
Ana Beatriz Simões Fernandes

A FUNCTIONAL VALIDATION FRAMEWORK FOR
THE UNLIMITED VECTOR EXTENSION

February 2024

Dissertation in the context of the Master in Electrical and Computer Engineering,
specialisation in Computers, advised by Prof. Doctor Gabriel Falcão Paiva

Fernandes and Prof. Doctor Nuno Filipe Simões Santos Moraes da Silva Neves and
presented to the Department of Electrical and Computer Engineering of the Faculty

of Sciences and Technology of the University of Coimbra.

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Ana Beatriz Simões Fernandes

A FUNCTIONAL VALIDATION FRAMEWORK
FOR THE UNLIMITED VECTOR EXTENSION

February 2024

Dissertation in the context of the Master in Electrical and Computer
Engineering, specialisation in Computers, advised by Prof. Doctor Gabriel

Falcão Paiva Fernandes and Prof. Doctor Nuno Filipe Simões Santos Moraes
da Silva Neves and presented to the Department of Electrical and Computer
Engineering of the Faculty of Sciences and Technology of the University of

Coimbra.

Examination Committee

Chairperson: Prof. Doctor Fernando Manuel dos Santos Perdigão
Supervisor: Prof. Doctor Gabriel Falcão Paiva Fernandes

Member of the Committee: Prof. Doctor Vítor Manuel Mendes da Silva

https://orcid.org/0009-0003-7613-7943

BibTEX:

@mastersthesis{absf_msc_thesis,
author = {Ana Beatriz Simões Fernandes} ,
title = {A functional validation framework for the Unlimited Vector Extension} ,
school = {University of Coimbra} ,
year = {2024} ,
month = feb,
keywords = {ISA SIMD Extensions, Data Streaming, RISC-V, Unlimited Vector Extension,

Simulation Tools}↪→
}

This copy of the thesis has been supplied on the condition that anyone who
consults it is understood to recognise that its copyright rests with its author and
that no quotation from the thesis and no information derived from it may be
published without proper acknowledgement.

Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os
direitos de autor são pertença do autor da tese e que nenhuma citação ou informação obtida
a partir dela pode ser publicada sem a referência apropriada.

Neo, sooner or later you’re going to realise just as I
did that there’s a difference between knowing the path
and walking the path.

Morpheus, The Matrix

This work was financially supported by Instituto de Telecomunicações
through projects "Bin-NET: PiM-Enabled Binary Neural Network Inferencing at
the Edge" (EXPL/EEI-HAC/1511/2021) and "UNIFY: Compilation Abstraction
and Hardware Adaptation for Specialized and General-Purpose Computing Uni-
fication" (2022.06780.PTDC), funded by the Portuguese Foundation for Science
and Technology (FCT).

ix

Agradecimentos

Aos meus orientadores Prof. Doutor Gabriel Falcão e Prof. Doutor Nuno Neves,
deixo um profundo obrigado por me terem proporcionado a oportunidade de
trabalhar neste tema que tanto me entusiasma.

Ao Prof. Doutor Pedro Tomás, ao Prof. Doutor Nuno Roma e ao Luís Crespo,
membros do grupo HPCAS do INESC-ID, agradeço por toda a ajuda e conheci-
mento que partilharam comigo.

Ao Instituto de Telecomunicações de Coimbra, que apoiou este pro-
jeto através da atribuição das bolsas de investigação B-0124-22 (EXPL/EEI-
HAC/1511/2021) e B-0144-23 (2022.06780.PTDC), financiadas pela Fundação
para a Ciência e Tecnologia (FCT), deixo também o meu agradecimento.

À Quantunna e todos os amigos que lá fiz, agradeço por me terem mostrado
o que é viver Coimbra e por terem dado música à minha vida académica.

A todos os amigos que fiz na faculdade, deixo um agradecimento por terem
feito parte da minha jornada. Cada um de vocês deixou a sua marca, foi um gosto
partilhar estes anos de estudante convosco.

Aos amigos de sempre, Gabriel, Ju e Lima, que há tantos anos me apoiam em
qualquer coisa que faça, deixo um obrigado por nunca terem deixado o meu lado.
É um gosto ver como crescemos juntos e tornamos os nossos sonhos realidade.
Que a distância nunca nos separe e que continuemos a partilhar as nossas vitórias
e derrotas.

Ao Bruno, que acompanhou de perto este trabalho, ouvindo as minhas ideias
e desabafos, deixo um enorme obrigado, por todo o carinho e compreensão. Obri-
gada por sempre teres mostrado interesse e orgulho no que faço, que me in-
centivou a dar o meu melhor. Ver o que conquistamos juntos no último ano é
a melhor recompensa e não podia estar mais grata por te ter ao meu lado.

À Patrícia, a melhor colega de casa, amiga e irmã que poderia ter, agradeço
profundamente. Sem ti não estaria aqui, és a maior inspiração e motivaste-me
sempre a dar o meu melhor. Obrigada por sempre me teres ouvido e acalmado
nos meus momentos mais difíceis. Quando para mim tudo parece impossível,
trazes-me sempre uma perspetiva mais otimista, mas sempre realista, de ver as
coisas.

Aos meus pais, a quem devo tudo o que sou hoje, deixo o meu maior obri-
gado. À minha mãe, obrigada por todas as palavras de encorajamento e por ser
a melhor ouvinte de todos os meus desabafos. Ao meu pai, agradeço por me
ter mostrado tudo o que sei sobre o que é ser Engenheiro, mesmo sem diploma.
Obrigada por terem sempre acreditado em mim e incentivado a que dê o meu
melhor em tudo o que faço, tal como vocês.

xi

Abstract

In order to tackle the limitations of current state-of-the-art Vector-Length Ag-
nostic (VLA) extensions, the RISC-V Unlimited Vector Extension (UVE) was cre-
ated. This is a new Instruction Set Architecture (ISA) extension that aims to
reduce loop control and memory access indexations associated overheads, de-
creasing the average memory access latency. It achieves this by relying on Single
Instruction, Multiple Data (SIMD) processing and the emerging data streaming
paradigm. SIMD is ideal for data-centric applications, such as Machine Learning
(ML), which are increasingly more popular in embedded and low-power devices.
On the other hand, data streaming allows for memory access patterns to be de-
scribed at the software level, fed to a dedicated co-processor that fetches the data
in the background, effectively decoupling and masking memory accesses from
computation. An initial proof-of-concept implementation of this extension was
made on an Out-of-Order (OoO) processor model, based on the ARM Cortex-
A76, in the cycle-accurate simulator gem5. Compared with the state-of-the-art
Scalable Vector Extension (SVE), results showed that the proposed solution at-
tains performance speedups between 2× and 4×. Since the initial proposal of
UVE, some shortcomings and limitations were identified, such as a lack of sup-
port for more fields of application, such as Sparse Linear Algebra, which is char-
acterised by complex scatter-gather memory accesses. Moreover, there was a
need for an improved simulation environment, as the gem5 implementation has
since been deprecated. This work presents a new development and functional
validation framework for the extension, based on the Spike simulator, the golden
reference functional RISC-V ISA simulator. This simulator was modified and ex-
tended to support data streaming and more than 150 new instructions. In parallel,
the extension’s specification was revised and updated, to support higher memory
access pattern complexity and cover new fields of application. The new simula-
tion framework was used to perform a functional validation of the extension and
a comparison with the state-of-the-art RISC-V Vector Extension (RVV). This as-
sessment revealed an average instruction reduction of 75% relative to RVV.

Keywords

ISA SIMD Extensions, Data Streaming, RISC-V, Unlimited Vector Extension, Sim-
ulation Tools.

xiii

Resumo

Para fazer face às limitações das atuais extensões vetoriais escaláveis, uma nova
extensão para RISC-V foi criada: Unlimited Vector Extension (UVE). Esta é uma
nova extensão do Instruction Set Architecture (ISA) que visa reduzir o impacto do
controlo de fluxo e indexação, diminuindo a latência média de acesso à memória.
Isto é conseguido através do processamento de instrução única em múltiplos da-
dos (SIMD, em inglês) e do paradigma emergente de computação em fluxo de
dados (data streaming, no original). Este tipo de processamento vetorial é ideal
para aplicações com elevado volume de dados, como Aprendizagem Computa-
cional, cada vez mais populares em dispositivos embebidos e de baixo consumo.
Por outro lado, o fluxo de dados permite que os padrões de acesso à memória se-
jam descritos ao nível do software e alimentados a um co-processador dedicado,
que carrega os dados em segundo plano, desassociando os acessos à memória
da computação. Uma primeira implementação de prova de conceito desta ex-
tensão foi efetuada num modelo de processador fora de ordem, baseado no ARM
Cortex-A76, no simulador gem5. Em comparação com uma extensão estabelecida
no estado-da-arte, Scalable Vector Extension (SVE), os resultados mostraram que
a solução proposta alcança aumentos de desempenho entre 2× e 4×. Desde a pro-
posta inicial do UVE, foram identificadas algumas falhas e limitações, tais como
a falta de suporte para mais áreas de aplicação, como a Álgebra Linear Esparsa,
que se caracteriza por acessos dispersos à memória. Além disso, havia a necessid-
ade de um ambiente de simulação melhorado, uma vez que a implementação do
gem5 foi entretanto descontinuada. Este trabalho apresenta uma nova estrutura
de desenvolvimento e validação funcional para a extensão, baseada no simulador
Spike, o simulador funcional de referência para RISC-V. Este simulador foi modi-
ficado e alargado para suportar fluxo de dados e mais de 150 novas instruções.
Paralelamente, a especificação da extensão foi revista e atualizada para suportar
uma maior complexidade de padrões de acesso à memória e abranger novas áreas
de aplicação. O novo ambiente de simulação foi utilizado para efetuar uma valid-
ação funcional da extensão e uma comparação com a extensão vetorial do RISC-
V, RISC-V Vector Extension (RVV). Esta avaliação revelou uma redução média do
número de instruções no valor de 75% em relação ao RVV.

Palavras-Chave

Extensões ISA SIMD, Computação em Fluxo de Dados, RISC-V, Simulação.

xv

Contents

List of Figures xxi

List of Tables xxiii

1 Introduction 1
1.1 Motivation and Objectives . 2
1.2 Contributions . 3
1.3 Document Outline . 4

2 Background and State of the Art 5
2.1 SIMD Architectures and Fixed-Length Vector Extensions 5

2.1.1 Arm Neon and Helium . 6
2.1.2 Intel SSE and AVX . 8
2.1.3 Discussion . 8

2.2 Vector-Length Agnostic Extensions 11
2.2.1 RISC-V Vector Extension . 11
2.2.2 Arm Scalable Vector Extension 13
2.2.3 Discussion . 15

2.3 Data Streaming and Pattern Description 16
2.3.1 Pattern Description Model . 17
2.3.2 Linear Patterns – Dimensions 18
2.3.3 Complex Memory Accesses – Modifiers 19
2.3.4 Descriptor Organisation . 21
2.3.5 Summary . 22

2.4 Unlimited Vector Extension . 23
2.4.1 Registers . 24
2.4.2 Instruction Set . 25
2.4.3 Supporting Microarchitecture 26
2.4.4 Compiler Support . 28
2.4.5 Discussion . 29

3 Simulation Infrastructure 33
3.1 The RISC-V ISA Simulator: Spike . 33
3.2 Simulator Files and Code Structure 35
3.3 Streaming Simulation Infrastructure 37

xvii

3.3.1 Stream Iteration and Load/Store Mechanisms 37
3.3.2 Stream Table . 41

3.4 Instruction Implementation . 42
3.4.1 Operand Decoding . 42

3.5 Disassembler . 44
3.6 Summary . 45

4 Unlimited Vector Extension Specification Revision 47
4.1 Stream Configuration . 47

4.1.1 Base Address and Offset . 47
4.1.2 Scalar Streams . 48
4.1.3 Dimensions and Modifiers 49

4.2 Predication Policies . 53
4.3 Instruction Set Overview . 57

4.3.1 Stream Configuration . 57
4.3.2 Loop Control – Branching . 62
4.3.3 Lane Control – Predication 63
4.3.4 Vector Manipulation . 67
4.3.5 Vector Control . 68
4.3.6 Arithmetic and Logic Instructions 69

4.4 Summary . 70

5 Experimental Results and Discussion 73
5.1 Framework . 73

5.1.1 Supported Features . 74
5.1.2 Benchmarks . 74
5.1.3 Additional Artefacts . 77

5.2 Instruction Count Evaluation . 78
5.3 Summary . 81

6 Conclusion 83
6.1 Future Work . 84

References 85

Appendix A Unlimited Vector Extension Supporting Microarchitecture 97

Appendix B Instruction Counting Results 101

Appendix C UVE Instruction Listing 105

Appendix D Paper presented at CAMS 2023 125

xviii

Glossary

AI Artificial Intelligence.

ALU Arithmetic Logic Unit.

AR Augmented Reality.

AVX Advanced Vector Extensions.

CISC Complex Instruction Set Computer.

CPU Central Processing Unit.

CSR Control Status Register.

DLP Data-Level Parallelism.

DSP Digital Signal Processing.

EOD End-of-Dimension.

EOS End-of-Stream.

FIFO First-In, First-Out.

GCC GNU Compiler Collection.

GPU Graphics Processing Unit.

HPC High-Performance Computing.

ILP Instruction-Level Parallelism.

IOT Internet of Things.

ISA Instruction Set Architecture.

ISS Instruction Set Simulator.

ML Machine Learning.

MMU Memory Management Unit.

xix

OoO Out-of-Order.

PC Program Counter.

RAT Register Alias Table.

RISC Reduced Instruction Set Computer.

RTL Register Transfer Level.

RVV RISC-V Vector Extension.

SAT Stream Allocation Table.

SCROB Stream Configuration Reorder Buffer.

SE Streaming Engine.

SIMD Single Instruction, Multiple Data.

SIMD&FP Single Instruction, Multiple Data and Floating-Point.

SISD Single Instruction, Single Data.

SSE Streaming SIMD Extensions.

SU Streaming Unit.

SVE Scalable Vector Extension.

TLB Translation Lookaside Buffer.

UVE Unlimited Vector Extension.

VLA Vector-Length Agnostic.

VR Virtual Reality.

xx

List of Figures

1.1 Outline of the flow of the presented work. 3

2.1 Neon 128 and 64-bit vector registers, adapted from [2]. 6
2.2 Neon SIMD multiplication operations, adapted from [2]. 7
2.3 SVE predicate organisation in 256-bit vector registers. 14
2.4 1D linear memory access representation. 18
2.5 2D linear memory access representation. 18
2.6 2D scattered memory access representation. 18
2.7 Triangular memory access representation. 19
2.8 Indirect memory access representation. 21
2.9 Examples of possible descriptor configurations. 22
2.10 RISC-V base opcode map, inst[1:0]=11, with UVE, adapted from [62] 23
2.11 UVE registers. 24
2.12 Streaming Engine and detailed Stream Processing Module logical

block diagrams [9]. 26
2.13 SAXPY assembly code with RVV, SVE and UVE. 30

3.1 Illustration of simulation accuracy vs. speed of multiple simula-
tion platforms [69]. 34

3.2 Diagram of added and modified structures and files on Spike. . . . 36
3.3 (A) Streaming Engine and (B) Stream Processor Module proposed

in [9], now emulated on Spike. 38
3.4 Flowchart of a high-level overview of the loading and storing of

elements to/from a stream, as implemented on Spike. 39

4.1 Padded memory access pattern example, where the offset is non-zero. 48
4.2 Scatter-gather memory access representation. 52
4.3 Reduction loops with flawed original implicit predication policy,

assuming a vector length of 256 bits. Load streams are in yellow,
auxiliary registers in green, and store streams in blue. 54

4.4 Reduction loop with zeroing predication. 55
4.5 Reduction loop with multiply-accumulate instruction and both pos-

sible predication policies. 56
4.6 Illustration of explicit predication in the so.a.add instruction. . . . 56

xxi

4.7 Illustration of so.p.vr instruction with different source vectors, as-
suming true instruction predicate (p0). 64

4.8 Illustration of so.p.cv instruction with different source and des-
tination widths. 66

5.1 Framework structure. 73
5.2 Matrix multiplication kernel as implemented on the developed

framework. 77
5.3 UVE and RVV (with loop unrolling) instruction count of executed

benchmarks for each data type. Benchmarks that are only available
for one data type were omitted. 79

5.4 Percentage of reduction of instructions in double-precision
floating-point RVV with loop unrolling and UVE benchmarks,
relative to scalar code

(
1 − Instextension

Instscalar

)
. To exemplify, the UVE

SpMV-2 kernel achieved a 92% instruction reduction, while RVV
executed 12% more instructions than scalar code. 80

5.5 Percentage of reduction of instructions in different data type RVV
with loop unrolling and UVE benchmarks, relative to scalar code(
1 − Instextension

Instscalar

)
. 81

5.6 Double-precision floating-point UVE reduction of retired instruc-
tions, relative to RVV

(
1− InstUVE

InstRVV

)
. (a) shows the percentual reduc-

tion of instructions relative to RVV without loop unrolling, while
(b) shows the reduction of instructions relative to RVV with loop
unrolling. 82

A.1 UVE supporting microarchitecture overview, highlighting modi-
fications introduced in a traditional OoO processing pipeline [9]. . 98

A.2 System overview, featuring the SE embedded in an OoO core and
respective connections to the memory hierarchy [9]. 100

B.1 Percentage of reduction of instructions in double-precision
floating-point RVV without loop unrolling and UVE benchmarks,
relative to scalar code

(
1 − Instextension

Instscalar

)
. 101

B.2 Percentage of reduction of instructions in different data type RVV
without loop unrolling and UVE benchmarks, relative to scalar
code

(
1 − Instextension

Instscalar

)
. 102

B.3 UVE reduction of retired instructions, relative to RVV without loop
unrolling

(
1 − InstUVE

InstRVV

)
. 103

B.4 UVE reduction of retired instructions, relative to RVV with loop
unrolling

(
1 − InstUVE

InstRVV

)
for different data types. 104

xxii

List of Tables

4.1 Original tc field encoding. 58
4.2 width field encoding. 58
4.3 behaviour field encoding. 59
4.4 target field encoding. 59
4.5 Updated tc field encoding. 61
4.6 fps field encoding. 64

5.1 Benchmarks used for testing and respective characteristics. 75

C.1 Unlimited Vector Extension (UVE) instruction listing for RISC-V . . 124

xxiii

List of Listings

2.1 Original SAXPY C/C++ code. 9
2.2 SAXPY unrolled loop C/C++ code, assuming a packing factor of 4. 9
2.3 SAXPY SIMD loop pseudo-code. 9
2.4 SAXPY loop assembly pseudo-code for SIMD processing [1]. 10
2.5 RVV suggested assembler names and examples for vset{i}vli in-

structions [5]. 12
2.6 RVV SAXPY loop assembly code [5]. 13
2.7 SVE SAXPY loop assembly code [6, 19]. 15
2.8 SAXPY C/C++ code with extended assembly directives support. . 29
2.9 Original Floyd-Warshall C/C++ kernel code [68]. 31
3.1 Offset computation C/C++ code. 40
3.2 Operand decoding function examples. 43
3.3 Disassembler structures and functions for UVE add instructions. . . 45
4.1 Snippet of the covariance C/C++ kernel code [68]. 50
4.2 Covariance kernel UVE pseudo-assembly store stream configura-

tion of streams with two modifiers per dimension. 50
4.3 SYRK (Symetric Rank-K Update) C/C++ computation kernel

code [68]. 51
4.4 SYRK kernel UVE pseudo-assembly store stream configuration

with explicitly defined target modifier. 52
4.5 Example of a reduction loop in UVE assembly code. 53
4.6 Example of product accumulation loops in UVE assembly code. . . 57

xxv

Chapter 1

Introduction

In the last few decades, there has been an increasing need to improve the per-
formance of a processor. This is due to computational and memory-intensive
applications having become more common, with the rise of Machine Learning
(ML), Augmented Reality (AR), Virtual Reality (VR), among other technological
developments, involving image and video processing with increasing resolu-
tion. However, with the end of Dennard Scaling and the presumed slowdown
of Moore’s Law, traditional methods solely based on increasing clock frequency
and the use of cache memory have been revealed to be insufficient for improving
performance.

Several solutions have been proposed and are now widely used, such as
Instruction-Level Parallelism (ILP) and Data-Level Parallelism (DLP), common
in modern high-performance processors. The latter, hidden in Single Instruction,
Multiple Data (SIMD) units [1], has proven to be successful in improving the
performance of modern processors by allowing the simultaneous processing of
multiple data elements. To take advantage of DLP, a plethora of SIMD Instruc-
tion Set Architectures (ISAs) has been developed, such as Arm Neon [2] and x86
AVX [3]. However, these approaches present some limitations, such as portabil-
ity issues, because they exclusively operate on fixed-size registers. Although in-
creasing vector size was a tendency for some time [1, 4], Vector-Length Agnostic
(VLA) extensions have emerged to overcome this problem, particularly RISC-V
Vector Extension (RVV) [5] and Scalable Vector Extension (SVE) [6], which allow
for the size of the vector register to be defined at runtime. This means that differ-
ent processors with different requirements can adopt distinct vector sizes, with
no need to modify application source code. However, a new problem arises with
these extensions, as predicate [7] and/or vector control instructions become ne-
cessary to disable elements outside loop bounds. This can lead to additional loop
instructions [8], and thus more overhead and lower attainable performance.

The RISC-V Unlimited Vector Extension (UVE), proposed and developed
by Domingos et al. [9], joins two promising solutions for improving performance:

1

Chapter 1

scalable SIMD extensions and data streaming. RISC-V was chosen as the base ISA
due to its open-source nature, as well as its simple and extensible instruction set.
By relying on data streaming, this novel RISC-V ISA extension contains several
upgrades compared to the ones mentioned above, such as decoupled memory
accesses, indexing-free loops, simplified vectorisation, and implicit load/store
operations [9]. The streaming paradigm allows for the configuration of memory
access patterns at the software level and the fetching of the data in the back-
ground, a clear step towards increasing memory access latency and increasing
throughput. This work has already demonstrated the paradigm shift in a proof-
of-concept gem5 implementation of the UVE on an Out-of-Order (OoO) processor
model, based on the ARM Cortex-A76. It was shown that the performance of a
processor can be improved by an average of 2.4× (speed-up), compared to other
state-of-the-art implementations.

1.1 Motivation and Objectives

UVE is still in its early stages of development. Its initial proposal lacked sup-
port for several applications that involve complex memory accesses, mainly in
the Sparse Linear Algebra domain, due to constraints in its pattern descriptors.
Moreover, because the ISA was only validated on gem5, an independent func-
tional validation of the specification was required, free from the constraints im-
posed by this simulator. In accordance, this work aims to create a new modelling,
simulation, and validation tool to support the development of UVE, by not only
independently validating the existing specification, but also introducing stream-
ing support on Spike [10]. By creating a functional validation tool, it becomes
possible to focus solely on the instructions’ behaviour, detaching the ISA devel-
opment from implementation details, which can be prone to errors. In fact, while
adding this new extension to Spike, this work also aims to identify and correct
any errors that may exist in the current UVE specification, as well as to extend it
with new instructions and features, to widen its applicability.

Additionally, so that the features added on Spike can be tested and validated,
a diverse set of benchmarks is required, composed of commonly found opera-
tions and compute kernels in the signal and image processing domains, which
are great candidates for UVE applications. Some benchmarks were already con-
sidered in the UVE’s proposal [9], so one goal of this work is to revise the avail-
able code to benefit from whichever corrections and improvements are made to
the specification. Furthermore, new benchmarks from fields of application that
were not previously considered should be added to demonstrate new features.

Finally, as the second main iteration of UVE is proposed, it is important to
create comprehensive documentation of its specification, to both aid its future
development and ease its adoption. This document aims to therefore include a

2

Introduction

detailed description of the functional behaviour of each instruction, as well as an
account of the streaming mechanisms and the memory access patterns suppor-
ted by the UVE, including old and new features. As the chosen simulator also
lacks documentation, its alteration process is also detailed, so that it can be easily
reproduced and extended by future developers.

The general overview of the flow of the proposed work is illustrated in Fig-
ure 1.1.

Data Streaming

Single Instruction,
Multiple Data

Single Instruction,
Single Data

Venctor-Length
Agnostic

Fixed Vector-Length

Unlimited Vector
Extension

RISCCISCArchitecture

Software
prefetching

Hardware
prefetching

Spikegem5 Olympia

RISC-VArm

FunctionalCycle-accurate Trace-based

ISA

Memory Access
Optimisation Method

Data Processing
Architectures

ISA Extension

Simulation Type

Simulation Platform

Vector Size

Figure 1.1: Outline of the flow of the presented work.

1.2 Contributions

This work resulted in several artifacts that contribute to the development and
validation of the UVE ISA. The main contributions are:

• A revised and improved UVE specification, which includes the correction
of errors and the addition of new instructions and features, to widen its
applicability.

• A new UVE implementation on Spike, the main reference for RISC-V devel-
opment and validation, which includes data streaming support for over 150
instructions, implemented, tested, and validated.

3

Chapter 1

• A diverse set of benchmarks composed of commonly found High-
Performance Computing (HPC) operations and compute kernels that has
been revised and expanded to demonstrate the corrections and improve-
ments made to the UVE specification.

• A new functional development and validation framework for UVE, whose
main component is the Spike simulator, complemented by the validation
benchmarks and testing scripts, including support for instruction counting.
This material was all made publicly available1.

• Comprehensive documentation of the UVE specification, which includes a
detailed description of the functional behaviour of each instruction.

• An evaluation of the instruction count improvements of UVE over RVV, the
official vector extension of the base ISA, RISC-V.

During the development of this work, some preliminary results included in
Appendix D were presented at:

• Ana Beatriz Fernandes, Nuno Neves, Luís Crespo, Pedro Tomás, Nuno
Roma and Gabriel Falcao (University of Coimbra), "A functional validation
framework for the Unlimited Vector Extension", CAMS 2023 - The 1st Work-
shop on Computer Architecture Modeling and Simulation, hosted by the
56th IEEE/ACM International Symposium on Microarchitecture (MICRO
2023)

Presented on the 28th of October 2023, Toronto, Canada

1.3 Document Outline

This document starts by offering the necessary background and state-of-the-art in
Chapter 2, with an introduction to vector processing, data streaming, and pattern
representation concepts that are essential to understanding the UVE extension.
Afterwards, Chapter 3 presents the chosen base simulation environment, as well
as the modifications and additions that were made to achieve the desired func-
tionality. Chapter 4 details the proposed optimised UVE specification, with the
identification of caveats in the original extension that lead to the performed re-
vision. In Chapter 5, the complete framework is presented and used to obtain
an ISA performance evaluation. In this chapter, the UVE extension is compared
to the official vector extension of RISC-V, RVV, recurring to a set of meaningful
benchmarks. Finally, Chapter 6 summarises the work and presents the conclu-
sions and potential future work.

1https://github.com/hpc-ulisboa/UVE2

4

https://github.com/hpc-ulisboa/UVE2

Chapter 2

Background and State of the Art

To understand the Unlimited Vector Extension (UVE) [9] and how it improves on
other proposed extensions, it is necessary to comprehend other Single Instruc-
tion, Multiple Data (SIMD) technologies that preceded it. Furthermore, some
context surrounding the data streaming paradigm and memory access pattern
description methods is required. This section covers the fundamental concepts of
these areas. Lastly, it gives an overview of UVE and shows how it combines or
improves on the technologies mentioned above.

2.1 SIMD Architectures and Fixed-Length Vector Ex-
tensions

Data-Level Parallelism (DLP) is exploited in many ways in most modern com-
puters. From vector processors, such as the Cray series, to the ubiquitous Graph-
ics Processing Units (GPUs), the idea of executing the same operation on multiple
data elements is not new. While these represent specialised computer architec-
tures, it is also possible for the Central Processing Unit (CPU) to take advantage
of DLP. This is done through SIMD units made of wide Arithmetic Logic Units
(ALUs) that allow for the simultaneous processing of multiple data elements [1].
For this purpose, several SIMD Instruction Set Architecture (ISA) extensions have
been developed, at first focusing on operating on fixed-length vector registers.
This section describes the most relevant ones, both for Reduced Instruction Set
Computer (RISC) and Complex Instruction Set Computer (CISC) architectures.

5

Chapter 2

2.1.1 Arm Neon and Helium

Intended for accelerating Digital Signal Processing (DSP), Arm Neon technology
is the packed Advanced SIMD architecture extension for the A (application) and
R-profile (real-time) RISC processors developed by ARM for Armv8 and sub-
sequent implementations [2]. Compiler autovectorisation support is available, as
are Neon intrinsics, which are function calls the compiler appropriately replaces
with Neon instructions, giving the programmer low-level control over the vec-
torisation and Neon operations from C/C++ code.

This extension operates on the Single Instruction, Multiple Data and Floating-
Point (SIMD&FP) register file of 32 registers that are 128 bits wide. The SIMD unit
is fully integrated into the processor, sharing its resources for integer operations,
loop control, and caching. This is translated into a considerable reduction of area
and power cost, as opposed to a dedicated hardware accelerator [2]. Each register
can be divided into lanes, with size depending on the data type that it holds
(resulting in a vector of elements). Particularly, when accessed as a vector register
by a Neon SIMD instruction, a SIMD&FP vector register may contain:

• Sixteen 8-bit (byte) elements;

• Eight 16-bit (half-word) elements;

• Four 32-bit (word) elements;

• Two 64-bit (double-word) elements.

128-bit vector

D D

S S S S

H H H H H H H H

B B B B B B B B B B B B B B B B

S S

H H H H

B B B B B B B B

Unused

Unused

Unused

64-bit vector

127 64 63 32 31 16 15 8 7 0

127 64 63 32 31 16 15 8 7 0

V0.2D

V0.4S

V0.8H

V0.16B

V31.2S

V31.4H

V31.8B

Figure 2.1: Neon 128 and 64-bit vector registers, adapted from [2].

The upper half of the register (64 bits) may also be cleared to zero, so it can
behave as a 64-bit vector register. Figure 2.1 shows the layout of Neon registers,

6

Background and State of the Art

where each suffix indicates the number of lanes and the element width (D for
double-word, S for word, H for half-word and B for byte).

A simple element-wise product can be used as an example to understand how
vector operations work. Each lane of a vector, holding an element, is multiplied
by the corresponding lane of the other, storing the result in the same lane of the
destination vector, as represented in Figure 2.2a. Operations with scalars are also
available, such as the example instruction MUL V2.4S, V0.4S, V1.S[2] , which
multiplies each element of the first operand with the element in index 2 of the
second operand, as shown in Figure 2.2b.

Lane 3 Lane 2 Lane 1 Lane 0

127 64 6396 95 32 31 0

V0

V1

V2

127 64 6396 95 32 31 0

127 64 6396 95 32 31 0

(a) Vector-vector
multiplication

127 64 6396 95 32 31 0 127 64 6396 95 32 31 0

V1V0

Lane 3 Lane 2 Lane 1 Lane 0

V2
127 64 6396 95 32 31 0

(b) Vector-Scalar multiplication

Figure 2.2: Neon SIMD multiplication operations, adapted from [2].

It should be noted that this is how most SIMD instructions work, not exclus-
ively on Neon. Furthermore, ARM also provides the Helium extension, which
is very similar but targets M-profile architectures, which are meant to be used
in embedded systems [11]. Some key Helium features that differ from Neon are
listed below.

• Fewer vector registers, but some instructions can access vector and scalar
registers simultaneously;

• Loop and lane predication, as well as complex math operations and scatter-
gather memory accesses;

• Optimised for low-power and small-area implementations, maximising the
usage of all available hardware resources.

7

Chapter 2

2.1.2 Intel SSE and AVX

On the CISC side, targeting x86 architectures, there are two main SIMD exten-
sions: Streaming SIMD Extensions (SSE) and Advanced Vector Extensions (AVX),
proposed by Intel but also used by AMD [12]. Before these two groups of ex-
tensions emerged, there was MMX, commercialised by Intel in 1997, which in-
troduced integer SIMD instructions. However, because its 64-bit registers were
aliased upon the x86 floating-point stack, executing floating-point and MMX
routines was impossible at that time [13]. AMD later introduced 3DNow! [14],
which improved on MMX, targeting mainly the gaming and 3D graphics markets,
and already supported floating-point operations. Intel then released SSE, which
added eight new independent 128-bit vector registers and supported floating-
point operations, besides expanding the MMX instruction set. With its fourth
iteration, first released in 2007, SSE4 is supported by both Intel and AMD pro-
cessors, ultimately replacing MMX and 3DNow!, which have since been deprec-
ated. While specific features vary between AMD and Intel implementations of
SSE4, it supports over 350 instructions, including integer and floating-point op-
erations, as well as new instructions for string and text processing [15].

In 2011, Intel released AVX, which increased the vector register size to 256
bits, allowing for the processing of 8 single-precision or 4 double-precision
floating-point numbers per instruction, but not supporting integer operations un-
til a later version, AVX2, made available in 2013. Three years later, AVX-512 fur-
ther increased the vector register size to 512 bits, while also doubling the number
of registers, now at 32, and adding many more features [3, 4].

2.1.3 Discussion

In order to fully understand how SIMD extensions work from the perspective of
the software developer, a simple code example is given in Listing 2.1. Assuming
that 128-bit SIMD registers are used, each vector register can hold four single-
precision floating-point values, as they are 32-bits wide. This means that in one
software loop iteration, four elements of the X and Y arrays are processed, as rep-
resented in Listing 2.2. This is called loop unrolling, a common technique used to
increase performance, as it reduces the number of loop iterations (usually costly
in terms of performance due to loop control overhead). However, it is not al-
ways possible to include all the processing in an unrolled loop, as the number of
elements in the array may not be divisible by the vector length (i.e., the packing
factor). In such cases, the last elements must be processed separately. This is the
case in the example, where the last two elements are processed outside the loop,
as the size of each array is N=18 and is therefore not a multiple of the packing
factor, 4.

8

Background and State of the Art

1 int N = 18;
2 void saxpy(float *X, float *Y, float a, int N) {
3 for (int i = 0; i < N; ++i)
4 Y[i] += X[i] * a;
5 }

Listing 2.1: Original SAXPY C/C++ code.

1 int N = 18, M = N - N % 4;
2 for (int i = 0; i < M; i+=4) {
3 Y[i] += X[i] * a;
4 Y[i+1] += X[i+1] * a;
5 Y[i+2] += X[i+2] * a;
6 Y[i+3] += X[i+3] * a;
7 }
8 Y[N-2] += X[N-2] * a;
9 Y[N-1] += X[N-1] * a;

Listing 2.2: SAXPY unrolled loop C/C++ code, assuming a packing factor of 4.

The computations inside the resulting loop can be replaced by a single SIMD
instruction (besides the necessary load and store instructions) as shown in List-
ing 2.3. Instructions outside the loop continue to be performed as usual. An
assembly-like pseudo-code based on Arm Neon is presented in Listing 2.4 to
show the assembled code of a possible implementation of the SAXPY func-
tion with SIMD technology. As pointed out by Domingos [1], loop control and
memory address calculation instructions are undesirably cluttering the loop and
make up most of the code. Furthermore, the edge cases also take up a consider-
able amount of code, which is not ideal and leads to a large overhead.

1 int N = 18, M = N - N % 4;
2 for(int i = 0; i < M; i+=4){
3 SIMD_LOAD(vY, Y, i)
4 SIMD_LOAD(vX, X, i)
5 vY = SIMD_ADD(SIMD_MUL(vX, vA), vY) // vA is a vector filled with 'a'
6 SIMD_STORE(Y, vY, i)
7 }
8 Y[N-2] += X[N-2]*a;
9 Y[N-1] += X[N-1]*a;

Listing 2.3: SAXPY SIMD loop pseudo-code.

9

Chapter 2

1 V.DUP_32 V0, R4 ; Loading value of A (R4) into all elements of V0 (vector
register) with elements of size 32-bits↪→

2 Loop:
3 ; R2 contains X address, R1 is the indexer i; R5 is the number of

iterations N↪→

4 VLD V1, [R2+R1] ; Load 4 elements of 32-bits of the array X to V1
5 VMUL_SP V1, V0, V1
6 VLD V2, [R3+R1] ; R3 contains Y address
7 VADD_SP V2, V2, V1
8 VST [R3+R1], V2 ; Store the result of the 4 parallel operations
9 ADD R1, 16 ; Increment i by 4 floating point elements (4-bit

addressing)↪→

10 SUB R5, #4 ; Decrement number of iterations
11 CMP R5, #4 ; Compare N with 4
12 BGE Loop ; Repeat until N < 4

13 LD R12, [R2+R1] ; Case Y[n-1]
14 MUL_SP R12, R4, R12
15 LD R13, [R3+R1]
16 ADD_SP R13, R12, R13
17 ST [R3+R1], R13

18 ADD R1, R1, 1

19 LD R12, [R2+R1] ; Case Y[n]
20 MUL_SP R12, R4, R12
21 LD R13, [R3+R1]
22 ADD_SP R13, R12, R13
23 ST [R3+1], R13

Listing 2.4: SAXPY loop assembly pseudo-code for SIMD processing [1].

As such, it is clear how SIMD architectures achieve higher performance in
data parallelism-rich applications, as fewer loop iterations are executed when
compared to Single Instruction, Single Data (SISD) architectures. This also means
that functional units will be less strained and Instruction Memory will be ac-
cessed fewer times. There impact of wrong branch predictions is also lower, res-
ulting from the reduced number of loop iterations that leads to less speculative
execution.

While the aforementioned extensions are quite powerful, they do not come
without limitations. Particularly, the limited vector width is of great concern,
as it forces the implementations to adopt the static length specified in the ISA,
hindering portability [8]. Furthermore, different applications benefit from differ-

10

Background and State of the Art

ent vector widths. For example, High-Performance Computing (HPC) applica-
tions achieve higher throughput with wider vectors. On the other hand, low-
power processors usually make use of smaller vectors so that power and resource
requirements are met [9]. Moreover, complex memory access patterns usually
lower the performance of the architecture, which otherwise performs well with
linear memory accesses. Lastly, the growth of vector register widths in SIMD
extensions means that for every different vector size, a novel extension that sup-
ports the new size must be developed. Consequently, application code must be
recompiled, which is not always possible with proprietary software, making it
obsolete [1].

2.2 Vector-Length Agnostic Extensions

To overcome these drawbacks, Vector-Length Agnostic (VLA) extensions were
introduced, and are now state-of-the-art in vector processing, tending to result in
more straightforward and efficient code [16]. VLA programming makes it pos-
sible to run the same program on different hardware platforms with distinct vec-
tor lengths, such as embedded and HPC processors, with small and large vector
registers, with no need for re-coding or re-compilation [8].

Two main scalable vector extensions are worth mentioning: the RISC-V Vec-
tor Extension (RVV) [5] and the Scalable Vector Extension (SVE)‘[6]. These served
as a base for the development of UVE, so their main characteristics are described
below.

2.2.1 RISC-V Vector Extension

The RISC-V Vector Extension (RVV)[5] follows the same principles as its base
ISA, RISC-V: simplicity and generality. In accordance, vector length constraints
are very loose, not limiting any application to a particular configuration. Its spe-
cification states that a single vector element has size ELEN (unspecified in the spe-
cification, but not less than 8 bits) and that a vector register must have length VLEN
superior to ELEN, where both of these values are powers of two and VLEN must not
exceed 216 [5]. There are 32 vector registers available.

Each vector register must be configured with its element and vector sizes,
which can change on runtime. This is accomplished with the vsetvli , vsetivli
and vsetvl instructions, as specified in [5]. These instructions allow the modi-
fication of the vector length vl and vector type vtype, two of the seven Control
Status Registers (CSRs) added by this extension.

vsetvli rd, rs1, vtypei

11

Chapter 2

In this instruction, rd is the destination register where the new vector length
vl will also be written, rs1 is the register where AVL, the application vector length,
is provided, and vtypei is the immediate vector type. Usually, vl is set to AVL, if
it is inferior or equal to the maximum value that can be represented by the vector
type, VLMAX = LMUL*VLEN/SEW, where SEW is the selected element width. In case it
is greater than this value, but still inferior to 2*VLMAX, the resulting vector length
will be AVL/2, rounded up. Otherwise, VLMAX will be used. The "grouping factor",
LMUL, can be used to group a series of consecutive registers, being particularly
useful when the total requested size is larger than the implemented vector size [1].

The vtypei argument is an immmediate which configures the selected ele-
ment width SEW and vector register group multiplier LMUL, as shown in List-
ing 2.5, besides the vector mask, through the mandatory ta/ma and ma/mu argu-
ments, which can be combined to achieve various behaviours. RISC-V V estab-
lishes that if a set is marked as undisturbed, the corresponding set of destination
elements in a vector register group remains unchanged, retaining the value they
already had. If agnostic is specified, the destination elements can either retain
their values or be overwritten with 1s, depending on the implementation. Tail
elements correspond to those past the set vl during execution, and mask refers to
an optional vector mask, a regular vector register passed with the suffix .t, that
can be used in some instructions, allowing lane predication on body elements.

1 # SEW
2 # e8 (8b), e16 (16b), e32 (32b), e64 (64b)

3 # LMUL
4 # mf8 (1/8), mf4 (1/4), mf2 (1/2)
5 # m1 (1, assumed if m setting absent)
6 # m2 (2), m4 (4), m8 (8)

7 # Mandatory flags
8 # ta # Tail agnostic
9 # tu # Tail undisturbed

10 # ma # Mask agnostic
11 # mu # Mask undisturbed

12 # Examples:
13 vsetvli t0, a0, e8, ta, ma # SEW= 8, LMUL=1
14 vsetvli t0, a0, e8, m2, ta, ma # SEW= 8, LMUL=2
15 vsetvli t0, a0, e32, mf2, ta, ma # SEW=32, LMUL=1/2

Listing 2.5: RVV suggested assembler names and examples for vset{i}vli in-
structions [5].

12

Background and State of the Art

The other two mentioned instructions work similarly but with an immediate
value for AVL, or vtype encoded in a second source register instead of an imme-
diate.

One of the main benefits of RVV is that it does not force the last lanes of
the vector (sections of the physical register with the configured sizes) to be pop-
ulated. This is useful in the case where the register holds fewer values than the
vector size, through these vector control mechanisms. To further understand how
this extension works, the SAXPY example is employed, this time with RVV, in
Listing 2.6.

1 # y = a * x + y; x and y are vectors of length n, a is a scalar
2 # register arguments:
3 # a0: n; fa0: a; a1: x; a2: y

4 saxpy_:
5 vsetvli a4, a0, e32, m8, ta, ma # a4 = new vl, a0 = n, vtypei = new

vtype setting↪→

6 vle32.v v0, (a1) # v0 = x (word)
7 sub a0, a0, a4 # a0 = n - vl (decrement n by vl)
8 slli a4, a4, 2 # a4 = vl * 4 (4 bytes per word)
9 add a1, a1, a4 # a1 = x + vl * 4 (address increment)

10 vle32.v v8, (a2) # v8 = y (word)
11 vfmacc.vf v8, fa0, v0 # v8 = a * x + y (FP multiply and accumulate)
12 vse32.v v8, (a2) # y = v8 (store result)
13 add a2, a2, a4 # a2 = y + vl * 4 (address increment)
14 bnez a0, saxpy_

Listing 2.6: RVV SAXPY loop assembly code [5].

It is clear that the vector control instruction is responsible for the loop itera-
tion, determining how many elements can be processed in a single iteration and
repeating this process each time, as the total number of values to process, AVL, is
decremented by the vector length. Once there are no more elements to be pro-
cessed, the loop halts. Just as in the previous example from Listing 2.3, the loop
also contains the necessary instructions for address calculation, memory access,
and computation.

2.2.2 Arm Scalable Vector Extension

Another vector extension worth mentioning is the Arm SVE [6], currently in its
second iteration, which adds 32 new scalable registers that extend the already
present SIMD register bank (see Section 2.1.1). Each register must have a length

13

Chapter 2

between 128 and 2048 bits, in increments of 128 bits, sharing the bottom 128 bits
with the fixed-length vector registers introduced by Neon [17]. This extension
also adds 16 scalable predicate registers, although only eight are available for
arithmetic and memory instructions, reducing the predicate register pressure ob-
served in predicate-centric architectures[6].

Contrary to what happens in RVV, loop control relies on a predicate register,
holding a mask, and not on vector register configuration. This predicate mask
indicates for which vector register lanes operations will be executed. Scalability of
the vector registers is achieved through the while and inc instruction families.

while{le|lo|ls|lt} pd.<t>, rn, rm

Using whilelt as an example, this instruction takes the destination predicate
register, along with the size specifier (<t>), the start value of an iterator in rn, and
the comparison value in rm. This instruction will then populate the predicate re-
gister with ones as long as the iterator value is lower than the comparison value.
Other similar instructions exist, with different comparison operations. The inc
instruction family is used to increment the iterator value, taking the iterator re-
gister as an argument and incrementing it by the current vector length, so that the
next loop iteration performs whilelt with the correct starting value, not taking
into account already processed elements. The resulting predicate is used to con-
trol loop execution (as exemplified in Listing 2.7). With these instructions, there
is already a small code reduction inside the loop when compared to RVV (see
Listing 2.6).

127128159160 64 6396 95 32 31 0191192223224255

V1

P1
1516 8 7 0232431

111 1 000 0

(a) 32-bit elements (word)

P0
1516 8 7 0232431

11 00

127128 64 63 0191192255

V0

(b) 64-bit elements (double-word)

Figure 2.3: SVE predicate organisation in 256-bit vector registers.

One interesting feature of SVE is that each predicate has eight bits per 64-bit
vector element, allowing control down to byte granularity [6]. Because only the
least significant bit of the mask element is used for control of the corresponding

14

Background and State of the Art

operand vector element, using multiple data element widths becomes possible.
This behaviour is represented in Figure 2.3. Additionally, two predication modes
are available, merging and zeroing, with the former being the default. In the mer-
ging mode, predicated lanes are left unchanged, while in the zeroing mode, pre-
dicated lanes are set to zero in the destination vector. This configuration is done
through suffixes /m and /z, respectively, added to the register name, as seen in
Listing 2.7.

Lastly, it should be mentioned that SVE2 adds several important features to
its predecessor, Neon, namely gather-load and scatter-store instructions, per-lane
predication, and speculative vectorisation [17, 18]. The main difference between
SVE and SVE2 is purely functional, with the latter spanning a wider range of
applications, not limiting itself to HPC and Machine Learning (ML) workloads
[17]. Despite improving on Neon, these extensions are only related at hardware
level. Finally, it is worth noting that this extension can also be used through
intrinsic functions, just like Neon.

1 # y = a * x + y; x and y are vectors of length n, a is a scalar
2 # register arguments:
3 # x0: x; x1: y; x2: a; x3: n

4 saxpy_:
5 ldrsw x3, [x3] // x3 = n
6 mov x4, #0 // x4 = 0 (iteration counter)
7 ld1rw z0.s, p0/z, [x2] // p0 = vector filled with a, zeroing

predication↪→

8 .loop:
9 whilelt p0.s, x4, x3 // p0 = while(i++ < n)

10 ld1w z1.s, p0/z, [x0, x4, lsl #2] // p0: z1 = x[i]
11 ld1w z2.s, p0/z, [x1, x4, lsl #2] // p0: z2 = y[i]
12 fmla z2.s, p0/m, z1.s, z0.s // p0? z2 += x[i]*a
13 st1w z2.s, p0, [x1, x4, lsl #2] // p0? y[i] = z2
14 .cond:
15 incw x4 // i += (VL/32)
16 b.first .loop // more to do?
17 ret

Listing 2.7: SVE SAXPY loop assembly code [6, 19].

2.2.3 Discussion

Although both RVV and SVE have their advantages, several shortcomings can be
identified. While they greatly improve on fixed-length SIMD extensions and mit-

15

Chapter 2

igate some of the highlighted issues, such as loop edge case control, this comes
at the cost of a large instruction overhead, related to memory indexing, loop con-
trol, and memory access, which antagonise the improvement of data processing
throughput [9].

In both cases, configuration and memory indexing/loop control instructions
(e.g., incrementing indexing variables) dominate the loop code, which is undesir-
able. While these solutions typically reduce the number of loop iterations, there
is room for improvement in this behaviour. Although memory address calcula-
tion and update of indexing variables may seem indispensable, several works de-
couple memory accesses from computation, achieving promising results [20–27].
Furthermore, both hardware and software prefetching mechanisms have been
employed to improve memory access latency [28–42]. It is with this in mind that
the analysis of both code snippets (Listing 2.6 and Listing 2.7) leads to the conclu-
sion that each loop only has one actually useful instruction, excluding branches,
and everything else should ideally be moved elsewhere. This is the main motiv-
ation behind UVE, which relies on data streaming to preempt the acquisition of
the necessary data in the correct order, leaving the loop only to perform the ne-
cessary computation. Further analysis and comparison between these extensions
is presented in Section 2.4.5.

2.3 Data Streaming and Pattern Description

Traditional memory access description is achieved through the use of loops and
standard instructions, to calculate the correct sequence of memory addresses that
are then loaded/stored from memory. However, other approaches exist, such as
data streaming, a paradigm that has been gaining traction in recent years. It relies
on the description of memory access patterns that are then fetched in order and
fed to the processor, allowing more organised memory transfers, especially on
more complex patterns.

Several works already rely on this concept to improve memory ac-
cess efficiency, namely Imagine [43], the Reconfigurable Streaming Vector
Processor (RSVP) [44], Q100 [45], VEAL [46], Stream-dataflow [47], and
CoRAM++ [48], which nevertheless do not target general-purpose Out-of-Order
(OoO) cores/speculation mechanisms [1].

More recently, the work from Wang et al. [49] introduced stream-based ac-
cess specialisation for general-purpose processors. They identified that numer-
ous common memory access patterns could benefit from data streaming, offering
an execution-driven prefetching mechanism for repeated access patterns. This
work was later extended to enable cache optimisations [50] and near-data com-
putation [51], all depending on scalar stream-based ISAs and supporting microar-
chitecture. Works such as HotStream [52] and Prodigy [53] also propose ISA ex-

16

Background and State of the Art

tensions to support data streaming, although the latter uses the term Data Indir-
ection Graph (DIG) to describe the same concept.

Additionally, Schuiki et al. [54] proposed that the RISC-V register file was
extended to include streaming semantics, later improved to support indirec-
tion [55].

2.3.1 Pattern Description Model

In order to employ streaming-based mechanisms, it is important to choose a way
to represent memory accesses through streams. A stream is essentially a predic-
able vector of data elements that are processed sequentially. Each element of a
stream is usually subject to the same set of operations and is discarded after the
computation is complete. If data accesses are deterministic, the order in which
the data is going to be consumed can be specified beforehand. This is possible
through data pattern descriptors, such as those proposed and developed in [9,
56, 57]. Understanding this representation model is pivotal to comprehend UVE.
Hence, the fundamentals of data streaming and pattern description are described
next.

Any regular n-dimensional access sequence can be represented by the follow-
ing affine function:

y(X) = ybase +
dimy

∑
k=0

xk × Sk, (2.1)

with X = x0, ..., xdimy and xk ∈ [Ok, Ek + Ok], where a stream access y(X) is de-
scribed as the sum of the base address of an n-dimensional variable (ybase) with
dimy pairs of indexing variables (xk) and their respective strides (Sk), each k cor-
responding to a dimension of the pattern. Ek corresponds to the number of ele-
ments in each k dimension and Ok to the indexing offset. Because x0, the first
dimension of X, has O0 = 0, it is equal to the base address of the variable [9].
Moreover, through a combination of affine functions of this kind, highly complex
patterns can be attained, by assigning some parameter of a function to the result
of another one. Lastly, indirect memory accesses can also be described by taking
the data obtained by the addresses generated by an affine function and injecting
them into the aforementioned variables of another function.

The proposed pattern representation model results from the encoding of the
variables associated with each pattern dimension of the function described in
Equation (2.1). This representation is based on descriptors and modifiers, defined
in a set of dedicated instructions in UVE, which are explained in the next sections.

17

Chapter 2

2.3.2 Linear Patterns – Dimensions

The simplest memory access pattern that can originate a stream is a linear pat-
tern, which is exemplified in Figure 2.4a. This pattern has only one dimension,
characterised by three parameters - offset, size and stride.

Dimension: {<offset>, <size>, <stride>}

It is trivial to represent a similar multi-dimensional pattern, as it results from
the addition of more similar dimensions. To exemplify, Figure 2.5a shows a 2D
linear pattern, which is a combination of two 1D linear patterns. Additionally, it
should be noted that each dimension offset is the base address of the descriptor,
but each base address is calculated based on all the dimensions offsets and strides.
In the case of a 2D pattern, ybase = Oj + (Si × Oi). Lastly, it can be seen in Fig-
ure 2.6 that by changing the dimension stride, more complex patterns can already
be described.

A
 (

M
 x

 N
)

(a) 1D pattern

for(i = 0; i < N; ++i)

 A[i];

(b) C loop

Dimension 1:

 Offset = A

 Size = N

 Stride = 1

(c) Stream representation

Figure 2.4: 1D linear memory access representation.

A
 (

M
 x

 N
)

(a) 2D Pattern

for(i = 0; i < M; ++i)

 for(j = 0; j < N; ++j)

 A[i*N+j];

(b) C loop

Dimension 1:

 Offset = A

 Size = N

 Stride = 1

Dimension 2:

 Offset = 0

 Size = M

 Stride = N

(c) Stream representation

Figure 2.5: 2D linear memory access representation.

A
 (

M
 x

 N
)

d

(a) 2D Scattered pattern

for(i = 0; i < M; i+=2)

 for(j = 0; j < d; j+=2)

 A[i*N+j];

(b) C loop

Dimension 1:

 Offset = A

 Size = d/2

 Stride = 2

Dimension 2:

 Offset = 0

 Size = M/2

 Stride = 2N

(c) Stream representation

Figure 2.6: 2D scattered memory access representation.

18

Background and State of the Art

2.3.3 Complex Memory Accesses – Modifiers

Static Modifiers

Manipulating the parameters of each dimension of a pattern allows for the de-
scription of higher-complexity patterns. This is done through the use of mod-
ifiers, which are descriptors that manipulate the arguments of a dimension, al-
lowing the modelling of inter-loop control dependencies that arise when loop
conditions are affected by an outer loop.

Static Modifier: {<target>, <behaviour>, <displacement>, <size>}

The importance of these modifiers becomes clear when analysing the memory
access pattern represented in Figure 2.7a. In this example, it is evident that the
outer loop changes the parameters of the data access that the inner loop describes,
as observed in the C code snippet that defines the memory access of the triangular
pattern. This access can be divided into two parts, a bi-dimensional stream, just
like the ones analysed before, and non-linear behaviour that increments the inner
size for each outer iteration.

In order to build these modifiers, four parameters must be defined:

• Target: The parameter that will be modified (either offset, size or stride).

• Behaviour: The type of manipulation (either increment or decrement).

• Displacement: The constant amount of increment or decrement.

• Size: The number of iterations where the modifier will be applied.

With these parameters defined, it is possible to build a static modifier that
can describe the lower triangular pattern. The full description is represented in
Figure 2.7c.

A
 (

M
 x

 N
)

(a) Triangular pattern

for (i = 0, k = 1; i < M; ++i, ++k)

 for (j = 0; j < k; ++j)

 A[i*N+j];

(b) C loop

Dimension 1:

 Offset = A

 Size = 1

 Stride = 1

Modifier 2: Size, Inc, 1, N

Dimension 2:

 Offset = 0

 Size = M

 Stride = N

(c) Stream representation

Figure 2.7: Triangular memory access representation.

19

Chapter 2

Dynamic Modifiers

There are several applications whose memory accesses are indirect. That is, the
accesses are determined by the values obtained by a different access, such as
keeping an array of indices to reference data stored in a different array. The
description of such indirect accesses needs a dynamic modifier able to use the
values of a different stream as new parameters for the current memory access
descriptor.

Dynamic Modifier: {<target>, <behaviour>, <displacement>}

This is very similar to the previously described static modifiers, but instead
of using a constant displacement, the source value is now dynamic, obtained from
a different stream. This modifier does not need a size parameter, as the size of the
stream depends on the size of the origin stream and can be inferred. Hence, there
are five possible behaviours for this type of descriptor:

• Add: Adds the dynamic displacement to the base target.

• Subtract: Subtracts the dynamic displacement from the base target.

• Increment: Adds the the dynamic displacement to the target.

• Decrement: Subtracts the the dynamic displacement from the target.

• Set: Sets the target to the dynamic displacement.

It is important to distinguish add/subtract from increment/decrement. The
former takes the dynamically obtained value and uses it as a displacement to
target field. As an example, the source stream can have values to be added to the
target stream original offset, corresponding to the indexing variable in a typical
C/C++ access loop, as seen in Figure 2.8. On the other hand, the latter takes the
dynamically obtained value and uses it as a displacement to the dimension ac-
cumulated target. This is a counter that is updated during the stream iteration
and is reset when the associated dimension is complete, until now referred to as
simply target. As such, they can be seen as accumulating modifiers, while the
former simply replace this counter, adding/subtracting to/from the base value
of the selected target. These modifiers work slightly differently from static ones,
in the way that they are associated directly with the target dimension, iterating
with it, and not the dimension above it.

20

Background and State of the Art

B
(M

 x
 N

)
A

 (
L)

(a) Indirection pattern

for (i = 0; i < L; ++i)

 B[A[i]];

(b) C loop

Stream A
Dimension 1:
 Offset = A

 Size = L

 Stride = 1

Dynamic modifier 1:

 Offset, Add, A

Stream B
Dimension 1:
 Offset = B

 Size = 1

 Stride = 0

(c) Stream representation

Figure 2.8: Indirect memory access representation.

The example in Figure 2.8 represents a scatter-gather memory access, which
relied on the assumption that the dimension size was ignored and the stream
was iterated along the dynamic modifier source stream. However, the original
UVE specification did not clarify how this would be done, nor how a modifier
would be applied to a single stream element instead of the whole dimension. The
defined behaviour of a dynamic modifier is that it is applied at each iteration of
a dimension, which means that it would only accumulate the dynamically offset
with the dimension base offset, conflicting with the desired element-wise modifier
application. This caveat is explored in Section 4.1.3.

2.3.4 Descriptor Organisation

The described pattern representation model results from the encoding of the vari-
ables associated with each pattern dimension of the function described in Equa-
tion (2.1). This representation is based on descriptors and modifiers that must be
organised in a specific way. It was first proposed in [57] that each descriptor was
composed of a set of N dimensions and an optional modifier chain, as well as
optional references to other descriptors, allowing for a graph-based hierarchical
descriptor tree, capable of describing very complex patterns. However, this rep-
resentation method would require complex hardware support, which is not ideal
for a RISC ISA extension, mainly due to the limited encoding space. This makes
it impossible to define an N-dimensional descriptor with a single instruction.

As a consequence, UVE was proposed with a simplified version of this organ-
isation scheme, which is already implicit in the examples shown thus far. Instead
of having a pattern represented by a set of descriptors, each with N dimensions,
in this work each pattern corresponds to a single descriptor, with a set of up to
eight dimensions and seven optional modifiers. These are placed in order, in
a list-like manner, each node containing a dimension and, optionally, a modifier.
The first node (i.e., the first added dimension) corresponds to the lower-level loop
in a C/C++ implementation. The last node is therefore the outer loop. Descriptor
organisation examples following these rules are represented in Figure 2.9.

21

Chapter 2

As already mentioned, each modifier is associated with the dimension im-
mediately above the one it is meant to modify, so that alterations can occur with
each "outer loop iteration". Consequently, it is important to mention that the first
dimension of a stream cannot have a modifier, as it has no dimension below that
it can modify, and each dimension can only be coupled with one modifier. While
this restriction did not seem to pose major problems in the original UVE imple-
mentation, it is a limitation that translates into the inability to describe certain
patterns, such as the ones characteristic of Sparse Linear Algebra application [58–
60]. Therefore, this is addressed further in this work, when adding new features
and instructions to the extension in Section 4.1.

Dim 1 Dim 1 Dim 1

Dim 2 Dim 2 Mod 2

applied to

(a) Allowed configurations

Mod 1 Dim 1 Mod 1 Dim 1

Dim 2 Mod 2a Mod 2b

(b) Illegal configurations

Figure 2.9: Examples of possible descriptor configurations.

2.3.5 Summary

In this section, the pattern description method employed in UVE was explained
in detail. Although it is based on the work by Neves et al. [57], it is simplified
in order to fit in the developed ISA, resulting in new limitations. However, it
should be noted that the majority of complex memory access patterns can still
be described in this more compact way, and some can be attained by using more
than one stream (and thus, descriptor). Each descriptor is composed of a dimen-
sion, defined by an offset, stride, and size, and an optional modifier, static or dy-
namic. With dimensions, simple linear patterns can be described, while modifiers
introduce non-linear behaviour, necessary for complex patterns. Each modifier
updates the target value at every iteration of the dimension it is associated with,
either statically or with another stream as its source.

This method is sufficient to describe ubiquitous patterns in HPC applications,
with its limitations directly resulting from the desire for hardware simplicity.
However, some caveats have since been identified and cannot be overlooked.
These are discussed in Section 4.1.3, along with proposed solutions.

22

Background and State of the Art

2.4 Unlimited Vector Extension

The UVE is the RISC-V extension born from the combination of SIMD comput-
ing and data streaming. Proposed in [9], this extension has proven to improve
on the previously mentioned technologies. This is a VLA ISA extension, with
stream configuration instructions that allow the previously described streaming
paradigm to be implemented with data pre-fetching.

RISC-V was chosen as the base ISA not only due to its open-source nature.
Although x86 is the dominant ISA in the personal computer market, as well as
datacentres and supercomputers, this work targets mainly embedded and low-
power systems, for which CISC architectures are usually not suitable. While
Arm is at the forefront of mobile and embedded devices, it is also true that the
popularity of RISC-V is very high, and continuously growing, especially in aca-
demic works [61]. It is simple, yet very powerful and easily extendable. The
32-bit encoding space was chosen in order to target both HPC and embedded
processors [1]. Some encoding regions of the base ISA are free for custom exten-
sions, and UVE uses custom-0 and custom-1, as shown in Section 2.4 (custom-2 and
custom-3, while available, are reserved for RISC-V 128-bit instructions).

There are two groups of instructions, each occupying a custom region of the
encoding space. On the one hand, stream configuration instructions, responsible
for the definition of each stream as described in Section 2.3, occupy the custom-
0 slot, hereby called Stream Set. On the other hand, every other instruction is
encoded in custom-1, named Stream Ops. The encoding of every UVE instruction
can be consulted in Appendix C, one of the documents resulting from the work
developed in this dissertation.

UVE Stream Set custom-0 UVE Stream Ops custom-1 inst[31:29]

Stream configuration Arithmetic 000-010

Logic 110

Vector Manipulation 101
Stream Advanced Control 101

Loop Control 111

Predicate 100
Empty (Unused) 011

inst[4:2] 000 001 010 011 100 101 110 111
inst[6:5] (> 32b)

00 LOAD LOAD-FP MISC-MEM OP-IMM AUIPC OP-IMM-32 48b

01 STORE STORE-FP AMO OP LUI OP-32 64b

10 MADD MSUB NMSUB NMADD OP-FP OP-V custom-2/rv128 48b

11 BRANCH JALR reserved JAL SYSTEM reserved custom-3/rv128 ≥ 80b

custom-1

custom-0

Figure 2.10: RISC-V base opcode map, inst[1:0]=11, with UVE, adapted from [62]

23

Chapter 2

2.4.1 Registers

This extension adds 32 vector registers to the base ISA (named from "u0" to
"u31"). The length of each vector is unlimited1, but a minimum value is defined,
equal to the maximum width of the supported data types (byte, half-word, word,
and double-word). This means that supporting these data types makes it so the
minimum vector length is 64 bits, the length of a double-word element. Simil-
arly to RVV, the operating vector length is encoded in a CSR, vlen, accessible
through a set of vector configuration instructions (see Section 2.4.2 - Vector Con-
trol). In contrast, the operating width of a vector register is encoded independ-
ently for each one. Additionally, each vector register must store the information
about how many of its bits are valid, for edge cases where a vector is not entirely
filled with data. Each of these vectors is associated with a data stream, meaning
that streaming registers and vector registers are no different, simply have different
configurations at software level. Possible configurations of vector registers are
illustrated in Figure 2.11.

In addition, sixteen predicate registers are present, named "p0" to "p15", al-
though only eight can be used in arithmetic and regular memory instructions
(p0-7). Register p0 is hardwired to 1, which means it can be used in operations
where predication is not necessary (i.e., non-conditional loops), as all valid lanes
of the operating streams execute. The remaining predicate registers are either
used in the configuration of the other eight or to allow for context saving. These
predicate registers always hold bytes and are evaluated in a very similar fashion
to SVE predicates [6] (see Section 2.2.2, Figure 2.3).

Vector Register Element Width Valid Elements

Element Width

Vector Length

127128 64 63 0191192319320 255256383384447448511

8

127128159160 64 6396 95 32 31 0191192223224255256287288319320383384447448447448511 351352415416

Double-word

16

Maximum Vector Length CSR 512

127128159160 64 6396 95 32 31 0191192223224255256287288319320383384447448447448511 351352415416

9

Invalid Elements Valid Elements

Word

Word

Figure 2.11: UVE registers.

1In the specification, there is no upper bound for the vector length, but it must be a limited
value in hardware implementations.

24

Background and State of the Art

2.4.2 Instruction Set

There are currently 60 major instructions, out of which 26 correspond to integer
operations, 15 to floating-point operations, and 19 are related to memory manip-
ulation, totalling about 450 instructions when considering the variations of each
one. Below, the main types of instructions are described.

• Stream Configuration

These are the instructions responsible for the configuration of stream
descriptor parameters, and they are identified by the prefix ss (Stream Set).
While simple 1D patterns can be configured with the ss.ld and ss.st
instructions, more complex patterns require multiple configuration instruc-
tions, in particular, one per descriptor. For this purpose, there are specific
stream configuration instructions: for start, append, and end, the latter two
with the possibility to have modifiers (static or dynamic). Each start con-
figuration instruction must also specify the data width of its elements, with
suffix b, h, w or d, for byte, half-word, word, or double-word, respectively.

• Loop Control

There are three different conditional branch formats: End-of-Stream (EOS),
a condition on the end of the stream, and End-of-Dimension (EOD), a con-
dition on the end of a stream dimension. This allows for straightforward
control over iterations of arbitrarily sized streams.

• Predicate Configuration

As already mentioned, UVE supports instruction predication. Hence, it
provides instructions to configure predicate registers, either with fixed val-
ues, or based on vector/scalar comparisons.

• Vector Manipulation

This is the set of instructions responsible for the manipulation of the vector
registers, such as moving, duplicating, and width-converting. It should also
be noticed that regular vector operations are still supported within the UVE,
with no data streaming.

• Vector Control

These instructions are responsible for the reading/writing of the vector
length CSR, as well as for the direct control of running streams, allowing
for their suspension, resumption, and termination, as well as loading/stor-
ing from previously suspended streams.

• Arithmetic and Logic Operations

A wide range of arithmetic and logic operations is supported, dealing with
both integer and floating-point operands. These instructions can be em-
ployed in scalar and vectorial operations without explicit indication.

25

Chapter 2

Every instruction, apart from the stream configuration ones, contains the pre-
fix so (Stream Ops). Several aspects mentioned in this section were reconsidered
throughout this work and will be discussed in detail in Chapter 4.

2.4.3 Supporting Microarchitecture

Data streaming operations are performed within a Streaming Engine (SE), which
corresponds to most of the microarchitecture support necessary for UVE. Al-
though this work proposes a functional revision and validation of the extension,
it is important to understand the hardware that will support it in the future. Fur-
thermore, the simulation environment proposed in Chapter 3 takes many con-
cepts defined in the proposed microarchitecture, such as the stream iterator, and
uses them to provide a more realistic simulation environment, despite not provid-
ing performance insights.

The proposed microarchitecture targets an OoO processing pipeline, intro-
ducing several modifications and additions, such as support for the decoding of
UVE instructions, vector register renaming, and the SE. The detailed description
of the architecture beyond the SE is presented in detail in Appendix A.

D
es

cr
ip

to
r

Ite
ra

to
r

Address
Generator

Streaming Engine

SCROB

Validation
new

stream

Stream Configuration

Memory Request
Queue

A
rb

ite
r

[Store FIFO & Load FIFO]
Occupancy

St
re

a
m

Sc
he

d
ul

er Store FIFO

To Register
File

From
Writeback

Load FIFO Data from
Memory

Data to
Memory

Memory
Access

Requests

Configuration
Port

 descriptor state iter flags

Stream Table

#streams

Stream Load/Store
Processing Modules

Stream Scheduler

Stream
Descriptor

Stream Table

Configured Streams FIFO Occupancies

Sort OccupanciesFilter Active Only

Select DescriptorSelection Process

B. Stream Processing Module

A. Streaming Engine

Accum. Offsets0..N

Stream Processing Module

Address Generator

Base Address

Descriptor (dim. k)

Accumulation
Offsetsk+1..N

Offset Size Stride

Accum. Offsetsk..N

Iteration
of dim. k

Memory Address

Descriptor Iterator

Dim. 0

Dim. N Mod. N

Dim. 1 Mod. 1

Head

End of
Descriptor

1 Iter. 1 Iter.

1 Iter. 1 Iter.

Full Iteration

Iteration Process

End of
Descriptor

Figure 2.12: Streaming Engine and detailed Stream Processing Module logical
block diagrams [9].

The SE is the unit responsible for the management of every stream and it is
illustrated in Figure 2.12. It is composed of several structures:

• Stream Configuration Module and Stream Table: The former is respons-
ible for the in-order registration of stream configuration instructions on the

26

Background and State of the Art

Stream Configuration Reorder Buffer (SCROB), which is a part of this module.
They are kept here until every data dependency is resolved. Instructions
are then taken one per clock cycle and in order, validated, and decoded, so
that the corresponding pattern configuration can be written to the Stream
Table. This table keeps track of every stream’s descriptors, state (active/sus-
pended), iterators, and flags (EOD/EOS).

• Stream Scheduler and Stream Load/Store Processing Modules: This
scheduler is the structure that manages the processing of every stream. In
each clock cycle, it selects a number of streams from the Stream Table to be
iterated. This process is taken care of by the Address Generators that exist
in each of the Stream Load/Store Processing Modules. After the iteration of
a stream, a new stream state is generated, which is then registered in the
Stream Table, as long as it is not selected for processing.

As detailed below, each stream is associated with a First-In, First-Out
(FIFO), and their occupancy is the criterion used by the scheduler to select
the streams. Particularly, it chooses the streams with the lowest occupancy
to be iterated, so that the most consumed FIFO are prioritised, thus avoid-
ing longer wait times for streams that are being consumed.

The Stream Load/Store Processing Modules are also composed of a Descriptor
Iterator, which selects which dimension of the descriptor is to be processed
and passes it, as well as the accumulation offsets from higher dimensions
and base address, to the Address Generator, which performs the necessary
computations to generate the memory address from the next element to be
loaded to a load stream or to which an element from a store stream must
be written. After a dimension (and optional modifier) j is fully iterated, the
next dimension j + 1 is selected for processing and, after its first iteration, j
is reset to the original state, as does the modifier if it exists.

The resulting memory addresses are written to the Load/Store FIFOs. In the
case of load streams, a load request is also generated and registered on the
Memory Request Queue. Then, an Arbitrer takes those requests and issues
them to the memory, after the virtual-to-physical page translation that relies
on a Translation Lookaside Buffer (TLB) [63, pp. 105-106]. Once these load
requests are attended by the memory and data is received, it is written to the
Load FIFOs. On the other hand, store streams write the generated addresses
to the Store FIFOs.

• Load/Store FIFOs: As already mentioned, for each stream there is an associ-
ated FIFO, which keeps the loaded elements for input streams until they are
consumed, and memory addresses for output streams until data is written
to memory. However, once a data element reaches this point, it is treated as
if it has already been consumed, working as a buffer for the vector registers,
as the SE in which it is inserted is already part of the core.

27

Chapter 2

These fixed-length FIFO queues are limited to a depth of eight, in order to
avoid more complex hardware requirements.

All these components were designed and tuned in order to minimise the ar-
chitectural impact of the extension, while still providing a functional proof-of-
concept implementation with promising results.

2.4.4 Compiler Support

For the development and porting of UVE applications, compiler support is re-
quired. Backend support for this novel ISA extension has already been added to
two popular C/C++ compilers, both GNU Compiler Collection (GCC) [64] and
LLVM [65], which are the ones worth considering for this extension [1]. Although
GCC is an official compiler for the GNU and Linux systems, and therefore widely
used, it is notoriously effortful to modify and extend. The newer LLVM compiler
is modularised, as opposed to GCC, which has a monolithic architecture, and
thus more adequate for the development of the UVE extension, as well as other
extensions with a stream-based execution model.

Furthermore, the LLVM infrastructure allows for the automatic extraction
and encoding of the memory access pattern and computation data-flow graph
with streaming representations, a solution proposed by Neves et al. [66]. How-
ever, UVE support has not been fully added to LLVM yet, whereas GCC already
features a working implementation of the existing instructions. As such, GCC
was used for the compilation of applications to run on Spike in the first stage of
this work, while the focus was on the validation of the existing instructions, as
this compiler is already fully functional and is straightforward to use.

In spite of this, it is important to note that, parallel to this work, the develop-
ment of the LLVM compiler is ongoing, and some benchmarks presented in Sec-
tion 5.1.2 were already directly obtained from C/C++ code, as support for auto-
matic vectorisation was made available. This compiler will be a crucial element
of the UVE development framework that this work aims to create, as autovector-
isation is a key feature to turn a vector ISA into a viable solution for the general
public [67]. The reason for this is that, without it, the programmer is left with the
task of manually vectorising the code, a time-consuming and error-prone process.
Besides, complex memory access patterns are extremely difficult to vectorise by
hand. Nevertheless, this work has to be done for the validation of the extension
until the compiler is fully functional.

Regarding GCC, the modified compiler was obtained by extending the as-
sembler tool, to support the UVE instructions. The work by Domingos [1] makes
it so that inline assembly directives can be included inside the C/C++ code, which
can also directly interact with it. This is the only way to compile UVE code while
LLVM autovectorisation is not supported for every memory access pattern.

28

Background and State of the Art

1 void uve_saxpy(float *x, float *y, uint64_t sN, float a) {
2 asm volatile(
3 "ss.ld.w u1, %[x], %[n], %[z] \n"
4 "ss.ld.w u2, %[y], %[n], %[z] \n"
5 "ss.st.w u3, %[y], %[n], %[z] \n"
6 "so.v.dp.w u4, %[a], p0 \n"
7 "fLoop1: \n"
8 "so.a.mul.fp u5, u1, u4, p0 \t"
9 "so.a.add.fp u3, u2, u5, p0 \n"

10 "so.b.nc u3, fLoop1 \n"
11 :
12 : [x] "r"(x), [y] "r"(y), [n] "r"(sN), [z] "r" (1), [a] "r" (a));
13 }

Listing 2.8: SAXPY C/C++ code with extended assembly directives support.

Even so, the use of C inline assembly facilitates development, as opposed to
assembly-only programming, mainly because the C variables become directly us-
able by the assembly code, with a somewhat high level of abstraction, as all the
conversion details are left to the compiler. It should be noticed that the specific-
ation of whether a C variable should be written to or read from in the assembly
code is the responsibility of the programmer. The output operands must be in-
cluded after the first colon and the input operands after the second colon. In the
case of Listing 2.8 there are no output operands, so that line of code is left blank.
Each operand is specified as [ref] "mode" [cvar] , where ref is its identifier
in the assembly code and mode indicates what type of register it should use ("r"
means that it should be put in a scalar register). As for cvar, it is the name of the
C variable to be used2.

2.4.5 Discussion

In this section, the Unlimited Vector Extension (UVE) was presented, a novel
SIMD ISA extension for the RISC-V ISA that exploits data streaming to minim-
ise loop overhead in SIMD loops. To better visualise the improvements achieved
by this extension, Figure 2.13 presents the already familiar SAXPY kernel in as-
sembly code, but this time with RVV, SVE and UVE, and the type of each instruc-
tion identified.

Although UVE requires one more computation instruction than the other two

2More information about the extended assembly can be found in https://gcc.gnu.org/onli
nedocs/gcc/Extended-Asm.html.

29

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

Chapter 2

implementations3, it is still clear that it significantly reduces loop overhead. The
only instruction that is present in the loop and does not contribute to the compu-
tation is a branch, which is necessary for each of the three implementations. This
is possible because loads and stores are performed implicitly by the SE and con-
figuration instructions are part of the loop preamble, which is executed only once.
In large datasets, the number of configuration instructions remains the same, al-
though loop iterations would significantly increase, which means that the loop
overhead is reduced to a single branch instruction in this example. In more com-
plex memory access patterns the same would happen: although more configura-
tion instructions are necessary, that number becomes negligible when compared
to the number of loop iterations. Moreover, implicit predication is employed,
eliminating the need for vector length configuration instructions inside the loop.
Finally, loop control is also based on the stream state. In this case, the loop halts
once the stream is complete (i.e., every element has been processed, EOS flag is
set and caught by branch instruction).

P: Loop Preamble VL: Configure Vector Length M: Memory I: Memory indexing/loop control C: ComputationB: Branch/loop

SVE

.saxpy_:
 ldrsw
 mov
 ld1rw
.loop:
 whilelt
 ld1w
 ld1w
 fmla
 st1w
 incw
 b.first

x3, [x3]
x4, #0
z0.s, p0/z, [x2]

p0.s, x4, x3
z1.s, p0/z, [x0, x4, lsl #2]
z2.s, p0/z, [x1, x4, lsl #2]
z2.s, p0/m, z1.s, z0.s
z2.s, p0, [x1, x4, lsl #2]
x4
.loop

C

P

B

M

M
I

VL

x0: x x1: y x2: a x3: n

RVV

.saxpy_:
 vsetvli
 vle32.v
 sub
 slli
 add
 vle32.v
 vfmacc.vf
 vse32.v
 add
 bnez

a4, a0, e32, m8, ta, ma
v0, (a1)
a0, a0, a4
a4, a4, 2
a1, a1, a4
v8, (a2)
v8, fa0, v0
v8, (a2)
a2, a2, a4
a0, .saxpy_

C

B

M

M

M

I

I

VL

a0: n a1: x a2: y fa0: a

UVE

.saxpy_:
 ss.ld.w
 ss.ld.w
 ss.st.w
 so.v.dp.w
.loop:
 so.a.mul.fp
 so.a.add.fp
 so.b.nc

u0, a1, a0, a3
u1, a2, a0, a3
u2, a2, a0, a3
u3, fa0

u4, u3, u0
u2, u4, u1
u0, .loop

C

P

B

a1: x a0: n a2: y a3: 1 fa0: a

Figure 2.13: SAXPY assembly code with RVV, SVE and UVE.

Although reducing the number of instructions is a remarkable improvement,
it does not imply that the overall performance of the processor in which UVE is
used improves. This depends on the implementation of the required architecture
model, described in Section 2.4.3. In the extension proposal [9], such an imple-
mentation is presented, based on the ARM Cortex-A76 and simulated on gem5.
This proof-of-concept model was benchmarked against the same processor with
SVE and Neon, revealing an average speed-up of 2.4× relative to SVE on vector-
ised benchmarks and much higher when compared to Neon (the available SVE
compiler failed to do so in some cases). It proved an average of 60.9% less com-
mitted instructions than SVE, 93.1% relative to Neon, which combined with the

3A single fused multiply-add instruction cannot be used in this case, as it takes only three
operands and would have to function as a load and store stream simultaneously, which is not
possible in the current specification.

30

Background and State of the Art

1 void floyd_warshall(float *path) {
2 for (k = 0; k < N; k++) {
3 for(i = 0; i < N; i++)
4 for (j = 0; j < N; j++)
5 path[i][j] = path[i][j] < path[i][k] + path[k][j] ?
6 path[i][j] : path[i][k] + path[k][j];
7 }
8 }

Listing 2.9: Original Floyd-Warshall C/C++ kernel code [68].

streaming mechanisms and consequent reduction of load-to-use latency, results
in this significant speed-up.

However, this implementation is not without limitations. On the microar-
chitecture side, one of the main shortcomings that were identified is related to
the lack of memory coherence in the Load/Store FIFOs of the SE. Because they
are assumed to have been consumed once they enter these buffers, loaded data
elements that may be actively being changed by other output streams (or even
non-stream instructions) in memory are not updated. This becomes a problem
in data-parallel kernels, where iterations depend on previous ones. Moreover,
memory incoherencies can occur inside a vector register itself, in cases where
each new data element depends on new values for previous elements, obtained
in previous loop iterations after a vector has already been preloaded. This is the
case in the example in Listing 2.9, where the core kernel of the Floyd-Warshall al-
gorithm is implemented. In this case, the UVE implementation would not work,
as path[i][j] is updated and used in every loop iteration, a problem when out-
dated values of these elements have already been loaded to the SE. In this case,
the code is considered to be unvectorisable, as operations simply cannot be per-
formed on multiple elements at once. However, memory incoherences in the
stream buffers can be avoided. A possible solution is to only allow data to leave
them and be written to the vector registers at the moment when they are to be
consumed by the processor. While inside the buffers, allowing the Load and
Store FIFOs to communicate, each element is not assumed to be consumed and
can be overwritten in the case of a memory write. While this is the general idea,
its implementation is not straightforward and is out of the scope of this work, so
it is left to future work, as well as any microarchitecture-related optimisations.

On the other hand, the main focus of this work is the ISA specification of UVE,
on which several improvements can be identified and are detailed in Chapter 4.

31

Chapter 3

Simulation Infrastructure

Since the Unlimited Vector Extension (UVE) development is in its early stages,
the specification is undergoing several improvements and corrections, and a real
hardware implementation is not yet available. Therefore, a software simulator
is the most adequate tool to continue the development and validation of the ex-
tension. In accordance, this chapter starts by presenting the chosen simulator,
Spike, and the reasons for its selection over the one used in the original work,
gem5. Then, the developed infrastructure is described, as well as the modifica-
tions and additions made to the simulator in order to support existing and new
UVE instructions.

3.1 The RISC-V ISA Simulator: Spike

The Instruction Set Simulator (ISS) Spike has been chosen as the appropriate tool
to validate instructions and overall behaviour of UVE, as well as to continue the
development of its specification. Spike is the golden reference functional RISC-V
ISA simulator and is widely used as the proof-of-concept target for every RISC-V
extension [10, 61].

As mentioned in Section 2.4.5, the UVE proof-of-concept was implemented
and validated on a different simulator, gem5, which is a cycle-accurate simulator
whose purpose is to mimic real hardware behaviour. The work by Domingos et
al. [9] implements the supporting microarchitecture, namely the Streaming En-
gine (SE) and the necessary CPU processing pipeline modifications. Although
much of the base work is done and available for further development, the base
gem5 simulator does not provide extensive enough documentation available and
its base code is constantly evolving between releases, so the original implement-
ation is now considered deprecated. In addition, some benchmarks used to eval-
uate the extension return unexpected results, due to the internal workings of the

33

Chapter 3

simulator, while others take some time to be executed, which is not ideal for an
early development tool. Moreover, a validation that is completely independent
of implementation details is necessary (i.e., microarchitecture and pipeline modi-
fications to a specific processor), as it is the only way to ensure that the extension
is correctly formalised and that the instructions behave and interact as expected.
All of this led to the decision to opt for a simpler and purely functional simulator,
thus speeding up the development process and allowing the focus to be solely on
the specification, key for future implementations.

Binary Translation

R
T

L
S

im
ul

a
tio

n

Simulator Speed

Spike

Chisel

QEMU

Detailed CPU

gem5

Atomic CPU

gem5

FS

SE

Gem5
Execution
Modes

Verilog

S
im

ul
at

io
n

A
cc

ur
ac

y

Figure 3.1: Illustration of simulation accuracy vs. speed of multiple simulation
platforms [69].

The choice of Spike as the base simulation environment for this work resulted
from an initial assessment of the advantages and disadvantages between several
simulation platforms. As can be seen in Figure 3.1, there is usually a comprom-
ise between simulation accuracy and speed when choosing between the available
RISC-V simulators available. Whereas Register Transfer Level (RTL) Simulation
is the most accurate, binary translation is the fastest. It is clear that gem5 is the
most adequate tool when time performance analysis is pivotal but it is not feas-
ible to create a proper RTL Simulation, as it requires the development and im-
plementation of the entire system. Because the main objective is to perform a
functional validation, binary translation is not only enough, as it is preferable.
Therefore, although Spike does not allow cycle-by-cycle precision, it is suitable
for this work. Despite QEMU appearing to be slightly more accurate, it is a much
bigger project, as it targets multiple architectures, not only RISC-V, and is thus
more difficult to modify, something that is necessary in order to create UVE sup-
port. This is pointed out by Henriques [70], who already used the Spike simulator
to implement a few UVE instructions and whose work was made available for
the initial development of this dissertation.

34

Simulation Infrastructure

Spike is currently at Version 1.1.0 and already supports many RISC-V ISA fea-
tures, including the RISC-V Vector Extension (RVV) which served as a base for
some of the developed modules. However, upon analysing the implementation
of several extensions on the simulator, it became clear that the UVE implement-
ation structure would be very different. This is mainly due to the way the sim-
ulator source code is written, heavily dependent on macros defined in multiple
files and with little to no documentation. This resulted in code structured in a
very different way than the rest of the simulator and its supported extensions,
albeit more comprehensible.

3.2 Simulator Files and Code Structure

The Spike simulator is a complex piece of software, with several files and classes,
and a large codebase. It emulates a processor through the processor_t class,
declared and implemented in files processor.h/cc. Alterations to this class
were minimal, limited to the addition of the Streaming Unit (SU). Another key
component which the processor has access to is the Memory Management Unit
(MMU), implemented through the mmu_t class.

Only a few original files were modified, with the majority of the new code
being added in new files. The emulated SE structures were implemented in C++
classes as well, and the Standard Library was extensively used. The main classes
and their attributes are shown in Figure 3.2, which also indicates in which files
each definition and implementation can be found.

The Streaming Unit (SU) and its supporting classes, described in detail in Sec-
tion 3.3, are defined and implemented in the files descriptors.h/cc (dimensions
and modifiers) and streaming_unit.h/cc (registers and SU). Moreover, files con-
taining the implementation of each instruction were created. These must be in-
serted in the riscv/insns directory and have the same name as the correspond-
ing instruction (e.g., so.a.add.fp is implemented in file so_a_add_fp.h). The
necessary decoding functions are included in the file decode.h, described in Sec-
tion 3.4.1. For the simulator to recognise the new instructions, the file that holds
the ISA encoding, encoding.h, was updated. To obtain the necessary code, the
official RISC-V Opcodes project [71] was used, where the encoding of each in-
struction was added and UVE’s predicate registers and immediate encoding was
added to the file constants.py.

Furthermore, the new extension was added to file riscv/riscv.mk.in,
identically to what is done to the native ones, so each new instruction was
included in the variable riscv_insn_ext_uve. In this file, every new source and
header file was also added to variables riscv_srcs and riscv_install_hdrs,
respectively, so that they could be recognised during the compilation of the
simulator.

35

Chapter 3

descriptors.h/cc

enum class Target { Offset, Size, Stride }
enum class Behaviour { Increment, Decrement, Set, Add,
 Subtract }

class dimension_t

const int offset
const int size
const int stride

int iter_offset
int iter_size
int iter_stride
int iter_index

bool endOfDimension

class staticModifier_t

Target target
Behaviour behaviour

int displacement

class dynamicModifier_t

Target target
Behaviour behaviour

int sourceStream
bool scatter
int indirectRegisterValue
bool sourceEnd

streaming_unit.h/cc

enum class RegisterConfig { NoStream, Load, Store }
enum class RegisterStatus { NotConfigured, Running, Finished }
enum class RegisterMode { Vector, Scalar }

template class streamRegister_t <T>

ElementsType = T
const int registerLength
const int elementWidth
const int vLen

streamingUnit_t *su
vector<ElementsType> elements
deque<dimension_t> dimensions

map<int, *modifier_t> modifiers

int validElements
RegisterConfig type
RegisterStatus status
RegisterMode mode

deque<bool> vecCfg

class predRegister_t

const int registerLength
const int elementWidth
const int vLen

vector<uint8_t> elements

class streamingUnit_t

RegisterType = variant<SR8,
 SR16, SR32, SR64>
const int registerCount
const int predRegCount
const int maxDimensions

array<bool> EODTable
array<RegisterType> registers
array<predRegister_t> predicates

using SR8 = streamRegister_t<uint8_t>;
using SR16 = streamRegister_t<suint16_t>;
using SR32 = streamRegister_t<uint32_t>;
using SR64 = streamRegister_t<uint64_t>;

encoding.h

decode.h

processor.h/cc

class processor_t

mmu_t MMU

...
streamingUnit_t SU

New Added for new instructions Existing Modified

disasm.h/cc

riscv.mk.in

<insn_name>.h

Legend:

Figure 3.2: Diagram of added and modified structures and files on Spike.

36

Simulation Infrastructure

Lastly, the disassembler was extended so that the new registers and instruc-
tion formats could be recognised by Spike’s debugger and trace generator. Code
related to the disassembler is in files regnames.cc and disasm.cc, both in the
disasm directory, and disasm.h, which is in the riscv folder. These changes are
detailed in Section 3.5.

3.3 Streaming Simulation Infrastructure

In order to add UVE to Spike, the key necessary addition to the simulator is a
set of mechanisms that emulate the SE, responsible for streaming operations. As
such, the focal component of the new simulation framework is the Streaming
Unit (SU), a new class that has access to the streaming and predicate registers.
This unit mimics some parts of the original SE [9], specifically the Stream Tables
and the Stream Processing Modules (see Figure 3.3). Each UVE register may or
may not be associated with a stream, and this module is responsible for the im-
plicit loading and storing of data, as well as the iteration of the streams (by the
Address Generator). For the desired functional evaluation, the Load/Store FIFOs,
the SCROB, and the Stream Scheduler, represented in gray in Figure 3.3, were not
needed, as streams are iterated as they are being consumed, with each compu-
tation instruction triggering the iteration of the source streams (implicit loading)
and the destination streams (implicit storing). The resulting elements are im-
mediately placed in the associated registers and the End Of Dimension flags are
updated and saved. The iteration and address generation parts work very sim-
ilarly to the proposed configuration and are implemented in a different class,
Dimension, which has access to the Modifier class, where static and dynamic mod-
ifiers are implemented. Each streaming register, when associated with a stream,
is therefore also associated with n dimensions and respective modifiers if such is
the case.

3.3.1 Stream Iteration and Load/Store Mechanisms

The most important part of the streaming process is the implicit loading/storing
of new elements. This was the process that required the most changes to Spike
to correctly implement and that allowed for the identification of some issues in
the old specification. It should be noticed that the current Spike implementation
works sequentially and not in parallel, which means that these operations are not
performed while other instructions are being executed, as would be expected in
a real processor. However, that is not necessary for an ISS to perform as desired.
With this in mind, a simplistic view of this process is described in the flowchart
of Figure 3.4.

As a first approach to the implementation of the stream iteration and element

37

Chapter 3

D
es

cr
ip

to
r

Ite
ra

to
r

Address
Generator

Streaming Engine

SCROB

Validation
new

stream

Stream Configuration

Memory Request
Queue

A
rb

ite
r

[Store FIFO & Load FIFO]
Occupancy

St
re

a
m

Sc
he

d
ul

er Store FIFO

To Register
File

From
Writeback

Load FIFO Data from
Memory

Data to
Memory

Memory
Access

Requests

Configuration
Port

 descriptor state iter flags

Stream Table

#streams

Stream Load/Store
Processing Modules

Stream Scheduler

Stream
Descriptor

Stream Table

Configured Streams FIFO Occupancies

Sort OccupanciesFilter Active Only

Select DescriptorSelection Process

B. Stream Processing Module

A. Streaming Engine

Accum. Offsets0..N

Stream Processing Module

Address Generator

Base Address

Descriptor (dim. k)

Accumulation
Offsetsk+1..N

Offset Size Stride

Accum. Offsetsk..N

Iteration
of dim. k

Memory Address

Descriptor Iterator

Dim. 0

Dim. N Mod. N

Dim. 1 Mod. 1

Head

End of
Descriptor

1 Iter. 1 Iter.

1 Iter. 1 Iter.

Full Iteration

Iteration Process

End of
Descriptor

The components which were implemented on the proposed framework are represented in , while the ones in grey are
implementation specific, and thus not needed to fully describe UVE functional behaviour.

green

Figure 3.3: (A) Streaming Engine and (B) Stream Processor Module proposed in
[9], now emulated on Spike.

load operations, after the stream configuration was complete, the SU immedi-
ately loaded the first elements to the associated register. Then, each computation
instruction directly read its operands and, once they had been consumed, the
stream was iterated and new values were loaded to the register, a similar pro-
cess to what was specified and implemented on gem5. However, this highlighted
the memory coherence problem already mentioned in Section 2.4.5, despite not
having Load/Store FIFOs, because the memory was accessed before a consuming
instruction was executed, leaving plenty of time for other instructions to make
changes to the elements in memory which were not reflected in the register. Al-
though it is a different issue from the one identified in the originally proposed SE,
this was what led to its identification, one of the many instances throughout this
work where the implementation of the extension has led to the identification of
issues in the specification. While in real hardware a solution for this issue will re-
quire more complex changes to the SE, it was noticed that it is necessary to delay
the register load operation until the consuming instruction is executed. This is the
solution that was implemented and that is currently in use: each instruction that
takes a load stream as an operand starts by requesting the SU to load elements
from memory to the register.

As previously detailed, the Stream Processing Modules are responsible for the
iteration and flag setting of each stream. This process was implemented in the
SU, at the register level, accessing each dimension of the configured pattern to
perform necessary checks and computations. As such, several methods were im-
plemented, namely the ones responsible for offset generation, available in List-

38

Simulation Infrastructure

Load/Store Request

YesCan
generate
offset?

Update EOD Table

Generate Offset

Load/Store Element

Update Iteration
Remove EOD flags

No

YesMax elements
reached?

Yes

Yes

No

No

No

Are
dimensions

done?
Set EOD flags

Update Iteration
Remove EOD flags

Can
generate
offset?

End

Figure 3.4: Flowchart of a high-level overview of the loading and storing of ele-
ments to/from a stream, as implemented on Spike.

ing 3.1.

According to the UVE specification, each register can hold values of four dif-
ferent widths (byte, half-word, word and double-word). As such streamRegister_t
was implemented as a template class, allowing for type flexibility. Because of this,
variants are often used, namely in the streamingUnit_t class, to be able to have
an array of registers (emulating a Register File) of different and unknown types.
Accordingly, to access a register the std::visit() callable must be used1. In con-
trast, the predRegister_t class is a regular one because predicates are always
composed of bytes, as seen in Section 2.4.1.

The streamRegister_t class contains a vector of dimension_t objects, each
corresponding to a configured dimension of the memory pattern of the stream,
in case the register is configured as Load or Store. When no stream is associ-
ated with a register, it is configured as NoStream, and none of these attributes are
used, it simply saves values in the elements vector. This class also has a structure
holding modifiers, which are mapped to the dimension they are associated with.
Lastly, vecCfg is a mask that indicates which dimensions are vector coupled. This
functionality is further explained in Section 4.3.1.

1Documentation on these C++ utilities can be found at https://en.cppreference.com/w/cp
p/utility/variant

39

https://en.cppreference.com/w/cpp/utility/variant
https://en.cppreference.com/w/cpp/utility/variant

Chapter 3

The streamRegister_t<T>::generateAddress() method is responsible for
the accumulation of all offsets calculated per dimension, as well as the setting
of the EOD flag. Other methods used in this piece of code have very straightfor-
ward implementations, returning exactly what is expected from their names. The
variables used by dimension_t::calcAddress() are attributes of this class and
are updated during the stream iteration process (Update Iteration in Figure 3.4):

• iter_index is incremented by 1 after each iteration, and is reset to 0 when
the EOD flag is reset, signaling the start of a new full iteration of the dimen-
sion.

• iter_size is the number of elements in the dimension and is set dur-
ing the stream configuration process. It is used as the upper limit for the
iter_index iterator.

• iter_size , iter_stride , and iter_offset are set during the stream con-
figuration process and are only changed during the dimension iteration if a
modifier is applied.

1 size_t dimension_t::calcOffset(size_t width) const {
2 return iter_offset + iter_stride * iter_index * width;
3 }

4 template <typename T>
5 size_t streamRegister_t<T>::generateAddress() {
6 /* Result will be the final accumulation of all offsets calculated per

dimension */↪→

7 size_t init = 0;
8 int dimN = 0;

9 return std::accumulate(dimensions.begin(), dimensions.end(), init,
[&](size_t acc, Dimension &dim) {↪→

10 if (dim.isLastIteration() &&
isDimensionFullyDone(dimensions.begin(), dimensions.begin() +
dimN)) {

↪→

↪→

11 dim.setEndOfDimension(true);
12 }
13 ++dimN;
14 return acc + dim.calcAddress(elementWidth);
15 });
16 }

Listing 3.1: Offset computation C/C++ code.

40

Simulation Infrastructure

It is assumed that the offset of each dimension is already the value in bytes,
as it can be the base address of a descriptor. The remaining values correspond to
an element count and must be multiplied by the element width, which is passed
as an argument to methods that require it, as dimensions and modifiers have no
information about the element width of the stream they are associated with.

Before an address is generated, a check is performed, as two situations prevent
the SU from generating a new load/store address:

• The last iteration of the outermost dimension has been reached, signaling
the EOS flag. In this case, the status of the register is set to finished and
its type is set to NoStream, as the stream has ended and it can be used as a
regular vector register again.

• A vector coupled dimension has its EOD flag set, signaling the end of the
dimension. In this case, iteration can only resume once the EOD flag is reset,
which is done by a new iteration of the stream.

Finally, throughout the iteration of a stream, if present, modifiers are also
applied. Dynamic and static modifiers are applied in different moments, as the
former must be applied before the start of a dimension, while the latter are ap-
plied after a dimension ends. Furthermore, new scatter-gather descriptors were
added to the specification and were implemented in the simulator. These behave
differently from previously existing modifiers and are therefore also applied in
different moments. Their functioning and possible applications are detailed in
Section 4.1.3.

3.3.2 Stream Table

In the proposed simulation environment, the Stream Table is not a single structure.
Instead, the information it keeps is divided into various attributes of the SU and
its registers. Besides variables that have information about its state and configur-
ation (type, status, and mode), or if a register is associated with a stream, it has a
list of dimensions that build the stream memory access pattern, which each have
an EOD flag, bool endOfDimension of dimension_t, as seen in Figure 3.2. As
indicated in the flowchart of Figure 3.4, these flags are set and reset during the it-
eration process. This means that they can be set and reset several times during the
execution of a single instruction, as a dimension may come to an end while there
is still space for more elements in the vector register, in which case the iteration
process continues and a new dimension is processed, unless the one that ends
is configured as vector coupled. However, if a dimension still came to an end,
that information cannot be lost, or branch instructions will not be able to capture
the EOD signal. As such, the EOD flags are saved in a structure called EODTable,

41

Chapter 3

which belongs to the SU. This 2D array is responsible for saving all EOD flags for
every stream and is also updated during the iteration process. These updates are
performed in a way that, in case a given dimension ends, this signal is saved in
the table before a new iteration, which inherently resets all EOD flags. This way,
they are not lost and can be used by branch instructions, which access EODTable
instead of the registers.

3.4 Instruction Implementation

Following the standard implementation of instructions on Spike, each new in-
struction was implemented in its separate file. Each instruction has a corres-
ponding header file in the riscv/insns folder. While compiling the simulator,
these files will be used to create copies of the riscv/insn_template.cc file for
each instruction, responsible for the generation of the various versions of the in-
struction (e.g., 32/64 bit). The obvious implication is that the developed code for
an instruction exists inside an external function, therefore header file inclusion
is not allowed and only some variables are accessible, namely the processor, the
instruction object, and the Program Counter (PC). It is through the processor that
each instruction can access the MMU, as well as the SU and its registers. The
instruction that is being executed, an insn_t object, has access to the operand
decoding functions, and the PC is mainly used in branching instructions.

Furthermore, predication support was developed at the instruction level,
which means that the predicate values never reach the SU, for simplicity. A pre-
dicate register has a fixed vector size of 64 bytes, and a predicate is thus evaluated
according to the element width of the instruction’s source operands. As a res-
ult, in each predicated instruction the predicate register is read for each active
lane, and the operation is only performed if it evaluates to 1, as stated by the ISA
specification [9].

3.4.1 Operand Decoding

To execute an instruction, the simulator must first be able to decode its arguments.
For this purpose, decoding functions for each operand type were created, accord-
ing to the ISA encoding. These functions, divided into different types of instruc-
tions, followed the same pattern as already existing ones (for other extensions),
some even being direct copies so that there is complete flexibility in case the UVE
encoding is changed. In case that happens, it is not necessary to alter every in-
struction if, for example, one of the source registers is differently encoded, and
only the decoding function corresponding to its type requires updates. These
functions are defined in file decode.h and some are shown in Listing 3.2.

42

Simulation Infrastructure

The first three functions presented in Listing 3.2 were already implemented
on the simulator. The x() function takes the first bit to be read and the length
of the operand, both defined in the ISA encoding, which can be consulted in
Appendix C and is further detailed in Chapter 4. It discards the lower lo bits by
performing a right shift on b, the instruction bits. Then, it applies a mask to the
result, which is obtained by subtracting 1 from the result of a left shift of 1 by len
bits. This way, the function returns the desired operand, which is then used in the
instruction’s implementation. The xs() function is similar, but handles signed
values, useful for immediate operands. These functions are used in the decoding
of the UVE instructions in a very similar fashion to already existing instructions.

The least straightforward decoding function is the one that handles the imme-
diate operand of the branching instructions. The uve_branch_imm() function is
used to calculate the offset to be added to the program counter in case the branch
is taken. Because the immediate operand is not contiguous in the instruction, the
function performs a series of shifts and adds them together to obtain the final
value. Because a branch can jump either to a previous or a following instruction,
the immediate operand is signed, and the function xs() is used to obtain the sign
bit in position 28. As a final note, the lower bit of the immediate operand is not
used, as it is always 0. This is due to each instruction being 32 bits long (4 bytes),
and the PC being incremented by 4 after each instruction is executed. Because
RISC-V also has a 16-bit (2 bytes) instruction format, the PC is incremented by 2

1 // Spike defined functions
2 typedef uint64_t insn_bits_t;
3 insn_bits_t b; // Current instruction bits
4 uint64_t x(int lo, int len) { return (b >> lo) & ((insn_bits_t(1) << len) -

1); }↪→

5 uint64_t xs(int lo, int len) { return int64_t(b) << (64 - lo - len) >> (64
- len); }↪→

6 // Registers for arithmetic and logic instructions
7 uint64_t uve_rd() { return x(7, 5); }
8 int64_t uve_rs1() { return x(15, 5); }
9 int64_t uve_rs2() { return x(20, 5); }

10 int64_t uve_rs3() { return x(27, 5); }
11 uint64_t uve_pred() { return x(25, 3); }

12 // Calculate offset for UVE branching instruction
13 int64_t uve_branch_imm() { return (x(8, 4) << 1) + (x(22, 6) << 5) + (x(7,

1) << 11) + (xs(28, 1) << 12); }↪→

Listing 3.2: Operand decoding function examples.

43

Chapter 3

in that case. For compatibility, the RISC-V specification states that branch offsets
are then always scaled by 2 bytes, even when no 16-bit instructions are used [62].
This means that there is no need to encode the least significant bit in the instruc-
tion and that the offset must always suffer a left shift by 1 before being added to
the PC, which is performed by the decode instructions on Spike.

3.5 Disassembler

The disassembler is a key component of the Spike simulator, as it is respons-
ible for translating the binary instructions into human-readable assembly code.
This is particularly important important for the desired simulation and valida-
tion framework, as they are required for a readable debugger and trace output,
which represent important tools for the development and validation of UVE. It
should also be mentioned that the Spike-generated trace can be used in other dif-
ferent tools to provide other types of simulations, such as [72].

Several functions and macros were added to the source code so that new
instructions and operands were correctly recognised and printed in the output
trace, as well as during any debugging session. They follow the same pattern as
already existing ones, for other extensions.

First, the new register types must be added, as well as the size of the register
file. Register names are defined in the regnames.cc file, which lists the u0-31 and
p0-15 registers in two different character arrays, ur_name and pr_name, respect-
ively. The size of each register file (streaming and predicate) is defined in file
decode.h.

The operand disassembling functions they take the instruction object and use
the decoding functions described in Section 3.4.1 to obtain the index of the re-
gister, whose name they get from the previously defined arrays. Immediate op-
erands in UVE are only used for branch instructions and are directly printed in
the disassembled instruction, as they are not associated with any register.

To facilitate the disassembly, instructions can be grouped by types with a sim-
ilar encoding (i.e., operands in the same bit positions). Each type of instruction
has a corresponding function where its operands are indicated and macros are
used to further simplify the code. UVE instructions are added to the disassem-
bler as illustrated in the example from Listing 3.3, showing the entire process for
the so.a.add instructions.

1 struct : public arg_t {
2 std::string to_string(insn_t insn) const {
3 return ur_name[insn.uve_rd()];
4 }
5 } urd;

44

Simulation Infrastructure

6 struct : public arg_t {
7 std::string to_string(insn_t insn) const {
8 return ur_name[insn.uve_rs1()];
9 }

10 } urs1;

11 struct : public arg_t {
12 std::string to_string(insn_t insn) const {
13 return ur_name[insn.uve_rs2()];
14 }
15 } urs2;

16 struct : public arg_t {
17 std::string to_string(insn_t insn) const {
18 return pr_name[insn.uve_pred()];
19 }
20 } upred;

21 static void NOINLINE add_uve_arith_insn(disassembler_t* d, const char*
name, uint32_t match, uint32_t mask) {↪→

22 d->add_insn(new disasm_insn_t(name, match, mask, {&urd, &urs1, &urs2,
&upred}));↪→

23 }

24 void disassembler_t::add_instructions(const isa_parser_t* isa) {
25 #define DEFINE_UATYPE(code) add_uve_arith_insn(this, #code, match_##code,

mask_##code);↪→

26 DEFINE_UATYPE(so_a_add_fp);
27 DEFINE_UATYPE(so_a_add_us);
28 DEFINE_UATYPE(so_a_add_sg);
29 }

Listing 3.3: Disassembler structures and functions for UVE add instructions.

3.6 Summary

In this chapter, the most relevant modifications and additions to the Spike simu-
lator were described in detail. The used files and structures were listed and key
algorithms that were developed to effectively emulate a Streaming Engine (SE)
were described, accompanied by examples in code snippets. Also, instruction im-
plementation and necessary decoding functions were explained. Lastly, changes
made to the disassembler were shown, a key component of the framework, as it
is required by the debugger and allows trace generation.

45

Chapter 4

Unlimited Vector Extension
Specification Revision

Throughout the simulator development procedure, several limitations were
found in the original UVE specification, mainly related to the behaviour of spe-
cifi instructions, the stream execution model, and the set of benchmark applica-
tions. Therefore, the extension was fully revised and several improvements were
introduced. Furthermore, some functional aspects that previously were either
only envisioned or implicit in instruction definitions, were now formalised. This
chapter describes the newly proposed modifications and additions made to the
UVE specification, as well as the reasoning behind them.

4.1 Stream Configuration

According to the UVE specification, registers can be associated with streams,
which are managed by the Streaming Engine (SE) and are implicitly loaded/stored
from/to memory when read or written to. To configure each stream, a dedicated
set of instructions is used, as described in Section 2.4.2. As the instruction set was
tested, some shortcomings were found in the streaming interface, which led to
de modifications proposed in this section.

4.1.1 Base Address and Offset

In its first version, UVE allowed any dimension of a stream pattern to be con-
figured with the base address of the access as its offset. Consequently, while
generating memory addresses, the SE would add the offsets of the dimensions,
assuming they all corresponded to a byte value, as that is how memory addresses
are interpreted. This did not pose a problem until now, as every tested pattern

47

Chapter 4

had dimension offsets equal to zero, except the one holding the memory base ad-
dress for the stream data. However, when testing a convolution kernel, which
involves the padding of the source matrix, the descriptor encoding requires set-
ting offsets to non-zero values. A simplified version of an access of this kind is
represented in Figure 4.1. It was found that the SE would not correctly compute
the memory addresses in this case. Because this value corresponds to an element
count, it is an integer and not a byte value. As such, to correctly compute the
memory address of each element of the stream, the SE would need to multiply it
by the element size (in bytes) and add it to the base address. This multiplication
was not present in the original specification and would be impossible to perform
correctly unless the dimension whose offset corresponded to the base address was
distinguishable from the others.

A
 (

M
 x

 N
)

(a) Padded pattern.

for (i = 0; i < M; ++i)

 for (j = 1; j < N-1; ++j)

 A[i*N+j];

(b) C loop.

Dimension 1:

 Offset = A

 Size = N-2

 Stride = 1

Dimension 2:

 Offset = 1

 Size = M

 Stride = N

(c) Stream representation.

Figure 4.1: Padded memory access pattern example, where the offset is non-zero.

An initial approach to solving this issue consisted of always defining the base
address as the offset of the first dimension to be configured. This meant that
stream-start configuration instructions would receive a memory address that
did not require any additional computation. On the other hand, stream-append
and stream-end configuration instructions would always be given offset values
that required the multiplication by the element size, which was performed im-
mediately. This way, the SE would have correct offset values, without additional
computation.

Eventually, because stream configuration instructions suffered restructuring,
as shown in Section 4.3.1, this idea was maintained and implemented in the new
header instructions, which replace stream start configuration instructions.

4.1.2 Scalar Streams

Although UVE is a vector extension, it is primarily a streaming extension. With
this in mind, there are many complex patterns that, while not vectorisable, can
still benefit from data streaming. To support these cases, both the SE and the
ISA must handle scalar streams. Although it was possible to implement scalar
streams by configuring the stream length to 1, scalar code was not formally sup-
ported. Three possible approaches were studied:

48

Unlimited Vector Extension Specification Revision

• Extending the register bank with new streaming scalar registers, completely
separate from the streaming vector registers;

• Adding streaming support to the native RISC-V scalar registers;

• Modifying the streaming vector registers to support scalar elements, with
the SE handling the scalar elements as if they were vector elements with a
single element;

Of these alternatives, the last one is the simplest and requires little hardware
modifications relative to the existing specification, as opposed to the other two.
From the SE perspective, everything works the same, as its control is always de-
pendent on the vector length. This puts the burden of handling scalar streams on
the ISA, which must guarantee their correct configuration. As such, new inform-
ation is added to the stream table: a single flag that indicates whether the stream
is scalar or vectorial. Because the base ISA is scalar, UVE streaming registers are
by default also scalar.

Lastly, the scalar/vector property of a register is transient from source to des-
tination. In accordance, when reduction or scalar instructions are used, the des-
tination vector is always scalar (despite any previous configuration). However,
if the destination is a vectorial load stream, an exception must be raised, even
though it should not happen in well-structured code. Furthermore, if an arith-
metic or logic instruction has at least one scalar source operand, the destination
register is also scalar, even if previously configured as vectorial. When the oper-
ands are vectorial, the destination register is also configured as vectorial.

4.1.3 Dimensions and Modifiers

Order of dimension configuration

One of the main changes in the new specification is related to the order in which
dimensions are appended to a descriptor. To match the order in which they are
presented in a typical C/C++ for loop, this order has been inverted. This is be-
cause the original UVE specification stated that the first dimension is the inner-
most one (in Listing 4.1 the first dimension of the streams described in Listing 4.2
is the one equivalent to the loop in line 3). Previously, UVE code would present
dimensions in the opposite order of what is expected, by appending dimensions
from the first to the last one. This often led to confusion and errors, so it was
changed. While this minor change does not affect the functionality of the exten-
sion, its usability was improved. Furthermore, it led to the elimination of certain
instructions, as explained in Section 4.3.1.

49

Chapter 4

1 // data is a N x M matrix; cov is a M x M matrix; double_n is (double)N

2 for (i = 0; i < M; i++)
3 for (j = i; j < M; j++) {
4 cov[i * M + j] = 0;
5 for (k = 0; k < N; k++)
6 cov[i * M + j] += data[k * M + i] * data[k * M + j];
7 cov[i * M + j] /= double_n - 1.0;
8 cov[j * M + i] = cov[i * M + j];
9 }

Listing 4.1: Snippet of the covariance C/C++ kernel code [68].

1 # cov[i * M + j]
2 ss.sta.st.d u1, cov, M, M # D2
3 ss.app.mod.ofs.inc u1, M, one
4 ss.app.mod.siz.dec u1, M, one
5 ss.end u1, zero, M, one # D1

6 # cov[j * M + i]
7 ss.sta.st.d u2, cov, M, one # D2
8 ss.app.mod.ofs.inc u2, M, M
9 ss.app.mod.siz.dec u2, M, one

10 ss.end u2, zero, M, M # D1

Listing 4.2: Covariance kernel UVE pseudo-assembly store stream configuration
of streams with two modifiers per dimension.

Multiple Modifiers per Dimension

The original specification of UVE stated that only one modifier was allowed per
dimension of a stream descriptor. This was found to be a limitation when try-
ing to implement the covariance kernel (specifically, in the loop presented in List-
ing 4.1).

For the storing of the cov matrix pattern to be correctly defined, both the offset
and the size of a dimension must be modified simultaneously. This is because,
in each outer loop iteration, both the writing matrix index and the number of
elements to be stored are changed. This is due to the indexing dependence on the
second nested loop: in each outer loop iteration, the lower limit of the iteration is
increased, which means that one less iteration is performed each time. The UVE
stream configuration of accesses to the cov matrix is represented in Listing 4.2,
already with two modifiers appended to the outermost dimension, which will

50

Unlimited Vector Extension Specification Revision

affect the innermost one.

Explicit Target Dimension

When testing a new kernel with three nested loops, shown in Listing 4.3, it was
found that some patterns could not be described with the current set of modifiers.
This is because a dimension may need to be updated by a modifier that is iter-
ated with a dimension of a higher order and not the dimension directly above it.
This limitation can be solved by explicitly indicating the target dimension in the
modifier appending instruction. This way, the modifier is still associated with the
correct dimension, iterating along with it, but can affect an arbitrary dimension
of the pattern. Formally, it also moves the iteration variable updates mirror the
variable update order found in the equivalent for loop code.

1 // C is an N x N matrix; A is an N x M matrix; alpha and beta are scalars
2 for (i = 0; i < N; i++) {
3 for (j = 0; j <= i; j++)
4 C[i*N+j] *= beta;
5 for (k = 0; k < M; k++)
6 for (j = 0; j <= i; j++)
7 C[i*N+j] += alpha * A[i*M+k] * A[j*M+k];
8 }

Listing 4.3: SYRK (Symetric Rank-K Update) C/C++ computation kernel
code [68].

As such, in the example from Listing 4.3, to accurately describe the 3D
memory access pattern of C[i*N+j], the size of the first dimension (correspondent
to the loop in line 7) must be incremented every time the third dimension (corres-
pondent to the loop in line 3) is iterated. This is due to the innermost loop being
bounded by i, which is incremented two loops above. The result is that while the
second dimension is iterated, the size of the first one remains unchanged, as i is
not updated in the loop on line 6.

Consequently, the C[i*N+j] stream access pattern needs a size modifier ap-
pended to the last dimension, but targeting the first one, as shown in Listing 4.4.
For this to be possible, modifier configuration instructions need to be extended
to include the target dimension, as presented in Section 4.3.1.

Scatter-gather Dynamic Modifiers

Although the desired behaviour and description of scatter-gather accesses are the
ones described in Figure 2.8 of Chapter 2, the original specification lacked ded-

51

Chapter 4

1 // C[i*N]+j
2 ss.sta.st.d u3, C, N, N # D3 (i)
3 ss.app.mod.siz.inc.1 u3, N, one # Target: D1
4 ss.app u3, zero, M, zero # D2 (k)
5 ss.end u3, zero, one, one # D1 (j)
6 ss.cfg.vec u3 # vectorial stream

Listing 4.4: SYRK kernel UVE pseudo-assembly store stream configuration with
explicitly defined target modifier.

icated support for this type of memory access. Traditional modifiers are applied
when the dimension they are associated with is iterated. This means that, in order
to describe scatter-gather accesses, the affected dimension must be scalar and the
one above it iterates the number of elements to be accessed. This is a poor way of
describing accesses that could be vectorial, as it wastes the SIMD capabilities of
the UVE extension.

To solve this issue, a new kind of dynamic modifier was introduced. These
modifiers are associated directly with the dimension that they affect, meaning
that they are applied at each iteration (and each element), allowing registers to be
filled with vectors. These modifiers are only defined for offset targets, as these are
enough to perform scatter-gather accesses. However, other targets may be added
in the future, if necessary. The updated example from Figure 2.8 is presented in
Figure 4.2. This new descriptor is configured through a new set of scatter-gather
modifier instructions.

ss.<app/end>.ind.ofs.sg.<behaviour>

B
(M

 x
 N

)
A

 (
L)

(a) Scatter-gather pattern

for (i = 0; i < L; ++i)

 B[A[i]];

(b) C loop

Stream A
Dimension 1:
 Offset = A

 Size = L

 Stride = 1

Scatter-gather 1:

 Offset, Add, A

Stream B (vector)
Dimension 1:
 Offset = B

 Size = L

 Stride = 0

(c) Stream representation

Figure 4.2: Scatter-gather memory access representation.

Support for this new descriptor type was added on Spike and was used in one
of the benchmarks presented in Section 5.1.2, SpMV-2.

52

Unlimited Vector Extension Specification Revision

4.2 Predication Policies

As mentioned throughout this work, UVE supports lane control through predic-
ation. This means that in any SIMD instruction, there is the possibility of con-
trolling which elements are operated on or not. This is achieved through the
use of predicate registers, which are used to mask the operation of the instruc-
tion. The original specification simply stated that a predicated element would
not take part in the computation, and the corresponding lane in the destination
vector would be left unchanged. As seen in Section 2.2.2 and Section 2.2.1, this
is known as merging predication in Arm SVE [6] and undisturbed tail/mask in
RISC-V RVV[5].

However, a different kind of predication exists, known as zeroing predication
in SVE, where predicated lanes are set to 0 in the destination. This mode was not
present in the original UVE specification, having been left for future work. Fur-
thermore, no implicit vector predication policy was defined or specified, which
was revealed to be an issue in most applications.

In particular, although considered in the original specification, an important
aspect is related to what happens in the execution of instructions when non-
complete vectors are used as operands. Until now, there were no explicit rules
on how the number of valid elements of a vector register was managed, so it was
entirely possible to have less data in a vector than the maximum allowed (e.g., a
vector register configured to handle 8 elements but only 4 are valid). The initial
approach was to simply take the number of valid elements of the source registers
(i.e., the minimum between the valid elements from the source registers) and only
operate on those. Then, this value was copied to the destination register, leaving
the remaining elements unchanged. This was defined as implicit vector predication.

1 // u1 and u2 are load streams; u5 is a store stream

2 so.v.dp.d u4, zero, p0 // fill u4 with 0s

3 jloop1 :
4 so.a.mul.fp u3, u1, u2, p0 // u3 = u1 * u2
5 so.a.add.fp u4, u4, u3, p0 // u4 = u4 + u3
6 so.b.ndc.1 u1, .jloop1

7 so.a.adde.fp u5, u4, p0 // reduce vector to scalar

Listing 4.5: Example of a reduction loop in UVE assembly code.

To understand where problems may arise, one can analyse Listing 4.5, where
a common reduction loop is presented. In this case, both source operands of the

53

Chapter 4

multiplication are streams, which means that in each iteration, new values are
implicitly loaded to these registers. However, the number of valid elements in
these registers is not known, and although the vector is full in most iterations
(Figure 4.3a), edge cases can occur where the vector is not full. This may lead
to incorrect results, as partial sums are being stored in u4 at each iteration. The
original specification states that the valid elements of the destination are set to the
minimum between the valid elements of the sources. As Figure 4.3b illustrates,
this results in incorrect values, as the partial sums in invalid lanes of u4 will be
lost. On the other hand, if the valid elements of this register remain untouched,
the result is correct, as the partial sums are not lost before the horizontal add in
line 7.

1
127128 6463 0191192255

4
127128 6463 0191192255

u1

4
127128 6463 0191192255

u2

4
127128 6463 0191192255

u3

127128 6463 0191192255

4u4

255

4
127128 6463 0191192

u4

u5

LO
O
P

FI
N
A
L

RE
D
U
C
TI
O
N

(a) Computation with full vectors and
correct result.

3

3

255

3

1

3

127128 6463 0191192255

127128 6463 0191192255

127128 6463 0191192

127128 6463 0191192255

127128 6463 0191192255

127128 6463 0191192255

4LOST

INCORRECT

u1

u2

u3

u4

u4

u5
LO
O
P

FI
N
A
L

RE
D
U
C
TI
O
N

(b) Computation with incomplete vectors,
which lead to incorrect result.

Figure 4.3: Reduction loops with flawed original implicit predication policy, as-
suming a vector length of 256 bits. Load streams are in yellow, auxiliary registers
in green, and store streams in blue.

One possible solution to this issue is to redefine the implicit vector predica-
tion policy. It was defined that the only way to have invalid elements in a vector
register is if is a) a scalar register, b) a load stream. In every other case, the vec-
tor register is always full. In particular, a store stream register may have valid
elements with irrelevant data without issues, as the store pattern is assumed
to be well-defined and those elements will not be stored in memory by the SE.
This begs the question: if a vector register is the destination of an instruction
with streams as sources, what results will be stored in lanes where the source re-
gister has invalid elements? The simple answer is to fill these lanes with zeroes,
i.e., zeroing vector predication. With this policy, the reduction loop in Listing 4.5
would always produce correct results, as zero is the neutral element for addition.

54

Unlimited Vector Extension Specification Revision

This is illustrated in Figure 4.4.

127128 6463 0191192255

3

127128 6463 0191192255

3

127128 6463 0191192255

4

127128 6463 0191192255

1

127128 6463 0191192255

4

127128 6463 0191192255

4

0

CORRECT

u1

u2

u3

u4

u4

u5

LO
O
P

FI
N
A
L

RE
D
U
C
TI
O
N

Figure 4.4: Reduction loop with zeroing predication.

With this modification, two new scenarios arise: what happens in accumu-
lation instructions, and what happens if zero is not the neutral element for the
operation (e.g., multiplication).

The first scenario presents itself in instructions such as so.a.mac , which
could easily replace the two computation instructions in Listing 4.5, as it performs
a multiply-accumulate operation. With zeroing predication, the behaviour of a re-
duction loop is presented in Figure 4.5a. In this case, the register that is subject to
predication is itself the accumulator, which means that values must not be lost in
any iteration. However, that is exactly what happens with zeroing predication in
cases where, after full-vector iterations, the source registers have fewer elements.
To solve this issue, the previous merging policy would be more adequate, while
still marking all lanes as valid in the destination. This is illustrated in Figure 4.5b.

To handle the second scenario, two possible paths are possible: either fill in-
valid lanes with another value (e.g., 1 for multiplication) or reorganise the loop
code and perform merging predication. The first approach was discarded, as a
new predication mode for such specific situations would only convolute the spe-
cification. The second approach is ideal and easy to implement, as shown in
Listing 4.6. By simply reorganising the multiplication instructions, the values ac-
cumulated in u4 are never lost, and the result is always correct. This is possible
whenever operations are commutative, which covers most accumulation cases.
In reality, this is the order in which the multiplication would be performed in a
scalar code, so it is a natural solution.

The devised solution aims to solve all the issues presented so far, by allowing

55

Chapter 4

127128 64 63 0191192255

3u1

127128 64 63 0191192255

3u2

127128 64 63 0191192255

4u3 LOST

127128 64 63 0191192255

4u3 0

127128 64 63 0191192255

1u5 INCORRECT

LO
O
P

FI
N
A
L

RE
D
U
C
TI
O
N

(a) Incorrect result with zeroing predication.

127128 64 63 0191192255

3u1

127128 64 63 0191192255

3u2

127128 64 63 0191192255

4u3

127128 64 63 0191192255

4u3 UNCHANGED

127128 64 63 0191192255

1u5 CORRECT

LO
O
P

FI
N
A
L

RE
D
U
C
TI
O
N

(b) Correct result with merging predication.

Figure 4.5: Reduction loop with multiply-accumulate instruction and both possible
predication policies.

both zeroing and merging predication policies to be used. As observed, different
situations require different approaches, and a single policy would not be enough
to cover all of them. Moreover, a single rule for predication type would not guar-
antee that the correct policy would be applied every time. In accordance, it was
decided that the predication policy would be explicitly encoded in each stream-
ing register. This way, when a register is used as a source operand, the chosen
predication policy is used to determine the behaviour of the instruction in the
destination. Additionally, both modes are also added to explicit instruction pre-
dicates, which means that each predicate register is also configured to use a spe-
cific predication policy, as shown in Figure 4.6. This way, the predication policy is
always explicit, and thus correctly applied. As a final note, zeroing was the policy
chosen as the default for all streaming registers, as this is the most common case
observed in studied kernels. For predicate registers, the default policy is mer-
ging, preserving its original behaviour, but allowing for the newly added zeroing
predication. When executing a predicated instruction with source streams, the

127128 64 63 0191192255

u1 4

127128 64 63 0191192255

u3 4UNCHANGED UNCHANGED u1[1] + u2[1] u1[0] + u2[0]

p1 10 10

127128 64 63 0191192255

m

127128 64 63 0191192255

u2 4

(a) Merging predication.

127128 64 63 0191192255

u1 4

127128 64 63 0191192255

u3 40 0 u1[1] + u2[1] u1[0] + u2[0]

p1 10 10

127128 64 63 0191192255

z

127128 64 63 0191192255

u2 4

(b) Zeroing predication.

Figure 4.6: Illustration of explicit predication in the so.a.add instruction.

56

Unlimited Vector Extension Specification Revision

predication policy of the stream prevails over the policy of the predicate register
passed to the instruction.

1 // u1 and u2 are load streams; u5 is a store stream

2 so.v.dp.d u4, zero, p0 // fill u4 with 0s

3 jloop1 :
4 so.a.mul.fp u3, u1, u2, p0 // u3 = u1 * u2 (zeroing)
5 so.a.mul.fp u4, u4, u3, p0 // u4 = u4 * u3
6 so.b.nc u1, .jloop1

7 so.v.dp.d u4, zero, p0 // fill u4 with 0s

8 jloop2:
9 so.a.mul.fp u3, u4, u1, p0 // u3 = u4 * u1 (merging)

10 so.a.mul.fp u4, u3, u2, p0 // u4 = u4 * u2 (merging)
11 so.b.nc u1, .jloop1

Listing 4.6: Example of product accumulation loops in UVE assembly code.

4.3 Instruction Set Overview

Having laid out all the modifications to the UVE specification, this section shows
how they are reflected in the encoding of the instructions. Because a thorough
definition of the encoding was not provided in the original specification, this sec-
tion will also serve as a reference for the encoding of instructions that did not
suffer any alterations.

The encoding of these instructions is divided into several fields that are used
to specify the operation to be performed and its operands. To simplify the rep-
resentation of the encoding, some fields are presented with a specific notation.
Additionally, the full encoding and bit fields are presented in Appendix C. This
section closely follows the notation and conventions used in the official RISC-V
specification.

4.3.1 Stream Configuration

Instructions responsible for the configuration of a stream, including its dimen-
sions and modifiers, are at the core of data streaming from the programmer per-
spective and constitute the preamble of any streaming computational kernel.

57

Chapter 4

As mentioned in Section 2.4, these instructions are found in the custom-2 op-
code region of RISC-V, called StreamSet in the context of UVE, with the mnemonic
SS. To differentiate the different types of stream configuration instructions, the tc
field is used. The tc field is a 2-bit field that encodes the type of stream configur-
ation instruction, detailed in Table 4.1.

Table 4.1: Original tc field encoding.

tc field Prefix Meaning
00 APP Append dimension/modifier to configuration
01 END Append dimension/modifier and end configuration
10 STA Start configuration and append dimension
11 LD/ST 1D Load/Store configuration

Table 4.2: width field encoding.

width field Suffix (WTH) Meaning
00 B Byte (8 bits)
01 H Half-word (16 bits)
10 W Word (32 bits)
11 D Double-word (64 bits)

Original Specification

In the original UVE, instructions that solely configure dimensions needed four
operands: the destination register, the size and stride of the dimension, and the
base address or offset. The ss.ld , ss.st , ss.sta.ld , and ss.sta.st instruc-
tions were used to start a stream associated with the given destination register.
Since they were the first (or only) instructions of the stream definition, they also
required the element width to be defined in the encoding, through a suffix in the
instruction name (e.g., ss.ld.w or ss.sta.st.d). This information occupied the
two least-significant bits of funct3 and is here represented by the mnemonic WTH,
detailed in Table 4.2.

The ss.app and ss.end instructions appended a dimension or modifier (dis-
tinguished in the funct3 field) to the stream configuration associated with the
given destination register.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

rs3 tc rs2 rs1 funct3 vd opcode
5 2 5 5 3 5 7

stride 11 size base addr LD.[WTH] dest SS
stride 11 size base addr ST.[WTH] dest SS
stride STA size base addr LD.[WTH] dest SS
stride STA size base addr ST.[WTH] dest SS
stride APP size offset 000 dest SS
stride END size offset 000 dest SS

58

Unlimited Vector Extension Specification Revision

Each static modifier configuration instruction took three operands: the des-
tination register, the size, and the displacement value, whereas a dynamic modifier
only required two: the destination and the source registers. The funct3 and l
fields encoded the type of modifier. The latter was a single bit field present in dy-
namic modifier instructions encoding, indicating whether the modifier was linked
to the coupled dimension or if it required a dimension hop (dhop) which indicated
to which dimension the modifier was linked. In the case of static modifiers, this
information was encoded in the funct3 field as well, and the only difference from
typical modifiers was that the size operand was omitted and instead inferred from
the dimension it was appended to. Furthermore, there were several different in-
structions for each type of modifier, with different behaviour and target values.
These distinctions were made in the homonymous fields detailed in Table 4.31

and Table 4.4.
Table 4.3: behaviour field encoding.

b field Suffix (B) Meaning
000 INC Increment
001 DEC Decrement
010 ADD Add to base value
011 SUB Subtract from base value
100 SET Set to value

Table 4.4: target field encoding.

ta field Suffix (T) Meaning
00 SIZ Size
01 STR Stride
10 OFS Offset

31 27 26 25 24 22 21 20 19 15 14 12 11 7 6 0

rs3 tc b ta rs1 funct3 vd opcode
5 2 3 2 5 3 5 7

displacement APP B T size MOD dest SS
displacement END B T size MOD dest SS
displacement APP B T 0 MODL dest SS
displacement END B T 0 MODL dest SS

31 30 28 27 26 25 24 22 21 20 19 15 14 12 11 7 6 0

- dh l tc b ta rs1 funct3 vd opcode
1 3 1 2 3 2 5 3 5 7
0 dimh 0 APP B T src IND dest SS
0 dimh 0 END B T src IND dest SS
0 000 1 APP B T src IND dest SS
0 000 1 END B T src IND dest SS

1The presented encoding of this field is updated relative to the original, which had two differ-
ent encodings for INC and DEC in each type of modifier, despite having the same behaviour.

59

Chapter 4

Finally, three additional configuration instructions existed, which either tar-
geted a whole stream (ss.cfg.ind and ss.cfg.mem) or a single stream dimen-
sion (ss.cfg.vec). The first one was used to indicate if a stream was to be used
as the source of a dynamic modifier of another stream, which in a real implement-
ation would mean that data does not need to be moved to the CPU, never leaving
the Streaming Engine (SE). The second one configured the cache-level access for
that stream. The last one was used to indicate that a certain stream dimension
was vector-coupled. A vector-coupled dimension stops the stream iteration once
it reaches EOD, resuming once another request is made to the SE. This differs
from the default behavior, which fills the register with values from the next di-
mension iteration. This instruction allowed for dimensions to be consumed indi-
vidually, without mixing elements from other iterations to fill the vector. It was
also first proposed that this instruction indicated that a stream is vectorial and
not scalar, as discussed in Section 4.1.

31 27 26 25 24 18 17 12 11 7 6 0

- tc - funct6 vd opcode
5 2 7 6 5 7
0 00 0 CFG.IND dest SS
0 00 0 CFG.MEM[l] dest SS
0 00 0 CFG.VEC dest SS

Updates to the Specification

To accommodate for the newly proposed changes and additions, such as scatter-
gather modifiers and the inversion of the dimension/modifier appending order,
as well as to reduce the number of required configuration instructions, the encod-
ing of the stream configuration instructions was modified.

Firstly, several configuration instructions were collapsed in one single header
instruction, which is used to start a stream configuration, similarly to the ss.sta
instructions, whose name was kept, but without a dimension or modifier. In-
stead, the encoding space was used to define what previously required the
ss.cfg instructions, as well as new information about the predication mode (see
Section 4.2). This was done by adding several new fields:

• pm field: a 1-bit field that indicates the predication mode of the stream. If
set, the stream suffers from merging predication, otherwise, it suffers from
zeroing predication, the default. If set, this field translates into the optional
M suffix in the instruction name (i.e., ss.sta.m).

• vec field: a 1-bit field that indicates if the stream is vectorial. If set, the
stream is vectorial, otherwise, it is scalar. If set, this field translates into the
optional V suffix in the instruction name (i.e., ss.sta.v).

60

Unlimited Vector Extension Specification Revision

• vdim field: a 3-bit field that indicates the vector-coupled dimension of the
stream. If no dimension is vector-coupled, this field is set to 111, as the
default behaviour of the outermost dimension is similar to that of a vector-
coupled dimension. A number is added to the instruction name to indicate
the vector-coupled dimension (i.e., ss.sta.v.1), unless the field is set to 8,
in which case the number is omitted.

• inds field: a 1-bit field that indicates if the stream is to be used as the source
of a dynamic modifier of another stream. If set, this field translates into
the optional INDS suffix in the instruction name (i.e., ss.sta.inds). For
now, a stream can only be the source of a dynamic modifier if it is scalar, as
only one value is used to modify the target per iteration, so an entire vector
cannot be loaded. Improvements to this behaviour are left to future work,
as the SE architecture complexity should be taken into account.

• mem field: a 2-bit field that indicates the cache-level access for that stream,
from 0 (default) to 3. This field translates into the optional MEM[l] suffix in
the instruction name (i.e., ss.sta.mem2), absent when it is 0.

While these instructions do not configure any dimension or modifier, they still
configure the base address of the stream, consistent with the behaviour proposed
in Section 4.1.1. Because of the removal of ss.<ld/st> instructions, the tc field
encoding was updated and is summarised in Table 4.5.

Table 4.5: Updated tc field encoding.

tc field Prefix Meaning
00 STA Stream header instructions
01 APP Append dimension/modifier
10 END Append dimension/modifier and end configuration
11 - Reserved

31 30 29 27 26 25 24 23 22 21 20 19 15 14 12 11 7 6 0

pm vec vdim tc inds mem - rs1 funct3 vd opcode
1 1 3 2 1 2 2 5 3 5 7

PM V vdim 00 INDS MEM[l] 00 base addr LOAD.[WTH] dest SS
PM V vdim 00 0 MEM[l] 00 base addr STORE.[WTH] dest SS

While instructions that append dimensions did not suffer any alterations,
modifier instructions were updated to include the tdim field, replacing the op-
erand that previously indicated the size of the modifier. This is a 3-bit field
that encodes that target dimension of a modifier (i.e., the dimension it modifies).
This takes advantage of the fact that the size of the modifier is in most cases the
same as the size of the dimension it is linked to to solve the target dimension is-
sue highlighted in Section 4.1.3. As such, previously existing ss.app.modl and

61

Chapter 4

ss.app.indl were removed, since every modifier instruction now has an expli-
citly defined target dimension and implicit size. This decision was made after
observing that no studied pattern required a modifier to be applied to only a
few iterations of a dimension. This behaviour is directly related to the induction
variable dependencies in the loops that modifiers represent. In fact, the modi-
fier size field was never used on Spike and has since been removed. Furthermore,
due to the inversion of the order in which dimensions appear, ss.end.modl and
ss.end.indl instructions were removed, as they are no longer necessary.

31 27 26 25 24 22 21 20 19 18 17 15 14 12 11 7 6 0

rs3 tc b ta - tdim funct3 vd opcode
5 2 3 2 2 3 3 5 7

displacement APP B T 0 tdim MOD dest SS

Lastly, with the encoding space freed by the removal of the aforementioned
instructions, it was possible to add the new scatter-gather instructions. These
instructions have the same encoding as ordinary dynamic modifiers but with the
sg field set to 1. In this case, the suffix SG is added to the instruction name (e.g.,
ss.app.ind.sg). These instructions do not need a tdim field, as they are linked
to the target dimension, as described in Section 4.1.

31 30 28 27 26 25 24 22 21 20 19 15 14 12 11 7 6 0

- tdim sg tc b ta vs1 funct3 vd opcode
1 3 1 2 3 2 5 3 5 7
0 tdim 0 APP B T origin IND dest SS
0 0 SG APP B 10 origin IND dest SS

4.3.2 Loop Control – Branching

These instructions control the flow of every UVE computation kernel, using EOD
and EOS flags raised by the SE to branch accordingly, allowing to loop over data
streams. These instructions belong to the StreamOps opcode region, with the mne-
monic SO, and take two operands: the destination register and the offset to the
target instruction, an immediate value scattered across the instruction encoding,
similar to the original RISC-V B-type instructions [62]. The n field is a single bit
that differentiates between dimension complete and not complete instructions (i.e.,
so.b.dc.3 and so.b.ndc.3). Any pattern dimension can be used in the branch
comparison, and its index is encoded in the 3-bit d field. In the case where this
field is 111, the EOS flag is used to determine the branch outcome, and both the
D prefix and the dimension index are omitted from the instruction name (i.e.,
so.b.c and so.b.nc).

31 29 28 27 22 21 20 19 15 14 12 11 8 7 6 0

funct3 imm[12] imm[10:5] n d[2] vs1 d[1:0] - imm[4:1] imm[11] opcode
3 1 6 1 1 5 3 4 1 7

111 offset[12|10:5] N d[2] src1 d[1:0] offset[11|4:1] SO

62

Unlimited Vector Extension Specification Revision

While revising the specification, it became clear that the d field could be en-
coded contiguously, as there was an unused bit at the right of d[1:0]. As such, the
instruction was updated and n was also moved to the right, leading to a clearer
encoding.

31 29 28 27 22 21 20 19 15 14 12 11 8 7 6 0

funct3 imm[12] imm[10:5] - n vs1 d imm[4:1] imm[11] opcode
3 1 6 1 1 5 3 4 1 7

111 offset[12|10:5] 0 N src1 d offset[11|4:1] SO

As a final note, some initially proposed predicate-based branch instructions
were removed, as they were deemed unnecessary and redundant, given the new
predication policies and valid element settings on vector registers.

4.3.3 Lane Control – Predication

One key aspect of UVE is the ability to predicate instructions, which is done
through the use of predicate registers that need to be configured before use. Be-
longing to the StreamOps opcode region, these instructions are responsible for the
population of predicates.

Original Specification

Most instructions from the original specification retain their functionality in
the new specification. The most simple predicate instructions, so.p.zero and
so.p.one , simply take the destination register and set it to all zeroes or ones, re-
spectively. They can also be predicated themselves, which means that a predicate
is an operand of these instructions. The so.p.not instruction takes two oper-
ands: the destination register and the source register, and sets the former to the
bitwise negation of the latter. The so.p.mv and so.p.mvt instructions take the
same operands and move the source predicate into the destination, either directly
or reversed, respectively.

There is also another instruction that takes an additional argument, a source
vector register, and creates a mask from all its valid elements, which is then stored
in the destination predicate register. This instruction is called so.p.vr and its
behaviour is illustrated in Figure 4.7. This instruction can also be predicated, in
which case the destination predicate register is always set to zero in lanes where
the predicate mask is null.

so.p.vr p1, u1, p0 #dest, src1, pred

63

Chapter 4

p1 11 11

127128 64 63 0191192255

127128 64 63 0191192255

u1 4

(a) Full source vector.

p1 10 10

127128 64 63 0191192255

127128 64 63 0191192255

u1 2

(b) Incomplete source vector.

Figure 4.7: Illustration of so.p.vr instruction with different source vectors, as-
suming true instruction predicate (p0).

31 28 27 25 24 20 19 15 14 12 11 7 6 0

funct4 ps3 - vs1 funct4 pd opcode
4 3 5 5 4 4 7

1000 pred 0 0 ZERO dest SO
1000 pred 0 0 ONE dest SO
1000 pred 0 src1 VR dest SO

31 28 27 25 24 19 18 15 14 12 11 7 6 0

funct4 ps3 - ps1 funct4 pd opcode
4 3 6 4 4 4 7

1000 pred 0 src1 NOT dest SO
1000 pred 0 src1 MV dest SO
1000 pred 0 src1 MVT dest SO

Originally, predicates could also be generated from vector-vector and vector-
scalar comparisons, which took an extra operand for the second source register.
Additionally, because arithmetic operations were involved, the type of computa-
tion was encoded in the funct3 field, according to Table 4.6. It should be noted
that two versions of each instruction were available, one that took two vector re-
gisters and performed an element-wise comparison, and one that took a scalar
register whose value was compared to each value in the src1 vector register.

Table 4.6: fps field encoding.

fps field Suffix (FPS) Meaning
00 US Unsigned integer operation
01 FP Floating-point operation
10 SG Signed integer operation
11 - Reserved

31 28 27 25 24 20 19 15 14 12 11 7 6 0

funct4 ps3 vs2 vs1 funct4 pd opcode
4 3 5 5 4 4 7

1000 pred src2 src1 EGT.[FPS] dest SO
1001 pred src2 src1 EQ.[FPS] dest SO
1001 pred src2 src1 LT.[FPS] dest SO

64

Unlimited Vector Extension Specification Revision

31 28 27 25 24 20 19 15 14 12 11 7 6 0

funct4 ps3 rs2 vs1 funct4 pd opcode
4 3 5 5 4 4 7

1000 pred src2 src1 EGTS.[FPS] dest SO
1001 pred src2 src1 EQS.[FPS] dest SO
1001 pred src2 src1 LTS.[FPS] dest SO

Lastly, because predicates may result from arithmetic operations on vectors
with an arbitrary element width, despite not having a defined data type them-
selves, conversion instructions are necessary to adapt a previously defined pre-
dicate to be applied to other vector operands of a different data type. This con-
version was done through the use of the so.p.cv instruction, which took the
source predicate and the destination register as operands. It also encoded the ele-
ment width to which the source predicate was to be converted in the width field,
according to Table 4.2, which was traduced into a suffix in the instruction name
(e.g., so.p.cv.b).

31 28 27 25 24 22 21 20 19 18 15 14 11 10 7 6 0

funct4 ps3 - width - ps1 funct4 pd opcode
4 3 3 2 1 4 4 4 7

1000 0 0 WTH 0 src1 CV dest SO

Updates to the Specification

Starting with the conversion instructions, it was noticed during the development
of this work that these instructions lacked information about the data type used
to configure the source register. While this is not a problem in vector conversion
instructions (see Section 4.3.4), predicate registers do not contain any informa-
tion about the data type, contrary to UVE vector registers. To perform a conver-
sion, the data width of the source predicate must be known, as it determines how
the source predicate is interpreted and converted. As such, the instruction now
features two width fields, dw and sw, for the destination and source predicates,
respectively. The behaviour of these instructions is exemplified in Figure 4.8.

so.p.cv.d.w p2, p1 so.p.cv.w.d p2, p1

31 28 27 25 24 23 22 21 20 19 18 15 14 11 10 7 6 0

funct4 - pm dw sw - ps1 funct4 pd opcode
4 3 1 2 2 1 4 4 4 7

1000 0 PM WTH WTH 0 src1 CV dest SO

Additionally, a change that is present in every predicate instruction is the
inclusion of the pm field, which indicates the predication mode of the stream,

65

Chapter 4

similar to the stream configuration instructions in Section 4.3.1, and described
in Section 4.2. In this case, because merging is the default behaviour, if the bit
is set then zeroing is chosen and a suffix is added to the instruction name (i.e.,
so.p.zero.z).

31 28 27 25 24 23 20 19 15 14 12 11 7 6 0

funct4 ps3 pm - vs1 funct4 pd opcode
4 3 1 4 5 4 4 7

1000 pred PM 0 0 ZERO dest SO
1000 pred PM 0 0 ONE dest SO
1000 pred PM 0 src1 VR dest SO

31 28 27 25 24 23 19 18 15 14 12 11 7 6 0

funct4 ps3 pm - ps1 funct4 pd opcode
4 3 1 5 4 4 4 7

1000 pred PM 0 src1 NOT dest SO
1000 pred PM 0 src1 MV dest SO
1000 pred PM 0 src1 MVT dest SO

The comparison instructions were also revised, as there was no available en-
coding space for the required pm field. Upon analysis of the instruction set,
scalar comparisons were deemed dispensable, as they can be replaced with an
so.v.mvsv instruction followed by a regular vector predicate comparison. As
such, the scalar comparison instructions were removed, freeing up a bit 11, pre-
viously belonging to funct4 field. The naming of the greater or equal comparison
instruction was also changed to more closely resemble typical ISA naming con-
ventions.

31 28 27 25 24 20 19 15 14 12 11 10 5 6 0

funct4 ps3 vs2 vs1 funct3 pm pd opcode
4 3 5 5 3 1 4 7

1000 pred src2 src1 GE.[FPS] PM dest SO
1001 pred src2 src1 EQ.[FPS] PM dest SO
1001 pred src2 src1 LT.[FPS] PM dest SO

p2 10 10

127128 64 63 0191192255

p1 111 1 000 0

127128 64 63 32 3196 95160 159 0191192255 224 223

(a) Element widening (word to
double-word).

p2

10 10

127128 64 63 0191192255

p1

110 0 000 0

127128 64 63 32 3196 95160 159 0191192255 224 223

(b) Element narrowing (double-word to
word).

Figure 4.8: Illustration of so.p.cv instruction with different source and destina-
tion widths.

66

Unlimited Vector Extension Specification Revision

4.3.4 Vector Manipulation

These instructions allow for the transferring of data between vector registers, as
well as the conversion between vectors of different data types. They belong to
the StreamOps opcode region, with the mnemonic SO, and remain unchanged
from the original specification, apart from the removal of some instructions. Vec-
tor load/store instructions were deemed unnecessary, as they were simple non-
streaming vector memory access instructions, which can be easily replicated with
linear streams. Moreover, move instructions had "no stream" variants, which did
not trigger the iteration of source/destination streams, as UVE instructions do by
default when reading or writing from/to a register associated with a stream. Be-
cause data streaming is the main focus of UVE, these instructions were deemed
deprecated for now, simplifying the instruction set.

The remaining instructions take up to three operands: the destination, source,
and predicate registers. Two simple move instructions are available, so.v.mv ,
which moves the source vector into the destination, and so.v.mvt which first
reverses the vector. To perform vector-to-scalar and scalar-to-vector moves,
so.v.mvvs and so.v.mvsv are available, respectively. It should be noted that
in these cases, the destination register remains configured as scalar. Another in-
struction is available to create a vector from a scalar, so.v.dp , which broadcasts
the scalar value to the destination vector register, which is configured as vectorial.

31 27 26 23 22 20 19 15 14 12 11 7 6 0

funct5 funct4 ps2 vs1 funct3 vd opcode
5 4 3 5 3 5 7

10101 MV pred src1 0 dest SO
10101 MVT pred src1 0 dest SO

31 27 26 23 22 20 19 15 14 12 11 7 6 0

funct5 funct4 ps2 vs1 funct3 rd opcode
5 4 3 5 3 5 7

10101 DP pred src1 WTH dest SO

31 27 26 23 22 20 19 15 14 12 11 7 6 0

funct5 funct4 ps2 vs1 funct3 rd opcode
5 4 3 5 3 5 7

10101 MVVS 0 src1 0 dest SO

31 27 26 23 22 20 19 15 14 12 11 7 6 0

funct5 funct4 ps2 rs1 funct3 vd opcode
5 4 3 5 3 5 7

10101 MVSV 0 src1 WTH dest SO

To be able to convert the elements of a vector to different data types, the
so.v.cv instruction is available, which takes the source vector and the destin-
ation register as operands. This instruction performs the necessary narrowing or

67

Chapter 4

widening of the source vector to fit the destination element width, which is en-
coded in the width field, according to Table 4.2. These operations have a similar
behaviour as predicate conversion ones, illustrated in Figure 4.8. However, the
behaviour of the block of data that would be lost is not clearly defined yet. It was
initially proposed that the elements in the source register were implicitly right-
shifted after the conversion and, if associated with a stream, new values were
loaded to the now empty lanes. However, this behaviour has not been validated
and further testing is necessary, which is left for future work.

31 27 26 23 22 20 19 15 14 12 11 7 6 0

funct5 funct4 ps2 rs1 funct3 vd opcode
5 4 3 5 3 5 7

10110 CV.[FPS] 0 src1 WTH dest SO

4.3.5 Vector Control

In the StreamOps encoding space, two instructions to configure the vector length
are available, both to set and get the value from the VLEN CSR, so.c.setvl and
so.c.getvl , respectively. The so.c.setvl instruction takes the source register
as an operand, which contains the new value for VLEN, in bytes, and the des-
tination register, which is used to store the new value of VLEN. This value is the
minimum between the requested value and the maximum allowed, VLMAX, sim-
ilar to the equivalent RVV instructions (see Section 2.2.1). After the execution of
the instruction, the VLEN CSR is updated with the new value, and every vector
register is configured to the new length.

31 27 26 20 19 15 14 12 11 7 6 0

funct5 - rs1 funct3 rd opcode
5 7 5 3 5 7

10110 0 src1 SETVL dest SO
10110 0 src1 GETVL dest SO

The remaining instructions allow for explicit control over the streams, such as
suspension and resuming, as well as definite breaking of the stream: so.v.suspd ,
so.v.resum , and so.v.break , respectively. Additionally, the so.v.vload and
so.v.vstor instructions are available to load and store data from and to suspen-
ded streams.

31 27 26 15 14 12 11 7 6 0

funct5 - funct3 vd opcode
5 12 3 5 7

10110 0 SUSPD dest SO
10110 0 RESUM dest SO
10110 0 BREAK dest SO
10110 0 VLOAD dest SO
10110 0 VSTOR dest SO

68

Unlimited Vector Extension Specification Revision

4.3.6 Arithmetic and Logic Instructions

The instructions that perform SIMD arithmetic and logic operations on UVE vec-
tor registers (part of the StreamOps encoding space) are the most common in com-
putation loops. Although the element width is encoded in each register, the data
type as seen in Table 4.6 is not, so it must be present in each arithmetic instruction.
Simple instructions take two source operands and a destination, as well as a pre-
dicate register, and perform an element-wise operation. Particularly, so.a.mac
is a multiply-accumulate instruction, which multiplies the source operands and
adds the result to the value already in the destination register.

There is also an instruction to obtain the absolute value of every vector ele-
ment, which takes only one source operand, so.a.abs , which does not have
an unsigned version, as it can only operate on signed types. The so.a.inc and
so.a.dec instructions increment or decrement its only source operand, respect-
ively, storing the result in the destination register.

31 28 27 25 24 20 19 15 14 12 11 7 6 0

funct4 ps3 vs2 vs1 funct3 vd opcode
4 3 5 5 3 5 7

0000 pred src2 src1 ADD.[FPS] dest SO
0000 pred src2 src1 SUB.[FPS] dest SO
0001 pred src2 src1 MUL.[FPS] dest SO
0001 pred src2 src1 DIV.[FPS] dest SO
0011 pred 0 src1 ABS.[FP] dest SO
0011 pred src2 src1 MAC.[FPS] dest SO
0100 pred src2 src1 MIN.[FPS] dest SO
0100 pred src2 src1 MAX.[FPS] dest SO
0110 pred 0 src1 INC.[FP] dest SO
0110 pred 0 src1 DEC.[FPS] dest SO

Some reduction instructions are also present in this extension, which instead
of taking two source operands and performing an element-wise operation, take
only one source operand and a destination, and perform a reduction operation
on the vector elements, storing the scalar result in the destination stream register,
which is therefore configured as scalar.

Addition is a special case in this set of instructions, as it is the only
reduction operation that can accumulate the result with the destination re-
gister (so.a.adde.acc), which can also be a regular RISC-V scalar register
(so.a.adds.acc and so.a.adds.acc). In particular, in the floating-point vari-
ants of these instructions (so.a.adds.fp and so.a.adds.acc.fp), a RISC-V
floating-point register is required as the destination. This versatility is useful for
accumulating the result of a reduction operation in a loop, as it can be done in
a single instruction, something very common in computation kernels (e.g., SGD,
GEMVER, covariance used in Section 5.1.2).

69

Chapter 4

31 28 27 25 24 20 19 15 14 12 11 7 6 0

funct4 ps3 acc vs1 funct3 vd opcode
4 3 5 5 3 5 7

0010 pred ACC src1 ADDE.[FPS] dest SO
0101 pred 0 src1 MINE.[FPS] dest SO
0101 pred 0 src1 MAXE.[FPS] dest SO

31 28 27 25 24 20 19 15 14 12 11 7 6 0

funct4 ps3 acc vs1 funct3 fd opcode
4 3 5 5 3 5 7

0010 pred ACC src1 ADDS.[FPS] dest SO

Lastly, several SIMD logic instructions are available, which perform bit-wise
operations on the source operands, storing the result in the destination register.
In detail, both logical (zero-extending) and arithmetic (sign-extending) shift right
instructions are available, as seen in RVV, (so.a.srl) and so.a.sra , respect-
ively. The shift-amount value is encoded in the second source operand, which
can be a vector or regular RISC-V register.

31 28 27 25 24 20 19 15 14 12 11 7 6 0

funct4 ps3 vs2 vs1 funct3 vd opcode
4 3 5 5 3 5 7

1100 pred src2 src1 NAND dest SO
1100 pred src2 src1 AND dest SO
1100 pred src2 src1 OR dest SO
1100 pred src2 src1 NOR dest SO
1100 pred src2 src1 XOR dest SO
1100 pred 0 src1 NOT dest SO
1101 pred src2 src1 SLL dest SO
1101 pred src2 src1 SRL dest SO
1101 pred src2 src1 SRA dest SO

31 28 27 25 24 20 19 15 14 12 11 7 6 0

funct4 ps3 rs2 vs1 funct3 vd opcode
4 3 5 5 3 5 7

1101 pred src2 src1 SLLS dest SO
1101 pred src2 src1 SRLS dest SO
1101 pred src2 src1 SRAS dest SO

4.4 Summary

This chapter detailed how some issues were found, through tests performed on
the simulator presented in Chapter 3, which revealed caveats in the original spe-
cification. Furthermore, while attempting to describe more complex patterns in
new computation kernels, several features were found to be missing. These in-
clude:

70

Unlimited Vector Extension Specification Revision

• The need for multiple modifiers per dimension;

• The necessity of explicitly indicating the target dimension of a modifier;

• Scatter-gather dynamic modifiers;

• The need for scalar streams;

• New predication policies.

Then, the new ISA encoding was presented, with all the necessary changes
to support these features. Most of these features were also implemented on the
simulator, which was used to test the new specification. The results of these tests
are presented in Section 5.1.2.

It is important to note that the new specification is not yet final, and as more
complex patterns are tested, new features may be added. However, the current
specification is already a significant improvement over the original one, and it
represents the base for the first stable release of the UVE extension. Moreover,
support for some of the new features, such as the new scatter-gather dynamic
modifiers, has yet to be added to the microarchitecture of UVE and tested in
hardware. While this is outside the scope of this work, it is expected that the
new features will be implemented in the future, and hardware constraints may
lead to a new revision of the extension.

71

Chapter 5

Experimental Results and Discussion

In order to provide a meaningful evaluation of any instruction set, ISA simulat-
ors are widely used and indispensable tools [73]. One of the main goals of this
work was to provide a framework that allowed the development and validation
of the UVE ISA, based on Spike, the official RISC-V ISA simulator, as described in
Chapter 3. This chapter presents the proposed framework beyond the simulator,
as well as ISA performance evaluation results it provides.

5.1 Framework

After extending the Spike simulator to support data streaming and UVE instruc-
tions, other components were added to the framework to provide a complete
environment for the development and validation of the UVE ISA. The complete
design of the framework is shown in Figure 5.1.

LLVM/GCC
Compiler

Validation
Script

Benchmarks
kernel.c main.c

Sp
ik

e
Si

m
ul

a
to

r

RISC-V
Opcodes
Package

encoding.h decode.h

UVE
instructions

Descriptors

Modifier

Dimension

Processor

Streaming Unit

Streaming Register

Predicate Register

MMU

Results

Figure 5.1: Framework structure.

73

Chapter 5

5.1.1 Supported Features

As seen in Chapter 4, the specification of the extension was updated in parallel
to the development of the simulator. Most of the described features were imple-
mented in the simulator, which currently supports the following instructions:

• 58 arithmetic and logic instructions;

• 16 branch instructions;

• 24 predicate instructions;

• 11 vector manipulation instructions;

• 49 stream configuration instructions.

This totals 158 instructions across all types except vector control, which was
not implemented, as it is more related to the architecture and not the functional
behaviour of the extension, the focus of this work. Stream configuration instruc-
tions are by far the largest group of instructions, both in the old specification and
in the updated version. Now deprecated modl and ind instructions were never im-
plemented in the simulator, which amounted to 240 indirection instructions and
12 for static modifiers. This left 30 instructions for dynamic modifiers and 12 for
static modifiers, which were all implemented on the simulator. However, because
of the changes described in Section 4.3.1, END instructions were later removed,
cutting this number to half. With the addition of 10 new scatter-gather instruc-
tions, a total of 31 modifier-related instructions exist and are all implemented in
the simulator. Despite this, the new explicitly defined target modifier appending
ones are not yet present in the simulator (amounting to 48 instructions for static
modifiers and 120 for dynamic modifiers). These were left out due to the time
constraints of this work, but they are expected to be implemented in the near fu-
ture. As the only studied benchmark that required this functionality was SYRK
(Symmetric Rank-K Update) (see Section 4.1.3), it is not used in this work.

As it stands, the simulator is still lacking support for some new features, such
as explicit predication policy configuration, new predicate width-conversion in-
structions, and header instructions. However, it supports the most important
features of the new specification, as well as all the maintained features from the
original one, excluding cache and direct stream control (so.c instructions).

5.1.2 Benchmarks

In order to validate UVE, as any other ISA extension, a wide set of benchmarks is
necessary, which allows all features to be tested and instructions to be executed.

74

Experimental Results and Discussion

This extension is intended to be used in applications that can benefit from the
vectorisation of their data, which are present in a variety of domains, including
memory-intensive applications such as Artificial Intelligence (AI)-based ones, lin-
ear algebra, stencils, and data mining. As such, several benchmarks from these
fields of applications were implemented by making use of UVE, not only to show-
case its usage but also to demonstrate its potential in instruction reduction. The
original C/C++ code was taken from public benchmark suites [68, 74].

The complete set of used benchmarks and their characteristics are shown in
Table 5.1. An attempt to include a representative set of benchmarks was made
both in terms of complexity and memory access patterns. There is at least one
kernel where each type of modifier is employed, covariance was successfully im-
plemented with two modifiers in a single dimension, and the novel scatter-gather
dynamic modifier was included in a version of SpMV (Sparse Vector-Matrix Mul-
tiplication). This is an important benchmark, as it was only possible to implement

Table 5.1: Benchmarks used for testing and respective characteristics.

Benchmark
Num. of Num. of Max. Loop Memory Access
Streams Kernels* Nesting Pattern

M
em

or
y

Memcpy 1 1 1 1D

Stream 10 4 2 2D

BL
A

S SAXPY 3 1 1 1D

GEMM 6 2 3 3D

A
lg

eb
ra

3MM 3 3 3 3D

MVT 8 2 2 2D

GEMVER 17 4 2 2D

Trisolv 5 1 2 2D + Static Modifier

St
en

ci
l

Jacobi-1D 8 2 1 1D

Jacobi-2D 12 2 2 2D

M
L/

A
I

Convolution 10 1 1 2D

SGD 9 3 3 3D

D
at

a
M

in
in

g

Covariance 9 3 3 4D + 2 Static Modifiers

SpMV-1 4 1 2 3D + Dynamic Modifier

SpMV-2 6 1 2 2D + Dynamic SG Modifier

* The number of kernels corresponds to the number of disjunct loop statements (i.e., excluding nested loops).

75

Chapter 5

due to the proposed changes to the original specification, representing a common
Sparse Linear Algebra computation kernel, one of the main fields of application
targeted by this work.

In each benchmark, RISC-V instruction rdinsret was added before and after
each kernel. This instruction reads the INSTRET CSR, which is part of the base ISA
specification and supported by Spike. The value that is stored in the CSR is the
number of retired instructions1 at the point of execution. By reading this value in
these two moments, it is possible to obtain the dynamic instruction count, which
differs from a static count that is obtained by simply disassembling a program
with a compiler. It is a much more meaningful metric for ISA performance evalu-
ation, as it is the exact number of executed instructions (e.g., with executed loops).
This instruction count was manually validated in the SAXPY kernel, to ensure
that the number of executed instructions was as expected.

Matrix Multiplication UVE Implementation Example

To better understand how C/C++ code can be ported to UVE with the specifica-
tion that is currently supported by the simulator, Figure 5.2 illustrates how a mat-
rix multiplication kernel was implemented in the 3mm benchmark (three-matrix-
multiplication).

Each source matrix is described in three dimensions, each equivalent to a
loop in the original C/C++ code. The innermost loop loads matrix A line by
line, and matrix B column by column. In order to correctly perform the matrix
multiplication, each line of A is loaded NJ consecutive times, while B is loaded
column by column NI times. Each line is multiplied by the respective column,
A[i][k]*B[k][j], and the result is accumulated for each C[i][j] element. This
matrix only requires two dimensions to be described, as it is accessed element by
element. In fact, it could also be described in one dimension, as it is accessed se-
quentially (d1:{&C, NI*NJ, 1}). The processing of each line and column must be
performed in separate iterations, not to mix elements from other lines/columns
in the vector register. This is why the ss.cfg.vec instruction is employed in
the first dimension of both A and B, as it stops the SE from proceeding with the
iteration process and filling the vector register once a line/column has been com-
pletely loaded.

The translation of the descriptors in Figure 5.2B into UVE code is shown in
Figure 5.2C, which also includes the computation kernel. This kernel performs
the multiplication of the vectors and the accumulation of the results, which is
then stored in the C matrix. Innermost loop control is achieved by checking if
the first dimension of B has ended, i.e., if a single column has been consumed (A

1Instructions Retired is a commonly used performance evaluation metric which corresponds to
the number of instructions that were completely executed (i.e., excluding speculatively executed
instructions that end up not being necessary for the program flow).

76

Experimental Results and Discussion

A. C code

for (i = 0; i < NI; i++)

 for (j = 0; j < NJ; j++)

 C[i][j] = 0;

 for (k = 0; k < NK; k++)

 C[i][j] += A[i][k] * B[k][j] ;

B. Pattern description

M
a

tr
ix

 A
(N

I x
 N

K
)

d1 (repeated NJ times: d2)

d3

d1: {&A, NK, 1}

d2: {0, NJ, 0}

d3: {0, NI, NK}

M
a

tr
ix

 B
(N

K
 x

 N
J)

d2 (repeated NI times: d3)

d1

d1: {&B, NK, NJ}

d2: {0, NJ, 1}

d3: {0, NI, 0}

M
a

tr
ix

 C
(N

I x
 N

J)

d2

d1

d1: {&C, NJ, 1}

d2: {0, NI, NJ}

C. UVE code

C
om

pu
ta

tio
n

iLoop:

 so.v.dp.d

 kLoop:

 so.a.mul.fp

 so.a.add.fp

 so.b.ndc.1

 so.a.adde.fp

so.b.nc

u21, 0, p0

u22, u1, u2, p0

u21, u21, u22, p0

u2, kLoop

u3, u21, p0

u2, iLoop

Implicit
loads

Duplicate

Implicit
store

Legend: Configuration: ss

Arithmetic: so.a

Branching: so.b

Vector: so.vIn
st

ru
ct

io
ns

{offset, size, stride}Descriptor:

u0-u31: streaming registers

p0: default predicate register

Registers:St
re

am
 C

on
fi

gu
ra

tio
n

ss.sta.ld.d

ss.app

ss.end

ss.cfg.vec

u1, A, NI, NK

u1, 0, NJ, 0

u1, 0, NI, 1

u1

M
a

tr
ix

 A

ss.sta.ld.d

ss.app

ss.end

ss.cfg.vec

u2, B, NI, 0J

u2, 0, NJ, 1

u2, 0, NK, NJ

u2

M
a

tr
ix

 B

ss.sta.st.d

ss.end

u3, C, NI, NJ

u3, 0, NJ, 1

M
a

tr
ix

 C

Start configuration; set d3

Set d1 vector coupling

Set d1 vector coupling

Set d2

End configuration; set d1

Start configuration; set d2

End configuration; set d1

Start configuration; set d3

Set d2

End configuration; set d1

Figure 5.2: Matrix multiplication kernel as implemented on the developed frame-
work.

could have similarly been used, instead checking if a line has been consumed,
which is equivalent as both have size NK). The final reduction is performed after
this loop, with implicit storing of the result in the store stream. The outermost
loop executes until the B load stream finishes, i.e., until each column of matrix
B has been accessed NI times (which is also when the A load stream and C store
stream finish).

5.1.3 Additional Artefacts

To make the proposed framework work seamlessly and to provide a complete en-
vironment for the development and validation of the UVE ISA, several additional
artefacts were included. These include a set of scripts to automate the process of
compiling, running, and validating the results from each benchmark. Developed
in JavaScript, they allow the developer to easily compare results from different
runs, different data types, and different compilation flags23.

Both GCC and LLVM are included in the framework, but only GCC has full
UVE backend support (i.e., assembly instruction recognition). While the LLVM
compiler is still under development, autovectorisation of some patterns is already
possible. Benchmarks GEMM, GEMVER, Convolution, Covariance, and SpMV-1/2
were autovectorised by LLVM and hand-verified and corrected. This means that

2https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
3https://clang.llvm.org/docs/CommandGuide/clang.html

77

https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://clang.llvm.org/docs/CommandGuide/clang.html

Chapter 5

the developed framework was already used to validate UVE autovectorisation
support by LLVM, which was also one of its intended purposes. It is expected that
this compiler will soon be completely integrated into the framework, replacing
GCC as the main compiler.

5.2 Instruction Count Evaluation

The developed framework makes it possible to assess the performance of the
UVE ISA in terms of instruction count. Originally, this evaluation was performed
using a modified version of the gem5 simulator, which did not support RVV at
that time. As such, the original specification was compared with Arm SVE and
Neon, which were supported by the simulator. This evaluation was dependent
on the implemented microarchitecture, based on the Arm Cortex-A76.

In this work, by using the RISC-V ISA simulator, Spike, it is possible to val-
idate the ISA independently from a chosen microarchitecture. Moreover, it sup-
ports RVV, the official vector extension of the base ISA. As such, each benchmark
presented in Table 5.1 from Section 5.1.2 was executed using UVE and RVV. Each
RVV kernel was obtained directly from the scalar C/C++ code through the LLVM
compiler with autovectorisation support4. With this in mind, RVV code was not
hand-optimised, opposite to UVE which was manually vectorised directly in as-
sembly. To minimise the impact of this difference, the RVV kernels were compiled
with full optimisation (-O3 flag activated), with and without loop unrolling. On
Spike, the RVV extension was enabled with VLMAX=512 and ELEN=64, to match
UVE configurations.

Each kernel was written for the four data widths supported by UVE: byte (8-
bit), half-word (16-bit), word (32-bit), and double (64-bit) whenever possible. The
first two were only validated for signed integer data type operations, while word
kernels were validated for both signed integer and floating-point operations. The
double data type was only validated for floating-point operations. The size of the
dataset was 2500 elements for all benchmarks, except for SGD and SpMV-1/2,
which used specific datasets. SGD (Stochastic Gradient Descent) used a data-
set with 4420 elements and was executed during 100 epochs. SpMV-1/1 (Sparse
Matrix-Vector Multiplication) used an ellpack format sparse matrix [75, 76] with
1666 non-zero elements5. The convolution kernel performed a 2D convolution
with a 3x3 kernel on a 50x50 image.

Figure 5.3 shows the retired instruction count for each benchmark, for each
data type. The number of instructions tends to increase with the data width for
UVE, which is expected, as the number of elements processed in parallel de-

4https://llvm.org/docs/Vectorizers.html
5https://sparse.tamu.edu/HB/494_bus

78

https://llvm.org/docs/Vectorizers.html
https://sparse.tamu.edu/HB/494_bus

Experimental Results and Discussion

creases. This leads to more loop iterations being necessary to process the same
chunk of data. However, this behaviour is not observed for RVV, whose beha-
viour is less consistent. This is presumably due to the autovectorisation process,
which was not hand-optimised. The comparison between scalar, RVV and UVE
code is presented in Figure 5.4 and Figure 5.5.

0

1

2

3

1e6 3mm

0

100000

200000

convolution

0

200000

400000

600000

covariance

0.0

0.5

1.0

1e6 gemm

0

25000

50000

75000

gemver

2000

4000

6000

8000
jacobi-1d

5000

10000

15000
jacobi-2d

0

1000

2000
memcpy

0

20000

40000

mvt

1000

2000

saxpy

byte half-word integer float double
0

5000

10000
stream

byte half-word integer float double
0

5000

10000

trisolv

N
um

be
r

of
 In

st
ru

ct
io

ns

RVV UVE

Figure 5.3: UVE and RVV (with loop unrolling) instruction count of executed
benchmarks for each data type. Benchmarks that are only available for one data
type were omitted.

79

Chapter 5

In order to improve RVV performance, loop unrolling was enabled during
compilation, to observe if this way it could match UVE performance. The com-
parison results with RVV without loop unrolling are presented in Appendix B. It
was not possible to evaluate RVV against UVE on the trisolv benchmark, as the
compiler failed to vectorise this kernel.

In some byte-type benchmarks, RVV performs very poorly, executing more
instructions than scalar code, as seen in Figure 5.5a. It fails to improve in every
instance of the 3mm kernel, which may be due to autovectorisation limitations.
Moreover, it extremely underperforms in the SpMV-2 double-precision bench-
mark, which includes scatter-gather memory accesses. While it is evident that
both RVV and UVE generally improve over scalar code, executing a very small
fraction of instructions, it is observed that UVE outperforms RVV in all cases. It
also seems to support more complex patterns, as it consistently succeeds when
RVV fails to improve over scalar code. It is observed that RVV performance im-
proves in some benchmarks, but it still underperforms UVE in all cases.

To more accurately compare the two extensions, the UVE instruction reduc-
tion relative to RVV was also calculated and is presented in Figure 5.6 for the
double-precision benchmarks. For other data widths, the results are presented in
Appendix B. With this metric, it is possible to verify that UVE executes fewer in-
structions than RVV in all cases. The average improvement of UVE over RVV
is 78.42% without loop unrolling, and 74.84% with loop unrolling in double-
precision applications. This shows that UVE is consistently more efficient than
RVV in terms of instruction count, even when loop unrolling is enabled.

48
52
56
60
64
68
72
76
80
84
88
92
96
% RVV UVE

3m
m

co
nv

olu
tio

n

co
va

ria
nce

ge
mm

ge
mve

r

jac
ob

i-1
d

jac
ob

i-2
d

mem
cp

y
mvt

sa
xp

y
sg

d

sp
mv-1

sp
mv-2

str
ea

m
tris

olv
-14
-10

-6
-2
2

Figure 5.4: Percentage of reduction of instructions in double-precision floating-
point RVV with loop unrolling and UVE benchmarks, relative to scalar code(
1 − Instextension

Instscalar

)
. To exemplify, the UVE SpMV-2 kernel achieved a 92% instruc-

tion reduction, while RVV executed 12% more instructions than scalar code.

80

Experimental Results and Discussion

58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

100
% RVV UVE

3m
m

co
nv

olu
tio

n

co
va

ria
nce

ge
mm

ge
mve

r

mem
cp

y
mvt

sa
xp

y

str
ea

m
tris

olv
2
0
2

(a) Signed char (8 bits).

82
84
86
88
90
92
94
96
98

100
% RVV UVE

44
46
48

3m
m

co
nv

olu
tio

n

co
va

ria
nce

ge
mm

ge
mve

r

mem
cp

y
mvt

sa
xp

y

str
ea

m
tris

olv
4
2
0
2

(b) Signed short integer (16 bits).

94

96

98
% RVV UVE

46

48

50

52

54

3m
m

co
nv

olu
tio

n

co
va

ria
nce

ge
mm

ge
mve

r

mem
cp

y
mvt

sa
xp

y

str
ea

m
tris

olv
4

2

0

2

(c) Signed integer (32 bits).

86
88
90
92
94
96
98

100
% RVV UVE

44
46
48
50
52
54

3m
m

co
nv

olu
tio

n

co
va

ria
nce
ge

mm

ge
mve

r

jac
ob

i-1
d

jac
ob

i-2
d

mem
cp

y
mvt

sa
xp

y

str
ea

m
tris

olv
4
2
0
2

(d) Single-precision floating-point (32 bits).

Figure 5.5: Percentage of reduction of instructions in different data type RVV with
loop unrolling and UVE benchmarks, relative to scalar code

(
1 − Instextension

Instscalar

)
.

5.3 Summary

This chapter showed the two main results from this work: the complete func-
tional simulation environment for UVE and a quantitative evaluation of the ISA,
through the counting of retired instructions. This evaluation was performed with
a wide set of benchmarks and used both scalar and RVV code as the baseline for
comparison. The results show that UVE consistently outperforms RVV in terms

81

Chapter 5

3m
m

co
nv

olu
tio

n

co
va

ria
nce

ge
mm

ge
mve

r

jac
ob

i-1
d

jac
ob

i-2
d

mem
cp

y
mvt

sa
xp

y
sg

d

sp
mv-1

sp
mv-2

str
ea

m
tris

olv
50

60

70

80

90

100
%

78.42%

Average

(a) UVE vs RVV without loop unrolling.

3m
m

co
nv

olu
tio

n

co
va

ria
nce

ge
mm

ge
mve

r

jac
ob

i-1
d

jac
ob

i-2
d

mem
cp

y
mvt

sa
xp

y
sg

d

sp
mv-1

sp
mv-2

str
ea

m
tris

olv
50

60

70

80

90

100
%

74.84%

Average

(b) UVE vs RVV with loop unrolling.

Figure 5.6: Double-precision floating-point UVE reduction of retired instructions,
relative to RVV

(
1 − InstUVE

InstRVV

)
. (a) shows the percentual reduction of instructions

relative to RVV without loop unrolling, while (b) shows the reduction of instruc-
tions relative to RVV with loop unrolling.

of executed instruction. The UVE extension achieves an average improvement of
78.42% relative to RVV without loop unrolling in double-precision benchmarks.
Even when performing loop unrolling on the latter, UVE is still able to reduce the
number of retired instructions by an average of 74.84%.

82

Chapter 6

Conclusion

By relying on data streaming, the Unlimited Vector Extension decouples memory
accesses from computation, which allows memory access logic to be moved to a
co-processor, the Streaming Engine (SE). On the other hand, it is also a vectorial
ISA extension, which improves computation performance through SIMD opera-
tions. Several emerging applications, such as machine learning and image pro-
cessing, are particularly well-suited to SIMD computation, and these extensions
allow performance improvements without the need for dedicated external accel-
erators. Moreover, due to the rise of the Internet of Things (IOT), these applic-
ations are evermore common in portable and embedded devices, where power
consumption is a critical factor. The predominant architecture in these devices is
RISC, where the increasingly popular and open-source RISC-V stands out. This
is the target architecture for the UVE extension, making it a relevant contribution
to the field.

While the extension was validated through a proof-of-concept implement-
ation on the gem5 simulator, the development of the UVE specification is still
ongoing. Because of the constraints imposed by this simulator, the first UVE im-
plementation has since been considered deprecated, creating a need for a new
simulation and validation framework that is also independent of the microar-
chitecture and pipeline modifications to a specific processor. This framework is
presented in this work, complete with validation mechanisms, debugging sup-
port, and instruction counting capabilities. This new simulation environment is
based on the Spike simulator, which is a functional RISC-V Instruction Set Sim-
ulator (ISS) that is widely used as the proof-of-concept target for every RISC-V
extension ISA validation. The simulator was extended to support data streaming
through a Streaming Unit (SU) that emulates the functional behaviour of the SE,
the main component of the UVE supporting microarchitecture. In this work, over
150 instructions were implemented on Spike, which allowed 15 benchmarks from
a wide range of applications to be executed and validated.

A revision of the specification was equally presented, with new instructions

83

Chapter 6

and features, such as scatter-gather descriptors, scalar streaming processing, and
overall higher attainable memory pattern access complexity. Unnecessary in-
structions were removed from the extension and existing ones were improved
to further reduce instruction overhead. This resulted in a more efficient and ef-
fective UVE ISA that is suitable for a wider range of applications.

The developed framework provided an independent functional validation of
UVE. The used set of benchmarks proved the correctness of the specification and
provided a quantitative evaluation of the ISA extension against RVV, which had
not yet been made. The results showed that the UVE extension can decrease the
number of retired instructions by up to 99% when compared to scalar code, and
by an average of 75% when compared to the RVV extension in double-precision
applications. This is a significant improvement, consistent with the obtained res-
ults in the original work, and it is a strong indicator of the potential of UVE.

6.1 Future Work

While the initial goals of this work were achieved, there are other aspects that
need to be addressed in the future. Firstly, the proposed modifications to the ex-
tension have yet to be entirely implemented on Spike, as new header and modifier
configuration instructions were left out due to time constraints. Adding these
new features will allow the new specification to be fully validated before it is
implemented on a real hardware platform. Moreover, data width conversion in-
structions need more thorough evaluation, as they have not been tested in the
current framework and their behaviour is not yet fully formalised.

One aspect that can be evaluated and improved is the size of the predicate
registers. Currently, they have the same size as the streaming registers, but an
approach similar to SVE could be more beneficial. This extension maps a single
bit of the predicate to each value in the vector register, effectively reducing the
necessary size of the predicate register to the maximum byte-sized elements a
vector register can hold (in the proposed UVE implementation it would be 64
bits, as vector registers are 512 bits wide). Moreover, explicit predication should
be more thoroughly evaluated, as it was not explored extensively enough in the
validated benchmarks.

To improve the portability of UVE, the LLVM compiler with UVE autovector-
isation support must be developed. This work is currently under development
and is expected to be released in the near future.

Finally, the proposed specification must be implemented in a new cycle-
accurate simulator. This will provide an assessment of its real performance bey-
ond instruction counts, such as power consumption and speed-up, which are
more realistic evaluation metrics of the complete extension.

84

References

[1] João Mário Domingos. ‘Unlimited Vector Extension with Data Streaming
Support’. MA thesis. Instituto Superior Técnico, Oct. 2020.

[2] ARM. Learn the architecture - Introducing Neon. 2020. URL: https://develop
er.arm.com/documentation/102474.

[3] Chris Lomont. ‘Introduction to Intel® Advanced Vector Extensions’. In:
(2011).

[4] Hossein Amiri and Asadollah Shahbahrami. ‘SIMD programming using In-
tel vector extensions’. In: Journal of Parallel and Distributed Computing 135
(Jan. 2020), pp. 83–100. ISSN: 07437315. DOI: 10.1016/j.jpdc.2019.09.012.

[5] RISC-V. Working draft of the proposed RISC-V V vector extension. 2023. URL:
https://github.com/riscv/riscv-v-spec.

[6] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole,
Giacomo Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Martinez,
Nathanael Premillieu, Alastair Reid, Alejandro Rico and Paul Walker. ‘The
ARM Scalable Vector Extension’. In: IEEE Micro 37.2 (2017), pp. 26–39. DOI:
10.1109/MM.2017.35.

[7] Adrian Barredo, Juan M. Cebrian, Miquel Moreto, Marc Casas and Mateo
Valero. ‘Improving Predication Efficiency through Compaction/Restora-
tion of SIMD Instructions’. In: 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). San Diego, CA, USA: IEEE, Feb.
2020, pp. 717–728. ISBN: 978-1-72816-149-5. DOI: 10.1109/HPCA47549.2020
.00064. URL: https://ieeexplore.ieee.org/document/9065430/.

[8] Angela Pohl, Mirko Greese, Biagio Cosenza and Ben Juurlink. ‘A Perform-
ance Analysis of Vector Length Agnostic Code’. In: 2019 International Con-
ference on High Performance Computing & Simulation (HPCS). Dublin, Ireland:
IEEE, July 2019, pp. 159–164. ISBN: 978-1-72814-484-9. DOI: 10.1109/HPCS4
8598.2019.9188238. URL: https://ieeexplore.ieee.org/document/9188
238/.

85

https://developer.arm.com/documentation/102474
https://developer.arm.com/documentation/102474
https://doi.org/10.1016/j.jpdc.2019.09.012
https://github.com/riscv/riscv-v-spec
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/HPCA47549.2020.00064
https://doi.org/10.1109/HPCA47549.2020.00064
https://ieeexplore.ieee.org/document/9065430/
https://doi.org/10.1109/HPCS48598.2019.9188238
https://doi.org/10.1109/HPCS48598.2019.9188238
https://ieeexplore.ieee.org/document/9188238/
https://ieeexplore.ieee.org/document/9188238/

Chapter 6

[9] Joao Mário Domingos, Nuno Neves, Nuno Roma and Pedro Tomás. ‘Un-
limited Vector Extension with Data Streaming Support’. In: 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA). Valen-
cia, Spain: IEEE, June 2021, pp. 209–222. ISBN: 978-1-66543-333-4. DOI: 10.1
109/ISCA52012.2021.00025. URL: https://ieeexplore.ieee.org/docume
nt/9499750/.

[10] RISC-V. RISC-V ISA Simulator. C/C++. Dec. 2021. URL: https://github.c
om/riscv-software-src/riscv-isa-sim.

[11] ARM. Helium Architecture. URL: https://developer.arm.com/Architectu
res/Helium.

[12] Alexander Heinecke, Thomas Auckenthaler and Carsten Trinitis. ‘Exploit-
ing State-of-the-Art x86 Architectures in Scientific Computing’. In: 2012
11th International Symposium on Parallel and Distributed Computing. 2012,
pp. 47–54. DOI: 10.1109/ISPDC.2012.15.

[13] G. Conte, S. Tommesani and F. Zanichelli. ‘The long and winding road to
high-performance image processing with MMX/SSE’. In: Proceedings Fifth
IEEE International Workshop on Computer Architectures for Machine Perception.
Padova, Italy: IEEE Comput. Soc, 2000, pp. 302–310. ISBN: 978-0-7695-0740-
8. DOI: 10.1109/CAMP.2000.875989. URL: http://ieeexplore.ieee.org/d
ocument/875989/.

[14] S. Oberman, G. Favor and F. Weber. ‘AMD 3DNow! technology: architec-
ture and implementations’. In: IEEE Micro 19.2 (1999), pp. 37–48. DOI: 10.1
109/40.755466.

[15] R.M. Ramanathan, Ron Curry, Srinivas Chennupaty, Robert L. Cross, Shi-
hjong Kuo and Mark J. Buxton. ‘Extending the World’s Most Popular Pro-
cessor Architecture’. In: White Paper (2006).

[16] Adrian Barredo, Juan M. Cebrian, Mateo Valero, Marc Casas and Miquel
Moreto. ‘Efficiency analysis of modern vector architectures: vector ALU
sizes, core counts and clock frequencies’. In: The Journal of Supercomputing
76.3 (Mar. 2020), pp. 1960–1979. ISSN: 0920-8542, 1573-0484. DOI: 10.1007/s
11227-019-02841-6.

[17] Arm. ‘Learn the architecture - Introducing SVE2 guide’. In: (2023). URL: ht
tps://developer.arm.com/documentation/102340/0100/.

[18] Peng Sun, Giacomo Gabrielli and Timothy M. Jones. ‘Speculative Vector-
isation with Selective Replay’. In: 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). 2021, pp. 223–236. DOI: 10.110
9/ISCA52012.2021.00026.

[19] Arm. SVE Optimization Guide. 2021. URL: https://developer.arm.com/do
cumentation/102699/0100.

86

https://doi.org/10.1109/ISCA52012.2021.00025
https://doi.org/10.1109/ISCA52012.2021.00025
https://ieeexplore.ieee.org/document/9499750/
https://ieeexplore.ieee.org/document/9499750/
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://developer.arm.com/Architectures/Helium
https://developer.arm.com/Architectures/Helium
https://doi.org/10.1109/ISPDC.2012.15
https://doi.org/10.1109/CAMP.2000.875989
http://ieeexplore.ieee.org/document/875989/
http://ieeexplore.ieee.org/document/875989/
https://doi.org/10.1109/40.755466
https://doi.org/10.1109/40.755466
https://doi.org/10.1007/s11227-019-02841-6
https://doi.org/10.1007/s11227-019-02841-6
https://developer.arm.com/documentation/102340/0100/
https://developer.arm.com/documentation/102340/0100/
https://doi.org/10.1109/ISCA52012.2021.00026
https://doi.org/10.1109/ISCA52012.2021.00026
https://developer.arm.com/documentation/102699/0100
https://developer.arm.com/documentation/102699/0100

References

[20] N. Clark, M. Kudlur, Hyunchul Park, S. Mahlke and K. Flautner.
‘Application-Specific Processing on a General-Purpose Core via Trans-
parent Instruction Set Customization’. In: 37th International Symposium on
Microarchitecture (MICRO-37’04). Portland, OR, USA: IEEE, 2004, pp. 30–40.
ISBN: 978-0-7695-2126-8. DOI: 10.1109/MICRO.2004.5. URL: http://ieeexp
lore.ieee.org/document/1550980/.

[21] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani,
Nadathur Satish, Karthikeyan Sankaralingam and Changkyu Kim. ‘DySER:
Unifying Functionality and Parallelism Specialization for Energy-Efficient
Computing’. In: IEEE Micro 32.5 (2012), pp. 38–51. DOI: 10.1109/MM.2012
.51.

[22] Snehasish Kumar, Nick Sumner, Vijayalakshmi Srinivasan, Steve Margerm
and Arrvindh Shriraman. ‘Needle: Leveraging Program Analysis to Ana-
lyze and Extract Accelerators from Whole Programs’. In: 2017 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 2017,
pp. 565–576. DOI: 10.1109/HPCA.2017.59.

[23] Amirali Sharifian, Snehasish Kumar, Apala Guha and Arrvindh Shrira-
man. ‘CHAINSAW: von-neumann accelerators to leverage fused instruc-
tion chains’. In: The 49th Annual IEEE/ACM International Symposium on Mi-
croarchitecture. MICRO-49. Taipei, Taiwan: IEEE Press, 2016.

[24] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia,
Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson and Michael Bed-
ford Taylor. ‘Conservation cores: reducing the energy of mature computa-
tions’. In: Proceedings of the Fifteenth International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS XV. Pitt-
sburgh, Pennsylvania, USA: Association for Computing Machinery, 2010,
pp. 20–218. ISBN: 9781605588391. DOI: 10.1145/1736020.1736044. URL:
https://doi.org/10.1145/1736020.1736044.

[25] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kartik
Hegde, Rangharajan Venkatesan, Stephen W. Keckler, Christopher W.
Fletcher and Joel Emer. ‘Buffets: An Efficient and Composable Storage
Idiom for Explicit Decoupled Data Orchestration’. In: Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. ASPLOS ’19. Providence, RI,
USA: Association for Computing Machinery, 2019, pp. 137–151. ISBN:
9781450362405. DOI: 10.1145/3297858.3304025. URL: https://doi.or
g/10.1145/3297858.3304025.

[26] Neal Clayton Crago and Sanjay Jeram Patel. ‘OUTRIDER: efficient memory
latency tolerance with decoupled strands’. In: Proceedings of the 38th An-
nual International Symposium on Computer Architecture. ISCA ’11. San Jose,
California, USA: Association for Computing Machinery, 2011, pp. 117–128.
ISBN: 9781450304726. DOI: 10.1145/2000064.2000079. URL: https://doi.o
rg/10.1145/2000064.2000079.

87

https://doi.org/10.1109/MICRO.2004.5
http://ieeexplore.ieee.org/document/1550980/
http://ieeexplore.ieee.org/document/1550980/
https://doi.org/10.1109/MM.2012.51
https://doi.org/10.1109/MM.2012.51
https://doi.org/10.1109/HPCA.2017.59
https://doi.org/10.1145/1736020.1736044
https://doi.org/10.1145/1736020.1736044
https://doi.org/10.1145/3297858.3304025
https://doi.org/10.1145/3297858.3304025
https://doi.org/10.1145/3297858.3304025
https://doi.org/10.1145/2000064.2000079
https://doi.org/10.1145/2000064.2000079
https://doi.org/10.1145/2000064.2000079

Chapter 6

[27] Tae Jun Ham, Juan L. Aragón and Margaret Martonosi. ‘DeSC: decoupled
supply-compute communication management for heterogeneous architec-
tures’. In: Proceedings of the 48th International Symposium on Microarchitecture.
MICRO-48. Waikiki, Hawaii: Association for Computing Machinery, 2015,
pp. 191–203. ISBN: 9781450340342. DOI: 10.1145/2830772.2830800. URL:
https://doi.org/10.1145/2830772.2830800.

[28] K.J. Nesbit and J.E. Smith. ‘Data Cache Prefetching Using a Global History
Buffer’. In: 10th International Symposium on High Performance Computer Ar-
chitecture (HPCA’04). 2004, pp. 96–96. DOI: 10.1109/HPCA.2004.10030.

[29] S. Somogyi, T.F. Wenisch, A. Ailamaki, B. Falsafi and A. Moshovos. ‘Spatial
Memory Streaming’. In: 33rd International Symposium on Computer Architec-
ture (ISCA’06). 2006, pp. 252–263. DOI: 10.1109/ISCA.2006.38.

[30] Thomas F. Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi
and Andreas Moshovos. ‘Practical off-chip meta-data for temporal memory
streaming’. In: 2009 IEEE 15th International Symposium on High Performance
Computer Architecture. 2009, pp. 79–90. DOI: 10.1109/HPCA.2009.4798239.

[31] Yasuo Ishii, Mary Inaba and Kei Hiraki. ‘Access map pattern matching for
data cache prefetch’. In: Proceedings of the 23rd International Conference on
Supercomputing. ICS ’09. Yorktown Heights, NY, USA: Association for Com-
puting Machinery, 2009, pp. 499–500. ISBN: 9781605584980. DOI: 10.1145/1
542275.1542349. URL: https://doi.org/10.1145/1542275.1542349.

[32] Yao Guo, Pritish Narayanan, Mahmoud Abdullah Bennaser, Saurabh Ch-
heda and Csaba Andras Moritz. ‘Energy-Efficient Hardware Data Prefetch-
ing’. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 19.2
(Feb. 2011), pp. 250–263. ISSN: 1063-8210, 1557-9999. DOI: 10.1109/TVLSI.2
009.2032916.

[33] Seth H Pugsley, Zeshan Chishti, Chris Wilkerson, Peng-fei Chuang, Robert
L Scott, Aamer Jaleel, Shih-Lien Lu, Kingsum Chow and Rajeev Balasub-
ramonian. ‘Sandbox Prefetching: Safe run-time evaluation of aggressive
prefetchers’. In: 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA). 2014, pp. 626–637. DOI: 10.1109/HPCA.2014
.6835971.

[34] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris Wilk-
erson, Seth H Pugsley and Zeshan Chishti. ‘Efficiently prefetching complex
address patterns’. In: 2015 48th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 2015, pp. 141–152. DOI: 10.1145/2830772.28
30793.

[35] Leeor Peled, Shie Mannor, Uri Weiser and Yoav Etsion. ‘Semantic locality
and context-based prefetching using reinforcement learning’. In: Proceed-
ings of the 42nd Annual International Symposium on Computer Architecture.
ISCA ’15. Portland, Oregon: Association for Computing Machinery, 2015,

88

https://doi.org/10.1145/2830772.2830800
https://doi.org/10.1145/2830772.2830800
https://doi.org/10.1109/HPCA.2004.10030
https://doi.org/10.1109/ISCA.2006.38
https://doi.org/10.1109/HPCA.2009.4798239
https://doi.org/10.1145/1542275.1542349
https://doi.org/10.1145/1542275.1542349
https://doi.org/10.1145/1542275.1542349
https://doi.org/10.1109/TVLSI.2009.2032916
https://doi.org/10.1109/TVLSI.2009.2032916
https://doi.org/10.1109/HPCA.2014.6835971
https://doi.org/10.1109/HPCA.2014.6835971
https://doi.org/10.1145/2830772.2830793
https://doi.org/10.1145/2830772.2830793

References

pp. 285–297. ISBN: 9781450334020. DOI: 10.1145/2749469.2749473. URL:
https://doi.org/10.1145/2749469.2749473.

[36] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish and Srinivas Deva-
das. ‘IMP: Indirect memory prefetcher’. In: 2015 48th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO). 2015, pp. 178–190. DOI:
10.1145/2830772.2830807.

[37] Pierre Michaud. ‘Best-offset hardware prefetching’. In: 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 2016,
pp. 469–480. DOI: 10.1109/HPCA.2016.7446087.

[38] Mohammad Bakhshalipour, Pejman Lotfi-Kamran and Hamid Sarbazi-
Azad. ‘An Efficient Temporal Data Prefetcher for L1 Caches’. In: IEEE Com-
puter Architecture Letters 16.2 (2017), pp. 99–102. DOI: 10.1109/LCA.2017.2
654347.

[39] Sam Ainsworth and Timothy M. Jones. ‘Software prefetching for indirect
memory accesses’. In: 2017 IEEE/ACM International Symposium on Code Gen-
eration and Optimization (CGO). 2017, pp. 305–317. DOI: 10.1109/CGO.2017
.7863749.

[40] Sushant Kondguli and Michael Huang. ‘Division of Labor: A More Effect-
ive Approach to Prefetching’. In: 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). 2018, pp. 83–95. DOI: 10.1109
/ISCA.2018.00018.

[41] Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-Kamran
and Hamid Sarbazi-Azad. ‘Bingo Spatial Data Prefetcher’. In: 2019 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
2019, pp. 399–411. DOI: 10.1109/HPCA.2019.00053.

[42] Ioan Hadade, Timothy M. Jones, Feng Wang and Luca di Mare. ‘Software
Prefetching for Unstructured Mesh Applications’. In: ACM Trans. Parallel
Comput. 7.1 (Mar. 2020). ISSN: 2329-4949. DOI: 10.1145/3380932. URL: http
s://doi.org/10.1145/3380932.

[43] B. Khailany, W.J. Dally, U.J. Kapasi, P. Mattson, J. Namkoong, J.D. Owens, B.
Towles, A. Chang and S. Rixner. ‘Imagine: media processing with streams’.
In: IEEE Micro 21.2 (2001), pp. 35–46. DOI: 10.1109/40.918001.

[44] Silviu Ciricescu, Ray Essick, Brian Lucas, Phil May, Kent Moat, Jim Nor-
ris, Michael Schuette and Ali Saidi. ‘The Reconfigurable Streaming Vector
Processor (RSVPTM)’. In: (2003).

[45] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim and Kenneth
A. Ross. ‘Q100: the architecture and design of a database processing unit’.
In: Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS ’14. Salt Lake City,
Utah, USA: Association for Computing Machinery, 2014, pp. 255–268. ISBN:

89

https://doi.org/10.1145/2749469.2749473
https://doi.org/10.1145/2749469.2749473
https://doi.org/10.1145/2830772.2830807
https://doi.org/10.1109/HPCA.2016.7446087
https://doi.org/10.1109/LCA.2017.2654347
https://doi.org/10.1109/LCA.2017.2654347
https://doi.org/10.1109/CGO.2017.7863749
https://doi.org/10.1109/CGO.2017.7863749
https://doi.org/10.1109/ISCA.2018.00018
https://doi.org/10.1109/ISCA.2018.00018
https://doi.org/10.1109/HPCA.2019.00053
https://doi.org/10.1145/3380932
https://doi.org/10.1145/3380932
https://doi.org/10.1145/3380932
https://doi.org/10.1109/40.918001

Chapter 6

9781450323055. DOI: 10.1145/2541940.2541961. URL: https://doi.org/1
0.1145/2541940.2541961.

[46] Nathan Clark, Amir Hormati and Scott Mahlke. ‘VEAL: Virtualized Execu-
tion Accelerator for Loops’. In: Proceedings of the 35th Annual International
Symposium on Computer Architecture. ISCA ’08. USA: IEEE Computer Soci-
ety, 2008, pp. 389–400. ISBN: 9780769531748. DOI: 10.1109/ISCA.2008.33.
URL: https://doi.org/10.1109/ISCA.2008.33.

[47] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani and Karthikeyan
Sankaralingam. ‘Stream-Dataflow Acceleration’. In: Proceedings of the 44th
Annual International Symposium on Computer Architecture. ISCA ’17. Toronto,
ON, Canada: Association for Computing Machinery, 2017, pp. 416–429.
ISBN: 9781450348928. DOI: 10.1145/3079856.3080255. URL: https://do
i.org/10.1145/3079856.3080255.

[48] Gabriel Weisz and James C. Hoe. ‘CoRAM++: Supporting data-structure-
specific memory interfaces for FPGA computing’. In: 2015 25th International
Conference on Field Programmable Logic and Applications (FPL). 2015, pp. 1–8.
DOI: 10.1109/FPL.2015.7294017.

[49] Zhengrong Wang and Tony Nowatzki. ‘Stream-Based Memory Access Spe-
cialization for General Purpose Processors’. In: Proceedings of the 46th In-
ternational Symposium on Computer Architecture. ISCA ’19. Phoenix, Ari-
zona: Association for Computing Machinery, 2019, pp. 736–749. ISBN:
9781450366694. DOI: 10.1145/3307650.3322229. URL: https://doi.org
/10.1145/3307650.3322229.

[50] Zhengrong Wang, Jian Weng, Jason Lowe-Power, Jayesh Gaur and Tony
Nowatzki. ‘Stream Floating: Enabling Proactive and Decentralized Cache
Optimizations’. In: 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 2021, pp. 640–653. DOI: 10.1109/HPCA51647
.2021.00060.

[51] Zhengrong Wang, Jian Weng, Sihao Liu and Tony Nowatzki. ‘Near-Stream
Computing: General and Transparent Near-Cache Acceleration’. In: 2022
IEEE International Symposium on High-Performance Computer Architecture
(HPCA). 2022, pp. 331–345. DOI: 10.1109/HPCA53966.2022.00032.

[52] Sérgio Paiágua, Frederico Pratas, Pedro Tomás, Nuno Roma and Ricardo
Chaves. ‘HotStream: Efficient Data Streaming of Complex Patterns to Mul-
tiple Accelerating Kernels’. In: 2013 25th International Symposium on Com-
puter Architecture and High Performance Computing. 2013, pp. 17–24. DOI: 10
.1109/SBAC-PAD.2013.17.

[53] Nishil Talati, Kyle May, Armand Behroozi et al. ‘Prodigy: Improving the
Memory Latency of Data-Indirect Irregular Workloads Using Hardware-
Software Co-Design’. In: 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). 2021, pp. 654–667. DOI: 10 . 1
109/HPCA51647.2021.00061.

90

https://doi.org/10.1145/2541940.2541961
https://doi.org/10.1145/2541940.2541961
https://doi.org/10.1145/2541940.2541961
https://doi.org/10.1109/ISCA.2008.33
https://doi.org/10.1109/ISCA.2008.33
https://doi.org/10.1145/3079856.3080255
https://doi.org/10.1145/3079856.3080255
https://doi.org/10.1145/3079856.3080255
https://doi.org/10.1109/FPL.2015.7294017
https://doi.org/10.1145/3307650.3322229
https://doi.org/10.1145/3307650.3322229
https://doi.org/10.1145/3307650.3322229
https://doi.org/10.1109/HPCA51647.2021.00060
https://doi.org/10.1109/HPCA51647.2021.00060
https://doi.org/10.1109/HPCA53966.2022.00032
https://doi.org/10.1109/SBAC-PAD.2013.17
https://doi.org/10.1109/SBAC-PAD.2013.17
https://doi.org/10.1109/HPCA51647.2021.00061
https://doi.org/10.1109/HPCA51647.2021.00061

References

[54] Fabian Schuiki, Florian Zaruba, Torsten Hoefler and Luca Benini. ‘Stream
Semantic Registers: A Lightweight RISC-V ISA Extension Achieving Full
Compute Utilization in Single-Issue Cores’. In: IEEE Transactions on Com-
puters 70.2 (2021), pp. 212–227. DOI: 10.1109/TC.2020.2987314.

[55] Paul Scheffler, Florian Zaruba, Fabian Schuiki, Torsten Hoefler and Luca
Benini. ‘Indirection Stream Semantic Register Architecture for Efficient
Sparse-Dense Linear Algebra’. In: 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE). 2021, pp. 1787–1792. DOI: 10.23919/DATE5
1398.2021.9474230.

[56] Nuno Neves, Pedro Tomás and Nuno Roma. ‘Efficient data-stream man-
agement for shared-memory many-core systems’. In: 2015 25th International
Conference on Field Programmable Logic and Applications (FPL). 2015, pp. 1–8.
DOI: 10.1109/FPL.2015.7293960.

[57] Nuno Neves, Pedro Tomás and Nuno Roma. ‘Adaptive In-Cache Streaming
for Efficient Data Management’. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 25.7 (July 2017), pp. 2130–143. ISSN: 1063-8210,
1557-9999. DOI: 10.1109/TVLSI.2017.2671405.

[58] Siying Feng, Zhang Zhengya, Mahlke Scott and Trevor N Mudge. ‘Accel-
eration Techniques of Sparse Linear Algebra on Emerging Architectures’.
AAI30353402. PhD thesis. USA, 2022. ISBN: 9798368476452.

[59] Guoqing Xiao, Chuanghui Yin, Tao Zhou, Xueqi Li, Yuedan Chen and Kenli
Li. ‘A Survey of Accelerating Parallel Sparse Linear Algebra’. In: ACM Com-
put. Surv. 56.1 (Aug. 2023). ISSN: 0360-0300. DOI: 10.1145/3604606. URL: ht
tps://doi.org/10.1145/3604606.

[60] Vidushi Dadu, Jian Weng, Sihao Liu and Tony Nowatzki. ‘Towards General
Purpose Acceleration by Exploiting Common Data-Dependence Forms’. In:
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture. MICRO ’52. Columbus, OH, USA: Association for Comput-
ing Machinery, 2019, pp. 924–939. ISBN: 9781450369381. DOI: 10.1145/3352
460.3358276. URL: https://doi.org/10.1145/3352460.3358276.

[61] Benjamin W. Mezger, Douglas A. Santos, Luigi Dilillo, Cesar A. Zeferino
and Douglas R. Melo. ‘A Survey of the RISC-V Architecture Software Sup-
port’. In: IEEE Access 10 (2022), pp. 51394–51411. DOI: 10.1109/ACCESS.202
2.3174125.

[62] Andrew Waterman and Krste Asanovic. The RISC-V Instruction Set Manual
- Volume I: Unprivileged ISA. 2019. URL: https://github.com/riscv/riscv
-isa-manual/.

[63] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth
Edition: A Quantitative Approach. 5th. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2011. ISBN: 012383872X.

91

https://doi.org/10.1109/TC.2020.2987314
https://doi.org/10.23919/DATE51398.2021.9474230
https://doi.org/10.23919/DATE51398.2021.9474230
https://doi.org/10.1109/FPL.2015.7293960
https://doi.org/10.1109/TVLSI.2017.2671405
https://doi.org/10.1145/3604606
https://doi.org/10.1145/3604606
https://doi.org/10.1145/3604606
https://doi.org/10.1145/3352460.3358276
https://doi.org/10.1145/3352460.3358276
https://doi.org/10.1145/3352460.3358276
https://doi.org/10.1109/ACCESS.2022.3174125
https://doi.org/10.1109/ACCESS.2022.3174125
https://github.com/riscv/riscv-isa-manual/
https://github.com/riscv/riscv-isa-manual/

Chapter 6

[64] Richard Stallman. Using GNU CC. Boston, MA: Free Software Foundation,
1995. ISBN: 978-1-882114-66-5.

[65] C. Lattner and V. Adve. ‘LLVM: A compilation framework for lifelong pro-
gram analysis & transformation’. In: International Symposium on Code Gen-
eration and Optimization, 2004. CGO 2004. San Jose, CA, USA: IEEE, 2004,
pp. 75–86. ISBN: 978-0-7695-2102-2. DOI: 10.1109/CGO.2004.1281665. URL:
http://ieeexplore.ieee.org/document/1281665/.

[66] Nuno Neves, João Mário Domingos, Nuno Roma, Pedro Tomás and Gab-
riel Falcao. ‘Compiling for Vector Extensions With Stream-Based Specializa-
tion’. In: IEEE Micro 42.5 (Sept. 2022), pp. 49–58. ISSN: 0272-1732, 1937-4143.
DOI: 10.1109/MM.2022.3173405.

[67] Neil Adit and Adrian Sampson. ‘Performance Left on the Table: An Evalu-
ation of Compiler Autovectorization for RISC-V’. In: IEEE Micro 42.5 (Sept.
2022), pp. 41–48. ISSN: 0272-1732, 1937-4143. DOI: 10.1109/MM.2022.31848
67.

[68] Louis-Noël Pouchet. PolyBench/C. 2012. URL: https://web.cs.ucla.edu
/~pouchet/software/polybench/.

[69] Alec Roelke and Mircea R Stan. RISC5: Implementing the RISC-V ISA in gem5.
2017.

[70] Luís Henriques. ‘Automatic Streaming for RISC-V via Source-to-Source
Compilation’. MA thesis. Porto: Universidade do Porto, July 2022. URL: ht
tps://hdl.handle.net/10216/142750.

[71] RISC-V. RISC-V Opcodes. URL: https://github.com/riscv/riscv-opcode
s.

[72] Olympia. C++. Feb. 2024. URL: https://github.com/riscv-software-src
/riscv-perf-model.

[73] Achim Nohl, Gunnar Braun, Oliver Schliebusch, Rainer Leupers, Heinrich
Meyr and Andreas Hoffmann. ‘A universal technique for fast and flexible
instruction-set architecture simulation’. In: Proceedings of the 39th Annual
Design Automation Conference. DAC ’02. New Orleans, Louisiana, USA: As-
sociation for Computing Machinery, 2002, pp. 22–27. ISBN: 1581134614. DOI:
10.1145/513918.513927. URL: https://doi.org/10.1145/513918.513927.

[74] Jack Dongarra, Michael A. Heroux and Piotr Luszczek. ‘HPCG Benchmark:
a New Metric for Ranking High Performance Computing Systems’. In: Na-
tional Science Review 3.1 (Mar. 2016), pp. 30–35. ISSN: 2053-714X, 2095-5138.
DOI: 10.1093/nsr/nwv084.

[75] Nathan Bell and Michael Garland. ‘Efficient Sparse Matrix-Vector Multi-
plication on CUDA’. In: (2008).

92

https://doi.org/10.1109/CGO.2004.1281665
http://ieeexplore.ieee.org/document/1281665/
https://doi.org/10.1109/MM.2022.3173405
https://doi.org/10.1109/MM.2022.3184867
https://doi.org/10.1109/MM.2022.3184867
https://web.cs.ucla.edu/~pouchet/software/polybench/
https://web.cs.ucla.edu/~pouchet/software/polybench/
https://hdl.handle.net/10216/142750
https://hdl.handle.net/10216/142750
https://github.com/riscv/riscv-opcodes
https://github.com/riscv/riscv-opcodes
https://github.com/riscv-software-src/riscv-perf-model
https://github.com/riscv-software-src/riscv-perf-model
https://doi.org/10.1145/513918.513927
https://doi.org/10.1145/513918.513927
https://doi.org/10.1093/nsr/nwv084

References

[76] F. Vázquez, G. Ortega, J.J. Fernández and E.M. Garzón. ‘Improving the Per-
formance of the Sparse Matrix Vector Product with GPUs’. In: 2010 10th
IEEE International Conference on Computer and Information Technology. 2010,
pp. 1146–1151. DOI: 10.1109/CIT.2010.208.

[77] Dezsö Sima. ‘The Design Space of Register Renaming Techniques’. In: IEEE
Micro 20.5 (Sept. 2000), pp. 70–83. ISSN: 0272-1732. DOI: 10.1109/40.87795
2. URL: https://doi.org/10.1109/40.877952.

93

https://doi.org/10.1109/CIT.2010.208
https://doi.org/10.1109/40.877952
https://doi.org/10.1109/40.877952
https://doi.org/10.1109/40.877952

Appendices

95

Appendix A

Unlimited Vector Extension
Supporting Microarchitecture

The Streaming Engine (SE) is responsible for most streaming operations and
is the main hardware component of the proposed extension. Aside from that,
some modifications were made to the Central Processing Unit (CPU) processing
pipeline, in order to support streaming. An Out-of-Order (OoO) processing
pipeline was chosen as the target of the proof-of-concept implementation of Un-
limited Vector Extension (UVE), as it is more common in High-Performance Com-
puting (HPC), thus providing a more valid assessment of the extension in its main
target applications, albeit more complex to implement. The proposed microarchi-
tecture is illustrated in Figure A.1, where the modifications listed below are also
highlighted.

• Decoders, register file and execution units: Support for the decoding of
added instructions, vector registers, as well as necessary logic, arithmetic,
and branch functional units (similar to RISC-V Vector Extension (RVV) and
Scalable Vector Extension (SVE)).

• Rename stage: Support for vector register and stream renaming, allowing
for speculative configuration of streams. Register renaming is an import-
ant mechanism that is already present in most processors. It allows for the
elimination of certain data dependencies, by separating architectural and
physical registers [77]. This principle is applied to stream configurations,
thus making it possible to speculatively configure new streams while oth-
ers that share the same logical name are still executing.

• Commit stage: Support for the commit and squash of streams, through the
signaling of all misspeculation and commit events related to the processing
of streams to the SE. As a result of an eventual misspeculation, stream con-
figurations or iterations may be incorrectly performed. In the first case, all

97

Appendix A

the structures involved are released and a new configuration may be ac-
cepted by the SE. However, two actions are necessary in the second case.
On the one hand, the pipeline is responsible for reverting the physical re-
gister to the previously committed value. On the other hand, the SE must
be notified of the squash so that it can revert the speculated pointers on the
load/store circular buffers to the current commit point. This means that
buffered data is never impacted by misspeculations on loads, as well as
generated addresses on stores. As streaming data patterns are determin-
istic, the fact that they are consumed in the wrong order does not change
data validity inside said buffers, and it can be re-used with no need for new
loads.

In order to fully understand the role of the SE, it is important to first under-
stand how a stream is supposed to behave from the moment it is configured until
it is terminated. Furthermore, its implementation on an OoO core is not straight-
forward. The most important aspects of stream operation in the proposed model
are hereby detailed.

Integer Load
Unit

Store
UnitL

S
U ALU
FADD
FMUL
FDIV
IMAC

ALU
FADD
FMUL
FDIV
IMAC

Op Op Op Op

Op Op Op Op Op Op

Branch Predictor
(BPU)

Return StackInst Inst Inst Inst

Inst Inst Inst Inst

Op Op Op Op

Front
End

L1 Instruction
Cache

Rename / Allocate / Commit
ReOrder Buffer

Dispatch

Decode Queue

Instruction Fetch

Decoder Decoder Decoder Decoder

General-Purpose
Register File

System
Registers

SIMD & FP
Register File

Issue

Speculation
State

Stream
Load

S
tream

C
on
fig
u
re

S
tream

W
riteb

ack

Execution
Units

Memory
Access

L1 Data Cache

Legend

Generic SIMD
Modifications

Slightly Modified

New Modules

Stream

Streaming Engine

FIFOs

CPU Core

Figure A.1: UVE supporting microarchitecture overview, highlighting modifica-
tions introduced in a traditional OoO processing pipeline [9].

Stream Configuration

As mentioned in Section 2.3.4 and Section 2.4.2, multiple instructions are
needed to configure any pattern that is not trivial, and these instructions must

98

Unlimited Vector Extension Supporting Microarchitecture

be executed in order so that the descriptors are correctly chained. In an OoO
architecture, this means that some mechanism must be put in place to ensure in-
order execution. However, speculative configuration of streams is desirable as it
improves performance. As previously mentioned, stream renaming was imple-
mented to support this. At this stage, each stream configuration instruction is
inserted in the Stream Configuration Reorder Buffer (SCROB), a new structure em-
bedded in the SE. It processes each configuration instruction in order as soon as
the corresponding operands are available, similarly to a re-order buffer. Then,
after its configuration, the stream is processed by the SE. This encompasses the
pre-loading of data in the case of a load stream, or the computation of store ad-
dresses for store streams, that will then await for the committing of store data.

Lastly, each stream configuration also results in two stream state iterators:
speculative or commit. These are dynamically iterated once a stream manipula-
tion instruction reaches the rename and commit stages, respectively, to allow for
speculative execution.

Stream Renaming

When a certain stream is beginning the respective configuration, its corres-
ponding identification register may still be occupied by another running stream,
due to misspeculation or even pipeline latency. To mitigate possible pipeline
blockings, a Stream Allocation Table (SAT) is included. This structure, very sim-
ilar to a Register Alias Table (RAT), is responsible for the mapping between each
physical and logical stream identification register. Moreover, the SAT is also des-
ignated for keeping information about which registers are currently associated
with active streams, which is necessary for the distinction between stream op-
erations (involving reads/writes from a stream) and regular register operations,
which are not handled by the SE.

Stream Iteration

Iterating a stream is the process of reading from input streams (read streams)
and writing to output streams (store streams). This occurs during the rename
stage, where the speculative iterator is incremented. In the case of a load stream,
when an instruction that consumes values from a stream enters the rename stage,
they are immediately read from a register that holds the pre-loaded data, all
while new data is already being pre-loaded to a different physical register. This
is thanks to vector register renaming, which was extended beyond the standard
of only performing renaming for destination registers to support the renaming
of source registers as well. The newly renamed physical register is passed to the
load queue of the SE, which then loads the next values from memory.

Stream Termination

The end of a stream is reached at the commit stage, either by an explicit ter-
mination instruction or because an instruction with an End-of-Stream (EOS) sig-

99

Appendix A

nal was committed, due to the reaching of the end of the streaming pattern. When
this happens, every structure associated with the stream is released.

Memory hierarchy

As mentioned in Section 2.4.2, UVE allows for the configuration of data load-
ing from any cache level. Besides, to simplify the implementation, as well as
minimising the impact on caches, the proposed model joins stream requests and
typical memory loads/stores before the L1 cache is accessed. This is possible be-
cause, most of the time, conventional memory accesses are mutually exclusive
from stream accesses, as streaming loops generally do not require scalar memory
operations. The memory hierarchy is illustrated in Figure A.2.

CPU Core

Main Memory

Execution Pipeline

L2 Cache

L1 Cache

Load
Store
Units

Streaming Engine

FIFOs

Configurable
streaming request
cache bypassing

Stream and
conventional
request merging
before cache access

Streaming Model
transparently
embbeded in the
core pipeline

Figure A.2: System overview, featuring the SE embedded in an OoO core and
respective connections to the memory hierarchy [9].

Memory coherence

Eventual stream load/store dependencies are handled through typical mech-
anisms found in modern architectures: request delays, replays, and squashes.
This ensures that data resulting from conventional operations can be read by
input streams straight away. Likewise, data written by store streams is readily
available for conventional load instructions to use. Cache coherence is guaran-
teed by a MOESI protocol. Coherence mechanisms at the level of the stream First-
In, First-Out (FIFO) buffers are not defined, under the assumption that data that
has been preloaded has already been consumed by the core, as it would with re-
gister pre-fetching or loop unrolling. However, this raises the issue of how load
and store streams from the same memory access will behave. This problem is
discussed in Section 2.4.5.

100

Appendix B

Instruction Counting Results

48
52
56
60
64
68
72
76
80
84
88
92
96
% RVV UVE

3m
m

co
nv

olu
tio

n

co
va

ria
nce

ge
mm

ge
mve

r

jac
ob

i-1
d

jac
ob

i-2
d

mem
cp

y
mvt

sa
xp

y
sg

d

sp
mv-1

sp
mv-2

str
ea

m
tris

olv
-14
-10

-6
-2
2
4

Figure B.1: Percentage of reduction of instructions in double-precision floating-
point RVV without loop unrolling and UVE benchmarks, relative to scalar code(
1 − Instextension

Instscalar

)
.

101

Appendix B

94

96

98

100
% RVV UVE

44

46

3m
m

co
nv

olu
tio

n

co
va

ria
nce

ge
mm

ge
mve

r

mem
cp

y
mvt

sa
xp

y

str
ea

m
tris

olv
2

0

2

(a) Signed char (8 bits).

94

96

98

100
% RVV UVE

48

50

52

54

56

28

30

3m
m

co
nv

olu
tio

n

co
va

ria
nce

ge
mm

ge
mve

r

mem
cp

y
mvt

sa
xp

y

str
ea

m
tris

olv
4

2

0

2

(b) Signed short integer (16 bits).

76

78

80

82

84

86

88

90

92

94

96

98
% RVV UVE

3m
m

co
nv

olu
tio

n

co
va

ria
nce

ge
mm

ge
mve

r

mem
cp

y
mvt

sa
xp

y

str
ea

m
tris

olv
4

2

0

2

(c) Signed integer (32 bits).

74
76
78
80
82
84
86
88
90
92
94
96
98

100
% RVV UVE

3m
m

co
nv

olu
tio

n

co
va

ria
nce
ge

mm

ge
mve

r

jac
ob

i-1
d

jac
ob

i-2
d

mem
cp

y
mvt

sa
xp

y

str
ea

m
tris

olv
8
6
4
2
0
2

(d) Single-precision floating-point (32 bits).

Figure B.2: Percentage of reduction of instructions in different data type
RVV without loop unrolling and UVE benchmarks, relative to scalar code(
1 − Instextension

Instscalar

)
.

102

Instruction Counting Results

3m
m

co
nv

olu
tio

n

co
va

ria
nce

ge
mm

ge
mve

r

mem
cp

y
mvt

sa
xp

y

str
ea

m
tris

olv
65

70

75

80

85

90

95

100
%

89.85%

Average

(a) Signed char (8 bits).

3m
m

co
nv

olu
tio

n

co
va

ria
nce

ge
mm

ge
mve

r

mem
cp

y
mvt

sa
xp

y

str
ea

m
tris

olv
60

65

70

75

80

85

90

95

100
%

88.16%

Average

(b) Signed short integer (16 bits).

3m
m

co
nv

olu
tio

n

co
va

ria
nce

ge
mm

ge
mve

r

mem
cp

y
mvt

sa
xp

y

str
ea

m
tris

olv
60

65

70

75

80

85

90

95

100
%

82.25%

Average

(c) Signed integer (32 bits).

3m
m

co
nv

olu
tio

n

co
va

ria
nce
ge

mm

ge
mve

r

jac
ob

i-1
d

jac
ob

i-2
d

mem
cp

y
mvt

sa
xp

y

str
ea

m
tris

olv
60

65

70

75

80

85

90

95

100
%

80.69%

Average

(d) Single-precision floating-point (32 bits).

Figure B.3: UVE reduction of retired instructions, relative to RVV without loop
unrolling

(
1 − InstUVE

InstRVV

)
.

103

Appendix B

3m
m

co
nv

olu
tio

n

co
va

ria
nce

ge
mm

ge
mve

r

mem
cp

y
mvt

sa
xp

y

str
ea

m
tris

olv

86

88

90

92

94

96

98

100
%

94.95%

Average

(a) Signed char (8 bits).

3m
m

co
nv

olu
tio

n

co
va

ria
nce

ge
mm

ge
mve

r

mem
cp

y
mvt

sa
xp

y

str
ea

m
tris

olv

60

70

80

90

100
%

87.08%

Average

(b) Signed short integer (16 bits).

3m
m

co
nv

olu
tio

n

co
va

ria
nce

ge
mm

ge
mve

r

mem
cp

y
mvt

sa
xp

y

str
ea

m
tris

olv

60

70

80

90

100
%

82.21%

Average

(c) Signed integer (32 bits).

3m
m

co
nv

olu
tio

n

co
va

ria
nce
ge

mm

ge
mve

r

jac
ob

i-1
d

jac
ob

i-2
d

mem
cp

y
mvt

sa
xp

y

str
ea

m
tris

olv

60

70

80

90

100
%

80.54%

Average

(d) Single-precision floating-point (32 bits).

Figure B.4: UVE reduction of retired instructions, relative to RVV with loop un-
rolling

(
1 − InstUVE

InstRVV

)
for different data types.

104

Appendix C

UVE Instruction Listing

31 28 27 25 24 20 19 15 14 12 11 7 6 0
funct4 ps3 vs2 vs1 funct3 vd/rd opcode UA-type

Arithmetic and Logic Instructions
0000 ps3 vs2 vs1 000 vd 0101011 SO.A.ADD.US
0000 ps3 vs2 vs1 001 vd 0101011 SO.A.ADD.FP
0000 ps3 vs2 vs1 010 vd 0101011 SO.A.ADD.SG
0000 ps3 vs2 vs1 100 vd 0101011 SO.A.SUB.US
0000 ps3 vs2 vs1 101 vd 0101011 SO.A.SUB.FP
0000 ps3 vs2 vs1 110 vd 0101011 SO.A.SUB.SG
0001 ps3 vs2 vs1 000 vd 0101011 SO.A.MUL.US
0001 ps3 vs2 vs1 001 vd 0101011 SO.A.MUL.FP
0001 ps3 vs2 vs1 010 vd 0101011 SO.A.MUL.SG
0001 ps3 vs2 vs1 100 vd 0101011 SO.A.DIV.US
0001 ps3 vs2 vs1 101 vd 0101011 SO.A.DIV.FP
0001 ps3 vs2 vs1 110 vd 0101011 SO.A.DIV.SG
0010 ps3 00000 vs1 000 vd 0101011 SO.A.ADDE.US
0010 ps3 00000 vs1 001 vd 0101011 SO.A.ADDE.FP
0010 ps3 00000 vs1 010 vd 0101011 SO.A.ADDE.SG
0010 ps3 00001 vs1 000 vd 0101011 SO.A.ADDE.ACC.US
0010 ps3 00001 vs1 001 vd 0101011 SO.A.ADDE.ACC.FP
0010 ps3 00001 vs1 010 vd 0101011 SO.A.ADDE.ACC.SG
0010 ps3 00000 vs1 100 rd 0101011 SO.A.ADDS.US
0010 ps3 00000 vs1 101 rd 0101011 SO.A.ADDS.FP
0010 ps3 00000 vs1 110 rd 0101011 SO.A.ADDS.SG
0010 ps3 00001 vs1 100 rd 0101011 SO.A.ADDS.ACC.US
0010 ps3 00001 vs1 101 rd 0101011 SO.A.ADDS.ACC.FP
0010 ps3 00001 vs1 110 rd 0101011 SO.A.ADDS.ACC.SG
0011 ps3 00000 vs1 001 vd 0101011 SO.A.ABS.FP
0011 ps3 00000 vs1 000 vd 0101011 SO.A.ABS.SG
0011 ps3 vs2 vs1 100 vd 0101011 SO.A.MAC.US
0011 ps3 vs2 vs1 101 vd 0101011 SO.A.MAC.FP
0011 ps3 vs2 vs1 110 vd 0101011 SO.A.MAC.SG

105

Appendix C

31 29 28 27 25 24 22 21 20 19 15 14 12 11 7 6 0
funct4 ps3 vs2 vs1 funct3 vd/rd opcode UA-type

funct3 imm[12|10:5] - n vs1 funct3 imm[4:1|11] opcode UB-type

Arithmetic and Logic Instructions (Continuation)
1100 ps3 vs2 vs1 000 vd 0101011 SO.A.NAND
1100 ps3 vs2 vs1 001 vd 0101011 SO.A.AND
1100 ps3 vs2 vs1 010 vd 0101011 SO.A.NOR
1100 ps3 vs2 vs1 011 vd 0101011 SO.A.OR
1100 ps3 00000 vs1 100 vd 0101011 SO.A.NOT
1100 ps3 vs2 vs1 101 vd 0101011 SO.A.XOR
1101 ps3 vs2 vs1 000 vd 0101011 SO.A.SLL
1101 ps3 rs2 vs1 001 vd 0101011 SO.A.SLLS
1101 ps3 vs2 vs1 010 vd 0101011 SO.A.SRL
1101 ps3 rs2 vs1 011 vd 0101011 SO.A.SRLS
1101 ps3 vs2 vs1 100 vd 0101011 SO.A.SRA
1101 ps3 rs2 vs1 101 vd 0101011 SO.A.SRAS
0100 ps3 vs2 vs1 000 vd 0101011 SO.A.MIN.US
0100 ps3 vs2 vs1 001 vd 0101011 SO.A.MIN.FP
0100 ps3 vs2 vs1 010 vd 0101011 SO.A.MIN.SG
0100 ps3 vs2 vs1 100 vd 0101011 SO.A.MAX.US
0100 ps3 vs2 vs1 101 vd 0101011 SO.A.MAX.FP
0100 ps3 vs2 vs1 110 vd 0101011 SO.A.MAX.SG
0101 ps3 00000 vs1 000 vd 0101011 SO.A.MINE.US
0101 ps3 00000 vs1 001 vd 0101011 SO.A.MINE.FP
0101 ps3 00000 vs1 010 vd 0101011 SO.A.MINE.SG
0101 ps3 00000 vs1 100 vd 0101011 SO.A.MAXE.US
0101 ps3 00000 vs1 101 vd 0101011 SO.A.MAXE.FP
0101 ps3 00000 vs1 110 vd 0101011 SO.A.MAXE.SG
0110 ps3 00000 vs1 000 vd 0101011 SO.A.INC.US
0110 ps3 00000 vs1 001 vd 0101011 SO.A.INC.FP
0110 ps3 00000 vs1 010 vd 0101011 SO.A.INC.SG
0110 ps3 00000 vs1 100 vd 0101011 SO.A.DEC.US
0110 ps3 00000 vs1 101 vd 0101011 SO.A.DEC.FP
0110 ps3 00000 vs1 110 vd 0101011 SO.A.DEC.SG

Loop Control Branching Instructions
111 imm[12|10:5] 0 1 vs1 000 imm[4:1|11] 0101011 SO.B.NDC.1
111 imm[12|10:5] 0 1 vs1 001 imm[4:1|11] 0101011 SO.B.NDC.2
111 imm[12|10:5] 0 1 vs1 010 imm[4:1|11] 0101011 SO.B.NDC.3
111 imm[12|10:5] 0 1 vs1 011 imm[4:1|11] 0101011 SO.B.NDC.4
111 imm[12|10:5] 0 1 vs1 100 imm[4:1|11] 0101011 SO.B.NDC.5
111 imm[12|10:5] 0 1 vs1 101 imm[4:1|11] 0101011 SO.B.NDC.6
111 imm[12|10:5] 0 1 vs1 110 imm[4:1|11] 0101011 SO.B.NDC.7
111 imm[12|10:5] 0 0 vs1 000 imm[4:1|11] 0101011 SO.B.DC.1
111 imm[12|10:5] 0 0 vs1 001 imm[4:1|11] 0101011 SO.B.DC.2
111 imm[12|10:5] 0 0 vs1 010 imm[4:1|11] 0101011 SO.B.DC.3
111 imm[12|10:5] 0 0 vs1 011 imm[4:1|11] 0101011 SO.B.DC.4
111 imm[12|10:5] 0 0 vs1 100 imm[4:1|11] 0101011 SO.B.DC.5
111 imm[12|10:5] 0 0 vs1 101 imm[4:1|11] 0101011 SO.B.DC.6
111 imm[12|10:5] 0 0 vs1 110 imm[4:1|11] 0101011 SO.B.DC.7
111 imm[12|10:5] 0 1 vs1 111 imm[4:1|11] 0101011 SO.B.NC
111 imm[12|10:5] 0 0 vs1 111 imm[4:1|11] 0101011 SO.B.C

106

UVE Instruction Listing

31 28 27 25 24 23 22 21 20 19 18 15 14 12 11 10 7 6 0
funct4 ps3 z dw sw - ps1 funct4 pd opcode UP1-type
funct4 ps3 z - vs1 funct4 pd opcode UP2-type
funct4 ps3 vs2 vs1 funct3 z pd opcode UP3-type

funct5 - rs1 funct3 rd opcode UC-type

Lane Control Predication Instructions
1000 ps3 0 000000000 0000 pd 0101011 SO.P.ZERO
1000 ps3 1 000000000 0000 pd 0101011 SO.P.ZERO.Z
1000 ps3 0 000000000 0001 pd 0101011 SO.P.ONE
1000 ps3 1 000000000 0001 pd 0101011 SO.P.ONE.Z
1000 ps3 0 0000 vs1 0010 pd 0101011 SO.P.VR
1000 ps3 1 0000 vs1 0010 pd 0101011 SO.P.VR.Z
1000 ps3 0 00000 ps1 0011 pd 0101011 SO.P.NOT
1000 ps3 1 00000 ps1 0011 pd 0101011 SO.P.NOT.Z
1000 ps3 0 00000 ps1 0100 pd 0101011 SO.P.MV
1000 ps3 1 00000 ps1 0100 pd 0101011 SO.P.MV.Z
1000 ps3 0 00000 ps1 0101 pd 0101011 SO.P.MVT
1000 ps3 1 00000 ps1 0101 pd 0101011 SO.P.MVT.Z
1000 000 0 00 00 0 ps1 0110 pd 0101011 SO.P.CV.B.B
1000 000 1 00 00 0 ps1 0110 pd 0101011 SO.P.CV.B.B.Z
1000 000 0 01 01 0 ps1 0110 pd 0101011 SO.P.CV.H.H
1000 000 1 01 01 0 ps1 0110 pd 0101011 SO.P.CV.H.H.Z
1000 000 0 10 10 0 ps1 0110 pd 0101011 SO.P.CV.W.W
1000 000 1 10 10 0 ps1 0110 pd 0101011 SO.P.CV.W.W.Z
1000 000 0 11 11 0 ps1 0110 pd 0101011 SO.P.CV.D.D
1000 000 1 11 11 0 ps1 0110 pd 0101011 SO.P.CV.D.D.Z
1000 ps3 vs2 vs1 100 0 pd 0101011 SO.P.GE.US
1000 ps3 vs2 vs1 100 1 pd 0101011 SO.P.GE.US.Z
1000 ps3 vs2 vs1 101 0 pd 0101011 SO.P.GE.FP
1000 ps3 vs2 vs1 101 1 pd 0101011 SO.P.GE.FP.Z
1000 ps3 vs2 vs1 110 0 pd 0101011 SO.P.GE.SG
1000 ps3 vs2 vs1 110 1 pd 0101011 SO.P.GE.SG.Z
1001 ps3 vs2 vs1 000 0 pd 0101011 SO.P.EQ.US
1001 ps3 vs2 vs1 000 1 pd 0101011 SO.P.EQ.US.Z
1001 ps3 vs2 vs1 001 0 pd 0101011 SO.P.EQ.FP
1001 ps3 vs2 vs1 001 1 pd 0101011 SO.P.EQ.FP.Z
1001 ps3 vs2 vs1 010 0 pd 0101011 SO.P.EQ.SG
1001 ps3 vs2 vs1 010 1 pd 0101011 SO.P.EQ.SG.Z
1001 ps3 vs2 vs1 100 0 pd 0101011 SO.P.LT.US
1001 ps3 vs2 vs1 100 1 pd 0101011 SO.P.LT.US.Z
1001 ps3 vs2 vs1 101 0 pd 0101011 SO.P.LT.FP
1001 ps3 vs2 vs1 101 1 pd 0101011 SO.P.LT.FP.Z
1001 ps3 vs2 vs1 110 0 pd 0101011 SO.P.LT.SG
1001 ps3 vs2 vs1 110 1 pd 0101011 SO.P.LT.SG.Z

Vector Control Instructions
10110 0000000 rs1 000 rd 0101011 SO.C.SETVL
10110 000000000000 111 rd 0101011 SO.C.GETVL
10110 000000000000 001 vd 0101011 SO.C.SUSPD
10110 000000000000 010 vd 0101011 SO.C.RESUM
10110 000000000000 011 vd 0101011 SO.C.BREAK
10110 000000000000 100 vd 0101011 SO.C.VLOAD
10110 000000000000 101 vd 0101011 SO.C.VSTOR

107

Appendix C

31 30 29 27 26 25 24 23 22 21 20 19 15 14 12 11 7 6 0
funct5 funct4 ps2 vs1/rs1 funct3 vd/rd opcode UV1-type

m v vdim funct2 inds mem - rs1 funct3 vd opcode USTA-type

Vector Manipulation Instructions
10101 1000 ps2 rs1 000 vd 0101011 SO.V.DP.B
10101 1000 ps2 rs1 001 vd 0101011 SO.V.DP.H
10101 1000 ps2 rs1 010 vd 0101011 SO.V.DP.W
10101 1000 ps2 rs1 011 vd 0101011 SO.V.DP.D
10101 0010 000 vs1 000 rd 0101011 SO.V.MVVS
10101 0011 000 rs1 000 vd 0101011 SO.V.MVSV.B
10101 0011 000 rs1 001 vd 0101011 SO.V.MVSV.H
10101 0011 000 rs1 010 vd 0101011 SO.V.MVSV.W
10101 0011 000 rs1 011 vd 0101011 SO.V.MVSV.D
10101 0100 000 vs1 000 vd 0101011 SO.V.CV.US.B
10101 0100 000 vs1 001 vd 0101011 SO.V.CV.US.H
10101 0100 000 vs1 010 vd 0101011 SO.V.CV.US.W
10101 0100 000 vs1 011 vd 0101011 SO.V.CV.US.D
10101 0101 000 vs1 000 vd 0101011 SO.V.CV.FP.B
10101 0101 000 vs1 001 vd 0101011 SO.V.CV.FP.H
10101 0101 000 vs1 010 vd 0101011 SO.V.CV.FP.W
10101 0101 000 vs1 011 vd 0101011 SO.V.CV.FP.D
10101 0110 000 vs1 000 vd 0101011 SO.V.CV.SG.B
10101 0110 000 vs1 001 vd 0101011 SO.V.CV.SG.H
10101 0110 000 vs1 010 vd 0101011 SO.V.CV.SG.W
10101 0110 000 vs1 011 vd 0101011 SO.V.CV.SG.D

Stream Configuration Instructions
0 0 000 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B
0 0 000 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.MEM1
0 0 000 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.MEM2
0 0 000 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.MEM3
0 0 000 00 1 00 00 rs1 100 vd 0001011 SS.STA.LD.B.INDS
0 0 000 00 1 01 00 rs1 100 vd 0001011 SS.STA.LD.B.INDS.MEM1
0 0 000 00 1 10 00 rs1 100 vd 0001011 SS.STA.LD.B.INDS.MEM2
0 0 000 00 1 11 00 rs1 100 vd 0001011 SS.STA.LD.B.INDS.MEM3
1 0 000 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.M
1 0 000 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.M.MEM1
1 0 000 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.M.MEM2
1 0 000 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.M.MEM3
1 0 000 00 1 00 00 rs1 100 vd 0001011 SS.STA.LD.B.M.INDS
1 0 000 00 1 01 00 rs1 100 vd 0001011 SS.STA.LD.B.M.INDS.MEM1
1 0 000 00 1 10 00 rs1 100 vd 0001011 SS.STA.LD.B.M.INDS.MEM2
1 0 000 00 1 11 00 rs1 100 vd 0001011 SS.STA.LD.B.M.INDS.MEM3
0 0 000 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H
0 0 000 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.MEM1
0 0 000 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.MEM2
0 0 000 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.MEM3
0 0 000 00 1 00 00 rs1 101 vd 0001011 SS.STA.LD.H.INDS
0 0 000 00 1 01 00 rs1 101 vd 0001011 SS.STA.LD.H.INDS.MEM1
0 0 000 00 1 10 00 rs1 101 vd 0001011 SS.STA.LD.H.INDS.MEM2
0 0 000 00 1 11 00 rs1 101 vd 0001011 SS.STA.LD.H.INDS.MEM3
1 0 000 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.M
1 0 000 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.M.MEM1
1 0 000 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.M.MEM2
1 0 000 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.M.MEM3
1 0 000 00 1 00 00 rs1 101 vd 0001011 SS.STA.LD.H.M.INDS
1 0 000 00 1 01 00 rs1 101 vd 0001011 SS.STA.LD.H.M.INDS.MEM1
1 0 000 00 1 10 00 rs1 101 vd 0001011 SS.STA.LD.H.M.INDS.MEM2
1 0 000 00 1 11 00 rs1 101 vd 0001011 SS.STA.LD.H.M.INDS.MEM3

108

UVE Instruction Listing

31 30 29 27 26 25 24 23 22 21 20 19 15 14 12 11 7 6 0
m v vdim funct2 inds mem - rs1 funct3 vd opcode USTA-type

Stream Configuration Instructions (Continuation)
0 0 000 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W
0 0 000 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.MEM1
0 0 000 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.MEM2
0 0 000 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.MEM3
0 0 000 00 1 00 00 rs1 110 vd 0001011 SS.STA.LD.W.INDS
0 0 000 00 1 01 00 rs1 110 vd 0001011 SS.STA.LD.W.INDS.MEM1
0 0 000 00 1 10 00 rs1 110 vd 0001011 SS.STA.LD.W.INDS.MEM2
0 0 000 00 1 11 00 rs1 110 vd 0001011 SS.STA.LD.W.INDS.MEM3
1 0 000 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.M
1 0 000 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.M.MEM1
1 0 000 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.M.MEM2
1 0 000 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.M.MEM3
1 0 000 00 1 00 00 rs1 110 vd 0001011 SS.STA.LD.W.M.INDS
1 0 000 00 1 01 00 rs1 110 vd 0001011 SS.STA.LD.W.M.INDS.MEM1
1 0 000 00 1 10 00 rs1 110 vd 0001011 SS.STA.LD.W.M.INDS.MEM2
1 0 000 00 1 11 00 rs1 110 vd 0001011 SS.STA.LD.W.M.INDS.MEM3
0 0 000 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D
0 0 000 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.MEM1
0 0 000 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.MEM2
0 0 000 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.MEM3
0 0 000 00 1 00 00 rs1 111 vd 0001011 SS.STA.LD.D.INDS
0 0 000 00 1 01 00 rs1 111 vd 0001011 SS.STA.LD.D.INDS.MEM1
0 0 000 00 1 10 00 rs1 111 vd 0001011 SS.STA.LD.D.INDS.MEM2
0 0 000 00 1 11 00 rs1 111 vd 0001011 SS.STA.LD.D.INDS.MEM3
1 0 000 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.M
1 0 000 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.M.MEM1
1 0 000 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.M.MEM2
1 0 000 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.M.MEM3
1 0 000 00 1 00 00 rs1 111 vd 0001011 SS.STA.LD.D.M.INDS
1 0 000 00 1 01 00 rs1 111 vd 0001011 SS.STA.LD.D.M.INDS.MEM1
1 0 000 00 1 10 00 rs1 111 vd 0001011 SS.STA.LD.D.M.INDS.MEM2
1 0 000 00 1 11 00 rs1 111 vd 0001011 SS.STA.LD.D.M.INDS.MEM3
0 1 000 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.V.1
0 1 000 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.V.1.MEM1
0 1 000 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.V.1.MEM2
0 1 000 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.V.1.MEM3
1 1 000 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.V.1.M
1 1 000 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.V.1.M.MEM1
1 1 000 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.V.1.M.MEM2
1 1 000 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.V.1.M.MEM3
0 1 000 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.V.1
0 1 000 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.V.1.MEM1
0 1 000 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.V.1.MEM2
0 1 000 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.V.1.MEM3
1 1 000 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.V.1.M
1 1 000 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.V.1.M.MEM1
1 1 000 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.V.1.M.MEM2
1 1 000 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.V.1.M.MEM3
0 1 000 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.V.1

109

Appendix C

31 30 29 27 26 25 24 23 22 21 20 19 15 14 12 11 7 6 0
m v vdim funct2 inds mem - rs1 funct3 vd opcode USTA-type

Stream Configuration Instructions (Continuation)
0 1 000 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.V.1.MEM1
0 1 000 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.V.1.MEM2
0 1 000 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.V.1.MEM3
1 1 000 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.V.1.M
1 1 000 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.V.1.M.MEM1
1 1 000 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.V.1.M.MEM2
1 1 000 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.V.1.M.MEM3
0 1 000 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.V.1
0 1 000 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.V.1.MEM1
0 1 000 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.V.1.MEM2
0 1 000 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.V.1.MEM3
1 1 000 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.V.1.M
1 1 000 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.V.1.M.MEM1
1 1 000 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.V.1.M.MEM2
1 1 000 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.V.1.M.MEM3
0 1 001 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.V.2
0 1 001 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.V.2.MEM1
0 1 001 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.V.2.MEM2
0 1 001 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.V.2.MEM3
1 1 001 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.V.2.M
1 1 001 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.V.2.M.MEM1
1 1 001 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.V.2.M.MEM2
1 1 001 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.V.2.M.MEM3
0 1 001 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.V.2
0 1 001 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.V.2.MEM1
0 1 001 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.V.2.MEM2
0 1 001 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.V.2.MEM3
1 1 001 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.V.2.M
1 1 001 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.V.2.M.MEM1
1 1 001 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.V.2.M.MEM2
1 1 001 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.V.2.M.MEM3
0 1 001 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.V.2
0 1 001 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.V.2.MEM1
0 1 001 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.V.2.MEM2
0 1 001 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.V.2.MEM3
1 1 001 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.V.2.M
1 1 001 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.V.2.M.MEM1
1 1 001 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.V.2.M.MEM2
1 1 001 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.V.2.M.MEM3
0 1 001 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.V.2
0 1 001 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.V.2.MEM1
0 1 001 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.V.2.MEM2
0 1 001 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.V.2.MEM3
1 1 001 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.V.2.M
1 1 001 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.V.2.M.MEM1
1 1 001 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.V.2.M.MEM2
1 1 001 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.V.2.M.MEM3
0 1 010 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.V.3
0 1 010 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.V.3.MEM1
0 1 010 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.V.3.MEM2
0 1 010 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.V.3.MEM3

110

UVE Instruction Listing

31 30 29 27 26 25 24 23 22 21 20 19 15 14 12 11 7 6 0
m v vdim funct2 inds mem - rs1 funct3 vd opcode USTA-type

Stream Configuration Instructions (Continuation)
1 1 010 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.V.3.M
1 1 010 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.V.3.M.MEM1
1 1 010 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.V.3.M.MEM2
1 1 010 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.V.3.M.MEM3
0 1 010 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.V.3
0 1 010 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.V.3.MEM1
0 1 010 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.V.3.MEM2
0 1 010 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.V.3.MEM3
1 1 010 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.V.3.M
1 1 010 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.V.3.M.MEM1
1 1 010 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.V.3.M.MEM2
1 1 010 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.V.3.M.MEM3
0 1 010 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.V.3
0 1 010 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.V.3.MEM1
0 1 010 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.V.3.MEM2
0 1 010 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.V.3.MEM3
1 1 010 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.V.3.M
1 1 010 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.V.3.M.MEM1
1 1 010 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.V.3.M.MEM2
1 1 010 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.V.3.M.MEM3
0 1 010 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.V.3
0 1 010 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.V.3.MEM1
0 1 010 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.V.3.MEM2
0 1 010 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.V.3.MEM3
1 1 010 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.V.3.M
1 1 010 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.V.3.M.MEM1
1 1 010 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.V.3.M.MEM2
1 1 010 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.V.3.M.MEM3
0 1 011 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.V.4
0 1 011 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.V.4.MEM1
0 1 011 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.V.4.MEM2
0 1 011 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.V.4.MEM3
1 1 011 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.V.4.M
1 1 011 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.V.4.M.MEM1
1 1 011 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.V.4.M.MEM2
1 1 011 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.V.4.M.MEM3
0 1 011 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.V.4
0 1 011 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.V.4.MEM1
0 1 011 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.V.4.MEM2
0 1 011 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.V.4.MEM3
1 1 011 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.V.4.M
1 1 011 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.V.4.M.MEM1
1 1 011 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.V.4.M.MEM2
1 1 011 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.V.4.M.MEM3
0 1 011 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.V.4
0 1 011 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.V.4.MEM1
0 1 011 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.V.4.MEM2
0 1 011 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.V.4.MEM3

111

Appendix C

31 30 29 27 26 25 24 23 22 21 20 19 15 14 12 11 7 6 0
m v vdim funct2 inds mem - rs1 funct3 vd opcode USTA-type

Stream Configuration Instructions (Continuation)
1 1 011 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.V.4.M
1 1 011 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.V.4.M.MEM1
1 1 011 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.V.4.M.MEM2
1 1 011 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.V.4.M.MEM3
0 1 011 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.V.4
0 1 011 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.V.4.MEM1
0 1 011 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.V.4.MEM2
0 1 011 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.V.4.MEM3
1 1 011 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.V.4.M
1 1 011 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.V.4.M.MEM1
1 1 011 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.V.4.M.MEM2
1 1 011 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.V.4.M.MEM3
0 1 100 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.V.5
0 1 100 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.V.5.MEM1
0 1 100 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.V.5.MEM2
0 1 100 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.V.5.MEM3
1 1 100 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.V.5.M
1 1 100 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.V.5.M.MEM1
1 1 100 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.V.5.M.MEM2
1 1 100 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.V.5.M.MEM3
0 1 100 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.V.5
0 1 100 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.V.5.MEM1
0 1 100 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.V.5.MEM2
0 1 100 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.V.5.MEM3
1 1 100 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.V.5.M
1 1 100 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.V.5.M.MEM1
1 1 100 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.V.5.M.MEM2
1 1 100 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.V.5.M.MEM3
0 1 100 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.V.5
0 1 100 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.V.5.MEM1
0 1 100 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.V.5.MEM2
0 1 100 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.V.5.MEM3
1 1 100 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.V.5.M
1 1 100 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.V.5.M.MEM1
1 1 100 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.V.5.M.MEM2
1 1 100 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.V.5.M.MEM3
0 1 100 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.V.5
0 1 100 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.V.5.MEM1
0 1 100 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.V.5.MEM2
0 1 100 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.V.5.MEM3
1 1 100 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.V.5.M
1 1 100 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.V.5.M.MEM1
1 1 100 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.V.5.M.MEM2
1 1 100 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.V.5.M.MEM3
0 1 101 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.V.6
0 1 101 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.V.6.MEM1
0 1 101 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.V.6.MEM2
0 1 101 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.V.6.MEM3
1 1 101 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.V.6.M
1 1 101 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.V.6.M.MEM1
1 1 101 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.V.6.M.MEM2
1 1 101 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.V.6.M.MEM3

112

UVE Instruction Listing

31 30 29 27 26 25 24 23 22 21 20 19 15 14 12 11 7 6 0
m v vdim funct2 inds mem - rs1 funct3 vd opcode USTA-type

Stream Configuration Instructions (Continuation)
0 1 101 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.V.6
0 1 101 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.V.6.MEM1
0 1 101 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.V.6.MEM2
0 1 101 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.V.6.MEM3
1 1 101 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.V.6.M
1 1 101 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.V.6.M.MEM1
1 1 101 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.V.6.M.MEM2
1 1 101 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.V.6.M.MEM3
0 1 101 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.V.6
0 1 101 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.V.6.MEM1
0 1 101 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.V.6.MEM2
0 1 101 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.V.6.MEM3
1 1 101 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.V.6.M
1 1 101 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.V.6.M.MEM1
1 1 101 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.V.6.M.MEM2
1 1 101 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.V.6.M.MEM3
0 1 101 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.V.6
0 1 101 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.V.6.MEM1
0 1 101 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.V.6.MEM2
0 1 101 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.V.6.MEM3
1 1 101 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.V.6.M
1 1 101 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.V.6.M.MEM1
1 1 101 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.V.6.M.MEM2
1 1 101 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.V.6.M.MEM3
0 1 110 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.V.7
0 1 110 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.V.7.MEM1
0 1 110 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.V.7.MEM2
0 1 110 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.V.7.MEM3
1 1 110 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.V.7.M
1 1 110 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.V.7.M.MEM1
1 1 110 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.V.7.M.MEM2
1 1 110 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.V.7.M.MEM3
0 1 110 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.V.7
0 1 110 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.V.7.MEM1
0 1 110 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.V.7.MEM2
0 1 110 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.V.7.MEM3
1 1 110 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.V.7.M
1 1 110 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.V.7.M.MEM1
1 1 110 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.V.7.M.MEM2
1 1 110 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.V.7.M.MEM3
0 1 110 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.V.7
0 1 110 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.V.7.MEM1
0 1 110 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.V.7.MEM2
0 1 110 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.V.7.MEM3
1 1 110 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.V.7.M
1 1 110 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.V.7.M.MEM1
1 1 110 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.V.7.M.MEM2
1 1 110 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.V.7.M.MEM3

113

Appendix C

31 30 29 27 26 25 24 23 22 21 20 19 15 14 12 11 7 6 0
m v vdim funct2 inds mem - rs1 funct3 vd opcode USTA-type

Stream Configuration Instructions (Continuation)
0 1 110 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.V.7
0 1 110 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.V.7.MEM1
0 1 110 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.V.7.MEM2
0 1 110 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.V.7.MEM3
1 1 110 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.V.7.M
1 1 110 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.V.7.M.MEM1
1 1 110 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.V.7.M.MEM2
1 1 110 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.V.7.M.MEM3
0 1 111 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.V
0 1 111 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.V.MEM1
0 1 111 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.V.MEM2
0 1 111 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.V.MEM3
1 1 111 00 0 00 00 rs1 100 vd 0001011 SS.STA.LD.B.V.M
1 1 111 00 0 01 00 rs1 100 vd 0001011 SS.STA.LD.B.V.M.MEM1
1 1 111 00 0 10 00 rs1 100 vd 0001011 SS.STA.LD.B.V.M.MEM2
1 1 111 00 0 11 00 rs1 100 vd 0001011 SS.STA.LD.B.V.M.MEM3
0 1 111 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.V
0 1 111 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.V.MEM1
0 1 111 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.V.MEM2
0 1 111 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.V.MEM3
1 1 111 00 0 00 00 rs1 101 vd 0001011 SS.STA.LD.H.V.M
1 1 111 00 0 01 00 rs1 101 vd 0001011 SS.STA.LD.H.V.M.MEM1
1 1 111 00 0 10 00 rs1 101 vd 0001011 SS.STA.LD.H.V.M.MEM2
1 1 111 00 0 11 00 rs1 101 vd 0001011 SS.STA.LD.H.V.M.MEM3
0 1 111 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.V
0 1 111 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.V.MEM1
0 1 111 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.V.MEM2
0 1 111 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.V.MEM3
1 1 111 00 0 00 00 rs1 110 vd 0001011 SS.STA.LD.W.V.M
1 1 111 00 0 01 00 rs1 110 vd 0001011 SS.STA.LD.W.V.M.MEM1
1 1 111 00 0 10 00 rs1 110 vd 0001011 SS.STA.LD.W.V.M.MEM2
1 1 111 00 0 11 00 rs1 110 vd 0001011 SS.STA.LD.W.V.M.MEM3
0 1 111 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.V
0 1 111 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.V.MEM1
0 1 111 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.V.MEM2
0 1 111 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.V.MEM3
1 1 111 00 0 00 00 rs1 111 vd 0001011 SS.STA.LD.D.V.M
1 1 111 00 0 01 00 rs1 111 vd 0001011 SS.STA.LD.D.V.M.MEM1
1 1 111 00 0 10 00 rs1 111 vd 0001011 SS.STA.LD.D.V.M.MEM2
1 1 111 00 0 11 00 rs1 111 vd 0001011 SS.STA.LD.D.V.M.MEM3
0 0 000 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B
0 0 000 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.MEM1
0 0 000 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.MEM2
0 0 000 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.MEM3
1 0 000 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.M
1 0 000 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.M.MEM1
1 0 000 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.M.MEM2
1 0 000 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.M.MEM3

114

UVE Instruction Listing

31 30 29 27 26 25 24 23 22 21 20 19 15 14 12 11 7 6 0
m v vdim funct2 inds mem - rs1 funct3 vd opcode USTA-type

Stream Configuration Instructions (Continuation)
0 0 000 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H
0 0 000 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.MEM1
0 0 000 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.MEM2
0 0 000 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.MEM3
1 0 000 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.M
1 0 000 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.M.MEM1
1 0 000 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.M.MEM2
1 0 000 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.M.MEM3
0 0 000 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W
0 0 000 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.MEM1
0 0 000 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.MEM2
0 0 000 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.MEM3
1 0 000 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.M
1 0 000 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.M.MEM1
1 0 000 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.M.MEM2
1 0 000 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.M.MEM3
0 0 000 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D
0 0 000 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.MEM1
0 0 000 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.MEM2
0 0 000 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.MEM3
1 0 000 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.M
1 0 000 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.M.MEM1
1 0 000 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.M.MEM2
1 0 000 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.M.MEM3
0 1 000 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.V.1
0 1 000 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.V.1.MEM1
0 1 000 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.V.1.MEM2
0 1 000 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.V.1.MEM3
1 1 000 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.V.1.M
1 1 000 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.V.1.M.MEM1
1 1 000 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.V.1.M.MEM2
1 1 000 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.V.1.M.MEM3
0 1 000 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.V.1
0 1 000 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.V.1.MEM1
0 1 000 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.V.1.MEM2
0 1 000 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.V.1.MEM3
1 1 000 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.V.1.M
1 1 000 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.V.1.M.MEM1
1 1 000 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.V.1.M.MEM2
1 1 000 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.V.1.M.MEM3
0 1 000 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.V.1
0 1 000 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.V.1.MEM1
0 1 000 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.V.1.MEM2
0 1 000 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.V.1.MEM3
1 1 000 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.V.1.M
1 1 000 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.V.1.M.MEM1
1 1 000 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.V.1.M.MEM2
1 1 000 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.V.1.M.MEM3

115

Appendix C

31 30 29 27 26 25 24 23 22 21 20 19 15 14 12 11 7 6 0
m v vdim funct2 inds mem - rs1 funct3 vd opcode USTA-type

Stream Configuration Instructions (Continuation)
0 1 000 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.V.1
0 1 000 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.V.1.MEM1
0 1 000 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.V.1.MEM2
0 1 000 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.V.1.MEM3
1 1 000 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.V.1.M
1 1 000 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.V.1.M.MEM1
1 1 000 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.V.1.M.MEM2
1 1 000 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.V.1.M.MEM3
0 1 001 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.V.2
0 1 001 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.V.2.MEM1
0 1 001 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.V.2.MEM2
0 1 001 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.V.2.MEM3
1 1 001 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.V.2.M
1 1 001 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.V.2.M.MEM1
1 1 001 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.V.2.M.MEM2
1 1 001 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.V.2.M.MEM3
0 1 001 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.V.2
0 1 001 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.V.2.MEM1
0 1 001 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.V.2.MEM2
0 1 001 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.V.2.MEM3
1 1 001 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.V.2.M
1 1 001 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.V.2.M.MEM1
1 1 001 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.V.2.M.MEM2
1 1 001 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.V.2.M.MEM3
0 1 001 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.V.2
0 1 001 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.V.2.MEM1
0 1 001 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.V.2.MEM2
0 1 001 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.V.2.MEM3
1 1 001 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.V.2.M
1 1 001 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.V.2.M.MEM1
1 1 001 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.V.2.M.MEM2
1 1 001 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.V.2.M.MEM3
0 1 001 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.V.2
0 1 001 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.V.2.MEM1
0 1 001 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.V.2.MEM2
0 1 001 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.V.2.MEM3
1 1 001 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.V.2.M
1 1 001 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.V.2.M.MEM1
1 1 001 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.V.2.M.MEM2
1 1 001 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.V.2.M.MEM3
0 1 010 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.V.3
0 1 010 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.V.3.MEM1
0 1 010 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.V.3.MEM2
0 1 010 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.V.3.MEM3
1 1 010 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.V.3.M
1 1 010 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.V.3.M.MEM1
1 1 010 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.V.3.M.MEM2
1 1 010 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.V.3.M.MEM3

116

UVE Instruction Listing

31 30 29 27 26 25 24 23 22 21 20 19 15 14 12 11 7 6 0
m v vdim funct2 inds mem - rs1 funct3 vd opcode USTA-type

Stream Configuration Instructions (Continuation)
0 1 010 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.V.3
0 1 010 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.V.3.MEM1
0 1 010 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.V.3.MEM2
0 1 010 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.V.3.MEM3
1 1 010 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.V.3.M
1 1 010 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.V.3.M.MEM1
1 1 010 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.V.3.M.MEM2
1 1 010 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.V.3.M.MEM3
0 1 010 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.V.3
0 1 010 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.V.3.MEM1
0 1 010 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.V.3.MEM2
0 1 010 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.V.3.MEM3
1 1 010 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.V.3.M
1 1 010 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.V.3.M.MEM1
1 1 010 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.V.3.M.MEM2
1 1 010 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.V.3.M.MEM3
0 1 010 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.V.3
0 1 010 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.V.3.MEM1
0 1 010 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.V.3.MEM2
0 1 010 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.V.3.MEM3
1 1 010 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.V.3.M
1 1 010 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.V.3.M.MEM1
1 1 010 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.V.3.M.MEM2
1 1 010 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.V.3.M.MEM3
0 1 011 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.V.4
0 1 011 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.V.4.MEM1
0 1 011 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.V.4.MEM2
0 1 011 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.V.4.MEM3
1 1 011 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.V.4.M
1 1 011 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.V.4.M.MEM1
1 1 011 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.V.4.M.MEM2
1 1 011 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.V.4.M.MEM3
0 1 011 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.V.4
0 1 011 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.V.4.MEM1
0 1 011 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.V.4.MEM2
0 1 011 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.V.4.MEM3
1 1 011 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.V.4.M
1 1 011 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.V.4.M.MEM1
1 1 011 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.V.4.M.MEM2
1 1 011 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.V.4.M.MEM3
0 1 011 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.V.4
0 1 011 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.V.4.MEM1
0 1 011 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.V.4.MEM2
0 1 011 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.V.4.MEM3
1 1 011 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.V.4.M
1 1 011 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.V.4.M.MEM1
1 1 011 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.V.4.M.MEM2
1 1 011 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.V.4.M.MEM3

117

Appendix C

31 30 29 27 26 25 24 23 22 21 20 19 15 14 12 11 7 6 0
m v vdim funct2 inds mem - rs1 funct3 vd opcode USTA-type

Stream Configuration Instructions (Continuation)
0 1 011 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.V.4
0 1 011 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.V.4.MEM1
0 1 011 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.V.4.MEM2
0 1 011 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.V.4.MEM3
1 1 011 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.V.4.M
1 1 011 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.V.4.M.MEM1
1 1 011 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.V.4.M.MEM2
1 1 011 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.V.4.M.MEM3
0 1 100 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.V.5
0 1 100 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.V.5.MEM1
0 1 100 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.V.5.MEM2
0 1 100 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.V.5.MEM3
1 1 100 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.V.5.M
1 1 100 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.V.5.M.MEM1
1 1 100 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.V.5.M.MEM2
1 1 100 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.V.5.M.MEM3
0 1 100 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.V.5
0 1 100 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.V.5.MEM1
0 1 100 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.V.5.MEM2
0 1 100 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.V.5.MEM3
1 1 100 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.V.5.M
1 1 100 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.V.5.M.MEM1
1 1 100 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.V.5.M.MEM2
1 1 100 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.V.5.M.MEM3
0 1 100 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.V.5
0 1 100 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.V.5.MEM1
0 1 100 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.V.5.MEM2
0 1 100 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.V.5.MEM3
1 1 100 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.V.5.M
1 1 100 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.V.5.M.MEM1
1 1 100 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.V.5.M.MEM2
1 1 100 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.V.5.M.MEM3
0 1 100 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.V.5
0 1 100 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.V.5.MEM1
0 1 100 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.V.5.MEM2
0 1 100 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.V.5.MEM3
1 1 100 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.V.5.M
1 1 100 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.V.5.M.MEM1
1 1 100 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.V.5.M.MEM2
1 1 100 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.V.5.M.MEM3
0 1 101 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.V.6
0 1 101 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.V.6.MEM1
0 1 101 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.V.6.MEM2
0 1 101 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.V.6.MEM3
1 1 101 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.V.6.M
1 1 101 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.V.6.M.MEM1
1 1 101 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.V.6.M.MEM2
1 1 101 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.V.6.M.MEM3
0 1 101 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.V.6
0 1 101 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.V.6.MEM1
0 1 101 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.V.6.MEM2
0 1 101 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.V.6.MEM3

118

UVE Instruction Listing

31 30 29 27 26 25 24 23 22 21 20 19 15 14 12 11 7 6 0
m v vdim funct2 inds mem - rs1 funct3 vd opcode USTA-type

Stream Configuration Instructions (Continuation)
1 1 101 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.V.6.M
1 1 101 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.V.6.M.MEM1
1 1 101 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.V.6.M.MEM2
1 1 101 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.V.6.M.MEM3
0 1 101 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.V.6
0 1 101 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.V.6.MEM1
0 1 101 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.V.6.MEM2
0 1 101 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.V.6.MEM3
1 1 101 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.V.6.M
1 1 101 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.V.6.M.MEM1
1 1 101 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.V.6.M.MEM2
1 1 101 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.V.6.M.MEM3
0 1 101 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.V.6
0 1 101 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.V.6.MEM1
0 1 101 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.V.6.MEM2
0 1 101 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.V.6.MEM3
1 1 101 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.V.6.M
1 1 101 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.V.6.M.MEM1
1 1 101 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.V.6.M.MEM2
1 1 101 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.V.6.M.MEM3
0 1 110 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.V.7
0 1 110 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.V.7.MEM1
0 1 110 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.V.7.MEM2
0 1 110 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.V.7.MEM3
1 1 110 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.V.7.M
1 1 110 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.V.7.M.MEM1
1 1 110 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.V.7.M.MEM2
1 1 110 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.V.7.M.MEM3
0 1 110 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.V.7
0 1 110 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.V.7.MEM1
0 1 110 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.V.7.MEM2
0 1 110 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.V.7.MEM3
1 1 110 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.V.7.M
1 1 110 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.V.7.M.MEM1
1 1 110 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.V.7.M.MEM2
1 1 110 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.V.7.M.MEM3
0 1 110 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.V.7
0 1 110 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.V.7.MEM1
0 1 110 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.V.7.MEM2
0 1 110 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.V.7.MEM3
1 1 110 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.V.7.M
1 1 110 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.V.7.M.MEM1
1 1 110 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.V.7.M.MEM2
1 1 110 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.V.7.M.MEM3
0 1 110 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.V.7
0 1 110 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.V.7.MEM1
0 1 110 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.V.7.MEM2
0 1 110 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.V.7.MEM3

119

Appendix C

31 30 29 27 26 25 24 23 22 21 20 19 18 17 15 14 12 11 7 6 0
m v vdim funct2 inds mem - rs1 funct3 vd opcode USTA-type

rs3 funct2 b t - tdim funct3 vd opcode UMOD-type
rs3 funct2 rs2 rs1 funct3 vd opcode UAE-type

Stream Configuration Instructions (Continuation)
1 1 110 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.V.7.M
1 1 110 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.V.7.M.MEM1
1 1 110 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.V.7.M.MEM2
1 1 110 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.V.7.M.MEM3
0 1 111 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.V
0 1 111 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.V.MEM1
0 1 111 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.V.MEM2
0 1 111 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.V.MEM3
1 1 111 00 0 00 00 rs1 000 vd 0001011 SS.STA.ST.B.V.M
1 1 111 00 0 01 00 rs1 000 vd 0001011 SS.STA.ST.B.V.M.MEM1
1 1 111 00 0 10 00 rs1 000 vd 0001011 SS.STA.ST.B.V.M.MEM2
1 1 111 00 0 11 00 rs1 000 vd 0001011 SS.STA.ST.B.V.M.MEM3
0 1 111 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.V
0 1 111 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.V.MEM1
0 1 111 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.V.MEM2
0 1 111 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.V.MEM3
1 1 111 00 0 00 00 rs1 001 vd 0001011 SS.STA.ST.H.V.M
1 1 111 00 0 01 00 rs1 001 vd 0001011 SS.STA.ST.H.V.M.MEM1
1 1 111 00 0 10 00 rs1 001 vd 0001011 SS.STA.ST.H.V.M.MEM2
1 1 111 00 0 11 00 rs1 001 vd 0001011 SS.STA.ST.H.V.M.MEM3
0 1 111 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.V
0 1 111 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.V.MEM1
0 1 111 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.V.MEM2
0 1 111 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.V.MEM3
1 1 111 00 0 00 00 rs1 010 vd 0001011 SS.STA.ST.W.V.M
1 1 111 00 0 01 00 rs1 010 vd 0001011 SS.STA.ST.W.V.M.MEM1
1 1 111 00 0 10 00 rs1 010 vd 0001011 SS.STA.ST.W.V.M.MEM2
1 1 111 00 0 11 00 rs1 010 vd 0001011 SS.STA.ST.W.V.M.MEM3
0 1 111 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.V
0 1 111 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.V.MEM1
0 1 111 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.V.MEM2
0 1 111 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.V.MEM3
1 1 111 00 0 00 00 rs1 011 vd 0001011 SS.STA.ST.D.V.M
1 1 111 00 0 01 00 rs1 011 vd 0001011 SS.STA.ST.D.V.M.MEM1
1 1 111 00 0 10 00 rs1 011 vd 0001011 SS.STA.ST.D.V.M.MEM2
1 1 111 00 0 11 00 rs1 011 vd 0001011 SS.STA.ST.D.V.M.MEM3

rs3 01 rs2 rs1 000 vd 0001011 SS.APP
rs3 01 000 00 00 000 100 vd 0001011 SS.APP.MOD.SIZ.INC.1
rs3 01 001 00 00 000 100 vd 0001011 SS.APP.MOD.SIZ.DEC.1
rs3 01 000 01 00 000 100 vd 0001011 SS.APP.MOD.STR.INC.1
rs3 01 001 01 00 000 100 vd 0001011 SS.APP.MOD.STR.DEC.1
rs3 01 000 10 00 000 100 vd 0001011 SS.APP.MOD.OFS.INC.1
rs3 01 001 10 00 000 100 vd 0001011 SS.APP.MOD.OFS.DEC.1
rs3 01 000 00 00 001 100 vd 0001011 SS.APP.MOD.SIZ.INC.2
rs3 01 001 00 00 001 100 vd 0001011 SS.APP.MOD.SIZ.DEC.2
rs3 01 000 01 00 001 100 vd 0001011 SS.APP.MOD.STR.INC.2
rs3 01 001 01 00 001 100 vd 0001011 SS.APP.MOD.STR.DEC.2
rs3 01 000 10 00 001 100 vd 0001011 SS.APP.MOD.OFS.INC.2
rs3 01 001 10 00 001 100 vd 0001011 SS.APP.MOD.OFS.DEC.2

120

UVE Instruction Listing

31 27 26 25 24 22 21 20 19 18 17 15 14 12 11 7 6 0
rs3 funct2 b t - tdim funct3 vd opcode UMOD-type

- tdim sg funct2 b t vs1 funct3 vd opcode UIND-type

Stream Configuration Instructions (Continuation)
rs3 01 000 00 00 010 100 vd 0001011 SS.APP.MOD.SIZ.INC.3
rs3 01 001 00 00 010 100 vd 0001011 SS.APP.MOD.SIZ.DEC.3
rs3 01 000 01 00 010 100 vd 0001011 SS.APP.MOD.STR.INC.3
rs3 01 001 01 00 010 100 vd 0001011 SS.APP.MOD.STR.DEC.3
rs3 01 000 10 00 010 100 vd 0001011 SS.APP.MOD.OFS.INC.3
rs3 01 001 10 00 010 100 vd 0001011 SS.APP.MOD.OFS.DEC.3
rs3 01 000 00 00 011 100 vd 0001011 SS.APP.MOD.SIZ.INC.4
rs3 01 001 00 00 011 100 vd 0001011 SS.APP.MOD.SIZ.DEC.4
rs3 01 000 01 00 011 100 vd 0001011 SS.APP.MOD.STR.INC.4
rs3 01 001 01 00 011 100 vd 0001011 SS.APP.MOD.STR.DEC.4
rs3 01 000 10 00 011 100 vd 0001011 SS.APP.MOD.OFS.INC.4
rs3 01 001 10 00 011 100 vd 0001011 SS.APP.MOD.OFS.DEC.4
rs3 01 000 00 00 100 100 vd 0001011 SS.APP.MOD.SIZ.INC.5
rs3 01 001 00 00 100 100 vd 0001011 SS.APP.MOD.SIZ.DEC.5
rs3 01 000 01 00 100 100 vd 0001011 SS.APP.MOD.STR.INC.5
rs3 01 001 01 00 100 100 vd 0001011 SS.APP.MOD.STR.DEC.5
rs3 01 000 10 00 100 100 vd 0001011 SS.APP.MOD.OFS.INC.5
rs3 01 001 10 00 100 100 vd 0001011 SS.APP.MOD.OFS.DEC.5
rs3 01 000 00 00 101 100 vd 0001011 SS.APP.MOD.SIZ.INC.6
rs3 01 001 00 00 101 100 vd 0001011 SS.APP.MOD.SIZ.DEC.6
rs3 01 000 01 00 101 100 vd 0001011 SS.APP.MOD.STR.INC.6
rs3 01 001 01 00 101 100 vd 0001011 SS.APP.MOD.STR.DEC.6
rs3 01 000 10 00 101 100 vd 0001011 SS.APP.MOD.OFS.INC.6
rs3 01 001 10 00 101 100 vd 0001011 SS.APP.MOD.OFS.DEC.6
rs3 01 000 00 00 110 100 vd 0001011 SS.APP.MOD.SIZ.INC.7
rs3 01 001 00 00 110 100 vd 0001011 SS.APP.MOD.SIZ.DEC.7
rs3 01 000 01 00 110 100 vd 0001011 SS.APP.MOD.STR.INC.7
rs3 01 001 01 00 110 100 vd 0001011 SS.APP.MOD.STR.DEC.7
rs3 01 000 10 00 110 100 vd 0001011 SS.APP.MOD.OFS.INC.7
rs3 01 001 10 00 110 100 vd 0001011 SS.APP.MOD.OFS.DEC.7
rs3 01 000 00 00 111 100 vd 0001011 SS.APP.MOD.SIZ.INC.L
rs3 01 001 00 00 111 100 vd 0001011 SS.APP.MOD.SIZ.DEC.L
rs3 01 000 01 00 111 100 vd 0001011 SS.APP.MOD.STR.INC.L
rs3 01 001 01 00 111 100 vd 0001011 SS.APP.MOD.STR.DEC.L
rs3 01 000 10 00 111 100 vd 0001011 SS.APP.MOD.OFS.INC.L
rs3 01 001 10 00 111 100 vd 0001011 SS.APP.MOD.OFS.DEC.L

0 000 0 01 000 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.INC.1
0 000 0 01 001 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.DEC.1
0 000 0 01 010 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.ADD.1
0 000 0 01 011 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.SUB.1
0 000 0 01 100 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.SET.1
0 000 0 01 000 01 vs1 110 vd 0001011 SS.APP.IND.STR.INC.1
0 000 0 01 001 01 vs1 110 vd 0001011 SS.APP.IND.STR.DEC.1
0 000 0 01 010 01 vs1 110 vd 0001011 SS.APP.IND.STR.ADD.1
0 000 0 01 011 01 vs1 110 vd 0001011 SS.APP.IND.STR.SUB.1
0 000 0 01 100 01 vs1 110 vd 0001011 SS.APP.IND.STR.SET.1
0 000 0 01 000 10 vs1 110 vd 0001011 SS.APP.IND.OFS.INC.1
0 000 0 01 001 10 vs1 110 vd 0001011 SS.APP.IND.OFS.DEC.1
0 000 0 01 010 10 vs1 110 vd 0001011 SS.APP.IND.OFS.ADD.1
0 000 0 01 011 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SUB.1
0 000 0 01 100 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SET.1

121

Appendix C

31 30 28 27 26 25 24 22 21 20 19 15 14 12 11 7 6 0
- tdim sg funct2 b t vs1 funct3 vd opcode UIND-type

Stream Configuration Instructions (Continuation)
0 001 0 01 000 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.INC.2
0 001 0 01 001 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.DEC.2
0 001 0 01 010 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.ADD.2
0 001 0 01 011 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.SUB.2
0 001 0 01 100 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.SET.2
0 001 0 01 000 01 vs1 110 vd 0001011 SS.APP.IND.STR.INC.2
0 001 0 01 001 01 vs1 110 vd 0001011 SS.APP.IND.STR.DEC.2
0 001 0 01 010 01 vs1 110 vd 0001011 SS.APP.IND.STR.ADD.2
0 001 0 01 011 01 vs1 110 vd 0001011 SS.APP.IND.STR.SUB.2
0 001 0 01 100 01 vs1 110 vd 0001011 SS.APP.IND.STR.SET.2
0 001 0 01 000 10 vs1 110 vd 0001011 SS.APP.IND.OFS.INC.2
0 001 0 01 001 10 vs1 110 vd 0001011 SS.APP.IND.OFS.DEC.2
0 001 0 01 010 10 vs1 110 vd 0001011 SS.APP.IND.OFS.ADD.2
0 001 0 01 011 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SUB.2
0 001 0 01 100 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SET.2
0 010 0 01 000 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.INC.3
0 010 0 01 001 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.DEC.3
0 010 0 01 010 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.ADD.3
0 010 0 01 011 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.SUB.3
0 010 0 01 100 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.SET.3
0 010 0 01 000 01 vs1 110 vd 0001011 SS.APP.IND.STR.INC.3
0 010 0 01 001 01 vs1 110 vd 0001011 SS.APP.IND.STR.DEC.3
0 010 0 01 010 01 vs1 110 vd 0001011 SS.APP.IND.STR.ADD.3
0 010 0 01 011 01 vs1 110 vd 0001011 SS.APP.IND.STR.SUB.3
0 010 0 01 100 01 vs1 110 vd 0001011 SS.APP.IND.STR.SET.3
0 010 0 01 000 10 vs1 110 vd 0001011 SS.APP.IND.OFS.INC.3
0 010 0 01 001 10 vs1 110 vd 0001011 SS.APP.IND.OFS.DEC.3
0 010 0 01 010 10 vs1 110 vd 0001011 SS.APP.IND.OFS.ADD.3
0 010 0 01 011 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SUB.3
0 010 0 01 100 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SET.3
0 011 0 01 000 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.INC.4
0 011 0 01 001 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.DEC.4
0 011 0 01 010 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.ADD.4
0 011 0 01 011 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.SUB.4
0 011 0 01 100 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.SET.4
0 011 0 01 000 01 vs1 110 vd 0001011 SS.APP.IND.STR.INC.4
0 011 0 01 001 01 vs1 110 vd 0001011 SS.APP.IND.STR.DEC.4
0 011 0 01 010 01 vs1 110 vd 0001011 SS.APP.IND.STR.ADD.4
0 011 0 01 011 01 vs1 110 vd 0001011 SS.APP.IND.STR.SUB.4
0 011 0 01 100 01 vs1 110 vd 0001011 SS.APP.IND.STR.SET.4
0 011 0 01 000 10 vs1 110 vd 0001011 SS.APP.IND.OFS.INC.4
0 011 0 01 001 10 vs1 110 vd 0001011 SS.APP.IND.OFS.DEC.4
0 011 0 01 010 10 vs1 110 vd 0001011 SS.APP.IND.OFS.ADD.4
0 011 0 01 011 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SUB.4
0 011 0 01 100 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SET.4

122

UVE Instruction Listing

31 30 28 27 26 25 24 22 21 20 19 15 14 12 11 7 6 0
- tdim sg funct2 b t vs1 funct3 vd opcode UIND-type

Stream Configuration Instructions (Continuation)
0 100 0 01 000 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.INC.5
0 100 0 01 001 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.DEC.5
0 100 0 01 010 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.ADD.5
0 100 0 01 011 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.SUB.5
0 100 0 01 100 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.SET.5
0 100 0 01 000 01 vs1 110 vd 0001011 SS.APP.IND.STR.INC.5
0 100 0 01 001 01 vs1 110 vd 0001011 SS.APP.IND.STR.DEC.5
0 100 0 01 010 01 vs1 110 vd 0001011 SS.APP.IND.STR.ADD.5
0 100 0 01 011 01 vs1 110 vd 0001011 SS.APP.IND.STR.SUB.5
0 100 0 01 100 01 vs1 110 vd 0001011 SS.APP.IND.STR.SET.5
0 100 0 01 000 10 vs1 110 vd 0001011 SS.APP.IND.OFS.INC.5
0 100 0 01 001 10 vs1 110 vd 0001011 SS.APP.IND.OFS.DEC.5
0 100 0 01 010 10 vs1 110 vd 0001011 SS.APP.IND.OFS.ADD.5
0 100 0 01 011 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SUB.5
0 100 0 01 100 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SET.5
0 101 0 01 000 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.INC.6
0 101 0 01 001 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.DEC.6
0 101 0 01 010 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.ADD.6
0 101 0 01 011 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.SUB.6
0 101 0 01 100 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.SET.6
0 101 0 01 000 01 vs1 110 vd 0001011 SS.APP.IND.STR.INC.6
0 101 0 01 001 01 vs1 110 vd 0001011 SS.APP.IND.STR.DEC.6
0 101 0 01 010 01 vs1 110 vd 0001011 SS.APP.IND.STR.ADD.6
0 101 0 01 011 01 vs1 110 vd 0001011 SS.APP.IND.STR.SUB.6
0 101 0 01 100 01 vs1 110 vd 0001011 SS.APP.IND.STR.SET.6
0 101 0 01 000 10 vs1 110 vd 0001011 SS.APP.IND.OFS.INC.6
0 101 0 01 001 10 vs1 110 vd 0001011 SS.APP.IND.OFS.DEC.6
0 101 0 01 010 10 vs1 110 vd 0001011 SS.APP.IND.OFS.ADD.6
0 101 0 01 011 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SUB.6
0 101 0 01 100 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SET.6
0 110 0 01 000 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.INC.7
0 110 0 01 001 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.DEC.7
0 110 0 01 010 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.ADD.7
0 110 0 01 011 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.SUB.7
0 110 0 01 100 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.SET.7
0 110 0 01 000 01 vs1 110 vd 0001011 SS.APP.IND.STR.INC.7
0 110 0 01 001 01 vs1 110 vd 0001011 SS.APP.IND.STR.DEC.7
0 110 0 01 010 01 vs1 110 vd 0001011 SS.APP.IND.STR.ADD.7
0 110 0 01 011 01 vs1 110 vd 0001011 SS.APP.IND.STR.SUB.7
0 110 0 01 100 01 vs1 110 vd 0001011 SS.APP.IND.STR.SET.7
0 110 0 01 000 10 vs1 110 vd 0001011 SS.APP.IND.OFS.INC.7
0 110 0 01 001 10 vs1 110 vd 0001011 SS.APP.IND.OFS.DEC.7
0 110 0 01 010 10 vs1 110 vd 0001011 SS.APP.IND.OFS.ADD.7
0 110 0 01 011 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SUB.7
0 110 0 01 100 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SET.7

123

Appendix C

31 30 28 27 26 25 24 22 21 20 19 15 14 12 11 7 6 0
- tdim sg funct2 b t vs1 funct3 vd opcode UIND-type

rs3 funct2 rs2 rs1 funct3 vd opcode UAE-type

Stream Configuration Instructions (Continuation)
0 111 0 01 000 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.INC.L
0 111 0 01 001 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.DEC.L
0 111 0 01 010 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.ADD.L
0 111 0 01 011 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.SUB.L
0 111 0 01 100 00 vs1 110 vd 0001011 SS.APP.IND.SIZ.SET.L
0 111 0 01 000 01 vs1 110 vd 0001011 SS.APP.IND.STR.INC.L
0 111 0 01 001 01 vs1 110 vd 0001011 SS.APP.IND.STR.DEC.L
0 111 0 01 010 01 vs1 110 vd 0001011 SS.APP.IND.STR.ADD.L
0 111 0 01 011 01 vs1 110 vd 0001011 SS.APP.IND.STR.SUB.L
0 111 0 01 100 01 vs1 110 vd 0001011 SS.APP.IND.STR.SET.L
0 111 0 01 000 10 vs1 110 vd 0001011 SS.APP.IND.OFS.INC.L
0 111 0 01 001 10 vs1 110 vd 0001011 SS.APP.IND.OFS.DEC.L
0 111 0 01 010 10 vs1 110 vd 0001011 SS.APP.IND.OFS.ADD.L
0 111 0 01 011 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SUB.L
0 111 0 01 100 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SET.L
0 000 1 01 000 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SG.INC
0 000 1 01 001 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SG.DEC
0 000 1 01 010 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SG.ADD
0 000 1 01 011 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SG.SUB
0 000 1 01 100 10 vs1 110 vd 0001011 SS.APP.IND.OFS.SG.SET
0 000 1 10 000 10 vs1 110 vd 0001011 SS.END.IND.OFS.SG.INC
0 000 1 10 001 10 vs1 110 vd 0001011 SS.END.IND.OFS.SG.DEC
0 000 1 10 010 10 vs1 110 vd 0001011 SS.END.IND.OFS.SG.ADD
0 000 1 10 011 10 vs1 110 vd 0001011 SS.END.IND.OFS.SG.SUB
0 000 1 10 100 10 vs1 110 vd 0001011 SS.END.IND.OFS.SG.SET

rs3 10 rs2 rs1 000 vd 0001011 SS.END

Table C.1: Unlimited Vector Extension (UVE) instruction listing for RISC-V

124

Appendix D

Paper presented at CAMS 2023

125

A functional validation framework for the Unlimited Vector
Extension

Ana Beatriz Fernandes
Instituto de Telecomunicações

Dept. of Electrical and Computer Eng.
University of Coimbra, Portugal

ana.fernandes@co.it.pt

Nuno Neves
INESC-ID

Instituto Superior Técnico
Universidade de Lisboa, Portugal

nuno.neves@inesc-id.pt

Luís Crespo
INESC-ID

Instituto Superior Técnico
Universidade de Lisboa, Portugal

luis.miguel.crespo@tecnico.ulisboa.pt

Pedro Tomás
INESC-ID

Instituto Superior Técnico
Universidade de Lisboa, Portugal

pedro.tomas@inesc-id.pt

Nuno Roma
INESC-ID

Instituto Superior Técnico
Universidade de Lisboa, Portugal

nuno.roma@inesc-id.pt

Gabriel Falcao
Instituto de Telecomunicações

Dept. of Electrical and Computer Eng.
University of Coimbra, Portugal

gff@co.it.pt

ABSTRACT
The Unlimited Vector Extension (UVE) was already proposed to
tackle the limitations of current state-of-the-art Vector-Length Ag-
nostic (VLA) extensions. This is a new Instruction Set Architecture
(ISA) extension that aims to reduce loop control and memory access
indexation overheads, as well as memory access latency, joining
data streaming and Single Instruction, Multiple Data (SIMD) pro-
cessing. This ISA extension has already been validated in a cycle-
accurate simulator, gem5, with a first implementation made on
an out-of-order processor model, based on the ARM Cortex-A76.
However, as compilation support is currently being developed, and
several shortcomings and improvements on the existing specifica-
tion have been identified, an increasing need to efficiently run and
validate UVE code has surged. As such, support for UVE has been
added to the Spike simulator. This is the golden reference functional
RISC-V ISA simulator, written in C++. To achieve this, the simulator
has been extended to accommodate for the necessary architecture
changes, such as new registers that hold the data streams (streaming
registers) together with a convenient Streaming Unit that emulates
the configuration and manipulation of the streams. The result is a
powerful tool that provides the possibility to validate all current
features and improvements of UVE, along with some preliminary
code obtained from the compiler currently under development.

CCS CONCEPTS
• Computer systems organization → Single instruction, mul-
tiple data; Reduced instruction set computing; Data flow architec-
tures; • Computing methodologies→ Simulation tools.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CAMS’23, October 2023, Toronto, Canada
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
ISA SIMD Extensions, Data Streaming, RISC-V, Unlimited Vector
Extension, Simulation Tools, Data Flow Architecture
ACM Reference Format:
Ana Beatriz Fernandes, Nuno Neves, Luís Crespo, Pedro Tomás, Nuno Roma,
and Gabriel Falcao. 2024. A functional validation framework for the Unlim-
ited Vector Extension. In Proceedings of ACM Conference (CAMS’23). ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In the last few decades, there has been an increasing need to improve
processors’ performance, as computational and memory-intensive
applications become more common (e.g. Machine Learning and
Sparse Linear Algebra). However, with the end of Dennard Scaling
and Moore’s Law, more traditional methods of improving perfor-
mance have been revealed to be insufficient, such as increasing the
clock frequency and the use of cache memory.

Several solutions have been proposed and are now widely estab-
lished, such as Instruction-Level Parallelism (ILP) and Data-Level
Parallelism (DLP), common in modern high-performance proces-
sors. The latter, hidden in Single Instruction, Multiple Data (SIMD)
units [8], allow the simultaneous processing of multiple data ele-
ments. To take advantage of this, a plethora of SIMD Instruction Set
Architectures (ISAs) has been developed, such as Arm NEON [1]
and x86 AVX [11], focused on operating on fixed-size registers.
However, because a vector’s optimal size depends on the applica-
tion, this approach presents some limitations. To overcome this,
other vector-length agnostic extensions have emerged, particularly
the RISC-V Vector Extension (RVV) [24] and the Scalable Vector
Extension (SVE) [22], which allow for the size of the vector register
to be defined at runtime. This means that different processors, with
different application requirements, can adopt distinct vector sizes,
with no need to modify the source code. However, a new problem
arises with these extensions, as predicate [2] and vector control
instructions become necessary to disable elements outside loop
bounds, which leads to more loop instructions [17], and thus more
overhead and decrease of performance.

The RISC-V Unlimited Vector Extension (UVE), proposed and
developed by Domingos et al. [8], joins two promising solutions
for improving performance: scalable SIMD extensions and data

1

CAMS’23, October 2023, Toronto, Canada Fernandes et al.

streaming. RISC-V was chosen as the base ISA due to its open-
source nature, as well as its simple and extensible instruction set.
By relying on data streaming, this novel RISC-V ISA extension has
several improvements when compared to the onesmentioned above,
such as decoupled memory accesses, indexing-free loops, simplified
vectorisation, and implicit load/store operations [8]. The streaming
paradigm allows for the configuration of memory access patterns at
software level and the subsequent data fetching in the background,
a clear step towards improving the memory access latency and
throughput. This paradigm shift was already demonstrated in a
proof-of-concept gem5 implementation of UVE on an out-of-order
processor model, based on the ARM Cortex-A76. It showed that
it can improve the performance of a processor by up to 2.4 times
when compared to other state-of-the-art implementations [8].

In accordance, this work exploits a prominent research
trend that considers the use of unconventional architectures
to improve the attained processor’s performance. In particu-
lar, it presents a new modelling, simulation and validation
tool to support the development of UVE, by not only indepen-
dently validating the existing specification, but also introducing
streaming support on Spike [18], on which several existing instruc-
tions were added, tested and, whenever pertinent, modified. Before
this contribution, this process was very time-consuming and tight-
ened to the several constraints imposed by gem5. Hence, it now
becomes much more efficient with this new tool, as Spike offers a
simpler instruction implementation pipeline. For this to be possible,
the simulator was expanded to include a Streaming Unit (SU), simi-
lar to RVV’s Vector Unit already present in the simulator. Moreover,
a new RISC-V extension was added to the simulator, where many
of the existing UVE instructions were added.

In order to test the streaming mechanisms and validate the func-
tional behaviour of the chosen instructions, a subset from the bench-
marks that were considered in UVE’s proposal [8] was used, mainly
based on Polybench/C 1. It should be noted that for applications it
is not yet possible to automatically generate UVE code from regular
C code, which means that some benchmarks had to be manually
written. This had already been done for previous works, but the
available code was revised and compared to code generated from
the compiler currently being developed [13] whenever possible.

The developed framework and supporting documentation are
publicly available online 2. This repository contains ongoing work
and is thus subject to continual updates.

2 DATA STREAMING AND UVE
Memory access is the most time and energy-consuming operation
in modern computer architectures [5], so it is natural that this is the
main target of optimisation attempts.While cache structures greatly
improve access latencies, they are dependent on data locality, which
is not always guaranteed. Moreover, in applications with complex
access patterns, it is often not possible to efficiently make use of
these structures. Furthermore, if there is a large volume of data to be
loaded/stored, particularly in multi-core systems, instances of cache
contention (i.e. when multiple cores attempt to update the same

1https://web.cs.ucla.edu/ pouchet/software/polybench/
2https://github.com/hpc-ulisboa/UVE2

cache line) and energy consumption rise [10]. Thismeans that adapt-
ing the data communication scheme to the running application is
crucial for performance increase. One re-emerging technology aim-
ing to tackle this problem is data streaming [8, 13, 16, 20, 21, 23],
which decouples memory accesses from data processing, effectively
masking data transfers behind computation [7].

A stream is essentially a predicable vector of data elements that
are processed sequentially. Each element of a stream is subject to
the same set of operations and is discarded after the computation
is complete. These structures rely almost solely on spatial locality,
which means that the order in which the data is going to be con-
sumed can be specified beforehand [7]. This is possible through
data pattern descriptors, such as those proposed and developed
in [8, 14, 15]. Understanding this representation model is pivotal
to understanding UVE. Hence, the fundamentals of data streaming
and pattern description are described next.

Any regular n-dimensional access sequence can be represented
by the following affine function:

𝑦 (𝑋) = 𝑦𝑏𝑎𝑠𝑒 +
𝑑𝑖𝑚𝑦∑︁
𝑘=0

𝑥𝑘 × 𝑆𝑘 , (1)

with 𝑋 = 𝑥0, ..., 𝑥𝑑𝑖𝑚𝑦
and 𝑥𝑘 ∈ [𝑂𝑘 , 𝐸𝑘 +𝑂𝑘].

This means that a stream access 𝑦 (𝑋) is described as the sum
of the base address of an n-dimensional variable (𝑦𝑏𝑎𝑠𝑒) with 𝑑𝑖𝑚𝑦

pairs of indexing variables (𝑥𝑘) and their respective strides (𝑆𝑘), each
𝑘 corresponding to a dimension of the pattern. 𝐸𝑘 corresponds to
the number of elements in each 𝑘 dimension and𝑂𝑘 to the indexing
offset. Because 𝑥0 has 𝑂0 = 0, it is equal to the base address of the
variable [8]. Moreover, through a combination of affine functions
of this kind, highly complex patterns can be attained, by assigning
the base address and/or the offset of a function to the result of
another one. Lastly, indirect memory accesses can also be described
by taking the data obtained by the addresses generated by an affine
function and injecting them into the aforementioned variables of
another function.

The proposed pattern representation model results from the en-
coding of the variables associated with each pattern dimension of
the function described in Equation (1). This representation is based

d2

d1(modified by m2)
d1: {&A, 1, 1}

d2: {0, N, M}

m2: {Size, Inc, 1, M}

Legend: Descriptor: {offset, size, stride}
Static Modifier: {Target, Behaviour, Displacement, Size}

M
a

tr
ix

 A
 (

N
 x

 M
)

for (i = 0, k = 1; i < N; i++)

 for (j = 0; j < k; j++, k++)

 A[i*M+j];

Figure 1: Triangular access pattern description, where a static
modifier is applied to increment the size of the first dimen-
sion.

2

A functional validation framework for the Unlimited Vector Extension CAMS’23, October 2023, Toronto, Canada

A. C code

for (i = 0; i < NI; i++)

 for (j = 0; j < NJ; j++)

 C[i][j] = 0;

 for (k = 0; k < NK; k++)

 C[i][j] += A[i][k] * B[k][j] ;

B. Pattern description

d3
M

a
tr

ix
 A

 (
N

I x
 N

K
)

d1 (repeated J times: d2)

d1: {&A, NK, 1}

d2: {0, NJ, 0}

d3: {0, NI, NK}

M
a

tr
ix

 B
 (

N
K

 x
 N

J)

d2 (repeated I times: d3)

d1

d1: {&B, NK, NJ}

d2: {0, NJ, 1}

d3: {0, NI, 0}

M
a

tr
ix

 C
 (

N
I x

 N
J)

d2

d1

d1: {&C, NJ, 1}

d2: {0, NI, NJ}

C. UVE code

ss.sta.ld.d

ss.cfg.vec

ss.app

ss.end

u1, A, NK, 1

u1

u1, 0, NJ, 0

u1, 0, NI, NK

M
a

tr
ix

 A

ss.sta.ld.d

ss.cfg.vec

ss.app

ss.end

u2, B, NK, NJ

u2

u2, 0, NJ, 1

u2, 0, NI, 0

M
a

tr
ix

 B

ss.sta.st.d

ss.end

u3, C, NJ, 1

u3, 0, NI, NJ

M
a

tr
ix

 CSt
re

am
 C

on
fi

gu
ra

tio
n

C
om

pu
ta

tio
n

iLoop:

 so.v.dp.d

 kLoop:

 so.a.mul.fp

 so.a.add.fp

 so.b.ndc.1

 so.a.adde.fp

so.b.nc

u21, 0, p0

u22, u1, u2, p0

u21, u21, u22, p0

u2, kLoop

u3, u21, p0

u2, iLoop

Implicit loads

Duplicate
Start configuration and set d1

Set d1 vector coupling

Set d2

Implicit store

End configuration and set d3

Start configuration and set d1

End configuration and set d2

Start configuration and set d1

Set d1 vector coupling

Set d2

End configuration and set d3
Legend: Configuration: ss

Arithmetic: so.a

Branching: so.b

Vector: so.vIn
st

ru
ct

io
ns

{offset, size, stride}Descriptor:

u0-u31: streaming registers

p0: default predicate register

Registers:

Figure 2: Exemplification of two-matrix multiplication from (A) the C source code, through (B) the pattern description of each
matrix data access and (C) the resulting UVE configuration and computation kernels.

on descriptors and modifiers (see Figure 1), defined in a set of dedi-
cated instructions in UVE. Simple descriptors, that remain constant
throughout execution, are exemplified in Figure 2, which is part
of the kernel used in the trisolv benchmark (see Section 4). There
are two types of optional modifiers, which when associated with
a certain dimension of the descriptor are able to alter its param-
eters, allowing the modelling of inter-loop control dependencies
that arise when loop conditions are affected by an outer loop. On
the one hand, static modifiers are able to add or subtract a certain
displacement to any of the dimension’s parameters. On the other
hand, indirect modifiers allow for the substitution of these param-
eters with pointers to data obtained from another stream. This
makes it possible to create complex pattern descriptors, which are
common in a plethora of applications, such as Sparse Algebra and
Data Mining.

UVE adds 32 vector registers to the base ISA (named from "u0"
to "u31"). The length of each vector is unlimited, but a minimum
value is defined, equal to the width of the supported data types
(byte, half-word, word, and double-word), therefore set between 8
and 64 bytes, restricted to powers of two. Each of these vectors
can be associated with a data stream. In addition, sixteen predicate
registers are present, named "p0" to "p15", although only eight
can be used in arithmetic and regular memory instructions (p0-
p7). Register p0 is hardwired to 1, which means it can be used in
operations where predication is not necessary (i.e. non-conditional
loops), as all valid lanes of the operating streams execute. The
remaining predicate registers are used in the configuration of the
other eight.

There are currently 60 major instructions, out of which 26 corre-
spond to integer operations, 15 to floating-point operations and 19
are related to memory manipulation, totalling about 450 instruc-
tions when considering the variations of each one.

Furthermore, UVE not only lets one describe data streams through
the ISA, but it also defines the operation of the supporting microar-
chitecture to manipulate them, consisting in a dedicated Streaming
Engine, along with other minor structures that extend the processor
in order to fully support this ISA extension.

Because Spike is a functional simulator based on a somewhat
high level of abstraction from the real hardware, the added struc-
tures do not fully mimic the proposed microarchitecture, namely
the memory hierarchy, pipelining and Load/Store FIFOs, but are
implemented to respect the instruction set extension specification.

3 UVE VALIDATION FRAMEWORK
Having proven its great potential [8], UVE will benefit from an
efficient tool to validate every aspect of its specification, so that it
can be further improved and expanded to support new and more
complex applications. The developed framework is hereby described
in detail and its structure is represented in Figure 3.

3.1 Simulator
As noted by Roelke and Stan [19], there is usually a compromise
between simulation accuracy and speedwhen choosing between the
various RISC-V simulators available. As such, Spike was chosen as
the most appropriate tool to continue this development. Although
it does not allow cycle-accurate precision, it is the golden reference

3

CAMS’23, October 2023, Toronto, Canada Fernandes et al.

LLVM
Compiler

Validation
Script

Be
nc

hm
ar

ks

kernel.c

main.c

Sp
ik

e
Si

m
ul

a
to

r

RISC-V
Opcodes
Package

encoding.h decode.h

UVE
instructions

Descriptors

Modifier

Dimension

Processor

Streaming Unit

Streaming Register

Predicate Register

MMU

Results

Figure 3: Framework structure.

functional RISC-V ISA software simulator and is widely used as
the proof-of-concept target for every RISC-V extension [6, 12]. In
fact, despite QEMU appearing to be slightly more accurate [19], it
is a much bigger and more complex project, as it targets multiple
architectures, not only RISC-V, and is thus more difficult to modify,
something that is necessary in order to create UVE support. This is
pointed out by Henriques [9], who already used the Spike simulator
to implement some UVE instructions and whose work laid the
foundation for the development of the currently proposed validation
framework.

Spike is currently at Version 1.1.0 and already supports many
RISC-V ISA features, along which is the RISC-V Vector Extension,
which served as a base for the developed Streaming Unit (SU) – the
UVE’s equivalent to its Vector Unit. However, upon analysing the
implementation of several extensions on the simulator, it became
clear that UVE’s implementation structure would be very different.
This is mainly due to the way the simulator’s source code is written,
heavily dependent on macros defined in multiple files and with
little to no documentation. This resulted in code structured in a
very different way than the rest of the simulator and its supported
extensions, albeit more comprehensible.

3.1.1 Streaming simulation infrastructure. The focal component of
the developed simulator is the SU, a new class that has access to
the streaming and predicate registers. This unit mimics some parts
of the proposed Streaming Engine [8], specifically the Stream Table
and the Stream Processing Module, as well as the remaining infras-
tructure responsible for the memory accesses (see Figure 4). Each
register may or may not be associated to a stream, and this module
is responsible for the implicit loading and storing of data, as well
as the iteration of the streams (by the Address Generator). For the
desired functional evaluation, the Load/Store FIFOs and the Stream
Scheduler, represented in Figure 4, were not needed, as streams
are iterated as they are being consumed, with each computation

instruction triggering the iteration of the source streams (implicit
loading) and the destination streams (implicit storing). The result-
ing elements are immediately placed in the associated registers and
the End Of Dimension flags are updated and saved to the Stream Ta-
ble. The iteration and address generation parts work very similarly
to the proposed configuration and are implemented in a different
class, Dimension, which has access to the Modifier class, where
static modifiers are implemented. Each streaming register, when
associated to a stream, is therefore also associated to n dimensions
and respective modifiers, if such is the case.

Furthermore, predication support was developed at the instruc-
tion level, which means that the predicate values never reach the
SU, for simplicity. A predicate register has a fixed vector size of 64
bytes, and a predicate is thus evaluated according to the datatype
of the instruction’s source operands. As a result, in each predicated
instruction the predicate register is read for each active lane, and
the operation is only performed if it evaluates to 1, as stated by the
ISA specification [8].

3.1.2 Modified files. Several source files were modified to add the
necessary structures to support UVE (e.g. decoding functions for
each instruction argument), according to the ISA encoding. These
functions, divided into different types of instructions, followed
the same pattern as already existing ones, some even being direct
copies, so that there is complete flexibility in case the UVE encoding
is changed. In that case, it is not necessary to alter each instruction
if, for example, one of the source registers is differently encoded.
It is only required that the decoding function corresponding to its
type is updated accordingly.

For the simulator to recognise the new instructions, the file that
holds all the ISA encoding, encoding.h, must be updated. To obtain
the necessary code, the official RISC-V Opcodes project 3 was used,
where the encoding of each instruction was added to the standard
ISA and UVE’s predicate registers, and immediate encoding was
added to the file constants.py.

Lastly, the new extension was added to file riscv/riscv.mk.in,
identically to what is done to the native ones, so each new instruc-
tion was included in the variable riscv_insn_ext_uve. In this
file every new source and header file was also added to variables
riscv_srcs and riscv_install_hdrs, respectively, so that they
could be recognised during the compilation of the simulator.

3.1.3 New files. The various new classes priorly mentioned are
defined in files descriptors.h (dimensions and modifiers) and
streaming_unit.h (registers and SU).

Furthermore, each instruction has a corresponding header file in
the riscv/insns folder. While compiling the simulator, these files
will be used to create copies of the riscv/insn_template.cc file
for each instruction, responsible for the generation of the various
versions of the instruction (e.g. 32/64 bit). The obvious implication is
that the developed code for an instruction exists inside an external
function, therefore header file inclusion is not allowed and only
some variables are accessible, namely the processor, the executed
instruction and the process counter. It is through the processor
that each instruction can access the Memory Management Unit
(MMU), as well as the SU and its registers. The executed instruction,

3Available at https://github.com/riscv/riscv-opcodes
4

A functional validation framework for the Unlimited Vector Extension CAMS’23, October 2023, Toronto, Canada

D
es

cr
ip

to
r

Ite
ra

to
r

Address
Generator

Streaming Engine

Sorting Queue

Validation
new

stream

Stream Configuration

Memory Request
Queue

A
rb

ite
r

[Store FIFO & Load FIFO]
Occupancy

St
re

a
m

Sc
he

d
ul

er

Store FIFO

To Register
File

From
Writeback

Load FIFO Data from
Memory

Data to
Memory

Memory
Access

Requests

Configuration
Port

 descriptor state iter flags

Stream Table

#streams

Stream Load/Store
Processing Modules

Stream Scheduler

Stream
Descriptor

Stream Table

Configured Streams FIFO Occupancies

Sort OccupanciesFilter Active Only

Select DescriptorSelection Process

B. Stream Processing Module

A. Streaming Engine

Accum. Offsets 0..N

Stream Processing Module

Address Generator

Base Address

Descriptor (dim. k)

Accumulation
Offsetsk+1..N

Offset Size Stride

Accum. Offsets k..N

Iteration
of dim. k

Memory Address

Descriptor Iterator

Dim. 0

Dim. N Mod. N

Dim. 1 Mod. 1

Head

End of
Descriptor

End of
Descriptor

1 Iter. 1 Iter.

1 Iter. 1 Iter.

Full Iteration

Iteration Process

The components which were implemented on the proposed framework are represented in , while the ones in grey are
implementation specific, and thus not needed to fully describe UVE functional behaviour.

green

Figure 4: (A) Streaming Engine and (B) Stream Processor Module proposed by Domingos et al. [8], now emulated on Spike.

an insn_t object, has access to the opcode decoding functions,
allowing the instruction code to access its operands. The process
counter is mainly used in branching instructions.

4 EXPERIMENTAL RESULTS
4.1 Methodology
In order to validate the UVE ISA functional simulation, various
benchmarks from a wide range of application domains, such as
memory access, linear algebra/BLAS and stencil, were chosen. These
benchmarks were either hand-coded in order to have its correspond-
ing UVE implementation, inserted in the original source code using
inline assembly, or even generated by an adaptded version of the
LLVM compiler that, while currently unavailable to the public, is
undergoing preliminary testing.

Figure 2.C shows how a simple matrix multiplication (𝐶 = 𝐴×𝐵)
can be coded with UVE. In this example, u1 and u2 are streaming
registers configured with load data streams from matrices 𝐴 and 𝐵
and u3 is associated to the store stream, corresponding to matrix
𝐶 , which holds the computation results. This example is also part
of the kernel used in benchmark 3mm, already implemented and
tested on Spike (see Section 4.2 and Figure 5).

4.2 Evaluation
The described framework is currently able of simulating most of the
UVE specification, which means that data streaming capability has
been successfully added to Spike, as well as many instructions from
the proposed ISA. It currently supports multi-dimensional pattern

descriptors, as well as static modifiers, although indirection is not
yet implemented. Stream-based branching and predication are also
supported, as well as multiple arithmetic and vector operations on
the streaming registers. In total, more than 100 instructions have
been implemented and validated on Spike, which can be categorised
as follows:

• Arithmetic (41)
• Branching (16)
• Predication (15)
• Vector (8)
• Stream Configuration (21)

With these fully functional instructions, several benchmarks can
already be ran on the simulator, as summarised in Figure 5. All these
benchmarks, which had been previously used for validation of the
UVE ISA and supporting microarchitecture on gem5, outputted the
same expected behaviour in Spike, proving the correct functioning
of the developed Streaming Unit and the added instructions on the
this simulator.

5 RELATEDWORK
The main focus of the presented work is the development of a new
simulation environment for UVE, where the major difference from
previous works is the chosen base tool. In this section, an overview
of the legacy gem5 UVE simulation framework is presented.

5

CAMS’23, October 2023, Toronto, Canada Fernandes et al.

* The number of kernels corresponds to the number of
disjunt loop statements (i.e. excluding nested loops)

Benchmarks

#
 S

tr
ea

m
s

1

8

3

3

5

12

#
 K

er
ne

ls
 *

1

2

1

3

1

2

M
ax

. L
oo

p
N

es
tin

g

1

1

1

3

2

2

2D
+Static

Modifier

M
em

or
y

A
cc

es
s

Pa
tte

rn

1D

1D

1D

3D

2D

A. Memcpy
(MEMORY)

B. SAXPY
(BLAS)

C. 3mm
(ALGEBRA)

D. Trisolv
(ALGEBRA)

E. Jacobi-1D
(STENCIL)

D. Jacobi-2D
(STENCIL)

Figure 5: Benchmarks used for testing and respective charac-
teristics.

gem5 was notoriously used in UVE’s proposal by Domingos
et al. [8], to provide a reliable performance evaluation with cycle-
accurate precision based on the adaption of an out-of-order proces-
sor model architecture, as it is extendable to support custom ISAs,
as well as microarchitecture models [3, 4, 8, 19].

Despite being an open-source project, gem5 has little documen-
tation available, similarly to Spike. However, it is a much more
complex tool, which resulted in a long and difficult process of mod-
ifications to support UVE. The source code of the simulator was
extensively changed, to support new vectorial and predicate reg-
isters, where scalability (e.g. variable vector register length, with
the element width as a part of the register) was a major obstacle to
overcome. This is due to the simulator not being prepared for this at
the ISA level, as well as requiring that the configuration of the archi-
tecture is changed at each execution. Furthermore, the instruction
set parser was modified to support the new vector registers, as well
as the width and valid index register information [8]. Lastly, UVE
instructions were added, described in a Domain-Specific Language
(DSL) based on C++ and Python, which, on the one hand, allowed
templating for multiple instructions and code reuse, but on the
other hand required many different templates to be developed, such
as for instructions with different operands, which are extremely
common.

Because this simulator relied on the implementation of the sup-
porting microarchitecture for the validation of UVE, as it depends
on a Streaming Engine, the instruction set had not been simulated
independently until now. The proposed Spike-based framework
made it possible to focus solely on the instruction’s behaviour, de-
taching the ISA development from implementation details prone to
specification errors.

Lastly, simulation platforms alternative to Spike exist, such as
QEMU4 and Chisel5. While the former is closely related to Spike,

4https://www.qemu.org/
5https://www.chisel-lang.org/

it is a more complex project, and therefore lacks the simplicity
required for an efficient and continuously changing framework.
The latter could be used to create an RTL simulation. While this
was not the goal of this work, it could be useful, as the proposed
framework exists within a bigger project on UVE currently under
development, where this type of validation is appropriate.

6 CONCLUSION
In this paper, a new validation framework for the UVE ISA extension
based on the Spike RISC-V simulator is presented. This new sim-
ulation tool provides efficient development means and functional
evaluation for this ISA extension and of its supporting microarchi-
tecture. A Streaming Unit, responsible for the management of the
streams, and most of the existing UVE instructions were added to
Spike, also including support and ensuring validation for the main
functionalities already offered by UVE, such as data streaming with
implicit loads/stores, predication, and 𝑛-dimensional pattern de-
scription with static modifiers. A representative set of benchmarks
was tested and verified, confirming the previous results that had
been obtained with a gem5 legacy UVE simulator. Furthermore,
this tool was also used to validate the preliminary results from the
UVE-LLVM compiler that is currently under development, and has
proven to be useful both in the development of UVE applications
and in the development of the UVE extension itself.

6.1 Future Work
Although the most part of the instruction set has already been
added to the framework, some instructions of the existing ISA are
yet to be implemented, namely logical and stream configuration in-
struction. The latter have to be accompanied by the implementation
of indirection, which is not yet supported.

In addition, the Spike simulator’s disassembler still has no in-
formation about the added extension, which makes the use of the
debugger less straightforward. This can be improved in the future,
making the developed tool much more useful by improving code
review and correction.

Lastly, the LLVM compiler toolchain currently under develop-
ment is to be tested on this framework. Once it is released, it will
integrate this project, removing the need to hand-code applications
where UVE is to be used. This will allow anyone to develop software
taking advantage of this new ISA extension.

ACKNOWLEDGMENTS
This work was supported by national funds through Fundação para
a Ciência e a Tecnologia (FCT), under projects UIDB/50008/2020,
UIDB/50021/2020, EXPL/EEI-HAC/1511/2021, 2022.06780.PTDC,
2022.11626.BD, and from the European High Performance Comput-
ing Joint Undertaking (JU) under Framework Partnership Agree-
ment No 800928 and Specific Grant Agreement No 101036168 (EPI
SGA2). The JU receives support from the European Union’s Horizon
2020 research and innovation programme and from Croatia, France,
Germany, Greece, Italy, Netherlands, Portugal, Spain, Sweden, and
Switzerland.

6

A functional validation framework for the Unlimited Vector Extension CAMS’23, October 2023, Toronto, Canada

REFERENCES
[1] Arm. 2011. Introducing NEON Development Article. https://developer.arm.com/

documentation/dht0002/a/
[2] Adrian Barredo, Juan M. Cebrian, Miquel Moreto, Marc Casas, and Mateo Valero.

2020. Improving Predication Efficiency through Compaction/Restoration of
SIMD Instructions. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, San Diego, CA, USA, 717–728. https:
//doi.org/10.1109/HPCA47549.2020.00064

[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (aug 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[4] N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G. Saidi, and S.K. Reinhardt.
2006. The M5 Simulator: Modeling Networked Systems. IEEE Micro 26, 4 (2006),
52–60. https://doi.org/10.1109/MM.2006.82

[5] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy
Ranganathan, and Onur Mutlu. 2018. Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks. In Proceedings of the Twenty-Third In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’18). Association for Computing Machinery, New
York, NY, USA, 316–331. https://doi.org/10.1145/3173162.3173177

[6] Chipyard. 2019. The RISC-V ISA Simulator (Spike) - Chipyard 1.8.1 documentation.
https://chipyard.readthedocs.io/en/latest/Software/Spike.html

[7] Silviu Ciricescu, Ray Essick, Brian Lucas, Phil May, KentMoat, JimNorris, Michael
Schuette, and Ali Saidi. 2003. The Reconfigurable Streaming Vector Processor
(RSVPTM). (2003).

[8] Joao Mário Domingos, Nuno Neves, Nuno Roma, and Pedro Tomás. 2021. Un-
limited Vector Extension with Data Streaming Support. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). IEEE, Valencia,
Spain, 209–222. https://doi.org/10.1109/ISCA52012.2021.00025

[9] Luís Henriques. 2022. Automatic Streaming for RISC-V via Source-to-Source Com-
pilation. Master’s thesis. Universidade do Porto, Porto. https://hdl.handle.net/
10216/142750

[10] Rakesh Kumar, Timothy G. Mattson, Gilles Pokam, and Rob Van Der Wijngaart.
2011. The Case for Message Passing on Many-Core Chips. Springer New York,
New York, NY, 115–123. https://doi.org/10.1007/978-1-4419-6460-1_5

[11] Chris Lomont. 2009. Introduction to Intel® Advanced Vector Extensions. www.
obpm.org/download/Intro_to_Intel_AVX.pdf

[12] Christoph Müllner. 2021. Emulators and Simulators - RISC-V Interna-
tional. https://wiki.riscv.org/display/HOME/Emulators+and+Simulators#
EmulatorsandSimulators-Spike/riscv-isa-sim

[13] Nuno Neves, João Mário Domingos, Nuno Roma, Pedro Tomás, and Gabriel
Falcao. 2022. Compiling for Vector Extensions With Stream-Based Specialization.
IEEE Micro 42, 5 (9 2022), 49–58. https://doi.org/10.1109/MM.2022.3173405

[14] Nuno Neves, Pedro Tomás, and Nuno Roma. 2015. Efficient data-stream man-
agement for shared-memory many-core systems. In 2015 25th International
Conference on Field Programmable Logic and Applications (FPL). 1–8. https:
//doi.org/10.1109/FPL.2015.7293960

[15] Nuno Neves, Pedro Tomás, and Nuno Roma. 2017. Adaptive In-Cache Streaming
for Efficient Data Management. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 25, 7 (7 2017), 2130–143. https://doi.org/10.1109/TVLSI.2017.
2671405

[16] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. 2017. Stream-Dataflow Acceleration. SIGARCH Comput. Archit. News
45, 2 (jun 2017), 416–429. https://doi.org/10.1145/3140659.3080255

[17] Angela Pohl, Mirko Greese, Biagio Cosenza, and Ben Juurlink. 2019. A Perfor-
mance Analysis of Vector Length Agnostic Code. In 2019 International Conference
on High Performance Computing & Simulation (HPCS). IEEE, Dublin, Ireland,
159–164. https://doi.org/10.1109/HPCS48598.2019.9188238

[18] RISC-V. 2021. Spike RISC-V ISA Simulator. https://github.com/riscv-software-
src/riscv-isa-sim

[19] Alec Roelke and Mircea R Stan. 2017. RISC5: Implementing the RISC-V ISA in
gem5.

[20] Paul Scheffler, Florian Zaruba, Fabian Schuiki, Torsten Hoefler, and Luca Benini.
2021. Indirection Stream Semantic Register Architecture for Efficient Sparse-
Dense Linear Algebra. In 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE). 1787–1792. https://doi.org/10.23919/DATE51398.2021.9474230

[21] Fabian Schuiki, Florian Zaruba, Torsten Hoefler, and Luca Benini. 2021. Stream
Semantic Registers: A Lightweight RISC-V ISA ExtensionAchieving Full Compute
Utilization in Single-Issue Cores. IEEE Trans. Comput. 70, 2 (2021), 212–227.
https://doi.org/10.1109/TC.2020.2987314

[22] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Gia-
como Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Martinez, Nathanael
Premillieu, Alastair Reid, Alejandro Rico, and Paul Walker. 2017. The ARM
Scalable Vector Extension. IEEE Micro 37, 2 (3 2017), 26–39. https://doi.org/10.

1109/MM.2017.35 arXiv:1803.06185 [cs].
[23] Zhengrong Wang and Tony Nowatzki. 2019. Stream-Based Memory Access

Specialization for General Purpose Processors. In Proceedings of the 46th Inter-
national Symposium on Computer Architecture (Phoenix, Arizona) (ISCA ’19).
Association for Computing Machinery, New York, NY, USA, 736–749. https:
//doi.org/10.1145/3307650.3322229

[24] A. Waterman and K. Asanovic. 2021. RISC-V "V" Vector Extension. https://github.
com/riscv/riscv-v-spec/blob/master/v-spec.adoc

7

	List of Figures
	List of Tables
	Introduction
	Motivation and Objectives
	Contributions
	Document Outline

	Background and State of the Art
	SIMD Architectures and Fixed-Length Vector Extensions
	Arm Neon and Helium
	Intel SSE and AVX
	Discussion

	Vector-Length Agnostic Extensions
	RISC-V Vector Extension
	Arm Scalable Vector Extension
	Discussion

	Data Streaming and Pattern Description
	Pattern Description Model
	Linear Patterns – Dimensions
	Complex Memory Accesses – Modifiers
	Descriptor Organisation
	Summary

	Unlimited Vector Extension
	Registers
	Instruction Set
	Supporting Microarchitecture
	Compiler Support
	Discussion

	Simulation Infrastructure
	The RISC-V ISA Simulator: Spike
	Simulator Files and Code Structure
	Streaming Simulation Infrastructure
	Stream Iteration and Load/Store Mechanisms
	Stream Table

	Instruction Implementation
	Operand Decoding

	Disassembler
	Summary

	Unlimited Vector Extension Specification Revision
	Stream Configuration
	Base Address and Offset
	Scalar Streams
	Dimensions and Modifiers

	Predication Policies
	Instruction Set Overview
	Stream Configuration
	Loop Control – Branching
	Lane Control – Predication
	Vector Manipulation
	Vector Control
	Arithmetic and Logic Instructions

	Summary

	Experimental Results and Discussion
	Framework
	Supported Features
	Benchmarks
	Additional Artefacts

	Instruction Count Evaluation
	Summary

	Conclusion
	Future Work

	References
	Appendix Unlimited Vector Extension Supporting Microarchitecture
	Appendix Instruction Counting Results
	Appendix UVE Instruction Listing
	Appendix Paper presented at CAMS 2023

