapter presented experimental observations to
show the effectiveness of the technique in a practical way.

Our empirical observations show the validity of using time-based VM migration
as support for software rejuvenation and MTD. In fact, the results obtained from
the software rejuvenation experiment show an immediate system recovery from
aging-related effects after VM migration completion. The complete set of outputs
confirmed the efficiency of VM migration to counteract KVM software aging.
Likewise, the MTD empirical observation validates the use of time-based VM
migration as MTD against host-based attacks. Furthermore, the results highlighted
the schedule of migrations is a determinant for the MTD efficiency.

The following chapter introduces our first set of analytical models, which will be
adapted in the subsequent chapters. The proposed SPN models aim at evaluating
the system performability, and are built on top of the baseline system architecture
described above and consider software rejuvenation based on time-based VM mi-
gration scheduling. Given that previous works (e.g., [Melo et al., 2013b,a; Machida
et al., 2013]) extensively covered this topic, we decided to take a step forward to
contribute to the state-of-the-art in the field. Specifically, we propose a compre-
hensive performability evaluation of the time-based VM migration technique. We
also consider additional aspects such as bursty workload occurrence.

— 54 —

Chapter 4
Performability of Virtualized
Systems with VM Migration

Software aging imposes resource consumption overhead. Consequently, it also
affects system performance. It is important to define rejuvenation schedules to
minimize the probability of software aging-related resource exhaustion. However,
in realistic situations, we should consider other aspects of system resource con-
sumption (besides software aging) to provide better evaluations. For example,
bursty workloads may lead to faster resource exhaustion.

We propose a set of SPN models for performability and dependability evaluation
of a system with VM migration scheduling. Wang et al. [2007] presented a per-
formability model for a system with varying workloads that provides a relevant
background for our performability modeling, namely regarding some parameters
(rates) for the evaluation. In their paper, Wang et al. cover the aspect of workload
variation in a system with rejuvenation. We take a step forward and cover VM
migration, burst workloads, and an extended set of metrics such as availability and
reliability. Specifically, we aim to answer the following research question:

RQmain: What are the performability and dependability levels of a virtualized
system with VM migration subject to software aging and a bursty workload?

We divided this question into three subquestions:

• RQ1: What is the VM migration scheduling policy that maximizes the sys-
tem availability?

• RQ2: What is the VM migration scheduling policy that maximizes the sys-
tem throughput?

• RQ3: What are the system reliability levels when applying the VM migration
policies that maximize system availability?

We consider three case studies to exercise our models. The first shows the system
steady-state availability evaluation; the second brings the system steady-state
throughput results; the third is about the reliability evaluation. We consider a set
of scenarios in each case study covering different Asset Classes. An Asset Class
is the definition of the associated bursty workload conditions, namely, duration,
intensity, and probability. Specifically, we consider five Asset Classes ranging from
light bursts to heavier bursts. Note that these Asset Classes are only illustrative
for our evaluation purposes.

— 55 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

This chapter presents the last version of our baseline availability model, which
comes from a series of papers that we published on this topic, namely
[Torquato and Vieira, 2018], [Torquato et al., 2020a] and [Torquato et al., 2022a].
The last one [Torquato et al., 2022a] provides the content for this chapter.

The rest of the chapter is organized as follows. Section 4.1 presents the research
approach adopted and details on the target system environment. Section 4.2
discusses the proposed models for performability evaluation. Section 4.3 discusses
and analyses the model results. Section 4.4 presents the limitations and threats
to validity. Finally, Section 4.5 concludes this chapter.

4.1 Approach and Assumptions
Our approach for the performability assessment consists of four steps:

1. Scope definition - we evaluate the performability and dependability of a
virtualized system (e.g., a private cloud) with software rejuvenation based
on VM migration. The system is liable to suffer bursty workloads.

2. Metrics definition - in the performability and dependability domain, we
focus on three specific metrics: availability, reliability, and throughput.

3. Model design - we adopted a hierarchical model approach, with the per-
formance model (M2) receiving inputs from the availability model (M1). We
also propose a specific model (Burst Cycle Model) to cover the bursty
workload occurrence uncertainties (i.e., intensity, cycle, duration, and prob-
ability).

4. Model analysis and results - we propose three case studies, one for each
desired metric. In these case studies, we evaluate the impact of the VM
migration schedule on system availability and performance. We also analyze
the system reliability in the first month.

Figure 4.1 presents a flowchart of the proposed methodology including the
keywords related to each step. The system architecture follows the definitions
presented in Section 3.1. Compared to the current literature, we take a step for-
ward by including the pre-copy phase of VM live migration. Besides that, we
use marking-dependent firing rates to cover software aging effects and include the
bursty workload occurrence. Next, we present further details on the environment
considered, emphasizing the additional assumptions for the modeling.

4.1.1 Failure Modes
The VM is the most critical component for the system availability, meaning that
the system is available only when the VM is running. Therefore, any system
behavior that causes an interruption in the VM running results in system un-
availability. The first failure mode is the VM non-aging failure. Software, PM
host hardware, or operating system issues can lead the VM to service interrup-
tion, meaning unavailability. As the VM depends on the Main Node to run, any
Main Node interruption will cause system unavailability. Standby Node failures

— 56 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 4.1: Flow of the Research Methodology

do not cause unavailability directly. However, Standby Node unavailability pre-
vents VM migration. Likewise, we assume that, as long as the Standby Node is
active, there is the capacity to receive the VM migration. As mentioned in the
previous chapter, the system suffers a short downtime on each VM migration op-
eration. Thus, frequent migration may have a severe impact on overall system
availability. Besides that, the system may fail due to resource exhaustion because
of software aging. We assume that the operations for system repairing after a
resource exhaustion failure comprise software rejuvenation actions like OS reboot
or application restart.

4.1.2 Bursty Workload Modeling
Bursty workload occurrence accelerates the depletion of resources, leading to
quicker failure due to resource exhaustion. The modeling of such an unexpected
event as burst workloads is a complicated task because the burst characteristics
are often related to the targeted system. Depending on the target, the burst dur-
ation, probability, and intensity can be higher or lower. Therefore, setting up a
generic approach for bursty workload modeling is unpractical due to its myriad
possibilities. However, proposing a set of possible scenarios of bursty workloads
can help support the design of Service Level Agreements (SLAs) or internal reju-
venation policies.

We consider the following four main characteristics of the bursty workloads: cycle
- the supposed time between bursts; burst probability - the probability of burst
occurrence; burst duration - time that the system spends under the bursty
workload; and burst intensity - the severity of the workload submitted to the
system. We take these four characteristics into account in a specific model named
”Burst cycle”.

— 57 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

Figure 4.2 presents a diagram of the Burst cycle model. The circles represent
the system states, the continuous arcs represent the time delay for the state trans-
ition, the dashed arcs represent the state transition based on probability (instead
of time delay), and the gray arc with a circle represents an attribute of a specific
system state.

The initial state of the Burst cycle model is the start state, which represents
the start of the time cycle between burst occurrences. After the Cycle, the system
state goes from start to end. In the end state, based on probability (burst-
Probability), the system can restart the cycle (going back to the start state), or
suffer the bursty workload (moving the system state from end to underBurst).
The underBurst state has the burstIntensity attribute, which, as mentioned
earlier, indicates the severity of the workload submitted by the bursty workload.
After the time delay burstDuration, the cycle for the next burst begins. We
incorporate the behavior of the Burst Cycle model using an SPN model, as
presented in the Section 4.2.

start end

under
Burst

burstIntensity

burstProbabilityburstDuration

cycle

(1-burstProbability)

Figure 4.2: A diagram for the Burst cycle model

We apply the Burst cycle model for the bursty workload. We used parameters
from previous studies for our model evaluation (see Tables 4.3 and 4.4 in Sec-
tion 4.3), but it is possible to customize the Burst cycle model parameters.
However, as it is hard to find specific datasets to use as input for the analysis in
most situations, the Burst cycle model approach enables the system managers
to set up reasonable scenarios based on their knowledge about the environment.
Therefore, they can build better SLAs and internal policies, considering the pos-
sibilities of bursty workload occurrence. Note that, in our research, the VM is the
target for the bursty workload and not the Main Node. Thus, a VM migration
also switches the workload to the VM migration target host during a burst.

4.2 Models
This section presents the models proposed for the evaluation. The first is a SPN
model for availability evaluation, while the second is a performance evaluation

— 58 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

Figure 4.3: Models relationship

model, which is an M/M/1/k queue. The models obey the relationship presented
in Figure 4.3. The availability model (M1) provides two inputs to the performance
model (M2). The first is the performance penalty (Penalty) due to resource
depletion. We compute Penalty by observing the (ResourcesDepletion place)
of the availability model. The number of tokens inside the ResourcesDepletion
place serves as an indicator of the level of resource depletion. Besides that, M1 also
provides the system unavailability (UA) as input for M2. We compute UA observing
the probability of the absence of tokens in the place UP, which is the place used
to represent the system availability. More details of the interactions between M1
and M2 are in the next sections. Note that we consider M/M/1/k as this is one
of the most used queuing models for client-server applications. Nevertheless, it is
possible to adapt M2 to other scenarios by including the effects of Penalty and
UA in other queueing models (see Section 4.2.2 for details). Literature exists to
support the design of other queuing models based on Petri Nets [Kounev, 2006;
Bause, 1993; Siddiqui et al., 2020].

We use two separated models for performability and dependability evaluation to
deal with the stiffness problem caused by the use of transitions with consider-
able differences in the firing delay magnitude [Bobbio, 1990]. In our modeling
framework, we have the mean time to failure of the Main Node, which is above a
thousand hours, and the system service time, measured in milliseconds. By using
the model decomposition, we can mitigate stiffness as the evaluations of perform-
ability (with delays of milliseconds) and dependability (with transition delays of
months) are performed separately.

4.2.1 Availability Model
The proposed availability model has three sub-models (Figure 4.4): i) Clock
model; ii) Burst cycle model; and iii) System model. These models interact
using guard functions and transitions with marking-dependent firing rates, which
will be later explained.

— 59 —

C
H

A
PT

ER
4.

PER
FO

R
M

A
B

ILIT
Y

O
F

V
IRT

U
A

LIZED
SY

ST
EM

S
W

IT
H

V
M

M
IG

R
AT

IO
N

a) Clock Model

b) Burst Cycle Model c) System Model

Clock Trigger ReadyToMigrate

ResetClock

Start Cycle

End

UnderBurst

Burst

NoBurst

BurstDuration

(1-burstProb)

burstProb

RejSN_W

SN_DWSN_f

SN_r

SN_UPLM_dwtDW_Mig

PC

Mig

SysFail

StartMig

VM_f VM_DW VM_r

MN_f2
VM_rbVM_S

MN_rDW

MN_f

UP

AvailableResources

Aging

ResourcesDepletion

Clear1 Clear2
Phase4 4

ResourcesExhaustion

DW2 Repair

Figure 4.4: Availability Model

—
60

—

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

The first model is the Clock model. The Clock model has the Clock and
ReadyToMigrate places and the Trigger and ResetClock transitions. The
Clock model represents the behavior of a software component responsible for
the VM migration scheduling process. Thus, at the initial state, the Clock place
has a token enabling the firing of the deterministic transition ReadyToMigrate,
representing that the time counting for the VM migration is active. Then, the
Trigger transition firing removes the token from the Clock place and puts a token
in the ReadyToMigrate place. The ReadyToMigrate place with a token represents
that the system reaches the planned schedule for VM migration. However, besides
the planned schedule, the VM migration (StartLM transition firing) depends on
a few more conditions: i) Main Node and VM running (token in the UP place);
and ii) Standby Node running (token in the SN_UP place). We embedded all these
conditions in the StartLM transition using guard functions. Table 4.1 contains the
meaning and the associated guard functions of all the immediate transitions. The
transition ResetClock represents the start of the time counting for the next VM
migration. The ResetClock firing depends on the presence of the token in the
place ReadyToMigrate and in the place Mig, representing that the system clock
restarts its cycle right after the beginning of the VM migration. In this model,
we assume that the clock works in this cycle permanently.

Table 4.1: Immediate transitions and associated guard functions

Transition Meaning Associated Guard
Function

StartMig VM migration start (#ReadyToMigrate>0)
AND (#UP>0) AND
(#SN_UP)

ResetClock Start time counting for
next VM migration

(#Mig>0)

SysFail System fail during migra-
tion

(#UP==0) OR
(#SN_UP==0)

Burst Immediate transition
which represents the
burst occurrence

no guard functions

noBurst Immediate transition,
which indicates that
there is no burst oc-
currence in the cycle
iteration

no guard functions

Aging Start of the resources de-
pletion

no guard functions

Clear1 and Clear2 Resources depletion
clearance due to software
rejuvenation or recovery
after a failure

no guard functions

ResourcesExhaustion Resources exhaustion
failure

no guard functions

— 61 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

The Burst Cycle model characterizes the bursty workload. It obeys to the
behavior described in the Section 4.1.2. The token in the Start place enables the
transition Cycle firing, representing the supposed time duration between bursts.
To improve the uncertainty aspect of this modeling process, we prefer to use the
exponential distribution instead of deterministic in the Cycle transition. Cycle
transition firing removes the token from the Start place and deposits a token
in the End place. The presence of the token in the End place enables the trans-
itions Burst and noBurst concurrently. As presented in Kuchárik and Balogh
[2019], we assigned different weights on each arc for the transitions Burst and
noBurst to represent the probability of burst occurrence. The arc from End to
the transition Burst has weight = burstProb (burstProb is a variable related to
the burst occurrence probability), and the arc from End to noBurst transition has
weight = (1 − burstProb). In the case of the noBurst firing, the token goes back
to the Start place, representing the cycle restart. Otherwise, in the case of Burst
firing, the transition removes the token in the End place and puts a token in the
UnderBurst place, representing that the system is suffering a bursty workload.
The BurstDuration transition represents the time duration of the bursty work-
load as long as the system is under a burst (i.e., the model with token presence
in the place UnderBurst), it suffers a resource depletion acceleration. This accel-
eration is related to the Burst intensity mentioned in Section 4.1.2. We model
this behavior using a marking-dependent firing delay on the transition Phase of
the System model. The Phase transition represents the resource depletion pro-
gress. Table 4.2 presents the details of the transitions with marking-dependent
firing delays. The BurstDuration firing removes the token from the UnderBurst
place and puts a token in the Start place, representing the cycle restart.

The System model intends to cover three system aspects: i) behavior of non-
aging failures and their repairs; ii) VM migration; and iii) resources depletion due
to software aging. Next, we highlight the sections of the model that represent
each one of these behaviors.

First, we consider system non-aging failures (e.g., hardware or Operating system
failures). At the initial state, the System Model has a token in the UP place. UP
place with tokens represents the Main Node and the hosted VM running. And, the
absence of tokens in the UP place represents the system’s unavailability. From the
initial state, the Main Node can suffer a non-aging failure (MN_f transition firing).
The MN_f transition firing removes the token from the place UP and puts a token in
the place DW. The Main Node repair has two steps: 1) Main Node recovery (MN_r
transition firing, moving the token from DW to VM_S place) and 2) VM reboot
(VM_rb firing, returning the token to the UP place). The system can also suffer
a VM non-aging failure. The transition VM_f firing represents a VM non-aging
failure occurrence. After a VM failure, there are two possibilities to recover the
system: a VM repair (transition VM_r firing), or a subsequent Main Node failure
(MN_f2 firing, moving the token from VM_DW to the DW place). We also cover the
non-aging failure and repair processes in the Standby Node. SN_UP and SN_DW
places represent the Standby Node status related to the non-aging failures and
repairs. SN_UP place with tokens represents the Standby Node running and ready
to receive VM migration. The transitions SN_f and SN_r represent a Standby

— 62 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

Table 4.2: Transitions with marking-dependent firing delays

Transition Marking-dependent firing delay Meaning
Phase IF(#UnderBurst>0):

phaseDuration/BurstIntensity
ELSE
phaseDuration

If the system
is under bursty
workload, the
resource deple-
tion progress
phase is accel-
erated by the
factor of the
Burst intens-
ity. Otherwise,
the resource
depletion pro-
gress follows
the expec-
ted time delay
(phaseDuration
variable).

PC IF(#ResourcesDepletion==0):
Precopy
ELSE
Precopy+Precopy*(#ResourcesDepletion/3);

This marking-
dependent firing
delay captures
the influence of
the number of
dirty memory
pages on the
VM live mi-
gration process
[Salfner et al.,
2011; Strunk,
2012].

Node non-aging failure and repair, respectively. Standby Node unavailability
(token in the SN_DW place) affects the system availability indirectly as it prevents
the software rejuvenation for aging failures avoidance.

Second, StartLM transition represents the VM migration start, and it has an asso-
ciated guard function (see Table 4.1). We assume the Pre-copy VM live migration
[Clark et al., 2005] as the VM migration method. The pre-copy algorithm has two
main phases: i) Pre-copy phase (transition PC) - transfer of the memory pages from
the Main Node to the Standby Node; and ii) Downtime phase (transition LM_dwt)
- transfer of the processor state and VM migration acknowledgment. StartMig
firing deposits a token in the Mig place. We used inhibitor arcs1 to indicate that
a new migration can only occur after the finishing of the previous. Mig transition
with tokens represents that the VM migration is in the Pre-copy phase. Dur-

1Arcs terminating in a circle instead of an arrowhead.

— 63 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

ing the Pre-copy phase, the system continues to run (the token stays on the UP
place). SysFail transition serves to represent possible system failures (i.e., Main
Node, VM or Standby Node failures) during the Pre-copy phase. We also embed
this behavior using guard functions. A system failure during the Pre-copy phase
implies VM migration abort. Thus SysFail transition removes the token from
Mig place. As presented in Maziku and Shetty [2014]; Liu et al. [2011]; Akoush
et al. [2010]; Voorsluys et al. [2009], the amount of dirty memory pages affects the
VM migration latency. To represent this behavior, we used a marking-dependent
firing delay in the PC transition (see Table 4.2). The marking-dependent firing
delay increases the supposed delay for the Pre-copy phase (Precopy variable) ob-
serving the status of system resources depletion (i.e., number of tokens in the
ResourcesDepletion place). After the completion of the Pre-copy phase (firing
of PC transition), the system enters the Downtime phase (token in the DW_Mig
place). In the Downtime phase, the system is unavailable. We represent this be-
havior by removing the token from UP place after PC transition firing. The system
returns to be available after the VM migration completion (LM_dwt transition
firing). As mentioned in Section 3.1, the previous Main Node (i.e., VM migra-
tion source) will pass through software rejuvenation before assuming the role of
the Standby Node. Thus, LM_dwt firing puts a token in the SN_W representing
that the previous Main Node is waiting for the software rejuvenation. Transition
Rej represents the software rejuvenation action, and its firing replaces a token
in the SN_UP. This behavior represents the rejuvenation completion and that the
Standby Node is ready to receive VM migrations.

Finally, about the resources depletion due to software aging: to represent the re-
source depletion behavior, we adopted a four-phase Erlang distribution, as the
Erlang distribution is suitable to represent IFR behavior [Gupta et al., 2010].
We used an Erlang subnet with four phases to represent the IFR in the System
Model. The Erlang subnet is in the upper part of the System Model. The
places AvailableResources and ResourcesDepletion are related to the system
resources depletion status. The number of tokens in the AvailableResources
denotes the amount of resources available, and the number of tokens in the
ResourcesDepletion place denotes the resources depletion status.

At the initial state, the transition Aging fires swapping2 the token from the UP
place. The same transition deposits four tokens in the place AvailableResources.
The number of tokens denotes the amount of resources still available for the Main
Node usage. As time passes, the Main Node starts to accumulate software aging
status. The transition Phase firing represents the resources consumption progress,
which removes the tokens from the AvailableResources and deposits tokens in
the ResourcesDepletion place. If the software aging status persists in the sys-
tem, it can suffer a resource exhaustion failure (ResourcesExhaustion transition).
We highlight that the Phase firing rate is also adjusted when the system is un-
der bursty workload, meaning faster resource exhaustion. ResourcesExhaustion
firing removes the token from the UP place and puts a token in the DW2. After
a resource exhaustion failure, the system recovery has three phases: i) detection
of resource exhaustion, ii) software management to clean residuals, and iii) com-

2Receiving and returning

— 64 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

plete OS reboot. We model these steps in a single exponential transition named
Repair. After Repair firing, a token returns to the UP place, representing that
the system is available again.

We obtain two metrics from the availability model. The first is the system
availability (A). We compute the system availability as the probability of token
presence in the place UP (A = P{#UP > 0}). We use Availability to obtain second-
ary metrics as unavailability (UA) and annual downtime in hours per year3 (Dwt).
The expressions are as follows: UA = 1 − A and Dwt = 8760 · UA. Note that, as
we are computing steady-state availability, it is possible to obtain the downtime
for other intervals (besides one year). For example, we can compute the monthly
downtime in minutes4 using Dwt = 43200·UA. And, as mentioned earlier, besides
the availability-related metrics, we also computed the Penalty, using the following
expression Penalty = E(#ResourcesDepletion)/3, which is a normalized value
of the expected number of tokens in the ResourcesDepletion place. We take
account of resource depletion accumulation when the place ResourcesDepletion
has tokens. Therefore, the possibilities are ResourcesDepletion with one, two,
or three tokens. For normalization of the Penalty metric, we divided the expected
number of tokens in place ResourcesDepletion by three.

4.2.2 Performance Model - M/M/1/k Queue
In some situations, it is important to understand the system performance when
considering bursty workloads. Thus, we present a queueing model for such evalu-
ation. In this case, the performance may degrade due to software aging accumula-
tion issues, thus the computed metrics are related to system performability [Meyer,
1992]. This performance model aims to provide system throughput results. The
queue model receives a variable named Penalty from the availability model out-
put. We obtain Penalty observing the steady-state expected number of tokens in
place ResourcesDepletion. We use the variable Penalty to adjust the service
time according to the system resource depletion. Besides that, we also cover the
influence of system unavailability in the performability metric.

We consider that the VM runs a user application or a service that receives and
processes requests obeying an M/M/1/k queue model [Kleinrock, 1975]. Machida
et al. [2013] adopted the same approach to a similar problem. Figure 4.5 presents
the SPN model used for M/M/1/k queue metrics calculation. Transition arrival
represents transaction arrival in the system. The transaction acceptance depends
on the available buffer space (i.e., queue capacity) and system availability.

We parameterized the place buffer with k tokens. The k variable represents the
queue capacity. The transition arrival firing removes one token from the buffer
place and deposits one token in the queue place, representing a transaction arrival
in the system. Transition service represents the transaction processing. After
service firing, the token returns to the buffer place, representing the finishing
of a transaction processing.

3We consider a year with 365 days.
4Considering a month with 30 days. 30 · 24 · 60 = 43200

— 65 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

arrival queue service

k
buffer

Figure 4.5: Performance Model - SPN for a M/M/1/k queue

System throughput is the rate of served transactions in a limited period. We
computed system throughput by observing the effective number of transactions
that enter the system. The first step of the evaluation is to use the variable
Penalty in the performance model. In some of our previous experiments [Torquato
et al., 2017], we noticed that a generic Web server under software aging effects
has a service rate of about one request per second. Based on our previous ex-
perimentation, we consider that when the Penalty assumes its maximum value,
the system service time (i.e., firing rate of transition service) will be decreased
to one request per second. We changed the firing rate of the transition service
accordingly to each proposed scenario. We obtain the effective rate of trans-
actions accepted in the queue (RTAQ). We obtain RTAQ using the following
expression RTAQ = P{#buffer > 0} · λ, where λ is the firing rate of the trans-
ition arrival. However, we still have to consider system unavailability in system
steady-state throughput. Thus, we used the expression ST = RTAQ · A to com-
pute the system throughput (ST), where A is the system availability.

4.3 Case Studies
We used the TimeNet tool for the availability model design and evaluation [Zim-
mermann, 2017] and the Mercury tool [Maciel et al., 2017] for the performance
analysis. TimeNet has a friendly graphical interface and provides instantaneous
results, while Mercury has an easy-to-use script language that facilitates sensitiv-
ity analysis using non-linear parameter variation.

We used the values in Table 4.3 as default values for our evaluations. We obtained
these values from [Wang et al., 2007] and [Kim et al., 2009][Torquato et al., 2018b].
Note that these values are only for reference and should be adjusted whenever
real-scenario values are available. However, these are the most representative
values that we can find to feed the models as they were published in reputed
journals.

— 66 —

C
H

A
PT

ER
4.

PER
FO

R
M

A
B

ILIT
Y

O
F

V
IRT

U
A

LIZED
SY

ST
EM

S
W

IT
H

V
M

M
IG

R
AT

IO
N

Table 4.3: Parameters used in the timed transitions

Parameters Values
Availability Model
Transition Name Description Mean time
Trigger Interval to VM Live Migration 1 → 720 hours
Cycle Supposed cycle between burst occurrence 24 hours
BurstDuration Bursty workload duration 60, 120, 240, 360 or 480 seconds1

1 Depending on the scenario
AgingPhase Time to Aging (Phases) 62.5 hours2

2 We adjust the time to aging observing the burst occurrence
Repair Time to system recovery after a resources exhaustion failure 1 hour
MN_f, MN_f2 Main Node Failure Delay 1236.706 hours
MN_r Main Node Repair Delay 1.094 hours
SN_f Standby Node Failure Delay 1236.706 hours
SN_r Standby Node Repair Delay 1.094 hours
VM_f Virtual Machine Failure Delay 2880 hours
VM_r Virtual Machine Repair Delay 30 minutes
VM_rb Virtual Machine Reboot Delay 5 minutes
PC VM Live Migration pre-copy phase time 72 seconds3

3 We adjust the service rate accordingly to the number of tokens in the ResourcesDepletion place
LM_dwt VM Live Migration Downtime 4 seconds
Rej Rejuvenation Node Delay 2 minutes
Performance Model
Transition Name Description Rate
arrival Transaction arrival 1000 requests per second
service Service rate 1500 requests per second4

4 We adjust the service rate accordingly to the Penalty variable

—
67

—

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

In the case studies, we focus on finding the rejuvenation schedule to maximize
system availability and system throughput. First, we search for the best rejuven-
ation schedule using a graphical sensitivity analysis, which explores the output of
the models by varying the time interval for the VM migrations (Trigger firing
delay) from 1 to 720 hours (a month) using a one-hour step. Second, we present
a sensitivity analysis for the system throughput metric. Thirdly, once we find
the availability-oriented rejuvenation schedule, we propose the last case study to
verify system reliability in the first month of the system running.

For all the scenarios, we assume that the service hosted in the virtualized envir-
onment is liable to suffer a bursty workload. Depending on the asset, the burst
may be more or less likely to occur. To represent the different asset classes, we
propose five different scenarios, as shown in Table 4.4.

Table 4.4: Asset Classes definitions

Asset
Class#

Burst
Probability
(%)

Burst
Intensity

Burst
Duration

0 0.01 2000 60 seconds
1 0.1 4000 120 seconds
2 1 6000 240 seconds
3 5 8000 360 seconds
4 10 10000 480 seconds

The case studies are: Availability (Section 4.3.1), System Throughput (Sec-
tion 4.3.2), and Reliability (Section 4.3.3).

4.3.1 CS #1 - Availability
Our goal in this case study is to study the rejuvenation schedule that maxim-
izes the system availability and thus answer RQ1. There are two main problems
for availability in the scenarios covered in our study. The first is when applying
frequent migrations: as each migration has an associated downtime, frequent mi-
grations will degrade the steady-state availability. The second is due to resource
exhaustion failures due to software aging and bursty workloads, where less fre-
quent migrations may allow the system to reach resource exhaustion failures. Note
that, in some situations, VM migration during bursty workloads may accelerate
the exhaustion of the resources due to VM migration overhead. As mentioned
earlier, we capture the influence of bursty workloads in the VM migration process
using transitions with marking-dependent firing delays.

Figure 4.6 presents the availability results for each proposed asset class (the details
are in Table 4.4). The black line represents the system availability when applying
rejuvenation, and the gray line represents the system availability without reju-
venation (Baseline). We notice that the system availability has a peak in all
the scenarios, which is the specific rejuvenation trigger that maximizes system
availability. After the peak, we see a system availability decrease, tending to the
baseline scenario. This is an expected result, as scarce VM migrations (i.e., longer

— 68 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

time between migrations) lead the system to the baseline conditions (i.e., the sys-
tem without rejuvenation). Table 4.5 presents these specific rejuvenation policies
and their results regarding the annual downtime. We also notice that more severe
bursty workloads produce worse availability results. The results from Asset Class
#0 and #1 are nearly the same. Therefore, with a lighter bursty workload, we
can apply the same rejuvenation policy to maximize system availability.

Table 4.5: Results - Availability

Asset
Class#

Baseline
Downtime
(h/yr)

Rej.
Trigger (h)

Downtime
(h/yr)

Downtime
Reduction
(h/yr)

0 41.14 19 10.56 30.58
1 41.25 19 10.65 30.60
2 43.06 18 12.78 30.28
3 53.04 16 22.33 27.71
4 68.39 15 44.51 23.88

To provide a more comprehensive overview of the impacts of bursty workloads
on the system availability, Figure 4.7 presents a comparison of the downtime
reduction for all the scenarios. As we can see, in scenarios with more severe
bursts, the downtime reduction is lower. In such cases, it is important to set up
mechanisms to improve resiliency against bursty workloads.

In the analysis above, we fixed the VM migration downtime. However, in a real-
world scenario, VM migration downtime may vary due to various reasons (e.g.,
amount of memory pages to be transferred, dirty pages rate, network bandwidth,
VM migration technique). Therefore, it is important to study the VM migration
downtime variation in the system’s steady-state availability.

For a sensitivity analysis of the VM migration downtime parameter, we con-
sidered a VM migration downtime variation from 0.5 seconds to one minute with a
0.5-second step. The other parameters remain the same as presented in Table 4.3.
We fixed the rejuvenation trigger (RT) using the results presented in Table 4.5.
Figure 4.8 presents the outcomes.

We notice a similar linear increase in the system downtime in all observed scen-
arios. The difference in the curves of Asset 0 and Asset 1 (scenarios with lower
risk of bursty workload occurrence) is negligible. In these curves, the results of 60
seconds of downtime for each VM migration is about 75% greater than the results
with 0.5 seconds. In the higher risk scenario (Asset 4), the same difference is 22%.
Meaning that the relative impact of longer downtime is lower when compared to
lower-risk scenarios. Table 4.6 summarizes the sensitivity analysis results.

Presumably, the higher the risk of bursty workload occurrence, the worse the
unavailability results. The results presented above indeed confirm the expected
behavior. Nevertheless, they highlight, in a quantitative manner, the actual bene-
fits achieved from software rejuvenation deployment. Furthermore, although we
are considering uncertainties in a bursty workload scenario, the model is ready to
capture expected events; e.g., a scheduled large backup operation or an expected

— 69 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

 0.992
 0.993
 0.994
 0.995
 0.996
 0.997
 0.998
 0.999

 100 200 300 400 500 600 700

Av
ail

ab
ilit

y

Rejuvenation Trigger (h)

With Rej.
Baseline (w/o rej.)

(a) Asset Class #0

 0.992
 0.993
 0.994
 0.995
 0.996
 0.997
 0.998
 0.999

 100 200 300 400 500 600 700

Av
ail

ab
ilit

y

Rejuvenation Trigger (h)

With Rej.
Baseline (w/o rej.)

(b) Asset Class #1

 0.992
 0.993
 0.994
 0.995
 0.996
 0.997
 0.998
 0.999

 100 200 300 400 500 600 700

Av
ail

ab
ilit

y

Rejuvenation Trigger (h)

With Rej.
Baseline (w/o rej.)

(c) Asset Class #2

 0.992
 0.993
 0.994
 0.995
 0.996
 0.997
 0.998
 0.999

 100 200 300 400 500 600 700

Av
ail

ab
ilit

y

Rejuvenation Trigger (h)

With Rej.
Baseline (w/o rej.)

(d) Asset Class #3

 0.992
 0.993
 0.994
 0.995
 0.996
 0.997
 0.998
 0.999

 100 200 300 400 500 600 700

Av
ail

ab
ilit

y

Rejuvenation Trigger (h)

With Rej.
Baseline (w/o rej.)

(e) Asset Class #4

Figure 4.6: Availability of each scenario

season of high workload exposure. In this scenario, it is possible to adjust the
Burst Cycle Model parameters to represent such situations.

— 70 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

 0
 5

 10
 15
 20
 25
 30
 35

 100 200 300 400 500 600 700Do
wn

tim
e

re
du

ct
io

n
(h

/y
r)

Rejuvenation Trigger (h)

Asset0
Asset1
Asset2
Asset3
Asset4

Figure 4.7: Downtime reduction (h/yr)

Figure 4.8: Sensitivity analysis of the VM migration downtime parameter

Table 4.6: Summary of VM migration downtime parameter sensitivity analysis

Asset
Class#

Unavailability with 0.5
seconds of downtime
per migration (h/yr)

Unavailability with 60
seconds of downtime
per migration (h/yr)

Relative
difference

0 10.12 17.72 75.14%
1 10.21 17.81 74.47%
2 12.31 20.33 65.17%
3 24.80 33.80 36.32%
4 43.94 53.53 21.80%

4.3.2 CS #2 - System Throughput
The goal of this case study is to find the rejuvenation policy that maximizes the
system throughput, aiming at answering RQ2. Figure 4.9 shows the results for all

— 71 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

 800

 850

 900

 950

 1000

 100 200 300 400 500 600 700

Sy
st

em
 th

ro
ug

hp
ut

 (r
eq

/s
)

Rejuvenation Trigger (h)

With Rej.
Baseline (w/o rej.)

(a) Asset Class #0

 800

 850

 900

 950

 1000

 100 200 300 400 500 600 700

Sy
st

em
 th

ro
ug

hp
ut

 (r
eq

/s
)

Rejuvenation Trigger (h)

With Rej.
Baseline (w/o rej.)

(b) Asset Class #1

 800

 850

 900

 950

 1000

 100 200 300 400 500 600 700

Sy
st

em
 th

ro
ug

hp
ut

 (r
eq

/s
)

Rejuvenation Trigger (h)

With Rej.
Baseline (w/o rej.)

(c) Asset Class #2

 800

 850

 900

 950

 1000

 100 200 300 400 500 600 700

Sy
st

em
 th

ro
ug

hp
ut

 (r
eq

/s
)

Rejuvenation Trigger (h)

With Rej.
Baseline (w/o rej.)

(d) Asset Class #3

 800

 850

 900

 950

 1000

 100 200 300 400 500 600 700

Sy
st

em
 th

ro
ug

hp
ut

 (r
eq

/s
)

Rejuvenation Trigger (h)

With Rej.
Baseline (w/o rej.)

(e) Asset Class #4

Figure 4.9: System throughput of each scenario

the scenarios considered. We noticed that in scenarios with shorter rejuvenation
triggers, the system throughput stays at higher levels. After a certain point,

— 72 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

we noticed a drop in the system throughput rate. We can draw the following
conclusions from these results: i) systems with shorter migration intervals tend
to persist in a lower Penalty. Thus, the service rate persists in higher levels,
compensating for the lower availability levels due to frequent migrations, and ii)
the baseline throughput is higher in systems with more severe bursty workloads.
In the model analysis, we noticed that in such cases, after a burst, the system
fails quickly. Therefore, the system steady-state Penalty is lower than in scenarios
with a lighter bursty workload, and the steady-state system throughput tends to
be higher than in the other scenarios.

Table 4.7 presents the best rejuvenation schedule for the proposed scenarios. The
adopted policies for system throughput maximization are close to the results for
system availability maximization. The last column presents the percentual im-
provement when comparing the baseline results and the results with rejuvenation.
Like the previous case study, we noticed that the improvement is lower in scen-
arios with light bursty workloads than in the others in scenarios with heavy bursty
workloads.

Table 4.7: Results - Sys. throughput (req/s)

Asset
Class#

Baseline
System
throughput
(req/s)

Rejuvenation
Trigger (h)

System
Throughput
(req/s)

Improvement

0 793.5799 18 998.7940 25.86%
1 794.0027 19 998.7837 25.79%
2 802.5243 17 998.5409 24.43%
3 846.2617 16 997.1087 17.83%
4 901.4916 15 994.9192 10.36%

For the sake of comparison, we plot the throughput improvement of each scenario
in Figure 4.10. As in the availability results, the results for Asset Class #0 and
Asset Class #1 are nearly the same.

 0
 5

 10
 15
 20
 25
 30

 100 200 300 400 500 600 700Th
ro

ug
hp

ut
 im

pr
ov

em
en

t (
%

)

Rejuvenation Trigger (h)

Asset0
Asset1
Asset2
Asset3
Asset4

Figure 4.10: System throughput difference comparison

— 73 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

4.3.3 CS #3 - Reliability

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700

Re
lia

bi
lit

y

Time (h)

With Rej.
Baseline (w/o rej.)

(a) Asset Class #0

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700

Re
lia

bi
lit

y
Time (h)

With Rej.
Baseline (w/o rej.)

(b) Asset Class #1

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700

Re
lia

bi
lit

y

Time (h)

With Rej.
Baseline (w/o rej.)

(c) Asset Class #2

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700

Re
lia

bi
lit

y

Time (h)

With Rej.
Baseline (w/o rej.)

(d) Asset Class #3

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700

Re
lia

bi
lit

y

Time (h)

With Rej.
Baseline (w/o rej.)

(e) Asset Class #4

Figure 4.11: Reliability of each scenario

— 74 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

System reliability is related to service continuity [Avizienis et al., 2004], or the
period that the system passes free from failures. In this case study, we investigate
the system reliability when applying the availability-oriented rejuvenation policies
(Table 4.5) to answer RQ3. To conduct the reliability evaluation, we use the
availability model without the repair transitions. Thus, we compute the reliability
using the following expression: Reliability = P{UP > 0}. However, different from
steady-state availability, system reliability is a transient metric. Thus, our goal is
to calculate the probability of the system staying failure-free in its first month of
running.

The results obtained are presented in Figure 4.11. The black dots represent the
reliability results for the system with rejuvenation, and the gray dots represent the
reliability results for the system without rejuvenation. The dashed lines represent
the 95% confidence interval. We also performed linear regression in the Reliability
results to extract functions representing the reliability curve (R(t), where t is
the time) when applying software rejuvenation policies. Table 4.8 presents a
summary of the reliability results. The table also presents the coefficient R2,
which determines, in a range from 0 to 1, the fraction of the total variation
explained by the obtained regression model.

We noticed a steeper reduction in scenarios with heavier bursty workloads. The
rapid reliability decrease in the Asset Class # 4 shows that the probability of a
failure-free system is almost null at the 720th hour of continuous run. Therefore,
after this point, the rejuvenation mechanism produces no improvement in the
system reliability when compared to the baseline scenario. We also noticed that
the reliability results for the first two scenarios (asset classes #0, #1) are nearly
the same. In the Asset Class #0 scenario, the probability of a failure-free system
in its first-month running is about 30%, while in the Asset Class #1 scenario,
the probability is about 29%. Using the quadratic, polynomial, and logarithmic
models for linear regression, we can achieve R2 values above 0.999, meaning that
the proposed functions can represent the reliability curve with substantial fidelity.
Therefore, we can use these functions to approximate the reliability results for the
desired scenarios.

To understand how long the system survives without rejuvenation, we calculated
the depletion point (i.e., Reliability = 0) of the baseline scenarios. The depletion
point results are in Table 4.9. These results highlight that without software re-
juvenation, the system failure-free expected time is way lower when compared to
the rejuvenation scenario. In all our rejuvenation-enabled evaluations, even in the
scenario with a heavier workload, the system does not reach the depletion point
after one month of running.

— 75 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

Table 4.8: Reliability results

Asset
Class
#

Reliability
without
rejuvenation
(720h)

Reliability
with
rejuvenation
(720h)

Reliability with
rejuvenation
(linear regression)

R2

0 0.002 ± 0.001 0.305 ± 0.033 R(t) = ((−6.286e−4) · t +
1.003)2

0.9992

1 0.002 ± 0.001 0.293 ± 0.032 R(t) = (4.350e−7) · t2 +
(−1.319e−3) · t + 1.008

0.9991

2 0.001 ± 0.001 0.235 ± 0.026 R(t) = (6.875e−7) · t2 +
(−1.558e−3) · t + 1.004

0.9996

3 0.001 ± 0.001 0.095 ± 0.013 R(t) = exp(−3.270e−3·t+
2.007e−2)

0.9996

4 0 0.021 ± 0.005 R(t) = exp(−5.393e−3·t+
5.590e−2)

0.9995

Table 4.9: Depletion point results

Asset Class # Depletion point
0 480 h
1 400 h
2 400 h
3 320 h
4 240 h

4.4 Threats to Validity and Limitations
Lack of experimental validation

The model-based evaluation provides flexibility to assess scenarios without direct
intervention on a running system. The best scenario is when the model results
are validated adequately against experimental results. However, this approach
works better in performance evaluation scenarios, where the observed events are
measured in response time or system throughput. On the other hand, system
availability evaluation monitors failures and crashes. In a standard setting, the
occurrence of such events is unexpected. Therefore, correctly measuring availab-
ility becomes difficult, as we need a representative sample of failures to compute
components’ MTTF. To mitigate this issue, we perform sensitivity analysis in
various scenarios to observe system behavior under different circumstances.

Burst occurrence obeys a cycle

The bursty workload occurrence only follows a cycle. Therefore, the proposed
model falls short of taking random burst occurrence into account. An approach
to this problem is adjusting transition Cycle to other probability distributions.
We decided to control model uncertainties (i.e., including more random events),
aiming to achieve more consistent results. As a mitigation for this problem, we

— 76 —

CHAPTER 4. PERFORMABILITY OF VIRTUALIZED SYSTEMS WITH VM
MIGRATION

exercise the model under different burst probabilities.

4.5 Summary
This chapter presented SPN models for the performability and dependability eval-
uation of a virtualized system subject to software aging and bursty workload.
The considered system applies VM migration scheduling as support for software
rejuvenation. Our results include steady-state availability, steady-state system
throughput, and system reliability.

About our main research question, RQmain: What are the performability and
dependability levels of a virtualized system with VM migration subject to software
aging and bursty workload?, we concluded that such levels vary depending on the
studied scenario. There is a specific rejuvenation schedule to maximize system
availability and throughput. In scenarios with lighter bursty workload conditions
(burst probability of 0.01% and 0.1%), the performability results are nearly the
same. However, in the scenarios with heavier bursty workload conditions (burst
probability of 1%, 5%, and 10%), the system performability degradation due to
the bursty workload is substantial. In such scenarios, the rejuvenation policies
tend to produce lower system performability improvement.

We covered the main aspects of software aging and rejuvenation and the uncer-
tainties related to the bursty workload occurrence. Besides that, we also con-
sidered important details, such as the influence of burst occurrence in resource
exhaustion and the influence of resource consumption levels in the VM migration
process.

As VM migration is a standard maintenance tool for system managers, our re-
search may help them to improve their understanding of the performability, avail-
ability, and reliability impacts of applying VM migration while considering signific-
ant concerns such as software aging and bursty workloads. The models and results
presented here can be extended to similar scenarios. Moreover, they may be help-
ful in setting up virtualized environment management policies and SLAs.

A comprehensive evaluation of time-based VM migration deployment must also
comprise the security aspect. To reach this goal, in the following chapter, we
adapt the availability model proposed before and propose the RiskScore metric
for security evaluations. This metric focuses on the steady-state behavior of the
security status of the system.

— 77 —

Chapter 5
Availability and Security of VM
Migration-Enabled Rejuvenation

Previous works highlighted indicators of software aging accumulation in Cloud
components [Matos et al., 2012a]. Software aging is a cumulative process that
can lead software to hangs or other failures [Dohi et al., 2020], whereas software
rejuvenation is used to counteract software aging [Huang et al., 1995]. VM migra-
tion scheduling is an approach to reduce the downtime related to VMM software
rejuvenation [Torquato et al., 2018a] [Torquato et al., 2017]. However, potential
security issues of applying VM migration as support for VMM rejuvenation are
still not understood. Besides that, security-aware software rejuvenation schedul-
ing is hard to achieve due to the uncertainty related to security events [Cotroneo
et al., 2014]. Pietrantuono and Russo [2019] also highlights the importance of
studying the security impacts caused by software rejuvenation policies.

There are several studies on the availability evaluation of VM migration schedul-
ing as support for VMM software rejuvenation [Melo et al., 2013a][Torquato et al.,
2018b]. Mainly, these aim at finding the optimal rejuvenation schedule to max-
imize system availability, but none of them deal with security issues. From a
security perspective, there are also some works on VM migration security, as
presented by Oberheide et al. [2008], for example. However, none of those covers
software aging and rejuvenation aspects.

Our work aims to evaluate the security impact caused by VM migration scheduling
as support for VMM software rejuvenation. This way, this chapter intends to
address the following research question:

RQmain - What is the security risk impact of applying different VM migration
policies for VMM software rejuvenation purposes?

On top of this, we consider two sub-questions:

• RQs1 - What is the VM migration policy that reduces the system security
risk?

• RQs2 - What are the trade-offs between availability and security when using
VM migration scheduling as support for VMM rejuvenation?.

To answer these questions, we propose an availability model based on SPN for
systems with VM migration scheduling for VMM software rejuvenation purposes.

— 79 —

CHAPTER 5. AVAILABILITY AND SECURITY OF VM MIGRATION-ENABLED
REJUVENATION

From the proposed availability model, we extract a security measure named
RiskScore that, instead of assuming the attacker behavior (which is very diffi-
cult to characterize), is based on the time that the system spends on risky states
(from a security perspective). Note that although availability is dependability
and also a security attribute [Avizienis et al., 2001], both dependability events
(e.g., failures, crashes, or hangs) and security events (e.g., malicious activities or
security attacks) can impact it in this chapter, the availability evaluation is con-
sidered only from the dependability perspective. From the security perspective,
we propose and evaluate the RiskScore.

We present three case studies to validate our proposal. The first considers the
Man-in-the-middle security threat, the second considers Denial of Service attacks,
and the last one is a combination of both threats. We provide a set of scenarios
in each case study covering different VM migration scheduling alternatives to
support the analysis of the tradeoff between availability and security risk.

To our knowledge, this is the first research effort on the analysis of the tradeoff
between availability and security risk in virtualized systems with VM migration
as VMM rejuvenation. We present a comprehensive set of results that provides
some understanding of the availability and security risk tradeoffs raised by such a
rejuvenation technique. Our security evaluation approach can be adapted for other
threat models without requiring availability model modification. This chapter
is adapted from Torquato et al. [2019b].

The rest of this chapter is organized as follows. Section 5.1 presents our proposed
security evaluation approach. Section 5.2 elaborates on the proposed model. Sec-
tion 5.3 presents and discusses the results. Section 5.4 presents the limitations
and threats to validity. Finally, Section 5.5 concludes the chapter.

5.1 Approach and Assumptions
As presented in Chapter 3, the system architecture considered has three main
components: VM - a virtual machine running the desired application; Main Node
- a physical machine that hosts the VMs; and Standby Node - a physical machine
used to receive VM migrations. The selected architecture covers the main com-
ponents of virtualized environments. Indeed, complex virtualized infrastructures
in Cloud Computing also have similar architectural components [Machida et al.,
2013; Torquato et al., 2018b].

The RiskScore metric reflects the probability of the system to be in a condition
that enables (or improves the likelihood of) a successful specific attack (i.e., to
measure the security risk associated with the time spent1 in risky states) and
does not assume characteristics as attack probability or rate. In other words, the
assumption is that the attack’s success is related to the time spent in a risky (or
vulnerable) state. This way, the RiskScore metric captures the elapsed time
in a condition (or state) that raises or enables a successful security attack. As
we have different preconditions for different security attacks, Our approach allows

1The time spent in a state is also known as mean sojourn time or mean waiting time

— 80 —

CHAPTER 5. AVAILABILITY AND SECURITY OF VM MIGRATION-ENABLED
REJUVENATION

the computation of the RiskScore metric for different threats using the same
availability model.

To clarify the proposed approach, let us consider an illustrative example. Con-
sider a Virtual Machine with migration capabilities. The Virtual Machine has
three main states. The UP state means that the VM is running, the DW state rep-
resents that the VM is down, and MG represents that the VM is migrating. The
state machine diagram is presented in Figure 5.1, which also includes the trans-
itions between states. In this example, we neglect possible VM failures during
migration.

Let us suppose that such a system is liable to suffer an attack related to data
stealing during migration. So, in this case, the only state that raises a security
concern is MG. Therefore, the RiskScore is a measure based on the probability
of the system being in the MG state. With this, the system manager may adjust
the α parameter (which is related to the frequency of migrations) to achieve the
desired levels of RiskScore.

UP MG

DW

α

β

μ
λ

Figure 5.1: Illustrative example - State-machine diagram

This security evaluation approach has two main advantages: i) focus on the
system state rather than on the attacker - we assume that the behavior
of the attacker during the attack is unpredictable and, therefore, our security
evaluation method computes the security levels only from the system state; and
ii) security evaluation using unaltered availability models - the security
evaluation approach does not require the modification of the availability models.
In fact, as we obtain security levels from the system state, the evaluation is made
from the steady-state probability of the system being in a specific state using the
proper model reward measures.

5.2 Model
Figure 5.2 presents the proposed model. We adopt a monolithic model, but for
this explanation, let us divide the two main areas of this monolithic model: a)
the Clock Model composed by the places Clock and Schedule, and transitions

— 81 —

CHAPTER 5. AVAILABILITY AND SECURITY OF VM MIGRATION-ENABLED
REJUVENATION

b) Main Model

a) Clock Model

VM_r

VM_rb
MN_f2

VM_DW

VM_S

VM_f

MN_f MN_rDW

DW2AccumulationAgingHigh

AgingPhase AgingFailure44

ClearAging2ClearAging

UP
Aging

Repair

SN_rRej

SN_DWSN_fSN_UP

SN_W

Trigger LM_dwt

DW_Mig

PC

LM StartLM
ScheduleClock

ResetClock

Figure 5.2: SPN model

Trigger and ResetClock; and b) the Main Model composed by the other places
and transitions.

The Clock Model represents the behavior of the rejuvenation scheduling on the
environment. The Clock can be any type of component capable of counting time
and communicating with the system. The token in the Clock place represents
that the time counting to VM Migration submission is active. The deterministic
transition Trigger represents the time interval between submitting VM Migration
requests to the environment. When the deterministic time is reached, the Trigger
transition fires, putting a token in the Schedule place. The Schedule place with
tokens represents that the VM Migration is about to start. However, the VM
Migration start (StartLM transition firing) depends on two more conditions: i)
Main Node and VM running (a token in the UP place), and ii) Standby Node
running (a token in SN_UP place). Once those conditions are satisfied, the VM
Migration starts (StartLM firing). StartLM firing removes the tokens from the
places UP and SN_UP and puts a token in place LM. StartLM also swaps2 the token in
the place Schedule. We use this strategy to avoid including guard functions in the
model, therefore improving its readability. We highlight that the token swap does
not affect token aging because the StartLM transition is an immediate transition.
When the system starts the migration, the Clock component has to start the
time counting for the next VM Migration (ResetClock firing). ResetClock firing
swaps the token from the LM place and moves the token from the Schedule place
to the Clock place, thus restarting the VM migration interval time counting.

Regarding the VM Migration process, when the LM place has tokens, the transition
PC becomes enabled. This transition is related to the time of the copy-phase of the

2receives and gives back

— 82 —

CHAPTER 5. AVAILABILITY AND SECURITY OF VM MIGRATION-ENABLED
REJUVENATION

VM migration algorithm. We parameterized this transition based on [Clark et al.,
2005] with the mean time of 72 seconds. The transition LM_dwt represents the
downtime of the VM migration. As the time of VM migration may vary depending
on the workload, we used exponential transitions instead of deterministic trans-
itions. When the VM migration finishes (LM_dwt firing), the system returns
to operation (a token is deposited in the UP place), and the previous Main Node
will pass through software rejuvenation (a token is deposited in the SN_W place).
VM migration will be enabled again after the software rejuvenation action. This
behavior is represented by Rej transition firing, moving the token from the SN_W
place to the SN_UP place.

We assume that the Main Node and the VM are operational at the start of the
model analysis. This assumption is represented by the token in UP place. At
this point, if the VM fails (represented by VM_f transition), the system goes out-
of-service (the token is removed from the UP place and deposited in the VM_DW
place). If the VM is correctly repaired, then the system returns to activity. The
delay time for VM repair is represented by the VM_r transition. However, the VM
failure may be followed by a Main Node failure. This behavior is represented when
the MN_f2 transition fires and puts a token in the DW place. A Main Node failure
can also occur before a VM failure (MN_f transition firing). The system recovery
after a Main Node is made in two steps: first, the Main Node repair (represented
by MN_r transition firing), after the Main Node repair the VM is stopped (a token
is deposited in the place VM_S. The second step of the system recovery is the VM
reboot (VM_rb transition firing).

A 4-phase Erlang sub-net represents the aging accumulation process. This type
of subnet can represent the Increasing Failure Rate (IFR) of a software aging ac-
cumulation process [Machida et al., 2013]. We highlight that other distributions
can be applied in the software aging modeling process [Levitin et al., 2018]. How-
ever, the inclusion of such distributions may require a complete model redesign
and is out of the scope of this chapter. We selected Erlang sub-nets in the soft-
ware aging modeling because it is widely adopted for this purpose [Machida et al.,
2010; Melo et al., 2013b]. The AgingPhase transition represents the phases of the
Erlang sub-net. A failure caused by software aging occurs when the accumulation
status reaches critical levels. In the model, this behavior is represented when the
AgingFailure transition fires, removing the token in the UP place and putting it
in the DW2 place. The Repair transition represents the recovering process after
a software aging failure. The ClearAging and ClearAging2 transitions repres-
ent events that clear the software aging accumulation process. We consider that
the Main Node and the VM repairs comprise rejuvenation actions. Therefore,
the software aging accumulation cleanup occurs when the Main Node or the VM
fail. The other case of software rejuvenation occurs on VM Live Migration. After
VM Live Migration, the VM arrives on a fresh state VMM. Therefore, the soft-
ware aging status is removed. We used inhibitor arcs3 from the UP place to the
ClearAging and ClearAging2 transitions to represent the behaviors related to
software rejuvenation.

3arc terminating in a circle instead of an arrow

— 83 —

CHAPTER 5. AVAILABILITY AND SECURITY OF VM MIGRATION-ENABLED
REJUVENATION

Table 5.1: Immediate transitions and their meaning

Transition Meaning Input arcs Output
arcs

ResetClock Restart time counting for
VM migration

Schedule (1)
LM (1)

Clock (1)
LM (1)

StartLM Start of VM migration pro-
cess

SN_UP (1)
UP (1)

Schedule (1) Schedule (1)
LM (1)

Aging Start of software aging ac-
cumulation UP (1)

AgingHigh (0)
Accumulation (0)

UP (1)
AgingHigh (4)

AgingFailure System failure occurrence
due to software aging UP (1)

Accumulation (4)

DW2 (1)

ClearAging1 Software aging accumula-
tion clearance

AgingHigh (1)
UP (0) Transition

without out-
put arcs

ClearAging2 Software aging accumula-
tion clearance Accumulation (1)

UP (0)

Transition
without out-
put arcs

The model also covers Standby Node failures, which affect system availability
indirectly as it prevents VM migration, making a software aging failure more
likely to occur. The transitions SN_f and SN_r represent the Standby Node failure
and repair events, respectively. The places SN_UP and SN_DW are related to the
Standby Node availability and unavailability, respectively.

Table 5.1 summarizes the immediate transitions, their meaning, and their input
and output arcs with respective weights4. For the sake of readability, we present
the list of the places used in our model. Table 5.2 presents the information about
the places. The column meaning with tokens represents the system state when
the considered place has tokens.

Our availability model comprises software aging and rejuvenation behavior, non-
aging failures, and details of VM migration (e.g., pre-copy and downtime phases).
The inclusion of complex system behavior interactions may lead the model to
a state explosion problem. To avoid this type of problem, we need to apply
simplifications in what aspects should be considered in the models. For example,
differently from Chapter 4, the model here (i.e., Figure 5.2) neglects the occurrence
of bursty workloads. Besides that, the performance evaluation is out of the scope
of this chapter.

4Associated number of tokens. We use zero (0) for inhibitor arcs.

— 84 —

CHAPTER 5. AVAILABILITY AND SECURITY OF VM MIGRATION-ENABLED
REJUVENATION

Table 5.2: Places description

Place Meaning with tokens
Clock Timer counting for the next migration
Schedule Timer reaches the VM migration interval time
LM VM migration is started
DW_Mig VM migration is on the downtime phase
SN_W Standby Node is waiting for the rejuvenation action
SN_UP Standby Node is up
SN_DW Standby Node is down
UP Main Node and VM are running
AgingHigh VMM starts to accumulate software aging
Accumulation The number of tokens in this place represents the VMM soft-

ware aging accumulation status
DW2 The system is down due to a software aging failure
DW The system is down due to a Main Node non-aging failure
VM_DW The system is down due to a VM non-aging failure
VM_S VM is waiting for a reboot after a Main Node repair

5.3 Case Studies
The numerical evaluations of the models are obtained using the TimeNET tool
[Zimmermann, 2017]. Table 5.3 contains the parameters used in our evaluation.
These parameters are based on previous experimental studies and other consolid-
ated works [Kim et al., 2009; Torquato et al., 2018b; Clark et al., 2005].

For the three case studies, we compute the system unavailability using the fol-
lowing: Unavailability = 1 − Availability. Availability is obtained through
Availability = P (#UP > 0)OR(#LM > 0), where we are computing the prob-
ability of token presence in the places UP or LM. In other words, we obtain the
system availability, observing the probability of the system being running or in
the copy-phase of VM migration. Unavailability is the probability that the system
is out of such a state.

The case studies are: Man-in-the-middle (Section 5.3.1), Denial of Service (Sec-
tion 5.3.2), and the combination of both (Section 5.3.3).

5.3.1 CS #1 - Man-in-the-middle Attack
In Man-in-the-middle (MITM) attacks, the attacker has access to the data link
between two communication endpoints [CAPEC, 2023]. With such access, the
attacker can deploy attacks to change the network traffic or to eavesdrop on the
communication [Conti et al., 2016]. Even with proper VM migration data traffic
encryption, an attacker may recognize the migrating VMs in the network.

We consider an attacker who has the necessary skills to hijack the VM migra-
tion route and to perform a malicious action (e.g., secretly copying the data
in traffic, changing or destroying the data in the VM migration packets). As

— 85 —

CHAPTER 5. AVAILABILITY AND SECURITY OF VM MIGRATION-ENABLED
REJUVENATION

Table 5.3: Parameters used in the timed transitions

Parameters Values
Transition Name Description Mean time
MN_f, MN_f2 Main Node Failure Delay 1236.706 h
MN_r Main Node Repair Delay 1.094 h
SN_f Standby Node Failure Delay 1236.706 h
SN_r Standby Node Repair Delay 1.094 h
VM_f Virtual Machine Failure Delay 2880 h
VM_r Virtual Machine Repair Delay 30 min
VM_rb Virtual Machine Reboot Delay 5 min
PC VM Live Migration pre-copy phase time 72 s
LM_dwt VM Live Migration Downtime 4 s
Rej Rejuvenation Node Delay 2 min
SARec Software Aging Recovery Delay 1 h
AgingPhase Time to Aging (Phases) 62.5 h
Trigger Interval to VM Live Migration 1 → 168 h

we are using VM migration scheduling for VMM rejuvenation purposes, fre-
quent migrations may raise concerns regarding this type of attack. We compute
the RiskScore of this case study with the following expression: RiskScore =
MigrationProbability. The MigrationProbability is the probability of the sys-
tem on a VM migration. We obtain MigrationProbability by observing the prob-
ability of token presence in places LM or DW_mig. We use the following metric:
MigrationProbability = P (#LM > 0) OR (#DW_Mig > 0), where P{} refers
to probability and #LM and #DW_Mig refer to the number of tokens in the
LM and DW_Mig places, respectively.

Figure 5.3 presents the results obtained. The Y-axis represents the system Un-
availability, and the X-axis represents the rejuvenation trigger considered (in
hours). We add a secondary Y-axis on the right side with the values of the
RiskScore. The black dotted line represents unavailability, and the gray dotted
line is the RiskScore. We vary the rejuvenation trigger from one hour to 168
hours (a week) with a half-hour step. We highlight that the RiskScore in this
case study only considers the probability that the system is performing a VM
migration.

Figure 5.3 shows a valley for the system unavailability values. This point rep-
resents the rejuvenation trigger that maximizes system availability. It shows the
balance between too frequent rejuvenation that may impair availability due to
each migration downtime and less frequent migrations that raise the probability
of software aging failures. Besides that, it is noticeable that, as expected, less
frequent migrations reduce the security risk associated with Man-in-the-middle
(MITM) attacks.

Unavailability and RiskScore are non-beneficial metrics (i.e., the lower the
better). The plot in Figure 5.4 presents the normalized values for Unavailabil-
ity versus the normalized values for RiskScore. We decided to normalize the

— 86 —

CHAPTER 5. AVAILABILITY AND SECURITY OF VM MIGRATION-ENABLED
REJUVENATION

 0.0012
 0.0014
 0.0016
 0.0018
 0.002

 0.0022
 0.0024
 0.0026
 0.0028

 20 40 60 80 100 120 140 160 0
 0.002
 0.004
 0.006
 0.008
 0.01
 0.012
 0.014
 0.016

Un
av

ail
ab

ilit
y

Ri
sk

Sc
or

e

Rej. Trigger (h)

Unavailability
RiskScore

Figure 5.3: Case study 1 results - Man-in-the-middle

data to reduce possible bias due to the difference in magnitude of the metrics.
We apply a simple normalization, as follows: Norm(UA(n)) = UA(n)/Max(UA),
where Norm(UA(n)) is the normalized value of Unavailability when applying
rejuvenation interval of n hours, UA(n) is the actual Unavailability value when
using rejuvenation interval of n hours, and, Max(UA) is the maximum observed
value of Unavailability in the considered rejuvenation interval range of values
(i.e. from one hour to 168 hours, using a half-hour step).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Norm. RiskScore

N
or

m
. U

na
va

ila
bi

lit
y

Figure 5.4: Case study 1 results - Man-in-the-middle - Normalized plot

In Figure 5.4, the point in the curve with the minimum distance to the origin (0,0)
represents the configuration that globally reduces the combination of Unavail-
ability and RiskScore. We computed the Euclidean distance of all the points
of the curve to the origin point. The point with the shortest distance corresponds
to the rejuvenation policy with a VM migration interval of 20 hours. The detailed

— 87 —

CHAPTER 5. AVAILABILITY AND SECURITY OF VM MIGRATION-ENABLED
REJUVENATION

results are presented in Table 5.4 (Scenario #0).

Our analysis also aims at finding the rejuvenation policies that minimize the
values of Unavailability or RiskScore or even a composition of both. By
composition, we mean the desired proportion of each metric. For example, a sys-
tem manager may want to deploy a specific VM migration policy that considers
both metrics (Unavailability and RiskScore) equally (50% Unavailability
and 50% RiskScore), or some other values. We computed some intermediate
scenarios using proportions for both metrics. To avoid decision bias, we used the
normalized data mentioned earlier. The results are shown in Table 5.4, which in-
cludes the following: Scn # - Proposed scenario; Criteria - considered proportion
for each metric in the composition; Rej. Trigger - specific VM migration policy
observing the desired criteria; Unavailability (UA) - steady-state unavailability;
Downtime (h/yr) - estimated downtime in hours per year; RiskScore - steady-
state risk score; and Risk classification - a comparison between the obtained
RiskScore and the maximum RiskScore observed in the analysis5 (MaxRS).
The Risk classification result provides a proportion of the increase/reduction
impact due to the selected VM migration policy when compared to the scen-
ario with the worse security levels. Thus, Risk classification results are useful
to understand the actual levels of security improvement when applying the VM
migration policies.

Table 5.4: Evaluation scenarios of Case study 1 - Man-in-the-middle

Scn# Criteria Rej.
Trig.

Unavail. Down-
time
(h/yr)

RiskScore Risk
classification

0 Optimal policy 20 h 0.00120484 10.5544 0.00105544 5% of
MaxRS

1 100% Unavail. 19 h 0.00120442 10.55072 0.00111098 5.27% of
MaxRS

2 75% Unavail.
AND
25% RiskScore

22.5 h 0.00120813 10.58322 0.00093818 4.45% of
MaxRS

3 50% Unavail.
AND
50% RiskScore

27 h 0.00122098 10.69578 0.00078183 3.71% of
MaxRS

4 25% Unavail.
AND
75% RiskScore

35.5 h 0.00126506 11.08193 0.00059464 2.82% of
MaxRS

5 100% RiskScore 168 h 0.00279284 24.46528 0.00012566 0.59% of
MaxRS

The results presented for this case study (above) and for the following ones (next
sections) will provide the necessary inputs for answering RQs1 and RQs2. The
answer to RQs1 is on the tables with the case study results in the scenario that
minimizes RiskScore metric (100% Risk row on each of the results table - Scn#5
row of Tables 5.4 and 5.5). The other plots and tables in each case study provide
the information for answering RQs2.

5Variation of Rej. Trigger from one hour to 168 hours with a half-hour step.

— 88 —

CHAPTER 5. AVAILABILITY AND SECURITY OF VM MIGRATION-ENABLED
REJUVENATION

From the results above, we can observe that the rejuvenation policy decision
depends on the system manager criteria about Unavailability and RiskScore.
We provide a comprehensive set of results to support such a decision. We highlight
the following conclusions from this case study: i) a VM migration interval of
20 hours provides the best overall rejuvenation policy considering both metrics
equally; ii) when putting more weight on Unavailability in the rejuvenation
policy decision, the VM migration interval tends to be shorter than in scenarios
with more weight on RiskScore; and iii) longer VM migration intervals provide
the best RiskScore result. We recall that the maximum limit of our analysis is
168 hours. As Man-in-the-middle attacks depend on VM migration, less frequent
migrations will reduce the value of RiskScore.

5.3.2 CS #2 - Denial of Service (DoS) Attack
Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks are
the main threats to Cloud Computing availability [Subashini and Kavitha, 2011].
DoS attacks usually aim to flood the network resources or impair the application
running on the VMs and are highly devastating in Cloud environments due to
their flexibility. In fact, when receiving a high workload, the Cloud environment
starts to allocate more resources (i.e., servers and VMs) to handle the incoming
requests; therefore, by flooding just one of the servers, the DoS attack may end
up affecting the overall Cloud availability.

The considered DoS attack consists of a high workload demand for an applica-
tion running upon a VM. So, the RiskScore metric for this case study has to
cover both aspects: network and application state. The reasoning is that the
VM migration process affects the network state, and software aging affects the
application state. Besides that, software aging accumulation forces the system to
use more memory, which affects the VM migration network overhead as there are
more dirty memory pages.

We compose the RiskScore for this case study as follows. RiskScore =
(w1 × RiskMigration) + (w2 × RiskAging). w1 and w2 are the assigned weights
for VM migration security risk and software aging security risk, respectively.
As VM migration produces high bursty network traffic, we assign more weight
to RiskMigration. In practice, the weight configuration is w1 = 0.6 and
w2 = 0.4. RiskAging is the expected software aging accumulation. We compute
the RiskAging from the expected number of tokens in the place Accumulation
(see model in Fig. 5.2). The RiskMigration is obtained using the equation:
RiskMigration = MigProbability × RiskAging, where MigProbability is the
probability of the system performing a VM migration (as in the previous case
study). We decided to add the RiskAging in the RiskMigration to capture the
following behavior: migration of a VM with more accumulation of software aging
will produce a higher impact in the network than a VM with less software aging
accumulation.

Figure 5.5 presents the results obtained. As in the previous case study, the black
lines are related to the system Unavailability, and the gray lines are related
to the RiskScore metric. We also added a secondary y-axis with the scale

— 89 —

CHAPTER 5. AVAILABILITY AND SECURITY OF VM MIGRATION-ENABLED
REJUVENATION

for the RiskScore values. The plot also contains two continuous lines for the
baseline (i.e., without software rejuvenation) architecture. The variation of the
VM migration scheduling obeys the one presented earlier, from one hour to a week
(168 hours) with half-hour steps.

 0.001
 0.0015
 0.002

 0.0025
 0.003

 0.0035
 0.004

 0.0045
 0.005

 20 40 60 80 100 120 140 160 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4

Un
av

ail
ab

ilit
y

Ri
sk

Sc
or

e

Rej. Trigger (h)

Unavailability
Unavailability-Baseline

RiskScore
RiskScore-Baseline

Figure 5.5: Case study 2 results - Denial of Service

The gray lines interception represents the point where the VM migration schedul-
ing is no longer beneficial for the RiskScore when compared to the baseline.
The exact intercept is when the rejuvenation interval is equal to 57 hours, which
means that larger rejuvenation intervals produce worse security results than the
system without VM migration scheduling. Figure 5.6 presents the normalized res-
ults for both metrics, Unavailability and RiskScore. We computed the same
set of scenarios of the previous case study. The results are presented in Table 5.5
(see the previous section for the meaning of the columns in the table).

No
rm

. U
na

va
ila

bi
lit

y

Norm. RiskScore 1

0.8

0.6

0.20

1

0.80.6

0.4

0.4

0.2

0

Figure 5.6: Case study 2 results - Denial of Service - Normalized plot

We highlight three key conclusions from the results. First, the best overall rejuven-
ation policy, which globally minimizes both Unavailability and RiskScore,

— 90 —

CHAPTER 5. AVAILABILITY AND SECURITY OF VM MIGRATION-ENABLED
REJUVENATION

Table 5.5: Evaluation scenarios of Case study 2 - Denial of Service

Scn
#

Criteria Rej.
Trig.

Unavail-
ability

Down-
time
(h/yr)

RiskScore Risk classi-
fication

0 Optimal policy 12 h 0.00122172 10.7023 0.041906 10.79% of
MaxRS

1 100% Unavail. 19 h 0.00120442 10.5507 0.06600 17% of
MaxRS

2 75% Unavail. AND
25% RiskScore

10.5 h 0.00123266 10.7981 0.03670 9.45% of
MaxRS

3 50% Unavail. AND
50% RiskScore

6.5 h 0.00129305 11.3271 0.02276 5.86% of
MaxRS

4 25% Unavail. AND
75% RiskScore

4 h 0.00139666 12.2347 0.01402 3.61% of
MaxRS

5 100% RiskScore 1 hr 0.00221065 19.3652 0.00116 0.3% of
MaxRS

has a VM migration interval of 12 hours. Second, RiskScore raises with the
increase of the VM migration interval. As the time that a VM spends migrat-
ing is substantially lower than the time that a VM spends running, the software
aging accumulation is the most relevant aspect for the RiskScore metric in
this scenario. More frequent migrations may produce network overhead but also
avoid severe software aging accumulation. Therefore, more frequent migrations
result in less software aging accumulation, and thus a lower RiskScore. The last
conclusion is that the criteria focused on minimizing RiskScore produces more
reduction when compared to the previous case study.

5.3.3 CS #3 - Composition of Attacks
In the previous case studies, we presented the analysis for the two threats separ-
ately (DoS and MITM). However, in some contexts, we may need to deal with
both threats simultaneously. Therefore, we present a study case that combines the
three metrics of interest: Unavailability, RiskScore of MITM (RS-MITM)
and RiskScore of DoS (RS-DoS). Figure 5.7 presents a plot with the results
considering different rejuvenation policies. The plot basically merges the plots
from Figures 5.3 and 5.5.

Figure 5.7 shows that the RS-MITM value is smaller than the RS-DoS value.
RS-MITM considers only VM migration as a security risk. Therefore, its absolute
values are related to the steady-state probability that the system is performing a
VM migration. From a stationary perspective, the time that the system spends
on a migration state is lower than the time that it spends on a normal operation
(i.e., running and accumulating software aging effects).

It is, however, hard to set up a direct comparison between both RiskScore
metrics due to the different nature of the threats. Just comparing the absolute
values of the two metrics may not be enough for a tradeoff analysis. For example,
the consequences of an MITM attack may be more critical than the consequences
of a DoS attack (depending on the business context; e.g., MITM attacks can

— 91 —

CHAPTER 5. AVAILABILITY AND SECURITY OF VM MIGRATION-ENABLED
REJUVENATION

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 20 40 60 80 100 120 140 160 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4

Un
av

ail
ab

ilit
y

Ri
sk

Sc
or

e

Rej. Trigger (h)

Unavailability MITM DoS

Figure 5.7: Case Study 3 results - Composition

try to affect system confidentiality, which can be devastating for some types of
organizations). If we compare only the absolute values, we tend to neglect the
influence of each threat on the overall system security. This way, we normalized
the data to provide a more fair trade-off analysis. The normalization allows us
to deal with a maximum and minimum range of our data. The normalization
approach is the one used in the previous case studies. Figure 5.8 presents a 3D
plot with the results for each normalized metric. We added shades (in gray) for
each point of the 3D plot in the xy and yz planes.

Due to the different nature of the considered threats (MITM and DoS), we decided
not to attempt proposing a general (i.e., capable of representing both threats at
once) formula for RiskScore calculation for this particular case study. The results
of such a possible general formula may hide how much RiskScore is due to the
MITM or DoS threats.

We can use the data from Figure 5.8 to find the optimal policy when considering
Unavailability, RS-MITM, and RS-DoS. We obtain the best overall policy
by finding the point with the shortest distance from the origin (point (0,0,0)).
We computed such a distance using the Euclidean Distance. We also present
some alternative scenarios with different weight configurations for the three met-
rics. Table 5.6 presents the results. The columns % UA and % MITM and %
DoS show the weight for each metric. The columns MR-MITM and MR-DoS
represent the RiskScore reduction when compared to the maximum observed
RiskScore of MITM and DoS, respectively. As in the previous case studies, we
assume that the VM migration interval ranges between 1 and 168 hours. The re-
maining columns have the same meaning as presented in the previous cases.

We highlight the following from the results: i) the policy that globally reduces
the three metrics has the VM migration interval of 13.5 hours; ii) results from
scenarios 5 and 7 reveal that migration policies for RS-MITM and RS-DoS
are incompatible, thus trying to reduce one metric will increase the other (the

— 92 —

CHAPTER 5. AVAILABILITY AND SECURITY OF VM MIGRATION-ENABLED
REJUVENATION

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Norm. RS-MITM Norm. RS-DoS

No
rm

. U
A

Figure 5.8: Case study 3 results - Composition - Normalized plot

results presented offer relevant information regarding finding the best balance);
and iii) an interesting approach for decision making in such complex scenarios is
the definition of unacceptable service levels instead of desired service levels, which
allows us to remove the worse solutions from the decision-making process.

— 93 —

C
H

A
PT

ER
5.

AVA
ILA

B
ILIT

Y
A

N
D

SEC
U

R
IT

Y
O

F
V

M
M

IG
R

AT
IO

N
-EN

A
B

LED
R

EJU
V

EN
AT

IO
N

Table 5.6: Evaluation scenarios of Case study 3 - Composition

Scn # % UA % MITM % DoS Rej.
Trig-
ger

UA Down-
time
(h/yr)

RS-MITM % MR-MITM RS-DoS % MR-DoS

0 Optimal policy 13.5
h

0.00121414 10.64 0.00156355 7.41 0.04709 12.13

1 100% 0% 0% 19 h 0.00120442 10.55 0.00111098 5.27 0.06600 17.00
2 50% 25% 25% 13 h 0.00121635 10.66 0.00162367 7.70 0.04537 11.68
3 33.33% 33.33% 33.33% 12 h 0.00122172 10.70 0.00175895 8.34 0.04191 10.79
4 25% 50% 25% 15.5

h
0.00120785 10.58 0.00136182 6.46 0.05400 13.90

5 0% 100% 0% 168 h 0.00279284 24.47 0.00012566 0.59 0.38828 100
6 25% 25% 50% 8.5 h 0.00125502 10.99 0.00248305 11.77 0.02974 7.66
7 0% 0% 100% 1 h 0.00221065 19.365290.02108543 100 0.001165 0.30

—
94

—

CHAPTER 5. AVAILABILITY AND SECURITY OF VM MIGRATION-ENABLED
REJUVENATION

5.4 Threats to Validity and Limitations
Lack of experimental validation

The proposed models lack validation against experimental results. Unfortunately,
up to this date, we are unable to compare model results and experimental results.
The complete validation against experimental results became even more difficult
because we were observing steady-state metrics. Obtaining steady-state metrics
from experimental results requires a long observation time to collect a represent-
ative sample of results. In this research, we decided to focus on model interactions
between dependability and security and to provide a set of interesting evaluation
scenarios. Previous consolidated works such as Kim et al. [2009] and Machida
et al. [2013] follow the same approach.

Parameters adopted from previous works instead of from experimental results

In the current research, the model input parameters came mainly from previously
published works. In an ideal setup, the model parameter values are the result of
system observation and experimentation. The main problem here is that some of
these parameters are unavailable or hard to obtain. Collecting MTTF of hardware
and software components requires a long experimental campaign, as these failures
may take months to occur [Schroeder and Gibson, 2007]. The application of
experiment acceleration (e.g., fault injection [Hsueh et al., 1997]) may be a way
to reach this goal. Actually, we took a similar path in a previous paper [Torquato
et al., 2019c]. Nevertheless, for a complex model, such as the one presented in this
chapter, the use of such an approach is prohibitive as we take several components
into account. As a mitigation, in this chapter, we conducted a sensitivity analysis
of rejuvenation trigger parameter. Hopefully, the proposed range of analysis covers
a set of representative scenarios.

Performance overhead evaluation

Quality of Service (QoS) of the applications running on a VM is likely to drop dur-
ing the migration process. The memory pages copying and transferring through
the network require extra computation. Therefore, clients may notice performance
oscillations in scenarios with frequent migrations. The proposed model neglects
the evaluation of performance overhead due to VM migration. An approach to
overcome this limitation is through the use of hierarchical composition (as presen-
ted in Chapter 4). As a mitigation, it is possible to adjust the delay of transition
PC to represent longer VM migrations (i.e., migrations of VMs running heavier
workloads).

5.5 Summary
This chapter presented a comprehensive evaluation of the availability and security
of virtualized systems with VMM rejuvenation enabled by VM migration schedul-
ing. Our results provide a trade-off analysis in three case studies: i) Man-in-the-

— 95 —

CHAPTER 5. AVAILABILITY AND SECURITY OF VM MIGRATION-ENABLED
REJUVENATION

middle (MITM), ii) Denial of Service (DoS), and iii) a combination of MITM and
DoS attacks. Each case study provides a set of scenarios comprising the optimal re-
juvenation scheduling and intermediary configurations of weights for security and
availability, providing more information for the decision-making process.

Our security evaluation approach is flexible and can consider other threat models
and be used in other modeling frameworks (e.g., performance models and Markov
Chains). The final results show that reducing the risk associated with the Man-
in-the-middle attack is incompatible with reducing the risk related to Denial of
Service, as policies reducing one tend to increase the other.

Regarding our main research question, RQmain - What is the security impact
caused by applying different VM migration policies for VMM software rejuvenation
purposes?, we perceived that the security impact depends on the security threats
considered. Specifically about our case studies, we highlight: i) when considering
only MITM attacks, VM migration frequency determines the system RiskScore
levels; ii) when considering only DoS attacks, the time spent on a state with
software aging accumulation is the most critical factor for system RiskScore;
and iii) when considering both threats, rejuvenation policies that reduce DoS
RiskScore are preferred because the system tends to stay more time in a state
with software aging accumulation than ”in migration”.

This chapter closes our contributions focused only on software rejuvenation. In
the following chapters, we shift the focus of the VM migration capabilities for
the MTD purposes. Based on the knowledge obtained, we consider two scenarios
for the following evaluations: Persistent and Non-Persistent tactics (these
scenarios are inspired in the definitions of the Persistence tactic proposed in the
MITRE ATT&CK matrix [MITRE, 2023]). We decided to consider both scen-
arios as they are representative of the cybersecurity landscape. In the follow-
ing chapters, we detail the problem and the proposed models for each scenario
(Persistent in Chapter 6 and Non-Persistent in Chapter 7).

— 96 —

Chapter 6
Time-based VM Migration as MTD
against Persistent Attacks

VM migration is an usual strategy for MTD in the cloud [Torquato and Vieira,
2020]. The standard approach is to move VMs to prevent them from attacking
co-resident VMs or the underlying physical host [Wang et al., 2016; Penner and
Guirguis, 2017]. Specifically, we consider an attacker adopting a persistent tactic
to compromise the hypervisor of the host machine. Therefore, to defend against
this threat, we propose a heterogeneous-hypervisor VM migration [Liu et al.,
2008].

Wang et al. [2016] proposed an algorithm for selecting proper MTD timing to
minimize the associated costs. Their work provided insights on how to evaluate
different MTD timing approaches. Penner and Guirguis [2017] proposed a set
of MTD mechanisms against Multi-Armed Bandit (MAB) policy attacks. Our
work considers a similar threat model, but instead of MAB policies, we consider a
multi-stage attack (i.e., the attacker may first reconnoiter the environment before
launching the attack). Connell et al. [2018] presented a Markov model for per-
formance evaluation of an MTD deployment in a virtualized environment. Their
work provided insights on i) how to model the MTD problem and ii) validation
through simulation. Unlike these works, we decided to follow a straightforward
approach of applying the usual VM migration scheduling as MTD. By straight-
forward we mean without requiring specific MTD implementations of third-party
software.

This chapter presents a PN-based model for the evaluation of the probability of
insider attack success in an Infrastructure as a Service (IaaS) cloud with MTD
based on VM migration scheduling. The main goal is to evaluate the availability
and security of the MTD deployment in different scenarios. These scenarios com-
prise different system architectures (i.e., environments with different number of
available physical machine pools) and different VM migration scheduling policies.
The analysis shows the benefits and drawbacks of the scheduling policies regarding
availability and probability of attack success. Furthermore, we propose a toler-
ance level metric that, based on the probability of attack success, supports the
selection of VMs as candidates for MTD deployment, considering their expected
runtime. In practice, the tolerance level metric measures how long it takes for the
VMs to reach a selected probability of attack success. Section 6.1 presents more
details about tolerance level metric.

— 97 —

CHAPTER 6. TIME-BASED VM MIGRATION AS MTD AGAINST PERSISTENT
ATTACKS

The considered MTD aims at moving the attacker VM across the available phys-
ical machine pools. Each physical machine pool has a unique hypervisor. Our
threat model considers that the hypervisor is the target of the insider attack.
Therefore, each time we move the VM, the attacker needs to reconnoiter the hy-
pervisor variant before proceeding. The following research questions guided this
research:

• RQ1: What is the attack success probability reduction when using different
system architectures?

• RQ2: What is the availability and attack success probability impact due to
different VM migration scheduling?

• RQ3: What is the time required for the system to reach a specific attack
success probability (i.e., tolerance level) considering different architectures
and VM migration scheduling?

To address these questions, we consider three case studies. The first focuses on
reducing the attack success probability when enlarging the system architecture
from one physical machine pool to four physical machine pools. The second
case study investigates the reduction of the attack success probability due to
the variation of VM migration scheduling. In the last case study, we follow a
slightly different approach. Instead of presenting results about specific scenarios,
we conduct a comparison between the results of the model and the results from a
simulation of the system behavior. Therefore, the last case study serves as a partial
validation of the results as the multiple evaluation approaches (i.e., simulation and
modeling) produce similar results.

At the time of this chapter writing, this was the first effort into the investigation
of how different environmental configurations affect the security and availability
levels of an environment with VM migration scheduling as MTD against insider
attacks. VM migration scheduling is already used in other contexts, such as
software rejuvenation [Bai et al., 2020], load balancing [Hu et al., 2010], and
sustainability [Ghribi et al., 2013]. Our contribution may be of interest to system
managers who intend to design multi-objective VM migration scheduling policies.
This chapter is adapted from Torquato et al. [2021a].

The rest of this chapter is organized as follows. Section 6.1 presents the eval-
uation approach, including the system architecture, the threat model, and the
specific VM migration-based MTD strategy. Section 6.2 elaborates on the pro-
posed model. Section 6.3 presents the proposed case studies. Section 6.4
presents the limitations and threats for validity. Finally, Section 6.5 concludes
the chapter.

6.1 Approach and Assumptions
Section 3.2 already provided the general architecture for VM migration-based
MTD. Nevertheless, as the approach for persistent and non-persistent tactics differ
a little, we decided to include the full details here. In practice, we consider a set
of architectures, ranging from 1N (with one physical machine pool - baseline)

— 98 —

CHAPTER 6. TIME-BASED VM MIGRATION AS MTD AGAINST PERSISTENT
ATTACKS

up to 4N 1 (with four different physical machine pools). Figure 6.1 displays the
system configuration for a 2N architecture. The considered architecture has the
following characteristics:

1. Each physical machine pool has its unique hypervisor variant (hypervisor is
the target of the insider attack).

2. It is possible to migrate VMs between the physical machine pools.

3. Each physical machine pool has at least one physical machine available to
receive migrations.

Figure 6.1: System configuration - 2N architecture

The attacker has authorized control of one VM in the environment. In this threat
model, the goal of the attacker is to perform an insider attack targeting the un-
derlying hypervisor2, which is the middleware between the VMs and the physical
host. When assuming the control of the hypervisor, the attacker can monitor or
compromise co-resident VMs. We assume that the attacker will not resign until
the attack succeeds. The insider attack has two phases: i) reconnaissance - when
the attacker tries to identify the hypervisor variant of the host; and ii) attack -
when the attacker starts to perform malicious actions against the host hypervisor.
In the attack phase, the attacker adopts a try-and-error approach. Consequently,
the longer the time spent on the same physical host, the greater the chance of
attack success. Besides, once the attacker reconnoiters the host hypervisor, it is
possible to continue the try-and-error approach, ignoring the failed attempts (i.e.,
the attacker accumulates knowledge).

The adopted MTD consists of a time-based VM migration policy that moves
the attacker VM between the available physical machine pools3. The MTD goal is

1We decided to scale the model up to 4N because we found that there are four major hypervisors
(i.e., the target of the attack) used in server environments - Xen, Hyper-V, ESXi, KVM.

2 Note that some research works may refer to this attack as VM escape [Zhang, 2012].
3 In other papers (e.g., [Chang et al., 2020]), this approach is named as Migration-based

— 99 —

CHAPTER 6. TIME-BASED VM MIGRATION AS MTD AGAINST PERSISTENT
ATTACKS

to reduce the probability of attack success through dynamic changes in the attack
target (i.e., the hypervisor variant of the physical host). In particular, we consider
the VM migration between heterogeneous hypervisors [Liu et al., 2008]. Focusing
on simplifying the MTD deployment, the VM migration policy follows a circular
approach for any of the considered architectures. The circular approach consists
of migrating the VM from one physical machine (PM) pool to the next physical
machine pool. For example, let us suppose that the attacker is in the PM1 pool
in a 3N architecture. We first migrate the VM from the PM1 pool to the PM2
pool. Then, from PM2 to PM3, in the next migration round. Finally, from PM3
to PM1, restarting the VM migration cycle.

For illustration purposes, consider the example in Figure 6.2 that shows an attack
and defense flow in a 2N architecture. Stage 1 is the initial state. We suppose
that the VM of the attacker is in the PM1 pool. After the reconnaissance phase,
the attacker starts the attack phase. The time spent in the attack phase is counted
as attack progress. Then, the VM migration schedule arrives, moving the VM of
the attacker from the PM1 pool to the PM2 pool, thus starting Stage 2.

In Stage 2, the attacker follows the same approach of Stage 1. As before, the
attacker has no accumulated knowledge about the PM2 pool environment and
has to start the attack from the beginning. Finally, when the schedule for VM
migration arrives again, the VM is moved back to the PM1 pool (Stage 3). In
Stage 3, after reconnaissance, the attacker leverages the accumulated knowledge
to finish the attack.

We are aware that the detection of an attacker in the environment is a rather
difficult task. Besides, if the attacker is detected, it is more straightforward to
delete the attacker VM instead of migrating it. However, our strategy supposes
that the attacker is undetected, has privacy rights, and has authorized access to
a VM. Thus, a concern may arise in deciding which VMs should follow the MTD
policy. System managers may leverage our tolerance levels results to select VMs as
candidates for MTD deployment based on their expected runtime. Nevertheless,
this MTD deployment may have a non-negligible impact on system performance
and availability. We study the availability impact in the second case study. The
performance impact is yet to be studied.

The tolerance level (TL) metric shows how long the system takes to reach a specific
probability of attack success. For example, let us suppose that in a scenario
without MTD (baseline), TL(10%) = 10h. These hypothetical results indicate
that the system took 10 hours to reach a probability of attack success of 10%.
From a system management perspective, assuming that the system can tolerate
up to 10% of attack success, all the VMs with expected runtime above 10 hours
should be considered for the MTD deployment. It is worth highlighting that,
in all our evaluations, we assume the system is under attack during the entire
evaluation.

The proposed MTD brings benefits as it is easy to use (assuming that VM mi-
gration is a common task in contexts such as IaaS cloud management). However,

Dynamic Platform.

— 100 —

CHAPTER 6. TIME-BASED VM MIGRATION AS MTD AGAINST PERSISTENT
ATTACKS

unless we have very frequent migrations, which may affect VM availability, the
attacker will eventually be successful. Hopefully, the MTD may provide valuable
extra time to enhance the defensive mechanisms against insider attacks.

Figure 6.2: Example of attack and defense flow - 2N architecture

6.2 Model
The proposed model has two submodels: a) Clock model and b) System model
(see Figure 6.3). The models interact through the guard functions described in
Table 6.14. For simplicity, this section presents only the models related to the
2N architecture. Nevertheless, we consider up to the 4N architecture in our
evaluations. We emphasize that each architecture has its own model, and all the
models follow the same approach used in the 2N architecture model. The only
difference is that the other architectures 3N and 4N have three and four physical
machine pools, respectively. 1N architecture has only one physical machine pool
and does not support VM migration. Nevertheless, we present the results from
1N architecture as baseline results.

4 Guard functions are Boolean expressions evaluated based on the net current marking. They
disable the associated transition when the boolean expression returns false. (#P>0) expres-
sion returns true if the number of tokens in the place P is greater than zero (otherwise, it
returns false).

— 101 —

CHAPTER 6. TIME-BASED VM MIGRATION AS MTD AGAINST PERSISTENT
ATTACKS

Table 6.1: Guard functions

Guard Enabling function
Gf1 (#VMMigPM1_2>0) OR (#VMMigPM2_1>0)
Gf2 (#Schedule>0)

The Clock model represents the system component responsible for triggering
VM migration. To assure that the model represents the predefined VM migration
scheduling, transition Trigger adopts a deterministic firing delay. Its firing delay
is the configured delay between VM migrations. Thus, transition Trigger firing
represents that the system reached the time interval for VM migration. Transition
Trigger firing removes a token from place Counting to the place Schedule, thus
activating guard function Gf2.

Gf2 enables the firing of transitions related to VM migration (i.e., MigPM1_2_1,
MigPM1_2_2, MigPM2_1_1 and MigPM2_1_2). These transitions firing put a token
in place VMMigPM1_2 or place VMMigPM2_1, indicating that the VM migration is
in progress. In this situation, the system clock starts the time counting for the
next migration (i.e., transition ResetClock firing). Transition ResetClock firing
moves the token from place Schedule to place Counting, restarting the cycle of
Clock model.

The System model in Figure 6.3 represents the 2N architecture. Transitions and
places related to the PM1 pool have an explicit mention of PM1, and transitions
and places related to the PM2 pool have PM2 in their names. In this model, we
consider that the attacker VM is initially in the PM1 pool (place Arrival_PM1
with one token). From this state, we have two possibilities. The first is when
the VM migration schedule arrives before the attacker finishes the reconnaissance
phase. In this case, obeying Gf2, the token from place Arrival_PM1 is moved to
place VMMigPM1_2 through transition MigPM1_2_1 firing. The second possibility is
that the attacker finishes the reconnaissance phase (transition Recon_PM1 firing).
Transition Recon_PM1 firing removes the token from pĺace Arrival_PM1 and puts
a token in place Attack_PM1.

— 102 —

C
H

A
PT

ER
6.

T
IM

E-B
A

SED
V

M
M

IG
R

AT
IO

N
A

S
M

T
D

A
G

A
IN

ST
PER

SIST
EN

T
AT

TA
C

K
S

a) Clock Model

Gf1

ResetClock

Counting Trigger Schedule

b) System Model
Mig_Downtime1

Gf2Gf2

Gf2Gf2

MigPM2_1_2MigPM2_1_1 VMMigPM2_1

VMMigPM1_2

Mig_Downtime

Recon_PM2

Arrival_PM2 Attack_PM2 AtkPM2
4

4

4
4

AtkPM2_Remaining AtkPM2_Prog

AtkPM2_Status AtkPM2_Success
PM2_Compromised

MigPM1_2_2MigPM1_2_1

Recon_PM1

Arrival_PM1 Attack_PM1 AtkPM1

AtkPM1_Remaining AtkPM1_Prog

AtkPM1_Status AtkPM1_Success

PM1_Compromised

Figure 6.3: Model for probability of attack success evaluation (2N architecture)

—
103

—

CHAPTER 6. TIME-BASED VM MIGRATION AS MTD AGAINST PERSISTENT
ATTACKS

Following the same approach of the previous chapters, we model the attack phase
using a four-phase Erlang sub-net. The main goal is to reproduce the IFR behavior
for the attack progress accumulation. More details will follow. The Erlang sub-
net has the immediate transition AtkPM1, transition AtkPM1_Prog, and the places
AtkPM1_Remaining and AtkPM1_Status. There are two reasons for this choice.
First, we need to preserve the attack progress even after a VM migration. Thus,
we need a model with a enabling memory policy [Marsan et al., 1998]. The Erlang
sub-net (specifically the place AtkPM1_Status) serves as a memory of the attack
progress. Secondly, a four-phase Erlang sub-net can represent an IFR [Trivedi,
1982]. As mentioned before, the attacker adopts a try-and-error approach. Thus,
the attack success probability increases as long as the attacker stays in a specific
physical machine pool. Therefore, we approximate this increasing probability
using the four-phase Erlang sub-net. It is worth highlighting that previous works
also adopted hypoexponential distributions to represent IFR [Machida et al., 2013;
Torquato et al., 2020a].

Transition AtkPM1 immediately fires when place Attack_PM1 receives a token.
Transition AtkPM1 firing swaps5 the token in the place Attack_PM1, and puts four
tokens (representing the number of phases) in the place AtkPM1_Remaining. This
event represents the start of the attack phase. Each transition AtkPM1_Prog firing
represents that the attack is progressing. Note that the transition AtkPM1_Prog is
only enabled when we have tokens in the place AtkPM1_Remaining (representing
that the attack phase is not over) and place Attack_PM1 (indicating that the VM
of the attacker is still in the PM1 pool). Transition AtkPM1_Prog moves tokens
from place AtkPM1_Remaining to place AtkPM1_Status.

Transition AtkPM1_Success immediately fires when the place AtkPM1_Status re-
ceives the fourth token. Transition AtkPM1_Success firing collects four tokens
from place AtkPM1_Status and puts one token in the place PM1_Compromised.
This event denotes that the attacker successfully compromised a physical ma-
chine in the PM1 pool. We add an inhibitor arc6 from place PM1_Compromised to
transition AtkPM1. This inhibitor arc denotes that the attacker does not need to
pass the try-and-error approach again once the system is compromised.

Timely VM migrations delay the attack’s success. Let us suppose that the at-
tacker is on the attack phase in the PM1 pool (place Attack_PM1 with one token).
As transition MigPM1_2_1, the transition MigPM1_2_2 also has embedded guard
function Gf2. Therefore, when the system reaches the time for VM migration, it
moves the attacker VM from a physical machine of the PM1 pool to a physical ma-
chine in the PM2 pool. This VM migration interrupts the attack phase progress.
Transition MigPM1_2_2 firing moves the token from place Attack_PM1 to the place
VMMigPM1_2. After the VM migration downtime (transition Mig_Downtime), the
VM arrives in the PM2 pool (place Arrival_PM2 receives a token from transition
Mig_Downtime firing).

The attacking approach in the PM2 pool follows the same procedure described
above. When the system triggers another VM migration, the attacker VM is

5Receives and gives back
6An arc terminating in a circle instead of an arrowhead

— 104 —

CHAPTER 6. TIME-BASED VM MIGRATION AS MTD AGAINST PERSISTENT
ATTACKS

moved back to the PM1 pool. The attacker can leverage the obtained knowledge
from his first attempts in the previous attack phase in the PM1 pool.

The main metric of interest is the probability of attack success. Assuming
a 2N architecture, we compute this metric by observing the transient probabil-
ity of token presence in place PM1_Compromised or place PM2_Compromised. We
compute availability by observing the steady-state probability of token pres-
ence in any of the following places: Arrival_PM1, Attack_PM1, Arrival_PM2, or
Attack_PM2. Note that this evaluation only covers the availability impacts due
to VM migration scheduling. Other dependability events, such as failures and
repairs, are out of the scope.

In the context of this chapter, we use the model above to evaluate VM migration
as MTD. However, the approach used in the model design may be valuable to
evaluate other related MTD mechanisms. For example, the use of IP address
shuffling against a persistent attacker.

6.3 Case Studies
This section presents two case studies. The first one estimates the probability of
attack success in each proposed system architecture (Section 6.3.1). The second
shows the results considering different VM migration scheduling policies (Sec-
tion 6.3.2). We consider policies with 30 minutes, 1 hour, 6 hours, 12 hours and
24 hours between VM migrations. Our results highlight the tradeoff between
availability and security. For example, applying the policy 30 minutes in a system
with four physical machine pools, the probability of attack success at 24 hours
is less than 1%. When applying the policy 12 hours in the same conditions, the
probability is 23%. However, the system downtime due to VM migrations at 24
hours is about 8 seconds for the policy 12 hours and 3 minutes for the policy 30
minutes.

We used the TimeNet tool [Zimmermann, 2017] for model design and evaluation.
Table 6.2 presents the default values used for our evaluations. We obtained these
values from the recent papers [Torquato et al., 2020a; Chen et al., 2020]. Note that
these values are only for reference and should be adapted whenever measurement-
based results are available. Nevertheless, we find these values reasonable to rep-
resent the considered threat model and MTD defense based on previous works
published in reputed journals. We discuss this topic more in Section 6.4.

Table 6.2: Parameters used in the timed transitions

Transition Description Delay
Trigger Time for VM migration 30 minutes
Recon_PM1, Recon_PM2 Reconnaissance phase 30 minutes
AtkPM1_Prog, AtkPM2_Prog Attack phase (Erlang) 6 hours*
Mig_Downtime, Mig_Downtime1 VM migration downtime 4 seconds
* As we have four Erlang phases, at-
tack phase total delay is of 24 hours

— 105 —

CHAPTER 6. TIME-BASED VM MIGRATION AS MTD AGAINST PERSISTENT
ATTACKS

6.3.1 CS #1 - Varying Number of Available Physical Machine
Pools

Considering the proposed threat model and MTD approach (see Section 6.1), we
can observe that the higher the number of available physical machine pools, the
longer the delay for an attack success. However, this case study aims to understand
the attack success when using different system architectures. In practice, this case
study has two goals: i) to evaluate how long the system survives the attack and ii)
to quantify the benefits of enlarging the architecture. The results from this case
study provide the answer to our RQ1 - What is the reduction in the probability of
attack success when using different system architectures?

Figure 6.4 presents the results of the probability of attack success in the different
architectures. These results comprise the first fifteen days (360 hours) of attacker
presence in the environment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350Pr
ob

ab
ilit

y
of

 a
tta

ck
 su

cc
es

s

Time (hours)

Baseline 2N 3N 4N

Figure 6.4: Probability of attack success - varying number of available physical
machine pools

The results from the architectures with MTD (i.e., 2N, 3N, and 4N) are sig-
nificantly better than the results from the baseline architecture (i.e., 1N). As
expected, the enlargement of the system architecture produces a flattening effect
in the probability of attack success curve. However, the difference between the
architectures with MTD is less prominent.

For comparison purposes, Table 6.3 presents when the system reaches 1%, 50%,
and 90% of the probability of attack success (i.e., tolerance levels) in each pro-
posed architecture. These findings may help to perceive the benefits of MTD
deployment. The probability of an attack success decays significantly in the MTD-
enabled environment. We noticed that the smaller architecture with MTD (2N)
is about three times more secure7 than the baseline architecture in the first week
of attack presence (up to 168 hours), which provides an answer to RQ1.

7 By secure we mean with a lower probability of attack success.

— 106 —

CHAPTER 6. TIME-BASED VM MIGRATION AS MTD AGAINST PERSISTENT
ATTACKS

Table 6.3: When the system reaches probability of attack success of 1%, 50%, and
90% (tolerance levels)

Arch. 1% 50% 90%
Baseline 6 hours 23 hours 41 hours

2N 25 hours 106 hours 182 hours
3N 34 hours 135 hours 224 hours
4N 41 hours 161 hours 263 hours

The results presented in Table 6.3 also provide a partial answer for RQ3. De-
pending on the business model, system managers may be more or less concerned
about security. Thus, the system manager may define appropriate tolerance levels
of probability of attack success for their respective environments. For example, in
a business with a high associated security risk, the system manager may set the
tolerance level at 1%. In this situation, considering the scope of our evaluation,
the system should flag the VMs with an expected runtime above 6 hours as can-
didates for MTD deployment. After further verification of other relevant aspects
(e.g., verification of what the client started the VM), the system manager can de-
cide whether or not such a VM should follow the VM migration scheduling.

Figure 6.5 presents the results of the reduction in the probability of attack suc-
cess. This reduction is the difference between the probability of attack success
of each MTD architecture (2N, 3N, and 4N) and the baseline architecture. As
expected, 4N architecture provides a more significant reduction than the others.
The interesting conclusion is that, after fifteen days (i.e., 360 hours) of attacker
presence in the environment, the reduction is less than 1%. Therefore, in scen-
arios with VMs that impose long-running execution times (above fifteen days),
a 4N architecture is not enough to reduce the probability of attack success. In
such scenarios, we encourage the system managers to apply alternative policies to
mitigate the vulnerabilities related to insider attack. The deployment of period-
ical software rejuvenation and routines to clean up the hypervisor may improve
system security in such scenarios.

6.3.2 CS #2 - Varying VM Migration Schedule - 4N architecture
In the previous case study, we noticed security improvements due to the MTD
deployment. However, as the MTD is based on VM migration scheduling, policies
with frequent migrations may also affect system availability. In fact, Clark et al.
[2005] shows that, even in live migration mode, each VM migration has an associ-
ated downtime. In some cases, the accumulated VM migration downtime may be
unacceptable. Furthermore, the threat model and MTD defense impose a tradeoff
between security and availability, as more frequent migrations may delay the at-
tack success longer but also impose more system downtime, and less frequent
migrations may reduce the system downtime due to MTD policy, increasing the
probability of attack success. Thus, in the context of RQ2, we want to evaluate dif-
ferent VM migration schedules to verify the impact on availability and probability
of attack success.

— 107 —

CHAPTER 6. TIME-BASED VM MIGRATION AS MTD AGAINST PERSISTENT
ATTACKS

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

R
ed

u
ct

io
n
 o

f p
ro

b.
 o

f a
tta

ck
 su

cc
es

s(
%

)

Time (hours)

2N 3N 4N

Figure 6.5: Reduction of probability of attack success due to the number of avail-
able physical machine pools

Figure 6.6 presents the probability of attack success results for different VM mi-
gration trigger intervals. Figure 6.7 presents the reduction due to each VM mi-
gration scheduling policy. The evaluation below presents the results for the 4N
architecture, as they were the most illustrative among the other considered archi-
tectures. As expected, more frequent migrations (e.g., VM migration scheduling
of 30 minutes and 1 hour) produce a more noticeable reduction in the probability
of attack success. In the first hours of attacker presence, less frequent migration
policies provide no significant decrease in attack success probability. Besides that,
Figure 6.7 shows that less frequent migrations produce only a slight reduction ef-
fect on the probability of attack success.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

Pr
ob

ab
ilit

y
of

 a
tta

ck
 su

cc
es

s

Time (hours)

Baseline
30 min

1 h
6 h

12 h
24 h

Figure 6.6: Probability of attack success - varying VM migration trigger - 4N
architecture

— 108 —

CHAPTER 6. TIME-BASED VM MIGRATION AS MTD AGAINST PERSISTENT
ATTACKS

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

R
ed

u
ct

io
n
 o

f p
ro

b.
 o

f a
tta

ck
 su

cc
es

s(
%

)

Time (hours)

30 min 1 h 6 h 12 h 24 h

Figure 6.7: Reduction of probability of attack success due to the variation on VM
migration trigger

System managers may be interested in two aspects of the VM migration schedul-
ing when designing the MTD policy: i) system availability, to understand how
the VM migration scheduling affects system downtime; and ii) when the sys-
tem reaches the tolerance level (TL) of the probability of attack success. We
summarized these results in Table 6.4, where we can see that, in systems with
a tolerance level of 1%, the managers may adopt MTD policies with more fre-
quent migrations (e.g., VM migration trigger of 30 minutes or 1 hour). Because
the other ones provide no security improvement when compared to the baseline
results.

Table 6.4: Tolerance levels and system unavailability - Different VM migration
schedules - 4N architecture

Trigger TL 1% TL 50% TL 90% Avail.
with VM
migra-
tions

Downtime
in the first
15 days
(due to
VM mi-
grations)

30 min 41 h 161 h 263 h 0.997778 48 min
1 h 24 h 94 h 152 h 0.998889 24 min
6 h 6 h 54 h 89 h 0.999815 4 min
12 h 6 h 52 h 83 h 0.999907 2 min
24 h 6 h 23 h 71 h 0.999954 1 min

Availability results reveal a significant system downtime in scenarios with frequent
migrations, but the downtime in the first fifteen days (i.e., 360 hours) is below
4 minutes when using VM trigger above 6 hours. However, we highlight that
the downtime of each VM migration is usually short, as the VM memory state

— 109 —

CHAPTER 6. TIME-BASED VM MIGRATION AS MTD AGAINST PERSISTENT
ATTACKS

is preserved during VM migration [Clark et al., 2005]. Therefore, VM migration
downtime may produce a more severe impact on systems with an intense load of
external requests. In scenarios without a network buffer, these requests will be
lost due to environment unavailability during migrations. Nevertheless, there may
be scenarios where this downtime is acceptable (e.g., systems that do not require
high availability).

6.3.3 CS #3 - Validation with Simulation Results
Following the idea of Connell et al. [2018], we implemented a simulation envir-
onment using SimPy8. SimPy provides a simulation framework using standard
Python language. We used SimPy to simulate the attack progress and the inter-
ruptions due to VM migration occurrence. We implemented the simulation script
by hand (i.e., without using automation or conversion frameworks). The proposed
model guided the simulation implementation, where we used variables to store the
system state and events to represent the attack progress and VM migration.

Figure 6.8 presents: i) the comparison of model (black line) and simulation (gray
dashed line) results, and ii) error - the difference between the model and simu-
lation results. The simulation results dotted lines represent the 95% confidence
interval. The results below are only from the 2N architecture. However, the com-
parisons between simulation and model results for the other architectures have
similar results.

The error is higher in scenarios with more frequent VM migrations. In scenarios
with more frequent VM migrations, the simulation environment has to generate
more events, leading to more accumulated errors. Nevertheless, in scenarios with
less frequent VM migrations, the error results are relatively low.

The error results remain under 0.2 in all considered scenarios of VM migration
scheduling. The maximum error for the policy 30 minutes is 0.151552, and the
maximum error for the policy 1 hour is 0.051828. For all the other scenarios, the
maximum error is about 0.01. Figures 6.8(e), 6.8(g), and 6.8(i) show that the
simulation results are nearly the same as the model results.

6.4 Threats to Validity and Limitations
Model-based evaluations are less accurate than measurement-based evaluations

Model-based evaluation suits our needs as we aim to evaluate different architec-
tures, which may be a significant challenge for measurement-based evaluation.
Besides that, as presented in Chapter 5 and [Nguyen et al., 2020], model-based
evaluation is helpful when combining security and dependability metrics. As our
research line evaluates the probability of attack success and availability, SPN
models seem to be a reasonable evaluation method.

The availability evaluation is limited

8Available at: https://simpy.readthedocs.io/en/latest/

— 110 —

https://simpy.readthedocs.io/en/latest/

CHAPTER 6. TIME-BASED VM MIGRATION AS MTD AGAINST PERSISTENT
ATTACKS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350Pr
ob

ab
ilit

y
of

 a
tta

ck
 su

cc
es

s

Time (hours)

Model
Simulation

(a) Trigger = 30 min

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

Er
ro

r

Time (hours)
(b) Trigger = 30 min (error)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350Pr
ob

ab
ilit

y
of

 a
tta

ck
 su

cc
es

s

Time (hours)

Model
Simulation

(c) Trigger = 1 h

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

Er
ro

r
Time (hours)

(d) Trigger = 1 h (error)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350Pr
ob

ab
ilit

y
of

 a
tta

ck
 su

cc
es

s

Time (hours)

Model
Simulation

(e) Trigger = 6 h

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

Er
ro

r

Time (hours)
(f) Trigger = 6 h (error)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350Pr
ob

ab
ilit

y
of

 a
tta

ck
 su

cc
es

s

Time (hours)

Model
Simulation

(g) Trigger = 12 h

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

Er
ro

r

Time (hours)
(h) Trigger = 12 h (error)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350Pr
ob

ab
ilit

y
of

 a
tta

ck
 su

cc
es

s

Time (hours)

Model
Simulation

(i) Trigger = 24 h

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

Er
ro

r

Time (hours)
(j) Trigger = 24 h (error)

Figure 6.8: Model and simulation results - 2N architecture

— 111 —

CHAPTER 6. TIME-BASED VM MIGRATION AS MTD AGAINST PERSISTENT
ATTACKS

A more comprehensive availability evaluation of VM migration effects is needed
to understand the real impacts of a VM migration scheduling policy. Two factors
are missing in our evaluation. Firstly, other relevant dependability events such as
failures, crashes, and software aging. Secondly, the VM migration failure probab-
ility. Despite the relevance of these aspects, note that the focus of this work is the
security evaluation (i.e., probability of attack success evaluation). The inclusion
of other relevant aspects of VM migration scheduling may raise difficulties (e.g.,
largeness [Trivedi and Bobbio, 2017]) in the model evaluation.

Default values for the duration of the attack and reconnaissance phases

In the best scenario, we should have obtained these parameters through experi-
mentation. However, such experimentation has a non-negligible associated cost.
An approach is to hire a red team [Diogenes and Ozkaya, 2018] to test a real
testbed. We decided to follow a lower-cost approach by collecting the parameters
from published papers. We noticed that similar approaches were used in several
papers of model-based security evaluations, such as Mendonça et al. [2020]; Wang
et al. [2013]; Alavizadeh et al. [2018a].

6.5 Summary
This chapter presented a model to evaluate the probability of attack success and
availability in the context of MTD based on VM migration scheduling policies.
We showed a set of case studies to exercise our model. The results obtained show
a tradeoff between the probability of attack success and availability when using
the proposed MTD. The model is validated against simulation results.

Three research questions guided this research. The first one is about the effect of
the architecture enlargement on the probability of attack success. We found out
that, in the first week of attacker presence, the MTD minimum architecture has a
probability of attack success three times lower than the system without MTD. The
second research question focused on the availability aspect of the evaluations. We
noticed that the proposed MTD deployment results in a tradeoff between availab-
ility and probability of attack success metrics. Therefore, the selection of a specific
policy should follow each environmental requirement. The last research question
brought the concept of the proposed metric tolerance level. In this question, we
aimed to answer how long it takes for the system to reach a specific probability
of attack success. Using the proposed tolerance levels, it is possible to select VMs
as candidates for MTD deployment. Moreover, the set of results quantifies the
benefit of enlarging system architectures. In some scenarios, the benefit of using
large architectures is negligible.

This chapter brought an MTD evaluation while the system is under a persistent
attack. However, there are attacks that adopt the non-persistent tactic. In
such cases, the MTD action completely flushes the attack progress. Therefore,
the attacker needs to restart the attack after each VM migration. In the following
chapter, we evaluate the non-persistent tactic scenario through a SPN model and
its analysis.

— 112 —

Chapter 7
Time-based VM Migration as MTD
against Non-persistent Attacks

Assuming an insider that controls a VM and intends to collect sensitive inform-
ation from the host (i.e., the physical machine that runs the attacker’s VM), in
some contexts, VM migration forces the attacker to restart the attack as the VM is
moved to a different host [Sianipar et al., 2018]. However, VM migration (even in
live migration mode) produces system downtime [Clark et al., 2005]. Depending
on the VM migration frequency, the associated downtime may turn unacceptable.
This way, the combined evaluation of security and availability impact due to VM
migration as MTD is required to support MTD deployment.

The inspiring works [Connell et al., 2017, 2018] tackled similar problems. They
present a model for evaluating the performance and availability of MTD. We con-
sider some relevant aspects missing in their works, such as varying VM migration
failure probability and increased attack success rates, for the specific context of
non-persistent attacks. Besides that, we provide secondary metrics (i.e., tolerance
levels and effectiveness limits) to support VM migration-based MTD design.

This chapter presents a SPN model for the evaluation of the probability of attack
success and availability of an MTD based on VM migration scheduling. Our main
goal is to provide an overview of how different aspects may impact MTD protec-
tion and system availability in the presence of non-persistent attacks. Namely,
our evaluation focuses on the following aspects: i) VM migration scheduling, ii)
VM migration failure probability, and iii) different levels of attack success rates.
Specifically, the following research questions guided this research:

• RQ1: What is the availability and attack success probability impact of
different VM migration scheduling policies?

• RQ2: Assuming a specific VM migration scheduling, how long does MTD
protection last?

• RQ3: What is the impact of different VM migration failure probabilities
on the probability of attack success when deploying VM migration-based
MTD?

• RQ4: How do increased attack success rates affect MTD protection?

To answer these questions, we present three case studies. The first focuses on
the impact of VM migration scheduling on the probability of attack success and

— 113 —

CHAPTER 7. TIME-BASED VM MIGRATION AS MTD AGAINST
NON-PERSISTENT ATTACKS

availability. The second investigates the impact on the probability of attack suc-
cess due to different levels of VM migration failure probability. The last shows
how the protection level deteriorates when considering increased attack success
rates.

To our knowledge, this is the first research to evaluate MTD based on VM mi-
gration that comprises different VM migration failure probabilities and attack
success rates in the context of non-persistent attacks. Besides that, our secondary
metrics, tolerance levels and effectiveness limit, may be beneficial to support the
planning of MTD policies. Moreover, our case studies focus on the comparison of
the different VM migration scheduling policies. We decided to conduct these com-
parisons to provide a comprehensive overview of the MTD impact under different
conditions. This chapter is adapted from Torquato et al. [2020b].

The rest of this chapter is organized as follows. Section 7.1 presents the evaluation
approach focusing on the assumptions behind this research. Section 7.2 discusses
the SPN model proposed. Section 7.3 presents the case studies. Section 7.4
presents threats to the validity and limitations of our work. Finally, Section 7.5
presents chapter conclusions.

7.1 Approach and Assumptions
The threat model considered is as follows. The attacker controls one VM and aims
to conduct a host-based attack. In a successful host-based attack, the attacker tar-
gets the underlying physical machine [Fernandes et al., 2014]. Host-based attacks
could affect the co-hosted VMs and the shared resources like CPU or memory. In
this threat model, the attacker final goal is to collect sensitive information from
the shared resources (namely, CPU or RAM). For example, the attacker can try
to conduct a memory dumping [Schatz, 2007] or to exploit vulnerabilities similar
to Meltdown and Spectre [Hill et al., 2019], like what is presented in Sianipar
et al. [2018]. Thus, assuming the classic definitions in Avizienis et al. [2004], a
successful attack causes a data confidentiality violation.

The proposed MTD mechanism is VM migration scheduling. The idea is to move
the Attacker VM away from a physical machine, thus interrupting the attack
progress. As mentioned, we assume that the goal is to compromise system con-
fidentiality by collecting data from CPU or RAM. It is expected that the data
stored in these components (henceforth, target data) change dynamically. This
way, it is unlikely that the target data remains the same between Attacker VM
migrations. To enforce this behavior, we assume that, once the migration is done,
there is a reset on the sensitive processes, forcing a total remap on CPU and
RAM. Therefore, unless the attacker completes the attack, it is necessary to start
it from the beginning when the VM arrives in another host (i.e., VM migration
completion).

Figure 7.1 shows an example of an attack and defense flow with timely VM migra-
tions. In this example, we have two physical machines PM(S) as VM migration
source and PM(T) as VM migration target. We assume that the Attacker VM
is initially on the PM(S). As in the threat model explained before, Stage 1

— 114 —

CHAPTER 7. TIME-BASED VM MIGRATION AS MTD AGAINST
NON-PERSISTENT ATTACKS

corresponds to the attacker arrival, and Stage 2 represents the attack progress.
However, in Stage 3, the system triggers a VM migration. When the Attacker
VM arrives on the PM(T), the attack progress is lost. Then, the cycle restarts
with the PM(T) assuming the role of PM(S).

Figure 7.1: Example of attack and defense flow with timely VM migrations

We also assume that the attacker is perseverant, meaning that he will not resign
until the system is compromised. Therefore, unless we have very frequent migra-
tions (producing substantial system unavailability), the attacker will eventually
succeed. Thus, in this scenario, the MTD deployment goal is to delay the attack

— 115 —

CHAPTER 7. TIME-BASED VM MIGRATION AS MTD AGAINST
NON-PERSISTENT ATTACKS

success. This extra time may be valuable for managers to deploy attack detec-
tion mechanisms or harden the system architecture against the considered threat
model.

As the MTD strategy is entirely based on moving the Attacker VM, an important
question arises on how to detect the attacker. Moreover, once the attacker is de-
tected, it is more straightforward to delete his VM instead of migrating it. System
managers may define policies to select VMs as candidates for MTD deployment.
To obtain maximum security, system managers may deploy MTD on all VMs in
the environment (comprehensive deployment). However, in large data centers,
comprehensive deployment may impose unacceptable costs.

To help in the selection of candidates, we also consider tolerance levels. Tolerance
level (TL) results portray how long a VM may run to reach a specific attack success
probability. For example, TL(1%) = 10h means that the system reaches 1% of
attack success probability after 10 hours of attacker presence. Therefore, assuming
a tolerance level of 1%, all VMs with an expected runtime of 10 hours or more
are candidates for MTD deployment. Besides that, we also provide effectiveness
limit (EL) results. EL is the time instant when the system with MTD reaches the
probability of attack success of 100%. However, we highlight that EL and tolerance
levels provide only suggestions of what VMs should follow MTD. System managers
may define additional criteria (e.g., VM user, resource consumption) for deciding
the VMs for MTD deployment.

Our study focuses on MTD security modeling. This way, availability focuses only
on the effects of VM migration (i.e., we neglect other causes of system unavailab-
ility). Besides that, our model also covers VM migration failure probability. In
the case of a VM migration failure, we assume that the attack continues instead
of being interrupted.

7.2 Model
Figure 7.2 presents the proposed SPN model. The model has two submodels: a)
Clock model and b) System model. The model has embedded guard functions1

described in Table 7.1.

Table 7.1: Guard functions

Guard Enabling function
gf1 (#VMMig>0) OR (#VMMigFail>0)
gf2 (#Schedule>0)
gf3 (#Counting>0)
gf4 (#VMMig>0)

The Clock model represents the time counting for VM migration triggering.
Place Counting with tokens enables the firing of transition Trigger. Transition

1Guard functions are Boolean expressions evaluated based on the net current marking. They
disable the associated transition when the boolean expression returns false.

— 116 —

CHAPTER 7. TIME-BASED VM MIGRATION AS MTD AGAINST
NON-PERSISTENT ATTACKS

Figure 7.2: Proposed SPN model

Trigger has an associated deterministic delay, which represents the time interval
between VM migrations triggering. Transition Trigger firing moves the token
from place Counting to place Schedule. The token arrival on place Schedule
represents the VM migration triggering. To control the model workflow, we use
gf1 to ensure transition ResetClock firing after the firing of transition Mig_s
or Mig_f (indicating the time counting restart after VM migration triggering).
Transition ResetClock firing moves the token back from place Schedule to place
Counting, thus restarting the cycle of Clock model.

The System model covers the VM migration and the attack progress behaviors.
We assume that the Attacker VM is active at the initial state of the evaluation
(i.e., Attacker arrival stage of our threat model). Thus, at the initial state, the
place Attack has one token.

Transition Mig_s represents VM migration success, and transition Mig_f repres-
ents VM migration failure. Both transitions have the guard function gf2. Their
firing depends on tokens presence in places Attack and in the place Schedule.
Besides that, the transitions Mig_s and Mig_f are concurrent. Therefore, just one
of them fires when the enabling conditions are satisfied.

— 117 —

CHAPTER 7. TIME-BASED VM MIGRATION AS MTD AGAINST
NON-PERSISTENT ATTACKS

Transition Mig_f firing removes the token from place Attack to place VMMigFail.
Place VMMigFail is just a control place that serves to avoid an infinite loop. For
that reason, we associate gf3 in transition Mig_f2. Note that both transitions
Mig_f and Mig_f2 are immediate, meaning that we do not consider system down-
time in a VM migration failure. Alternatively, transition Mig_s firing moves the
token from place Attack to place VMMig. The presence of tokens in place VMMig en-
ables gf4 (i.e., attack interruption, more details later on this section). Transition
Mig_Downtime represents the system downtime due to a successful VM migration.
After this downtime, the system returns to activity (i.e., transition Mig_Downtime
firing, moving the token back to place Attack).

We use a coverage factor (migFprob) to express the percentage probability of
VM migration failure. Transition Mig_f embeds coverage factor of migFprob.
And, transition Mig_s embeds a coverage factor of 100−migFprob. For example,
assuming migFprob=10 means that, when the conditions are satisfied, transition
Mig_f has 10% of chance of firing, while Mig_s has 90%.

Note that the modeling of attack progress is a rather difficult task due to at-
tacker’s behavior unpredictability. Our best attempt was, as Chen et al. [2020],
to use combined exponential transitions for representing attack progress. We as-
sume that the longer the attacker’s VM stays on the same physical machine, the
higher the probability of attack success. In the reliability models domain, this be-
havior is known as IFR [Trivedi and Bobbio, 2017]. Thus, using the same ideas of
our availability and MTD models presented in the previous chapters (specifically,
Chapters 4, 5 and 6), we adopt a four-phased Erlang sub-net to represent IFR. In
the model, the Erlang sub-net places and transitions have the prefix Atk.

Transition Atk immediately fires when place Attack has tokens. Transition Atk
firing swaps2 the token from place Attack. It also puts four tokens in the place
Atk_Remaining (representing the number of Erlang phases). Each time that trans-
ition Atk_Prog fires, it removes one token from place Atk_Remaining to the place
Atk_Status (representing the attack progress). Transition Atk_Prog also swaps
the token in the place Attack (i.e., the attack progress depends on the presence of
Attacker VM on the physical host). Besides that, the guard function gf4 enables
the firing of transitions AtkClean1 and AtkClean2. These transitions firing re-
move all the tokens from places Atk_Remaining and Atk_Status. This behavior
represents the attack progress removal after VM migration.

When place Atk_Status stores the fourth token, the transition Atk_Success fires.
Transition Atk_Success firing removes four tokens from place Atk_Status and
puts one token in the place Sys_Compromised. Transition Atk_Success firing
represents the attack success.

We use inhibitor arcs (arcs terminating in a circle instead of an arrowhead) from
the places of the Erlang sub-net to the transition Atk to avoid infinite loop (i.e.,
continuous firing due to the token presence in place Attack).

Considering P{#P0> 0} as the probability of token presence in a place named
P0, it is possible to compute our desired metrics as follows:

2 receives and gives back

— 118 —

CHAPTER 7. TIME-BASED VM MIGRATION AS MTD AGAINST
NON-PERSISTENT ATTACKS

• Probability of attack success - Probability of succeeding in collecting
sensitive data from CPU or RAM - = P{#Sys_Compromised>0}

• Availability - VM availability - = P{#Attack>0}

7.3 Case Studies
This section presents the results of case studies. In the first (Section 7.3.1), we
study the impact of different policies of VM migration scheduling on the probab-
ility of attack success. The second (Section 7.3.2) shows our analysis regarding
different VM migration failure probabilities. The last (Section 7.3.39 considers
different attack success rates. We design and evaluate the models using the Time-
Net tool [Zimmermann, 2017]. Table 7.2 presents the default values used for our
evaluations. We obtain these values from recent works [Torquato et al., 2020a;
Chen et al., 2020; Kukrál et al., 2015].

Table 7.2: Parameters used in the model

Transition Description Delay
Trigger Time for VM migration 30 minutes
Atk_Prog Attack phase (Erlang) 6 hours*
Mig_Downtime VM migration downtime 4 seconds
migFprob VM migration failure probability 10%
* As we have four Erlang phases, attack total delay is of 24 hours

7.3.1 CS #1 - Varying VM Migration Scheduling
VM migration is a usual task in cloud computing management. There are be-
nefits due to VM migration deployment. Namely, the improvement of system
sustainability (through server consolidation [Ahmad et al., 2015]), the security
improvement (through moving target defense [Jia et al., 2014]), or dependability
improvement (through software rejuvenation [Melo et al., 2013b]). Nevertheless,
there are also drawbacks such as system downtime [Clark et al., 2005] or perform-
ance overhead [Voorsluys et al., 2009]. Observing these possibilities, the primary
goal of the first case study is to evaluate the probability of attack success and avail-
ability of an MTD deployment based on VM migration scheduling (i.e., answering
RQ1).

We compute the probability of attack success (Figure 7.3) during the first month
(i.e., 720 hours) of attacker’s VM presence in the environment. We consider five
migration policies with different time interval between migrations (30 minutes, 1
hour, 6 hours, 12 hours and 24 hours). We also include the results without VM
migration (baseline).

As expected, the VM migration scheduling produces a flattening effect in the
curve of the probability of attack success. The significance of the flattening effect
is related to the frequency of VM migrations. Frequent migrations, as in the
policies 30 minutes and 1 hour, produce more reduction in the probability of

— 119 —

CHAPTER 7. TIME-BASED VM MIGRATION AS MTD AGAINST
NON-PERSISTENT ATTACKS

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300 400 500 600 700Pr
ob

ab
ilit

y
of

 a
tta

ck
 su

cc
es

s

Time (hours)

Baseline
30min

1h
6h

12h
24h

Figure 7.3: CS#1 - Probability of attack success results - different VM migration
scheduling policies

attack success than the others. MTD protection becomes slighter when using VM
migration policies with less frequent migrations. However, the quantification of the
probability of attack success is essential to compare the proposed policies.

For example, the policy 24 hours produces nearly the same result as the baseline.
Specifically, the probability of an attack success at 720 hours (i.e., one month)
of attacker presence is of 100% for baseline and policies 12 hours and 24 hours.
For policy 6 hours, the same probability is 97.75%. Finally for policy 1 hour the
result is 5.19%, and for policy 30 minutes, 0.87%.

For a better understanding of MTD protection, we also calculate the reduction
of the probability of attack success. This reduction is the difference between the
probability of attack success with and without MTD (baseline). The results are
in Figure 7.4. The reduction of probability of attack success is revealed when
the MTD protection starts to decay. Moreover, it is possible to verify the EL
of the MTD. For example, assuming the policy 24 hours, the MTD produces no
protection if the attacker’s VM persists for more than 142 hours. EL results
provide answers to RQ2.

The plots in Figures 7.3 and 7.4 are useful to notice the impact due to MTD
deployment policies. However, in practical situations, the system managers may
have other concerns when considering this MTD approach. We list three aspects
that may be of interest for managers: i) deployment; ii) security benefits; and iii)
imposed downtime. About deployment, we see that the MTD approach is conveni-
ent as it is based on a usual management task (i.e., VM migration); about security
benefits, the previous results demonstrate the MTD protection on each proposed
VM migration policy, and regarding imposed downtime, Table 7.3 presents the
steady-state availability and monthly downtime related to each VM migration
policy.

Another relevant concern when designing MTD deployment policies is the MTD
protection level. Some systems require more protection than others. Tolerance

— 120 —

CHAPTER 7. TIME-BASED VM MIGRATION AS MTD AGAINST
NON-PERSISTENT ATTACKS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700Re
du

ct
io

n
of

 p
ro

b.
 o

f a
tta

ck
 su

cc
es

s

Time (hours)

30min 1h 6h 12h 24h

Figure 7.4: CS#1 - Reduction of probability of attack success - different VM mi-
gration scheduling policies

level results indicate how long the VM may run to reach a specific probability of
attack success. Thus, these results may be useful in selecting VMs to follow MTD
and observing their expected runtime. We also add the tolerance level results in
the Table 7.3 that includes seven columns: Policy - indicating the VM migration
policy; Availability - the expected steady-state availability of VMs which follow
MTD deployment; Dwt. 720h - downtime due to VM migration in the first
month of MTD deployment; results for tolerance levels of 1%, 25% and 75% are
in the columns TL 1%, TL 25% and TL 75%, respectively; and EL column
presents the results for the effectiveness limit. Note that we consider a year with
365 days and a month with 30 days.

For policies 30 minutes, 1 hour, and 6 hours, some of the results of TL 1%, TL
25%, TL 75%, and EL were missing from our initial analysis (up to 720 hours).
Thus, we performed a deeper evaluation (up to 1,000,000 hours with 100,000
sampling points) to obtain these values. For brevity, we omit the complete set of
these results from the plots. Besides that, we decided to present only the plot of
the first month because it was more significant for graphical comparison.

The 30 minutes policy maintains the probability of attack success below 1%
throughout the first month of attacker presence. It achieves the best security
results. EL results show that its effect persists for more than eighty years. Be-
sides that, TL 1% result shows that the probability of attack success only reaches
1% after one month and a half of attacker presence.

Frequent migrations may impose unacceptable system unavailability. In the case
of the policy 30 minutes, the downtime is about one hour and a half only in the first
month of the MTD deployment. In a year, the accumulated downtime surpasses
17 days. We emphasize that this downtime is only due to VM migrations, and
when considering other circumstances (e.g., preventive maintenance or system
failures), it will probably be higher. Nevertheless, this downtime is sliced in small
portions (i.e., around four seconds per migration according to Table 7.2). Thus,
this MTD deployment may be suitable for systems without high availability and

— 121 —

CHAPTER 7. TIME-BASED VM MIGRATION AS MTD AGAINST
NON-PERSISTENT ATTACKS

Table 7.3: Summary of results of CS#1

Policy Avail. Dwt. 720h TL
1%

TL
25%

TL
75%

EL

30 min 0.998000 86.4 min 1170 h
(48.75
days)

26310
h (≈ 3
yrs)

136061
h
(15.53
yrs)

703047
h
(80.25
yrs)

1 h 0.999000 43.2 min 126 h
(5.25
days)

3620 h
(5.03
months)

18980
h (2.16
yrs)

96620
h
(11.03
yrs)

6 h 0.999833 7.2 min 5 h 58 h 263 h 1650 h
(2.29
months)

12 h 0.999917 3.6 min 5 h 22 h 94 h 330 h
24 h 0.999958 1.8 min 5 h 15 h 41 h 142 h

high-continuity requirements.

Generally, the policy 1 hour achieves similar results to the policy 30 minutes in the
first month of attacker presence. Significant differences between these approaches
only become noticeable after a long period of attacker presence. The policy 1
hour provides a slightly better availability result than the policy 30 minutes. The
policy 1 hour maintains the probability of attack success below 10% in the first
two months of attacker presence.

The policy 6 hours appears to be a reasonable choice for systems with higher
availability requirements. It maintains the monthly downtime below 10 minutes.
From a security perspective, its protection benefits last for more than two months.
When obeying this policy, the probability of attack success is under 25% in its
first two days of running.

Policies 12 hours and 24 hours present poor MTD protection results. However,
their adoption may be valuable in scenarios with general-purpose VM migrations.
For example, in small data centers with preventive maintenance once or twice a
day. In this situation, since the VM migration schedule is already in place, the
results reveal the associated security benefits (considering the proposed threat
model).

7.3.2 CS #2 - Varying VM Migration Failure Probability
Several problems may lead to VM migration failure. For example, the unavailab-
ility of physical machines to receive VM migration, issues in the network devices,
and network congestion. This way, the probability of a VM migration failure
(migFprob factor, as explained in Section 7.2, will depend on the environmental
conditions. As our MTD is based on VM migration, migFprob may have a signi-
ficant impact on MTD protection. This case study aims to investigate the impact

— 122 —

CHAPTER 7. TIME-BASED VM MIGRATION AS MTD AGAINST
NON-PERSISTENT ATTACKS

of migFprob in the probability of attack success (i.e., answering RQ3). For this
purpose, we consider migFprob of 10% (same as the previous example), 30%, 50%,
and 70%. We also add the baseline results.

For the analysis, we consider the system behavior when applying the policy 30
minutes, as this policy achieved the best security results. Following the same
approach as the previous illustrative example, Figure 7.5 presents the probability
of attack success results, and Figure 7.6 shows the reduction of the probability of
attack success due to MTD.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300 400 500 600 700Pr
ob

ab
ilit

y
of

 a
tta

ck
 su

cc
es

s

Time (hours)

Baseline
10%

30%
50%

70%

Figure 7.5: CS#2 - Probability of attack success results - different VM migration
failure probabilities

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700Re
du

ct
io

n
of

 p
ro

b.
 o

f a
tta

ck
 su

cc
es

s

Time (hours)

10% 30% 50% 70%

Figure 7.6: CS#2 - Reduction of probability of attack success - different VM mi-
gration failure probabilities

Figure 7.5 highlights the protective effect due to VM migration-based MTD de-
ployment. The results show that, even in the scenario with only 30% of successful
migrations (i.e., migFprob= 70%), it provides a significant reduction in the prob-
ability of attack success when compared to the baseline scenario. In fact, as shown
in Figure 7.6, up to 75 hours, the reduction of the probability of attack success

— 123 —

CHAPTER 7. TIME-BASED VM MIGRATION AS MTD AGAINST
NON-PERSISTENT ATTACKS

curve is nearly the same for the proposed values of migFprob. Thus, the MTD
protection degradation due to high migFprob may be noticeable only after this
period. Therefore, active monitoring of the VM migration success rate is needed
for proper MTD deployment management.

Higher VM migration failure probabilities jeopardize the MTD protection, as ex-
pected. Interestingly, migFprob increasing from 10% to 30% causes a negligible
difference in the probability of attack success, while the increase from 50% to
70% produces a significant impact. This behavior suggests a non-linear relation
between migFprob and the probability of attack success.

We study the relation between migFprob and the probability of attack success
in more detail. Figure 7.7 presents the probability of attack success at 720h for
different migFprob values. MigFprob values range from 0% (system without VM
migration failure) to 100% (baseline scenario) using a 10% step.

Figure 7.7: CS#2 - Impact of migFprob on the probability of attack success (at
720h)

To maintain a probability of attack success below 10% during the first month,
migFprob should be below 40%. We notice a rapid increase in the probability of
attack success when migFprob surpasses 50%. Therefore, system managers may
stay alert to verify their migration success rate to avoid undermining the efficiency
of MTD protection.

To conclude this illustrative example, we summarize results in Table 7.4. PAS
720h corresponds to the probability of attack success at 720 hours. The other
columns have the same meaning as for Table 7.3. As in the previous case study,
the results in Table 7.4 may be useful in the selection of VMs as candidates for
MTD deployment (depending on the tolerance level). EL column results show

— 124 —

CHAPTER 7. TIME-BASED VM MIGRATION AS MTD AGAINST
NON-PERSISTENT ATTACKS

how long the MTD protection lasts in the different levels of VM migration failure
probability. We can see the migFprob increasing causes more impact in the long
term. For example, the migFprob increased caused a severe reduction in the EL.
In the scenario with migFprob of 10%, EL surpasses 80 years, while in the scenario
with migFprob of 70%, EL is less than one year.

Table 7.4: Summary of CS#2 results

migFprob PAS 720h TL
1%

TL
25%

TL
75%

EL

10% 0.87% 1170 h
(48.75
days)

26310
h (≈ 3
yrs)

136061
h
(15.53
yrs)

703047
h
(80.25
yrs)

30% 2.96% 250 h
(10.41
days)

6520 h
(9.05
months)

28980
h (3.30
yrs)

170281
h
(19.43
yrs)

50% 12.75% 61 h
(2.54
days)

1592 h
(2.21
months)

6924 h
(9.61
months)

39082
h (4.46
yrs)

70% 49.30% 14 h 300 h
(12.5
days)

1416 h
(1.96
months)

7424 h
(10.31
months)

We emphasize that these results are only values for reference, and they may vary
depending on the circumstances. Besides that, we discourage the maintenance
of VMs with very long execution times. With a very long execution time, the
attacker may find other paths to conduct an attack. Moreover, benign VMs may
suffer from software aging problems [Grottke et al., 2008].

7.3.3 CS #3 - Varying Attack Success Rates
Depending on the reward upon an attack’s success, some companies are more
susceptible to attracting attackers with higher technical ability than others. The
attacker technical ability is directly related to the time needed to reach an attack
success. Therefore, attackers with higher technical skills have an increased chance
of attack success. Consequently, we consider the different technical abilities of an
attacker as different rates for attack success.

This case study aims to investigate how this increase in the attack success rate
affects MTD protection (i.e., answering RQ4). Observing what was presented
in Maciel et al. [2018], we also propose four levels of attacker technical abilities
(TA), meaning four different rates for attack success. Table 7.5 displays the time
for attack success and the associated Erlang phase delay.

We consider the policy 30 minutes and migFprob of 10% in the results. Fig-
ure 7.8 presents the results of the probability of attack success (PAS). Note that
the baseline results are different in each scenario due to different rates of attack

— 125 —

CHAPTER 7. TIME-BASED VM MIGRATION AS MTD AGAINST
NON-PERSISTENT ATTACKS

Table 7.5: Attack success rates for the proposed technical abilities

Attacker TA Time for
attack suc-
cess

Erlang
phase
(transition
Atk_Prog)

Defaut TA 24 h 6 h
TA+25% 19.2 h 4.8 h
TA+50% 16 h 4 h
TA+100% 12 h 3 h

success. Furthermore, as in the previous illustrative examples, we also present
Figure 7.9 with the reduction of probability of attack success due to MTD deploy-
ment.

0

1

0 720

PA
S

Time (hours)

Baseline Default TA

(a) Default TA

0

1

0 720

PA
S

Time (hours)

Baseline TA+25%

(b) TA+25%

0

1

0 720

PA
S

Time (hours)

Baseline TA+50%

(c) TA+50%

0

1

0 720

PA
S

Time (hours)

Baseline TA+100%

(d) TA+100%

Figure 7.8: CS#3 - Probability of attack success - different levels of attacker’s
technical abilities

The comparison between Figure 7.8(a) and Figure 7.8(d) reveals a non-negligible
impact in the PAS due to increased chance of attack success. Figure 7.9 shows a
similar reduction in PAS for Default TA, TA+25%, and TA+50%. However, the
reduction in PAS for TA+100% presents steeper decay.

For a better understanding of the impact of increased attack success rates in
MTD protection, we present Table 7.6. Instead of exhibiting tolerance levels and
effectiveness limit results, as in the previous examples, maybe it is more useful
to consider two other metrics: i) the probability of attack success at 720 hours

— 126 —

CHAPTER 7. TIME-BASED VM MIGRATION AS MTD AGAINST
NON-PERSISTENT ATTACKS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

Re
du

ct
io

n
of

 p
ro

b.
 o

f a
tta

ck
 su

cc
es

s

Time (hours)

Default TA
TA+25%

TA+50%
TA+100%

Figure 7.9: CS#3 - Reduction of probability of attack success - different levels of
attacker’s technical abilities

(PAS 720h), and ii) the reduction in the probability of attack success at 720
hours (RPAS 720h). RPAS is obtained by comparing the probability of attack
success with and without MTD (baseline).

Table 7.6: Summary of CS#3 results

Attacker TA PAS 720h RPAS 720h
Defaut TA 0.87% 99.13%
TA+25% 1.89% 98.11%
TA+50% 3.54% 96.46%
TA+100% 9.98% 90.01%

The results from Table 7.6 show that the MTD protection stays above 90% in all
the considered attack success rates. Besides that, the proposed MTD maintains
the probability of attack success under 10% during the first month of attacker
presence. However, we emphasize that the policy considered in this example was
30 minutes. Policy 30 minutes achieved the best security results in the analysis
presented in the first case study (Section 7.3.1). While the impact of an increased
attack success rate is relatively low in this scenario, it may be more severe in
situations with less frequent migrations (i.e., lower level of MTD protection).

7.4 Threats to Validity and Limitations
Lack of comparison with real testbed results

We put our best effort into designing models capable of representing realistic
scenarios. However, our results were not compared with the results of real testbed
experimentation. Therefore, this may raise a justified concern about the validity
of our work. Unfortunately, security benchmarking is still an open challenge
due to the complexity of the problem. Therefore, a consensual metric is not yet
consolidated [Neto and Vieira, 2011; Knowles et al., 2015].

— 127 —

CHAPTER 7. TIME-BASED VM MIGRATION AS MTD AGAINST
NON-PERSISTENT ATTACKS

The same applies to the Moving Target Defense context, where we have diverse
metrics to measure security (e.g., detection rate [Pacheco et al., 2016], impact
on surface diversity [Pasupulati and Shropshire, 2016] or reconnaissance time [Jin
et al., 2019]). Thus, finding a reliable approach to evaluate the probability of
attack success is a rather difficult task. As an alternative, we decide to follow the
modeling approach. The modeling approach appears as an alternative where the
evaluation through experimentation is hard to conduct [Jain, 1990]. Finally, this
research aims to deliver an evaluation method based on a consolidated paradigm
SPNs for MTD based on VM migration.

Parameters retrieved from previous works instead of experimentation

The ideal situation is when we compute the parameters of the model from meas-
urements in a real testbed. However, our research relies on previously published
papers to retrieve those parameters. The reproduction of the threat model in
a real virtualized environment is indeed one of our future works. Nevertheless,
it is important to highlight that previous works on the same topic [Mendonça
et al., 2020; Alavizadeh et al., 2018a] also retrieved parameters from the literat-
ure. Finally, the reproduction of the threat model in a real testbed may have a
non-negligible cost. This reproduction needs a dedicated virtualized infrastructure
and may require a specialized red team [Diogenes and Ozkaya, 2018] to conduct
the attacks.

Lack of performance overhead evaluation

The evaluation of the performance overhead due to MTD deployment is important
to support well-rounded decision-making. Although the performance evaluation
is outside of the scope of this work, it is important to highlight that it plays
a significant role in the selection of MTD policies. Note that, when taken into
account, the performance impact may alter the suggestion of a VM migration
scheduling. In Chapter 4, we show an approach to include performance in the
evaluation. However, the proper inclusion in the security model is yet to be
done. An alternative, in the current state of the research, is to adjust the model
parameters to better reflect performance-wise scenarios. For example, increasing
the VM migration failure probability to represent an overloaded network.

7.5 Summary
This chapter presented a SPN for the probability of attack success and avail-
ability evaluation of an MTD technique based on VM migration scheduling for
non-persistent attacks. In three illustrative examples, we investigated MTD ef-
fectiveness under different VM migration scheduling, VM migration failure prob-
ability, and attack success rates. We delivered secondary metrics as tolerance
levels and effectiveness limit to enhance our analysis. Our research may provide
inputs on the designing of similar MTD policies.

Four research questions guided this research. The first one is about the evalu-
ation of availability and probability of attack success in scenarios with MTD. Our

— 128 —

CHAPTER 7. TIME-BASED VM MIGRATION AS MTD AGAINST
NON-PERSISTENT ATTACKS

results highlighted that there is a tradeoff between protection and availability
when using the proposed MTD - therefore, system managers may decide, based
on their requirements, which VM migration policy best suits their needs. The
effectiveness limit results provide the answer for our second research question,
which is about for how long the protective effect of MTD remains in the system.
The third research question intends to include the effects of the VM migration
failure probability into the evaluations. Specifically, we noticed that when the
system is adopting a policy with 30 minutes between migrations, the probability
of attack success stays under 10% even in scenarios with 40% of VM migration
failure probability. Finally, our last research question adds the aspect of different
attack success rate scenarios. For that one, we noticed that the policy 30 minutes
is also able to reduce the probability of attack success by more than 90% even in
all scenarios of different attack success rates.

The selected input parameters are limited to a specific hypothetical scenario. In
real-world situations, their values vary according to each IT system environment.
Thus, the modification of the parameters is not an easy task, as it requires spe-
cific knowledge and a toolset to reproduce the proposed model. In the following
chapter, we present PyMTDEvaluator, a tool derived from the model to ease the
analysis and comparison of multiple MTD scenarios. PyMTDEvaluator acts as
an interface for the proposed model.

— 129 —

Chapter 8
PyMTDEvaluator: A Tool for
Time-based MTD against
Non-persistent Attacks

This chapter presents PyMTDEvaluator, a tool for evaluating the effectiveness
of time-based MTD policies against non-persistent threats. As there are many
possible non-persistent attacks, in an attempt to bring a relevant context for the
design of PyMTDEvaluator, we focus on availability attacks (e.g., Denial of Ser-
vice - DoS, resource starvation attacks) as the specific threat of interest. However,
we emphasize that the PyMTDEvaluator parameters can be adapted to repres-
ent other non-persistent threat scenarios. PyMTDEvaluator is based on simula-
tion runs of the model presented in Chapter 7 and offers a user-friendly interface
where it is possible to analyze and compare MTD policies with different para-
meters. PyMTDEvaluator provides results such as probability of attack success,
availability, system capacity, annual downtime, among other relevant information
for supporting MTD design decision making. The tool allows analyzing and com-
paring several scenarios in the same evaluation, thus enabling the study of the
pros and cons of different MTD deployment alternatives. PyMTDEvaluator aims
to be part of the toolset that cloud managers use when designing time-based MTD
policies against availability attacks. It is also valuable for sensitivity analysis of
MTD-enabled system parameters.

The implementation of PyMTDEvaluator consisted of three main steps: i) exper-
imental investigation of time-based MTD effectiveness against availability attacks
(presented in Chapter 3); ii) SPN model design based on the insights obtained
from experimentation (see Chapter 7); and iii) development of a simulator for the
SPN model. To demonstrate the tool, we present a use case where we analyze
VM migration scheduling as MTD against resource starvation attacks. We also
compared the PyMTDEvaluator results with the results obtained directly from
the model computation. This comparison highlights that the PyMTDEvaluator
results are similar to the outputs of the model. Therefore, PyMTDEvaluator tool
could be considered as a interface to the proposed model PyMTDEvaluator com-
prehensive result set provides valuable insights for the MTD scheduling selection
as, for example, which MTD alternative imposes less than annual downtime.

The PyMTDEvaluator tool covers only the MTD deployment against non-
persistent attacks. Up to this moment, the empirical observation of the system

— 131 —

CHAPTER 8. PYMTDEVALUATOR: A TOOL FOR TIME-BASED MTD
AGAINST NON-PERSISTENT ATTACKS

behavior under a persistent attack is still pending. Therefore, in an attempt to
deliver a more well-rounded tool, we focus on the aspects (i.e., non-persistent at-
tacks) observed in the empirical study and in the analytical modeling. Finally, we
highlight that the simulation scripts for the persistent attack scenario (used for
model validation in Chapter 6) are in a refactoring stage aiming at enabling the
inclusion of user parameters through a graphical interface.

Unlike previous works that propose automation frameworks for MTD [Enoch
et al., 2020; Alavizadeh et al., 2019a], PyMTDEvaluator aims at providing means
for MTD scheduling evaluation and analysis. To the best of our knowledge, this
is the first tool to provide an evaluation of time-based MTD against availability
attacks. Users can feed it with inputs to obtain information to answer questions,
such as: what MTD frequency can maintain the probability of attack success under
50% in the first 4 hours of attack? What MTD policy imposes less than two hours
of annual downtime? Or, during an attack, is the system able to deliver at least
40% of its capacity to benign users?

In summary, we highlight the following aspects regarding the current chapter,
which is adapted from Torquato et al. [2021b]:

• PyMTDEvaluator appears in a relevant context of Moving Target Defense
against non-persistent threats, where evaluation methods are needed.

• PyMTDEvaluator provides a broad set of results (e.g., probability of at-
tack success, transient availability, steady-state availability, system capacity,
among other metrics) through a user-friendly interface.

• PyMTDEvaluator eases the MTD policies comparison by presenting the
plots for all the computed metrics and additional CSV and PDF files.

• PyMTDEvaluator is open-source: https://github.com/matheustor4/pymt-
devaluator.

• Cybersecurity managers and researchers are the target audience of
PyMTDEvaluator. However, the tool can be repurposed for other scen-
arios with time-based actions against a cumulative effect. An interesting
example comes from reliability engineering with time-based software reju-
venation [Torquato et al., 2020a].

The rest of this chapter is organized as follows. Section 8.1 presents the de-
tails of PyMTDEvaluator implementation. Section 8.2 presents validation results.
Section 8.3 describes a hypothetical use case for PyMTDEvaluator. Section 8.4
presents threats for validity and limitations. Finally, Section 8.5 presents the
chapter conclusions.

8.1 PyMTDEvaluator Implementation
Figure 8.1 presents the component diagram of the PyMTDEvaluator tool. It has
been developed in Python 3.7 and includes four modules: i) User interface, ii)
Steady-state evaluator, iii) Transient evaluator, and iV) Plot generator.

— 132 —

https://github.com/matheustor4/pymtdevaluator
https://github.com/matheustor4/pymtdevaluator

CHAPTER 8. PYMTDEVALUATOR: A TOOL FOR TIME-BASED MTD
AGAINST NON-PERSISTENT ATTACKS

PyMTDEvaluator

User interface
<<UI>>

Steady-stateEvaluator

User

TransientEvaluator

PlotGenerator

parameters
values

data for plots

Figure 8.1: PyMTDEvaluator component diagram

8.1.1 User Interface

This module uses the Python tkinter library1 to implement the PyMTDEvaluator
graphical interface (see Figure 8.2) via which the users will input their paramet-
ers. The input parameters are downtime per movement - the expected system
downtime during the MTD movement; cost per movement - the monetary cost
(if any) related to each MTD movement action; movement trigger - the time
between MTD movements; time for attack success - the expected time for
attack success without MTD defense; and evaluation time - the time target
(duration) for the simulation runs.

The PyMTDEvaluator interface allows setting the computation of multiple eval-
uations on a single run. Using the Experiment checkboxes, the user is able
to set up the desired variation for the movement trigger and/or time for
attack success parameters. For example, when selecting checkbox Experiment
- Movement Trigger, the user can set minimum and maximum values (and the
step) for a sensitivity analysis [Mainkar et al., 1993] of the Movement Trigger
variable. This feature allows the comparison of multiple MTD deployment altern-
atives. The same idea applies to the time for attack success parameter.

In PyMTDEvaluator, a scenario is the set of results of a single run. Besides the
computation of multiple evaluations in a single scenario (by varying the paramet-
ers mentioned above), the tool also allows the computation of multiple scenarios.
In practice, to conduct a multiple scenario evaluation, the user must keep the
PyMTDEvaluator main window open after the given scenario run. Then, the
user will be able to re-fill the input parameters with the next scenario’s paramet-
ers and run the simulation again. PyMTDEvaluator final output merges all the
results from all the scenarios.

Using the Reportlab2 library, PyMTDEvaluator compiles its output in a PDF file
(by checking the checkbox PDF report generation). The generated PDF report

1https://docs.python.org/3/library/tkinter.html
2https://pypi.org/project/reportlab/

— 133 —

CHAPTER 8. PYMTDEVALUATOR: A TOOL FOR TIME-BASED MTD
AGAINST NON-PERSISTENT ATTACKS

Figure 8.2: PyMTDEvaluator graphical interface

includes the results of the current and all the previous scenarios (See Appendix
D).

8.1.2 Steady-state Evaluator
This module computes the steady-state availability considering the MTD move-
ment schedule. In principle, the MTD deployment should not impose significant
long-term system downtime. With the Steady-state evaluator output, the user
can compare different MTD policies and select the one that provides the desired
balance between security protection and system availability.

Steady-state evaluator module conducts a steady-state simulation of the SPN
model using the SimPy framework3. For designing the Steady-state evaluator
simulation and the Transient evaluator simulation, we have to implement all the
SPN model transition firings as events. We use variables to keep the SPN state
and then compute the PyMTDEvaluator metrics. NumPy4 and Random5 lib-
raries are used to calculate the metrics and to generate the random variables,

3https://simpy.readthedocs.io/
4https://numpy.org/
5https://docs.python.org/3/library/random.html

— 134 —

https://simpy.readthedocs.io/
https://numpy.org/

CHAPTER 8. PYMTDEVALUATOR: A TOOL FOR TIME-BASED MTD
AGAINST NON-PERSISTENT ATTACKS

respectively.

In the Steady-state evaluator module simulation, the goal is to achieve the SPN
model steady-state. Therefore, contrarily to the Transient evaluator simulation,
which has a specific evaluation time, the Steady-state evaluator keeps the eval-
uation running until the SPN model results stabilize. We use two variables to
verify the SPN results stabilization: i) warm-up time: lower threshold time for
the simulation - the Steady-state evaluator only starts to search for the steady-
state after the warm-up time; and ii) batch size: number of consecutive events
in which the results have to obey to the desired precision. The precision is the
difference between the results before and after an event occurrence. After com-
paring the results with the TimeNET tool Zimmermann [2017], we defined the
variables as: warm-up time = 2000h, batch size = 90, and precision = 10e−4.
This means that we consider that the SPN model results are steady-state if, from
2000 hours of simulation and after a continuing series of 90 events, the availability
results do not vary beyond 10e−4. Extensive testing was required because using
short values for warm-up time or batch size may lead to premature steady-state
convergence, while using larger values may significantly prolong the search for the
steady-state. These variable values are crucial for the PyMTDEvaluator develop-
ment, as they support the correct execution of the evaluations. Nevertheless, they
do not have a direct relation to the model evaluation parameters (as presented in
Section 8.3).

8.1.3 Transient Evaluator
The simulation runs of the Transient evaluator have a specific time target defined
by the Evaluation time user input. The goal is to compute the metrics curve
from 0h (starting point) to the Evaluation time. The first step of the evaluation
is to slice the Evaluation time using a one-hour step. To provide the necessary
input for confidence interval calculation, the Transient evaluator runs a set of one
thousand simulation runs for each slice. Besides storing the data in local NumPy
arrays, the module also writes the results in CSV files.

The Transient evaluator computes the PyMTDEvaluator main metrics: probability
of attack success - represents the probability of attack success in a specific point
in time, transient availability - show the system expected status (i.e., running
or down) in a specific point in time, accumulated cost ($) - the monetary cost
expenditure due to MTD movements during the selected Evaluation time, and
system capacity - measures how much service is delivered in a given point in
time. As the considered attack here is an availability attack, the progress of
attack phases impacts the capacity of delivering the correct service to benign
users. Besides that, we also have a metric named Expected threshold, which is
an MTD effectiveness metric that represents the first point in time where the
probability of attack success reached its maximum value.

In some situations, the user may be interested in a more detailed view of the
behavior of the system. To address this issue, we include a separated simula-
tion run (henceforth, example run) in the Transient evaluator module. In this
example run, the Transient evaluator creates a file with the trace of the simulated

— 135 —

CHAPTER 8. PYMTDEVALUATOR: A TOOL FOR TIME-BASED MTD
AGAINST NON-PERSISTENT ATTACKS

events and computes the availability, system capacity, and the survival time (i.e.,
time that the system remains available in the selected Evaluation time for the
example run). Although this comes from a single evaluation, the example run
results are useful to highlight a possible system behavior within the user’s desired
parameters.

8.1.4 Plot Generator
The Plot generator module is responsible for presenting the PyMTDEvaluator
results to the user. The module receives the data from the Transient evaluator
module and uses the Matplotlib6 for data plotting. Besides that, the module
presents a window with a summary of the results for each evaluation. The users
can also plot the graphics on their preferred software using the CSV files gener-
ated. Examples of the PyMTDEvaluator output plots and window of results are
presented in Section 8.3.

8.2 Validation against Model Results
To validate the PyMTDEvaluator results and assure its correctness, we compared
the TimeNET tool analysis results with the PyMTDEvaluator simulation results
(see Figure 8.3). We performed an extensive set of these validation experiments
adopting a wide range of parameters. In all the observed results, PyMTDEvaluator
output is very close to the model results. For the sake of illustration, we provide
an example of this validation experiment below.

The main parameters for this validation experiment are: four seconds of downtime
per movement, 24 hours between MTD movements, and 24 hours as the expected
time for attack success. The results consider the first month of the system under
attack (i.e., Evaluation time = 720h). Note that these parameters are just for
validation and may not represent a real-scenario situation.

Figure 8.3 shows that the results from PyMTDEvaluator are nearly the same as
the model analysis results from TimeNET. The black line represents the model
results, and the gray lines represent the PyMTDEvaluator results. The model
results of the probability of attack success (Figure 8.3(a)) and system capacity
(Figure 8.3(c)) are compatible with the PyMTDEvaluator results. The availability
results are also very close, but they present a little variance in the curve. The
difference in the availability curves may be due to the simulation stoppage method
when the system reaches the availability attack success. Specifically, we include
some break-point statements to interrupt the simulation run upon the triggering
of the attack completion event. We had to implement this stoppage method in the
Transient evaluator module to reduce PyMTDEvaluator computing time.

6 https://matplotlib.org/

— 136 —

https://matplotlib.org/

CHAPTER 8. PYMTDEVALUATOR: A TOOL FOR TIME-BASED MTD
AGAINST NON-PERSISTENT ATTACKS

0

1

0 720

Pr
ob

. o
f a

tta
ck

 su
cc

es
s

Time (hours)

Model
PyMTDEvaluator

(a) Probability of attack success

0

1

0 720

Av
ail

ab
ilit

y

Time (hours)

Model
PyMTDEvaluator

(b) Availability

0

100

0 720

Sy
s.

Ca
pa

cit
y

(%
)

Time (hours)

Model
PyMTDEvaluator

(c) System Capacity (%)

Figure 8.3: PyMTDEvaluator results validation against SPN model results

8.3 Use case
To illustrate the possible PyMTDEvaluator use cases, we provide an example con-
sidering an MTD-enabled virtualized system under a resource starvation attack.
In this example, the attacker has the authorization to control a VM, like a le-
gitimate client of a public cloud (the cloud provider cannot inspect the internal
content of the VM of that client due to privacy rights). Then, the attacker tries
to overload the underlying hypervisor. Note that, in this case, the cloud provider
should accept the incoming attack because the client has permission to run any
software upon the VM. The client may also be conducting an unintended (naive)
attack by running specific workloads. If the resource starvation attack succeeds,
the physical machine host and co-hosted VMs will become unavailable.

Once the attacker starts to overload the system, any resource monitoring tool can
detect the attack source. Therefore, it is quite straightforward just to shut down
the VM of the attacker. However, there are situations where the cloud provider
cannot shut down the VMs of the clients (e.g., legit clients running a naive DoS,
a user with privileged access and enhanced privacy rights). Moreover, there are
subtle resource starvation attacks that may leverage, for example, hypervisor soft-
ware aging bugs [Torquato et al., 2018a]. Indeed, we observed that the unalignAttk
(i.e., memory DoS attack presented in Chapter 3) produces a negligible impact
on the CPU and RAM utilization. However, the unalignAttk (i.e., an infinite loop
of LOCK signals generation in the memory) causes a significant impact on the co-
resident VMs. In these cases, cloud providers may apply heuristics to select what
VMs should follow an MTD deployment.

— 137 —

CHAPTER 8. PYMTDEVALUATOR: A TOOL FOR TIME-BASED MTD
AGAINST NON-PERSISTENT ATTACKS

We arbitrarily set the parameters for the evaluation as follows: Time for attack
success: 24 hours; downtime per movement - four seconds (as suggested in
Chapter 4); and cost per movement - 0.8$ (guesstimate based on the VM migra-
tion associated costs of downtime, performance and power consumption [Voorsluys
et al., 2009; Huang et al., 2011]).

The evaluation aims to find a VM migration trigger that reduces the probability of
attack success while maintaining the annual downtime due to VM migration below
one hour. To find the intended VM migration trigger, we range the VM migration
trigger from 1 to 21 hours with a step of 5 hours. We set up the Evaluation
time as 168 hours (i.e., one week).

The PyMTDEvaluator results suggest that the VM migration trigger of 11 hours
provides the best security results among the tested ones, maintaining annual
VM migration accumulated downtime below one hour. Figure 8.4 presents the
PyMTDEvaluator Summary of the Results window. It is worth highlighting that
this window also presents the results for the other MTD policies tested.

Figure 8.4: PyMTDEvaluator - Summary of results window

— 138 —

C
H

A
PT

ER
8.

PY
M

T
D

EVA
LU

AT
O

R
:A

T
O

O
L

FO
R

T
IM

E-B
A

SED
M

T
D

A
G

A
IN

ST
N

O
N

-PER
SIST

EN
T

AT
TA

C
K

S

0 25 50 75 100 125 150 175
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 a
tta

ck
 su

cc
es

s

Scn 0- MovTrigger - 1.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 6.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 11.0 h - TimeAtkSuc 24.0 h

Scn 0- MovTrigger - 16.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 21.0 h - TimeAtkSuc 24.0 h

(a) Probability of attack success

0 25 50 75 100 125 150 175
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

Av
ai

la
bi

lit
y

Scn 0- MovTrigger - 1.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 6.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 11.0 h - TimeAtkSuc 24.0 h

Scn 0- MovTrigger - 16.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 21.0 h - TimeAtkSuc 24.0 h

(b) Availability

0 25 50 75 100 125 150 175
Time (h)

0

20

40

60

80

100

Sy
st

em
 C

ap
ac

ity
 (%

)

Scn 0- MovTrigger - 1.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 6.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 11.0 h - TimeAtkSuc 24.0 h

Scn 0- MovTrigger - 16.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 21.0 h - TimeAtkSuc 24.0 h

(c) System Capacity (%)

0 25 50 75 100 125 150 175
Time (h)

0

20

40

60

80

100

120

140

Ac
cu

m
ul

at
ed

 c
os

t (
$)

Scn 0- MovTrigger - 1.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 6.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 11.0 h - TimeAtkSuc 24.0 h

Scn 0- MovTrigger - 16.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 21.0 h - TimeAtkSuc 24.0 h

(d) Accumulated cost ($)

0 25 50 75 100 125 150 175
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

Av
ai

la
bi

lit
y

(e
xa

m
pl

e
ru

n)

Scn 0- MovTrigger - 1.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 6.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 11.0 h - TimeAtkSuc 24.0 h

Scn 0- MovTrigger - 16.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 21.0 h - TimeAtkSuc 24.0 h

(e) Availability - example run

0 25 50 75 100 125 150 175
Time (h)

0

20

40

60

80

100

Sy
st

em
 C

ap
ac

ity
 (%

) (
ex

am
pl

e
ru

n)

Scn 0- MovTrigger - 1.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 6.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 11.0 h - TimeAtkSuc 24.0 h

Scn 0- MovTrigger - 16.0 h - TimeAtkSuc 24.0 h
Scn 0- MovTrigger - 21.0 h - TimeAtkSuc 24.0 h

(f) System Capacity (%) - example run

Figure 8.5: PyMTDEvaluator results for the evaluation scenario

—
139

—

CHAPTER 8. PYMTDEVALUATOR: A TOOL FOR TIME-BASED MTD
AGAINST NON-PERSISTENT ATTACKS

In the studied scenario, the VM migration scheduling imposes only about one
minute of system downtime. VM migration-related annual downtime is about
52 minutes (see the lines below Results in the Figure 8.4). The accumulated
monetary cost is 12 $. The expected threshold shows that the MTD deployment
becomes ineffective after 165 hours. Finally, we notice low system capacity and
availability results. Due to resource consumption and the increasing probability
of attack success, the MTD deployment can maintain only about 40% of system
capacity during the evaluation time. Remember that the attack success turns
the system unavailable, meaning 0% of capacity. System availability levels are
also low, maintaining only about 36% of availability in the proposed scenario.
The results of the Example run show that the system survived the attack for 54
hours, maintaining about 75% of its capacity, and that the system may experience
more than four days of downtime.

Using the complete set of results provided by the PyMTDEvaluator (see Fig-
ure 8.57), we can compare the metrics curves for each VM migration trigger.
Hourly VM migrations MTD policy provides the best overall results for security,
availability, and capacity. However, it imposes a higher monetary cost. As we are
considering availability attacks in the threat model, we see a decreasing behavior
in the availability curve when the probability of attack success increases. Example
run results highlight that due to the frequent VM migrations, hourly VM migra-
tion MTD policy imposes severe system availability oscillation, as each migration
produces system downtime.

The list of conclusions presented above is non-exhaustive, meaning that maybe
there are other insights that could be extracted from the results. We hope that
this use case may bring some input into the PyMTDEvaluator usefulness. In the
context of this chapter, we applied PyMTDEvaluator to study a system under
an availability attack. However, it is possible to extend its usage for evaluating
systems in which the MTD action can clear the attack progress.

8.4 Threats to Validity and Limitations
Model threats to validity

As PyMTDEvaluator development relies on the model present in Section 7.2,
it inherits the corresponding threats to validity and limitations. Namely, it is
possible to highlight the following: i) lacking a complete model validation against
experimental results and ii) neglecting the performance impact. These limitations
are properly discussed in Section 7.4. However, PyMTDEvaluator goal is not to
completely surpass these limitations. Instead, we aim to provide an easy-to-use
tool. Therefore, even the audience without SPN background can benefit from the
model computation.

7 The complete confidence intervals are presented in the PyMTDEvaluator CSV output files

— 140 —

CHAPTER 8. PYMTDEVALUATOR: A TOOL FOR TIME-BASED MTD
AGAINST NON-PERSISTENT ATTACKS

Lack of flexibility in the model design

PyMTDEvaluator acts as a interface for the proposed model. Therefore, in the
current version, it lacks flexibility in the model design. This way, the implement-
ation strictly executes the simulation of the model, and it lacks the feature of
deactivating some transitions or applying redesign to the model layout. Further-
more, PyMTDEvaluator still adopts only deterministic and exponential trans-
itions. Note that we decided to keep PyMTDEvaluator closely related to the
model, as the model design already relies on an experimental background. Al-
lowing flexibility of model design without proper verification was a path that we
wanted to avoid. Finally, the inclusion of alternative distributions seems to be a
matter of specific re-implementation of some of the methods of PyMTDEvaluator.
This inclusion may be achievable for the next releases of the tool.

Performance issues

At the moment of this thesis writing, the performance evaluation of
PyMTDEvaluator is yet to be done. We noticed that, as expected, scenarios
with a large number of accumulated events tend to take longer to compute.
PyMTDEvaluator features a progress bar (presented at the terminal), which in-
dicates how much of the scenario is up to completion. Note that PyMTDEvaluator
is intended to be a design-time tool, not a runtime tool. As these scenarios may
be evaluated before MTD deployment, the system managers will be able to ana-
lyze the potential benefits and drawbacks of particular time-based VM migration
policies.

8.5 Summary
This chapter presented PyMTDEvaluator that provides an easy-to-use and flex-
ible approach for evaluating time-based MTD against non-persistent attacks.
PyMTDEvaluator comprehensive results include relevant metrics to support the
MTD design decision-making process. The user is thus able to analyze and com-
pare different time-based MTD deployments verifying the levels of probability of
attack success, availability, system capacity, monetary cost of MTD deployment,
among other metrics.

PyMTDEvaluator design relies on the Petri Net-based model from Chapter 7,
which is capable of representing the main events in the scenario as MTD ac-
tion, system downtime due to MTD movement, and attack progress. The main
assumptions of this Petri Net were drawn from empirical observations reported
in Chapter 3. PyMTDEvaluator can cluster results from multiple evaluations,
providing means for complex scenario analysis. The presented use case serves as
an example of PyMTDEvaluator features. PyMTDEvaluator users may leverage
the tool’s flexibility to study scenarios beyond the one presented.

As a final contribution to our thesis, in the next chapter, we propose a study com-
bining our previous models of Moving Target Defense and Software Rejuvenation
based on VM migration. There, we intend to investigate the tradeoffs between

— 141 —

CHAPTER 8. PYMTDEVALUATOR: A TOOL FOR TIME-BASED MTD
AGAINST NON-PERSISTENT ATTACKS

security and availability while adopting such an approach.

— 142 —

Chapter 9
Modeling of Time-Based VM
Migration as MTD and
Rejuvenation

Software rejuvenation is particularly important in cloud computing environments,
as these frequently suffer from software aging issues [Araujo et al., 2011; Machida
et al., 2012; Matos et al., 2012a]. In this scenario, it is possible to use VM migra-
tion as support for software rejuvenation. The idea is to move VMs away from
a host under software aging before taking rejuvenation actions. VM migration is
also a MTD technique [Torquato and Vieira, 2020], Being quite effective against
host-based attacks, where the attack targets the underlying physical host. To en-
hance the MTD protection, migrations can be done among hosts holding different
versions of the hypervisor. This means that the system is using diversity-based
MTD [Hong and Kim, 2015].

Due to the multipurpose applicability of VM migration (i.e., for software reju-
venation and MTD), its deployment could be analyzed from both the availability
and security perspectives. However, the current literature lacks previous studies
in this area. Most papers focus either on VM migration as support for rejuvena-
tion [Machida et al., 2010] or MTD [Torquato et al., 2021a].

This chapter proposes a set of SPNs to analyze the availability and security of a
system applying multipurpose time-based VM migration. The considered tech-
nique has the following characteristics: i) applies a regular time interval between
VM migration triggering; ii) follows the live migration approach [Clark et al.,
2005]; and iii) the migrations are made between different hypervisors to enforce
diversity-based MTD deployment. The proposed models are nearly the same as
in the previous chapters. However, we use a slightly different approach in the
software rejuvenation modeling, where we adopt a hypoexponential distribution
to represent software aging instead of an Erlang subnet. Note that the hypoexpo-
nential approach is widely used in the same context [Machida et al., 2013].

The following research questions guided this research:

RQ1: What is the VM migration trigger interval that maximizes the steady-state
system availability?

RQ2: What is the MTD protection achieved while using a VM migration trigger
interval for availability maximization?

— 143 —

CHAPTER 9. MODELING OF TIME-BASED VM MIGRATION AS MTD AND
REJUVENATION

RQ3: Assuming time-based VM migration as support for rejuvenation and MTD,
what are the tradeoffs between availability and security when selecting a specific
VM migration trigger interval?

To address these questions, we consider three case studies, focusing on MTD pro-
tection, system availability, and availability vs. security tradeoffs, and considering
four major hypervisors for server virtualization: Xen, KVM, ESXi, and Hyper-
V. The last case study features an illustrative Multi-Criteria Decision Making
analysis as an example of how to explore the results obtained. In general, our
results show substantial availability improvement while using VM migration for
software rejuvenation and highlight the need to ease lock-in platforms and for
heterogeneous systems to enable diversity-based MTD techniques.

To the best of our knowledge, this is the first work evaluating VM migration as
a multipurpose approach for MTD and rejuvenation. From an engineering per-
spective, we conclude that the heterogeneous hypervisor migration could provide
substantial protection against specific attacks and believe that the deployment of
diversity MTD should be encouraged to add a security layer to the virtualized
environment. This chapter is adapted from Torquato et al. [2022b].

The rest of this chapter is organized as follows. Section 9.1 presents the mul-
tipurpose VM migration workflow and evaluation approach. Section 9.2 shows
the proposed model. Section 9.3 provides the results of the analysis in the form
of case studies. Section 9.4 presents threats to the validity and limitations of our
work. Conclusions are presented in Section 9.5.

9.1 Approach and Assumptions
We consider a live migration-enabled [Clark et al., 2005] virtualized system with
its three classical main components: Primary Host (i.e., Main Node of the original
architecture in Chapter 3) - physical machine that hosts the Virtual Machines,
Target Host(i.e., Standby Node of the original architecture in Chapter 3) - phys-
ical machine selected to receive the VMs migration; and VMs - which run the
client applications. It is possible to migrate the VMs from Primary Host to the
Target Host and back. We consider this architecture appropriate for the scope
of this chapter because it is the baseline of virtualized environments. It appears
in various systems, from small-sized virtualized environments to large-scale cloud
computing.

The environment is ready for VM migration between heterogeneous hyper-
visors [Ashino and Nakae, 2012; Kargatzis et al., 2017; Awasthi and Gupta, 2016;
Raj et al., 2020]. For MTD purposes, the VMs always arrive in a different hyper-
visor variant after migration. The VM migration management adopts a consolid-
ation approach, meaning all the VMs should be placed in a single physical host.
The consolidation approach simplifies the software rejuvenation deployment, as
the Primary Host is freed from the VMs execution after migration. The system
triggers VM migration by observing a regular time interval (i.e., time-based VM
migration).

— 144 —

CHAPTER 9. MODELING OF TIME-BASED VM MIGRATION AS MTD AND
REJUVENATION

We apply time-based VM migration to counteract hypervisor software aging on the
Primary Host [Matos et al., 2012a; Machida et al., 2012]. The approach consists of
moving VMs from the to the Target Host. After VMs migration completion, the
Target Host assumes the VMs execution (i.e., assumes the role of Primary Host).
Then, the previous Primary Host (i.e., VM migration source) passes through
a hypervisor rejuvenation. Finally, it turns into the Target Host for the next
migration.

As for the attack and defense model, we assume that the attacker is already
in the system and starts to conduct the attack from the beginning of the eval-
uation. The attacker controls a set of VMs running in the Primary Host. The
attack target is the underlying hypervisor. We assume that the attacker adopts
a persistent tactic (as in Chapter 6). Thus, we consider that once the attacker
identifies the hypervisor variant, it is possible to resume the attack regardless of
the software rejuvenation performed in the system. The attack has two stages: i)
reconnaissance - attacker tries to identify the specific hypervisor variant; and ii)
attack - after hypervisor identification, the attacker runs specific malicious actions
against it.

Our MTD approach consists of continuously moving the VM of the attacker among
different hypervisor variants. Once the attacker arrives in a different hypervisor
variant, the attack progress in the previous one is stopped. The attacker must
conduct the reconnaissance phase every time the VMs arrive in a different hy-
pervisor. However, once the VMs return to previously visited hypervisor, the
attacker can resume the attack after the reconnaissance phase (i.e., the attacker
keeps knowledge). The hypervisor variant modification (which occurs after every
migration) follows a circular approach, in which the configuration goes from the
current variant to the next one and returns to the first after passing through the
last variant available.

Unless we have frequent VMs migration to keep the attacker in the reconnais-
sance phase in all hypervisor variants, the attacker will eventually compromise
the system. Therefore, the proposed MTD approach cannot avoid attack suc-
cess in the long run. Instead, the MTD goal is to extend the resistance against
host-based attacks. Hopefully, this increased resistance may match the expected
security levels and may allow the activation of additional defenses to enhance sys-
tem security (e.g., provide more time for attack detection from Intrusion Detection
Systems).

Figure 9.1 summarizes the proposed approach for VM migration as support for
software rejuvenation and MTD. At the initial stage (S1), the system runs without
aging accumulation, and the attacker starts (or continues) the attack. At the
second stage (S2), the system starts to accumulate software aging effects, and the
attacker passes through the reconnaissance phase. There are two possibilities from
here: i) VM migration does not reach the triggering interval - then the system
may fail due to software aging, or the attacker may reach the goal of compromising
the hypervisor, or ii) VM migration reaches the triggering interval, which leads
us to stage S3. In the stage S3, we apply diversity (i.e., change the hypervisor
variant) in the Target Host before receiving the VMs migration. Then, after

— 145 —

CHAPTER 9. MODELING OF TIME-BASED VM MIGRATION AS MTD AND
REJUVENATION

•

•

•

•

•

•

•

•

Figure 9.1: VM migration supporting software rejuvenation and diversity MTD -
workflow

diversity completion, the migration moves the VMs from the Primary Host to the
Target Host (stage S4). After VMs migration completion, we apply equalization
in the Primary Host, and the Target Host assumes the role of executing the VMs.
Equalization consists of software rejuvenation actions and homogenization of the
hypervisor variants.

We decided to apply equalization after VM migration due to the costs associ-

— 146 —

CHAPTER 9. MODELING OF TIME-BASED VM MIGRATION AS MTD AND
REJUVENATION

ated with interoperability. From an engineering perspective, keeping the diversity
throughout system execution is not trivial, as the cloud components are constantly
communicating. Therefore, an interoperability issue may lead the entire system
to fail or cause errors in the cloud management service. This way, we decided
to maintain only sporadic interoperability actions (i.e., VM migration between
different hypervisors) to avoid higher deployment and management costs.

9.2 Model
The proposed model, presented in Figure 9.2, has four sub-models: a) Clock
Model - representing the behavior of the component responsible for triggering
the VM migration in the environment; b) Control Model - used as control
variables to guide the token flow through guard functions1; c) Availability
Model - which captures the VM migration, non-aging failures and software aging;
and d) Moving Target Defense Model - representing the attack progress and
MTD effects. The presented Moving Target Defense Model corresponds
to systems with only two variants. However, as will be seen later, we studied the
MTD behavior while having up to four variants, as we have four major hypervisors
for server virtualization: Xen, KVM, ESXi, and Hyper-V.

The sub-models interaction relies on guard functions (Table 9.1). Using guard
functions, we avoid excessive transitions and control places, which may impair the
model readability. We embed the guard functions only in immediate transitions2

and assign different priorities to enforce the representation of the system workflow
presented before.

Table 9.1: Guard functions

Transition Function Description
startMig g1 (#MigMTD==1) AND (#UP>0)

AND (#TargetUP>0)
migFail g2 (#UP==0) OR (#TargetUP==0)
triggerDiv g3 (#ReadyToMigrate==1) AND

(#Equal==1)
startDiv g4 (#ReadyToMigrate==1) AND

(#TargetWait==1)
completeDiv g5 (#TargetUP==1)
finishMig g6 (#MigDW==1)
restartCycle g7 (#TargetWait==1)
v(1,2)v(1,2)Mig(2) g8 (#UP==0)
v(1,2)v(1,2)MigFail(2) g9 (#UP==1) AND (#Equal==1)
v(1,2)v(1,2)MigSucc(2) g10 (#UP==1) AND (#Equal==0)

1Guard functions express additional conditions for transition firing as boolean expressions
2Immediate transitions - thin black rectangles

— 147 —

C
H

A
PT

ER
9.

M
O

D
ELIN

G
O

F
T

IM
E-B

A
SED

V
M

M
IG

R
AT

IO
N

A
S

M
T

D
A

N
D

R
EJU

V
EN

AT
IO

N

Figure 9.2: Proposed Models

—
148

—

CHAPTER 9. MODELING OF TIME-BASED VM MIGRATION AS MTD AND
REJUVENATION

9.2.1 Availability-related Model

The Clock Model has a deterministic transition3, migTrigger, whose delay
represents the interval between migrations. Transition4 migTrigger firing moves
the token from place5 Clock to place ReadyToMigrate, representing that the clock
reached the interval for VM migration. The transition restartClock firing moves
the token back to the place Clock, thus restarting the time counting for VMs
migration. Transition restartClock has low priority among other immediate
transitions to assure token presence in place ReadyToMigrate for related guard
functions g3 and g4 activation.

The Control Model guides the VM migration net execution through the as-
sociated guard functions. At the initial state, the place Equal has one token,
representing that the hypervisor configuration is homogeneous among the hosts.
In this scenario, assuming token presence in the place ReadyToMigrate, the net
activates guard function g3. Let us also assume that the place TargetUP has
tokens (i.e., the Target Host is running). The combination of these conditions
triggers transition triggerDiv, which moves the token from place TargetUP to
place TargetWait. In this case, the token arrival in place TargetWait represents
the diversification of the hypervisor of TargetHost. Token presence in the place
TargetWait also influences the transition startDiv firing.

Transition TargetRestart firing moves the token from place TargetWait to place
TargetUP, representing the completion of the Target Host hypervisor diversifica-
tion. The transition completeDiv also fires when the token returns to the place
TargetUP. It deposits a token in the place MigMTD, representing that the sys-
tem is ready to perform VM migration. Guard function g1 embeds the neces-
sary conditions for starting VM migration. Therefore, transition startMig only
fires if the physical hosts are available (i.e., token presence in the places UP and
TargetUP).

Transition startMig firing deposits a token in the place Mig, meaning that the sys-
tem is under migration. At this point, any physical host failure cancels the migra-
tion (i.e., transition migFail firing removes the token from place Mig). Transition
pcMigration represents the time for completion of the VM migration pre-copy
phase. We adjust the duration of the pre-copy phase according to the current
status of the system. Software aging may slow down the pre-copy phase as it
affects system performance. We use marking-dependent firing rates6 to represent
this behavior. Note that the pre-copy phase duration may vary depending on the
current status.

Transition pcMigration firing moves the token from place Mig to place MigDW. It
also collects the token from place UP. In this case, the absence of tokens in the place
UP represents that the system is under downtime related to VM migration. Token
presence in the place MigDW also triggers transition finishMig of the Control

3Deterministic transition - thick black rectangle
4Transition (i.e., exponential transition) - white rectangle
5Place - White circle, Token - small black circle inside the Places.
6Marking-dependent firing rates - allow the modification of firing rates upon different tokens

distributions in the places.

— 149 —

CHAPTER 9. MODELING OF TIME-BASED VM MIGRATION AS MTD AND
REJUVENATION

Model. After the expected downtime related to VM migration (i.e., the delay
associated with transition migDowntime), the system is running again (i.e., the
token returns to the place UP). In this case, place TargetWait also receives a token,
meaning that the source of VM migration will pass through the equalization phase
(state S5 of the workflow - Fig. 9.1). Finally, the Control Model restarts its
cycle upon the firing of transition restartCycle.

It is possible to adapt the availability and security modeling of VM migration to
alternative approaches (i.e., alternative migration methods). The VM migration-
related transitions capture the two main steps of VM migration: copy of memory
pages and downtime. Therefore, we can represent other migration techniques
through parameter adjustment. In the case of performability (or performance)
VM migration modeling, we may modify the model design as the different methods
may have additional stages for the migration process.

The sub-net between the transitions startAging and endAging aims to represent
the software aging and rejuvenation behavior. As in works Huang et al. [1995]
and Machida et al. [2013], we use a two-phase (i.e., transitions agingPhase and
agingAccumulation) hypoexponential net to represent the increasing failure rate
due to software aging. The transitions clear and clear2 remove the token from
the places Healthy and FailureProbable (if any), respectively. These trans-
itions represent the software aging removal due to software rejuvenation. We
also consider that the repair from non-aging failures includes software rejuven-
ation actions. We use inhibitor arcs7 to trigger transitions clear and clear2
upon the absence of tokens in the place UP. In the case of lack of timely rejuven-
ation, the system faces an aging-related failure (transition agingAccumulation
firing). Place DWAging receives a token upon transition endAging firing. Trans-
ition agingRepair firing, representing the system repair after aging, puts a token
in place UP.

Transitions startAging and endAging along with place DWAging are just ac-
cessories in the modeling. However, we keep them because they isolate the model
software aging and rejuvenation behavior. Therefore, it is possible to adjust soft-
ware aging and rejuvenation modeling with minimal interference in the current
model layout.

Primary Host repair after non-aging related failures has two steps: host repair and
VMs reboot. We use the transitions hostFail, hostRepair and rebootVM; and
the places HostDW and VMWait, to represent this behavior. The sub-net with the
places TargetUP and TargetDW with transitions failTarget and repairTarget
represent the behavior of non-aging failures and repairs in the Target Host.

Transition hostRepair refers to repair after a non-aging failure. Originally, this
rate came from an RBD model comprising hardware and OS components Melo
et al. [2013b]. We decided to turn VM reboot explicit after a non-aging failure
because there are repairs after a non-aging failure that may not imply a system
reboot. On the other hand, the repair after an aging failure should require a system
reboot to ensure rejuvenation. Then, we decided to omit transition VMreboot after

7Arcs terminating in circles instead of arrowheads

— 150 —

CHAPTER 9. MODELING OF TIME-BASED VM MIGRATION AS MTD AND
REJUVENATION

transition agingRepair.

9.2.2 Security-related Model
The Moving Target Defense model represents the VM migration in the
attack-defense flow. As mentioned Transition reconV1 firing moves the token
from place ArrivalV1 to AttackV1. It means that the attacker passes through
the reconnaissance phase of the attack and is now at the attack phase. As presen-
ted in Chapters 6 and 7, we also use a four-phase (transition atkV1Phase) Erlang
sub-net to represent the increasing success rate of the attack phase. The Erlang
sub-net has the places AtkV1Remaining and AtkV1Progress with the transition
atkV1Phase. Once the token arrives in the place AttackV1, the immediate trans-
ition atkV1 deposits four tokens in the place AtkV1Remaining. Then, the accumu-
lation of tokens in the AtkV1Progress represents the progress of the attack phase.
The transition atkV1Success immediately puts a token in the place V1Comp when
the place AtkV1Progress stores the fourth token. The presence of tokens in the
place V1Comp represents that the attacker succeeded in compromising the system
security.

As mentioned in Section 9.1, the attacker follows a persistence tactic. This way,
the VM migration can only interrupt the attack progress temporarily. Once the
attacker identifies the hypervisor variant, it is possible to resume the attack based
on the obtained knowledge. The net does not remove the tokens stored in the
places related to the attack phase upon VM migration triggering. The attack is
also interrupted in case of a host failure. Note that it is possible to adapt the
models to cover non-persistent attacks (i.e., remove the attack progress after each
migration) by adding cleaning transitions (like transitions clear and clear2) in
the places of the four-phase Erlang sub-net. However, we emphasize that non-
persistent attacks are out of the scope of this chapter.

The absence of tokens in place UP (meaning system execution interruption) enables
the firing of transitions v1v2Mig and v1v2Mig2. These transitions move the token
to the places v1v2Migration or v1v2Migration2 depending on the current status
of the attack. If the system interruption is due to VM migration, the transitions
v1v2MigSucc or v1v2MigSucc2 fire, depositing a token in the place ArrivalV2.
Otherwise, depending on whether the system interruption is due to aging or non-
aging failures, the transitions v1v2MigFail and v1v2MigFail2 fire, returning the
token to its previous place.

The attack-defense behavior in the second hypervisor variant follows the same
dynamics as the first. We use identical sub-nets to represent attack-defense be-
havior in each hypervisor variant. The same applies to the MTD models for
the environments with three and four hypervisor variants, which are omitted for
simplicity.

9.2.3 Metrics Computation
Our primary metrics of interest are: Steady-state availability (A) and Tran-
sient probability of attack success (PAS). We obtain A by observing the

— 151 —

CHAPTER 9. MODELING OF TIME-BASED VM MIGRATION AS MTD AND
REJUVENATION

steady-state probability of token presence in the place UP. For PAS, we observe
the transient probability of token presence in any of the places related to successful
attacks (V1Comp or V2Comp). Finally, we derive secondary metrics in the proposed
case studies. Pointwise Probability of Attack Success (PAS(t)) computes the
probability of attack success at a specific point in time (t). Tolerance Level (TL)
is the estimated point in time where the system reaches a specific probability of
attack success.

9.3 Case Studies
We use TimeNet tool [Zimmermann, 2017] for model design and analysis. We
consider the parameters in Table 9.2 for the case studies presented below. These
values come from the previous chapters, specifically the Chapters 4, 6, and 7. Note
that, we needed to estimate some of these values since they are unavailable or are
hard to obtain through experimentation. For the sake of simplicity, we assume
the same reconnaissance and attack phase delays for all the available hypervisor
variants. Moreover, in the lack of hypervisor-specific aging parameters, we also
use the consolidated values from the works mentioned above in all the hypervisor
variants.

This section presents three case studies. The first (Section 9.3.1) shows the steady-
state availability results, where the evaluation searches for the VM migration
trigger that maximizes system availability. The second (Section 9.3.2) provides
the MTD evaluation using the VM migration schedule obtained in the first case
study. The last (Section 9.3.3) considers the tradeoffs between availability and
security while using VM migration as support for MTD and rejuvenation.

9.3.1 CS #1 - Availability-aware VM Migration Trigger
This case study aims to answer RQ1: What is the VM migration trigger inter-
val that maximizes the steady-state system availability? Frequent migrations may
increase system downtime because of the interruptions associated with each mi-
gration. Alternatively, less frequent migrations increase the chance of software
aging failure due to the lack of timely rejuvenation actions. Therefore, deploy-
ing time-based VM migration as support for rejuvenation requires searching for
the availability-aware VM migration trigger (i.e., the interval between migrations
that maximizes system availability). Compared to the current literature, this
case study adopts a slightly different approach as it merges the hypoexponential
two-phase for aging modeling and considers specific aspects such as VM migra-
tion pre-copy phase (a combination of Machida et al. [2013] and Torquato et al.
[2022a]).

We search for the availability-aware VM migration trigger using sensitivity ana-
lysis of transition migTrigger delay on the system availability. We study the
steady-state availability while varying VM migration triggers from 30 minutes to
48 hours using a 6-minute (0.1 hours) step. Our results also include the baseline
scenario, in which the VM migration is disabled. Figure 9.3 shows the obtained
results. Figure 9.3(a) shows the steady-state availability results, and Figure 9.3(b)

— 152 —

CHAPTER 9. MODELING OF TIME-BASED VM MIGRATION AS MTD AND
REJUVENATION

Table 9.2: Parameters used in the timed transitions

Transition Description Delay
migTrigger Time for VM migra-

tion
Depends on the scen-
ario

pcMigration Pre-copy phase of VM
migration

Varying from 72 to 96
seconds∗1.

migDowntime VM migration down-
time

4 seconds

failTarget Mean time to failure
of the Target Host

51.53 days

repairTarget Mean time to repair of
the Target Host

1.09 hours

TargetRestart Mean time to apply
diversity or rejuven-
ation in the Target
Host

2 minutes

agingPhase First phase of software
aging

1 week

agingAccumulation Last phase of software
aging

3 days

agingRepair Mean time to repair
after an aging failure

1 hour

hostFail Mean time to failure
of the Primary Host

51.53 days

hostRepair Mean time to repair of
the Primary Host

1.09 hours

rebootVM Mean time to reboot
VMs after non-aging
failure

5 minutes

reconV(1,2) Reconnaissance phase
of the attack

30 minutes

atkV(1,2)Phase Attack phase (Erlang) 6 hours∗2

∗1 We adopted the same idea presented in Chapter 4. pcMigration delay uses
the following equation P C + P C ∗ (#F ailureP robable)/3, where P C = 72
seconds, and #F ailureP robable is the probability of token presence in the
place FailureProbable.
∗2 As we have four Erlang phases, attack phase total delay is of 24 hours

— 153 —

CHAPTER 9. MODELING OF TIME-BASED VM MIGRATION AS MTD AND
REJUVENATION

present the downtime reduction results. Downtime reduction is the difference
between the expected downtime results with and without software rejuvenation.
We measure the downtime reduction in hours per year.

 0.994
 0.995
 0.996
 0.997
 0.998
 0.999

 0 6 12 18 24 30 36 42 48

St
ea

dy
-st

at
e

Av
ail

ab
ilit

y

VM Migration Trigger (h)

Baseline
Rejuvenation

(a) Steady-state availability

 16
 18
 20
 22
 24
 26
 28
 30
 32

 0 6 12 18 24 30 36 42 48Do
wn

tim
e

re
du

ct
io

n
(h

/y
r)

VM Migration Trigger (h)

(b) Downtime reduction

Figure 9.3: CS#1 Results

The availability improvement is noticeable among the entire sensitivity analysis
range. Even the worst rejuvenation scenario (i.e., VM migration trigger of 30
min) produces more than 16 hours of annual downtime reduction compared to
the baseline. Our results suggest that the availability-aware migration trigger is
of 5.1 hours. We summarize the results of the availability-aware migration trigger
in Table 9.3, showing that it reduces the annual downtime by more than 70%
when compared to the baseline scenario.

Table 9.3: Comparison between baseline and availability-aware migration trigger
results (5.1 hr)

Baseline
availability

Baseline
downtime
(h/yr)

Rej. en-
abled avail-
ability

Rej. en-
abled
downtime
(h/yr)

Downtime
reduction
due to reju-
venation

0.995068 43.20 0.99861 12.19 31.01

9.3.2 CS #2 - MTD Protection using Availability-aware Trigger
This case study aims to answer RQ2: What is the MTD protection while using VM
migration trigger interval for availability maximization? We conduct a transient
evaluation8 of the probability of attack success while using up to four hypervisor
variants. The evaluation results show the probability of attack success curve in the
first week (168 hours) of the system runtime. The results are in Figure 9.4. The
1N curve corresponds to the probability of attack success with disabled MTD. 2N,
3N and 4N curves correspond to the system with two, three, and four hypervisor
variants available in the physical hosts, respectively. Note that we consider that

8 It is worth noting that the steady-state PAS is equal to 100% because of the considered
persistence tactic adopted in the attack

— 154 —

CHAPTER 9. MODELING OF TIME-BASED VM MIGRATION AS MTD AND
REJUVENATION

the attack is in place from the initial moment of the evaluation (i.e., the attack
starts at time t = 0).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 24 48 72 96 120 144 168Pr
ob

ab
ilit

y
of

 A
tta

ck
 S

uc
ce

ss

Time (h)

1N
2N
3N
4N

Figure 9.4: CS#2 Results

We notice a flattening effect on the curve while increasing the number of hypervisor
variants. We also see that the MTD has a time window of effectiveness, which
means that there are intercepts of PAS curves at the early or late stages of the
evaluation. There is no MTD effect on reducing the probability of attack success
compared to the system without MTD in these stages.

We compute our proposed secondary metric, Pointwise Probability of Attack Suc-
cess (PAS(t)), to investigate the probability of attack success at a specific point
in time (t). PAS(t) results may help establish the MTD time window of effective-
ness. Besides that, PAS(t) results are relevant for systems with job completion
deadlines. In such cases, it is possible to verify whether the proposed VM migra-
tion schedule can maintain the MTD protection at an acceptable level during job
execution. We exercise PAS(t) evaluation in different scenarios as presented in
Table 9.4.

Table 9.4: PAS(t) while using migTrigger = 5.1 hrs

t in hours 1N 2N 3N 4N
1 0.000 0.000 0.000 0.000

6 0.009 0.009 0.009 0.009

24 0.545 0.220 0.119 0.078

72 0.999 0.953 0.877 0.748

144 1.000 1.000 1.000 0.997

The results show that, up to 6 hours, the use of MTD provides no reduction in
the probability of attack success. We notice that the difference of PAS results
with t > 144 hours is negligible. However, the results with t = 24 hours suggest
a substantial reduction in attack success probability in scenarios with enabled

— 155 —

CHAPTER 9. MODELING OF TIME-BASED VM MIGRATION AS MTD AND
REJUVENATION

MTD. For example, in the case of the 4N architecture, the reduction is 47%.
Note that, in our evaluations, the VM migration trigger is 5.1 hours. Therefore,
at the early stages of the evaluation (t < 5.1 hours), the MTD effect is yet to take
place as the system is still waiting for the first migration.

The time (t) is the independent variable in the PAS(t) calculation, and PAS is
the dependent variable. However, there are other systems where we need to swap
these variables. For example, systems where it is necessary to keep the probability
of attack success under a certain threshold. TL results help answer questions
like: ”For how long this specific time-based VM migration policy can maintain
the probability of attack success under 10%?”. TL is particularly useful when
setting up security SLAs because it highlights the expected system resistance time
observing a PAS tolerance level. We computed TL metrics with PAS arbitrary
values. The obtained results are in Table 9.5.

Table 9.5: TL results while using migTrigger = 5.1 hrs

PAS 1N 2N 3N 4N
1% 7 hrs 7 hrs 7 hrs 7 hrs

20% 15 hrs 23 hrs 30 hrs 34 hrs

70% 29 hrs 46 hrs 57 hrs 68 hrs

100% 76 hrs 126 hrs 133 hrs >168hrs

The results suggest that assuming TL = 1%, it makes no difference in applying
MTD or not. PAS of 1% is reached about 7 hours in all studied scenarios.
Alternatively, when PAS = 70%, the use of a 4N architecture more than doubles
the TL when compared to the 1N architecture. As in the PAS(t) evaluation,
the TL results also consider the VM migration trigger of 5.1 hours. This way,
the MTD effects only become noticeable after 5.1 hours. As the system is under
attack in the entire evaluation, the proposed VM migration trigger is insufficient
to increase the system resistance while considering PAS = 1%. On the other
hand, the use of diversity-based MTD can delay the moment in time when the
system reaches PAS of 70%. This delay is due to the accumulation of attack
progress interruptions during the MTD deployment.

It is worth presenting a hypothetical example to emphasize the convenience of the
proposed metrics for practical situations. Let us consider the results presented
in the case studies and a system that tolerates up to PAS = 20%. Aiming to
maximize the system availability, we deploy a time-based VM migration interval
of 5.1 hours. Table 9.5 reveals that, without MTD, the system may resist for the
first 15 hours before reaching the desired PAS tolerance level. If 15 hours is not
enough to meet our requirements, it is possible to increase TL through the MTD
deployment. TL increase is directly related to the number of hypervisor variants
available in the physical hosts. Therefore, we should select a 4N architecture to
achieve the best security levels.

— 156 —

CHAPTER 9. MODELING OF TIME-BASED VM MIGRATION AS MTD AND
REJUVENATION

9.3.3 CS #3 - Availability and MTD Protection Evaluation
The previous case study evaluates MTD under the fixed availability-aware mi-
gration trigger. Availability-aware migration trigger is neither too short to avoid
excessive downtime due to VM migration nor too long to allow software aging
failures. However, from a purely MTD perspective, the objective is to have more
frequent VMs migration. This way, the attacker will face more interruptions dur-
ing the attack course.

This last case study combines the availability and security evaluation to answer
RQ3: What are the tradeoffs between availability and security when selecting a
specific VM migration schedule? We compute the system Increased Resistance
(IR) as the security perspective. IR is the TL difference between the system
with and without MTD. For this hypothetical example, we assume PAS = 10%
for the TL computation. We use the downtime reduction results for the availability
perspective.

Figure 9.5 presents the results. We use a plot with a double Y-axis. The left
Y-axis represents the IR results. IR results curves are in black. The right Y-axis
represents the downtime reduction results. The downtime reduction curve is in
gray. In this plot, the X-axis corresponds to the VM migration trigger intervals.
We limit the X-axis range up to the availability-aware migration trigger (i.e., 5.1
hours). We adopt this approach because longer VM migration trigger intervals
provide worse results for both availability and security.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0

 8

 16

 24

 32

In
cr

ea
se

d
Re

sis
ta

nc
e

(IR
) P

AS
=

10
%

 (h
)

Do
wn

tim
e

Re
du

ct
io

n
(h

)

VM Migration Trigger (h)

Downtime reduction
IR 2N
IR 3N
IR 4N

Figure 9.5: CS#4 Results

The plot in Figure 9.5 highlights the availability and security tradeoffs in the
VM migration trigger interval selection. For example, while the best policy for
maximizing system availability is on the rightmost side of the plot, the best policy
for security is on the leftmost side. It is noticeable that deciding on one of the
metrics (availability or security) will compromise the other. It is hard to define
the best policy as the availability and security requirements depend on the specific
business running in the virtualized environment.

— 157 —

CHAPTER 9. MODELING OF TIME-BASED VM MIGRATION AS MTD AND
REJUVENATION

One of the possible approaches to selecting the VM migration trigger interval in
this availability vs. security scenario is through MCDM [Triantaphyllou, 2000].
For illustration, we conduct MCDM considering three criteria: availability - in the
form of downtime reduction, security - by means of Increased Resistance (IR);
and cost. We consider that the addition of hypervisor variants increases the cost
due to the interoperability actions. For this illustrative example, we consider that
2N costs 100, 3N costs 200, and 4N costs 300. As presented in Araujo et al.
[2018], we used TOPSIS method [Pavić and Novoselac, 2013] for the analysis. In
summary, TOPSIS method aims to select the alternative in the shortest distance
from the ideal solution and in the farthest distance of the worst scenario (i.e.,
negative ideal solution) [Jahanshahloo et al., 2006].

The results are in Table 9.6. The columns wir, wdwt and wcost represent the
assigned weight for IR, downtime reduction and cost, respectively. The remaining
columns provide the best solution (BS) and its associated results. Those results
are illustrative and highlight how the VM migration schedule should be adapted
accordingly to the system requirements. The MCDM results suggest a preference
for security-aware VM migration triggers (i.e., triggers focusing on maximizing
security) over availability-aware triggers. We see this behavior because the range
of values in the IR curves is wider than the range of values in the downtime
reduction curve. We only see a more availability-aware VM migration (i.e., closer
to 5.1 hours between migrations) when we reduce the security weight to 15% and
boost the availability weight to 85%.

Table 9.6: Multi-criteria decision making - VM migration trigger alternatives

wir wdwt wcost BS mig
Trigger

BS arch. IR Downt.
reduc-
tion

33.33% 33.33% 33.33% 0.5 h 4N 52.31 h 17.08 h

50% 25% 25% 0.5 h 4N 52.31 h 17.08 h

25% 50% 25% 0.5 h 4N 52.31 h 17.08 h

25% 25% 50% 0.5 h 2N 27.16 h 17.08 h

15% 85% 0% 2.5 h 4N 22.13 h 30.06 h

9.4 Threats to Validity and Limitations
Lack of comparison with real testbed results

The presented model results were not compared against experimental results from
a testbed. Thus, it is possible to argue about the validity of the model. The selec-
tion of model-based evaluation comes from the necessity of testing and comparing
hard scenarios. By hard, we mean that it is difficult or onerous to properly re-
produce or achieve in a real testbed. Software aging accumulation requires the
submission of specific workloads to activate the aging-related bugs [Escheikh et al.,

— 158 —

CHAPTER 9. MODELING OF TIME-BASED VM MIGRATION AS MTD AND
REJUVENATION

2016; Bovenzi et al., 2011]. The submission of such workload along with a attack-
defense workload may lead the system to a non-representative state. Therefore,
the non-representative state evaluation will produce potentially innocuous res-
ults.

Parameters retrieved from previous works instead of experimentation

The ideal situation is when we collect parameters from measurements in a real
testbed. However, our research relies on previously published papers to retrieve
the parameters of the models. Nevertheless, it is important to highlight that
previous papers on the same topic [Mendonça et al., 2020; Alavizadeh et al., 2018a]
also retrieved parameters from the literature. Finally, the reproduction of the
threat model in a real testbed may have a non-negligible cost. This reproduction
needs a dedicated virtualized infrastructure and may require a specialized red
team [Diogenes and Ozkaya, 2018] to conduct the attacks.

Proposed MTD and software rejuvenation are focused on host-only problems

Although the use of VM migration as software rejuvenation and MTD is benefi-
cial for the final clients in the cloud, the entire strategy is focused on host (i.e.,
physical host) protection. Then, the applied approach serves only to propose a
partial security posture for a cloud environment. In a comprehensive setting, it
is necessary to take others threats into account. For example, application-level
threats and software aging are potential problems that may jeopardize the validity
of the proposed approach. Nevertheless, the modeling provides enough flexibility
to study and analyze the system before the MTD deployment. System managers
and cybersecurity experts may leverage the proposed approach as support for
dependability-security policy decision-making.

9.5 Summary
This chapter presented a set of SPN models for availability and security evalu-
ation of multipurpose time-based VM migration. In our study, time-based VM
migration simultaneously serves as software rejuvenation and MTD. Results show
that time-based VM migration produces substantial availability and security im-
provement compared to the baseline conditions. The proposed secondary metrics
highlight important practical aspects of MTD deployment. At the time of this
chapter writing, we could not find a previous study covering this specific mul-
tipurpose time-based VM migration.

Three research questions guided the development of this chapter. The first one is
about the VM migration interval that maximizes the system steady-state avail-
ability. In the proposed scenarios, we found out that the interval of 5 hours and
6 minutes between migrations produces the best availability result. It reduces
the system expected downtime to more than 31 hours per year. The second re-
search question explores the system protection while using MTD based on VM
migration. Results showed a reduction of 47% in the probability of attack success
while adopting the 4N (i.e., most capable deployment) architecture. The last

— 159 —

CHAPTER 9. MODELING OF TIME-BASED VM MIGRATION AS MTD AND
REJUVENATION

research question is about the tradeoffs between availability and security of using
VM migration as MTD. The results indeed suggested a tradeoff between these
metrics. However, in the balanced scenarios (i.e., scenarios with equal priority
for the metrics), the best deployment was 30 minutes between migrations in a 4N
architecture.

Our findings show that to boost one attribute (i.e., availability or security), we
should compromise the other. Using Multi-Criteria Decision Making (MCDM)
methods may aid the user in selecting appropriate VM migration trigger intervals.
The model analysis also suggests that it is advantageous to enable hypervisor
variants interoperability to enhance system security.

— 160 —

Chapter 10
Conclusion and Future Work

Cybersecurity is a top concern for cloud computing users. Regardless of private
or public deployments, the need for proactive and adaptive defensive mechanisms
is extremely high due to the emergence of novel threats. MTD appears as an al-
ternative, providing flexibility to mitigate complex and advanced security threats.
Nevertheless, a comprehensive evaluation framework for a proper MTD deploy-
ment is still an open problem. There are, in fact, many questions that need to
be responded to, such as once the attacker is in the environment, for how long
can my system resist the attack? how often do I need to apply MTD to reach
a desired level of security against a specific threat? and what is the impact of a
MTD deployment on other system metrics?

The answers to the questions mentioned above depend on the development or
design of suitable evaluation methods for MTD-enabled cloud environments. A
proper evaluation scheme should also consider the other relevant aspects of the
virtualized domain. One of the interesting perspectives in this context is the
system availability, which is a double-sided metric [Avizienis et al., 2004], as it
may decrease due to security issues (e.g., a successful DoS attack) or dependability
problems (e.g., failure in a system component). Indeed, availability is one of the
major concerns for cloud computing managers and providers and is usually among
the fundamental SLA (e.g., an IaaS provider offers availability of 99.999% for its
clients). Therefore, the evaluation presented in this thesis not only takes into
account the security metric but also the system availability. One of the subtle
issues in this field, already reported as a problem in cloud computing, is software
aging. Our approach also takes these problems into account to deliver a more
well-rounded evaluation solution.

The work presented in this thesis provided evaluation approaches for MTD in vir-
tualized environments. Based mainly on SPN models, this thesis delivers a series
of models ranging from baseline models focusing on availability evaluation of soft-
ware rejuvenation-enabled environments to models with MTD against host-based
attacks. Specifically, the scope comprises different aspects of a VM migration-
enabled system. Firstly, we developed a series of baseline models for evaluating
system availability while using VM migration to support software rejuvenation.
Then, we extend the proposed model to cover the security aspect by proposing
a security risk evaluation metric (RiskScore). Finally, we adapted the baseline
models to cover the MTD aspect under different circumstances. Specifically, ad-
apted models cover the aspects of using VM migration as MTD against persistent

— 161 —

CHAPTER 10. CONCLUSION AND FUTURE WORK

and non-persistent attacks. This approach of considering both scenarios provided
a comprehensive overview of VM migration MTD strengths and limitations.

Our research path resulted in a set of contributions for the fields of dependability
and security evaluation of virtualized systems with VM migration. Each step
towards the main goal resulted in an individual contribution (as highlighted in
Chapter 1). In summary, we first devoted attention to the practical aspects of VM
migration and put it to test in a real-world environment. The results obtained
show the feasibility of using it for the desired purposes. Then, we design the
first model to cover the baseline aspects of a cloud with VM migration. The
baseline model extends the availability evaluation and also includes performability
metrics. After, we exercised the security evaluation in the same scenario and
subsequently proposed a secondary metric to evaluate the security from a system-
oriented perspective instead of a attack perspective. Finally, we proposed models
for security and availability evaluation of a system using VM migration as MTD.
This step was further extended by the proposal of the PyMTDEvaluator tool,
which provides an automated way to perform analysis and comparison of different
MTD migration schedules. The tool is open-source and publicly available through
a Docker container. Closing our set of contributions, we analyzed multipurpose
VM migration considering scenarios where the VM migration serves both as MTD
and software rejuvenation.

10.1 Key Takeaways
We learned several lessons during the development of this work. Below, we high-
light some of the main ones. The discussion sections in each of the chapters do
add some details to this list.

Our empirical results show that, as expected, VM migration can defend
against host-based attacks. The use of appropriated time-based VM migration
prevents Memory DoS (i.e., a non-persistent attack) attack success. Nevertheless,
the VM migration frequency plays a key role in the defense effectiveness. In fact,
results suggest that there is an optimal VM migration frequency that minimizes
the accumulated impact while preventing attack success.

The proposed baseline models show that in scenarios with higher probability
and intensity of bursty workloads, the overall performability improve-
ment due to VMmigration is minor. The quantification of the performability
improvement is helpful to guide the design of SLAs. Furthermore, the results also
show significant improvement in the system reliability while applying VM migra-
tion for software rejuvenation support.

Our modeling results show that, in scenarios under software aging condi-
tions and with multiple threats as DoS and MITM, it is preferred to
apply more frequent VM migrations, as they mitigate software aging
accumulation. Despite the VM migration increasing the risk of MITM attack
success (because we are transferring the memory pages), in cases where both
threats (i.e., DoS and MITM) have equal importance (i.e., have the same weight
for the evaluation) frequent migrations tend to improve the system overall secur-

— 162 —

CHAPTER 10. CONCLUSION AND FUTURE WORK

ity. This is due to the accumulated time that the system stays in a risky state.
Applying frequent migrations increases the ”in migration” state, thus, the risk
of a MITM attack success also increases. However, the frequent migrations also
come with the benefit of increased resistance to software aging effects, which, in
our scenarios, displayed better security levels when considering both threats (i.e.,
DoS and MITM) with equal importance in the evaluation.

The MTD evaluation models suggest that time-based VM migration can ex-
tend the system resistance to host-based attacks, but it is unable to
prevent attack success. Hypothetically, time-based VM migration MTD will
be able to prevent attack success in scenarios with very frequent MTD actions.
Nevertheless, these scenarios seem unrealistic as such a VM migration accumu-
lated overhead may impair the other system metrics. Furthermore, the models
enable the finding of the effectiveness limit of the deployed MTD. This metric
is interesting to evaluate the point in time where the MTD deployment becomes
innocuous.

The model parameters are limited to hypothetical environments. Therefore, more
than such generic and illustrative parameters may be required to reflect specific
situations. Despite the illustrative aspect of generic parameters, they
are useful to understand system behavior under similar circumstances.
For a more specific and representative evaluation, we need to adjust
the parameter accordingly. PyMTDEvaluator supports this flexible evaluation
through an easy-to-use interface. In an attempt to facilitate the PyMTDEvaluator
usage, it is available in a Docker container.

As a final takeaway, we highlight that the adoption of multipurpose (i.e.,
software rejuvenation and MTD) time-based VM migration provides
significant availability and security improvement when compared to
the baseline conditions. The proposed evaluation also emphasizes enabling
VM migration between heterogeneous hypervisors benefits system security. These
results might be useful for system managers to understand the availability and
security improvements for an already in-place VM migration policy.

10.2 Future Work
This thesis sheds light on new research directions. Below, we suggest possible
future works.

• Find the optimal schedule for VM migration. The VM migration
frequency will surely vary depending on the scenario of MTD deployment.
However, working into finding the optimal schedule for the VM migration
may provide insights into what factors influence its effectiveness. Further-
more, through a series of tests, it will be possible to present more statistically
significant results, including mean time to attack success and its standard
deviation. The first step in this direction is to reproduce the empirical ob-
servations varying the time between migrations. The main goal is finding a
specific schedule that reduces the VM migration frequency and yet is cap-
able of preventing attack success. After this, it is necessary to repeat the

— 163 —

CHAPTER 10. CONCLUSION AND FUTURE WORK

experiment to generate a statistically significant sample of data.

• Adoption of hierarchical compositions or interacting SPN models
to extend the proposed MTD evaluation. More powerful models are
needed to investigate the security, availability, and performability tradeoffs
when applying MTD based on VM migration scheduling. The idea is to
develop a separate model to evaluate only performance that should commu-
nicate with the models presented in this thesis. This communication will
enable a combined evaluation of performance, availability, and probability
of attack success. It is also interesting to adapt the model to cover the
economic aspects of the considered scenarios. Economic metrics may high-
light how much the attacker needs to invest to reach the attack success. An
interesting approach is presented in [Alavizadeh et al., 2018a], which uses a
return on attack economic metric.

• Extend the architecture to larger environments. To represent larger
deployments, it is necessary to adapt the models to represent such archi-
tectures. The approach to reach this goal is similar to the previous one:
use hierarchical composition. However, instead of using interacting mod-
els, one possible path is to encapsulate a minimal infrastructure model in
a RBD. RBD models are easier to scale as they can be easily reduced to
closed formulas. We apply a similar idea in our previous work [Torquato
et al., 2019a].

• Reproduce alternative threat models to check VM migration as
MTD effectiveness. The idea is to reproduce the attack on the proposed
threat model in a real testbed. The main goal is to measure the time for
attack completion. Besides that, research is needed to understand the per-
formance overhead impact due to the MTD deployment. A possible start
in this direction is through the exposure of a VM migration based MTD
against persistent attacks (e.g., VM escape attack).

• Include more probability distributions to represent attack pro-
gress behavior in the PyMTDEvaluator implementation. The in-
clusion of diverse probability distributions will enable the evaluation of dif-
ferent scenarios of MTD deployment. The first step is to conduct experi-
ments of attack and defense in a real-world setup (as described before) to
gather data about the behavior of the system. Once the probability distribu-
tion of the events is retrieved, it is possible to adapt the PyMTDEvaluator
code as it is open-source. Although the experiments are the first recom-
mended step, it is possible to adjust the PyMTDEvaluator implementation
beforehand to evaluate hypothetical scenarios.

Besides these future works, based on the acquired knowledge on MTD, we also
suggest the following long-term research directions in the field:

• Adoption of Artificial Intelligence (AI) and ML techniques to em-
power MTD evaluation. The use of AI and ML methods could be a way
to enhance the model- and simulation-based evaluations. For example, it
is possible to use genetic algorithms and solution search approaches to find

— 164 —

CHAPTER 10. CONCLUSION AND FUTURE WORK

specific VM migration schedules to reach specific levels of security or availab-
ility. We started this research path in Torquato et al. [2019c]. In that work,
we proposed a genetic algorithm implementation to exercise a RBD model.
The goal is to search for architectures that satisfy some target availabil-
ity levels. The proposed genetic algorithm helps in answering a question as
”Which architecture deployment provides availability of 99.999%?” The next
step is to adapt this genetic algorithm to interact with PyMTDEvaluator.
Therefore, the possible resulting implementation might be able to answer
questions such as ”What migration schedule is able to keep the probability of
attack success below 40% in the first month while achieving a maximum of
five minutes of downtime?”

• Inclusion of alternative MTD techniques to provide a comprehens-
ive cloud security posture. As stated earlier in this thesis, the proposed
VM migration-based MTD is only able to defend against a specific set of
threats. For a more comprehensive MTD deployment, it is necessary to
expand the evaluation to additional MTD actions. For example, it is pos-
sible also to consider SDN-based MTD deployment in combination with the
proposed MTD.

• Measurement-based MTD evaluation to guide model design. Usu-
ally, the model-based evaluation proposals neglect experimental background.
The main goal of the measurement evaluation is to provide data to support
the model design. The system experimentation and testing provide relevant
insights to design and calibrate the models. Here, the guideline to keep
in mind is the goal of knowledge acquisition of the system behavior. Note
that this research direction does not nullify the path into modeling systems
from a knowledge-only perspective. As mentioned previously in this thesis,
there are scenarios where the measurements are hard to obtain. In those,
the proposal of analytical evaluation models could be useful to understand
the system expected behavior without interacting with it. Nevertheless,
whenever possible, the empirical observation and testing of a system may
bring valuable insights into designing better models.

• Combined evaluation for VM migration deployments. VM migra-
tion may be useful for various purposes. In this thesis, we observed the
feature from the perspective of dependability and security. Nevertheless,
VM migration is also useful to increase system maintainability, as it fa-
cilitates the preventive maintenance moving VMs to selected PMs. Besides
that, the same technique is useful to improve system sustainability (e.g., the
migration feature simplifies packing the VMs in fewer PMs) and may also be
applied to improve system performance through load balancing. Proposing
combined evaluations for these scenarios may be useful to provide a holistic
view of time-based VM migration deployment.

— 165 —

Bibliography

Adili, M. T., Mohammadi, A., Manshaei, M. H., and Rahman, M. A. (2017).
A cost-effective security management for clouds: A game-theoretic decep-
tion mechanism. In Integrated Network and Service Management (IM), 2017
IFIP/IEEE Symposium on, page 98–106. IEEE.

Agarwal, A. and Duong, T. N. B. (2019). Secure virtual machine placement in
cloud data centers. Future Generation Computer Systems, 100:210–222.

Ahmad, R. W., Gani, A., Hamid, S. H. A., Shiraz, M., Yousafzai, A., and Xia, F.
(2015). A survey on virtual machine migration and server consolidation frame-
works for cloud data centers. Journal of network and computer applications,
52:11–25.

Ahmed, N. O. and Bhargava, B. (2016). Mayflies: A moving target defense
framework for distributed systems. In Proceedings of the 2016 ACM Workshop
on Moving Target Defense, page 59–64. ACM.

Akoush, S., Sohan, R., Rice, A., Moore, A. W., and Hopper, A. (2010). Predict-
ing the performance of virtual machine migration. In 2010 IEEE international
symposium on modeling, analysis and simulation of computer and telecommu-
nication systems, page 37–46. IEEE.

Alavizadeh, H. (2020). Effective Security Analysis for Combinations of MTD
Techniques on Cloud Computing. PhD thesis, Massey University.

Alavizadeh, H., Alavizadeh, H., Kim, D. S., Jang-Jaccard, J., and Torshiz, M. N.
(2019a). An automated security analysis framework and implementation for
mtd techniques on cloud. In International Conference on Information Security
and Cryptology, page 150–164. Springer.

Alavizadeh, H., Hong, J. B., Jang-Jaccard, J., and Kim, D. S. (2018a). Com-
prehensive security assessment of combined mtd techniques for the cloud. In
Proceedings of the 5th ACM Workshop on Moving Target Defense, page 11–20.
ACM.

Alavizadeh, H., Hong, J. B., Kim, D. S., and Jang-Jaccard, J. (2020). Evalu-
ating the effectiveness of shuffle and redundancy mtd techniques in the cloud.
Computers & Security, page 102091.

Alavizadeh, H., Hong, J. B., Kim, D. S., and Jang-Jaccard, J. (2021). Evalu-
ating the effectiveness of shuffle and redundancy mtd techniques in the cloud.
Computers & Security, 102:102091.

— 167 —

Bibliography

Alavizadeh, H., Jang-Jaccard, J., and Kim, D. S. (2018b). Evaluation for com-
bination of shuffle and diversity on moving target defense strategy for cloud
computing. In 2018 17th IEEE International Conference On Trust, Secur-
ity And Privacy In Computing And Communications/12th IEEE International
Conference On Big Data Science And Engineering (TrustCom/BigDataSE),
page 573–578. IEEE.

Alavizadeh, H., Kim, D. S., Hong, J. B., and Jang-Jaccard, J. (2017). Effect-
ive security analysis for combinations of mtd techniques on cloud computing
(short paper). In International Conference on Information Security Practice
and Experience, page 539–548. Springer.

Alavizadeh, H., Kim, D. S., and Jang-Jaccard, J. (2019b). Model-based evaluation
of combinations of shuffle and diversity mtd techniques on the cloud. Future
Generation Computer Systems.

Alhozaimy, S. and Menascé, D. A. (2022). A formal analysis of performance-
security tradeoffs under frequent task reconfigurations. Future Generation Com-
puter Systems, 127:252–262.

Alonso, J. and Trivedi, K. (2015). Software rejuvenation and its application in
distributed systems. Quantitative Assessments of Distributed Systems: Meth-
odologies and Techniques, pages 301–325.

Ammar, H., Huang, Y., and Liu, R. (1987). Hierarchical models for systems
reliability, maintainability, and availability. IEEE Transactions on Circuits and
Systems, 34(6):629–638.

Anderson, N., Mitchell, R., and Chen, R. (2016). Parameterizing moving target
defenses. In 2016 8th IFIP International Conference on New Technologies,
Mobility and Security (NTMS), page 1–6. IEEE.

Andrade, E., Pietrantuono, R., Machida, F., and Cotroneo, D. (2021). A compar-
ative analysis of software aging in image classifiers on cloud and edge. IEEE
Transactions on Dependable and Secure Computing.

Araujo, J., Maciel, P., Andrade, E., Callou, G., Alves, V., and Cunha, P. (2018).
Decision making in cloud environments: an approach based on multiple-criteria
decision analysis and stochastic models. Journal of Cloud Computing, 7(1):1–19.

Araujo, J., Matos, R., Alves, V., Maciel, P., Souza, F. V. d., Jr, R. M., and Trivedi,
K. S. (2014). Software aging in the eucalyptus cloud computing infrastructure:
characterization and rejuvenation. ACM Journal on Emerging Technologies in
Computing Systems (JETC), 10(1):1–22.

Araujo, J., Matos, R., Maciel, P., Matias, R., and Beicker, I. (2011). Experimental
evaluation of software aging effects on the eucalyptus cloud computing infra-
structure. In Proceedings of the Middleware 2011 Industry Track Workshop,
page 4. ACM.

— 168 —

Bibliography

Asadabadi, M. R., Chang, E., and Saberi, M. (2019). Are mcdm methods useful? a
critical review of analytic hierarchy process (ahp) and analytic network process
(anp). Cogent Engineering, 6(1):1623153.

Ashino, Y. and Nakae, M. (2012). Virtual machine migration method between dif-
ferent hypervisor implementations and its evaluation. In 2012 26th International
Conference on Advanced Information Networking and Applications Workshops,
page 1089–1094. IEEE.

Avizienis, A., Laprie, J.-C., and Randell, B. (2001). Fundamental concepts of
computer system dependability. In Workshop on Robot Dependability: Tech-
nological Challenge of Dependable Robots in Human Environments, page 1–16.
University of Newcastle upon Tyne, Computing Science.

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004). Basic concepts
and taxonomy of dependable and secure computing. Dependable and Secure
Computing, IEEE Transactions on, 1(1):11–33.

Awasthi, A. and Gupta, R. (2016). Multiple hypervisor based open stack cloud
and vm migration. In 2016 6th International Conference-Cloud System and Big
Data Engineering (Confluence), page 130–134. IEEE.

Azab, M. and Eltoweissy, M. (2011). Defense as a service cloud for cyber-physical
systems. In Collaborative Computing: Networking, Applications and Workshar-
ing (CollaborateCom), 2011 7th International Conference on, page 392–401.
IEEE.

Azab, M., Eltoweissy, M., Attiya, G., et al. (2017). Towards online smart disguise:
Real-time diversification evading co-residency based cloud attacks. In 2017
IEEE 3rd International Conference on Collaboration and Internet Computing
(CIC), pages 235–242. IEEE.

Azab, M., Mokhtar, B. M., Abed, A. S., and Eltoweissy, M. (2016). Smart mov-
ing target defense for linux container resiliency. In Collaboration and Internet
Computing (CIC), 2016 IEEE 2nd International Conference on, page 122–130.
IEEE.

Bahrami, P. N., Dehghantanha, A., Dargahi, T., Parizi, R. M., Choo, K.-K. R.,
and Javadi, H. H. (2019). Cyber kill chain-based taxonomy of advanced per-
sistent threat actors: Analogy of tactics, techniques, and procedures. Journal
of information processing systems, 15(4):865–889.

Bai, J., Chang, X., Machida, F., Trivedi, K. S., and Han, Z. (2020). Analyzing
software rejuvenation techniques in a virtualized system: Service provider and
user views. IEEE Access, 8:6448–6459.

Bai, J., Chang, X., Machida, F., Trivedi, K. S., and Li, Y. (2023a). Model-driven
dependability assessment of microservice chains in mec-enabled iot. IEEE
Transactions on Services Computing.

— 169 —

Bibliography

Bai, J., Li, Y., Chang, X., Machida, F., and Trivedi, K. S. (2023b). Understand-
ing nfv-enabled vehicle platooning application: A dependability view. IEEE
Transactions on Cloud Computing.

Bause, F. (1993). Queueing petri nets-a formalism for the combined qualitat-
ive and quantitative analysis of systems. In Proceedings of 5th international
workshop on Petri nets and performance models, page 14–23. IEEE.

Bazm, M.-M., Lacoste, M., Südholt, M., and Menaud, J.-M. (2017). Side-channels
beyond the cloud edge: New isolation threats and solutions. In Cyber Security
in Networking Conference (CSNet), 2017 1st, page 1–8. IEEE.

Bobbio, A. (1990). System modelling with petri nets. In Systems Reliability As-
sessment: Proceedings of the Ispra Course held at the Escuela Tecnica Superior
de Ingenieros Navales, Madrid, Spain, September 19–23, 1988 in collaboration
with Universidad Politecnica de Madrid, pages 103–143. Springer.

Bolch, G., Greiner, S., De Meer, H., and Trivedi, K. S. (2006). Queueing networks
and Markov chains: modeling and performance evaluation with computer science
applications. John Wiley & Sons.

Boubour, R., Jard, C., Aghasaryan, A., Fabre, E., and Benveniste, A. (1997).
A petri net approach to fault detection and diagnosis in distributed systems.
i. application to telecommunication networks, motivations, and modelling. In
Proceedings of the 36th IEEE Conference on Decision and Control, volume 1,
pages 720–725. IEEE.

Bovenzi, A., Cotroneo, D., Pietrantuono, R., and Russo, S. (2011). Workload
characterization for software aging analysis. In Software Reliability Engineering
(ISSRE), 2011 IEEE 22nd International Symposium on, page 240–249. IEEE.

Buyya, R., Srirama, S. N., Casale, G., Calheiros, R., Simmhan, Y., Varghese,
B., Gelenbe, E., Javadi, B., Vaquero, L. M., Netto, M. A., et al. (2018). A
manifesto for future generation cloud computing: Research directions for the
next decade. ACM Computing Surveys (CSUR), 51(5):105.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I. (2009).
Cloud computing and emerging it platforms: Vision, hype, and reality for de-
livering computing as the 5th utility. Future Generation computer systems,
25(6):599–616.

Cai, G., Wang, B., Luo, Y., and Hu, W. (2016a). A model for evaluating and
comparing moving target defense techniques based on generalized stochastic
petri net. In Conference on Advanced Computer Architecture, page 184–197.
Springer.

Cai, G., Wang, B., Luo, Y., Li, S., and Wang, X. (2016b). Characterizing the
running patterns of moving target defense mechanisms. In Advanced Commu-
nication Technology (ICACT), 2016 18th International Conference on, pages
191–196. IEEE.

— 170 —

Bibliography

Cai, G.-l., Wang, B.-s., Hu, W., and Wang, T.-z. (2016c). Moving target defense:
state of the art and characteristics. Frontiers of Information Technology &
Electronic Engineering, 17(11):1122–1153.

Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., and Fox, A. (2004).
Microreboot–a technique for cheap recovery. arXiv preprint cs/0406005.

CAPEC (2023). Capec-94: Man in the middle attack.

Casola, V., De Benedictis, A., Rak, M., and Villano, U. (2018). A security sla-
driven moving target defense framework to secure cloud applications. In Pro-
ceedings of the 5th ACM Workshop on Moving Target Defense, page 48–56.
ACM.

Castellanos Contreras, J. U. and Rodríguez Urrego, L. (2023). Technological
developments in control models using petri nets for smart grids: A review.
Energies, 16(8):3541.

Chang, X., Shi, Y., Zhang, Z., Xu, Z., and Trivedi, K. S. (2020). Job completion
time under migration-based dynamic platform technique. IEEE Transactions
on Services Computing, page 1–1.

Chen, S.-J. and Hwang, C.-L. (1992). Fuzzy multiple attribute decision making
methods. In Fuzzy multiple attribute decision making: Methods and applications,
pages 289–486. Springer.

Chen, Z., Chang, X., Han, Z., and Yang, Y. (2020). Numerical evaluation of job
finish time under mtd environment. IEEE Access, 8:11437–11446.

Ching, W.-K. and Ng, M. K. (2006). Markov chains. Models, algorithms and
applications.

Cho, J.-H., Sharma, D. P., Alavizadeh, H., Yoon, S., Ben-Asher, N., Moore, T. J.,
Kim, D. S., Lim, H., and Nelson, F. F. (2020). Toward proactive, adaptive
defense: A survey on moving target defense. IEEE Communications Surveys &
Tutorials, 22(1):709–745.

Chong, F., Lee, R., Acquisti, A., Horne, W., Palmer, C., Ghosh, A., Pendarakis,
D., Sanders, W., Fleischman, E., Teufel III, H., et al. (2009). National cyber
leap year summit 2009: Co-chairs’ report - moving target defense (chapter 4).
NITRD Program.

Chowdhary, A., Alshamrani, A., Huang, D., and Liang, H. (2018). Mtd analysis
and evaluation framework in software defined network (mason). In Proceed-
ings of the 2018 ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization, page 43–48. ACM.

Christopher Frey, H. and Patil, S. R. (2002). Identification and review of sensit-
ivity analysis methods. Risk analysis, 22(3):553–578.

— 171 —

Bibliography

Chung, C.-J., Xing, T., Huang, D., Medhi, D., and Trivedi, K. (2015). Serene:
on establishing secure and resilient networking services for an sdn-based multi-
tenant datacenter environment. In 2015 IEEE International Conference on
Dependable Systems and Networks Workshops, page 4–11. IEEE.

Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., Pratt, I., and
Warfield, A. (2005). Live migration of virtual machines. In Proceedings of the
2nd conference on Symposium on Networked Systems Design & Implementation-
Volume 2, NSDI’05, page 273–286, Berkeley, CA, USA. USENIX Association,
USENIX Association.

Clemente, D., Pereira, P., Dantas, J., and Maciel, P. (2022). Availability evalu-
ation of system service hosted in private cloud computing through hierarchical
modeling process. The Journal of Supercomputing, 78(7):9985–10024.

Connell, W., Menasce, D. A., and Albanese, M. (2018). Performance modeling
of moving target defenses with reconfiguration limits. IEEE Transactions on
Dependable and Secure Computing.

Connell, W., Menascé, D. A., and Albanese, M. (2017). Performance modeling of
moving target defenses. In Proceedings of the 2017 Workshop on Moving Target
Defense, page 53–63.

Conti, M., Dragoni, N., and Lesyk, V. (2016). A survey of man in the middle
attacks. IEEE Communications Surveys & Tutorials, 18(3):2027–2051.

Corporation, T. M. (2023). Persistence - tactic - mitre att&ck.

Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T. A., Lee, J.-W., and
Min, D. (2023). Software aging effects on kubernetes in container orchestration
systems for digital twin cloud infrastructures of urban air mobility. Drones,
7(1):35.

Cotroneo, D., De Simone, L., Natella, R., Pietrantuono, R., and Russo, S. (2022).
Software micro-rejuvenation for android mobile systems. Journal of Systems
and Software, 186:111181.

Cotroneo, D., Natella, R., Pietrantuono, R., and Russo, S. (2010). Software aging
analysis of the linux operating system. In Software Reliability Engineering
(ISSRE), 2010 IEEE 21st International Symposium on, page 71–80. IEEE.

Cotroneo, D., Natella, R., Pietrantuono, R., and Russo, S. (2014). A survey of
software aging and rejuvenation studies. ACM Journal on Emerging Technolo-
gies in Computing Systems (JETC), 10(1):8.

Dantas, J., Matos, R., Araujo, J., and Maciel, P. (2012). An availability model
for eucalyptus platform: An analysis of warm-standy replication mechanism. In
Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference
on, page 1664–1669. IEEE.

— 172 —

Bibliography

Debroy, S., Calyam, P., Nguyen, M., Stage, A., and Georgiev, V. (2016).
Frequency-minimal moving target defense using software-defined networking.
In Computing, Networking and Communications (ICNC), 2016 International
Conference on, page 1–6. IEEE.

Diogenes, Y. and Ozkaya, E. (2018). Cybersecurity??? Attack and Defense
Strategies: Infrastructure security with Red Team and Blue Team tactics. Packt
Publishing Ltd.

Distefano, S., Scarpa, M., Chang, X., and Bobbio, A. (2020). Assessing depend-
ability of web services under moving target defense techniques. In Proceedings
of the 30th European Safety and Reliability Conference (ESREL2020) and the
15th Probabilistic Safety Assessment and Management Conference (PSAM15).
Research Publishing/Singapore.

Dohi, T., Goševa-Popstojanova, K., and Trivedi, K. (2001). Estimating soft-
ware rejuvenation schedules in high-assurance systems. The Computer Journal,
44(6):473–485.

Dohi, T., Trivedi, K. S., and Avritzer, A. (2020). Handbook of Software Aging and
Rejuvenation: Fundamentals, Methods, Applications, and Future Directions.
World Scientific.

Dsouza, G., Hariri, S., Al-Nashif, Y., and Rodriguez, G. (2013). Resilient dy-
namic data driven application systems (rdddas). Procedia Computer Science,
18:1929–1938.

Dumitraş, T. and Shou, D. (2011). Toward a standard benchmark for computer
security research: The worldwide intelligence network environment (wine). In
Proceedings of the First Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security, page 89–96. ACM.

El Mir, I., Haqiq, A., and Kim, D. S. (2017). A game theoretic approach for
cloud computing security assessment using moving target defense mechanisms.
In Proceedings of the Mediterranean Symposium on Smart City Applications,
page 242–254. Springer.

Enoch, S. Y., Huang, Z., Moon, C. Y., Lee, D., Ahn, M. K., and Kim, D. S.
(2020). Harmer: Cyber-attacks automation and evaluation. IEEE Access,
8:129397–129414.

Enoch, S. Y., Mendonça, J., Hong, J. B., Ge, M., and Kim, D. S. (2022). An
integrated security hardening optimization for dynamic networks using security
and availability modeling with multi-objective algorithm. Computer Networks,
208:108864.

Escheikh, M., Tayachi, Z., and Barkaoui, K. (2016). Workload-dependent software
aging impact on performance and energy consumption in server virtualized
systems. In Software Reliability Engineering Workshops (ISSREW), 2016 IEEE
International Symposium on, page 111–118. IEEE.

— 173 —

Bibliography

Fakhrolmobasheri, S., Ataie, E., and Movaghar, A. (2018). Modeling and eval-
uation of power-aware software rejuvenation in cloud systems. Algorithms,
11(10):160.

Fernandes, D. A., Soares, L. F., Gomes, J. V., Freire, M. M., and Inácio, P. R.
(2014). Security issues in cloud environments: a survey. International Journal
of Information Security, 13(2):113–170.

Fitch, D. F. and Xu, H. (2012). A petri net model for secure and fault-tolerant
cloud-based information storage. In SEKE, page 333–339. Citeseer.

Fleck, D., Stavrou, A., Kesidis, G., Nasiriani, N., Shan, Y., and Konstantopoulos,
T. (2018). Moving-target defense against botnet reconnaissance and an ad-
versarial coupon-collection model. In 2018 IEEE Conference on Dependable
and Secure Computing (DSC), page 1–8. IEEE.

Flexera (2023). 2023 state of the cloud report.

Fonseca, J., Vieira, M., and Madeira, H. (2013). Evaluation of web security mech-
anisms using vulnerability & attack injection. IEEE Transactions on dependable
and secure computing, 11(5):440–453.

Francis, T. (2018). A comparison of cloud execution mechanisms fog, edge, and
clone cloud computing. International Journal of Electrical & Computer Engin-
eering (2088-8708), 8(6).

Franklin, B. (2023). 40 cloud computing stats and trends to know in 2023 | google
cloud blog.

Garg, S., Puliafito, A., Telek, M., and Trivedi, K. S. (1995). Analysis of soft-
ware rejuvenation using markov regenerative stochastic petri net. In Software
Reliability Engineering, 1995. Proceedings., Sixth International Symposium on,
page 180–187.

German, R. (2000). Performance analysis of communication systems with non-
Markovian stochastic Petri nets. John Wiley & Sons, Inc.

Ghribi, C., Hadji, M., and Zeghlache, D. (2013). Energy efficient vm scheduling
for cloud data centers: Exact allocation and migration algorithms. In 2013 13th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,
page 671–678. IEEE.

Gonçalves, C. F., Antunes, N., and Vieira, M. (2023). Intrusion injection for
virtualized systems: Concepts and approach. In 2023 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages
417–430. IEEE.

Goyal, S. (2014). Public vs private vs hybrid vs community-cloud computing: a
critical review. International Journal of Computer Network and Information
Security, 6(3):20–29.

— 174 —

Bibliography

Gray, J. and Reuter, A. (1993). Transaction processing. Morgan Kaufíann Pub-
lishers.

Groat, S., Moore, R., Marchany, R., and Tront, J. (2013). Securing static nodes
in mobile-enabled systems using a network-layer moving target defense. In
2013 1st International Workshop on the Engineering of Mobile-Enabled Systems
(MOBS), page 42–47. IEEE.

Grottke, M., Matias, R., and Trivedi, K. S. (2008). The fundamentals of software
aging. In 2008 IEEE International conference on software reliability engineering
workshops (ISSRE Wksp), pages 1–6. Ieee.

Grottke, M. and Trivedi, K. (2005). A classification of software faults. Journal of
Reliability Engineering Association of Japan, 27(7):425–438.

Grottke, M. and Trivedi, K. S. (2007). Fighting bugs: Remove, retry, replicate,
and rejuvenate. Computer, 40(2):107–109.

Guedes, E. A. C. (2019). Availability and capacity modeling for virtual network
functions based on redundancy and rejuvenation supported through live migra-
tion. PhD thesis, Universidade Federal de Pernambuco.

Gupta, A. K., Zeng, W.-B., and Wu, Y. (2010). Probability and statistical models:
foundations for problems in reliability and financial mathematics. Springer
Science & Business Media.

Heiner, M., Lehrack, S., Gilbert, D., and Marwan, W. (2009). Extended stochastic
petri nets for model-based design of wetlab experiments. In Transactions on
Computational Systems Biology XI, pages 138–163. Springer.

Hill, M. D., Masters, J., Ranganathan, P., Turner, P., and Hennessy, J. L. (2019).
On the spectre and meltdown processor security vulnerabilities. IEEE Micro,
39(2):9–19.

Hong, J. B. and Kim, D. S. (2015). Assessing the effectiveness of moving target
defenses using security models. IEEE Transactions on Dependable and Secure
Computing, 13(2):163–177.

Hosseinzadeh, S., Laurén, S., Rauti, S., Hyrynsalmi, S., Conti, M., and Leppänen,
V. (2015). Obfuscation and diversification for securing cloud computing. In
International Workshop on Enterprise Security, page 179–202. Springer.

Hsueh, M.-C., Tsai, T., and Iyer, R. (1997). Fault injection techniques and tools.
Computer, 30(4):75–82.

Hu, J., Gu, J., Sun, G., and Zhao, T. (2010). A scheduling strategy on load
balancing of virtual machine resources in cloud computing environment. In
2010 3rd International symposium on parallel architectures, algorithms and
programming, page 89–96. IEEE.

Huang, D. and Wu, H. (2017). Mobile cloud computing: foundations and service
models. Morgan Kaufmann.

— 175 —

Bibliography

Huang, Q., Gao, F., Wang, R., and Qi, Z. (2011). Power consumption of virtual
machine live migration in clouds. In 2011 Third International Conference on
Communications and Mobile Computing, page 122–125. IEEE.

Huang, Y., Kintala, C., Kolettis, N., and Fulton, N. D. (1995). Software rejuven-
ation: Analysis, module and applications. In ftcs, page 0381. IEEE.

Iooss, B. and Lemaître, P. (2015). A review on global sensitivity analysis meth-
ods. Uncertainty management in simulation-optimization of complex systems:
algorithms and applications, pages 101–122.

Ishizaka, A. and Nemery, P. (2013). Multi-criteria decision analysis: methods and
software. John Wiley & Sons.

Jahanshahloo, G. R., Lotfi, F. H., and Izadikhah, M. (2006). Extension of the top-
sis method for decision-making problems with fuzzy data. Applied mathematics
and computation, 181(2):1544–1551.

Jain, R. (1990). The art of computer systems performance analysis: techniques
for experimental design, measurement, simulation, and modeling. Wiley profes-
sional computing. John Wiley & Sons.

Jajodia, S., Ghosh, A. K., Subrahmanian, V., Swarup, V., Wang, C., and Wang,
X. S. (2012). Moving Target Defense II: Application of Game Theory and
Adversarial Modeling, volume 100. Springer.

Jajodia, S., Ghosh, A. K., Swarup, V., Wang, C., and Wang, X. S. (2011). Moving
target defense: creating asymmetric uncertainty for cyber threats, volume 54.
Springer Science & Business Media.

Jia, Q., Wang, H., Fleck, D., Li, F., Stavrou, A., and Powell, W. (2014). Catch
me if you can: A cloud-enabled ddos defense. In 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), page
264–275. IEEE.

Jin, H., Li, Z., Zou, D., and Yuan, B. (2019). Dseom: A framework for dynamic
security evaluation and optimization of mtd in container-based cloud. IEEE
Transactions on Dependable and Secure Computing.

Jyotinagar, V. and Meshram, B. B. (2023). Developing an openstack environ-
ment: An exploration of experimentation and the diagnostic research. In 2023
2nd International Conference on Edge Computing and Applications (ICECAA),
pages 42–49. IEEE.

Kahla, M., Azab, M., and Mansour, A. (2018). Secure, resilient, and self-
configuring fog architecture for untrustworthy iot environments. In 2018 17th
IEEE International Conference On Trust, Security And Privacy In Comput-
ing And Communications/12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE), page 49–54. IEEE.

— 176 —

Bibliography

Kargatzis, D., Sotiriadis, S., and Petrakis, E. G. (2017). Virtual machine migra-
tion in heterogeneous clouds: from openstack to vmware. In 2017 IEEE 38th
Sarnoff Symposium, page 1–6. IEEE.

Kashkoush, M. S., Azab, M., Attiya, G., and Abed, A. S. (2018). Online smart dis-
guise: real-time diversification evading coresidency-based cloud attacks. Cluster
Computing, page 1–16.

Kielland, S., Esmaeily, A., Kralevska, K., and Gligoroski, D. (2022). Secure service
implementation with slice isolation and wireguard. In 2022 IEEE International
Mediterranean Conference on Communications and Networking (MeditCom),
pages 148–153. IEEE.

Kim, D. S., Machida, F., and Trivedi, K. S. (2009). Availability modeling and
analysis of a virtualized system. In Dependable Computing, 2009. PRDC ’09.
15th IEEE Pacific Rim International Symposium on, page 365–371. IEEE.

Kleinrock, L. (1975). Queueing systems. Volume I: theory. wiley New York.

Knowles, W., Prince, D., Hutchison, D., Disso, J. F. P., and Jones, K. (2015).
A survey of cyber security management in industrial control systems. Interna-
tional journal of critical infrastructure protection, 9:52–80.

Kot, M. (2003). The state explosion problem. Retrieved May, 18:2015.

Kounev, S. (2006). Performance modeling and evaluation of distributed
component-based systems using queueing petri nets. IEEE Transactions on
Software Engineering, 32(7):486–502.

Kourai, K. and Chiba, S. (2010). Fast software rejuvenation of virtual ma-
chine monitors. IEEE Transactions on Dependable and Secure Computing,
8(6):839–851.

Kuchárik, M. and Balogh, Z. (2019). Modeling of uncertainty with petri nets.
In Asian Conference on Intelligent Information and Database Systems, page
499–509. Springer.

Kukrál, T., Kozák, M., Hégr, T., and Boháč, L. (2015). Vm migration measure-
ment and failure detection. In 2015 38th International Conference on Telecom-
munications and Signal Processing (TSP), page 285–288. IEEE.

Küngas, P. (2005). Petri net reachability checking is polynomial with optimal
abstraction hierarchies. In International Symposium on Abstraction, Reformu-
lation, and Approximation, pages 149–164. Springer.

Kurra, H., Al-Nashif, Y., and Hariri, S. (2013). Resilient cloud data storage
services. In Proceedings of the 2013 ACM Cloud and Autonomic Computing
Conference, page 17. ACM.

KVM (n.d.). Kvm. https://www.linux-kvm.org/page/Main_Page. Accessed
2023-01-04.

— 177 —

https://www.linux-kvm.org/page/Main_Page

Bibliography

Le Goues, C., Nguyen-Tuong, A., Chen, H., Davidson, J. W., Forrest, S., Hiser,
J. D., Knight, J. C., and Van Gundy, M. (2013). Moving target defenses in the
helix self-regenerative architecture. In Moving target defense II, page 117–149.
Springer.

Lei, C., Zhang, H.-Q., Wan, L.-M., Liu, L., and Ma, D.-h. (2018). Incomplete
information markov game theoretic approach to strategy generation for moving
target defense. Computer Communications, 116:184–199.

Leslie, D., Sherfield, C., and Smart, N. P. (2015). Threshold flipthem: When the
winner does not need to take all. In International Conference on Decision and
Game Theory for Security, page 74–92. Springer.

Leutenegger, S. T. and Dias, D. (1993). A modeling study of the tpc-c benchmark.
ACM Sigmod Record, 22(2):22–31.

Levitin, G., Xing, L., and Ben-Haim, H. (2018). Optimizing software rejuvenation
policy for real time tasks. Reliability Engineering & System Safety, 176:202–208.

Li, Z., Sen, T., Shen, H., and Chuah, M. C. (2020). Impact of memory dos attacks
on cloud applications and real-time detection schemes. In 49th International
Conference on Parallel Processing-ICPP, page 1–11.

Liu, H., Xu, C.-Z., Jin, H., Gong, J., and Liao, X. (2011). Performance and
energy modeling for live migration of virtual machines. In Proceedings of the
20th international symposium on High performance distributed computing, page
171–182. ACM.

Liu, J., Zhou, J., and Buyya, R. (2015). Software rejuvenation based fault toler-
ance scheme for cloud applications. In 2015 IEEE 8th International Conference
on Cloud Computing, pages 1115–1118. IEEE.

Liu, L., Wang, A., Zang, W., Yu, M., Xiao, M., and Chen, S. (2018). Shuffler:
Mitigate cross-vm side-channel attacks via hypervisor scheduling. In Interna-
tional Conference on Security and Privacy in Communication Systems, page
491–511. Springer.

Liu, P., Yang, Z., Song, X., Zhou, Y., Chen, H., and Zang, B. (2008). Het-
erogeneous live migration of virtual machines. In International Workshop on
Virtualization Technology (IWVT’08).

Longo, F., Ghosh, R., Naik, V. K., and Trivedi, K. S. (2011). A scalable availab-
ility model for infrastructure-as-a-service cloud. In Dependable Systems & Net-
works (DSN), 2011 IEEE/IFIP 41st International Conference on, page 335–346.
IEEE.

Luo, Y.-B., Wang, B.-S., Cai, G.-L., Wang, X.-F., and Zhang, B.-F. (2016). High
performance low latency network address and port hopping mechanism based
on netfilter. In International Conference on Intelligent and Interactive Systems
and Applications, page 239–244. Springer.

— 178 —

Bibliography

Lysenko, S., Savenko, O., Bobrovnikova, K., and Kryshchuk, A. (2018). Self-
adaptive system for the corporate area network resilience in the presence of
botnet cyberattacks. In International Conference on Computer Networks, page
385–401. Springer.

Ma, D., Lei, C., Wang, L., Zhang, H., Xu, Z., and Li, M. (2016). A self-adaptive
hopping approach of moving target defense to thwart scanning attacks. In
International Conference on Information and Communications Security, page
39–53. Springer.

Machida, F., Kim, D. S., and Trivedi, K. S. (2010). Modeling and analysis of
software rejuvenation in a server virtualized system. In 2010 IEEE Second
International Workshop on Software Aging and Rejuvenation, pages 1–6. IEEE.

Machida, F., Kim, D. S., and Trivedi, K. S. (2013). Modeling and analysis of
software rejuvenation in a server virtualized system with live vm migration.
Performance Evaluation, 70(3):212–230. Special Issue on Software Aging and
Rejuvenation.

Machida, F., Xiang, J., Tadano, K., and Maeno, Y. (2012). Aging-related bugs
in cloud computing software. In 2012 IEEE 23rd International Symposium on
Software Reliability Engineering Workshops, page 287–292. IEEE.

Maciel, P., Dantas, J., Melo, C., Pereira, P., Oliveira, F., Araujo, J., and Matos,
R. (2021). A survey on reliability and availability modeling of edge, fog, and
cloud computing. Journal of Reliable Intelligent Environments, pages 1–19.

Maciel, P., Matos, R., Silva, B., Figueiredo, J., Oliveira, D., Fé, I., Maciel, R.,
and Dantas, J. (2017). Mercury: Performance and dependability evaluation
of systems with exponential, expolynomial, and general distributions. In 2017
IEEE 22nd Pacific Rim International Symposium on Dependable Computing
(PRDC), page 50–57. IEEE.

Maciel, P., Trivedi, K., and Kim, D. (2010). Dependability modeling in: Per-
formance and dependability in service computing: Concepts, techniques and
research directions. Hershey: IGI Global, Pennsylvania, USA, 13.

Maciel, P. R. M. (2023). Performance, reliability, and availability evaluation of
computational systems, Volume 2: Reliability, availability modeling, measuring,
and data analysis. CRC Press.

Maciel, R., Araujo, J., Melo, C., Dantas, J., and Maciel, P. (2018). Impact
assessment of multi-threats in computer systems using attack tree modeling. In
2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
page 2448–2453. IEEE.

Mainkar, V., Choi, H., and Trivedi, K. (1993). Sensitivity analysis of markov
regenerative stochastic petri nets. In Proceedings of 5th International Workshop
on Petri Nets and Performance Models, pages 180–181. IEEE.

— 179 —

Bibliography

Manadhata, P. K. and Wing, J. M. (2010). An attack surface metric. IEEE
Transactions on Software Engineering, 37(3):371–386.

Marsan, M. A. (1988). Stochastic petri nets: an elementary introduction. In
European Workshop on Applications and Theory in Petri Nets, page 1–29.
Springer.

Marsan, M. A., Balbo, G., Conte, G., Donatelli, S., and Franceschinis, G. (1998).
Modelling with generalized stochastic Petri nets. ACM New York, NY, USA.

Matias, R., Beicker, I., Leitão, B., and Maciel, P. R. (2010). Measuring soft-
ware aging effects through os kernel instrumentation. In 2010 IEEE Second
International Workshop on Software Aging and Rejuvenation, pages 1–6. IEEE.

Matos, R., Araujo, J., Alves, V., and Maciel, P. (2012a). Characterization of soft-
ware aging effects in elastic storage mechanisms for private clouds. In Software
Reliability Engineering Workshops (ISSREW), 2012 IEEE 23rd International
Symposium on, page 293–298. IEEE Computer Society.

Matos, R., Araujo, J., Alves, V., and Maciel, P. (2012b). Experimental evaluation
of software aging effects in the eucalyptus elastic block storage. In Systems,
Man, and Cybernetics (SMC), 2012 IEEE International Conference on, page
1103–1108. IEEE.

Matos, R. d. S., Maciel, P. R., Machida, F., Kim, D. S., and Trivedi, K. S. (2012c).
Sensitivity analysis of server virtualized system availability. IEEE Transactions
on Reliability, 61(4):994–1006.

Maziku, H. and Shetty, S. (2014). Towards a network aware vm migration: Eval-
uating the cost of vm migration in cloud data centers. In 2014 IEEE 3rd In-
ternational Conference on Cloud Networking (CloudNet), page 114–119. IEEE.

Melo, M., Araujo, J., Matos, R., Menezes, J., and Maciel, P. (2013a). Comparative
analysis of migration-based rejuvenation schedules on cloud availability. In
2013 IEEE International Conference on Systems, Man, and Cybernetics, page
4110–4115. IEEE.

Melo, M., Maciel, P., Araujo, J., Matos, R., and Araújo, C. (2013b). Availabil-
ity study on cloud computing environments: Live migration as a rejuvenation
mechanism. In 2013 43rd Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), page 1–6. IEEE.

Mendonça, J., Cho, J.-H., Moore, T. J., Nelson, F. F., Lim, H., Zimmermann,
A., and Kim, D. S. (2020). Performability analysis of services in a software-
defined networking adopting time-based moving target defense mechanisms. In
Proceedings of the 35th Annual ACM Symposium on Applied Computing, page
1180–1189.

Meyer, J. F. (1992). Performability: a retrospective and some pointers to the
future. Performance evaluation, 14(3-4):139–156.

— 180 —

Bibliography

MITRE (2023). Defense evasion.

Moody, W. C., Hu, H., and Apon, A. (2014). Defensive maneuver cyber platform
modeling with stochastic petri nets. In 10th IEEE International Conference
on Collaborative Computing: Networking, Applications and Worksharing, page
531–538. IEEE.

Moon, S.-J., Sekar, V., and Reiter, M. K. (2015). Nomad: Mitigating arbit-
rary cloud side channels via provider-assisted migration. In Proceedings of the
22nd acm sigsac conference on computer and communications security, page
1595–1606. ACM.

Mosberger, D. and Jin, T. (1998). Httperf - a tool for measuring web server per-
formance. ACM SIGMETRICS Performance Evaluation Review, 26(3):31–37.

Muppala, J. K. and Lin, C. (1996). Dependability analysis of large-scale distrib-
uted systems using stochastic petri nets. In 1996 IEEE International Conference
on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat.
No. 96CH35929), volume 4, pages 3033–3038. IEEE.

Muppala, J. K. and Trivedi, K. S. (1991). Composite performance and availability
analysis using a hierarchy of stochastic reward nets. Computer Performance
Evaluation, Modelling Techniques and Tools, page 335–350.

Nelson, W. (1980). Accelerated life testing-step-stress models and data analyses.
IEEE transactions on reliability, 29(2):103–108.

Neto, A. A. and Vieira, M. (2011). To benchmark or not to benchmark security:
That is the question. In 2011 IEEE/IFIP 41st International Conference on
Dependable Systems and Networks Workshops (DSN-W), page 182–187. IEEE.

Nguyen, M., Pal, A., and Debroy, S. (2018). Whack-a-mole: Software-defined
networking driven multi-level ddos defense for cloud environments. In 2018
IEEE 43rd Conference on Local Computer Networks (LCN), page 493–501.
IEEE.

Nguyen, T. A., Min, D., and Choi, E. (2020). A hierarchical modeling and ana-
lysis framework for availability and security quantification of iot infrastructures.
Electronics, 9(1):155.

Nguyen, T. A., Min, D., Choi, E., and Tran, T. D. (2019). Reliability and availab-
ility evaluation for cloud data center networks using hierarchical models. IEEE
Access, 7:9273–9313.

Nicol, D. M., Sanders, W. H., and Trivedi, K. S. (2004). Model-based evaluation:
from dependability to security. IEEE Transactions on dependable and secure
computing, 1(1):48–65.

Oberheide, J., Cooke, E., and Jahanian, F. (2008). Exploiting live virtual machine
migration. BlackHat DC Briefings.

— 181 —

Bibliography

Okamura, H., Yamamoto, K., and Dohi, T. (2014). Transient analysis of software
rejuvenation policies in virtualized system: Phase-type expansion approach.
Quality Technology & Quantitative Management, 11(3):335–351.

Okhravi, H., Rabe, M., Mayberry, T., Leonard, W., Hobson, T., Bigelow, D.,
and Streilein, W. (2013). Survey of cyber moving target techniques. Technical
report, MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB.

Oliveira, F., Araujo, J., Matos, R., Lins, L., Rodrigues, A., and Maciel, P. (2020).
Experimental evaluation of software aging effects in a container-based virtualiz-
ation platform. In 2020 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pages 414–419. IEEE.

Pacheco, J., Tunc, C., and Hariri, S. (2016). Design and evaluation of resilient
infrastructures systems for smart cities. In 2016 IEEE International Smart
Cities Conference (ISC2), page 1–6. IEEE.

Paing, A. M. M. and Thein, N. L. (2012). Stochastic reward nets model for time
based software rejuvenation in virtualized environment. International Journal
of Computer Science and Telecommunications, 3(1):1–10.

Pan, J. (1999). Software testing. Dependable Embedded Systems, 5(2006):1.

Paolieri, M., Biagi, M., Carnevali, L., and Vicario, E. (2019). The oris tool: quant-
itative evaluation of non-markovian systems. IEEE Transactions on Software
Engineering, 47(6):1211–1225.

Parrend, P., Navarro, J., Guigou, F., Deruyver, A., and Collet, P. (2018). Founda-
tions and applications of artificial intelligence for zero-day and multi-step attack
detection. EURASIP Journal on Information Security, 2018:1–21.

Pasupulati, R. P. and Shropshire, J. (2016). A diversity defense for cloud com-
puting systems. In SoutheastCon, 2016, page 1–7. IEEE.

Patil, R. and Modi, C. (2019). An exhaustive survey on security concerns and
solutions at different components of virtualization. ACM Computing Surveys
(CSUR), 52(1):12.

Pavić, Z. and Novoselac, V. (2013). Notes on topsis method. International Journal
of Research in Engineering and Science, 1(2):5–12.

Pawlewski, P. (2012). Petri nets: manufacturing and computer science. BoD–
Books on Demand.

Peng, W., Li, F., Huang, C.-T., and Zou, X. (2014). A moving-target defense
strategy for cloud-based services with heterogeneous and dynamic attack sur-
faces. In Communications (ICC), 2014 IEEE International Conference on, page
804–809. IEEE.

Penner, T. and Guirguis, M. (2017). Combating the bandits in the cloud: A mov-
ing target defense approach. In Cluster, Cloud and Grid Computing (CCGRID),
2017 17th IEEE/ACM International Symposium on, page 411–420. IEEE.

— 182 —

Bibliography

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008). Systematic map-
ping studies in software engineering. In EASE, volume 8, page 68–77.

Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015). Guidelines for conducting
systematic mapping studies in software engineering: An update. Information
and Software Technology, 64:1–18.

Petri, C. A. (1962). Kommunikation mit Automaten. PhD thesis, Universitat
Hamburg.

PICUS (2023).

Pietrantuono, R. and Russo, S. (2019). A survey on software aging and rejuven-
ation in the cloud. Software Quality Journal, page 1–32.

Pingree, L. (2023).

Pluralsight (2023).

Portnoy, M. (2012). Virtualization essentials, volume 19. John Wiley & Sons.

Raj, S., Mangal, N., Savitha, S., and Salvi, S. (2020). Virtual machine migra-
tion in heterogeneous clouds-a practical approach. In 2020 IEEE International
Conference on Electronics, Computing and Communication Technologies (CON-
ECCT), page 1–6. IEEE.

Ross, R., McEvilley, M., and Oren, J. C. (2016). Systems security engineering:
Considerations for a multidisciplinary approach in the engineering of trust-
worthy secure systems. In NIST Special Publication 800-160.

Ross, R. S., Winstead, M., and McEvilley, M. (2022). Engineering trustworthy
secure systems.

Royce, W. W. (1970). Managing the development of large software systems. In
proceedings of IEEE WESCON, volume 26. Los Angeles.

Sadiku, M. N., Musa, S. M., and Momoh, O. D. (2014). Cloud computing: op-
portunities and challenges. IEEE potentials, 33(1):34–36.

Salfner, F., Tröger, P., and Polze, A. (2011). Downtime analysis of virtual ma-
chine live migration. In The Fourth International Conference on Dependability
(DEPEND 2011). IARIA, page 100–105.

Sarwar, M. M. S., Rivera, J. J. D., Muhammad, A., and Song, W.-C. (2022).
Geneve@ tein: A sophisticated tunneling technique for communication between
openstack-based multiple clouds at tein. In 2022 23rd Asia-Pacific Network
Operations and Management Symposium (APNOMS), pages 1–4. IEEE.

Schatz, B. (2007). Bodysnatcher: Towards reliable volatile memory acquisition
by software. digital investigation, 4:126–134.

Schroeder, B. and Gibson, G. A. (2007). Disk failures in the real world: What
does an mttf of 1, 000, 000 hours mean to you? In FAST, volume 7, page 1–16.

— 183 —

Bibliography

Sengupta, S., Chowdhary, A., Sabur, A., Alshamrani, A., Huang, D., and
Kambhampati, S. (2020). A survey of moving target defenses for network se-
curity. IEEE Communications Surveys & Tutorials.

Sianipar, J., Sukmana, M., and Meinel, C. (2018). Moving sensitive data against
live memory dumping, spectre and meltdown attacks. In 2018 26th Interna-
tional Conference on Systems Engineering (ICSEng), page 1–8. IEEE.

Siddiqui, S., Darbari, M., Yagyasen, D., et al. (2020). Modelling and simulation
of queuing models through the concept of petri nets. ADCAIJ: Advances in
Distributed Computing and Artificial Intelligence Journal.

Song, F., Zhou, Y.-T., Wang, Y., Zhao, T.-M., You, I., and Zhang, H.-K. (2019).
Smart collaborative distribution for privacy enhancement in moving target de-
fense. Information Sciences, 479:593–606.

Soussi, W., Christopoulou, M., Xilouris, G., and Gür, G. (2021). Moving target
defense as a proactive defense element for beyond 5g. IEEE Communications
Standards Magazine, 5(3):72–79.

Stafford, V. (2020). Zero trust architecture. NIST special publication, 800:207.

Strunk, A. (2012). Costs of virtual machine live migration: A survey. In 2012
IEEE Eighth World Congress on Services, page 323–329. IEEE.

Subashini, S. and Kavitha, V. (2011). A survey on security issues in service deliv-
ery models of cloud computing. Journal of network and computer applications,
34(1):1–11.

Tatam, M., Shanmugam, B., Azam, S., and Kannoorpatti, K. (2021). A review
of threat modelling approaches for apt-style attacks. Heliyon, 7(1).

Thebeau II, D., Reidy, B., Valerdi, R., Gudagi, A., Kurra, H., Al-Nashif, Y.,
Hariri, S., and Sheldon, F. (2014). Improving cyber resiliency of cloud applica-
tion services by applying software behavior encryption (sbe). Procedia Computer
Science, 28:62–70.

Thein, T. and Park, J. S. (2009). Availability analysis of application servers
using software rejuvenation and virtualization. Journal of computer science
and technology, 24(2):339–346.

Theisen, C., Munaiah, N., Al-Zyoud, M., Carver, J. C., Meneely, A., and Wil-
liams, L. (2018). Attack surface definitions: A systematic literature review.
Information and Software Technology, 104:94–103.

Torquato, M., Araujo, J., Umesh, I., and Maciel, P. (2018a). Sware: A method-
ology for software aging and rejuvenation experiments. Journal of Information
Systems Engineering & Management, 3(2):15.

Torquato, M., Guedes, E., Maciel, P., and Vieira, M. (2019a). A hierarchical model
for virtualized data center availability evaluation. In 15th European Dependable
Computing Conference.

— 184 —

Bibliography

Torquato, M., Maciel, P., Araujo, J., and Umesh, I. (2017). An approach to invest-
igate aging symptoms and rejuvenation effectiveness on software systems. In
Information Systems and Technologies (CISTI), 2017 12th Iberian Conference
on, page 1–6. IEEE.

Torquato, M., Maciel, P., and Vieira, M. (2019b). A model for availability and
security risk evaluation for systems with vmm rejuvenation enabled by vm
migration scheduling. IEEE Access, 7:138315–138326.

Torquato, M., Maciel, P., and Vieira, M. (2020a). Availability and reliability
modeling of vm migration as rejuvenation on a system under varying workload.
Software Quality Journal, 28:59–83.

Torquato, M., Maciel, P., and Vieira, M. (2020b). Security and availability mod-
eling of vm migration as moving target defense. In 2020 IEEE 25th Pacific
Rim International Symposium on Dependable Computing (PRDC), page 50–59.
IEEE.

Torquato, M., Maciel, P., and Vieira, M. (2021a). Analysis of vm migration
scheduling as moving target defense against insider attacks. In Proceedings of
the 36th Annual ACM Symposium on Applied Computing, page 194–202.

Torquato, M., Maciel, P., and Vieira, M. (2021b). Pymtdevaluator: A tool for
time-based moving target defense evaluation: Tool description paper. In 2021
IEEE 32nd International Symposium on Software Reliability Engineering (IS-
SRE), page 357–366. IEEE.

Torquato, M., Maciel, P., and Vieira, M. (2022a). Model-based performability and
dependability evaluation of a system with vm migration as rejuvenation in the
presence of bursty workloads. Journal of Network and Systems Management,
30(1):1–33.

Torquato, M., Maciel, P., and Vieira, M. (2022b). Software rejuvenation meets
moving target defense: Modeling of time-based virtual machine migration ap-
proach. In 2022 IEEE 33rd International Symposium on Software Reliability
Engineering (ISSRE), pages 205–216. IEEE.

Torquato, M., Torquato, L., Maciel, P., and Vieira, M. (2019c). Iaas cloud availab-
ility planning using models and genetic algorithms. In 2019 9th Latin-American
Symposium on Dependable Computing (LADC), page 1–10. IEEE.

Torquato, M., Umesh, I., and Maciel, P. (2018b). Models for availability and power
consumption evaluation of a private cloud with vmm rejuvenation enabled by
vm live migration. The Journal of Supercomputing, 74(9):4817–4841.

Torquato, M. and Vieira, M. (2018). Interacting srn models for availability eval-
uation of vm migration as rejuvenation on a system under varying workload.
In 2018 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), page 300–307. IEEE.

— 185 —

Bibliography

Torquato, M. and Vieira, M. (2019). An experimental study of software aging and
rejuvenation in dockerd. In 15th European Dependable Computing Conference,
page 1–6. IEEE.

Torquato, M. and Vieira, M. (2020). Moving target defense in cloud computing:
A systematic mapping study. Computers & Security, 92:101742.

Torquato, M. and Vieira, M. (2021). Vm migration scheduling as moving tar-
get defense against memory dos attacks: An empirical study. In 2021 IEEE
Symposium on Computers and Communications (ISCC), page 1–6. IEEE.

Triantaphyllou, E. (2000). Multi-criteria decision making methods. In Multi-
criteria decision making methods: A comparative study, page 5–21. Springer.

Trivedi, K. S. (1982). Probability and statistics with reliability, queuing, and
computer science applications, volume 13. Wiley Online Library.

Trivedi, K. S. (2008). Probability & statistics with reliability, queuing and computer
science applications. John Wiley & Sons.

Trivedi, K. S. and Bobbio, A. (2017). Reliability and Availability Engineering:
Modeling, Analysis, and Applications. Cambridge University Press.

Trivedi, K. S., Kim, D. S., Roy, A., and Medhi, D. (2009). Dependability and
security models. In Design of Reliable Communication Networks, 2009. DRCN
2009. 7th International Workshop on, page 11–20. IEEE.

Trivedi, K. S., Vaidyanathan, K., and Goseva-Popstojanova, K. (2000). Modeling
and analysis of software aging and rejuvenation. In Proceedings 33rd Annual
Simulation Symposium (SS 2000), page 270–279. IEEE.

Umesh, I., Srinivasan, G., and Torquato, M. (2017). Software aging forecasting
using time series model. Indonesian Journal of Electrical Engineering and
Computer Science, 7(3):839–845.

U.S. Department Homeland of Security (2020), U. D. H. o. S. . (2020). Mov-
ing target defense. https://www.dhs.gov/science-and-technology/csd-mtd.
Accessed: 2018-12-09.

Vaidyanathan, K. and Trivedi, K. S. (2001). Extended classification of software
faults based on aging. In Fast Abstract, Int. Symp. Software Reliability Eng.,
Hong Kong.

Vaidyanathan, K. and Trivedi, K. S. (2005). A comprehensive model for soft-
ware rejuvenation. IEEE Transactions on Dependable and Secure Computing,
2(2):124–137.

Valmari, A. (1996). The state explosion problem. In Advanced Course on Petri
Nets, pages 429–528. Springer.

Vieira, M. and Madeira, H. (2005). Towards a security benchmark for database
management systems. In 2005 International Conference on Dependable Systems
and Networks (DSN’05), page 592–601. IEEE.

— 186 —

https://www.dhs.gov/science-and-technology/csd-mtd

Bibliography

Villarreal-Vasquez, M., Bhargava, B., Angin, P., Ahmed, N., Goodwin, D., Brin,
K., and Kobes, J. (2017). An mtd-based self-adaptive resilience approach for
cloud systems. In Cloud Computing (CLOUD), 2017 IEEE 10th International
Conference on, page 723–726. IEEE.

Vinícius, L., Rodrigues, L., Torquato, M., and Silva, F. A. (2022). Docker plat-
form aging: a systematic performance evaluation and prediction of resource
consumption. The Journal of Supercomputing, page 1–31.

von Kistowski, J., Eismann, S., Schmitt, N., Bauer, A., Grohmann, J., and
Kounev, S. (2018). Teastore: A micro-service reference application for bench-
marking, modeling and resource management research. In Proceedings of the
26th IEEE International Symposium on the Modelling, Analysis, and Simulation
of Computer and Telecommunication Systems, MASCOTS ’18.

Voorsluys, W., Broberg, J., Venugopal, S., and Buyya, R. (2009). Cost of vir-
tual machine live migration in clouds: A performance evaluation. In IEEE
International Conference on Cloud Computing, page 254–265. Springer.

Wahab, O. A., Bentahar, J., Otrok, H., and Mourad, A. (2019). Resource-aware
detection and defense system against multi-type attacks in the cloud: Repeated
bayesian stackelberg game. IEEE Transactions on Dependable and Secure Com-
puting.

Wang, D., Xie, W., and Trivedi, K. S. (2007). Performability analysis of clustered
systems with rejuvenation under varying workload. Performance Evaluation,
64(3):247–265.

Wang, H., Jia, Q., Fleck, D., Powell, W., Li, F., and Stavrou, A. (2014). A moving
target ddos defense mechanism. Computer Communications, 46:10–21.

Wang, H., Li, F., and Chen, S. (2016). Towards cost-effective moving target
defense against ddos and covert channel attacks. In Proceedings of the 2016
ACM Workshop on Moving Target Defense, page 15–25. ACM.

Wang, Y., Li, J., Meng, K., Lin, C., and Cheng, X. (2013). Modeling and security
analysis of enterprise network using attack–defense stochastic game petri nets.
Security and Communication Networks, 6(1):89–99.

Wang, Y., Yu, M., Li, J., Meng, K., Lin, C., and Cheng, X. (2012). Stochastic
game net and applications in security analysis for enterprise network. Interna-
tional Journal of Information Security, 11(1):41–52.

Xen (n.d.). Xen project. https://xenproject.org/. Accessed 2023-01-04.

Yadav, T. and Rao, A. M. (2015). Technical aspects of cyber kill chain. In
Security in Computing and Communications: Third International Symposium,
SSCC 2015, Kochi, India, August 10-13, 2015. Proceedings 3, pages 438–452.
Springer.

— 187 —

https://xenproject.org/

Bibliography

Yang, C., Guo, Y.-f., Hu, H.-c., Wang, Y.-w., Tong, Q., and Li, L.-s. (2019).
Driftor: mitigating cloud-based side-channel attacks by switching and migrat-
ing multi-executor virtual machines. Frontiers of Information Technology &
Electronic Engineering, 20(5):731–748.

Yang, Y. and Cheng, L. (2018). An sdn-based mtd model. Concurrency and
Computation: Practice and Experience, page e4897.

Zhang, M., Wang, L., Jajodia, S., Singhal, A., and Albanese, M. (2016a). Network
diversity: a security metric for evaluating the resilience of networks against
zero-day attacks. IEEE Transactions on Information Forensics and Security,
11(5):1071–1086.

Zhang, S. (2012). Deep-diving into an easily-overlooked threat: Inter-vm attacks.
Technical report, Technical Report). Manhattan, Kansas: Kansas State Uni-
versity.

Zhang, T. and Lee, R. B. (2017). Host-based dos attacks and defense in the
cloud. In Proceedings of the Hardware and Architectural Support for Security
and Privacy, pages 1–8.

Zhang, T., Zhang, Y., and Lee, R. B. (2016b). Memory dos attacks in multi-tenant
clouds: Severity and mitigation. arXiv preprint arXiv:1603.03404.

Zhang, T., Zhang, Y., and Lee, R. B. (2017). Dos attacks on your memory in
cloud. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, page 253–265.

Zhang, Y., Li, M., Bai, K., Yu, M., and Zang, W. (2012). Incentive compat-
ible moving target defense against vm-colocation attacks in clouds. In IFIP
International Information Security Conference, page 388–399. Springer.

Zhuang, R., DeLoach, S. A., and Ou, X. (2014). Towards a theory of moving
target defense. In Proceedings of the First ACM Workshop on Moving Target
Defense, page 31–40. ACM.

Zimmermann, A. (2017). Modelling and performance evaluation with timenet
4.4. In International Conference on Quantitative Evaluation of Systems, page
300–303. Springer.

— 188 —

Appendixes

Appendix A: MTD in the Cloud: A Systematic Mapping
Study
In the following pages, we present the full content of our systematic map study of
Moving Target Defense in cloud computing.

— 189 —

Computers & Security 92 (2020) 101742

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Moving target defense in cloud computing: A systematic mapping

study

Matheus Torquato

a , b , ∗, Marco Vieira

a

a Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
b Federal Institute of Alagoas, Campus Arapiraca, Arapiraca, Brazil

a r t i c l e i n f o

Article history:

Received 30 October 2019

Revised 25 January 2020

Accepted 1 February 2020

Available online 3 February 2020

Keywords:

Moving target defense

Cloud computing

Systematic mapping

Cyber security

Network security

a b s t r a c t

Moving Target Defense (MTD) consists of applying system reconfiguration (e.g., VM migration, IP shuf-

fling) to dynamically change the available attack surface. MTD makes use of reconfiguration to confuse

attackers and nullify their knowledge about the system state. It also can be used as an attack reaction

(e.g., using Virtual Machine (VM) migration to move VMs away from a compromised host). Thus, MTD

seems to be a promising technique to tackle some of the cloud computing security challenges. In this

systematic mapping study, we aim to investigate the current research state of Moving Target Defense in

the cloud computing context, and to identify potential research gaps in the literature. Considering five

major scientific databases in the computer science domain, we collected 224 papers related to the area.

After disambiguation and filtering, we selected 95 papers for analysis. The outcome of such analysis offers

a comprehensive overview of the current research. We can highlight some relevant research opportuni-

ties. First, only a few works present advances in the theoretical field of Moving Target Defense in cloud

computing. Second, the proposal and evaluation of multi-layer Moving Target Defense mechanisms is still

an open problem. Thirdly, there is a need for frameworks to support MTD evaluation, which may include

a benchmark for comparing alternative MTD strategies. Finally, the study of potential impacts of Moving

Target Defense in context-oriented clouds is a barely explored topic.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Cloud computing is a computing paradigm that enables ubiqui-

tous, on-demand network access to a configurable set of resources

(e.g., computing, storage, network, and services) (Mell et al., 2011).

Cloud computing reduces the up-front cost for its users, allowing

a gradual increase or decrease of resources allocation, adapting the

available computing power to the existing needs (Armbrust et al.,

2010). Due to its characteristics, many companies and organiza-

tions rely on cloud computing to run their applications.

Existing surveys show that cloud computing security is at the

top of users’ concerns (RightScale, 2018). Besides that, cloud com-

puting security and privacy persist as significant research chal-

lenges (Krutz and Vines, 2010; Ren et al., 2012).

In this context, Moving Target Defense (MTD) has emerged as a

low-cost technique to improve cloud computing resiliency and se-

curity. The United States Department of Homeland Security defines

MTD as the concept of controlling change across multiple system di-

∗ Corresponding author.

E-mail addresses: mdmelo@dei.uc.pt , matheus.torquato@ifal.edu.br (M.

Torquato), mvieira@dei.uc.pt (M. Vieira).

mensions in order to increase uncertainty and apparent complexity

for attackers, reduce their window of opportunity and increase the

costs of their probing and attack efforts. MTD assumes that perfect

security is unattainable. Given that starting point, and the assump-

tion that all systems are compromised, research in MTD focuses on

enabling the continued safe operation in a compromised environment

and to have systems that are defensible rather than perfectly secure

(hls, 2018).

In this paper, we aim to investigate the current research state of

MTD in cloud computing. To achieve this goal, we adopted a sys-

tematic mapping approach (Petersen et al., 2008; 2015). From sys-

tematic maps, we can understand the focus of community research

efforts and also perceive what areas are barely explored. The sys-

tematic mapping process aims to reduce bias in papers classifi-

cation by applying a well-defined methodology. Mapping studies

provide a good overview of a research topic and are useful before

starting more deep research works (Kitchenham et al., 2010).

The current literature provides comprehensive surveys and re-

view papers on Moving Target Defense. Lei et al. (2018a) fo-

cus on the characteristics of moving target defense techniques.

Cai et al. (2016b) presents a comprehensive survey on Moving Tar-

get Defense. Besides these two works, two relevant surveys in the

https://doi.org/10.1016/j.cose.2020.101742

0167-4048/© 2020 Elsevier Ltd. All rights reserved.

— 190 —

2 M. Torquato and M. Vieira / Computers & Security 92 (2020) 101742

area were recently published (Sengupta et al., 2019b; Zheng and

Namin, 2019). Two books from Jajodia et al. in this same topic can

also be found in the literature (Jajodia et al., 2012; 2011). Different

from all these works, our paper is focused on the cloud computing

context. Besides that, instead of surveying the papers, our goal is

to use a structured approach (i.e., systematic mapping) to provide

a comprehensive overview of MTD in the cloud.

Our analysis shows a growing interest in MTD in the cloud

computing context. Current research is focused on proposing and

evaluating MTD techniques based on environment reshuffle (like

VM migration or dynamic network reconfiguration). There are few

papers regarding MTD theory, and there is a need for unified

methodologies to support MTD evaluation and comparison. Also,

the combination of MTD strategies requires further research. In

practice, this paper presents a comprehensive overview of MTD in

cloud computing research. The diagrams and charts presented in-

tend to provide useful information for the community on the cur-

rent state of the research in the area.

The rest of this paper is organized as follows.

Section 2 presents some background about cloud computing

security. Section 3 presents motivations for conducting this re-

search. Section 4 introduces the methodology adopted for map

construction. Section 5 presents the results in terms of the pa-

pers collected from the scientific databases. Section 6 presents

the maps obtained. Section 7 discusses the maps and the main

observations. Finally, Section 8 concludes the paper.

2. Cloud computing security

Cloud computing architecture and intrinsic characteristics raise

several security concerns. For example, Popovi ́c and Hocen-

ski (2010) show that the cloud security concerns that range from

the location of the encryption and decryption keys to the auditabil-

ity of VMs . Due to the relevance of this question, cloud computing

security usually appear as a significant research challenge (Buyya

et al., 2018; Ren et al., 2012).

One of the challenging problems for cloud security is the asym-

metric advantage of attackers over defenders. Attackers can per-

form a series of actions (e.g., repeated attacks, vulnerability analy-

sis) until they achieve their goal. So, the attackers can try to exploit

a specific system vulnerability while the defenders have to protect

all the possible attack venues (Cai et al., 2016b). Besides that, the

generally static nature of data centers facilitates the attacker to ob-

tain enough information to improve the chance of attack success.

Moving Target Defense applies dynamic environment reconfig-

uration capable of confusing attackers or reacting to an attack

in progress. For example, to minimize the attackers’ asymmet-

ric advantage, we can apply a dynamic network address shuf-

fle (Fleck et al., 2018). Moreover, as an attack reaction, we can

use VM migration to save benign clients from the security at-

tack (Jia et al., 2014).

3. Motivation

Fig. 1 shows the Google search trends for the term “Moving Tar-

get Defense” in the last ten years. It is possible to notice a growing

interest in the field in the last ten years. As we will show in this

paper, the same occurs in the number of papers published in the

last years. Due to the urgency in the development of innovative

techniques to protect cloud computing systems, the MTD attracted

significant attention because of its flexibility. As mentioned earlier,

it is possible to deploy MTD to confuse attackers and also to react

to attacks in progress.

However, compared to the established defense mechanisms as

firewalls and Intrusion Detection Systems (IDS) (Bonguet and Bel-

laiche, 2017), MTD technique is a newer technology and the related

Fig. 1. Google trends - “Moving Target Defense” - Jan 1, 2009 to July 5, 2019.

research in the area is incipient. MTD draws attention because of

the idea of accepting imperfect security (hls, 2018) and applying

dynamic changes in the environment to protect it. Nevertheless,

there are challenges in the MTD deployment as how to apply the

dynamic changes, when to apply them, and how to evaluate their

effectiveness (more details of MTD in the cloud research opportu-

nities in Section 7).

Recent papers tackled such challenges. For example, the pa-

pers (Alavizadeh et al., 2019; Hong et al., 2018) presented evalua-

tion mechanisms for MTD. Sengupta et al. (2019a) leveraged from

a Markov Game to provide optimal strategies for security resources

placement. Das et al. (2019) used a process to obfuscate VM migra-

tion in the cloud environment, reducing the attacker’s chance to

recognize it. Peng et al. (2014b) propose MTD techniques based

on polymorphism, rapid provisioning of defenses, and defensive

mechanisms to facilitate unauthorized access detection.

The usual first step of research projects (as Ph.D. studies) is to

understand the state-of-the-art in the related field. The systematic

mapping aims to bring an overview of such state-of-the-art, usu-

ally focusing on specific aspects of the literature. Different from

systematic reviews, which discuss the related papers in detail, the

systematic mappings focus on specific aspects and perform a more

concise analysis of the papers. The main advantage of the system-

atic mappings is to usually provide faster results, as they focus on

the desired papers’ aspects. Besides that, the visual data (maps) fa-

cilitates the understanding of the state of the literature.

The current literature of MTD in the cloud lacks a systematic

mapping. This work intends to fill this gap proposing a mapping

from the last ten years of the research in the area. The scientific

may leverage our work for understanding the current state of the

MTD in cloud research, as well as on the definition of future re-

search lines.

4. Methods

The systematic mapping process is based on the work by

Petersen et al. (2008) . Fig. 2 presents the process steps and out-

comes, which will be described in the following sections.

4.1. Research questions

The main goal of this systematic mapping study is to provide an

overview of recent research on Moving Target Defense mechanisms

in cloud computing environments. To reach this goal, we propose

three generic research questions:

RQ1: How has the frequency of publication on moving target de-

fense in cloud computing changed in the last ten years?

RQ2: In which forums have research on moving target defense on

cloud computing been published?

RQ3: What are the most researched techniques for moving target

defense on cloud computing?

— 191 —

M. Torquato and M. Vieira / Computers & Security 92 (2020) 101742 3

Fig. 2. Systematic mapping process.

The first two questions aim to give an overview of publication

frequency and relevant forums of publication. The third question,

which is the most important, seeks to offer a bigger picture of the

relations of MTD techniques and cloud computing.

We also analyzed the considered papers to find the most

prominent authors from the field (i.e., authors with more publi-

cations) and to verify the existence of related research of the same

set of authors (i.e., identifying papers and their potential exten-

sions).

4.2. Scientific databases and search strategy

We selected five relevant online computer science computer

databases to find the papers related to MTD in the cloud. We de-

cided to use them instead of generic databases, such as Scopus

and Web of Science , because some papers may be missing from

these generic platforms (e.g., early access papers). We neglected

the Google Scholar database because it indexes non-peer reviewed

papers. The list of the selected databases is the following:

• ACM Digital Library;

• IEEE Xplore Digital Library;

• ScienceDirect;

• SpringerLink;

• Online Wiley Library.

The search string is the following:

(“moving target defense”) AND (“cloud”)

The first part of the search string is related to moving target

defense, and the second is related to cloud computing. We decided

to neglect the use of the acronym “MTD” in the search process be-

cause it is an ambiguous acronym. MTD can be related to Moving

Target Defense, Managing Technical Debt, Mixture Transition Dis-

tribution, Mean Texture Depth, or Machine-Type Device. Thus, we

assume that relevant works have at least one direct mention of the

term “moving target defense”.

In the second part of the search string, we decided to use only

the word “cloud” instead of its derivatives (e.g., IaaS, Cloud Com-

puting, Cloud environment). With this, we assume that the papers

within our research scope mention the word “cloud” directly.

4.3. Screening of papers

We determined the inclusion and exclusion criteria to filter the

search results. Our goal is to select the relevant research of MTD

in the cloud in the last ten years (i.e., as in RQ1). Thus, our paper

selection process intends to cover the peer-reviewed papers about

the subject. The research on MTD in the cloud is relatively new

when compared to consolidated areas (as performance evaluation,

for example), meaning that incipient research may have been pub-

lished in small conferences or workshops. Therefore, we do not ap-

ply filters related to the rank/quality of the considered venues of

publication. Finally, we also removed the survey papers from the

search results as we intend to analyze the individual contributions

from the papers instead of a compilation of papers. The adopted

filtering strategy is summarized below.

• Inclusion criteria

– Research papers about moving target defense techniques ap-

plied in cloud computing.

∗ Papers with direct reference to cloud computing and

moving target defense in their titles, abstracts, keywords

or introduction.

– Papers published in journals, magazines or conference pro-

ceedings.

• Exclusion criteria

– Papers published before 2009.

– Papers not written in the English language.

– Surveys.

We applied these criteria in a step-by-step process using the

available filters on the webpage of each scientific database con-

sidered. We decided to include only papers from journals, maga-

zines, and conference proceedings because these are usually peer-

reviewed. However, we highlight that some considered papers

from the Springer database are also published as book chapters.

4.4. Classification

Following the classification presented in Cai et al. (2016a) and

Okhravi et al. (2013) , we propose a classification with four cate-

gories: (i) MTD research area; (ii) MTD strategy; (iii) evaluation

metrics; and (iv) platform considered. These categories aim to

cover the meaningful aspects of each paper, considering our re-

search questions. Our classification approach is transverse in all the

proposed categories, meaning that a paper classification can com-

prise more than one group of each proposed category. The details

of each category are discussed in the following paragraphs.

4.4.1. MTD research area

In this category, we aim to classify the type of research pub-

lished observing the classification proposed in Cai et al. (2016a) .

The category has three groups, Theory, Strategy, and Evaluation, as

follows:

• Theory - Find answers to fundamental questions regarding

MTD techniques.

– How to create effective MTD system?

– What capabilities and features are essential to MTD sys-

tems?

• Strategy - Propose a technique for MTD.

• Evaluation - Measure the effectiveness of existing (or pro-

posed) strategies.

As mentioned before, we consider that a paper can be classi-

fied in more than one category. For example, some papers propose

and evaluate a mechanism for MTD on the cloud. Therefore, these

papers are classified as Strategy + Evaluation (S+E) .

— 192 —

4 M. Torquato and M. Vieira / Computers & Security 92 (2020) 101742

4.4.2. MTD strategies

While the research area category is quite generic, we assume

that MTD strategies are more focused on cloud computing envi-

ronments. We organize the papers using the groups proposed by

Okhravi et al. (2013) . We have thus three groups:

• Dynamic application - which comprises dynamic data (change

data format, syntax or encoding), dynamic software (dynamic

changes on the application code), and dynamic runtime environ-

ment (address space randomization or instruction set random-

ization).

• Dynamic platform - dynamic changes on the platform configu-

rations, including Operating System (OS) version, CPU architec-

ture or OS instance. We can deploy a Dynamic Platform MTD in

the cloud using VM migration or VM placement techniques.

• Dynamic Network - change network properties (e.g. IP address

or network protocols) dynamically.

4.4.3. Evaluation metrics

The deployment of an MTD mechanism implies costs for system

performance while improving the system security. Therefore, we

intend to understand which evaluation metrics are currently used

in MTD in cloud research. We propose only two groups for this

category:

• Performance , evaluation comprises performance metrics, such

as response time, system overhead, etc ;

• Security , evaluation covers security aspects, such as attack suc-

cess rate, survivability, etc .

4.4.4. Platform considered

This category has no predefined groups. We aim to fill the cat-

egory using a bottom-up approach. Thus, we propose the category

groups after the analysis of the papers. This category can reveal

the correlation between cloud computing and other platforms (e.g.,

Software Defined Networks or Virtualized Containers).

4.5. Threats to validity and limitations

There are threats to validity in systematic mapping research. It

is important to highlight the adopted approaches to avoid or mini-

mize them. In the scope of our work, we can highlight the follow-

ing threats to validity: (i) weak search string ; (ii) scientific database

limitation ; and (iii) classification bias .

About threat (i), weak search strings may result in a reduced

search result lacking relevant papers of the considered area. We

decided to use a generic search string instead of the composi-

tion of specific search strings (as presented in Section 4.2). There-

fore, we collected a reasonable amount of papers from scientific

databases. The drawback of applying generic search strings is the

increased subjective classification effort. When using the generic

search string, we ended up finding many papers about MTD that

also mention the word “cloud” as a concept or related work. We

carefully classified these papers to avoid mistakes in the paper se-

lection process.

About threat (ii), we decide to include five relevant scientific

databases in the computer science area, as presented in previous

systematic mapping studies (Fernandez et al., 2011; Roberto et al.,

2016).

Finally, about threat (iii), as the analysis of paper inclu-

sion/exclusion was made by the authors, the classification may be

biased. However, we did put a reasonable effort to reduce classifi-

cation bias by analyzing more paper content than just the abstract.

Besides that, to improve our classification process, we performed

two separate rounds of the full systematic mapping process, one

in November 2018 and a confirmation round in July 2019. In the

confirmation round, we analyzed all the papers from the previous

round (to confirm the classification). Besides that, we added the

papers published between the rounds. The results presented here

are from the confirmation round.

Besides the threats to validity, we emphasize the following lim-

itations in our research approach. Firstly, our research focuses on

the deployment of MTD techniques in the cloud computing envi-

ronment. As we mentioned earlier, we used a generic search string

to find the relevant papers in the context. However, there may be

other papers which do not mention ”cloud” directly but apply to

the virtualized environment. These papers will require a more in-

depth analysis, which is out of the scope of this paper.

Moreover, considering the number of collected papers, we per-

formed the second step of papers filtering manually (exclusion of

surveys, editorials, keynote, and duplicate entries). Thus, our ap-

proach has some scalability issues. A procedure to overcome this

limitation is the development of a software (script) capable of con-

ducting automated paper collection and filtering.

5. Results

The search was made between 5 and 16 of July 2019 and re-

sulted in 224 papers. The first step was to apply the selection cri-

teria using the automated filters provided in each database web-

page. Following the proposed criteria, the automated filters help to

exclude papers published before 2009 and papers that were not

published in journals, magazines, or conference proceedings. This

step resulted in a set of 163 papers. The second step of the pro-

cess was performed manually and consisted of the exclusion of ed-

itorial papers, keynote papers, surveys, or duplicated entries. The

manual work is as follows. We downloaded all the papers and per-

formed a quick analysis of them to notice whether they are ed-

itorial, keynote, or survey papers. We removed all the papers in

these categories, along with the duplicated entries. Unfortunately,

we have to conduct this work by hand because the automated

search bases do not offer the filtering for these types of papers.

This step reduced the to 95 the set of papers eligible for analysis.

The step-by-step process for each paper is presented in Fig. 3 .

Fig. 3 shows that the most relevant database is the IEEEXplore,

which provided 40 papers for the analysis (42.1% of the total). The

rest of the databases provided: SpringerLink - 29 papers (30.52%),

ScienceDirect - 14 papers (14.73%), ACM Digital Library - 10 papers

(10.52%), and Wiley Online Library - 2 papers (2.1%).

RQ1 is related to the frequency of publication of papers on MTD

in Cloud computing. Fig. 4 shows the annual trend since 2011. We

did not find any published in 2009 and 2010. It is possible to ob-

serve a growing research interest in MTD in cloud computing. Note

that the data for 2019 is still incomplete (because of the date of the

search), so the number of publications is expected to increase.

Table 1 presents the most relevant publication forums. It pro-

vides the answer to RQ2. ACM Workshop on Moving Target Defense

is the flagship forum with five papers. We noticed that the pub-

lication forums are diverse, as more than 80% of the papers are

from forums that provided less than three papers for our analy-

sis. Some papers from the Procedia Computer Science journal are

extended versions of previous conference papers.

We also analyzed the distribution of papers according to the

type of publication forum. Fig. 5 presents the proportion of papers

published in the three types of forums. As expected, papers in con-

ferences and workshops represent the majority of the published

papers. Journals and magazine papers usually pass through a rig-

orous review process, which can lead to fewer papers published in

such forums.

Each paper was classified using the scheme presented in

Section 4 . The complete list of the selected works is available on-

— 193 —

M. Torquato and M. Vieira / Computers & Security 92 (2020) 101742 5

Table 1

List of the most relevant publication forums.

Forum Type of forum Number of papers Percentage of the total

ACM Workshop on Moving Target Defense Workshop 5 5.26%

Procedia Computer Science Journal 4 4.21%

IEEE International Conference on Cloud Computing Conference 3 3.16%

Frontiers of Information Technology & Electronic Engineering Journal 3 3.16%

Future Generation Computer Systems Journal 3 3.16%

Other 64 forums - 77 81.05%

Fig. 3. Paper selection process.

Fig. 4. Publications over time with annual trend.

Fig. 5. Publications classification - type of forum.

line 1 . The research community can send new entries or suggestions

for improving the classification using a link on the same web page.

1 https://www.matheustorquato.com/publications/systematic- map- of- moving-

target-defense-on-cloud-computing .

Fig. 6. Research area classification.

6. Mapping

This section provides an overview of Moving Target Defense in

cloud computing research. We present charts and diagrams with

the distribution of publications regarding the classification men-

tioned earlier.

6.1. Research area - papers distribution

The first map is a Venn Diagram of the distribution of pa-

pers in terms of theory, strategy, and evaluation (see Fig. 6). We

noticed that most papers propose an MTD strategy and present

its evaluation. As we have books and seminal papers to support

MTD theory (Jajodia et al., 2012; 2011; Zhuang et al., 2014), the

scientific community seeks to offer more approaches to enhance

the available set of MTD mechanisms. However, theoretical pa-

pers usually provide more generic contributions on the use of

MTD in other scenarios (not only cloud computing). For example,

Leslie et al. (2015) propose a model based on game theory to sup-

port resources configuration to reduce the likelihood of a secu-

— 194 —

6 M. Torquato and M. Vieira / Computers & Security 92 (2020) 101742

Fig. 7. Research area classification - publications over time.

Fig. 8. Evaluation approaches - papers distribution.

rity attack. Lei et al. (2018b) also propose an approach based on

game theory. Their proposal consists of an incomplete information

Markov game theory comprising a moving attack surface and opti-

mal strategy selection. The papers (Peng et al., 2014a; Song et al.,

2019; Wang et al., 2016) are in the intersection between theory,

strategy, and evaluation. Besides proposing an MTD strategy and its

evaluation, they present a robust theoretical framework with mod-

els and algorithms.

Papers that propose generic evaluation methods are useful

to support the comparison of MTD techniques. The papers from

Alavizadeh et al. (2018a, 2018b, 2017) provide a modeling frame-

work for the evaluation of MTD in cloud environments. The au-

thors cover relevant security aspects as return on the attack, at-

tack cost, and the probability of attack success. Their results also

comprise a comparison between a system with and without MTD

deployments.

We also studied the evolution in terms of the number of pa-

pers published over time. The plot in Fig. 7 is inclusive, meaning

that the paper is counted in each research area that it resides. For

example, if a paper is about an MTD strategy and its evaluation, we

count this paper in the Strategy category and also in the Evalu-

ation category. It is noticeable that papers on theory received less

attention from the research community in the last years. Theoreti-

cal papers focused on the aspects of cloud computing and how to

deploy effective MTD in the cloud are an exciting aspect for future

research.

6.2. Evaluation metrics - papers distribution

Fig. 8 presents a Venn diagram with the distribution of the met-

rics found in the selected papers. We noticed a balanced distribu-

tion of papers in the proposed classification. Papers that include a

performance evaluation usually focus on the overhead caused by

the proposed (or evaluated) MTD strategy. For example, Yang and

Cheng (2018) present an MTD based on Software Defined Net-

Fig. 9. Strategy classification.

work (SDN). Among their results, the authors compared the re-

sponse time of the application when using their proposal with

the traditional MTD strategies. Wang et al. (2016) propose a cost-

effective MTD against Distributed Denial of Service (DDoS) and

Covert Channel Attacks. Their performance evaluation covers the

cost per minute of using different variations of MTD algorithms.

The specific assumptions of each research impose barriers for

the comparison of different MTD strategies. The security evalu-

ation metrics considered in the works analyzed tend to be re-

lated to specific aspects to characterize the proposed MTD ef-

fectiveness. The metrics are usually defined by the authors and

applied in their specific context. For example, the study from

Sianipar et al. (2018) is focused on the Meltdown and Spec-

tre vulnerabilities. Therefore, their results are based on Spec-

tre and Meltdown effectiveness while applying their approach.

Wang et al. (2014) propose an MTD solution as a DDoS defense.

The evaluation comprises the percentage of clients saved based on

the number of shuffles. Wahab et al. (2019) propose a comprehen-

sive framework for MTD deployment in the cloud. Their framework

comprises several techniques and methods, including a risk assess-

ment methodology and a machine learning approach to collect in-

formation from malicious activities. In the evaluation, the authors

use two primary metrics: percentage of attack detection and sur-

vived services.

The most recurrent security metric is related to the MTD im-

pact in the attack success rate (Debroy et al., 2016; Ma et al., 2016;

Nguyen et al., 2018; Zhang et al., 2016b). However, it is still chal-

lenging to set up a direct comparison between the papers due

to their particular assumptions. The development of a unified ap-

proach for MTD evaluation is an open problem.

6.3. Strategy - papers distribution

This section presents an overview of the type of MTD strategies

applied in cloud computing. The results presented here provide an-

swers to RQ3 . Fig. 9 presents a Venn diagram with the distribution

of the proposed MTD strategies. As mentioned in Section 4 , each

set in the Venn diagram corresponds to MTD strategies related to

the dynamic application, dynamic network, and dynamic platform.

We noticed that most of the MTD techniques leverage cloud

computing inherent features. For example, MTD based on the

dynamic platform usually relies on Virtual Machine (VM) mi-

gration for the environment reconfiguration. In this context, VM

migration is usually used to defend against side-channel at-

tacks (Adili et al., 2017; Azab et al., 2017; Kashkoush et al.,

2018; Moon et al., 2015; Yang et al., 2019; Zhang et al., 2012).

— 195 —

M. Torquato and M. Vieira / Computers & Security 92 (2020) 101742 7

Liu et al. (2018) present an MTD approach against side-channel at-

tacks based on dynamically scheduling VM computing resources.

Agarwal and Duong (2019) propose a different MTD solution to de-

fend against side-channel attacks using a VM placement technique.

They propose an algorithm to reduce the probability of malicious

VM co-location. Also using VM placement techniques, Ahmed and

Bhargava (2016) propose a MTD framework based on the creation

and deletion (reincarnation) of VMs. To improve security, the au-

thors dynamically change the OS instance on the VM in each rein-

carnation round. Jia et al. (2014) present an MTD mechanism to

isolate attacked servers from benign clients during DDoS attacks.

Their approach consists of turning victim servers into moving tar-

gets. Penner et al. work (Penner and Guirguis, 2017) leverage on

both VM migration and VM placement techniques to provide a

comprehensive MTD mechanism for cloud computing.

Dynamic network approaches are usually based on network ad-

dress hopping techniques (El Mir et al., 2017; Groat et al., 2013;

Luo et al., 2016). Kurra et al. (2013) present an MTD mechanism

based on data partitioning and key hopping. Using key hopping

mechanisms, the authors can reduce the length of keys to im-

prove system performance while maintaining system security lev-

els. Fleck et al. (2018) propose dynamic changes on the IP ad-

dresses of proxies to thwart the reconnaissance phase of attacks.

Lysenko et al. (2018) also propose dynamic network configurations

to protect a Corporate Area Network.

Regarding MTD techniques related to the dynamic application

approach, we highlight that the most used technique is Soft-

ware Behavior Encryption (SBE). SBE is usually applied using a dy-

namic selection of functionally-equivalent software variants at run-

time (Dsouza et al., 2013; Hosseinzadeh et al., 2015; Le Goues

et al., 2013). The oldest paper in our classification (Azab and El-

toweissy, 2011) also applies SBE in the context of Cyber-Physical

Systems (CPS). The authors used the ChameleonSoft , a biological-

inspired MTD framework that provides software diversity at run-

time.

Finally, we highlight that just one paper (Chung et al., 2015)

propose a framework (SeReNe) comprising all the three layers (ap-

plication, network, and platform). However, SeReNe is still in a

conceptual phase and lacks practical implementation and evalua-

tion.

6.4. Platforms - papers distribution

In this category, we aim to understand whether the papers are

only focused on cloud computing or are also considering other

platforms. We find this category useful to identify cross-platform

MTD strategies or to perceive how cloud may support the appli-

cation MTD in other scenarios. We found out that the majority of

papers are focused only on cloud computing instead of consider-

ing the use of cloud computing in conjunction with other plat-

forms (e.g., Software Defined Networking or Virtualized Contain-

ers). However, there is a non-negligible set of papers consider-

ing these other platforms. An interesting example is a paper from

Kahla et al. (2018) , which proposes a technique for Fog computing

and the Internet of Things (IoT). Some papers leverage the flex-

ibility of Software Defined Networks (SDN) to propose more ro-

bust MTD solutions (Chowdhary et al., 2016; Urias et al., 2015;

Villarreal-Vasquez et al., 2017). Due to lightweight virtualization

overhead, some research works aim to deploy MTD using virtual-

ized containers (Jin et al., 2019; Torkura et al., 2018). The overall

results are presented in Fig. 10 .

We highlight the paper from Pacheco et al. (2016) , which ap-

plies MTD on top of the cloud but focusing on the smart city con-

text. The authors compared the performance levels with and with-

out using MTD. Lei et al. paper (Lei et al., 2018b) has a generic

context. Thus, it is hard to classify it in a single category of this

Fig. 10. Considered platform category.

classification. Therefore, we decided to exclude this paper from the

classification of this specific subsection of our systematic mapping.

6.5. Research area and strategy - classification relationship

The bubble chart in Fig. 11 presents the relationship between

the research area and strategy categories of the selected papers.

Bubble charts simplify the identification of research gaps and the

areas that received the most attention from the research commu-

nity.

As mentioned earlier, most papers propose an MTD strategy

and its evaluation (S+E category). Moreover, among these papers,

the majority use dynamic platform strategies. There are three the-

oretical papers (Bazm et al., 2017; Lei et al., 2018b; Leslie et al.,

2015) that study generic MTD theory without focusing on spe-

cific strategies. Some papers propose MTD strategies but lack the

evaluation of their effectiveness. MTD Theory receives less atten-

tion than the other areas from the research community. The paper

from Casola et al. (2018) was classified as theory and strategy be-

cause, besides presenting a security SLA-driven MTD framework,

it presents a strong theory about cloud applications and security

SLAs.

6.6. Platform and strategy - classification relationship

Fig. 12 presents the relationship between platforms and strate-

gies. We noticed that the papers from the cloud category usually

apply dynamic platform techniques, as presented in Section 6.3 .

Besides that, we noticed that MTD approaches for virtualized con-

tainers also tend to leverage from dynamic platform techniques.

For example, Azab et al. (2016a,b) present an MTD based on the

live migration of virtualized containers to avoid security attacks.

The majority of the papers that use dynamic network MTD ap-

proaches leverages the flexibility of the SDN paradigm. The strate-

gies vary from usual IP mutation (Chang et al., 2018; Zhang et al.,

2016a) and port hopping (Chowdhary et al., 2018) to route ran-

domization (Aydeger et al., 2019; Karim et al., 2019).

6.7. Authors analysis

Some of the considered papers in our systematic mapping are

closely related. For example, there are papers from the same au-

thors published in conferences and journals, which have similar

goals (e.g., Kashkoush et al., 2017; Kashkoush et al., 2018). In such

cases, we consider both papers in our analysis (i.e., conference and

journal versions). As our RQ1 is related to the frequency of paper

publication, we decided to maintain both versions in our analysis

to provide a more precise overview of the literature in the last ten

years.

— 196 —

8 M. Torquato and M. Vieira / Computers & Security 92 (2020) 101742

Fig. 11. Relationship between Research Area and Strategy categories.

Fig. 12. Relationship between considered platforms and strategy categories.

However, to highlight the possible relationship between the

publications from the same authors, we conducted an author anal-

ysis on the considered papers. This analysis aims to find the papers

from the same set of authors and to verify possible relationships

between them. Besides that, the analysis output also provides the

most prominent authors on the field (i.e., authors with most pub-

lications).

Mir et al. published two related papers with evaluation ap-

proaches for MTD deployments in the cloud (El Mir et al., 2016;

2017). Wang et al. published papers about MTD deployments for

defending cloud computing from Denial of Service attacks (Jia

et al., 2014; Wang et al., 2014; 2016). As mentioned earlier, Kashk-

oush et al. published the related papers (Kashkoush et al., 2017;

2018) about Moving Target Defense to avoid co-residency attacks.

Hooman Alavizadeh is one of the most active authors in the MTD

evaluation research area. He and his co-authors published papers

applying modeling in the MTD deployments evaluation (Alavizadeh

et al., 2018a; 2018b; 2017). Jajodia et al. provide interesting insights

into the deployment of MTD on cloud databases (Jajodia et al.,

2015; 2016).

Fig. 13 presents a wordcloud with the names of all the authors

of the selected papers. In this wordcloud , the font size of the au-

thor’s name varies according to the number of publications from

the author (i.e., big-sized font names represent that the author has

more publications than the authors with small-sized font names).

Thus, this wordcloud is useful to highlight the most prominent au-

thors on the scope of our systematic mapping.

Finally, we highlight the following authors as the most promi-

nent authors on MTD in the cloud in from 2009 to July 2019:

Mohamed Azab (Virginia Military Institution, USA and Informat-

ics Research Institute of Alexandria, Egypt.) published eight of the

considered papers; Dijiang Huang (Arizona State University, USA)

published seven of the considered papers; and, Ankur Chowdhary

(Arizona State University, USA), Dong Seong Kim (The University

of Queensland, Australia), and Salim Hariri (The University of Ari-

zona, USA) with six published papers.

7. Discussion

Moving target defense attracted the attention of the cloud se-

curity research community in the last years, e.g., the number of

publications per year increased 35% from 2017 to 2018. The num-

ber of publications on July 5th, 2019, is already about 50% of the

publications in 2018. Considering that relevant venues, such as the

2019 ACM Workshop on Moving Target Defense and the 2019 IEEE In-

ternational Conference on Cloud Computing , are still not indexed till

the date of this paper writing, the number of papers published in

2019 may surpass the number of publications in 2018. Actually, in

the same period of 2018 (January 1st to July 5th), only seven pa-

pers were published, while in 2019, 13 papers were published. The

publication forums in the last ten years are diverse, meaning that

the research community is still consolidating the primary forums

of interest.

While applying or proposing MTD mechanisms for cloud com-

puting, the researchers leverage on cloud and virtualization fea-

tures, including VM placement and migration techniques. The

problem with this approach is that these MTD techniques rely only

on platform modification. Therefore, some more well-prepared at-

— 197 —

M. Torquato and M. Vieira / Computers & Security 92 (2020) 101742 9

Fig. 13. Word cloud with the selected papers’ authors.

tackers may develop security attacks targeting higher layers, such

as application confidentiality or user privacy. However, the use of

cloud and virtualization capabilities reduces the cost of MTD im-

plementation due to the use of cloud embedded features. Besides

that, the mappings show that authors have a strong interest in

proposing and evaluating MTD mechanisms.

There is a significant research effort in expanding MTD from

cloud computing to other platforms. The relationship between

cloud and those platforms is mutual. Some works use the cloud to

enable MTD in another specific platform (like Cyber-Physical Sys-

tems and IoT). Some other works use other platforms to improve

the security levels of the cloud (e.g., using SDN).

In the following paragraphs, we highlight four relevant research

opportunities on MTD in cloud computing. This is a non-exhaustive

list, but it provides the significant research gaps found in our sys-

tematic mapping study.

Research opportunity 1 - Theoretical research about MTD in

Cloud computing . The majority of the theoretical papers found are

generic. MTD theories that consider the characteristics of clouds

and their virtualized environments represent a research opportu-

nity. For example, a relevant MTD problem is the MTD timing prob-

lem , where one tries to define optimal schedules to perform MTD

actions taking into account the desired system attributes (e.g., se-

curity, performance or sustainability).

Research opportunity 2 - A unified framework for MTD evalua-

tion . The development of security benchmarks is a complex prob-

lem due to the inherent unpredictability of the attackers. However,

previous research (Dumitra ̧s and Shou, 2011; Vieira and Madeira,

2005) provides directions for the design of such benchmarks. The

current research on MTD in the cloud focuses on proposing new

techniques to avoid (or reduce the likelihood) of specific security

threats. The problem is that, without unified evaluation metrics,

it is hard to compare and decide among the available MTD meth-

ods. Proposing a unified MTD evaluation approach may be an in-

surmountable challenge. However, starting proving evaluation ap-

proaches for specific scenarios (e.g., MTD in the cloud that applies

VM migration to avoid side-channel attacks) seems to be an inter-

esting research opportunity.

Research opportunity 3 - Multi-layer MTD . As mentioned ear-

lier, researchers mainly explored cloud features as enabling mech-

anisms for MTD deployments. There is still a gap in the develop-

ment of multi-layer MTD frameworks for cloud computing. Just ap-

plying dynamic platform and network techniques are not enough

to mitigate sophisticated attacks that aim at the system confiden-

tiality or users’ privacy. The development of a self-adaptive frame-

work capable of dynamic multi-layer MTD selection is an interest-

ing research challenge.

Research opportunity 4 - Impact of MTD in context-oriented

clouds . As presented in Buyya et al. (2018) , there is a need for

holistic evaluations in cloud computing environments. Applying

MTD in context-oriented clouds may impose severe system over-

head. Although the current research in MTD in the cloud is cov-

ering diverse platforms, we noticed a research gap in the evalua-

tion of the MTD impact in context-oriented clouds. For example,

some Infrastructure-as-a-Service (IaaS) clouds are devoted to offer-

ing high-availability to its clients. Let us suppose that, besides high

availability, the system also needs to improve security levels. The

evaluation of the possible impacts of applying MTD in such scenar-

ios seems to be an interesting research problem.

8. Conclusions

This work presented a systematic mapping of Moving Target

Defense in cloud research. To achieve this goal, we collected 224

papers from five computer science scientific databases. The selec-

tion process resulted in 95 papers for analysis. The papers were

classified according to four main properties: research area, strat-

egy, evaluation metrics, and platforms.

We present here simplified answers to our research questions.

RQ1: How has the frequency on moving target defense on cloud com-

puting changed in the last ten years? We noticed a growing inter-

est in the MTD in cloud research in the last ten years. RQ2: In

which forums have research on moving target defense on cloud com-

puting been published? The most relevant conference in the area is

the ACM Workshop on Moving Target Defense , and the most rele-

vant journal is Procedia Computer Science. RQ3: What are the most

investigated techniques in moving target defense on cloud computing

research? In the dynamic platform papers, the most used technique

is VM migration. In dynamic network papers, the most used tech-

nique is the network address randomization. A significant number

of dynamic network papers rely on SDN flexibility to perform dy-

namic network changes. Finally, the most used technique in dy-

namic application papers is Software Behavior Encryption.

The complete list of selected papers is available online. 2 The re-

search community can send new suggestions for paper inclusion or

classification corrections.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Acknowledgments

This work has been partially supported by Portuguese fund-

ing institution FCT - Foundation for Science and Technology, Ph.D.

grant SFRH/BD/146181/2019 and project ATMOSPHERE, funded by

the European Commission under the Cooperation Programme,

Horizon 2020 grant agreement no 777154 .

2 https://www.matheustorquato.com/publications/systematic- map- of- moving-

target-defense-on-cloud-computing .

— 198 —

10 M. Torquato and M. Vieira / Computers & Security 92 (2020) 101742

References

Adili, M.T. , Mohammadi, A. , Manshaei, M.H. , Rahman, M.A. , 2017. A cost-effective

security management for clouds: a game-theoretic deception mechanism. In:

Integrated Network and Service Management (IM), 2017 IFIP/IEEE Symposium

on. IEEE, pp. 98–106 .

Agarwal, A. , Duong, T.N.B. , 2019. Secure virtual machine placement in cloud data
centers. Fut. Gener. Comput. Syst. 100, 210–222 .

Ahmed, N.O. , Bhargava, B. , 2016. Mayflies: a moving target defense framework for
distributed systems. In: Proceedings of the 2016 ACM Workshop on Moving Tar-

get Defense. ACM, pp. 59–64 .

Alavizadeh, H. , Hong, J.B. , Jang-Jaccard, J. , Kim, D.S. , 2018. Comprehensive security
assessment of combined MTD techniques for the cloud. In: Proceedings of the

5th ACM Workshop on Moving Target Defense. ACM, pp. 11–20 .
Alavizadeh, H. , Jang-Jaccard, J. , Kim, D.S. , 2018. Evaluation for combination of shuffle

and diversity on moving target defense strategy for cloud computing. In: 2018
17th IEEE International Conference On Trust, Security and Privacy in Computing

and Communications/12th IEEE International Conference on Big Data Science
and Engineering (TrustCom/BigDataSE). IEEE, pp. 573–578 .

Alavizadeh, H. , Kim, D.S. , Hong, J.B. , Jang-Jaccard, J. , 2017. Effective security anal-

ysis for combinations of MTD techniques on cloud computing (short paper).
In: International Conference on Information Security Practice and Experience.

Springer, pp. 539–548 .
Alavizadeh, H. , Kim, D.S. , Jang-Jaccard, J. , 2019. Model-based evaluation of combina-

tions of shuffle and diversity MTD techniques on the cloud. Fut. Gener. Comput.
Syst. .

Armbrust, M. , Fox, A. , Griffith, R. , Joseph, A.D. , Katz, R. , Konwinski, A. , Lee, G. , Patter-

son, D. , Rabkin, A. , Stoica, I. , et al. , 2010. A view of cloud computing. Commun.
ACM 53 (4), 50–58 .

Aydeger, A. , Saputro, N. , Akkaya, K. , 2019. A moving target defense and network
forensics framework for ISP networks using SDN and NFV. Fut. Gener. Comput.

Syst. 94, 496–509 .
Azab, M. , Eltoweissy, M. , 2011. Defense as a service cloud for cyber-physical sys-

tems. In: Collaborative Computing: Networking, Applications and Worksharing

(CollaborateCom), 2011 7th International Conference on. IEEE, pp. 392–401 .
Azab, M. , Eltoweissy, M. , Attiya, G. , et al. , 2017. Towards online smart disguise: real–

time diversification evading co-residency based cloud attacks. In: 2017 IEEE 3rd
International Conference on Collaboration and Internet Computing (CIC). IEEE,

pp. 235–242 .
Azab, M. , Mokhtar, B. , Abed, A.S. , Eltoweissy, M. , 2016. Toward smart moving target

defense for linux container resiliency. In: Local Computer Networks (LCN), 2016

IEEE 41st Conference on. IEEE, pp. 619–622 .
Azab, M. , Mokhtar, B.M. , Abed, A.S. , Eltoweissy, M. , 2016. Smart moving target de-

fense for linux container resiliency. In: Collaboration and Internet Computing
(CIC), 2016 IEEE 2nd International Conference on. IEEE, pp. 122–130 .

Bazm, M.-M. , Lacoste, M. , Südholt, M. , Menaud, J.-M. , 2017. Side-channels beyond
the cloud edge: new isolation threats and solutions. In: Cyber Security in Net-

working Conference (CSNet), 2017 1st. IEEE, pp. 1–8 .

Bonguet, A. , Bellaiche, M. , 2017. A survey of denial-of-service and distributed denial
of service attacks and defenses in cloud computing. Future Internet 9 (3), 43 .

Buyya, R. , Srirama, S.N. , Casale, G. , Calheiros, R. , Simmhan, Y. , Varghese, B. , Ge-
lenbe, E. , Javadi, B. , Vaquero, L.M. , Netto, M.A. , et al. , 2018. A manifesto for fu-

ture generation cloud computing: research directions for the next decade. ACM

Comput. Surv. 51 (5), 105 .

Cai, G. , Wang, B. , Luo, Y. , Li, S. , Wang, X. , 2016. Characterizing the running patterns

of moving target defense mechanisms. In: Advanced Communication Technol-
ogy (ICACT), 2016 18th International Conference on. IEEE, pp. 191–196 .

Cai, G. , Wang, B. , Hu, W. , Wang, T. , 2016. Moving target defense: state of the art and
characteristics. Front. Inf. Technol. Electron.Eng. 17 (11), 1122–1153 .

Casola, V. , De Benedictis, A. , Rak, M. , Villano, U. , 2018. A security SLA-driven moving
target defense framework to secure cloud applications. In: Proceedings of the

5th ACM Workshop on Moving Target Defense. ACM, pp. 48–56 .
Chang, S.-Y. , Park, Y. , Babu, B.B.A. , 2018. Fast ip hopping randomization to secure

hop-by-hop access in sdn. IEEE Trans. Netw. Serv. Manage. 16 (1), 308–320 .

Chowdhary, A . , Alshamrani, A . , Huang, D. , Liang, H. , 2018. MTD analysis and eval-
uation framework in software defined network (mason). In: Proceedings of the

2018 ACM International Workshop on Security in Software Defined Networks &
Network Function Virtualization. ACM, pp. 43–48 .

Chowdhary, A. , Pisharody, S. , Huang, D. , 2016. SDN based scalable MTD solution in
cloud network. In: Proceedings of the 2016 ACM Workshop on Moving Target

Defense. ACM, pp. 27–36 .

Chung, C.-J. , Xing, T. , Huang, D. , Medhi, D. , Trivedi, K. , 2015. Serene: on establish-
ing secure and resilient networking services for an SDN-based multi-tenant

datacenter environment. In: Dependable Systems and Networks Workshops
(DSN-W), 2015 IEEE International Conference on. IEEE, pp. 4–11 .

Das, S. , Mahfouz, A.M. , Shiva, S. , 2019. A stealth migration approach to moving tar-
get defense in cloud computing. In: Proceedings of the Future Technologies Con-

ference. Springer, pp. 394–410 .

Debroy, S. , Calyam, P. , Nguyen, M. , Stage, A. , Georgiev, V. , 2016. Frequency-minimal
moving target defense using software-defined networking. In: Computing, Net-

working and Communications (ICNC), 2016 International Conference on. IEEE,
pp. 1–6 .

Dsouza, G. , Hariri, S. , Al-Nashif, Y. , Rodriguez, G. , 2013. Resilient dynamic data driven
application systems (RDDDAS). Procedia Comput. Sci. 18, 1929–1938 .

Dumitra ̧s , T. , Shou, D. , 2011. Toward a standard benchmark for computer security

research: the worldwide intelligence network environment (wine). In: Proceed-

ings of the First Workshop on Building Analysis Datasets and Gathering Experi-
ence Returns for Security. ACM, pp. 89–96 .

El Mir, I. , Chowdhary, A. , Huang, D. , Pisharody, S. , Kim, D.S. , Haqiq, A. , 2016. Software
defined stochastic model for moving target defense. In: International Afro-Euro-

pean Conference for Industrial Advancement. Springer, pp. 188–197 .
El Mir, I. , Haqiq, A. , Kim, D.S. , 2017. A game theoretic approach for cloud com-

puting security assessment using moving target defense mechanisms. In: Pro-
ceedings of the Mediterranean Symposium on Smart City Applications. Springer,

pp. 242–254 .

Fernandez, A. , Insfran, E. , Abrahão, S. , 2011. Usability evaluation methods for the
web: asystematic mapping study. Inf. Softw. Technol. 53 (8), 789–817 .

Fleck, D. , Stavrou, A. , Kesidis, G. , Nasiriani, N. , Shan, Y. , Konstantopoulos, T. ,
2018. Moving-target defense against botnet reconnaissance and an adversarial

coupon-collection model. In: 2018 IEEE Conference on Dependable and Secure
Computing (DSC). IEEE, pp. 1–8 .

Groat, S. , Moore, R. , Marchany, R. , Tront, J. , 2013. Securing static nodes in mobile-en-

abled systems using a network-layer moving target defense. In: 2013 1st In-
ternational Workshop on the Engineering of Mobile-Enabled Systems (MOBS).

IEEE, pp. 42–47 .
Hong, J.B. , Enoch, S.Y. , Kim, D.S. , Nhlabatsi, A. , Fetais, N. , Khan, K.M. , 2018. Dynamic

security metrics for measuring the effectiveness of moving target defense tech-
niques. Comput. Secur. 79, 33–52 .

Hosseinzadeh, S. , Laurén, S. , Rauti, S. , Hyrynsalmi, S. , Conti, M. , Leppänen, V. , 2015.

Obfuscation and diversification for securing cloud computing. In: International
Workshop on Enterprise Security. Springer, pp. 179–202 .

Jajodia, S. , Ghosh, A.K. , Subrahmanian, V. , Swarup, V. , Wang, C. , Wang, X.S. , 2012.
Moving Target Defense II: Application of Game Theory and Adversarial Model-

ing, 100. Springer .
Jajodia, S. , Ghosh, A.K. , Swarup, V. , Wang, C. , Wang, X.S. , 2011. Moving Target De-

fense: Creating Asymmetric Uncertainty for Cyber Threats, 54. Springer Science

& Business Media .
Jajodia, S. , Litwin, W. , Schwarz, T. , 2015. Numerical SQL value expressions over

encrypted cloud databases. In: Database and Expert Systems Applications.
Springer, pp. 455–478 .

Jajodia, S. , Litwin, W. , Schwarz, T. , 2016. On-the-fly AES256 decryption/encryption
for trusted cloud SQL DBS: position statement. In: 2016 27th Interna-

tional Workshop on Database and Expert Systems Applications (DEXA). IEEE,

pp. 19–23 .
Jia, Q. , Wang, H. , Fleck, D. , Li, F. , Stavrou, A. , Powell, W. , 2014. Catch me if you can: a

cloud-enabled DDoS defense. In: 2014 44th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN). IEEE, pp. 264–275 .

Jin, H. , Li, Z. , Zou, D. , Yuan, B. , 2019. Dseom: a framework for dynamic security eval-
uation and optimization of MTD in container-based cloud. IEEE Trans. Depend.

Secure Comput. .

Kahla, M. , Azab, M. , Mansour, A. , 2018. Secure, resilient, and self-configuring fog
architecture for untrustworthy IoT environments. In: 2018 17th IEEE Interna-

tional Conference on Trust, Security and Privacy in Computing and Communi-
cations/12th IEEE International Conference on Big Data Science and Engineering

(TrustCom/BigDataSE). IEEE, pp. 49–54 .
Karim, Z. , Sebbara, A. , Baddic, Y. , Boulmalfa, M. , 2019. Secure multipath mutation

SMPM in moving target defense based on SDN. Procedia Comput. Sci. .
Kashkoush, M., Azab, M., Eltoweissy, M., Attiya, G., 2017. Towards online smart dis-

guise: Real-time diversification evading co-residency based cloud attacks. In:

2017 IEEE 3rd International Conference on Collaboration and Internet Comput-
ing (CIC), pp. 235–242. doi: 10.1109/CIC.2017.0 0 039 .

Kashkoush, M.S. , Azab, M. , Attiya, G. , Abed, A.S. , 2018. Online smart disguise: real–
time diversification evading coresidency-based cloud attacks. Cluster Comput.

1–16 .
Kitchenham, B. , Brereton, P. , Budgen, D. , 2010. The educational value of mapping

studies of software engineering literature. In: Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering-Volume 1. ACM, pp. 589–
598 .

Krutz, R.L. , Vines, R.D. , 2010. Cloud Security: A Comprehensive Guide to Secure
Cloud Computing. Wiley Publishing .

Kurra, H. , Al-Nashif, Y. , Hariri, S. , 2013. Resilient cloud data storage services. In: Pro-
ceedings of the 2013 ACM Cloud and Autonomic Computing Conference. ACM,

p. 17 .

Le Goues, C. , Nguyen-Tuong, A. , Chen, H. , Davidson, J.W. , Forrest, S. , Hiser, J.D. ,
Knight, J.C. , Van Gundy, M. , 2013. Moving Target Defenses in the Helix Self-re-

generative Architecture. In: Moving Target Defense II. Springer, pp. 117–149 .
Lei, C. , Zhang, H.-Q. , Tan, J.-L. , Zhang, Y.-C. , Liu, X.-H. , 2018. Moving target defense

techniques: a survey. Secur. Commun. Netw. 2018 .
Lei, C. , Zhang, H.-Q. , Wan, L.-M. , Liu, L. , Ma, D. , 2018. Incomplete information Markov

game theoretic approach to strategy generation for moving target defense. Com-

put. Commun. 116, 184–199 .
Leslie, D. , Sherfield, C. , Smart, N.P. , 2015. Threshold flipthem: when the winner does

not need to take all. In: International Conference on Decision and Game Theory
for Security. Springer, pp. 74–92 .

Liu, L. , Wang, A. , Zang, W. , Yu, M. , Xiao, M. , Chen, S. , 2018. Shuffler: Miti-
gate cross-VM side-channel attacks via hypervisor scheduling. In: Interna-

tional Conference on Security and Privacy in Communication Systems. Springer,

pp. 491–511 .
Luo, Y.-B. , Wang, B.-S. , Cai, G.-L. , Wang, X.-F. , Zhang, B.-F. , 2016. High performance

low latency network address and port hopping mechanism based on netfilter.
In: International Conference on Intelligent and Interactive Systems and Applica-

tions. Springer, pp. 239–244 .

— 199 —

M. Torquato and M. Vieira / Computers & Security 92 (2020) 101742 11

Lysenko, S. , Savenko, O. , Bobrovnikova, K. , Kryshchuk, A. , 2018. Self-adaptive sys-
tem for the corporate area network resilience in the presence of botnet cyber-

attacks. In: International Conference on Computer Networks. Springer, pp. 385–
401 .

Ma, D. , Lei, C. , Wang, L. , Zhang, H. , Xu, Z. , Li, M. , 2016. A self-adaptive hopping ap-
proach of moving target defense to thwart scanning attacks. In: International

Conference on Information and Communications Security. Springer, pp. 39–53 .
Mell, P. , Grance, T. , et al. , 2011. The NIST definition of cloud computing .

Moon, S.-J. , Sekar, V. , Reiter, M.K. , 2015. Nomad: mitigating arbitrary cloud

side channels via provider-assisted migration. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security. ACM,

pp. 1595–1606 .
Moving, 2018. Target Defense. https://www.dhs.gov/science- and- technology/

csd-mtd Accessed: 2018-12-09
Nguyen, M. , Pal, A. , Debroy, S. , 2018. Whack-a-mole: Software-defined networking

driven multi-level DDoS defense for cloud environments. In: 2018 IEEE 43rd

Conference on Local Computer Networks (LCN). IEEE, pp. 493–501 .
Okhravi, H. , Rabe, M. , Mayberry, T. , Leonard, W. , Hobson, T. , Bigelow, D. , Streilein, W. ,

2013. Survey of Cyber Moving Target Techniques. Technical Report. Mas-
sachusetts Inst of Tech Lexington Lincoln Lab .

Pacheco, J. , Tunc, C. , Hariri, S. , 2016. Design and evaluation of resilient infrastruc-
tures systems for smart cities. In: 2016 IEEE International Smart Cities Confer-

ence (ISC2). IEEE, pp. 1–6 .

Peng, W. , Li, F. , Huang, C.-T. , Zou, X. , 2014. A moving-target defense strategy for
cloud-based services with heterogeneous and dynamic attack surfaces. In: Com-

munications (ICC), 2014 IEEE International Conference on. IEEE, pp. 804–809 .
Peng, W. , Li, F. , Zou, X. , 2014. Moving target defense for cloud infrastructures:

lessons from botnets. In: High Performance Cloud Auditing and Applications.
Springer, pp. 35–64 .

Penner, T. , Guirguis, M. , 2017. Combating the bandits in the cloud: a moving target

defense approach. In: Cluster, Cloud and Grid Computing (CCGRID), 2017 17th
IEEE/ACM International Symposium on. IEEE, pp. 411–420 .

Petersen, K. , Feldt, R. , Mujtaba, S. , Mattsson, M. , 2008. Systematic mapping studies
in software engineering.. In: EASE, 8, pp. 68–77 .

Petersen, K. , Vakkalanka, S. , Kuzniarz, L. , 2015. Guidelines for conducting system-
atic mapping studies in software engineering: an update. Inf. Softw. Technol.

64, 1–18 .

Popovi ́c, K. , Hocenski, Ž. , 2010. Cloud computing security issues and challenges. In:
The 33rd International Convention MIPRO. IEEE, pp. 344–349 .

Ren, K. , Wang, C. , Wang, Q. , 2012. Security challenges for the public cloud. IEEE
Internet Comput. 16 (1), 69–73 .

RightScale , 2018. Rightscale 2018 State of the Cloud Report .
Roberto, R. , Lima, J.P. , Teichrieb, V. , 2016. Tracking for mobile devices: a systematic

mapping study. Comput. Graph. 56, 20–30 .

Sengupta, S. , Chowdhary, A. , Huang, D. , Kambhampati, S. , 2019. General sum Markov
games for strategic detection of advanced persistent threats using moving target

defense in cloud networks. In: International Conference on Decision and Game
Theory for Security. Springer, pp. 492–512 .

Sengupta, S., Chowdhary, A., Sabur, A., Huang, D., Alshamrani, A., Kambhampati, S.,
2019b. A survey of moving target defenses for network security. arXiv: 1905.

00964 .
Sianipar, J. , Sukmana, M. , Meinel, C. , 2018. Moving sensitive data against live mem-

ory dumping, spectre and meltdown attacks. In: 2018 26th International Con-

ference on Systems Engineering (ICSEng). IEEE, pp. 1–8 .
Song, F. , Zhou, Y.-T. , Wang, Y. , Zhao, T.-M. , You, I. , Zhang, H.-K. , 2019. Smart collab-

orative distribution for privacy enhancement in moving target defense. Inf. Sci.
479, 593–606 .

Torkura, K.A. , Sukmana, M.I. , Kayem, A.V. , 2018. A cyber risk based mov-
ing target defense mechanism for microservice architectures. In: 2018 IEEE

Intl Conf on Parallel & Distributed Processing with Applications, Ubiq-

uitous Computing & Communications, Big Data & Cloud Computing, So-
cial Computing & Networking, Sustainable Computing & Communications

(ISPA/IUCC/BDCloud/SocialCom/SustainCom). IEEE, pp. 932–939 .

Urias, V.E. , Stout, W.M. , Loverro, C. , 2015. Computer network deception as a mov-
ing target defense. In: Security Technology (ICCST), 2015 International Carnahan

Conference on. IEEE, pp. 1–6 .
Vieira, M. , Madeira, H. , 2005. Towards a security benchmark for database manage-

ment systems. In: 2005 International Conference on Dependable Systems and
Networks (DSN’05). IEEE, pp. 592–601 .

Villarreal-Vasquez, M. , Bhargava, B. , Angin, P. , Ahmed, N. , Goodwin, D. , Brin, K. ,
Kobes, J. , 2017. An MTD-based self-adaptive resilience approach for cloud sys-

tems. In: Cloud Computing (CLOUD), 2017 IEEE 10th International Conference

on. IEEE, pp. 723–726 .
Wahab, O.A. , Bentahar, J. , Otrok, H. , Mourad, A. , 2019. Resource-aware detection

and defense system against multi-type attacks in the cloud: repeated Bayesian
stackelberg game. IEEE Trans. Depend. Secure Comput. .

Wang, H. , Jia, Q. , Fleck, D. , Powell, W. , Li, F. , Stavrou, A. , 2014. A moving target DDoS
defense mechanism. Comput. Commun. 46, 10–21 .

Wang, H. , Li, F. , Chen, S. , 2016. Towards cost-effective moving target defense against

DDoS and covert channel attacks. In: Proceedings of the 2016 ACM Workshop
on Moving Target Defense. ACM, pp. 15–25 .

Yang, C. , Guo, Y. , Hu, H. , Wang, Y. , Tong, Q. , Li, L. , 2019. Driftor: mitigating
cloud-based side-channel attacks by switching and migrating multi-executor

virtual machines. Front.Inf. Technol. Electron.Eng. 20 (5), 731–748 .
Yang, Y. , Cheng, L. , 2018. An SDN-based MTD model. Concurren. Comput. e4897 .

Zhang, L. , Wang, Z. , Fang, J. , Guo, Y. , 2016. A SDN proactive defense scheme based

on IP and MAC address mutation. In: International Wireless Internet Conference.
Springer, pp. 51–60 .

Zhang, M. , Wang, L. , Jajodia, S. , Singhal, A. , Albanese, M. , 2016. Network diversity:
a security metric for evaluating the resilience of networks against zero-day at-

tacks. IEEE Trans. Inf. Forensics Secur. 11 (5), 1071–1086 .
Zhang, Y. , Li, M. , Bai, K. , Yu, M. , Zang, W. , 2012. Incentive compatible moving target

defense against VM-colocation attacks in clouds. In: IFIP International Informa-

tion Security Conference. Springer, pp. 388–399 .
Zheng, J. , Namin, A.S. , 2019. A survey on the moving target defense strategies: an

architectural perspective. J. Comput. Sci. Technol. 34 (1), 207–233 .
Zhuang, R. , DeLoach, S.A. , Ou, X. , 2014. Towards a theory of moving target defense.

In: Proceedings of the First ACM Workshop on Moving Target Defense. ACM,
pp. 31–40 .

Matheus Torquato is a Ph.D. candidate at the Univer-
sity of Coimbra. His research interests comprise subjects

like Cloud Computing, Performance, Dependability, and
Security Modeling. His current research focuses in the

design and development of analytical models to eval-
uate performance, dependability, and security of mov-

ing target defense deployments in cloud computing. He

received his Master Degree in Computer Science from

the Federal University of Pernambuco. He is currently

on leave from his teaching activities at the Federal In-
stitute of Alagoas, Campus Arapiraca to pursue Ph.D. at

the University of Coimbra. His website is http://www.
matheustorquato.com .

Marco Vieira received the Ph.D. degree from UC, Portu-
gal, in 2005. He currently is a Full Professor with the Uni-

versity of Coimbra, Coimbra, Portugal. His research inter-
ests include dependability and security assessment and

benchmarking, fault injection, software processes, and
software quality assurance, subjects in which he has au-

thored or coauthored more than 200 papers in refereed

conferences and journals. He has participated and coordi-
nated several research projects, both at the national and

European level. He has served on program committees of
the major conferences of the dependability area and acted

as referee for many international conferences and jour-
nals in the dependability and security areas.

— 200 —

Appendixes

Appendix B: VM Migration Scheduling as MTD against
Memory DoS Attacks: An Empirical Study
In the following pages, we present the full content of our empirical observation
of Virtual Machine migration as Moving Target Defense in a scenario with two
different applications: a machine learning application and the TPC-C bench-
mark [Leutenegger and Dias, 1993].

— 201 —

VM Migration Scheduling as Moving Target
Defense against Memory DoS Attacks: An

Empirical Study
Matheus Torquato∗†, Marco Vieira∗

∗University of Coimbra, CISUC, DEI, Coimbra, Portugal
†Federal Institute of Alagoas, Campus Arapiraca, Arapiraca, Brazil

matheus.torquato@ifal.edu.br, mdmelo@dei.uc.pt∗†, mvieira@dei.uc.pt∗

Abstract—Memory Denial of Service (DoS) attacks are easy-
to-launch, hard to detect, and significantly impact their targets.
In memory DoS, the attacker targets the memory of his Virtual
Machine (VM) and, due to hardware isolation issues, the attack
affects the co-resident VMs. Theoretically, we can deploy VM
migration as Moving Target Defense (MTD) against memory
DoS. However, the current literature lacks empirical evidence
supporting this hypothesis. Moreover, there is a need to evaluate
how the VM migration timing impacts the potential MTD protec-
tion. This practical experience report presents an experiment on
VM migration-based MTD against memory DoS. We evaluate the
impact of memory DoS attacks in the context of two applications
running in co-hosted VMs: machine learning and OLTP. The
results highlight that the memory DoS attacks lead to more than
70% reduction in the applications’ performance. Nevertheless,
timely VM migrations can significantly mitigate the attack effects
in both considered applications.

Index Terms—Memory DoS, Moving Target Defense, VM
migration, Dynamic platform technique, Denial of Service

I. INTRODUCTION

Moving Target Defense (MTD) consists of dynamically
changing the available attack surface to thwart or defend
from attacks [1], [2]. In virtualized environments, Virtual
Machine (VM) migration appears among the most used MTD
strategies [3], being preferred among other MTD techniques
for several reasons, including i) VM migration is usually
a native feature of virtualized environments; ii) it does not
require expertise to deploy; iii) it is already a usual task of
the virtualized environment management.

VM migration consists of moving the VMs in the available
physical machines (PM) [4]. In the MTD context, VM mi-
gration is frequently applied to prevent malicious VMs from
affecting the co-resident VMs or the underlying PM [5], [6]

This work has been partially supported by Portuguese Founda-
tion for Science and Technology (FCT), through the PhD grant
SFRH/BD/146181/2019, within the scope of the project CISUC -
UID/CEC/00326/2020. This work is also funded by the European Social
Fund, through the Regional Operational Program Centro 2020.

This work also received support from AIDA: (Adaptive, Intelligent and
Distributed Assurance Platform) project, funded by Operational Program for
Competitiveness and Internationalization (COMPETE 2020) and FCT (under
CMU Portugal Program) through grant POCI-01-0247-FEDER-045907.
And, from project TalkConnect funded by COMPETE 2020 trough grant
POCI-01-0247-FEDER-039676

(i.e., prevent host-based attack success). For example, it is
possible to use VM migration-based MTD to move benign
clients away from a compromised PM [7].

Specifically, on the threats with potential defense through
VM migration, we highlight the memory Denial of Service
(memory DoS). Leveraging on issues in the hardware mem-
ory isolation [8], the attacker can run an attack against the
memory of his own VM, trying to affect the co-resident VMs
availability by overloading memory.

One of the critical factors to deploy an effective MTD
against memory DoS is timing (i.e., when to apply MTD) [9].
In fact, in the context of VM migration against memory DoS,
the MTD timing is still an open problem. Previous research
tried to tackle this issue through stochastic modeling [10],
[11]. However, these works neglect empirical investigation of
VM migration-based MTD against memory DoS. Zhang et
al. [12] refers to VM migration as a potential defense for
memory DoS, but the authors use an alternative mitigation
method based on execution throttling.

This practical experience report aims to fill this research gap
through an experiment on VM migration-based MTD against
memory DoS. We intend to investigate the impact of different
scheduling of VM migration in the potential MTD protection.
The following research questions guide this research:

• RQ1: What is the impact of memory DoS in different
applications running on co-resident Virtual Machines?

• RQ2: Is Virtual Machine migration effective as Moving
Target Defense against memory DoS?

• RQ3: Does the Virtual Machine migration scheduling
policy play a significant role in the mitigation of memory
DoS effects?

The experimental approach is as follows. First, we set up
an environment with two VMs, ATTACKER VM and VICTIM
VM, running inside the same physical host. While the AT-
TACKER VM runs memory DoS attacks, the VICTIM VM runs
benign applications, namely, an online transaction processing
(OLTP) application benchmark and a machine learning (ML)
application. Then, as MTD, we migrate the ATTACKER VM
at different scheduling times, observing five-minute intervals.
Note that these five-minute intervals are selected arbitrarily to

978-1-6654-2744-9/21/$31.00 ©2021 European Union

— 202 —

fit our experiment design. Here, we focus on understanding
the VM migration-based MTD effectiveness against memory
DoS instead of defining generic methods for selecting VM
migration intervals. Besides that, the search for the critical
threshold for VM migration is out of the scope of this paper.

Our results show that the memory DoS attacks performed
do not interfere in the ML application accuracy, and effects
are only noticeable in the ML time to fit metric1. In the ML
application scenario, the VM migration is enough to clear
the memory DoS effect). Regarding the OLTP application,
we notice that delayed migration leads to cumulative service
degradation. However, in all studied scenarios, the OLTP
application stayed alive during the attack (i.e., the attack is not
enough to crash the application). We present linear regression
curves to help characterize the VM migration-based MTD
protection in the context of this OLTP application.

This paper tries to fill a research gap by providing empir-
ical evidence of the VM migration-based MTD effectiveness
against memory DoS. We can highlight the following:

• Easy-to-reproduce experimental approach. We try to de-
scribe our methodology in detail to help researchers and
system managers to reproduce the experiment in their
environments. All the tools and source code are publicly
available.

• We investigate the impact of memory DoS attacks in two
different applications, namely OLTP and machine learn-
ing. From the investigation, we present a comprehensive
set of results providing evidence of the effectiveness of
VM migration-based MTD against memory DoS attacks.

• We consider the effects of an attack that is easy-to-launch,
challenging to detect, and causes substantial performance
degradation. Therefore, our study may help system man-
agers to handle this relevant security threat.

The remainder of this paper is organized as follows. Sec-
tion III presents the experiments. Section II presents the related
work. Section IV presents the results. Section V briefly dis-
cusses the specific memory DoS severity. Section VI presents
threats to validity and limitations of our work. Section VII
concludes the paper.

II. RELATED WORKS

Our previous works [10], [11] provide VM migration as
MTD evaluation based on modeling. These papers neglect ex-
perimental validation for the models. This practical experience
report extends these works by providing the needed empirical
background of VM migration as MTD.

The inspiring work of Zhang et al. [12] provided memory
DoS background (including the attack source code). Li et
al. [8] provided insights on the memory DoS attack detection.
Although both papers mentioned VM migration as a potential
defense for memory DoS, the authors followed different ap-
proaches from ours. Zhang et. al. [12] dealt with the problem

1The fitness function is the main task of our ML application. Indeed, the
time spent on other tasks is negligible. Thus, the time to fit is roughly the
ML processing time.

using execution throttling. Li et al [8] focused on the memory
DoS detection instead of MTD proposal.

Wang et al. [13] proposed a comprehensive framework
for defending against co-resident threats. Their framework
features a score calculation and attack-aware VM reallocation.
Likewise, Liang et al. [14] defensive approach consists of a
grouping-based VM placement strategy. In both papers, the
authors validated their approaches using CloudSim. Unlike
their works, we decided to deploy VM migration in a real
testbed. Besides that, instead of proposing a new framework,
our goal is to observe how the off-the-shelf VM migration
MTD scheduling may protect the considered applications.

III. EXPERIMENTAL APPROACH

Our main goal is to assess the impact of a memory DoS at-
tack on applications running in co-resident VMs. Besides that,
we aim to study whether different VM migration scheduling
policies effectively mitigate possible effects of memory DoS.

Figure 1 presents the experimental testbed, which includes
two physical machines: SOURCE NODE (Intel Xeon E5-
2620 2.00GHz + 16GB of RAM with Error Correction Code
enabled) - main host for the VICTIM VM and ATTACKER
VM; TARGET NODE (Intel Core i7-9700 3.00GHz + 16GB
of RAM) - host for the ATTACKER VM migration. Both
the ATTACKER VM and the VICTIM VM are Kernel Virtual
Machine (KVM)2 VMs with a homogeneous configuration:
single-core processor + 3 GB of RAM. The SOURCE NODE
and the TARGET NODE run Ubuntu Server 20.04.2 with kernel
5.4.0-72 and KVM 4.2.1.

Victim’s
VM

VM migration

Attacker’s

VM
Source Node Target Node

Application

Fig. 1. Testbed architecture

We consider two different applications running in the
VICTIM VM. The first consists of an ML application for
face recognition based on an example of scikit learn python
library3. We provide an example script for the ML application
automation in [15], which produces an output file with the
accuracy and time to fit metrics. The second is an OLTP
application based on the TPC-C4 benchmark [16]. Specifically,
we use the CockroachDB tool [17] for TPC-C benchmark
automation.

Regarding the specific attack running in the ATTACKER
VM, we follow the approach presented by Zhang et al. [12]. In

2https://www.linux-kvm.org/
3https://scikit-learn.org/stable/auto examples/applications/plot face

recognition.html
4http://www.tpc.org/tpcc/

— 203 —

practice, we use an infinite loop of unaligned atomic accesses
to the main memory of the VM. This attack load generates
LOCK signals in the memory, whose accumulation may result
in memory unavailability to handle benign processes. Hence-
forth in this paper, we refer to this attack as unalignAttk.

We performed sets of 30-minutes experiments, during which
the ATTACKER VM performs unalignAttk attacks and the
VICTIM VM runs the OLTP or the ML application. For
comparison purposes, we present results for three scenarios:
i) golden run - experiments without attacks and MTD; ii)
MTD - experiment adopting VM-migration as MTD against
unalignAttk; and iii) Only attack - considering the unalignAttk
impact while the MTD is off.

IV. CASE STUDIES

This section presents our two case studies. As mentioned
earlier, in these case studies, we consider two different appli-
cations running inside the VICTIM VM, namely a machine
learning application and an OLTP application benchmark
(TPC-C benchmark).

A. Machine Learning application

We divided the experiment with the ML application into
two steps. First, the attack severity experiment, focusing only
on investigating the impact of unalignAttk on the application
(i.e., system without MTD). Second, the MTD experiment,
where we apply VM migration scheduling as MTD. The
former aims to provide an answer to RQ1 (impact of memory
DoS in different applications running on co-resident Virtual
Machines), and the latter provides an answer for RQ2 (Virtual
Machine migration effective as Moving Target Defense against
memory DoS) and for RQ3 (role played by the Virtual machine
migration scheduling policy in the mitigation of memory DoS
effects).

The results (see Figures 2 and 3) include the golden run
(system without attack) and the unalignAttk (system under
attack). The X-axis corresponds to the experiment timeline.

81%
82%
83%
84%
85%
86%
87%

00:00 05:00 10:00 15:00 20:00 25:00 30:00

Ac
cu

ra
cy

Experiment time

Golden run Unalign attack

Fig. 2. ML - Accuracy results - attack severity experiment

Figure 2 shows that accuracy is close to 85% for all the
ML observations. In both curves (golden run and unalignAttk),
we notice the expected accuracy oscillations over time. These
results suggest that considering the scope of our experiments,

the unalignAttk does not interfere with the accuracy of the ML
application. Therefore, as long as the system is up, even in the
presence of an unalignAttk attack, the ML application results
accuracy stays roughly at the same levels of the golden run.

0
20
40
60
80

100
120
140
160

00:00 05:00 10:00 15:00 20:00 25:00 30:00

Ti
m

e t
o

fit
 (s

ec
on

ds
)

Experiment time

Golden run Unalign attack

Fig. 3. ML - Time to fit (seconds) results - attack severity experiment

Time to fit results in Figure 3 show how long the ML
application takes to process the face recognition. These results
highlight a substantial difference between the golden run
and the unalignAttk. Indeed, the ML application processing
under unalignAttk lasts about four times more than the golden
run. These results suggest that the unalignAttk impairs the
ML application performance substantially, reducing the overall
number of ML application runs in a given period. Although
the unalignAttk does not cause a catastrophic failure of ML
application, its impact may reflect in the application availabil-
ity. Depending on the Service Level Agreements (SLA) and
some threshold levels, the ML application may be considered
unavailable when it takes so long for processing.

In summary, we noticed that the major impact is indeed in
the performance and not in the ML accuracy. The unalignAttk
causes a 460% increase in the time to fit when compared
to the golden run. The number of ML runs in our 30-
minute experiment is of 54 in the golden run and 11 in the
unalignAttk, meaning a 80% reduction. Table I presents a
summary of ML application attack severity experiment.

The second step of this experiment is the MTD experiment,
in which we deploy three different schedules of VM migration,
namely at the 5th, 10th, and 15th minute of the experiment
time. In the same way as the attack severity experiment, we no-
ticed that among the regular oscillations, the accuracy results
for all the MTD scenarios also approach 85%. Nevertheless,
the time to fit results presents more interesting behavior as
shown in Figure 4.

These results suggest two conclusions. First, the VM mi-
gration MTD is effective to clear unalignAttk effects. Second,
delayed or premature VM migrations immediately recover the
ML application to the golden run levels. However, the longer
the attack continues, the worse is the performance impact.
Note that the ML application is a standalone application with-
out a timeout parameter. VM migration timing is crucial for
system availability in more complex client-server scenarios,

— 204 —

TABLE I
ATTACK SEVERITY RESULTS SUMMARY - MACHINE LEARNING APPLICATION

Experiment Number of runs avg. accuracy std. dev. accuracy avg. time to fit std. dev. time to fit
golden run 54 85.00% 0.0091 29.7702 0.18283
unalignAttk 11 85.29% 0.0058 137.18 1.31916

TABLE II
MTD RESULTS SUMMARY - MACHINE LEARNING APPLICATION

Experiment Number of runs avg. accuracy std. dev. accuracy avg. time to fit std. dev. time to fit
OnlyAttack 11 85.29% 0.0058 137.18 1.3192

MigAt5thMin 46 85.15% 0.0072 34.92 22.6595
MigAt10thMin 39 84.93% 0.0109 41.79 32.9165
MigAt15thMin 33 85.22% 0.0053 49.17 40.5078

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00

00:00 05:00 10:00 15:00 20:00 25:00 30:00

Ti
m

e t
o

fit
 (s

ec
on

ds
)

Experiment time

OnlyAttack MigAt5thMin MigAt10thMin MigAt15thMin

Fig. 4. ML - Time to fit (seconds) results - MTD experiment

as delayed VM migrations may allow the client to accumulate
server timeout, leading the client to give up the connection.

Table II presents a summary of the ML application MTD
experiment. The high standard deviation variance in the time
to fit MTD scenarios is due to the abrupt change in the time
to fit after VM migration.

B. TPC-C benchmark

Unlike the ML application experiment, where we collect the
metrics from every ML run, a 30-minute experiment run pro-
vides only a single result of the TPC-C benchmark. Therefore,
we need to run a set of 30-minutes TPC-C evaluations. The
following results are obtained from 30 runs of golden run and
30 runs of OnlyAttack (i.e., system without MTD). We run
15 experiments for the MTD results (three for each migration
schedule).

Here, we focus in two metrics: efc(%) - how close the
results are to the theoretical maximum TPC-C performance,
and avg (ms) - average time for transaction processing in
milliseconds. To these, we added two metrics: tpmC - TPC-
C specific metric to measure the business throughput (i.e.,
number of orders processed per minute), and ops - total
number of transactions processed.

In the TPC-C benchmark results, we merged all the sce-
narios into the same plot. This approach is helpful to notice
the degradation due to delayed migrations. Therefore, the
plots have golden run results at the origin, meaning the VM

migration at the 0th minute (i.e., system without attack), and
OnlyAttack results at 30th minute (i.e., system without MTD
as each experiment lasts 30 minutes). We perform experiments
with VM migration at the 5th, 10th, 15th, 20th, and 25th
minute of experiment time.

Figures 5 and 6 presents the results for avg (ms) and
efc(%), respectively. The plots include the error bars for each
scenarios and a linear regression curve. In both cases, the
linear regression curves R− squared5 is above 0.99.

127.78
3090.34 6863.10

8218.18

19223.17

33601.00
47348.67

y = -0.2365x4 + 15.154x3 - 246.01x2 + 1710.5x - 85.958
R² = 0.9972

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

60000.00 avg(ms)

Fig. 5. TPCc - avg (ms)

We notice the expected behavior of avg (ms) increasing and
efc decreasing when we have delayed MTD actions. Specif-
ically about our first research question related to memory
DoS impact (i.e., comparison between golden run and Only
Attack), the decrease in the efc is of 68.39%, while the increase
in the avg (ms) approach 370%. These results reveal the
service degradation rate due to memory DoS attack effects
accumulation.

The linear regression curves are particularly useful to esti-
mate avg (ms) and efc with other intervals for VM migration.
For illustration, we obtain that, to preserve efc above 75%,
VM migration should occur before 7.5 minutes, and to keep

5R− squared (R2) is a measure that corresponds to the proportion of the
variance explained by regression curve.

— 205 —

TABLE III
TPC-C BENCHMARK EXPERIMENT RESULTS

Experiment avg. tpmc std. dev. tpmc efc(%) std. dev. efc(%) avg (ms) std. dev. avg (ms) ops std. dev. ops
golden run 123.5 0.4814 96.00 0.0038 127.78 9.4855 8554 31.5369

MigAt5thMin 105.2 1.7688 81.81 1.3809 3090.34 597.9909 7281 102.9208
MigAt10thMin 91.5 1.0497 71.40 0.8155 6863.10 157.8724 6358 75.8650
MigAt15thMin 65.2 6.3168 50.68 4.8976 8218.18 4123.8594 4542 445.1576
MigAt20thMin 58.9 4.4500 45.77 3.4567 19223.17 1545.3677 4060 305.2223
MigAt25thMin 46.7 1.1518 36.30 0.9092 33601.00 983.7309 3273 75.5484

OnlyAttack 35.5 6.5807 27.61 5.1120 47348.67 8384.8285 2461 446.3500

96.00
81.81

71.40

50.68
45.77

36.30
27.61

y = -0.0002x4 + 0.0132x3 - 0.231x2 - 1.5742x + 95.659
R² = 0.9921

0.00

20.00

40.00

60.00

80.00

100.00
efc(%)

Fig. 6. TPCc - efc(%)

the avg (ms) below 15000, VM migration should occur before
the 18th minute.

Table III summarizes the TPC-C benchmark results. It
includes the results for the metrics and their standard deviation.
Specifically about tpmC, one of the metrics of interest in
the TPC-C benchmark, the reduction is 71.25% (comparison
between golden run and OnlyAttack).

V. SEVERITY OF UnalignAttk ATTACKS

In the previous section, we highlighted the unalignAttk
impact on the applications. However, it is crucial to investigate
whether the effect is only due to a manageable resource
overhead. The question (Q) is Isn’t the impact observed
already expected due to unalignAttk resource overhead?.

To answer Q, we propose an observation of unalignAttk
resources overhead and its comparison with benign workloads.
As we are dealing with memory, we set up a workload
based on the Linux memtest6. We also added the workloads
considered in the case studies, namely, TPC-C and Machine
learning (ML) applications. In practice, we observed the
SOURCE NODE resource consumption while hosting one VM
running the workload and one VM in idle state. The VM’s
configuration is the same used in the previous case studies. The
considered workloads are: golden run (i.e., two VMs in idle
state), unalign attack, memtest, TPC-C and machine learning
application (ML). The observation in all scenarios lasts 30

6https://linux.die.net/man/8/memtester

minutes. The results from the CPU and memory usage are
presented in Figures 7 and 8, respectively.

92
93
94
95
96
97
98
99

100

00:00 05:00 10:00 15:00 20:00 25:00 30:00

id
le

cp
u

(%
)

Experiment time

Golden run Unalign attack Memtest TPC-C ML

Fig. 7. Percentage of idle CPU

0
5

10
15
20
25
30
35

00:00 05:00 10:00 15:00 20:00 25:00 30:00

M
em

. u
se

d
(%

)

Experiment time

Golden run Unalign attack Memtest TPC-C ML

Fig. 8. Memory usage (%)

We notice that, memtest requires more SOURCE NODE
resources than the unalignAttk. Presumably, considering only
the resource consumption, the possible impact of memtest in
the VICTIM VM should be higher than the unalignAttk impact.
To verify this, we run four one-hour experiments combining
the memtest and unalignAttk running in the ATTACKER VM
with the ML application and the TPC-C benchmark running
in the VICTIM VM. Table V and IV show the results.

The results highlight that the unalignAttk produces a higher
impact on the applications when compared to the memtest.
Actually, the memtest results are close to the golden run
results. While the memtest causes a reduction (when compared
to the golden run) of 22.2% in the TPC-C benchmark efc
metric, the unalignAttk produces a 79.1% reduction. About the
ML application, memtest reduces the number of runs in 7.5%,

— 206 —

TABLE IV
COMPARISON BETWEEN unalignAttk AND memtest - TPC-C METRICS

Attack tpmC efc avg (ms) ops(total)
golden run 124.4 96.7% 126.4 17202

memtest 95.9 74.5% 7385.3 13263
unalign 22.6 17.6% 82225.5 3131

TABLE V
COMPARISON BETWEEN unalignAttk AND memtest - ML METRICS

Attack Number of runs Avg. accuracy Avg. time to fit(s)
golden run 40 85.05% 29.87

memtest 37 85.10% 34.02
unalign 19 84.88% 125.26

while the unalignAttk reduction is of 52.5%. The results of
this experiment confirms the findings of [12] which highlights
memory DoS attack severity.

VI. THREATS TO VALIDITY AND LIMITATIONS

We identified two main threats to the validity of our results,
and they lie in our experiment design: 1) the observed results
are obtained from a small architecture; 2) limited observation
time in all the experiments. In the best scenario, we should
run more extended experiments in bigger datacenters. We are
aware of these limitations. However, below we provide some
explanations for mitigating these threats.

Threat 1) We manage to dedicate a small but powerful setup
for our experimentation. Note that the PMs have 16GB of
RAM with 6 and 8-core processors. To scale a representative
scenario, our VMs have only 3 GB of RAM each, with a
single-core processor. Therefore, there are plenty of idle PM
resources while running the VMs simultaneously, taking less
than 40% of the available resources.

Threat 2) Note that each experimentation does not involve
only the 30 minutes of the workload. We need to clean the
system for each run of the experiment, meaning generate
new VM images, complete PM OS reboot, export filesystem
for VM migration, and create new VMs. Besides that, all
the experiment runs are sequential, which means that it was
impossible to paralleling the experiment runs (as we have only
a single testbed).

VII. CONCLUSION

This paper presented a practical experience report of VM
migration scheduling as MTD against memory DoS attacks.
We evaluated the memory DoS attack severity and the MTD
effectiveness in different scenarios. Namely, we considered
memory DoS attacks against i) a machine learning application
and ii) the TPC-C benchmark. Our results show that the mem-
ory DoS attack causes a significant impact on the applications.
Besides that, results suggest that the VM migration-based
MTD effectively reduces the effect of memory DoS attacks
in both applications.

This work fills a research gap of lack of empirical evidence
of VM migration-based MTD effectiveness against memory
DoS. We are aware that the results are limited to our system

architecture. However, the adopted tools and source code
are publicly available. Thus, it is possible to reproduce the
proposed methodology in other scenarios. Hopefully, system
managers and researchers may find our approach useful to
support MTD experimentation and MTD policy design.

In the future, we aim to reproduce the experiments in a
bigger datacenter comprising other representative workloads as
client-server applications. Besides that, we intend to run more
extended experiments to notice possible error accumulation
after sequenced VM migration.

REFERENCES

[1] S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang, Mov-
ing target defense: creating asymmetric uncertainty for cyber threats.
Springer Science & Business Media, 2011, vol. 54.

[2] J.-H. Cho, D. P. Sharma, H. Alavizadeh, S. Yoon, N. Ben-Asher, T. J.
Moore, D. S. Kim, H. Lim, and F. F. Nelson, “Toward proactive, adaptive
defense: A survey on moving target defense,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 1, pp. 709–745, 2020.

[3] M. Torquato and M. Vieira, “Moving target defense in cloud computing:
A systematic mapping study,” Computers & Security, vol. 92, p. 101742,
2020.

[4] P. G. J. Leelipushpam and J. Sharmila, “Live vm migration techniques in
cloud environment—a survey,” in 2013 IEEE Conference on Information
& Communication Technologies. IEEE, 2013, pp. 408–413.

[5] H. Wang, F. Li, and S. Chen, “Towards cost-effective moving target
defense against ddos and covert channel attacks,” in Proceedings of the
2016 ACM Workshop on Moving Target Defense, 2016, pp. 15–25.

[6] T. Penner and M. Guirguis, “Combating the bandits in the cloud: A
moving target defense approach,” in 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE,
2017, pp. 411–420.

[7] Q. Jia, H. Wang, D. Fleck, F. Li, A. Stavrou, and W. Powell, “Catch me if
you can: A cloud-enabled ddos defense,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE,
2014, pp. 264–275.

[8] Z. Li, T. Sen, H. Shen, and M. C. Chuah, “Impact of memory dos
attacks on cloud applications and real-time detection schemes,” in 49th
International Conference on Parallel Processing-ICPP, 2020, pp. 1–11.

[9] S. Sengupta, A. Chowdhary, A. Sabur, A. Alshamrani, D. Huang, and
S. Kambhampati, “A survey of moving target defenses for network
security,” IEEE Communications Surveys & Tutorials, 2020.

[10] M. Torquato, P. Maciel, and M. Vieira, “Security and availability
modeling of vm migration as moving target defense,” in 2020 IEEE
25th Pacific Rim International Symposium on Dependable Computing
(PRDC). IEEE, 2020, pp. 50–59.

[11] ——, “Analysis of vm migration scheduling as moving target defense
against insider attacks,” in Proceedings of the 36th Annual ACM Sym-
posium on Applied Computing, 2021, pp. 194–202.

[12] T. Zhang, Y. Zhang, and R. B. Lee, “Dos attacks on your memory
in cloud,” in Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, 2017, pp. 253–265.

[13] X. Wang, L. Wang, F. Miao, and J. Yang, “Svmdf: A secure virtual
machine deployment framework to mitigate co-resident threat in cloud,”
in 2019 IEEE Symposium on Computers and Communications (ISCC).
IEEE, 2019, pp. 1–7.

[14] X. Liang, X. Gui, A. Jian, and D. Ren, “Mitigating cloud co-resident
attacks via grouping-based virtual machine placement strategy,” in 2017
IEEE 36th International Performance Computing and Communications
Conference (IPCCC). IEEE, 2017, pp. 1–8.

[15] M. Torquato and M. Vieira. (2021). [Online]. Available: https:
//github.com/matheustor4/scriptML

[16] S. T. Leutenegger and D. Dias, “A modeling study of the tpc-c
benchmark,” ACM Sigmod Record, vol. 22, no. 2, pp. 22–31, 1993.

[17] CockroachDB. (2021). [Online]. Available: https://www.cockroachlabs.
com/docs/v20.1/performance-benchmarking-with-tpc-c-10-warehouses

— 207 —

Appendixes

Appendix C: An Experimental Study of Software Aging and
Rejuvenation in dockerd
In the following pages, we present the full content of the paper presenting our
experimental study of software aging in the Docker platform.

— 208 —

An Experimental Study of Software Aging and
Rejuvenation in dockerd

Practical Experience Report

Matheus Torquato∗†, Marco Vieira∗
∗Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal

†Federal Institute of Alagoas, Campus Arapiraca, Arapiraca, Brazil

matheus.torquato@ifal.edu.br, matheustor4.professor@gmail.com∗, mvieira@dei.uc.pt∗

Abstract—Virtualized containers are being extensively used
to host applications as they substantially reduce the overhead
caused by conventional virtualization techniques. Therefore, as
containers adoption grows, the need for dependability also
increases. Dockerd, the process that is in charge of Docker
containers management, is supposed to support long-running
systems, which makes it prone to the well-known problem of
software aging. This paper presents an experimental study of
software aging and rejuvenation targeting the dockerd daemon.
We used the SWARE approach to conduct the experimentation,
which encompasses three phases: i) stress - stress environment
with the accelerated workload to induce bugs activation; (ii) wait
- stop the workload submission to observe possible accumulated
effects and; (iii) rejuvenation - submit a rejuvenation action to
perceive changes in the internal software state. The experiment
runs for 26 days, and results show that dockerd suffers from
software aging effects after the stress phase. The accumulated
effects remain in the system until a complete cleanup, comprising
removing all the containers and rebooting the operating system.

Index Terms—Software aging and rejuvenation, Container,
Docker, Dependability, SWARE approach.

I. INTRODUCTION

Through containers, system developers can design software

in the local environment and export it to run identically in

other environments [1]. Containers have a lower virtualization

overhead than Virtual Machines, as they use fewer layers

between applications and hardware resources. Containers are

usually smaller than Virtual Machines, and it is possible to run

hundreds of them on a single physical machine [2]. Besides

that, containers also facilitate the development of microser-

vice architectures through tools as containers orchestration.

Reputed companies as Netflix and SoundCloud leverage from

microservices architectures [3]. As containers are now part of

wider environments, their usage may introduce new challenges

for attaining high levels of system dependability.

A previous survey showed that Docker containers are used

to host diverse applications, ranging from medical to space

research. Docker is also used in banks, insurance companies,

and other scientific use cases [4].

The increasing adoption of Docker containers raises con-

cerns regarding system dependability, which calls for further

works on the evaluation of Docker dependability aspects.

One of the core components of the Docker architecture is

the dockerd daemon. Dockerd receives commands from the

user and manages other Docker architecture components. As

dockerd is supposed to provide very long execution times, it

may be subject of one relevant dependability problem known

as software aging (more details about software aging in the

Section II).
The main research question target by this work is: Does

dockerd daemon suffer from any software aging effect?. To an-

swer this, we conducted an experiment of software aging and

rejuvenation on the dockerd daemon. In practice, we applied

the SWARE approach to support the tests [5], which are driven

by three fundamental principles: i) stress the system with a

heavy workload to accelerate the activation of possible aging-

related bugs; ii) observe system reaction after stress to perceive

possible aging effects accumulation; and iii) once software

aging is detected, apply a rejuvenation action and verify its

effectiveness. More details about the SWARE approach are in

Section III-B.
Results suggest that the dockerd daemon suffers from soft-

ware aging (Section IV). We draw this conclusion from the

behavior of the system after an accelerated workload exposure.

We noticed that the levels of resources consumption, mainly

memory, and virtual memory, tends to stay degraded even

when the workload exposure ceases. The system only recovers

to a stable resources consumption levels after a complete

cleanup which comprises the removal of all containers and

an Operating System reboot.
We also observed a dockerd catastrophic failure during the

experiment. After this failure, dockerd became unresponsive,

and some brute-force actions were needed to recover the

system. More details are in the Section IV-B.
The main contributions of this paper are:

• A structured study of software aging on the dockerd
daemon;

• A set of results that highlight dockerd software aging

weaknesses;

• A report of a dockerd failure and its workaround.

Up to our knowledge, our research is the first to investigate

software aging and rejuvenation in Docker architectures. Our

results highlight evidence of software aging in the dockerd
daemon. Leveraging the results, presented here, the Docker

users’ community can design policies to minimize possible

1

2019 15th European Dependable Computing Conference (EDCC)

978-1-7281-3929-6/19/$41.00 ©2019 IEEE
DOI 10.1109/EDCC.2019.00014

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on September 13,2023 at 23:00:11 UTC from IEEE Xplore. Restrictions apply.

— 209 —

software aging effects as timely rejuvenation actions. Besides

that, the reported catastrophic failure in dockerd may also

brings useful information for Docker platform management.

The remainder of this paper is organized as follows. Sec-

tion II presents concepts about software aging and rejuve-

nation. Section III provides details about the experimental

study, including information about the Docker architecture, the

SWARE approach, and our experiment. Section IV comprises

the results and discussion and a mini-report of dockerd failure

and repair. In Section V, we discuss possible threats to validity.

Finally, Section VI presents conclusions and ideas for future

work.

II. SOFTWARE AGING AND REJUVENATION

Software aging is the result of the accumulation of aging-
related bugs effects. Aging-related bugs are similar to Heisen-
bugs [6], whose activation may occur after a long time of

software execution. In practice, aging-related bugs activation

occur when the system reaches specific conditions (e.g. lack

of computational resources), which are usually difficult to

reproduce [7].

Software rejuvenation is the countermeasure for software

aging. Huang et al. [8] presented the first definitions of

software rejuvenation. The work defines rejuvenation as a

proactive technique to prevent aging effects from reaching crit-

ical levels. The rejuvenation actions usually rely on restarting

an application to conduct it to a clean state, thus eliminating

the accumulation of aging effects.

There are several works presenting software aging and

rejuvenation evaluations in virtualized environments, including

both modeling and experimental evaluation approaches. The

evaluations based on modeling usually aim to provide specific

software rejuvenation schedules to maximize system availabil-

ity [9] [10]. In the experimental perspective, we can find works

about software aging and rejuvenation in: KVM [11], Xen

[12], OpenStack [13], and Virtual Machine migration as KVM

software rejuvenation [14]. To the best of our knowledge, our

work is the first to explore software aging and rejuvenation in

dockerd daemon.

III. EXPERIMENTAL STUDY

In this section, we describe the details of our experimental

study, including details of the Docker platform, SWARE

approach, and the considered experimental setup.

A. Docker

Docker1 is an open source platform to deploy and manage

virtualized containers. Figure 1 presents a simplified view of

the Docker architecture. As shown, the dockerd daemon is

responsible for receiving commands for the user through an

API and for managing Docker objects like images and contain-

ers. Depending on the command, dockerd also communicates

with Registry, which is a repository of Docker images,

to obtain new images. Dockerd daemon is at the core of the

1https://www.docker.com/

Client

dockerd

Docker Host

User's commands

Containers

Images

Registry

Fig. 1. Simplified Docker Architecture

Docker architecture. Thus, its failure directly affects system

manageability.

B. SWARE approach

A previous work [5] presented the SWARE approach as

a support for software aging and rejuvenation experiments.

The authors applied SWARE to investigate software aging in

the Kernel Virtual Machine (KVM) software and to verify

the effectiveness of Virtual Machine migration as a software

rejuvenation.

The goal of the SWARE approach is to allow the character-

ization of software aging indicators and software rejuvenation

effectiveness on a single experiment. It includes three phases:

Stress, Wait and Rejuvenation. The Stress phase is the

period when the system is exposed to a heavy workload.

The main goal of Stress phase is to activate possible aging-
related bugs that may exist in the system. To achieve this

goal, the workload submitted in the Stress phase forces the

system to pass through different levels of utilization. The

main characteristics of the workload are i) heavy intensity

- to accelerate aging-related bugs activation (if they exist),

and ii) direct relation with the tested component - to ensure

that the possible software aging accumulation is in the desired

component. The specific workload used in our experiment is

described in Section III-C.

The Wait phase serves to find out possible effects of

aging-related bugs activated in the Stress phase. This phase

is started when the workload exposure ceases. Therefore,

any software aging effect accumulated due to the workload

execution may be observed in this phase. Otherwise, if the

system recovers without a rejuvenation action, there is an

absence of software aging evidence. Figure 2 summarizes the

expected behavior of the Wait phase.

(a) Absence of software aging evi-
dence

(b) Software aging accumulation

Fig. 2. Wait phase expected behavior

2

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on September 13,2023 at 23:00:11 UTC from IEEE Xplore. Restrictions apply.

— 210 —

Finally, the Rejuvenation phase aims at highlighting if

the proposed rejuvenation action is effective or not. After

the end of the Wait phase, we perform a rejuvenation of

the environment. If the system returns to a stable state,

the rejuvenation is effective. Figure 3 depicts the expected

behavior for the Rejuvenation phase.

(a) Proposed rejuvenation is effective (b) Proposed rejuvenation is innocu-
ous to counteract detected software
aging

Fig. 3. Rejuvenation phase expected behavior

In the SWARE approach, the duration of each phase is

not strictly defined. However, the recommendation is to have

Wait and Rejuvenation phases long enough to ensure the

detection of software aging accumulation and the rejuvenation

effectiveness (which depends on the system being tested).

C. Experimental Setup
We run the experiments on a machine with the following

configuration: Intel Core i5 CPU 650 (3.20GHz), 8 GB of

RAM, 1 GB of Swap memory. The machine runs the Docker
version 18.09.0, build 4d60db4 on a Ubuntu Server 16.04.5

(64 bit) with Linux kernel 4.4.0-142.
The first step to deploy SWARE is to select a workload

to stress the dockerd daemon. As mentioned before, to avoid

side-effects and doubts in the software aging detection, the

selected workload has to be directly related to the dockerd
daemon. Thus, we decided, after some preliminary tests, to use

a simple workload which consists of a stress loop of creation

and deletion of containers. A similar idea was used in an

experiment of software aging in Cloud [15]. We highlight that

the stress workload is not intended to represent a real trace.

Instead, it is intended to stress the system to pass through

different levels of resources consumption. Our guidelines in

the workload selection are i) workload heavy enough to stress

the system and ii) workload light enough to avoid premature

system failures due to resources exhaustion. Then, we defined

the cycle of creation and deletion of 50 containers. We also

added some wait times to avoid peak overload during workload

execution. We set 10 seconds of interval between containers

instantiation, and 50 seconds after containers deletion. As

containers deletion may require more computing power, the

50-second wait period allows the system to deallocate used

resources. We used a public container image httpd in our tests.

Algorithm 1 presents the pseudocode of the proposed software

aging workload.
The duration of the Stress and Wait phases have to be

sufficiently long to achieve their goals. In practice, the Stress
phase has to last enough to lead the system to pass through

several levels of system utilization, trying to accelerate aging-

bugs activation, while the Wait phase has to be long enough to

Algorithm 1 Software aging workload

loop
while InstantiedContainers < 50 do

InstantiateContainer(httpd);

Wait(10 seconds);

end while
KillAllContainers();

Wait(50 seconds);

end loop

highlight if there is a persistent degraded state caused by the

workload submitted in the Stress phase. We set the duration of

the Stress and Wait phases to 10 days, because, as the stress

workload is heavy, ten days may suffice to activate aging-

related bugs. Besides that, the longer duration may activate

software aging in other software components, which may

impair our desired analysis.

Dockerd presented a catastrophic failure during the work-

load exposure (more details in Section IV-B), reducing the

Stress Phase to about 7.5 days and enlarging the Wait
Phase to 12.5 days. Due to that dockerd failure, the software

aging workload script did not finish correctly and two httpd
remaining running during the Wait Phase. The results of the

Wait phase are the most sensitive for software aging detec-

tion because they highlight the accumulated effects from the

Stress phase. So, we decided to not interfere with the system

to manually delete the two remaining containers. Besides that,

we later show in this paper a comparison of a system with

two containers under normal conditions (i.e., the absence of

software aging accumulation) with the results of the Wait
phase.

Dockerd recovery (also described in Section IV-B) marks

the start of the Rejuvenation Phase, which lasted for 6 days.

Figure 4 represents the phases and duration of the experiment.

The experiment reported in this paper is our second run using

the same methodology. We highlight that the results are similar

in both runs.

Fig. 4. Experiment phases duration

IV. RESULTS AND DISCUSSION

We divided this section in two: the first presents the software

aging and rejuvenation experiment results and discussion, and

the second is a mini-report of the experienced dockerd failure

and our adopted workaround.

A. Software aging and rejuvenation experiment

Figure 5 presents the results of the experiment. We divided

the figure into two columns: the left side is related to the

resource consumption on the physical machine (Node) that

runs the dockerd, and the right side presents the specific data

3

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on September 13,2023 at 23:00:11 UTC from IEEE Xplore. Restrictions apply.

— 211 —

(a) CPU Usage - Node (b) CPU Usage - dockerd process

(c) Memory Usage (%) - Node (d) Memory usage (%) - dockerd process

(e) Swap Usage - Node (f) Memory usage - VSZ - dockerd process

Fig. 5. Software aging and rejuvenation experiment results

from the dockerd process monitoring. Each plot has markers

for each experiment phase. We highlighted the dockerd failure

time (end of the Stress Phase) with a red line and the

Operating System reboot with a blue line (end of the Wait
Phase). We used the tools mpstat, sar and pidstat
for resources monitoring. The monitoring interval for each

resource is in the x-axis label of each plot.

Figures 5(a) and 5(b) present the CPU usage results for

both, Node and dockerd. These plots have all the values from

the mpstat and pidstat, respectively. The impact of the

software aging workload in the Node CPU usage is negligible

(Fig 5(a)). It is possible to notice that the processor stays

idle in the majority of the time. The CPU usage for the

dockerd process (Fig 5(b)) increases during the Stress phase.

Furthermore, dockerd still requires processing power during

the Wait phase, which means that the process is still using

the processor, even without a workload being submitted. As

mentioned earlier, the system remains with two containers

running in the Wait phase. Therefore, these containers may

be causing the CPU usage overhead. But, we highlight that

the behavior of the Wait phase suggests software aging as

dockerd releases the processor after a software rejuvenation

routine which comprises containers deletion, dockerd cleanup

and Operating System reboot. To support the investigation of

software aging evidence in dockerd, we compared the results

of the Wait phase with a system with two containers in normal

4

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on September 13,2023 at 23:00:11 UTC from IEEE Xplore. Restrictions apply.

— 212 —

(i.e., non-aging) conditions.

Memory results are the most significant in software aging

research, as software aging effects are usually related to

memory leaks. Figures 5(c) and 5(d) present the memory usage

of the Node and dockerd process, respectively. As expected,

we notice an increasing usage of memory resources during the

Stress Phase.

Both Node and dockerd results show that the memory usage

remains high during the entire Wait phase. Dockerd virtual

memory (VSZ) usage follows the same behavior (Figure 5(f)).

This persistent degraded state corroborates software aging

existence, as the system does not return to normal levels of

memory usage without software rejuvenation.

Node swap (Figure 5(e)) results show a somewhat increas-

ing usage in the Wait phase. This behavior suggests that the

Node needs to resort to disk space to handle the accumulated

effects.

The resources depletion ceases after software rejuvenation.

The high levels of resources consumption before OS reboot

are due to the cleanup process needed (more details in the

Section IV-B) for software rejuvenation.

To go deeper in the analysis, we compared the Wait
phase results, where the system is supposedly suffering from

software aging (let’s call it an aged system), with the results

of a system without software aging accumulation (let’s call

it a clean system). This comparison may highlight if the

degradation observed in the Wait phase is related to software

aging or not.

To perform a fair comparison, we configured the clean

system considering the context of the aged system when it was

in the Wait phase. Thus, we created two httpd containers in the

clean system and collected the resources consumption for two

days (Baseline). We did not submit any workload during this.

The results obtained are presented in Figure 6. The left-hand

presents the results from the Wait phase (of the aged system)

and the right-hand has the results of the baseline configuration

(clean system). We omit the Node results to focus only on the

dockerd process behavior.

The comparison highlights that the system indeed accumu-

lates software aging effects in the Stress phase. Clean system

results present lower levels of all resources consumption when

compared to the Wait phase results. CPU usage reveals that

dockerd is using processing power in the Wait phase. However,

the results from the baseline experiment show that dockerd
barely uses CPU when managing only two containers. Similar

behavior is observed for the other resources consumption

results. In fact, Dockerd mean memory usage is 13% during

the Wait phase, while in the baseline it is 0.86%. Dockerd.

Furthermore, the virtual memory usage during the Wait phase

is about four times higher than the baseline. Figure 7 presents

the numerical comparison of both sets of results. The data in

the table has the minimum, mean, and the maximum value for

each considered resource.

The results in Figure 7 are specific to our experiment.

Thus, in other environments or experiments, they may vary.

However, these results are useful to highlight how dockerd

 0
 1
 2
 3
 4
 5

 0

 2
00

00

 4
00

00

 6
00

00

 8
00

00

 1
00

00
0

%

CPU dockerd - Wait

 0
 1
 2
 3
 4
 5

 0

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

%

CPU dockerd - Baseline

 0
 5

 10
 15
 20

 0

 2
00

00

 4
00

00

 6
00

00

 8
00

00

 1
00

00
0

%

Mem. dockerd - Wait

 0
 5

 10
 15
 20

 0

 5
00

0

 1
00

00

 1
50

00

 2
00

00

 2
50

00

%

Mem. dockerd - Baseline

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0

 2
00

00

 4
00

00

 6
00

00

 8
00

00

 1
00

00
0

G
B

VSZ dockerd - Wait

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0

 5
00

0

 1
00

00

 1
50

00

 2
00

00

 2
50

00

G
B

VSZ dockerd - Baseline

Fig. 6. Wait phase results x Baseline results

CPU (%)
Wait

CPU (%)
Baseline

Mem. usage
(%) Wait

Mem. usage
(%) Baseline

VSZ usage
(GB) Wait

VSZ usage
(GB)

Baseline
max 5.49 0.12 22.5 0.9 3.525 0.845
mean 4.24 0.06 13 0.86 3.524 0.817
min 3.59 0.06 12.96 0.85 3.524 0.689

Fig. 7. Wait x Baseline - Bar Chart and Table

software aging accumulation may lead the system to higher

levels of resources depletion. The comparison results offer

more confidence in the detection of software aging on the

dockerd daemon.

B. Docker Failure Report

The accelerated workload during the Stress Phase leads

dockerd to a catastrophic failure. As catastrophic we mean

that we have to perform several operations in the disk and

in the system to recover dockerd [16]. We notice that, after

such failure, dockerd became unresponsive to user commands.

Even simple commands like docker ps2 did not receive

dockerd response. Although the results in this paper are form

a single experiment (for space reasons), we conducted two

experiments. We perceive a catastrophic failure in the Stress
Phase of both runs.

2Command to list running Docker containers.

5

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on September 13,2023 at 23:00:11 UTC from IEEE Xplore. Restrictions apply.

— 213 —

Dockerd recovery was performed in four steps: i) deletion of

the contents of overlay2/ and containers/ folders; ii)

deletion of any remaining containers; iii) docker cleanup us-

ing docker system prune command, and iv) Operating

System reboot. We realized this approach for dockerd recovery

using try-and-error approach in our first experiment run.

We highlight that this recovery approach fits our purposes

(i.e., software rejuvenation). As all the containers are stateless,

and our environment is entirely dedicated to the experiment,

we are comfortable to perform those administrative operations.

Therefore, we do not assure that the same approach will work

on other Docker implementations or configurations.

V. THREATS TO VALIDITY

There are two main threats to the validity of our results:

1) the observed resources depletion may be related to other

software components than the dockerd daemon; and 2) the

resources consumption persists in higher levels for other

reasons than software aging. Below we discuss these threats.

Threat 1) To avoid possible side-effects from other software

components we designed a stress workload directly related to

the dockerd daemon. Besides that, during the experiment, the

system is dedicated only to run this workload. However, as

we notice in the Node memory usage results (Figure 5(c)), the

system reaches almost 100% of memory usage, while dockerd
is responsible for only about 20% of this amount. Thus, in

future experiments, we will aim at expanding the resources

monitoring for other software components.

Threat 2) The persistent degradation is one of the main

characteristics of software aging. In the experiments, we

notice this behavior in the dockerd daemon. The persistent

degradation is removed after cleanup operations that comprise

software restart, which is a common software rejuvenation

approach.

VI. CONCLUSION AND FUTURE WORKS

This paper presented an experimental study of software

aging and rejuvenation on the dockerd daemon, following

the SWARE approach. Dockerd is at the core of the Docker

architecture, thus needs to provide high levels of dependability

to ensure the architecture manageability.

We highlight the following conclusions from our study.

Our obtained results show evidence of software aging in
dockerd daemon. Dockerd accumulates persistent degradation

of resources after exposure to an accelerated workload of

container instantiation and deletion. Besides that, Dockerd
recovers from the degraded state after a cleanup and Operating

System reboot.

We also presented a comparison of the system state with
and without software aging. Our results show a significant

difference between the resources consumption of dockerd with

and without software aging accumulation. Finally, we experi-

enced a catastrophic failure on dockerd during the accelerated

workload submission and we presented a workaround to the
problem.

In the future works, we intend to verify possible side effects

of dockerd software aging in the running containers and to

expand the observed software components during SWARE ex-

ecution. Besides that, we also intend to investigate alternative

approaches for dockerd rejuvenation. Use of software aging

degration prediction techniques is also a future work.

VII. ACKNOWLEDGMENTS

This work has been partially supported by project ATMO-

SPHERE, funded by the European Commission under the

Cooperation Programme, Horizon 2020 grant agreement no

777154.

REFERENCES

[1] A. Mouat, Using Docker: Developing and deploying software with
containers. ” O’Reilly Media, Inc.”, 2015.

[2] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[3] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in
microservice architecture,” in 2016 IEEE 9th International Conference
on Service-Oriented Computing and Applications (SOCA). IEEE, 2016,
pp. 44–51.

[4] D. Messina. (2018) 5 years later, where are you on your docker journey?
- docker blog. [Online]. Available: https://blog.docker.com/2018/03/5-
years-later-docker-journey/

[5] M. Torquato, P. Maciel, J. Araujo, and I. Umesh, “An approach to
investigate aging symptoms and rejuvenation effectiveness on software
systems,” in Information Systems and Technologies (CISTI), 2017 12th
Iberian Conference on. IEEE, 2017, pp. 1–6.

[6] M. Grottke and K. Trivedi, “A classification of software faults,” Journal
of Reliability Engineering Association of Japan, vol. 27, no. 7, pp. 425–
438, 2005.

[7] K. Vaidyanathan and K. S. Trivedi, “Extended classification of software
faults based on aging,” in Fast Abstract, Int. Symp. Software Reliability
Eng., Hong Kong, 2001.

[8] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuvena-
tion: Analysis, module and applications,” in Fault-Tolerant Computing,
1995. FTCS-25. Digest of Papers., Twenty-Fifth International Sympo-
sium on. IEEE, 1995, pp. 381–390.

[9] M. Torquato, I. Umesh, and P. Maciel, “Models for availability and
power consumption evaluation of a private cloud with vmm rejuvenation
enabled by vm live migration,” The Journal of Supercomputing, vol. 74,
no. 9, pp. 4817–4841, 2018.

[10] M. Torquato and M. Vieira, “Interacting srn models for availability
evaluation of vm migration as rejuvenation on a system under varying
workload,” in 2018 IEEE International Symposium on Software Relia-
bility Engineering Workshops (ISSREW). IEEE, 2018, pp. 300–307.

[11] R. Matos, J. Araujo, V. Alves, and P. Maciel, “Characterization of
software aging effects in elastic storage mechanisms for private clouds,”
in Software Reliability Engineering Workshops (ISSREW), 2012 IEEE
23rd International Symposium on, Nov 2012, pp. 293–298.

[12] F. Machida, J. Xiang, K. Tadano, and Y. Maeno, “Combined server
rejuvenation in a virtualized data center,” in 2012 9th International Con-
ference on Ubiquitous Intelligence and Computing and 9th International
Conference on Autonomic and Trusted Computing. IEEE, 2012, pp.
486–493.

[13] C. Melo, J. Araujo, V. Alves, and P. R. M. Maciel, “Investigation of
software aging effects on the openstack cloud computing platform.” JSW,
vol. 12, no. 2, pp. 125–137, 2017.

[14] M. Torquato, J. Araujo, I. Umesh, and P. Maciel, “Sware: a methodology
for software aging and rejuvenation experiments,” J Inf Syst Eng Manag,
vol. 3, no. 2, p. 15, 2018.

[15] J. Araujo, R. Matos, P. Maciel, and R. Matias, “Software aging issues
on the eucalyptus cloud computing infrastructure,” in Systems, Man, and
Cybernetics (SMC), 2011 IEEE International Conference on. IEEE,
2011, pp. 1411–1416.

[16] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz, “Com-
paring operating systems using robustness benchmarks,” in Proceedings
of SRDS’97: 16th IEEE Symposium on Reliable Distributed Systems.
IEEE, 1997, pp. 72–79.

6

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on September 13,2023 at 23:00:11 UTC from IEEE Xplore. Restrictions apply.

— 214 —

Appendixes

Appendix D: PyMTDEvaluator Output Report
In this appendix, we present an example of the PyMTDEvaluator output re-
port.

— 215 —

PyMTDEvaluator Report

Fri Jul 1 08:53:14 2022

PyMTDEvaluator - Summary of Results
+++++++++++++++++++++++++++
Scenario 0

Parameters

Movement Trigger = 2.0 h
Time for Attack Success = 10.0 h

Results

Expected downtime due to movements (evaluation time) = 0.0 min
Expected annual downtime due to movements = 1.8 min
Expected total cost (evaluation time) = $ 5.4
Expected Threshold = 12 h
System Capacity 95% CI (evaluation time) = [82.64, 85.81, 88.98] %
System Availability 95% CI (evaluation time) = [0.95246, 0.96626, 0.98006]
Downtime 95% CI (evaluation time) = [10482.48, 17735.12, 24987.75] min

Example run results

Survival Time (evaluation time) = 12 h
System Capacity 95% CI -while available- (evaluation time) = [90.77, 94.23, 97.69]
Downtime (evaluation time) = 0.0min
+++++++++++++++++++++++++++

Parameters

Movement Trigger = 4.0 h
Time for Attack Success = 10.0 h

Results

Expected downtime due to movements (evaluation time) = 0.0 min
Expected annual downtime due to movements = 0.85 min
Expected total cost (evaluation time) = $ 2.7
Expected Threshold = 12 h
System Capacity 95% CI (evaluation time) = [65.74, 73.48, 81.22] %
System Availability 95% CI (evaluation time) = [0.8166, 0.87371, 0.93082]
Downtime 95% CI (evaluation time) = [36363.56, 66379.63, 96395.69] min

Example run results

Survival Time (evaluation time) = 12 h
System Capacity 95% CI -while available- (evaluation time) = [68.8, 78.57, 88.34]
Downtime (evaluation time) = 0.0min
+++++++++++++++++++++++++++

Parameters

Movement Trigger = 2.0 h
Time for Attack Success = 100.0 h

— 216 —

Results

Expected downtime due to movements (evaluation time) = 0.0 min
Expected annual downtime due to movements = 1.85 min
Expected total cost (evaluation time) = $ 5.4
Expected Threshold = 2 h
System Capacity 95% CI (evaluation time) = [98.01, 98.44, 98.88] %
System Availability 95% CI (evaluation time) = [0.99996, 0.99998, 1.00001]
Downtime 95% CI (evaluation time) = [-2.73, 9.12, 20.97] min

Example run results

Survival Time (evaluation time) = 12 h
System Capacity 95% CI -while available- (evaluation time) = [100.0, 100.0, 100.0]
Downtime (evaluation time) = 0.0min
+++++++++++++++++++++++++++

Parameters

Movement Trigger = 4.0 h
Time for Attack Success = 100.0 h

Results

Expected downtime due to movements (evaluation time) = 0.0 min
Expected annual downtime due to movements = 0.86 min
Expected total cost (evaluation time) = $ 1.8
Expected Threshold = 6 h
System Capacity 95% CI (evaluation time) = [96.56, 97.65, 98.75] %
System Availability 95% CI (evaluation time) = [0.99997, 0.99999, 1.00001]
Downtime 95% CI (evaluation time) = [-4.41, 4.42, 13.25] min

Example run results

Survival Time (evaluation time) = 12 h
System Capacity 95% CI -while available- (evaluation time) = [77.7, 85.0, 92.3]
Downtime (evaluation time) = 0.0min
+++++++++++++++++++++++++++

Scenario 1

Probability of attack success

— 217 —

Availability

Accumulated cost

— 218 —

Capacity

Availability (example run)

— 219 —

Capacity (example run)

— 220 —

	Acknowledgments
	Abstract
	Resumo
	Foreword
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Problem Statement
	Contributions
	How to Read this Thesis
	Disambiguation

	Background and Related Work
	Availability and Security Evaluation
	Concepts on State Space Models
	Markov Chains
	Petri Nets
	Stochastic Petri Nets
	Hierarchical Compositions
	Sensitivity Analysis

	Software Aging and Rejuvenation
	Moving Target Defense: A Systematic Mapping
	Classification of Works
	Mapping Results
	Key Findings

	VM Migration-based MTD
	MCDM
	MCDM based on the Euclidean Distance from an Ideal Solution
	TOPSIS

	Related Works
	Software Rejuvenation
	Moving Target Defense

	Summary

	System Architecture
	Virtual Machine Migration for Software Rejuvenation
	Virtual Machine Migration as MTD
	Case Studies
	CS #1 - Software Rejuvenation
	CS #2 - Moving Target Defense

	Threats to Validity and Limitations
	Summary

	Performability of Virtualized Systems with VM Migration
	Approach and Assumptions
	Failure Modes
	Bursty Workload Modeling

	Models
	Availability Model
	Performance Model - M/M/1/k Queue

	Case Studies
	CS #1 - Availability
	CS #2 - System Throughput
	CS #3 - Reliability

	Threats to Validity and Limitations
	Summary

	Availability and Security of VM Migration-Enabled Rejuvenation
	Approach and Assumptions
	Model
	Case Studies
	CS #1 - Man-in-the-middle Attack
	CS #2 - Denial of Service (DoS) Attack
	CS #3 - Composition of Attacks

	Threats to Validity and Limitations
	Summary

	Time-based VM Migration as MTD against Persistent Attacks
	Approach and Assumptions
	Model
	Case Studies
	CS #1 - Varying Number of Available Physical Machine Pools
	CS #2 - Varying VM Migration Schedule - 4N architecture
	CS #3 - Validation with Simulation Results

	Threats to Validity and Limitations
	Summary

	Time-based VM Migration as MTD against Non-persistent Attacks
	Approach and Assumptions
	Model
	Case Studies
	CS #1 - Varying VM Migration Scheduling
	CS #2 - Varying VM Migration Failure Probability
	CS #3 - Varying Attack Success Rates

	Threats to Validity and Limitations
	Summary

	PyMTDEvaluator: A Tool for Time-based MTD against Non-persistent Attacks
	PyMTDEvaluator Implementation
	User Interface
	Steady-state Evaluator
	Transient Evaluator
	Plot Generator

	Validation against Model Results
	Use case
	Threats to Validity and Limitations
	Summary

	Modeling of Time-Based VM Migration as MTD and Rejuvenation
	Approach and Assumptions
	Model
	Availability-related Model
	Security-related Model
	Metrics Computation

	Case Studies
	CS #1 - Availability-aware VM Migration Trigger
	CS #2 - MTD Protection using Availability-aware Trigger
	CS #3 - Availability and MTD Protection Evaluation

	Threats to Validity and Limitations
	Summary

	Conclusion and Future Work
	Key Takeaways
	Future Work

	Bibliography
	Appendixes
	Appendix A: MTD in the Cloud: A Systematic Mapping Study
	Appendix B: VM Migration Scheduling as MTD against Memory DoS Attacks: An Empirical Study
	Appendix C: An Experimental Study of Software Aging and Rejuvenation in dockerd
	Appendix D: PyMTDEvaluator Output Report

