
 

 
 
 
 

 
 
 
 
 
 

Mafalda de Carvalho Nogueira Amaro 

 
 

MODELING AND CONTROL OF PH IN 

TUBULAR PHOTOBIOREACTORS ON 

MICROALGAE PLANT  
 
 
 
 

 
 

Dissertation under the Master of Science Degree in Electrical and 
Computer Engineering supervised by Professor Doctor Jérôme 

Amaro Pires Mendes, and Professor Doctor Rui Alexandre de 
Matos Araújo, and presented to the Department of Electrical and 

Computer Engineering, Faculty of Science and Technology, 
University of Coimbra. 

 
 
 
 

February 2024 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

University of Coimbra 

Faculty of Sciences and Technology  

Department of Electrical and Computer Engineering 

 

 

 

MODELING AND CONTROL OF PH IN TUBULAR 

PHOTOBIOREACTORS ON MICROALGAE PLANT 
 

 

Mafalda de Carvalho Nogueira Amaro 

 

 

 

 

Dissertation under the Master of Science Degree in Electrical and Computer Engineering 

supervised by Professor Doctor Jérôme Amaro Pires Mendes, and Professor Doctor Rui 

Alexandre de Matos Araújo, and presented to the Departement of Eletrical and Computer 

Engineering, Faculty of Science and Technology, University of Coimbra. 

 

 

 

 

February 2024 



 

 



Acknowledgment

I would like to thank the following people, without whom I would not have been able to
complete this work, and without whom I would not have made it through my master’s
degree.

To the project “InGestAlgae - Plataforma Inteligente de Gestão da Produção de
Microalgas”, with reference CENTRO-01-0247-FEDER-046983, co-financed by Fundo
Europeu de Desenvolvimento Regional (FEDER), through the Programa Operacional da
Região Centro (CENTRO 2020), which my project was a part of. To the Institute of
Systems and Robotics (ISR-UC), Oncontrol Technologies, and Buggypower.
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i



ii



Abstract

Microalgae are microscopic organisms, they are unicellular and typically habit marine
systems or freshwater. Differently from other plants, microalgae don’t possess roots, stems
or leaves. Nevertheless, they have the ability to perform photosynthesis. Photosynthesis
is a biological process that converts light energy into chemical energy, where oxygen is
produced as a byproduct. Additionally, these organisms’ biodiversity is very extensive,
being only a small part studied. These organisms have been used for centuries by
humans as a food source. Nonetheless, through the years they have been associated with
other activities, such as, cosmetics, pharmaceuticals and biofuels. Furthermore, in order
to produce higher quantities of microalgae, these organisms are typically produced in
appropriate infrastructures, named photobioreactors.

Photobioreactors encompass multiple structures, classified according to their production
characteristics. Microalgae essentially require three major components in their production
process including sunlight, water, and nutrients. Additionally, culture conditions in a
photobioreactor, on a microalgae plant production, are essential for production rates, and
the pH value is one of the critical variables for an harmonizing process. However, the
biological nature of microalgae growth represents a complex reaction that is difficult to
model and control.

The work presented in this dissertation proposes an approach for the application of
adaptive identification and predictive control to regulate the pH in a photobioreactor in a
microalgae production system. The proposed approach is composed of two main stages:
identification and control. The identification is performed by a Takagi-Sugeno (T-S) fuzzy
model, which will be learned with an offline strategy, by the fuzzy c-means method for
the antecedent part, and by the Least Squares Method for the consequent part. Then,
the model is updated with an online method, the Recursive Least Squares with Adaptive
Directional Forgetting factor algorithm. The control scheme is based on a Generalized
Predictive Control approach, which is a Model Predictive Controller, with the adaptive
T-S fuzzy model designed in the identification stage. In this way, the model parameters
from Generalized Predictive Control are online adapted by Recursive Least Squares with
Adaptive Directional Forgetting. To validate the control structure, the proposed approach
was tested by using a model estimated from real data of a microalgae production process.

Keywords: Microalgae, Photobioreactor, Generalized Predictive Control, Fuzzy Model.
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Resumo

As microalgas são organismos microscópicos unicelulares, que tipicamente habitam sis-
temas marinhos ou águas doces. Estes seres, ao contrário das plantas comuns, têm a
particularidade de não possúırem ráızes, caules ou folhas. No entanto, são seres foto-
ssintéticos. A fotosśıntese é um processo biológico, que permite a conversão de energia
solar em energia qúımica, do qual resulta a produção de oxigénio. Como tal, este processo
é essencial para a vida na Terra. É estimado que as algas contribuam para grande parte
da produção do oxigénio terrestre, e que existe um extensivo número de espécies, grande
parte ainda por identificar e estudar. Estes organismos têm sido usados pelos seres
humanos como fonte de alimento ao longo dos últimos séculos. Contudo, nos últimos
anos têm sido associados a outras atividades, como a cosmética, a industria farmacêutica
e aos biocombust́ıveis. Consequentemente, de forma a produzir maiores quantidades
destes micro-organismos, estes são normalmente produzidos em infraestruturas adequadas,
denominadas de fotobiorreatores.

O termo fotobiorreator abrange múltiplas estruturas, classificadas de acordo com as
suas caracteŕısticas de produção. Quanto ao processo de produção de microalgas, são
considerados três requisitos essenciais, nomeadamente, luz solar, água e nutrientes. Além
disso, as condições da cultura dentro dos fotobiorreatores, na produção de microalgas, são
essenciais para as taxas de produção, sendo o valor do pH uma das variáveis cŕıticas para
um processo harmonioso. No entanto, as reações biológicas associadas ao crescimento das
microalgas, representam uma reação complexa, dif́ıcil de modelar e controlar.

Como tal, este trabalho propõe uma abordagem baseada na aplicação de identificação
adaptativa e em controlo preditivo, para regular o pH num fotobiorreator, para um
sistema de produção de microalgas. A abordagem proposta é composta por duas etapas
principais: identificação e controlo. A identificação é realizada por um modelo difuso,
Takagi-Sugeno, que será aprendido através de uma estratégia “offline”. Primeiramente é
usado o algoritmo “fuzzy c-means”, para a parte antecedente do modelo, e implementando
o “Least Squares Method”, para obter a parte consequente do modelo. Em seguida, o
modelo é atualizado com um método “online”, com recurso ao algoritmo “Recursive Least
Squares with Adaptive Directional Forgetting”. Por sua vez, a estrutura do controlador é
baseada numa abordagem de Controlo Preditivo, com o modelo difuso adaptativo T-S,
projetado na etapa de identificação. Desta forma, os parâmetros do modelo de Controlo
Preditivo são adaptados de forma iterativa pelo método “Recursive Least Squares with
Adaptive Directional Forgetting”. Para validar a estrutura do controlador, a abordagem
proposta foi testada utilizando um modelo estimado a partir de dados reais de um processo
de produção de microalgas.

Palavras-chave: Microalgas, Fotobiorreator, Controlo Preditivo, Modelo Difuso.
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Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Dissertation Objective . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Dissertation Contributions . . . . . . . . . . . . . . . . . . . . 3

1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . 4

1.1 Motivation

For a few years now, there has been a new chapter in industrial processes, Industry
4.0 [1]. This movement intends to revolutionize the industrial process, both improving its
flexibility and agility, integrating new technologies. However, these systems can be highly
complex and their development may represent a challenge [2, 3].

Microalgae are microscopic eukaryotic1 organisms, and they are phytoplankton that can
be found in seawater and freshwater. These microorganisms have a high biotechnological
potential to produce a diversity of substances present in many valuable industries, such
as pharmaceutical, animal nutrition and human supplements, cosmetics production,
wastewater treatment processes, and, as a new approach, in clean energy sources, called
“third generation biofuels” [4, 5, 6]. Back in 1972, a technical book was published that
inferred Earth’s physical limits and its influence in policies in the first half of the 21st
century [7]. These conclusions have been lost or pushed to future actions. Nevertheless,
as Earth’s finite resources become more evident and studied [8], more strategies emerge to
counterbalance a climate crisis. Facing an increasing energy demand, along with fossil fuel
environmental effects, some challenges have emerged, such as the ones related to economic,
social and environmental factors. Three important strategies to respond to these challenges
are the adoption of renewable energies, carbon capturing techniques, and increase energy
efficiency, all aiming to reduce the greenhouse effect [9]. Among different carbon capturing
techniques, direct CO2 capturing, using third generation biomass - microalgae, is one of
the options. These microorganisms perform the photosynthesis process to grow, requiring
sunlight and carbon dioxide, and producing oxygen, at higher rates than other plants.
Therefore, producing microalgae has the potential to reduce global warming and also to

1Eukaryotes are organisms whose cells contain a nucleus and other membrane-bound organelles. They
may be either single-celled or multicellular

1
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be a source of bioenergy or other economically valuable products. An example of a recent
industry application for microalgae is an air filter named “Biosmotrap”, which is intended
to reduce outdoor and indoor air pollution [10]. However, for a biofuel application to
be viable as a clean and renewable energy source, the cost and production levels must,
respectively, decrease and increase. As a consequence, in the past few years, there has
been a new interest in the microalgae industry due to its recent applications. This renewed
interest triggered investment in the existing high-value microalgae production structures
to transform the microalgae cultivation process into a more productive one, by minimizing
costs and maximizing microalgae harvesting.

Microalgae plants have the capacity to grow in several aquatic environments with
low requirements, allowing a great range of infrastructures for these micro-organisms
production. Hence, these organisms can be produced in very simple infrastructures with
very little control. However, the production purpose determines the type of infrastructure,
and the necessary control. In a functional bioreactor, for photosynthetic microorganism’s
production, there are some core requirements for a quality end product. The most
important factor, for an operating photobioreactor, is light availability, since light is the
motor of the photosynthetic growth. The most common light source is sun radiation,
however, there are already modern alternatives with a combination, or full use, of an
artificial light source, provided that the radiated light is between 400 to 700 nm range
(Photosynthetically Active Radiation), since microorganisms only use that light interval.
Examples of artificial light sources used are lamps and LEDs to optimize culture growth.
Moreover, the nutrients supply is also one of the main components in a photobioreactor and
indispensable for microalgae development. For productivity maximization, the medium
culture nutrients should be approximately, carbon (30%-50% dry weight (d.wt.)), oxygen
(30%-50% d.wt.), hydrogen (3%-7% d.wt.), nitrogen (4%-9% d.wt.), phosphorus (1%-3%
d.wt.) and other elements in small percentages [11]. The introduction method of the
nutrients is also relevant, since only the liquid phase components are actually available for
cell utilization. Another important component for microalgae production are the culture
conditions, that encompass the culture pH and temperature. The culture pH can have an
optimal range value of 7.0 to 10.0, being required an adaptation to the specific microalgae
species in production. The control of this variable is frequently done by managing pure
carbon dioxide gas injections in the culture, and is one of the most critical variables to
control, since this gas injection can constitute up to 30% of production costs [12]. As for the
temperature, the range of optimal degrees can vary from 20°C up to 35°C, also depending
on the cultivated species. This variable is highly dependent on the absorbed radiation, and
must be specifically adjusted to the production location. Some methods to help maintain
the culture temperature at an equilibrium already exist, such as using water masses as
a thermostat. The last significant factor of a photobioreactor is the mixing mechanism,
used to minimize the gradient of nutrients in the culture, avoid cell sedimentation and
allow the cells to circulate between dark and light zones. Some common mixing techniques
are air bubbling, usually in closed photobioreactors, stirring and liquid circulation by
pumps. Furthermore, when considering control approaches, it is essential to consider
the type of industry application. Where a more demanding end product implies a more
demanding production process. This means that the type of implemented control method
must meet the desired compliance regarding culture conditions. Moreover, most control
applications to this industry’s high value facilities started with a Proportional Integral (PI)
controller or a Proportional-Integral-Derivative (PID) controller incorporation into the
system. However, some facilities have integrated classic Model Predictive Control (MPC)
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or Fuzzy Logic (FL) controllers. Nevertheless, none of the studied approaches considered
condition variations associated with the different seasons. So, applying adaptive control
to these systems may be beneficial.

Considering all the above factors, it is clear that producing microalgae in a photobiore-
actor can be a complex process, even more so when considering high-value microalgae
production processes. Additionally, in order for this industry to economically compete in
the biofuels market, it must improve production efficiency. Implementing an adequate
control method is crucial to improve the microalgae production process, in order to obtain
a refined operation, by achieving cheaper photobioreactor performances and a higher yield
percentage.

1.2 Dissertation Objective

This work aims at developing a pH control process for a photobioreactor environment,
producing microalgae plants, with the aim of transforming these systems into more
productive facilities. The microalgae plant infrastructures have highly complex nonlinear
and time-varying dynamics and require “ideal” characteristics to achieve maximum
growth. When greatly diverging from those conditions, the growth rate decreases or
these microorganisms don’t survive. Nevertheless, to maintain these conditions close to
optimal values, an adequate type of control is required. Furthermore, as already mentioned,
microalgae have the potential to become a competitor for fossil fuels, as the third generation
biofuel, however, this target is still far from viable, due to their expensive production
process [12]. So, it is crucial to increase yield quantities and decrease production costs.
In [12] multiple changes necessary in this industry to achieve these purposes are presented,
ranging from equipment to labor cost reductions. This document focuses on improving
microalgae growth rate by controlling the culture pH, and a consequent improved carbon
dioxide injection management, that may reduce operational costs. For this purpose, it
is proposed to develop a predictive controller with an online adaptive model procedure.
This method, due to its adaptive characteristics, permits an iterative update of both the
controller and the model. The adaptive controller was contemplated due to the process to
control irregular behavior throughout distinct seasons and multiple operational points,
caused by the effect of process disturbances.

1.3 Dissertation Contributions

This dissertation’s contributions and developments encompass the following points:

• Acquisition of real raw dataset on a microalgae plant, including dataset filtration,
organization and division.

• Development of a discrete-time Autoregression with Exogenous Input (ARX) model
for control simulation purposes.

• Development from scratch of the design of a Takagi-Sugeno fuzzy model and the
respective identification process. The identification was performed in an offline way,
using the Fuzzy c-Means clustering algorithm to design the antecedent part, and
the Least Squares Method to design the consequent part.



Chapter 1. Introduction 4

• A new alternative to control a photobioreactor pH levels, was developed from scratch.
Due to the uncertainty of the process and time-varying behavior through the seasons,
the designed offline model is updated using Recursive Least Squares with Adaptive
Directional Forgetting (RLS-ADF) factor algorithm and it is used as the predictive
model on the model predictive controller, a Generalized Predictive Control (GPC).
In this way, the GPC parameters, which depend on the model, are updated online.

• Validations of the proposed approach by using a model estimated from real data of
a microalgae production process.

• Throughout the development of this work, an article was published in the second
edition of IEEE Industrial Electronics Society Annual Online Conference (IES
ONCON 2023). See Appendix A.

1.4 Dissertation Organization

The remainder of this document is organized as follows.
In Chapter 2, the state of the art is presented. First, is put forward an overview

of the microalgae production structures, the photobioreactors, for a better notion and
understanding of the following sections. From different types of infrastructures, their
important characteristics and their most suited applications. Afterwards, some examples of
distinct approaches on photobioreactors control are described, encompassing Proportional-
Integral-Derivative Control, Model Predictive Control and Fuzzy Logic Control. In
Chapter 3, some base concepts of Model Predictive Control and Fuzzy Logic Control are
presented, that are important notions within the framework developed in this dissertation.
In Chapter 4, the fuzzy system identification process and the controller’s adjustments to
process the model’s parameters update are described. The fuzzy system identification
process description is presented in the second section of the chapter. This section firstly
presents the fuzzy model concepts and main equations, and its first subsection details
the implementation of the Fuzzy c-Means clustering algorithm. The following subsection
delineates the Least Squares Method, and the third subsection presents the Recursive Least
Squares with Adaptive Directional Forgetting. With the last three methods implemented
for the model parameters identification. The controller adjustment process is presented
in the third section. In Chapter 5, the dataset organization is presented, followed by a
description of the fuzzy model and predictive control implementation. Moreover, this
chapter presents the simulation control results performed to test the selected approach.
Lastly, in Chapter 6 the conclusions and future assignments of the developed work are
presented.
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2.1 Introduction

Algaes have been used for centuries by humans, as a food source, particularly important
during food shortage periods [4]. An example of a known algae species, used for food in
the last thousands of years, and popular in the modern times, is Arthrospira (Spirulina)
species. However, the microalgae cultivation process is relatively new [13], dated back to
1890. Nevertheless, the cultivation of microalgae for commercial purposes only started in
the early sixties, in Japan [14], for the Chlorella algae species. This process was motivated
by the world’s population increase, and the consequent predictions on insufficient food
supplies. By 1980, there were 46 factories for microalgae production, producing about
1000 kg of dry matter per month in Asia, that were promptly followed by Israel and USA
factories [4]. In 2004, the microalgae biomass market produced around 5000 t of dry matter
per year [15]. Therefore, in a small interval of a few years, the microalgae production
industry development occurred at an increasing rate, and diversified into other industry
applications, such as pharmaceuticals and cosmetics industries [4]. Another consequence of
the world’s population increase, is the increasing energy demand, that has a direct influence
on the rise of fossil fuel use; Which causes an increase in greenhouse gas emissions into the
atmosphere. So, it is fundamental to adopt renewable energy technologies, carbon dioxide
capture technologies, and increase energy efficiency equipment. As a photosynthetic
process, microalgae production has a beneficial impact on carbon dioxide mitigation, and

5
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has higher rates of photosynthesis than other plants. As a result, microalgae production
positively affects CO2 atmospheric levels, potentially reducing global warming, and
represents a source of bioenergy, as a biofuel. Microalgae production requires specialized
infrastructures, the photobioreactors, that should be adequately designed, built, and
operated to achieve the selected microalgae necessities. Some important conditions to
consider in this process are the light source and nutrients (carbon, nitrogen, phosphorous,
etc) supply, the culture conditions (pH, temperature, etc), and mixing mechanisms, to
avoid culture medium gradients, that would reduce production [16]. On a small scale,
for example, in a laboratory setup, these conditions are not so difficult to implement,
however, when considering large-scale production, these requirements can be difficult to
implement, especially considering cost limitations. This chapter presents an introduction
of important notions on photobioreactors and their operation. Afterwards, an overview of
some control approaches on how to control and improve microalgae production is also
presented. All studied approaches encompass the process pH control.

2.2 Photobioreactors Description

There are two major categories of photobioreactors structures to be considered in the
microalgae production industry [11]: open and closed. The first occurrence and most
elementary type of structures are the open photobioreactors, due to their operation
simplicity. As the name suggests, these systems are open, meaning that the culture has a
direct contact with the environment. These systems are considerably cheaper and more
practical than closed systems [17], being associated with certain operation advantages,
such as direct sunlight exposure, simple cleaning procedure, self-cooling by evaporation,
and lower oxygen accumulation, consequence of the direct exposure to the atmosphere.
However, a direct contact with the atmosphere results in a major dependence on natural
climate variations, to its contaminating agents, and to high carbon dioxide losses. And,
although this system’s construction cost is lower than that of closed systems, due to
their limitations in controlling the culture conditions and contamination, they are only
suited to the most robust species. The most frequent types of these systems are artificial
ponds, raceways, illustrated in Figure 2.1, tanks, and thin-layer (inclined surface systems),
illustrated in Figure 2.2a. Conversely, closed system photobioreactors are characterized
by the absence of contact between the culture and the environment, being the most
frequently implemented infrastructures the tubular loop, illustrated in Figures 2.4 and
2.3, and the flat-panels, illustrated in Figure 2.2b. In this type of systems, it is possible
to produce mono-cultures of a selected microalgae. It is also possible to grow more
sensitive strains, due to their controlled environment and higher contamination protection.
In these structures, the culture control is more efficient and allows better production
results. For example, pH control implementation enables production maximization and
cost reductions.

When considering microalgae production photobioreactors there are a set of indispens-
able requirements. The first to consider is light availability, since microalgae plants are
photosynthetic organisms, and light source works as a power input. Nevertheless, excess
light exposure can cause problems in microalgae’s growth [22]. So, the microalgae growth
is determined by the photosynthesis rate, which depends on the amount of irradiance
exposure in the culture. Irradiance is the quantity of radiation reaching a certain point
from all directions. Nonetheless, because of culture depth and biomass concentration, the
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Figure 2.1: Open raceway culture pond, from [18].

irradiance in the microalgae culture is not homogeneous. Another important factor to
consider in microalgae production is the nutrient supply. Nutrients mostly encompass
carbon, oxygen, hydrogen, nitrogen, phosphorus, potassium, magnesium and calcium [11].
Generally, providing an excess of nutrients allows maximizing productivity, however, this
can represent an economic disadvantage, if a re-circulation of culture medium is not
implemented. Moreover, it has to be considered that only the dissolved nutrients can be
used in the microalgae growth process. Assuming a gas carbon dioxide supply, only the
part transferred to the liquid phase is really accessible for the cells. To sustain microalgae
activities, a carbon dioxide shortage supply must be avoided, as the oxygen amount
should not rise above saturation levels. Additional requirements for photobioreactors
operation are the culture conditions, that encompass the pH and the temperature of the
culture. These conditions affect the process rate production, and optimal values enable
maximum production rate [23]. The culture pH suffers variations due to the photosynthesis
reaction, which results in carbon consumption and increasing pH levels. To control these
variations, it is usually injected CO2, which simultaneously supplies carbon dioxide for the
photosynthesis process, and decreases the culture pH. A last requirement to consider is the
mixing mechanism, that allows the minimization of medium gradients, cell sedimentation
and cells circulation between dark and light zones. However, too much mixing actions
can damage microalgae growth. Some examples of usually used methods are air bubbling,
stirring or liquid circulation.

The first photobioreactor design to appear was an open system type, the raceway
ponds, illustrated in Figure 2.1, and has been pointed as the most frequently implemented
photobioreactor model in the industry, going up to 95% of worldwide implementation
by 2017 [11]. This model is characterized by its low cultivation costs in commercial
production of microalgae, and by its flexibility in scaling up, which explains this model’s
vast utilization. Nevertheless, this system also has some drawbacks, related to the low
light utilization efficiency, majorly due to the tank depth, and an insufficient mixing, which
leads to a poor gas/liquid transformation. Resulting from its advantages and limitations,
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(a) (b)

Figure 2.2: (a) Open photobioreactor - thin layer system, from [19], and (b) close
photobioreactor - flat-plate system, from [20].

Figure 2.3: Tubular photobioreactor, for microalgae cultivation. From Buggy Power.

these types of systems are associated with less demanding and more flexible industries,
like wastewater treatments or human consumption production processes.

The thin-layer or inclined platforms systems, illustrated in Figure 2.2a, are an open
type of system, characterized by the low-depth cultures, in order to maximize light
utilization, which leads to an increase in biomass concentration. Consequently, this
system has the highest growth rates and microalgae productivity and, therefore, has been
attracting some attention. This model is also known for its advantages, combining open
system characteristics, direct sunlight exposure, easy heat dissipation, easy cleaning and
maintenance, and some closed systems characteristics, such as high biomass concentration
production and elevated productivity. Nevertheless, it continues to exhibit a lack of the
system variables control and high contamination probability.

For more demanding cultures, with higher production standards, the most frequent
design is the tubular photobioreactor, which is a type of closed system. A tubular system
can have distinct designs, depending on the tube’s organization. For example, in a
“Serpentine photobioreactor”, illustrated in Figure 2.4, a set of tubes is connected by a set
of U-shaped bridges to form a flat loop, that can be arranged vertically or horizontally. In
a “Manifold photobioreactor” the tubes are organized in parallel, connected at the ends
by two manifolds, one for distribution and one for culture collection purposes. Moreover,
these models are usually used to produce high-quality biomass for high-value applications.
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Figure 2.4: Vertical tubular serpentine photobioreactor, from [21].

However, their productivity depends on multiple factors, such as the algae species being
produced, the production location, the tube’s diameter, the biomass concentration, the
distance between the tubes, etc. Being a closed type of photobioreactor, this model
has the corresponding advantages, but its structures imply a significant drawback. The
tubular structures have shown a fouling behavior of microalgae, that can only be stopped
with a regular photobioreactor clean-up, that implies periodical pauses in the cultural
production.

The flat-plate photobioreactor, illustrated in Figure 2.2b, is another type of a closed
system, with a basic design, that consists of two parallel transparent panels with a
thin layer of microalgae culture suspension flowing between them. One of this model’s
advantages is its efficiency of the culture sun exposure. However, as a consequence, the
temperature fluctuations are difficult to control and the culture overheating is a regular
problem. Nevertheless, there are already two mainly used solutions for this problem [11].
One of them is using a water spray method on the panel surface to promote heat dissipation,
and the other option involves a double layered system, on which one of the spaces has
the growing culture and the other a water sheet to produce heat dissipation from the
overheated culture.

There has been some investment in this industry caused by the market demand.
In the future, the main improvements are focused on three key details, motivated by
cost minimization and production maximization [11]. The first aspect involves the
development of new technologies for phototropic cultures production, in order to achieve
better performances. The second aspect focuses on scaling-up the production facilities,
and the third one involves the industrialization of the microalgae biomass production
process. Ultimately, to choose the most fitted photobioreactor infrastructure design to
implement, it is crucial to develop a study to find the most suited model that coincides
with the project specifications and budget.
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Figure 2.5: Photobioreactor Operation Scheme.

2.3 Tubular Photobioreactors Operation

The most frequent closed photobioreactor design, implemented at industrial scale, for
phototrophic microorganism’s production, is the tubular model [24], which is the photo-
bioreactor type studied in this work. These structures are normally made of transparent
glass or plastic hollow tubes, with 0.1 meters in diameter, where the culture circulates. The
tubes can be arranged in a vertical or horizontal formation and are generally connected to
a pump that circulates the culture medium and microalgae through the system. Normally,
there are two segments in tubular reactors [11], the photostage loop, where the biomass
growth occurs, and the retention tank, where the oxygen is removed and culture variables
are controlled. Illustrated in Figure 2.5, there is a schematic of simplified steps for a
photobioreactor continuous operation. Starting with the culture medium production,
essentially constituted by water and nutrients. Depending on water origin, it may or may
not be necessary to perform filtration/sterilization of the medium, to remove possible
contamination particles. Then, the culture medium is continuously circulated through
the tubes, while light is supplied from artificial sources or natural sunlight. As described
in [12], to reduce production costs, it should be used seawater and natural sunlight.
Throughout the operation, the main variables, such as temperature, pH, nutrient levels,
and light intensity (when in a laboratory setup) are usually controlled and monitored, to
optimize microalgae growth and productivity. These variables optimal values depend on
the microalgae species cultivated, however, the usual range for temperature is 20-30°C,
while the pH is between 7-10 [11]. The nutrient levels are adjusted according to the
specific needs of the selected microalgae cycle, and the light intensity is adjusted to
ensure that the microalgae receive enough light to carry out photosynthesis. The culture
medium must be regularly reinforced with fresh nutrients to ensure that the culture
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medium contains an adequate level of the essential nutrients. This is typically done by
adding fresh culture medium to the system at regular intervals or in a continuous rate.
The microalgae harvesting is typically done periodically, either by manual or automated
methods. Overall, the operation of a tubular photobioreactor requires continuous and
careful motorization and control of various parameters to ensure an optimal microalgae
productivity. Furthermore, the system must be cleaned at regular intervals to prevent
contamination and ensure a high quality operation.

2.4 Photobioreactors pH Control

When considering the culture pH control, the frequent approach is the manipulation of
carbon dioxide gas injections into the culture medium. This is usual because the continuous
biological reaction, occurring inside the photobioreactor, causes the medium acidity to
decrease, by CO2 consumption, which is explained through the photosynthesis process
transformation, normally represented by Equation (2.1) [25]. Nevertheless, CO2 injections
into the culture medium can lead up to 67% losses in open photobioreactors and up to 50%
losses in closed photobioreactors [11]. In open photobioreactors, most of CO2 losses occur
due to direct contact with the atmosphere, however, in closed photobioreactors, most
CO2 losses can occur due to the gas-liquid phase transformation or loss in the exhaust
gas, when supplied in excess. When considering tubular photobioreactors, CO2 losses
can be reduced to less then 30% through proper control methods implementation [25].
Additionally, the work presented in [26] correlates the reduction of CO2 injections, and
consequent CO2 injection time, to lower CO2 losses.

6CO2 + 6H2O
light−−→ C6H12O6 + 6O2, (2.1)

where CO2 represents the carbon dioxide chemical compound, H2O represents a water
molecule, C6H12O6 represents the glucose chemical compound, and O2 represents the
oxygen molecule.

Microalgae production involves a biological process and, therefore, it is very complicated
to describe in a mathematical formula. This results in a lack of developed control systems
for this process. The existing ones are based on an on-off type of control, that leads to large
CO2 losses and constant pH variations from the set value. Although this technique allowed
some improvements, it has been proven that, in order to achieve higher performances,
a more complex control alternative must be implemented, such as a Model Predictive
Control (MPC) or Fuzzy Control [27, 25]. The pH control is a nonlinear problem, viewed
from a theoretical approach, that can only become linear under specific conditions [28].

To maximize the culture yield, it is essential to maintain some conditions at optimal
values, such as temperature levels, oxygen values, the medium pH levels, etc. Being the
medium pH one of the most critical variables to control, that is also the main focus of this
work. Phototrophic reactions transform carbon dioxide molecules and water molecules
into oxygen molecules and sugar molecules. This reaction causes a decrease in the organic
carbon in the culture medium, leading to an increasing culture pH value. Therefore, the
CO2 regular injections into the culture medium serve two purposes: balance the acidity
levels and provide the necessary carbon dioxide molecules to the photosynthetic process.
This process has to be carefully controlled, since an excess of carbon dioxide in the culture
may reduce the pH value into damaging values whereas a scarcity of CO2 limits the
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microalgae’s growth, reducing its production levels. Furthermore, carbon dioxide injection
can also represent an increasing production cost factor[12].

Through the last couple of years, multiple pH control approaches have been studied
for photobioreactors. In the following sections, some of those approaches are summarized.
Nevertheless, it is important to keep in mind that every approach has to be carefully
studied and multiple factors have to be considered, such as, the cultivated species, the
photobioreactor model and technology, culture end product application, the local weather
and its usual variations, mixing method implemented, etc.

2.4.1 Proportional-Integral-Derivative Control

Proportional-Integral-Derivative (PID) control is potentially the most widely used control
strategy, and is often applied with the derivative gain equal to zero turning it into a
Proportional Integral (PI) control [29, 30]. In a simple way, PID control continuously
calculates an error value, and uses it to apply a correction in further applications, resulting
in a relatively simple and efficient control method. This control method is divided into
three segments [31], the proportional term, that provides a correction value related to
the all-pass gain factor. The integral term, that offers a low-frequency compensation,
by decreasing the steady state errors, and the derivative term, that refines the transient
response, using high frequency term. This control method has some positive characteristics
that contribute to its popularity. For example, their constituent members are intuitive
and easily implemented, since they do not require a deep mathematical knowledge.
Furthermore, PID control has already been used for a couple of years, therefore, has a
great extent of documentation, example implementations, and detain a good versatility
and adaptation.

In a photobioreactor control context, the PID approach is also viable and studied.
From the studied approaches, there were two similar methods, based on PID. One with a
complete PID [32] and one only with a PI control [26]. In [32], it is studied a conventional
linear feedback PID and a PID with a feed-forward compensation, for the photobioreactor
culture pH levels and Dissolved Oxygen (DO) control. The subject of this article is
a pilot scale photobioreactor, designed for laboratory experiments on a torus model
photobioreactor, with a high culture conditions control. Being one of its most interesting
characteristics, its potential for gas-liquid mass transfer efficiency. The objective optimal
value for the cultivated species pH is 7.5, which can be manipulated using a combination of
two approaches: using pure CO2 injections and nitrogen injections. However, for the DO
variable, nitrogen injections are also used, to maintain its concentration below inhibition
levels (25 mg/L). These two inputs, carbon dioxide and nitrogen, form a multi-variable
system with a strong interaction between them. In order to describe the pH progression,
the model used in this approach encompasses all the chemical reagent molecules of
the solute systems NH3 - CO2 - H2O and results in a high-order differential-algebraic
system of equations. The global description of the microalgae growth was obtained by
combining a radiative model, a biological model and a thermodynamic model. The global
photoautotroph organisms growth is finally represented by a state space with seventeen
variables. Being the pH influence described by Equation (2.2) and the DO by Equation
(2.3), where pHmin and pHmax are the top and low reference values for the photosynthesis
operation, and cO2 is the dissolved oxygen.

fpH =
pH − pHmin

pHmax − pH

(
1− pH − pHmin

pHmax − pH

)
(2.2)



13 2.4. Photobioreactors pH Control

fDO =
1

1 + 10−23cO2
14

(2.3)

In this control approach, the pH variable has a PID control, since the system behaves
as a second order system, and the DO has a PI control, due to its first-order system
behavior. Finally, the study concludes that the individual use of PID control may not be
a successful approach, and proposes an alternative to improve the control results with
feed-forward compensation. Moreover, the simulation and real experiments presented
promising results for the proposed approach. Nevertheless, in a reference for future work,
the work indicates an inclination for a model predictive control approach implementation,
in order to further reduce CO2 losses.

In [26], the pH is the only regulated variable, with a CO2 losses minimization goal,
in a tubular photobioreactor. This work compares the results of a controller with on-off
valves to those of a PI control system with a feed-forward term to compensate for the
radiance influence on the system. Considering the culture pH as the system output, the
carbon dioxide valve aperture as the manipulated variable, and the solar radiation as
the system main disturbance, it considers the photobioreactor pH levels represented by
Equation (2.4). The pH reference considered in this work is set to 8.

pH =
k1

1 + τs

k2ω
2
n

s2 + 2δωns+ ω2
n

e−trCO2 +
kr

1 + τrs
I, (2.4)

where pH is the culture medium pH, CO2 is the valve aperture percentage, I is the global
radiation, tr is a time delay, ωn and δ are two variables related with the system mass
transfer capacity, τ are parameters dependent on the culture state and k1, k2 and kr are
estimated variables.

Furthermore, the control strategy implemented in this article describes a PI control
and a feed-forward compensator. This approach’s ultimate goal is to reduce the number of
times necessary to inject carbon dioxide into the photobioreactor and reduce its percentage
of CO2 losses. In contrast, an implemented simple on-off switching control strategy is
presented, that is based on a selected set pH value. In particular, when the controlled
variable (pH) is below or higher than the set value, the controlled output is turned Off
or On, respectively. Moreover, this work presents simulation results and real results
performed in a tubular photobioreactor. Between the On-Off controller, the PI controller
and the PI+feed-forward controller, the experiments showed that the last two alternatives
allowed a decrease in the CO2 time injection, directly correlated with the decrease of
CO2 losses and, therefore, beneficial for cost reduction. Considering only the PI and
PI+feed-forward controllers, the PI+feed-forward controller obtained better results, mostly
resulting in less carbon dioxide injections.

2.4.2 Model Predictive Control

Model Predictive Control (MPC) encompasses some advanced control methods based on a
cost function minimization, the satisfaction of a set of constraints, and the prediction of the
future behavior of the controlled systems [33]. MPC has been widely applied in multiple
fields with satisfying results. This control approach has become increasingly popular
due to advances in the optimization algorithms, which have made it possible to solve
large-scale optimization problems, required for many industrial applications. Furthermore,
some positive points of this type of control are its flexibility to handle changing operations
conditions, its ability to manage complex systems with multiple input and output variables,
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its predictive strategy, and its performance improvement compared to traditional control
methods. In a microalgae production photobioreactor control context, there are also
some documented approaches with different MPC methodologies. Some of the studied
documents will be discussed.

In 2004, it was published an article on a branch-and-bound on–off model-based
predictive control implementation strategy, aiming to control the pH and minimizing CO2

losses in a photobioreactor [34]. Being its overall objective to improve the production of
high-value algal products. In this controller, the command signal variable represents the
pure carbon dioxide injections, by manipulating the CO2 valve aperture. The pH reference
value was set to 7.7, and the used sampling time was of 20s. In this method, the model
used is similar to Equation (2.4), a linear approach model, relating the pH output to the
CO2 injection input and the solar radiance influence. Addressing the control scheme, the
motivation that led to the selection of this controller, involves its good performance in a
variety of processes, from a simple dynamic processes to complex processes. Validating the
selected approach, this article describes positive results from the performed simulations
and real-experiments. In these tests, the implemented control method is compared with a
classical on-off controller, which presents a reduction of carbon dioxide losses up to 75%,
during day time. During night time, these results are even higher, due to the culture’s
biological reactions. Additionally, the results also evidence a low pH variance, which
creates a healthier environment for microalgae’s growth.

Ten years later, in 2014, an interesting event-based model predictive control algorithm
application to regulate the pH of a photobioreactor was published in [27]. The control
process objective is to maintain a more stable pH culture value, in order to improve
microalgae production, and to minimize the CO2 losses. The selected control strategy is
based on a Generalized Predictive Control (GPC) with an event detector, which serves
as an enabler for the control signal, that represents the CO2 valve aperture. As a result,
with the event detector, it is possible to control the action execution frequency of the
controller, allowing a frequency adaptation to the culture environment. For instance, if
the pH readings are proximate to the established optimal value and inside an established
interval, the event frequency is low. However, if the controlled variable diverges from the
optimal value, and is outside the defined interval, the event frequency increases. The goal
is to accelerate the convergence process between the culture pH value and the reference
value. The reference value point was defined to 8 ± β, with β = 0.075. Moreover, the
number of control actions directly determines the number of carbon dioxide injections
performed, which reflects on the CO2 losses. As a consequence, it is possible to identify
two sampling times, the process output constant sampling time set to 1 min and the
control action sampling time variable taken from (1,2,3,4,5). Furthermore, the model
used in the controller is similar to Equation (2.4), where k2 is fixed to one. To test the
theory of the described event-based GPC, a number of tests were conducted in simulation
and, afterwards, in the physical photobioreactor. The experimental results confirm this
approach’s potential when compared to classical on-off controllers. In particular, in this
comparison, the control accuracy highly improves, and the carbon dioxide losses reduce
more than two times. Additionally, it is also performed a comparison to the controller
described in [34], with this new approach presenting better results.
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2.4.3 Fuzzy Logic Control

Fuzzy Logic Control (FLC) is an intuitive controller using fuzzy logic, which consists of
a knowledge-based system composed of a set of fuzzy control rules that can represent
control actions based on knowledge obtained from human experts [35, 36]. In the real
world, not every decision is of yes and no, and may be open to interpretation and
require some flexibility and uncertainty. In [37], it is proposed to apply a fuzzy controller
to simultaneously control the algal biomass concentration, the culture pH, and the
average irradiance inside the photobioreactor (laboratory setup). The described control
strategy considers three requisites, in the microalgae growth process: 1) achieve the
algal biomass set-point concentration (0.85-0.95 g/L), controlled through the dilution
rate, 2) reach a pH value that enables maximum culture growth (6.5-7), controlled
through CO2 flow, and 3) control the average light flux provided to the photobioreactor
(80-85 µmol photon/m2/s). The type of fuzzy controller used in this application was
a Mamdani FLC, since it is relatively affordable to implement, possible to personalize,
imitates human thinking, and it is efficient. The proposed FLC system was validated in
simulation and in experimental processes. In these two types of validations, the results
were promising, proving the potential of a fuzzy logic controller implementation in a
photobioreactor control. Furthermore, in the documented laboratory experiments only the
biomass concentration control was performed with a fuzzy controller, being the pH and
average irradiance controlled by conventional PI controllers. The PI controller replacement
for fuzzy controller is one of the indicated future work points mentioned in [37].

2.5 Conclusion

In conclusion, the control of microalgae production systems is still an active investigation
area, with a great potential to evolve. However, in order for these systems to become
competitive in the biofuel market, as much as to improve in other industries, the photo-
bioreactors operational costs must decrease. With this purpose, there are a few central
actions to consider, which are analyzed with detail in [12]. For example, it is important
to increase culture yield by controlling the system conditions, namely the pH levels.
Nevertheless, this variable can be complex to control, considering the biological reactions
that influence its behavior. For this reason, from the presented scenarios of the studied
documents (Subsections 2.4.1, 2.4.2 and 2.4.3), the application of a control method, such
as PID control, MPC control or fuzzy control, can become very beneficial.

Considering all the examined approaches, the methodology selected to be studied in
this dissertation involves a GPC algorithm combined with a fuzzy model. This fuzzy model
allows an iterative parameters update, resulting in both model and controller adaptation
throughout the photobioreactor operation. Additionally, as contemplated in the state
of the art Section 2.4, none of the presented studied approaches applied an adaptive
methodology. However, an adaptive approach can be considered an advantage taking
into account the process to control distinct behavior through the seasons. Therefore, the
selected approach permits an iterative adaptation to the irregular behavior caused by
the ambient natural conditions, that may also be adapted to multiple facilities, even if
situated in different locations.
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3.1 Model Predictive Control

Model Predictive Control (MPC) was firstly introduced in the late seventies, and its
methodology has evolved since then. This term, MPC, doesn’t designate a specific
type of control, instead, it encompasses a span of control methods. These methods are
characterized for using a model of the process to acquire the control signal, by minimizing
an objective function. Consequently, the controller’s success highly depends on the
accuracy of the process model. Over the years, predictive control methods have proven to
be quite successful, with some of their advantages including the variety of possible process
applications, the compensation of dead times, and the feed-forward control introduced
when compensating measurable disturbances, among others [38]. However, this type
of controller is normally more complex than classical PID controllers. Nevertheless,
they frequently achieve better results. As mentioned earlier, the beginning of the MPC
methods was in the end of the 1970s, particularly with Richalet et al. (1978) [39] and
Cutler and Ramaker (1980) [40]. In Richalet et al. (1978), a Model Predictive Heuristic
Control technique, also known as Model Algorithmic Control, is presented. A couple of
years later, in Cutler and Ramaker (1980), the Dynamic Matrix Control is introduced.

17
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Figure 3.1: MPC control block diagram.

Both of these algorithms use a dynamic process of the model, with impulse and step
response, respectively, to predict future process reactions to the computed control actions.
The control actions are calculated by minimizing the predicted error at every iteration
(sampling time). The following years were centered on these approaches, or similar
implementations to the industry [41], due to its good control performance compared to
classical methods. Later, the research focus shifted, and efforts were directed towards
improving the robustness and stability of Model Predictive Control (MPC) [42, 43, 44, 45,
46]. During these years, Model Predictive Control (MPC) gained popularity in chemical
processes, and a new perspective emerged with work on adaptive control [47, 48]. From
this concept, the famous Generalized Predictive Control (GPC) was developed [38].

In Figure 3.1, a generic MPC control scheme is represented, composed of two main
blocks: 1) the MPC block, which encompasses the predictive controller and the model
of the plant to be controlled, and 2) the plant block, that is the system to be controlled.
The MPC block considers the reference value and the measured output to obtain the
control actions. The plant, utilizing the control action as input values, generates the
measured outputs. Regarding the MPC control strategy, Figure 3.2 presents a diagram of
the control strategy at instant t. In this figure, with Np as the prediction horizon, the
following principles are observed:

• By minimizing an objective function, the future control signals (light blue) are
obtained from instant t to t + Np, and the first computed control action is then
applied.

• The reference trajectory (red line), describing the desired process behavior, is
considered from instant t until instant t+Np.

• At every instant t, the future Np outputs (light green) are obtained, based on the
process model predictions, using the system inputs and outputs until instant t (dark
green and dark blue) and calculated future control signals (light blue).

These principles are repeated at every instant to adapt the control action to the
current situation and achieve the intended output. Prediction and optimization are the
two main differences from classical approaches. Additionally, the prediction horizon, Np,
should be large enough to encompass the resulting variations in the controlled variable, a
consequence of the calculated values of the manipulated variable.
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Figure 3.2: MPC strategy diagram.

3.1.1 Generalized Predictive Control

Generalized Predictive Control (GPC) was proposed by Clarke et al. (1987) [49] and has
become the most popular predictive control algorithm, both in industry and academic
fields [38]. This algorithm has been successfully implemented in multiple industries with
various applications [50, 51, 52, 33], and has exhibited good performance and robustness.
This method, being an MPC method, is also based on the calculation of future control
signals, minimizing a cost function, defined over a prediction horizon. In addition, future
optimizations depend on a quadratic function measuring the distance between the predicted
output and the future reference sequence, plus a quadratic function measuring the control
effort, over the prediction horizon. Distinctively, this method allows more variety in
control objectives and comprises the notion of weighting control considerations in the cost
function. Furthermore, this work considers a process affected by external disturbances,
produced by measurable variables. The following Equation (3.1) describes the considered
system to be controlled:

A(z−1)y(t) = B(z−1)u(t− 1) +D(z−1)v(t), (3.1)

where u(t) is the plant control signal, y(t) is the plant output signal, and v(t) is the
measured disturbance. A(z−1), B(z−1) and D(z−1) are polynomials described by:

A(z−1) = 1 + a1z
−1 + a2z

−2 + · · ·+ anaz
−na ,

B(z−1) = b0 + b1z
−1 + b2z

−2 + · · ·+ bnb
z−nb ,

D(z−1) = d0 + d1z
−1 + d2z

−2 + · · ·+ dnd
z−nd ,

where na, nb and nd are the orders of polynomials A(z−1), B(z−1) and D(z−1), respectively.
The GPC algorithm main component is based on a control sequence that is defined by
the minimization of a cost function with the following structure:

J(N1, N2, Nu) =

N2∑

j=N1

δ(j)[ŷ(t+ j|t)− r(t+ j)]2 +
Nu∑

j=1

λ(j)[∆u(t+ j − 1)]2, (3.2)
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where ŷ(t+ j|t), for j ≥ N1 and j ≤ N2, is an optimal j step ahead prediction output up
to time t, N1 and N2 are minimum and maximum prediction horizons, Nu is the control
horizon, ∆u(t + j − 1) is variation of the future control command, δ(j) and λ(j) are
weighting sequences, and r(t+ j) represents the future reference values. In this work it is
considered δ(j) = 1 and λ(j) = λ. The purpose of this method is to compute a future
control sequence, u(t), u(t+ 1), . . . , u(t+ j − 1), that influences the future plant output,
y(t+ j), to be similar to the future reference trajectory, r(t+ j).

By applying the Diophantine Equations described in [38] it is possible to obtain the
following Equations. Being the respective polynomials described in [38], and briefly
described in the following equations. When considering the Diophantine Equation (3.3),

1 = Ej(z
−1)Ã(z−1) + z−jFj(z

−1), (3.3)

where Ã(z−1) = ∆A(z−1), the polynomials Ej(z
−1) and Fj(z

−1) can be obtained by
dividing 1 by ∆Ã(z−1) until the remainder can be factorized as z−jFj(z

−1). Furthermore,
in [38] it is described a method to obtain Ej(z

−1) and Fj(z
−1) using recursive Diophantine

Equations. With Ej(z
−1) and Fj(z

−1) defined by:

Ej(z
−1) = ej,0 + ej,1z

−1 + · · ·+ ej,j−1z
−(j−1), (3.4)

Fj(z
−1) = fj,0 + fj,1z

−1 + · · ·+ fj,naz
−na , (3.5)

and Ej+1(z
−1) and Fj+1(z

−1) are calculated recursively using the same procedure, respec-
tively defined by:

Ej+1(z
−1) = Ej(z

−1) + ej+1,jz
−j, (3.6)

Fj+1(z
−1) = fj+1,0 + fj+1,1z

−j + · · ·+ fj+1,naz
−na , (3.7)

where ej+1,j = fj,0 and fj+1,i = fj,i+1 − fj,0 ãi+1 with i = 0, . . . , na − 1. Additionally,
polynomial Gj+1 can be recursively obtained by:

Gj+1 = Ej+1B = (Ej + fj,0z
−j)B = Gj + fj,0z

−jB, (3.8)

where its coefficients are given by gj+1,j+i = gj,j+i + fj,0bi with i = 0, . . . , nb. And
polynomial Hj can similarly be obtained by:

Hj = EjD. (3.9)

Considering j ≥ N1 and j ≤ N2, the optimal output sequence y(t+ j) is computed to
optimize the cost function, applying Equation (3.10).

y = Gu+Hv + F(z−1)y(t) +G′(z−1) +H′(z−1), (3.10)

where

y =




ŷ(t+N1|t)
ŷ(t+N1 + 1|t)

...
ŷ(t+N2|t)


 , u =




∆u(t)
∆u(t+ 1)

...
∆u(t+Nu − 1)


 ,

G =




g0 0 . . . 0
g1 g0 . . . 0
...

...
...

...
gNu−1 gNu−2 . . . g0


 , F(z−1) =




FN1(z
−1)

FN1+1(z
−1)

...
FN2(z

−1)


 ,
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H =




h0 0 . . . 0
h1 h0 . . . 0
...

...
...

...
hNu−1 hNu−2 . . . h0


 , v =




∆v(t+ 1)
∆v(t+ 2)

...
∆v(t+Nu)


 ,

G′(z−1) =




(GN1(z
−1)− g0)z∆u(t− 1)

(GN1+1(z
−1)− g0 − g1z

−1)z2∆u(t− 1)
...

(GN2(z
−1)− g0 − g1z

−1 − · · · − gNu−1z
−(Nu−1))zNu∆u(t− 1)


 ,

H′(z−1) =




(HN1(z
−1)− h0)z∆v(t− 1)

(HN1+1(z
−1)− h0 − h1z

−1)z2∆v(t− 1)
...

(HN2(z
−1)− h0 − h1z

−1 − · · · − hNu−1z
−(Nu−1))zNu∆v(t− 1)


 ,

being that N1 and N2 already consider the system dead time d.
However, considering the future disturbances to be equal to the last measured value

(v(t + j) = v(t) with j being future instants, then ∆v(t + j) = 0), the second term of
Equation (3.10) vanishes:

y = Gu+ F(z−1)y(t) +G′(z−1) +H′(z−1). (3.11)

To solve the GPC optimization Equation (3.11), the control signal sequence is obtained
with the following Equation:

∆u(t) = K[R− Fy(t)−G′ −H′], (3.12)

where K is a gain factor obtained with:

K = [1 0 . . . 0]1×Nu(G
⊺G+ λI)−1G⊺, (3.13)

R is a vector with the future reference values,

R = [r(t+N1) r(t+N1 + 1) . . . r(t+N2)]
⊺, (3.14)

and λ is considered to be a positive constant (λ > 0) [53].
Analyzing Equation (3.12) it is possible to verify that if there is no future prediction

error (R− (Fy(t)−G′−H′) = 0), the control signal is zero, since the objective is achieved
with the natural process evolution. However, when R− (Fy(t)−G′−H′) ̸= 0, the control
action increment is the result of the future error multiplied by a K factor.

3.2 Fuzzy Logic Systems

Fuzzy Logic (FL) was initially introduced as Fuzzy Sets, in 1965 by Lotfi A. Zadeh [54],
describing a group of information that can be characterized by a membership function,
which represents each group level of belonging to a correspondent characteristic. In the
following years, Zadeh proposed several complementary concepts to the Fuzzy logic notion,
such as Fuzzy Algorithms in 1968 [55], Decision-Making in a FL environment in 1970 [56],
Fuzzy Ordering in 1971 [57] and the notion of linguistic variables and IF-THEN rules to
describe human decision in 1973 [58]. In these years, fuzzy logic theory was constructed
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and consolidated, which allowed the first implementations. One of the earlier known
applications was an experiment on the “linguistic” synthesis of a controller, for a model
industrial plant - a small steam engine. This laboratory project was developed in the
early 70s, by Mamdani and Assilian, with the experiment results presented in [59]. With
this step, it was possible to prove the good performance of FL in systems control, and
understand its promising applications. In the proceeding years the FL field of application
increased mainly due to Japanese engineers, with implementations ranging from a self-
parking car, by Sugeno and Nashida, in 1985 [60], to a control system for the Sandai
subway, by Yasunobu and Miyamoto [61], finished in 1987. In Europe and in the United
States, it was only in the 90s that Fuzzy systems implementation and investigation became
more popular. Consequently, since Fuzzy Logic Systems (FLS) are relatively new, with
less than sixty years since their appearance, it is still a fairly active investigation field.
The Fuzzy Logic process is constructed similarly to the human reasoning process, since
it is based on defined rules to make a decision. Furthermore, this type of logic has been
applied in nonlinear systems control, which are frequently hard to model and control.
As a result, when the model process is mathematically inaccurate, human knowledge
based logic helps to describe the plant control with empirical knowledge. However, this
process still presents a few challenges, namely determining the most fitting fuzzy rules and
membership functions. More recently, a great part of fuzzy systems applications has been
in nonlinear processes, due to its positive results. Moreover, FLS has been vastly used in
the industry, such as in power plants and systems, telecommunications, transportation
systems, decision-making support systems, in chemical processes, in Natural language
processing, etc [62]. And, an example of a day-to-day system, that may use FLS, are
washing machines.

3.2.1 Fuzzy Systems

Fuzzy Systems are based on fuzzy logic rules, to define the approach that is desired
to implement. These rules are quite similar to the ones humans use in their everyday
decisions. For example, when driving, the chosen course to arrive at the final destination
is usually selected by a set of rules, defined in the driver’s mind, and which may depend on
distance, traffic, road preferences, etc. Fuzzy identification and control approaches have
been used in numerous systems, such as aircraft flight control and navigation, automatic
braking systems, etc. Additionally, these systems have proven to be able to resolve
complex problems.

Fuzzy Systems have a defined structure in the form of IF-THEN rules that articulate
the input-output relation of the system. The output of these systems is of a fuzzy set
form, which expresses the membership degree of each output. The fundamental part of
fuzzy logic is the membership function, which defines the belonging ratio of each input
to the stipulated categories, or fuzzy sets. This value may range from 0 to 1, where 0
represents a total mismatch from a specific group, and 1 represents a full match to one
category. These sort of systems are normally characterized by an architecture containing
four blocks [63], represented in Figure 3.3. In Figure 3.3, the input and output are real
numbers. The fuzzifier block converts the input value into fuzzy sets. The inference engine
utilizes the knowledge-base rules to transform the fuzzy sets into other fuzzy sets, that
represent those rules information. And the defuzzifier block transforms them into output
values. These four blocks are detailed in the next subsections: the fuzzifier (Subsection
3.2.2), the knowledge-base (Subsection 3.2.3), the inference engine (Subsection 3.2.4), and
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Figure 3.3: Fuzzy system block diagram.

the defuzzifier (Subsection 3.2.5).

3.2.2 Fuzzifier

The fuzzifier implements a mapping process between real values, x∗ ∈ U , and the
corresponding fuzzy sets, A′ in U . There are multiple fuzzifier methods, such as the
singleton fuzzifier, the Gaussian fuzzifier, and the triangular fuzzifier.

The simpler method and the most used is the singleton fuzzifier, that is represented
by the following membership function:

µA′(x) =

{
1 if x = x∗

0 otherwise
, (3.15)

which is one at x∗ and zero at all other points.

3.2.3 Knowledge-Base

The knowledge-base, is the core of a fuzzy system. This component comprises N fuzzy
IF-THEN rules (Ri), that the other three fuzzy logic blocks apply. The mentioned IF-
THEN fuzzy rules, are characterized by two important fragments, the antecedent parcel
(IF) and the consequent parcel (THEN). In Equation (3.16), a representation of these
rules is presented.

Ri : IF x1(t) is A
j
1, and . . . and xn(t) is A

i
n, THEN u(t) is Bi, (3.16)

where i (i = 1, . . . , N) represents the rule number, xj (j = 1, . . . , n) represent the fuzzy
system input variables, and u is the fuzzy system output. Ai

j and Bi are fuzzy sets
characterized by the following fuzzy membership functions: µAi

j
(xj) and µBi

(u). Let us

consider the following example.
Example: Consider a simple fuzzy controller used to control a closed Photobioreactor

(PBR) culture levels of pH, using a CO2 valve aperture percentage. The human knowledge
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Figure 3.4: Fuzzy controller example membership functions: (a) pH levels membership
function, and (b) valve aperture membership function.

for controlling the pH can be simply represented in the following fuzzy rules.

IF the pH level of the PBR is adequate,

THEN maintain valve aperture applied.

IF the pH level of the PBR is high,

THEN apply an increase in valve aperture.

IF the pH level of the PBR is low,

THEN apply a reduction in valve aperture.

(3.17)

Where the key expressions “adequate”, “high”, “low”, “maintain”, “increase” and, “reduc-
tion” are specified by membership functions. The majority of membership functions used
are trapezoidal, triangular, and Gaussian membership functions. For this example, the
pH levels (the input variable) can be characterized by the membership function presented
in Figure 3.4a, and the valve aperture (output variable) to apply can be characterized by
the membership function presented in Figure 3.4b.

3.2.4 Fuzzy Inference Engine

In the fuzzy inference engine, the Knowledge-Base IF-THEN rules are used to map the
A′ in U fuzzy set to a B′ in V fuzzy set. So, in this step, the matching degree of each
fuzzy input to each rule is solved, in order to determine the rules that should be used.
This element is responsible for simulating human decision operations, to produce fuzzy
conclusions (output).

3.2.5 Defuzzifier

The defuzzifier is responsible for the transformation of the fuzzy inference engine output,
B′, to a real value output, y∗ ∈ V . In this process the best point representation of the fuzzy
set B′ is defined. There are various defuzzifier methods, and there are three important
criteria to consider when selecting one, being: 1) Plausibility, meaning that it should
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be intuitive to attribute y∗ to set B′, 2) Computational simplicity, and 3) Continuity,
meaning that a small alteration to the set should not result in big changes over the output.
Two examples of defuzzifier are the center of gravity defuzzifier, and the center average
defuzzifier.

The first defuzzifier example, the center of gravity, follows Equation (3.18).

y∗ =

∫
V
yµB′(y)dy∫
V
µB′dy

(3.18)

This defuzzifier can be characterized for being intuitive, however, the computational power
involved may represent a disadvantage. Considering the center average, that is one of
the most used defuzzifier, since application resolves the complex computational problem,
associated with the center of gravity diffuzifier. With this approach y∗ is determined with:

y∗ =

∑M
l=1 y

lwl∑M
l=1wl

, (3.19)

where N represented the total number of fuzzy sets, y−l is the l− th fuzzy set center, and
wl is the l − th fuzzy set height. Each fuzzy set corresponds to the output of one of N
rules.

3.2.6 Takagi-Sugeno Fuzzy Model

In a generic view, there are two types of fuzzy systems [64, 65], distinguished according to
the output generation process and their distinct consequent IF-THEN rules component.
Between these, the first system to appear was the Mamdani FIS [59], in 1975, while the
Takagi-Sugeno FIS [66], was presented in 1985. In this work, only Takagi-Sugeno fuzzy
systems are considered. Takagi-Sugeno fuzzy systems are less intuitive than Mamdani
fuzzy systems, however, they are more versatile. Additionally, they are known to facilitate
the fuzzy identification of dynamic systems and adaptive control. Besides, the T-S fuzzy
systems have a distinct rule consequent formulation that does not entail fuzzy sets, as
Mamdani fuzzy systems, but instead utilize mathematical expressions. These rules can be
represented in the following form (3.20):

Ri : IF x1 is Ai
1, and . . . and xn is Ai

n THEN y is f i(x1, x2, . . . , xn), (3.20)

where Ri denotes the i-th rule out of a total of N rules. Variables x1(t), . . . , xn(t) stand
for the selected T-S fuzzy system inputs, while y represents the system output. Ai

j

represents fuzzy sets corresponding to the antecedent linguistic terms, and f i is a function
of x1, x2, . . . , xn.

The identification process of a T-S fuzzy model aims to accurately construct a model
to represent complex input-output relations of the system. This process involves the
determination of its parameters based on available data. This model is a representation
of a system that employs fuzzy logic and its applications encompass control, prediction,
and analysis purposes. The following steps are an overview of the T-S fuzzy model
identification process.

1. Define input and output variables: identify influencing factors in the system
and the variable to be controlled;
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2. Collect a dataset: assemble a dataset with input-output information that repre-
sents the system behavior;

3. Fuzzification: convert the inputs into fuzzy sets;

4. Divide the input information: divide the input information into fuzzy regions
or clusters;

5. Determine the fuzzy rules: formulate fuzzy rules that relate the input variables
to the output variable;

6. Compute the rules consequent: determine the consequent parts of each rule;

7. Aggregate the fuzzy rules outputs: combine the consequent fuzzy rules to
obtain an output;

8. Validate the model and parameter tuning: evaluate the model performance
and adjust parameters if necessary;

9. Implement the model.

Furthermore, it is frequent to further implement an algorithm to update the model
parameters, in particular in systems presenting variations or evolving characteristics.

3.3 Overview

In this chapter, important notions for the following chapter were presented, as the selected
approach involves an MPC controller with iterative parameter adaptation, using a T-S
fuzzy model. From the set of MPC approaches, Generalized Predictive Control was
selected due to its predictive characteristics, which are crucial in the controlled process,
and its intuitive relation with a fuzzy T-S model. This combination of methods allows
for an iterative update of the controller parameters. Furthermore, the following chapter
describes the model identification process, including the implemented algorithms in each
identification phase, as well as the process for updating the controller’s parameters.
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4.1 Introduction

This chapter describes the implemented fuzzy identification process to model the pH
in tubular photobioreactors, and the controller’s adjustments to process the model’s
parameters update. As mentioned in the previous chapter, the selected fuzzy model was a
Takagi-Sugeno (T-S) fuzzy model, that is conceptually defined in this chapter. Therefore,
the identification process is performed by a T-S fuzzy model, which is divided into two
parts. As described in Section 3.2, the knowledge-base rules are composed of two parts,
the antecedent and the consequent part. Accordingly, the identification process is divided
into the corresponding methods of identification. Hence, the first part corresponds to
the learning of the antecedent parameters, namely the membership function parameters,
obtained by an offline strategy using the Fuzzy c-Means (FCM) algorithm. The second
part executes the consequent parameters learning process, which is performed in two
stages, offline and online. The offline stage is performed by applying the Least Squares
Method (LSM), and the online stage is performed by an approach to recursively update
the consequent parameter values, the Recursive Least Squares with Adaptive Directional
Forgetting (RLS-ADF). RLS-ADF is a combination between the Recursive Least Squares
(RLS) algorithm, centered in a constant forgetting factor, and an Adaptive Directional
Forgetting (ADF) factor algorithm. An adaptive approach is relevant because, although
computed with a large sample of data, the limited dataset may not provide an adequate

27
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accuracy, considering the non-linearity and time-varying characteristics of the system.
As such, an adaptive algorithm generally represents a favorable alternative to solve this
limitation.

4.2 Takagi-Sugeno Fuzzy System Identification

The Takagi-Sugeno (T-S) fuzzy model is characterized by its consequent parameters, which
are defined by mathematical expressions instead of fuzzy sets, as illustrated in Equation
(3.20). This represents an advantage when performing a dynamic system identification [65].
Additionally, this model is also considered a universal approximator [67]. In this work,
the T-S fuzzy model, to be used on the predictive controller, is defined by a set of N rules
with the following structure [68]:

Ri : IF x1(t) is A
i
1, and . . . and xn(t) is A

i
n

THEN yi(t) = ai(z
−1)y(t− 1) + bi(z

−1)u(t− d− 1)

+ di(z
−1)v(t− 1) + ζ(t),

(4.1)

where Ri represents the i-th rule, x(t) = [x1(t), . . . , xn(t)]
⊺ and xj(t) (j = 1, . . . , n)

represent the system inputs of instant t, n is the total number of inputs of the fuzzy
system, and N is the total number of rules. y(t), v(t) and ζ(t) respectively represent the
system output, the measured disturbance and noise of instant t. The Ai

j is the respective
symbol for the linguistic term, with i = 1, . . . , N and j = 1, . . . , n, characterized by the
fuzzy membership function, µAi

j
(xj) [53]. The u(t) represent the control output, d is the

delay of the system, and ai and bi are polynomials defined by:

ai(z
−1) = a1i + a2iz

−1 + . . .+ anaiz
−(na−1),

bi(z
−1) = b1i + b2iz

−1 + . . .+ bnbiz
−(nb−1),

di(z
−1) = d1i + d2iz

−1 + . . .+ dndiz
−(nd−1),

(4.2)

where na, nb and nd are the orders of polynomials ai, bi and di, respectively. And θi
contains the model consequent parameters to be learned.

θi = [a1i, . . . , anai, b1i, . . . , bnbi, d1i, . . . , dndi]
⊺ (4.3)

Considering Gaussian membership functions, the antecedent fuzzy membership func-
tions are given by:

µAi
j
(xj(t)) = exp

(
(xj(t)− vij)

2

σij

)
, (4.4)

where vij and σij correspond, respectively, to the center and width of the defined member-
ship functions. These two parameters are also defined as the antecedent parameters to be
learned. The system output y[x(t)] of the T-S fuzzy model is calculated by the following
equation [68]:

y[x(t)] =
N∑

i=1

ω̄i[x(t)]x
⊺(t)θi, (4.5)

where:

ω̄i[x(t)] =

∏n
j=1 µAi

j
(xj(t))

N∑
p=1

∏n
j=1 µAp

j
(xj(t))

, (4.6)
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and x(t) is defined in this work as:

x(t) = [y(t− 1), . . . , y(t− na), u(t− d− 1), . . . , u(t− d− nb),

v(t− 1), . . . , v(t− nd)]
⊺.

(4.7)

4.2.1 Fuzzy c-Means Clustering Algorithm

The Fuzzy c-Means (FCM) clustering method allows a multidimensional data organization
into clusters and, in this case, it is used to obtain the antecedent parameters (vij and
σij(4.4)) of the T-S fuzzy model (4.1). The learning process initializes with the dataset
division into N clusters, followed by the computation of their centers (vij) and widths
(σij). The following step encompasses the computation of each dataset point level of
membership to the different clusters. To evaluate the corresponding membership degree
of each point to the clusters, a calculation dependent on its distance to every cluster
center is performed. For instance, a dataset point close to a cluster center will have a high
membership value to that cluster, however, if the point is located far from the cluster
center, the point will have a low level of membership related to that cluster.

Considering the dataset values,

X =




x1(1) x2(1) . . . xn(1)
x1(2) x2(2) . . . xn(2)
...

...
...

...
x1(t) x2(t) . . . xn(t)
...

...
...

...
x1(T ) x2(T ) . . . xn(T )



, (4.8)

where t is the row index, i is the column index and T is the total number of samples.
The fuzzy partition of the set X into N clusters, is a group of fuzzy subsets defined

as [69]:

µi(t) = µAi
j
(xj(t)) ∈ [0, 1], (4.9)

and the sum of all membership values of a sample is one,
T∑
i=1

µi(t) = 1. Moreover, it is

not possible for a cluster to encompass all the dataset samples, as it is also not possible
for a cluster to be empty. The membership values originate a partition matrix U, where
the i-th row of this matrix corresponds to the membership values of the i-th fuzzy subset
Ai. This matrix can be represented by:

U = [µi(t)] ∈ RN×T . (4.10)

The FCM objective function involves the clusters centers, the distance between a given
sample and a cluster center, and a fuzziness parameter η, that controls the membership
degree computation [69]. With a higher η, the clusters are more fuzzy and each point
belongs to more clusters, with similar membership values. This function, that is to be
minimized, is given by:

J(X,U,V) =
N∑

i=1

T∑

t=1

µi(t)
ηli(t)

2, (4.11)
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where li(t) represents the norm of the difference between x(t) and a cluster centers vector
vi, given by the Euclidean distance:

li(t)
2 = (x(t)− vi)

⊺ (x(t)− vi), (4.12)

where vi = [vi1, . . . , vin]
⊺ is the vector containing the center of the i-th cluster, and

V = [v1, . . . ,vN ]
⊺ ∈ RN×n, (4.13)

is a matrix composed of all the clusters centers, with

vi =

T∑
t=1

µi(t)
ηx(t)

T∑
t=1

µη
i (t)

, (4.14)

or

vij =

T∑
t=1

µη
i (t)xj(t)

T∑
t=1

µη
i (t)

. (4.15)

Then, the second antecedent parameter, σij, the width of Gaussian membership
functions, is obtained using the U matrix values [69]:

σij =

√√√√√√√
2

T∑
t=1

µi(t)(xj(t)− vij)2

T∑
t=1

µi(t)

. (4.16)

4.2.2 Least-Squares Method

The least squares method has been widely used to determine the rule consequent parameters
(θij) [69, 70]. Transforming Equation (4.5),

y[x(t)] =
N∑

i=1

ω̄i[x(t)]x
⊺(t)θi

= ψ[x(t)]⊺Θ,

(4.17)

where Θ contains the consequent parameters of all rules,

Θ = [θ⊺1 , . . . ,θ
⊺
N ]

⊺, (4.18)

and
ψ[x(t)] = [ω̄1x

⊺(t), . . . , ω̄Nx
⊺(t)]⊺. (4.19)

Considering yd a vector containing the target output values:

yd = [yd(x(1)), . . . , yd(x(T ))]
⊺, (4.20)

it is possible to present the following Equation, according to (4.1):

yd = ΨΘ, (4.21)
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where
Ψ = [ψ(x(1)), . . . ,ψ(x(T ))]⊺. (4.22)

Using the pseudo-inverse in (4.21), the optimal values of the consequent parameters,
Θ∗, are obtained throughout the Equation:

Θ∗ = (Ψ⊺Ψ)−1Ψ⊺yd. (4.23)

4.2.3 Recursive Least Squares Method With Adaptive Direc-
tional Forgetting

At this point of the process, an optimal set of Theta values Θ∗ were already calculated.
The RLS-ADF is an interception between the RLS algorithm, centered in a constant
forgetting factor, and an ADF factor algorithm. This approach is presented in [71] and
[72], as a strategy to recursively update the consequent parameter values of a T-S fuzzy
model. This algorithm (RLS-ADF), at each system iteration, performs the update of the
Theta parameters based on the update of a covariance matrix (Ci(t)) and in the forgetting
factor (φi(t)).

The covariance matrix must be initialized to an identity matrix multiplied by a large
number, for example 105. For the iterative update of the covariance matrix corresponding
to each rule, Equation (4.24) should be implemented.

Ci(t) = Ci(t− 1)− Ci(t− 1)ψ⊺
i (t)Ci(t− 1)

ε−1
i + ξi

, (4.24)

with

εi = φi(t− 1)− 1− φi(t− 1)

ξi
, (4.25)

where φi(t − 1) is the last iteration forgetting factor, for the i-th rule. Moreover, the
forgetting factor iterative Equation is:

φi(t) =
1

1 + (1 + ρ)

(
ln (1 + ξi)+

[
(νi(t)+1)γi
1+ξi+γ

− 1
]

ξi
1+ξi

) , (4.26)

with
νi(t) = φi(t− 1)(νi(t− 1) + 1), (4.27)

γi =
(yi(t)−ψiθi(t− 1))2

τi(t)
, (4.28)

τi(t) = φi(t− 1)

[
τi(t− 1) +

(yi(t)−ψiθi(t− 1))2

1 + ξi

]
, (4.29)

and ρ is a positive constant. The initialization of these parameters, φ, τ and vi, should
be between zero and one.

Using the RLS-ADF, the consequent parameters are updated at each sample time t
by:

θi(t) = θi(t− 1) +
Ci(t− 1)ψ⊺

i (t)

1 + ξi
[yi(t) −ψi(t)θi(t− 1)], (4.30)

where
ψi(t) = ω̄i[x(t)]x

⊺(t), (4.31)

ξi = ψi(t)Ci(t− 1)ψ⊺
i (t). (4.32)
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4.3 Predictive Control

This section presents the overall control algorithm selected to control the pH levels in a
photobioreactor. As previously mentioned, the selected approach is the Adaptive Fuzzy
Generalized Predictive Control (AFGPC). This method is a combination of the estimated
fuzzy model with adaptive parameters (described in Section 4.2) and the implemented
GPC controller (discussed in Section 3.1.1). These two components were selected for
their intuitive combination and the ease with which control parameters can be adapted
by updating the model. For the controller implementation, the equations presented in
subsection 3.1.1 were implemented in Matlab, according to the recursive Diophantine
equations described in [38]. Nevertheless, to do so the following equations were essential.

Considering the fuzzy rules presented in (4.1), and the fuzzy model of the form of
Equation (4.17), the predictive model is given by:

ā(z−1)y(t− 1) = b̄(z−1)u(t− d− 1) + d̄(z−1)v(t− 1) + ζ(t), (4.33)

where
ā(z−1) = 1− ā1z

−1 − . . .− ānaz
−na ,

b̄(z−1) = b̄1 + b̄2z
−1 + . . .+ b̄nb

z−(nb−1),

d̄(z−1) = d̄1 + d̄2z
−1 + . . .+ d̄nd

z−(nd−1),

(4.34)

where na, nb and nd are the orders of polynomials ā, b̄ and d̄, respectively. With its
elements being computed through:

āl =
c∑

i=1

ω̄i[x(t)]ami, l = 1, . . . , na,

b̄l =
c∑

i=1

ω̄i[x(t)]bmi, l = 1, . . . , nb,

d̄l =
c∑

i=1

ω̄i[x(t)]dmi, l = 1, . . . , nd,

(4.35)

where ami, bmi and dmi are corresponding to Equation (4.3) values, and ω̄i[x(t)] are
describes in Equation (4.6).

The structure of the AFGPC is illustrated in Figure 4.1, and is divided into three
main blocks: the GPC controller (Subsection 3.1.1) using the predictive model defined in
(4.33), the plant to be controlled, and the T-S fuzzy model (Section 4.2), which adapts
the model’s parameters of (4.33). The development steps are presented in Algorithm 1.
In this algorithm, the first step includes the definition of several variables, encompassing
dataset organization, the identification parameters definition (d, N , ρ, φi, τi, νi, Ci, na,
nb and nd), and the selection of controller parameters (N1, N2, Nu, and λ). The second
step comprises the offline fuzzy model identification, including the implementation of the
Fuzzy C-Means (FCM) algorithm (Section 4.2.1) to obtain the antecedent parameters
(vij and σij) and the implementation of the Least Squares Method (LSM) algorithm
(Section 4.2.2) to obtain the consequent parameters (θij). The third step represents the
controller computation cycle, which comprises the online parameters adaptation. This
last step begins with the receiving of the fuzzy model inputs. It is followed by the
computation of fuzzy model parameter adaptation using the Recursive Least Squares with
Adaptive Forgetting (RLS-ADF) algorithm (Section 4.2.3) and subsequent calculation of
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Figure 4.1: Adaptive Fuzzy Generalized Predictive Control.

Algorithm 1 Control approach for pH control.

1: Input:
2: Dataset.
3: Identification parameters: the time delay d, the number of clusters/rules N , the

polynomials order na, nb, nd, and the parameters for RLS-ADF: ρ, φi, τi, νi, Ci.
4: Controller parameters: prediction horizons N1, N2 and Nu, and the control action

weighting factor λ.
Offline:
5: Design the T-S fuzzy model (4.1).
6: Obtain the antecedent parameters using FCM (Subsection 4.2.1): vij (4.14) and σij

(4.16).
7: Obtain the consequent parameters using LSM (Subsection 4.2.2): θij (4.23).

Online:
8: while Controller turned on do
9: Read the input and output variables.
10: Update the T-S fuzzy model, using RLS-ADF (4.30).
11: Obtain the new values of model parameters āl, b̄l and d̄l.
12: Compute the control signal from GPC using (3.12).
13: end while

the predictive model parameters (āl, b̄l and d̄l)), applying Equation (4.35). With the new
parameters, the controller computes the new control signal, using Equation (3.12). This
control command is then transmitted to the system plant, which consequently generates
an output representing the new culture medium pH value.

4.4 Overview

In this chapter, the model identification process and the controller’s iterative parame-
ters adaptation were described. Firstly, a brief introduction to the chapter theme and
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succeeding sections was presented. Then, in Section 4.2 the Takagi-Sugeno model used
in the identification process constituted by three subsections was described. The first
section presented the algorithm utilized for the antecedent parameters estimation, the
fuzzy c-means clustering algorithm (Section 4.2.1). The second section presented the
method used for the consequent parameters estimation, the least squares method (Section
4.2.2). The third section presented the method used for the recursive consequent parame-
ters adaptation, the recursive least squares method with adaptive directional forgetting
(Section 4.2.3). Afterwards, in Section 4.3, the controller’s model adaptation and the
overall control method structure were described.
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5.1 Introduction

This chapter presents the experimental results obtained from testing the developed
approach to control the pH levels in a tubular photobioreactor for high-value microalgae
production. To manage the control of this variable, the aperture percentage of the CO2

valve is manipulated, directly managing the introduced carbon dioxide into the culture.
This method, by aiming to maintain a more stable acidity level in the culture medium,
intends to achieve a healthier culture environment, which translates to higher production
rates. In the following sections some details of the system implementation are described.
Firstly, the organization and processing stages of the dataset are described, followed
by some implementation details on the fuzzy model and the predictive control. In the
last section, simulation control results are presented, encompassing a variety of tests to
demonstrate the effect of some variables on the controller’s performance and the parameter
adaptation rate. The tests were performed using the developed AFGPC approach and a
version where the iterative RLS-ADF algorithm is omitted, resulting in fixed consequent
parameters for the fuzzy model. In the next sections, the AFGPC approach is referred to
as the adaptive parameters approach, and the version without the RLS-ADF algorithm
is referred to as the fixed parameters approach. For each presented test, an analysis is
performed, and with each group of tests, a comparison is presented, followed by further
conclusions.

35
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5.2 Dataset Organization

The dataset used in this work was constructed using data collected from a real operational
photobioreactor. The provided data was in a raw form, obtained directly from the
automation system, since it corresponded to all sensor readings without any type of
filtering. Consequently, it was necessary to eliminate operational downtime, cleaning
periods, reading errors, and construct continuous sequence data groups.

From the collected data, three variables were selected according to the state-of-the-art
control approaches. The chosen variables for controlling the culture pH and constituting
the dataset were the carbon dioxide valve aperture percentage, global irradiance, and
the medium culture pH. These variables significantly influence the pH medium balance
and are crucial to consider. Considering the natural evolution of the photobioreactor
culture pH, exposure to a light source (irradiance) gradually increases it, driven by the
biological reaction of photosynthetic organisms performing photosynthesis. When no
acidic component is inserted into the closed photobioreactor, the culture pH increases until
it becomes unsustainable for microorganisms to survive. Consequently, to counterbalance
the natural behavior of the culture, CO2 gas is injected into the photobioreactor. This
gas reduces the culture pH levels due to its biological reaction with the culture ambient.

After the filtering procedures, the constructed dataset comprises approximately five
months, including some spring and fall months and the entire summer period, with a
five-minute sampling time, resulting in up to 288 sensor readings each day. Considering
this span of information, the sampled data may already permit satisfactory parameter
estimation. Furthermore, the dataset was segmented into several blocks based on the
processed data intervals caused by the removed operational downtime and cleaning periods.
Each block was assigned distinct purposes related to different estimation processes. For
instance, one block was designated for estimating the model to test the controller, and
another was dedicated to learning the T-S fuzzy model (the prediction model).

In Figures 5.1 and 5.2 three graphics are presented, corresponding to the same
operational instants, one for each selected variable (irradiance Wm−2, pH levels and CO2

valve aperture percentage). Additionally, each figure represents two different parts of
the dataset to demonstrate distinct operational points. The first scenario, illustrated
in Figure 5.1, corresponds to a more stable behavior of the system, primarily identified
by the pH levels curve in Figure 5.1b. The second scenario, illustrated in Figure 5.2,
exemplifies a part of the data with high pH levels inconsistencies, indicating a less stable
operation. Moreover, a difference between the irradiance curves is noticeable, represented
in Figures 5.1a and 5.2a, explained through the correspondence to distinct data seasons.
It is important to note that the presented examples do not represent the entire dataset.
They serve only to illustrate two different behaviors, demonstrating the dataset’s variety
of operational points and providing the reader with a notion of its spectrum.

5.3 Fuzzy Model Design

The model identification process of the T-S fuzzy model has been theoretically described
in Chapter 4. The T-S fuzzy model used in this work was conceptually described in
Section 4.2, while its implementation is described in this section. This process can be
divided in two segments, where the first is to find the antecedent parameters (vi and σi),
and the second to find the consequent parameters (θi).
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Figure 5.1: Dataset of the first scenario. Selected variables, (a) global irradiance, (b) pH
and (c) carbon dioxide valve aperture (%), for the same operation time.

For vi and σi, the fuzzy c-means clustering algorithm was employed, as described in
Subsection 4.2.1. This algorithm requires a dataset organized similarly to the matrix in
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Figure 5.2: Dataset of the second scenario. Selected variables, (a) global irradiance, (b)
pH and (c) carbon dioxide valve aperture (%), for the same operation time.

Equation (4.8). To meet this requirement, a portion of the available data was used to
create a dataset. The input vector x(t) for the T-S fuzzy model system was defined as
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Figure 5.3: Fuzzy model training results.

follows:

x(t) = [y(t− 1) y(t− 2) y(t− 3) y(t− 4)u(t− 1)u(t− 2)u(t− 3) v(t− 1)]⊺, (5.1)

with eight inputs, where u is the carbon dioxide valve aperture percentage, v is the global
irradiance and y is the medium culture pH. Each row of matrix X (4.8) corresponds to a
specific instant vector x(t). Once the dataset was organized and the number of inputs
defined to be n = 8, the next step involved determining the number of clusters. This
variable was studied according to the data space organization, and was adjusted to four
clusters (N = 4). Subsequently, the cluster centers (vi) were computed using the fcm
Matlab function, with parameter η set to 2. This function requires two input arguments:
the organized dataset X and the number of clusters N . Moreover, the fcm Matlab
function offers three distinct clustering methods, as described in [73]. In this context, the
option compatible with Equation (4.11), based on the Euclidean distance, was selected.
As a result of executing the fcm function, the cluster centers (vi) and the fuzzy partition
matrix were obtained. Thus, with both output arguments of this function, the clusters
widths (σi) were computed using Equation (4.16).

To compute the Θ∗ values, Equation (4.23) was applied. For that, some other values
were calculated before, such as the Ψ values. For this purpose, ω̄i[x(t)] (i = 1, . . . , N)
were computed using Equation (4.6). With all the parameters defined, several tests were
conducted to validate the obtained values. In Figure 5.3, the results from the fuzzy model
training phase are presented, showing two lines representing the real data (red line) and
the estimated data (blue line) using the estimated fuzzy model. This graph illustrates
the estimated fuzzy model’s performance using the estimation dataset. Nevertheless, to
demonstrate its effectiveness, a distinct part of the dataset was used. In Figure 5.4, two
scenarios from the fuzzy model testing phase are presented, both showing favorable results.

After calculating all antecedent and consequent parameters and conducting all tests, it
was possible to proceed to the construction of the RLS-ADF algorithm component. This
component allows for the iterative update of the model parameters, and its algorithm is
described in Subsection 4.2.3. Moreover, this component was developed in Matlab from
scratch.
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Figure 5.4: Fuzzy model results in a (a) more stable operation point and in a (b) less
stable operation region.

5.4 Model Designed to Validate the Predictive Con-

troller

For control simulation purposes, the system pH level to be controlled is given by the
following discrete-time model of Autoregression with Exogenous Input (ARX) model,

A(z−1)pH(t) = B1(z
−1)CO2(t) +B2(z

−1)Irr(t), (5.2)

where pH represents the acidity level in the photobioreactor, CO2 represents the carbon
dioxide valve aperture percentage, and Irr represents the measured irradiance. A(z−1),
B1(z

−1) and B2(z
−1) are the respective polynomials.

Using part of the collected data, the model (5.2) was learned by the arx Matlab
function. Moreover, as explained before, the selected data to estimate this model was
different from the data used to estimate the fuzzy model. The estimated model (5.2)
was A(z) = 1 − 0.3707z−1 − 0.2609z−2 − 0.2008z−3 − 0.1684z−4, B1(z) = 0.00126 −
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Figure 5.5: Results of the simulation model to test the controller, estimated and real
outputs: (a) training results and (b) testing results.

0.000909z−1 − 0.004927z−2 and B2(z) = 0.0001459. The Mean Squared Error (MSE) of
the learned model is 0.0259. In Figure 5.5 the estimated model behavior is presented and
compared with the real output data, for training (Figure 5.5a) and testing (Figure 5.5b)
scenarios.

5.5 Simulation Control Results

In this section, the obtained results from testing the developed AFGPC method are
presented. To test the implemented approach, the Matlab Simulink tool was used,
and all the following results are the outcome of simulations performed on the developed
Matlab blocks and functions. The testing phase was divided into two parts. Firstly,
the developed controller was tested with fixed model parameters, which means that
the RLS-ADF algorithm was “turned off”. In the second testing phase, the RLS-ADF
algorithm was “turned on”, to test the adaptive parameters approach. These two testing
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phases are presented in Subsections 5.5.1 and 5.5.2, respectively. Afterward, in Subsection
5.5.3, the two methods are compared and further analyzed.

The MPC technique implemented in this work was a Generalized Predictive Control
(GPC) controller, as theoretically described in Subsection 3.1.1. This predictive controller
design encompasses the definition of the prediction horizon (Np = N2 −N1), the control
horizon (Nu) and the weighting factor for control increments (λ). The prediction horizon
determines the number of samples ahead that are considered in the control algorithm, the
control horizon determines the number of calculated samples, and the control-weighting
factor affects the control effort. For the control-weighting factor, larger values generate
smaller control actions. Conversely smaller values are associated with a fast system
response, because the controller minimization calculation between the output and the
reference, tends to overlook the control action [38, 74].

The conducted tests, presented in this section involve the variation of the prediction
horizon (Np) and the lambda (λ) value. For the prediction horizon, the following values
were considered: Np = 5, Np = 10, Np = 15, and Np = 25. For λ, the following values were
considered: λ = 0.08, λ = 0.8, λ = 1.8, λ = 8, and λ = 80. In each presented test, a set of
variations in the selected variables is considered. Nevertheless, certain variables maintain
their values throughout all the presented tests. The fixed values were the following:
the control horizon Nu = 1, the time delay d = 3, the number of clusters N = 4, the
polynomials ai(z

−1), bi(z
−1) and di(z

−1) order na = 4, nb = 3 and nd = 1, respectively, the
initial values of φi(0) = 0.1, τi(0) = 0.01, νi(0) = 0.1, and Ci(0) = I8 × 105. The reference
value was set to 8. Moreover, each combination of variables considered in the following
subsections encompasses two simulation times, one corresponding to 51 days and one to
127 days. These two distinct simulation times were chosen to perform an error analysis
based on distinct input values, with the selected error metric being the Mean Squared
Error (MSE). The 51-day simulation comprises moderate irradiance values, whereas the
127-day simulation includes the concatenation of the 51 days of moderate irradiance values
plus 76 days of elevated irradiance values. These two simulation time scenarios were
constructed to test the distinct behavior of the developed system for both situations, since
the controller behavior is prone to be more unstable with higher irradiance values.

The following results are presented in tables and figures. The tables present the MSE
error for each simulation test, in order to provide a notion of the overall system performance.
On the other hand, the figures provide a visual notion of the system performance. Each
figure comprises two sub-figures, illustrating parts of the results for each simulation time
(51 days and 127 days), corresponding to moderate and high irradiance values.

5.5.1 Fixed Model Parameters Results

In this subsection, the fixed parameters approach results are presented. The tests were
divided into five scenarios, according to Np and λ values variation. In each scenario, the λ
value was fixed, whereas the predictive horizon was varied. The results for each scenario
are as follows:

1. Scenario with λ fixed at 0.08 (Figure 5.6, Table 5.1).

2. Scenario with λ fixed at 0.8 (Figure 5.7, Table 5.2).

3. Scenario with λ fixed at 1.8 (Figure 5.8, Table 5.3).

4. Scenario with λ fixed at 8 (Figure 5.9, Table 5.4).
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Table 5.1: MSE error for λ equal to 0.08 with fixed parameters.

Time Np = 5 Np = 10 Np = 15 Np = 25

51 days 0.5560 0.4680 0.4310 0.4856
127 days 135.5790 176.5540 169.6480 170.3899

200 400 600 800 1000 1200 1400 1600
Time (6 days)

7.2

7.4

7.6

7.8

8.0

8.2

8.4

pH

Np = 5 Np = 10 Np = 15 Np = 25 Reference

(a)

200 400 600 800 1000 1200 1400 1600
Time (6 days)

6.50

6.75

7.00

7.25

7.50

7.75

8.00

pH

Np = 5 Np = 10 Np = 15 Np = 25 Reference

(b)

Figure 5.6: Fixed parameters results with λ equal to 0.08, for (a) scenario with moderate
irradiance values (more stable) and (b) scenario with high irradiance values (less stable).

5. Scenario with λ fixed at 80 (Figure 5.10, Table 5.5).

Observing the first scenario results (Figure 5.6 and Table 5.1), with λ assigned to
0.08, the general system performance is unsatisfactory. For the results with moderate
irradiance (51 days) the MSE error is smaller when compared to the results with high
irradiance values (127 days). This is also visible in both figures related to this scenario.
In Figure 5.6a, representing the system behavior with moderate irradiance values, the pH
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Table 5.2: MSE error for λ equal to 0.8 with fixed parameters.

Time Np = 5 Np = 10 Np = 15 Np = 25

51 days 0.1032 0.1266 0.1280 0.1285
127 days 0.1641 0.2004 0.2257 0.2273

200 400 600 800 1000 1200 1400 1600
Time (6 days)

7.0

7.2

7.4

7.6

7.8

8.0

8.2

8.4

8.6

pH

Np = 5 Np = 10 Np = 15 Np = 25 Reference

(a)

200 400 600 800 1000 1200 1400 1600
Time (6 days)

7.0

7.2

7.4

7.6

7.8

8.0

8.2

8.4

8.6

pH

Np = 5 Np = 10 Np = 15 Np = 25 Reference

(b)

Figure 5.7: Fixed parameters results with λ equal to 0.8, for (a) scenario with moderate
irradiance values (more stable) and (b) scenario with high irradiance values (less stable).

values are maintained closer to the reference value than in Figure 5.6b, representing the
system behavior with high irradiance values. This difference between both simulations
means that there is an overall better performance with moderate irradiance. However,
none of the results is satisfactory.

Observing the results from the second scenario (Figure 5.7 and Table 5.2), where the λ
value is set to 0.8, there is a noticeable overall improvement in the system’s performance
compared to the previous scenario. This improvement is evident from the significantly
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Table 5.3: MSE error for λ equal to 1.8 with fixed parameters.

Time Np = 5 Np = 10 Np = 15 Np = 25

51 days 0.0759 0.1085 0.1070 0.1120
127 days 0.1870 0.1720 0.1760 0.1730
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Figure 5.8: Fixed parameters results with λ equal to 1.8, for (a) scenario with moderate
irradiance values (more stable) and (b) scenario with high irradiance values (less stable).

smaller MSE error values observed for both moderate irradiance conditions (51 days) and
high irradiance conditions (127 days). Between these two simulations, it is also possible
to identify an error increase from the 51-day values to the 127-day values.

Observing the results from the third scenario (Figure 5.8 and Table 5.3), where the λ
is fixed at 1.8, a slight improvement in the system’s performance compared to the second
scenario is identified. These simulations present better results in terms of MSE error
values, except for the Np = 5 values in the 127-day simulation. Additionally, there is a
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Table 5.4: MSE error for λ equal to 8 with fixed parameters.

Time Np = 5 Np = 10 Np = 15 Np = 25

51 days 0.1529 0.0795 0.1258 0.0938
127 days 0.1628 0.1828 0.2121 0.2700
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Figure 5.9: Fixed parameters results with λ equal to 8, for (a) a scenario with moderate
irradiance values (more stable) and (b) a scenario with high irradiance values (less stable).

visible degradation in error when testing with higher irradiance values.
Observing the results from the fourth scenario (Figure 5.9 and Table 5.4), where the λ

is fixed at 8, a slight general deterioration in the overall system performance is identified
compared to the third scenario. From the MSE error values it is observed the expected
increase between moderate irradiance and high irradiance results.

Lastly, upon observing the results from the fifth scenario (Figure 5.10 and Table 5.5)
with λ fixed at 80, a noticeable deterioration in the overall system performance is evident
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Table 5.5: MSE error for λ equal to 80 with fixed parameters.

Time Np = 5 Np = 10 Np = 15 Np = 25

51 days 0.6848 0.4665 0.5167 0.4478
127 days 0.9656 0.7706 3.7259 3.1485
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Figure 5.10: Fixed parameters results with λ equal to 80, for (a) a scenario with moderate
irradiance values (more stable) and (b) a scenario with high irradiance values (less stable).

compared to the second, third, and fourth scenarios. Additionally, worse results are also
visible for the 127-day high irradiance simulation.

Analyzing the fixed parameters results presented, several consistencies can be identified.
Firstly, there is a general degradation observed from the 51-day simulations to the 127-day
results. Indicating a system performance decline with high irradiance values. Secondly,
when comparing the results for each λ variation, the second, third, and fourth scenarios
consistently exhibit more favorable outcomes. This is evidenced by lower MSE error



Chapter 5. Experimental Results 48

Table 5.6: MSE error for λ equal to 0.8 with adaptive parameters.

Time Np = 10 Np = 15

51 days 0.1207 0.1275
127 days 0.1947 0.2177

Table 5.7: MSE error for λ equal to 1.8 with adaptive parameters.

Time Np = 10 Np = 15

51 days 0.1081 0.1046
127 days 0.1510 0.1533

values, particularly notable in the 127-day simulations. Additionally, upon analyzing the
predictive horizon variations, a trend is observed where increasing the predictive horizon
leads to an increase in MSE error. However, with a predictive horizon set to 5, the results
tend to be inconsistent. Since the 51-day and the 127-day simulation, in some scenarios,
present worse results than with higher predictive horizon values.

5.5.2 Adaptive Parameters Results

In this subsection, the adaptive parameters approach results are presented. For this
testing phase, the fixed parameters results were considered, when selecting the variables
variations. Since there were three λ values that allowed to achieve better results, the tests
performed in this subsection are relative to those three λ values. Regarding the variations
in predictive horizon, only the two best values were tested, as they presented the most
favorable results. Therefore, when testing the adaptive parameters performance only
λ = 0.8, λ = 1.8 and λ = 8 were considered. For the predictive horizon variations, only
Np = 10 and Np = 15 were considered. Moreover, the calculus of adaptive parameters
involves other variables. For this reason, in the following tests, the variable ρ was also
adjusted. This variable determines the rate at which previous data is forgotten in the
iterative estimation process. Adjusting this parameter allows the algorithm to update
its learning speed and responsiveness to the system dynamics. Typically, higher ρ values
indicate a lower forgetting rate, resulting in a stronger influence of past estimated data.
Conversely, lower ρ values usually imply a faster forgetting process, giving more weight to
more recent data. However, the influence of this parameter can vary depending on the
implementation and context [75]. Therefore, the developed tests involved variations in
the prediction horizon (Np), lambda (λ) value and ρ value.

The results for the adaptive parameters with λ fixed at 0.8 are presented in Figure 5.11
and Table 5.6. These outcomes were achieved with a ρ value adjusted to 0.05. Comparing
these results with those of the second scenario in the fixed parameters tests, we observe
smaller MSE error values. Also corroborated by the figures results. Additionally, an
increase in MSE is observed from the 51-day simulation to the 127-day simulation in these
results.

The outcomes for the adaptive parameters with lambda set at 1.8 are presented in
Figure 5.12 and Table 5.7. These results, obtained with a ρ value of 0.9, show significantly
reduced MSE error values compared to the third scenario in the fixed parameters tests.
Additionally, an increase in MSE is observed between the 51-day simulation and the
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Figure 5.11: Adaptive parameters results with λ equal to 0.8, for (a) a scenario with
moderate irradiance values and (b) a scenario with high irradiance values.

127-day simulation values.
In Figure 5.13 and Table 5.8, the results for the adaptive parameters with λ fixed

at 8 are presented. For these tests, the ρ value was adjusted to 0.07. Comparing these
outcomes with those of the fourth scenario in the fixed parameters tests, the MSE error
values are smaller. Nevertheless, its improvement is not between the prediction horizon
variation. Additionally, it is once more observed an increase in MSE between the 51-day
simulation and the 127-day simulation values.

To select the most appropriate combination of variables, the primary factor to explore
is the MSE error values, particularly those associated with the 127-day simulation. This
simulation encompasses both moderate and high irradiance values, offering insight into
the system’s behavior across a broader input spectrum. Nevertheless, it is also important
to contemplate a small error in the 51-day simulation.

Analyzing the adaptive parameters results, three tests stand out for their favorable
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Figure 5.12: Adaptive parameters results with λ equal to 1.8, for (a) a scenario with
moderate irradiance values and (b) a scenario with high irradiance values.

outcomes. These include the results with λ fixed to 1.8 and the test with λ equal to 8
and Np = 10. Considering these three tests and their proximate results, it is relevant to
further examine the influence of λ on the system. A noticeable difference is observed in
the carbon dioxide valve aperture curve between the approach with λ equal to 1.8 and λ
equal to 8, as illustrated in Appendix B. With a higher λ value, the carbon dioxide valve
aperture range is considerably smaller than with a smaller λ value. Therefore, a system
with λ equal to 1.8 expresses a more suitable behavior for a broader range of situations,
as it allows for a more ample and adequate response to abrupt input variations.

Moreover, comparing the results between the 51-day simulation and the 127-day
simulation, with λ set to 8 and Np equal to 10, a high degradation is observed from
the 51-day results to the 127-day results. This indicates that with these parameters
combination, the system reveals a greater difficulty controlling the pH levels with higher
irradiance inputs than with lower ones.
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Table 5.8: MSE error for λ equal to 8 with adaptive parameters.

Time Np = 10 Np = 15

51 days 0.0767 0.1226
127 days 0.1522 0.1892
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Figure 5.13: Adaptive parameters results with λ equal to 8, for (a) a scenario with
moderate irradiance values and (b) a scenario with high irradiance values.

Additionally, among the tests with lambda set to 1.8, the results with Np equal to 10
demonstrate slightly better performance, especially in the 127-day simulation.

In conclusion, the combination of variables that exhibits the most beneficial behavior
for controlling pH levels in a photobioreactor is the test with λ = 1.8 and Np = 10.

Contemplating the best result from the earlier three tests with adaptive parameters, a
further investigation was conducted regarding the λ variation. From this, it was observed
that by slightly increasing it, there was an improvement in the 127-day simulation with a
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Table 5.9: MSE error for λ equal to 2 with adaptive parameters.

Time Np = 10

51 days 0.1040
127 days 0.1411

λ set to 2 and a ρ value set to 0.45. In Table 5.9, the results obtained from this test are
presented.

5.5.3 Results Analysis

After individually analyzing the fixed and the adaptive parameters results, these two
approaches are discussed in this subsection.

In Subsection 5.5.1, the fixed parameters approach was studied, and it was established
that the best scenarios corresponded to the tests with λ = 0.8, λ = 1.8 and λ = 8. This
conclusion was drawn based on the MSE error values, particularly those obtained from
the 127-day simulations. The results for λ = 0.08 showed MSE error values ranging from
135.5790 to 176.5590, indicating the worst outcomes. On the other hand, the results
for λ = 80 showed MSE error values ranging from 0.7706 to 3.1485, demonstrating a
significant degradation compared to the tests with λ = 0.8, λ = 1.8, and λ = 8. Conversely,
the three best scenarios, with λ = 0.8, λ = 1.8, and λ = 8, presented MSE error results
ranging from 0.1628 to 0.2700, indicating a smaller interval and lower values. From these
three scenarios, analyzing the prediction horizon variation, the results from Np = 10,
Np = 15 and Np = 25 present a growing tendency in their MSE error values, with Np = 25
presenting overall worse results. As for the results from Np = 5, demonstrated inconsistent
behavior, presenting worse results than some of the tests with a higher prediction horizon,
which deviates from the observed trend. This behavior occur due to the small prediction
horizon, that affects the control calculus and its resulting variation. Therefore, as for the
predictive horizon, the best results were obtained with Np = 10 and Np = 15.

In Subsection 5.5.2, the adaptive parameters approach was studied, taking into consid-
eration the results obtained from the fixed parameters approach scenarios. The adaptive
parameters tests were performed considering a variation of λ among 0.8, 1.8 and 8, and a
variation of Np among 10 and 15. From these tests, the best results were obtained with
the combination of λ = 1.8 with Np = 10, λ = 1.8 with Np = 15, and λ = 8 with Np = 10,
exhibiting MSE error results ranging from 0.1515 to 0.1533. Upon comparing this MSE
error value interval with those from the best three scenarios of the fixed parameters
approach, it is evident that the range of MSE errors were noticeably smaller in the tests
with adaptive parameters. These results can be explained due to the adaptive parameters
positive performance, responding to the system variations. Additionally, one further test
was conducted with the adaptive parameters, focusing on the λ variable variation starting
from the test with λ = 1.8 and Np = 10. In this test were performed small variations in the
λ value, and the most favorable outcomes were obtained with λ = 2, Np = 10 and a further
adjustment of ρ to 0.45. From this test, the 51-day simulation MSE error value was similar
to previous test with λ = 1.8 and Np = 10; Indicating that, when responding to moderate
irradiance values its response is similar. However, in the 127-day simulation, there was
a decrease in the Mean Squared Error (MSE) error, indicating a general improvement
in its response to high irradiance values. Furthermore, in each scenario, an adjustment
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was made to the variable ρ. In the tests where λ was set to 0.8 and 8, this variable was
adjusted to 0.05 and 0.07, respectively. And, in the tests with λ set to 1.8 and 2, it was
adjusted to 0.9 and 0.45, respectively. This behavior indicates distinct optimal rates for
parameter adaptation, dependent on the controller’s performance.

From the MSE error values presented in Section 5.5 tables, it is possible to retrieve
information regarding the overall performance of the system in each test scenario. However,
the figures presented in this section provide insight into the output behavior of each scenario.
Upon observing each figure in this section relative to the simulation results, it becomes
evident that there is less oscillation from the reference value in the adaptive parameters
tests.

In conclusion, balancing the results and respective analysis of both fixed and adaptive
parameters approaches, it is concluded that the adaptive parameters approach permitted
to obtain overall better results. This directly results from the parameters iterative update
according to the system’s conditions. Consequently, the adaptive parameters approach is
capable of controlling the pH levels, of a photobioreactor producing microalgae, with an
overall better performance than the fixed parameters approach.
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6.1 Conclusions

Microalgae are microscopic organisms that habit aquatic environments, when these provide
proper conditions. Essentially, these conditions must include light exposure, nutrients
like carbon and phosphorus, an adequate temperature and an appropriate acidity level.
When the environment provides suitable conditions, these organisms have the potential to
thrive. For centuries humans have used algae as a food source, mainly motivated by food
shortage periods. However, it was only in more recent years that these organisms started
being cultivated in special infrastructures; Which allowed to increase their production
and their industry applications. Microalgae have a high biotechnological potential and
have been used in numerous industries, such as pharmaceutical, animal nutrition and
human supplements, cosmetics production, wastewater treatment processes, and as a
new approach in clean energy sources, as a biofuel. For this reason, there has been
some recent investment in photobioreactors, in order to reduce production costs and
increase production rates. The developed work falls into this area, since the objective is to
control the pH levels of a tubular photobioreactor producing microalgae. For this effect,
the selected variable to manipulate was the carbon dioxide valve aperture. Since this
variable directly influences the culture medium acidity, contra-balancing the microalgae
photosynthetic process effect.

Adaptive fuzzy predictive control has been used in industrial processes, mainly in
approaches that require accurate process models. This method is a control methodology
that combines the principles of fuzzy logic and predictive control to regulate the behavior
of dynamic systems. In this approach, a fuzzy system is used to represent the system
dynamics, and predictive control techniques are employed to anticipate future system
behavior and generate control actions accordingly. Their entanglement permits an iterative
update of the controller parameters, which allows the controller to adapt its behavior
throughout its operation. This type of system has been successfully applied in multiple
fields, such as process control, automotive systems, and renewable energy systems. The
objective of this work is to control the pH levels of a microalgae culture, that entails
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biological reactions to light exposure and to carbon dioxide gas injections. For this
characteristic nonlinear system, the selected control method was an Adaptive Fuzzy
Generalized Predictive Control.

This work was initiated with the study of microalgae, from their compositions to their
production process and main requirements, addressed in Chapters 1 and 2. Afterward, it
was studied the state-of-the-art processes of the production of this organism, detailed in
chapter 2. These first two chapters were particularly important when considering this
work preparation and the system behavior understanding. Then, in Chapter 3 the main
concepts around the selected control approach were studied. This chapter was divided into
two main parts: predictive control notions and fuzzy systems theory. In Chapter 4, some
crucial details about the implementation of the selected control method were addressed;
Focused on the developed fuzzy model identification process, including its algorithms
description, and in the controller’s adjustment process. In Chapter 5, the results of the
developed control approach were presented and analyzed; Where, the developed approach
is also compared to its version without adaptive parameters. Overall, this work describes
the developed process to implement an Adaptive Fuzzy Generalized Predictive Control,
to control a photobioreactor producing microalgae plants.

Two control alternatives were explored: one with fixed parameters and the other
with adaptive parameters, which is the approach proposed in this work. Both methods
were tested under similar conditions, encompassing moderate and high irradiance values.
The tests were conducted using the Matlab simulator, utilizing the constructed blocks
described in this document, as illustrated in Figure 4.1. To evaluate the fixed and
adaptive parameters methods, the predictive horizon Np, the λ value, and the ρ value
were studied and adjusted. The λ value adjusts the control action, the predictive horizon
influences the samples considered in the control calculation, and ρ influences the parameter
adaptation. Each variable was studied considering a relevant interval, based on literature
and similar works. The resulting combination of variables was tested for both methods
and further compared. The presented results encompass the MSE error value associated
with each simulation, and a corresponding graph to provide a visual notion of the system
behavior. From the presented results and respective analysis, it was concluded that the
fixed parameters approach permitted to achieve satisfactory outcomes in some scenarios;
Maintaining the system’s pH value within a small interval of the reference value. Given
that this approach obtained favorable results, it allowed for the conclusion that the
consequent parameters estimated with the LSM were suitable. This is essential for the
adaptive parameters approach, as without a suitable parameter base, the adaptation
would not achieve satisfactory results. As for the adaptive parameters results, when
comparing each scenario to the corresponding fixed parameters scenario, these exhibited
less variation from the reference value; Which leads to the conclusion that an iterative
parameters adaptation throughout the system operation is beneficial.

Furthermore, in each test analysis, the value of ρ was also adjusted. It was observed
that this variable had a distinct optimal value in each test, indicating that the parameter
adjustment rate is crucial in each scenario and varies within each control framework. It is
still possible to observe differences in the results regarding the amplitude of the carbon
dioxide valve aperture, which is directly associated with the value of λ. With a lower
value for λ, the variations are larger and more abrupt, while with a higher value of λ,
the variation is smoother and smaller. Therefore, it is considered important to select
a middle-ground scenario to avoid a system that responds too slowly or exhibits overly
exaggerated responses.
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Based on the presented results and respective analysis, it can be concluded that
while the fixed parameters approach permitted some satisfactory results, the adaptive
version achieved superior outcomes. Thus, the implemented Adaptive Fuzzy Generalized
Predictive Control demonstrated the ability to effectively control the pH levels of a tubular
photobioreactor, consistently maintaining its value within a small interval from the set
reference.

6.2 Future Work

In terms of future developments, related to the implemented controller, some steps could be
considered. Firstly, a practical testing of the controller in a real photobioreactor, aiming to
empirically validate its functionality, could be considered. During this experimental stage,
the system’s performance should be rigorously evaluated under multiple conditions and
testing scenarios, providing further insights into its adaptability, robustness, and overall
effectiveness. Secondly, a study regarding the influence of the carbon dioxide valve aperture
percentage on the operational cost of the photobioreactor could be essential. This analysis
aim would be to optimize the financial implications, by examining the cost dynamics
associated with the manipulated variable. Moreover, a strategic research involving energy
monitoring and optimization could also be studied. This addition could further enhance
the efficiency and sustainability of the system. In essence, the future trajectory of this
work could involve a real-world experimentation to validate the controller’s performance,
a study focused on the financial aspects related to the manipulated variable, and the
incorporation of energy monitoring and optimization.
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[70] Jérôme Mendes et al. “Iterative Learning of Multiple Univariate Zero-Order T-S
Fuzzy Systems”. In: Proc. of The IEEE 45th Annual Conference of the Industrial
Electronics Society (IECON 2019). Lisbon, Portugal: IEEE, Oct. 2019, pp. 3657–
3662. doi: 10.1109/IECON.2019.8927224.
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Abstract—Culture conditions in a photobioreactor on a mi-
croalgae plant are essential for production rates, and the pH
value is one of the critical variables for a harmonizing process.
However, the biological nature of microalgae growth represents a
complex reaction that is arduous to model and control. This work
proposes an approach of the application of adaptive identification
and predictive control to regulate the pH in a photobioreactor
in a microalgae production system. The proposed approach is
composed of two main stages: identification and control. The
identification is performed by a Takagi-Sugeno (T-S) fuzzy model,
which will be learned with an offline strategy, by Fuzzy c-
means, for the antecedent part, and by the Least Squares Method
(LSM), for the consequent part. Then, the model is updated with
an online method, the Recursive Least Squares with Adaptive
Directional Forgetting (RLS-ADF) factor algorithm. The control
scheme is based on a Generalized Predictive Control approach,
which is a Model Predictive Controller (MPC), with the adaptive
T-S fuzzy model designed in the identification stage. In this way,
the model parameters from GPC are online adapted by RLS-
ADF. To validate the control structure, the proposed approach
was tested by using an estimated model from real data of a
microalgae production process.

Index Terms—Predictive fuzzy control, T-S fuzzy model, Gen-
eralized predictive control, pH control, Microalgae plant

I. INTRODUCTION

For a few years now, there has been a new chapter in indus-
trial processes, the Industry 4.0 concept [1]. This movement
intends to revolutionize the industrial process, both improving
it’s flexibility and agility, with the use of automated systems.
However, the industrial systems are known to be highly
complex and their development may represent a challenge [2].

A microalgae production process is one example of a com-
plex nonlinear biological operation. The chemical reactions
during this process are highly complex to describe in a math-
ematical equation, caused by the culture elements’ biological
nature, for instance, its heterogeneous light distribution [3].
Microalgae have a high biotechnological potential to produce
a diversity of substances present in many valuable industries,

This research was co-financed by the European Regional Development
Fund, through Centro Regional Operational Program 2014/2020 (Centro2020),
of Portugal 2020 by the Project InGestAlgae (CENTRO-01-0247-FEDER-
046983). This work has been partially supported by the FCT project
UIDB/00048/2020.

such as the pharmaceutical industry, animal nutrition and hu-
man supplements, cosmetics production, wastewater treatment
processes, and, as a new approach, in clean energy sources,
called “third generation biofuels” [4]. However, there are sev-
eral constraints to control the microalgae production process.
The most important factor for an operating photobioreactor
is light availability (sun radiation), which is essential for
photosynthetic growth. Moreover, the nutrients supply is also
one of the main components in a photobioreactor and in-
dispensable for microalgae development, which when under
sufficient quantity, are a limiting factor in microalgae growth.
A relevant concern in microalgae production is the culture
condition, that encompasses the culture’s pH and temperature.
The culture pH can have an optimal range value of 7.0 to 10.0,
which requires an adaptation to the specific microalgae species
in production [5]. The control of this variable is frequently
done by managing pure carbon dioxide injections in the culture
and is one of the most important variables to control since this
gas injection can constitute up to 30% of production costs [6].
A photobioreactor operation dynamic is an unstable process
through time due to the presented conditions fluctuations,
mostly solar input, which makes it difficult to achieve an
optimal point of operation, mainly during the day.

In the last couple of years, there has been a new interest
in the microalgae industry due to its recent application in
thriving industries. This renewed interest triggered invest-
ment in the existing high-value photobioreactors structures to
transform the microalgae cultivation process more productive,
by minimizing costs and maximizing microalgae harvesting.
Some control approaches have been developed to control cer-
tain photobioreactor variables, with multiple approaches, such
as based on Proportional-Integral (PI), Proportional-Integral-
Derivative (PID), Model Predictive Control (MPC) and Fuzzy
Logic Control (FLC). In [7], it is studied a conventional linear
feedback PID [8] and a PID with a feed-forward compensation
for pH and dissolved oxygen control in the photobioreactor,
by manipulating the carbon dioxide and nitrogen injections. In
2004 [9] and 2014 [10], two distinct MPC approaches were
proposed. In the first one, the aim is to control the pH and
minimize CO2 losses in a photobioreactor to improve the



production of high-value algal products. In the second one, the
control process objective is to maintain a more stable pH level
variation to improve microalgae production and to minimize
the CO2 losses, where the control strategy is based on a Gener-
alized Predictive Control (GPC) with an event detector, which
serves as an enabler for a new control signal. In [11], it is
proposed to apply a fuzzy control algorithm to simultaneously
control the algal biomass concentration, the culture pH, and
the average irradiance inside the photobioreactor (laboratory
setup).

This paper proposes an approach to model and control the
pH in a photobioreactor on a microalgae plant, based on
online identification and predictive control. The identification
of a Takagi-Sugeno (T-S) fuzzy model is initially performed
in an offline way, where Fuzzy c-means is used to design
the antecedent part, and the Least Squares Method to design
the consequent part. Then, due to the uncertainty of the
process and time-varying behaviour through the seasons, the
T-S fuzzy model parameters are updated using Recursive
Least Squares with Adaptive Directional Forgetting (RLS-
ADF) factor algorithm. This T-S fuzzy model is used as
the predictive model on the model predictive controller, the
Generalized Predictive Controller (GPC). In this way, the GPC
parameters, which depend on the model, are updated online.
The proposed approach was validated by using an estimated
model from real data of a microalgae production process.

This paper is organized as follows. Section II briefly
overviews the microalgae production process. In Section III,
the concepts of a T-S fuzzy model are presented. Section IV
presents the proposed fuzzy model for pH. In Section V, it is
presented the control approach. In Section VI, the results are
presented. And in Section VII, the conclusions are presented.

II. MICROALGAE PRODUCTION PROCESS

Microalgae are microscopic eukaryotic organisms or
prokaryotic (cyanobacteria) that can be found in seawater
and freshwater. Regarding industrial production, there are two
major categories of photobioreactors structures [3]: open
and closed. The most elementary type of structures is the
open photobioreactors due to their operation simplicity, where
the culture has direct contact with the environment, such as
artificial ponds, raceways, tanks, and thin-layer. These systems
are not considered in this work. The closed photobioreactors
systems are characterized by the absence of contact between
the culture and the environment, frequently represented by
tubular loops, flat-panels, or bubble columns. In this system,
it’s possible to produce mono-cultures and to grow more
sensitive strains due to their controlled environment and higher
contamination protection.

To obtain high levels of production, it is required to maintain
some culture conditions at optimal values. One of the funda-
mental variables to regulate is the pH value, which measures
the culture acid/base levels. The photosynthesis process, in
which irradiance is the motor, is responsible for the microalgae
growth; however, this process produces a decrease in the
carbon dioxide concentration levels, resulting in an increase

in pH level. Therefore, the pH variable regulation can be
accomplished by controlling carbon dioxide injections (CO2)
in the system, that result in a pH levels decrease. As a
result, the model is usually simplified as represented in Fig.
1 [9], [10], three inputs (past pH values, carbon dioxide valve
aperture percentage CO2, and the last measured irradiance
values Irr,), and one output (the pH value).

pH

Irr

CO2

pH
System

Fig. 1: Black box diagram of the pH model.

III. FUZZY MODEL CONCEPTS

Takagi-Sugeno (T-S) fuzzy systems are characterized by
their consequent parameters that are defined by mathematical
functions instead of fuzzy sets, being more feasible for the
identification of dynamic systems [12]. In general, a T-S fuzzy
model can be defined by a set of rules with the following
structure [13]:

Ri : IF x1(k) is Ai
1, and . . . and xn(k) is Ai

n

THEN yi(k) = ai(z
−1)y(k − 1)+

bi(z
−1)u(k − d− 1) + ζ(k),

(1)

where Ri represents the i-th rule, x(k) = [x1(k), . . . , xn(k)]
⊺

and xj(k) (j = 1, . . . , n) represents the system inputs of
instant k, n is the total number of inputs of the fuzzy system,
and N is the total number of rules. y(k) represents the
system output of instant k. The Ai

j is the respective symbol
for the linguistic term, with i = 1, ..., N and j = 1, ..., n,
characterized by the fuzzy membership function, µAi

j
(xj)

[14]. The u(k) represent the control output, d is the delay
of the system, and ai and bi are polynomials defined by:

ai(z
−1) = a1i + a2iz

−1 + . . .+ anyiz
−(ny−1),

bi(z
−1) = b1i + b2iz

−1 + . . .+ bnuiz
−(nu−1).

(2)

Considering Gaussian membership functions (MFs), the
fuzzy membership function is given by

µAi
j
(xj(k)) = exp

[
(xj(k)− vij)

2

σij

]
, (3)

where vij and σij correspond, respectively, to the center
and width of the defined MFs (antecedent parameters to be
learned). The system output y[x(k)] of the T-S fuzzy model
is calculated by the following equation [13]:

y[x(k)] =
N∑

i=1

ω̄i[x(k)]x
⊺(k)θi, (4)



where:

ω̄i[x(k)] =

∏n
j=1 µAi

j
(xj(k))

N∑
p=1

∏n
j=1 µAp

j
(xj(k))

, (5)

θi = [a1i, . . . , any , b1i, . . . , bnui]
⊺. (6)

θi contains the model (consequent) parameters to be learned.

IV. FUZZY MODEL FOR PH

This section presents the approach to model the pH in tubu-
lar photobioreactors by a T-S fuzzy model with the structure
of (1). The presented approach is composed of two main steps:
1) the learning of the antecedent part by obtaining the MFs
parameters (vij and σij) (Subsection IV-A), and then, 2) the
offline learning of the consequent part θij (Subsection IV-B)
and by an online procedure ( Subsection IV-C).

A. Antecedents Learning: Fuzzy c-means

The fuzzy c-means (FCM) clustering method [15] allows a
multidimensional data organization into clusters and, in this
case, it is used to obtain the antecedent parameters (vi andσi

(3)) of the T-S fuzzy model (1). The learning process initializes
with the data-set division into N clusters and the definition
of its centers. The following step encompasses the calculus
of each data-set point level of membership to the different
clusters. To evaluate the correspondent belonging degree of
each point to the clusters, it is performed a calculus dependent
on its distance to every cluster center. For example, a data set
point close to a cluster center will have a high membership
value to that cluster, however, if the point is located far
from the cluster center, the point will have a low level of
membership related to that cluster.

Considering the data-set values

X =




x1(1) x2(1) ... xn(1)
x1(2) x2(2) ... xn(2)

...
...

...
...

x1(K) x2(K) ... xn(K)


 , (7)

where N is the predefined number of clusters (corresponding
to the number of fuzzy rules), n is the number of inputs, and
K is the total number of samples, the fuzzy partition of the
set X into N clusters, is a family of fuzzy subsets defined
as µi(k) = µAi

j
(xj(k)) ∈ [0, 1] [15]. The membership values

originate a partition matrix U = [µi(k)] ∈ RN×K , where
the i-th row of this matrix corresponds to the i-th sample
membership values. The sum of all membership values of a

sample is one,
K∑
i=1

µi(k) = 1.

The FCM objective function depends on the clusters centers,
the distance between a given sample and a cluster center,
and a fuzziness parameter η, that controls the membership
degree computation [15]. With a higher η the clusters are more
fuzzier and each point belongs to more clusters, with similar

belonging values. The FCM objective function, that is to be
minimized, is given by:

J(X,U,V) =
N∑

i=1

K∑

k=1

µi(k)
ηdi(k)

2, (8)

where vi = [vi1, ..., vin]
⊺ is the vector containing the center

of the i-th cluster and V = [v1, . . . ,vN ]⊺ ∈ RN×n is a
matrix composed of all the clusters centers. Furthermore, di(k)
represents the norm of the difference between x(k) and a
cluster centroids vector vi, given by the Euclidean distance:

di(k)
2 = (x(k)− vi)

⊺ (x(k)− vi), (9)

where

vi =

K∑
k=1

µi(k)
ηx(k)

K∑
k=1

µη
i (k)

. (10)

Then, σij , the width of Gaussian MFs, is obtained using the
U matrix values [15]:

σij =

√√√√√√√√

2
K∑

k=1

µi(k)(xj(k)− vij)2

K∑
k=1

µi(k)

. (11)

B. Offline Consequent Learning: Least-Squares Method

The least squares method has been widely used to determine
the rule consequent parameters (θij) [15]. Considering yd a
vector containing the target output values:

yd = [yd(x(1)), . . . , yd(x(K))]⊺, (12)

Θ that contains the consequent parameters of all rules

Θ = [θ⊺1 , . . . ,θ
⊺
N ]⊺, (13)

and according to (1), the T-S fuzzy model can be given by

yd = ΨΘ, (14)

where

Ψ = [ψ(x(1)), . . . ,ψ(x(K))]⊺, (15)
ψ[x(k)] = [ω̄1x

⊺(k), . . . , ω̄Nx⊺(k)]⊺. (16)

Using the pseudo-inverse in (14), the optimal values of the
consequent parameters, Θ∗, are obtained throughout:

Θ∗ = (Ψ⊺Ψ)−1Ψ⊺yd. (17)

C. Online Consequent Learning: RLS-ADF

At this point of the process, using the Least Square method,
it was calculated an optimal set of the consequent parameters
values. Although computed with a large sample of data, the
limited data set may not provide adequate accuracy, consider-
ing a nonlinear system and its time-varying characteristics. As
such, an adaptive algorithm generally represents a favourable
alternative to solve this limitation. In this way, the Recursive



Least Squares with Adaptive Directional Forgetting (RLS-
ADF) is a combination of Recursive Least Squares (RLS)
algorithm, centered in a constant forgetting factor, and an
Adaptive Directional Forgetting (ADF) factor algorithm. This
approach is presented in [16] and used in [15] to recursively
update the consequent parameter values of a T-S fuzzy model.

Using the RLS-ADF, the consequent parameters are updated
at each sample time k by

θi(k) = θi(k−1)+
Ci(k − 1)ψ⊺

i

1 + ξi
[yi(k)−ψiθi(k−1)], (18)

where ψi = ω̄i[x(k)]x
⊺(k), ξi = ψiCi(k − 1)ψ⊺

i , yi(k) =
ω̄i[x(k)]y(k), and Ci(k) is the i-th rule covariance matrix
given by

Ci(k) = Ci(k − 1)− Ci(k − 1)ψ⊺
i Ci(k − 1)

ε−1
i + ξi

, (19)

where

εi = φi(k − 1)− 1− φi(k − 1)

ξi
, (20)

being φi(k− 1) the last iteration forgetting factor, for the i-th
rule. The forgetting factor is given iteratively by:

φi(k) =
1

1 + (1 + ρ)

(
ln (1 + ξi)+

[
(νi(k)+1)γi

1+ξi+γi
− 1

]
ξi

1+ξi

) ,

(21)
where νi(k) = φi(k − 1)(νi(k − 1) + 1),

γi =
(yi(k)−ψiθi(k − 1))2

τi(k)
, (22)

τi(k) = φi(k − 1)

[
τi(k − 1) +

(yi(k)−ψiθi(k − 1))2

1 + ξi

]
,

(23)
and ρ is a positive constant. The initialization of these param-
eters, φi(0), τi(0) and νi(0), should be between zero and one.
The covariance matrix must be initialized to an identity matrix
multiplied by a large number, for example, 105.

V. ADAPTIVE FUZZY GENERALIZED PREDICTIVE CONTROL

This section presents the control algorithm to control the
pH. The controller is based on the well-known classic general-
ized predictive control (GPC), where the model is an adaptive
T-S fuzzy model (Section IV-C). Selected for their easy
adaptation of the control parameters, by updating the model.
The controller, the Adaptive Fuzzy Generalized Predictive
Control (AFGPC) is represented in the diagram of Fig. 2. In
Fig. 2, it is possible to identify three different components:
the plant to be controlled; the GPC controller, which is a
type of Model Predictive Control (MPC), that naturally uses
a predictive model; and the predictive model represents an
adaptive T-S fuzzy model, that allows an iterative adaptation
of the GPC parameters.

Reference

T-S Fuzzy Model

with on-line
adaptation

GPC
Controller Plantu y

Consequent
Paramenters

Fig. 2: Diagram of the AFGPC controller.

A. Predictive Control Law

The GPC controller uses the following cost function

J(k) =

Np∑

p=d+1

[ŷ(k + p|k)− r(k + p)]2

+

d+Nu∑

p=d+1

[λ(z−1)∆u(k + p− d− 1|k)]2,
(24)

that is to be minimized, using the output values over the
prediction horizon Np, and the control values over the control
horizon Nu [14], where r(k+p) is the next p reference value,
ŷ(k+ p|k) is the p-ahead prediction value of the system, and
λ is a control action weighting factor.

Furthermore, considering a series of Diophantine equations
presented in [14], [17], the best prediction of y(k + p|k) can
be obtained by:

y(k) = Gu(k) + F(z−1)y(k) + L(z−1), (25)

where

y(k) =




ŷ(k + d+ 1)
ŷ(k + d+ 2)

...
ŷ(k + d+Np)


 . (26)

G, F and L are defined in [14], and the control signal variation
∆u(k) at every iteration is given by [14]:

∆u(k) = K[R− Fy(k)− L], (27)

where K is the first row of (G⊺G+λI)−1G⊺, R is a vector
with the future reference values, and λ(z−1) is considered to
be a constant (λ > 0) [14].

B. Algorithm

Algorithm 1 presents the proposed approach to control the
pH in photobioreactors on microalgae plants. The first part is
to organize a data set with a defined structure to the system,
considering the adequate inputs. The second part is the offline
model learning, where the antecedent parameters, vij and σij ,
are calculated based on FCM algorithm, and the consequent
parameters, θij , through LSM algorithm. At this point, with all



Algorithm 1 Control approach for pH control.

1: Input:
2: Data set D = {CO2, Irr, pH}.
3: Identification parameters: the time delay d, the number of

clusters N , and the parameters for RLS-ADF: ρ, φi, τi,
νi, Ci, ny and nu.

4: Controller parameters: prediction horizons Np and Nu,
and the control action weighting factor λ.

5: Offline: Design the T-S fuzzy model (1) using data set D.
6: Obtain the antecedent part using FCM (Subsection IV-A):

the parameters vij (10) and σij (11).
7: Obtain the consequent part using LSM (Subsection IV-B):

the parameters θij (17).
8: Online:
9: while Controller turned on do

10: Read the input variables CO2, Irr and pH .
11: Update the T-S fuzzy model, using RLS-ADF (18).
12: Obtain the new values of model polynomials a(z−1)

and b(z−1).
13: Apply the control signal from GPC using (27).
14: end while

the identification and control parameters defined, the third part
is the online algorithm part, where the consequent parameters
adaptation is performed with the RLS-ADF algorithm, and the
control signal is applied.

VI. RESULTS

This section describes the real data set used to estimate the
pH on a photobioreactor and to create a model to test the
control approach. Afterwards, the results are presented.

A. Data set

The data set used was formed through the collected data
of an operational photobioreactor. The selected variables,
according to the plant description in Section II, were carbon
dioxide (x1), irradiance (x2), and culture pH (y). The data set
comprises roughly five months, some spring and fall months,
and all summer periods, with a five minutes sample period.
Furthermore, the data set was divided so the estimation data
used for the simulation model to test the controller (Subsection
VI-B) is distinct from the one used to learn the T-S fuzzy
model (Subsection VI-C).

B. Simulation Model to Test the Controller

For control simulation purposes, it was used a discrete-time
estimated model of ARX type (28),

A(z)y(t) = B1(z)u1(t) +B2(z)u2(t) + e(t), (28)

Using the part of the collected data, the model (28) was learned
by the “arx” MATLAB function. Note that the selected data
to learn the model was not used to test the proposed control
approach, as explained before. The resulted model (28) was
A(z) = 1−0.3707z−1−0.2609z−2−0.2008z−3−0.1684z−4,
B1(z) = 0.00126−0.000909z−1−0.004927z−2 and B2(z) =
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Fig. 3: Results of the simulation model to test the controller:
estimated and real outputs.
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Fig. 4: Results of the offline fuzzy model training: estimated
and real outputs.

0.0001459. The Mean Square Error (MSE) of the learned
model is 0.0259 for the training data. In Fig. 3 the estimated
model output is compared with the real output data.

C. Results Analysis

The offline training and testing results of the fuzzy model
(Algorithm 1, Step 5) are presented in Figs. 4, 5 and 6. The
first one, refers to the training part, and the second and third
to different segments of the testing parts, using four clusters.

Furthermore, this section also presents the control simula-
tion results of the Generalized Predictive Control (GPC) using
fixed parameters (offline model) and parameters adaptation
(online model). The reference value of pH was defined equal
to 8. The controller parameters were: the control weighting
factor adjusted to λ = 0.8, the control horizon to Nu = 1,
the prediction horizon to Np = 10 min, and a d = 3. The
identification parameters were: ρ = 43, φi = 0.1, τi = 0.01,
νi = 0.1, ny = 4, nu = [3, 1], and Ci = I8 × 105.
Fig. 7 presents a graphic with both approaches in order
to compare them. The efficiency of the adaptive parameters
control (blue line) is visible, compared to the system with
fixed parameters (red line) that presents higher oscillations
from the set reference value. Thus, with adaptive parameters,
it is possible to maintain a more steady pH value.
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Fig. 5: Tests results of the offline fuzzy model.
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Fig. 6: Tests results of the offline fuzzy model.

VII. CONCLUSIONS

This work has shown the improvements obtained when im-
plementing an adaptive predictive control approach to control
a photobioreactor pH when compared to a similar scheme with
fixed parameters. Considering dynamic environmental condi-
tions, the proposed design adapts the controller by updating the
consequent parameters of the fuzzy model. In this particular
application, an adaptive control approach allows an iterative
rearrangement to new conditions due to a large spectrum of
environmental conditions, possibly out of the scope of the
collected data set.
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Appendix B

In this appendix, graphs illustrating the variation of carbon dioxide valve aperture
percentage across different lambda values are presented. For the following tests, the
prediction horizon is set to 10 or 15, while the lambda value is varied between 0.8, 1.8,
and 8.

In Figures B.1 and B.2, where Np is fixed at 10, three curves representing the variations
associated with the lambda variable are presented. Similarly, in Figures B.3 and B.4, where
Np is fixed at 15, three curves are presented, each representing one lambda variations.
From these four graphs, a trend in the CO2 valve aperture percentage is observed, with
higher values associated with smaller lambda values. This effect is attributed to lambda’s
influence on the control behavior.
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Figure B.1: Adaptive parameters CO2 valve aperture percentage results, with moderate
irradiance values, for λ = 0.8, λ = 1.8 and λ = 8. With a predictive horizon set to 10.
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Figure B.2: Adaptive parameters CO2 valve aperture percentage results, with high
irradiance values, for λ = 0.8, λ = 1.8 and λ = 8. With a predictive horizon set to 10.
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Figure B.3: Adaptive parameters CO2 valve aperture percentage results, with moderate
irradiance values, for λ = 0.8, λ = 1.8 and λ = 8. With a predictive horizon set to 15.
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Figure B.4: Adaptive parameters CO2 valve aperture percentage results, with high
irradiance values, for λ = 0.8, λ = 1.8 and λ = 8. With a predictive horizon set to 15.
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