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Abstract 
 
 

This master thesis presents the development of an autonomous beach cleaning 

robot using ROS (Robot Operating System), image recognition, and a special proposed 

robot with a robotic arm. The work objective was to create a new autonomous robot 

that would contribute to making the world cleaner by focusing on beach environments, 

which pose unique challenges in terms of terrain, robot localization, and environmental 

perception. 

The work involved integrating various tools and technologies, including AI-based 

image recognition, the utilization of ROS for the development of a virtual robot with a 

robotic arm and  the use of CAD tools to develop a gripper. The development process 

required learning and understanding these tools. 

This work includes the creation of a simulated environment, composed by a 

beach terrain, litter objects and the robot with all its components like a litter collecting 

tool, deposit basket and robotic arm. The dissertation proceeds with the usage of image 

recognition algorithms, as YOLOv7, and multiple datasets, proceeding with the ROS 

development, integration, and testing. 

The ROS framework played a crucial role in the development and integration of 

different components, including path planning, robotic arm control, video inference, 

and drive control. Several ROS packages were also developed to manage these specific 

functionalities. 

The results demonstrated the effectiveness of the system developed in a 

simulated environment. 
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The work serves as a basis for future advancements in the field of autonomous 

cleaning robots and encourages further exploration, in particular for beach 

environments, and implementation in real-world scenarios. 

 
Keywords: ROS, image recognition, autonomous robot, beach cleaning tool.  
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Resumo 
 
 

Esta dissertação de mestrado apresenta o desenvolvimento de um robô 

autónomo de limpeza de praias utilizando ROS (Robot Operating System), 

reconhecimento de imagem e equipado de um braço robótico. O objetivo do trabalho 

foi criar um robô que contribuísse para tornar o mundo mais limpo, com foco em 

ambientes de praia, que apresentam desafios únicos em termos de terreno, localização 

de robôs e perceção ambiental. 

O trabalho envolveu a integração de várias ferramentas e tecnologias, incluindo 

reconhecimento de imagem baseado em IA e a utilização de ROS para o 

desenvolvimento de um virtual robô equipado com um braço robótico. O processo de 

desenvolvimento exigiu a aprendizagem e a compreensão dessas ferramentas, que não 

haviam sido exploradas extensivamente antes. 

Este trabalho inclui a criação de um ambiente simulado em ROS, em terreno de 

praia, lixo e o robô concebido com os seguintes componentes:  balde para depositar o 

lixo, braço robótico e uma ferramenta de recolha do lixo. A dissertação prossegue com 

a descrição da utilização de algoritmos de reconhecimento de imagens, como o YOLOv7, 

e o recurso a vários datasets, seguindo com o desenvolvimento, integração e testes em 

ROS. 

A utilização do ROS desempenhou um papel crucial no desenvolvimento e 

integração de diferentes componentes, incluindo planeamento de trajetória, controlo 

do braço robótico, inferência de vídeo e controlo de navegação. Foram desenvolvidos 

vários pacotes ROS para lidar com essas funcionalidades específicas. 

Os resultados obtidos demonstraram a viabilidade da utilização do robô 

proposto. 
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O trabalho serve como base para avanços futuros no campo de robôs de limpeza 

autónomos e incentiva mais exploração e implementação em cenários do mundo real. 

 

 

Palavras-chave: ROS, reconhecimento de imagem, robô autónomo, ferramenta 

de limpeza de praia.
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1. Introduction 
1.1. Context and Motivation 

 

In recent years, there has been a growing awareness of the detrimental effects 

of pollution, with human activities being identified as the primary cause. In response, 

efforts have been made by humanity to address the issue of pollution through various 

means such as legislation, technological advancements, and public demonstrations. 

These undertakings aim to ensure a better future for our survival and the well-being of 

all life on Earth. However, despite these efforts, the accumulation of waste in various 

environments remains a recurring problem that captures public attention through 

media outlets and social networks. 

Among the most concerning environments affected by pollution are the oceans. 

As beaches serve as a natural boundary between land and sea, they become a significant 

site for the collection and accumulation of waste. Thus, they function both as a 

repository for waste coming from the seas and as a collection point for litter from land. 

Portugal, being a coastal country with a population predominantly residing near 

the coast, is particularly vulnerable to this issue. Additionally, the ocean holds 

substantial economic value and is a source of wealth for the country. Consequently, it is 

expected that these coastal areas, including seas, beaches, and dunes, accumulate a 

significant amount of trash. 

Trash collection on beaches primarily occurs through the efforts of public service 

companies hired by City Halls, as well as through volunteering initiatives. These methods 

aim to reduce litter on beaches, but their effectiveness is limited. Contractors may also 

employ heavy machinery, but this approach is both expensive and renders the beach 

inaccessible during the cleaning operation. Consequently, the frequency of beach 

cleaning through these means is low, leading to the accumulation of waste over time. 
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1.1.1. Simple Considerations About Waste 
 

In the English language, waste is defined by Oxford English Dictionary as 

materials that are no longer needed and are discarded. Waste can originate from various 

sources, including domestic, industrial, healthcare, or technological activities. 

Additionally, other terms such as garbage, trash, rubbish, refuse, or litter are commonly 

used to refer to waste. According to Encyclopedia Britannica [1], these terms can be 

categorized as follows: 

• Garbage primarily refers to decomposable food waste.  

• Rubbish is mostly dry material such as glass, paper, cloth, or wood.  

• Refuse consists of garbage and rubbish. 

• Trash is rubbish that includes bulky items such as appliances, furniture, etc.  

 

In this dissertation, the focus will be primarily on the term "litter," which refers 

to small pieces of rubbish left on the ground in public places [2]. It is important to note 

that when any of the other terms mentioned earlier are used, they will be understood 

within the scope of this definition.  

 

1.2. Objectives 
 

Given the advancement of robotics in dull, dirty, and dumb tasks, this field of 

study presents an ideal opportunity, for the deployment of robots. Consequently, this 

thesis aims to achieve the objective of develop and test, in a simulated environment, a 

robot that autonomously cleans a beach. To do so, it will be necessary: 

 

1. Development:  

1.1. Operational Concept Description (OCD) [3], description of the 

intended users, system, uses, how the system is to be used.  

1.2. Develop in ROS a virtual robot with a robotic arm.  

1.3. Develop a deposit basket to secure litter.  
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1.4. Develop a gripper to collect selected types of litter and attach it to 

the arm.  

1.5. Integrate artificial intelligence (AI) to identify such objects.  

1.6. Develop and integrate navigation algorithms to perform the beach 

cleaning task. 

2. Testing: 

2.1. Demonstrate the functionality of the robot in a simulated 

environment using ROS (Robot Operating System). 

 

While the development of such a robot would not entirely solve the problem of 

beach litter, it would contribute to its mitigation by introducing a new tool that 

complements existing cleaning measures.  

 

1.3. Outline of the Dissertation 
 

This dissertation is structured into five chapters, each serving a specific purpose 

in addressing the research topic.  

 

Chapter 1: Introduction 

In this chapter, the dissertation's theme is introduced, and the existing problem 

that motivated the research is presented. 

 

Chapter 2: Literature review and State of the Art 

This chapter focuses on the state-of-the-art research and is subdivided into three 

sub-chapters. The first sub-chapter presents a study about litter sizes and types, which 

is essential for achieving the end goal of the research. The second sub-chapter explores 

additional relevant studies about sediments’ grain size classification. The last sub-

chapter provides an overview of existing methods and robots developed by other 

entrepreneurs that are involved in cleaning actions. 
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Chapter 3: Tools and Methods 

The third chapter is divided into three sub-chapters. The first sub-chapter 

focuses on hardware tools, while the second sub-chapter discusses software tools, 

including 3D CAD tools, AI tools, computer vision tools, and ROS. 

 

Chapter 4: Work Development 

This chapter is divided into three sub-chapters, each explaining the research 

process and showcasing the results. The first sub-chapter details the development of a 

litter-catching tool. The next sub-chapter outlines the procedures used to identify litter 

deposits in the environment and transform pixel coordinates into real-world 

coordinates. The final sub-chapter describes the development of an autonomous 

moving robot equipped with the robotic arm in a simulated environment using ROS. 

 

Chapter 5: Conclusion 

The fifth and final chapter provides the conclusion of the dissertation, reporting 

on the achievement of the main objectives and their degree of success. The chapter 

concludes with suggestions for future work that can be pursued in this research area. 
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2. Literature review and State of the 
Art 
2.1. Trends in Waste Found on Beaches 

 

Annually, the world generates a staggering 2.01 billion tons of municipal solid 

waste, with at least 33% of this waste not being managed in an environmentally safe 

manner [4].  

In the context of Portugal, the country produced an average of 1.40 kg of waste 

per capita per day in 2020. Out of this, 48% was deposited in landfills, while 38% was 

prepared for reuse and recycling [5]. In a study conducted by the APA – the Portuguese 

environmental agency – in 2022, a trash monitoring program was implemented on 

fourteen beaches, resulting in 55 campaigns. Table 1 presents the findings from this 

study, revealing that 88% of the encountered trash was of plastic origin [6].  

 

Table 1 - Percentage distribution of trash composition observed in the APA study [6]. 

Plastics 88% 

Sanitary items 6,0% 

Cardboard and paper 1,8% 

Metal 1,3% 

Clothing 0,6% 

Wood 0,6% 

Medical items 0,5% 

Clay and ceramics 0,4% 

Glass 0,3% 

Rubber 0,2% 
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Understanding the materials encountered and their sizes is crucial for the 

dimensional planning of the catching tool of the robot. The APA study provides valuable 

insights in this regard, with Figure 1 presenting the top 10 materials encountered, 

depicted in graph form. 

 

 

Figure 1 - Total Abundance and Composition graph's categorizing and establishing a Top 10 types of materials [6]. 

 

2.2. Sediments’ Grain Size Classification 
 

A review of existing literature was conducted to determine the typical level of 

granularity found on a beach. Understanding the size of litter and the granularity of the 

sand is essential for assessing the potential overlap between them. Knowing this trait 

was also important to design the catching tool.  In Table 2 are presented the findings 

and it is concluded that beach sand can have sizes between 0.063 and 2 millimeters. 

 

 

21%

21%

17%

11%

8%

6%

6%

5% 3% 2%

Most common objects and their sizes
Plastic Fragments (0 - 2.5 cm)

Styrofoam Fragments (0 - 2.5 cm)

Cigarette butts and filters

Plastic Fragments (2.5 - 50 cm)

Rope and twine (diameter < 1 cm)

Capsules/plastic lid rings

Cotton buds - plastic stick

Styrofoam Fragments (2.5 - 50 cm)

Food containers incl. "fast food"

Foam sponge
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Table 2 - International scale for granularity classification [7]. 

Classification Grain Diameter (mm) 

Medium gravel 6,3 < d ≤ 20 

Fine gravel 2,0 < d ≤ 6,3 

Coarse sand 0,63 < d ≤ 2,0 

Medium sand 0,2 < d ≤ 0,63 

Fine sand 0,063 < d ≤ 0,2 

Coarse silt 0,02 < d ≤ 0,063 

Medium silt 0,0063 < d ≤ 0,02 

Fine silt 0,002 < d ≤ 0,0063 

Clay d ≤ 0,002 

 

 

2.3. Current Methods for Litter Collection on 
Beaches 

 

Breakthroughs and innovations in the field of litter collection on beaches have 

been relatively scarce. As mentioned earlier, the most employed methods involve 

volunteering actions and the utilization of contractors who employ large tractors 

equipped with dragging tools. This last referred tool serve to filtering out trash, which is 

then collected in a deposit basket, as depicted in Figure 2, while simultaneously 

smoothing the sand.  
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Figure 2 - Industrial tractor with a dragging tool attached sweeping a southern beach of Spain with the intent to 
smoothing and filter litter of the sand. 

 
Though the scarcity of innovation and breakthroughs on this field, there are 

some emerging projects that involve the use of robots for beach cleaning. Among these 

projects, three developments stand out: the Solarino Beach Cleaner Robot, BeBot, and 

BeachBot. 

Solarino, in Figure 3, is a “remote control Roomba” developed by Dronyx [8], an 

Italian venture company. Resembling a miniaturized version of the tractor depicted in 

Figure 2, Solarino, to collect litter, utilizes a filtering method through its dragging tool 

and a locomotion mechanism using caterpillar tracks. It should be noted that Dronyx is 

no longer active, so further details about the robot's characteristics are not available. 

 

Another notable development is BeBot, in Figure 4, by The Searial Cleaners [9]. 

BeBot shares a similar appearance and functionality with Solarino. It is introduced as a 

100% electric robot capable of performing multiple tasks, such as screening sand, raking 

seaweed, leveling beach areas, and lifting and carrying loads. The robot targets solid 

waste commonly found on beaches. Like the robot developed by Dronyx, BeBot is not 

autonomous.  
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Figure 3 - Solarino Beach Cleaner Robot developed by 
Dronyx with attachment. [8] 

 

Figure 4 - BeBot, developed by The Searial 
Cleaners, controlled by an operator performing 

beach cleaning. [9] 

 
Lastly, there is BeachBot, developed by Project.BB [10]. This project is currently 

a work in progress, with ongoing efforts to enhance the robot's robustness and 

versatility. Unlike the previous two robots, BeachBot, shown in Figure 5, is designed to 

operate autonomously. It relies on artificial intelligence (AI) for image recognition to 

map litter, and the developers claim success in identifying and picking up cigarette butts. 

The robot is specifically equipped with a tool designed for collecting cigarette butts. 

Project.BB is developing a new concept as they are developing a virtual reality (VR) mode 

of operation with an innovative designed robot, shown in Figure 6. 

 

 

Figure 5 - BeachBot developed by Project.BB roaming a 
beach searching for cigarette butts to catch with it 

frontal tool located bellow the dome. [10] 

 

Figure 6 - New concept robot to catch litter having a 
virtual operator controlling a robotic arm through a VR 

kit. [10] 

 

2.3.1. Other Environmental Innovations 
 

During the state-of-the-art research, it became evident that significant efforts to 

combat waste were focused on the sea and oceans. This is the environment where 
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numerous innovations are being developed due to the pressing concerns about marine 

life. Here are some initiatives in the fight against littering in that field: 

 

1. The Ocean Cleanup [11] is a prominent organization that has developed 600-

meter-wide ocean floater systems, as shown in Figure 7. These systems 

utilize ocean currents to capture and collect plastic and microplastics up to 

three meters deep. The Ocean Cleanup has also designed river litter 

collecting stations, shown in Figure 8, strategically located downstream of 

rivers, reducing the delivery of waste to the oceans. They function as a 

stationary station using a conveyor belt to collect the downstream trash and 

storing them in deposit crates. Later, those crates are transported to a waste 

management center. 

2. The Jellyfishbot, design by IADYS [12], is a small buoyant robot specifically 

designed for low-movement waters within a designated area, such as 

harbors. It operates autonomously, but without a specific trajectory, to 

collect floating litter. 

 

 

Figure 7 - Oceans Cleanup's waste trap for ocean solution. 
[11] 

 

Figure 8 - Oceans Cleanup's waste collection 
station for rivers solution. [11] 
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3. The Seabin Project, from Seabin [13, 14], which has undergone rebranding, 

and Collec'Thor by The Searial Cleaners [9], are stationary "vacuums" 

designed for marinas, harbors, and shorelines. They operate by filtering 

floating waste in these areas, the way it is presented in Figure 9.   

 

 

Figure 9 - Seabin installed in Clube Naval de Cascais, Portugal [15]. 

 
In urban environments, some innovations have emerged to aid in waste 

collection: 

 

4. DustClean and DustCart, depicted in Figure 10, are two autonomous robots 

developed by ROBOTECH srl [16, 17]. DustClean is responsible for sweeping 

the streets, while DustCart transports household waste outside for collection 

by public services. These robots are equipped with artificial vision systems 

and ozone and carbon monoxide sensors, to issue alerts if the air quality 

drops too low. 
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Figure 10 - DustClean (at the edges) and DustCart (in the middle) developed by ROBOTECH srl [17]. 

 
5. Corvid Cleaning [18], a Swedish enterprise, has introduced an innovative 

approach by utilizing animals, specifically crows, to clean up litter in exchange 

for a food reward.  
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3. Tools and Methods 
 

Throughout the development of this dissertation, a range of tools, both software 

and hardware, were utilized to achieve the desired objective. This chapter outlines the 

tools employed in pursuing the goals of this dissertation. 

 

3.1. Hardware Tools 
 

As this dissertation is based on a development of a robot using a simulated 

environment, the use of a computer served as the primary platform for executing most 

of the software tools employed in this research. It is important to highlight the 

computer's components as they may serve as a reference for future development and 

replication. The computer’s components were as follows: 

 

• CPU – AMD Ryzen™ 5 3600 with stock cooler  

• RAM – Team Group Kit 16GB (2 x 8GB) DDR4 3600MHz Delta RGB 

• GPU – Gigabyte GeForce RTX™ 3060 Gaming OC 12Gb  

 

In addition to the use of a computer, the Beeverycreative B2x300 3D printer was 

utilized for 3D printing the final design of the litter collection tool. Black PLA filament, 

extrusion thickness of 1,75 mm and the 20% linear infill was the configuration used to 

print. 
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3.2. Software and Web-based Tools 
3.2.1. 3D Modeling 
 

The catching tool and deposit basket, which will be outlined by an Operational 

Concept Description, were designed using a 3D CAD tool, predominantly Autodesk's 

Fusion 360. Fusion 360 is a cloud-based software that primarily relies on CPU resources 

for modeling and rendering tasks. This CPU-bound nature occasionally posed challenges 

during development, as alterations to the model and their processing times are 

sometimes long. To ensure the integration with the ROS simulation, an add-on script 

was employed to export the model to the URDF file format [19]. Also, SOLIDWORKS with 

the add-on sw_urdf_exporter was used to replace the previous script when it could not 

perform. SOLIDWORKS is, also, a 3D CAD tool with a wide range of applications such as 

design/engineering, manufacturing, and data management.   

In addition to Fusion 360 and SOLIDWORKS, Blender was experimented for 3D 

modeling purposes. It was employed to create a sand terrain with an applied texture, 

although this asset was ultimately excluded from the final simulation because during 

tests the robot slipped. 

 

3.2.2. Artificial Intelligence Tools 
 

For image recognition tasks, was AI utilized. Image recognition is “a sub-category 

of computer vision technology that deals with recognizing patterns and regularities in 

the image data, and later classifying them into categories by interpreting image pixel 

patterns” [20]. State-of-the-art deep learning models can achieve a high level of 

accuracy, up to 95%, in tasks such as classification and detection, employing techniques 

like bounding box annotation or semantic segmentation. 

To train the model, the TACO GitHub repository was briefly experimented. TACO, 

as described by its creators, “is an open image dataset of waste in the wild. It contains 

photos of litter taken under diverse environments, from tropical beaches to London 
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streets. These images are manually labeled and segmented according to a hierarchical 

taxonomy to train and evaluate object detection algorithms” [21].  

TACO adopts the MS COCO (Microsoft Common Objects in Context) annotation 

format [22], providing essential information such as image licenses, object class, 

bounding box position, raw image data including pixel size, and crucial object 

annotations listed in JSON format. The TACO dataset contains over 4,500 annotations. 

The dataset provides a diverse range of images depicting litter, as shown in Figure 11 

and Figure 12. 

 

 

Figure 11 - TACO’s number of annotations and 
classes presented in graph form [21]. 

 

Figure 12 - TACO’s large background litter images coverage 
[21]. 

 
Additionally, other software tools were employed for the model training, namely 

YOLO and PyTorch. YOLO, which stands for "You Only Look Once," is a well-known real-

time object detection algorithm. While there are currently eight versions of YOLO 

available, YOLOv7 [23] was used in this dissertation as it was already in use at the time, 

prior to the release of YOLOv8 on January 10th, 2023 [24].  

To access and explore datasets, a website called Roboflow was utilized. Roboflow 

hosts public datasets created by users and offers features such as image uploading, 

annotation capabilities, and the ability to combine existing datasets with newly created 
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ones. Roboflow does not allow the direct download of pre-trained models but allows 

dataset downloads with a wide selection of annotation formats. Additionally, the 

website has developed hosted APIs for server-side prediction. With this service it is 

possible to send the live feed from the camera and get as response the detection. 

 

3.2.3. Computer Vision tools 
 

To convert pixel coordinates into a 3D pose, a virtual Intel® RealSense™ depth 

camera D435 with a stereo solution and Computer Vision library was used. On the 

“IntelRealSense/librealsense: Intel® RealSense™ SDK library”, available on GitHub, there 

is a function called ‘rs2_deproject_pixel_to_point’ which returns 3D coordinates 

related to the camera’s referential system from the x and y pixel coordinates of image 

data, the same pixel coordinates of the depth data, and the intrinsic camera 

characteristics. 

 

3.2.4. ROS and ROS packages 
 

Robot Operating System (ROS) is an open-source middleware designed for robot 

development. Although it is not an actual operating system (OS), it provides services 

that resemble one, offering hardware abstraction, low-level device control, 

implementation of commonly used functionality, message-passing between processes, 

and package management [25]. ROS divides itself into user-created packages, which 

contain nodes that communicate with each other through topics (asynchronous 

messages), services (synchronous messages), and/or actions. Nodes are the executables 

within ROS packages.  

In the context of ROS, nodes can have two roles in message-passing through 

topics: they can function as publishers and/or subscribers. Subscribers receive a 

message while publishers send them. For instance, Node A may require information 

calculated by another node and thus subscribes to a topic named "/pose". Node B 

performs the necessary calculations and publishes the results to that topic. 
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Figure 13 - Example of a Rqt_graph output of an ROS execution with Node A subscribing to the same topic Node B is 
publishing. 

 
A node can also provide services and actions which have similar functionalities. 

Both receive requests from other nodes and respond accordingly. However, they differ 

in execution time. Services are expected to provide an immediate response, while 

actions may take longer to complete since they handle more time-consuming tasks and 

offer feedback options to the requesting node. 

In this thesis, it was utilized the latest version of ROS 1, ROS Noetic, in a Linux 

distribution (Ubuntu 20.04 LTS) that was installed within a virtual machine using 

VMware Workstation 16 Player software.  

ROS includes several essential tools. Of particular importance, for this 

development, are Gazebo, Rviz, and Rqt. Rviz and Rqt are graphical debugging tools that 

aid in visualizing the system's state. Figure 13 depicts one of the Rqt’s many outputs. 

This figure particular output, “rtq_graph”, is for node linkage graphical debug related to 

the above-mentioned example. Gazebo, on the other hand, is a simulation engine that 

embeds real-life physics, enabling the creation and spawn of models of various objects, 

terrains, and living beings. Gazebo, also, provides features such as the development of 

plugins for enhanced environment simulation. To create a Gazebo-readable world file, 

the “SDFormat (Simulation Description Format), sometimes abbreviated as SDF, which 

is an XML format that describes objects and environments for robot simulators, 

visualization, and control” [26], is utilized. Additionally, the XACRO file format, also in 

XML format, is used to do a description of robots. 

Multiple open-source packages were utilized in this project, which are 

enumerated in ANNEX A. 

Lastly, it is important to note that to develop new packages in ROS, programming 

in C++ or Python is required.  
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4. Work Developed 
 

This chapter delves into the development of the robot, as conveyed in the 

Objectives. A broad range of engineering areas were employed to develop a prototype 

and transmit the general idea of the system. Within this chapter is described the work 

developed with the creation of an Operational Concept Description and a gripper for the 

robotic arm end-effector, the training an AI model to detected litter, and the 

development of an environment and packages for the ROS simulation.  

 

4.1. Operational Concept Description 
 

In this section, an OCD, a system-centric description of the intended users, uses, 

how the system is intended to be used [3], will be outlined based on the expectations of 

the stakeholders. The stakeholders include a collective of beach users, the entity that 

owns the robot, the operators, and the developer company, as they are all interested in 

the system development. Each stakeholder has specific requirements for the robot, 

which are as follows: 

 

• The robot is expected to function as a maintenance tool to prevent litter 

accumulation on the beach, assuming that there is not a significant 

amount of litter and that it is scattered. 

• The robot must possess the ability to identify litter. 

• The robot must be capable of catching litter. 

• The robot must operate autonomously. 

• The robot's size must not exceed an area of 1 m2 and a height of 65 cm, 

to avoid becoming hazardous to beach users. 

• The robot must be able to operate safely in the presence of beach users. 
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• The robot must clean 90% in quantity of the scattered litter present 

within an area up to 250x250 meters, in 7 hours. 

• The robot's operation must be simple for the operator. 

• Trash/litter max weight of 0.5 kg.  

 

Based on these requirements, a concept of operation, i.e., a description on how 

to use, was developed. This involved defining certain physical characteristics, as outlined 

in Table 3. 

 

Table 3 - Initial iteration for the concept's physical characteristics, aligned with the stakeholders' expectations. 

Mobile Platform Robotic arm 

− Rectangular shape with length 

between 100-150 cm, width of 50-

100 cm and height not superior to 

60 cm (dependent on arm reach). 

− Elevation above the ground of 15-

30 cm (dependent on arm reach). 

− A deposit basket with a right 

trapezoidal prism shape, where 

the small base has ½ of the mobile 

platform’s length and its width. 

− LIDAR or RADAR sensor with a 

range of 10 to 15 m for detection 

of entities moving around the 

robot. 

− GPS with a compass and IMU for 

accurate robot localization. 

− LED strips as indicators set in the 

front and rear of the platform for 

status and presence warnings. 

− Two emergency buttons, one on 

each side. 

− 3 or more rotational joints 

(dependent on mounting 

configuration). 

− Mounted on the mobile 

platform’s front, ¼ of the full 

length and ½ of the full width. 

− Work area that allows the robotic 

arm to reach the ground and 

deposit litter in the deposit 

basket. 

− End-effector range further than 

15-30 cm of the mobile platform’s 

area. 

− A payload superior to 1 kg for tool 

plus trash. 

− Attachable tool to catch litter. 

− An RGB-D camera for litter 

detection. 
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Mobile Platform Robotic arm 

− Embedded interactive 

touchscreen for user interface 

and remote access via Wi-Fi. 

− Mobility by tracks or 4 wheels 

with suitable terrain tires and 

differential drive configuration. 

 
Next, is presented a sequence of proceedings that describes how a normal 

operation would occur: 

 

1. The operator transports the robot to the designated operation area.  

a. The robot should only operate in situations with a clear view of the 

surrounding environment, avoiding conditions such as fog or sunlight 

directed to the camera hampering the camera's visibility. 

2. The operator powers on the robot. 

a. The robot starts with its robotic arm in a retracted position. 

b. The robot has 4 modes which an operator can select and switch between: 

IDLE, TELEOPERATE, SWEEP, and MAP. 

i. IDLE mode, the robot stops with the brakes on. 

ii. TELEOPERATE mode, the robot can be remote controlled by an 

operator and driven using a RC controller. 

iii. MAP mode is a mean of operation, in which is given to the robot 

a set of coordinate points of litter or litter clusters, called a map 

of litter, for the robot to move to. 

iv.  SWEEP mode is another mean of operation, where the robot 

performs a linear sweep of a configurable number of meters from 

the starting position and passes. The sweep can be performed in 

an area up to 250 meters in length and width. The passes are 

defined by width divided by number of passes. 
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c. Initially, the LED strip indicators on the robot emit a flashing blue light, 

indicating that the robot is in IDLE mode. 

d. When in TELEOPERATE mode, the LED strip indicators change color 

according to the movement: 

i. White lights, signal the front of the robot.  

ii. Red lights, signal the rear of the robot. 

iii. A sliding-blinker orange light, on the end of each LED strip, 

signals change of direction in which is the robot turning. 

3. The operator switches to TELEOPERATE mode to drive the robot to the desired 

area. 

4. The operator positions the robot at a starting point, selects the desired mode of 

operation using the embedded touchscreen.  

a. If there is no map of litter available, the operator selects SWEEP mode. 

i. If in SWEEP mode, the robot should be placed, by the operator, 

parallel to the shoreline. 

b. If a map of litter is available, the operator selects MAP mode. 

i. In MAP mode, the operator provides a list of coordinate points of 

previous identified litter into the robot’s on-board PC prior to the 

operation, using a USB configured to inject the map or Ethernet 

connection with a file transfer protocol. 

5. The operator supervises the robot's operation and can stop the operation using 

the remote controller, interacting with the embedded touchscreen or by using 

one of the emergency buttons. 

a. The robot exhibits a behavior of attraction towards identified litter while 

avoiding obstacles detected by the LIDAR or RADAR, replanning the path 

if possible. 

6. Depending on the selected mode, SWEEP or MAP, Table 4 describes their 

actions: 
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Table 4 - Description of modes and their operations 

MAP SWEEP 

• The robot moves to the closest 

coordinate point marked as litter. 

• Upon arrival, the robot stops and 

scans the area with the camera to 

identify trash. 

o It extends the robotic arm 

vertically up to 85% of its 

maximum reachability and 

rotates looking for the 

existence of litter in a 

radius of up to 4 meters. 

• In case of litter identification, the 

robot uses the arm to catch the 

identified litter object. 

o The robot places the 

collected trash in the 

deposit basket. 

• In the absence of garbage, the 

robot proceeds to retract the arm 

and moves to the next closest 

point in the list. 

 

• The robot starts sweeping with a 

range up ideally 5 meters of itself.  

o The robotic arm extends 

vertically to 30-45% of its 

maximum reachability, 

pointing the camera 

towards the front of the 

robot and the ground, 

forming an angle of -30⁰ 

horizontal. 

• The robot stops sweeping if it 

identifies litter within the 

sweeping line and moves towards 

it.  

o The robotic arm tracks the 

trash keeping it in the 

center of the camera’s 

frame. 

• The robot parks adjacent to the 

trash to pick it up with the 

robotic arm. 

• The robot places the collected 

trash in the deposit basket. 

• The robot returns to the path line 

it followed previously and keeps 

sweeping. 

 

7. The robot concludes the operation under the following conditions: 

a. The operator interrupts the operation. 

b. In MAP mode, the robot has traversed all the specified coordinates. 

c. In SWEEP mode, the robot has completed the sweep of the entire 

allowed area. 

8. Upon completing the operation, the robot displays a notification on the 

touchscreen and changes its LED indicators to a flashing green light. 
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4.1.1. Robot End Development 
 

During the development, there were encountered some obstacles that impeded 

the realization of the complete OCD’s outline, so some aspects were changed or even 

upgraded: 

 

• During TELEOPERATE mode, the operator can choose to do litter 

detection. This adds the possibility of driving the robot to a place that 

was not identified or that was missed. 

• The RGB-D camera was moved from the robotic arm attachment to the 

platform’s front. The decision was made after exploring possibility of 

acquiring a collaborative arm and realizing that more affordable options 

had limited payload characteristics. 

•  The camera was set with a FoV of 90°, 640x480 image resolution, due to 

processing capacity. 

• Instead of returning directly to the path line, the robot will trace a path 

to a waypoint at the end of the linear sweep. This means that after 

catching a litter that is further form the initial path, the robot would not 

move parallel to the shoreline.  

 

4.2. End-effector Tool  
 

Dragging tools, as mentioned in the State-of-the-Art chapter, were not suitable 

for this robot due to the eventual requirements needed to deal with the forces related 

to such tool, and their inefficiency in scenarios with spatially scattered litter. So, it was 

chosen to use a robotic arm due to the pick-and-place potential and a tool to attach to 

it for capturing litter was considered. 

A claw mechanism was explored as a means of collecting litter. This type of 

mechanism causes evaluation on topics such as determining the appropriate positions 
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and orientations for catching objects, devising a strategy to avoid collecting sand, and 

defining the claw’s characteristics. 

Several designs were created and experimented in the simulation environment. 

There were designed 3 mechanically different tools. The 3D renders of the first two 

designs are presented below:  

 

 
Figure 14 presents a design with the dimensions to hold objects of 10 cm in size, 

a mesh net with a spacing of 1.87 mm to allow sand to flow through while collecting 

trash, and innovative finger-like actuators for gripping and securing the collected litter 

against the tool's net. The design assumes that the tool's lower frame would penetrate 

the sand at an entry angle, lifting the litter above the ground and filtering out the sand. 

The two "fingers" would provide additional gripping options for specific objects. 

During the design, it was realized that it would be complex to operate as would 

have multiple actuators control and be litter orientation sensitive. Next, Figure 15 

exhibits the subsequent iteration of the previous tool design. This iteration eliminates 

the two finger-like actuators while retaining the mesh net. This design proposes a new 

approach to collecting objects using a single actuator. The tool functions as follows: 

 

1. The tool opens its scoops. 

2. The tool is positioned at the surface level or pierced into the sand at a 

low angle, with the object to be collected held between the open scoops. 

 

Figure 14 - 3D render of litter catching tool design A. 
 

Figure 15 - 3D render of litter catching tool design B. 
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3. The scoops are closed, capturing the object, and allowing excess sand to 

filter out. 

 

This design offers several advantages. As mentioned before, it requires only one 

actuator, making it lighter and less complex than the previous design. Additionally, it 

was designed a version that allowed the mounting of an RGB-D camera on top of the 

tool presented in ANNEX B. 

Nonetheless, there are some drawbacks to consider on the design of Figure 15. 

Firstly, the design requires the robotic arm to have a workspace capable of reaching 

ground level. Secondly, scoops format may pose challenges in maneuverability and, 

hypothetically, allowing the captured material to escape through the sides.  

 

 
Finally, with some guidance of Mechanical Engineer João Lourenço, the designs 

in Figure 16 and Figure 17 were achieved. These present a whole new style of operation. 

Unlike the two last designs (in Figure 14 and Figure 15), these ones operate 

perpendicularly to the ground. They are composed of a linking piece and two scoops. 

The first was made with the purpose to connect the robotic arm and support the servo 

actuators. The latter was designed with two large, 4-millimeter potholed scoops, with 

2-3 millimetric thick lowered teethed, to better secure, caught, and transport the trash 

collected, and at the same time let sand flow through. Version 2 of this design has more 

define lines to aid the printing process. The orientation to attach to the robotic arm was, 

 

Figure 16 - 3D render of litter catching tool design C v1. 

 

Figure 17 - 3D render of litter catching tool design C v2. 
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also, changed to take advantage of full rotation of the end-effector joint in the UR5 

robotic arm from Universal Robots, consequently improving the workspace. 

To help comparing any of the versions of design C (Figure 16 and Figure 17) with 

design B (Figure 15), Table 5 highlights the respective advantages and disadvantages: 

 

Table 5 - Pros and cons of design C related to B. 

Pros 

Better litter secureness cause by the shell format. 

No need to make a piercing movement, i.e., have an entry angle 
related to the ground and bury part of the tool in the sand. 
Less manipulation complexity as the axis of operation matches the 
arm’s end-effector. 
Augmented robotic arm workspace due to the length of the piece 
connecting the end-effector to the servos. 

Cons 

More weight, as scoops are more massive. 

Two actuators, one for each scoop. 

 

The tool is actuated by two servo motors, with a bracket attached to the scoops 

using M2 screws and nuts. To assemble the tool, the scoops are slid in from the top. To 

be able to print, the tool was divided into five pieces to fit the printer’s heated bed. The 

scoops themselves were split into two pieces. 

In ANNEX B there is design drawings with dimensions of all the tool designs 

developed and the deposit basket. 

When printing, it was requested assistance for the process to the Mechanical 

Engineer João Lourenço. The outcome is presented in Figure 18. The imperfection seen 

on the images lies on misconfiguration between the extrusion nozzle and its multiplier 

parameter that states how much material is deposited. 

 



 
Design, 3D Modeling and Simulation of an Autonomous Beach Cleaning Robot 

 

 

 

  
 27 

  

  

Figure 18 - One piece of the end-effector tool mid printing process. 

4.3. Identifying Litter with AI in Real-world 
Coordinates  

 

During the development process, the use of AI for litter identification was 

deemed the most suitable approach. Image recognition, utilizing cameras and AI 

computer vision algorithms, is proved to be effective in achieving high accuracy. Training 

a model was considered, but the availability of a large dataset for accurate training and 

finding one suitable, that is, with mostly sand backgrounds with trash pictures, was not 

much. 

 

4.3.1. TACO dataset and TensorFlow 
 

To use the TACO dataset for model training, one must download it from the 

GitHub repository and follow the instructions, which will subdivide the dataset images 

into batches of train, validation, and test sets. Dependencies were installed, including 

TensorFlow, a machine learning framework, and the necessary GPU support. Some 

compatibility issues were encountered during the usage of TACO and TensorFlow with 

the code detect.py available on the repository. 

The experimentation of training a model with TACO and TensorFlow, resulted in 

a training of approximately 30 hours for 100 epochs of 1500 images with a mix of 

bounding boxes comprising between an area of 32x32 pixels and 96x96 pixels. The 
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results on the inference on 10 test set images were unsatisfactory, as shown in Figure 

19.  

 

 

 

Figure 19 - Results from testing the TACO dataset after patching the code. 

 
There were no predictions and the ground truth (GT) labeled images show 

displaced outlines in the upper left corner. This outline should be delimiting the object 

to detect. It became evident that using the TACO dataset with the provided detect.py 

code was not the approach to train a model due to version mismatches between the 

software and newer hardware. 

 

4.3.2. YOLO and PyTorch 
 

YOLOv7 and PyTorch, are widely popular for image recognition tasks. Using the 

website Roboflow, a new dataset was found. Additionally, Roboflow offered a Hosted 

API (Remote Server) for inference integration, which was used in the first stages of this 
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thesis. The Hosted API allowed for testing and understanding the process of video 

inference. 

The dataset utilized for training the model, available on Roboflow [27], consists 

of approximately 2400 annotated images with a single class "trash". This binary 

classification resulted in a less precise model when encountering new objects, as it 

would classify them as trash despite potentially low confidence. 

As the development progressed, it became apparent that relying on the hosted 

video inference API was a not the best solution due to two main reasons: 

1. It would require the robot to have a constant internet connection. To 

address this, a SIM card router was considered, allowing the robot to 

connect to public Wi-Fi networks if available or use mobile data. This 

solution limited the robot's usage to areas with good cellular signal or 

access to public Wi-Fi networks. 

2. The video inference using the hosted API introduced significant latency 

of about 10 seconds between the live feed and the results. It is unclear if 

Roboflow API is to blame because they affirm “not to worry about the 

edge device's hardware capabilities as they automatically scale the API 

up and down and do load balancing”. Plus, the usage of the API in a virtual 

machine which, if not well tuned can throttle the efficiency of a PC’s 

resources usage, may favor this issue. 

 

To overcome these limitations, it was downloaded the same dataset used for the 

model in the API and it was trained a model locally, instead of online where didn’t have 

the capability of downloading it for usage anywhere else than Roboflow. This approach 

eliminated the need for an internet connection to perform video inference. 

Training the model locally required some tools and libraries already used with 

the TACO and TensorFlow experiment, like Conda, CUDA toolkit and cuDNN, with the 

addiction of the PyTorch module with GPU support. The training process took 

approximately 2-3 hours to complete for 215 epochs.  
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Figure 20 displays the end results of the model's training, with a particular focus 

on the Mean Average Precision (mAP), which is a metric used to evaluate the model's 

performance. The figure shows the value of mAP 0.95 to be 0.46 which indicate that the 

model's performance is not the best, as the closer to 1 the better. 

 

 

Figure 20 - Model training log using YOLOv7. 

 
Furthermore, using this model in the simulation for litter detection, it was 

concluded that the position, orientation, and characteristics of the camera, such as the 

field of view (FoV), had an impact on the model's prediction confidence. The dataset's 

images suggested that the model performed best when the camera has an aerial view, 

as most of the dataset’s images were captured from this perspective. And, since the 

camera was mounted on the front side of the robot with a low pitch angle, the results 

for litter detection were not consistent. The light effects, like the shadow casting, over 

the litter pieces also contributed for such result.  

Additionally, even when performing video inference locally, there was still a 

latency of approximately 1-3 seconds between the live feed and the processed feed. 

This latency could be attributed to several factors, including the computational load of 

running the inference on the virtual machine with no GPU passthrough. 

 



 
Design, 3D Modeling and Simulation of an Autonomous Beach Cleaning Robot 

 

 

 

  
 31 

  

4.3.3. Pixel to World Coordinates 
 

Once the trash is identified and its bounding box's center pixel coordinates are 

obtained, the technique of transposing pixel coordinates into real-world coordinates, 

described in the Computer Vision Tools section was used. Figure 21 illustrates the inputs 

and outputs of an example using the YOLOv7 detection algorithm pre-train with a model 

called yolov2.tiny that could detect and classify persons: 

 

 

Figure 21 – YOLOv7 inputs and outputs illustration. 

 
In the class “prediction”, “X” and “Y” mark the center pixel coordinates of the 

bounding box and “width” and “height” states its sizes. The other parameters tell of the 

class predicted and level of confidence. 

Then, to transform those coordinates into 3D coordinates, it was used the Intel 

RealSense D435 RGB-D camera gazebo plugin for ROS camera emulation, the library 

provided by the camera producer, and a script developed in Python that utilizes the 

‘rs2_deproject_pixel_to_point’ function to obtain 3D coordinates. 

By combining the image recognition capabilities of the trained model with the 

ability to convert pixel coordinates to real-world coordinates, the system could 

accurately identify and locate litter objects in the simulated environment, as shown in 

Figure 22. 
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Figure 22 – Rviz screenshot of video inference and the litter's position. Above is the video inference and bellow a 
debugging window with the robot description and transforms. 

 

4.4. Development and Integration in ROS 
 

ROS plays a vital role in the development and integration of this project. It serves 

as the framework for various key components, including path planning, robotic arm 

control, video inference, drive control, and other necessary processes for the operation. 

Additionally, ROS facilitates the creation and execution of a simulated environment for 

testing and validation purposes. 

 

4.4.1. Environment and Robot Building 
 

The development of the environment and the robot was assisted by Gazebo. To 

achieve an approximation of a real-life beach, the model editor in Gazebo was utilized. 

Objects representing litter on the beach, shown in ANNEX C, which were used for image 

recognition, were created, and textured using this editor. These objects were placed on 

top of an invisible step, which was just a collision box, with 8 cm height. To cover the 

objects elevation, a visual layer of the sand floor was placed. The reason for this 

elevation was that the ground, in the simulation, is solid and does not allow the tool to 

interact/collide with it as it would in a real sand environment, causing glitches.  
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Another approach was explored to address this limitation. The attempt involved 

making the objects buoyant using a buoyancy plugin and applying that same visual layer 

of sand. The idea was to have the objects floating in the visual layer as the tool would 

collect the object with no collisions with the rigid floor. However, this approach did not 

have the expected effect, as some objects ended up with incorrect orientations as they 

would if the object were settled in the floor when affected by the plugin, as shown in 

Figure 23. 

 

 

Figure 23 - Litter affected by the buoyancy plugin on Gazebo with vertical orientation instead of horizontal. 

 
To enhance the visual realism of the simulation, a plugin called “asv_wave_sim” 

was employed. This plugin introduced a sea and mimicked its movement. Figure 24 

showcases the outcome of the environment development, highlighting the visual 

representation achieved in Gazebo. 

 

 

Figure 24 - Gazebo world with clouds and waves for realism. Robot ready to catch the scattered trash. 

 
For the sand beach in the simulated environment, initially a hilly terrain with a 

slope by the seashore was used, presented in ANNEX E. Due to irregular physics 
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interactions and some issues with the simulation configuration, ended up in certain 

physics parameters being turn off and it was decided to use a regular horizontal plane 

as ground. This provided a more stable and consistent environment and results for the 

robot's operation in Gazebo.  

The script in SDF format included in ANNEX D provides a detailed explanation of 

the parameters used to define the world in Gazebo. It specifies the characteristics of the 

terrain and other environmental elements.  

The robot itself was described using the XACRO format, which contains the 

necessary descriptions for the robot's base, deposit basket, camera, and robotic arm, in 

accordance with the OCD. These components are readable by Gazebo, allowing the 

robot to be spawned and interact with the simulated environment. The description file 

includes information about joint and link relations, visuals, and physics properties of the 

robot.  

The robot's base has dimensions of 100 x 60 x 25 cm and is equipped with four 

wheels measuring 10 cm in width and 12.5 cm in radius. The deposit basket, positioned 

on top and ¼ of the back length of the base, has approximate dimensions of 40.5 x 54 x 

17.9 cm and can hold approximately 14.6 liters of trash. An Intel RealSense D435 camera 

is mounted on the front of the robot’s base, while a UR5 robotic arm is positioned on 

the top and ¼ front of the base. Detailed specifications of these components can be 

found in ANNEX F. 

The file descriptors for the UR5 robotic arm and Intel RealSense camera were 

obtained from their respective GitHub repositories. Additionally, a Gazebo plugin for the 

camera was provided by PAL Robotics S.L.’s GitHub repository. 

The placement of the camera on the robot was constrained by the workspace of 

the robotic arm. Due to limited options, it was positioned in the front, which dampened 

the efficiency of image recognition.  

It is important to note that the dimensions and shapes chosen for the robot and 

its components are not directly related to specific physical characteristics. They were 

selected to be reasonable within the simulated environment and aligned with the OCD. 
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For example, the rectangular box shape of the robot was chosen to facilitate the 

simulation process. And, thus, the robot was baptized as “Boxbot”. 

 

4.4.2. Developed ROS Packages 
 

In this section, it will be enumerated and described the functionality of the ROS 

packages developed and how they interact with one another (Figure 25) to accomplish 

the goal. In the figure, green arrows are the hardware inputs and the red arrows are the 

outputs. The black arrows mark the message trading with the specified topic.  ANNEX G 

presents an overview of nodes and topics that run within ROS. It is important to address 

that only the SWEEP mode, planned in the OCD, was developed. 

 

 

Figure 25 - Packages relation diagram. 

1) Boxbot_gazebo: 

 

The "Boxbot_gazebo" package serves as a beacon package, i.e., responsible for 

launching all the necessary nodes and calling other pre-existing launch files from 

different packages. This approach helps streamline the simulation process by saving 

time and consolidating all the information in a single launch file for simplicity. 
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2) Boxbot_navigation: 

 

This package only contains one node named “boxbot_path_planner”. This node 

is responsible for path planning and managing other actions of the Boxbot, explained 

bellow. Table 6 lists the node’s ROS topics and ROS params: 

 

Table 6 - List of ROS computation processes used in the " boxbot_path_planner" node. 

Subscribed 
Signal bool of publish 
pose of litter 

Odometry 
Boxbot’s 
velocity 

Boxbot’s mode 

Topics /litter/pose /odometry/filtered /cmd_vel /boxbot/state 

Published 
State bool of the litter to 
inform that was it cached 

Boxbot’s mode 
Signal bool of 
caching 

Topics /litter/status /boxbot/state /boxbot/catch 

Parameter 

Maximum 
range of path 
for accepting 
litter pose 

Number of 
divisions 
within the 
sweep area 

Fixed 
referential 
frame 

Area to 
sweep 
(length, 
width) 

Parking 
distance 

 

Initially, the Boxbot's mode is selected through external input streamlined to the 

topic listed as “/boxbot/state” in Table 6, allowing the user to choose from various 

modes such as starting the sweep, stopping movement, going to the initial pose, 

entering teleop mode, or setting the robotic arm to a contracted configuration.  

In sweep mode, the planner generates linear routes, through waypoints and that 

avoids obstacles, based on the specified parameters of area to sweep and the desired 

number of divisions. This divisions sets the width and number of traversals in the area 

to sweep. By sending a request of the waypoint goal to the move_base node, which is 

responsible for navigation. The route is planned, and motion starts. When a signal 

indicating the pose of a detected litter object is received through the topic “/litter/pose”, 

the system verifies if the object's position is within the maximum range parameter of 

the planned path, defined by the operator, and checks the current mode of the Boxbot. 

If the object is within range and the Boxbot is in SWEEP mode, a new goal is published 



 
Design, 3D Modeling and Simulation of an Autonomous Beach Cleaning Robot 

 

 

 

  
 37 

  

to move towards the position of the litter object and park at a define parking distance, 

by the configurable parameter, of it. On arrival, the system then publishes to the topic 

“/boxbot/catch” to stop litter detection and requests, with a string to the 

arm_controll_server node, the desired pose for the end-effector to catch the litter, 

waiting for the result. Upon successful completion, the node publishes to the topic 

“/litter/status” that the litter has been caught and Boxbot returns to perform the sweep. 

In the case of the teleop mode, Boxbot does not follow a route and it tele 

operated by an operator. This mode the operator can chose to do litter detection or not. 

Upon detection, the node checks if the robot is within the parking zone using odometry 

data and verifies if Boxbot has come to a stop based on its velocity. If these conditions 

are met, the node initiates the arm_controll_server sequence to actuate the robotic arm 

and catch the litter detected. 

 

The latency issue associated with the video inference in the yolov7_ros node, 

mentioned in chapter 4.3.2, has a ripple effect on the execution of the Boxbot system, 

impacting the path planner node. During the SWEEP mode, when a detection is received, 

the Boxbot's next operation is to measure the depth of the center pixel. However, due 

to the time it takes for the detection, there was an offset between the received image 

and the live feed depth data image, which results in a displacement in the location of 

the objects. Consequently, the Boxbot gets this goal incorrectly. 

To address this problem, a validation step was introduced. When a detection is 

received, the Boxbot moves backward to get the object in the FoV of the camera. It then 

pauses for a few seconds to allow the video inference and the live feed to align properly. 

After this synchronization, the Boxbot resends the goal to the correct location for the 

detected object. Upon reaching the destination, to validate the accuracy of the litter 

positioning, Boxbot performs an additional location goal. 

By incorporating this validation step, it is mitigated the issue caused by the 

latency in the video inference, ensuring that the objects are correctly detected and 

localized. 
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3) litter_detect:  

 

The “litter_detect” package includes various early test scripts that were created 

during the development, like the hosted API video inference from Roboflow to detect 

litter, and the robotic arm movement controlling through the moveit library. As the 

development progressed, a node with the same name as the package became 

responsible for managing the detected litter objects. Table 7 lists the node’s ROS topics 

and ROS params. 

  

Table 7 - List of ROS computation processes used in the " litter_detect" node. 

Subscribed 
Detection 
results from 
yolov7_ros 

Depth camera 
data 

Litter’s state 
bool 

Signal bool of 
caching  

Topics /yolov7/yolov7 
/camera/depth

/image_raw 
/litter/status /boxbot/catch 

Published Pose of litter Signal bool for publish pose of litter 

Topics /tf /litter/pose 

Parameter Confidence threshold Fixed referential system 

 

The “litter_detect” node performs a sequence of several tasks. Firstly, when the 

catching flag is set to false, received via the topic “/boxbot/catch”, and results of the 

detected trash objects, received via the topic “/yolov7/yolov7”, are above the 

confidence threshold, the node proceeds to convert the detected objects bounding box 

center pixel coordinates into a corresponding 3D world position, by using the 

‘rs2_deproject_pixel_to_point’ function and then make a transformation to the fixed 

referential system, in this case the transform named “map”. This conversion relies on 

the depth camera data and follows the method described in 3.2.3. Then it stores the 

correspondent litter’s 3D world pose into a FIFO (First-In-First-Out) list. Secondly, while 

there is any element on the list, the node publishes the litter’s pose via topic “/tf.” It 

also publishes a signal through the topic “/litter/pose” to notify other nodes about the 

publication of the litter's pose. The node publishes another element of the list when it 



 
Design, 3D Modeling and Simulation of an Autonomous Beach Cleaning Robot 

 

 

 

  
 39 

  

is confirmed that the current litter has been collected, signaled via the topic 

“/litter/status”. 

 

4) arm_controll_pkg: 

 

This package is constituted by a node named “arm_controll_server”. This node 

provides ROS action and is a wrapper around the ROS actions provided by the moveit 

node, meaning that works as a driver between the moveit controller package and the 

requested actions of the “boxbot_path_planner” node. Table 8 lists the node’s ROS 

topics and ROS params: 

 

Table 8 - List of ROS computation processes used in the " arm_controll_server" node. 

Request 
Named type of operation [litterCoor, home, collected, up, deposit, 

closed, open] 

Response Operation status [success / failure] 

Parameters 
End-effector pose 

offset 

Fixed referential 

frame 
Z-axis offset to litter  

 

This node receives a request goal of the type of operation to perform. The 

possible types are “litterCoor”, “home”, “collected”, “up”, “deposit”, “closed”, “open”.  

If the input is "litterCoor", the scoops are opened and the litter’s pose is set as a 

goal for the end-effector, considering the offset of the end-effector and the approach Z 

offset parameters. The end-effector pose offset parameters is needed because despite 

the knowledge of the distance to the litter, its depth is unknown. The usage of this offset 

is to ensure to catch the litter by its center of mass. The Z-axis offset is to set a waypoint, 

for the end-effector to move to, above the pose of the litter identified, in order to ensure 

a vertical entry angle for catching the litter. It is requested that goal to the moveit node 

and a movement plan is created and executed if possible. Right after, the actual pose of 

the litter is requested for the end-effector to move to and thus, planned and executed. 
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Once the end-effector reaches the requested pose, the scoops are closed, and the 

robotic arm moves through a series of preset waypoints of joint angles to keep the tool 

pointed down. Throughout this sequence of events the operation status is constantly 

reported back and monitored.  

The other types of operation for request, are named joints configurations saved 

in a configuration file which have their respective joint angles, shown in ANNEX H . The 

last two operations requests, i.e., “open” and “close”, are associated with the scoops 

and the others with the arm. The "arm_control_server" node manages these types of 

requests by evaluating to which group, arm or scoops, is directed to then requesting the 

goal to the moveit node. The moveit node has access to the configuration file and sets 

joint angles according to the named joint requested and is called every time that is 

needed to perform a requested operation. 

 

5) boxbot_arm: 

 

This package holds the launch files for the execution of the Moveit controller, 

along with the configuration files obtained through the XACRO files from the 

"Boxbot_description" package, allowing seamless integration with the MoveIt 

controller. 

The “boxbot_arm” package was created utilizing the "moveit_setup_assistant" 

package. MoveIt Setup Assistant simplifies the development process of configuring 

robotic arms and other joint-controlled robots. By providing a descriptor file of a robot, 

such as a URDF or XACRO, it generates all the necessary configuration files for the 

MoveIt controller to operate. With MoveIt Setup Assistant, it becomes possible to define 

joint limits, link chains, configure collision checking between links, set predefined joint 

positions, choose the type of controller (position, velocity, or effort), and configure PID 

gains, as well as select the planner algorithm for inverse kinematics calculations. 
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6) Boxbot_description: 

 

The "Boxbot_description" package contains the descriptor files for various 

components of the Boxbot system. These descriptor files define the properties of the 

Boxbot, the UR5 robotic arm, the Intel® RealSense™ D435 RGB-D camera, the deposit 

basket, and the tool attachment for the UR5. Within these descriptor files, properties 

such as material colors, collision physics, and shapes are defined for each link. The 

shapes can be represented by either a mesh file (exported CAD files) or simple geometric 

shapes. Additionally, the package includes Gazebo plugins for various functionalities. 

These plugins include the IMU (Inertial Measurement Unit), GPS, LiDAR, ROS controller, 

and libsense for the RGB-D camera plugins. 

 

4.5. ROS Simulation 
 

To run the ROS simulation environment, in addition to the installation of the 

mentioned packages and dependencies listed in ANNEX A, there is the need to compile 

using the command catkin_make install in the ROS workspace directory.  

Then one should execute the command roslaunch boxbot_gazebo 

demo_gazebo.launch in a terminal and additionally, in a new terminal window, run the 

bash script with the command ./gz_setup. The script sends commands to gazebo to 

resume the simulation, once it starts paused, and set the gravity to zero. This is 

necessary to make time for the controller_manager to initialize the motor drivers. After 

a few seconds, the script reestablishes the gravity to prevent the arm joints from flailing. 

When the terminal that executed the roslaunch command pauses printing initialization 

messages, one must execute another command to activate the SWEEP mode in Boxbot. 

It should be introduced in the terminal: rostopic pub /boxbot/state std_msgs/UInt8 

“data: 0”. Using “data: 1“ puts Boxbot in standby, interrupting the current task. Using 

“data: 2” makes Boxbot move to the initial point. Using “data: 3” set Boxbot to TELEOP 

mode and using “data: 4” forces the robotic arm to the preset position of collected.  
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5. Results 
 

This chapter displays the results obtained concerning the litter detection, litter 

collection, and overall system simulation. To obtain the results for those subjects, it was 

used the objects presented in ANNEX C and for that concern the objects are going to be 

referred, throughout this chapter, as they are labeled in the annex.  

 

5.1. Litter Detection 
 

This section shows test’s results to the capability of detecting litter. These tests 

were conducted with Boxbot stopped, an ambient yellow light, the camera with a FoV 

of 90°, 640x480 image resolution, and with one object at a time. Figure 26 shows such 

results with a detection confidence threshold of 35%. 

 

  

  

Figure 26 - Detection of objects 1 and 2 in the upper row, and object 3 and 4 last row. 



 
Design, 3D Modeling and Simulation of an Autonomous Beach Cleaning Robot 

 

 

 

  
 43 

  

Placing the objects in front of the camera and at a distance bellow 1 meter, as 

seen in the images above, all the objects were detected successfully. More tests were 

conducted to delineate zones of detection with confidence thresholds of 35%, 50% and 

85%, using objects 2 and 4, shown in the figures below. 

 

   

Figure 27 – Detection zone with confidence of 35%, 50% and 85% for object 4. 

   

Figure 28 – Detection zone with confidence of 35%, 50% and 85% for object 2. 

 
In white are delimited the image FoV capture, while in cyan is delimited the 

detection zone for the tested objects. It is concluded that because of object 4 being 

dimensional larger the distance of detection is higher for object 2. Object 4 gets a 

maximum range of 2.1 meters with 35% of confidence threshold, 1.65 meters with 50% 

and 1.1 meters with 35%. Object 2 gets a maximum range of 0.9 meters with 35% of 

confidence threshold, 0.76 meters with 50% and no detection with 85%. Both results 

have gaps within the zone due to noise in the detection provoked by shadow effects on 

the object and camera position. 
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5.2. Litter Collection 
 

The testing of the capability of catching and securing litter, started in the 1st 

version of design C, presented in Figure 16, but was the 2nd version of design C, 

presented in Figure 17, that presented better results for the reasons mentioned in 

Chapter 4.2. As shown in Figure 29, the end-effector tool was successful on collecting 

the objects, but object 4 is orientation sensitive and took a second try to catch it. 

Furthermore, it is concluded that if object 4 is laid flat on its side and with the same 

heading as Boxbot, it will not be caught.  

 

  

  

Figure 29 - Tool design C v2 collecting objects 1 and 2 in the upper row, and object 3 and 4 lower row. 

These results were obtained with the following parameter values: approach Z 

offset of 18 cm, end-effector position offset of 2 cm in the X and Z axis, and 1 cm in the 

Y axis.  
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5.3. System Simulation 
 

Here is going to be presented results of the simulation, i.e., putting in practice 

the tests done above, adding the motion aspect. These results were obtained in an area 

of 10x10m divided by 4 traversals, as shown in Figure 30 and Figure 31. Remind that the 

objects are numbered as its correspondents in ANNEX C. 

 

 

Figure 30 – Boxbot defined sweeping trajectory and trash.  

 

Figure 31 – Boxbot detour from the defined trajectory to catch object 1 resuming the pathing to the defined 
trajectory. 
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Running the simulation and following the path shown in the figure above, the 

first object was detected successfully. Boxbot could locate it in the world successfully 

and after some attempts in moving towards the litter, Boxbot arrived at a parking 

position adjacent to the object. Boxbot was not always successful in traveling to the 

point. Sometimes it starts over maneuvering, i.e., moving forward then backwards trying 

to adjust its orientation. The main cause of such behavior was not being able to achieve 

the optimal set of parameters for move_base, ros_controllers and world physics which 

are correlated. Getting the optimal set of parameters, it’s only done by trial and error.  

After stopping in the vicinity of the first object, Boxbot was successful in placing 

the robotic arm above the object for litter collection, opening the scoops, picking the 

object up, and dropping it the deposit basket, presented in Figure 32, just like intended. 

 

  

Figure 32 - Boxbot collecting and depositing the object 1. 

For the following two litter objects, detection failed and therefore there was no 

litter collection. The first cigarette, labelled with the number 2 in Figure 30, is assumed 

to fail detection due to being out of range for detection, according to the zoning tests 

done earlier. The same reason is applied to object 3. In Figure 33 is shown the miss 

detection of yolov7_ros, in the way to pass by objects 2 and 3. 
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Figure 33 - Rviz image of yoloV7 with no detection returned identified by the red rectangle. 

 

After passing through  these two objects, Boxbot detected the second cigarette 

and located it in the world, as shown in Figure 34, making it replan its trajectory. This 

happened without much maneuvering making it successful in stopping next to the 

object. The collection procedure was also completed with success. 

 

 

Figure 34 - Rviz visualization of Boxbot detecting and planning parking for the collection of object 2. 

 
Object 4 was successfully detected and Boxbot started its routine of parking next 

to the litter. Here, there were multiple attempts on approaching as it starts over 

maneuvering. Upon parking a flaw was display. The placement offset of the end-
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effector, i.e., the parameter to place the end-effector above the litter, is fixed and set in 

the launch of the simulation. This parameter had to be adjusted to avoid the tool 

colliding with object 4, as the scoops are opening (presented in Figure 35), but this high 

is uncalled for the other objects.  

 

 

Figure 35 - Boxbot trying to collect object 4. 

These results validate the definition of proof of concept, i.e., that the concept 

and design are feasible. The operation of the SWEEP mode is presented in ANNEX I or 

by using the https://youtu.be/HWGezZx22wU?si=GnkmhxO9XSIpTl_e video link.  

https://youtu.be/HWGezZx22wU?si=GnkmhxO9XSIpTl_e
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6. Conclusion 
 

This dissertation aimed to develop a robot for autonomously cleaning beaches 

by combining AI, navigation, robotic arm control, and ROS. The robot localization and 

environment perception in beach locations were issues that required research and study 

to implement a proper solution. Therefore, it was possible to start developing a virtual 

robot, which led to the realization of a simulation in ROS. 

It was understood the need of tools to train a model. Tools like, TensorFlow or 

Pytorch, libraries for GPU and dataset. The TACO dataset was the best found, but the 

script provided to train the model was outdated, resulting in a model that did not detect 

litter. In the search for datasets and hosted inference, Roboflow proved to be a great 

service in obtaining quick results in this area. The introduction of the YOLOv7 detection 

algorithm made it possible to train a model based on a given dataset, in a simple and 

direct way, since this application resulted from a model capable of detecting litter. 

In the integration of the robotic arm in ROS, the use of Moveit package is 

concluded to be necessary in these types of projects, as removes the need to program 

inverse kinematics and the controllers. Early designs of grippers attached to the robotic 

arm showed some bad results on moving the end-effector to the goal coordinate. It was 

concluded that the arm functions better with the gripper having the same vector of 

operation as its end-effector. 

Finally, the use of a virtual machine diminished the PC resources and a disabled 

the GPU usage which led to a temporal mismatch between video inference and depth 

data in the ROS simulation using AI. Using a virtual machine (VMware) is the most 

practical way to install an operating system (Linux) in order to use ROS in project 

development. 



 
Conclusion 
 

 

 

 

  
50   

 

Overall, with the obtained results in the ROS simulation it can be concluded that 

all the developed work integrated in the simulation works and provides a foundation for 

further improvements and potential real-world applications. 

 

6.1. Future Work 
  

In future work is needed to:  

 

• Improve the image recognition capabilities by enriching the dataset with 

more classes; 

• Perform behavior tests outside of the virtual machine, utilizing GPU 

support; 

• Improving the local move_base planner parameters, as already described 

in fifth chapter; 

• Development the MAP mode. Program this additional mode that move 

Boxbot to prior mapped litter positions for collection; 

• Development of a prototype to conduct experiments. 
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ANNEX A 
 
List of ROS packages used: 
 

Package Description 

arm_controll_pkg1 
Higher-level controller linking with 
moveit_ros_move_group package. 

asv_wave_sim 

Gazebo plugin with wave development for visual 
realism. Here is also added the created beach world 
and object descriptors files for this dissertation. 
 
GitHub - srmainwaring/asv_wave_sim at gazebo11 

boxbot_navigation1 
Boxbot center of operation as it does movement 
planner, mode selector, arm commands. 

controller_manager Lower-level motor controller. 

gazebo_ros Engine for world simulation. 

interactive_marker_twist_server 
Serve interactive markers for control of a robot 
drive base. 

litter_detection1 
Package responsible for transform to a 3D pose, list, 
and queue the objects received via image 
recognition. 

move_base 

High-level controller for Boxbot movement and 
obstacle avoidance composed with multiple 
parameters such as the global planner, local 
planner, footprint, and many other. 

moveit_ros_move_group 
High-level controller for UR5 planning and inverse 
kinematics movement. 

robot_localization 
GPS integration is done within this package with the 
use of EKF localization method. 

robot_state_publisher 

robot_state_publisher uses the URDF specified by 
the parameter robot_description and the joint 
positions from the topic joint_states to calculate 
the forward kinematics of the robot and publish the 
results via tf. 

 
1 Packages created. 

https://github.com/srmainwaring/asv_wave_sim/tree/gazebo11
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Package Description 

realsense 

Package of the camera used for its descriptor. This 
package it is only fully functional with a real Intel 
Realsense camera.  
 
GitHub - leggedrobotics/realsense-ros-rsl: Intel(R) 
RealSense(TM) ROS Wrapper for D400 series, 
SR300 Camera and T265 Tracking Module 

realsense_gazebo_plugin 
Package needed to simulate the camera on Gazebo. 
 
GitHub - pal-robotics/realsense_gazebo_plugin 

rviz Visual debugging package. 

twist_mux 
Mux selector between multiple cmd_vel topic 
publishers according to a given priority. 

universal_robot 

Package need for its UR5 descriptor. 
 
GitHub - ros-industrial/universal_robot: ROS-
Industrial Universal Robots support 
(https://wiki.ros.org/universal_robot) 

yolov7_ros 

Package responsible for image recognition and 
video inference given a weighted trained model. 
 
GitHub - lukazso/yolov7-ros: ROS package for 
official YOLOv7 

 
Ros dependencies (other packages that the previous are dependent on):  
 

• eigen-stl_containers 

• random_numbers 

• object_recognition_msgs 

• octomap_msgs 

• ddynamic_reconfigure 

• graph_msgs 

• ruckig 

• pybind11_catkin 

• warehouse_ros 

• eigenpy 

• rosparam_shortcuts 

• move_base_msgs 

• vision_msgs 

• robot_localization 

• interactive_marker_twist_server 

• twist_mux 

• move_base 

• trac-ik-kinematics-plugin 

• dwa_local_planner 

• effort-controllers 

• JointTrajectoryController 

• hector-gazebo-plugins 
 
 
 
 
 

https://github.com/leggedrobotics/realsense-ros-rsl
https://github.com/leggedrobotics/realsense-ros-rsl
https://github.com/leggedrobotics/realsense-ros-rsl
https://github.com/pal-robotics/realsense_gazebo_plugin
https://github.com/ros-industrial/universal_robot
https://github.com/ros-industrial/universal_robot
https://github.com/ros-industrial/universal_robot
https://github.com/lukazso/yolov7-ros
https://github.com/lukazso/yolov7-ros
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Other dependencies: 
 

Libraries: Python modules (pip install): 

CGAL Yolov7_ros requirements text list 

Pyrealsense2 scipy 

Intel RealSense SDK 2.0  

 
 
 
  



 
Design, 3D Modeling and Simulation of an Autonomous Beach Cleaning Robot 

 

 

 

  
 xi 

  

 

ANNEX B 
 
Drawings of the model designs for the deposit basket and gripper. 
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ANNEX C 
 
All the objects created in Gazebo representing litter. 
 

  
Object 1 – Cube textured with plastic 

bottle. Dimensions:  5 x 5 x 5 cm 
Object 2 – Cigarette. 

Dimensions: 8.5 cm x 8.6 mm Ø 

  
Object 3 – Sphere of Styrofoam. 

Dimensions: 10 cm Ø 
Object 4 – Metal soda can. 

Dimensions: 12cm x 6.6 cm Ø   
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ANNEX D 
 
Gazebo world file descriptor created. 
 
<sdf version='1.4'> 

  <world name='default'> 

    <!-- A global light source --> 

    <include> 

      <uri>model://sun</uri> 

      <pose>13.575 5.5375 1000.0 0 0 0</pose> 

    </include> 

    <!--<physics name="default_physics" 

default="true" type="ode"> 

      <max_step_size>0.01</max_step_size> 

      <real_time_factor>1</real_time_factor> 

<real_time_update_rate>100</real_time_update_rate> 

      <ode> 

        <solver> 

          <type>quick</type> 

          <iters>150</iters> 

          <sor>1.4</sor> 

        </solver> 

      </ode> 

    </physics>--> 

    <scene> 

      <ambient>0.01 0.01 0.01 1.0</ambient> 

      <sky> 

        <clouds> 

          <speed>12</speed> 

        </clouds> 

      </sky> 

      <shadows>1</shadows> 

    </scene> 

    <spherical_coordinates> 

      <latitude_deg>63.4520171</latitude_deg> 

      <longitude_deg>10.3844778</longitude_deg> 

    </spherical_coordinates> 

 

    <include> 

      <name>beach</name> 

      <uri>model://sand</uri> 

      <pose>0 0 0.1 0 0 0</pose> 

    </include> 

    <include> 

      <name>fakeBeach</name> 

      <uri>model://sand_no_c</uri> 

      <pose>0 0 0.12 0 0 0</pose> 

    </include> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

World 
scenario and 

physics 
description 

 

Beach files 
descriptor 

where last is a 
separate file 

without 
collision 
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    <include> 

      <name>pbottle</name> 

      <uri>model://pbottle</uri> 

      <pose>3.615 0.6 0.16 0 0 0</pose> 

    </include> 

    <include> 

      <name>step_pbottle</name> 

      <uri>model://step</uri> 

      <pose>3.615 0.6 0.1 0 0 0</pose> 

    </include> 

     

    <include> 

      <name>cigarrete</name> 

      <uri>model://cigarrete</uri> 

      <pose>9.27 1.05 0.16 1.5 0 0</pose> 

    </include> 

    <include> 

      <name>step_cigarrete</name> 

      <uri>model://step</uri> 

      <pose>9.27 1.05 0.1 0 0 0</pose> 

    </include> 

     <include> 

      <name>styrofoam</name> 

      <uri>model://Styrofoam</uri> 

      <pose>11.05 2.875 0.16 -1.2 -.5 0.35</pose> 

    </include> 

    <include> 

      <name>step_sty</name> 

      <uri>model://step</uri> 

      <pose>11.05 2.875 0.1 0 0 0</pose> 

    </include> 

 

    <include> 

      <name>cigarrete2</name> 

      <uri>model://cigarrete</uri> 

      <pose>1.755 4.6 0.16 1.5 0 0.6254</pose> 

    </include> 

    <include> 

      <name>step_cigarrete2</name> 

      <uri>model://step</uri> 

      <pose>1.755 4.6 0.1 0 0 0.6254</pose> 

    </include> 

 

    <include> 

      <name>SodaCan</name> 

      <uri>model://RustySodaCan</uri> 

      <pose>5 6.25 0.16 0 0 0</pose> 

    </include> 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Descriptor of the 
object litter 

models with the 
elevated invisible 

step. 
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    <include> 

      <name>step_can</name> 

      <uri>model://step</uri> 

      <pose>5 6.25 0.1 0 0 0</pose> 

    </include> 

 

    <include> 

      <name>pbottle2</name> 

      <uri>model://pbottle</uri> 

      <pose>8.615 8.8 0.16 0 0 0</pose> 

    </include> 

    <include> 

      <name>step_pbottle2</name> 

      <uri>model://step</uri> 

      <pose>8.615 8.8 0.1 0 0 0</pose> 

    </include 

 

    <include> 

      <uri>model://ocean_waves</uri> 

    </include> 

    <gui fullscreen='0'> 

      <camera name='user_camera'> 

        <pose frame=''>9.0 -12.0 6.0 0.0 0.3 

2.2</pose> 

        <view_controller>orbit</view_controller> 

        

<projection_type>perspective</projection_type> 

      </camera> 

    </gui> 

  </world> 

</sdf> 

 
  

 

Including wave 
plugin 

 

Descriptor of the 
object litter 

models with the 
elevated 

invisible step. 
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ANNEX E 
 
First version of sand floor, developed in Blender, before being discarded due to 
incompatibilities with Gazebo.  
This would have intersected with the waves plugin and have slip physics. 
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ANNEX F 
 
Universal Robotics UR5 model specifications: 
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Intel® RealSense™ D435 RGB-D specifications: 
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ANNEX G 
 
rqt_graph2 showing all active topics and nodes and how they interconnect. 
 

 

 
2 ROS debuging tool.  
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ANNEX H 
 
Config file with the robotic arm description. Within are the named operation “home”, 
“collected”, “up”, “deposit”, “closed”, “open” and their joints preset positions. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<!--This does not replace URDF, and is not an extension of URDF. 

    This is a format for representing semantic information about the 

robot structure. 

    A URDF file must exist for this robot as well, where the joints and 

the links that are referenced are defined 

--> 

<robot name="Boxbot"> 

    <xacro:arg name ="model" default =""/>  

    <!--GROUPS: Representation of a set of joints and links. This can be 

useful for specifying DOF to plan for, defining arms, end effectors, etc-

-> 

    <!--LINKS: When a link is specified, the parent joint of that link 

(if it exists) is automatically included--> 

    <!--JOINTS: When a joint is specified, the child link of that joint 

(which will always exist) is automatically included--> 

    <!--CHAINS: When a chain is specified, all the links along the chain 

(including endpoints) are included in the group. Additionally, all the 

joints that are parents to included links are also included. This means 

that joints along the chain and the parent joint of the base link are 

included in the group--> 

    <!--SUBGROUPS: Groups can also be formed by referencing to already 

defined group names--> 

    <group name="manipulator"> 

        <chain base_link="ur5_base_link" tip_link="center_tool"/> 

    </group>  

    <group name="gripper"> 

        <joint name="interface_joint"/> 

        <joint name="R_joint"/> 

        <joint name="L_joint"/> 

    </group> 

    <!--GROUP STATES: Purpose: Define a named state for a particular 

group, in terms of joint values. This is useful to define states like 

'folded arms'--> 

    <group_state name="home" group="manipulator"> 
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        <joint name="ur5_elbow_joint" value="0"/> 

        <joint name="ur5_shoulder_lift_joint" value="0"/> 

        <joint name="ur5_shoulder_pan_joint" value="0"/> 

        <joint name="ur5_wrist_1_joint" value="0"/> 

        <joint name="ur5_wrist_2_joint" value="1.5708"/> 

        <joint name="ur5_wrist_3_joint" value="0"/> 

    </group_state> 

    <group_state name="collected" group="manipulator"> 

        <joint name="ur5_elbow_joint" value="2.07694"/> 

        <joint name="ur5_shoulder_lift_joint" value="-2.12930"/> 

        <joint name="ur5_shoulder_pan_joint" value="0"/> 

        <joint name="ur5_wrist_1_joint" value="0.0372"/> 

        <joint name="ur5_wrist_2_joint" value="1.5708"/> 

        <joint name="ur5_wrist_3_joint" value="0"/> 

    </group_state> 

    <group_state name="up" group="manipulator"> 

        <joint name="ur5_elbow_joint" value="0.7621"/> 

        <joint name="ur5_shoulder_lift_joint" value="-1.9704"/> 

        <joint name="ur5_shoulder_pan_joint" value="0"/> 

        <joint name="ur5_wrist_1_joint" value="1.2269"/> 

        <joint name="ur5_wrist_2_joint" value="1.5708"/> 

        <joint name="ur5_wrist_3_joint" value="0"/> 

    </group_state> 

    <group_state name="deposit" group="manipulator"> 

        <joint name="ur5_elbow_joint" value="-0.8365"/> 

        <joint name="ur5_shoulder_lift_joint" value="-1.5987"/> 

        <joint name="ur5_shoulder_pan_joint" value="0"/> 

        <joint name="ur5_wrist_1_joint" value="-3.6063"/> 

        <joint name="ur5_wrist_2_joint" value="-1.7474"/> 

        <joint name="ur5_wrist_3_joint" value="0"/> 

    </group_state> 

    <group_state name="closed" group="gripper"> 

        <joint name="R_joint" value="0"/> 

        <joint name="L_joint" value="0"/> 

    </group_state> 

    <group_state name="open" group="gripper"> 

        <joint name="R_joint" value="-1.2217"/> 

        <joint name="L_joint" value="1.2217"/> 

    </group_state> 

    <!--END EFFECTOR: Purpose: Represent information about an end 

effector.--> 

    <end_effector name="geef" parent_link="center_tool" group="gripper" 

parent_group="manipulator"/> 

    <!--PASSIVE JOINT: Purpose: this element is used to mark joints that 

are not actuated--> 
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    <passive_joint name="wheel_Fl_joint"/> 

    <passive_joint name="wheel_Fr_joint"/> 

    <passive_joint name="wheel_Rl_joint"/> 

    <passive_joint name="wheel_Rr_joint"/> 

    <!--VIRTUAL JOINT: Purpose: this element defines a virtual joint 

between a robot link and an external frame of reference (considered fixed 

with respect to the robot)--> 

    <!--<virtual_joint name="base_fixed" type="fixed" 

parent_frame="base_body" child_link="body"/>--> 

    <!--DISABLE COLLISIONS: By default it is assumed that any link of the 

robot could potentially come into collision with any other link in the 

robot. This tag disables collision checking between a specified pair of 

links. --> 

    <disable_collisions link1="ur5_base_link_inertia" link2="body" 

reason="Adjacent"/> 

    <disable_collisions link1="ur5_base_link_inertia" link2="buck_link" 

reason="Never"/> 

    <disable_collisions link1="ur5_base_link_inertia" link2="camera_link" 

reason="Never"/> 

    <disable_collisions link1="ur5_base_link_inertia" 

link2="ur5_shoulder_link" reason="Adjacent"/> 

    <disable_collisions link1="ur5_base_link_inertia" link2="wheel_Fl" 

reason="Never"/> 

    <disable_collisions link1="ur5_base_link_inertia" link2="wheel_Fr" 

reason="Never"/> 

    <disable_collisions link1="ur5_base_link_inertia" link2="wheel_Rl" 

reason="Never"/> 

    <disable_collisions link1="ur5_base_link_inertia" link2="wheel_Rr" 

reason="Never"/> 

    <disable_collisions link1="body" link2="buck_link" 

reason="Adjacent"/> 

    <disable_collisions link1="body" link2="camera_link" 

reason="Adjacent"/> 

    <disable_collisions link1="body" link2="ur5_shoulder_link" 

reason="Never"/> 

    <disable_collisions link1="body" link2="wheel_Fl" reason="Adjacent"/> 

    <disable_collisions link1="body" link2="wheel_Fr" reason="Adjacent"/> 

    <disable_collisions link1="body" link2="wheel_Rl" reason="Adjacent"/> 

    <disable_collisions link1="body" link2="wheel_Rr" reason="Adjacent"/> 

    <disable_collisions link1="buck_link" link2="camera_link" 

reason="Never"/> 

    <disable_collisions link1="buck_link" link2="ur5_shoulder_link" 

reason="Never"/> 

    <disable_collisions link1="buck_link" link2="wheel_Fl" 

reason="Never"/> 
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    <disable_collisions link1="buck_link" link2="wheel_Fr" 

reason="Never"/> 

    <disable_collisions link1="buck_link" link2="wheel_Rl" 

reason="Never"/> 

    <disable_collisions link1="buck_link" link2="wheel_Rr" 

reason="Never"/> 

    <disable_collisions link1="camera_link" link2="ur5_shoulder_link" 

reason="Never"/> 

    <disable_collisions link1="camera_link" link2="wheel_Fl" 

reason="Never"/> 

    <disable_collisions link1="camera_link" link2="wheel_Fr" 

reason="Never"/> 

    <disable_collisions link1="camera_link" link2="wheel_Rl" 

reason="Never"/> 

    <disable_collisions link1="camera_link" link2="wheel_Rr" 

reason="Never"/> 

    <disable_collisions link1="clamp_base_link" link2="clamp_l" 

reason="Adjacent"/> 

    <disable_collisions link1="clamp_base_link" link2="clamp_r" 

reason="Adjacent"/> 

    <disable_collisions link1="clamp_base_link" link2="ur5_wrist_1_link" 

reason="Never"/> 

    <disable_collisions link1="clamp_base_link" link2="ur5_wrist_2_link" 

reason="Never"/> 

    <disable_collisions link1="clamp_base_link" link2="ur5_wrist_3_link" 

reason="Adjacent"/> 

    <disable_collisions link1="clamp_l" link2="clamp_r" reason="Never"/> 

    <disable_collisions link1="clamp_l" link2="ur5_wrist_2_link" 

reason="Never"/> 

    <disable_collisions link1="clamp_l" link2="ur5_wrist_3_link" 

reason="Never"/> 

    <disable_collisions link1="clamp_r" link2="ur5_wrist_2_link" 

reason="Never"/> 

    <disable_collisions link1="clamp_r" link2="ur5_wrist_3_link" 

reason="Never"/> 

    <disable_collisions link1="ur5_forearm_link" 

link2="ur5_upper_arm_link" reason="Adjacent"/> 

    <disable_collisions link1="ur5_forearm_link" link2="ur5_wrist_1_link" 

reason="Adjacent"/> 

    <disable_collisions link1="ur5_shoulder_link" 

link2="ur5_upper_arm_link" reason="Adjacent"/> 

    <disable_collisions link1="ur5_shoulder_link" link2="wheel_Fl" 

reason="Never"/> 

    <disable_collisions link1="ur5_shoulder_link" link2="wheel_Fr" 

reason="Never"/> 
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    <disable_collisions link1="ur5_shoulder_link" link2="wheel_Rl" 

reason="Never"/> 

    <disable_collisions link1="ur5_shoulder_link" link2="wheel_Rr" 

reason="Never"/> 

    <disable_collisions link1="ur5_upper_arm_link" link2="wheel_Rl" 

reason="Never"/> 

    <disable_collisions link1="ur5_upper_arm_link" link2="wheel_Rr" 

reason="Never"/> 

    <disable_collisions link1="wheel_Fl" link2="wheel_Fr" 

reason="Never"/> 

    <disable_collisions link1="wheel_Fl" link2="wheel_Rl" 

reason="Never"/> 

    <disable_collisions link1="wheel_Fl" link2="wheel_Rr" 

reason="Never"/> 

    <disable_collisions link1="wheel_Fr" link2="wheel_Rl" 

reason="Never"/> 

    <disable_collisions link1="wheel_Fr" link2="wheel_Rr" 

reason="Never"/> 

    <disable_collisions link1="wheel_Rl" link2="wheel_Rr" 

reason="Never"/> 

    <disable_collisions link1="ur5_wrist_1_link" link2="ur5_wrist_2_link" 

reason="Adjacent"/> 

    <disable_collisions link1="ur5_wrist_1_link" link2="ur5_wrist_3_link" 

reason="Never"/> 

    <disable_collisions link1="ur5_wrist_2_link" link2="ur5_wrist_3_link" 

reason="Adjacent"/> 

</robot>  
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ANNEX I 
 
In this annex are shown images, regarding the execution of two simulations. 
 
Simulation of person avoidance: 
 

 
 
Rviz image showing Boxbot replanning its path to avoid a laying down person. To 

impersonate a person, it was used a rectangular box with dimensions of 1.80 x 0.5 x 0.3 

meters, which is mapped on the costmap in black. In red, the path done by Boxbot, and 

in green, the planned path after realization that a straight trajectory was not doable.  
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Simulation of litter detection and catching using SWEEP mode: 
 
 

 
Boxbot is in SWEEP mode and beginning the operation. At the distance it can be seen a 
litter object that has not been detected yet. 
 

 

 
First detection of litter, in this case, a cube textured with plastic bottle, which led 

Boxbot to interrupt its trajectory. Here it is seen the litter referential indicating its pose 

relatively to the simulation world. 
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The figure above depicts the necessary Boxbot reversing, due to the misperception of 

litter, caused by the data delay offset of the yolo_v7 detection and the depth data. 

Represented by the frame of reference is the litter’s position. The red vector is the new 

pose waypoint (desired position and orientation of the robot) for the robot to reverse.  

 

 

 
After reversing was completed, the litter has re-entered the camera’s FoV. Boxbot has 

re-perceived the litter and corrected its position. A new waypoint, marked by the 

vector, has been set and Boxbot is moving towards it. 
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Boxbot is catching the litter using the arm and the gripper, taking into account to the 

preset end-effector pose offset parameters.  

 

  
Boxbot’s gripper has caught the litter, and the robotic arm moves to deposit the litter 

in the deposit basket. 
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Boxbot continues its path to the previous waypoint, that is, it resumes the waypoint 

defined before the litter detection and catch. 

 

 
In the figure above, a new waypoint is set (red vector) for Boxbot to do the second line 

of sweeping.  

 


