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Abstract 
 

Marine Protected Areas (MPA) represent a safe refuge for numerous species of fauna and flora that 

suffer from the impacts of exploited resource extraction and the ongoing climate change. Amongst 

these species, some of them represent a substantial part of national food sources and, therefore, their 

monitoring and management are of extreme importance. The MPA of the archipelago of Berlengas 

is a very productive region on which many fishermen rely and whose whole income depends on the 

health of the region. This study aims to determine if the usage of Baited Remote Underwater Videos 

(BRUVs) could be an effective technique to monitor the area and commercially valuable marine 

species whilst determining if there is any significant impact of environmental variables on these 

species, providing evidence-based knowledge to guide more informed fisheries management.  

Biological data were collected using a BRUV system. Different environmental variables were 

preliminarily evaluated before proceeding to a modelling phase (Generalized Linear Models for 

categorical variables and Generalized Additive Models for continuous variables) for a more robust 

analysis of the influence of environmental predictors on the abundance and occurrence of the 6 

most common species. Species abundance was also evaluated along a transect perpendicular to the 

shoreline to ascertain the suitability of current MPA spatial design, which imposes fishing 

restrictions within a 50 m distance from the coast. 

The community sampled in this study suggest that resorting to BRUVs to monitor fisheries 

resources in this area could represent an effective method since the community characteristics were 

in accordance with previously published research on local biodiversity. The modelling process 

deemed ‘Tide’ and ‘Rugosity’ as the most influential categorical variables on species abundance, 

whilst ‘Distance to Shore’ and ‘Depth’ were considered to be influential on one of the analysed 

species. Transect analysis was only deemed influential for Diplodus vulgaris.  

Ultimately, this study suggests that BRUVs are a viable monitoring mechanism to assess the 

distribution and abundance of commercially relevant fisheries resources in MPAs, with a future 

perspective of real-time monitoring, fed by live data transmission that would be processed with AI 

systems for automated species identification. To do so, further investigation is required, alongside 

with a grater sampling effort, to ascertain biological responses to environmental pressing and 

endowing stakeholders and managers with robust information to guide fisheries activities and 

resource management.  

 

 

Keywords: MPAs, Berlengas, BRUV, Statistical modelling, Environmental influence. 
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Introduction 

Fisheries context 

 

On a global scale, unequivocal threats to marine biodiversity and to the services they provide are 

taking place. Marine ecosystems are degrading progressively due to multiple factors including 

overfishing, maritime traffic, invasive species, climate change, among others. These deleterious 

processes often lead to biodiversity loss, habitat degradation, and changes to marine communities 

and its structures (Roberts, 1995). 

Since the mid 1980’s, over 100 million tons of biomass are removed from the ocean every single 

year. This large extraction of biomass necessarily plays an important role in shaping the structure of 

marine communities, with both direct and indirect effects being observable. Direct effects include a 

decrease in abundance and biomass of fish and invertebrate species naturally occurring in the ocean. 

The collapse of some fish species from the ocean can have a significant cascading effect on marine 

ecosystems because the removal of predators located higher in the trophic network may unbalance 

ecosystem structure by allowing their usual prey populations to grow exponentially, which will 

produce increased pressure on lower trophic levels (Rolim et al., 2022).  Most of these predator 

species need more time to reach maturity and reproduce, which renders them more susceptible to 

overfishing. Given that marine predators keep being continuously removed from their communities 

(Pauly et al., 2005), prey populations are expected to grow and disturb the balance of marine 

communities, carrying considerable consequences to the ecosystem. 

Fishing practices go way back in time, with mankind relying on fisheries as a food supply at least 

for ten to forty thousand years (Squires, 2009). However, fishing practices have drastically changed 

over the last century, fuelled by technological development. Although there has been a recent 

optimization to the way they are conducted, fishing practices have been getting progressively more 

invasive and destructive, producing great damage to marine ecosystem and endangering the 

sustainability of marine resources (Walsh et al., 2002). 

Due to the lack of regulations, enforcement, and economic incentives, some destructive fishing 

methods continue to be used in various parts of the world including in Portugal. Methods such as 

bottom trawling and dredging are routinely used in national waters, and they have known 

deleterious effects by promoting habitat destruction (particularly regarding rocky substrates) and the 

non-selective removal of bycatch species (Collie et al., 2016). Also, ghost fishing (i.e. lost or 

discarded fishing gear which continue to catch fish and other animals, promoting the entanglement 

of these creatures and leading to injury or death) is a known problem in the Portuguese continental 

platform (Collie et al., 2016).  
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The Portuguese coastline is extremely vast and superbly rich in fishing resources, which correspond 

to an important part of the national social and economic welfare. The fish and seafood provided by 

the Atlantic Ocean form a big component of the renowned Portuguese gastronomical tradition. 

According to the National Statistics Institute, 5,1% of the Portuguese GDP is provided by the ocean, 

supported by the 180 thousand tons of fish extracted (INE, 2018), and as so, there are efforts to be 

made by the government and the people to preserve this source of revenue aiming at ensuring the 

sustainability of marine ecosystem services and the environmental and socioeconomic benefits 

derived from a healthy ocean. However, marine resources are threatened not only by overfishing 

and unethical fishing practices but also by climate change processes which further degrade sensitive 

ecosystems. This raises several concerns to the national population and to the fishing communities 

which rely on predictable fish harvest as a food supply and economic revenue. 

Climate Change and environmental forcing 

Knowing for a fact that every ecosystem is suffering with the effects of climate change, it would be 

naive to think that the species we consume, or use would be safe, even if mitigating the overfishing 

threats. Recent simulations under two different scenarios both led to prospections of loss of biomass 

and, therefore, increased prices of these resources. The continuous rising of seawater temperature 

and its acidification will cause species to move north, leading to changes in resource distribution 

which will affect the whole fishing industry (Lam et al., 2012).  

Evidence indicates that climate change may result in changes in primary productivity and oceanic 

circulation patterns, sea-level rises (due to ice melting), and an increased frequency of extreme 

weather events. All these changes will have impact on the various levels of ecological organization, 

interfering with all individuals and their communities, which could propagate to the whole 

ecosystem. (Sumaila et al., 2011). 

Around the globe, fisheries are underperforming and have been so for the last decades, not only 

because they surpassed their maximum sustainable yield, but also because the marine environment 

and its conditions are on a slope. The physical and chemical conditions of water are expected to 

affect the productivity of marine fisheries and, along with this, they may lead to severe 

socioeconomic losses. The species we rely on for food, the fish, and invertebrates we catch, are 

strongly dependent on oceanographic conditions, and their physiology, growth rates and 

reproduction patterns are directly affected by the environmental status (Sumaila et al., 2011).  

Besides, these species also tend to alter their spatial distribution as an ecological response to climate 

change. Once they assess that the environmental conditions (e.g., temperature, salinity) no longer 

match their biological thresholds, they will scatter around for a more suitable place, altering the 

community structure both at their original distribution areas as well as at the areas where they 
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disperse into. Also, in a fisheries perspective, modifications to the distribution patterns of marine 

resources may result in economic losses because species will not be available where they 

traditionally were, prompting fishers to spend more time and fuel seeking for targeted resources 

(Lam et al., 2012).  

Such a scenario is not unprecedented. In fact, there have been times when extreme events 

significantly altered the environmental conditions of a certain region and impacted fisheries 

outcomes. For instance, whenever there is an ‘El Niño’ event, there is a huge decline in the landings 

of marine pelagic fish. This causes severe impacts in the economical productivity of affected 

regions, potentially leading to loss of jobs and to decreased home-income and revenues (Lam et al., 

2012). 

From a biological point of view, the most effective way to prevent impacts of climate change on 

marine resources is maintaining more abundant populations. Therefore, addressing the overfishing 

problem is essential. To achieve this, management measures must be taken anticipately, and they 

should properly take into consideration stakeholders needs while strictly applying the directives 

they assign to specific areas (Sumaila et al., 2011). 

Over the last few decades, there has been a growing interest by environmental managers, 

politicians, and the scientific community in the potential of certain areas and its resources for 

promoting marine conservation. This has led to an urge to protect these areas through adaptative 

and evidence-based mechanisms that will hopefully benefit both marine ecosystems and those who 

rely on them (Higgins et al., 2008). In order to protect marine biodiversity and promote the 

sustainable extraction of fisheries resources, it has been established that some areas are to be 

protected and resource extraction in those areas is to be regulated. These areas are now called 

Marine Protected Areas (MPAs). 

Marine Protected Areas 

Multiple strategies to increase ocean resilience to anthropogenic pressure are currently in place, 

from overfishing control to the establishment of MPAs. The effectiveness of these measures and 

their importance for biodiversity conservation depends on the compliance, monitoring, and 

enforcement of governance arrangements that fall on the sustainable extraction of resources 

(Laffoley et al., 2019).  

Recently, there has been a significant expansion of MPAs, defined since 1988 by the International 

Union for the Conservation of Nature (IUCN) as: “Any area of intertidal or subtidal terrain, together 

with its overlying water and associated flora, fauna, historical and cultural features, which has been 

reserved by law or other effective means to protect part or all of the enclosed environment.”  

Recognizing and protecting special places to sustain wildlife and nurture natural processes is not a 

new development. The first documented example of an MPA dates back to the late XIX century, in 
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Australia. After consecutive changes in the legislation, in 1982, when the UN Convention on the 

Law of the Sea (UNCLOS) took place, the fundamental framework for marine governance was 

introduced and obliged all countries to protect and preserve the marine environment. 

For an area to be considered an MPA by IUCN, conservation must be the primary overarching 

purpose of the area. Yet, this comprises areas that are highly protected zones, with a strict no-take 

policy, and multiple-use areas where the removal of resources and their use is allowed, bearing in 

mind that there are conservation goals that must be achieved. 

Therefore, IUCN has established categories according to the policy by which MPAs are ruled, 

knowing that this will depend on multiple factors such as: area liability, biodiversity value, social 

and economic importance, cultural matters, and so on. These categories range from category I – 

possibly a no-go area used for scientific research and monitoring purposes only, where human 

visitation and its impacts are strictly controlled; to category V - distinct areas with significant value 

resultant of the interaction of people and nature, that is vital to protect (Laffoley et al., 2019).  

The category by which the MPA is ruled not only will have direct impacts on local communities 

that may depend on the resources of a certain area but will also be deeply linked to the outcome of 

the management program. The ecological effectiveness of MPA establishment depends on multiple 

factors, and it will only prove to be helpful if the policies are properly enforced (Laffoley et al., 

2019).  

The effectiveness of MPAs for protecting any particular species can be influenced by numerous 

factors. Studies suggest that MPAs are more likely to be ecologically effective if they: 

• Are/include no-take areas: No-take areas restore the biomass and structure of fish 

assemblages and restore ecosystems to a more complex and resilient state. Partially 

protected MPAs can have some value by restricting specific activities (e.g. banning 

trawling to prevent habitat destruction), but in general they are not as effective (Edgaret al., 

2014). 

• Are properly enforced: the overall effectiveness of the MPA usually goes hand in hand with 

its management and policy enforcements, and there are plenty of cases where the policies 

drafted for an area are not properly legislated and this leads to an underwhelming overall 

outcome of the management program (Edgar et al., 2014; Batista & Cabral 2016).  

• Are large (>100 km2): Some studies suggest that individual reserves must be at least as 

large as the average dispersal distance for a species. The size of an effective MPA will be 

different for species with different movement patterns since wide-ranging species will be 

more vulnerable to fishing than highly site-attached species (Edgar et al., 2014; Batista & 

Cabral. 2016). 

• Have been established for more than 10 years: It takes some time for the implemented 

measures to have an impact in the ecosystem. The species that sustain these communities 
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have been under pressure for a considerable time and so it is expectable that they will take 

several years for their abundance to be replenished back to a pre-exploitation state (Edgar et 

al., 2014). 

• Are isolated: There is some uncertainty on why isolation is such an important factor, but the 

scientific community was lead to believe that this has something to do with the fact that 

isolated MPAs are generally well demarcated for control purposes and therefore they are 

more readily recognized by fishers and more easily enforced comparing to coastlines with 

mosaic of take/no-take areas or even regulations about fishing methods (Edgar et al., 2014; 

Moura et al., 2014).  

 

Also, species that are more resilient, less mobile, sheltered from major markets, and have a lower 

market value tend to exhibit more positive responses to protection (Ban et al., 2017).  

Increasing the size and number of MPAs is widely regarded as a way to meet ambitious biodiversity 

and sustainable development goals. Yet, debate still exists on the effectiveness of MPAs in 

achieving ecological and social objectives (Pendleton et al., 2017). Reduced access to resources, 

even in the short-term, can create social and economic inequities. If this leads to decreased levels of 

cooperation among community members, it should be carefully considered in the evaluation of 

MPA effectiveness (Pendleton et al., 2017). 

If we are to get the most out of MPAs as a marine conservation and management tool, we need to 

make full use of this diversity of perspectives and experiences to understand when and where MPAs 

can be best used to achieve desired outcomes (Pendleton et al., 2017). Yet, there seems to be an 

ongoing trend of MPA establishments, on a rushing attempt to fulfil the goals set by the United 

Nations (target of protecting 30% of the ocean by 2030) which can be justified by its known 

positive effects.  

Several different studies have been conducted in order to evaluate the effects of MPAs on e.g., food 

security, resource availability, environmental improvement, and biodiversity recovery (Mascia et 

al., 2010; Pendleton et al., 2017; Rolim et al., 2022). Concerning to fisheries, it has been 

demonstrated that properly managed MPAs are very important for the fishing sector. Not only they 

have proven to be effective in restoring and preserving fish stocks, but there is also evidence that 

the biomass of whole fish assemblages in no-take marine reserves is, on average, 670% greater than 

the biomass in adjacent unprotected areas, and 343% greater than the biomass in partially protected 

MPAs (Sala & Sylvaine, 2018). Moreover, there’s a phenomenon called spillover effect, stating that 

well-enforced MPAs can increase adjacent fishery catches. Although there is little data on the 

extent of how much this phenomenon could be beneficial, the fact that both larvae and adults of 

target and non-target species disperse outside of the MPA’s boundaries is expectedly positive for 

fisheries and for conservation (Pendleton et al., 2017).   
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Apart from this, MPAs produce clear benefits to the populations that rely on the fishing stocks, 

otherwise there would not be proper incentives to make them want to comply with the management 

program. Besides increasing fisheries stocks, healthy marine ecosystems will help supporting 

coastal, nature-based socioeconomic development, for example concerning the ecotourism industry. 

Besides, there is evidence that food security, food quality and its properties, generally remained 

stable or increased following MPA establishment (Mascia et al., 2010). Whenever there is an MPA 

management program being applied, fishermen and fishing companies must be assured that the 

quality of the resources they rely on will not decrease. It is of little use that resource availability 

increases if the economic value of landed resources drops vertically. 

As mentioned, no-take MPAs have greatest effects on the recovery of fishing stocks’ biomass and 

abundance. Yet, this does not mean that partially regulated MPAs are worthless. The abolition of 

destructive fishing mechanisms (such as bottom trawling) will contribute to preserving the integrity 

of the sea floor and will therefore provide conditions for fish to stay there and increase the 

genotypic differences within a community, making it more resilient (Sala & Sylvaine, 2018).  

Multiple-use MPA’s are managed differently, whereas there is a spatial arrangement that promotes 

different sets of rules and permits for different segments of the area. In these cases, fishing may be 

abolished in some areas whilst being allowed to occur in other areas, probably with some 

restrictions.  

The promotion of stock resilience provided by properly managed MPAs is connected to the fact 

that, in these areas, other human impacts will be significantly reduced. Since activities such as 

industries and the resulting pollution are controlled, the ecosystems will be subject to decreased 

amounts of stress (Laffoley et al., 2019).  

On an environmental level, marine reserves can cause indirect effects that may restore the pristine 

structure and complexity of the ecosystem once predator abundance recovers sufficiently. While 

MPAs protect valuable coastal and oceanic ecosystems and the services they provide, their ability to 

control global climate changes is limited. However, because they provide long-term protection and 

enable population replenishment, MPAs may be pivotal places to foster resilience against climate 

change impacts and to provide sentinel sites for science development and environmental monitoring 

to better understand climate change effects (Laffoley et al., 2019).  

Therefore, providing critical information about the condition of the marine environment and the 

trends of resource abundance is a necessary step towards enhancing MPAs management programs 

and their effectiveness. Monitoring ecosystems and the communities that compose them is 

instrumental when assessing the efficiency of management measures and developing optimization 

strategies (Laffoley. et al., 2019).  
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Marine wildlife monitoring 

Traditionally, marine researchers relied on visual census to monitor the species that constitute 

marine communities, which has proven not to be as effective as thought because there is a negative 

effect caused by the behavioural responses of fish to the presence of a diver (Dickens et al., 2011). 

Also, fisheries data are considered to be an important tool for marine fauna monitoring. The quality 

of these data, however, present several issues related to fishermen following the target species and 

thus producing biased results which are not representative of the whole scenery.  

More recently, technological advances provided us with new techniques to acquire data on marine 

fauna distribution and abundance which preclude any biases resulting from a divers’ presence in the 

water or from fisheries intrinsic practices.  

Baited Remote Underwater Video systems (BRUVs) are becoming increasingly more popular to 

assess the effects of both climate change on fish assemblages and the structural complexity of 

marine habitats, but also to assess how MPA management frameworks influence aquatic fauna and 

flora. As a remote technique, it efficiently detects vagile fauna that would otherwise flee in the 

presence of an approaching diver. Also, it can be operated in deeper areas compared to how deep a 

diver could go, whilst it is easily replicable due to its most efficient cost-benefit ratio, which is very 

attractive. Moreover, the resulting images also provide valuable information to better categorize 

marine habitats and their intricacies. Factors such as depth and topographic complexity have shown 

to be the among the most influential physical factors shaping the structure of fish assemblages 

(Roberts et al., 2002). BRUV systems, however, are highly dependent on water condition since it 

will directly impact the visibility and, therefore, the ability to identify focal species in video 

samples. Also, a proper monitoring study will generate a lot of hours of video samples that will 

consume considerable time to be thoroughly analyzed. In that account, recently emerged 

computation with artificial intelligence (AI) provides a solution to this issue, since the development 

of a software capable of identifying species by itself would enable the autonomous monitoring of an 

MPA, endowing researchers, managers, and stakeholders with evidence-based information guide 

decision-making processes. 

This autonomous monitoring program would be useful for tracking the performance of multiple-use 

MPAs over the long term and enabling real-time management. However, it is first necessary to 

demonstrate that this method it capable of remotely sample marine fauna, as this component is 

essential to support the development of a fully autonomous system for monitoring marine species in 

areas of particular interest, such as MPAs. 
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General Aim 

The fundamental aim of this study is to evaluate the effectiveness of the BRUV technique in 

sampling commercially valuable bentho-pelagic species in a multiple-use MPA. Such knowledge is 

useful to derive potential programs aimed at autonomously monitoring the distribution and relative 

abundance of marine taxa including fisheries resources. 

Specific objectives: 

More specifically, this study aims at: 

• Assessing the species composition of commercially relevant fauna sampled with BRUV in 

a multiple-use MPA to explore the hypothesis that this technique is suitable for monitoring 

fisheries resources in areas of particular interest.    

• Evaluate the influence of environmental traits on the distribution and abundance of fisheries 

resources. 

• Compare species abundance at varying distances from shore to assess the suitability of the 

currently designated no-fishing area around the island up to 50 m from shore. 
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 Methodology 

Study Area 

The Berlengas Archipelago is situated 5,7 miles off the coast of Peniche (more specifically 

Cabo Carvoeiro) and is constituted by three sets of Islands: Berlengas, Farilhões and Estelas (Fig. 

1). It was constituted a Nature Reserve in 1981, aiming to preserve the biodiversity and ecosystems 

off the region, whilst still providing for the local communities and general public. The Berlenga 

Island is the largest of the group and the only island open to visitation, thus being the one that 

experiences more anthropogenic pressure.  

The Berlengas Archipelago is notorious because of the diversity of marine species that can be seen 

and captured (which of course attracts a lot of fishermen and tourists). The reason behind this is that 

it is located near the southern and western margins of the Nazaré Canyon. This deep-sea canyon is 

responsible for intense seasonal upwelling, increasing the productivity of the region and therefore 

the number of prey and predators (Inglês, 2010). This phenomenon is intensified by the strong 

Figure 1 - Berlengas Archipelago. 
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northwestern winds that are originate from the warm Portugal current that flows southwards along 

the Portuguese coastline (Inglês, 2010). 

The marine reserve seabed is extremely complex. There are long sandbanks between granite rock 

structures covered in algae and sessile invertebrates that provide sheltering and food for many 

species, thus supporting their life cycles. Moreover, there is a distinct occurrence of submerged and 

partially submerged caves that contribute to the singularity of the region, as so to the need of 

properly conserving and monitoring them (Vasco-Rodrigues et al, 2011).   

This region is an ecological asset and all the marine area surrounding the islands has an important 

biological value associated to it. Besides, the islands themselves are very important for the 

environment, harbouring some endemic plant species and colonies of seabirds which use the area to 

breed or rest while performing latitudinal migrations (Inglês, 2010).  

Marine Reserve Development 

In order to better preserve this ecosystem, in September of 1981, the main island of Berlenga and 

the surrounding isles, as well as the ocean around them (up until 30 meters from the coast), were 

designated as a Natural Reserve, thus being legally protected and monitored. In 1998 there was a 

reclassification of the Reserve, widening the oceanic area under protection (Vasco-Rodrigues et al., 

2011).   

As the century was coming to an end, there were more measures coming to life. The region was 

defined as a SPA (Special Protection Area) for bird species and then integrated as part of the Natura 

2000 network, granting it some more socio-economical value and protection. Later that year, the 

very important fishing sector became more regulated. The measures, firstly implemented in 1990, 

got stricter and prevented fishermen to harvest, for instance, barnacles in some places and 

sometimes of the year. The legal amount that they could catch was reduced and so was the number 

of licences, an important measure since recreational harvesting got forbidden.  

On the 24th of September of 2008, the Minister Council drafted a new planning and management 

program for the Berlengas Natural Reserve, the PORNB (Plano de Ordenamento da Reserva 

Natural das Berlengas – translates to Planning Plan for the Berlengas Natural Reserve) - (Diário da 

República, 1ª série — Nr. 228 — 24 de Novembro de 2008). 

The marine area of the Berlengas Natural Reserve (BNR onwards) is an important part of the 

program since its preservation is a priority (Amado et al., 2007). Therefore, there are different 

levels of protection and prohibitions by which the area was divided (Figure 2): 

• Partial protection zone (type I): Referring to spots with valuable biodiversity indexes 

and landscapes, that are known to be moderately/highly vulnerable. Seasonal prohibition of 

fishing practices in some parts of the area as well as fishing with longline vessels within a 

50-meter distance of shore. 
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• Partial protection zone (type II): Buffer area mostly associated with transitional zones 

since their protection is mandatory to preserve the entirety of the ecosystem. In this area, 

however, the main goal is to appraise traditional activities, whilst trying to promote the 

sustainable use of resources. 

• Complementary protection zone: Wider area that include impact damping zones, with 

a clear purpose of remodelling the traditional activities, promoting the maintenance of the 

conservational state of the area whilst trying to promote to a social and economic 

development.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are plenty of regulations to be applied in each zone, but there are a set of rules that are 

mandatory, no matter the level of protection. The capture and maintenance of any specimen of 

marine mammals, seabirds including migratory species, sea turtles, or dusky groupers (Epinephelus 

marginatus) is forbidden, along with the introduction of exotic species. Using noisy means of 

transportation is also forbidden, as well as the eviction of non-treated effluents or residues into the 

ocean (Amado et al., 2007).  

Therefore, the local fishing communities have adapted to follow the implemented legislations. The 

most common technique (using anchored longlines) allows fishermen to have rotational fishing 

targets - seabass, meagre, John Dory, conger (Oliveira, N. et al., 2010), hence making them non-

Figure 2- Different protection zones in the Berlengas Archipelago. The darker to lighter blue 

gradient represents the 3 level of protection (type I, type II and Complementary zone, respectively).   
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dependent of a single species. Also, it constitutes a very sustainable practice, that does not damage 

the fish, which consequently grants them a higher price (Oliveira, N. et al., 2010). 

Baited Remote Underwater Videos systems 

In this study, BRUV systems were used to collect biological data on local biodiversity and species 

distribution and abundance.  

BRUV deployments were conducted under the scope of project Anzol+ (Oliveira et al., 2023) 

between the 1st of June of 2021 and the 27th of May of 2022. The “Anzol+” project started in 2019 

with the purpose of creating a system for valuing the fishery products caught within the area of the 

BNR. The project consisted of evaluating hook and line fishery by small fishing vessels, thus 

contributing to a better knowledge of these practices and to a more efficient management of BNR 

resources (Oliveira et al., 2023).  

BRUVs are simply underwater video cameras fitted to a hard structure comprising a bait target to 

which free-ranging fauna will be attracted to, thus providing video samples of species occurrence 

and abundance at selected sites. The BRUV structure consisted of a four-legged metal pyramid to 

which weights were added to increase the stability of the mechanism. To this pyramidal frame, a 

one-meter-long stainless steel pole was attached. In the distal extreme of the pole, some bait (either 

chub mackerel, Scomber japonicus, or sardine, Sardina pilchardus) was placed inside a small PVC 

cylinder with several holes on it to allow the scent of the bait to flow out. Occasionally, bait was 

placed inside a mesh bag which was tied to the PVC cylinder in such a way that it would be hanging 

freely beneath the BRUV’s pole. On the top of the frame, a video camera (GoPro 8 Hero Black) 

was installed so that its field of vision would be centred on the bait so that species moving towards 

the bait would be promptly recorded by the video camera. All BRUVs were deployed from a boat 

and lowered with ropes attached to a visible surface buoy for easening the retrieval of the sampling 

gear.  

Along with the deployment of cameras, some physical characteristics of the area (Depth, in meters; 

Temperature, in oC) were measured with the boat’s SIMRAD echo sounder. Afterwards, some other 

variables were evaluated resorting to a set of different sources (Table 1): 
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Table 1 - List of utilized sources to evaluate both continuous and categorical variables, for posterior 

tendency evaluation on the abundance of species. 

 

Data sampling 

In each day, three BRUVs were simultaneously deployed at previously defined sites, which were 

selected after interacting with local fishermen to identify the most representative fisheries hotspots 

in the region. After sampling, a second deployment of the three BRUVs was conducted in the 

region of the first sampling, following a transect perpendicular to the island where BRUVS were 

deployed at increasing distance from the shore (i.e., at 50, 150 and 250 meters from shore). 
All the deployments occurred during daytime and the videos were cropped to 60 mins since the 

moment that the BRUV structure landed on the seafloor. Each video was reviewed and analyzed by 

two independent observers.  

Several species of commercial relevance which were recorded by the video cameras were not 

considered in this analysis. The BRUV system was built to monitor benthopelagic species, meaning 

that we only accounted for species that live or feed near the bottom as well as in midwaters. Setting 

bait on the seafloor attracted these species, but the detection of more pelagic species like sardines 

(Sardina pilchardus) and horse mackerel (Trachurus trachurus) was merely occasional and 

therefore was not considered. Also, this study aims to have a better understanding of the relative 

abundance and distribution of the fishing stock species in the BNR. As so, species with no 

commercial value like the mediterranean rainbow wrasse (Coris julis) were not contemplated.   

For each BRUV sample, the maximum number of individuals (MaxN) of a certain species was 

recorded. This estimate was taken as the maximum number of individuals simultaneously sighted in 

a single video frame, or the maximum number of individuals that could be otherwise identified due 

to particular body marks or movements around the camera field of vision which were judged to be 

incompatible with observations from a single individual. Hence, MaxN represents at the most an 

under-representation of species abundance in each sample.  

Besides, we also took notes if the sampling set was tilted (i.e., if the camera ended up facing  the sea 

surface or sea bottom, which could result in more pelagic or more demersal species being sampled, 

respectively). Also, we classified water visibility in each video sample since it could have a 

Variable Platform (Website) 

Tide Instituto Hidrográfico (https://hidrografico.pt/m.mare) 

Moon Tábua de Marés ( https://tabuademares.com) 

Wind Intensity Weather Underground (https://wunderground.com) 

Wind Direction Time and date (https://timeanddate.com) 

Surface Temperature Copernicus Marine Service (https://data.marine.copernicus.eu) 
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practical effect on the ability to detect and identify species, and we recorded whether an external 

bait was used because it could have an effect on species responsiveness towards the BRUV. 

We also recorded the type of substrate as soft, mixed, or hard substrate, and the rugosity of the 

seafloor from highly complex (e.g. conspicuous rocky formations) to monotonous (sandy flats) in 

order to determine if there were any correlations between these factors and species abundance. 

Statistical Analysis 

We proceeded to determine whether environmental variables (both categorical and continuous) had 

any influence over species occurrence and abundance. First, species with less than five sightings 

were excluded from the analysis. Then, we determined that the maximum number of zeros allowed 

in our data set (i.e., the maximum number of deployments where species were absent) would be 

85% (i.e. species had to be identified in at least 15% of the sampling sets). The final list of eligible 

species was comprised of only 6 species, namely the sea bass (Dicentrarchus labrax), the white 

seabream (Diplodus sargus), the two-banded seabream (Diplodus vulgaris), the zebra seabream 

(Diplodus cervinus), the black seabream (Spondyliosoma cantharus) and the common octopus 

(Octopus vulgaris). 

Initially, boxplots were generated to visualize the distribution of species abundance across each 

environmental variable. Correlation tests were conducted to each pair of environmental variables to 

determine if these were correlated, since correlated covariates should not be simultaneously 

included in the same model. We used Pearson’s correlation tests to measure the strength of linear 

correlation between two continuous variables (by dividing their covariance by their standard 

deviations) (Faizi & Alvi 2023). 

Three potentially confounding variables (i.e., Tilt, Exterior Bait and Visibility) where tested 

individually beforehand to assess whether they showed any influence on fish abundance 

measurements. These variables could potentially generate sampling artifacts in the analysis if their 

effects were not accounted for because they can influence the amount and type of individuals 

sampled. A tilted setup could, for instance, point towards the surface and thus record species that 

are strictly pelagic. Visibility is deeply associated with turbidity, whereas intense levels of turbidity 

would compromise the identification process. External bait could have a skewing effect on the 

results, since the movement of bait could be more attractive to some species than others. The 

elaboration of separate Generalized Linear Models (GLMs) for each of these variables, enabled the 

confirmation of which, if any, of the three had influence on the visualization process. After 

choosing the error distribution family (between zero-inflated, poisson, and negative binomial) by 

comparing the associated Bayesian Information Criterion (BIC) of each family, the modelling 

process went on to determine if the variable had an associated p-value below the 0,05 threshold and 

therefore had influence in the process.  
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The effect of categorical environmental variables on species abundance (herein defined as MaxN) 

was analysed using GLMs, since the data violated assumptions of normality and homogeneity of 

variance. GLMs of environmental variables were built using a forward stepwise selection 

procedure. This method consists of starting with the null model with no predictors and then testing 

the addition of each individual variable in the model, where a pre-defined model fit criterion will 

inform the best performing predictor. Then, the inclusion of a second predictor is tested across all 

remaining predictor variables and evaluated, and this process is repeated until the inclusion of new 

predictors does not improve the model to a statistically significant extent. A priori, we designed six 

separate GLMs with different error distribution families (poisson, negative binomial and zero-

inflated) and link functions to identify the most adequate distribution to our data. Model selection 

was based on Bayesian Information Criterion (BIC), with the lowest BIC value being considered 

the best performing model. BIC was chosen instead of AIC because the former proved to be more 

conservative than the Akaike Information Criterion (AIC), which frequently led to non-significant 

statistical results. In most cases, we proceeded with a negative binomial error distribution and a log-

link function. 

For each eligible species, we proceeded to draft the null model with the chosen error distribution 

family and link function, that we would then compare with a more complex model with one 

predictor variable. The significance of the difference between the simpler model and the more 

complex one was assessed with a Vuong’s closeness test. This test compares the likelihood of the 

two models and evaluates whether one model significantly outperforms the other in terms of fitness. 

If the resulting p-value was lower than 0,05, the models were significantly different and we would 

thus select the more complex model, otherwise the simpler model would be selected. In the former 

case, we would proceed to design a more complex model with two predictors after removing the 

predictor previously used from the list of candidate predictors. We would then compare this model  

with the simpler one and would keep the model with lowest BIC value. Then,  the whole procedure 

was repeated until the inclusion of new predictors did not improve the fitness of the model. The 

final model with lowest BIC among all candidate models for each species would represent the 

predictor variables which more effectively explained the variation in species abundance. Model 

coefficients and 95% confidence intervals were then generated. Finally, model diagnosis was 

conducted to examine the compliance of final models with their assumptions. 

In the cases where the model selection procedure was unable  to select a predictor which would 

outperform the null model, we performed complementary Kruskal-Wallis tests to detect significant 

differences in species abundance across the levels of environmental variables. Even though this 

method is not as reliable and informative as GLMs, it provided some information about the 

potential impact of these variables on the abundance of the selected species.  
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Since our data set comprised a relatively small number of samples, we conducted a complementary 

approach to examine the occurrence (i.e., the presence or absence) of eligible species using a 

binomial GLM. Through a similar forward stepwise procedure (in this case, using a negative 

binomial error distribution error family), we were able to determine the effect of the same 

categorical variables on the occurrence of the species. 

Additionally, we also designed models that concerned continuous variables (depth and distance to 

shore). In this case, we used GAMs (Generalized Additive Models) that would, separately, assess 

the effect of these variables on each of the 6 species, by using them as independent variables and 

the specie’s abundance as the response variable. After testing, we were able to determine which of 

the error distribution families suited our models the best. The visual representation of the final 

model (and the associated p-value) allowed us to perceive if there were any effects of these 

variables on species abundance 

Species abundance was also evaluated according to its variation along a transect perpendicular to 

the shoreline. Some of the deployments were conducted along a transect, with sampling points at 

50, 150 and 250 meters from shore. A GLM model was designed to compare each of the defined 

distances, possibly leading to conclusions and suggestions about whether the 50 m ‘no-fishing zone’ 

was adequate.   

The R software version R-4.3.2 was used for all analyses, with packages MASS to run negative 

binomial models (Venables & Ripley 2002), pscl to run zero-inflated models (Jackman. 2024), 

nonnest2 to perform comparative tests between the designed models (Merkle, et al., 2016) and the 

mgcv package for GAMs (Wood. 2020). Statistical significance was set at p < 0.05. 
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Results 

Sampling analysis 

A total of 49 BRUV deployments were conducted, from which the first was discarded since it was a 

test to see if the mechanism was properly set. The remaining 48 BRUV deployments were 

conducted between January 6th of 2021 and May 27th of 2022. Each sampling day, three BRUVs 

were simultaneously deployed around a pre-selected site known by fishers as good fishing spots 

(Figure 3), at distances from shore ranging from 46 to 2198 meters. Posteriorly, a second 

deployment was conducted by placing the three BRUVs along a transect perpendicular to the 

shoreline, with the first BRUV being placed at 50 m from shore, the second BRUV being placed at 

150 m from shore, and the third BRUV being placed at 250 m from shore, so that the three BRUVs 

would operate at a 100 m distance from each other.  

 

Figure 3 - Sampling points of BRUV deployments around Berlengas, divided by sector (Sector 1 – Red; 

Sector 2 – Blue; Sector 3 – Yellow; Sector 4 - Green). 
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The environmental variables collected during BRUV sampling are presented in the appendix section 

(Appendix – Supplementary table 1).  

The BRUVs were placed on the seafloor, in depths ranging from 13 to 42 meters, mostly on hard 

and rugose substrates that often led to moderate tilts.  

Concerning the sea conditions, the deployments were conducted during both ebb and flood tides 

under visibility conditions that never reached the level 3, denoting suboptimal visibility. 

The atmospheric conditions were taken very seriously into consideration since bad weather would 

make the viewing process much more difficult. Therefore, all deployments were made under good 

weather conditions. An example of this is the fact that wind speed was always below 19 km/h, 

which means that it was never more than what is defined as a gentle breeze under the Beaufort wind 

force scale.  

Descriptive analysis 

A total of 28 bentho-pelagic species with commercial value belonging to 17 different families were 

observed during the study period (Table 2). Sparidae was the most represented family, with a total 

of 6 species, followed by Carangidae and Rajidae, both with 3 species each. Besides the Serranidae 

family (with 2 species), all the 13 other families were represented by a single species (Appendix – 

Supplementary figure 1).  

As for the overall abundance (N) of each species (i.e. the number of individuals that were positively 

identified), the seabass (Dicentrarchus labrax) was the one with a larger number of individuals 

sampled, with an estimated number of 780 fish. On the other hand, some species like the 

endangered Epinephelus marginatus were only identified once. Amongst the visualized species, 

some of them had high commercial value such as the white grouper (Epinephelus aeneus), the 

conger (Conger conger), the small-spotted shark (Scyliorhinus canicula), the common squid (Loligo 

vulgaris) and the European lobster (Homarus gammarus). 

Also, shoals of seabass (Dicentrarchus labrax) or pouting (Trisopterus luscus) were visualized and 

represent a considerable resource.  

 

Due to the selected abundance and occurrence thresholds, the species that proceeded to analysis 

were Dicentrarchus labrax, Diplodus vulgaris, Diplodus sargus, Diplodus cervinus, Spondyliosoma 

cantharus and Octopus vulgaris.  
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Table 2 - Species diversity and overall abundance (N) of marine fauna sampled with baited remote 

underwater videos in Berlengas.  

 

FAMILY SPECIES N 

Sparidae Diplodus cervinus 14 

 Diplodus sargus 71 

 Diplodus vulgaris 283 

 Pagrus pagrus 4 

 Spondyliosoma cantharus 9 

 Sarda salpa 61 

Carangidae Caranx rhonchus 9 

 Pseudocaranx dentex 6 

 Seriola rivoliana 52 

Rajidae Raja brachyura 1 

 Raja clavata 5 

 Raja ondulata 2 

Serranidae Epinephelus aeneus 7 

 Epinephelus marginatus 1 

Balistidae Balistes capriscus 3 

Congridae Conger conger 7 

Gadidae Trisopterus luscus 112 

Moronidae Dicentrarchus labrax 780 

Mullidae Mullus surmuletus 4 

Muraenidae Muraena helena 3 

Scyliorhinidae Scyliorhinus canicula 8 

Triglidae Chelidonichthys lucerna 5 

Zeidae Zeus faber 7 

Octopodidae Octopus vulgaris 10 

Loliginidae Loligo vulgaris 1 

Nephropidae Homarus gammarus 1 

 

 

Statistical analysis 

A Pearson product-moment correlation analysis to evaluate the existence of correlations between 

continuous variables provided the following results (Table 3). The 0,05 p-value threshold suggests a 

correlation between surface temperature and depth, with a negative influence of -0,350. Also, a 

negative correlation between distance to shore and wind intensity was determined, even though it 

sustained a less meaningful correlation index, -0,293.  

Note: small pelagic fish and species of no commercial value were not included in the study. 



 

 

20 

 

 

Table 3 - Correlation analysis between continuous variables. (t = t-test statistic, Df = Degrees of 

freedom, p-value, 95% confidence interval, Correlation index) 

 

The effect of physical habitat traits on the six species previously enounced was evaluated with an 

initial set of tests, that would separately evaluate each variable’s interference on species abundance. 

 We then proceeded to design Generalized Linear Models (GLM) that allowed us to determine 

which of the categorical variables had a more prominent effect on the abundance of each eligible 

species. The results achieved for each of the six species are presented below. 

 

European seabass (Dicentrarchus labrax) 

Visual inspections of the distribution of seabass abundance across environmental variables 

suggested that most variables had little effect on seabass abundance, although the type of substrate 

may have some effect since there were no recordings of this species on mixed or soft substrates 

(Appendix – Supplementary figure 2e).  

 

Abundance analysis: 

The preliminary analysis of potentially confounding variables indicated that two variables had some 

influence on seabass abundance, i.e. visibility and exterior bait (Appendix - Supplementary table 2). 

However, only ‘Visibility’ was used as a weighing factor because the presence of ‘Exterior Bait’ 

had a significantly negative effect on seabass abundance, which should not have any biological 

meaning since it is extremely unlikely that seabass would be repelled by the use of external bait. 

Variable A Variable B t Df p-value 2,5% 97,5% correlation 

Surface 

temperature 

Wind 

intensity 
-0,547 46 0,587 -0,356 0,209 -0,080 

Surface 

temperature 

Distance to 

shore 
-0,982 46 0,331 -0,411 0,147 -0,143 

Surface 

temperature 
Depth -2,532 46 0,015 -0,577 -0,073 -0,350 

Distance to 

shore 
Depth 1,590 46 0,119 -0,060 0,481 0,228 

Distance to 

shore 

Wind 

intensity 
-2,075 46 0,044 -0,532 -0,009 -0,293 

Depth 
Wind 

intensity 
-0,202 46 0,841 -0,311 0,257 -0,030 
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Therefore, we ascribed this effect to a sampling artifact where seabass was present by chance only 

in the more numerous samples with no external bait.  

Using ‘Visibility’ as a weighing factor, the model selection procedure was conducted and the model 

that included ‘Rugosity’ as a single explanatory variable presented the lowest BIC value. Adding a 

second predictor did not improve the performance of the model (table 4). Additionally, this model 

had a lower BIC value than the null model (124,684). 

 

Table 4 - Model selection procedure suggesting that Rugosity had the most explanatory variable 

with 'Visibility' acting as weight variable for the abundance of Dicentrarchus labrax. (AIC - Akaike 

Information Criterion, BIC = Bayesian Information Criterion) 

 

 

However, rugosity turned out to exhibit non-significant p values (p = 0,995 and p = 0,997 for 

Rugosity levels 2 and 3, respectively), indicating that there was no influence of this variable on 

seabass abundance. Therefore, we proceeded with the second lowest BIC value, associated with the 

model using ‘Tide’ as single explanatory variable. This model was kept, and a Vuong test 

demonstrated that it was significantly different from the null model (p-value = 0,001). The output of 

the final model is depicted in Appendix - Supplementary table 3, where it is observed that seabass 

abundance in our samples tends to be significantly (p = 0.001) greater during ebb tides than during 

flood tides. However, model diagnostics showed that the model did not perform so well (Appendix 

– Supplementary figure 14a).  

 

The influence of depth and distance to shore was evaluated using generalized additive models 

(GAM). The generated models suggested that sea bass abundance was not related with neither depth 

nor distance to shore (Appendix - Supplementary table 4).  

Variable 1 Variable 2 AIC BIC 

Tide   117,817 123,367 

Moon   117,840 123,390 

Sunlight   122,688 130,088 

Wind Direction   122,275 129,676 

Substrate   121,423 128,824 

Rugosity   113,861 121,262 

Rugosity Tide 111,084 124,335 

Rugosity Moon 108,221 127,472 

Rugosity Sunlight 112,107 123,208 

Rugosity Wind Direction 111,682 124,783 

Rugosity Substrate 112,464 123,565 
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The analysis of the effect of distance along the defined points of a transect allowed us to state that, 

for Dicentrarchus labrax, there was no significant difference in species abundance between the 

transect points since the resulting p-values were all > 0.05 (Appendix - Supplementary table 5).  

 

Occurrence analysis:  

The preliminary analysis of potentially confounding variables indicated that there was no influence 

of these variables in the identification process, since they all present a p-value > 0,05 (Appendix - 

Supplementary table 2).  

The model selection results (table 5) point towards a single explanatory variable model. The lowest 

BIC value was the one referring to the model that used Rugosity as a predictor, yet the BIC value 

was higher than the one associated with the null model (50.198). Additionally, the Vuong test 

performed to compare the suggested and the NULL models point out that they are not 

distinguishable enough to consider the ‘Rugosity’ model to be more feasible (p-value = 0,183). As 

so, the null model was considered as final (Appendix - Supplementary table 3). 

 

Table 5 - Model selection procedure suggesting that Rugosity had the most explanatory value for 

the occurrence of Dicentrarchus labrax (AIC - Akaike Information Criterion, BIC = Bayesian 

Information Criterion). 

 

 

 

 

 

 

 

 

 

 

Two-banded seabream (Diplodus vulgaris) 

Descriptive analysis suggested a relation between substrate type and the abundance of Diplodus 

vulgaris, with greater abundances being observed in rocky and mixed substrates in detriment of 

sandy substrates (Appendix – Supplementary figure 3e). Additionally, an increased rugosity of the 

substrate seems to promote greater abundances of this species (Appendix – Supplementary figure 

3f). The other variables do not seem to be related with D. vulgaris abundance.  

 

 

Variable AIC BIC 

Tide 50,325 54,068 

Moon 50,190 53,933 

Sunlight 51,303 56,917 

Wind Direction 45,995 55,351 

Substrate 50,531 56,144 

Rugosity 46,655 52,268 
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Abundance analysis: 

The preliminary analysis of potentially confounding variables suggested that there is an influence of 

Visibility on the sampling process of D. vulgaris (Appendix - Supplementary table 2). Since the 

estimate is a negative value, one can assume a negative effect of worse visibility levels on the 

abundance of Diplodus vulgaris. Therefore, the modelling process was conducted using this 

variable as a weighing factor.  

The model that used ‘Tide’ as a single explanatory variable presented a lower BIC value than the 

other candidate models, even after the inclusion of a second variable in the model. The inclusion of 

other variables led to higher BIC values (table 6), which means that the model with solely ‘Tide’ as 

an explanatory variable is more accurate and elucidative of the reality, since it presented a lower 

BIC value than the null model (266,760). The Vuong test proved that the suggested model is 

significantly different from the null model (p = 0,012) The final model’s results were generated 

(Appendix - Supplementary table 3) and exhibited a statistically significant p-value for the effect of 

tide, with ebb tides promoting a greater abundance of D. vulgaris. The diagnostic plots for this 

model (Appendix – Supplementary figure 15a) showed that the model conformed with its 

assumptions satisfactorily.  

 

Table 6 - Model selection procedure suggesting that Tide had the most explanatory value for the 

abundance of Diplodus vulgaris (AIC - Akaike Information Criterion, BIC = Bayesian Information 

Criterion). 

 

The GAMs to test the influence of depth and distance to shore on D. vulgaris abundance suggested 

that there was no relation between none of these factors and the abundance of this species, which 

Variable 1 Variable 2 AIC BIC 

Tide   259,812 265,426 

Moon   264,020 269,634 

Sunlight   259,683 267,168 

Wind direction   265,609 276,836 

Substrate   264,477 271,962 

Rugosity   260,225 267,710 

Tide Moon 261,085 268,569 

Tide Sunlight 259,120 268,476 

Tide Wind direction 264,528 277,627 

Tide Substrate 263,145 272,501 

Tide Rugosity 259,398 268,754 
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was supported by p-values of 0,696 and 0,107, noting that both are above the 0,05 threshold 

(Appendix - Supplementary table 4).  

The analysis of D. vulgaris abundance along the transect points revealed that it tended to be greater 

at a 150 m distance from shore compared to the reference level (i.e., 50 m distance from shore) 

(Appendix - Supplementary table 5).  

 

Occurrence analysis: 

The preliminary analysis of potentially confounding variables indicated that none of the three 

evaluated variables had a statistically significant influence on the sampling process and therefore 

should not be considered (Appendix - Supplementary table 2).  

The modelling selection procedure selected ‘Tide’ as the most relevant variable to explain the 

variability in the occurrence of Diplodus vulgaris, with BIC value being lowest for this single 

predictor than for any other predictor or combination of two predictors (table 7), including the BIC 

value of the null model (31.407). After identifying the best candidate model, its outputs rendered 

non-significant results. Since the candidate model with second lowest BIC had the same issue, as 

well as all the remaining candidate models, we concluded that no candidate model would be useful 

and the null model was deemed final (Appendix - Supplementary table 3). 

 

Table 7 - Model selection procedure suggesting that Tide had the most explanatory value for the 

occurrence of Diplodus vulgaris (AIC - Akaike Information Criterion, BIC = Bayesian Information 

iterion). 

White Seabream (Diplodus sargus) 

There seems to be a correlation between the abundance of this species and the substrate type since 

no individuals were identified in soft substrate, pointing towards a possible preference of Diplodus 

Variable 1 Variable 2 AIC BIC 

Tide   26,652 30,395 

Moon   31,536 35,279 

Sunlight   27,291 32,905 

Wind direction   34,143 37,875 

Substrate   32,007 37,620 

Rugosity   31,561 37,175 

Tide Moon 28,594 34,207 

Tide Sunlight 25,315 32,800 

Tide Wind direction 32,196 43,423 

Tide Substrate 30,325 37,810 

Tide Rugosity 29,914 37,399 
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sargus for hard substrates (Appendix – Supplementary figure 4e). Likewise, there is a clear 

tendency for this species to prefer more complex habitats with higher rugosity instead of less 

complex substrates.  

 

Abundance Analysis: 

The preliminary analysis of potentially confounding variables suggested that there is an influence of 

Exterior Bait on the sampling process, as indicated by a p-value < 0,05 (Appendix - Supplementary 

table 2). Due to the fact that the estimate is positive, one can assume a positive impact of this 

variable on the abundance of white seabream. Proven this, the developed models included ‘Exterior 

Bait’ as an obligatory covariate to account for the effect of this variable on species abundance. The 

model selection procedure indicated ‘Rugosity’ as the variable that had a greater impact on shaping 

the abundance of Diplodus sargus (table 8), considering that the BIC value of the selected model 

was lower that the null model’s BIC (156,076). 

 

Table 8 - Model selection procedure suggesting that Rugosity had the most explanatory variable 

with 'External Bait' acting as weight variable for the abundance of Diplodus sargus. (AIC - Akaike 

Information Criterion, BIC = Bayesian Information Criterion) 

 

 

Results for the Vuong test indicated that the selected model was significantly different than the null 

model (p = 0,019). According to the output of this model, the abundance of white seabream tended 

to increase with increasing habitat rugosity (Appendix - Supplementary table 3). Despite so, the 

diagnostics of the model suggested some lack of performance (Appendix – Supplementary figure 

16a), even though the p-values for Rugosity (levels 2 and 3) were low, which endows reliability to 

the model.  

Variable 1 Variable 2 AIC BIC 

Tide   151,886 157,500 

Moon   152,532 158,146 

Sunlight   144,688 152,173 

Wind Direction   140,622 151,849 

Substrate   144,209 151,694 

Rugosity   142,133 149,618 

Rugosity Tide 143,970 153,326 

Rugosity Moon 143,830 153,186 

Rugosity Sunlight 140,932 152,159 

Rugosity Wind Direction 138,469 153,439 

Rugosity Substrate 143,325 154,552 
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The GAM analysis to test the influence of depth revealed a significant (p = 0,010) effect of this 

variable on the abundance of Diplodus sargus, (Appendix - Supplementary table 4) with depths 

greater than 24 m producing a negative effect on species abundance (Appendix – Supplementary 

figure 22c).   

The plot indicated that the model fit was reasonable (Appendix – Supplementary figure 22c). 

However, it should be noted that the model was resolved with only one effective degree of freedom, 

resulting in overlapping confidence intervals.  

The GAM to test the effect of distance to shore on developed to relate the abundance of Diplodus 

sargus resulted in a p-value > 0,05, meaning that there is no apparent relation between the two 

variables.  

 

The analysis of the effect of distance from shore along the transect points on Diplodus sargus 

abundance rendered non-significant p-values (Appendix - Supplementary table 5), indicating that 

the abundance of this species does not vary across the transect length. 

 

 

Occurrence analysis: 

The preliminary analysis of potentially confounding variables performed before the modelling 

process proved that none of these variables had a significant impact on the sampling process, with 

the resulting p-values being always > 0,05 (Appendix - Supplementary table 2).  

After demonstrating that these variables had no impact in the sampling process, we conducted the 

model selection procedure to identify the more influential predictor(s) shaping the occurrence of D. 

sargus. As evidenced in table 9, the model that included ‘Rugosity’ as the explanatory variable 

presented the lowest BIC value among all candidate models, inclusively the null model (69.661). 

The inclusion of a second predictor led to higher BIC values, meaning that the model with 

‘Rugosity’ as a single predictor was more efficient in modelling the occurrence of D. sargus.  
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Table 9 - Model selection procedure suggesting that Rugosity had the most explanatory value for 

the occurrence of Diplodus sargus (AIC - Akaike Information Criterion, BIC = Bayesian 

Information Criterion). 

 

The final model was deemed to be significantly different from the null model, according to the 

Vuong Tests results (p-value = 0,012), and its output suggested that D. sargus abundance tended to 

be greater in more complex substrates (levels 2 and 3 of rugosity) (Appendix - Supplementary table 

3) However, model diagnostics showed that the model did not perform so well (Appendix – 

Supplementary figure 16b). 

 

Zebra seabream (Diplodus cervinus) 

Even though visual inspections of the distribution of seabass abundance across environmental 

variables suggested that most variables had influence on zebra seabream abundance, there’s a high 

chance that this has to do with the lack of data. 

Additionally, the influence analysis of continuous variables with the abundance of D. cervinus do 

not, unequivocally, indicate a tendency or influence of any of the considered continuous variables. 

 

Abundance analysis: 

The preliminary analysis of potentially confounding variables indicates that there was no effect by 

any of the analyzed variables. As evidenced in Appendix - Supplementary table 2, the p-values 

associated with these variables are all above the 0,05 threshold and therefore they will not be 

considered. 

Variable 1 Variable 2 AIC BIC 

Tide   67,054 70,796 

Moon   69,705 73,448 

Sunlight   62,342 67,955 

Wind direction   63,472 74,700 

Substrate   64,470 70,084 

Rugosity   59,851 65,464 

Rugosity Tide 61,629 69,114 

Rugosity Moon 61,850 69,335 

Rugosity Sunlight 59,706 69,062 

Rugosity Wind direction 58,593 73,562 

Rugosity Substrate 62,626 71,982 
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The model selection results (table 10) point towards a single explanatory variable model. The 

lowest BIC value was the one referring to the model that used ‘Moon’ as a predictor, yet the BIC 

value was higher than the one associated with the null model (67,424). 

 

Table 10 - Model selection procedure suggesting that Moon had the most explanatory value for the 

abundance of Diplodus cervinus (AIC - Akaike Information Criterion, BIC = Bayesian Information 

Criterion). 

 

 

 

 

 

 

 

 

 

Additionally, the model with ‘Moon’ was not deemed to be different from the null, by the 

comparative Vuong Test. Therefore, it was dismissed, and the null model was considered to be final 

(Appendix - Supplementary table 3). Accordingly, the complementary Kruskal-Wallis also was not 

able to indicate any influence of one the analyzed variables on the abundance of Diplodus cervinus. 

 

The impact of depth and distance to shore was assessed and the results indicated an influence 

between distance to shore and the abundance of Diplodus cervinus, as evidenced by a p-value of 

0,006. As for depth, the results indicate that there was no relation (Appendix - Supplementary table 

4).  

The plot indicated that the model fit was reasonably good (Appendix – Supplementary figure 23a), 

denoting a positive effect on species abundance further than 800m from shore. However, it should 

be noted that the model was resolved with only one effective degree of freedom, resulting in 

overlapping confidence intervals. Although the p-value suggests the existence of a relation between 

abundance and the distance, the diagnostic plot (Appendix – Supplementary figure 23b) evidenced a 

poor performance of the model, with no diagonal tendency in the middle section of the graph. This 

expected diagonality as to do with the correspondence between the sampled results (y-axis) and the 

theoretical values (x-axis). If they were similar, the imaginary line created by the points would 

resemble a positive diagonal, with the values for x’ being equal to the results presented in y’. 

The GAM to test the effect of depth on the abundance of Diplodus cervinus resulted in a p-value > 

0,05, meaning that there is no apparent relation between the two variables.  

Variable 1 AIC BIC 

Tide 66,520 70,221 

Moon 65,382 69,082 

Sunlight 68,431 73,982 

Wind direction 67,902 73,452 

Substrate 67,219 72,770 

Rugosity 67,187 72,738 
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Upon examining the impact of distance from shore along the transect points, we found no 

significant effect on the abundance of Diplodus cervinus (Appendix - Supplementary table 5), as 

evidenced by p-values > 0,05. 

 

 

Occurrence analysis: 

The preliminary analysis of potentially confounding variables showed that none of the analyzed 

variables exhibited an effect on D. cervinus abundance (Appendix - Supplementary table 2). The p-

values of this test suggested that none had a significant impact, since all are above the 0,05 

threshold. 

The model selection process was completed, and the model featuring 'Tide' as the only explanatory 

variable exhibited the lowest BIC value (table 11). Moreover, this model had a lower BIC value 

than the null model (52,504). 

 

Table 11 - Model selection procedure suggesting that Tide had the most explanatory value for the 

occurrence of Diplodus cervinus (AIC - Akaike Information Criterion, BIC = Bayesian Information 

Criterion). 

 

 

 

 

 

 

 

 

 

Even though the suggested model had a lower BIC value than the null model, the Vuong test 

indicated that they were not significantly different (p value = 0,442). Therefore, the null model was 

determined to be final (Appendix - Supplementary table 3). 

 

Black seabream (Spondyliosoma cantharus) 

The results of this descriptive analysis were skewed due to the lack of data. There are few trends to 

be pointed out, such as a tendency for higher abundance in mixed substrates.  

 

 

 

Variable 1 AIC BIC 

Tide 51,514 55,215 

Moon 52,029 55,730 

Sunlight 54,186 59,736 

Wind direction 53,341 58,891 

Substrate 52,635 58,185 

Rugosity 54,129 59,679 
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Abundance Analysis: 

The test performed before the modelling process proved that none of the potentially confounding 

variables had a significant impact on the sampling process of the species, as p-values were always > 

0,05 (Appendix - Supplementary table 2).  

The model selection process was performed, and the model with ‘Tide’ as the sole explanatory 

variable showed the lowest BIC value. Introducing a second predictor did not enhance the model's 

performance (table 12). Moreover, this model had a lower BIC value compared to the null model 

(55,244). 

 

Table 12 - Model selection procedure suggesting that Tide had the most explanatory value for the 

abundance of Spondyliosoma cantharus (AIC - Akaike Information Criterion, BIC = Bayesian 

Information Criterion). 

 

 

 

 

 

 

 

 

 

 

However, the Vuong test indicated that the model using ‘Tide’ as a predictor was not significantly 

different from the null model (p = 0,050). As so, no predictors were included in the final model 

(Appendix - Supplementary table 3). Yet, the complementary Kruskal-Wallis indicated an influence 

of ‘Tide’ on the abundance of Diplodus cervinus (2 = 5,724, Df = 1, p-value = 0,016). 

 

The outputs of GAMs to test the influence of depth and distance to shore on black seabream 

abundance indicated that none of these variables had a significant effect on species abundance 

(Appendix - Supplementary table 4). 

 

Upon examining the impact of distance from shore along the transect points, we found no 

significant effect on the abundance of Spondyliosoma cantharus (Appendix - Supplementary table 

5), as evidenced by p-values > 0.05. 

 

 

 

Variable 1 AIC BIC 

Tide 49,864 53,606 

Moon 55,372 59,115 

Sunlight 52,907 58,520 

Wind Direction 55,182 64,538 

Substrate 55,622 61,236 

Rugosity 56,501 62,114 
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Occurrence analysis: 

The test performed to evaluate a possible interference of the three potentially confounding variables 

showed that none of these variables had an effect on the occurrence of this species, thus they were 

not included in the modelling process (Appendix - Supplementary table 2). 

The model selecting procedure selected ‘Tide’ as the most relevant variable (table 13), with the 

inclusion of a second predictor not improving the BIC value. The final model including ‘Tide’ as a 

single explanatory variable had a better BIC value than the null model (BIC = 55,244). 

 

Table 13 - Model selection procedure suggesting that Tide had the most explanatory value for the 

occurrence of Spondyliosoma cantharus (AIC - Akaike Information Criterion, BIC = Bayesian 

Information Criterion). 

 

The Vuong Test indicated that these models were significantly different (p = 0,027), sustaining that 

the model with ‘Tide’ was the most fitted one among all candidate models.  The occurrence of black 

seabream tended be significantly more frequent during ebb tides compared to flood tides (Appendix 

- Supplementary table 3). However, model diagnostics showed that the model did not perform so 

well (Appendix – Supplementary figure 18b). 

 

Common Octopus (Octopus vulgaris) 

This species seems to prefer harder substrates (no sightings in soft substrate) and a tendency for 

preferring more rugose substrates in detriment of smoother ones (Appendix – Supplementary figure 

7f). Also, a greater abundance of Octopus vulgaris occurred during ebb tides since only one 

sighting happened during the flood tide (Appendix – Supplementary figure 7a). 

Variable 1 Variable 2 AIC BIC 

Tide   46,412 50,155 

Moon   53,127 56,869 

Sunlight   49,987 55,600 

Wind direction   51,953 61,309 

Substrate   53,152 58,765 

Rugosity   54,064 59,678 

Tide Moon 48,305 53,919 

Tide Sunlight 45,182 52,667 

Tide Wind direction 47,650 58,877 

Tide Substrate 49,373 56,858 

Tide Rugosity 50,408 57,893 
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The initial analysis of the relation between abundance and the continuous variables reveal that the 

species’ sightings only occurred up until 30 meters of depth (Appendix – Supplementary figure 

13d). Not one individual was spotted in deeper areas.  

 

Abundance Analysis: 

The preliminary analysis of potentially confounding variables indicated that none of the possibly 

interfering variables had a considerable impact in the sampling process (Appendix - Supplementary 

table 2). Therefore, we proceeded to the modelling process without considering any ‘weight’ 

variable.  

The BIC values show that the model with ‘Tide’ as a single explanatory variable presented the most 

reliable scenario, since it had the lowest BIC among all the candidate models (table 14), including 

the null model (56,630). 

 

Table 14 - Model selection procedure suggesting that Tide had the most explanatory value for the 

abundance of Octopus vulgaris (AIC - Akaike Information Criterion, BIC = Bayesian Information 

Criterion). 

 

The Vuong test indicated that the final model and the null model were significantly different (p = 

0,042). The model output indicated that the abundance of octopus tended to increase during ebb 

tides, but this effect turned out to be statistically non-significant (p-value > 0,05). Thus, only the 

null model could be considered (Appendix - Supplementary table 3).  

However, the complementary Kruska-Wallis pointed out ‘Tide’ as a significantly influential 

variable. (2 = 4,742, Df = 1, p-value = 0,029). 

 

Variable 1 Variable 2 AIC BIC 

Tide   51,250 54,993 

Moon   52,904 56,646 

Sunlight   56,865 62,479 

Wind direction   57,302 62,916 

Substrate   55,910 61,523 

Rugosity   54,059 59,672 

Tide Moon 50,336 55,950 

Tide Sunlight 54,130 61,615 

Tide Wind direction 54,231 61,716 

Tide Substrate 51,944 59,429 

Tide Rugosity 52,804 60,289 
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The impact of depth and distance to shore on the abundance of Octopus vulgaris (Appendix - 

Supplementary table 4) indicated no significant relation between either depth or distance to shore 

and the abundance of Octopus vulgaris, as evidenced by the p-values of 0.242 and 0.469, 

respectively, both of which are above the 0.05 threshold. 

 

Analysis of the effect of distance to shore along the transect points suggested no significant relation 

with the abundance of Octopus vulgaris. The p-values associated with the comparison between the 

first reference point (50 m from shore) with the remaining points (150 m and 250 m from shore) 

were all greater than 0.05 (Appendix - Supplementary table 5). 

 

Occurrence analysis: 

The tests suggests that none of the potentially confounding variables had an influence on the 

sampling process (Appendix - Supplementary table 2), hence they were not considered in the 

modelling process. 

The BIC values indicated that the model using 'Tide' as the sole explanatory variable was the most 

reliable, as it had the lowest BIC among all the different models (table 15). This model had a lower 

BIC value than the null model's (48,598). 

 

Table 15 - Model selection procedure suggesting that Tide had the most explanatory value for the 

occurrence of Octopus vulgaris (AIC - Akaike Information Criterion, BIC = Bayesian Information 

Criterion). 

 

 

 

Variable 1 Variable 2 AIC BIC 

Tide   51,250 54,993 

Moon   52,904 56,646 

Sunlight   56,865 62,479 

Wind direction   57,302 62,916 

Substrate   55,910 61,523 

Rugosity   54,059 59,672 

Tide Moon 50,336 55,950 

Tide Sunlight 54,130 61,615 

Tide Wind direction 54,231 61,716 

Tide Substrate 51,944 59,429 

Tide Rugosity 52,804 60,289 
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The Vuong test showed they were significantly different, with a p-value of 0.043, which is below 

the 0.05 threshold. However, the effect of Tide turned out to be nonsignificant (p = 0,054). 

Therefore, the influence of this variable was not considered, and the null model was deemed final 

(Appendix - Supplementary table 3). 
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Discussion 

A thorough analysis of the sampling procedure used in this study is required to decipher if this is a 

viable method for assessing the distribution and abundance of commercially relevant species and 

sustaining its use by future applications that may rely on this sampling and analytical framework. 

Compared to other monitoring techniques, BRUVs have some issues. BRUVs are designed to 

attract mostly carnivorous fish, yet this should not pose an obstacle within the scope of this study 

because most fish species with commercial value in Portugal are partially or fully carnivorous. 

Also, as a video dependent technique, the environmental conditions are a major factor in 

determining the effectiveness of the sampling process, since increased turbulence or turbidity will 

affect the quality of the videos and, therefore, the ability to detect and identify fish species in video 

samples (Frehse et al, 2020). To address this issue, the deployments were planned a priori and 

scheduled based on weather forecasts  

Nonetheless, the use of this type of monitoring technique has been growing exponentially due to its 

benefits compared to other methods. For instance, BRUVs have a really good cost-benefit ratio, 

since it has proven to be effective besides being relatively unexpensive (Jaco et al, 2020). The most 

important benefit of using this type of remote mechanisms is that the negative impact that the 

presence of a diver might have on fish behaviour (e.g., by scaring them away) is precluded with this 

remote approach (Garcia et al, 2021). Further, compared to catch and release methods, this method 

is much easier to implement and non-invasive, since environmentally wise, it has little impact by 

acting only as a fish attractant. Additionally, the fact that it does not require the capture of fish 

makes it a viable solution for monitoring protected areas, acknowledging that environmental 

welfare is an obligation within these areas and this method precludes any type of stress while 

monitoring the biological communities. This preliminary study demonstrates the feasibility of using 

BRUV sampling techniques in sensitive areas to monitor distribution and abundance of relevant 

fisheries resources. 

Regarding the statistical analysis, a GLM-type modelling process should be preferable over a more 

simplistic variance analysis or non-parametric rank-based analysis because this type of data often 

fails to comply with the assumptions of parametric analysis (Cleophas et al, 2011) and traditional 

rank-based analysis does not provide a robust method to compare the performance of different 

candidate predictors. The ability to determine the most influential predictor allows researchers to 

identify the main ecological processes underlying species distribution and abundance. However, the 

conclusions derived from this approach may require considerable sample sizes to ensure robustness, 

since a large number of candidate predictors might result in unbalanced samples across the 

categories of explanatory variables. In this study, some variables turned out to exhibit an 

unbalanced number of samples across categories due to a relatively low sampling effort, which 
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precluded a more structured sampling of all the candidate variables considered. Potential bias 

resulting from unbalanced sampling should thus be taken into consideration when interpreting the 

results of this study and may partially explain the fact that the modelling process was unable to 

develop more complex models incorporating more than one predictor. For instance, the fact that 

most deployments took place in shallow waters may have skewed the results and the ability to 

determine the biological responses to greater water depths.  

 

The most frequent family observed was Sparidae, in accordance with reports by previous studies 

that made a categorization of this area (Almada, 1996; Vasco-Rodrigues et al, 2011). Additionally, 

this result is also in conformity to the typical temperate reef fish communities of the north-eastern 

Atlantic (Bertoncini et al, 2010). Compared to previously published check lists of ichthyofauna in 

Berlengas (e.g. Vasco-Rodrigues et al, 2011), this study registered 8 new fish species.  

Dicentrarchus labrax was the most abundant species, followed by Diplodus vulgaris and 

Trisopterus luscus. Other than Diplodus vulgaris, the high relative abundance of the other two 

species is related to the fact that large shoals comprising as much as ~700 individuals were sampled 

at two occasions. Since these species were infrequently sampled, these shoals produced deviating 

values which acted as outliers in our database, making the modelling procedure difficult. On the 

other hand, some species were rarely identified. Species with a relatively high market value such as 

Mullus surmuletus or Conger conger were not spotted enough times to be eligible for modelling. 

The fact that the latter was visualized in seven different deployments demonstrates the utility of this 

sampling method for monitoring more cryptic fauna. The conger is a nocturnal species which tends 

to remain motionless inside crevices and holes during the daytime (Xavier et al, 2010). As so, 

previous studies have been unable to detect it (Almada, 1996 & Vasco-Rodrigues et al, 2011). In 

the present study, the use of external bait in some BRUV deployments seemingly enabled the 

detection of this elusive species since it was recorded mostly in BRUV sets equipped with external 

bait. The attraction of conger towards the BRUV may thus depend on visual stimuli produced by 

external bait in addition to bait smell.   

Likewise, we were able to identify Epinephelus marginatus, an endangered species whose 

extraction from the BNR is forbidden. This shows the utility of this method to monitor the 

occurrence of protected species around areas of interest. The abundance threshold used in the 

species selection process resulted in six species being eligible for modelling, but it should be 

acknowledged that this threshold could have been stricter. Indeed, abundance data with too many 

zeros are more challenging to be modelled and may bring considerable uncertainty to the modelled 

responses, thus making the trends less conclusive. Notwithstanding, there are some illations to be 

taken from the results achieved.  
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Firstly, the preliminary assessment of potentially confounding variables which could have interfere 

with the sampling process proved to be useful, since it enabled the incorporation of weighing 

factors in the model to account for their effects. Only visibility and external bait were judged to 

have had an impact on the sampling process, and this impact was seemingly contrasting for 

different species. A greater visibility was associated with higher abundance of Diplodus vulgaris, 

whereas the opposite was verified for Dicentrarchus labrax. Explaining the negative influence of 

poor visibility on the sampling efficacy is straightforward because the video samples require 

adequate visibility to be processed, and samples with low visibility will have a narrower field of 

vision and thus will be most prone to bias due to the underestimation of species abundance if 

individuals move outside the range of visual detection. On the other hand, a positive effect of poor 

visibility on fish relative abundance, as observed in D. labrax, could relate with behavioural traits. 

De Robertis et al. (2003) indicated that the predatory pressure exerted by piscivorous fish decays in 

turbid environments. The visibility of objects is much reduced in turbid waters compared to clearer 

waters, and therefore the foraging behaviour associated with feeding mechanisms may be reduced 

under these conditions. Some species could thus seek more turbid waters as a refuge from potential 

predators. Yet, other species could benefit from foraging in more turbid waters to avoid being 

detected by their prey. D. labrax, for instance, is known to forage on the surf zone where visibility 

is greatly reduced (Rodriguez-Garcia et al, 2024). Notwithstanding, it should be noted that this 

species was detected in few samples and that the effect of visibility could result from large shoals of 

D. labrax being recorded mostly in low visibility conditions by chance. 

Regarding the effect of external bait, D. sargus demonstrated to be positively influenced by its 

presence, similarly to C. conger. This might have to do with the fact that, when additional bait was 

inserted in an external mesh bag, it introduced a new visual stimulus due to its presence and 

responsiveness to the water currents, which generated movements likely to have attracted these 

species. Diplodus sargus are very visual and responsive to movement of prey (Bowmaker, J.K. & 

Loew, E.R. 2008), and the external bait provides something to nibble, becoming potentially more 

attractive. 

 

Topographic features including substrate type and rugosity showed to interact with the abundance 

of several species. This is in accordance with expected results since the six species analyzed have a 

tendency to forage in more complex, rocky substrates with formations like crevices, holes and pikes 

(Sharifian et al., 2023). This preference could relate with many factors including reproductive 

behaviour, food availability, and protection from predators (Connell & Jones. 1991).  

Additionally, the preliminary boxplots suggest an interference of the tidal phase on the abundance 

and visualization of the Octopus vulgaris. However, this suggestion is no corroborated by neither 

the models nor the complementary Kruskal-Wallis test.  
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The preliminary tests suggest distance to shore to be influential on Dicentrarchus labrax, since 

most sightings where within 1000 meters from shore. The waters closer to shore tend to be more 

productive, with more prey availability and composed by more complex habitats when compared to 

areas further away from shore (Pittman & McAlpine. 2003).  However, this influence was not 

significant enough to be indicated by the GAM analysis.  

Also, depth was determined by the descriptive analysis as potentially influential, in this case, for 

three different species. Diplodus vulgaris, Diplodus sargus and Octopus vulgaris sightings may 

have been influenced by depth. The tendency was the same for the three species, with most 

sightings occurring until the 30 m isobath. On the other hand, the designed models only confirmed 

this tendency for Diplodus sargus. 

The models designed to quantify the impact of each of the categorical variables were drafted 

carefully, following the forward-stepwise mechanism, always aiming for maximum parsimony, a 

principle that implies choosing the simplest explanatory model possible for similar explanatory 

powers. Out of the twelve explanatory GLMs created during this process (i.e., one abundance and 

one occurrence model for each species), the most parsimonious model turned out to be the null 

model in seven of them (Dicentrarchus labrax – occurrence, Spondyliosoma cantharus – 

abundance, Diplodus vulgaris – occurrence, Octopus vulgaris – abundance and occurrence, 

Diplodus cervinus – abundance and occurrence). These null models are little informative, but they 

could provide clues for interpreting model outputs. For example, when considering the case of 

Spondyliosoma cantharus, no explanatory variable was deemed significant enough to explain the 

distribution patterns of the species. However, since a simpler binomial model was able to detect the 

influence of ‘Tide’ on the occurrence of the same species, one can assume that the non-zero 

abundance data were not enough to adequately run a count-based model. On the other hand, 

whenever the null models were chosen in the analysis of species occurrence (Dicentrarchus labrax 

and Diplodus vulgaris), this could simply translate into no tendencies being determined because 

species were equally present across the environmental factors herein considered. Indeed, since the 

models of abundance identified significant trends in the same species, it would not be plausible that 

the lack of results for occurrence were derived from a lack of data given the much less data-

demanding characteristics of the binomial approach.  

The cases where the null model was selected for both abundance and occurrence (i.e., Octopus 

vulgaris and Diplodus cervinus) are also thought to have resulted from the lack of data. The 

somewhat small sample size may have hindered the effectiveness of the modelling process due to a 

low number of sightings likely insufficient to be related with a predictor. In these cases, the fact that 

whenever species were sighted only one individual was recorded resulted in abundance data being 

very similar to occurrence, binomial data.  
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On the other hand, the remaining five models suggest a significant influence of one of the candidate 

categorical variables. Tide was selected as the most influential variable in three of these models 

(Dicentrarchus labrax – abundance, Spondyliosoma cantharus – occurrence, Diplodus vulgaris – 

abundance). A positive influence of ebb tides on species abundance or occurrence was detected, 

which could relate to increased foraging activity during this tidal phase (Rountree & Able. 1992; 

Couto et al, 2022).  

The modelling of Diplodus sargus rendered the best results due to its comparatively greater 

abundance. For both abundance and occurrence, ‘Rugosity’ was deemed to be the most appropriate 

explanatory variable, with a positive influence associated with higher levels of substrate 

complexity. The geological formations on the substrate create hiding spots for juveniles and adults, 

whilst still being more prolific in abundance of prey. (García-Charton & Pérez-Ruzafa 2001; 

Sharifian et al., 2023)  

The GLM outputs to examine the variation in species abundance between transect points revealed 

significant effects for Diplodus vulgaris only, likely because it was the most abundant species. A 

higher abundance of D. vulgaris seems to occur at 150 m from shore compared to closer (50 m) and 

further (250 m) distances from shore. This could imply that the 50-m fishing restriction limit 

(Diário da República, 1ª série — Nr. 228 — 24 de Novembro de 2008) is not effective for this 

species and that there are areas which would be more productive to protect. However, Diplodus 

vulgaris is a low-value species and, as shown by the results, its abundance demands little concerns. 

Therefore, the social and economic costs of a possible change on the legislation would overcome 

the potentially positive impact that such an alteration could have. Given that the modelling process 

was not so effective, it would be reasonable to suggest a greater sampling effort to augment the 

available data and determine if the abundance of other species around the island exhibit any spatial 

trends. Such knowledge would clarify managers about the distribution pattern of marine resources 

in this protected area and guide management-enhancing strategies to the MPA of Berlenga. 

The aim of quantifying the effect of variables on the abundance of species also extended to two 

continuous variables: depth and distance from shore. GAMs were performed in order to assess the 

impact of these variables and the results showed that the abundance of Diplodus sargus was 

negatively influenced by depth, with a positive impact of the variable up until 24 meters and a 

negative impact from this point onwards, which is in accordance with (Sala & Ballesteros, 1997) 

information, that states that this species can go to depths up to 150 m but tends to stay within the 

first 30 m. Additionally, GAMs indicated a positive influence of distance from shore on the 

abundance of Diplodus cervinus at distances > 800 m. Even though this is a common behaviour on 

some species (Sharifian et al., 2023), that due to their migratory patterns or feeding habits prefer 

areas further away from shore, there is to our knowledge no research describing this pattern in this 
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species. Despite this tendency, this trend could not be associated with the transect analysis due to a 

much larger spatial scale.  

 

In this study, 8 species of commercially relevant fish fauna were identified. This result sustains that 

BRUV can be an effective instrument to sample fisheries resources non-invasively in protected 

areas. Remote technics, like the BRUV, have been tested to survey communities in many different 

habitats, allowing researchers to monitor areas that are harder to reach (greater depths) or to monitor 

with visual census (colder water temperatures) (Frehse et al, 2020). It also precludes the risk of 

double counting individuals since the relative abundance of a species is estimated through MaxN 

(Frehse et al, 2020). 

Remote sampling methods offer an extended operational capacity by not relying on human 

operators. This technique, combined with automated processing of video samples, could endow 

researchers, managers and stakeholders with a long-term, continuous monitoring system of marine 

fauna in regions of particular interest, such as MPAs. By taking advantage of current technologies, 

it would be possible implementing an autonomous video-based monitoring system targeting marine 

resources in Berlengas, which would render biological and environmental data in real time to be 

processed with algorithms fuelled with Artificial Intelligence for automatic species identification. 

This type of tools have been already emerging in the literature (Lade et al., 2023). The timeliness of 

such information would enable the spatial management of MPA resources in real time, thus 

contributing to optimize the performance of these conservation units.  

This study also provided some information on the distribution and abundance patterns of fisheries 

resources, pointing substrate type and rugosity as the most influential environmental variables on 

species habitat selection, sustaining the argument that this monitoring mechanism could provide 

ecological knowledge and the environmental impact of the different variables on species that would 

be harder to assess.  

The analysis regarding distance to shore was not so prolific as the GAM analysis only indicated an 

influence of this variable on Diplodus vulgaris, possibly due to the shortness of data. The GLM 

transect analysis suggested that, following a conceptual transect, the abundance of Diplodus 

vulgaris was larger at 150 m from shore comparing to areas closer to shore, implying that the 

current spatial design for the no-fishing area could be not so effective for this species.  

This method’s performance is promising, and further effort is required in order to complement the 

sampling size, in order to detect patterns in species that are not as abundant or frequent as Diplodus 

vulgaris. This will provide evidence-based knowledge to optimize the region’s marine spatial 

planning.  
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Final considerations 

 

The methodological approach presented in this study provided a relatively low cost and fast solution 

to combine several sources of data into a meaningful georeferenced guide on priority areas. This 

study represents a preliminary effort that aimed to assess BRUV ability to monitor fishing resources 

in the BNR, acknowledging that it could be replicated in other parts of the world.  

The results of this project suggest that, for a proper monitoring effort, confounding variables must 

be taken into consideration. Both visibility and tilt could have an impact on the collected 

recordings, possibly skewing the results. Additionally, using external bait could imply different 

results, since species like the conger were attracted to it. Therefore, these factors must be taken into 

consideration and require further investigation.   

Regarding the effect of the different environmental variables, the physical traits of the substrate 

were determined to have a meaningful impact. The type of substrate and most importantly, its 

rugosity were deemed to be influential on the abundance and occurrence of different species. Also, 

the tidal phase was considered to be potentially important since there are evidence pointing towards 

an impact of this variable on the abundance and occurrence of some species. Accordingly, the 

models also suggest an influence of depth on Diplodus sargus, indicating a negative tendency 

towards deeper environments. 

The determination of the effects of distance from shore warrants a greater sampling effort. GAMs 

indicated a positive influence of distance from shore on Diplodus cervinus abundance, but at short 

distances from shore no differences were observed.  At short distances, only Diplodus vulgaris 

exhibited some significant variability, but since this is an abundant species with low commercial 

value it alone does not raise any particular concern regarding the MPA spatial design currently 

operating.   

This study was able to provide a baseline to direct future monitoring efforts, deeming BRUV as an 

effective method to evaluate the state of marine faunal communities and their responses to a ever-

changing environment, enabling scientifically informed management decisions. Nonetheless, the 

underlying data used in this study still has limitations and could be significantly improved with 

additional sampling effort that would enhance the performance of the analytical framework, 

enabling more well-supported conclusions.  
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Supplementary table 1 - Deployment details. 
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Supplementary table 2 - Potentially confounding variables analysis for each species. (Estimate 

effect, Standard error, Df = Degrees of freedom, Z statistic value, statistical p-value) 

 

 

Species Measure Variable Estimate Std. Error Df z-value p-value 

Dicentrarchus 

labrax 

Abundance 

Tilt 19,300 5442,46 42 0,004 0,997 

Visibility 3,560 1,442 45 -2,437 0,013 

Exterior Bait -6,024 1,772 45 -3,362 0,001 

Occurrence 

Tilt 16,060 2284,10 42 0,007 0,994 

Visibility 0,274 0,743 45 -0,369 0,712 

Exterior Bait -1,609 1,105 45 -1,449 0,147 

Diplodus 

vulgaris 

Abundance 

Tilt 0,428 0,682 43 0,627 0,530 

Visibility -0,866 0,298 46 -2,905 0,004 

Exterior Bait -0,082 0,336 46 -0,244 0,807 

Occurrence 

Tilt -1,652e+01 6,209e+03 43 -0,003 0,998 

Visibility 9,277e-16 1,044 46 0,000 1,000 

Exterior Bait 0,439 1,198 46 0,367 0,714 

Diplodus 

sargus 

Abundance 

Tilt 17,300 2002,17 43 0,009 0,993 

Visibility -0,260 0,256 46 -1,013 0,311 

Exterior Bait 0,564 0,254 46 2,216 0,026 

Occurrence 

Tilt 17,570 2284,10 43 0,994 0,994 

Visibility -0,510 0,586 46 -0,870 0,384 

Exterior Bait 1,223 0,677 46 1,807 0,070 

Diplodus 

cervinus 

Abundance 

Tilt -0.154 1,080 42 -0,143 0,887 

Visibility 0,196 0,556 45 0,354 0,724 

Exterior Bait -0,053 0,600 45 -0,089 0,929 

Occurrence 

Tilt -0,470 1,328 42 -0,354 0,723 

Visibility 0,054 0,712 45 0,076 0,940 

Exterior Bait -0,113 0,774 45 -0,146 0,884 

Spondyliosoma 

cantharus 

Abundance 

Tilt -1,299 0,866 43 -1,500 0,134 

Visibility 0,406 0,646 46 0,628 0,530 

Exterior Bait 0,693 0,632 46 1,096 0,273 

Occurrence 

Tilt -2,197 1,344 43 -1,635 0,102 

Visibility 0,510 0,722 46 0,707 0,480 

Exterior Bait 0,898 0,726 46 1,236 0,216 

Octopus 

vulgaris 

Abundance 

Tilt 1.682e+01 3,301e+03 43 0,005 0,996 

Visibility -0,847 0,690 46 -1,228 0,220 

Exterior Bait 0,287 0,646 46 0,446 0,656 

Occurrence 

Tilt 1.706e+01 3,766e+03 43 0,005 0,996 

Visibility -0,847 0,776 46 -1,091 0,220 

Exterior Bait 0,287 0,755 46 0,778 0,656 
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Supplementary table 3 - Final model's results for each species. (Estimate effect, 2,5% and 97,5% 

confidence interval, Standard Error, Z statistic value, p-value) 

 

Species Measure Comparison Estimate 2,5% 97,5% Std. 

Error 

z-value p-value 

Dicentrarchus 

labrax 

Abundance 
Intercept 0,333 0,040 2,781 1,082 -1,015 0,310 

Tide (Ebb) 94,730 5,910 1518,446 1,416 3,215 0,001 

Occurrence Intercept 0,230 0,104 0,454 0,370 -3,965 7,33e-05 

Diplodus 

vulgaris 

Abundance 
Intercept 3,0988 1,972 5,026 0,238 4,759 1,95e-06 

Tide (Ebb) 2,054 1,126 3,718 0,304 2,370 0,018 

Occurrence Intercept 11,000 4,642 36,537 0,522 4,592 4,40e-06 

Diplodus sargus 

Abundance 

Intercept 0,178 0,030 0,557 0,711 -2,423 0,015 

Ext. Bait (Y) 1,600 0,956 2,659 0,260 1,809 0,070 

Rugosity (2) 6,615 1,980 41,076 0,734 2,574 0,010 

Rugosity (3) 8,000 2,416 49,484 0,730 2,846 0,004 

Occurrence 

Intercept 0,111 0,006 0,591 1,054 -2,085 0,037 

Rugosity (2) 21,000 3,001 434,612 1,161 2,621 0,008 

Rugosity (3) 18,000 2,534 374,478 1,167 2,478 0,013 

Diplodus 

cervinus 

Abundance Intercept 0,276 0,152 0,455 0,277 -4,634 3,59e-06 

Occurrence Intercept 0,270 0,127 0,522 0,356 -3,671 2,42e-04 

Spondyliosoma 

cantharus 

Abundance Intercept 0,208 0,104 0,365 0,316 -4,960 7,03e-07 

Occurrence 
Intercept 0,050 0,002 0,240 1,025 -2,924 0,003 

Tide (Ebb) 10,000 1,642 193,612 1,103 2,088 0,036 

Octopus 

vulgaris 

Abundance Intercept 0,208 0,104 0,365 0,316 -4,960 7,03e-07 

Occurrence Intercept 0,230 0,104 0,454 0,369 -3,965 7,33e-07 

 

 

 

 

 

 

 

 

 

 

 

 

Note – These results refer to the comparison of the first factor of the variable with the one enounced. 
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Supplementary table 4 - GAM Results for each species. (Df = Degrees of Freedom, Reference Df, 

2 = Chi-squared test, Statistical p-value, R2 = R-squared value, Explained Deviance) 

 

 

Supplementary table 5 - Transect analysis results for each species. (Estimate effect, 2,5% and 

97,5% confidence interval, Standard Error, Z statistic value, Statistical p-value) 

 

 

Species Variable Df Ref. Df 2 p-value R2 Exp. Dev 

Dicentrarchus 

labrax 

Depth 1,274 1,498 0,044 0,932 -0,023 0,015 

Distance 1 1 2,935 0,086 -0,991 0,025 

Diplodus 

vulgaris 

Depth 1,912 2,392 1,268 0,696 -0,017 0,044 

Distance 1,758 2,145 4,394 0,107 0,0401 0,112 

Diplodus sargus 
Depth 1 1 7,299 0,010 0,084 0,104 

Distance 1 1 0,760 0,383 -0,023 0,014 

Diplodus 

cervinus 

Depth 1 1 2,471 0,116 0,026 0,074 

Distance 1 1 7,291 0,006 0,172 0,171 

Spondyliosoma 

cantharus 

Depth 1 1 2,588 0,114 0,038 0,072 

Distance 1,843 2,260 2,076 0,424 0,033 0,092 

Octopus 

vulgaris 

Depth 1 1 1,403 0,242 -1,960e-04 0,050 

Distance 2,853 3,540 0,983 0,469 3,54 0,051 

Species Comparison Estimate 2,5% 97,5% Std. Error z-value p-value 

Dicentrarchus 

labrax 

Intercept 0,714 0,108 18,033 1,158 -0,291 0,771 

Replicate (2) 2,000 0,052 76,734 1,606 0,431 0,666 

Replicate (3) 0,200 0,003 10,222 1,866 -0,863 0,388 

Diplodus 

vulgaris 

Intercept 2,556 1,138 2,194 0,424 2,216 0,026 

Replicate (2) 4,402 1,546 3,726 0,526 2,818 0,004 

Replicate (3) 0,860 0,266 4,118 0,592 -0,253 0,800 

Diplodus sargus 

Intercept 1,000 0,398 2,194 0,428 0,000 1,000 

Replicate (2) 1,142 0,357 3,726 0,590 0,226 0,821 

Replicate (3) 1,286 0,414 4,118 0,578 0,434 0,664 

Diplodus 

cervinus 

Intercept -1,252 -2,348 0,933 0,718 -1,745 0,809 

Replicate (2) 0,405 0,067 1,109 0,929 0,436 0,662 

Replicate (3) -19,050 -25,998 -2,346 5874,272 -0,003 0,997 

Spondyliosoma 

cantharus 

Intercept -1,252 -2,521 0,143 0,707 -1,772 0,076 

Replicate (2) -0,693 -1,908 2,641 1,224 -0,556 0,571 

Replicate (3) -20,050 -39,134 18,982 9685,038 -0,002 0,998 

Octopus 

vulgaris 

Intercept 0,286 0,047 0,882 0,707 -1,772 0,076 

Replicate (2) 1,000 0,120 8,332 1,000 0,000 1,000 

Replicate (3) 0,050 0,023 5,218 1,225 -0,556 0,571 

Note – These results refer to the comparison of the first factor of the variable with the one enounced, acknowledging that 

the ‘intercept’ is the comparison of a factor with a mirrored image of itself. 
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Supplementary figure 1 - Identified species with reference pictures. (Source: iNaturalist & 

OMARE) 
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Supplementary figure 3 - Categorical variables analysis for Diplodus vulgaris. (a. Tide; b. Moon; c. Sunlight; d. 

Wind Direction; e. Substrate; f. Rugosity) 

Supplementary figure 2 - Categorical variables analysis for Dicentrarchus labrax. (a. Tide; b. Moon; c. Sunlight; d. 

Wind Direction; e. Substrate; f. Rugosity) 
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Supplementary figure 4 - Categorical variables analysis for Diplodus sargus. (a. Tide; b. Moon; c. Sunlight; d. Wind 

Direction; e. Substrate; f. Rugosity) 

Supplementary figure 5 - Categorical variables analysis for Diplodus cervinus. (a. Tide; b. Moon; c. Sunlight; d. 

Wind Direction; e. Substrate; f. Rugosity) 
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Supplementary figure 7 - Categorical variables analysis for Octopus vulgaris. (a. Tide; b. Moon; c. Sunlight; d. Wind 

Direction; e. Substrate; f. Rugosity) 

Supplementary figure 6 - Categorical variables analysis for Spondyliosoma cantharus. (a. Tide; b. Moon; c. 

Sunlight; d. Wind Direction; e. Substrate; f. Rugosity) 
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Supplementary figure 8 - Continuous variables analysis for Dicentrarchus labrax. (a. Wind 

Intensity; b. Surface temperature; c. Distance to shore; d. Depth) 

Supplementary figure 9- Continuous variables analysis for Diplodus vulgaris. (a. Wind Intensity; b. 

Surface temperature; c. Distance to shore; d. Depth) 
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Supplementary figure 10 - Continuous variables analysis for Diplodus sargus. (a. Wind Intensity; b. 

Surface temperature; c. Distance to shore; d. Depth) 

Supplementary figure 11 - Continuous variables analysis for Diplodus cervinus. (a. Wind 

Intensity; b. Surface temperature; c. Distance to shore; d. Depth) 
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Supplementary figure 12 - Continuous variables analysis for Spondyliosoma cantharus. 

(a. Wind Intensity; b. Surface temperature; c. Distance to shore; d. Depth) 

Supplementary figure 13 - Continuous variables analysis for Octopus vulgaris. (a. Wind 

Intensity; b. Surface temperature; c. Distance to shore; d. Depth) 
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Supplementary figure 14 - GLM diagnostics for Dicentrarchus labrax (a. Abundance; b. Occurrence; c. Transects) 

Supplementary figure 15 - GLM diagnostics for Diplodus vulgaris (a. Abundance; b. Occurrence; c. Transects) 
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Supplementary figure 16 - GLM diagnostics for Diplodus sargus. (a. Abundance; b. Occurrence; c. Transects) 

Supplementary figure 17 - GLM diagnostics for Diplodus cervinus. (a. Abundance; b. Occurrence; c. Transects) 
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Supplementary figure 19 - GLM diagnostics for Octopus vulgaris. (a. Abundance; b. Occurrence; c. Transects) 

Supplementary figure 18 - GLM diagnostics for Spondyliosoma cantharus. (a. Abundance; b. Occurrence; c. Transects) 
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Supplementary figure 21 - GAM results (a. Distance to Shore; c. Depth) and residuals diagnostics (b. 

Distance to Shore; d. Depth) for Diplodus vulgaris. 

Supplementary figure 20 - GAM results (a. Distance to Shore; c. Depth) and residuals diagnostics (b. Distance 

to Shore; d. Depth) for Dicentrarchus labrax. 
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Supplementary figure 22 - GAM results (a. Distance to Shore; c. Depth) and residuals diagnostics (b. Distance 

to Shore; d. Depth) for Diplodus sargus. 

Supplementary figure 23 - GAM results (a. Distance to Shore; c. Depth) and residuals diagnostics (b. Distance 

to Shore; d. Depth) for Diplodus cervinus. 
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Supplementary figure 24 - GAM results (a. Distance to Shore; c. Depth) and residuals diagnostics (b. Distance 

to Shore; d. Depth) for Spondyliosoma cantharus. 

Supplementary figure 25 - GAM results (a. Distance to Shore; c. Depth) and residuals diagnostics (b. Distance 

to Shore; d. Depth) for Octopus vulgaris. 
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