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Resumo

Com a esperança de vida a aumentar, as pessoas com dificuldades motoras necessi-

tam cada vez mais de assistência nas suas atividades diárias. A busca por uma melhor

qualidade de vida por parte destas pessoas tem provocado um aumento da procura de

auxiliares de marcha, nos últimos anos.

Esta investigação teve como objetivo a incorporação de visão compuatcional e in-

teligência artificial num andarilho com travões, permitindo identificar e evitar situações

de perigo, ajudando as pessoas com problemas de mobilidade a ter uma vida mais segura

atenuando as limitações impostas pela sua condição.

Tendo em vista esse objetivo, o andarilho foi equipado com uma câmara Raspberry Pi

ligada a uma placa NVIDIA Jetson Nano que corre um modelo de aprendizagem profunda.

A câmara permite a monitorização contínua do ambiente em frente do andarilho e a

rede neuronal processa esta informação, determinando a decisão que melhor garanta a

segurança do utilizador. Com esse propósito, o modelo de aprendizagem profunda foi

treinado para produzir uma de quatro opções: Free Way, Left Turn, Right Turn e Full

Stop. Para treinar a rede neural, o dataset foi criado por imagens recolhidas pelo DEEC.

Cada imagem foi então etiquetada e o dataset foi dividido em três subconjuntos: treino,

teste e validação.

Ao integrar a visão computacional e a inteligência artificial, o andarilho tem capacidade

de navegar autonomamente e responder a potenciais perigos, como paredes, obstáculos e

escadas, ativando os travões, forçando o andarilho a fazer curvas ou, até mesmo, a parar.

Garantir a segurança do utilizador aumenta a sua independência e reduz os constrang-

imentos impostos pelas suas limitações físicas ou cognitivas, ajudando-o, assim, a ter uma

vida mais segura e independente.

Palavras-chave: Andarilho inteligente, Inteligência artificial, Visão Computacional,

Classificação de imagens, Pessoas com deficiência, Problemas de mobilidade
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Abstract

With life expectancy growing every year, elderly and disabled people are increasingly

in need of assistance in their daily life activities due to their mobility issues. The search

for a better quality of life for these people has led to an increased demand for walking

aids in recent years.

The aim of this research was to integrate computer vision and artificial intelligence into

a walker with brakes, making it possible to detect and avoid dangerous situations, helping

people with mobility problems to live safer lives by reducing the limitations imposed by

their condition.

In this regard, the walker has been equipped with a Raspberry Pi camera connected to

an NVIDIA Jetson Nano board running a deep learning model. The camera continuously

monitors the environment in front of the walker and the neural network processes this

information and outputs the decision that best ensures the user’s safety. For that purpose,

the deep learning model was trained to output one of four options: Free Way, Left Turn,

Right Turn and Full Stop. In order to train the neural network, a dataset was collected

around by the DEEC. Each frame was then labelled, and the dataset was divided into

three subsets: training, testing, and validation.

By integrating computer vision and artificial intelligence, the walker is able to navigate

autonomously and respond to potential hazards such as walls, obstacles and stairs by

activating the brakes, forcing the walker to turn or even stop.

Ensuring the user’s safety increases their independence and reduces the constraints

imposed by their physical or cognitive limitations, thus helping them to lead a safer and

more independent life.

Keywords: Smart walker, Artificial Intelligence, Computer Vision, Image classifica-

tion, Disabled people, Mobility problems

v





"Humans are not disabled. A person can never be broken. Our built

environment, our technologies, are broken and disabled. We, the people,

need not accept our limitations, but can transcend disability through

technological innovation.”
Hugh Herr
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1 Introduction

Over the last few years, technology has been evolving exponentially through the most

varied fields bringing multiple advantages, ranging from making our daily life more man-

ageable (through the simplest things) to performing high-precision medical surgeries.

However, one of the most fulfilling uses of technology is when it helps bring people to-

gether, providing support to disabled people to promote equity and minimise the difficul-

ties imposed by their health condition.

Walkers started appearing in the early 1950s, with the first patent granted in 1953 to

William Cribbes Robb, for a device called a "walking aid".

Since 1950, walkers have evolved and have now entered the era of intelligent walkers.

These have new features and can assist their users in a whole new way, not only people

with mobility problems but people with cognitive disorders also.

Although mobility device users represent only a small minority of the population with

disabilities, their importance transcends their numbers. Some surveys show that the

proportion of people using mobility devices increases sharply with age [13] as shown in

figure 1.1.
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1.1. Motivation Chapter 1. Introduction

Figure 1.1: Proportion of population using mobility devices, by age and device [1].

1.1 Motivation

A rapidly ageing population brings with it a greater need for mobility aids such as

walkers. However, regular walkers cannot help with all the specific problems of the entire

population, which makes smart walkers a better and more viable option, as they can

provide personalised and context-aware support, thereby improving the quality of life

of users. Smart walkers, for example, can better assist people with cognitive or visual

impairments to walk more independently by ensuring their safety by avoiding collisions

or dangerous situations, such as walls, obstacles or stairs.

Despite the progress made in recent years, there is still a long way to go to improve

the functionality, usability and safety of smart walkers.

Smart walkers require the integration of different disciplines such as engineering, com-

puter science, human-computer interaction and healthcare. Writing a dissertation on this

topic can be an opportunity to explore and apply knowledge from different fields.

This dissertation builds on the work of Pierdevară [14] by focusing specifically on the

design and development of smart walkers, with the aim of addressing key limitations and

advancing the state of the art in this field. For that purpose, an ESP32-CAM board was

only used to acquire the dataset, and a Raspberry Pi camera connected to an NVIDIA

Jetson Nano board was installed on the walker and programmed to monitor the front

view while running a deep learning model that, based on the view ahead, outputs the

3



1.2. Goals Chapter 1. Introduction

appropriate command.

With the contribution of this dissertation, smart walkers can be a meaningful and

rewarding experience, with the potential to make a real-world impact and advance the

state of the art in this important field.

1.2 Goals

This dissertation aims to investigate the design, development and evaluation of a smart

walker with improved usability and safety features. The objective is to reduce potential

risks and ensure user safety by implementing measures to prevent dangerous situations.

To achieve these goals, the following key objectives have been determined:

• Equip the walker with vision by installing a camera on the front to capture streaming

images.

• Develop a deep learning model capable of classifying the images captured by the

walker’s camera and determining the appropriate action to avoid obstacles.

• Integrate the deep learning model into a board capable of real-time actions, provid-

ing the walker with the intelligence to decide between four outputs (Free Way, Left

Turn, Right Turn and Full Stop)

• If no objects potentially endangering the walker and its user’s safety are detected

along its path, the deep learning model should not impose any restrictions.

• Objects located at the bottom of the frame are considered safety hazards. Appro-

priate action should be taken to address them. An object on the bottom left will

cause the walker to navigate to the right, while an object on the bottom right will

cause the walker to navigate to the left.

• In case the walker is unable to safely navigate around the obstacle, the model will

classify the situation accordingly, prompting the system to bring the walker to a

complete stop to ensure the user’s safety.

4



1.3. Dissertation structure Chapter 1. Introduction

1.3 Dissertation structure

This dissertation is organised into five main chapters.

1st chapter - Introduction:

Introduces the research, addressing overall issues, justifying the study’s necessity, and

outlining general and specific objectives.

2nd chapter - State of art:

The current bibliography of autonomous walking assistance, from conventional to smart

models, is explored. The application of deep learning in autonomous driving is studied.

Final considerations identify gaps in the existing literature.

3rd chapter - Methods and tools:

Details crucial methodologies and tools about the used hardware (ESP32-CAM’s and

NVIDIA Jetson Nano) and the artificial intelligence model.

4th chapter - Developed Work:

Covers key project aspects, detailing the assembly process, the dataset acquisition,

methodology for model training, testing, and results. Deployment steps are outlined,

concluding with an in-depth analysis of model effectiveness in practical scenarios.

5th chapter - Conclusion:

A comparison is made between the goals and the results achieved, including a discussion

of any difficulties encountered and their solutions. Additionally, some suggestions for

future work are provided.

5



2 State of Art

This chapter analyses the existing bibliography on walkers and their variations, from

standard walkers to smart walkers, highlighting their importance in the lives of people

with limited mobility. It also discusses the ongoing evolution of technology aimed at

improving the comfort and quality of life for these individuals.

An investigation into autonomous driving was conducted, demonstrating the evolution

of the technology in relation to driving. It is shown that the technology can reduce

road accidents by assisting the driver. A classification of levels of autonomous driving is

presented, ranging from level 0 to level 5, each with its own set of characteristics. Level 0

represents the driver having full control of the vehicle, while level 5 represents the vehicle

performing all driving tasks under all conditions. The study also explores deep learning

in driving and the common technologies used in it.

At the end of the chapter, gaps in the bibliography that this dissertation aims to cover

are presented.

2.1 Walkers

From year to year, the ageing of the population has been increasing sharply, whereby

is estimated a growth of 1 in 5 by 2050 [15]. As a consequence, walkers have evolved to

try to meet the needs of their users. There are various types of this device, each of them

with small differences but all with the same basic design and goal, to help and support

people with mobility difficulties.

The basic design of a walker always meets the following requirements: it takes an

incomplete cuboid shape, medically known as Zimmer frame, with a height around the

waist and length slightly wider than the user. The objective of this famous shape is to

6
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transfer 64% of the user’s weight into the arms, relieving some pressure from the lower

body. This design has the advantage of having more stability and a greater sense of

security on the part of the user and those around him [15] raising the level of activity and

Independence.

2.1.1 Standard and articulated Walkers

A standard walker (fig: 2.1a), often referred to as a basic walker, is a traditional

mobility aid designed to offer stability and support while walking. It features a simple

framework with four legs and two handles, providing the user with a reliable way to

maintain their balance. These walkers are commonly used by people with limited mobility

or those recovering from injuries, offering assistance during ambulation, especially indoors

and on even surfaces.

An articulated walker (fig: 2.1b) is a device that has the same features as the standard

one plus the capability of articulation, i.e., to move each pair of legs on each side separately

from the other two like shown in figure 2.1c. It provides continuous support when keeping

up with the leg motion. It is more adequate for people with balance problems allowing

the user to still have a natural walk.

(a) Standard walker [16].

(b) (c)

(d) Articulated walker [17].

Figure 2.1: Fixed walkers.

2.1.2 Walkers with wheels

A walker with wheels builds upon the concept of a standard walker by integrating front

wheels. This feature enhances manoeuvrability, allowing users to move more freely while
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still receiving the support of the walker. The swivelling front wheels and lockable rear

legs create a balanced combination of stability and ease of movement. These walkers

are ideal for individuals seeking enhanced mobility and the ability to navigate various

environments with reduced effort.

There are multiple wheeled walkers with different number of wheels:

(a) 2 wheels walker [18]. (b) 3 wheels walker [19]. (c) 4 wheels walker [20].

Figure 2.2: Wheel walkers.

Each of these walkers is more appropriate for different mobility problems and different

environments:

A 2 wheels walker (fig: 2.2a) still offers the stabilisation of a standard walker without

the need of bearing the walker. It can help people avoid the tiredness of dragging the

device while still assuring support, for that, it is suitable for people with less strength in

their upper body [15].

The 3 wheels (fig: 2.2b) walker assures continuous balance support while being lighter

and easier to move around than a walker with more wheels.

When talking about the 4 wheels walker (fig: 2.2c), still provides continuous support

without the need of lifting the device. It is more appropriate for people with unsteady

feet but that do not need to support all their weight on the walker [15]. People with

balance or cognitive problems are not suitable for this kind of walker. We can often see

a seat option with this walker.

2.1.3 Smart Walker

In the last few years, intelligent walkers have been a big bet for improvement as a

walking aid. Valadao et al. define smart walkers as "walkers that rely on electronics and
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control systems, besides the mechanical structure" [21]. These more advanced walkers

are equipped with multiple sensors that enable them to gather real-time data about their

surroundings, user movements, and environmental conditions that help the device make

decisions in order to preserve the user’s safety and improve mobility.

According to Martins et al. [22], the development of a walker has to take into account

that every disability is different so its design should be specific and attend to each user’s

needs. The evolution of technology allows us to integrate a range of features on the

walkers empowering them with more security and making their’ manoeuvrability easier

and more comfortable.

Martins et al. [22] propose that smart walkers should be designed to provide assistance

to their users at various levels, such as:

• Physical support: Like any other type of walker, providing this type of support

to the user is essential, such as balance. This support can be separated into two

types, passive and active:

-Passive: through mechanical and/or structural enhancement, the device can pro-

vide the necessary balance and support that the user needs. A UPWalker (fig: 2.3)

is a great example of a walker with ergonomic handles and a sturdy frame that en-

courages the user to stand up providing support while promoting a better posture.

Figure 2.3: UPWalker [2].

9



2.1. Walkers Chapter 2. State of Art

-Active: with the help of the sensors installed on the walker, data on the sur-

roundings is recorded and, allows the system to provide external and controlled

help to the user making the march easier and avoiding dangerous situations. One

example of active physical support is when the walker encounters a declined path

and activates its brakes avoiding it to slip or when the walker applies energy to its

wheels to help the user in the presence of an inclined path. The Camino Walker [3]

(fig: 2.4) is a good example of an active support walker. It looks like a traditional

walker but can power or brake it’s wheels when there is need of support, giving more

confidence to the user.

Figure 2.4: Camino Walker [3].

• Sensory assistance: Since the walker is used by people with mobility limitations,

sudden and unexpected changes can be problematic. An early detection of obsta-

cles is essential while the control system warns the user by sounds and vibrations

alerts or by operating directly on the device’s actuators (for example, by chang-

ing momentarily the path of the walker). This kind of assistance is more suitable

for users with visual problems or to help in environments with multiple obstacles.

Annicchiarico et al. [4] (fig: 2.5) presented a new smart walker called i-Walker.

This device is endowed with sensory assistance when communicating with the user.

The walker has a submissive behaviour, i.e., when it evaluates the surroundings and

detects some obstacle, it attempts to infer a safer path for the user. Monitoring is

done to evaluate if the user resists or accepts the system’s suggestion. If he resists,

a new attempt is done until the user agrees with the motion.
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Figure 2.5: i-Walker [4].

• Cognitive assistance: Walkers can also be endowed with cognitive features, such

as location. This type of walker is normally used by users with cognitive problems

related to memory and orientation. Some of these walkers are programmed to guide

people on a pre-defined path. It is also common to have the device communicating

with the user through voice commands, a visual interface or by receiving directions

and commands from the person.

DALi project (fig: 2.6) [5] aimed to create a device that could give the needed

cognitive support to people with limitations, such as memory and orientation loss.

The product of this project was called Cognitive Walker (C-Walker) and is capable of

guiding the user through a pre-determined route, detecting anomalies along the way,

observing and predicting human paths on the surroundings, adapting the course in

order to avoid obstacles and other intelligent features that keep the human in safety.

Figure 2.6: C-Walker [5].

• Health monitoring: Since we are dealing with people with fragile health, mon-

itoring their health while giving updates to their caretaker, might be very useful.
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This information is used to keep a medical history of the patient and used later to

get better treatment for his limitations.

The Camino walker (fig: 2.4) [3] can also provide monitoring of health to its user.

Using artificial intelligence, it tracks the walk with 22 different metrics, helping keep

track of the user’s march progress.

• Advanced human-machine interface: A simple and functional interface is the

final key when designing a smart walker. Is through this element that the machine

and the user/caretaker will communicate, for example, the walker will give warnings

and updates on the surrounding information and the person will inform the machine

about the path to follow. Since a big target of the user of the walker are the elder

people, a clean and not too complicated interface is essential, for it to be simple to

learn and to avoid frustration when using it.

The C-Walker (fig: 2.6) [5] is also equipped with a rich set of interfaces that are

used to communicate with the user to suggest new paths or even give warnings,

using visual, acoustic or haptic signals. Active interfaces are also used, such as

electromechanical brakes and motorized wheels.

Smart walkers can then provide a range of assistance, from enhancing physical sup-

port to incorporating sensory feedback, aiding cognitive functions, monitoring health and

offering advanced user interfaces. These devices are suitable to help people with various

limitations, such as mobility, cognitive or visual.

2.2 Autonomous driving & Deep learning

In recent years, autonomous driving has gained more and more enthusiasts and fame,

which has boosted its growth. Renowned car manufacturers such as Audi, BMW, Ford,

Google, General Motors, Tesla, Volkswagen and Volvo have all been engaged in intensive

research to improve safety through autonomous vehicle technology. These systems employ

a sophisticated combination of sensors, cameras, and radar to gather and analyse data

from the vehicle’s surroundings. Subsequently, they process this information to generate

a decision.
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2.2.1 Autonomous driving

Data from the World Health Organization (WHO), published in the Global status report

on road safety 2023 [23], shows that although the number of road traffic deaths has fallen,

it is still a cause for concern, killing 1.19 million annually, making it the 12th more common

cause of death in general and the leading cause of death in the 5-29 age group. The main

cause of these accidents is undeniably human error, including speeding, drunk driving, and

driver distraction. This underlines the importance of integrating new vehicle technologies

such as rear-view cameras, adaptive headlights, and forward collision warning systems.

These advances play a crucial role in reducing accidents by assisting the driver and helping

to prevent potential collisions.

The major goal of autonomous driving is to prioritise user safety, a task that be-

comes increasingly complex given the vast amount of data these systems must handle.

Basic autonomous driving systems include a number of essential technologies, including

sensing, localisation, perception, decision-making, seamless interaction and data storage.

These integrated components work together to enhance safety and drive the evolution of

autonomous driving capabilities.

According to the Society of Automobile Engineers (SAE), automation should be classi-

fied into 6 levels, from 0 to 5, being 0 no driving automation and 5 full driving automation

[24].

The following image resumes the classification of each level of automation:

Figure 2.7: Levels of autonomous driving according to SAE[6].

• SAE Level 0: No automation - The human driver maintains full control over all

13



2.2. Autonomous driving & Deep learning Chapter 2. State of Art

elements of the dynamic driving task, even when aided by warning or intervention

systems.

• SAE Level 1: Driver assistance - A driver assistance system operates in specific

driving modes, taking charge of either steering or acceleration/deceleration based

on the driving environment, while expecting the human driver to handle all other

aspects of the dynamic driving task.

• SAE Level 2: Partial automation - In certain driving modes, one or more driver

assistance systems manage both steering and acceleration/deceleration based on

environmental data, with the expectation that the human driver will manage all

other aspects of the dynamic driving task.

• SAE Level 3: Conditional automation - An automated driving system performs

all elements of the dynamic driving task in specific driving modes, anticipating that

the human driver will intervene as needed.

• SAE Level 4: High automation - In designated driving modes, an automated

driving system assumes full responsibility for all aspects of the dynamic driving

task, regardless of the human driver’s response to intervention requests.

• SAE Level 5: Full automation - Under any roadway or environmental condition

manageable by a human driver, an automated driving system consistently executes

all aspects of the dynamic driving task.

2.2.2 Deep learning

Deep Learning is the core of autonomous vehicles making it a decision-maker system.

These systems gather data from different on-board sources, such as cameras, radars,

LiDARs, ultrasonic sensors, GPS units and/or inertial sensors and process them making

a driving decision on low latency.

Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Deep

Reinforcement Learning (DRL) are the most common deep learning networks used in

autonomous driving. This work will focus on Convolutional Neural Networks.

Convolutional Neural Networks, also known as CNN or ConvNet, are specialised neu-

ral networks primarily designed for processing spatial data, particularly images. Their
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distinguishing feature is the convolution operation, a mathematical process that blends

two functions to generate a third function that represents how the shape of one function

is changed by the other. CNNs operate by taking an input image and transforming it

into a simplified format that is easier to process while retaining crucial features. These

networks have the ability to autonomously learn and extract complex features from the

dataset they are trained on, effectively encoding the feature space.

Figure 2.8: Architecture of a CNN [7].

Figure 2.8 shows the basic architecture of a CNN. The model receives an image

as input, with the final layer being the decision layer, a softmax layer responsible for

computing the probabilities associated with all potential outputs and selecting the one

with the highest probability value.

The key point for deep learning systems is the amount of data available for training.

Tesla and Waymo, two of the biggest companies leading the development of autonomous

driving, have different approaches concerning the collection of data. Tesla uses its exten-

sive user base to gather real-world data on vehicle performance and potential improve-

ments. Conversely, Waymo employs robust computer simulations to refine its systems

and applies what it learns from these simulations to a smaller real-world fleet. In recent

years, prompted by growing interest in autonomous vehicles, many driving datasets have

been publicly released and documented. This accessibility allows independent researchers

to effectively train their models.

Deep learning-based perception, particularly using convolutional neural networks (CNNs),

has become the dominant standard for object detection and recognition, with significant

successes in competitions such as the ImageNet Large Scale Visual Recognition Challenge.

The advances in deep learning for object detection and recognition represent a remarkable

trajectory that will shape several fields in the coming years. Deep learning is expected to
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play a key role in revolutionising industries such as autonomous vehicles.

2.3 Final Considerations

The state-of-the-art review has provided insights into the evolution of walkers, ranging

from standard designs to advanced smart models. As the global population ages, the

demand for innovative mobility aids continues to grow, emphasising the need for solutions

that prioritise user safety, autonomy, and functionality.

While the existing literature has extensively explored various aspects of smart walkers,

including stability, manoeuvrability, and user interface design, there are notable gaps

that warrant further attention. One significant gap pertains to the limited focus on

collision avoidance capabilities in smart walkers. While features such as stability and

user interface have received considerable attention, the integration of advanced collision

avoidance technologies, such as cameras and deep learning algorithms, remains relatively

underexplored.

Furthermore, comprehensive studies that consider the user experience and usability of

collision avoidance systems in smart walkers are lacking. It is crucial to understand user

preferences, feedback, and interactions with such systems to ensure their effectiveness and

acceptance in real-world settings.

By addressing these gaps in the literature, future research effords can contribute sig-

nificantly to advancing the field of assistive technology and improve the safety, autonomy,

and usability of smart walkers for individuals with mobility limitations.
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3 Methods and tools

This chapter covers the methods and tools used to develop and implement the smart

walker. Specifications about the hardware and details about their use, as well as infor-

mation on the software, including the machine learning model and framework choice and

used techniques are provided.

3.1 Hardware

In this dissertation, the ESP32-CAM from Espressif was used as the primary device for

dataset acquisition. Subsequently, for real-world implementation, a Raspberry Pi camera

was connected to the Jetson Nano from NVIDIA. The hardware platforms were chosen for

their ability to capture and process visual data in controlled and dynamic environments.

3.1.1 ESP32-CAM

The ESP32-CAM board is widely used in a variety of applications, such as home au-

tomation, surveillance, robotics, and IoT projects. Its main advantages include its low

cost, compact size, and versatility.

In terms of camera performance, the ESP32-CAM features an OV2640 camera module

with a resolution of up to 2 megapixels. It can capture images and video at various

resolutions and frame rates and supports features such as automatic gain control, white

balance, and exposure.

Although, its small size brings some inconveniences, such as the fact that, this board,

does not have a built-in programmer. In fact, to program this microcontroller, the use

of an Future Technology Devices International (FTDI) programmer is needed to connect
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it to the computer and upload code. The ESP32-CAM can be programmed using the

Arduino Integrated Development Environment (IDE) or other programming languages

such as MicroPython. It also has a range of libraries and examples available, making it

easy to get started.

PinOut

ESP32-CAM board comes with 3 ground (GND) pins, 2 power pins: 5V and 3.3V,

and 10 General Purpose Input/Output (GPIO) pins, as we can see on the PinOut

scheme in figure 3.1. GPIO’s are uncommitted digital signal pins which may be used

as inputs or outputs, or both. In other words, GPIO pins are found on many microcon-

trollers, including the ESP32-CAM, capable of interfacing a wide range of products, such

as sensors, displays, and other microcontrollers. These are powerful and flexible pins that

are totally programmable to perform a variety of functions, depending on the needs of the

application. Although, their flexibility brings some limitations, such as their maximum

voltage and current ratings, and their ability to handle high-frequency signals.

A 4th power pin coloured in yellow can be noticed, 3.3V/5V. This is a power-out pin,

intended to power any device with 3.3 or 5V.

Figure 3.1: ESP32-CAM PinOut [8].

GPIO 1 and GPIO 3 are the serial pins (TX and RX, respectively). These are the

pins used to communicate with the board and upload the code. We can also use them to

connect some other output or sensor, but we will not be able to open the Serial Monitor.

Connecting the GPIO 0 pin to GND puts the ESP32-CAM in programming mode.

To run the code we just need to disconnect it and press the RESET button.
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ESP32-CAM has a couple of integrated LED that we can use to test the connection.

Next to the RESET button, there is a red LED that is connected internally to the pin

GPIO 33. There is also a very bright integrated LED on the front of the board that can

work as a flashlight. This LED is internally connected to pin GPIO 4.

Overall, the ESP32-CAM is a powerful and affordable microcontroller board that offers

a wide range of features and applications. Its popularity and active community support

make it a great choice for developers and hobbyists alike.

Integrated Development Environment

There are multiple options to program the ESP32-CAM. Since this microcontroller is

Arduino programmable, it is possible to use the Arduino IDE to communicate with it,

although there is also the option to use Platform IO, a cross-platform, cross-architecture,

multi-framework professional IDE tool for embedded system and software engineers who

write embedded applications, the installation of the corresponding extension for Visual

Studio Code is a viable option to communicate with the board.

Despite the countless available options, the Arduino IDE has been selected for use in

this dissertation due to its extensive collection of examples, robust support, and familiarity

with it.

Programming

As explained earlier, this particular ESP32 CAM module (OV2640) does not have a

built-in Universal Serial Bus (USB) programmer. Connection and power are facilitated by

the use of an FTDI programmer. The corresponding schematic diagram of the required

connections is shown in figure 3.2.
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Figure 3.2: ESP32-CAM connections

schematic [9].

Table 3.1: ESP32-CAM connections

ESP32-CAM FTDI

GND GND

5V VCC (5V)

U0R TX

U0T RX

GPIO 0 GND

It is important to notice that, in order to have the microcontroller in programming

mode, the pin GPIO 0 and GND need to be connected with a jumper. As soon as the

code is uploaded to the board, we disconnect this pin and press the RESET button to

run the code the new code.

3.1.2 NVIDIA Jetson Nano

Jetson Nano Developer kit-B01 is a small, powerful computer developed by NVIDIA

specifically designed to elevate low-budget Artificial Intelligence (AI) projects [25]. This

computer is powered by a small Graphics Processing Unit (GPU) capable of running

multiple neural networks in parallel for applications like image classification, object de-

tection, segmentation and speech processing which makes it an ideal hardware for this

dissertation.

Specifications

The main technical specifications of the Jetson Nano Developer kit-B01 are described

in the following table:
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Table 3.2: Jetson Nano specifications

GPU 128-core Maxwell

CPU Quad-core ARM A57 @ 1.43 GHz

Memory 4 GB 64-bit LPDDR4 25.6 GB/s

Connectivity Gigabit Ethernet, M.2 Key E

Getting started

The Jetson Nano Developer kit-B01 has multiple ports for the most variable uses, as

shown in figure 3.3.

Figure 3.3: Jetson Nano connections [10].

To get started with the Jetson Nano, it is needed to power it with 5V 2A supply,

connect a monitor through the HDMI port, a keyboard and a mouse using the USB ports

and the ethernet cable.

This single-board computer uses the system image on the microSD card as a boot

device, the minimum storage recommended for the card it’s 32 GB. Using another com-

puter with an internet connection, the image of the system should be downloaded from

the NVIDIA official page [26] and written to the SD card.
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Despite being highly capable, the Jetson Nano remains an embedded device, which

means it is likely to be slower than a laptop. Training full deep learning models on it is

usually not advisable as it will take a long time. It is advisable to train the model with

data on a desktop or a powerful internet server optimized for that task, as was done in

this work, and then transfer the model to the Jetson Nano for prediction purposes.

Raspberry Pi Camera 2

The Raspberry Pi Camera 2, featuring 8MP resolution and available in both visible

light and infrared versions, seamlessly integrates with the Jetson Nano. This stream-

lined compatibility allows for the effortless capture of photos or videos to support models

running on this robust platform.

Figure 3.4: Raspberry Pi Camera Module 2 [11].

The Jetson Nano supports capturing video feeds and static images via a variety of

interfaces. The Raspberry Pi Camera camera has to be attached to the pins represented

by the number 9 on the figure 3.3. The camera stream can be accessed in real-time by

connecting the camera to the Jetson Nano and passing the camera identifier. For instance,

in the case of the Raspberry Pi Camera, the identifier is csi://0. A table containing the

identifiers of compatible cameras can be found on NVIDIA’s official GitHub repository

for Camera Streaming and Multimedia [27].

3.2 Artificial Intelligence Model

The core of this dissertation is the machine learning model trained specifically for this

project. The following subsections cover the tools (IDE and framework), the chosen
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architectures and the technique used during training. A description of each output and

the metrics used to evaluate the performance of the model are also explained.

3.2.1 Google Collab

Google Colab [28] (short for "Colaboratory") from Google Research is a hosted Jupyter

Notebook service that requires no setup to use. Colab allows anyone with a Google

account to write and run Python code through the browser and is particularly well suited

to machine learning.

The use of Google Colab is appropriate for this work, as it provides free access to

computing resources, including GPUs. A code to train CNNs that would take several

minutes or even hours to run on our computer can easily be run in the browser using the

resources of Google’s GPUs.

3.2.2 Convolutional Neural Network

Various CNN architectures serve different purposes. This dissertation employs the

fundamental architecture of AlexNet [12].

Alexnet was created by Alex Krizhevsky in collaboration with Ilya Sutskever and

Geoffrey Hinton, who was Krizhevsky’s Ph.D. advisor at the University of Toronto. This

neural network is similar to LeNet, one of the first successful CNNs.

AlexNet became famous after winning the ImageNet Large Scale Visual Recognition

Challenge (ILSRC) in 2012, defeating its opponents by speed and efficiency. It consists

of eight layers (five convolutional and three fully connected):

1. Convolution: kernel 11x11, stride 4

2. MaxPool: kernel 3x3, stride 2

3. Convolution: kernel 5x5, pad 2

4. MaxPool: kernel 3x3, stride 2

5. Convolution: kernel 3x3, pad 1
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6. Convolution: kernel 3x3, pad 1

7. Convolution: kernel 3x3, pad 1

8. MaxPool: kernel 3x3, stride 2

The structure of AlexNet is represented in the figure 3.5, presented in the original

paper on the network created by Alex Krizhevsky.

Figure 3.5: Architecture of AlexNet [12].

3.2.3 Transfer Learning

Traditionally, training a deep learning model from scratch demands a substantial amount

of labelled data, which might be impractical or unavailable in certain scenarios. A tech-

nique called transfer learning addresses this limitation by leveraging knowledge gained

from another pre-trained model on large datasets and applying it to a specific task with

a smaller dataset.

The fundamental idea behind transfer learning is to exploit the features learned by

a model on a source task and adapt or transfer this knowledge to a target task. This

process is especially beneficial when the target task shares some underlying patterns or

features with the source task. By using a pre-trained model as a starting point, the model

can kickstart its learning process with a foundation of generalized knowledge. This can

lead to quicker convergence and improved performance, even when dealing with limited

data.

Transfer learning comes in various forms, such as fine-tuning, where a pre-trained

model is adjusted for the target task, and feature extraction, where the knowledge from

the pre-trained model is used to extract relevant features for the new task. The versatility

of transfer learning makes it a valuable tool in scenarios where data scarcity is a challenge,
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allowing practitioners to make the most of available resources and still achieve robust and

effective models.

In this particular instance, transfer learning is being employed by utilizing a pre-

trained Alexnet model that has been initially trained on the extensive ImageNet dataset.

The objective is to re-train this model with the dataset specifically collected for the

new task. To align the model with the new task’s requirements, a crucial adjustment

involves modifying the number of output classes. In the original Alexnet, designed for

ImageNet’s 1000 classes, this adjustment entails customizing the model to output the

requisite 4 classes relevant to this specific application. This tailored fine-tuning ensures

that the model adapts its learned features to the nuances of the new dataset, enhancing its

capability to accurately classify and address the distinctive characteristics of this targeted

task.

The neural network architecture after changing the number of outputs from the original

1000 classes to 4 is shown in appendix B, created with Netron [29].

3.2.4 Output

For the model to enable the smart walker to make the decisions of continuing to move,

stopping one side, or applying brakes on both sides, a multi-class classification output is

needed. The output will induce an action on the brakes, depending on the scenario it

encounters, avoiding the collision by turning left or right or even by braking. The relation

between the decision made by the model and the action applied on the brakes is described

in the following table:

Table 3.3: Smart Walker Action Classification

Class Output Meaning Action

0 Free Way No obstacle detected No action

1 Left Turn Obstacle detected on the right left brake activated

2 Right Turn Obstacle detected on the left right brake activated

3 Full Stop Dangerous or no escape situations wheels lock

Section 4.1.3 provides a more comprehensive explanation of each class and the la-

belling process.
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3.2.5 Machine Learning Framework

Machine Learning Frameworks are interfaces that make more agile the process of cre-

ating, training, testing and deploying a model. Multiple frameworks help create Ma-

chine Learning models, such as PyTorch [30] and TensorFlow [31]. The choice of which

framework to use is mainly personal, although several key points should be taken into

consideration:

• Personal Case: What problems are addressed? What type of data is being used?

What kind of software/hardware is used? These are questions that may help when

choosing the framework to work with.

• Language of Programming: The programming language should be taken into

consideration also. Different frameworks may have different supports for each pro-

gramming language. Choosing a framework that is compatible with the language in

use is crucial.

• Personal Preference: Lastly, the usage preference should be taken into consider-

ation at the time of choosing the framework to work with. The familiarity with it,

and the experience of the user may help make a final decision.

For familiarisation purposes, this work used PyTorch, a widely acclaimed deep learn-

ing framework developed by MetaAI. PyTorch offers dynamic computation graphs, easy

debugging, and extensive support for GPU acceleration.

ONNX, which stands for Open Neural Network Exchange, is a standard format used to

encode deep learning models. It functions as a universal language for AI models, allowing

for easy transfer and execution across various frameworks and hardware platforms. This

compatibility is particularly useful for devices like the Jetson Nano, a compact computer

designed for running AI applications at the edge.

ONNX enables easy integration of AI models into Jetson Nano projects. Various

libraries and tools are available to facilitate the deployment of ONNX models.

3.2.6 Metrics

In order to assess how well the ML model is predicting, various metrics are calculated

and different conclusions can be drawn from these to help make changes to the training
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to achieve better results.

Each inference of a classification model can be categorised according to 4 concepts:

True Positive (TP): Instance correctly predicted as part of the class;

True Negative (TN): Instance correctly predicted as not part of the class;

False Positive (FP): Instance wrongly predicted as part of the class;

False Negative (FN): Instance wrongly predicted as not part of the class;

Although a confusion matrix is not considered a performance metric, it can give a

lot of information about the performance of the model and is very useful to see where

the model tends to confuse itself. It shows a relation between label and prediction, with

the rows representing the ground truths and the columns the predictions. The correct

predictions are on the main diagonal and the incorrect predictions are in all the other

cells.

Figure 3.6 is a general example of a confusion matrix.

Figure 3.6: Example of a confusion matrix.

Given class 1, the row, marked with a red rectangle, represents all the predictions for

inputs with label 1. The blue column represents all the times the Machine Learning (ML)

model predicted an inference as 1, regardless of the ground truth.

When studying the confusion matrix, taking the values of TP’s is as simple as looking

at the value on the cell of the desired class in the main diagonal. In the case of the class

1:
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TP1 = C11 (3.1)

In a multi-class problem like this, reading the values of TN, FP and FN is not as

straightforward as in a binary problem. The value of the FP’s is the sum of all the values

on the column of the desired class, except the main diagonal:

FP1 = C01 + C21 + C31 (3.2)

The value of the FN’s is the sum of all the values on the row of the desired class,

except the main diagonal:

FN1 = C10 + C12 + C13 (3.3)

The value of the TN’s is the sum of all the values not in the column or the row of the

desired class:

TN1 = C00 + C02 + C03 + C20 + C22 + C23 + C30 + C32 + C33 (3.4)

The confusion matrix is a good place to start calculating the metric, as all the predic-

tions are well represented visually.

The major metrics used to evaluate the model are Accuracy, Precision, Recall, and

F1-score.

Accuracy:

Acc = TP + TN

TP + TN + FP + FN
(3.5)

Accuracy is the most common and simplest metric for evaluating a model. It shows

the percentage of correct instances out of the total number of predictions, i.e. the ratio

of correct classifications to the total number of predictions.

Having a low accuracy may indicate unbalanced or low representative data. Expanding

the dataset may be a good way to improve this metric.

Precision:

Precision = TP

TP + FP
(3.6)
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Precision is a metric that shows, from all the inferences predicted as part of the class

in focus, how many are correct. A low precision score indicates a high number of false

positives, which may result from an imbalanced class or untuned model hyperparameters.

Recall:

Recall = TP

TP + FN
(3.7)

Recall is similar to precision. It measures, out of all instances that truly belong to the

class in focus, how many were correctly predicted as such. Having a low recall means the

model failed a lot in identifying instances as part of the class, i.e. high value of FN.

F1 Score:

Finally, the F1 score is the harmonic mean between precision and recall.

F1 = 2 ∗ precison ∗ recall

precison + recall
(3.8)

Often F1 score is used instead of accuracy as it is not affected by unbalanced data and

gives more realistic results about the accuracy of the models to get correct predictions for

each class.

A low F1 score indicates that the model is struggling to balance both precision and

recall. It could be due to either a high number of false positives (resulting in low precision)

or a high number of false negatives (resulting in low recall), or a combination of both.

This suggests that the model’s performance is not ideal, as it fails to accurately balance

both precision and recall.
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4 Developed work

This chapter covers the implementation of the smart walker. It explains the process of

obtaining the custom dataset, including the camera assembly, the code developed to take

and save the photo using the ESP32-CAM, and the labelling process.

It presents the system architecture and explains the image pre-processing procedure,

as well as the training and testing of the model on the computer. Concrete results and

metrics are studied and discussed.

The chapter describes the unsuccessful attempt made with the ESP32-CAM micro-

controller and the solution found using the NVIDIA Jetson Nano. It includes testing the

model on the Jetson Nano while streaming the camera image.

The figure 4.1 is a schematic of the entire system. The Raspberry PI camera will

take a photo and input it to the model on the NVIDIA Jetson Nano. The model will

perform an inference and output the class with the biggest probability as described in

section 3.2.4. However, it’s important to note that the connection to the brakes was not

addressed in this dissertation, this aspect is expected to be addressed in future work.

Figure 4.1: System main components.
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4.1 Dataset acquisition

There is an undeniable lack of a dataset for autonomous driving indoors, for that reason,

there was the need to create a specific dataset.

To collect the dataset, an ESP32-CAM was attached to the walker to capture images

and store them on an SD card. These images were then labelled and categorised based

on different scenarios. Once the complete dataset was compiled, it was divided into

training, test and validation sets. Before being used to train the model, the images were

pre-processed.

4.1.1 Camera assembly

To begin the data acquisition process, the ESP32-CAM was mounted on the walker’s

basket at a 30° angle and positioned 52.5 centimetres above the ground. In this configu-

ration, the camera obtained a field of view that covered the ground from 40 centimetres

in front of the walker up to 1.4 metres, providing a visibility range of one metre, as shown

in the figure 4.2. The smaller base of the trapezoid formed by the field of view is 60 cm.

Figure 4.2: ESP32-CAM vision field.
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The camera requires a permanent power source, which in this scenario is a power bank

connected via the FTDI.

4.1.2 Image acquisition

To generate the dataset necessary for this specific project, a dedicated code was written

to capture photos using the ESP32-CAM and subsequently save them onto the SD card

attached. A detailed examination of the main sections of the Arduino code is provided

below.

The following section of the code shows how to take a picture using the ESP32-CAM.

A pointer named ’fb’ of type ’camera_fb_t’ is initialised to NULL. After, using

the ESP32 Camera library function ’esp_camera_fb_get()’, a photo is taken and a

pointer is returned to a ’camera_fb_t’ structure, representing the frame buffer of the

captured image. The pointer is assigned to the ’fb’ variable.

A check is then made to ensure that an image has been correctly captured, otherwise

an error message is printed.

The ’esp_camera_fb_return(fb)’ line is used to release or return the memory

associated with the frame buffer (fb) after it has been used.

1 camera_fb_t ∗ fb = NULL;

2 // Take Pic ture with Camera

3 fb = esp_camera_fb_get ( ) ;

4 i f ( ! fb ) {

5 Serial . p r i n t l n ( " Camera capture f a i l e d " ) ;

6 re turn ;

7 }

8

9 { . . . }

10

11 esp_camera_fb_return ( fb ) ;

Listing 4.1: Image capture

The following code is used to save the image taken with the code above to the SD

card installed on the board.

The ESP32-CAM is endowed with Electrically Erasable Programmable Read-Only
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Memory (EEPROM), i.e., non-volatile data, that can only be erased or changed by pro-

gramming. In this case, it’s being used to store the number of images taken, which is

later used to save the name of the photo.

The EEPROM is initialised and the value of the first EEPROM address is read and

incremented by 1. This value is stored in the variable ’pictureNumber’ and the path to

save the new picture is created (’String path = "/picture" + String(pictureNumber)

+".jpg"’).

The code then opens a file on the SD card in write mode (’fs.open’). If the file is

opened successfully, it writes the image data from the frame buffer to the file, i.e., saves

the photo, prints a success message to the serial console, updates the image number stored

in EEPROM, commits the changes, and closes the file.

If there is a problem opening the file, an error message is printed. This sequence

ensures that each image captured is stored on the SD card with a unique filename and

that the image number is updated for the next capture.

1 // i n i t i a l i z e EEPROM with prede f i ned s i z e

2 EEPROM. begin (EEPROM_SIZE) ;

3

4 pictureNumber = EEPROM. read ( 0 ) + 1 ;

5

6 // Path where new p i c t u r e w i l l be saved in SD Card

7 St r ing path = " / p i c t u r e " + St r ing ( pictureNumber ) +" . jpg " ;

8

9 // I n i t i a l i s i n g the f i l e s y s t e m ob j e c t with the SD card

10 f s : : FS &f s = SD_MMC;

11 Serial . p r i n t f ( " P ic ture f i l e name : %s \n " , path . c_str ( ) ) ;

12

13 F i l e f i l e = f s . open ( path . c_str ( ) , FILE_WRITE) ;

14 i f ( ! f i l e ) {

15 Serial . p r i n t l n ( " Fa i l ed to open f i l e in wr i t i ng mode" ) ;

16 }

17 e l s e {

18 f i l e . wr i t e ( fb−>buf , fb−>len ) ; // payload ( image ) , payload length

19 Serial . p r i n t f ( " Saved f i l e to path : %s \n" , path . c_str ( ) ) ;

20 EEPROM. wr i t e ( 0 , pictureNumber ) ;
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21 EEPROM. commit ( ) ;

22 }

23 f i l e . c l o s e ( ) ;

Listing 4.2: Image saving

The complete code for capturing photos with the ESP32-CAM is available in the

appendix A of this dissertation.

All of these functionalities are declared within the setup() function, indicating that the

board captures a single picture each time it is initialised and does not persistently take

an indefinite number of photos. Initiating the capture of a single photo simply requires

resetting the microcontroller, by either pressing the reset button or disconnecting and

reconnecting its power supply.

A customized dataset of 898 images was created from frames taken while walking

around in the Department of Electrical and Computer Engineering (DEEC) at University

of Coimbra (UC).

4.1.3 Labeling

As highlighted in section 3.2.4, the classification task on this work involves multiple

classes, specifically four in total.

The figure 4.3 represents the schematic of the walker with its 3 wheels and its di-

mensions. Additionally, the field of view is shown. All dimensions are presented in real

scale.
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Figure 4.3: Manoeuvrability of the walker.

It is possible to notice that the bottom dimension of the trapezoid formed by the field

of view matches the distance between the back wheels of the walker. This indicates that

if an obstacle appears in the bottom frame, even in the corners, it will impact the walker’s

path. Similarly, if there is free space in the middle of the frame but obstacles on both

sides, there will not be sufficient space for the walker to pass.

When examining the manoeuvrability, by applying brakes to one of the wheels to

induce a turn, the walker can successfully avoid an obstacle located at the bottom of the

frame with, at least, a safety distance of 20 cm.

The smaller red trapezoid in the figure 4.3 represents the lower portion of the field of

view that triggers an action in the walker to avoid an obstacle. It has a height of 14 cm,

equivalent to 10% of the total view distance of the camera.

After evaluating the manoeuvrability of the walker, the classification process of the

dataset was done manually. To ensure consistency and uniformity during the labelling,

the following points were determined:

• The obstacles were assumed to be static. Although the walker is still capable of
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functioning when encountering moving obstacles, it will have a smaller margin of

free space to intervene effectively when dealing with moving obstacles.

• An object that is not at the bottom of the frame, i.e. on the red trapezoid, does

not interfere with the walker’s path;

• Only objects on the bottom of the frame, on the red portion, induce an action to

the walker;

• An object on the right bottom of the frame will make the walker turn left in order

to avoid collision;

• An object on the left bottom of the frame, will make the walker turn right to avoid

a collision;

• The walker will attempt to avoid the obstacle by turning left or right, resorting to

full braking only if avoidance is impossible.

• An unavoidable obstacle or specific scenarios, such as stairs, will make the walker

make a full stop;

The following set of images shows an example of each class:

(a) Free Way (b) Left Turn (c) Right Turn (d) Full Stop

Figure 4.4: Example of each output class.

In figure 4.4a, the absence of obstacles in the lower part of the frame is evident,

resulting in a classification of 0: Free Way. No brake will not be engaged, allowing the

walker to move freely.

In the second image (figure 4.4b), the presence of obstacles, notably the feet at the

bottom right, represents an obstacle to the walker’s path. Consequently, the image is

classified as 1: Left Turn. This classification causes the left brake to be activated so that

the walker turns left to avoid the obstacle without collision.
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The figure 4.4c unfolds a scenario with an obstacle positioned at the left bottom of

the frame. In response to the need to get around the obstruction by the right, the image

is appropriately classified as 2: Right Turn. As a result, the right brake will engage,

enabling the walker to avoid the obstacle.

In the case shown in figure 4.4d the walker faces a door that is already too close.

Because turning will not avoid a collision, the only solution is to classify it as 3: Full

Stop, making the walker activate both brakes.

After labelling the entire dataset, the distribution per class achieved is depicted in figure

4.5. As represented, the dataset is almost evenly distributed along the 4 classes (Free

Way, Left Turn, Right Turn, Full Stop).

Figure 4.5: Images per class.

The dataset for the ’Full Stop’ class represents specific scenarios, such as stairs and

walls that are too close, making it a class with very specific features.

4.1.4 Data split

The dataset was then split into 3 sets, training, validation and testing. The original

goal was to split the dataset using 70% for training, 15% for validation and 15% for

testing. Due to adjustments made to the dataset, such as the removal of images that did

not accurately represent the class or the addition of new images, the final distribution has

slightly changed, as shown in the following graph:
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Figure 4.6: Dataset split.

This way, the data used for each stage of the process is isolated from other stages,

reducing the risk of overfitting the model, where it may fail to generalize to unseen data.

4.1.5 Data pre-processing

Before feeding input images into the model, a preprocessing step is essential to ensure

that all images meet the model’s correct format.

The PyTorch library has a function named ’transforms.Compose’ within ’torchvi-

sion.transforms’. This function enables the combination of multiple image transformation

operations into a single callable object. The object can then be applied sequentially to

input images. It takes a list of transformation functions or classes as input and returns

a composed transformation object that applies these transformations in the order they

are listed. The following listing shows the "preprocess_image" function created to

preprocess the images before feeding them to the model:

1 from torchvision import transforms

2 from PIL import Image

3

4 preprocess_image = transforms . Compose ([

5 transforms . Resize (256) ,

6 transforms . CenterCrop (224) ,

7 transforms . ToTensor (),
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8 transforms . Normalize (

9 mean = [0.485 , 0.456 , 0.406],

10 std = [0.229 , 0.224 , 0.225])

11 ])

12

13 [...]

14

15 img = Image.open(path)

16 images . append ( preprocess_image (img. convert (’RGB ’)))

Listing 4.3: Python preprocessing.

When training and testing a model, consistency is important. A model should always

be run with inputs of the same features. The values used on listing 4.3 match the needs of

Alexnet described on the official paper [12] and are commonly used on the pre-processing

steps for models trained on the ImageNet dataset. These values were originally introduced

in the PyTorch documentation and are based on an extensive statistical analysis of the

ImageNet dataset, ensuring that the preprocessing steps adequately capture the typical

distribution of pixel values in natural images[32].

In this pre-processing, an image starts by being converted to RGB, resized to a square

shape with dimensions 256x256 pixels and then center-cropped to obtain square images

with dimensions 224x224 pixels.

Subsequently, the images are converted to tensors. This transformation converts the

input image, which is typically represented as a NumPy array with pixel values in the

range [0, 255], into a PyTorch tensor where the pixel values are normalized to the range

[0, 1] by dividing each pixel value by 255.

After converting to tensors, there is a second normalization process. This normaliza-

tion involves subtracting the mean and dividing by the standard deviation of the RGB

color channels, ensuring that each channel has a mean of approximately 0 and a standard

deviation of approximately 1.

It is imperative to apply the same normalization procedure to both the training and

test datasets to ensure uniformity in processing.
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4.2 Model training

As mentioned in the section 3.2.3, transfer learning is a technique that allows the use

of a pre-trained neural network to modify its output and retrain it with a new dataset.

This approach saves time and enables the training of a new model with a smaller dataset.

To modify the original 1000 classes from the Alexnet to 4 classes, the function in listing

4.4 was developed. The function accepts the pre-trained neural network as an input and,

in the subsequent steps, lines 2 and 3, iterates through all layers, effectively freezing their

parameters and rendering the model non-trainable.

Following this, in lines 6 and 7, the function extracts the size of the last layer and

establishes a full connection to a new decision layer, a fresh layer configured with the

desired number of outputs for the model.

In the subsequent lines, 9 to 12, the function attempts to alter the model’s classifier

attribute by substituting the last layer with a new linear layer having an output size of

4. If the classifier attribute is absent, it falls back to modifying the ’fc’. This approach

ensures adaptability, catering to variations in the model’s structure while maintaining a

consistent modification procedure.

1 def change_out (model):

2 for param in model. parameters ():

3 param. requires_grad = False

4

5 # Size of the last layer to fully connect to the decision layer

6 last_layer = [key for key in model. state_dict ().keys()][ -2]

7 last_layer_size = model. state_dict ()[ last_layer ].shape[ -1]

8

9 try:

10 model. classifier = nn. Sequential (list(model. classifier )[:-1],

nn. Linear ( last_layer_size , 4))

11 except Exception :

12 model.fc = nn. Linear ( last_layer_size , 4)

13 return model

Listing 4.4: Changing the output to 4.
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4.3 Model testing and results

To evaluate the probabilities of each class for a given image, the following section of

code was developed.

The program randomly selects an image from the test set and performs an inference,

generating an array of probabilities for each class using the softmax layer. The resulting

probabilities are then plotted alongside the image on a bar chart.

1 for i in np. random . choice (range( test_images .shape[0]), replace =

False , size =1):

2 predictions , accuracy = perform (i)

3 predictions = softmax ( predictions [0])

4 max_value_index = np. argmax ( predictions )

5

6 plt. figure ( figsize =(6, 3))

7 plt. subplot (1, 2, 1)

8 plt.title(f"\ nLabel : {label[ test_labels [i]]}")

9 plt. imshow ( test_images_origin [i])

10 plt. subplots_adjust ( hspace =0.5)

11

12 plt. subplot (1,2,2)

13 colors = [’gray ’ if i != max_value_index else ’blue ’ for i in

range(4)]

14 plt.bar([’Free Way ’, ’Left\nTurn ’, ’Right\nTurn ’, ’Full\nStop ’]

, predictions , color = colors )

15 plt.show()
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Listing 4.5: Model Testing

The probabilities displayed on the charts are converted from raw scores to probabilities

using the softmax function, the decision layer, to determine the final output based on the

highest probability.

The image below (figure 4.7) shows a scenario captured by the walker’s camera. In
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response to this input, the model accurately predicts the output as "Free Way", aligning

with expectations. The chart displays the probabilities assigned to each output, showing

the model’s high confidence in its predictions.

Figure 4.7: Free Way - output probabilities.

In the absence of any obstacles directly in front of the walker, the model outputs the

response "Free Way", exhibiting an exceptionally high probability level, nearing 100%.

Even if low, the model still assigned a small probability to the output "Right Turn".

In the scenario displayed in figure 4.8, the camera captured the presence of a table leg

emerging on the right side. Without intervention, the walker is at risk of colliding with it.

The model’s post-analysis determined that executing a left turn would successfully avert

the potential collision.

Figure 4.8: Left Turn - output probabilities.

The high probability for "Turn Left" suggests that the model has learned that turning
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left is an appropriate action in the presence of an obstacle on the right side (the table

leg). Even though the model has a high confidence in its final answer, it still has low

probabilities for the other outputs. The low probabilities for "Free Way" and "Turn

Right" are consistent with the model’s understanding that in this context, going straight

or turning right is less appropriate due to the obstacle on the left, which should be

avoided. The low probability for "Full Stop" suggests that the model does not consider

the immediate stop solution very much. Rather, given the possibility of avoiding the

obstacle, the most appropriate action is to turn left.

On another occasion, upon entering a bathroom, the camera captures an image reflect-

ing a wall on the left side (figure 4.9). In response, the model instinctively seeks to avoid

it by triggering the right brake and initiating a right turn to navigate around the obstacle.

Figure 4.9: Right Turn - output probabilities.

After analysing the prediction graph, it can be seen that the model exhibits a small

consideration for proceeding with no interference or applying both brakes, while entirely

excluding the possibility of executing a left turn. By examining the model behaviour and

analysing the output probabilities, the results can be analysed objectively.

• Free Way: By predicting a non-zero probability even when there’s an obstacle

on the left side of the frame, it suggests that the model might be considering the

broader context of the scene. It could be interpreting the scene as having a navigable

path on the right, and therefore, it suggests moving freely.

• Full Stop: A non-zero probability in the presence of an obstacle that is still avoid-

able, indicates that the model recognizes the obstacle and suggests stopping. This
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aligns with the model’s training objective to associate obstacles with the action of

stopping.

• Left Turn: The low probability (or even 0%) when there is an obstacle covering

the whole left side, implies that the model is learning to associate the presence

of an obstacle on the left with a lower likelihood of turning left. This could be a

reasonable behaviour if, during training, the model encountered similar scenarios

where turning left was less likely due to the obstacle.

One of the scenarios for which the model has been specifically trained is the detection

of stairs and the immediate application of both brakes to prevent the fall of the walker

and its user.

As shown in Figure 4.10, the detection of a staircase in the camera’s field of view

causes the model to output a full stop action with a high degree of certainty.

Figure 4.10: Full Stop - output probabilities.

Another interesting observation can be made from one of these examples, shown in

the following figure:
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Figure 4.11: Mislabelled image - output probabilities.

At first glance, it is noticeable that the model misclassified the image labelled as

"Right Turn" as "Free Way." However, upon closer examination, it becomes clear that a

mislabelling occurred initially. No visible obstacle obstructs the walker’s path, indicating

that the image should indeed be classified as "Free Way," as the model correctly predicted

with a high level of certainty. This example highlights the model’s ability to recognise

patterns and correct human errors, demonstrating its learning capabilities and consistency.

After identifying and correcting the mislabel, the model was retrained.

In order to evaluate how well the predictions were being made, a couple of metrics were

determined, such as accuracy, precision, recall and F1 score. For a better understanding

of the neural network behaviour, a confusion matrix and 12 images of the test dataset

with the truth label and the predicted label were analysed.

The obtained confusion matrices are represented in figure 4.12, being the ground

truth represented by the rows and the predictions by the columns. The confusion matrix

in figure 4.12a shows the precise number of each prediction compared to its label.

Because the dataset is unbalanced, the representation with the specific value may be

misleading. Thus, it is wise to also analyse a confusion matrix with normalised data,

represented in figure 4.12b.

In total, 138 images were analysed with the following distribution by class:

Free Way: 46; Left Turn: 34; Right Turn: 30; Full Stop: 28;
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(a) Non-normalised data. (b) Normalised data.

Figure 4.12: Confusion matrix.

Finally, after largely training and testing the model, good overall accuracy was achieved,

around 91.30%.

To determine the overall accuracy of the model, it is important to consider its general

definition: is the ratio of correct classifications (sum of diagonal elements in the confusion

matrix) to the total number of predictions:

Acc = Correct predictions

Total predictions
= 43 + 31 + 26 + 26

138 = 126
138 = 91.30% (4.1)

The individual metrics achieved by each class are represented in the following table:

TP TN FP FN Accuracy Precision Recall F1 score

Free Way 43 87 5 3 94.20% 89.58% 93.48% 91.49%

Left Turn 31 102 2 3 96.38% 93.94% 91.18% 92.54%

Right Turn 26 106 2 4 95.65% 92.86% 86.67% 89.66%

Full Stop 26 107 3 2 96.38% 89.66% 92.86% 91.23%

Table 4.1: Test metrics

From the metrics on the table 4.1, some conclusions may be taken:
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Figure 4.12b shows that the model predicts more correctly the classes "Free Way"

and "Full Stop" than the other classes, with 93% of true positives, followed by 91% of the

"Left Turn" class. It also shows that the model is less accurate in classifying "Right Turn"

images correctly classifying only 87% of the total images labelled as such. This lower rate

may be due to the limited amount of data available for this particular class.

Accuracy:

The accuracy for the "Free Way" class is the lowest among all the classes. When looking

at the class "Left Turn", an accuracy of 96.38% is achieved, indicating that 96.38% of the

predictions for this class are correct in relation to the total number. For the "Right Turn"

class, the value was 95.65%, indicating that 95.65% of the predictions made by the model

for this class were correct.

It is worth noting that the model’s overall accuracy is lower than the individual accu-

racies of the classes. This may be due to the limitations of using this metric to evaluate

a model’s performance, particularly when dealing with unbalanced data. Accuracy is a

simple metric that only considers the number of correct predictions divided by the total

number of predictions, without taking into account the severity of misclassifications.

Precision:

The precision is calculated as the ratio of TP to the sum of TP and FP. The value

for the class "Free Way" indicates that around 89.58% of the inferences predicted as "Free

Way" are correctly predicted. For the "Left Turn" class, the precision is 93.94%, meaning

that 93.94% of the instances classified as part of this class were correctly identified. The

"Right Turn" class demonstrates a strong value of 92.86%, indicating high certainty in

its positive predictions. About the "Right Turn" class, 89.66% of instances predicted as

belonging to this class were correct.

Recall:

Recall is calculated as the ratio of TP to the sum of TP and FN. Similar to the

previous metric, the recall determines that from all the images labelled as "Free Way",

93.48% were correctly classified as such. In the case of the "Left Turn", the recall is

91.18%, indicating that 91.18% of "Left Turn" class instances were correctly identified
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by the model. Additionally, it exhibits a recall of 86.67% for the "Right Turn" class,

showcasing the model’s ability to capture a significant portion of true positives. About

the "Full Stop" class, it shows that 92.86% of all instances in the class were classified

correctly.

F1 Score:

The F1 score metric can be more accurate when evaluating the performance of a

model than accuracy itself. By calculating the harmonic mean of precision and recall,

it is possible to estimate how precise a network is even with imbalanced data. At first

glance, when analysing only the accuracy of each class, it would be logical to think that

the model would classify more correctly images labelled as "Right Turn". However, the F1

score indicates that this class has the lowest score of all. This discrepancy is attributed to

the dataset’s imbalance, with fewer images available for testing in this class. As a result,

each inference within this class carries more weight in determining the final accuracy,

potentially inflating its apparent accuracy compared to its actual performance.

Although the dataset from the class "Full Stop" has almost the same number of images

as the class "Right Turn", its higher F1 score may be due to its distinguishability dataset

(more distinctive features) compared to the other classes.

It can be concluded that the ’Free Way’ and ’Left Turn’ classes have better results. This

is likely due to the larger dataset for these classes, which allowed the model to be better

trained and more familiar with their examples, resulting in more accurate classification.

Figure 4.13 demonstrates 12 examples of images from the test dataset. The prediction

and ground truth are displayed at the top of each image, revealing the model’s overall

ability in prediction. However, upon closer examination, some notable observations can

be made.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.13: Comparison between predicted and ground truth labels for tested images.

Although the model achieved good accuracy, it still makes some mistakes when predict-

ing certain scenarios. In the example in figure 4.13k, the model predicts a "Right Turn"

on an image labelled as "Left Turn".

As can be seen from the confusion matrix in figure 4.12, the model correctly predicts

91% of the images labelled as "Left Turn". However, it’s worth noting that the model oc-

casionally misclassifies "Left Turn" images as "Right Turn" as can be seen in this example.

When looking at the probabilities of each output for this inference, the following chart is

achieved:
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Figure 4.14: Wrong prediction - output probabilities.

As can be seen from the chart in figure 4.14, although the model has misclassified the

image, its confidence in the predictions is lower than in inferences with correct predictions,

around 57%. This response, even if wrong, shows that the model has less confidence in

this prediction having some hesitation and considering other classes.

4.4 Exporting the model to ONNX

Once the model has been completely trained, it should be exported to ONNX. The

interconnectivity of ONNX enables easy integration of the trained model into the Jetson

Nano. The following code was used in this conversion:

1 torch.save(model. state_dict (), ’model.pth ’)

2

3 input_tensor = torch.randn (1, 3, 224, 224, device =torch. device ("

cuda" if torch.cuda. is_available () else "cpu"))

4

5 torch.onnx. export (model ,

6 input_tensor ,

7 "model.onnx",

8 verbose =True ,

9 input_names =[’input ’],

10 output_names =[’output ’])

11
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12 serializable_dict = {}

13 for key , value in best_acc .items ():

14 if isinstance (value , np. ndarray ):

15 serializable_dict [key] = value. tolist ()

16 else:

17 serializable_dict [key] = value

18

19 # Write the serializable dictionary to the file

20 with open(" acc_file .txt", "w") as file:

21 json.dump( serializable_dict , file , ensure_ascii =False)

Listing 4.6: Export to ONXX.

The sample of code 4.6, starts by saving the state dictionary of the Pytorch model,

i.e., the weights and bias after the training, to a file named "model.pth". This allows

saving the trained model so that it is possible to load it later for inference or further

training without needing to retrain it from scratch.

To convert a model to ONXX, using "torch.onnx.export" the parameters are:

• model: model to convert;

• input_tensor: a tensor with the desired size of the inputs;

• "model.onnx": the name to use on the converted model;

• verbose: a flag (normally set to True) that determines whether additional infor-

mation about the export process should be printed to the console or not;

• input_names and output_names: the name of the input and output layers;

The parameter input_tensor represents a tensor that specifies the desired input

size for the model, enabling the converter to adjust accordingly. In this work, the "in-

put_tensor" has the dimensions (1, 3, 224, 224) because of the size of the input images.

Afterwards, the script converts the best_acc dictionary into a format suitable for

serialization, converting data structures or objects into a format that can be easily stored

or transmitted and reconstructed later.
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Finally, the serialized dictionary (serializable_dict) is written to a text file named

"acc_file.txt" using the JSON format.

4.5 ESP32-CAM for Image Classification

The initial goal of this project was to use the microcontroller ESP32-CAM to cap-

ture frames and then process them through a neural network to determine and execute

appropriate actions.

As said before, the ESP32-CAM is an affordable low-power board equipped with an

ESP32 microcontroller, an integrated OV2640 camera and a microSD slot.

As mentioned in the previous section 3.2.5 on frame choice, the process of select-

ing a framework begins with an assessment of individual requirements. For deploying a

deep learning model on a microcontroller, an optimal framework choice is TensorFlow

Lite for microcontrollers, commonly known as TensorFlow Lite micro (TFLite-micro)

[31]. TFLite-micro brings the power of machine learning to the microcontrollers, en-

abling the execution of deep learning models directly on these devices. With support for

TFLite-micro on ESP32-CAM, it arises as a particularly suitable option for this specific

application.

TensorFlow (TF) has an integrated tool that takes a model built with a TF core and

converts it to a smaller, more efficient ML model format (optimized FlatBuffer format).

When using a pre-trained model on the ESP32-CAM, it becomes necessary to convert

the trained model into a format compatible with the microcontroller, typically hexadec-

imal code. Since the ESP does not have a file system, the file needs to be exported to

a data array to access the weights. This converted model must be imported into the

microcontroller’s memory so that it can be used for inference tasks directly on the device.

This process allows the ESP32-CAM to perform machine learning tasks autonomously,

eliminating the need for external server or cloud-based processing.

To convert the model to hexadecimal code, an approach is outlined in the following

listing:

1 from everywhereml . code_generators . tensorflow import convert_model

2

3 # Converting the model to hex code
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4 c_header = convert_model (model , X, y, model_name =’mobile_model_c ’

)

5 print( c_header )

Listing 4.7: TensorFlow Lite conversion

The code provided starts by importing the ’convert_model’ function from a module

named ’code_generators.tensorflow’ within a package called ’everywhereml’, responsible

for handling the conversion of the TensorFlow model. The function ’convert_model’ is

called with the following parameters:

• model: The TensorFlow model to convert, already trained;

• X: The input data;

• y: The label data;

• model_name: The name to be attributed to the converted model;

The function will return a string containing the converted model in a C header file

format.

The model is now fully encoded in hexadecimal code and is ready to be imported into

the microcontroller.

While some models can run on the ESP32-CAM, it’s important to notice that it

remains an inexpensive microcontroller with inherent limitations. Attributes such as

Random-Access Memory (RAM) can significantly limit the use of neural networks on

these microcontroller boards, particularly for projects requiring image processing or video

streaming. The process of capturing a frame, pre-processing it, feeding it into the neural

network, running the model, and producing a decision can consume significant memory

resources. Consequently, the RAM requirements of certain large, unoptimized models may

exceed the capacity of the ESP32-CAM, making it unable to allocate sufficient memory

to execute the neural network.

When attempting to convert the current model into a hex code file, a file contain-

ing 10 182 512 bytes, describing the network, was generated. This file is too large for

the ESP32-CAM, which has limited RAM and flash memory. Additionally, the ESP32-
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CAM may require memory for other tasks and libraries. If the model consumes excessive

memory, it could result in insufficient resources for essential operations.

While this board remains suitable for low-cost IoT applications, it has been demon-

strated that the model used in this work requires additional memory to function without

issues.

4.6 Testing on Jetson Nano

The Jetson Nano is equipped with TensorRT [7], a Software Development Kit (SDK)

for high-performance deep learning inference. TensorRT offers the possibility to run op-

timized networks on GPU from C++ or Python and PyTorch for training deep learning

models.

4.6.1 NVIDIA container set-up

NVIDIA provides a pre-built Docker container for image processing [10] which can be

automatically downloaded with a $ git clone command that includes a lot of pre-installed

packages, such as PyTorch and deep neural network models, making really easy the fist

steps on Jetson nano.

Assuming that everything has been properly cloned from GitHub, changing the current

working directory to the ’jetson-inference’ folder is the next step.

Any files saved inside the container will be lost when it is shut down. To avoid it, the

files should be saved on the host device (Jetson Nano) by using a directory from the host

device mounted into the container environment, allowing data to persist across sessions.

The following command guarantees this:

root@ubuntu:∼/jetson-inference $ ./docker/run.sh --volume ∼/Walker:/Walker

The --volume argument should be followed by {directory on the host}:{directory inside

the container}. In this case, the folder containing all the necessary data and scripts of

the project is called "Walker".

Once the container is up and running there is the need to access the folder mounted

with the volume command, simply by using the cd command to navigate to the "Walker"

folder.
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Before running the model from the container, the directory should be structured cor-

rectly to ensure proper access to the necessary files by the script. A figure with the

directory structure is represented in the appendix C.

The labels file specifying the model outputs must be listed alphabetically to enable

the script to match it with the correct folders:

The file specifying the labels must be listed models output

Figure 4.15: labels.txt

The final layer must return a valid probability value to enable the script to interpret

the output of the model. It is worth noting that pre-trained models trained on ImageNet

images usually do not have a softmax decision layer, so it may need to be added. A script

for this purpose can be found in the appendix D.

4.6.2 Testing assembly

To test the model with live streaming, the Jetson Nano connected to the Raspberry Pi

camera was assembled on the walker. To visualize the live image and the output while

testing, a screen was mounted on top of the walker and connected via HDMI to the Jetson

Nano, as shown in the figure 4.16.
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(a) (b) User perspective.

Figure 4.16: Setup for testing.

4.6.3 Testing

Once all compatibility requirements have been confirmed and the board and camera

are assembled, testing the model with a streaming camera is a simple matter of providing

the camera identifier as input to the model, i.e. csi://0.

The necessary arguments for calling the imagenet.py script are:

• --model: path to custom model to load (caffemodel, uff, or onnx)

• --input-blob: name of the input layer (default is ’data’)

• --output-blob: name of the output layer (default is ’prob’)

• --labels: path to text file containing the labels for each class

• csi://0: Raspberry Pi camera identifier

The input and output layer names can be verified on the neural network’s architectural

representation in appendix B.

Additional parameters and flags are available when calling the imagenet.py and can

be consulted on Jetson-inference official documentation [33].

Thus, the command to execute an infinite loop of inferences using live camera images

as input is:
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root@ubuntu:Walker# imagenet.py --model=model.onnx --input_blob=input

--output_blob=output --labels=labels.txt csi://0

Note: To prevent freezing during training or testing the model, it may be necessary

to mount a swap space for the Jetson Nano, depending on the computational resources

used by the neural network. The commands to solve this problem are available in the

appendix E.

The camera is initialised and infinite inferences are made until a keyboard interruption

occurs. The highest class probability and its label are displayed in the top left corner of

the live image.

4.6.4 Results

To better evaluate the performance of the model in real time, a total of 132 frames

were analysed. Each frame was evaluated by comparing the model’s prediction with the

ground truth (the human classification). In total, each class had the following number of

images:

Free Way: 61; Left Turn: 25; Right Turn: 42; Full Stop: 4;

The confusion matrices generated are presented in figure 4.17. The rows represent the

labels and the columns represent the predictions. Figure 4.17a shows each class’s exact

number of predictions. The confusion matrix in figure 4.17b shows the data normalised.
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(a) (b)

Figure 4.17: confusion matrix from the live test.

It is noticeable that the accuracy of the live test is generally lower than the test

conducted on Google Colab. This is expected as there are factors in real-life scenarios

that may affect the model’s performance, such as the latency between taking the photo,

inputting it into the model, processing it, and outputting a prediction.

As can be seen from the figure 4.17, the model tends to better correctly predict ’Free

Way’ and ’Left Turn’ situations as opposed to ’Right Turn’. This discrepancy could be

attributed to variations in the dataset sizes during training. Additionally, the model had

the highest accuracy for ’Full Stop’ images, although this may be due to the limited

number of images labelled as such in this test set.

Free Way

Figure 4.18 shows an image that reveals an obstacle at the top of the camera’s field of

view.

In this scenario, the feet are positioned on the upper half of the frame, at approximately

70 cm from the walker, allowing some space to move without obstruction (about 30 cm).

Therefore, according to the points defined in section 4.1.3, the model accurately classifies

the input as ’Free Way’ with a 99.97% probability.
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Figure 4.18: Free Way scenario on live test.

Left Turn

In the upcoming scenario, the walker encounters a wall on the right side, without

intervention, it will collide with it. Therefore, according to the points defined in section

4.1.3, the model must predict a "Left Turn" to navigate away from the obstacle, as it

does with a high level of certainty.

Figure 4.19: Left turn scenario on live test.
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Right Turn

In the scenario represented in figure 4.20, the walker faces an obstacle on the left side.

To avoid a collision, the neural network accurately predicts the need to make a right turn,

consistent with the points outlined in section 4.1.3, with a probability of 90.98%.

Figure 4.20: Right turn scenario on live test.

Full Stop

On the situation represented on the image 4.21 the walker encounters stairs in front of

it. Because of the big and common dangers of the elderly falling from stairs, this is one

of the special scenarios where the neural network was trained to predict "Full Stop". The

model predicts the expected output with a probability of 72.64%, avoiding life-threatening

scenarios.
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Figure 4.21: Full stop scenario on live test.

4.6.5 Wrong predictions

Although the model achieves good accuracy, like all deep learning models, there are

still some incorrect predictions.

Figure 4.22 shows a situation where the model predicted an image as "Left Turn". At

the first instance, it is possible to see that it is wrongly predicted, the image is labelled

as "Free Way", although, it is possible to see why the model wrongly predicted it. A

reflection of light is visible within the frame, which the model interprets as an obstacle

situated on the right side. Consequently, in its effort to avoid a collision with the supposed

obstacle, the model classifies the image as a "Left Turn".
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Figure 4.22: Free Way wrongly predicted as Left Turn.

To prevent further misclassifications caused by artificial light, additional data should

be included in the dataset to retrain and prepare the model for this scenario. Another

possible solution is to employ an alternative preprocessing technique that eliminates the

reflection, thereby avoiding further incorrect predictions.

In the context of this dissertation, although one class may be more accurate than others,

it is still possible that another label could also be considered correct.

In the situation shown in the figure 4.23, the image was labelled as a "Left Turn" but

the model predicted it as a "Full Stop". Although the label and the prediction do not

match, the classification given by the model is not entirely incorrect and will not put the

user in any dangerous situation. On the contrary, it is safe to classify it as such.
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Figure 4.23: Left Turn wrongly predicted as Full Stop.

The situations presented contribute to lowering the accuracy of the model, although

it is possible to understand why the images have been predicted as such.
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5 Conclusion

The goals of this dissertation to develop and evaluate an object avoidance through im-

age classification on a smart walker were achieved. A deep learning model was trained

and tested, achieving good results in both the computer test and the real-time test with

the walker. The model was capable of ensuring the safety of the user by either avoid-

ing collisions or dangerous situations by going around the obstacle or performing a full

stop. These results prove that the architecture used for the neural network is capable of

classifying the images according to the defined goals.

The walker was endowed with a board and a camera that captures real footage from

its front. The board then pre-processes the images, runs the deep learning model, and

finally outputs the prediction (Free Way, Left Turn, Right Turn, Full Stop).

The board Jetson Nano by NVIDIA, together with the Raspberry Pi camera, was

proven to be a reliable choice, capable of capturing images, pre-processing them, running

the deep learning model, and outputting the prediction with no difficulty.

The ESP32-CAM was also tested for use in this project, but although the board is

suitable for general IoT projects, it proved unsuitable for the purposes of this dissertation

as it is a board with limited memory and resources.

Assistive technology and smart walkers are evolving rapidly to meet the needs of people

with mobility difficulties. To fully leverage the potential of this project, the following

future work is proposed:

• To improve the model’s accuracy, expanding the dataset and retraining the deep

learning model are necessary steps. By ensuring a more balanced dataset, better

results can be achieved not only while improving overall accuracy but also enhancing
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the model’s robustness and reliability across diverse scenarios and inputs.

• After the model has been retrained, integrating it with the motors on the brakes

automates obstacle avoidance. However, this task is challenging because the process

within the NVIDIA container does not have the necessary permissions to control

GPIO pins on the Jetson Nano. Therefore, a workaround is to run two processes

simultaneously: one inside the container that runs the deep learning model, and

another external process that manages the brakes via GPIO pins. Effective com-

munication between these two processes is crucial. The process running the deep

learning model must inform the process controlling the GPIO pins of the actions

required to avoid obstacles.

• Further extensive testing should be conducted, involving users, and analysing the

adjustments made on the walker.
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Appendix A

Dataset acquisition code

Complete Arduino code used on the ESP32-CAM for dataset acquisition:

1 #inc lude " esp_camera . h "

2 #inc lude " Arduino . h "

3 #inc lude "FS . h " // SD Card ESP32

4 #inc lude "SD_MMC. h" // SD Card ESP32

5 #inc lude " soc / soc . h " // Disab le brownour problems

6 #inc lude " soc / rtc_cnt l_reg . h " // Disab le brownour problems

7 #inc lude " d r i v e r / rtc_io . h "

8 #inc lude <EEPROM. h> // read and wr i t e from f l a s h memory

9 #inc lude " P i n D e f i n i t i o n s . h "

10

11 i n t pictureNumber = 0 ;

12 const i n t botao = 3 ;

13 const i n t l ed = 4 ;

14 i n t buttonState = 0 ;

15

16 void setup ( ) {

17 pinMode ( led , OUTPUT) ;

18 pinMode ( botao , INPUT) ;

19

20 WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0 ) ; // d i s a b l e brownout de t e c t o r

21

22 Serial . begin ( 115200 ) ;

23

24 camera_config_t c o n f i g ;
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25 c o n f i g . ledc_channel = LEDC_CHANNEL_0 ;

26 c o n f i g . ledc_timer = LEDC_TIMER_0 ;

27 c o n f i g . pin_d0 = Y2_GPIO_NUM;

28 c o n f i g . pin_d1 = Y3_GPIO_NUM;

29 c o n f i g . pin_d2 = Y4_GPIO_NUM;

30 c o n f i g . pin_d3 = Y5_GPIO_NUM;

31 c o n f i g . pin_d4 = Y6_GPIO_NUM;

32 c o n f i g . pin_d5 = Y7_GPIO_NUM;

33 c o n f i g . pin_d6 = Y8_GPIO_NUM;

34 c o n f i g . pin_d7 = Y9_GPIO_NUM;

35 c o n f i g . pin_xclk = XCLK_GPIO_NUM;

36 c o n f i g . pin_pclk = PCLK_GPIO_NUM;

37 c o n f i g . pin_vsync = VSYNC_GPIO_NUM;

38 c o n f i g . pin_href = HREF_GPIO_NUM;

39 c o n f i g . pin_sscb_sda = SIOD_GPIO_NUM;

40 c o n f i g . pin_sscb_scl = SIOC_GPIO_NUM;

41 c o n f i g . pin_pwdn = PWDN_GPIO_NUM;

42 c o n f i g . p in_reset = RESET_GPIO_NUM;

43 c o n f i g . xclk_freq_hz = 20000000 ;

44 c o n f i g . p ixe l_format = PIXFORMAT_JPEG;

45

46 i f ( psramFound ( ) ) {

47 c o n f i g . f rame_size = FRAMESIZE_UXGA; // FRAMESIZE_ + QVGA| CIF |VGA|SVGA|

XGA|SXGA|UXGA

48 c o n f i g . jpeg_qua l i ty = 10 ;

49 c o n f i g . fb_count = 2 ;

50 } e l s e {

51 c o n f i g . f rame_size = FRAMESIZE_SVGA;

52 c o n f i g . jpeg_qua l i ty = 12 ;

53 c o n f i g . fb_count = 1 ;

54 }

55

56 // I n i t Camera

57 esp_err_t e r r = esp_camera_init(& c o n f i g ) ;

58 i f ( e r r != ESP_OK) {

59 Serial . p r i n t f ( " Camera i n i t f a i l e d with e r r o r 0x%x " , e r r ) ;

60 re turn ;

61 }

62
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63 // S e r i a l . p r i n t l n ( " S ta r t i ng SD Card " ) ;

64 i f ( !SD_MMC. begin ( ) ) {

65 Serial . p r i n t l n ( "SD Card Mount Fa i l ed " ) ;

66 re turn ;

67 }

68

69 uint 8_t cardType = SD_MMC. cardType ( ) ;

70 i f ( cardType == CARD_NONE) {

71 Serial . p r i n t l n ( "No SD Card attached " ) ;

72 re turn ;

73 }

74

75 camera_fb_t ∗ fb = NULL;

76 // Take Pic ture with Camera

77 fb = esp_camera_fb_get ( ) ;

78 i f ( ! fb ) {

79 Serial . p r i n t l n ( " Camera capture f a i l e d " ) ;

80 re turn ;

81 }

82 // i n i t i a l i z e EEPROM with prede f i ned s i z e

83 EEPROM. begin (EEPROM_SIZE) ;

84 pictureNumber = EEPROM. read ( 0 ) + 1 ;

85

86 // Path where new p i c t u r e w i l l be saved in SD Card

87 St r ing path = " / p i c t u r e " + St r ing ( pictureNumber ) +" . jpg " ;

88

89 f s : : FS &f s = SD_MMC;

90 Serial . p r i n t f ( " P ic ture f i l e name : %s \n " , path . c_str ( ) ) ;

91

92 F i l e f i l e = f s . open ( path . c_str ( ) , FILE_WRITE) ;

93 i f ( ! f i l e ) {

94 Serial . p r i n t l n ( " Fa i l ed to open f i l e in wr i t i ng mode" ) ;

95 }

96 e l s e {

97 f i l e . wr i t e ( fb−>buf , fb−>len ) ; // payload ( image ) , payload length

98 Serial . p r i n t f ( " Saved f i l e to path : %s \n" , path . c_str ( ) ) ;

99 EEPROM. wr i t e ( 0 , pictureNumber ) ;

100 EEPROM. commit ( ) ;

101 }
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102 f i l e . c l o s e ( ) ;

103 esp_camera_fb_return ( fb ) ;

104

105 // Turns o f f the ESP32−CAM white on−board LED ( f l a s h ) connected to GPIO 4

106 pinMode ( 4 , OUTPUT) ;

107 d i g i t a l W r i t e ( 4 , LOW) ;

108 rtc_gpio_hold_en (GPIO_NUM_4 ) ;

109 }

110

111 void loop ( ) {

112 }

Listing A.1: Dataset acquisition.
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Appendix B

Neural Network Architecture
The CNN architecture used is represented in the figure below, created with Netron [29].

Figure B.1: Model architecture.
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Appendix C

Directory structure

Mandatory structure for the model to properly access the necessary files:

Figure C.1: Directory structure.
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Appendix D

Add a softmax layer to the model

The following script ensures the presence of a final softmax layer, serving as a decision

layer. This configuration allows the model to return valid probabilities after each inference,

facilitating interpretation by the scripts of the container.

1 modelo = nn. Sequential (

2 modelo ,

3 nn. Softmax (dim =1) # Apply softmax along the dimension of

classes

4 )

Listing D.1: Softmax Layer.
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Appendix E

Mounting Swap

The command lines below create a 4GB swap space to prevent freezing during model

training or testing. This swap memory will be deleted each time the Jetson Nano is

rebooted.

sudo systemctl disable nvzramconfig

sudo fallocate -l 4G /mnt/4GB.swap

sudo mkswap /mnt/4GB.swap

sudo swapon /mnt/4GB.swap

The following terminal command checks the memory usage of the Jetson Nano:

free -h
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