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Abstract

Brain age gap estimation (BrainAGE) is a putative ageing biomarker that

aims to identify the onset of pathological ageing of the brain and moni-

tor its progress. Diagnosing age-related brain conditions in a preclinical

stage could enable early interventions, decreasing the disease burden. BrainAGE

emerges as a promising ageing biomarker that seems to tackle biological ageing

mechanisms. Its value is sensitive to lifestyle activities and numerous pathological

conditions.

BrainAGE primarily models healthy brain ageing as a way to detect pathological

deviations. Healthy brain ageing can be modelled by machine learning algorithms

that learn ageing patterns from structural magnetic resonance imaging (MRI) data.

The BrainAGE provides information about the difference between the predicted

and the chronological age. A wide range of approaches have been considered to

model brain age, from shallow to deep learning. However, current models lack

generalisation when applied to data obtained in acquisition settings different from

those used to train the model. Moreover, BrainAGE is sensitive to detecting changes

in multiple diseases but lacks specificity, which might be essential for its adoption in

clinical practice. This thesis aimed to improve the BrainAGE generalisability and

specificity.

One hypothesis for the generalisability problem is that MRI data may contain

scanner artefacts, which leads to a bias in machine learning models towards acquisi-

tion settings. Preprocessing has a preponderant role in reducing scanner artefacts.

Nevertheless, there is no preprocessing gold standard in neuroimaging. FreeSurfer

and SPM emerge as two frameworks that are extensively used in BrainAGE. The

first study in this thesis assessed the reproducibility between the FreeSurfer and

computational anatomy toolbox (CAT12), an SPM toolbox for structural data, and

the reliability of each one. The results outlined that the reliability of the frameworks
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differs, and CAT12 outperformed FreeSurfer. Therefore, CAT12 was selected to

preprocess the data.

Overfitting to training data could also cause the generalisability problem. Deep

learning is extensively applied in the BrainAGE field with state-of-the-art perfor-

mance. Nonetheless, the performance of these models often decreases when tested

on an external test set. Transfer learning from a 3D-Convolutional Autoencoder

(3D-CAE), an unsupervised model, was considered to overcome this limitation. The

results outlined that reusing weights from pre-trained 3D-CAE improves generalisa-

tion on an external test set.

The specificity of BrainAGE might be improved by using multiple sources of in-

formation. The preprocessing of MRI data involves registering the image into a

template. The transformations applied to overlap the two images are designated by

deformation fields. Most studies use minimally preprocessed T1-weighted images,

or grey matter (GM) or white matter (WM) segmented images, to predict brain

age. Few studies consider deformation fields to model brain age, and results are

inconsistent. One study of this thesis focuses on comprehensively comparing the

performance of the deformation fields with the GM, WM and cerebrospinal fluid

(CSF). The results outlined that deformation fields yield better performance than

WM and CSF. Furthermore, combining deformation fields with GM improves per-

formance compared to GM alone.

Finally, the last study assessed sensitivity maps to explain the model predictions and

increase BrainAGE specificity. All the previous analyses were combined. Five brain

age models were trained, leveraging transfer learning from the 3D-CAE, using the

following inputs: minimally processed, GM, WM, CSF and deformation results. In

general, the BrainAGE was statistically significant in all models and conditions. The

results evidenced model sensitivity, but lack specificity. The analysis of sensitivity

maps revealed different patterns across the different diseases and input types, thus

contributing to a biological explanatory framework. Explainability from multiple

sources might provide insights on BrainAGE specificity.

This thesis contributed to the BrainAGE field on two axes: generalisability and

specificity. The former was addressed using the preprocessing framework with higher

reliability and transfer learning from an agnostic model. The latter was attained

by including deformation fields in brain ageing modelling and exploring sensitivity
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maps for differential diagnosis.
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Resumo

Estimativa da diferença de idade cerebral (BrainAGE) é um possível

biomarcador de envelhecimento que visa identificar o início do

envelhecimento patológico e monitorar seu progresso. O diagnóstico

de condições relacionadas com a idade em estágio pre-clínico poderá possibilitar

intervenções precoces, diminuindo o impacto da doença. BrainAGE surge como

um biomarcador de envelhecimento promissor que parece estar relacionado com os

mecanismos biológicos de envelhecimento. O seu valor é sensível ao estilo de vida e

a inúmeras condições patológicas.

BrainAGE modela o envelhecimento cerebral saudável como forma de detectar os

desvios patológicos. O envelhecimento saudável do cérebro pode ser modelado por

algoritmos de aprendizagem máquina, que aprendem padrões de envelhecimento

a partir de dados estruturais de ressonância magnética. BrainAGE corresponde à

diferença entre a idade prevista e a cronológica. Uma ampla gama de abordagens tem

sido considerada para modelar a idade do cérebro, usando abordagens tradicionais

(shallow learning) ou mais complexas (deep learning). No entanto, os modelos

atuais carecem de generalização quando aplicados a dados obtidos em condições

de aquisição diferentes daquelas utilizadas para treinar o modelo. Adicionalmente,

o BrainAGE é sensível a múltiplas doenças e, por isso, tem uma reduzida especifi-

cidade, o que pode dificultar a sua adoção na prática clínica. Esta tese teve como

objetivo melhorar a generalização e especificidade do BrainAGE.

O problema de generalização pode advir dos dados de ressonância magnética con-

terem artefatos específicos das condições da aquisição, o que leva a um viés nos

modelos em relação às configurações de aquisição. O pre-processamento tem um

papel preponderante na redução destes artefatos. No entanto, não existe uma

abordagem padrão definida para o pre-processamento em neuroimagem. Duas ferra-

mentas amplamente utilizadas em BrainAGE são o FreeSurfer e o SPM. O primeiro
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estudo desta tese avalia a reprodutibilidade entre o FreeSurfer e a CAT12, uma

ferramenta do SPM para dados estruturais, e a fiabilidade de cada ferramenta.

Os resultados mostram que a fiabilidade das ferramentas difere, a CAT12 tem um

melhor desempenho que o FreeSurfer. Pelo que, a CAT12 foi selecionada para pre-

processar os dados.

O overfitting aos dados de treino pode também ser a causa do problema de gen-

eralização. As abordagens de deep learning têm sido amplamente utilizadas em

BrainAGE. No entanto, o desempenho destes modelos diminui quando testados em

dados independentes. Para ultrapassar este entrave, foi avaliada a transferência de

conhecimento de um 3D Convolucional Autoencoder (3D-CAE), um modelo não

supervisionado. Os resultados revelam que a reutilização de pesos do 3D-CAE

melhora a generalização do modelo.

A especificidade do BrainAGE pode ser melhorada usando múltiplas fontes de infor-

mação. O pre-processamento de imagens de ressonância magnética envolve o registo

das imagens com uma imagem base. As transformações aplicadas para sobrepor

as duas imagens são designadas por campos de deformação. A maioria dos estudos

usa imagens minimamente pre-processadas, substância cinzenta (GM) ou substância

branca (WM), para prever a idade cerebral. Poucos estudos consideram campos

de deformação para modelar a idade cerebral e os resultados são inconsistentes.

Um estudo desta tese concentra-se na comparação do desempenho dos campos

de deformação com a GM, WM e líquido cefalorraquidiano (CSF). Os resultados

demonstraram que os campos de deformação apresentam melhor desempenho que

WM e CSF. Adicionalmente, a combinação dos campos de deformação com GM

melhora o desempenho do modelo em comparação com a utilização de apenas GM.

Finalmente, o último estudo avaliou a utilização de mapas de sensibilidade para

explicar as previsões do modelo e aumentar a especificidade do BrainAGE. Nesta

análise, todas os estudos anteriores foram combinados. Foram treinados cinco

modelos para prever a idade cerebral, utilizando os pesos do 3D-CAE, usando os

seguintes tipos de dados: imagens com processamento mínimo, GM, WM, CSF e

campos de deformação. De modo geral, o BrainAGE foi estatisticamente significativo

em todos os modelos e condições. Os resultados evidenciam a sensibilidade do

biomarcador e sua falta de especificidade. A análise dos mapas de sensibilidade

revelou diferentes padrões nas diferentes doenças e tipo de dados. Desta forma,
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a explicação das previsões, utilizando múltiplos tipos de dados, pode aumentar a

especificidade do BrainAGE.

Esta tese contribuiu para o BrainAGE em dois eixos: generalização e especifici-

dade. O primeiro foi abordado usando a ferramenta de pre-processamento com

maior fiabilidade e transferência de conhecimento de um modelo agnóstico. Em

relação à especificidade foram incluídos os campos de deformação na modelação do

envelhecimento cerebral e explorados os mapas de sensibilidade para o diagnóstico

diferencial.

Palavras-chave: Envelhecimento, Biomarcador, Aprendizagem máquina,

Neuroimagem.
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Chapter 1

Introduction

Age-related diseases have been increasing over the past years [5, 6]. The
search for biomarkers that can predict the healthy and pathological age-
ing of the brain has been gathering a lot of attention [7]. Brain age

gap estimation (BrainAGE) is a putative biomarker which tackles brain ageing
trajectory by computing the difference between the estimation of brain age and
the chronological age [8]. BrainAGE has been shown to be increased in multiple
pathological conditions suggesting an acceleration of the ageing process as a common
mechanism [9]. This chapter delves into the motivation for an ageing biomarker,
provides an overview of BrainAGE and its existing limitations, and outlines the
objectives of this thesis.

1.1 Motivation

It is anticipated that by 2050 the number of individuals over the age of 65 years
will surpass the number of both adolescents and young adults [10]. With the rising
number of elderly individuals, the burden of deaths and disability caused by age-
related conditions, such as neurodegenerative dementias, is increasing. The number
of people diagnosed with dementia worldwide in 2019 was 57.4 million, and this
number is expected to rise up to 152.8 million in 2050 [6].
The prevalence of age-related conditions is being recognised as a global public
health problem. The World Health Organization (WHO) has designated the decade
from 2020 to 2030 as the decade of healthy ageing. Healthy ageing is defined
by WHO as "the process of developing and maintaining functional abilities that
enable well-being in older age" [11]. Several factors seem to positively impact brain
health. Education [12], physical exercise [13, 14], meditation [15], among others are
associated with neuroprotective mechanisms and potentially slower ageing processes.
Other lifestyle factors, such as tobacco [16] and alcohol consumption [17, 18], as
well as age-related diseases [19] seem to accelerate the ageing process. Thus, a
biomarker sensitive to deviations in brain ageing trajectory might detect, in an early
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stage, diseases related to pathological ageing. In a pre-clinical stage, the detection
of age-related diseases could prove valuable in personalised medicine, opening a
window of opportunity for early interventions designed to increase health span or
even decelerate ageing.

1.1.1 BrainAGE as a putative brain ageing biomarker

BrainAGE aims to gauge brain ageing to identify early deviations from the typical
healthy trajectory. Over the past few years, this putative biomarker has gath-
ered significant attention within the scientific community [20, 21]. In a nutshell,
BrainAGE (1) models healthy brain ageing and (2) compute the difference between
the brain age estimation and chronological age. To model healthy brain ageing, a
machine learning algorithm is trained using data from individuals who have been
confirmed to be healthy. It is assumed that, in healthy individuals, the brain age is
equal to the chronological age. Different sources of information have been explored
in BrainAGE [21]; this thesis focuses on using structural brain images acquired
with magnetic resonance imaging (MRI), a non-invasive neuroimaging technique.
Structural images were selected due to their high resolution and current use in
clinical practice [22].
The rationale behind this putative biomarker is that a delayed ageing process results
in a negative BrainAGE. In contrast, accelerated ageing is manifested as a positive
value. A negative BrainAGE has been reported in individuals with higher education
level [23], as well as in individuals who practice physical exercise [24] and medita-
tion [25] regularly. As discussed above, these activities are related to neuroprotec-
tive mechanisms and, consequently, might decelerate brain ageing. Furthermore,
tobacco [26,27] and alcohol consumption [27] yield a positive BrainAGE. Moreover,
BrainAGE is positive in multiple pathological conditions, such as Alzheimer’s disease
(AD), mild cognitive impairment (MCI), schizophrenia and epilepsy [9]. Thus,
BrainAGE seems to translate the biological mechanisms underlying the brain ageing
process and might be able to capture the transition from healthy to pathological
ageing.

1.1.2 Limitations on BrainAGE

The performance of brain age models on test sets acquired in the same conditions
as training data is, in general, similar to the performance on the validation test set.
However, the model’s performance on data collected in different acquisition settings
is lower; in some cases, the error is two- or three-fold higher [28–31]. Therefore,
brain age models are not reliable. To be used on other sites, these models must
be retrained and validated with local data from healthy individuals. Therefore, the
usage of BrainAGE in clinical practice is compromised by this generalisation issue.
Consequently, it is of uttermost importance to address this limitation.
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BrainAGE has a high sensitivity for different pathologies, nevertheless, its specificity
is low [9]. Currently, it solely identifies deviations without necessarily specifying
the underlying disease. Therefore, approaches should be developed to detect the
deviations and suggest the specific pathology causing the abnormal ageing. A recent
research trend aims to overcome this problem by predicting local brain age rather
than a global age, yet the performance of these models still needs to improve.

1.2 Goals and main contributions

This thesis aims to add insights to the BrainAGE as a ageing biomarker by improving
its generalisability and specificity.
On the generalisability axis, two studies were performed; one focused on preprocess-
ing, while the other focused on model training. Concerning the preprocessing, a com-
parative analysis of two commonly employed MRI preprocessing frameworks [20],
computational anatomy toolbox (CAT12) and Freesurfer was performed, focusing
on two critical aspects: reliability and reproducibility. The preprocessing phase plays
a crucial role in reducing noise and removing non-brain tissue, which is essential to
ensure the removal of data artefacts that could mislead the learning process [20]. The
framework comparison was conducted using cortical thickness, a common feature
in neuroimaging studies. This investigation selects the more reliable preprocessing
framework, which is subsequently applied in the following studies. Another explored
aspect on the generalisability axis was the usage of transfer learning as a training
strategy for deep learning models. Deep learning models are data-driven, with
remarkable performance on different tasks, namely object recognition and language
processing [32]. Nevertheless, these models demand high amounts of data. This re-
quirement is often a constraint in the neuroimaging field, where the data is relatively
scarce compared to natural images, in which millions of labelled images are available.
Therefore, we explore the potential of transfer learning from an autoencoder to train
brain age models and assess the impact of this training strategy on performance and
generalisability.
The BrainAGE specificity was addressed by proposing a new feature, the deforma-
tion fields, and exploring the explainability of brain age models. The deformation
fields were considered to predict brain age and were compared to segmented images
commonly used in this field. The exploration of novel features can enhance the
model’s specificity and help to understand the underlying biological processes. In
this case, it sheds light on how morphology changes with age. Finally, the last
study integrated all the previous analysis and assessed whether the explainability of
brain age predictions could increase the BrainAGE specificity. The explainability
highlights the regions most critical for age prediction and reveals the brain areas
that exerted different influences when comparing the predictions in individuals with
a particular disease with healthy controls. Identifying the regional pattern of ac-
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celerated ageing may unveil the underlying pathologies and add specificity to the
model.

1.2.1 Scientific Outcomes

Throughout the course of this thesis, different achievements have been reached.
Specifically, four articles were authored, with two already published and two cur-
rently undergoing the revision process. Most of the data used in the scope of this
thesis are from open-source repositories. The code for each study is publicly available
on GitHub (https://mfmachado.github.io/brainage/). Moreover, some con-
tributions were made to the nipype library [33], which included the addition of
CAT12 and Robust Brain Extraction (ROBEX) [34] to the supported preprocessing
frameworks.

1.2.1.1 Peer-reviews journal articles

• Dias, Maria de Fátima Machado, Paulo Carvalho, Miguel Castelo-Branco, and
João Valente Duarte. "Cortical thickness in brain imaging studies using freesurfer
and cat12: A matter of reproducibility." Neuroimage: Reports 2, no. 4 (2022):
100137.

• Dias, Maria de Fátima Machado, Paulo Carvalho, João Valente Duarte, and
Miguel Castelo-Branco. "Deformation fields: a new source of information to
predict brain age." Journal of Neural Engineering 19, no. 3 (2022): 036025.

• Dias, Maria de Fátima Machado, Tiago FT Cerqueira, João Valente Duarte,
Miguel Castelo-Branco, and Paulo Carvalho. "3DCAE-MRI: Overcoming Data
Availability Limitations in Small Sample MRI Studies." Scientific Reports (2023).
[under revision]

• Dias, Maria de Fátima Machado, João Valente Duarte, Paulo de Carvalho
and Miguel Castelo-Branco. "Unravelling pathological ageing with brain age
in Alzheimer’s Disease, Diabetes, and Schizophrenia." Brain Communications
(2023). [under revision]

1.3 Thesis outline

The structure of this thesis is organised as follows:
Chapter 2 introduces fundamental concepts related to neural ageing and MRI.
Chapter 3 provides an overview of the state-of-the-art in brain age models, starting
with a review of traditional machine learning models and deep learning models. The
application of BrainAGE in multiple diseases is also discussed.
Chapter 4 is a published paper that compares preprocessing results using two widely
adopted frameworks in neuroimaging.

https://mfmachado.github.io/brainage/
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Chapter 5 proposes the use of deformation fields as a feature for predicting brain
age, this study is a published paper.
Chapter 6 is a paper under review that analyses the implications of transfer learning
regarding generality and performance in deep learning models.
Chapter 7 explores sensitivity maps to increase the specificity of BrainAGE. This
chapter is a paper under review.
Chapter 8 concludes the thesis by summarising the essential findings and discussing
potential future directions.





Chapter 2

Background Concepts

This chapter overviews fundamental concepts of neural ageing and magnetic
resonance imaging (MRI). Section 2.1 delves into neural ageing and is
divided into two subsections. Subsection 2.1.1 comments on the changes

during healthy ageing. In contrast, subsection 2.1.2 focuses on the disruptions that
specific pathologies, particularly Alzheimer’s disease (AD), type 2 diabetes (T2D)
and schizophrenia, cause in the brain compared to healthy controls. The assessment
of brain structure is performed with MRI, a neuroimaging technique. Section 2.2
describes the principles of structural MRI acquisition.

2.1 Neural ageing

The brain ageing process can be categorised into seven general hallmarks: genomic
instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated
nutrient-sensing, mitochondrial dysfunction and altered intercellular communica-
tion [19]. These hallmarks play a crucial role in the brain’s healthy and pathological
ageing trajectory. Pathological ageing is characterised by an acceleration of the
ageing process in some hallmarks and/or a disruption in the biological mechanisms
compared to the healthy ageing process [19]. The following two subsections will
delve into the healthy and pathological ageing changes.

2.1.1 Healthy ageing

Healthy brain ageing is characterised by cerebral atrophy that results in four main
morphometric changes: volume loss, cortical thinning, sulcal widening and ventricu-
lar enlargement [1]. Figure 2.1 illustrates the hallmarks of cerebral atrophy. In early
adulthood, the brain’s total volume decreases by 0.2% per year; this value increases
to 0.5% at the beginning of late adulthood, around 60 years [35]. Higher rates of
brain atrophy are related to neurodegenerative diseases and cognitive decline. Both
grey matter (GM) and white matter (WM) loss contribute to the global volume
decrease.
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Figure 2.1: Hallmarks of brain atrophy: volume loss, cortical thinning, sulcal widening
and ventricular enlargement. Adapted from [1] with permission of the authors.

GM comprises the outer layer of the cerebrum, known as the cerebral cortex, and
the deep subcortical structures. The cortex is a highly folded structure that plays a
central role in cognitive functions, processing sensory input, attention and decision-
making, language comprehension and production, among others [36]. The deep
subcortical structures encompass the thalamus, basal ganglia, hippocampus and
amygdala. These structures have crucial functions in memory, emotions, hedonic
pleasure, and neurohormone production [37,38]. GM primarily consists of neuronal
cell bodies; this tissue decreases, on average, around 0.5% per year [39]. The
decline seems to be linked to the depletion of neurophil, the contraction of neurons,
modifications in dendrite structure, and a decrease in synapse number [39,40]. The
cortical volume linearly declines non-uniformly across the brain; certain regions seem
more susceptible to atrophy than others [41–43]. The same applies to subcortical
structures, and each has an ageing pattern [44]. Beneath the cortex lies the cerebral
WM, the distance between the outermost layer of the cortex, known as the pial
surface, and the WM boundary is referred to as cortical thickness. Ageing results
in a non-uniform gradual thinning of the cortex [42,43,45–48], and a non-uniformly
gradually decline of the total area of the cortex outer layer [43,46,49]. The cortical
and subcortical volume decline of GM and the cortical thinning have been suggested
to be related to cognitive decline and memory impairments [40]. Moreover, as
depicted in Figure 2.1, the grooves or fissures on the cortical surface [42, 50, 51]
become wider and, the cortex becomes less folded and convoluted [46, 52, 53]. Two
measures have been extensively considered to portray the convolution patterns:
gyrification ratio and fractal dimension. The former correspondents to the ratio of
the inner surface divided by the outer cortex surface, research suggests that there is a
decrease in gyrification ratio with age [46,52,53]. The fractal dimension characterises
the complexity of the cortical folding patterns by measuring the level of self-similarity
in the cortical surface. Studies suggest that fractal dimension negatively correlates
with age, indicating that ageing leads to a less convoluted and folded cortex [54–57].
WM mainly comprises myelinated axons; myelin protects the neurons and speeds
the information flow along the axon [58]. The ageing process affects the WM volume
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and myelin integrity. Myelin is continuously lost and renewed throughout life, but
the rate of remyelination is not constant [59–61]. The pattern of myelin distribu-
tion across the lifespan follows an inverted U-shape curve. Until mid-adulthood,
the myelin production exceeds loss, increasing the total amount of WM. However,
production slows down after reaching 40-50 years of age, and the loss of myelin
surpasses its renewal [62, 63]. The loss of WM is not uniform across the brain [1],
and in contrast to GM, it decreases significantly in late adulthood. The total volume
loss of WM at 70 years is around 6% compared to the WM volume at 30 years; this
value raises to values between 21.6% and 25.0% at 80 years [1]. Moreover, the ageing
process also results in a decrease of WM integrity after 30 years, particularly in the
anterior part of the brain [1]. A hypothesis proposed to explain the pronounced
degradation in this region suggests that the myelin generated at older ages is thinner
and weaker, leading to quicker deterioration [64–66]. Another notable change in
ageing WM is the presence of WM lesions. These lesions result from ischemic
damage in the brain, which can be attributed to the ageing process, hypertension,
or vascular diseases [67]. Two distinct theories attempt to explain these lesions:
one suggests that they are the result of continuous demyelination [68], whereas the
other hypothesises that changes in the blood-brain barrier lead to reduced brain
oxygenation and subsequent ischemia [69].
The loss of brain tissue culminates with the ventricle enlargement [41, 70–72], as
shown in Figure 2.1. Ventricles are four interconnected cavities in the brain filled
with cerebrospinal fluid (CSF). The loss of volume liberates space, which enables
the increase in volume.

2.1.2 Pathological ageing

The transition from healthy to pathological ageing has yet to be understood. Certain
medical conditions cause an acceleration of the ageing process [19]. Three patholo-
gies are studied in the scope of this thesis: schizophrenia, T2D and AD. Each disease
manifests in a distinct period of the lifetime, and all are related to atypical ageing
of the brain. In the following subsections, a brief overview is provided along with
the associated morphometric changes.

2.1.2.1 Schizophrenia

Schizophrenia is a chronic mental disorder of unknown aetiology characterised by
psychotic episodes. The psychosis often involves paranoid delusions and auditory
hallucinations. Other symptoms involve disorganised speech and/or behaviour and
negative symptoms [73, 74]. The disease usually manifests in late adolescence or
early adulthood. Although the pathogenesis and the pathophysiology remain to
be uncovered, some evidence suggests the disease can be labelled as a neurode-
velopmental disorder [73–75]. Schizophrenia affects nearly 24 million individuals
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globally [76], causing some incapacitation, with only approximately 14% of patients
successfully reintegrating into society within a five-year period [77]. The disease
was first identified in the nineteenth century by Kraepelin, who defined it as pre-
mature dementia [78]. This theory was further supported by postmortem studies,
which suggest a higher atrophy of the brain [79]. Brain imaging studies enable
the systematic investigation of neuropsychiatric disorders. Compared to healthy
controls, the structural changes involve ventricle enlargement, wider sulci, GM and
WM tissue loss [80–82]. Longitudinal studies also revealed that the first psychosis
episode severely impacts the brain atrophy, but also highlight that brain atrophy
begins before the first psychosis episode [74]. Moreover, episodes of psychosis have
been suggested to have a neurotoxic nature [77]. The initial stages of schizophrenia
are characterised by an increase in subcortical volume [83, 84], a non-uniform re-
duction of GM cortical volume and cortical thinning [85], along with a decline in the
gyrification pattern [84]. Concerning the disease progression, multiple studies report
an acceleration in brain atrophy, suggesting that schizophrenia is a degenerative
progressing disease [77]. Recent studies challenge this hypothesis suggesting that the
atrophy might be caused by the medication rather than the pathophysiology of the
disease [77,86]. Besides the morphological changes, the disease is also characterised
by disruptions in brain connectivity, both at functional and anatomical level [87], a
phenomenon often linked to a reduction in WM [88].
Schizophrenia shares symptomatology with bipolar disorder, and distinguishing be-
tween them in the early stages can be challenging [84]. Early and accurate diagnosis
is essential for successful therapeutic interventions [84]. As a result, there has
been a growing interest in discovering new neuroimaging biomarkers for the early
identification of the condition, which can be implemented in clinical practice in
recent years.

2.1.2.2 Type 2 Diabetes

T2D is a metabolic disorder associated with pathological ageing. The condition
is marked by cellular resistance to insulin and/or decreased insulin production,
which increases the glucose in the bloodstream [89]. According to World Health
Organization (WHO), in 2014, diabetes affected 422 million individuals worldwide,
with a prevalence of 8.5% among the adult population [90]. T2D accounts for 95%
of the diabetes cases [90]. Some risk factors to develop T2D included age over 45
years, family history, overweight, smoking, and stress [90].
Chronic hyperglycemia negatively impacts various systems within the body, with
primary emphasis on the endothelium [91, 92]. Endothelial dysfunction leads to a
two- to four-fold predisposition to develop vascular complications [92]. Atheroscle-
rosis emerges as the main vascular complication of the endothelium’s abnormal
functioning and is a risk factor for vascular disease. Vascular dysfunction is often
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associated with an increase in brain lesions (WM hyperintensities, lacunar infarcts,
large infarcts, microbleeds, microinfarcts), which are associated with a decrease in
cognitive capabilities and dementia [93]. Furthermore, small vessel disease, which
affects the cerebral circulatory system, resulting in brain damage, has been related
to the T2D [94]. Therefore, T2D may affect the ageing trajectory of the brain.
The brain atrophy in T2D is more pronounced than in healthy ageing; compared
to healthy controls, the total brain volume decreases 0.5-2.0% [93, 95]. The GM
volume loss is non-uniform across the brain; the regions most affected are the
medial temporal, anterior cingulate, and medial frontal lobes [93]. The subcortical
structures which exhibit more noticeable atrophy appear to be the hippocampus
and amygdala [93, 95]. The cortical thinning also seems more exacerbated in T2D
patients compared to healthy controls [93,95]. Concerning WM, besides the increase
in hyperintensities, studies also suggest an integrity loss of the WM fibers [95]. Since
diabetes accelerates cerebral atrophy, the disease is also associated with an expansion
of ventricles in comparison to healthy controls [96]. T2D has been associated with
deterioration in cognitive performance and memory impairments [93, 95, 97] and a
predisposition for dementia. AD and vascular dementia are the two most prevalent
types of dementia in T2D; the relative risk of T2D patients develop vascular dementia
and AD is 2.27 and 1.63, respectively [97].

2.1.2.3 Alzheimer Disease

AD is the most prevalent neurodegenerative disease; in total, it accounts for 60-80%
of dementia cases [98, 99]. Dementia is characterised by a severe loss of cognitive
function paired with difficulties in performing daily living activities. WHO estimated
that, in March 2023, more than 55 million people worldwide lived with dementia,
and this number increases by 10 million every year [100].
The aetiology of the AD seems to be a combination of factors, the highest risk factor
for the disease is age [22,101]. AD was first described by psychiatrist Alois Alzheimer
in 1907 [102]. Currently, it is the most commonly studied and prevalent neurode-
generative disease [102]. Nevertheless, pathogenesis and pathophysiology remain
under debate, and no treatment is available. Unequivocally, the accumulation of the
proteins β-amyloid and tau are two hallmarks of the disease [22, 101]. Currently,
the hypothesis with more acceptance is the amyloid cascade. In this theory, the
accumulation of β-amyloid in the extracellular space promotes tau’s deposition
and aggregation, forming neurofibrillary tangles. The overaccumulation of these
composites seems to cause synaptic disruption and trigger neuronal loss [101, 103].
This brain tissue loss follows the accumulation of amyloid plaques and neurofibrillary
tangles across the brain and is linked to cognitive impairments [22]. In its early
stages, usually the area most affected is the medial temporal lobe, which includes
subcortical structures such as the hippocampal region, subcortical regions with a
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vital role in memory and learning [22,71]. As the disease progresses, atrophy spreads
to the neocortex [22, 101]. It should be highlighted that the disease progresses at
different rates across individuals; therefore, the atrophy rates differ across studies.
Nevertheless, the whole brain atrophy is around 0.5% and 1.9% on healthy controls
and AD, respectively [22]. The hippocampus has a pronounced atrophy rate in AD,
comparatively to healthy controls, the atrophy is at least two-fold higher [22, 71].
Concerning the WM, the impact of myelin degradation or WM lesions on dementia
appears to be relatively minor compared to GM changes [22,104]. Finally, concerning
CSF, studies report a three- to four-fold increase comparing the ventricle volume of
AD patients with healthy controls [70–72].
The AD diagnosis comprises the identification of cognitive impairments, based on
clinical and neuropsychological criteria, along with one of the three strategies: atro-
phy in the medial temporal region, using MRI; abnormal neuronal CSF markers,
such as Aβ42 T-tau and P-tau, this screening involves a lumbar puncture; or
temporoparietal hypometabolism using positron emission tomography [105]. While
CSF markers are helpful for early detection of AD, their sensitivity diminishes as
the disease advances. Conversely, cerebral atrophy, though less prominent in the
early stages, is a sensitive indicator of disease progression [22].
Finally, AD has been proposed to be characterised by insulin resistance and hy-
pometabolism, particularly in the temporoparietal region. The pathophysiology
similarities between AD and T2D lead to the generation of the following hypothesis:
AD is a type of diabetes that targets the brain, entitled "type 3 diabetes" [106].
Nevertheless, this theory is highly controversial in the scientific community, and the
pathogenesis of AD remains under discussion.

2.2 Exploring the brain structure with magnetic reso-
nance imaging

MRI is a high-resolution non-invasive neuroimaging technique that enables the in-
vivo study of brain structure. It was first invented in the early 1970s by Paul
C Lauterbur and Peter Mansfield [107], who were awarded with the Nobel Prize
for Medicine in 2003 [108]. This neuroimaging technique leverages nuclei spins to
produce detailed images of body tissues. Spin is a property of elemental particles,
an intrinsic form of angular momentum that can be visualised as a rotation around
the particle’s axis. Composed particles like nuclei also possess spin. The nuclei
containing an even number of particles have a zero net spin, whereas nuclei with
an odd number of particles have an angular momentum. The nuclei, composed of
protons and neutrons, are positively charged. The movement of nuclei with integral
spin generates an intrinsic magnetic field. Consequently, the atom is sensitive to the
presence of external magnetic fields [109].
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(a)
(b)

(c)

Figure 2.2: On the left, the nuclei are stochastically orientated; in the centre, the nuclei
are oriented in the presence of an external magnetic field B0. On the right is represented
the net magnetisation given the external magnetic field B0.

Magnetic resonance (MR) images are generated by combining a strong magnetic
field, B0, with a sequence of radio frequency (RF) pulses that generate signals
reflecting the intrinsic biological properties of tissues. The nuclei within the human
body are stochastically oriented, as shown in Figure 2.2a. When a magnetic field is
applied, the nuclei align in the direction of the generated field, see Figure 2.2b. The
alignment can either be parallel or antiparallel to B0, with the parallel alignment
being more energetically favourable. The measured magnetisation is the sum of
individual magnetisations, resulting in the net magnetisation, M0, corresponding
to the difference between the up and down nuclei, Figure 2.2c. At this stage the
atom nuclei have been polarised. Assuming B0 is applied along the z-axis (as is
typically the case in imaging), resulting in longitudinal magnetisation, Mz. Each
atom precesses at the frequency designated by Larmor frequency or ω0, which is
proportional to the strength of B0, and can be computed using the equation 2.1,
where γ0 represents the gyromagnetic ratio which is atom specific [109].

ω0 = γ0 × B0 (2.1)

Larmor frequency is the backbone of the MRI. A nuclei will absorb energy from
a RF pulse and transition to a higher energy state if its frequency matches the
nuclei’s Larmor frequency. The energy absorption will result in two phenomena:
phase coherence and transverse magnetisation. Before the RF pulse, the nuclei are
dephased; after the pulse absorption, their phase briefly aligns with the RF. However,
the phase coherence is soon lost due to the influence of the intrinsic magnetic field
of the neighbouring atoms, a mechanism designated by spin-spin relaxation. T2 is
a tissue property that translates the dephasing process; it corresponds to the time



14 CHAPTER 2. BACKGROUND CONCEPTS

Figure 2.3: Representation of the dephasing process after the emission of a radio frequency
pulse, and the corresponding "free induction signal decay" phenomenon. Adapted from [2].

Figure 2.4: Representation of the signal acquisition into two-time points, TEA and TEB ,
for two tissues: one with a long T2 and the other with a short T2.

for 37% of the phase to be lost. Nonetheless, the dephasing process accelerates due
to the interaction between spins and magnetic field inhomogeneities. This effect
is designated by T2* relaxation. The dephasing process leads to a decrease in
the intensity of the magnetic signal and originates a phenomenon known as "free
induction signal decay", as depicted in Figure 2.3. The mathematical expression
describing signal decay is presented in Equation 2.2, where S(t) describes the signal
intensity, A the amplitude, t the time and T2 the decaying rate of the signal [109].

S(t) = Acos(wt) exp− t
T2 (2.2)

The dephasing process is fast on bones and lungs, ergo these tissues have a short
T2. On fluids such as water, blood and CSF, the phase coherence lasts longer; thus,
these tissues have a long T2. Time of echo (TE) is the amount of time between RF
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Figure 2.5: Longitudinal magnetisation recovery after the emission of a radio frequency
pulse. Adapted from [2].

pulse being turned off and the signal detection. Figure 2.4 illustrates the impact on
signal acquisition of different TE and T2. If the TE is too short, for instance, the
image is acquired right after the RF pulse is turned off (time point TEA), the phase
coherence across tissues is similar; therefore, the contrast between tissues would be
negligible. On the other hand, the signal is captured at different dephasing phases
(time point TEB), the tissues would be distinguishable on the image. Tissues with
a short T2 will appear dark on images, given that the amplitude of its signal is lower
at that point, and tissues with a long T2 will appear bright. In a nutshell, T2 is a
source of contrast. Images that leverage T2 to distinguish across tissues are entitled
T2-weighted [2].
Besides phase coherence, the RF pulse shifts the magnetisation from the z-plane
to the xy-plane, resulting in transverse magnetisation (Mxy), as is depicted in Fig-
ure 2.5. When the RF pulse is turned off, the nuclei realign with the magnetic field
B0. Therefore, the nucleus loses transverse magnetisation and regains longitudinal
magnetisation. The realignment with the B0 involves energy dissipation; the energy
is dissipated to the surroundings of the nuclei, also called lattice, and the dissipation
energy rate depends on the interaction between the spin and the lattice. Each tissue
in the brain has a different spin-lattice interaction and, consequently, a different
dissipation rate. The time for the nuclei to achieve 66% of the original longitudinal
orientation is called T1. The equation which describes the regain of longitudinal
magnetisation is given by Equation 2.3 [109].

Mz = M0(1 − e
− t

T1 ) (2.3)

The acquisition of MRI images requires multiple excitations of the nuclei. The period
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Figure 2.6: Image reconstruction from the k-space. The magnetic resonance signals
obtained from each phase encoding step are preserved in a raw data matrix referred to as
k-space. A two-dimensional Fourier transformation on the k-space leads to the generation
of the reconstructed image. Adapted from [2].

between excitations is called the time of repetition (TR). The TR and T1 parameters
are intrinsically connected. For a long TR, the effects of T1 become insignificant, but
as the TR decreases, the T1-effects gain more weight. When RF pulse is emitted,
tissues with a shorter T1 would have more longitudinal magnetisation than the
ones with higher T1. Therefore, these tissues will absorb more energy to realign
with the RF pulse. Consequently, these tissues produce more induced current and
appear brighter, whereas tissues with longer T1 appear darker on images. Hence,
images generated with a small period between the pulses are designated by T1-
weighted images because T1 tissue parameter defines the contrast in these images.
In T1-weighted images, the TE is kept short, making the phase coherence effects
insignificant [109].

The MRI scanner is composed of a coil which transmits a homogeneous constant
magnetic field B0 in the order of magnitude of one Tesla. As previously mentioned,
the equation 2.1 is the backbone of the MRI, and the γ0 is atom specific. MRI targets
the hydrogen nuclei (1H) in the body to acquire images; each hydrogen nucleus
consists of a single proton. Hydrogen nuclei are abundant in the human body; for
instance, each water molecule is composed of two hydrogen, and water constitutes
approximately 70% of the human body’s composition. The scanner aligns the 1H-
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nuclei with the magnetic field, then upon a RF pulse emission, all the 1H-nuclei
throughout the body will be excited and aligned with the RF [109].
Consequently, the signal measured will be a sum of all the body 1H nuclei, and the
spatial origin of each signal is unknown. The location of each signal is uncovered
by encoding the location with three gradients, one across each plane (x, y and z).
At first, the magnetic field is homogeneous; then, a gradient field is applied across
the z-plane; consequently, by the Larmor frequency, spins will process at different
rates. Thus, a specific plane in the z-axis can be targeted by emitting a frequency
pulse that comprises the frequencies in the region of interest; this is designated by
slice encoding. Afterwards, the phase encoding is performed, and a short gradient is
applied in the y-axis; this gradient will change the spin precessing phases along the
y-axis. Therefore, phase is the signature of these atoms. Finally, another gradient is
applied along the x-axis. In this case, spins will precess slower and faster where this
gradient is lower and higher, respectively. This is designated by frequency encoding
and is depicted in Figure 2.6. This process is repeated multiple times, and each
time, a different phase and frequency gradient is applied. In each repetition, the
measurement is stored in the k-space. The image is decoded from the k-space via
inverse 2D-Fourier transform [2, 109], Figure 2.6 summarises the MR acquisition
procedure.





Chapter 3

State of the art

Brain age has been gathering much attention in the past decade [20, 21].
Machine learning strategies for predicting brain age encompass a range
of approaches. This chapter reviews the state-of-the-art brain age models

using T1-weighted structural images. The first section, section 3.1, begins with
an overview of the three basic blocks of a brain age pipeline. Section 3.2 details
the state-of-the-art on shallow learning methods, whereas section 3.3 summarises
the recent works using deep learning. Brain age models have been extensively
applied to different neurological and psychiatric conditions. A comment on the
application of brain age gap estimation (BrainAGE) on different diseases can be
found in section 3.4. Finally, the last section wraps up with a discussion of the
shortcomings of the current literature.

3.1 Brief introduction to a brain age pipeline

BrainAGE leverages machine learning models to capture brain ageing patterns
from magnetic resonance (MR) images. Before diving into the state-of-the-art, an
overview is provided concerning the three main steps of a brain age machine learning
pipeline: preprocessing, modelling and evaluation, a scheme is shown in Figure 3.1.

Preprocessing

• Denoising
• Registration
• Skull stripping
• Segmentation

Modelling

• Shallow Learning
• Feature extraction
• Dimensionality reduction

• Deep learning

Evaluation

• K-fold
• Hold-out test set
• External test set

Figure 3.1: Representation of the three main steps of a brain age pipeline and the
corresponding methodologies.
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3.1.1 Preprocessing of magnetic resonance images

Preprocessing in neuroimaging is crucial in increasing the signal, reducing noise gen-
erated by the scanner and physiological effects, and removing undesirable informa-
tion, such as the skull. There is no gold standard in neuroimaging for preprocessing
T1-weighted images; different frameworks and pipelines have been considered [20].
Nevertheless, the preprocessing generally encompasses the following steps: denois-
ing, registration into a standardised template, skull stripping and segmentation.
Different types of noise are produced during a magnetic resonance imaging (MRI)
acquisition due to the scanner, physiological mechanisms and the interaction between
the two. Multiple denoising techniques can be applied to reduce the noise and
increase the image contrast [110]. The registration step aims to normalise the brain
images and ensure the correct image orientation [20]. In the registration step, voxel-
wise transformations are applied to the image to overlap it with a template. These
transformations, designated by deformation fields, might retain valuable morphology
information; Figure 3.2f portrays a deformation fields image. Finally, the non-tissue
can be removed using skull stripping methods [111]. Taking the preprocessing a
step further, images can be segmented into different tissues [112]. In this case, each
voxel is assigned a probability of containing grey matter (GM), white matter (WM)
or cerebrospinal fluid (CSF); an example of each tissue is in Figure 3.2c 3.2d and
3.2e, respectively. Another alternative is region-of-interest (ROI) parcellation; the
preprocessed images are divided into different ROIs, according to a given template,
and features are extracted per ROI.
Different levels of preprocessing have been considered to model brain age: raw,
minimally processed, segmented images, and parcelled images. The raw images
are the lowest preprocessed images. Despite the "raw" concept, the images are
still registered into a template; a raw image is shown in Figure 3.2a. Minimally
processed images, represented in Figure 3.2b, are denoised T1-weighted images with
only brain tissue. Thus, the preprocessing steps of minimally processed images
encompass denoising, registration and skull stripping.
Most studies leverage frameworks that contain routines with all the preprocessing

(a) Raw (b) MP (c) GM (d) WM (e) CSF (f) DF
Figure 3.2: Preprocessing byproducts of a T1-weighted image: raw, minimally pre-
processed (MP), grey matter (GM), white matter (WM), cerebrospinal fluid (CSF) and
deformation fields (DF).
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steps implemented. FreeSurfer and SPM emerge as popular frameworks extensively
used in the brain age context [113,114]. FreeSurfer is the well-established framework
in the neuroimaging field for preprocessing images and segmenting the different
brain structures. Nevertheless, this tool is computationally demanding. Therefore,
other alternatives, such as SPM, have emerged and have been adopted in BrainAGE
field. The choice of the framework also depends on the pipeline considered. Studies
focusing on feature extraction mainly use FreeSurfer to preprocess images [28,29,55,
56,115–121], whereas studies which use the minimally processed or segmented images
to train the model use both FreeSurfer [4,9,117,122–129] or SPM [3,29,118,130–133].

3.1.2 Modelling

Multiple machine learning methodologies have been considered to predict brain age;
Figure 3.3 depicts an overview of the different approaches considered. The models
can be divided into shallow and deep learning methodologies. The former, known
as traditional machine learning, relies on regression models to predict age. In this
case, brain age models either learn the age pattern from handcrafted features or
a compressed version of the image. Shallow learning presents some weaknesses.
Feature engineering requires a significant effort and domain knowledge to carefully
design and select features that capture relevant information from the neuroimaging
data. An option for feature engineering is to apply dimensionality reduction tech-
niques, such as principal component analyis (PCA), to the image [134]. However,
dimensionality reduction techniques are generally lossy strategies. Consequently,
the compression involves losing information that might contain vital information to
predict the ageing pattern.
Deep learning emerges as an alternative to shallow learning [32]. Concretely, con-
volution neural networks (CNN) are a subcategory of the deep learning field which
attained remarkable performance on visual recognition tasks [135]. The image is
the substrate of the CNN. Thus, these models learn the relevant problem-specific
features directly from data. Nevertheless, deep learning also has disadvantages. Con-
trasting with shallow learning, which usually has dozens or hundreds of parameters,
these models have millions or billions of parameters. Thus, these models generally
require large amounts of data, are computationally demanding and are challenging
to interpret.

3.1.3 Evaluation strategy

Different evaluation strategies have been considered to assess the performance of
brain age models. Usually, the data are divided into three categories: training,
validation and test set. The training set is used during model weights optimisation;
the validation can be utilised in hyperparameter tuning; and finally, the model is
evaluated on unseen data designated by the test set. The validation set is optional
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Preprocessed
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Figure 3.3: Different types of modelling considered in brain age.

and only required if hyperparameter tuning or model selection is performed.
Three approaches are commonly used to evaluate the brain age model performance:
holdout test set, k-fold and external test sets; Figure 3.4 portrays the three evalua-
tion strategies. The holdout test set entails using a certain percentage or a specific
number of instances from the dataset to train, validate and test the models. Alterna-
tively, the k-fold approach involves dividing the dataset into k subgroups. Iteratively,
a subgroup is used as the test set and the remaining k − 1 subgroups are used for
training. This process is repeated k times until all subgroups have been considered
once as the test set. Thus, training, in total, k models. Concerning the external test
set, this strategy involves evaluating the model on an independent/external dataset.
This option enables the assessment of the model to variations of acquisition settings.
Suppose that a given problem contains data from two datasets, A and B, in both
the holdout sample and k-fold approaches; the training, validation, and test samples
are derived from the two datasets; Figure 3.4a and 3.4b. In the external test set
approach, dataset A is used to train and validate the model, whereas dataset B is
used as a test set, Figure 3.4c.
The performance of brain age models is usually reported with the mean absolute
error (MAE) and/or R2.
MAE is given by equation 3.1, where N is the number of instances, yi is the
chronological age and ŷi is the model prediction.

MAE =
N∑

i=1

|ŷi − yi|
N

(3.1)

The R2 metric measures the proportion of predicted age variance that is explained
by the chronological age. The computation encompasses measuring the sum of
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(a) k-fold (b) Holdout sample (c) External test set
Figure 3.4: Representation of the three evaluation strategies used to report the
performance of brain age models.

squares of residuals SSres, equation 3.2 where ŷi is the predicted age; the total sum
of squares SStot, equation 3.3 where the y represents the age’s mean. Then one is
subtracted to the ratio between the former and the latter, equation 3.4.

SSres =
n∑

i=1
(yi − ŷi)2 (3.2)

SStot =
n∑

i=1
(yi − y)2 (3.3)

R2 = 1 − SSres

SStot
(3.4)

Finally, it must be outlined that performance results are not directly comparable
across studies. The age range of both training and test sets tremendously impacts
the reported performance. The MAE is proportional to the age range considered;
studies with a small age range tend to have a lower MAE than those with a broader
age range [136].

3.2 Shallow learning

In brain age prediction, two shallow learning strategies have been considered: hand-
crafted features and dimensionality reduction, subsections 3.2.1 and 3.2.2 debrief the
state-of-the-art of the two approaches, respectively. Then, subsection 3.2.3 discusses
the performance of different shallow pipelines on brain age prediction. Finally, the
section finishes with an overview of the model evaluation across studies.

3.2.1 Handcrafted features

The handcrafted features approach is an ad-hoc strategy based on prior knowledge of
morphological ageing patterns. In general, multiple features are extracted per ROI.
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Cortical and subcortical brain measures have been extensively explored for brain
age prediction [9,28,55,56,115–117,137–140], a summary is presented in Tables 3.1
and 3.2. Regarding subcortical features, volume is one of the most commonly
extracted features [9, 28, 117, 137–139, 141]. In terms of cortical measures, most of
the studies focus on morphology features, but the complexity of the cortical ribbon
also received some attention [55, 56]. Concerning morphology features, cortical
thickness [28, 55, 56, 115–121, 137, 138] and cortical volume [28, 29, 116–121] have
emerged as the most extensively explored features in the prediction of brain age. To a
lesser extent, other morphology features have also been considered for age prediction,
such as cortical area [28, 115, 116, 120, 137, 139], cortical curvatures [115, 120] and
sulcal depth [120]. One common finding among studies is the overperformance of
brain age models trained solely with cortical thickness compared with models trained
only with cortical area or cortical curvatures [28,115,116]. This result is in line with
other studies which point out that surface area [46, 49] and cortex curvatures [49]
are less impacted by ageing than cortical thickness.

An intriguing aspect is the contradictory performance results observed between
cortical thickness and cortical volume [116, 120]. Valizadeh et al. [116] suggest
that cortical thickness outperforms cortical volume, whereas Liu et al. [120] have
found the opposite. Similarly, contrasting performance results are reported be-
tween cortical thickness and subcortical volumes [28, 117, 119]. Becker et al. [117]
and Rokicki et al. [119] report a higher predictive value of subcortical volumes
whilst Liem at al. [28] report that cortical thickness yields better performance
than subcortical structures. The inconsistencies observed may be influenced by
several factors: the preprocessing pipeline, parcellation granularity and/or machine
learning pipeline. Concerning the former, all the previous studies used Freesurfer
to extract the cortical and subcortical measures; nevertheless, the version differs.
Valizadeh et al. [116] and Liu et al. [120], who report dissonant results concerning
cortical thickness and cortical volume, used the FreeSurfer version 5.3 and 6.0,
respectively. The FreeSurfer version impacts the measures of cortical thickness
and subcortical volumes [142]. Thus, the version of FreeSurfer might be a source
of variability that helps explain some of the incongruencies of brain age models.
Nonetheless, the FreeSurfer version is not enough to explain all the variability of the
results. Liem et al. [28] and Becker et al. [117] used the same FreeSurfer (version
5.3), yet the authors report contrasting results. Moreover, Rokicki et al. [119] and
Becker et al. [117] use different versions, and both report the superior performance
of subcortical structures over cortical thickness. The parcellation scheme might
explain the variability in the model’s performance; the granularity of the template
has been shown to impact the model’s performance [55,143]. In all the handcrafted
features brain age models, the cortical granularity differed, the lowest and highest
granularity used was 34 and 5124 ROIs, respectively. Finally, the machine learning
pipeline, which differed across the previous studies, might also be the source of
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variability [138, 144]. Regarding complexity features, the gyrification and fractal
dimension have been widely used to capture the folding pattern of the cortical ribbon.
Brain age models trained with these features have dissonant results compared to
models trained with cortical thickness. Some studies report that cortical thickness
yields superior performance than gyrification [120], yet contrasting results have been
reported by Madan et al. [55]. Analogous to the results previously discussed, this
discrepancy might be due to different FreeSurfer versions, parcellation schemes,
and/or machine learning pipelines, which are different in both studies. Regarding
fractal dimension, Marzi et al. [56] performed a comprehensive analysis of the impact
of fractal dimension computational methodologies on brain age models. The study
highlights that the computation methodology of fractal dimension impacts the brain
age model’s performance. The authors report a MAE variation of 4.7 years in the
model’s performance for different approaches. Furthermore, the authors compared
the performance of different fractal dimension computation strategies with cortical
thickness and gyrification. The fractal dimension overperformed these two metrics
in two strategies, whereas in the other two, it is the inverse.
Shallow brain age models often incorporate multiple features to improve predictive
accuracy [28, 115, 116, 118, 120]. However, combining multiple features in some
cases does not result in superior performance [115, 120]. The reasons behind these
inconsistencies can be multifaceted. Cortical features are redundant [46,54,55,145].
Therefore, regularisation, feature selection or reduction is crucial in preventing
overfitting and enhancing generalisation. Improper regularisation might explain
this dissonant result [137]. Liu et al. combined six cortical features extracted
from 62 ROIs in a support vector regression (SVR) model. The results suggest
that combining all these features yields lower performance than using only cortical
thickness, volume, or folding index. The authors combine all the features and
train the SVR without implementing a feature selection or reduction procedure.
Furthermore, SVR [146] has hyperparameters that, if not properly tunned, might
lead to erratic brain age performance [130]. Thus, inadequate regularisation and
hyperparameter tuning can lead to unstable and unreliable results, influencing the
comparative performance of features and feature fusion methods. Wang et al.
assess the performance of brain age models on cortical thickness, cortical area,
mean curvature and gaussian curvature. Different combinations of features were
performed: 1) cortical thickness and cortical area; 2) cortical thickness and mean-
and gaussian- curvatures; 3) all four features. All three combinations yield better
performance than solely a single feature, yet the lowest MAE was attained by
combining only the cortical thickness with the cortical area.
In conclusion, the results of different shallow learning approaches in age predic-
tion exhibit intriguing patterns and inconsistencies. Cortical thickness consistently
outperforms cortical area and cortical curvatures, while conflicting results emerge
between cortical thickness and cortical volume. These inconsistencies may stem
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from the preprocessing procedure, parcellation granularity, and machine learning
pipeline. Combining multiple features yields, in general, better results than using
standalone features.

3.2.2 Dimensionality reduction

Applying dimensionality reduction techniques directly to the images is an alternative
approach to handcrafted features. Dimensionality reduction at the voxel level has
gained prominence as a strategy to model brain age. A summary of the results using
different dimensionality reduction strategies in the context of brain age prediction is
presented in Tables 3.3 and 3.4. Primary two dimensionality reduction procedures
have been widely explored: similarity matrix [3, 29, 118, 124, 132, 147] and PCA [9,
117,124,130,131]. Additionally, canonical correlation analysis (CCA) [124] and non-
negative matrix factorization (NMF) [131] have also gathered some attention. The
similarity matrix approach calculates pairwise similarities between subjects. PCA,
CCA and NMF are factorisation-dependent methods that differ in the optimisation
process. PCA extracts orthogonal components that capture the maximum variance
in the data. CCA identifies linear combinations of variables that maximise the
correlation between the data and the corresponding label. NMF decomposes data
into non-negative components.
Concerning the similarity matrix approach, congruent results are reported across
different studies. This consistency suggests that the similarity matrix technique is
a robust and reliable approach to predict brain age. Nonetheless, it is essential
to acknowledge that similarity matrix techniques heavily rely on the representa-
tiveness of the dataset used for training the brain age model. The accuracy and
generalisability of this technique are contingent upon the diversity and size of the
dataset. Therefore, it is crucial to ensure the inclusion of a broad range of subjects
spanning different age groups and demographic characteristics to construct robust
and accurate brain age prediction models. As with regard to PCA, at first sight,
it seems this compression technique is more unreliable than the similarity metric
given that Xifra-Porxas et al. [124] reported a MAE of 9.32 years, which is almost
two-fold higher compared to the MAE reported by other studies [9, 117, 130, 131].
Nevertheless, this result is, in fact, in agreement with the reported results by other
researchers. Xifra-Porxas et al. [124] reported the result considering using five PCA
components only. Franke et al. [130] showed that the number of PCA components
influence the MAE and that for a reduced number of components, the MAE is
high. Therefore, the number of components has a preponderant factor in accurately
predicting brain age. The number of PCA components used should be carefully
selected to obtain a reliable brain age model. Xifra-Porxas et al. [124] compared the
CCA dimensionality reduction strategy with similarity matrix and PCA. Despite
the lack of proper statistical analysis, the authors report that CCA outperforms
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Table 3.1: Overview of some manuscripts that predict brain age using a shallow learning feature-based approach.
Study Preprocessing Subjects Age range

[years] Evaluation Pipeline Features R2 MAE
[years]

cortical thickness n.s 6, 05 ± 0, 05
mean curvature n.s 7, 88 ± 0, 07

gaussian curvature n.s 11.21 ± 0, 10RVR

cortical area n.s 10, 52 ± 0, 22
cortical thickness, mcurv, gcurv n.s 5, 97 ± 0, 11
cortical thickness, cortical area n.s 4, 57 ± 0, 04

Wang et al.
[115] FreeSurfer 360 20-82 10-fold

RFE-SVM and RVR cortical thickness, cortical area,
mean curvature, gaussian curvature n.s 5, 06 ± 0, 09

cortical volume 0,7 n.s
cortical thickness 0,66 n.s

cortical area 0,57 n.sValizadeh
et al. [116] FreeSurfer 3144 7-96 Split (50-50) NN

cortical volume, cortical area,
cortical thickness 0,84 n.s

SVR cortical thickness n.s 5.95 ± 4.69
SVR cortical area n.s 7.29 ± 5.96
SVR subcortical volumes n.s 6.44 ± 5.02Liem et al. [28] FreeSurfer 2354 19-82 5-fold

SVR cortical thickness, cortical area
subcortical volumes n.s 4.83 ± 4.01

GPR subcortical volumes 0,87 5,52Becker et al.
[117] FreeSurfer 1563 6-92 5-fold GPR cortical thickness 0,8 6,5

cortical thickness 0,59 n.s
gyrification index 0,62 n.s
fractal dimension 0,67 n.sexternal

test set PCA and RVR
cortical thickness, gyrification index,

fractal dimension 0,81 n.s

cortical thickness 0,35 n.s
gyrification index 0,5 n.s
fractal dimension 0,71 n.s

Madan et al.
[55] FreeSurfer 1056 18-94

external
test set PCA and RVR

cortical thickness,gyrification index,
fractal dimension 0,71 n.s

SVR cortical volume and subcortical volumes 0.42 4.06 ± 0.02
RVR cortical volume and subcortical volumes 0.42 4.10 ± 0.02Beacker et al. [9] FreeSurfer 10824 47-73 holdout test set
GPR cortical volume and subcortical volumes 0.42 4.08 ± 0.01

Lee et al. [137] FreeSurfer 492 18-87 10-fold ElasticNet cortical thickness, cortical area,
subcortical volumes n.s 7.2

PCA: Principal Component Analysis; GPR: Gaussian Regression Processes; RVR: Relevance vector Regression; RFE: Recursive feature elimination; SVR: Support Vector Regression; n. s.: not specified.
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Table 3.2: Overview of some manuscripts that predict brain age using a shallow learning feature-based approach.
Study Preprocessing Subjects Age range

[years] Evaluation Pipeline Features R2 MAE
[years]

cortical thickness n.s 12
gyrification index n.s 14,2

fractal dimension (Kiselev et al., 2003) n.s 15,8
fractal dimension (Goñi et al., 2013) n.s 15,8
fractal dimension (Marzi et al., 2018) n.s 12,3

Marzi et al. [56] FreeSurfer 86 19-85 5-fold Linear
regression

fractal dimension (Marzi, 2020) n.s 11,1
PCA and GPR cortical volume n.s 7.187
PCA and GPR mean curvature n.s 7.30

PCA and GPR cortical thickness,
cortical volume n.s 6.385Costa et al. [118] SPM12 2640 17-90 5-fold

PCA and GPR cortical thickness,
cortical volume, mean curvatures n.s 6.132

Subcortical volumes 0.67 7.5
Cortical thickness 0.59 8.4Rokicki et al. [119] FreeSurfer 750 18-85.3 10-fold Random Forest

Cortical and subcortical 0.72 6.9
cortical area 0.86 5.90

cortical depth 0.84 6.34
folding index 0.90 4.96

local gyrification index 0.82 6.92
cortical volume 0.91 5.03

cortical thickness 0.90 4.79
Liu et al. [120] FreeSurfer 2501 20-94 holdout

test set SVR

cortical area, cortical depth, folding index,
local gyrification index, cortical volume,

cortical thickness
0.88 5.30

GPR brain volume n.s 6.86 ± 0.13Zhu et al. [121] FreeSurfer 100 n.s. 5-fold GPR cortical thickness n.s 9.12 ± 0.15

Richard et al. [139] FreeSurfer 612 20-88 external test set xgboost cortical thickness, cortical area, cortical volume,
subcortical structures n.s. 6.76

Aycheh et al. [140] FreeSurfer 2705 45-91 10-fold Lasso cortical thickness n.s 4.033
RVR cortical thickness, subcortical volumes n.s. 5.474 ± 0.140Dafflon et al. [138] FreeSurfer 10307 18-89 10-fold TPOT cortical thickness, subcortical volumes n.s. 4.612 ± 0.124

PCA: Principal Component Analysis; GPR: Gaussian Regression Processes; SVR: Support Vector Regression; xgboost: eXtreme Gradient Boosting; TPOT: tree-based pipeline
optimization tool, n. s.: not specified.
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PCA and the similarity matrix. Moreover, Varikuti et al. [131] compared NMF
with PCA, the results evidence that NMF is an alternative approach to PCA.
Nonetheless, the performance of CCA and NMF was not assessed on an external test
set. Therefore, further analysis should be performed to validate these dimensionality
reduction techniques in brain age prediction.
In conclusion, voxel-level strategies are a promising approach to brain age prediction.
Further exploration of CCA and NMF’s potential in predicting brain age could
provide valuable insights into its efficacy compared to other methods.

3.2.3 The significance of shallow learning pipeline in brain age
performance

The shallow learning pipeline can profoundly impact the model’s performance. As
previously discussed, the preprocessing pipeline, the parcellation scheme, the feature
extraction and selection, or dimensionality reduction can lead to significantly differ-
ent results. The comparison between a handcrafted feature-based model (using sub-
cortical and cortical features) and dimensionality reduction with PCA was performed
by Baecker et al. [9]. The findings evidence that the latter attained lower and stabler
performance across three regression models (relevant vector regression (RVR), SVR
and gaussian process regression (GPR)) than using ROI-wise features. Furthermore,
the regression model and the tuning of the corresponding hyperparameters have
also been suggested to influence the performance of shallow brain age pipeline
[130, 137, 144]. Franke et al. [130] showed that the hyperparameter tuning of a
SVR model influences its performance; improper tuning can lead to an increase
of the MAE from 5 to 9 years. Regularisation techniques significantly impact the
model performance; Lee et al. [137] compared several models and showed that the
one without regularisation performed poorly. A comprehensive comparison across
multiple regression models was performed by Beheshti et al. [144]. The findings
reveal that the choice of the kernel and the regression model affect the MAE value.
In this study, the models with the best and worst performance were the gaussian SVR
and Gaussian regression (with a squared exponential kernel) with a MAE of 3.04
and 7.54 years, respectively. Given the infinite choices of regression models and their
hyperparameters, Dafflon et al. [138] and Costa et al. [118] used genetic programming
to select the best pipeline (feature type and regression model). The results evidence
that no unanimous pipeline performs best for all cases [118,138]. Different datasets
benefit from different machine learning pipelines [118,138]. Costa et al [118] showed
that best pipeline differ across acquisition settings. Furthermore, the findings of
Dafflon et al. [138] outline that there is an advantage in using genetic programming
only when the age of the data is not uniformly distributed; otherwise, an RVR model
yields similar performance to an optimised pipeline [138].
In conclusion, the pipeline choice affects the models’ performance. Multiple compar-
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Table 3.3: Overview of some manuscripts that predict brain age using a shallow learning dimensionality reduction based approach.

Study Preprocessing Subjects Age range
[years] Evaluation Tissue

Feature
reduction

or compression

Regression
model R2 MAE

[years]

Franke et al. [130] SPM 410 20-86 external
test set GM PCA RVR n.s 4,96

Becker et al. [117] FreeSurfer 1563 6-92 5-fold GM PCA GPR 0,86/- 5,65
GM similarity GPR 0.89 4.66
WM similarity GPR 0.84 5.88

GM and WM similarity GPR 0.91 4.41Cole et al. [3] SPM 2001 18-90 holdout test set

raw similarity GPR 0.32 11.81
2001 18-90 10-fold GM and WM similarity GPR n.s 5,02

Cole et al. [147] n.s. 2001 18-90 external
test set GM and WM similarity GPR n.s 7,08

PCA RVR n.s 5.7Varikuti et al. [131] VBM8 1084 18–81 10-fold GM NMF RVR n.s 6.1

Jonsson et al. [29] CAT12 1264 18-75 holdout
test set GM and WM similarity ridge 0.728 4.937

GM similarity SVR n.s 5.004
WM similarity SVR n.s 5.589

GM and WM similarity SVR n.s 4.571
GM PCA Linear regression n.s 13.609

Costa et al. [118] SPM12 2640 17-90 5-fold

WM PCA Linear regression n.s 13.613

Jiang et al. [132] SPM8 holdout
test set FPN GM similarity GPR 0.70 7.74

PCA SVR 0.51 ± 0.02 3.77 ± 0.04
PCA RVR 0.51 ± 0.02 3.82 ± 0.03Baecker et al.

[9] FreeSurfer 10824 47-73 holdout
test set GM

PCA GPR 0.51 ± 0.02 3.81 ± 0.03
GM: Grey Matter; WM: White Matter; PCA: Principal Component Analysis; CCA: Canonical Correlation Analysis; NMF: Non-negative Matrix Factorization; FPN: FrontoParietal
Network; GPR: Gaussian Regression Processes; RVR: Relevance vector Regression; SVR: Support Vector Regression; n. s.: not specified.
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Table 3.4: Overview of some manuscripts that predict brain age using a shallow learning dimensionality reduction based approach.

Study Preprocessing Subjects Age range
[years] Evaluation Tissue

Feature
reduction

or compression

Regression
model R2 MAE

[years]

PCA GPR n.s 10.05 ± 0.89
similarity GPR n.s 7.14 ± 0.68cortical

CCA GPR n.s 7.01 ± 0.60
PCA GPR n.s 8.84 ± 0.76

similarity GPR n.s 5.98 ± 0.63subcortical
CCA GPR n.s 5.79 ± 0.53
PCA GPR n.s 9.32 ± 0.81

similarity GPR n.s 6.20 ± 0.63GM
CCA GPR n.s 6.02 ± 0.52
PCA GPR n.s 10.98 ± 1.07

similarity GPR n.s 6.56 ± 0.66

Xifra-Porxas et al. [124] FreeSurfer 652 18-88 10-fold

WM
CCA GPR n.s 6.38 ± 0.54

Linear SVR 0.88 5.40
Gaussian SVR 0.95 3.04

GPR
(kernel: exponential) 0.89 5.29Beheshti et al. [144] SPM 788 788 (18-94) 10-fold GM PCA

GPR
(kernal: squared potential) 0.81 7.54

GM: Grey Matter; WM: White Matter; PCA: Principal Component Analysis; CCA: Canonical Correlation Analysis; NMF: Non-negative Matrix Factorization; FPN: Fronto
Parietal Network; GPR: Gaussian Regression Processes; RVR: Relevance vector Regression; SVR: Support Vector Regression; n. s.: not specified.
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isons across different regression models were performed, yet different studies report
distinct better models. There is not a gold-standard shallow pipeline that can be
applied to multiple cases [118, 138]. Nevertheless, on a positive note, RVR yield a
good performance across multiple studies [9, 130,137,138].

3.2.4 Evaluation

Brain age shallow learning models have been evaluated using the three strategies (k-
fold, holdout test set and external test set). Concerning the shallow learning based
on feature extraction, the most prominent evaluation methodology is the k-fold [28,
56,115,117,118,120,121,137,138,140]. To a smaller degree, the holdout [9,116,120]
and external test [55, 55, 139] were also considered to evaluate the performance of
brain age models. In dimensionality reduction, the three evaluation strategies have
also been considered, but in this case the proportion of studies which considered k-
fold [117,118,124,131] is equal to the holdout test set [3,9,29,132]. Two studies assess
the model performance on an external test set [130, 147], but only Cole et al. [147]
compared the model performance of a holdout with an external test set. The result
showed a two-year increase in MAE on data acquired in different acquisition settings.
This discrepancy across acquisition settings might be due to different acquisition
parameters and/or scanner types, which lead to different contrast and noise levels
on T1-weighted images [148].

3.3 Deep Learning

This section summarises recent studies on brain age modelling using deep learning.
The section begins with an introduction to CNN and the architectures used to predict
brain age. The different inputs and ensembly strategies considered in this context
are overviewed in section 3.3.2 and 3.3.3, respectively. CNN are considered black-
box models; the recent strategies to uncover the model predictions are discussed in
subsection 3.3.4. Finally, the section 3.3.5 finishes with a comment on the evaluation
strategy used to assess the brain age model performance.

3.3.1 Deep learning architectures and optimisation strategies

CNN were developed in the context of visual recognition tasks [32]. Their outstand-
ing performance led to their application in numerous fields, namely neuroimag-
ing [135]. CNN typically consist of five fundamental layers: convolution, activation,
pooling, batch normalisation, and dropout [32,135]. In the convolution layer, multi-
ple kernels, also known as filters or feature extractors, are convolved with the input
image to extract relevant features. The activation layer applies a non-linear function
to introduce non-linearity into the network, enabling it to learn complex relationships
between features. Pooling is an operation that reduces the spatial dimensions of the
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feature maps by selecting representative values from a set of pixels and downsampling
the data. Batch normalisation [149] is employed to normalise the weights of each
layer, mitigating the vanishing gradient problem and preventing overfitting. Lastly,
dropout [150] is a regularisation technique that prevents overfitting by randomly
dropping a given proportion of connections between two layers during training, thus
encouraging the network to learn more robust and generalisable features.
One of the early contributions to deep learning was made by Cole et al. [3]; the
authors proposed a custom architecture, a scheme is shown in Figure 3.5a. The net-
work contains five convolution block architectures; each convolution block comprises
a 3D convolution, rectified linear units (ReLU), 3D convolution, batch normalisation,
ReLU, and a maximum pooling layer. A fully connected layer succeeded the convo-
lution blocks, followed by the output layer. In total, the network contains 889960
parameters. The authors compared the network’s performance in age prediction
with a shallow pipeline. The study revealed that CNN models were a promising
alternative to shallow learning. Since then, deep learning has gained widespread
application in brain age estimation [114]. A summary of some deep learning studies
on brain age is presented in Tables 3.5 through 3.7.
Various CNN architectures have been explored in the context of age prediction. Some
studies adapted to 3D established 2D networks renowned for their performance in
visual recognition tasks, such as visual geometry group network (VGG) [127, 132],
residual network (ResNet) [4, 29, 151], U-Net [133] or dense convolutional network
(DenseNet) [152]. Nevertheless, these networks have a high number of parameters.
3D ResNet-18, 3D ResNet50, and 2D VGG contain 33.2 million, 46.2 million, and
133 million, respectively [4]. Thus, these networks are computationally demand-
ing and might be prone to overfitting for small training sizes. To overcome this
constraint, some studies tailored their architectures. Custom architectures vary
in layer combinations [3, 4, 122]. Simple fully convolutional network (SFCN) [4],
proposed by Peng et al., is a lightweight network that won the 2019 Predictive
Analysis Challenge for brain age prediction. The network contains approximately 3
million parameters, the architecture is depicted in Figure 3.5b. As can be observed,
it consists of five convolution blocks, each encompassing a 3D convolution layer, a
batch normalisation, maximum pooling and the ReLU activation function. The
five-block is followed by a similar block without the pooling layer; finally, the
layer finishes with a block containing average pooling, dropout and a convolution
layer. The authors compared the performance of the SFCN with four ResNet
architectures [153]. Despite the absence of statistical analysis, the results suggest
that the proposed architecture outperforms all four ResNet architectures. Given the
remarkable performance of SFCN and its simplicity, it has been applied to multiple
brain age studies [30,123,125,154].
The CNN training involves adjusting network weights using gradient descent-based
algorithms. For the studies considered in this state-of-the-art, the optimisation
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(a) Cole et al. [3] (b) SFCN [4]
Figure 3.5: Representation of custom CNN architectures widely used for age prediction.
The architecture proposed by Cole et al. [3] marks the beginning of deep learning on brain
age prediction. SFCN [4] is a lightweight network with formidable performance in age
prediction.

methods considered were stochastic gradient descent [3,4,30,127,132] and Adam [4,
29,125,133,151,152,154,155]. The weights are updated to minimise a predefined loss
function, which computes the error between the real and the predicted age. The three
loss functions considered in this field are: MAE [3, 29, 30, 132], mean squared error
(MSE) [122, 125, 127, 154], and root mean squared error (RMSE) [126]. The CNN
weights are optimised through multiple iterations or epochs. Some researchers train
their models for a fixed number of epochs and do not perform model selection [132,
154,155]. Others select the model that performed the best over the last few epochs
or since the beginning of training [4, 30,125].

3.3.2 Comparison of the diverse input approaches

Images are the substrate of CNN models. As discussed in section 3.1.1, different
preprocessing levels result in distinct image types. Each study employs one or more
preprocessing byproducts of T1-weighted images or other MRI modalities.
Two studies explored raw T1-weighted images to predict the age [3,152]. The findings
evidence that raw images generally lead to inferior [3, 152] and less reliable results
compared to segmented images [3] or minimally processed images [152]. These
results might be related to the higher noise, artefacts, or irrelevant information
that can hinder accurate age estimation.
Most brain age models learn age patterns from minimally processed T1-weighted
[3,4,29,123,152,154–156] or segmented images [3,4,29,123,126,127,133,151]. Despite
the lack of proper statistical comparison between minimally processed images and
segmented images, the studies report congruent results; i.e. minimally processed
images yield better results than any segmented image [4, 29, 123]. GM emerge as
the segmented image most often considered for brain age prediction [3, 4, 29, 123,
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126, 127, 132, 151], followed by WM [3, 4, 29, 123, 133]. Most of the studies suggest
that GM yields better performance than WM [3,4,123,133]. In contrast, Jonsson et
al. [29] report that a model trained with WM outperforms GM. However, the MAE
difference observed is 0.09 years, yet a statistical was not performed to compare the
performance of different models.
Deformation fields have also been considered to estimate the brain age [29, 155].
Nonetheless, the results are dissonant. Jonsson et al. [29] reported that deformation
fields yield a higher MAE than either minimally processed, GM or WM. On the
contrary, He et al. [155] reported superior performance of deformation fields when
compared to minimally processed. The distinct preprocessing pipelines or CNN
architectures might explain the different conclusions.

3.3.3 Exploring ensemble strategies

Multiple image types and models can be combined to attain lower MAE in age
prediction. Three fusion strategies are considered in brain age: input, layer and
model level; a scheme is shown in Figure 3.6. The former combines diverse modalities
for richer input representation. Layer fusion merges features from different networks.
Model fusion combines predictions from multiple models using an aggregation func-
tion. Currently, there is no systematic comparison to determine the best fusion level
in BrainAGE. He et al. [155] compared the three fusion levels. Despite the absence
of statistical analysis, the findings suggest that, independently of the level, fusion
yields better results than a single model. Furthermore, layer-level fusion yields the
highest performance compared to input or model fusion. Nevertheless, dissonant
results are reported by Cole et al. [3]. The authors combined GM, WM at the
input level and assessed the model on a holdout dataset. The results highlight that
the fusion of GM and WM yields better performance than training a model solely
with WM, yet the fusion model underperforms comparatively to a GM model. The
contradictory results concerning fusion at the input level might be explained by the
type of inputs considered. Cole et al. [3] compared GM and WM, He et al. [155]
combined minimally processed and deformation fields.
Most studies adopt the fusion at the model level [29, 125,152,154,155]. The results
are congruent, model fusion leads to superior performance compared to using a
single image per model [4, 29, 125, 152, 154, 155]. Different combinations have been
performed. Jonsson et al. [29] combined the predictions of minimally processed
image, deformation fields and segmented images (GM, WM, and CSF). Peng et
al. [4] combined the prediction of four models trained with minimally processed
linear registered, minimally processed non-linear registered, GM and WM. Some
studies combine models trained with other MRI modalities [125,152,154]. Wood et
al. [152] merged the output predictions of T1-weighted with Axial T2. Despite the
lack of proper statistical analysis, combining prediction from multiple modalities
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seems to yield better results. The same conclusion is suggested by Mouches et
al. who evaluated the added value of magnetic resonance angiography [125, 154].
Shallow and deep learning models have also been combined [125], with the results
suggesting a superior performance when both strategies are combined.
Another fusion strategy encompasses the aggregation of the predictions from mul-
tiple models trained with the same data on the same architecture. The fusion
is performed at the output level either by averaging the multiple predictions [4,
123, 127], or performing a regression on the model predictions, thus assigning each
model prediction a different weight [122,128]. Combining the predictions of multiple
models with different initial parameters achieves lower MAE than using a single
model [4, 122,123,127,128].

3.3.4 Explainability

Deciphering the reasons behind the predictions of CNN models is challenging due
to the high number of parameters these models have. Two strategies have been
considered to overcome this limitation: predicting the age at a lower level (slice
or subvolume) or computing the sensitivity maps. Slice-based models enable the
scrutiny of predictions at a slice level, facilitating the explainability of the model
predictions. This approach has some advantages. Firstly, it reduces the computa-
tional complexity compared to using the whole 3D volume and increases the number
of training instances. Ballester et al. [151] trained a 2D-CNN with MRI slices; the
results outline that the model’s performance depends on the slice and the MRI plane

Figure 3.6: Representation of different fusion strategies used in brain age. An example of
combining information from a grey- and white-matter. On the left, the images are combined
at the input level; on the centre, the features extracted from each image are combined at the
layer level; on the right, the predictions of each network are combined using an aggregation
function at the model level.
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(axial, sagittal and coronal). Therefore, valuable information might be lost with
the transition from the volume to the slice level. Another option is to increase the
explainability of the brain age per region using a patch-based approach [113,133,157].
A MR image is divided into smaller subvolumes or patches, and the age is predicted
per patch. Thus, in this case, different brain regions may exhibit different age predic-
tions. This approach is consistent with the current literature. It is believed that some
brain regions undergo ageing faster than others, such as the hippocampus [41–43].
Insights on the abnormally ageing brain areas can be valuable in differentiating
between diseases and understanding their progression. Nonetheless, currently, the
prediction at the patch level yields the poorest performance compared with either
the whole 3D volume or slice-level models. Such results might be explained by the
reduced information these models contain to make a prediction compared to the
slice or global brain age prediction.

The sensitivity maps emerge from the growing necessity to interpret models.
These maps translate the influence that each pixel exerted on a prediction.
Grad-CAM [158] and SmoothGrad [159] are two strategies that generate sensitivity
maps by computing the influence of each pixel using the partial derivative of the
input volume with respect to the prediction. These methods have been used to
unveil the voxel’s influence on age predictions [113, 122, 125, 126]. The results are
congruent across studies, the regions with higher influence on age prediction include
the ventricles and the subcortical regions [113, 122, 125, 126]. These results are
consistent with the findings discussed in section 2.1.1. Additionally, Dinsdale et
al. [127] shown that the registration process can affect the salience maps. In
non-linear registered images, the maps highlight areas around the ventricles,
while in linear registration, no specific region significantly contributes to the
prediction. The explanations from sensitivity maps should be carefully analysed.
A systematic comparison of eight salience map techniques, including Grad-CAM
and SmoothGrad, based on four trustworthiness criteria (reproducibility, reliability,
localisation utility, and sensitivity to model weights) revealed that all methods fail
to meet at least one criterion [160]. Supporting this finding, Levakov et al. [122]
concluded that the initial weights of the model impact on its explainability.

The integration of a patch-based model with sensitivity maps might help to in-
crease the reliability of the explanations. Hepp et al. [113] showed that the regions
with higher influence on predictions yield higher performance in the patch-based
approach. Similarly to the other studies [122, 125, 126], the regions with more
substantial influence were in the ventricles and subcortical regions. In these areas,
MAE of the patch-based approach was around five years, whereas in the overall
MAE was 11.97 ± 12.78.
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3.3.5 Evaluation approaches

Similarly to shallow learning, the evaluation strategy differs across studies. Holdout
test set [3,4,29,122,123,125–127,132,133,152,156] is the strategy extensively adopted
to assess the performance of deep learning brain age models. Nevertheless, k-
fold [154,155] and external test set [29,30] have also been considered.
The results obtained using the holdout sample and k-fold approach are consistent
across studies that focused on the same age range. For studies that included
participants in late adulthood only, the MAE typically ranged between 2 to 3
years [4, 123, 127]. However, studies that included subjects in early adulthood
exhibited a higher MAE [3,29,122,125,126,132,152,154,155]. Unsurprisingly, models
evaluated on external datasets tended to have higher MAE compared to those using
a holdout sample [29,30]. Jonsson et al. [29] reported a MAE of 3.39 years and 8.49
years for the holdout and external test set, respectively. Similarly, Leonardsen et
al. [30] explored the model performance on multiple external test sets. The authors
outline that the MAE varied across external test sets, with the lowest and highest
reported MAEs being 2.82 and 6.94 years, respectively. These findings highlight
that the performance on the holdout test set is not representative of the model
performance on different acquisition settings. Although the holdout images were
not used for training and validation, the model is trained with images acquired in
the same acquisition settings as the holdout test set. Therefore, the model images
might be biased towards the acquisition setting patterns. Jonsson et al. [29] showed
that if the models were retrained with some images from the external test set, while
the remaining samples were used as a holdout test set, the MAE decreased from 8.49
to 3.63 years. Furthermore, the MAE variability reported by Leonardsen et al. [30]
on multiple external test sets is evidence that a single external test set is insufficient
to represent the model performance on unseen data.

3.4 BrainAGE: A complex landscape

BrainAGE has been associated to multiple diseases [9], which suggest that this
putative biomarker encodes an acceleration of the ageing process.
BrainAGE seem to capture the disease-related morphological brain changes in pre-
clinical stages. Alzheimer’s disease (AD), the most prevalent neurodegenerative
disease, consistently exhibits statistically significant differences in BrainAGE when
comparing prediction results between healthy controls and the AD group [117, 119,
131, 161–168]. Mild cognitive impairment (MCI), a prodromal stage of AD, is a
condition associated with a decline in cognitive performance. Studies evidence that
MCI is also related to an increased BrainAGE, albeit with lower magnitude [28,119,
131,161–163,165,168,169]. BrainAGE yields higher accuracy rates in the prediction
conversion of conversion from MCI than CSF markers, structural atrophy measures
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Table 3.5: Overview of some manuscripts that predict brain age using deep learning.
Study Subjects Age range

[years] Evaluation Input
(fusion approach) Architecture R2 MAE

[years]
GM custom CNN 0.92 4.16
WM custom CNN 0.88 5.14

GM and WM
(input level fusion) custom CNN 0.91 4.34Cole et al. [3] 2001 18-90 holdout test set

raw custom CNN 0.88 4.65
MP ResNet 4.006 0.829
GM ResNet 4.641 0.776
WM ResNet 4.189 0.812
DF ResNet 4.804 0.758holdout test set

MR, GM, WM and DF
(model fusion level) ResNet 3.388 0.872Jonsson et al. [29] 1264 18-75

external test set MP, GM, WM and DF
(model fusion level) ResNet -0.630 8.494

Jiang et al. [132] 1303 18-90 holdout test set GM FPN VGG 0.76 5.55
Levakov et al. [122] 9158 n.s. holdout test set MP custom CNN n.s. 3.07

SFCN n.s. 2.14 ± 0.05Peng et al. [4] 12949 44-80 holdout test set MP, MP*, GM and WM
(model fusion level) ResNet n.s. 2.50 ± 0.06

Gong et al. [123] 7896 n.s holdout test set MP, MP*, T1, GM and WM
(model fusion level) SFCN n.s. 2.98

external test set MP SFCN n.s. 2.82Leonardsen et al. [30] 53542 n.s. external test set MP SFCN n.s 6.94
MP SFCN 0.872 4.01 ± 3.08

TOF MRA SFCN 0.805 4.11 ± 3.75Mouches et al. [125] 1340 n.s holdout test set MP and TOF MRA
(model fusion level) SFCN 0.882 3.85 ± 2.90

MP SFCN n.s 4.20 ± 0.18
cortical features DL n.s 5.54 ± 0.20Mouches et al. [154] 1658 21-81 5-fold MP/ cortical features

(model fusion level) SFCN/DL n.s 4.11 ± 0.08

TOP MRA: Time of Flight Magnetic Resonance Angiography; MP: T1-weighted Minimal Processed; GM: Grey Matter; WM: White Matter; DF: Deformation fields; FPN:
Frontoparietal Network; CNN: Convolution Neural Network; SFCN: Simple Fully Convolutional Network; ResNet: Residual Neural Network; VGG: Visual Geometry Group
Network; DL: Deep Learning; n. s.: not specified.
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Table 3.6: Overview of some manuscripts that predict brain age using deep learning.
Study Subjects Age range

[years] Evaluation Input
(fusion approach) Architecture R2 MAE

[years]Dinsdale et al. [127] 6223 n.s holdout test set male GM VGG n.s. 3.09 ± 2.37
DF custom CNN n.s. 4.09 ± 0.10

minimally processed custom CNN n.s. 3.58 ± 0.26
MP and DF

(input fusion level) custom CNN n.s. 3.31 ± 0.13

MP and DF
(layer fusion level) custom CNN n.s. 3.12 ± 0.22He et al. [155] 6049 0-97 5-fold

MP and DF
(decision fusion level) custom CNN 3.38 ± 0.12

MP custom CNN n.s. 4.11
FLAIR custom CNN n.s. 4.16

SWI custom CNN n.s. 5.74Hofmann et al. [128] 2016 18–82 10-fold
MP, FLAIR, SWI

(decision fusion level) custom CNN n.s. 3.86

Axial T2-weight 3D CNN DenseNet n.s. 3.83
MP DenseNet n.s. 3.86
raw DenseNet n.s. 4.86Wood et al. [152] 1551 18-95 external test

set
MP + Axial T2 DenseNet n.s. 3.35
GM slice sagittal ResNet n.s. 4.52
GM slice coronal ResNet n.s. 5.04Ballester et al. [151] 2639 n.s holdout test set

GM sliceaxial ResNet n.s. 5.09
FLAIR: Fluid-attenuated inversion recovery; SWI: Susceptibility weighted imaging; MP: T1-weighted Minimal Processed; GM: Grey Matter; WM: White Matter; DF: Deformation
fields; CNN: Convolution Neural Network; ResNet: Residual Neural Network; DenseNet: Dense Neural Network; VGG: Visual Geometry Group Network; DL: Deep Learning; n.
s.: not specified.
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Table 3.7: Overview of some manuscripts that predict brain age using deep learning.
Study Subjects Age range

[years] Evaluation Input
(fusion approach) Architecture R2 MAE

[years]
MP slice - sagittal CNN and LSTM n.s. 2.86
MP slice - coronal CNN and LSTM n.s. 2.98Lam et al. [156] 7312 45-81 holdout test set
MP slice - axial CNN and LSTM n.s. 6.25

holdout test set
OASIS3 patches (GM+WM) U-Net n.s. 8.09 ± 6.08

holdout test set
AIBL patches (GM+WM) U-Net n.s. 10.23 ± 7.08

Popescu et al. [133] 3463 18-90 holdout test set
Wayne State patches (GM+WM) U-Net n.s. 8.08 ± 6.40

MP ResNet n.s. 3.21ś2.45Hepp et al. [113] 10691 20-72 5-fold MP - patch based ResNet n.s. 11.97 ± 12.78
MP: T1-weighted Minimal Processed; GM: Grey Matter; WM: White Matter; CNN: Convolution Neural Network; ResNet: Residual Neural Network; DL: Deep Learning; LSTM:
Long Short-Term Memory; U-Net: U Network; n. s.: not specified.
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or cognitive scales [162]. Furthermore, type 2 diabetes (T2D), which is a risk factor
for AD and is associated with higher brain atrophy rates [97], is also linked to
higher BrainAGE [170,171]. Schizophrenia have consistently an increased BrainAGE
compared to healthy controls [121, 137, 172–176]. The first episode of psychosis
seems to be associated with higher brain atrophy [74]; increased BrainAGE has also
been reported in individuals that experienced their first episode of psychosis [177,
178]. Moreover, individuals with a higher risk of abnormal neurodevelopment had
increased BrainAGE compared to healthy controls [179]. Therefore, BrainAGE could
be used as a screening tool for the early identification of clinical conditions at their
pre-clinical stage.
BrainAGE seems to tackle brain atrophy and could also be used as a prognostic
tool in some diseases. BrainAGE has been reported to be increased in patients
with multiple sclerosis [180]. The results suggest that the BrainAGE is related to
the degree of disability and the disease progression. Moreover, BrainAGE has been
shown to increase in individuals who suffered a traumatic brain injury [181–183]
and correlates with the amount of time since the traumatic brain injury occurred.
Epilepsy also yields an increased BrainAGE [184, 185]. Verma et al. [184] reported
that epileptic subjects with frequent seizures, at least one weekly, yield higher
BrainAGE than patients with less seizures. These findings suggest that BrainAGE
might capture the trajectory of the underlying pathological process and be used as
a prognosis tool.
However, discrepant results are reported in some disorders. Bipolar disorder, whose
symptomatology is very similar to schizophrenia in its early stages, has yielded incon-
gruent findings regarding its association with BrainAGE [172–174, 176]. Similarly,
major depressive disorder has exhibited elevated BrainAGE in some research [186],
while contradictory evidence has also been reported [187]. The reported discrep-
ancies might be attributed, in part, to variations in the choice of models used to
measure BrainAGE. Lee et al. [137] assessed the impact of different shallow learning
pipelines on BrainAGE. The authors compared the BrainAGE on two schizophrenia
datasets. The results highlight that the dataset and the model choice influence
BrainAGE results. Despite BrainAGE being considered significant in almost all
models on both datasets, except for one case, its value varied from 3.8 to 5.2 years
on one dataset and between 4.5 to 11.7 on another.
In conclusion, consistent associations have been observed in some conditions such
as AD, MCI, schizophrenia, multiple sclerosis and epilepsy. Nonetheless, dissonant
results have been found in conditions such as bipolar disorder and major depres-
sive disorder. Figure 3.7 summarises conditions considered in this state-of-the-art,
which are reported to yield a superior BrainAGE. The choice of the model and
dataset used to measure BrainAGE might be a potential factor contributing to the
inconsistencies. Despite the complexities and discrepancies, exploring BrainAGE
remains a promising avenue for early diagnosis in prodromal clinical stages and
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Figure 3.7: Pathologies in which the brain age gap estimation (BrainAGE) is suggested to
yield significant differences with healthy controls. The asterisk (*) denotes the pathologies
with inconsistent results in the literature. Abbreviations: Alzheimer’s Disease (AD);
Mild Cognitive Impairment (MCI); Type 2 Diabetes (T2D); Schizophrenia (SCHZ), Major
Depressive Disorder (MDD), Bipolar disorder (BP), Traumatic Brain Injury (TBI); Multiple
Sclerosis (MS).

disease prognosis.

3.5 Conclusion

Various preprocessing levels of T1-weighted images have been considered in brain
age context: raw, minimally processed, and segmented images. The results outline
that raw images are unreliable across scanners. Furthermore, models tested on
an external test set, in which the acquisition settings differ from the training and
validation data, yield higher MAE compared to the performance on a holdout
dataset. An explanation for this finding might be the fact that images contain
information concerning the acquisition settings. Thus, MRI preprocessing is vital to
reduce noise and remove undesirable information. Nevertheless, currently, there is
no gold-standard strategy in preprocessing; mainly, two preprocessing frameworks
are considered in the state-of-the-art: FreeSurfer and SPM.
Shallow and deep learning have been considered for modelling brain age. Two shallow
learning strategies have been considered, one based on handcrafted features and
the other on dimensionality reduction. The former approach yields multiple incon-
sistencies, which might result from differences in preprocessing or in the machine
learning pipeline. On a positive note, the models based on a dimensionality reduction
approach are more consistent. Nevertheless, the state-of-the-art highlighted that
there is no gold-standard machine learning pipeline.
Deep learning emerged as an alternative to shallow learning; the results suggest that
deep learning tends to outperform shallow learning in age prediction. Currently,
these models encounter two challenges: explainability and generalisability. To solve
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the former, sensitivity maps were considered, and the results are congruent across
studies. Thus, sensitivity maps might be a valuable tool to uncover the reasons
behind a prediction. Concerning generalisability, deep learning models generalise
poorly on data acquired in different acquisition settings. As previously mentioned,
this might also be a problem of preprocessing, but it might also be due to a model
bias towards the acquisition settings of the training data.
Finally, BrainAGE is a promising candidate for the early diagnosis and the prognosis
of different conditions. This putative biomarker seems to capture the atrophy of the
brain and could be used as a tracker of brain ageing healthy status. Nevertheless,
BrainAGE is increased in multiple conditions; thus, to be considered in clinical
practice for early diagnosis, the specificity of this putative biomarker should be
addressed.
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4.1 Abstract

A reproducibility crisis has been reported across many research fields, in-
cluding neuroimaging, reaching up to 70% of studies. Neuroimaging data,
such as magnetic resonance imaging (MRI), requires preprocessing to

allow for inter-subject comparison, increase signal contrast and noise reduction. As
manual MRI preprocessing is time consuming and requires expertise, multiple auto-
matic preprocessing frameworks have been proposed. However, neuroimaging studies
often report divergent results, even for similar populations, thus it is important to de-
termine whether this occurs as a result of different processing tools. Two of the most
used tools are FreeSurfer and the computational anatomy toolbox (CAT12). In this
study, we assessed the reproducibility between these two automatic preprocessing
frameworks for structural MRI and the test-retest reliability within the framework on
estimating cortical thickness. Our results show that the reproducibility between the
frameworks is lower at the region-of-interest (ROI) level than at the individual level.
Furthermore, we found that the reproducibility was lower in paediatric samples than
in adults. Finally, an acquisition site effect was also identified. Given the widespread
use of these frameworks in basic and clinical neuroscience, the results of multi-
centric cross-sectional studies must be interpreted with caution, particularly with
paediatric samples. The observed reproducibility issue might be one of the sources
of discrepancies reported in neuroimaging studies. On a positive note, framework
test-retest reliability within subject is high, suggesting that inconsistency of results
may be less concerning in longitudinal studies. The code is available at: https:

//cibit-uc.github.io/fs-cat12-cortical-thickness-reproducibility.

4.2 Introduction

Structural MRI allows to estimate various morphometric features of the brain such as
cortical thickness, which is widely used in basic and clinical research. The cortical
thickness of healthy brains in humans measures, on average, 2.5mm [188], and is
associated with cognitive function [189, 190]. Cortical thickness is reported to be
correlated with disease progression in Alzheimer’s disease [189, 191], schizophre-
nia [51, 192], and Parkinson’s disease [193–195]. Nonetheless, inconsistent results
have been reported regarding cortical thickness changes in neurodevelopment [196]
and in multiple diseases such as autism spectrum disorder (ASD) [197–200] bipolar
disorder [201], or major depression disorder [202].
Cortical thickness corresponds to the distance between the pial surface of the brain
and the white matter boundary. Despite this straightforward definition, the eval-
uation of the cortical thickness is difficult given the inherent challenge of creating
accurate thickness estimations due to the highly folded brain morphology. The
manual preprocessing of magnetic resonance (MR) images is time consuming and

https://cibit-uc.github.io/fs-cat12-cortical-thickness-reproducibility
https://cibit-uc.github.io/fs-cat12-cortical-thickness-reproducibility
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requires field expertise, therefore different computational frameworks have been
proposed to automatically process MR images and to compute morphometric mea-
sures [112, 203–205]. The automation has several advantages: it does not require
deep user expertise, it can be parallelized, errors are systematic rather than random,
and its reproducibility is amenable to explicit testing. Yet, currently, there is
no gold standard preprocessing framework. Moreover, each framework uses its
implementation to preprocess MRI data and extract brain tissue estimations such
as cortical thickness. The different implementations can be a source of variability,
which might explain inconsistencies reported in literature, as mentioned above.
This study assesses the cortical thickness estimation’s reproducibility between two
of the most widely used preprocessing frameworks: FreeSurfer and CAT12. The
cortical thickness estimations’ reproducibility between CAT12 and FreeSurfer was
evaluated previously in very small sample size studies [206, 207], in which authors
reported a mean R2 and correlation between frameworks, for cortical thickness, of
0.89 and 0.92, respectively. However, the studies exhibit multiple limitations: the
number of subjects used in the study was very low; the studies only focused on an
adult population, and therefore did not consider the changes that occur in early life
periods such as childhood and adolescence; and the studies did not assess whether
the reproducibility depends upon the site of acquisition setting and individual age.
Another study [208] also evaluated the preprocessing pipeline impact on cortical
thickness estimation. Nevertheless, the study did not assess the reproducibility at
the subject level. To overcome these shortcomings, the current work uses MRI data
from three open data sharing initiatives with a large number of subjects. Further-
more, our study investigates whether the reproducibility between the two frameworks
depends upon the acquisition setting, the subjects’ age and brain region ROI. In
particular, the objectives of the current work are (a) to compare the test-retest
reliability within each framework, (b) to investigate whether the reproducibility of
FreeSurfer and CAT12 frameworks depends on the age and neurodevelopmental
stage, and (c) to assess these frameworks’ reproducibility on different acquisition
settings and verify whether different frameworks yield different results modelling
age using cortical thickness values.

4.3 Material and Methods

This work evaluates the reliability of cortical thickness estimations within two frame-
works: CAT12 and FreeSurfer, and the reproducibility of cortical thickness estima-
tions between these two frameworks. The study was divided into three objectives:

• Objective (a) assesses and compares the test-retest reliability of each framework
(FreeSurfer and CAT12). In this objective, we analysed two T1-weighted images
(Run1 and Run2) from each participant and cortical thickness is extracted for both
using both frameworks. The reliability metrics are computed within framework
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using the cortical thickness estimations of the two images. Therefore, two groups
were considered in this objective and the participants were the same in both
groups. For this analysis the Open Access Series of Imaging Studies (OASIS)-
3 dataset was used, all participants who had two consecutive images acquired
within less than 60 minutes were included.

• Objective (b) compares the reproducibility metrics between two age-groups, the
paediatrics group i.e., individuals with age lower or equal than 18 years old, and
the adults group, i.e., individuals with age greater than 18 years old. For this
objective the autism brain imaging data exchange (ABIDE) I dataset was used.

• Objective (c) assesses the reproducibility between FreeSurfer and CAT12 across
different acquisition sites. In this objective two datasets were used: the Informa-
tion eXtraction from Images (IXI) and OASIS-3 datasets, the former has three
acquisition sites, whereas the latter has one acquisition site. Therefore, four
groups were compared, one per acquisition site.

Figure 4.1 summarises the groups and data used for each objective.

4.3.1 Data

Three open sharing initiatives were used in this work: OASIS-3 [209], ABIDE I [209]
and IXI [210]. The demographics statistics and the acquisition protocol are shown
in Tables A.3, A.2, A.3 in the Appendix A. Each of the open sharing initiatives used
in this work is described below.

4.3.1.1 OASIS-3

OASIS-3 is an online repository that comprises images of the same individuals
captured from multiple modalities, such as MRI and positron emission tomography.
Each subject has one or more session, and a session may have multiple runs of
the same MRI modality. All images of the OASIS-3 dataset were acquired in the
same research centre over the course of 30 years, using different scanners. In this
work, only images acquired with the Siemens TIM Trio 3T scanner were used. For
the objective (c) all the subjects considered cognitively normal at the first MRI
session were used, which performed a total of 494 participants, three participants
had preprocessing errors, in total 491 subjects were considered. For the test-retest
analysis it is required that each subject has two T1-weighted images acquired, at
maximum, 60 minutes apart, 299 subjects fulfilled this requirement, three subjects
were excluded from the subset due to preprocessing errors, thus in total 296 subjects
were used in the analysis.
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Figure 4.1: Depiction of the objectives of this work as well as the data, groups (G) and
pipeline used in each objective. In this figure N represents the total number of participants
of a given group.
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4.3.1.2 ABIDE I

ABIDE I is a multi-site data sharing initiative (17 sites in total) with neurotypical
controls and subjects diagnosed with ASD. In this study only the neurotypical
controls were considered. Five subjects were discarded due to errors during the
preprocessing step, in total 566 subjects were analysed.

4.3.1.3 IXI

IXI is a dataset collected from healthy adults in three distinct hospitals in London:
the Hammersmith Hospital (HH), the Guy’s Hospital (GH) and the Institute of
Psychiatry (IOP). Philips MRI scanners with 3T and 1.5T were used to acquire
brain images in HH and GH, respectively. The IOP images were acquired with a
scanner from General Electrics with a field strength of 3T. In total, this dataset
contains data collected from 562 subjects; from these a subset composed of 558
subjects were successfully preprocessed in this study, the demographics of the IXI
dataset is in Table A.2 in the Appendix A.

4.3.2 Frameworks

4.3.2.1 CAT12

CAT12 (http://www.neuro.uni-jena.de/cat/) is a computational framework to au-
tomatically preprocess T1-weigthed MR images. Its routines are implemented in
MATLAB. In this work the default preprocessing routine (Segment) of CAT12 was
used to preprocess the T1-weighted images. The CAT12, SPM12 and MATLAB
version were version 1742, v7771 and R2020a (9.8.0.1323502), respectively. The
backbone of the segmentation routine is the unified segmentation algorithm [203].
The segmentation step relied on tissue probability maps (TPM) to differentiate the
brain tissues. The TPM must be properly adjusted for morphological changes that
occur in the human brain during neurodevelopment [211]. CAT12 integrates the
toolbox template-o-matic to generate customised TPM based on the age and gender
of the subjects in the dataset. A paediatric TPM was generated for the ABIDE I
dataset, using all the individuals with age lower or equal to 18 years old. In the
CAT12 preprocessing, in the paediatric group only, the customised TPM was then
used.

4.3.2.2 FreeSurfer

FreeSurfer [204] is an established computational framework in the neuroscience com-
munity [212]. This framework contains a routine called recon-all which implements
all the required steps to preprocess T1-weighted MR images and extract cortical
thickness estimations. In this work the images where preprocessed using the recon-
all routine of the FreeSurfer version 7.1.1.
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4.3.2.3 MRIQC

The MRI quality control tool (MRIQC) [213] is an open-source framework which
extracts different quality metrics from the T1-weighted images. This framework was
used to extract the quality metrics from the MRI images. The signal-to-noise ratio
(SNR) is one of the metrics extracted and was the metric chosen to represent the
quality of an image.

4.3.3 Cortical Parcellation

A standard approach in cortical thickness analysis is the division of the cortical
ribbon into several ROI according to a given template. In this work, the cortical
template considered was the Destrieux template [214]. This template divides each
hemisphere into 74 ROIs based on a sulco-gyral parcellation. The ROIs are then
grouped into five lobes: frontal, insula, temporal and occipital, parietal and limbic.
A ROI may be in more than one lobe, for instance the anterior part of the cingulate
gyrus and sulcus is in the frontal and limbic lobe.

4.3.3.1 Reproducibility and Reliability Metrics

The reproducibility and reliability between and within CAT12 and FreeSurfer, re-
spectively, is assessed in this work. The metrics extracted were the same for both:
the coefficient of determination (R2) of a regression and the intraclass correlation
coefficient (ICC), more specifically the ICC(3,1) proposed by [215]. The computation
methodology is explained below.

Test-retest reliability

The test-retest reliability aimed to assess the reliability of cortical thickness esti-
mations within framework over a short period of time (Run1 and Run2). A fitting
was performed in which the Run1 and Run2 cortical thickness estimations were
the independent and dependent variables, respectively, from the fitting the R2 was
extracted. The ICC was computed comparing the results of the two runs.

Reproducibility

To obtain reproducibility metrics between CAT12 and FreeSurfer a linear regression
was fitted to the data in which the independent and dependent variables were the
cortical thickness estimations extracted by FreeSurfer and CAT12, respectively. The
R2 of the fitting was one of the reproducibility metrics, the other was the ICC
which was computed comparing the cortical thickness estimations extracted by both
frameworks.
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4.3.4 Statistics

Two analyses were carried out per objective: a “participant analysis” and a “ROI
analysis”. In the former reproducibility/reliability metrics were extracted per indi-
vidual whereas in the second metrics were computed per ROI.
For each objective an overall analysis, participant and ROI analysis was performed
as described in subsections 4.3.4.1, 4.3.4.2 and 4.3.4.3, respectively.
A significance threshold of 0.05 was considered for statistical analyses in this chapter.

4.3.4.1 Overall analysis

In this analysis all the cortical thickness estimations for all ROIs and individuals
were considered. Two plots were used to show the relationship of two estimates of
cortical thickness: a regression plot and a Bland-Altman plot. The former shows
the relation of the two estimates, whereas the latter depicts the mean and mean
difference of these estimations.

4.3.4.2 Participant Analysis

The workflow of the participant analysis for the reliability/reproducibility study is
depicted in Figure 4.2. In this analysis the reproducibility/reliability metrics are
computed per participant using all participant’ ROIs. Therefore, each participant
has two reproducibility/reliability metrics: R2 and ICC. Then, two studies are
carried out: a metric analysis and an analysis of age effect on reproducibility/test-
retest reliability metrics.
In the metric analysis a statistical test was performed per reproducibility/reliabil-
ity metric to compare the metric means of different groups. The statistical test
performed depends upon the objective as follows:

• Objective (a) – to compare the test-retest reliability metric means of different
frameworks a paired t-test was conducted;

• Objective (b) - to compare the reproducibility metric mean of paediatric and
adults’ groups an analysis of covariance (ANCOVA) was performed, in which the
dependent variable was the metric, whereas the factors were the age, SNR, the
age-group and the acquisition setting;

• Objective (c) – to test the acquisition setting effect on the reproducibility metric
an ANCOVA was performed in which the independent variables were the acquisi-
tion setting, age and SNR, whereas the dependent variable was the reproducibility
metric in consideration.

The assessment of the age impact on the reproducibility/reliability metrics is desig-
nated in this work by Analysis of age effect on reproducibility/test-retest reliability
metrics. The values from the metrics analysis were grouped by metric and group.
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Figure 4.2: Generic representation of the workflow of the Participant Analysis for the objectives proposed, considering the R2 as the reliability/repro-
ducibility metric. The first step of this analysis is the computation of the R2, per participant (P), using the cortical thickness (CT) estimations for that
participant (blue block). In the objective (a) the R2 is computed comparing the CT estimations of Run1 and Run2, whereas for the objective (b) and (c)
the R2 is computed using the CT estimations of FreeSurfer (FS) and CAT12. Then, a metrics analysis is performed: the R2 means of different groups (Gi)
are compared using the appropriate statistical test (green block). Finally, the analysis of age effect on metrics is done by performing a fit per group (orange
block). The dependent variable is the R2 and the independent variables are the age, SNR and site. It should be noted the site is only used in the objective
(b) since it is the only one that has multiple sites within a group. The slopes of the age for the different groups, βR2

age,Gi
, are compared using independent

t-tests corrected for multiple comparisons.
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Then another linear fit was performed in which the dependent variable was the metric
whereas the independent variables were the age and SNR. An additional term, the
acquisition setting, was used for the objective (b) which is the only objective that
has multiple acquisition settings within a group (see Figure 4.2). It was considered
that age influenced the metric if the p-value of the second fit was lower than the
significance value (p-value<0.05).
The relation of age and a metric is given by the age’ slope (βage) of the second fit.
In this study, the βage of the R2 and ICC of the second fit is given by βR2

age, and
βICC

age , respectively. To further verify whether the relationship between age and re-
producibility/reliability metrics was the same in every group, a independent samples
t-test corrected for multiple comparisons was performed, per metric, comparing the
βage of the different groups (see Figure 4.2).

4.3.4.3 ROI analysis

This analysis aimed to understand the reproducibility/reliability across ROIs. To
achieve this two studies were conducted: a metric analysis and paired t-test for each
ROI.
In the metric analysis a linear regression was fitted for each ROI in which the
dependent and independent variables were the CAT12 and FreeSurfer estimations
of cortical thickness for all individuals (see Figure 4.3). To compare whether the
reproducibility metrics across ROIs were identical in every group, the appropriate
statistical test was performed:

• Objective (a) a paired-test was performed, per metric, to compare the ROI
reliability metrics of the two frameworks.

• Objectives (b) and (c) a pairwise independent samples t-test was performed, and
corrected with the Bonferroni method [216].

Moreover, for the all objectives a paired t-test comparing the cortical thickness
estimations of CAT12 and FreeSurfer was performed per ROI and group/framework.

4.3.4.4 Modelling age using cortical thickness

The reproducibility problem arises when different studies report different findings.
The objective (c) aims to verify whether the use of different frameworks may have
an impact in the same analysis. For this analysis, we considered the brain age
problem [21], in which a person’s age is decoded from cortical thickness estimations,
in our case. A multiple linear regression was fitted for each framework (CAT12 and
FreeSurfer), in which the independent variables were the cortical thickness values for
each ROI, and the dependent variable was the age. To test whether the reproducibil-
ity metric, in this case the mean reproducibility R2, had an impact on the reported
results we compared the ROIs which were considered significant in each framework
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Figure 4.3: Generic representation of the workflow of the ROI Analysis for the three objectives. In this figure the is used as the example for the
reproducibility/reliability metric. A fit is performed using all the subject’s cortical thickness estimations of a given ROI and from this fit the R2 is extracted
(blue block). The R2 values of the different groups (Gi) are then compared using an appropriate statistical test (green block). Besides the fitting, a
paired t-test (orange block) is performed, per ROI and group, comparing the cortical thickness estimations for different participants of the two runs, in the
objective (a), and the two frameworks in the objectives (b) and (c).
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model. The ROIs of each model were divided into overlapping and non-overlapping,
the former are the ROIs which were significant in both framework models whereas
the non-overlapping were the ROIs significant in only one framework model. An
independent t-test was performed to verify whether the mean reproducibility R2

was different in both groups (overlapping and non-overlapping).

4.4 Results

The results section is divided into three sub-sections, one for each objective:

• Objective (a) - Test-retest reliability

• Objective (b) - Reproducibility in paediatric versus early adults groups

• Objective (c) - Reproducibility in different acquisition settings

Each subsection begins with an overview analysis of the data, then the individual
analysis is presented, which is divided into the metrics analysis and analysis of age
and effect on the reproducibility/reliability metrics. Finally, the results of the ROI
analysis are described.

4.4.1 Test-retest reliability

In this section, the goal is to assess the test-retest reliability of each framework. For
this, we used 296 subjects from the OASIS-3 dataset. The protocol followed in the
OASIS-3 dataset implied that at least two MRI images per subject were acquired
in the same day within a 60-minute period. The two images per subject were
preprocessed by both frameworks and the test-retest reliability within framework
was assessed.

4.4.1.1 Overall Analysis

The relationship between the cortical thickness extracted by the same framework
in different images, independently of the framework is depicted in Figure 4.4. The
equation is given by y = 0.95x + 0.11 and y = 0.96x + 0.08, and the R2 of the fitting
is 0.92 and 0.93 for FreeSurfer and CAT12, respectively.
The results of the Bland-Altman plot show that the cortical thickness mean com-
puted with each framework is 2.38 and 2.36 for FreeSurfer and CAT12, respec-
tively. Concerning the bias, the value is 0.005 mm and -0.0002 mm for FreeSurfer
and CAT12, respectively. The former is significantly different from 0 (t43807 =
9.39, Cohen

′
d : 0.04) and the latter is not statistically significant. The confidence

interval (CI) is [-0.20; 0.20] mm and [-0.17, 0.17] mm, therefore the CI width is 0.40
mm and 0.34 mm for FreeSurfer and CAT12, respectively.
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(a) CAT12

(b) FreeSurfer
Figure 4.4: Regression and Bland-Altman plot for CAT12 and FreeSurfer: On the left
the distribution of cortical thickness extracted in Run1 and Run2, respectively, each point
corresponds to a subject’s ROI. The dashed red line on the left plot represents the equation
y = x. On the right is the cortical thickness difference between runs.
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Table 4.1: Test-retest metrics analysis, showing the mean and the standard deviation of
and ICC, for the participant analysis, per framework.

Framework R2R2R2 ICC

FreeSurfer 0.93 ± 0.07 0.97 ± 0.04
CAT12 0.94 ± 0.06 0.96 ± 0.04

Table 4.2: Analysis of age effect on test-retest metrics: results of the regression with each
of the reproducibility metrics: R2 (βR2

age) and ICC (βICC
age )

Framework βR2
age βICC

age

Age FreeSurfer 3.2 × 10−4 (p = 0.485) 2.2 × 10−4 (p = 0.445)
CAT12 6.4 × 10−4 (p = 0.1) 3.9 × 10−4 (p = 0.121)

4.4.1.2 Participant analysis

Test-retest metrics analysis
The reliability test-retest results for the participant analysis, per framework, are
shown in Table 4.1.
The difference between the FreeSurfer and CAT12 test-retest reliability metrics’
means of the frameworks is -0.01 for both R2 and ICC. To verify whether the means
are statistically different a paired t-test comparison was performed. The results
suggest that the mean of FreeSurfer and mean of CAT12 is different for the R2

(t295 = 4.14, Cohen′d = 0.15) and ICC (t295 = 3.6, Cohen′d = 0.13).

Analysis of age effect on test-retest metrics
The distribution of the test-retest reliability metrics with age is depicted in Figure 4.5
and the statistical analysis results are shown in Table 4.2. The results show that
age had no effect on CAT12 and FreeSurfer on test-retest reliability metrics.

4.4.1.3 ROI Level Analysis

The reliability test-retest results, per framework, are presented in Table 4.3 and in
Figure 4.6, the detailed results of the R2 grouped by lobe is in Table A.4 in the
Appendix A whereas the R2 and ICC by ROI are presented in Tables A.5-A.6 of
the Appendix A. The test-retest reliability metrics are lower for the ROI analysis
than for the participant analysis. The comparison between the ROI test-retest
reliability metric’s mean values of FreeSurfer and CAT12 (paired t-test) showed a
significant difference between the frameworks for R2 (mean difference -0.08, t147 =

Table 4.3: Mean and standard deviation of the R2 and ICC values for the test-retest
reliability metrics ROI analysis.

Framework R2R2R2 ICC

Freesurfer 0.70 ± 0.10 0.84 ± 0.06
CAT12 0.78 ± 0.09 0.88 ± 0.05
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(a) R2

(b) ICC

Figure 4.5: Distribution of the R2 and ICC with age for each of the frameworks. Each
point represents the R2 or the ICC value, at the participant level, of the cortical thickness
test-retest reliability of each framework.
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Figure 4.6: R2 values distribution between the cortical thickness extracted by FreeSurfer
or CAT12 values per ROI, per hemisphere.

9.83, Cohen′d = 0.83) and ICC (mean difference -0.06, t147 = 9.28, Cohen
′
d =

0.81). The individual ROI analysis revealed that the lobe with higher R2 for CAT12
is the Parietal lobe (0.83) whereas for FreeSurfer is the temporal and occipital lobes
(0.77). The lobe with lower R2 is the frontal lobe for both CAT12 (0.76) and
FreeSurfer (0.63). The ROIs with higher difference between R2 in test-retest relia-
bility are the parahippocampal gyrus, inferior occipital gyrus and sulcus, posterior-
ventral part of the cingulate gyrus, and the planum polare of the superior temporal
gyrus. Concerning the paired t-tests performed for each ROI, the results suggest
that the cortical thickness estimations are similar between runs within each ROI,
for all ROIs except the Left Short insular gyri in FreeSurfer, detailed results are in
Table A.7 in the Appendix A.

4.4.2 Reproducibility in paediatric versus early adults’ groups

This section investigates whether different age stages (paediatric versus adults) have
different reproducibility behaviour. The dataset used was the ABIDE I dataset, and
the age range of the participants is from 6.5 to 56.2 years, and the analysis was
carried out for two age groups: paediatric and adults.

4.4.2.1 Overall Analysis

All the cortical thickness values extracted by both frameworks are depicted in
Figure 4.7. The equation that translates the relationship between FreeSurfer and
CAT12 values is CAT12 = 0.61 × FREESURFER + 0.92 and CAT12 = 0.69 ×
FREESURFER + 0.75, for paediatric and adult samples, respectively, and the R2

is 0.48 and 0.64. The mean difference between the estimations is 0.065 ± 0.28 mm.
The Bland-Altman plot shows a FreeSurfer (CAT12) mean of cortical thickness of
2.60 (2.52) mm and 2.49 (2.45) mm for paediatric and adult samples, respectively.
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(a) Paediatric

(b) Adult
Figure 4.7: Regression and Bland-Altman plot for the paediatric and adults’ analysis.
On the left the distribution of cortical thickness extracted with FreeSurfer and CAT12,
respectively, each point corresponds to a subject’s ROI. The dashed yellow line on the left
plot represents the equation y = x. On the right the cortical thickness means and difference
(FreeSurfer – CAT12) of the frameworks.
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Table 4.4: Reproducibility metrics analysis: Mean +/- standard deviation of R2 and
ICC, for the individual analysis, grouped by age (paediatric versus adults) for the

neurodevelopment analysis
Framework R2R2R2 ICC

paediatric 0.51 ± 0.14 0.69 ± 0.11
adult 0.64 ± 0.09 0.79 ± 0.06

Concerning the cortical thickness difference, the CI is between [-0.50, 0.66] mm and
[-0.44,0.51] mm, thus a CI width of 1.16 mm and 0.95 mm for paediatric and adult
samples, respectively. The bias mean is 0.080 mm and 0.034 mm, for paediatric
and adult samples, respectively. The t-test suggests that the bias is statistically
different from zero in both cases (paediatric , t56831 = 6.47, cohen

′
d : 0.27 and

adult , t26935 = 2.3, Cohen
′
d : 0.14).

4.4.2.2 Participant Analysis

Reproducibility metrics analysis
The results observed when analysing the two age groups are summarised in Table 4.4.
The difference between the paediatric and adult group is -0.13 and -0.10 for R2 and
ICC, respectively. Two ANCOVAs were performed, one per reproducibility metric.
The ANCOVA results are shown in Tables A.8 and A.9 in the Appendix A. In
summary, in the two metrics all the independent factors (age, SNR, age-group and
acquisition setting) are suggested to influence the reproducibility metrics. The SNR
was the factor with higher dispersion, followed by age, acquisition setting and age-
group.
Analysis of age effect on reproducibility metrics
The evolution of reproducibility metrics with age and SNR per acquisition setting,
is depicted in Figure 4.8. It shows an interesting and unexpected pattern: in
children and adolescents all reproducibility metrics improve with age. Moreover,
the variability decreases with age as well as the worst attained value, for each
reproducibility metric.

Table 4.5: Reproducibility metrics and age relation analysis: regression between age and
SNR and each of the reproducibility metrics R2 (βR2

age) and ICC (βICC
age ) per age group.

The significant values are shown in bold

Framework βR2
age βICC

age

paediatric 1.2 × 10−2 (p = 8.6 × 10−7) 8.9 × 10−3 (p = 1.3 × 10−5)
adult 2.9 × 10−3 (p = 1.2 × 10−3) 2.9 × 10−3 (p = 1.2 × 10−3)

Table 4.5 shows the relation between the age for each of the reproducibility metrics.
In the paediatric group the relation was found to be significant, for both metrics (R2

and ICC) and age. Regarding the βage comparisons, the independent t-test suggested
that the difference between paediatric and adult group (βage, R2 : 9.1 × 10−3 and
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Table 4.6: Mean and standard deviation of R2 and ICC, for the ROI analysis, grouped by
age (greater or less than 18 years) for the neurodevelopment analysis.

Age group R2R2R2 ICC

Paedriatic 0.30 ± 0.14 0.52 ± 0.14
Adult 0.38 ± 0.16 0.59 ± 0.15

βage, ICC : 6.0×10−3) of relation between age and reproducibility metrics is different
between the two age groups (paediatric vs adult) for the two reproducibility metrics:
βR2(t564 = 25.96, Cohen’d: 2.34 ) and βICC(t564 = 23.72, Cohen’d: 0.69 ).

4.4.2.3 ROI Level Analysis

The reproducibility metrics for the ROI analysis are depicted in Figure 4.9. Table 4.6
presents a summary of the metrics, per age group (the detailed lobes results is in
Table A.10 and the results per ROI for R2 and ICC is in Tables A.11 and A.12,
respectively, in the Appendix A).
To verify whether the difference between the paediatric and adult age groups was
significant for the R2 (-0.08) and ICC (-0.07) an independent samples t-test was
performed. The results showed differences between age groups, for the two metrics:
R2 (t294 = −4.79, Cohen′d : 0.56) and ICC (t294 = −3.98, Cohen′d : 0.46).
The lobe with higher difference between the age groups is the temporal and occipital
lobe whereas with the lowest difference is the frontal lobe. The parietal lobe is the
one with higher mean R2, 0.49 and 0.41 for adults and paediatric, respectively.
Whereas insula lobe is the one with lower mean R2, 0.24 and 0.16 for adults
and paediatric, respectively. The ROI with higher reproducibility in children and
adolescents is the postcentral sulcus, which is also the one of the ROIs with lowest
difference between the age groups.
The ROI paired t-tests showed that 137 ROIs had at least one age-group with
differences in the cortical thickness estimations of both frameworks. In the children
and adult group, 130 and 109 ROIs had differences between the cortical thickness
estimations extracted by Freesurfer and CAT12, respectively. The p-values were
corrected for the 296 comparisons, detailed results in Table A.13 in the Appendix A.

4.4.3 Reproducibility in different acquisition settings

This section aims to understand whether the acquisition setting and age has impact
on reproducibility metrics on mature brains. In this analysis two open-data sharing
initiatives were used: IXI and OASIS-3. The analysis was conducted per acquisition
setting. Therefore, four groups were analysed: three groups for the IXI dataset
(one per site/acquisition setting) and one group for the OASIS-3. Furthermore,
the reproducibility between CAT12 and FreeSurfer metrics was also computed for a
subset of OASIS-3. The subset was the one used in test-retest reliability analysis,
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(a) R2

(b) ICC
Figure 4.8: R2 and ICC by age and SNR for each site of the ABIDE I.
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Figure 4.9: R2 values distribution between the estimations of cortical thickness extracted
by Freesurfer and CAT12 values per ROI, hemisphere, and per age group.

Figure 4.10: Regression and Bland-Altman for the adult dataset with different acquisition
settings. On the left the distribution of cortical thickness extracted with FreeSurfer and
CAT12. The dashed red line on the left plot represents the equation y = x. On the right is
the plot with the mean and difference (FreeSurfer – CAT12) between the cortical thickness
estimates of the frameworks. In this plot each point corresponds to a participant’s ROI.

objective (a), which includes subjects who have two T1-weighted images. In this
case the cortical thickness was averaged over the two runs and the reproducibility
metrics were computed.

4.4.3.1 Overall analysis

In this case, given that there are four acquisitions settings we decided to report the
Bland-Altman results independently of the acquisition setting, the detailed results
per acquisition setting are in Figure A.1 in the Appendix A. Considering all the adult
individual ROIs, the overall reproducibility metrics were extracted, which are shown
in Figure 4.10 with a Bland-Altman plot. The linear regression has the following
equation: CAT12 = 0.70×FREESURFER+0.68, with a R2 of 0.65. Regarding the
Bland-Altman analysis the mean cortical thickness value is 2.39 mm and 2.36 mm
for FreeSurfer and CAT12, respectively. Regarding the cortical thickness difference
between the frameworks the mean difference is 0.032 which is statistically different
from zero (t155251 = 5.30, Cohen

′
d : 0.13). Regarding the CI the values range from
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[-0.44;0.50] mm which is a width of 0.93 mm.

4.4.3.2 Participant Analysis

Reproducibility metrics analysis
The overall R2 for the adult datasets is 0.65, for the participant level analysis,
and Table 4.7 summarises the reproducibility metrics per acquisition setting. The
acquisition setting with higher reproducibility metrics is the GH, followed by OASIS-
3, HH and IOP.

Table 4.7: Reproducibility metrics analysis: mean and standard deviation of R2 and ICC
for the participant analysis, grouped by acquisition setting for the IXI and OASIS-3

datasets.
Acquisition setting R2R2R2 ICC

GH 0.69 ± 0.06 0.82 ± 0.04
HH 0.65 ± 0.09 0.79 ± 0.07
IOP 0.38 ± 0.10 0.60 ± 0.08

OASIS3 0.65 ± 0.08 0.80 ± 0.06

The ANCOVA suggested an acquisition setting and SNR effect in both metrics,
yet the acquisition setting has the highest factor of dispersion independent of the
metric. The age had effect on the R2 metric. The post-hoc comparisons revealed
differences between all acquisition settings, detailed results are in Tables A.14-A.17
in the Appendix A. In Figure 4.11 the acquisition setting effect is quite visible, i.e.,
the IOP reproducibility metrics are clustered apart from the GH, HH and OASIS-3.
The reproducibility results for the OASIS-3 test-retest subset were 0.67 ± 0.07 and
0.81 ± 0.06 for the R2 and ICC, respectively.

Analysis of age effect on reproducibility metrics
Figure 4.11 and Table 4.8 summarise the assessment of the impact of age and acqui-
sition setting on reproducibility metrics. The results are consistent independently
of the metric. The statistical analysis revealed an age effect on GH and OASIS-3
sites.
The comparative analysis of the βage (βR2

age,βICC
age ) of each acquisition setting points

out that the two βage are indeed different between all acquisition settings, except
between HH and IOP, detailed results are in Tables A.18-A.19 in the Appendix A.
Therefore, the relation between age and the reproducibility metrics is dependent on
the acquisition setting.

4.4.3.3 ROI Level Analysis

A summary of the reproducibility metrics results for the ROI analysis, per acquisition
setting, is shown in Table 4.9. The results show that the HH, GH and OASIS-3 have
better reproducibility metrics than the IOP.
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(a) R2

(b) ICC
Figure 4.11: Reproducibility metrics (R2 and ICC) at the participant level and its
relationship with age and SNR for the different sites of the IXI and the OASIS-3 datasets.
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Table 4.8: Reproducibility metrics and age relation analysis of the regression of age with
each of the reproducibility metrics R2 (βR2

age) and ICC (βICC
age ), per acquisition setting. The

significant values are shown in bold.
Acquisition setting βR2

age βICC
age

IXI|GH −8.5 × 10−4 (p = 1.3 × 10−4) −3.2 × 10−4 (p = 2.3 × 10−2)
IXI|HH −3.3 × 10−4 (p = 4.2 × 10−1) 1.1 × 10−4 (p = 7.5 × 10−1)
IXI|IOP −3.8 × 10−4 (p = 6.1 × 10−1) −2.2 × 10−4 (p = 7.1 × 10−1)
OASIS3 9.7 × 10−4 (p = 1.8 × 10−2) 9.1 × 10−4 (p = 2.9 × 10−3)

Regarding the reproducibility results for ROI analysis and using the OASIS-3 test-
retest dataset the R2 and ICC were 0.40 ± 0.21 and 0.60 ± 0.21, respectively.
The R2 values per ROI for each open sharing initiative are depicted in Figure 4.12
and the ROI and lobe R2 values are in Tables A.20-A.21 and the ICC values per ROI
are in Tables A.22-A.23 in the Appendix A. The R2 differs throughout the brain, it
is clear that there are regions with higher reproducibility metrics than others. Yet,
the ROI reproducibility pattern is similar across acquisition settings. In general,
while the parietal lobe has the higher mean R2, the limbic lobe has the lower mean
R2. The subcallosal area and anterior transverse collateral sulcus (both ROIs are
near the corpus callosum) are the ROIs with the lowest R2.

Table 4.9: Mean and standard deviation of R2 and ICC, for the ROI analysis, per
acquisition setting for the IXI and OASIS-3 datasets.
Acquisition Setting R2R2R2 ICC

GH 0.40 ± 0.19 0.60 ± 0.18
HH 0.39 ± 0.19 0.59 ± 0.18
IOP 0.24 ± 0.16 0.44 ± 0.18

OASIS3 0.39 ± 0.21 0.59 ± 0.20

Most ROIs have a similar R2 value for the right and left hemisphere, yet there
are discrepancies. The transverse temporal sulcus, middle occipital sulcus, lunatus
sulcus and orbital gyri yield a difference in R2 between hemispheres higher than
0.5, independently of the acquisition setting. Nevertheless, in some ROIs, such as
the middle frontal gyrus, the difference between hemispheres is only observed in the
OASIS-3 dataset but not in others.
Four paired t-test were performed per ROI, one per acquisition setting, the p-values
were corrected for the 576 comparisons. The results revealed differences between the
frameworks on 145 ROIs, in at least one acquisition setting. Briefly, 132, 116, 94 and
130 ROIs were significantly different in GH, HH, IOP and OASIS-3, respectively.
Detailed results are presented in Table A.24 in the Appendix A.

Modelling age using cortical thickness values
Two models were trained, one per framework, with adult data from the IXI and
OASIS-3 datasets. The adjusted R2 for FreeSurfer and CAT12 models is 0.71 and
0.73, respectively. The number of ROIs considered significant for age prediction is
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Figure 4.12: R2 values distribution between the cortical thickness extracted by FreeSurfer and CAT12 values per ROI, hemisphere and acquisition setting.
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(a) CAT12 (b) FreeSurfer
Figure 4.13: Distribution of the mean reproducibility, R2, of the overlapping and non-
overlapping ROIs for CAT12 and FreeSurfer.

29 and 38 for FreeSurfer and CAT12, respectively, the details are in Tables A.25
and A.26 in the Appendix A. An analysis was carried out to verify which ROIs
were significant in age prediction in both frameworks. The results point out that
there are 9 overlapping ROIs, regions are significant in age prediction using both
frameworks for estimation of cortical thickness. The overlapping ROIs and their
mean reproducibility, R2, across sites (which is represented between the parentheses)
are: left superior frontal gyrus (0.66), left triangular part of the inferior frontal gyrus
(0.60), right angular gyrus (0.57), right superior occipital sulcus and transverse
occipital sulcus (0.48), right superior part of the precentral sulcus (0.43), right
occipital pole (0.34), left lingual gyrus (0.27), right anterior transverse temporal
gyrus (0.28) and the left medial orbital sulcus (0.03).
In Figure 4.13 is depicted the distribution of the reproducibility metric values, R2,
for each framework for the two groups: overlapping and non-overlapping ROIs. The
independent t-test performed, per framework, revealed no difference between the
groups for neither framework.

4.5 Discussion

This study reveals that the test-rest reliability of cortical thickness estimations
within two computation frameworks (CAT12 and FreeSurfer) attains higher values
than the reproducibility between frameworks, as expected. Concerning the test-
retest reliability the Bland-Altman analysis suggested that the bias is only significant
in the FreeSurfer framework, yet the effect is small. Furthermore, the dispersion for
CAT12 is lower than for FreeSurfer. The cortical thickness estimation mean was
identical between frameworks (2.36mm and 2.38mm), these mean values are close
to previous report mean cortical thickness [188]. The confidence interval was 0.34
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mm and 0.40 mm, respectively, which corresponds to an error of 14% and 17% for
a mean cortical thickness of 2.37mm.
At the individual level, the CAT12 attains statistically higher test-retest metrics
than FreeSurfer, despite a very small 0.01 difference, which may be negligible from
the biological point of view. An age effect was not detected in neither CAT12 nor
FreeSurfer test-retest reliability metrics. Nevertheless, a SNR effect was detected in
the two test-retest reliability metrics, therefore the performance within the frame-
work is sensitive to the image quality. The positive slope between the SNR and the
metrics reveals that images with higher quality have higher reliability. An analysis
of the relation between age and SNR showed that older individuals have lower SNR
values. This is in agreement with the literature reporting that motion artifacts are
higher in older individuals and, which in turn affect cortical thickness estimation [55].
At the ROI level the test-retest difference between frameworks is higher (0.08 for
R2) and was found to be statistically significantly with a strong effect on ICC
and R2. Once again, the CAT12 has higher test-retest metrics than FreeSurfer.
Regarding test-retest reliability per lobes the parietal lobe and the temporal and
occipital lobes have higher test-retest reliability. In contrast the frontal lobe has
lower reproducibility in both frameworks.
This study reveals a significant discrepancy between the cortical thickness repro-
ducibility metrics extracted by FreeSurfer and CAT12 in adults and paediatric
populations. The reproducibility metrics are significantly lower in children and
adolescents’ than in adults, which may impact on the interpretation of neurodevel-
opmental studies. Furthermore, the reproducibility metrics increase with age until
the age of 18 years old and stabilise in adulthood (Figure 4.8). The reason behind
this result might be nonlinear brain maturation, which changes brain morphology
in children/adolescents [217]. These changes are a source of variability that might
increase the difficulty to accurately estimate cortical thickness. Besides maturation,
another cause for the low reproducibility in paediatric group might be motion, which
tend to be higher in younger individuals [218] and causes artifacts that affect the
accurate extraction of cortical thickness [219]. It should be noted that age had an
effect in children’s cortical thickness reproducibility even when our models introduce
SNR as a covariate. Thus, we believe some of the reproducibility issues might
be inherent to biological variability introduced by the brain maturation process.
These results are pursuant with published findings where it is shown that different
preprocessing pipelines, in early childhood, yield different results [220]. The low
reproducibility between pipelines might be an explanation for cortical thickness
inconsistencies found in the neurodevelopment phase in health and disease [196–200].
Concerning the ROI analysis, the overall pattern of reproducibility metrics is the
same in both age groups: the parietal lobe is the region with higher reproducibility
whereas the insula is the one with lower reproducibility. There is previous evidence
that the insula has high annual changes in cortical thickness during childhood and
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adolescence whereas in parietal cortex the annual changes are less exacerbated [221].
Therefore, the reproducibility might be related to the annual change rate of cortical
thickness, the higher is the rate of annual changes the lower is the reproducibility.
In adults, the reproducibility between frameworks slowly decreases with age, i.e.,
older adult individuals exhibit lower reproducibility metrics than younger adult
individuals, in some acquisition settings. An age effect was detected, for both
reproducibility metrics, in GH and OASIS-3 acquisition settings, even though we
controlled for the image SNR. The reproducibility decrease with age may be related
to the fact that older individuals move more in the scanner than younger individuals,
which adds noise to the images and, consequently, the methods have more difficul-
ties in extracting accurate metrics [218, 222]. Additionally, the changes in brain
morphometry that occur naturally with the ageing process might also underly the
decrease in reproducibility of these measures with increasing age. The lack of an age
effect on the IOP might be related to its sample size (the IOP has 67 participants,
whereas the GH, HH and OASIS-3 have 312, 179 and 491 participants, respectively).
Besides the age effect, an acquisition setting effect was detected on the repro-
ducibility metrics, which translates that sites with a similar SNR distribution had
different reproducibility distributions. Furthermore, the relationship between age
and reproducibility metrics is dependent on the acquisition setting. Therefore, the
low reproducibility may be related to the acquisition setting that affected all the
images in the same way, yet each acquisition setting affects the images differently,
and the frameworks were unable to overcome this limitation. Moreover, the test-
retest results also suggest that the reproducibility metrics are similar even when the
cortical thickness estimation is averaged across two images of the same subject. This
was as expected given the high values of the test-retest reliability of each frameworks.
The current results highlight the challenge of multicentric studies. The conclusions of
these large (typically consortia) studies might be vulnerable to acquisition settings
imprints on the data and must be interpreted with caution. Nonetheless, multi-
centre studies are crucial to hypothesis generalisation. Therefore, data harmonisa-
tion techniques should ideally be available in preprocessing frameworks to reduce
the acquisition setting impact on the images.
The reproducibility at the individual level is higher than at the ROI level. This is
expected since at the individual level there is only variance related to the framework
whereas at the ROI level analysis there is variance related to both the participant
and framework. This finding highlights the fact that the frameworks are not ca-
pable to overcome the individual variability and cross-sectional studies are more
susceptible to inconsistencies leading to inaccurate conclusions. Nevertheless, the
reproducibility at the ROI level is consistent across the four acquisition settings.
This finding corroborates the results published in [208] in which it is shown that the
ROI reproducibility is similar across datasets.
The analysis of the outcome of the age prediction problem showed that CAT12
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and FreeSurfer yield different results. Nonetheless, despite the differences, the
results also show that some ROIs with high reproducibility between FreeSurfer
and CAT12 overlap across frameworks. Yet, a high reproducibility value does not
guarantee the same result in both models, as there are ROIs with high values of
reproducibility across frameworks that are only significant in predicting age in one
of the frameworks.

4.6 Conclusion

This work shows that the reproducibility of cortical thickness estimations with
CAT12 and FreeSurfer is weaker at the ROI-level than at the subject-level. These
findings show that the inference from cross-sectional studies, in which conclusions
at the ROI level are made from distinct sites, groups and frameworks, might explain
inconsistencies reported in the literature. Furthermore, conclusions from metanal-
yses in which the preprocessing protocol was not the same might be compromised.
Thus, the preprocessing framework should be considered when different studies are
being compared. Our results show that the test-retest reliability is reassuringly
high at the individual level for images obtained using the same acquisition protocol.
Consequently, the conclusions from longitudinal studies, with the same acquisition
and preprocessing protocol are less sensitive to the described processing framework
effects.





Chapter 5

Deformation Fields: A new
source of information to predict
brain age

This chapter is based in the following article:

Dias, Maria de Fátima Machado, Paulo Carvalho, João Valente Duarte,
and Miguel Castelo-Branco. "Deformation fields: a new source of infor-
mation to predict brain age." Journal of Neural Engineering 19, no. 3
(2022): 036025.
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5.1 Abstract

Objective: The modelling of healthy ageing critically requires the identification of
methods that detect subtle changes in this process. In the last few years multiple
machine learning models have been proposed that learn age patterns from magnetic
resonance imaging (MRI). Current standard information sources rely on local volu-
metric information of brain tissues, namely grey matter (GM), white matter (WM)
and cerebrospinal fluid (CSF). Information about patterns of brain deformation
remains underexplored. In this paper an assessment is performed to understand
better the predictive value of the deformation fields.
Approach: A shallow approach was used to compare the predictive value of defor-
mation fields with the brain tissues (GM, WM and CSF). Images were compressed
into a lower dimension space using Principal Components Analysis and then, a
relevant vector regression (RVR) learned the age patterns from the components.
A model was trained per modality (deformation fields, GM, WM and CSF) and
the performance between the models was compared. To evaluate whether the
deformation fields increased the predictive power of GM, a model fusion approach
was explored in which the final estimator was a RVR. Each model was validated
using a cross-validation approach and was also evaluated on an external dataset.
Main results: We found that models trained with deformation patterns have higher
predictive value than the ones trained with WM or CSF. Furthermore, deformation
fields had a significantly better performance on the test set and also yield the lower
difference between the validation and test set. Moreover, the predictions based on
the combination of deformation patterns with GM volume yields better results than
GM volumetric information alone.
Significance: These findings suggest that deformation fields have a higher predic-
tive power than WM and CSF and are robustly invariant across a set of confounding
variables. Therefore, deformation fields should be considered in brain age models.
Keywords: Deformation Fields, BrainAge, Ageing; Machine Learning

5.2 Introduction

The brain undergoes multiple changes across distinct brain regions during the lifes-
pan. In early adulthood, GM volume slowly decreases [223–225] and in late adult-
hood (>45 years) the WM volume also starts to show signs of decline [59, 226].
These brain tissues’ fluctuations lead to alterations of the global and local brain
morphologies [39, 227,228] that create different deformation patterns, which can be
used to train machine learning models to predict the chronological age (commonly
designated by brain age models) [21].
The brain age research field aims to accurately model healthy ageing using data
from healthy participants. The brain age gap estimation (BrainAGE), the difference
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between the chronological age and the predicted age, is has been shown to be higher
in multiple diseases [8, 21], namely Alzheimer's [161, 162], Schizophrenia [173, 229]
and has also been related to mortality risk [147]. Therefore, these models may then
be clinically important to detect pathological brain age deviations in neurodegenera-
tive diseases [21,161,162,230]. Current state-of-the-art brain age models, leveraging
from MRI data, mainly use GM information only (volumetry, cortical thickness,
area and depth of sulci in the brain) [8]. Differential morphology features capable
of capturing the non uniformity of brain tissue loss are underexplored in brain age
prediction. Previous studies have attempted to improve brain age prediction by using
morphology features such as gyrification, which corresponds to the ratio between the
GM surface length (including the sulci) and the outer GM surface contour length
(excluding the sulci) [54, 55], and fractal dimension, which is a measure of brain
complexity [145]. However, gyrification might be not representative of the brain
morphology changes, as a decrease of its value might be either because of an increase
in the outer surface or a decrease in the surface length, or a combination of both. On
the other hand, fractal dimensions obey self-similarity rules, which may render them
less sensitive to detect differential spatial patterns. Accordingly, the self-similarity
of a region may not change significantly despite shape modifications. Typically,
the models trained with these morphology metrics have higher errors [55] than the
ones trained with volumetry features [116]. The cause for such poor performance
might be the extent into which these features are representative of the morphology
changes. Moreover, these morphology features have lower spatial resolution, as they
are typically computed for larger regions than volumetric features (e.g., GM voxel-
wise volume), which might lead to the vanishment of local deformations that happen
only in a small portion of the region(s).
In this paper a new morphology feature is explored in the context of brain age
prediction: the deformation fields. Deformation fields consist of the voxel-wise
nonlinear transformations (e.g., contraction or elongation) that each voxel must
go through to match a template. This template fitting is a procedure in MRI
preprocessing that aims to reduce interindividual variability and to ensure that
features are computed for the same brain location in every image [231]. However,
its potential in the context of brain age prediction has not been fully explored.
Different tissue atrophy rates across brain regions lead to a different voxel relative
position in relation to the adjacent voxels. Consequently, the repositioning of voxels
with a different neighbourhood requires non-linear transformations. Furthermore,
the regional structural deformation varies with age [232]. Thus, we raise the hypoth-
esis that deformation fields might carry novel information about brain morphology
with predictive value in the context of brain age.
The demonstration that brain deformation is closely associated with age was pro-
vided in a cross sectional study [232], although only in a relatively young age range
(younger than 51 years). Surprisingly, this finding has so far not been fully exploited
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to predict the brain age. In fact, the above-mentioned study did not evaluate
the prediction error of the deformation fields to predict chronological age. More
recently, deformation fields were used to predict the brain age in rodents [233] and
in humans along with WM and GM [29], although performance was not investigated
because the study’s focus was the deep learning architecture rather than the source
of information. In conclusion, there are no studies evaluating the gain of information
of this feature or comparing it to conventional volumetric features. Thus, this study
aims to (a) compare the predictive value of deformation fields with that of GM, WM
and CSF, (b) evaluate the added value of the deformation fields and (c) evaluate its
robustness against confounding factors such as scanning site and the deformation
fields quantitative relationships with age. To achieve these objectives a published
brain age pipeline was used [230].

5.3 Methods

5.3.1 Data

The data used in this study are from the open-source repository Information eX-
traction from Images (IXI) [210]. IXI contains data on healthy individuals acquired
in three sites of London: the Hammersmith Hospital (HH), the Guy’s Hospital (GH)
and the Institute of Psychiatry (IOP).
The T1-weighted images of the HH were acquired using a Philips Medical Systems
Intera, with a magnetic field strength of 3T, and the acquisition parameters were
9.6 ms, 4.6 ms, and 8◦ for time of repetition (TR), time of echo (TE) and flip angle,
respectively. The GH acquired the data using a Philips Medical Systems Gyroscan
Intera with a field strength of 1.5T, and the acquisition parameters were 9.8 ms,
4.6 ms, and 8◦ for TR, TE and flip angle, respectively. The IOP acquired the data
using a General Electrics of 1.5T, yet the acquisition parameters of the images are
not provided for this site.
The IXI repository contains 581 T1-weighted images, 19 images do not have age
information and computational anatomy toolbox (CAT12) was unable to preprocess
two other images, therefore, in total, 560 T1-weighted images were used. The
different sites have an equivalent distribution of the age and gender (Table 5.1).
In this work, the GH and HH sites, 492 instances, were used to train and validate
the models using a cross-validation approach of 30-fold. The IOP was used to test
the model’s robustness to data from a new site, therefore 68 instances in total.

5.3.2 Image Preprocessing

T1-weighted MRI images were preprocessed with the CAT12 toolbox (http://www.

neuro.uni-jena.de/cat/, r1742) within SPM12 (https://www.fil.ion.ucl.ac.

uk/spm/software/spm12/, v7771 ) using MATLAB (v9.8). CAT12 requires images

http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Table 5.1: Distribution of the female/male, the mean and standard deviation of the age
(years) and the minimum (min) and maximum (max) age in years of the subjects of IXI

dataset used in this work.
Site GH HH IOP

Male/female 140/173 86/93 24/44
Mean age ± standard deviation [years] 50.7 ± 16.0 47.0 ± 16.7 42.4 ± 16.6
Minimum/Maximum age [years] 20.1/86.2 20.2/81.9 20.0/86.3

to be aligned with the Anterior Commissure – Posterior Commissure (AC-PC) plane.
For this step the ATRA registration toolbox (https://www.nitrc.org/projects/

art,v2.0) [234] was used. Then, the CAT12 default segmentation procedure was
executed, which includes the standard preprocessing steps such as non-brain tissue
removal, noise reduction, image registration and tissue segmentation into GM, WM
and CSF. During the registration each voxel goes through different nonlinear trans-
formations, so the native image matches a template in a standard space. These
voxel-wise transformations are designated by deformation fields, and they are used
in this work to predict the brain age. The registration template used was the CAT12
default template, which was derived from 555 healthy subjects of the IXI dataset.
The data preprocessing and the training of the models were carried in the computing
cluster of Laboratory for Advanced Computing (https://www.uc.pt/lca) at the
University of Coimbra.

5.3.3 Pipeline overview

The workflow is illustrated in Figure 5.1. The deformation fields, GM, WM, and
CSF segmented images that resulted from the preprocessing of the MRI images were
used to model chronological age. These images are high dimensional 3D volumes
with millions of voxels. All the images were spatially registered in the Montreal
Neurological Institute space with dimensionsof 121 x 145 x 121 voxels.
The number of voxels per image greatly outnumbers the number of instances. If all
voxels are used without a careful regularisation the model will overfit the training
data and have a poor performance on the test data. To overcome this limitation
and given the high correlation between adjacent voxels, a data reduction approach
using principal component analyis (PCA) was applied to encode the data into a
low-dimensional space. The rule of thumb for regression problems is to have at least
10 instances per feature [235]. Thus, given the training and validation dataset size
(492 instances) the maximum number of components used to train the models and
avoid overfitting and generalisation problems is approximately 40 components.
The gender [236, 237] might have an impact on the component’s value. Therefore,
the gender was added as a feature, as a binary variable. The standardised PCA
components along with gender are the input of a RVR model that predicts the
chronological age.

https://www.nitrc.org/projects/art
https://www.nitrc.org/projects/art
https://www.uc.pt/lca
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Figure 5.1: Pipeline Overview: A T1-weighted MRI image is aligned with the AC-PC plane using the ART toolbox, and then the image is preprocessed
with the CAT12 software, resulting in four images: the deformation field, and the GM, WM and CSF tissue maps. Then each image is compressed using
PCA, the components are standardised and the Relevance Vector Regression model learns the age from the patterns of each feature components and from
the gender. The prediction of the age from the deformation fields and GM models are combined using a Relevance Vector Regression model.
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The model training and test, except for the image preprocessing, was performed in
Python 3.8 using the Scikit-Learn library (V0.24.0) [238] and the statistical analysis
were performed in R [239]. The code is available at: https://cibit-uc.github.

io/brainage-deformation-fields.

5.3.3.1 Dimension reduction

PCA as a dimension reduction tool is a lossy compression algorithm that finds an
orthogonal linear transformation such that the data in the new projected space have
maximum variance. The first projection is the one with highest variance explained,
the second explains less variance than the first one, and so on. If the total ratio of
variance explained, of the selected components, is less than 1, then information is lost
during the compression, the more PCA components are used the more information
is explained.

5.3.3.2 Model

A model is a mapping function that converts the input data, x, into an estimate of
the output, ŷ. The regression model selected to decode age information from low
dimensional MRI-derived images was the RVR model. An architecture combining
PCA and RVR was reported as a suitable framework for the brain age using GM
information only [230]. The main advantages are the low customisation requirements
and its robustness to overfitting. Therefore, this model was the one selected to
evaluate the predictive value of deformation fields and compare it to other brain
tissue types.

5.3.3.3 Fusion

A model fusion approach was used to evaluate whether deformation fields increased
the performance of brain age prediction when combined with GM volumetric infor-
mation, relative to the prediction based on information from GM volume alone.
Succinctly, the predicted age of the models trained only with GM volume and
deformation fields alone were the input of a RVR model which in turn predicted
an age by weighting the two predictions.

5.3.3.4 Evaluation

To evaluate the goodness of fit, two metrics were used: the mean absolute error
(MAE) and R2.
MAE summarises the mean predictive error and is given by equation 5.1, where N

is the number of instances, yi is the chronological age and ŷi is the model estimate
of the chronological age.

https://cibit-uc.github.io/brainage-deformation-fields
https://cibit-uc.github.io/brainage-deformation-fields
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MAE =
N∑

i=1

|ŷi − yi|
N

(5.1)

The R2 metric encodes the variance explained of the real age value by the predictions,
and is computed with the equations (5.2, 5.3, 5.4) below, where the y represents the
age’s mean.

SStot =
n∑

i=1
(yi − y)2 (5.2)

SSres =
n∑

i=1
(yi − ŷi)2 (5.3)

R2 = 1 − SSres

SStot
(5.4)

To validate and statistically compare the models a 30-fold cross-validation procedure
was performed. The dataset was divided into 30 non-overlapping subsets and in
each iteration a different subset was used as a validation set and the remaining ones
were used to train the model. The reasoning behind the 30-fold was to have 30
independent values of MAE and R2, which, according to the central theorem, is the
minimum number of independent variables to assure the normal distribution of the
sample.
Besides the model validation, performed with data from HH and GH hospitals, the
models were also tested using the data from the IOP site, a scheme is shown in
Figure 5.2.

5.3.4 Statistical analysis

The statistical test performed depends on the objective, and they are described be-
low. It should be noted that all the MAE and R2 validation values are independent,
thus, we were able to perform statistical analysis using parametric methods.

5.3.4.1 Comparison of deformation fields predictive value with GM,
WM, and CSF

In each fold iteration, four different models (one per modality) were trained and
evaluated on the same data. In the end each model yielded 30 values of MAE, one
per fold. The appropriate test to compare these results is the one-way repeated
measures analysis of variance (rm-ANOVA) with modality as a factor and the MAE
as the dependent variable. Then, if the p-value is significant, for the modality, a post
hoc analysis is performed using Tukey's Honest Significant Difference (HSD) [216], to
verify which modalities yield a different predictive value. The results were considered
significant if the tests yielded a p-value less than 0.05.
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Figure 5.2: Evaluation overview: The IXI dataset is composed by data acquired in three sites of London (GH, HH and IOP). The data from GH and HH
were used to train and validate the models whereas data from the IOP site was used to test the models. The model validation is performed using a 30-fold
cross-validation approach.
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5.3.4.2 Brain age prediction with GM only and GM plus deformation
fields

In this case the objective was to test whether there is a performance improvement
when the prediction of deformation fields is combined with GM predictions. The
fusion was performed at the model level, thus for each data instance there is a
value of GM prediction and a fusion prediction (GM + deformation fields). To
test the hypothesis a paired t-test was performed. The null hypothesis was that the
performance of the model was the same either with GM only or GM and deformation
fields predictions combined. The alternative hypothesis was that fusion model have
lower (higher) value for the MAE (R2).

5.3.5 Site impact on components value

To investigate the site impact on the components, the PCA was trained with all
the data instances from the training and validation set (GH and HH) and then all
the dataset instances (GH, HH and IOP) were compressed using PCA. Then the
first two components with higher explained variance were analysed. The objective
was to verify whether the site had any effect on the components value. A model
was fitted in which the dependent variable was the component and the independent
variables (factors) were the age, site, gender and interaction between gender and
site. A quadratic age factor was added if a component followed a quadratic trend
with age (by visual inspection). The site was one hot encoded and was considered
to have an impact on the component if there was a site weight value statistically
different from zero.

5.4 Results

5.4.1 Comparison of deformation fields predictive value with GM,
WM, and CSF

The results of each model performance on the validation and test set are shown in
Table 5.2. The rm-ANOVA, for validation results, point out that different inputs
have a significantly different MAE (F3,87 = 5.7, p = 0.011). A follow-up analysis
using HSD was performed to identify which pair of modalities yield a significant
difference in MAE. We have found that the error in brain age prediction based
on deformation fields is statistically lower than using WM (p = 0.011) or CSF
(p = 0.0007). Thus, deformation fields, for the proposed approach, yielded better
results than WM and CSF volumetric patterns in brain age prediction. Despite
the non-significant result between deformation fields and GM, the former had a
better performance than the latter, the MAE difference between both is 0.3 years
difference (deformation fields yielded a lower MAE, although not significant). The
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Figure 5.3: Boxplot of the MAE per modality: The statistical results for the one-way
repeated measures ANOVA and post-hoc analysis. Each point in the boxplot is the MAE
for a cross-validation fold. The horizontal black line represents the median value, and the
limits of the boxes represent the 1st and 3rd quartiles. The red star identifies the MAE of
the test set.

Table 5.2: Mean and standard deviations of the MAE (in years) for the validation set,
30-fold cross-validation, and MAE for the test, for each input type.

MAE [years] Deformation fields GM WM CSF

Validation 5.84 ± 1.09 6.14 ± 1.29 6.50 ± 1.20 6.61 ± 1.26
Test 7.10 7.96 9.99 9.12

detailed results for the rm-ANOVA with the MAE as the dependent variable and
the modality as the factor are shown in Figure 5.3.
Concerning the results for the test set, the modality with lower MAE is the defor-
mation fields with 7.10 years. The difference between the test set and mean MAE
is 1.26, 1.82, 3.49 and 2.51 years for the deformation fields, GM, WM and CSF,
respectively. Therefore, the deformation fields yields the lower difference between
validation and test set. In the Appendix B.2 the Figure B.1 depicts the relationship
between the chronological age and predicted age and tables B.1-B.4 show the models’
performance results per age group, considering bins of 10 years. It can be seen that
in early adulthood the model overestimates the age whereas in late adulthood the
model underestimates the age, as previously reported in literature [240–242]. A
study suggests that the bias is neither specific to the model nor the age distribution
of the datasets [240].

5.4.2 Brain age prediction with GM only and GM plus deformation
fields

Despite the model with deformation fields having a lower MAE value than the GM
model (not significant, though), we were interested in investigating whether the
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Figure 5.4: Performance comparison of GM model versus a fusion model: Each point in
the boxplot is the MAE (a) or R2 (b) for a cross-validation fold. The horizontal black line
represents the median value, and the limits of the boxes represent the 1st and 3rd quartiles.
The p-value is the result of a paired t-test. The red star identifies the MAE and R2 of the
test set.

deformation fields add information to the brain age prediction using the volume of
GM alone. A paired t-test was performed, and the result is shown in Figure 5.4 and
Table 5.3. Indeed, we observed that the MAE of the model fusion is significantly
lower (t29 = −1.83, p=0.039), and that the R2 is higher, yet not significantly, than
those originated by the model trained with the volumetric information of GM only.
Concerning the results on the test set, the fusion model yields lower MAE and higher
R2 than the GM model. Furthermore, the difference between the results of the test
and validation set is lower on the fusion model, i.e., 1.35 years and 0.06 for MAE
and R2, respectively.

Table 5.3: Mean and standard deviations of the MAE (in years) and R2 for the validation
set, 30-fold cross-validation, and MAE and R2 for the test of the fusion and GM model.

MAE [years] R2R2R2

Validation Test Validation Test
GM 6.14 ± 1.29 7.96 0.75 ± 0.10 0.69
Deformation fields and GM 5.55 ± 1.14 6.90 0.79 ± 0.09 0.76

An analysis was also performed to compare the performance of deformation fields
combined with GM versus GM combined with WM, the results are in the Figure B.3
and Table B.6 in the Appendix B. The paired t-test did not reveal any differences
between the performance of the two fusion models on the validation. Nonetheless, on
the test set, we could verify the better combination is deformation fields combined
with GM rather than GM combined with WM for both MAE (a difference of 1.02
years) and R2 (a difference of 0.12).
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Figure 5.5: First component (first row) and second component (second row) of deformation
fields (DF) and each tissue type (GM, WM, and CSF), per image acquisition site. Each point
represents a subject and the lines shows the quadratic (linear), linear (linear), quadradic
(linear) and quadradic (linear) fitting for DF, GM, WM, and CSF for the first (second)
component, respectively, in each site.

5.4.3 Site impact on the components value

The deformation fields were the only modality in which a confounding site effect
was not observed (a sign of robustness) on the first two components, the ones
which explain more variance. The transformation into a 40-dimension space encodes
46%, 33%, 36% and 52% for deformation fields, GM, WM and CSF, respectively.
In Figure B.2 in the Appendix B is shown slices of the original image and the
reconstruction from the 40 components. One can see that, although more than 48%
of the variance is lost, the images are similar, and the overall information prevails.
The variance explained for the first (second) component is 15% (3%), 15% (1%), 18%
(2%), 23% (7%) for deformation fields, GM, WM and CSF, respectively. It should
be noted that the first two components explain, approximately half of the variance
explained by the 40 components. The evolution of the first two components’ value
with age is shown in Figure 5.5. The first component follows a quadratic evolution
for the deformation fields, monotonically linear decreases for GM, an inverted u-
shape for WM and a quadratic increase for CSF, respectively. Regarding the second
component, all the components follow a linear trend with age. The site effect in GM
and WM the second component is more evident than in any other image, suggesting
loss of invariance to this confounding variable.

5.5 Discussion

The major finding of this study is that voxel-wise local deformation provides novel
valuable information to predict brain age. The fusion, at the model level, of the
GM and deformation field components, yields better results than a model trained
with GM volume only. Furthermore, we have found that the model trained only with
deformation fields outperforms models trained with WM or CSF volume information
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and has similar performance to the model trained with common GM volumetric
maps. These results show the deformation fields have complementary information
to GM images and should be considered as an independent feature in brain age
models. Deformation based morphometry studies have shown differences between
healthy controls and patients with neurological diseases (schizophrenia [243] and
Alzheimer’s disease [244] although they had not been used for prediction. Brain
ageing deviations have been related to different diseases [8, 161, 162, 173, 245], the
inclusion of this feature in the models not only improves its performance but might
also be valuable for a differential diagnosis. Here we show that deformation fields
capture deviations from the healthy ageing that have predictive value. Further. It
remains however a question whether this information is useful in the clinical setting.
Therefore, further research is required to understand whether any of these models
can be used as a biomarker for neurological diseases such as schizophrenia and
Alzheimer’s disease.
The analysis of the first component of deformation fields (Figure 5.5) revealed an
acceleration of the ageing process from 50-60 years onwards, which arises from
differences in regional tissue loss across the brain and, consequently, different de-
formation patterns. The first PCA component has a positive quadratic relation of
the deformation fields with age, which means that more non-linear transformations
must be made to match a template, suggesting that older brains are more deformed.
The deformation fields dependency at the voxel and region-of-interest level with age
was studied in Pieperhoff at [232], which showed a linear positive relation of the
deformation fields with age. However, the study only included participants up to
51 years old. Accordingly, by inspecting Figure 5.5, before 50 years old the first
component of DF seems to have a positive linear relation with age. Yet, from 50-60
years old onwards the component values dramatically increase with age, at least
quadratically. We believe that the first component of deformation fields represents
the overall deformation fields pattern in the brain since the first component of GM,
WM and CSF followed the expected reported trend with age. Previous reports
suggest that GM volume monotonically decreases with age [246], that the relation of
WM volume with age has an inverted u-shape pattern [59, 61] and that the volume
of CSF [246, 247] increases with age patterns, which one can observe in the first
component of these tissues.
Notably, our results reveal that the deformations fields appear to be more robust
to variations elicited by the site of image acquisition. The statistical analysis of
the first two PCA components to the site effect revealed an invariance to the site.
On the contrary, on the first two components of GM, WM and CSF volume maps
there was a significant site effect. This effect is notorious in the second component
in Figure 5: the IOP components are completely clustered apart for the WM and
partially for GM volume maps. Currently, the MAE doubles when the test set has
data from a different site of the training set. Data harmonisation algorithms have
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been developed to reduce site effects and remove the scanner imprints, in an attempt
to overcome the current observation and achieve generalised models [248]. However,
in most of the cases models must be retrained to learn the scanner patterns. Our
results suggest that the deformations fields might be intrinsically more robust to
scanner artifacts and site dependencies, even without data harmonisation.

5.6 Conclusion

The deformations fields show a great potential to predict the brain age, i.e., they
should be considered as an independent feature in brain age models and seem to
be robust against confounding factors such as image acquisition sites. In this work
a simple fusion approach was employed. In the future further approaches should
explore how to optimally combine the information from the deformation fields with
that of grey matter volumetric maps. Moreover, the robustness of deformations fields
regarding site of image acquisition makes this feature potentially more suitable to
achieve more generalisable models.





Chapter 6

3DCAE-MRI: Overcoming Data
Availability Limitations in Small
Sample MRI Studies

This chapter is based in the following article:

Dias, Maria de Fátima Machado, Tiago FT Cerqueira, João Valente
Duarte, Miguel Castelo-Branco, and Paulo Carvalho. "3DCAE-MRI:
Overcoming Data Availability Limitations in Small Sample MRI Studies."
Scientific Reports (2023).
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6.1 Abstract

Deep learning (DL) methods are data-driven models that learn abstract, hierarchical
features from data. These models perform exceptionally well in image recognition
tasks when large amounts of data are used. The availability of open-source large-
scale annotated datasets is crucial for developing high-performance models. Never-
theless, the use of DL models in neuroimaging is restricted due to data availability
constraints. Transfer learning has been used to overcome this issue. Nonetheless,
most related studies have focused on transferring knowledge from/to an Alzheimer’s
disease context. In this paper, we propose a 3D-convolutional autoencoder mag-
netic resonance imaging (3DCAE-MRI) model to improve upon the performance of
supervised DL models in small-sample magnetic resonance imaging (MRI) studies.
We exploited multiple open-source MRI datasets to train 3DCAE-MRI. Transfer
learning was applied to two model architectures and benchmark problems: age
prediction and sex classification. With respect to age prediction, conducting off-
the-shelf learning with 3DCAE-MRI while using only 300 training samples yielded
remarkable performance on an external dataset; this performance was superior to
that of state-of-the-art methods that use thousands of images. In terms of both
age prediction and sex classification, off-the-shelf learning using 3DCAE-MRI led to
better performance, higher generalisability and more stable models than fine-tuning
or training the network from scratch.

6.2 Introduction

Supervised DL models are over-reliant on large annotated datasets to attain op-
timal performance and generalisability [32]. ImageNet [249], a widely used open-
source dataset comprising more than one million natural images classified into more
than 1200 categories, has been indispensable for developing multiple state-of-the-
art image segmentation and object recognition models. Unfortunately, no similar
MRI dataset is available, mainly because the acquisition process is time-consuming,
expensive and requires technical expertise. MRI studies often involve a reduced
number of participants (from dozens up to hundreds), which is insufficient for
training DL models. Despite the efforts of various initiatives [209,250–256] aimed at
collecting hundreds or thousands of MR images, the data collection process still poses
challenges in specific contexts. Collecting millions of MRI images per context may
be impractical, and for certain rare pathologies, it may be impossible to gather such
large amounts of data. To overcome this constraint, studies with small, annotated
datasets employ transfer learning to improve the performance of their models.
Transfer learning reuses the weights trained in a particular context (source domain)
to facilitate the learning process for similar problems (target domain) [257–264].
Two main types of images have been used as source domains in MRI studies:
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natural images and MRI data [265]. Regarding natural images, the most commonly
used dataset is ImageNet [257–259, 265, 266]; related studies have focused on using
architectures known from visual recognition tasks such as the residual network
(ResNet) [153], the visual geometry group network (VGG) [267], and AlexNet [268]
pretrained on the ImageNet dataset. These networks were then retrained to ad-
dress, for example, Alzheimer’s disease (AD) related problems [257–259]. However,
performing transfer learning based on this dataset and using these architectures
lead to two main disadvantages. First, natural and medical images are morpholog-
ically different; thus, specific medical patterns may not be present in such images.
Second, natural images are two-dimensional, whereas structural MR images are
three-dimensional. Consequently, the information encoded between slices is lost,
compromising the performance of the constructed model [126].
Despite the lack of an analogous dataset to ImageNet containing MRI data, several
popular MRI databases have been used to pretrain 3D-convolution neural net-
works (CNN) models. Most of the related studies have focused on transfer learning
from and to AD contexts using only the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) dataset as a source domain [260–262, 265, 269]. Currently, most
studies pretrain 3D-CNN models to distinguish between healthy controls and AD
patients. These pretrained 3D-CNN models are subsequently fine-tuned in other
contexts [260–262]. Another strategy proposed by Oh et al. [262] involves per-
forming transfer learning from a 3D-convolutional autoencoder (3D-CAE). The
authors trained a 3D-CAE solely with data acquired from healthy controls and AD
patients. Then, the weights were transferred to a classification model, which aimed
to distinguish between AD patients and two mild cognitive impairment conditions.
This approach presents an opportunity for improvement: the features learned in the
source domain might be too specific for AD, which might restrain the transfer learn-
ing process for different problems; furthermore, the generalisability of the method
to other problems was not assessed. Despite the publication of multiple open-source
MRI databases, such as the autism brain imaging data exchange (ABIDE) [209,
253], the ADNI [250], Open Access Series of Imaging Studies (OASIS) [254–256],
among others, to our knowledge, there is still no approach that can exploit all
these datasets as source domains. This paper proposes 3DCAE-MRI, a 3D-CAE
architecture trained with multiple open-source MRI datasets. Transfer learning is
applied to 3DCAE-MRI to optimise a regression model for predicting brain age and
a classification model aimed at sex prediction.
Brain age gap estimation (BrainAGE) is a putative biomarker that aims to detect
atypical brain ageing [21]. This biomarker leverages machine learning models to
evaluate healthy brain ageing. The difference between the estimated brain age
and the corresponding chronological age is used to measure the acceleration or
deceleration of brain ageing. Studies suggest that the BrainAGE is increased in
patients with multiple pathologies, such as AD [9,162,230], schizophrenia [9,229,270]
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and multiple sclerosis [9,180,271]. The development of accurate brain ageing models
might be essential for assisting in disease diagnosis tasks at an early stage and for
monitoring disease progression. Deep learning models trained using thousands of
training instances have achieved remarkable results. However, the backbones of
these studies are either local data or the UKBiobank dataset [272], a paid repository;
thus, these data are not easily accessible by the scientific community. Moreover,
most brain age models are evaluated on a test set comprising data acquired with
the same acquisition settings used for the training data (a holdout test set). Studies
that have evaluated brain age models on external test sets have reported decreased
performance on external test sets compared to that attained on the holdout test
set [28–31].
The sex prediction problem is considered in this study to evaluate the generalisability
of transfer learning from 3DCAE-MRI for classification tasks. The brain structure
and function of males and females are dissimilar [273–275]. It is being increasingly
recognised that sex is a relevant source of bias in many neuropsychiatric conditions
and that it affects disease processes in very distinct ways [276–278]. Machine learning
models, which successfully classify sex based on MRI images [4, 279, 280], might
help uncover the trajectory of sexual dimorphism in the brain and uncover the
relationships between medical conditions and sex.
The current work proposes an unsupervised model, 3DCAE-MRI, to learn abstract
and unspecific features from already-available MRI data. We assess whether con-
ducting transfer learning from 3DCAE-MRI (in an off-the-shelf and fine-tuning
fashion) to a problem-specific CNN yields better performance and is more stable
than training the CNN from scratch. The achieved performance is assessed on
a holdout set and an external set for the regression and classification problems.
Furthermore, the performances of different deep learning training strategies under
different training sizes are compared to those of a shallow learning approach.

6.3 Results

This work assesses whether conducting transfer learning from a 3D-CAE improves
the performance attained for two benchmark problems: age prediction and sex classi-
fication. Two architectures are considered: LiteNet, which is a custom architecture,
and the simple fully convolutional network (SFCN) [4], which is a contest-winning
network. The performance of the DL models is compared to that of a shallow
model. In the shallow model, the input MRI volume is compressed using principal
component analyis (PCA), and a relevant vector machine (RVM) is subsequently
used for classification or regression.
Transfer learning from 3DCAE-MRI is performed using an off-the-shelf and fine-
tuning approach. In the former method, the reused weights are not optimised,
whereas in the latter strategy, the weights are updated during training. Then, on
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LiteNet, these two approaches are compared to two training-from-scratch strate-
gies: one with augmentation and one without augmentation. The transformations
considered for training from scratch with augmentation are random translation and
flipping across the sagittal plane. For the SFCN, transfer learning from 3DCAE-
MRI is compared to transfer learning from pretrained models (based on sex and
age). Further details are provided in the Methods section.

6.3.1 Brain age prediction

6.3.1.1 Holdout test set

The mean absolute error (MAE) produced with different training sample sizes,
training strategies and CNN architectures on the holdout test set are presented in
Table 6.1. Figure C.1 in the Appendix C depicts the relation between the training
sample size and the MAE for different training strategies. The repeated measures
analysis of variance (rm-ANOVA) and post hoc analysis results obtained for LiteNet
(SFCN) are shown in Tables C.3 (C.5) and C.4 (C.6) in the Appendix C. The results
suggest that the training strategy plays a crucial role in determining the MAE under
all training sample sizes. Concerning the LiteNet architecture, transfer learning (via
off-the-shelf training or fine-tuning) from 3DCAE-MRI attains better performance
on the holdout test set. Compared with other training strategies, off-the-shelf
learning from 3DCAE-MRI significantly stands out as the best training strategy for
small training sets (25, 50) with very large or large differences. Under 100 training
samples, the fine-tuning and off-the-shelf methods have similar performances, and
under 200 and 300 training samples, fine-tuning yields superior performance. In
the case of the SFCN architecture, transfer learning from 3DCAE-MRI using fine-
tuning attains better performance under 25 and 50 training samples. In contrast,
transfer learning from an age-pretrained model performs better under 200 and
300 training samples. Under 100 training samples, the performances of transfer
learning from 3DCAE-MRI and the pretrained model are similar. Nevertheless, the
difference between these two training strategies (3DCAE-MRI fine-tuning and the
age-pretrained model) is negligible for all training sample sizes. Concerning PCA
versus DL models, the results highlight that both CNN architectures yield better
performance than PCA for all the cases except for the LiteNet architecture trained
from scratch with 25 samples. The performance differences between the DL and
PCA models are usually very large.

6.3.1.2 External test set

The means and standard deviations of the MAEs obtained on the external test set
are shown in Table 6.2 and Figure 6.1. The statistical analysis results obtained for
LiteNet (SFCN) are shown in Tables C.7 (C.9) and C.8 (C.10) in the Appendix C.
The rm-ANOVA suggests that the MAE differs across various training strategies
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Table 6.1: MAEs and standard deviations obtained for the age prediction task on the holdout test set by PCA and two CNN architectures under
different training strategies and training set sizes. The lowest value obtained by each CNN architecture under each training size is represented in bold; the

symbols * and † indicate that PCA achieves better performance than do the LiteNet and SFCN architectures, respectively.

Training Strategy PCA-RVM
LiteNet SFCN

Training from scratch 3DCAE-MRI Pretrained 3DCAE-MRI
No augmentation Augmentation Fine-tuning Off-the-shelf Age Sex Fine-tuning Off-the-shelf

25 8.80 ± 0.53 9.26 ± 1.32 9.84 ± 1.12 7.90 ± 1.26 6.65 ± 0.576.65 ± 0.576.65 ± 0.57 7.05 ± 0.66 7.27 ± 0.65 6.98 ± 0.546.98 ± 0.546.98 ± 0.54 7.07 ± 0.51
50 7.89 ± 0.48 6.69 ± 0.60 7.78 ± 0.96 6.02 ± 0.50 5.76 ± 0.405.76 ± 0.405.76 ± 0.40 6.45 ± 0.42 6.66 ± 0.62 6.34 ± 0.466.34 ± 0.466.34 ± 0.46 6.61 ± 0.39
100 7.37 ± 0.35 5.6 ± 0.46 6.78 ± 1.16 5.20 ± 0.415.20 ± 0.415.20 ± 0.41 5.28 ± 0.42 6.14 ± 0.536.14 ± 0.536.14 ± 0.53 6.58 ± 0.48 6.14 ± 0.416.14 ± 0.416.14 ± 0.41 6.42 ± 0.33
200 6.16 ± 0.56 5.06 ± 0.43 5.43 ± 0.81 4.80 ± 0.304.80 ± 0.304.80 ± 0.30 4.99 ± 0.36 5.38 ± 0.425.38 ± 0.425.38 ± 0.42 5.73 ± 0.5 5.46 ± 0.45 6.05 ± 0.41
300 5.76 ± 0.48 4.75 ± 0.36 6.3 ± 1.26 4.42 ± 0.354.42 ± 0.354.42 ± 0.35 4.67 ± 0.35 4.96 ± 0.454.96 ± 0.454.96 ± 0.45 5.32 ± 0.53 4.99 ± 0.49 5.59 ± 0.4

Table 6.2: The MAEs and standard deviations of the age prediction results produced for PCA-RVM and two CNN architectures under different training
strategies and training set sizes are evaluated on the external test set. The lowest values obtained for each CNN architecture and training size are

represented in bold; the symbols * and † indicate that PCA-RVM achieves better performance than do the LiteNet and SFCN architectures, respectively.

Training Strategy PCA-RVM
LiteNet SFCN

Training from scratch 3DCAE-MRI Pretrained 3DCAE-MRI
No augmentation Augmentation Fine-tuning Off-the-shelf Age Sex Fine-tuning Off-the-shelf

25 11.26 ± 0.56 11.89 ± 1.43 11.97 ± 1.44 9.96 ± 0.84 8.88 ± 0.68.88 ± 0.68.88 ± 0.6 8.18 ± 0.58 8.55 ± 0.85 8.12 ± 0.71 8.01 ± 0.68.01 ± 0.68.01 ± 0.6
50 10.81 ± 0.6 10.85 ± 1.63 11.57 ± 1.42 8.95 ± 0.81 8.11 ± 0.438.11 ± 0.438.11 ± 0.43 7.88 ± 0.58 7.77 ± 0.72 7.32 ± 0.537.32 ± 0.537.32 ± 0.53 7.47 ± 0.42
100 9.79 ± 0.42 8.93 ± 1.36 10.64 ± 1.55 8.01 ± 0.71 7.40 ± 0.327.40 ± 0.327.40 ± 0.32 7.27 ± 0.48 7.55 ± 0.63 7.12 ± 0.44 6.94 ± 0.296.94 ± 0.296.94 ± 0.29
200 8.2 ± 0.32 9.02 ± 1.14 9.41 ± 1.37 7.36 ± 0.53 6.95 ± 0.356.95 ± 0.356.95 ± 0.35 7.05 ± 0.62 7.05 ± 0.61 6.73 ± 0.45 6.44 ± 0.356.44 ± 0.356.44 ± 0.35
300 7.42 ± 0.21 8.73 ± 1.06 10.02 ± 1.47 7.22 ± 0.54 6.71 ± 0.256.71 ± 0.256.71 ± 0.25 7.46 ± 0.98 6.71 ± 0.72 6.95 ± 0.6 5.93 ± 0.365.93 ± 0.365.93 ± 0.36
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under all training dataset sizes. For both CNN architectures, transfer learning from
3DCAE-MRI yields lower MAEs than the other training strategies on the external
test set. LiteNet attains lower mean MAEs using off-the-shelf transfer learning from
3DCAE-MRI. The post hoc results also provide evidence that the effect of training
with an off-the-shelf strategy is very large compared to those of training from scratch
and PCA-RVM for all training dataset sizes. Fine-tuning outperforms both PCA-
RVM and training from scratch (with and without augmentation).
Similarly, for the SFCN architecture, the off-the-shelf training strategy yields the
best performance for all training cases except for that with 50 training samples.
Under 50 training samples, the best training strategy is fine-tuning for 3DCAE-
MRI. Nevertheless, under both 50 and 100 training samples, the MAEs of off-the-
shelf training and fine-tuning with 3DCAE-MRI are equivalent. Furthermore, the
post hoc results reveal that under 25 training samples, the performances of off-
the-shelf training and fine-tuning with 3DCAE-MRI are similar to that of the age-
pretrained model. Under 100 training samples, the difference between the fine-tuning
results obtained with 3DCAE-MRI and the age-pretrained model is not significant.
Similarly, under 200 training samples, fine-tuning a model using weights derived from
a sex-pretrained model and utilising 3DCAE-MRI are equivalent. Finally, under 300
training samples, a shallow approach (PCA-RVM) performs similarly to fine-tuning
an age-pretrained model.

6.3.1.3 Stability

An analysis of the training stability of both CNN architectures over the last 30 epochs
with different DL training strategies is exhibited in Table 6.3. A statistical analysis
comparing the validation variability produced across different training strategies for
the LiteNet (SFCN) architecture is shown in Table C.11 (C.13), and the post hoc
analysis is shown in Table C.12 (C.14) in the Appendix C. For LiteNet, the results
reveal that off-the-shelf learning with 3DCAE-MRI has lower validation variability
than do the other methods, followed by 3DCAE-MRI fine-tuning and training from
scratch (with and without augmentation). The statistical analysis of the validation
variability produced across different training strategies suggests that the mean of
the stability metric significantly differs across training strategies for all the training
dataset sizes. The differences between the off-the-shelf approach and the other DL
training strategies are very large for all the training dataset sizes.
The findings for the SFCN suggest that fine-tuning from an age-pretrained model is
more stable than any other training strategy. The validation variability difference
between fine-tuning an age-pretrained model and the other DL training strategies
are very large. Fine-tuning and off-the-shelf processing from 3DCAE-MRI yield
equivalent results for 25 and 50 training samples, respectively. Transfer learning from
3DCAE-MRI (using fine-tuning) or a sex-pretrained model, in terms of stability, is
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Figure 6.1: External test set MAE results for age prediction problem. Training
evolution for the age prediction problem with different dataset training sizes for the four
training strategies and convolution neural network architectures (LiteNet and SFCN). The
shaded band represents to the standard deviation.
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similar under 25, 100, 200 and 300 training samples. Finally, training from 3DCAE-
MRI using an off-the-shelf approach yields the same stability as that attained by
performing training with a sex-pretrained model.

6.3.2 Sex classification

6.3.2.1 Holdout test set

The results obtained on the holdout test set are shown in Table 6.4 and Figure C.2b
in the Appendix Cl. The results show that the accuracy monotonically increases
with the number of training instances for all the training strategies and both CNN
architectures. The statistical analysis conducted for LiteNet (SFCN) is shown in
Table C.15 (C.17), and the post hoc results are shown in Table C.16 (C.18) in the
Appendix C.
For the LiteNet architecture, the results show that off-the-shelf transfer learning
from 3DCAE-MRI has significantly greater accuracy than fine-tuning and training
from scratch (with and without augmentation) under all dataset sizes. The accuracy
differences between off-the-shelf training and training from scratch (with and without
augmentation) are either large or very large. Similarly, the differences between the
off-the-shelf and fine-tuning methods are large across all set training sizes. PCA-
RVM outperforms the off-the-shelf method under 200 and 300 training samples,
but the differences are not significant. PCA-RVM achieves significantly superior
performance to that of training from scratch (with and without augmentation) and
fine-tuning across all numbers of training samples except for 50.
The off-the-shelf training strategy with 3DCAE-MRI attains better performance
on the holdout test set than do the other training strategies with the SFCN ar-
chitecture. Nonetheless, the accuracy differences are not significant in some cases.
Transfer learning from 3DCAE-MRI using an off-the-shelf method and the fine-
tuning approach are equivalent for all training cases except for that with 300 training
instances. Moreover, the difference between the accuracies of a shallow model (PCA-
RVM) and the SFCN trained using an off-the-shelf approach is not significant. The
results of the comparisons between the pretrained models are inconsistent. The
sex-pretrained model attains better accuracy for 25 training samples. Nevertheless,
the difference is not significant. The pretrained models yield the same accuracy for
100 training samples, whereas the age-pretrained model yields significantly greater
accuracy under 50, 200 and 300 training samples.

6.3.2.2 External test set

The results obtained on the external test set are shown in Table 6.5 and Figure 6.2.
The rm-ANOVA and post hoc analysis results produced for the LiteNet (SFCN)
architectures are shown in Tables C.19 (C.21) and C.20 (C.22), respectively, in the
Appendix C.
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Table 6.3: Means and standard deviations of the validation variability across different training set sizes and training strategies for the age prediction
problem. The lowest value attained for each training set size is represented in bold.

Training Strategy
LiteNet SFCN

Training from scratch 3DCAE-MRI Pretrained 3DCAE-MRI
No augmentation Augmentation Fine-tuning Off-the-shelf Age Sex Fine-tuning Off-the-shelf

25 5.57 ± 0.81 4.8 ± 0.74 4.52 ± 0.57 1.74 ± 0.491.74 ± 0.491.74 ± 0.49 8.31 ± 1.738.31 ± 1.738.31 ± 1.73 12.44 ± 3.86 12.91 ± 3.21 11.42 ± 3.1
50 2.42 ± 0.81 3.15 ± 0.97 1.95 ± 0.45 0.79 ± 0.220.79 ± 0.220.79 ± 0.22 6.31 ± 1.796.31 ± 1.796.31 ± 1.79 9.84 ± 2.0 11.83 ± 2.37 11.61 ± 2.64
100 2.65 ± 0.98 3.57 ± 0.95 2.01 ± 0.58 0.86 ± 0.240.86 ± 0.240.86 ± 0.24 6.56 ± 1.516.56 ± 1.516.56 ± 1.51 9.16 ± 1.18 9.5 ± 1.37 11.19 ± 2.9
200 2.12 ± 0.75 3.02 ± 0.71 1.53 ± 0.33 0.89 ± 0.290.89 ± 0.290.89 ± 0.29 3.74 ± 0.913.74 ± 0.913.74 ± 0.91 6.41 ± 1.01 6.6 ± 1.09 9.08 ± 2.41
300 1.93 ± 0.63 2.34 ± 0.57 1.17 ± 0.27 0.63 ± 0.180.63 ± 0.180.63 ± 0.18 2.52 ± 0.622.52 ± 0.622.52 ± 0.62 4.49 ± 0.91 4.25 ± 1.01 7.21 ± 1.46
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Table 6.4: The means and standard deviations of the sex classification accuracies produced by PCA-RVM and two CNN architectures under different
training strategies and training set sizes on the holdout test set. The lowest values for each CNN architecture and training size are represented in bold;

the symbols * and † indicate that PCA-RVM achieves better performance than do the LiteNet and SFCN architectures, respectively.

Training Strategy PCA-RVM
LiteNet SFCN

Training from scratch 3DCAE-MRI Pretrained 3DCAE-MRI
No augmentation Augmentation Fine-tuning Off-the-shelf Age Sex Fine-tuning Off-the-shelf

25 0.73 ± 0.05 0.69 ± 0.08 0.70 ± 0.06 0.68 ± 0.08 0.76 ± 0.050.76 ± 0.050.76 ± 0.05 0.77 ± 0.04 0.78 ± 0.04 0.79 ± 0.05 0.80 ± 0.030.80 ± 0.030.80 ± 0.03
50 0.78 ± 0.03 0.74 ± 0.05 0.73 ± 0.05 0.77 ± 0.05 0.80 ± 0.030.80 ± 0.030.80 ± 0.03 0.79 ± 0.04 0.78 ± 0.03 0.81 ± 0.03 0.82 ± 0.030.82 ± 0.030.82 ± 0.03
100 0.81 ± 0.04 0.79 ± 0.03 0.78 ± 0.05 0.79 ± 0.04 0.83 ± 0.040.83 ± 0.040.83 ± 0.04 0.80 ± 0.03 0.80 ± 0.04 0.82 ± 0.04 0.84 ± 0.040.84 ± 0.040.84 ± 0.04
200 0.86 ± 0.03∗ 0.81 ± 0.05 0.82 ± 0.04 0.82 ± 0.04 0.85 ± 0.030.85 ± 0.030.85 ± 0.03 0.84 ± 0.04 0.81 ± 0.04 0.85 ± 0.03 0.86 ± 0.030.86 ± 0.030.86 ± 0.03
300 0.88 ± 0.03∗ 0.83 ± 0.05 0.82 ± 0.05 0.84 ± 0.05 0.87 ± 0.040.87 ± 0.040.87 ± 0.04 0.85 ± 0.04 0.83 ± 0.04 0.86 ± 0.04 0.89 ± 0.030.89 ± 0.030.89 ± 0.03

Table 6.5: The means and standard deviations of the sex classification accuracies produced by PCA-RVM and two CNN architectures under different
training strategies and training set sizes on the external test set. The lowest values for each CNN architecture and training size are represented in bold;

the symbols * and † indicate that PCA-RVM performs better than do the LiteNet and SFCN architectures, respectively.

Training Strategy PCA-RVM
LiteNet SFCN

Training from scratch 3DCAE-MRI Pretrained 3DCAE-MRI
No augmentation Augmentation Fine-tuning Off-the-shelf Age Sex Fine-tuning Off-the-shelf

25 0.79 ± 0.04 ∗ † 0.72 ± 0.05 0.73 ± 0.05 0.71 ± 0.05 0.78 ± 0.040.78 ± 0.040.78 ± 0.04 0.77 ± 0.04 0.77 ± 0.04 0.79 ± 0.03 0.80 ± 0.030.80 ± 0.030.80 ± 0.03
50 0.80 ± 0.03∗ 0.72 ± 0.07 0.74 ± 0.07 0.75 ± 0.05 0.78 ± 0.050.78 ± 0.050.78 ± 0.05 0.77 ± 0.04 0.76 ± 0.04 0.81 ± 0.020.81 ± 0.020.81 ± 0.02 0.80 ± 0.02
100 0.80 ± 0.03 ∗ † 0.75 ± 0.06 0.74 ± 0.05 0.76 ± 0.05 0.78 ± 0.030.78 ± 0.030.78 ± 0.03 0.77 ± 0.04 0.78 ± 0.05 0.79 ± 0.03 0.80 ± 0.020.80 ± 0.020.80 ± 0.02
200 0.82 ± 0.04 ∗ † 0.75 ± 0.06 0.73 ± 0.07 0.75 ± 0.06 0.79 ± 0.040.79 ± 0.040.79 ± 0.04 0.77 ± 0.04 0.76 ± 0.04 0.80 ± 0.04 0.81 ± 0.020.81 ± 0.020.81 ± 0.02
300 0.82 ± 0.03 ∗ † 0.76 ± 0.07 0.74 ± 0.07 0.80 ± 0.05 0.82 ± 0.040.82 ± 0.040.82 ± 0.04 0.79 ± 0.05 0.78 ± 0.07 0.81 ± 0.030.81 ± 0.030.81 ± 0.03 0.81 ± 0.020.81 ± 0.020.81 ± 0.02
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A higher accuracy of 0.82 is attained for LiteNet by off-the-shelf training with
3DCAE-MRI and PCA-RVM. These training strategies have superior performance
to that of fine-tuning or training from scratch (with and without augmentation). In
this case, the accuracies of the off-the-shelf, PCA-RVM and training-from-scratch
strategies are maintained or increase with the training size. The same conclusion
applies to fine-tuning except for the case with 200 training samples, for which a
small decrease is observed. These findings suggest that the selected training strategy
impacts the model performance achieved with all dataset training set sizes. The off-
the-shelf and PCA-RVM methods perform significantly better than do the other
three training strategies on the external dataset, except under the training dataset
size of 300, for which the difference between the off-the-shelf and fine-tuning methods
is not significant. PCA-RVM significantly outperforms the off-the-shelf method
under 100 and 200 training samples. The Cohen’s d value differences between PCA-
RVM and training from scratch are as follows (with the corresponding number of
training samples in parentheses): very large (25, 200), large (50, 100) and moderate
(300). The difference between the off-the-shelf and training-from-scratch strategies
is very large for 25 training samples; large for 50, 200 and 300 training samples; and
moderate for 100 samples. Fine-tuning yields better accuracy than training from
scratch, but the difference is significant only for 50 and 300 training samples (with
a moderate effect).
For the SFCN, transfer learning from 3DCAE-MRI attains better results than do the
age- or sex-pretrained models. The models trained using the off-the-shelf approach
have higher accuracies under 25, 100 and 300 training samples. Fine-tuning from
3DCAE-MRI yields better performance for 50 samples, and both strategies yield
the same accuracy (0.81) for 200 training samples. Nonetheless, the accuracy
differences between the off-the-shelf and fine-tuning training strategies with 3DCAE-
MRI are not significant for any of the training samples. Concerning the comparison
between the SFCN and PCA-RVM, the results highlight that the SFCN yields better
performance for 25 and 50 training samples, but the accuracy differences are not
significant. PCA-RVM and the SFCN yields the same performance for 100 training
samples, and PCA-RVM outperformed the SFCN that transfer learning from an
age-pretrained model and doing so from a sex-pretrained model are equivalent to
sex classification.

6.3.2.3 Stability

The model stability results are shown in Table 6.6. The rm-ANOVA and post hoc
results obtained for LiteNet (SFCN) are shown in Tables C.23 (C.25) and C.24
(C.26) in the Appendix C. The findings reveal that the selected training strategy
impacts the validation variability levels of both architectures under all training
samples, except for LiteNet with 200 training samples. Moreover, off-the-shelf
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Figure 6.2: Accuracy results obtained for the sex classification problem on
the external test set. The training evolution trends yielded for the sex classification
problem with different training dataset sizes by the different training strategies and CNN
architectures (LiteNet and SFCN) are shown. The shaded band represents the standard
deviation.

yields lower validation variability on LiteNet (i.e., greater stability) than do fine-
tuning and training from scratch (with and without augmentation) under all the
training sample sizes except 300. In this exception, training from scratch with
augmentation yields better performance than off-the-shelf training; however, the
difference is not significant. In the case of the SFCN, in general, the sex-pretrained
model is equivalent to or more stable than any other DL-based training strategy.
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Table 6.6: Means and standard deviations of the validation variability produced across different training set sizes and training strategies for the sex
prediction problem. The lowest value obtained for each training set is represented in bold.

Training Strategy
LiteNet SFCN

Training from scratch 3DCAE-MRI Pretrained 3DCAE-MRI
No augmentation Augmentation Fine-tuning Off-the-shelf Age Sex Fine-tuning Off-the-shelf

25 0.08 ± 0.01 0.08 ± 0.01 0.09 ± 0.01 0.060 ± 0.0040.060 ± 0.0040.060 ± 0.004 0.10 ± 0.010.10 ± 0.010.10 ± 0.01 0.10 ± 0.010.10 ± 0.010.10 ± 0.01 0.11 ± 0.01 0.12 ± 0.01
50 0.08 ± 0.010.08 ± 0.010.08 ± 0.01 0.08 ± 0.010.08 ± 0.010.08 ± 0.01 0.10 ± 0.01 0.08 ± 0.020.08 ± 0.020.08 ± 0.02 0.11 ± 0.010.11 ± 0.010.11 ± 0.01 0.11 ± 0.010.11 ± 0.010.11 ± 0.01 0.11 ± 0.010.11 ± 0.010.11 ± 0.01 0.12 ± 0.01
100 0.10 ± 0.01 0.10 ± 0.01 0.11 ± 0.01 0.09 ± 0.010.09 ± 0.010.09 ± 0.01 0.11 ± 0.010.11 ± 0.010.11 ± 0.01 0.11 ± 0.010.11 ± 0.010.11 ± 0.01 0.11 ± 0.020.11 ± 0.020.11 ± 0.02 0.13 ± 0.01
200 0.12 ± 0.01 0.12 ± 0.01 0.12 ± 0.02 0.11 ± 0.020.11 ± 0.020.11 ± 0.02 0.13 ± 0.01 0.12 ± 0.010.12 ± 0.010.12 ± 0.01 0.13 ± 0.01 0.14 ± 0.01
300 0.12 ± 0.01 0.11 ± 0.010.11 ± 0.010.11 ± 0.01 0.13 ± 0.01 0.12 ± 0.02 0.13 ± 0.01 0.12 ± 0.010.12 ± 0.010.12 ± 0.01 0.14 ± 0.01 0.15 ± 0.01
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6.4 Discussion

The findings of this work elucidate how conducting transfer learning from 3DCAE-
MRI to two CNN architectures (LiteNet and the SFCN) might improve the perfor-
mance of these models.
Compared with the other training strategies, i.e., transfer learning from pretrained
models, training from scratch with and without augmentation, and PCA-RVM,
off-the-shelf learning from 3DCAE-MRI performs remarkably well in terms of age
prediction on an external test set for both architectures. In general, it performs
significantly better than the other training strategies. Moreover, in the most cases,
the effect sizes are very large, which provides significant evidence for the superior
performance of this training strategy. Most published works on age prediction using
DL have reported that the MAE doubles on external datasets [28, 29, 31]. In our
case, we verify the same trend for both architectures. For LiteNet, training a model
from scratch without (with) augmentation yields an MAE of 4.75 (6.3) years on
the holdout test set. The performance of these models on an external test set is
8.73 (10.02) years; thus, the difference between the test sets is 3.98 (3.90) years.
When utilising the off-the-shelf training strategy on LiteNet, the MAE induced
on the holdout test set is 4.67 years, whereas the MAE induced on the external
dataset is 6.71 years; this is a difference of 2.04 years, which is almost half of
the difference relative to that of a model trained from scratch. Furthermore, the
performance of the SFCN fine-tuned with an age-pretrained model on the holdout
test set is 4.96 years, while on the external test set, it is 7.46, which is a difference
of 2.5 years. In this case, training the SFCN with an off-the-shelf approach from
3DCAE-MRI yields MAEs of 5.59 years on the holdout test set and 5.93 years on
the external test set, producing a difference of 0.34 years. The difference observed
across various acquisition settings might explain the higher MAEs attained on
the external test sets. Images acquired with different scanners and acquisition
parameters might result in different noise levels [29]. The scanner artefacts might
not be removed entirely during preprocessing. Therefore, machine learning models
might be biased towards the acquisition settings of the training data and might
generalise poorly. This bias might be more problematic for models trained with
data possessing low diversity with respect to the acquisition settings. In our case,
age prediction and sex classification models are trained with data acquired under two
acquisition site settings, whereas 3DCAE-MRI is trained with data acquired from
75 different settings. Thus, training via transfer learning from a 3D-CAE with the
off-the-shelf approach for age prediction leads to more models for use with external
datasets.
The Institute of Psychiatry (IOP) data are used to evaluate the performance of
different training strategies on an external test set. Similarly, Leonardsen et al. [30]
also used these data to assess the performance of the SFCN on an external test set.
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Their dataset comprised 53542 instances, 42829 and 10713 of which were used to
train and validate the models, respectively. The authors reported an MAE of 6.96
years for the IOP data. In this work, LiteNet and the SFCN, trained with only
300 training samples by using transfer learning from 3DCAE-MRI, achieved higher
performances than did the SFCN trained with 42829 instances. LiteNet and the
SFCN attained MAEs of 6.71 and 5.93 years, which were improvements of 0.25 and
1.03 years, respectively. This finding highlights that transfer learning from 3DCAE-
MRI via off-the-shelf training requires fewer training instances to attain equivalent
results to those produced by training models from scratch using thousands of training
instances.
In general, reusing the 3DCAE-MRI weights for the two CNNs outperforms the other
training strategies for both age prediction and sex classification tasks conducted on
the holdout test set. With respect to age prediction, the LiteNet architecture trained
via transfer learning from 3DCAE-MRI achieves better results under all the training
samples. Compared with training from scratch (with and without augmentation),
the off-the-shelf and fine-tuning methods achieve superior performance in most cases.
Concerning sex classification, the off-the-shelf approach significantly outperforms the
other training strategies for sample sizes less than 200. For dataset consisting of 200
and 300 training samples, the off-the-shelf and PCA-RVM methods have equivalent
performances. With respect to the SFCN architecture, for age prediction, the fine-
tuning weights acquired from 3DCAE-MRI and from an age-pretrained model are
equivalent. For sex prediction, the off-the-shelf method yields greater performance
on the holdout dataset than does using age- and sex-pretrained models. Comparing
the SFCN with the shallow approach, the SFCN attains higher accuracy for all
training sample sizes except for 200, in which the performances of both models are
similar.
For sex classification, shallow learning achieves equivalent performance to that of
the two CNNs. Training both CNN architectures using off-the-shelf transfer learning
from 3DCAE-MRI yields similar performances to that of a shallow learning model.
On LiteNet, the shallow approach outperforms 3DCAE-MRI fine-tuning and training
the model from scratch (with and without augmentation). On the SFCN, the
shallow approach yields superior accuracy to that of the fine-tuned age- or sex-
pretrained models. Concerning age prediction, the results show that shallow learning
outperforms the CNNs trained from scratch (with and without augmentation) on an
external test set. These results are on par with those of previous reports highlighting
the fact that DL does not consistently outperform shallow learning for small training
set sizes [281,282].
Regarding stability, the results diverge across LiteNet and the SFCN. On LiteNet, in
general, for both sex classification and age prediction, models trained using the off-
the-shelf approach are more stable. On the SFCN architecture, the results show that,
in general, the pretrained models are more stable in the last training epochs. For the
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sex classification problem, the sex-pretrained model is more stable, whereas for age
prediction, transfer learning from an age-pretrained model yields greater stability.
The superior performance of the off-the-shelf model compared to that of other DL-
based training strategies might be related to the number of trainable parameters.
In this strategy, the weights are frozen and not updated during the training process.
The number of parameters reused from 3DCAE-MRI is 1.16 million. LiteNet and
the SFCN contain totals of 1.31 and 2.95 parameters, respectively; thus, in the off-
the-shelf strategy, only 12% and 61% of the total parameters are trainable compared
to those of the other training strategies. These results are in accordance with the
results published by Ghafoorian et al. [264], in which freezing more layers yielded
better white matter hyperintensity detection results. Therefore, the off-the-shelf
method might act as a regularisation strategy, preventing overfitting on the training
data.
Given the unsupervised nature of 3DCAE-MRI, the models learn intrinsic morpho-
logical patterns that are inherent to the brain’s structure; thus, their features are
agnostic. Our findings suggest that the features extracted by 3DCAE-MRI might
be valuable in other neuroimaging contexts with few training instances. Moreover,
the weights are transferred to two CNN architectures, highlighting the finding that
a single 3DCAE-MRI model might be successfully applicable to multiple CNN ar-
chitectures. The current results are consistent with those of self-supervised learning
strategies, such as Model Genesis. Model Genesis [283], proposed by Zhou et al.,
is a self-supervised approach that is trained to reconstruct an original image from
a transformed version of the image. Akin to our results, Zhou et al. showed that
their approach outperformed models trained from scratch and pretrained models
on segmentation and classification tasks. Model Genesis and our approach differ in
terms of their training strategies. Our approach involves training 3DCAE-MRI to
compress and reconstruct the original image from a low-dimensional space. Model
Genesis reconstructs original images from their transformations; by doing so, the
models learn the spatial relations between different structures and might be able to
better learn morphological features. Therefore, our approach is simpler, but even
though Model Genesis is more complex, it might learn more robust features and be
more generic than our approach.
The present study acknowledges certain limitations. First, our methodology is
restricted to the analysis of two specific problems, namely, sex classification and
age prediction. A complementary analysis is performed on an AD classification
problem, as detailed in the Appendix C. The AD classification results are similar
to the sex classification findings. With respect to the LiteNet architecture, transfer
learning from the 3DCAE-MRI using an off-the-shelf strategy yields better results
than training the network from scratch on either the holdout dataset or the ex-
ternal test set. Regarding the SFCN architecture, in general, equivalent results
are attained using a model developed by transfer learning from 3DCAE-MRI or
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age- or sex-pretrained models. Although the results indicate the potential success
of the proposed methodology in other contexts, importantly, its generalisation to
different problem domains cannot be guaranteed. Finally, attaining interpretability
in DL is challenging. While various methods have been proposed to demystify
predictions, a systematic comparison of eight salience map techniques concluded
that all methods failed to meet at least one trustworthiness criterion (reproducibility,
reliability, localisation utility, and sensitivity to model weights) [160].

6.5 Conclusion

The current work outlines the importance of transfer learning to DL models in MRI
studies with small sample sizes. Reusing weights from the 3DCAE-MRI model with
an off-the-shelf approach outperforms the other DL-based training strategies and
uses fewer training samples. Furthermore, the models are doubtlessly more stable
than models trained from scratch. Moreover, the remarkable age and sex prediction
results obtained by conducting transfer learning from the same 3DCAE-MRI model
suggests the versatility of the proposed approach. 3DCAE-MRI is trained with
thousands of multisite images. With respect to age prediction, off-the-shelf transfer
learning from 3DCAE-MRI achieves greater performance than does training with
thousands of images. Thus, problems with reduced training set sizes might be solved
by using transfer learning from 3DCAE-MRI. Nevertheless, DL does not outperform
shallow learning in all tasks. Shallow learning has equivalent performance compared
to that of off-the-shelf DL during a sex prediction task and a lower MAE during
an age prediction task conducted on an external dataset with respect to DL models
trained from scratch.

6.6 Methods

This work assessed whether transferring weights from 3DCAE-MRI could yield
better performance than training a model from scratch or using pretrained models.
To achieve this goal, two CNN architectures were considered: LiteNet and the SFCN.
3DCAE-MRI was trained with images acquired from multiple repositories. The pre-
trained weights of the encoder were reused by two CNNs: LiteNet and the SFCN. In
addition to DL, a shallow pipeline was also considered in this work. Different training
dataset sizes were used to demonstrate the potential of the proposed solution. In
particular, training set sizes of 25, 50, 100, 200 and 300 samples were applied. All
methods were carried out in accordance with the relevant guidelines and regulations.

6.6.1 Data

Eight open data-sharing initiatives were used to train 3DCAE-MRI: ADNI [250],
ABIDE I [209], ABIDE II [253], 1000 Functional Connectomes Project
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(FCP1000) [251], Brain Genomics Superstruct (GSP) [252], OASIS-1 [254],
OASIS-2 [255] and OASIS-3 [256]. All images in the datasets were used to train
the autoencoder, and no inclusion or exclusion criteria were applied. In total,
the 3DCAE-MRI model was trained with a total of 29478 T1-weighted images
from 75 sites. Figure 6.3 depicts the repositories considered to train and validate
the 3DCAE-MRI model; detailed information about the repositories and sites is
provided in Table C.1 in the Appendix C. For training and evaluating the age
and sex models, the Information eXtraction from Images (IXI) [210] dataset was
used (Figure 6.3). The IXI dataset comprises MRI images acquired from healthy
participants in three different hospitals in London, i.e., Hammersmith Hospital
(HH), Guy’s Hospital (GH) and the IOP. The GH and HH data were employed
for training, validating, and testing the models. However, the IOP data were
exclusively utilised to evaluate the performance of each model on an external
dataset. Consequently, the data from the IOP site were not considered during the
training or validation phases. Detailed information about the number of images
used per dataset and the corresponding demographics are presented in Table C.2
of the Appendix C. All the databases considered were derived from open-sharing
repositories. Consequently, the data are subject to international data protection
regulations. Thus, for each database, all the experimental protocols were approved
by an institutional and/or licensing committee. Moreover, informed consent was
obtained from all subjects and/or their legal guardian(s).

6.6.2 Image preprocessing

T1-weighted images were aligned in the anterior and posterior commissures plane
using the ATRA toolbox [234] (v2.0). Then, the images were preprocessed using
the default preprocessing pipeline (Segment) of the computational anatomy toolbox
(CAT12) toolbox (http://www.neuro.uni-jena.de/cat/). The CAT12, SPM12
and MATLAB versions used were 1742, v7771 and R2020a (9.8.0.1323502), respec-
tively. The CAT12 was the selected framework due to its low preprocessing time and
high reliability [284]. Segment is based on a unified segmentation algorithm [203] and
includes different steps: image denoising, nonbrain tissue removal, registration and
image segmentation. All the images were registered into a template using nonlinear
transformations. The images acquired from adult participants were registered to
the default CAT12 template, and the images of children were registered to a custom
template created with the Cerebromatic toolbox [285]. After the registration step,
the images had shapes of 121x145x121. The images were segmented using tissue
probability maps (TPM); the adult images were segmented using the default CAT12
TPM, and a personalised template was created for children and adolescents using
the TOM8 toolbox [211]. Age prediction was one of the benchmark problems
considered in this study. Brain ages seem to be increased in patients with neurode-

http://www.neuro.uni-jena.de/cat/


110 CHAPTER 6. TRANSFER LEARNING ON DEEP LEARNING MODELS

Figure 6.3: Scheme of the proposed methodology. The architectures of 3DCAE-
MRI, LiteNet and the SFCN are shown. The 3DCAE-MRI comprised encoder and decoder
blocks and was trained and validated on data acquired from eight MRI repositories (ADNI,
ABIDE I, ABIDE II, FCP1000, GSP, OASIS-1, OASIS-2, OASIS-3). The arrows represent
weight transfers from the encoder to the first four convolution blocks of LiteNet and the
SFCN. Both CNN architectures (LiteNet and SFCN) were trained, validated and tested
on data from the GH and HH sites, and the IOP site was used to assess the performance
achieved on an external test set.

generative diseases, such as AD [9,162,230], schizophrenia [9,229,270] and multiple
sclerosis [9, 180, 271]. The grey grey matter (GM) is severely impacted by these
diseases [22, 84, 286, 287]. Thus, given the potential of the BrainAGE biomarker,
only GM-segmented images were considered.

6.6.3 Deep learning

6.6.3.1 3DCAE-MRI

3DCAE-MRI comprises an encoder that reduces the input to a low-dimensional
space and a decoder that reconstructs the input from a low-dimensional space. The
3DCAE-MRI network architecture is depicted in Figure 6.3. This is a subarchi-
tecture of the SFCN proposed by Peng et al. [4]. The SFCN outperforms other
popular network architectures, such as ResNet [153] , in brain age prediction tasks.
The encoder has four encoder blocks, and each block is composed of a convolution
layer, followed by a batch normalisation layer, a maximum pooling layer with a
size of two in every dimension and, finally, a rectified linear unit (ReLU) activation
layer. The numbers of kernels in the four encoding blocks are 32, 64, 128 and
256, from the first encoding block to the last block. The decoder is identical to
the encoder, but the numbers of kernels in different blocks are in the reverse order
(256, 128, 64 and 32), and the maximum pooling layer is replaced by an upsampling
layer with a size of two in every dimension. Moreover, the decoder has a final
inception convolution layer that concatenates the 32 feature maps into a single
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image, followed by sigmoid activation, which converts the output into zeros and
ones. The convolution layers are composed of kernels of size three; the convolution
process is performed with a step size of one in every dimension, and zero padding
is performed before each convolution block, so the input and output sizes of the
convolution layer are the same. Therefore, at the end of each encoding (decoding)
block, the input dimensionality is reduced (increased) by two in every dimension.
To ensure that the input is accurately recreated, the image shape should be a power
of two. Thus, the volumes were reshaped to 128x128x128. 3DCAE-MRI was trained
over 25 epochs using the adaptive moment estimation (Adam) optimiser [288] and
the mean squared error as the loss function.

6.6.3.2 Convolutional neural network architectures

This work used two CNN architectures: LiteNet and the SFCN. The scheme of each
model architecture is shown in Figure 6.3. LiteNet is a custom compact network with
a reduced number of parameters; the model is composed of six convolution blocks
that are similar to the convolution blocks of the encoder (a convolution layer, batch
normalisation, maximum pooling and a ReLU function). The first four convolution
blocks are equal to those of the encoder; in the last two blocks, the convolution layers
have 64 and 32 filters, respectively, with a kernel size of two in every dimension, but
no padding is performed in this case. The convolution blocks are subsequently
transformed into a vector, a dropout layer (with a probability of 0.25) and a dense
layer with a single neuron. In the classification model, a sigmoid activation function
is added after the dense layer. The SFCN was described in detail by Peng et
al. [4], and the architecture of the CNN is depicted in Figure 6.3. Nevertheless,
the SFCN architecture was proposed for age classification rather than age prediction
(regression). The network was adapted by removing the softmax layer and replacing
the last layer with a single neuron, as proposed by Leonardsen et al. [30]. The
numbers of parameters used for LiteNet and the SFCN were approximately 1.31
million and 2.95 million, respectively.

The optimisation processes of both networks were identical. The networks were
optimised using Adam, and the loss functions were the MAE and the binary-cross
entropy losses for the age prediction and sex classification problems, respectively. To
demonstrate the applicability of the proposed transfer learning approach for different
available data sample sizes, the training sample sizes considered were 25, 50, 100,
200 and 300. The models were trained over 150 epochs for all training sample sizes
except for 25 and 50. For the cases with 25 and 50 training instances, the number
of epochs was increased to 250. The selected model was the one that attained the
lowest loss on the validation set over the last 30 training epochs.
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6.6.3.3 Deep learning-based training strategies

Different training strategies were considered in this work: transfer learning from
3DCAE-MRI or pretrained models and training from scratch with and without
augmentation. In the transfer learning strategy with 3DCAE-MRI, the weights of
the 3DCAE-MRI encoder were transferred to the first four convolution blocks of both
the LiteNet and SFCN models (Figure 6.3). Two transfer learning strategies were
considered: off-the-shelf training and fine-tuning. In the former, the transferred
weights were not updated during training, whereas in the latter, all the weights
were updated during training. The number of encoder weights reused in the two
architectures was approximately 1.16 million, representing 88% and 39% of the total
number of parameters of the LiteNet and SFCN models, respectively. Therefore, in
the off-the-shelf approach, in which the weights were not updated during training,
the numbers of trainable parameters in LiteNet and the SFCN were 150 thousand
and 1.79 million; thus, only 12% and 61% of the total number of weights were
trainable in the LiteNet and SFCN models, respectively. Concerning the pretrained
models, Peng et al. [4] constructed pretrained models for age and sex classification.
These models were reused, and the fine-tuning strategy was applied; therefore, all
the model weights were updated during training.
Finally, when training from scratch, two scenarios were considered: without and
with augmentation. In the former, no transformations were applied to the images;
in the latter, during every epoch, two random transformations could be applied: a
translation (of 0, 1, or 2 voxels) and a flip (with a probability of 50% across the
sagittal plane) [4].

6.6.4 Shallow learning

The age prediction and sex classification performance was assessed for a shallow
pipeline. To accomplish this goal, a widely used age prediction framework was con-
sidered [117,130,162,289]; this framework combines PCA to encode GM-segmented
images with the RVM to compute predictions. The number of components consid-
ered influences the performance of the model [130]. This study examined various
numbers of components: 2, 10, 15, 20, 25, 30, 40, 50, 75, 100, 150, 200, 250, and
300. Importantly, for a given number of training samples, the number of evaluated
components was either equal to or less than the number of training samples. For each
training set size, the pipeline selected for evaluation was the one that demonstrated
superior performance on the validation set.

6.6.5 Model evaluation

The performances of LiteNet and the SFCN were assessed by training thirty models
for each training condition (PCA-RVM, off-the-shelf training, fine-tuning or training
from scratch) and training size (25, 50, 100, 200, 300). The HH and GH data from
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the IXI dataset contained 492 instances, 92 of which were used to validate the model,
and 100 instances were used as a holdout set to test the model. The 492 instances
were shuffled in each training iteration, and the training, validation and holdout test
data were randomly drawn using stratified sampling. The same training, validation
and test data were used across the training conditions for a given iteration but were
different across various training iterations. The IOP data were used as an external
test set to assess the performance of the regression and classification models on an
independent test set.
The regression model was evaluated using the MAE, and the computation of the
MAE is described in Equation 6.1, where N is the number of instances and yi and
ŷi are the actual and predicted age values of instance i, respectively.
Accuracy was the metric considered to assess the performance of the classification
model. Its calculation formula is described in Equation 6.2, where TN, FN, TP
and FP are the numbers of true negatives, false negatives, true positives and false
positives, respectively.

MAE =
N∑

i=1

|yi − ŷi|
N

(6.1) accuracy = TN + TP

TN + FN + TP + FP
(6.2)

6.6.6 Statistical analysis

In total, 30 metric performance values (MAE or accuracy) were produced for both
the test and external test sets for each training dataset size (25, 50, 100, 200
and 300 samples) and training condition. The analysis performed to compare the
performance and stability of the model across the different training strategies is
described below. The significance value considered for the statistical analysis was
0.05.

6.6.6.1 Performance comparison

This work aimed to verify which training strategy yielded better performance results
on the holdout and external test sets. Since the same training, validation and
test data were used in each iteration, the appropriate statistical test for comparing
the performance values across different training strategies was a repeated-measures
analysis of variance (rm-ANOVA). If the results were significant, a pairwise Tukey
t test66 was performed to verify which groups yielded significant metric perfor-
mance differences. To evaluate the magnitude of each difference, we used Cohen’s d
test [290]. Thresholds of 0.2, 0.5, 0.8 and 1.2, which were introduced in [290, 291],
were used to assess whether the effect was small, medium, moderate or large,
respectively. Cohen’s d values above 1.2 were considered very large, as defined
by Sawilowsky et al. [291].
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6.6.6.2 Stability comparison

Model stability was assessed only for the DL models. The utilised stability metric
was the standard deviation of the validation set results (MAE or accuracy) over the
last 30 training epochs, which was designated in this work as the variation variability.
To conduct the stability comparison across different training strategies, rm-ANOVA
was carried out to compare the resulting variation variability metrics.

6.7 Code availability

The code and the 3DCAE-MRI model is available at: https://github.com/

mfmachado/transfer-learning-age-sex-prediction.

6.8 Data availability

The data used in this work is from the following repositories: ADNI [250],
ABIDE I [209], ABIDE II [253], FCP1000 [251], GSP [252] and OASIS-1 [254],
OASIS-2 [255], OASIS-3 [256] and IXI [210]; which are open data repositories.

https://github.com/mfmachado/transfer-learning-age-sex-prediction
https://github.com/mfmachado/transfer-learning-age-sex-prediction
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7.1 Abstract

Brain age gap estimation (BrainAGE) represents a putative biomarker aiming to
detect the transition from healthy to pathological brain ageing. The biomarker
primarily models healthy ageing with machine learning models trained with struc-
tural magnetic resonance imaging (MRI) data. The difference between predicted
brain age and chronological age is expected to translate the deviations in neural
ageing trajectory. BrainAGE is increased in multiple pathologies, for instance, in
Alzheimer’s disease (AD), schizophrenia and type 2 diabetes (T2D). Accelerated
ageing seems to be a general feature of neuropathological processes. However,
neurobiological constraints remain to be identified to provide specificity to this
biomarker. Explainability might be the key to uncovering age predictions and
understanding which brain regions lead to an elevated predicted age on a given
pathology compared to healthy controls. This is highly relevant to understanding
the similarities and differences in neurodegeneration in AD and T2D, which remains
an outstanding biological question. Sensitivity maps explain models by computing
the importance of each voxel on the final prediction, thereby contributing to the
interpretability of deep learning approaches. This paper assesses whether sensitivity
maps yield different results across three conditions related to pathological neural
ageing: AD, schizophrenia and T2D. Five deep learning models were considered,
each model trained with a different MRI data: minimally processed T1-weighted,
grey matter, white matter, cerebrospinal fluid segments and deformation fields
(after spatial normalisation). The results outlined an increased BrainAGE in all
pathologies, with a different mean, which is the smallest in schizophrenia; this is in
line with the observation that neural loss is secondary in this early-onset condition.
Importantly, our findings suggest that the sensitivity, indexing regional weights,
for all models varies with age. A set of regions were shown to yield statistical
differences across conditions. These sensitivity results suggest that mechanisms of
neurodegeneration are quite distinct in AD and T2D. For further validation, the
sensitivity and the morphometric maps were compared. The findings outlined a
high congruence between the sensitivity and morphometry maps for age and clinical
group conditions. Our evidence outlines that the biological explanation of model
predictions is vital in adding specificity to the BrainAGE and understanding the
pathophysiology of chronic conditions affecting the brain.

7.2 Introduction

Ageing is a dynamic biological process intrinsically connected to the natural history
of multiple diseases [292, 293]. The biological mechanisms behind the transition
from healthy to pathological ageing remain to be uncovered in a broad range of
conditions. Pathological ageing may share biological pathways with healthy ageing,
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suggesting that, in some cases, the former might represent an acceleration of the
latter. Nevertheless, pathological ageing might also be characterised by disease-
specific mechanisms [19]. The incidence of age-related diseases has been increasing
in the last decade. Thus, developing an ageing biomarker that enables healthy
ageing and detecting the transition to pathological ageing is paramount. BrainAGE,
which corresponds to the difference between predicted brain age and chronolog-
ical age [21], is such a potential biomarker. BrainAGE is increased in multiple
pathological conditions [8], suggesting that its sensitivity is high, although these
prior approaches suffer from a lack of specificity. The guidelines of the American
Federation for Aging Research state that an ageing biomarker should be able to
detect and specify the pathology in its early stages [294]. Thus, adding specificity to
the prediction is essential to validate the BrainAGE as an ageing valuable biomarker
in clinical practice. In this work, we aim to uncover the brain age models’ predictions
and verify whether the origin of an elevated BrainAGE is different across three
chronic pathologies: AD, schizophrenia and T2D. These diseases are associated to
specific periods of lifetime, AD manifests in late adulthood, T2D in mid to later
adulthood, and schizophrenia in early adulthood or late adolescence. Furthermore,
two morphological hallmarks are reflected in all the three pathologies: higher brain
atrophy and ventricle enlargement. Notably, BrainAGE has been shown to reflect
the atypical healthy trajectory ageing of the brain in these conditions, in distinct
previous studies [117, 119, 121, 131, 137, 170], while biological specificity remained
to be uncovered. AD is the most prevalent neurodegenerative disease, and ageing
is a major risk factor for developing the disease. The structural brain changes in
AD involve a pronounced loss of grey matter (GM) and an exacerbated increase in
cerebrospinal fluid (CSF), particularly noticeable in the ventricles [22,71]. T2D is a
metabolic disorder characterised by decreased insulin production and/or increased
insulin resistance which impacts glucose level regulation. Uncontrolled glucose levels
have been associated with abnormal loss of GM, an increase in the CSF, and
changes in the gyrification patterns compared to healthy controls [93,95,295]. Both
AD and T2D have been associated with the controversial concept of brain insulin
resistance, which may result in regional hypometabolism. While the pathogenesis
of AD remains to be uncovered, some researchers suggest that insulin resistance
prompts the accumulation of both beta-amyloid and tau, therefore suggesting that
AD is “the diabetes of the brain” or Type 3 Diabetes (T3D) [106]. Nonetheless, it
should be highlighted this account is still highly disputed. Lastly, schizophrenia is a
late neurodevelopmental mental disorder characterised by psychotic manifestations.
This disease is characterised by atypical neural connectivity both at anatomical and
functional levels, as well as an enlargement of the subcortical structures alongside
a reduction in cortical volume and thickness [74, 84, 87, 88]. Currently, state-of-
the-art models on brain age belong to the category of deep learning, which are
considered black-box models [114]. Understanding the contribution of different brain
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regions on a given prediction is essential to accepting deep learning models in clinical
practice, and it might be the key to adding specificity to this putative biomarker -
BrainAGE. This study has considered two strategies to address this issue: to predict
age locally and to compute the sensitivity maps. Local brain age models predict the
age per patch or region rather than using the entire volume [113, 133, 151, 156].
Thus, this strategy assigns an age per region, which enables the identification of
accelerated ageing areas. However, the performance of such models is poor compared
to global brain age models, which might be caused by insufficient information to
derive accurate predictions. Another approach towards explainability is entailed by
sensitivity or saliency maps [122,125,154]. Sensitivity maps unveil the influence that
each voxel may exert on a prediction. These maps have been explored in the brain
age context, and the results are congruent: the regions with a higher contribution to
the predictions are located around the ventricles [122,125,154]. Nevertheless, to the
best of our knowledge, no study has assessed these maps to discern the differentially
elevated regional BrainAGE values in different pathologies. In brief, this work aims
to:

1. Compare the BrainAGE in different pathologies across different input image
modalities as a tool to understand the respective underlying neurobiology;

2. Assess sensitivity maps across different pathologies to test the hypothesis that
biological explainability is distinct - this is critical for the hypothesised relation
between T2D and AD;

3. Compare the results obtained with the computation of sensitivity maps with
those obtained with the morphological maps as a validation approach.

7.3 Materials and methods

7.3.1 Data

This study considered thirteen datasets: eleven open-source data repositories and
two local datasets. Table 7.1 provides a summary of demographic information for
each of the datasets used in this study, except for training of the 3D-convolutional
autoencoder (3D-CAE), for this case, the demographic information is provided in
Table D.1 in the Appendix D. The first step of this methodology is the training of the
3D-CAE. To perform this step, eight of the datasets (autism brain imaging data ex-
change (ABIDE) I [209], ABIDE II [253], Brain Genomics Superstruct (GSP) [252],
Open Access Series of Imaging Studies (OASIS)-1 [254], OASIS-2 [255], OASIS-
3 [256], 1000 Functional Connectomes Project (FCP1000) [251], and Alzheimer’s
Disease Neuroimaging Initiative (ADNI) [250]) were considered, which comprised
29478 images from 75 sites. Two open-source repositories were considered in the
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model tuning phase: Cambridge Centre for Ageing and Neuroscience dataset (Cam-
CAN) [296, 297] and the Information eXtraction from Images (IXI) [210]. IXI
are multi-site repositories with data collected independently from three hospitals
in London: Guy’s Hospital (GH), Hammersmith Hospital (HH) and Institute of
Psychiatry (IOP). Finally, to evaluate the performance of the models on the three
diseases of interest in this study, three distinct datasets were employed, one dataset
per pathology. For schizophrenia, the open-source repository COBRE dataset was
used, whereas local datasets for T2D [298] and AD [287] were considered.

Table 7.1: Demographics of the datasets considered in the model tuning phase and to
assess the BAG and sensitivity maps on healthy controls versus clinical group.

Dataset Total Number of males Mean and standard deviation [years] Min age [years] Max age [years] Number of Control
CamCAN 642 318 54.23 ± 18.6 18 88 642
IXI–GH 312 139 50.73 ± 15.98 20.07 86.20 312
IXI–HH 179 85 47.63 ± 16.61 20.17 81.94 179
IXI–IOP 67 24 42.13 ± 16.60 19.98 86.32 67
AD 38 19 66.08 ± 6.66 52 76 18
Diamarker 152 73 54.68 ± 9.61 40 76 82
Cobre 144 107 37.11 ± 12.82 18 65 72

7.3.2 Preprocessing

MRI structural T1-weighted scans were considered in this study. The images were
preprocessed using the computational anatomy toolbox (CAT12) default prepro-
cessing pipeline (Segment) and SPM12 in MATLAB environment, due to the low
preprocessing time and high reliability they provide [284]. The CAT12, SPM12 [299],
and MATLAB versions used were version 1742, v7771 and R2020a (9.8.0.1323502),
respectively. The CAT12 framework requires images to be aligned in the anterior
and posterior commissures planes, which was performed using the ATRA toolbox
(v2.0. Furthermore, CAT12 preprocessing guidelines recommend that, for images of
individuals aged 18 years or less, a personalised template should be created for the
registration and segmentation steps. Therefore, these templates were created using
the Cerebromatic toolbox [285] and TOM8 toolbox [211], respectively. The default
CAT12 template was considered for images of adult participants, whereas childrens’
images were registered to a personalised template. The images considered in this
work were registered in the MNI space, with the dimensions 121x145x121. Five
types of information extracted from the MRI structural images were considered per
subject, i.e., the minimally processed images; the T1-weighted segmented in GM,
white matter (WM) and CSF; and the deformation fields resulting from the nor-
malisation (to MNI space) procedure. These different information types, extracted
from the same MRI images, will be designated throughout this paper as modalities.

7.3.3 Brain age model tuning

Brain age models were developed leveraging off-the-shelf transfer learning from 3D-
CAE, which has been suggested to yield superior results compared to training a
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convolution neural networks (CNN) from scratch [300]. Therefore, the creation of
each brain age model encompasses the training of two models, the 3D-CAE and then
the brain age CNN. The architectures considered for the 3D-CAE and regression
CNN were the ones considered in a previous study [300]. Regarding the 3D-CAE, as
described above, all data from the ABIDE I, ABIDE II, GSP, OASIS-1, OASIS-2,
OASIS-3, FCP1000, and ADNI repositories were considered to train and validate the
models. All images from these datasets were included, regardless of the condition
of the participants, which comprised a total of 29478 images, out of which 250
instances were used to validate and select the best model. The 3D-CAE models
were trained for over 50 epochs with a batch size of 16, except for the deformation
fields modality. For the deformation fields, the loss of the 3D-CAE model diverged
after 20 epochs, requiring an increase in batch size to 56 and an extension of the
training to 150 epochs. The autoencoders were optimised using the Mean Squared
Error as the loss. The 3D-CAE model selected was the one that exhibited the
highest performance on the validation set during the last 30 training epochs. The
3D-CAE encoder weights were reused on the corresponding brain age CNN model.
The transferred weights were frozen, and only the layers in which the weights were
randomly initialised were updated during training, as described by Dias et al. [300].
The Cam-CAN and the IXI repository were considered to train, select, and evaluate
the brain age CNN models. The brain age CNN models were trained with 954
images from the Cam-CAN repository and using GH data from the IXI repository.
All the brain age models were trained over 150 epochs, and the data from the IOP
of the IXI dataset were used to select the best model of the last 30 training epochs.
Finally, to correct the model bias of age models, the data from the HH site were
used to adjust the bias using the approach proposed by Beheshti et al. [129].

7.3.4 BrainAGE on different pathologies

The BrainAGE was investigated per pathology dataset (schizophrenia, T2D and AD)
and modality. For each case, the BrainAGE was compared between clinical condi-
tions (disease status versus healthy controls) using analysis of covariance (ANCOVA)
controlled for age. Age should be accounted for in the analysis since brain age models
often report an age bias, and models tend to underestimate and overestimate the
age of young and older subjects, respectively [129]. Despite bias correction being
performed, the bias might not be completely removed and, therefore, the age was
still accounted for in statistical comparisons. An ANCOVA was performed with and
without bias correction.

7.3.5 Sensitivity maps generation

Sensitivity maps were computed using the SmoothGrad approach [159]. Sensitivity
maps tend to be noisy, thus to overcome this issue SmoothGrad applies Gaussian
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noise to the input and computes the corresponding sensitivity maps. The procedure
is performed multiple times, and the final sensitivity map is the average of the
multiple noisy sensitivity maps. The level of noise that should be added depends on
the input type. In this work, five inputs were considered, i.e., minimally processed,
GM, WM, CSF, and deformation fields. Thus, the appropriate noise level should be
selected for each one. To select the best noise structure, an assumption was made to
ensure the one that maximised the correlation between the age and sensitivity maps.
To perform this analysis, the data from the HH of the IXI dataset were considered.
The sensitivity maps were computed for each subject and parcelled according to
the neuromorphometrics atlas. For each region-of-interest (ROI), the mean value
was computed. Then, for each ROI, the Pearson correlation was computed between
age and the ROI sensitivity. Different noise levels were evaluated for the five input
types, with values ranging from 0% to 50%, with a step of 2%.

7.3.6 Sensitivity maps and morphometry on different pathologies

The morphometric and sensitivity maps were assessed individually (stage 1) and
compared with each other (stage 2). Both analyses were performed at an ROI level.
Thus, the modality images and sensitivity maps were parcelled according to the
neuromorphometrics template and for each ROI the mean was computed. Stage 1
aims to understand the relation of the ROI value with age and health condition.
In the morphometric case, the analysis portrays the regions that yield significant
volume changes with age and clinical conditions. To achieve this an ANCOVA
was performed with the ROI value (sensitivity or morphometric measure) as the
dependent variable, the clinical condition as the group and age as a covariate. The p-
values were corrected for multiple comparisons using the False Discovery Rate [301].
This analysis enables the assessment of the regions in which the sensitivity and/or
or the morphometry correlates with age and which regions were sensitive to clinical
conditions. Stage 2 aims to assess whether the results from the morphometric
and sensitivity maps were congruent. To achieve this the Jaccard coefficient was
considered. Jaccard index is the ratio between the number of significant regions
in the analyses and the total number of significant regions in both analyses, thus
measuring the overlap between the two maps.

7.4 Results

7.4.1 Brain age models performance

The results regarding mean absolute error (MAE) for the IOP and HH data and
the correlation between MAE and BrainAGE with and without bias correction are
displayed in Table D.2 in the Appendix D. The model selection process was based
on the IOP dataset, and the MAE on minimally processed, GM, WM, CSF and
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deformation fields was 4.66, 5.36, 6.10, 5.61 and 5.48 years, respectively. Subse-
quently, the model was evaluated on an external dataset, the data from the HH of
the IXI dataset. The results, on HH data, yield a lower MAE of 4.46, 5.75, 5.26,
5.44 and 6.53 years for minimally processed, GM, WM, CSF and deformation fields,
respectively. Concerning the age bias, the findings reveal that, without any bias
correction, a significant correlation exists between BrainAGE and age for all image
types in both sites. Regarding the corrected age predictions, the bias is corrected
in all modalities on the HH set, this finding is expected since this dataset was the
one used for the correlation. In the case of the IOP data, the correlation decreased
in all cases and is completely corrected for three modalities (minimally processed,
CSF and deformation fields).

7.4.1.1 Schizophrenia

The corrected age prediction results for the schizophrenia and healthy control sub-
jects are presented in Figure 7.1. A summary of the MAE and BrainAGE for different
modalities can be found in Table D.3 in the Appendix D. The BrainAGE difference
across groups is 2.40, 1.47, 2.82, 1.92, 2.37 years on minimally processed image,
GM, WM, CSF and deformation fields, respectively. Thus, in this chronic mental
disorder, the BrainAGE for the schizophrenia group is higher than in the control
group. The ANCOVA results for the BrainAGE are in Table 7.2. The results
indicate the significant BrainAGE on all modalities except GM. Furthermore, the
bias on BrainAGE value was significant on minimally processed, GM and WM.

7.4.1.2 Type 2 Diabetes

The age prediction results for the T2D dataset are depicted in Figure 7.1. A
summary of the results achieved for the mean MAE and BrainAGE for the health
group versus T2D is in Table D.4 in the Appendix D. We found that the predicted age
in the T2D group is higher than healthy controls. The mean BrainAGE difference
between groups is 6.75, 7.76, 5.59, 7.2 and 8.47 years for minimally processed image,
GM, WM, CSF, and deformation fields, respectively. The statistical analysis, for
the BrainAGE is in Table 7.2. The results outline that the statistical difference
is significant for all modalities. Concerning the age bias, the ANCOVA results
exhibited no age bias on BrainAGE.

7.4.1.3 Alzheimer’s disease

Figure 7.1 shows the relation between true age and corrected age predictions across
various modalities within the AD dataset. Table D.5 in the Appendix D details
the mean MAE and BrainAGE for the corrected predictions. The results reveal
that, on average, the BrainAGE is higher in AD patients. Specifically, the mean
BrainAGE difference between AD patients and healthy controls is 9.04, 9.96, 7.43,
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(a) MP schizophrenia (b) MP T2D (c) MP AD

(d) GM schizophrenia (e) GM T2D (f) GM AD

(g) WM schizophrenia (h) WM T2D (i) WM AD

(j) CSF schizophrenia (k) CSF T2D (l) CSF AD

(m) DF schizophrenia (n) DF T2D (o) DF AD
Figure 7.1: Brain age predictions. Chronological age versus brain age prediction for the
different pathologies considered in this work: schizophrenia, Type 2 Diabetes (T2D) and
Alzheimer’s Disease (AD). For the different brain age models: minimally processed (MP),
grey matter (GM), white matter (WM), Cerebrospinal fluid (CSF) and deformation fields
(DF).
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9.69, and 9.04 years for minimally processed, GM, WM, CSF, and deformation fields,
respectively. Thus, for all modalities except WM, the BrainAGE in AD patients is,
on average, 9+ years higher compared to healthy controls. The ANCOVA results in
Table 7.2 confirm the significant differences in BrainAGE between the two groups on
all modalities. Regarding age bias, the ANCOVA analysis of the BrainAGE suggests
no bias in this dataset.

7.4.2 Age

7.4.2.1 Relationship of ROI-based morphometry with age

The regions showing significant regression coefficients for the age factor, or, in other
words, regions whose value correlates with age in a significant manner are depicted in
Figure 7.2. The mean morphometric maps for each dataset are shown in Figure D.1
(in Appendix D). The proportion of significant regions in each modality and dataset
is in Table D.6 in the Appendix D. For schizophrenia and T2D, the results indicate
that almost all regions are significant for the GM and CSF modalities. On minimally
processed modality, between one-third and half of the regions are considered signifi-
cant, whereas on the deformation fields, around half of the regions yield a significant
correlation with age. The WM yield higher morphometry differences across the
schizophrenia and T2D cases, while on T2D, only the ventricles are considered to
yield volume differences with age, and on the schizophrenia cases, more than half
of the regions are considered significant. The AD dataset yields the lowest number
of regions significantly correlated with age. The modality with the highest number
of significant regions is minimally processed images with 8.57% being significant
regions. In all other modalities, no region is considered to be significant. These
results might be explained by the narrow age range of the dataset as well as the
number of instances in the dataset. The dataset contains only 38 subjects aged
between 52 and 76 years. Thus, the statistical power of the data to detect variations
might be smaller. Finally, it may also be possible that AD pathology overrides
age-related changes.

7.4.2.2 Sensitivity maps on age prediction

The analysis of the relation between sensitivity maps and noise is discussed in
Section D.2.3 in the Appendix D. The results reveal that each modality yields the
maximum correlation at a different noise level. Thus, the noise level considered
was different across modalities and corresponded to the noise yielding the highest
correlation value between sensitivity maps and age on the HH data. The mean
sensitivity maps for each dataset are presented in Figure D.2 (in Appendix D). The
results indicate that regions with higher sensitivity are around the ventricles in all
modalities, possibly due to their fast change in shape during ageing. This finding
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Table 7.2: ANCOVA results comparing the BrainAGE and controlling for age. An
ANCOVA was performed per disease and modality (minimally processed image, GM, WM,

CSF and deformation fields) of healthy controls versus subjects diagnosed with
schizophrenia, T2D, and AD. The significant values are represented in bold.

Tissue Source SS F p-value np2

Schizophrenia

Minimal processed clinical condition 251.0 10.56 0.0014 0.07
age 350.98 14.77 0.00018 0.095

GM clinical condition 97.4 3.13 0.079 0.022
age 172.79 5.55 0.02 0.038

WM clinical condition 295.76 11.40 0.00094 0.075
age 20.18 0.78 0.38 0.0055

CSF clinical condition 169.14 5.79 0.017 0.039
age 338.0 11.58 0.00087 0.076

Deformation fields clinical condition 209.37 4.99 0.027 0.034
age 13.0 0.30 0.58 0.0022

T2D

Minimal processed clinical condition 1602.92 42.04 1.24 × 10−9 0.22
age 65.32 1.7 0.19 0.011

GM clinical condition 1556.45 46.6 2.05 × 10−10 0.24
age 8.26 0.25 0.62 0.0017

WM clinical condition 1015.0 23.36 3.31 × 10−6 0.14
age 16.65 0.38 0.54 0.0026

CSF clinical condition 1705.30 41.33 1.64 × 10−9 0.22
age 33.57 0.80 0.37 0.0054

Deformation fields clinical condition 1473.89 28.53 3.38 × 10−7 0.16
age 185.43 3.59 0.06 0.024

AD

Minimal processed clinical condition 777.54 22.05 4.01 × 10−5 0.39
age 4.79 0.14 0.71 0.0039

GM clinical condition 935.68 15.47 0.00038 0.31
age 3.48 0.058 0.81 0.0016

WM clinical condition 519.94 15.95 0.00032 0.31
age 2.01 0.062 0.81 0.0018

CSF clinical condition 888.08 13.59 0.00076 0.28
age 0.010 0.000150 0.99

Deformation fields clinical condition 750.61 11.62 0.0017 0.25
age 229.55 3.55 0.068 0.092
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(a) MP schizophrenia (b) MP T2D (c) MP AD

(d) GM schizophrenia (e) GM T2D (f) GM AD

(g) WM schizophrenia (h) WM T2D (i) WM AD

(j) CSF schizophrenia (k) CSF T2D (l) CSF AD

(m) DF schizophrenia (n) DF T2D (o) DF AD
Figure 7.2: Significant region-of-interest (ROI) for age on morphometric maps. Statis-
tically significant ROIs, represented in orange, exhibited a significant p-value for the age
factor in an ANCOVA. The ANCOVA compared the morphometric map ROI mean of
clinical conditions (health controls versus pathology) and controlling for age. Different
morphometric maps assessed were minimally processed (MP), grey matter (GM), white
matter (WM), Cerebrospinal fluid (CSF) and deformation fields (DF).
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is congruent with other published works [122,125,154]. The significant regions con-
cerning the sensitivity for the age factor are shown in Figure 7.3, and the percentage
of the significant regions is in Table D.7 in the Appendix D. The results suggest
that the sensitivity of a region correlates with age on all regions in the minimally
processed image modality, in all datasets except the AD dataset, in which 99.29% of
the regions were considered significant. In the case of GM and CSF modalities, all
regions were significant for the schizophrenia dataset. On the T2D, the correlation of
sensitivity with age was statistically significant in 72.14% and 10.00% of the regions
for GM and CSF modalities, respectively. Similarly, to the morphometric results,
on the AD, no region is correlated with age on GM, WM and CSF. However, in
this case, almost all and 30% of regions are considered significant on minimally
processed and deformation fields, respectively. Sensitivity vs morphometry maps on
age prediction Some ROIs yield a significant age correlation both on morphometry
and sensitivity maps analysis, Table D.10 in the Appendix D shows the Jaccard
index between significant regions in both analyses. The findings reveal that the
overlap depends upon the dataset and modality. An almost perfect agreement in
both analyses is reported on the GM and CSF modalities on the schizophrenia.
GM is also the modality with the highest overlap, a Jaccard index of 0.72, on
the T2D. Concerning the minimally processed image, the Jaccard of 0.75 and 0.58
is reported for the schizophrenia and T2D cases, respectively. WM has a good
agreement comparing the morphometry and sensitivity map results on T2D but not
on schizophrenia. Around one-third of the regions are significant in both analyses
regarding the deformation fields. Lastly, consistent with the preceding results, the
AD dataset yields a reduced overlap between the regions. Nevertheless, it should be
highlighted that the agreement is perfect on CSF, WM, and GM, and no region is
considered significant in either analysis.

7.4.3 Clinical group comparisons

7.4.3.1 Morphometry

The statistically significant ROIs across groups in the ANCOVA are depicted in Fig-
ure 7.4, the percentage of significant regions is detailed in Table D.8 in Appendix D.
Compared with the equivalent age results, in general, fewer regions are considered
significant for the health condition. The exceptions include the WM on the T2D
which yielded more than 10% of significant ROIs for the clinical group condition than
for the age. On the AD dataset, concerning the age factor, no region is significant
on CSF and deformation fields and on minimally processed only 8.57%, whereas on
the clinical group condition factor 30%, 85%, and 30% are considered significant
regions, respectively.
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(a) MP schizophrenia (b) MP T2D (c) MP AD

(d) GM schizophrenia (e) GM T2D (f) GM AD

(g) WM schizophrenia (h) WM T2D (i) WM AD

(j) CSF schizophrenia (k) CSF T2D (l) CSF AD

(m) DF schizophrenia (n) DF T2D (o) DF AD
Figure 7.3: Significant region-of-interest (ROI) for age on sensitivity maps. Statistically
significant ROIs, represented in orange, exhibited a significant p-value for age factor in an
ANCOVA. The ANCOVA compared the morphometric map ROI mean of clinical conditions
(health controls versus pathology) and controlling for age. Different sensitivity maps derived
from brain-age models trained with minimally processed (MP), grey matter (GM), white
matter (WM), Cerebrospinal fluid (CSF) and deformation fields (DF) were assessed.

7.4.3.2 Sensitivity maps

Regions whose sensitivity varies with the condition are depicted in Figure 7.5 for
each dataset, whereas Table D.9 in Appendix D summarises the percentage of
significant regions. The analysis suggests that clinical conditions significantly in-
fluence sensitivity maps. Minimally processed consistently has a high number of
significant regions on all datasets; the percentage of significant regions is 80%,
97.86%, and 69.29% for schizophrenia, T2D, and AD, respectively. Consequently, the
overlap between the significant regions on this modality is also high. Concerning the
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(a) MP schizophrenia (b) MP T2D (c) MP AD

(d) GM schizophrenia (e) GM T2D (f) GM AD

(g) WM schizophrenia (h) WM T2D (i) WM AD

(j) CSF schizophrenia (k) CSF T2D (l) CSF AD

(m) DF schizophrenia (n) DF T2D (o) DF AD
Figure 7.4: Significant region-of-interest (ROI) for clinical condition on morphometric
maps. Statistically significant ROIs, represented in orange, exhibited a significant p-value
for the clinical condition factor in an ANCOVA. The ANCOVA compared the morphometric
map ROI mean of clinical conditions (health controls versus pathology) and controlling for
age. Different morphometric maps assessed were minimally processed (MP), grey matter
(GM), white matter (WM), Cerebrospinal fluid (CSF) and deformation fields (DF).

other modalities, the results across pathologies evidence much larger dissimilarities.
GM modality only yields significant differences comparing healthy controls with
T2D; in this case, 18.57% of regions are considered significant, encompassing the
cortical ribbon. Regarding WM, almost all regions (94.29%) demonstrate sensitivity
differences between healthy controls and the T2D group. In contrast, no WM region
is considered significant when comparing schizophrenia or AD with healthy controls.
The CSF results suggest that all regions have a significant role in predicting a higher
age when comparing the results of the AD group with healthy controls. Nevertheless,
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comparing the sensitivity of T2D or schizophrenia with healthy controls no signifi-
cant regions are significant for CSF. Lastly, the deformation fields modality yields
significant differences only in sensitivity comparing T2D with healthy controls.

(a) MP schizophrenia (b) MP T2D (c) MP AD

(d) GM schizophrenia (e) GM T2D (f) GM AD

(g) WM schizophrenia (h) WM T2D (i) WM AD

(j) CSF schizophrenia (k) CSF T2D (l) CSF AD

(m) DF schizophrenia (n) DF T2D (o) DF AD
Figure 7.5: Significant region-of-interest (ROI) for clinical condition on sensitivity maps.
Statistically significant ROIs, represented in orange, exhibited a significant p-value for the
clinical condition factor in an ANCOVA. The ANCOVA compared the sensitivity map
ROI mean of clinical conditions (health controls versus pathology) and controlling for age.
Different sensitivity maps derived from brain-age models trained with minimally processed
(MP), grey matter (GM), white matter (WM), Cerebrospinal fluid (CSF) and deformation
fields (DF) were assessed.

7.4.3.3 Morphometric results versus sensitivity maps on pathologies

The overlap between morphometric and sensitivity maps analyses is shown in Ta-
ble D.10 in Appendix D. In general, the findings outline a low agreement between
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the morphometry and sensitivity maps, with some exceptions. The two highest
Jaccard scores are the CSF and WM on the AD and T2D, respectively. Notably,
both analyses have a high number of significant regions. The minimally processed
images yield a similar overlap score across all datasets, around one-third of the
significant ROIs on both analyses. Moreover, although the Jaccard index is zero
on the AD dataset on GM and WM and the WM on the schizophrenia dataset, in
both analyses, no region is considered significant; consequently, the match is perfect.
Similarly, on the GM on the schizophrenia dataset, only 1.43% of the regions are
considered significant, while on the sensitivity maps, no region yielded significant
results; thus, in this case, the match is almost perfect.

7.5 Discussion

The main finding of this article is that the explanation of brain age predictions, based
on sensitivity maps, allows the identification of regional specificity of BrainAGE
across pathologies. Furthermore, sensitivity maps provide a pathophysiological
differentiation between AD and T2D. BrainAGE is significant for all the three
pathologies considered (AD, schizophrenia and T2D) compared to healthy controls,
yet the mean BrainAGE is different across pathologies. AD yields the highest
mean BrainAGE (around 9 years), followed by T2D (around 5 years) and finally
by schizophrenia (around 2 years). This result might be explained by the degree of
structural changes in each one of the pathologies. Although no prior existing studies
compare the structural changes of the three diseases, our data are consistent with
the notion that schizophrenia has less direct neural loss compared to T2D, and T2D
has, in turn, less structural changes and distinct regional pathology as compared to
AD. AD and T2D are characterised by brain neurodegeneration [22, 93, 95], which
is not the case for schizophrenia [77, 83]. This hypothesis is corroborated by the
morphometry analysis conducted in this study, the results outline that T2D yields,
on average, more significant ROIs than schizophrenia when comparing the ROIs
of the segmented images. Therefore, the BrainAGE might reflect the degree of
pathological ageing of the brain. The morphometric and sensitivity maps yield
congruent results on the regions that are age-sensitive. The morphometric results
outline that for all modalities (except the WM on the schizophrenia) more than
50% of the regions have significant changes with age on the T2D and schizophrenia.
The sensitivity maps observe the same tendency (except for the CSF on the T2D).
The overlap between the explainability and morphometry significant regions for
age is almost perfect in some cases, for instance, on GM and CSF modalities of
schizophrenia, and in other cases, it is around half or more of the overlap between
the regions. Furthermore, on the AD dataset, no region is considered significant
on morphometric and sensitivity maps on the GM, WM and CSF, which is also
congruent.



132 CHAPTER 7. BRAINAGE ON PATHOLOGICAL AGEING

Morphometry results endorse sensitivity maps concerning the regions with different
importance across health conditions. On WM tissue, almost all the regions seem
to exert a different importance on the prediction comparing the T2D group with
the healthy group, a similar finding is outlined with the CSF when analysing the
sensitivity differences between AD and healthy controls. Despite this intriguing
result, the same trend is observed in the morphometric analysis, in which most re-
gions are also considered significant in both cases. Furthermore, the overlap between
the significant regions on morphometry versus explainability is high in both cases,
specifically, the Jaccard index is 0.74 and 0.85 for WM and the CSF, respectively.
Moreover, there is also a high agreement concerning the non-significant regions,
as no region was considered significant for either GM and WM modalities when
comparing the healthy group with the schizophrenia group and when comparing
healthy controls with AD patients. In conclusion, the high agreement between the
morphometric and sensitivity maps, validate the results of sensitivity analysis maps.

BrainAGE encodes disease specificity patterns and sensitivity maps may disclose
structural and morphological differences driven by pathological ageing. Brain-age
models were trained to tackle the healthy ageing process, and the predicted age
of these models yielded statistical differences when comparing healthy controls and
clinical groups across three diseases. This finding corroborates the hypothesis that
diseases might cause an acceleration of the ageing process [19]. Sensitivity maps
reveal the region’s influence on a prediction, which is different across pathologies
and modalities. The comparison of T2D with healthy controls reveals that almost
all WM regions exerted different influences on both groups. This result suggests
that T2D might be a diffuse pathology in WM, which is consistent with the patho-
physiology of T2D, which causes generalised dysfunction of the endothelium and
vascular damage [91]. Regarding AD, the sensitivity results evidence that all regions
were considered significant regarding the CSF modality, but no region is considered
significant on GM, WM, and deformation field modalities. These findings suggest
that the model explanations on AD and T2D were distinct, suggesting that the
pathophysiology of both conditions is quite distinct.

Sensitivity maps yield complementary information to morphometry maps. Despite
the high agreement between the two approaches, there are also some differences in
particular around ventricle regions. Multiple models retain complementary infor-
mation to decode the pathology from the age prediction. The minimally processed
yields better performance and generalisation. Nevertheless, its specificity to detect
disease processes is reduced. The results reveal that the pattern is more dissimilar on
the other modalities than on minimally processed images. Therefore, the minimally
processed model can be used to obtain an accurate measure of the predicted age,
yet other modalities might be essential to specify disease mechanisms.
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7.6 Conclusions

This work highlights the potential of sensitivity maps to uncover the pathological
ageing. The results reveal a high agreement between the morphometry and the sen-
sitivity maps, which validates the sensitivity maps as a decoding tool. Furthermore,
sensitivity maps yielded distinct patterns across different brain pathologies, high-
lighting that those predictions encode disease-specific information, and sensitivity
maps might be the key to adding specificity to the BrainAGE biomarker. Finally,
sensitivity maps can also be used as a complementary strategy to comprehend the
biological mechanisms of age-related diseases.





Chapter 8

General Discussion and Future
Work

This chapter begins with a section highlighting the main contributions of this thesis.
Succinctly, the results outline that:
• Computational anatomy toolbox (CAT12) seems more reliable than Freesurfer;

• Deformation fields contain valuable information to predict brain age;

• Transfer learning from 3D-convolutional autoencoder (3D-CAE) improves the
brain age model generalisability;

• Explainability of brain age prediction seems a promising avenue to increase the
brain age gap estimation (BrainAGE) specificity.

The chapter closes with a section discussing possible future directions on BrainAGE
field.

8.1 Main contributions

This work aimed to address two shortcomings in BrainAGE: generalisability and
specificity.
Concerning generalisability, two studies were conducted at the preprocessing and
modelling level. FreeSurfer and CAT12, two widely used preprocessing frameworks
in BrainAGE, were compared regarding reproducibility and reliability in chapter 4.
The study assessed the reproducibility between the frameworks and the reliability
of each framework, comparing the cortical thickness measurements. The findings
showed that reproducibility was dependent on the acquisition settings and was
lower in children and adolescents than in adults. In terms of reliability, the results
evidenced that CAT12 yields higher reliability than FreeSurfer. Therefore, in the
subsequent studies, CAT12 was considered to preprocess data. The generalisability
was also improved at the modelling level by leveraging transfer learning. The
performance of deep learning models decreases when the models are applied to
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unseen data acquired in different acquisition settings. One of the reasons for this
outcome might be model overfitting, i.e. the model might learn intrinsic scanner
patterns that are in the training data. Therefore, transfer learning from a self-
supervised 3D-CAE was assessed in chapter 6. The 3D-CAE was trained on data
from multiple repositories. In total, data acquired in 75 different acquisition settings
was considered. The transfer learning using an off-the-shelf strategy leads to higher
performance on an external test set compared to training a model from scratch or
using age-pretrained models.
BrainAGE is increased in multiple pathological conditions, as described in sec-
tion 3.4. Thus, the ageing biomarker is sensitive to pathological ageing but lacks
specificity. Two studies were performed to address this issue. The first one, described
in chapter 5, assessed the predictive power of deformation fields comparatively to
other T1 byproducts. The result outlines that deformation fields yield better perfor-
mance than white matter (WM) and cerebrospinal fluid (CSF) and are equivalent
to grey matter (GM). Furthermore, combining GM and deformation fields at the
fusion level yields better performance than solely GM. This study outlines the
importance of including deformation fields in brain age models; this feature retains
complementary brain morphology that might improve the model’s performance.
Furthermore, different types of information might play a vital role in increasing
the specificity of this hypothetical biomarker. Finally, the last study, introduced in
chapter 7, evaluated whether explainability could improve the BrainAGE sensitivity
maps. Three diseases with distinct age dependence were assessed: Alzheimer’s
disease (AD), type 2 diabetes (T2D) and schizophrenia. The results outline that
the regions that drive a BrainAGE increase differ across diseases and byproducts of
T1-weighted images. These findings are consistent with distinct pathophysiological
processes affecting brain ageing in these conditions. Therefore, based on these
disease-specific signatures, multimodal sensitivity maps might help in the differential
diagnosis.

8.2 Future Research Directions

The preprocessing level impacts the model generalisability [3]. In this thesis, the
preprocessing pipeline was selected using the reliability of cortical thickness. Nev-
ertheless, this metric does not assess whether preprocessing improved the generalis-
ability of the brain age model across different acquisition settings. Moreover, only
FreeSurfer and CAT12 were compared. Therefore, further investigation should be
performed at the preprocessing level. State-of-the-art harmonising techniques could
improve generalisability. Multiple harmonisation algorithms have been proposed
to either uniformise features or images [302], and feature harmonisation has been
suggested to improve the performance of brain age models [303]. Moreover, the
differences in images caused by different acquisition settings could be mitigated by
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providing more strict standard operating procedures also at the hardware acquisition
level [148]. Thus, harmonisation at the imaging level and acquisition standardisation
might result in better generalisation across different acquisition settings.
The results of this work outlined that transfer learning from 3D-CAE improve
the model generalisability. Nevertheless, the brain age models evaluated with this
training strategy were trained with solely GM, using a reduced dataset (300 training
instances) and a single external test set. State-of-the-art brain age models use thou-
sands of images. Therefore, transfer learning from 3D-CAE should be evaluated on a
larger sample size, more external test sets and other image types. Furthermore, self-
supervised models, such as Model Genesis [283], should be assessed. The 3D-CAE
learns magnetic resonance imaging (MRI) patterns by a dimensionality reduction
approach. Model Genesis has an equivalent approach, but rather than minimising
the difference between the input and output, it applies transformations to the
images and tries to reconstruct the original image from the transformed image. The
authors reported a performance increase on multiple segmentation problems [283].
Therefore, transferring learning to the brain age model from self-supervised models
could improve the model’s generalisability.
On the specificity axis, this thesis focuses solely on T1-weighted images. Inte-
grating multiple sources of information could help in the differential diagnosis.
In chapter 5, it is reported that the fusion of various types of information im-
proves the model performance. Additionally, in chapter 7, it is outlined different
image types yield a different pattern across pathologies. Currently, most studies
focus on predicting brain age using solely structural imaging. Thus, aggregating
other MRI modalities might help improve the model’s performance and increase
its specificity. For instance, schizophrenia is characterised by abnormal structural
and functional connectivity [87, 88]. Therefore, including functional MRI, effective
connectivity metrics, or diffusion tensor imaging on brain age models could increase
the BrainAGE specificity and be helpful for the disease prognosis. MRI images, that
are within the scope of radiomics, only capture macro-level brain ageing changes.
Nonetheless, brain ageing is a complex biological process which affects multiple
systems [19]. Therefore, adding other types of sources of information, such as
proteomics and genomics, could improve the model’s sensitivity. For instance, the
combination of structural imaging with the dynamic profile of glucose levels could
also be proven valuable in T2D to predict the conversion to dementia. Nonetheless,
effectively combining multiple types of information can be challenging. Currently,
there is no comprehensive comparison of fusion strategies. Thus, a systematic
analysis of data fusion should also be addressed. Finally, the findings of this work
show that sensitivity maps help to explain the prediction and might be relevant for
the BrainAGE specificity. Combining local brain age prediction with sensitivity
maps seems a promising candidate in increasing the explainability of brain age
models [113]. Therefore, further investigation into combining these two strategies
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across different diseases could provide valuable information.
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Appendix A

Cortical thickness in brain
imaging studies using
FreeSurfer and CAT12: A
matter of reproducibility

Table A.1: Reproducibility in paediatric versus early adults’ groups: Demographics of
the participants.

Site Total of participants Number males Mean and standard deviation [years] Min Age [years] Max Age [years] Voxel Size [mm]
California Institute of Technology 19 15 28.87+/- 11.21 17.00 56.20 1.0×1.0×1.0
Carnegie Mellon University 13 10 26.85+/- 5.74 20.00 40.00 1.0×1.0×1.0
Kennedy Krieger Institute 33 24 10.16+/- 1.26 8.07 12.77 1.0×1.0×1.0
Ludwig Maximilians University Munich 32 28 26.19+/- 9.96 7.00 48.00 1.0×1.0×1.0
NYU Langone Medical Center 104 78 15.83+/- 6.28 6.47 31.78 1.3×1.0×1.3
Olin Institute of Living at Hartford Hospital 16 14 16.94+/- 3.68 10.00 23.00 1.0×1.0×1.0
Oregon Health and Science University 15 15 10.06+/- 1.08 8.20 11.99 1.0×1.0×1.0
San Diego State University 22 16 14.22+/- 1.90 8.67 16.88 1.0×1.0×1.0
Social Brain Lab 15 15 33.73+/- 6.61 20.00 42.00 1.0×1.0×1.0
Stanford University 19 15 9.97+/- 1.64 7.75 12.43 0.859x1.500x0.859
Trinity Centre for Health Sciences 25 25 17.08+/- 3.77 12.04 25.66 1.0×1.0×1.0
University of California Los Angeles 45 39 12.96+/- 1.92 9.21 17.79 1.0×1.0×1.2
University of Leuven 35 30 18.17+/- 4.99 12.20 29.00 0.977x0.97x1.20
University of Michigan 75 58 14.82+/- 3.62 8.20 28.80 1.0×1.0×1.2
University of Pittsburgh School of Medicine 27 23 18.88+/- 6.64 9.44 33.24 1.1×1.1×1.1
University of Utah School of Medicine 43 43 21.36+/- 7.64 8.77 39.39 1.0×1.0×1.2
Yale Child Study Center 28 20 12.68+/- 2.75 7.66 17.83 1.0×1.0×1.0

Table A.2: Reproducibility in different acquisition settings: Demographics of the
participants.

Repository Total of participants Number males Mean and standard deviation [years] Min Age [years] Max Age [years] Voxel Size [mm]

IXI
GH 312 139 50.73+/- 15.98 20.07 86.20 0.9375x0.9375x1.2000
HH 179 85 47.63+/- 16.61 20.17 81.94 0.9375x0.9375x1.2000
IOP 67 24 42.13+/- 16.60 19.98 86.32 0.9375x0.9375x1.2000

OASIS3 491 199 68.33+/- 8.86 42.66 95.20 1x1x1

Table A.3: Test-retest reliability: Demographics of the participants.
Repository Total of participants Number males Mean and standard deviation [years] Min Age [years] Max Age [years] Voxel Size [mm]
OASIS3 296 111 68.94+/- 8.86 45.78 88.86 1x1x1

171



172 APPENDIX A. THE REPRODUCIBILITY OF FREESURFER AND CAT12

Table A.4: Test-retest reliability: Mean R2 per lobe and framework.
R2

Framework CAT12 FREESURFER
Area
Frontal Lobe 0.76 0.63
Insula 0.77 0.72
Limbic lobe 0.77 0.72
Parietal lobe 0.83 0.73
Temporal and occipital lobes 0.80 0.77

Table A.5: Test-retest reliability: R2 for each framework and brain hemisphere.
R2

software CAT12 FREESURFER
Hemisphere Left Right Left Right
name
Angular gyrus 8.14e-01 7.63e-01 7.51e-01 6.67e-01
Anterior occipital sulcus and preoccipital notch 8.63e-01 8.73e-01 7.04e-01 7.45e-01
Anterior part of the cingulate gyrus and sulcus 8.37e-01 8.18e-01 6.87e-01 6.61e-01
Anterior segment of the circular sulcus of the ... 7.79e-01 6.57e-01 6.75e-01 7.32e-01
Anterior transverse collateral sulcus 7.04e-01 6.89e-01 8.15e-01 8.01e-01
Anterior transverse temporal gyrus 7.19e-01 7.10e-01 7.39e-01 6.93e-01
Calcarine sulcus 8.58e-01 7.80e-01 7.56e-01 7.41e-01
Central sulcus 5.31e-01 5.95e-01 5.73e-01 5.91e-01
Cuneus 7.91e-01 8.17e-01 7.28e-01 6.89e-01
Fronto-marginal gyrus and sulcus 7.76e-01 7.24e-01 4.96e-01 4.95e-01
Horizontal ramus of the anterior segment of the... 8.57e-01 8.51e-01 6.73e-01 7.75e-01
Inferior frontal sulcus 7.72e-01 8.07e-01 6.67e-01 6.64e-01
Inferior occipital gyrus and sulcus 8.72e-01 8.15e-01 8.17e-01 7.98e-01
Inferior part of the precentral sulcus 7.78e-01 7.03e-01 7.24e-01 5.84e-01
Inferior segment of the circular sulcus of the ... 9.05e-01 8.48e-01 8.89e-01 8.38e-01
Inferior temporal gyrus 7.94e-01 7.73e-01 7.84e-01 7.93e-01
Inferior temporal sulcus 8.61e-01 8.94e-01 7.52e-01 7.49e-01
Intraparietal sulcus and transverse parietal s... 8.81e-01 8.85e-01 7.43e-01 8.11e-01
Lateral aspect of the superior temporal gyrus 8.21e-01 8.23e-01 8.10e-01 8.12e-01
Lateral occipito-temporal gyrus 7.22e-01 8.10e-01 8.22e-01 8.05e-01
Lateral occipito-temporal sulcus 8.28e-01 8.25e-01 6.99e-01 8.09e-01
Lateral orbital sulcus 7.71e-01 7.31e-01 4.04e-01 3.74e-01
Lingual gyrus 8.25e-01 7.76e-01 7.63e-01 7.32e-01
Long insular gyrus and central sulcus of the in... 5.93e-01 6.62e-01 6.45e-01 6.18e-01
Marginal branch of the cingulate sulcus 9.14e-01 8.60e-01 8.11e-01 7.65e-01
Medial occipito-temporal sulcus and lingual su... 8.45e-01 8.46e-01 8.54e-01 8.71e-01
Medial orbital sulcus 7.67e-01 7.00e-01 4.64e-01 6.17e-01
Middle frontal gyrus 8.18e-01 8.37e-01 6.78e-01 7.02e-01
Middle frontal sulcus 8.12e-01 7.62e-01 5.29e-01 5.08e-01
Middle occipital gyrus 8.83e-01 7.85e-01 7.61e-01 6.98e-01
Middle occipital sulcus and lunatus sulcus 8.93e-01 9.12e-01 7.71e-01 8.08e-01
Middle temporal gyrus 8.61e-01 8.43e-01 8.04e-01 8.27e-01
Middle-anterior part of the cingulate gyrus and... 9.20e-01 9.39e-01 8.21e-01 6.20e-01
Middle-posterior part of the cingulate gyrus an... 8.94e-01 8.57e-01 6.59e-01 6.59e-01
Occipital pole 8.20e-01 8.00e-01 6.93e-01 7.56e-01
Opercular part of the inferior frontal gyrus 8.40e-01 7.79e-01 7.68e-01 6.32e-01
Orbital gyri 7.42e-01 7.26e-01 5.36e-01 6.93e-01
Orbital part of the inferior frontal gyrus 8.16e-01 7.52e-01 7.17e-01 6.09e-01
Orbital sulci 7.12e-01 7.55e-01 5.73e-01 5.43e-01
Paracentral lobule and sulcus 8.20e-01 7.96e-01 6.84e-01 6.41e-01
Parahippocampal gyrus 5.28e-01 4.57e-01 8.22e-01 7.39e-01
Parieto-occipital sulcus 9.04e-01 8.43e-01 8.28e-01 7.89e-01
Pericallosal sulcus 7.52e-01 5.94e-01 7.16e-01 7.50e-01
Planum polare of the superior temporal gyrus 4.86e-01 7.36e-01 6.90e-01 6.61e-01
Planum temporale or temporal plane of the super... 8.21e-01 7.53e-01 7.62e-01 7.60e-01
Postcentral gyrus 8.29e-01 8.57e-01 7.91e-01 7.37e-01
Postcentral sulcus 8.10e-01 8.52e-01 7.48e-01 7.50e-01
Posterior ramus 8.50e-01 9.14e-01 8.39e-01 8.66e-01
Posterior transverse collateral sulcus 8.43e-01 8.48e-01 7.60e-01 7.34e-01
Posterior-dorsal part of the cingulate gyrus 6.41e-01 6.78e-01 6.77e-01 6.64e-01
Posterior-ventral part of the cingulate gyrus 6.98e-01 7.67e-01 7.62e-01 7.97e-01
Precentral gyrus 7.24e-01 7.34e-01 6.31e-01 6.05e-01
Precuneus 8.35e-01 8.22e-01 7.76e-01 7.67e-01
Short insular gyri 6.39e-01 6.30e-01 6.94e-01 5.70e-01
Straight gyrus 6.33e-01 7.22e-01 5.18e-01 5.75e-01
Subcallosal area 7.20e-01 6.10e-01 5.84e-01 4.25e-01
Subcentral gyrus and sulci 8.19e-01 8.40e-01 7.26e-01 7.86e-01
Suborbital sulcus 6.75e-01 7.00e-01 6.18e-01 4.70e-01
Subparietal sulcus 8.28e-01 7.99e-01 6.98e-01 7.58e-01
Sulcus intermedius primus 7.84e-01 7.92e-01 6.15e-01 6.23e-01
Superior frontal gyrus 8.47e-01 8.62e-01 8.41e-01 7.75e-01
Superior frontal sulcus 8.13e-01 8.39e-01 7.45e-01 6.26e-01
Superior occipital gyrus 8.79e-01 8.91e-01 8.07e-01 7.90e-01
Superior occipital sulcus and transverse occipi... 8.99e-01 8.91e-01 7.78e-01 8.15e-01
Superior parietal lobule 8.47e-01 8.52e-01 7.68e-01 7.54e-01
Superior part of the precentral sulcus 7.05e-01 7.51e-01 6.74e-01 5.35e-01
Superior segment of the circular sulcus of the ... 8.62e-01 8.30e-01 7.12e-01 6.62e-01
Superior temporal sulcus 9.20e-01 8.79e-01 8.01e-01 8.10e-01
Supramarginal gyrus 8.41e-01 7.53e-01 7.60e-01 7.03e-01
Temporal pole 6.07e-01 6.40e-01 6.24e-01 6.35e-01
Transverse frontopolar gyri and sulci 6.74e-01 6.54e-01 5.05e-01 5.35e-01
Transverse temporal sulcus 7.83e-01 7.70e-01 7.12e-01 7.08e-01
Triangular part of the inferior frontal gyrus 8.35e-01 6.95e-01 6.85e-01 6.57e-01
Vertical ramus of the anterior segment of the l... 7.84e-01 7.03e-01 6.92e-01 6.18e-01
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Table A.6: Test-retest reliability: ICC and Confidence interval (CI) for each framework
and brain hemisphere.

Framework CAT12 FREESURFER
Hemisphere Left Right Left Right

ICC CI95% ICC CI95% ICC CI95% ICC CI95%
ROI Name
Angular gyrus 0.90 [0.88, 0.92] 0.87 [0.84, 0.9] 0.87 [0.83, 0.89] 0.82 [0.77, 0.85]
Anterior occipital sulcus and preoccipital notch 0.93 [0.91, 0.94] 0.93 [0.92, 0.95] 0.84 [0.8, 0.87] 0.86 [0.83, 0.89]
Anterior part of the cingulate gyrus and sulcus 0.91 [0.89, 0.93] 0.90 [0.88, 0.92] 0.83 [0.79, 0.86] 0.81 [0.77, 0.85]
Anterior segment of the circular sulcus of the ... 0.88 [0.85, 0.91] 0.81 [0.77, 0.85] 0.82 [0.78, 0.86] 0.85 [0.82, 0.88]
Anterior transverse collateral sulcus 0.84 [0.8, 0.87] 0.83 [0.79, 0.86] 0.90 [0.88, 0.92] 0.89 [0.87, 0.92]
Anterior transverse temporal gyrus 0.85 [0.81, 0.88] 0.84 [0.81, 0.87] 0.86 [0.83, 0.89] 0.83 [0.79, 0.86]
Calcarine sulcus 0.93 [0.91, 0.94] 0.88 [0.86, 0.91] 0.87 [0.84, 0.89] 0.86 [0.83, 0.89]
Central sulcus 0.73 [0.67, 0.78] 0.77 [0.72, 0.81] 0.76 [0.7, 0.8] 0.77 [0.72, 0.81]
Cuneus 0.89 [0.86, 0.91] 0.90 [0.88, 0.92] 0.85 [0.82, 0.88] 0.83 [0.79, 0.86]
Fronto-marginal gyrus and sulcus 0.88 [0.85, 0.9] 0.85 [0.82, 0.88] 0.70 [0.64, 0.75] 0.70 [0.64, 0.75]
Horizontal ramus of the anterior segment of the... 0.92 [0.9, 0.94] 0.92 [0.9, 0.94] 0.82 [0.78, 0.85] 0.88 [0.85, 0.9]
Inferior frontal sulcus 0.88 [0.85, 0.9] 0.90 [0.87, 0.92] 0.82 [0.77, 0.85] 0.81 [0.77, 0.85]
Inferior occipital gyrus and sulcus 0.93 [0.92, 0.95] 0.90 [0.88, 0.92] 0.90 [0.88, 0.92] 0.89 [0.87, 0.91]
Inferior part of the precentral sulcus 0.88 [0.85, 0.9] 0.84 [0.8, 0.87] 0.85 [0.82, 0.88] 0.76 [0.71, 0.81]
Inferior segment of the circular sulcus of the ... 0.95 [0.94, 0.96] 0.92 [0.9, 0.94] 0.94 [0.93, 0.95] 0.91 [0.89, 0.93]
Inferior temporal gyrus 0.89 [0.86, 0.91] 0.88 [0.85, 0.9] 0.89 [0.86, 0.91] 0.89 [0.86, 0.91]
Inferior temporal sulcus 0.93 [0.91, 0.94] 0.95 [0.93, 0.96] 0.87 [0.83, 0.89] 0.86 [0.83, 0.89]
Intraparietal sulcus and transverse parietal s... 0.94 [0.92, 0.95] 0.94 [0.93, 0.95] 0.86 [0.83, 0.89] 0.90 [0.87, 0.92]
Lateral aspect of the superior temporal gyrus 0.91 [0.88, 0.92] 0.91 [0.88, 0.93] 0.90 [0.88, 0.92] 0.90 [0.88, 0.92]
Lateral occipito-temporal gyrus 0.85 [0.81, 0.88] 0.90 [0.87, 0.92] 0.91 [0.88, 0.92] 0.90 [0.87, 0.92]
Lateral occipito-temporal sulcus 0.91 [0.89, 0.93] 0.91 [0.89, 0.93] 0.84 [0.8, 0.87] 0.90 [0.87, 0.92]
Lateral orbital sulcus 0.88 [0.85, 0.9] 0.85 [0.82, 0.88] 0.62 [0.55, 0.69] 0.61 [0.53, 0.67]
Lingual gyrus 0.91 [0.89, 0.93] 0.88 [0.85, 0.9] 0.87 [0.84, 0.9] 0.86 [0.82, 0.88]
Long insular gyrus and central sulcus of the in... 0.77 [0.72, 0.81] 0.81 [0.77, 0.85] 0.80 [0.76, 0.84] 0.79 [0.74, 0.83]
Marginal branch of the cingulate sulcus 0.96 [0.94, 0.96] 0.93 [0.91, 0.94] 0.90 [0.88, 0.92] 0.87 [0.84, 0.9]
Medial occipito-temporal sulcus and lingual su... 0.92 [0.9, 0.93] 0.92 [0.9, 0.94] 0.92 [0.91, 0.94] 0.93 [0.92, 0.95]
Medial orbital sulcus 0.88 [0.85, 0.9] 0.84 [0.8, 0.87] 0.68 [0.61, 0.74] 0.78 [0.74, 0.82]
Middle frontal gyrus 0.90 [0.88, 0.92] 0.91 [0.89, 0.93] 0.82 [0.78, 0.86] 0.84 [0.8, 0.87]
Middle frontal sulcus 0.90 [0.88, 0.92] 0.87 [0.84, 0.9] 0.73 [0.67, 0.78] 0.71 [0.65, 0.76]
Middle occipital gyrus 0.94 [0.92, 0.95] 0.89 [0.86, 0.91] 0.87 [0.84, 0.9] 0.84 [0.8, 0.87]
Middle occipital sulcus and lunatus sulcus 0.94 [0.93, 0.96] 0.95 [0.94, 0.96] 0.88 [0.85, 0.9] 0.90 [0.87, 0.92]
Middle temporal gyrus 0.93 [0.91, 0.94] 0.92 [0.9, 0.93] 0.90 [0.87, 0.92] 0.91 [0.89, 0.93]
Middle-anterior part of the cingulate gyrus and... 0.96 [0.95, 0.97] 0.97 [0.96, 0.97] 0.91 [0.88, 0.92] 0.79 [0.74, 0.83]
Middle-posterior part of the cingulate gyrus an... 0.95 [0.93, 0.96] 0.93 [0.91, 0.94] 0.81 [0.77, 0.85] 0.81 [0.77, 0.85]
Occipital pole 0.91 [0.88, 0.92] 0.89 [0.87, 0.92] 0.83 [0.79, 0.86] 0.87 [0.84, 0.89]
Opercular part of the inferior frontal gyrus 0.92 [0.9, 0.93] 0.88 [0.85, 0.91] 0.88 [0.85, 0.9] 0.80 [0.75, 0.83]
Orbital gyri 0.86 [0.83, 0.89] 0.85 [0.82, 0.88] 0.72 [0.66, 0.77] 0.83 [0.79, 0.86]
Orbital part of the inferior frontal gyrus 0.90 [0.88, 0.92] 0.87 [0.83, 0.89] 0.85 [0.81, 0.88] 0.78 [0.73, 0.82]
Orbital sulci 0.84 [0.81, 0.87] 0.87 [0.84, 0.89] 0.76 [0.7, 0.8] 0.73 [0.68, 0.78]
Paracentral lobule and sulcus 0.90 [0.88, 0.92] 0.89 [0.87, 0.91] 0.83 [0.79, 0.86] 0.80 [0.75, 0.84]
Parahippocampal gyrus 0.73 [0.67, 0.78] 0.68 [0.61, 0.73] 0.91 [0.88, 0.92] 0.86 [0.83, 0.89]
Parieto-occipital sulcus 0.95 [0.94, 0.96] 0.92 [0.9, 0.93] 0.91 [0.89, 0.93] 0.89 [0.86, 0.91]
Pericallosal sulcus 0.87 [0.84, 0.89] 0.77 [0.72, 0.81] 0.85 [0.81, 0.88] 0.87 [0.83, 0.89]
Planum polare of the superior temporal gyrus 0.70 [0.63, 0.75] 0.86 [0.82, 0.89] 0.83 [0.79, 0.86] 0.81 [0.77, 0.85]
Planum temporale or temporal plane of the super... 0.91 [0.88, 0.92] 0.87 [0.84, 0.89] 0.87 [0.84, 0.9] 0.87 [0.84, 0.9]
Postcentral gyrus 0.91 [0.89, 0.93] 0.93 [0.91, 0.94] 0.89 [0.86, 0.91] 0.86 [0.83, 0.89]
Postcentral sulcus 0.90 [0.88, 0.92] 0.92 [0.9, 0.94] 0.86 [0.83, 0.89] 0.87 [0.83, 0.89]
Posterior ramus 0.92 [0.9, 0.94] 0.96 [0.94, 0.96] 0.91 [0.89, 0.93] 0.93 [0.91, 0.94]
Posterior transverse collateral sulcus 0.92 [0.9, 0.93] 0.92 [0.9, 0.94] 0.87 [0.84, 0.9] 0.86 [0.82, 0.88]
Posterior-dorsal part of the cingulate gyrus 0.80 [0.76, 0.84] 0.82 [0.78, 0.86] 0.82 [0.78, 0.86] 0.81 [0.77, 0.85]
Posterior-ventral part of the cingulate gyrus 0.84 [0.8, 0.87] 0.88 [0.85, 0.9] 0.87 [0.84, 0.9] 0.89 [0.87, 0.91]
Precentral gyrus 0.85 [0.82, 0.88] 0.86 [0.82, 0.88] 0.79 [0.75, 0.83] 0.78 [0.73, 0.82]
Precuneus 0.91 [0.89, 0.93] 0.91 [0.88, 0.92] 0.88 [0.85, 0.9] 0.88 [0.85, 0.9]
Short insular gyri 0.80 [0.75, 0.84] 0.79 [0.75, 0.83] 0.83 [0.79, 0.86] 0.75 [0.7, 0.8]
Straight gyrus 0.80 [0.75, 0.83] 0.85 [0.81, 0.88] 0.72 [0.66, 0.77] 0.76 [0.71, 0.8]
Subcallosal area 0.85 [0.81, 0.88] 0.78 [0.73, 0.82] 0.76 [0.71, 0.81] 0.65 [0.58, 0.71]
Subcentral gyrus and sulci 0.91 [0.88, 0.92] 0.92 [0.9, 0.93] 0.85 [0.82, 0.88] 0.89 [0.86, 0.91]
Suborbital sulcus 0.82 [0.78, 0.85] 0.84 [0.8, 0.87] 0.79 [0.74, 0.83] 0.68 [0.62, 0.74]
Subparietal sulcus 0.91 [0.89, 0.93] 0.89 [0.87, 0.91] 0.83 [0.8, 0.87] 0.87 [0.84, 0.9]
Sulcus intermedius primus 0.89 [0.86, 0.91] 0.89 [0.86, 0.91] 0.78 [0.74, 0.82] 0.79 [0.74, 0.83]
Superior frontal gyrus 0.92 [0.9, 0.94] 0.93 [0.91, 0.94] 0.92 [0.9, 0.93] 0.88 [0.85, 0.9]
Superior frontal sulcus 0.90 [0.88, 0.92] 0.92 [0.9, 0.93] 0.86 [0.83, 0.89] 0.79 [0.74, 0.83]
Superior occipital gyrus 0.94 [0.92, 0.95] 0.94 [0.93, 0.96] 0.90 [0.87, 0.92] 0.89 [0.86, 0.91]
Superior occipital sulcus and transverse occipi... 0.95 [0.94, 0.96] 0.94 [0.93, 0.96] 0.88 [0.85, 0.9] 0.90 [0.88, 0.92]
Superior parietal lobule 0.92 [0.9, 0.94] 0.92 [0.9, 0.94] 0.88 [0.85, 0.9] 0.87 [0.84, 0.89]
Superior part of the precentral sulcus 0.84 [0.8, 0.87] 0.87 [0.84, 0.89] 0.82 [0.78, 0.85] 0.73 [0.67, 0.78]
Superior segment of the circular sulcus of the ... 0.93 [0.91, 0.94] 0.91 [0.89, 0.93] 0.84 [0.81, 0.87] 0.81 [0.77, 0.85]
Superior temporal sulcus 0.96 [0.95, 0.97] 0.94 [0.92, 0.95] 0.89 [0.87, 0.92] 0.90 [0.88, 0.92]
Supramarginal gyrus 0.92 [0.9, 0.93] 0.87 [0.84, 0.89] 0.87 [0.84, 0.9] 0.84 [0.8, 0.87]
Temporal pole 0.78 [0.73, 0.82] 0.80 [0.75, 0.84] 0.79 [0.74, 0.83] 0.80 [0.75, 0.83]
Transverse frontopolar gyri and sulci 0.82 [0.78, 0.85] 0.81 [0.77, 0.84] 0.71 [0.65, 0.76] 0.73 [0.67, 0.78]
Transverse temporal sulcus 0.88 [0.86, 0.91] 0.88 [0.85, 0.9] 0.84 [0.81, 0.87] 0.84 [0.8, 0.87]
Triangular part of the inferior frontal gyrus 0.91 [0.89, 0.93] 0.83 [0.79, 0.86] 0.83 [0.79, 0.86] 0.81 [0.77, 0.85]
Vertical ramus of the anterior segment of the l... 0.89 [0.86, 0.91] 0.84 [0.8, 0.87] 0.83 [0.79, 0.86] 0.79 [0.74, 0.83]
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Table A.7: Test-retest reliability: Cohen’d values for the paired t-test per ROI and
framework. The * represents the ROIs in which the null hypothesis was rejected

Framework CAT12 FREESURFER
Hemisphere Left Right Left Right
ROI Name
Angular gyrus -0.01 0.0008 -0.008 -0.02
Anterior occipital sulcus and preoccipital notch -0.007 -0.02 0.02 -0.02
Anterior part of the cingulate gyrus and sulcus -0.02 -0.05 0.007 -0.01
Anterior segment of the circular sulcus of the ... -0.02 -0.05 0.04 0.03
Anterior transverse collateral sulcus 0.06 0.05 0.07 0.08
Anterior transverse temporal gyrus 0.007 0.01 0.03 -0.02
Calcarine sulcus -0.001 -0.02 0.04 -0.02
Central sulcus -0.06 0.01 0.02 -0.07
Cuneus -0.002 0.04 -0.02 0e+00
Fronto-marginal gyrus and sulcus -0.01 0.01 -0.02 0.03
Horizontal ramus of the anterior segment of the... -0.03 -0.03 0.06 -0.05
Inferior frontal sulcus -0.04 -0.03 0.06 0.007
Inferior occipital gyrus and sulcus -0.02 -0.04 0.05 0.04
Inferior part of the precentral sulcus 0.02 -0.08 -0.0008 0.003
Inferior segment of the circular sulcus of the ... -0.009 0.04 0.03 0.04
Inferior temporal gyrus 0.01 -0.003 0.005 0.05
Inferior temporal sulcus 0.01 -0.001 0.04 0.01
Intraparietal sulcus and transverse parietal s... 0.0005 0.02 0.03 -0.02
Lateral aspect of the superior temporal gyrus 0.03 0.01 0.07 -0.01
Lateral occipito-temporal gyrus 0.01 0.01 0.08 0.05
Lateral occipito-temporal sulcus 0.01 -0.008 0.05 0.06
Lateral orbital sulcus -0.02 -0.02 -0.004 0.02
Lingual gyrus -0.02 -0.02 0.05 0.04
Long insular gyrus and central sulcus of the in... -0.02 0.02 0.1 0.07
Marginal branch of the cingulate sulcus 0.04 0.03 0.03 0.009
Medial occipito-temporal sulcus and lingual su... 0.003 0.03 0.03 0.02
Medial orbital sulcus 0.004 0.01 0.01 0.05
Middle frontal gyrus 0.003 -0.02 0.03 -0.04
Middle frontal sulcus -0.03 0.007 0.05 0.03
Middle occipital gyrus -0.004 0.02 0.03 0.05
Middle occipital sulcus and lunatus sulcus -0.03 -0.005 -0.02 -0.02
Middle temporal gyrus 0.03 0.01 0.04 0.03
Middle-anterior part of the cingulate gyrus and... -0.02 0.01 0.03 0.1
Middle-posterior part of the cingulate gyrus an... 0.003 0.02 0.03 0.07
Occipital pole 0.003 -0.05 0.01 0.05
Opercular part of the inferior frontal gyrus -0.01 -0.04 0.04 -0.05
Orbital gyri 0.001 0.03 0.04 0.03
Orbital part of the inferior frontal gyrus -0.002 -0.009 0.04 -0.07
Orbital sulci -0.01 0.01 0.1 0.06
Paracentral lobule and sulcus -0.007 0.01 0.04 0.06
Parahippocampal gyrus 0.05 0.001 0.04 0.08
Parieto-occipital sulcus 0.03 -0.005 0.03 0.002
Pericallosal sulcus -0.02 0.03 0.04 0.01
Planum polare of the superior temporal gyrus 0.1 0.05 0.1 0.02
Planum temporale or temporal plane of the super... 0.003 -0.04 -0.008 -0.02
Postcentral gyrus -0.02 -0.01 -0.002 -0.06
Postcentral sulcus -0.007 -0.04 -0.004 -0.02
Posterior ramus 0.02 0.0002 0.04 -0.02
Posterior transverse collateral sulcus 0.03 -0.04 0.01 0.006
Posterior-dorsal part of the cingulate gyrus -0.05 -0.06 0.03 0.09
Posterior-ventral part of the cingulate gyrus -0.03 0.02 0.005 0.06
Precentral gyrus -0.007 -0.04 0.06 0.02
Precuneus 0.06 0.04 0.05 0.04
Short insular gyri -0.05 -0.02 0.1* 0.09
Straight gyrus -0.02 0.01 0.02 0.02
Subcallosal area 0.04 0.02 0.009 0.04
Subcentral gyrus and sulci -0.02 -0.03 0.02 -0.03
Suborbital sulcus -0.01 -0.05 -0.03 0.03
Subparietal sulcus 0.01 -0.03 0.01 -0.005
Sulcus intermedius primus -0.01 -0.05 -0.03 -0.04
Superior frontal gyrus 0.008 0.02 0.04 0.07
Superior frontal sulcus -0.02 0.002 0.02 -0.009
Superior occipital gyrus -0.03 0.0004 0.03 0.01
Superior occipital sulcus and transverse occipi... 0.02 0.04 0.04 0.008
Superior parietal lobule 0.03 0.03 0.03 -0.009
Superior part of the precentral sulcus 0.04 -0.05 0.04 0.05
Superior segment of the circular sulcus of the ... 0.04 0.04 0.1 0.06
Superior temporal sulcus 0.003 -0.006 0.06 -0.02
Supramarginal gyrus -0.02 -0.05 -0.006 -0.03
Temporal pole 0.06 0.04 0.1 0.1
Transverse frontopolar gyri and sulci -0.02 0.004 -0.004 0.02
Transverse temporal sulcus -0.01 -0.01 0.01 0.05
Triangular part of the inferior frontal gyrus -0.04 -0.03 0.01 0.02
Vertical ramus of the anterior segment of the l... 0.003 0.02 0.1 0.01
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Table A.8: Reproducibility in paediatric versus early adults’ groups: ANCOVA for the
participant R2 values.

df sumsq statistic p-value Cohen’d
Acquisition setting 16.00 3.05 16.30 0.00 0.69

Age 1.00 0.98 84.09 0.00 0.39
Age group 1.00 0.13 10.75 0.00 0.14

SNR 1.00 0.47 39.97 0.00 0.27
Residuals 546.00 6.38

Table A.9: Reproducibility in paediatric versus early adults’ groups: ANCOVA for the
participant ICC values.

df sumsq statistic p-value Cohen’d
Acquisition setting 16.00 1.64 13.59 0.00 0.63

Age 1.00 0.46 61.32 0.00 0.34
Age group 1.00 0.07 8.59 0.00 0.12

SNR 1.00 0.29 37.90 0.00 0.26
Residuals 546.00 4.12

Table A.10: Reproducibility in paediatric versus early adults’ groups: Mean R2 per lobe
and age group.

R2

Age group Adult Paediatric
Area
Frontal Lobe 0.35 0.28
Insula 0.24 0.16
Limbic lobe 0.37 0.27
Parietal lobe 0.49 0.41
Temporal and occipital lobes 0.41 0.31
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Table A.11: Reproducibility in paediatric versus early adults’ groups: R2 of each ROI.
Age Group Adult Paediatric
Hemisphere Left Right Left Right
ROI Name
Angular gyrus 0.36 0.43 0.39 0.41
Anterior occipital sulcus and preoccipital notch 0.43 0.44 0.3 0.26
Anterior part of the cingulate gyrus and sulcus 0.26 0.15 0.17 0.16
Anterior segment of the circular sulcus of the ... 0.091 0.16 0.19 0.13
Anterior transverse collateral sulcus 0.067 0.06 0.017 0.073
Anterior transverse temporal gyrus 0.52 0.43 0.26 0.25
Calcarine sulcus 0.55 0.56 0.24 0.26
Central sulcus 0.3 0.23 0.36 0.23
Cuneus 0.59 0.56 0.31 0.36
Fronto-marginal gyrus and sulcus 0.34 0.34 0.26 0.19
Horizontal ramus of the anterior segment of the... 0.34 0.26 0.13 0.15
Inferior frontal sulcus 0.56 0.43 0.45 0.31
Inferior occipital gyrus and sulcus 0.37 0.43 0.21 0.26
Inferior part of the precentral sulcus 0.6 0.39 0.42 0.34
Inferior segment of the circular sulcus of the ... 0.25 0.32 0.14 0.16
Inferior temporal gyrus 0.38 0.34 0.29 0.35
Inferior temporal sulcus 0.13 0.13 0.19 0.15
Intraparietal sulcus and transverse parietal s... 0.51 0.55 0.45 0.4
Lateral aspect of the superior temporal gyrus 0.26 0.39 0.44 0.5
Lateral occipito-temporal gyrus 0.42 0.36 0.37 0.41
Lateral occipito-temporal sulcus 0.24 0.23 0.13 0.13
Lateral orbital sulcus 0.24 0.23 0.14 0.13
Lingual gyrus 0.59 0.47 0.24 0.35
Long insular gyrus and central sulcus of the in... 0.26 0.18 0.18 0.14
Marginal branch of the cingulate sulcus 0.63 0.63 0.37 0.39
Medial occipito-temporal sulcus and lingual su... 0.39 0.38 0.34 0.35
Medial orbital sulcus 0.045 0.06 0.023 0.067
Middle frontal gyrus 0.55 0.42 0.51 0.35
Middle frontal sulcus 0.36 0.21 0.23 0.22
Middle occipital gyrus 0.53 0.52 0.31 0.35
Middle occipital sulcus and lunatus sulcus 0.39 0.4 0.21 0.32
Middle temporal gyrus 0.29 0.41 0.45 0.44
Middle-anterior part of the cingulate gyrus and... 0.44 0.35 0.36 0.38
Middle-posterior part of the cingulate gyrus an... 0.6 0.47 0.48 0.41
Occipital pole 0.74 0.7 0.15 0.16
Opercular part of the inferior frontal gyrus 0.47 0.45 0.46 0.42
Orbital gyri 0.24 0.43 0.29 0.26
Orbital part of the inferior frontal gyrus 0.36 0.33 0.29 0.24
Orbital sulci 0.13 0.15 0.058 0.16
Paracentral lobule and sulcus 0.59 0.55 0.47 0.45
Parahippocampal gyrus 0.33 0.32 0.48 0.43
Parieto-occipital sulcus 0.52 0.59 0.39 0.25
Pericallosal sulcus 0.26 0.28 0.33 0.35
Planum polare of the superior temporal gyrus 0.22 0.17 0.38 0.42
Planum temporale or temporal plane of the super... 0.46 0.49 0.48 0.45
Postcentral gyrus 0.48 0.47 0.44 0.39
Postcentral sulcus 0.53 0.58 0.58 0.53
Posterior ramus 0.51 0.46 0.24 0.17
Posterior transverse collateral sulcus 0.37 0.41 0.16 0.18
Posterior-dorsal part of the cingulate gyrus 0.24 0.24 0.11 0.18
Posterior-ventral part of the cingulate gyrus 0.51 0.39 0.27 0.25
Precentral gyrus 0.54 0.41 0.54 0.37
Precuneus 0.57 0.6 0.42 0.39
Short insular gyri 0.19 0.2 0.29 0.18
Straight gyrus 0.4 0.14 0.092 0.087
Subcallosal area 0.0044 0.015 0.0062 0.035
Subcentral gyrus and sulci 0.53 0.5 0.4 0.39
Suborbital sulcus 0.11 0.099 0.12 0.095
Subparietal sulcus 0.49 0.51 0.22 0.18
Sulcus intermedius primus 0.3 0.26 0.27 0.17
Superior frontal gyrus 0.54 0.38 0.52 0.44
Superior frontal sulcus 0.51 0.34 0.53 0.4
Superior occipital gyrus 0.64 0.6 0.38 0.28
Superior occipital sulcus and transverse occipi... 0.46 0.42 0.42 0.29
Superior parietal lobule 0.45 0.48 0.49 0.46
Superior part of the precentral sulcus 0.42 0.41 0.44 0.32
Superior segment of the circular sulcus of the ... 0.16 0.21 0.089 0.053
Superior temporal sulcus 0.57 0.62 0.41 0.43
Supramarginal gyrus 0.5 0.48 0.51 0.52
Temporal pole 0.3 0.28 0.44 0.51
Transverse frontopolar gyri and sulci 0.38 0.43 0.31 0.3
Transverse temporal sulcus 0.48 0.41 0.33 0.094
Triangular part of the inferior frontal gyrus 0.38 0.39 0.38 0.28
Vertical ramus of the anterior segment of the l... 0.16 0.12 0.15 0.13
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Table A.12: Reproducibility in paediatric versus early adults’ groups: ICC and
Confidence interval (CI) for each group and brain hemisphere.

Age group Adult Paediatric
Hemisphere Left Right Left Right

ICC CI95% ICC CI95% ICC CI95% ICC CI95%
ROI Name
Angular gyrus 0.59 [0.48, 0.67] 0.65 [0.56, 0.73] 0.63 [0.56, 0.68] 0.63 [0.57, 0.69]
Anterior occipital sulcus and preoccipital notch 0.65 [0.56, 0.73] 0.66 [0.57, 0.73] 0.54 [0.47, 0.61] 0.51 [0.43, 0.58]
Anterior part of the cingulate gyrus and sulcus 0.51 [0.39, 0.61] 0.38 [0.25, 0.5] 0.42 [0.33, 0.5] 0.4 [0.31, 0.48]
Anterior segment of the circular sulcus of the ... 0.3 [0.16, 0.42] 0.4 [0.27, 0.52] 0.39 [0.31, 0.48] 0.34 [0.25, 0.43]
Anterior transverse collateral sulcus 0.26 [0.12, 0.39] 0.25 [0.1, 0.38] 0.13 [0.03, 0.23] 0.27 [0.17, 0.36]
Anterior transverse temporal gyrus 0.71 [0.63, 0.77] 0.65 [0.56, 0.73] 0.5 [0.42, 0.57] 0.48 [0.4, 0.55]
Calcarine sulcus 0.74 [0.67, 0.8] 0.75 [0.67, 0.8] 0.49 [0.41, 0.56] 0.51 [0.43, 0.58]
Central sulcus 0.5 [0.39, 0.6] 0.44 [0.32, 0.55] 0.6 [0.54, 0.66] 0.48 [0.4, 0.55]
Cuneus 0.77 [0.7, 0.82] 0.74 [0.67, 0.8] 0.52 [0.44, 0.59] 0.56 [0.49, 0.63]
Fronto-marginal gyrus and sulcus 0.57 [0.46, 0.66] 0.58 [0.47, 0.67] 0.51 [0.43, 0.58] 0.44 [0.35, 0.52]
Horizontal ramus of the anterior segment of the... 0.58 [0.47, 0.67] 0.51 [0.4, 0.61] 0.37 [0.28, 0.45] 0.38 [0.3, 0.47]
Inferior frontal sulcus 0.75 [0.67, 0.8] 0.66 [0.56, 0.73] 0.67 [0.61, 0.72] 0.55 [0.48, 0.62]
Inferior occipital gyrus and sulcus 0.6 [0.5, 0.69] 0.63 [0.53, 0.71] 0.46 [0.38, 0.53] 0.5 [0.42, 0.57]
Inferior part of the precentral sulcus 0.77 [0.71, 0.83] 0.63 [0.53, 0.71] 0.64 [0.58, 0.7] 0.59 [0.52, 0.65]
Inferior segment of the circular sulcus of the ... 0.48 [0.36, 0.58] 0.53 [0.42, 0.63] 0.31 [0.22, 0.4] 0.36 [0.27, 0.45]
Inferior temporal gyrus 0.59 [0.49, 0.68] 0.56 [0.45, 0.65] 0.53 [0.45, 0.6] 0.57 [0.49, 0.63]
Inferior temporal sulcus 0.36 [0.23, 0.48] 0.35 [0.22, 0.47] 0.41 [0.33, 0.49] 0.37 [0.28, 0.45]
Intraparietal sulcus and transverse parietal s... 0.7 [0.62, 0.77] 0.74 [0.66, 0.8] 0.66 [0.6, 0.71] 0.63 [0.57, 0.69]
Lateral aspect of the superior temporal gyrus 0.51 [0.39, 0.61] 0.62 [0.53, 0.7] 0.66 [0.6, 0.72] 0.7 [0.65, 0.75]
Lateral occipito-temporal gyrus 0.61 [0.51, 0.7] 0.57 [0.46, 0.66] 0.61 [0.54, 0.67] 0.64 [0.58, 0.7]
Lateral occipito-temporal sulcus 0.49 [0.38, 0.6] 0.48 [0.36, 0.59] 0.36 [0.27, 0.44] 0.36 [0.27, 0.44]
Lateral orbital sulcus 0.48 [0.36, 0.58] 0.48 [0.36, 0.59] 0.37 [0.28, 0.45] 0.36 [0.27, 0.45]
Lingual gyrus 0.74 [0.67, 0.8] 0.64 [0.54, 0.72] 0.47 [0.39, 0.54] 0.57 [0.5, 0.64]
Long insular gyrus and central sulcus of the in... 0.51 [0.39, 0.61] 0.43 [0.3, 0.54] 0.38 [0.29, 0.46] 0.37 [0.28, 0.46]
Marginal branch of the cingulate sulcus 0.79 [0.73, 0.84] 0.79 [0.73, 0.84] 0.61 [0.54, 0.67] 0.63 [0.56, 0.68]
Medial occipito-temporal sulcus and lingual su... 0.63 [0.53, 0.71] 0.61 [0.51, 0.7] 0.58 [0.51, 0.64] 0.58 [0.51, 0.64]
Medial orbital sulcus 0.21 [0.07, 0.35] 0.24 [0.1, 0.38] 0.15 [0.05, 0.25] 0.25 [0.16, 0.35]
Middle frontal gyrus 0.74 [0.66, 0.8] 0.65 [0.55, 0.72] 0.69 [0.63, 0.74] 0.57 [0.5, 0.64]
Middle frontal sulcus 0.6 [0.5, 0.69] 0.46 [0.34, 0.57] 0.47 [0.39, 0.55] 0.46 [0.38, 0.54]
Middle occipital gyrus 0.64 [0.55, 0.72] 0.69 [0.6, 0.76] 0.55 [0.48, 0.62] 0.59 [0.52, 0.65]
Middle occipital sulcus and lunatus sulcus 0.61 [0.52, 0.7] 0.62 [0.52, 0.7] 0.46 [0.37, 0.53] 0.56 [0.49, 0.63]
Middle temporal gyrus 0.53 [0.42, 0.63] 0.64 [0.55, 0.72] 0.67 [0.61, 0.72] 0.65 [0.59, 0.71]
Middle-anterior part of the cingulate gyrus and... 0.66 [0.57, 0.73] 0.58 [0.47, 0.67] 0.59 [0.52, 0.65] 0.6 [0.54, 0.66]
Middle-posterior part of the cingulate gyrus an... 0.77 [0.71, 0.83] 0.69 [0.6, 0.76] 0.69 [0.64, 0.74] 0.64 [0.57, 0.69]
Occipital pole 0.81 [0.76, 0.86] 0.78 [0.71, 0.83] 0.36 [0.27, 0.44] 0.39 [0.3, 0.47]
Opercular part of the inferior frontal gyrus 0.68 [0.59, 0.75] 0.67 [0.58, 0.74] 0.66 [0.6, 0.71] 0.63 [0.57, 0.69]
Orbital gyri 0.48 [0.36, 0.59] 0.64 [0.55, 0.72] 0.54 [0.47, 0.61] 0.51 [0.44, 0.58]
Orbital part of the inferior frontal gyrus 0.6 [0.5, 0.69] 0.57 [0.47, 0.66] 0.53 [0.46, 0.6] 0.47 [0.39, 0.54]
Orbital sulci 0.35 [0.22, 0.47] 0.38 [0.25, 0.5] 0.23 [0.13, 0.32] 0.4 [0.31, 0.48]
Paracentral lobule and sulcus 0.76 [0.69, 0.82] 0.74 [0.66, 0.8] 0.68 [0.63, 0.73] 0.67 [0.61, 0.72]
Parahippocampal gyrus 0.58 [0.47, 0.67] 0.56 [0.46, 0.66] 0.69 [0.63, 0.74] 0.65 [0.59, 0.71]
Parieto-occipital sulcus 0.72 [0.64, 0.78] 0.77 [0.7, 0.82] 0.62 [0.55, 0.68] 0.5 [0.42, 0.57]
Pericallosal sulcus 0.47 [0.35, 0.57] 0.48 [0.36, 0.58] 0.55 [0.47, 0.61] 0.55 [0.47, 0.61]
Planum polare of the superior temporal gyrus 0.46 [0.34, 0.57] 0.4 [0.27, 0.52] 0.62 [0.55, 0.68] 0.65 [0.59, 0.7]
Planum temporale or temporal plane of the super... 0.67 [0.58, 0.74] 0.69 [0.6, 0.76] 0.69 [0.64, 0.74] 0.67 [0.61, 0.72]
Postcentral gyrus 0.67 [0.58, 0.74] 0.67 [0.58, 0.74] 0.67 [0.61, 0.72] 0.62 [0.56, 0.68]
Postcentral sulcus 0.73 [0.65, 0.79] 0.76 [0.69, 0.82] 0.76 [0.72, 0.8] 0.73 [0.68, 0.77]
Posterior ramus 0.7 [0.62, 0.77] 0.62 [0.52, 0.7] 0.48 [0.4, 0.55] 0.35 [0.25, 0.43]
Posterior transverse collateral sulcus 0.59 [0.48, 0.67] 0.61 [0.52, 0.7] 0.4 [0.31, 0.48] 0.43 [0.34, 0.51]
Posterior-dorsal part of the cingulate gyrus 0.49 [0.37, 0.59] 0.49 [0.37, 0.59] 0.34 [0.24, 0.42] 0.42 [0.34, 0.5]
Posterior-ventral part of the cingulate gyrus 0.71 [0.63, 0.78] 0.62 [0.52, 0.7] 0.52 [0.44, 0.59] 0.5 [0.42, 0.57]
Precentral gyrus 0.73 [0.65, 0.79] 0.63 [0.53, 0.71] 0.73 [0.68, 0.78] 0.61 [0.54, 0.67]
Precuneus 0.72 [0.64, 0.78] 0.76 [0.69, 0.81] 0.64 [0.58, 0.7] 0.63 [0.56, 0.68]
Short insular gyri 0.42 [0.29, 0.53] 0.43 [0.3, 0.54] 0.5 [0.43, 0.58] 0.42 [0.33, 0.5]
Straight gyrus 0.62 [0.52, 0.7] 0.36 [0.22, 0.48] 0.3 [0.21, 0.39] 0.29 [0.2, 0.38]
Subcallosal area -0.066 [-0.21, 0.08] 0.12 [-0.02, 0.26] 0.079 [-0.02, 0.18] 0.19 [0.09, 0.28]
Subcentral gyrus and sulci 0.71 [0.63, 0.78] 0.7 [0.62, 0.77] 0.63 [0.57, 0.69] 0.62 [0.56, 0.68]
Suborbital sulcus 0.32 [0.18, 0.45] 0.31 [0.17, 0.43] 0.34 [0.25, 0.43] 0.29 [0.2, 0.38]
Subparietal sulcus 0.7 [0.61, 0.77] 0.72 [0.64, 0.78] 0.46 [0.38, 0.54] 0.42 [0.34, 0.5]
Sulcus intermedius primus 0.53 [0.42, 0.63] 0.51 [0.39, 0.61] 0.5 [0.42, 0.57] 0.41 [0.32, 0.49]
Superior frontal gyrus 0.73 [0.66, 0.79] 0.62 [0.52, 0.7] 0.7 [0.65, 0.75] 0.65 [0.59, 0.7]
Superior frontal sulcus 0.72 [0.64, 0.78] 0.58 [0.48, 0.67] 0.73 [0.67, 0.77] 0.63 [0.56, 0.68]
Superior occipital gyrus 0.74 [0.67, 0.8] 0.73 [0.66, 0.79] 0.6 [0.53, 0.66] 0.52 [0.45, 0.59]
Superior occipital sulcus and transverse occipi... 0.67 [0.58, 0.74] 0.63 [0.54, 0.71] 0.64 [0.58, 0.7] 0.54 [0.46, 0.6]
Superior parietal lobule 0.66 [0.56, 0.73] 0.69 [0.6, 0.76] 0.7 [0.64, 0.75] 0.67 [0.61, 0.72]
Superior part of the precentral sulcus 0.65 [0.56, 0.73] 0.64 [0.54, 0.71] 0.66 [0.6, 0.72] 0.57 [0.5, 0.63]
Superior segment of the circular sulcus of the ... 0.36 [0.23, 0.48] 0.44 [0.31, 0.55] 0.26 [0.17, 0.35] 0.21 [0.11, 0.3]
Superior temporal sulcus 0.75 [0.68, 0.81] 0.79 [0.72, 0.84] 0.63 [0.57, 0.69] 0.65 [0.59, 0.71]
Supramarginal gyrus 0.7 [0.62, 0.77] 0.69 [0.61, 0.76] 0.71 [0.66, 0.76] 0.71 [0.66, 0.76]
Temporal pole 0.55 [0.44, 0.64] 0.53 [0.41, 0.62] 0.66 [0.6, 0.71] 0.71 [0.66, 0.76]
Transverse frontopolar gyri and sulci 0.62 [0.52, 0.7] 0.65 [0.56, 0.73] 0.55 [0.48, 0.62] 0.53 [0.46, 0.6]
Transverse temporal sulcus 0.69 [0.6, 0.76] 0.61 [0.51, 0.69] 0.56 [0.49, 0.63] 0.31 [0.21, 0.39]
Triangular part of the inferior frontal gyrus 0.62 [0.52, 0.7] 0.62 [0.53, 0.71] 0.61 [0.54, 0.67] 0.52 [0.44, 0.59]
Vertical ramus of the anterior segment of the l... 0.4 [0.27, 0.52] 0.35 [0.21, 0.47] 0.38 [0.29, 0.46] 0.36 [0.27, 0.44]
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Table A.13: Reproducibility in paediatric versus early adults’ groups: Cohen’d value for
the paired t-test between the cortical thickness estimations of the FreeSurfer and CAT12

per ROI. The * represents the ROIs in which the null hypothesis was rejected.
Age group Adult Paediatric
Hemisphere Left Right Left Right
ROI Name
Angular gyrus 0.45* 0.73* 0.85* 0.9*
Anterior occipital sulcus and preoccipital notch 0.08 0.02 0.04 0.06
Anterior part of the cingulate gyrus and sulcus 0.16 0.2 0.34* 0.14
Anterior segment of the circular sulcus of the ... 0.08 0.17 0.09 0.45*
Anterior transverse collateral sulcus 0.28 0.38* 0.45* 0.48*
Anterior transverse temporal gyrus 0.12 0.0 0.39* 0.36*
Calcarine sulcus 1.24* 0.93* 0.92* 0.58*
Central sulcus 0.04 0.17 0.97* 1.09*
Cuneus 0.72* 0.85* 0.68* 0.69*
Fronto-marginal gyrus and sulcus 0.07 0.18 0.29* 0.31*
Horizontal ramus of the anterior segment of the... 0.68* 1.08* 0.4* 0.52*
Inferior frontal sulcus 0.84* 1.13* 0.78* 0.87*
Inferior occipital gyrus and sulcus 0.38* 0.66* 0.79* 1.04*
Inferior part of the precentral sulcus 0.54* 0.62* 0.56* 0.67*
Inferior segment of the circular sulcus of the ... 0.3* 0.34* 0.27* 0.17
Inferior temporal gyrus 1.26* 1.4* 1.32* 1.21*
Inferior temporal sulcus 0.09 0.09 0.01 0.01
Intraparietal sulcus and transverse parietal s... 0.58* 0.52* 0.51* 0.35*
Lateral aspect of the superior temporal gyrus 1.76* 1.22* 1.58* 1.22*
Lateral occipito-temporal gyrus 1.71* 1.9* 1.97* 2.05*
Lateral occipito-temporal sulcus 0.14 0.32* 0.3* 0.4*
Lateral orbital sulcus 0.78* 0.95* 0.56* 0.54*
Lingual gyrus 0.15 0.25* 0.38* 0.34*
Long insular gyrus and central sulcus of the in... 0.39* 0.87* 0.51* 0.69*
Marginal branch of the cingulate sulcus 0.77* 0.73* 0.65* 0.56*
Medial occipito-temporal sulcus and lingual su... 0.3* 0.6* 0.35* 0.53*
Medial orbital sulcus 0.18 0.0 0.16 0.18
Middle frontal gyrus 0.1 0.22 0.28* 0.53*
Middle frontal sulcus 1.17* 1.29* 0.7* 0.75*
Middle occipital gyrus 0.26* 0.74* 0.9* 1.22*
Middle occipital sulcus and lunatus sulcus 0.5* 0.55* 0.44* 0.38*
Middle temporal gyrus 1.04* 0.93* 0.92* 0.77*
Middle-anterior part of the cingulate gyrus and... 0.74* 0.51* 0.34* 0.22*
Middle-posterior part of the cingulate gyrus an... 0.16 0.3* 0.06 0.09
Occipital pole 0.09 0.13 0.47* 0.73*
Opercular part of the inferior frontal gyrus 0.39* 0.21 0.75* 0.76*
Orbital gyri 0.44* 0.68* 1.03* 1.11*
Orbital part of the inferior frontal gyrus 0.85* 1.07* 1.32* 1.31*
Orbital sulci 0.59* 0.14 0.99* 0.4*
Paracentral lobule and sulcus 0.58* 0.76* 0.4* 0.58*
Parahippocampal gyrus 1.01* 1.1* 0.9* 1.07*
Parieto-occipital sulcus 0.33* 0.51* 0.36* 0.45*
Pericallosal sulcus 0.32* 0.17 0.41* 0.23*
Planum polare of the superior temporal gyrus 1.39* 0.64* 0.86* 0.46*
Planum temporale or temporal plane of the super... 0.17 0.3* 0.35* 0.46*
Postcentral gyrus 0.59* 0.45* 0.36* 0.26*
Postcentral sulcus 0.49* 0.44* 0.49* 0.42*
Posterior ramus 0.22* 0.47* 0.03 0.08
Posterior transverse collateral sulcus 0.19 0.24 0.08 0.4*
Posterior-dorsal part of the cingulate gyrus 1.75* 1.5* 2.29* 1.86*
Posterior-ventral part of the cingulate gyrus 0.9* 1.12* 1.03* 1.15*
Precentral gyrus 0.81* 0.84* 0.77* 0.73*
Precuneus 0.4* 0.32* 0.89* 0.75*
Short insular gyri 0.73* 0.78* 0.51* 0.54*
Straight gyrus 1.04* 0.62* 1.14* 0.89*
Subcallosal area 0.28 0.36 0.03 0.33*
Subcentral gyrus and sulci 0.5* 0.51* 0.76* 0.7*
Suborbital sulcus 0.18 0.26 0.29* 0.44*
Subparietal sulcus 0.37* 0.21 0.1 0.23*
Sulcus intermedius primus 0.33* 0.37* 0.07 0.3*
Superior frontal gyrus 0.15 0.19 0.36* 0.38*
Superior frontal sulcus 0.85* 1.1* 0.71* 0.82*
Superior occipital gyrus 0.01 0.0 0.39* 0.34*
Superior occipital sulcus and transverse occipi... 0.4* 0.24* 0.42* 0.32*
Superior parietal lobule 0.24* 0.43* 0.39* 0.43*
Superior part of the precentral sulcus 0.43* 0.56* 0.65* 0.7*
Superior segment of the circular sulcus of the ... 1.21* 1.26* 0.63* 0.62*
Superior temporal sulcus 0.32* 0.52* 0.29* 0.31*
Supramarginal gyrus 0.42* 0.68* 0.64* 0.81*
Temporal pole 0.9* 0.93* 0.75* 0.74*
Transverse frontopolar gyri and sulci 0.68* 0.49* 1.0* 0.74*
Transverse temporal sulcus 0.26* 0.52* 0.56* 0.82*
Triangular part of the inferior frontal gyrus 0.56* 0.38* 1.02* 0.76*
Vertical ramus of the anterior segment of the l... 0.9* 0.45* 0.55* 0.16
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Figure A.1: Regression and Bland-Altman for the adult dataset with different acquisition
settings. On the left the distribution of cortical thickness extracted with FreeSurfer and
CAT12. The dashed red line on the left plot represents the equation y=x. On the right is
the plot with the mean and difference (FreeSurfer – CAT12) between the cortical thickness
estimates of the frameworks. In this plot each point corresponds to a participant’s ROI.

(a) IXI|GH (b) IXI|HH

(c) IXI|IOP (d) IXI|OASIS3

Table A.14: Reproducibility in different
acquisition settings: ANCOVA for the

participant’ R2 values.
df sumsq statistic p-value Cohen’d

Acquisition settting 3.00 5.39 329.03 0.00 0.97
Age 1.00 0.07 13.71 0.00 0.12

SNR 1.00 0.23 42.20 0.00 0.20
Residuals 1043.00 5.70

Table A.15: Reproducibility in different
acquisition settings: ANCOVA pos-hoc

analysis comparing the participant’ R2s of
different sites.

Estimate Std. Error t-value p-value
IXI|HH-IXI|GH -0.076 0.009 -8.86 <0,0001
IXI|IOP-IXI|GH -0.347 0.011 -31.37 <0,0001
OASIS3-IXI|GH 0.062 0.016 3.98 0.000274
IXI|IOP-IXI|HH -0.271 0.011 -25.49 <0,0001
OASIS3-IXI|HH 0.138 0.020 6.67 <0,0001
OASIS3-IXI|IOP 0.409 0.022 18.85 <0,0001

Table A.16: Reproducibility in
different acquisition settings: ANCOVA

for the participant’ ICC values.
df sumsq statistic p-value Cohen’d

Acquisition setting 3.00 2.95 311.52 0.00 0.95
Age 1.00 0.01 3.14 0.08 0.06

SNR 1.00 0.16 49.78 0.00 0.22
Residuals 1043.00 3.29

Table A.17: Reproducibility in different
acquisition settings: ANCOVA pos-hoc analysis

comparing the participant’ ICC of different
acquisition settings.
Estimate Std. Error t value p-value

IXI|HH-IXI|GH -0.062 0.006 -9.61 <0,00001
IXI|IOP-IXI|GH -0.256 0.008 -30.42 <0,00001
OASIS3-IXI|GH 0.056 0.012 4.77 0,000011
IXI|IOP-IXI|HH -0.193 0.008 -23.90 <0,00001
OASIS3-IXI|HH 0.119 0.016 7.57 <0,00001
OASIS3-IXI|IOP 0.312 0.016 18.93 <0,00001
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Table A.18: Reproducibility in different
acquisition settings: Comparison of the
slope2

R for different acquisition settings.
t-value p-value Cohen’d

IXI|GH-IXI|HH -18.62 1.52e-61 -1.75
IXI|GH-IXI|IOP -9.61 3.56e-20 -1.29
IXI|GH-OASIS3 -72.64 1.02e-305 -5.26
IXI|HH-IXI|IOP 0.70 9.63e-01 0.10

Table A.19: Reproducibility in different
acquisition settings: Comparison of the

slopeICC for different acquisition settings.
t-value p-value Cohen’d

IXI|GH-IXI|HH -19.56 1.84e-66 -1.83
IXI|GH-IXI|IOP -2.71 1.40e-02 -0.36
IXI|GH-OASIS3 -66.99 2.38e-286 -4.85
IXI|HH-IXI|IOP 5.44 2.02e-07 0.78

Table A.20: Reproducibility in different acquisition settings: Mean R2 per lobe and site.
R2

Acquisition setting IXI|GH IXI|HH IXI|IOP OASIS3
Area
Frontal Lobe 0.40 0.42 0.26 0.33
Insula 0.34 0.23 0.20 0.37
Limbic lobe 0.32 0.32 0.19 0.31
Parietal lobe 0.51 0.49 0.30 0.57
Temporal and occipital lobes 0.41 0.43 0.25 0.42
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Table A.21: Reproducibility in different acquisition settings: R2 for each for and
acquisition setting.

Acquisition setting IXI|GH IXI|HH IXI|IOP OASIS3
Hemisphere Left Right Left Right Left Right Left Right
ROI Name
Angular gyrus 0.63 0.63 0.69 0.61 0.43 0.36 0.58 0.69
Anterior occipital sulcus and preoccipital notch 0.49 0.54 0.37 0.52 0.5 0.39 0.35 0.53
Anterior part of the cingulate gyrus and sulcus 0.35 0.33 0.32 0.43 0.11 0.14 0.19 0.2
Anterior segment of the circular sulcus of the ... 0.11 0.25 0.089 0.17 0.057 0.012 0.23 0.22
Anterior transverse collateral sulcus 0.0037 0.013 0.015 0.02 0.0024 0.00022 5.2e-05 0.0056
Anterior transverse temporal gyrus 0.24 0.17 0.28 0.16 0.21 0.41 0.51 0.38
Calcarine sulcus 0.35 0.42 0.42 0.35 0.23 0.46 0.39 0.43
Central sulcus 0.2 0.18 0.27 0.26 0.57 0.41 0.33 0.31
Cuneus 0.19 0.3 0.27 0.25 0.16 0.2 0.34 0.39
Fronto-marginal gyrus and sulcus 0.29 0.26 0.22 0.3 0.095 0.095 0.15 0.061
Horizontal ramus of the anterior segment of the... 0.26 0.3 0.32 0.39 0.15 0.31 0.29 0.14
Inferior frontal sulcus 0.56 0.55 0.49 0.7 0.4 0.3 0.42 0.31
Inferior occipital gyrus and sulcus 0.43 0.5 0.56 0.55 0.16 0.22 0.35 0.39
Inferior part of the precentral sulcus 0.56 0.6 0.56 0.59 0.27 0.39 0.65 0.44
Inferior segment of the circular sulcus of the ... 0.47 0.36 0.31 0.11 0.25 0.33 0.67 0.53
Inferior temporal gyrus 0.44 0.44 0.43 0.4 0.15 0.093 0.31 0.38
Inferior temporal sulcus 0.3 0.39 0.23 0.25 0.24 0.093 0.17 0.2
Intraparietal sulcus and transverse parietal s... 0.58 0.57 0.41 0.55 0.11 0.15 0.59 0.7
Lateral aspect of the superior temporal gyrus 0.47 0.5 0.41 0.49 0.28 0.23 0.57 0.63
Lateral occipito-temporal gyrus 0.45 0.32 0.34 0.37 0.035 0.079 0.28 0.28
Lateral occipito-temporal sulcus 0.27 0.22 0.32 0.18 0.21 0.23 0.079 0.081
Lateral orbital sulcus 0.23 0.19 0.25 0.26 0.038 0.09 0.19 0.009
Lingual gyrus 0.28 0.38 0.3 0.36 0.069 0.091 0.42 0.39
Long insular gyrus and central sulcus of the in... 0.24 0.17 0.072 0.091 0.088 0.073 0.28 0.14
Marginal branch of the cingulate sulcus 0.54 0.43 0.5 0.52 0.19 0.11 0.6 0.52
Medial occipito-temporal sulcus and lingual su... 0.47 0.5 0.6 0.54 0.22 0.44 0.33 0.45
Medial orbital sulcus 0.0081 0.082 0.028 0.05 0.049 0.21 0.021 0.0012
Middle frontal gyrus 0.7 0.73 0.74 0.72 0.43 0.12 0.57 0.38
Middle frontal sulcus 0.39 0.36 0.23 0.48 0.15 0.12 0.29 0.16
Middle occipital gyrus 0.59 0.58 0.59 0.62 0.53 0.29 0.6 0.61
Middle occipital sulcus and lunatus sulcus 0.52 0.47 0.53 0.42 0.45 0.34 0.39 0.53
Middle temporal gyrus 0.62 0.64 0.58 0.52 0.47 0.14 0.61 0.66
Middle-anterior part of the cingulate gyrus and... 0.35 0.39 0.41 0.38 0.15 0.23 0.51 0.45
Middle-posterior part of the cingulate gyrus an... 0.53 0.4 0.51 0.43 0.24 0.43 0.49 0.43
Occipital pole 0.38 0.38 0.35 0.4 0.01 0.15 0.45 0.45
Opercular part of the inferior frontal gyrus 0.68 0.72 0.69 0.68 0.56 0.58 0.72 0.61
Orbital gyri 0.35 0.44 0.32 0.41 0.31 0.27 0.32 0.13
Orbital part of the inferior frontal gyrus 0.4 0.4 0.38 0.44 0.31 0.34 0.42 0.18
Orbital sulci 0.12 0.14 0.33 0.27 0.0081 0.19 0.098 0.089
Paracentral lobule and sulcus 0.21 0.29 0.26 0.35 0.22 0.3 0.4 0.35
Parahippocampal gyrus 0.44 0.34 0.37 0.46 0.3 0.15 0.49 0.4
Parieto-occipital sulcus 0.52 0.54 0.6 0.58 0.39 0.09 0.6 0.53
Pericallosal sulcus 0.3 0.18 0.099 0.06 0.19 0.12 0.23 0.15
Planum polare of the superior temporal gyrus 0.04 0.1 0.12 0.14 0.04 0.074 0.27 0.34
Planum temporale or temporal plane of the super... 0.6 0.63 0.56 0.61 0.5 0.43 0.67 0.72
Postcentral gyrus 0.44 0.45 0.47 0.51 0.39 0.42 0.65 0.61
Postcentral sulcus 0.64 0.65 0.63 0.7 0.29 0.39 0.7 0.69
Posterior ramus 0.7 0.62 0.54 0.26 0.3 0.57 0.68 0.67
Posterior transverse collateral sulcus 0.3 0.36 0.36 0.39 0.16 0.32 0.3 0.28
Posterior-dorsal part of the cingulate gyrus 0.14 0.14 0.16 0.17 2.9e-05 0.13 0.11 0.27
Posterior-ventral part of the cingulate gyrus 0.35 0.4 0.24 0.3 0.24 0.011 0.36 0.41
Precentral gyrus 0.29 0.3 0.44 0.3 0.2 0.22 0.52 0.42
Precuneus 0.66 0.65 0.52 0.58 0.23 0.36 0.62 0.65
Short insular gyri 0.33 0.21 0.067 0.11 0.11 0.046 0.38 0.17
Straight gyrus 0.2 0.21 0.23 0.23 0.008 0.015 0.11 0.18
Subcallosal area 0.00071 0.0061 0.0057 0.005 0.0031 0.00073 7.7e-09 0.0086
Subcentral gyrus and sulci 0.58 0.61 0.58 0.42 0.49 0.48 0.67 0.63
Suborbital sulcus 0.1 0.053 0.21 0.083 0.079 0.0039 0.037 0.047
Subparietal sulcus 0.25 0.31 0.3 0.33 0.16 0.24 0.25 0.24
Sulcus intermedius primus 0.15 0.24 0.31 0.15 0.18 0.079 0.25 0.28
Superior frontal gyrus 0.69 0.69 0.69 0.67 0.58 0.6 0.68 0.64
Superior frontal sulcus 0.64 0.63 0.54 0.56 0.4 0.21 0.62 0.57
Superior occipital gyrus 0.51 0.46 0.57 0.56 0.34 0.26 0.63 0.66
Superior occipital sulcus and transverse occipi... 0.6 0.58 0.54 0.55 0.37 0.23 0.54 0.56
Superior parietal lobule 0.68 0.65 0.59 0.56 0.21 0.39 0.72 0.67
Superior part of the precentral sulcus 0.48 0.62 0.61 0.54 0.14 0.24 0.56 0.32
Superior segment of the circular sulcus of the ... 0.51 0.44 0.43 0.29 0.29 0.27 0.53 0.38
Superior temporal sulcus 0.63 0.64 0.64 0.61 0.45 0.43 0.6 0.68
Supramarginal gyrus 0.65 0.65 0.67 0.66 0.57 0.48 0.69 0.74
Temporal pole 0.18 0.32 0.5 0.37 0.19 0.095 0.21 0.27
Transverse frontopolar gyri and sulci 0.33 0.47 0.44 0.52 0.095 0.28 0.19 0.12
Transverse temporal sulcus 0.51 0.25 0.42 0.2 0.5 0.13 0.37 0.32
Triangular part of the inferior frontal gyrus 0.63 0.67 0.59 0.58 0.56 0.48 0.63 0.28
Vertical ramus of the anterior segment of the l... 0.28 0.24 0.26 0.24 0.2 0.19 0.35 0.18
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Table A.22: Reproducibility in different acquisition settings: ICC and Confidence
interval (CI) for the IXI-GH and IXI-HH acquisition settings and brain hemisphere.

Acquisition setting IXI|GH IXI|HH
Hemisphere Left Right Left Right

ICC CI95% ICC CI95% ICC CI95% ICC CI95%
ROI Name
Angular gyrus 0.78 [0.73, 0.82] 0.79 [0.74, 0.82] 0.82 [0.76, 0.86] 0.77 [0.71, 0.83]
Anterior occipital sulcus and preoccipital notch 0.7 [0.64, 0.75] 0.73 [0.68, 0.78] 0.58 [0.47, 0.67] 0.71 [0.63, 0.78]
Anterior part of the cingulate gyrus and sulcus 0.59 [0.51, 0.66] 0.57 [0.5, 0.64] 0.55 [0.44, 0.65] 0.65 [0.55, 0.72]
Anterior segment of the circular sulcus of the ... 0.33 [0.22, 0.42] 0.5 [0.41, 0.58] 0.3 [0.16, 0.43] 0.39 [0.26, 0.51]
Anterior transverse collateral sulcus 0.06 [-0.05, 0.17] 0.11 [0.0, 0.22] 0.12 [-0.02, 0.26] 0.14 [-0.01, 0.28]
Anterior transverse temporal gyrus 0.49 [0.4, 0.57] 0.42 [0.32, 0.5] 0.51 [0.39, 0.61] 0.4 [0.27, 0.51]
Calcarine sulcus 0.59 [0.51, 0.65] 0.65 [0.58, 0.71] 0.65 [0.55, 0.72] 0.59 [0.49, 0.68]
Central sulcus 0.44 [0.35, 0.53] 0.41 [0.32, 0.5] 0.52 [0.4, 0.62] 0.51 [0.39, 0.61]
Cuneus 0.41 [0.31, 0.5] 0.54 [0.46, 0.62] 0.5 [0.38, 0.6] 0.49 [0.37, 0.6]
Fronto-marginal gyrus and sulcus 0.53 [0.44, 0.6] 0.51 [0.42, 0.59] 0.47 [0.35, 0.58] 0.54 [0.43, 0.64]
Horizontal ramus of the anterior segment of the... 0.51 [0.42, 0.58] 0.55 [0.46, 0.62] 0.56 [0.45, 0.65] 0.62 [0.52, 0.7]
Inferior frontal sulcus 0.75 [0.69, 0.79] 0.74 [0.68, 0.78] 0.7 [0.62, 0.77] 0.82 [0.77, 0.87]
Inferior occipital gyrus and sulcus 0.65 [0.59, 0.71] 0.68 [0.62, 0.74] 0.74 [0.67, 0.80] 0.72 [0.64, 0.78]
Inferior part of the precentral sulcus 0.74 [0.68, 0.79] 0.76 [0.71, 0.8] 0.74 [0.66, 0.8] 0.74 [0.67, 0.8]
Inferior segment of the circular sulcus of the ... 0.68 [0.61, 0.73] 0.6 [0.53, 0.67] 0.56 [0.45, 0.65] 0.33 [0.19, 0.45]
Inferior temporal gyrus 0.67 [0.6, 0.72] 0.66 [0.59, 0.72] 0.64 [0.55, 0.72] 0.63 [0.53, 0.71]
Inferior temporal sulcus 0.54 [0.46, 0.61] 0.62 [0.55, 0.69] 0.48 [0.36, 0.58] 0.5 [0.38, 0.6]
Intraparietal sulcus and transverse parietal s... 0.76 [0.71, 0.8] 0.74 [0.69, 0.79] 0.6 [0.5, 0.69] 0.74 [0.67, 0.8]
Lateral aspect of the superior temporal gyrus 0.69 [0.62, 0.74] 0.71 [0.65, 0.76] 0.63 [0.53, 0.71] 0.67 [0.58, 0.75]
Lateral occipito-temporal gyrus 0.66 [0.6, 0.72] 0.56 [0.48, 0.64] 0.5 [0.39, 0.61] 0.57 [0.46, 0.66]
Lateral occipito-temporal sulcus 0.52 [0.43, 0.59] 0.47 [0.38, 0.55] 0.55 [0.44, 0.65] 0.42 [0.3, 0.54]
Lateral orbital sulcus 0.47 [0.38, 0.55] 0.43 [0.34, 0.52] 0.5 [0.38, 0.6] 0.5 [0.38, 0.6]
Lingual gyrus 0.5 [0.42, 0.58] 0.61 [0.53, 0.67] 0.51 [0.4, 0.61] 0.58 [0.47, 0.67]
Long insular gyrus and central sulcus of the in... 0.49 [0.4, 0.57] 0.4 [0.3, 0.49] 0.27 [0.13, 0.4] 0.3 [0.16, 0.43]
Marginal branch of the cingulate sulcus 0.73 [0.67, 0.78] 0.65 [0.58, 0.71] 0.7 [0.62, 0.77] 0.7 [0.62, 0.77]
Medial occipito-temporal sulcus and lingual su... 0.68 [0.62, 0.74] 0.71 [0.65, 0.76] 0.74 [0.66, 0.8] 0.73 [0.65, 0.79]
Medial orbital sulcus 0.085 [-0.03, 0.19] 0.28 [0.17, 0.38] 0.17 [0.02, 0.31] 0.22 [0.08, 0.36]
Middle frontal gyrus 0.83 [0.8, 0.86] 0.85 [0.82, 0.88] 0.86 [0.81, 0.89] 0.85 [0.8, 0.88]
Middle frontal sulcus 0.62 [0.54, 0.68] 0.58 [0.51, 0.65] 0.46 [0.34, 0.57] 0.68 [0.6, 0.75]
Middle occipital gyrus 0.77 [0.72, 0.81] 0.76 [0.71, 0.8] 0.75 [0.68, 0.81] 0.77 [0.7, 0.82]
Middle occipital sulcus and lunatus sulcus 0.71 [0.65, 0.76] 0.69 [0.62, 0.74] 0.72 [0.64, 0.78] 0.64 [0.55, 0.72]
Middle temporal gyrus 0.79 [0.74, 0.83] 0.8 [0.75, 0.83] 0.75 [0.68, 0.81] 0.71 [0.63, 0.78]
Middle-anterior part of the cingulate gyrus and... 0.59 [0.51, 0.66] 0.62 [0.55, 0.69] 0.63 [0.54, 0.71] 0.61 [0.5, 0.69]
Middle-posterior part of the cingulate gyrus an... 0.73 [0.67, 0.78] 0.63 [0.56, 0.69] 0.69 [0.6, 0.76] 0.63 [0.53, 0.71]
Occipital pole 0.6 [0.52, 0.66] 0.61 [0.53, 0.67] 0.59 [0.49, 0.68] 0.63 [0.53, 0.71]
Opercular part of the inferior frontal gyrus 0.81 [0.77, 0.85] 0.84 [0.8, 0.87] 0.78 [0.72, 0.83] 0.79 [0.73, 0.84]
Orbital gyri 0.59 [0.52, 0.66] 0.66 [0.59, 0.72] 0.56 [0.45, 0.65] 0.63 [0.53, 0.71]
Orbital part of the inferior frontal gyrus 0.63 [0.56, 0.69] 0.63 [0.56, 0.69] 0.61 [0.51, 0.69] 0.65 [0.55, 0.72]
Orbital sulci 0.33 [0.23, 0.43] 0.37 [0.27, 0.46] 0.54 [0.43, 0.64] 0.47 [0.34, 0.57]
Paracentral lobule and sulcus 0.45 [0.35, 0.53] 0.52 [0.44, 0.6] 0.5 [0.39, 0.61] 0.58 [0.47, 0.67]
Parahippocampal gyrus 0.66 [0.59, 0.72] 0.58 [0.5, 0.65] 0.6 [0.5, 0.69] 0.68 [0.59, 0.75]
Parieto-occipital sulcus 0.71 [0.65, 0.76] 0.73 [0.68, 0.78] 0.75 [0.68, 0.81] 0.75 [0.68, 0.81]
Pericallosal sulcus 0.53 [0.44, 0.6] 0.38 [0.29, 0.47] 0.28 [0.14, 0.41] 0.22 [0.08, 0.35]
Planum polare of the superior temporal gyrus 0.2 [0.09, 0.3] 0.32 [0.22, 0.42] 0.35 [0.21, 0.47] 0.36 [0.23, 0.48]
Planum temporale or temporal plane of the super... 0.75 [0.7, 0.8] 0.78 [0.73, 0.82] 0.73 [0.65, 0.79] 0.75 [0.67, 0.81]
Postcentral gyrus 0.67 [0.6, 0.72] 0.67 [0.61, 0.73] 0.68 [0.6, 0.75] 0.71 [0.63, 0.78]
Postcentral sulcus 0.8 [0.76, 0.84] 0.8 [0.76, 0.84] 0.8 [0.73, 0.84] 0.84 [0.79, 0.87]
Posterior ramus 0.82 [0.78, 0.86] 0.78 [0.73, 0.82] 0.71 [0.62, 0.77] 0.51 [0.39, 0.61]
Posterior transverse collateral sulcus 0.54 [0.46, 0.61] 0.59 [0.51, 0.65] 0.59 [0.48, 0.68] 0.59 [0.49, 0.68]
Posterior-dorsal part of the cingulate gyrus 0.38 [0.28, 0.47] 0.37 [0.27, 0.46] 0.33 [0.2, 0.46] 0.38 [0.24, 0.5]
Posterior-ventral part of the cingulate gyrus 0.59 [0.51, 0.66] 0.64 [0.56, 0.7] 0.49 [0.37, 0.59] 0.55 [0.44, 0.64]
Precentral gyrus 0.53 [0.45, 0.61] 0.54 [0.46, 0.62] 0.66 [0.57, 0.74] 0.54 [0.43, 0.64]
Precuneus 0.78 [0.73, 0.82] 0.78 [0.74, 0.82] 0.66 [0.57, 0.73] 0.7 [0.62, 0.77]
Short insular gyri 0.49 [0.4, 0.57] 0.42 [0.33, 0.51] 0.26 [0.12, 0.39] 0.32 [0.19, 0.45]
Straight gyrus 0.44 [0.34, 0.52] 0.45 [0.36, 0.54] 0.45 [0.32, 0.56] 0.46 [0.33, 0.57]
Subcallosal area -0.025 [-0.14, 0.09] 0.073 [-0.04, 0.18] -0.074 [-0.22, 0.07] -0.07 [-0.21, 0.08]
Subcentral gyrus and sulci 0.75 [0.69, 0.79] 0.77 [0.72, 0.81] 0.72 [0.64, 0.79] 0.62 [0.52, 0.7]
Suborbital sulcus 0.32 [0.21, 0.41] 0.21 [0.1, 0.32] 0.46 [0.34, 0.57] 0.28 [0.14, 0.41]
Subparietal sulcus 0.5 [0.41, 0.58] 0.54 [0.46, 0.62] 0.53 [0.41, 0.63] 0.55 [0.44, 0.64]
Sulcus intermedius primus 0.33 [0.23, 0.43] 0.45 [0.36, 0.53] 0.51 [0.4, 0.61] 0.37 [0.23, 0.49]
Superior frontal gyrus 0.83 [0.79, 0.86] 0.83 [0.79, 0.86] 0.83 [0.78, 0.87] 0.82 [0.77, 0.86]
Superior frontal sulcus 0.8 [0.75, 0.84] 0.79 [0.74, 0.83] 0.73 [0.66, 0.79] 0.75 [0.67, 0.8]
Superior occipital gyrus 0.71 [0.65, 0.76] 0.68 [0.61, 0.73] 0.74 [0.66, 0.8] 0.74 [0.66, 0.8]
Superior occipital sulcus and transverse occipi... 0.77 [0.72, 0.81] 0.76 [0.71, 0.8] 0.72 [0.65, 0.79] 0.73 [0.66, 0.79]
Superior parietal lobule 0.83 [0.79, 0.86] 0.8 [0.76, 0.84] 0.77 [0.7, 0.82] 0.75 [0.67, 0.8]
Superior part of the precentral sulcus 0.68 [0.62, 0.74] 0.78 [0.74, 0.82] 0.77 [0.71, 0.83] 0.73 [0.65, 0.79]
Superior segment of the circular sulcus of the ... 0.71 [0.65, 0.76] 0.67 [0.6, 0.72] 0.65 [0.55, 0.72] 0.52 [0.41, 0.62]
Superior temporal sulcus 0.78 [0.74, 0.82] 0.8 [0.76, 0.84] 0.78 [0.72, 0.84] 0.78 [0.71, 0.83]
Supramarginal gyrus 0.78 [0.74, 0.82] 0.79 [0.74, 0.83] 0.8 [0.74, 0.84] 0.8 [0.75, 0.85]
Temporal pole 0.42 [0.32, 0.5] 0.55 [0.47, 0.63] 0.7 [0.62, 0.77] 0.61 [0.51, 0.7]
Transverse frontopolar gyri and sulci 0.56 [0.48, 0.63] 0.66 [0.59, 0.71] 0.65 [0.56, 0.73] 0.7 [0.61, 0.77]
Transverse temporal sulcus 0.66 [0.59, 0.72] 0.47 [0.38, 0.55] 0.59 [0.49, 0.68] 0.4 [0.27, 0.52]
Triangular part of the inferior frontal gyrus 0.77 [0.72, 0.81] 0.81 [0.77, 0.84] 0.75 [0.67, 0.81] 0.74 [0.67, 0.8]
Vertical ramus of the anterior segment of the l... 0.49 [0.4, 0.57] 0.47 [0.37, 0.55] 0.5 [0.38, 0.6] 0.48 [0.36, 0.58]
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Table A.23: Reproducibility in different acquisition settings: ICC and Confidence
interval (CI) for the IXI-IOP and OASIS3 acquisition settings and brain hemisphere.

Acquisition setting IXI|IOP OASIS3
Hemisphere Left Right Left Right

ICC CI95% ICC CI95% ICC CI95% ICC CI95%
ROI Name
Angular gyrus 0.58 [0.39, 0.72] 0.53 [0.33, 0.68] 0.76 [0.72, 0.79] 0.82 [0.78, 0.84]
Anterior occipital sulcus and preoccipital notch 0.68 [0.53, 0.79] 0.61 [0.44, 0.74] 0.59 [0.53, 0.64] 0.72 [0.68, 0.76]
Anterior part of the cingulate gyrus and sulcus 0.33 [0.1, 0.53] 0.36 [0.13, 0.55] 0.43 [0.36, 0.5] 0.45 [0.37, 0.51]
Anterior segment of the circular sulcus of the ... 0.23 [-0.01, 0.44] 0.11 [-0.13, 0.34] 0.48 [0.41, 0.55] 0.47 [0.4, 0.54]
Anterior transverse collateral sulcus -0.048 [-0.28, 0.19] 0.015 [-0.22, 0.25] -0.0072 [-0.1, 0.08] 0.074 [-0.01, 0.16]
Anterior transverse temporal gyrus 0.46 [0.25, 0.63] 0.64 [0.47, 0.76] 0.71 [0.66, 0.75] 0.62 [0.56, 0.67]
Calcarine sulcus 0.48 [0.27, 0.65] 0.68 [0.52, 0.79] 0.62 [0.57, 0.68] 0.66 [0.6, 0.71]
Central sulcus 0.73 [0.6, 0.83] 0.64 [0.47, 0.76] 0.57 [0.51, 0.63] 0.55 [0.49, 0.61]
Cuneus 0.37 [0.14, 0.56] 0.44 [0.23, 0.61] 0.58 [0.52, 0.64] 0.63 [0.57, 0.68]
Fronto-marginal gyrus and sulcus 0.29 [0.06, 0.5] 0.3 [0.07, 0.51] 0.37 [0.3, 0.45] 0.23 [0.14, 0.31]
Horizontal ramus of the anterior segment of the... 0.38 [0.16, 0.57] 0.55 [0.36, 0.7] 0.54 [0.47, 0.6] 0.38 [0.3, 0.45]
Inferior frontal sulcus 0.63 [0.46, 0.76] 0.55 [0.35, 0.69] 0.65 [0.59, 0.69] 0.55 [0.49, 0.61]
Inferior occipital gyrus and sulcus 0.4 [0.18, 0.58] 0.43 [0.21, 0.61] 0.59 [0.53, 0.65] 0.61 [0.56, 0.67]
Inferior part of the precentral sulcus 0.51 [0.31, 0.67] 0.62 [0.45, 0.75] 0.8 [0.77, 0.83] 0.66 [0.61, 0.71]
Inferior segment of the circular sulcus of the ... 0.49 [0.29, 0.66] 0.56 [0.37, 0.7] 0.81 [0.78, 0.84] 0.73 [0.68, 0.77]
Inferior temporal gyrus 0.37 [0.14, 0.56] 0.3 [0.07, 0.51] 0.55 [0.49, 0.61] 0.62 [0.56, 0.67]
Inferior temporal sulcus 0.48 [0.28, 0.65] 0.3 [0.07, 0.51] 0.41 [0.33, 0.48] 0.45 [0.37, 0.52]
Intraparietal sulcus and transverse parietal s... 0.32 [0.09, 0.52] 0.38 [0.16, 0.57] 0.76 [0.72, 0.8] 0.83 [0.8, 0.85]
Lateral aspect of the superior temporal gyrus 0.53 [0.33, 0.68] 0.45 [0.24, 0.63] 0.75 [0.71, 0.79] 0.79 [0.76, 0.82]
Lateral occipito-temporal gyrus 0.18 [-0.06, 0.4] 0.25 [0.01, 0.46] 0.53 [0.47, 0.59] 0.53 [0.46, 0.59]
Lateral occipito-temporal sulcus 0.44 [0.23, 0.62] 0.47 [0.26, 0.63] 0.28 [0.2, 0.36] 0.28 [0.2, 0.36]
Lateral orbital sulcus 0.18 [-0.06, 0.4] 0.3 [0.06, 0.5] 0.44 [0.36, 0.51] 0.092 [0.0, 0.18]
Lingual gyrus 0.26 [0.02, 0.47] 0.29 [0.06, 0.5] 0.63 [0.58, 0.68] 0.61 [0.55, 0.66]
Long insular gyrus and central sulcus of the in... 0.29 [0.05, 0.49] 0.27 [0.03, 0.48] 0.53 [0.46, 0.59] 0.38 [0.3, 0.45]
Marginal branch of the cingulate sulcus 0.43 [0.21, 0.61] 0.32 [0.08, 0.52] 0.77 [0.74, 0.81] 0.72 [0.67, 0.76]
Medial occipito-temporal sulcus and lingual su... 0.46 [0.24, 0.63] 0.64 [0.48, 0.76] 0.57 [0.51, 0.63] 0.67 [0.62, 0.72]
Medial orbital sulcus 0.21 [-0.03, 0.43] 0.43 [0.21, 0.61] 0.14 [0.05, 0.22] 0.034 [-0.05, 0.12]
Middle frontal gyrus 0.65 [0.49, 0.77] 0.35 [0.12, 0.54] 0.75 [0.71, 0.79] 0.62 [0.56, 0.67]
Middle frontal sulcus 0.38 [0.16, 0.57] 0.33 [0.1, 0.53] 0.54 [0.47, 0.6] 0.39 [0.32, 0.46]
Middle occipital gyrus 0.69 [0.54, 0.8] 0.53 [0.34, 0.69] 0.77 [0.73, 0.8] 0.76 [0.72, 0.8]
Middle occipital sulcus and lunatus sulcus 0.65 [0.49, 0.77] 0.58 [0.39, 0.72] 0.62 [0.56, 0.67] 0.72 [0.68, 0.76]
Middle temporal gyrus 0.65 [0.49, 0.77] 0.37 [0.15, 0.56] 0.78 [0.74, 0.81] 0.81 [0.78, 0.84]
Middle-anterior part of the cingulate gyrus and... 0.38 [0.16, 0.57] 0.48 [0.28, 0.65] 0.71 [0.67, 0.75] 0.66 [0.61, 0.71]
Middle-posterior part of the cingulate gyrus an... 0.49 [0.28, 0.65] 0.63 [0.46, 0.75] 0.7 [0.65, 0.74] 0.65 [0.6, 0.7]
Occipital pole 0.087 [-0.15, 0.32] 0.36 [0.13, 0.55] 0.65 [0.59, 0.7] 0.65 [0.6, 0.7]
Opercular part of the inferior frontal gyrus 0.74 [0.61, 0.83] 0.75 [0.63, 0.84] 0.85 [0.82, 0.87] 0.78 [0.74, 0.81]
Orbital gyri 0.55 [0.36, 0.7] 0.51 [0.31, 0.67] 0.57 [0.5, 0.62] 0.36 [0.28, 0.43]
Orbital part of the inferior frontal gyrus 0.55 [0.36, 0.7] 0.56 [0.37, 0.7] 0.65 [0.59, 0.69] 0.42 [0.35, 0.49]
Orbital sulci 0.079 [-0.16, 0.31] 0.41 [0.19, 0.59] 0.3 [0.22, 0.38] 0.29 [0.21, 0.37]
Paracentral lobule and sulcus 0.44 [0.23, 0.62] 0.53 [0.33, 0.68] 0.63 [0.57, 0.68] 0.59 [0.53, 0.65]
Parahippocampal gyrus 0.54 [0.34, 0.69] 0.38 [0.15, 0.56] 0.69 [0.65, 0.74] 0.63 [0.58, 0.68]
Parieto-occipital sulcus 0.58 [0.4, 0.72] 0.3 [0.06, 0.5] 0.77 [0.74, 0.81] 0.72 [0.68, 0.76]
Pericallosal sulcus 0.42 [0.21, 0.6] 0.29 [0.06, 0.49] 0.47 [0.4, 0.54] 0.35 [0.27, 0.43]
Planum polare of the superior temporal gyrus 0.2 [-0.04, 0.42] 0.27 [0.03, 0.48] 0.51 [0.45, 0.58] 0.58 [0.52, 0.63]
Planum temporale or temporal plane of the super... 0.65 [0.49, 0.77] 0.65 [0.49, 0.77] 0.81 [0.78, 0.84] 0.83 [0.8, 0.86]
Postcentral gyrus 0.57 [0.38, 0.71] 0.64 [0.48, 0.76] 0.81 [0.77, 0.84] 0.78 [0.74, 0.81]
Postcentral sulcus 0.54 [0.35, 0.69] 0.63 [0.46, 0.75] 0.84 [0.81, 0.86] 0.83 [0.8, 0.85]
Posterior ramus 0.54 [0.35, 0.69] 0.72 [0.58, 0.82] 0.82 [0.79, 0.85] 0.82 [0.79, 0.85]
Posterior transverse collateral sulcus 0.4 [0.18, 0.58] 0.56 [0.37, 0.7] 0.54 [0.48, 0.6] 0.52 [0.45, 0.58]
Posterior-dorsal part of the cingulate gyrus -0.0053 [-0.24, 0.23] 0.31 [0.08, 0.51] 0.32 [0.24, 0.4] 0.52 [0.45, 0.58]
Posterior-ventral part of the cingulate gyrus 0.49 [0.29, 0.66] 0.1 [-0.14, 0.34] 0.6 [0.54, 0.66] 0.64 [0.58, 0.69]
Precentral gyrus 0.4 [0.18, 0.58] 0.45 [0.24, 0.63] 0.72 [0.68, 0.76] 0.64 [0.58, 0.69]
Precuneus 0.43 [0.22, 0.61] 0.57 [0.38, 0.71] 0.77 [0.74, 0.81] 0.8 [0.77, 0.83]
Short insular gyri 0.32 [0.09, 0.52] 0.21 [-0.03, 0.43] 0.59 [0.52, 0.64] 0.37 [0.29, 0.44]
Straight gyrus 0.085 [-0.16, 0.32] 0.12 [-0.12, 0.35] 0.32 [0.24, 0.4] 0.41 [0.33, 0.48]
Subcallosal area 0.05 [-0.19, 0.29] -0.024 [-0.26, 0.22] 8.5e-05 [-0.09, 0.09] 0.087 [-0.0, 0.17]
Subcentral gyrus and sulci 0.64 [0.47, 0.76] 0.68 [0.53, 0.79] 0.81 [0.78, 0.84] 0.79 [0.75, 0.82]
Suborbital sulcus 0.28 [0.04, 0.49] 0.062 [-0.18, 0.3] 0.18 [0.1, 0.27] 0.19 [0.1, 0.27]
Subparietal sulcus 0.38 [0.15, 0.57] 0.48 [0.28, 0.65] 0.5 [0.43, 0.56] 0.49 [0.41, 0.55]
Sulcus intermedius primus 0.4 [0.18, 0.59] 0.24 [-0.0, 0.45] 0.48 [0.4, 0.54] 0.49 [0.42, 0.56]
Superior frontal gyrus 0.75 [0.62, 0.84] 0.77 [0.64, 0.85] 0.82 [0.79, 0.85] 0.79 [0.75, 0.82]
Superior frontal sulcus 0.63 [0.47, 0.76] 0.46 [0.25, 0.63] 0.79 [0.75, 0.82] 0.75 [0.71, 0.79]
Superior occipital gyrus 0.55 [0.35, 0.69] 0.49 [0.29, 0.66] 0.78 [0.74, 0.81] 0.8 [0.76, 0.83]
Superior occipital sulcus and transverse occipi... 0.61 [0.43, 0.74] 0.46 [0.25, 0.63] 0.73 [0.69, 0.77] 0.74 [0.7, 0.78]
Superior parietal lobule 0.41 [0.19, 0.59] 0.61 [0.43, 0.74] 0.85 [0.82, 0.87] 0.81 [0.78, 0.84]
Superior part of the precentral sulcus 0.34 [0.11, 0.53] 0.43 [0.21, 0.61] 0.75 [0.71, 0.79] 0.56 [0.5, 0.62]
Superior segment of the circular sulcus of the ... 0.52 [0.33, 0.68] 0.5 [0.3, 0.66] 0.72 [0.68, 0.76] 0.61 [0.55, 0.67]
Superior temporal sulcus 0.66 [0.51, 0.78] 0.65 [0.49, 0.77] 0.78 [0.74, 0.81] 0.82 [0.79, 0.85]
Supramarginal gyrus 0.7 [0.55, 0.8] 0.69 [0.54, 0.8] 0.83 [0.8, 0.85] 0.84 [0.81, 0.86]
Temporal pole 0.43 [0.21, 0.61] 0.3 [0.06, 0.5] 0.45 [0.38, 0.52] 0.5 [0.43, 0.56]
Transverse frontopolar gyri and sulci 0.31 [0.08, 0.51] 0.53 [0.33, 0.68] 0.42 [0.35, 0.49] 0.35 [0.27, 0.42]
Transverse temporal sulcus 0.69 [0.54, 0.8] 0.32 [0.09, 0.52] 0.59 [0.53, 0.65] 0.53 [0.47, 0.59]
Triangular part of the inferior frontal gyrus 0.75 [0.62, 0.84] 0.69 [0.54, 0.8] 0.79 [0.76, 0.82] 0.53 [0.46, 0.59]
Vertical ramus of the anterior segment of the l... 0.43 [0.21, 0.6] 0.43 [0.21, 0.61] 0.58 [0.52, 0.64] 0.41 [0.34, 0.49]
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Table A.24: Reproducibility in different acquisition settings: Cohen’d values for the
paired t-test of each ROI, comparing all the cortical thickness estimations of individuals
within acquisition setting. The * represents the ROIs in which the null hypothesis was

rejected.
Acquisition setting IXI|GH IXI|HH IXI|IOP OASIS3
Hemisphere Left Right Left Right Left Right Left Right
ROI Name
Angular gyrus 0.73* 0.88* 0.5* 0.55* 0.22 0.34 0.25* 0.69*
Anterior occipital sulcus and preoccipital notch 0.02 0.02 0.09 0.31* 0.01 0.13 0.09 0.28*
Anterior part of the cingulate gyrus and sulcus 0.94* 0.73* 0.81* 0.48* 0.64* 0.56 0.21* 0.44*
Anterior segment of the circular sulcus of the ... 0.82* 0.11 0.17 0.42* 0.48 0.42 1.14* 0.89*
Anterior transverse collateral sulcus 0.67* 0.48* 0.88* 0.85* 2.38* 1.85* 0.19 0.44*
Anterior transverse temporal gyrus 0.47* 0.49* 0.26 0.12 1.07* 0.49* 0.74* 0.86*
Calcarine sulcus 2.71* 2.03* 2.25* 1.47* 2.18* 1.72* 1.79* 1.26*
Central sulcus 0.85* 0.8* 0.32* 0.26 0.61* 0.84* 1.1* 0.87*
Cuneus 0.66* 0.88* 0.93* 1.16* 1.33* 1.63* 0.36* 0.23*
Fronto-marginal gyrus and sulcus 0.15 0.19 0.39* 0.06 0.03 0.25 0.02 0.03
Horizontal ramus of the anterior segment of the... 0.84* 1.25* 0.59* 0.93* 1.4* 1.64* 1.04* 1.5*
Inferior frontal sulcus 0.71* 0.72* 0.76* 0.67* 1.4* 1.95* 1.17* 1.46*
Inferior occipital gyrus and sulcus 0.76* 1.13* 0.06 0.25* 0.78* 0.9* 0.43* 1.29*
Inferior part of the precentral sulcus 0.18* 0.2* 0.33* 0.18 0.98* 1.55* 0.82* 0.93*
Inferior segment of the circular sulcus of the ... 1.46* 1.5* 0.49* 0.22 1.13* 1.38* 1.1* 1.56*
Inferior temporal gyrus 2.35* 2.05* 1.82* 1.51* 2.28* 2.46* 1.36* 1.71*
Inferior temporal sulcus 0.8* 0.97* 0.7* 0.7* 0.82* 0.62* 0.21* 0.43*
Intraparietal sulcus and transverse parietal s... 0.79* 0.86* 0.86* 1.19* 1.62* 1.56* 0.71* 0.49*
Lateral aspect of the superior temporal gyrus 2.21* 1.76* 1.82* 1.25* 2.42* 1.77* 1.31* 0.91*
Lateral occipito-temporal gyrus 1.78* 1.61* 0.53* 0.5* 0.59 0.17 2.07* 2.55*
Lateral occipito-temporal sulcus 0.61* 0.51* 0.54* 0.33* 0.46 0.79* 0.18 0.61*
Lateral orbital sulcus 0.47* 0.49* 0.67* 0.59* 1.35* 1.01* 1.08* 1.2*
Lingual gyrus 0.56* 0.82* 1.32* 1.2* 1.44* 2.02* 0.28* 0.3*
Long insular gyrus and central sulcus of the in... 0.04 0.5* 0.06 0.64* 1.15* 0.68* 0.14 0.59*
Marginal branch of the cingulate sulcus 1.18* 1.1* 1.41* 1.03* 1.37* 1.27* 1.23* 1.14*
Medial occipito-temporal sulcus and lingual su... 0.16 0.51* 0.05 0.24* 0.12 0.15 0.17* 0.75*
Medial orbital sulcus 0.36* 0.53* 0.48* 0.2 3.27* 2.26* 0.64* 0.48*
Middle frontal gyrus 0.15* 0.34* 0.2* 0.06 0.33 0.25 0.1 0.22*
Middle frontal sulcus 1.36* 1.3* 1.83* 1.4* 1.68* 1.72* 1.48* 1.77*
Middle occipital gyrus 0.79* 1.39* 0.24* 0.57* 0.12 0.69* 0.43* 1.14*
Middle occipital sulcus and lunatus sulcus 0.48* 0.53* 0.9* 0.93* 0.68* 0.58* 0.43* 0.12
Middle temporal gyrus 1.65* 1.63* 1.19* 1.16* 1.25* 0.91* 0.81* 0.75*
Middle-anterior part of the cingulate gyrus and... 0.4* 0.11 0.41* 0.17 0.6* 0.19 0.98* 0.89*
Middle-posterior part of the cingulate gyrus an... 0.02 0.14 0.33* 0.14 0.07 0.23 0.39* 0.29*
Occipital pole 0.67* 0.62* 0.12 0.33* 0.6 0.46 0.5* 0.65*
Opercular part of the inferior frontal gyrus 0.25* 0.15* 0.21* 0.22* 0.22 0.4* 0.04 0.18*
Orbital gyri 0.29* 0.89* 0.11 0.39* 1.64* 2.17* 0.11 0.82*
Orbital part of the inferior frontal gyrus 1.04* 1.34* 0.84* 1.13* 0.45 1.21* 0.66* 0.9*
Orbital sulci 0.93* 0.75* 0.52* 0.67* 0.37 0.68* 0.43* 0.84*
Paracentral lobule and sulcus 2.47* 2.11* 1.57* 1.56* 0.28 0.21 1.44* 1.52*
Parahippocampal gyrus 1.0* 1.31* 0.85* 0.94* 1.22* 0.97* 1.0* 1.14*
Parieto-occipital sulcus 0.86* 0.68* 0.88* 0.77* 0.95* 1.12* 0.6* 0.51*
Pericallosal sulcus 0.44* 0.55* 0.83* 0.83* 1.05* 1.04* 0.56* 0.69*
Planum polare of the superior temporal gyrus 1.35* 0.7* 1.25* 0.8* 1.02* 0.74* 0.73* 0.18*
Planum temporale or temporal plane of the super... 0.21* 0.32* 0.11 0.08 0.06 0.09 0.04 0.37*
Postcentral gyrus 1.4* 1.24* 1.16* 1.02* 0.45 0.32 0.82* 0.88*
Postcentral sulcus 0.72* 0.7* 0.65* 0.73* 1.65* 1.8* 0.73* 0.68*
Posterior ramus 0.47* 1.17* 0.38* 0.8* 1.2* 1.86* 0.44* 1.23*
Posterior transverse collateral sulcus 0.45* 0.08 0.69* 0.3* 0.48 0.18 0.03 0.74*
Posterior-dorsal part of the cingulate gyrus 1.69* 1.93* 1.23* 1.32* 1.62* 1.82* 1.38* 1.34*
Posterior-ventral part of the cingulate gyrus 0.86* 1.17* 0.73* 1.02* 0.24 0.31 0.76* 0.8*
Precentral gyrus 2.54* 2.82* 1.89* 1.95* 0.87* 0.75* 1.72* 1.55*
Precuneus 0.29* 0.34* 0.15 0.13 0.02 0.11 0.13* 0.12*
Short insular gyri 0.59* 0.66* 0.62* 0.46* 0.01 0.05 0.34* 0.62*
Straight gyrus 1.15* 0.85* 0.4* 0.52* 2.08* 2.07* 1.65* 0.75*
Subcallosal area 0.67* 0.86* 0.57* 0.67* 0.11 0.64 0.49* 0.12
Subcentral gyrus and sulci 1.06* 1.09* 0.61* 0.8* 0.61* 0.42* 0.29* 0.25*
Suborbital sulcus 0.09 0.69* 0.0 0.28 0.0 0.3 0.08 0.3*
Subparietal sulcus 0.33* 0.02 0.66* 0.08 0.1 0.23 0.67* 0.32*
Sulcus intermedius primus 0.09 0.25* 0.15 0.53* 0.31 1.33* 0.67* 0.52*
Superior frontal gyrus 1.16* 1.19* 0.38* 0.41* 0.45* 0.43* 0.1 0.1
Superior frontal sulcus 0.48* 0.46* 1.08* 0.95* 1.44* 1.89* 0.95* 1.55*
Superior occipital gyrus 0.33* 0.31* 0.06 0.2 0.4 0.72* 0.48* 0.33*
Superior occipital sulcus and transverse occipi... 0.56* 0.32* 0.76* 0.91* 1.13* 0.87* 0.27* 0.04
Superior parietal lobule 0.34* 0.42* 0.04 0.11 0.7* 0.36 0.16* 0.22*
Superior part of the precentral sulcus 0.02 0.05 0.36* 0.47* 1.03* 1.31* 0.31* 0.62*
Superior segment of the circular sulcus of the ... 1.96* 1.74* 1.47* 1.19* 2.44* 2.19* 2.6* 2.82*
Superior temporal sulcus 0.33* 0.37* 0.2* 0.35* 0.29 0.8* 0.71* 0.71*
Supramarginal gyrus 0.75* 1.06* 0.59* 0.86* 0.01 0.46* 0.17* 0.52*
Temporal pole 1.19* 1.35* 1.06* 1.1* 1.91* 2.04* 0.83* 0.95*
Transverse frontopolar gyri and sulci 0.76* 0.35* 0.12 0.0 0.45 0.25 0.65* 0.51*
Transverse temporal sulcus 0.25* 0.57* 0.04 0.33* 0.17 0.26 0.45* 0.75*
Triangular part of the inferior frontal gyrus 0.82* 0.82* 0.54* 0.62* 0.42* 0.65* 0.28* 0.11
Vertical ramus of the anterior segment of the l... 1.09* 0.42* 1.07* 0.31* 1.53* 1.4* 1.32* 1.12*
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Table A.25: Brain age model results using cortical thickness estimations, extracted by
FreeSurfer, to predict the participant’ age (coefficient and p-value) and the mean

reproducibility R2 for the corresponding ROI. The significant ROIs are shown in bold.
ROI Name coefficient p-value R2

Right Inferior segment of the circular sulcus of the insula -10.80 <0.001 0.334
Right Central sulcus 15.96 <0.001 0.289
Left Subcallosal area -7.09 <0.001 0.002
Right Lateral orbital sulcus -5.67 0.001 0.136
Left Superior frontal gyrus -13.69 0.004 0.66
Right Anterior segment of the circular sulcus of the insula -4.89 0.004 0.163
Right Occipital pole 10.14 0.004 0.343
Right Lingual gyrus 9.76 0.005 0.308
Right Angular gyrus -9.89 0.005 0.571
Right Superior occipital sulcus and transverse occipital sulcus 8.00 0.007 0.481
Left Lingual gyrus 10.19 0.009 0.266
Right Medial occipito-temporal sulcus and lingual sulcus -7.06 0.012 0.484
Right Transverse temporal sulcus -2.84 0.016 0.224
Right Paracentral lobule and sulcus -5.78 0.016 0.32
Right Inferior occipital gyrus and sulcus 4.42 0.016 0.415
Left Orbital sulci 4.94 0.017 0.138
Left Medial orbital sulcus -4.23 0.018 0.027
Right Superior part of the precentral sulcus -5.69 0.019 0.431
Left Triangular part of the inferior frontal gyrus -6.10 0.019 0.603
Right Anterior occipital sulcus and preoccipital notch -4.82 0.024 0.496
Right Long insular gyrus and central sulcus of the insula 2.96 0.028 0.119
Right Pericallosal sulcus 3.65 0.028 0.128
Right Vertical ramus of the anterior segment of the lateral sulcus -2.87 0.03 0.21
Right Lateral aspect of the superior temporal gyrus -5.56 0.033 0.463
Right Temporal pole 4.25 0.04 0.264
Left Superior segment of the circular sulcus of the insula -7.24 0.041 0.44
Left Medial occipito-temporal sulcus and lingual sulcus -5.83 0.042 0.403
Right Superior segment of the circular sulcus of the insula -6.55 0.044 0.345
Right Anterior transverse temporal gyrus 3.48 0.048 0.281
Left Postcentral gyrus 6.12 0.05 0.487
Right Parahippocampal gyrus 3.58 0.058 0.338
Right Calcarine sulcus -6.88 0.059 0.416
Right Fronto-marginal gyrus and sulcus 3.75 0.066 0.18
Right Suborbital sulcus -1.79 0.067 0.047
Right Middle-anterior part of the cingulate gyrus and sulcus -5.33 0.069 0.362
Right Superior occipital gyrus -5.05 0.071 0.486
Left Middle-posterior part of the cingulate gyrus and sulcus 5.80 0.072 0.443
Right Horizontal ramus of the anterior segment of the lateral sulcus -2.89 0.072 0.284
Right Superior frontal sulcus -6.72 0.079 0.493
Left Posterior ramus -4.61 0.081 0.553
Left Temporal pole 3.40 0.087 0.267
Left Calcarine sulcus -6.70 0.092 0.348
Left Intraparietal sulcus and transverse parietal sulci 5.54 0.093 0.422
Right Middle frontal gyrus 6.30 0.099 0.491
Right Middle occipital sulcus and lunatus sulcus -3.92 0.101 0.439
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Left Posterior transverse collateral sulcus -3.30 0.112 0.281
Left Cuneus 5.57 0.112 0.241
Left Orbital gyri -4.81 0.116 0.326
Left Occipital pole 4.52 0.128 0.297
Left Anterior part of the cingulate gyrus and sulcus 4.59 0.128 0.242
Right Orbital sulci 3.24 0.129 0.174
Left Suborbital sulcus -2.35 0.133 0.108
Right Straight gyrus -2.97 0.133 0.158
Right Precuneus 4.79 0.133 0.56
Right Postcentral gyrus -4.25 0.139 0.497
Right Planum polare of the superior temporal gyrus -2.27 0.141 0.163
Left Horizontal ramus of the anterior segment of the lateral sulcus 2.02 0.147 0.254
Right Superior temporal sulcus 6.76 0.149 0.59
Left Superior part of the precentral sulcus -3.46 0.15 0.448
Right Middle temporal gyrus -4.65 0.152 0.49
Left Supramarginal gyrus 4.64 0.165 0.648
Left Superior temporal sulcus -6.43 0.169 0.58
Left Transverse frontopolar gyri and sulci -2.87 0.175 0.261
Right Anterior part of the cingulate gyrus and sulcus 4.15 0.184 0.274
Right Posterior ramus -3.89 0.185 0.531
Right Supramarginal gyrus 4.49 0.187 0.634
Left Marginal branch of the cingulate sulcus -3.82 0.191 0.457
Left Lateral occipito-temporal sulcus -2.82 0.191 0.222
Left Anterior transverse temporal gyrus 2.31 0.192 0.311
Left Short insular gyri 2.05 0.195 0.221
Right Postcentral sulcus 4.46 0.195 0.609
Left Postcentral sulcus -4.83 0.203 0.568
Left Inferior occipital gyrus and sulcus 2.78 0.209 0.376
Right Posterior-dorsal part of the cingulate gyrus -2.93 0.217 0.177
Left Posterior-dorsal part of the cingulate gyrus -3.16 0.226 0.102
Left Anterior transverse collateral sulcus 1.91 0.229 0.005
Left Planum polare of the superior temporal gyrus -1.88 0.234 0.118
Left Fronto-marginal gyrus and sulcus 2.86 0.236 0.19
Left Orbital part of the inferior frontal gyrus -2.19 0.239 0.377
Left Long insular gyrus and central sulcus of the insula 1.88 0.252 0.171
Right Intraparietal sulcus and transverse parietal sulci 4.64 0.256 0.492
Right Inferior temporal gyrus 2.84 0.258 0.328
Left Paracentral lobule and sulcus 2.64 0.29 0.272
Right Subcallosal area 1.69 0.294 0.005
Right Orbital gyri -3.03 0.298 0.309
Left Precuneus 3.53 0.307 0.506
Left Lateral occipito-temporal gyrus 2.47 0.308 0.277
Right Short insular gyri 1.40 0.317 0.133
Right Lateral occipito-temporal gyrus 2.34 0.342 0.262
Left Precentral gyrus -2.48 0.356 0.365
Right Subcentral gyrus and sulci -2.28 0.36 0.534
Left Middle occipital gyrus -2.91 0.373 0.576
Right Cuneus 3.26 0.375 0.287
Left Vertical ramus of the anterior segment of the lateral sulcus -1.31 0.376 0.27
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Left Subcentral gyrus and sulci -2.31 0.385 0.579
Right Subparietal sulcus 2.28 0.393 0.279
Left Anterior segment of the circular sulcus of the insula -1.53 0.393 0.123
Left Anterior occipital sulcus and preoccipital notch 1.87 0.398 0.427
Right Sulcus intermedius primus -1.34 0.404 0.189
Left Middle frontal sulcus -2.43 0.421 0.263
Right Middle-posterior part of the cingulate gyrus and sulcus 2.65 0.422 0.422
Left Parahippocampal gyrus 1.42 0.438 0.401
Left Pericallosal sulcus 1.31 0.465 0.203
Left Middle-anterior part of the cingulate gyrus and sulcus -1.79 0.498 0.352
Right Orbital part of the inferior frontal gyrus 1.18 0.506 0.337
Right Parieto-occipital sulcus 2.11 0.516 0.435
Right Lateral occipito-temporal sulcus 1.25 0.52 0.18
Left Transverse temporal sulcus -0.78 0.534 0.451
Left Central sulcus 2.24 0.536 0.341
Right Inferior frontal sulcus 2.13 0.54 0.464
Left Superior occipital gyrus -1.51 0.553 0.513
Left Lateral aspect of the superior temporal gyrus 1.53 0.554 0.432
Right Medial orbital sulcus -1.03 0.556 0.086
Left Middle occipital sulcus and lunatus sulcus 1.35 0.574 0.474
Right Anterior transverse collateral sulcus -0.88 0.586 0.01
Left Inferior segment of the circular sulcus of the insula -1.13 0.608 0.424
Left Posterior-ventral part of the cingulate gyrus -0.71 0.636 0.298
Right Triangular part of the inferior frontal gyrus -1.10 0.648 0.506
Left Inferior part of the precentral sulcus 1.38 0.65 0.507
Left Lateral orbital sulcus -0.71 0.652 0.18
Left Superior parietal lobule -1.63 0.672 0.55
Left Inferior temporal sulcus -1.01 0.694 0.233
Left Superior occipital sulcus and transverse occipital sulcus 1.21 0.706 0.512
Left Opercular part of the inferior frontal gyrus 1.08 0.71 0.664
Right Middle occipital gyrus -1.22 0.723 0.527
Right Superior parietal lobule -1.18 0.724 0.57
Right Opercular part of the inferior frontal gyrus -0.99 0.727 0.651
Right Transverse frontopolar gyri and sulci 0.75 0.753 0.35
Left Subparietal sulcus -0.86 0.753 0.241
Left Parieto-occipital sulcus -0.89 0.766 0.527
Left Planum temporale or temporal plane of the superior temporal gyrus -0.64 0.769 0.582
Right Planum temporale or temporal plane of the superior temporal gyrus 0.64 0.774 0.597
Right Middle frontal sulcus 0.71 0.828 0.276
Left Superior frontal sulcus 0.77 0.84 0.551
Left Inferior temporal gyrus -0.47 0.864 0.331
Right Superior frontal gyrus -0.78 0.871 0.649
Right Precentral gyrus -0.39 0.879 0.308
Right Posterior-ventral part of the cingulate gyrus 0.25 0.883 0.282
Right Inferior temporal sulcus -0.28 0.913 0.233
Right Inferior part of the precentral sulcus 0.30 0.918 0.503
Left Angular gyrus -0.31 0.921 0.58
Left Straight gyrus -0.13 0.953 0.135
Left Middle temporal gyrus 0.16 0.956 0.569
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Left Inferior frontal sulcus -0.20 0.957 0.468
Left Sulcus intermedius primus 0.04 0.968 0.222
Right Marginal branch of the cingulate sulcus 0.10 0.976 0.395
Right Posterior transverse collateral sulcus 0.01 0.995 0.339
Left Middle frontal gyrus 0.02 0.996 0.611

Table A.26: Brain age model results using cortical thickness estimations, extracted by
CAT12, to predict the participant’ age (coefficient and p-value) and the mean

reproducibility R2 for the corresponding ROI. The significant ROIs are shown in bold.
ROI Name coefficient p-value R2

Left Central sulcus -28.07 <0.001 0.341
Left Anterior transverse temporal gyrus -13.59 <0.001 0.311
Right Cuneus 20.30 <0.001 0.287
Left Lateral aspect of the superior temporal gyrus 15.51 <0.001 0.432
Right Anterior transverse temporal gyrus -12.42 <0.001 0.281
Right Planum temporale or temporal plane of the superior temporal gyrus -9.20 0.001 0.597
Right Angular gyrus -13.42 0.001 0.571
Right Posterior ramus 9.44 0.001 0.531
Right Superior frontal gyrus -17.16 0.001 0.649
Right Superior part of the precentral sulcus 10.59 0.001 0.431
Left Anterior occipital sulcus and preoccipital notch 6.71 0.002 0.427
Left Paracentral lobule and sulcus 9.87 0.002 0.272
Left Superior occipital gyrus -11.22 0.003 0.513
Left Precuneus 12.90 0.003 0.506
Left Inferior temporal sulcus -7.03 0.004 0.233
Left Inferior part of the precentral sulcus 9.64 0.006 0.507
Left Superior temporal sulcus -11.21 0.006 0.58
Left Superior frontal gyrus -13.90 0.009 0.66
Right Occipital pole 11.25 0.01 0.343
Left Triangular part of the inferior frontal gyrus -8.61 0.011 0.603
Right Superior occipital gyrus -9.49 0.011 0.486
Right Middle occipital gyrus 9.72 0.013 0.527
Right Subcallosal area 2.60 0.013 0.005
Left Straight gyrus -6.64 0.014 0.135
Right Calcarine sulcus -8.16 0.015 0.416
Left Medial orbital sulcus -3.79 0.016 0.027
Left Planum temporale or temporal plane of the superior temporal gyrus -7.19 0.016 0.582
Right Medial orbital sulcus 4.24 0.02 0.086
Left Lingual gyrus 9.94 0.023 0.266
Left Occipital pole 9.44 0.026 0.297
Right Inferior part of the precentral sulcus 8.09 0.026 0.503
Right Superior occipital sulcus and transverse occipital sulcus 6.96 0.03 0.481
Left Transverse temporal sulcus 3.82 0.03 0.451
Left Calcarine sulcus -7.47 0.032 0.348
Left Superior occipital sulcus and transverse occipital sulcus 6.90 0.034 0.512
Left Cuneus -10.63 0.035 0.241
Left Superior parietal lobule -9.52 0.04 0.55
Right Precuneus 8.03 0.048 0.56
Right Orbital gyri -5.97 0.052 0.309
Left Long insular gyrus and central sulcus of the insula 2.68 0.052 0.171
Right Postcentral gyrus -6.90 0.054 0.497
Left Opercular part of the inferior frontal gyrus -6.87 0.054 0.664
Left Subcentral gyrus and sulci 6.91 0.055 0.579
Left Lateral occipito-temporal gyrus 4.83 0.061 0.277
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Right Sulcus intermedius primus 4.69 0.063 0.189
Right Horizontal ramus of the anterior segment of the lateral sulcus -3.10 0.066 0.284
Left Precentral gyrus 6.83 0.066 0.365
Left Inferior temporal gyrus 5.10 0.07 0.331
Right Suborbital sulcus -2.48 0.073 0.047
Left Middle occipital sulcus and lunatus sulcus 4.70 0.092 0.474
Left Marginal branch of the cingulate sulcus -5.21 0.094 0.457
Right Middle frontal sulcus 6.49 0.095 0.276
Right Postcentral sulcus 5.98 0.104 0.609
Left Orbital sulci 4.30 0.104 0.138
Left Anterior transverse collateral sulcus 2.53 0.108 0.005
Right Orbital sulci 4.47 0.114 0.174
Right Superior segment of the circular sulcus of the insula -5.07 0.119 0.345
Left Fronto-marginal gyrus and sulcus -4.38 0.129 0.19
Left Posterior ramus -4.75 0.131 0.553
Left Short insular gyri 1.53 0.141 0.221
Left Posterior-dorsal part of the cingulate gyrus 2.79 0.156 0.102
Right Straight gyrus 3.47 0.163 0.158
Right Lateral occipito-temporal gyrus -3.45 0.171 0.262
Left Middle frontal gyrus -7.03 0.177 0.611
Left Inferior occipital gyrus and sulcus 3.09 0.178 0.376
Left Orbital gyri 4.07 0.179 0.326
Left Postcentral sulcus 5.27 0.186 0.568
Left Supramarginal gyrus 6.24 0.188 0.648
Right Planum polare of the superior temporal gyrus 2.12 0.189 0.163
Right Temporal pole -2.13 0.19 0.264
Right Posterior-ventral part of the cingulate gyrus 1.88 0.193 0.282
Right Lateral aspect of the superior temporal gyrus 3.44 0.196 0.463
Left Anterior segment of the circular sulcus of the insula -1.99 0.2 0.123
Right Central sulcus -6.57 0.214 0.289
Right Parahippocampal gyrus 2.13 0.222 0.338
Right Superior temporal sulcus -5.42 0.23 0.59
Right Superior frontal sulcus -5.21 0.233 0.493
Left Middle occipital gyrus -4.37 0.239 0.576
Right Inferior frontal sulcus -4.67 0.249 0.464
Right Marginal branch of the cingulate sulcus 4.19 0.258 0.395
Left Planum polare of the superior temporal gyrus -1.72 0.259 0.118
Left Lateral orbital sulcus 2.31 0.266 0.18
Left Middle temporal gyrus 3.08 0.305 0.569
Right Anterior part of the cingulate gyrus and sulcus -2.67 0.307 0.274
Right Inferior temporal sulcus -2.48 0.31 0.233
Right Middle frontal gyrus -4.77 0.321 0.491
Left Transverse frontopolar gyri and sulci 2.43 0.323 0.261
Right Inferior segment of the circular sulcus of the insula -1.86 0.343 0.334
Right Subparietal sulcus 2.85 0.345 0.279
Right Long insular gyrus and central sulcus of the insula 1.11 0.348 0.119
Right Anterior transverse collateral sulcus -1.48 0.353 0.01
Left Intraparietal sulcus and transverse parietal sulci 4.06 0.363 0.422
Right Intraparietal sulcus and transverse parietal sulci -4.06 0.367 0.492
Left Medial occipito-temporal sulcus and lingual sulcus -2.31 0.37 0.403
Left Inferior segment of the circular sulcus of the insula -1.96 0.373 0.424
Right Lingual gyrus 3.17 0.401 0.308
Right Middle-posterior part of the cingulate gyrus and sulcus -2.61 0.404 0.422
Right Vertical ramus of the anterior segment of the lateral sulcus -1.30 0.407 0.21
Right Supramarginal gyrus 4.16 0.416 0.634
Left Orbital part of the inferior frontal gyrus 1.11 0.473 0.377
Right Precentral gyrus -2.49 0.484 0.308
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Right Medial occipito-temporal sulcus and lingual sulcus -1.73 0.495 0.484
Left Parahippocampal gyrus -1.18 0.51 0.401
Left Superior segment of the circular sulcus of the insula -2.21 0.546 0.44
Left Vertical ramus of the anterior segment of the lateral sulcus 1.25 0.553 0.27
Left Subparietal sulcus 1.75 0.567 0.241
Left Posterior transverse collateral sulcus -1.25 0.58 0.281
Right Middle occipital sulcus and lunatus sulcus -1.37 0.581 0.439
Left Pericallosal sulcus 1.21 0.593 0.203
Right Orbital part of the inferior frontal gyrus -0.80 0.598 0.337
Right Superior parietal lobule -2.18 0.616 0.57
Left Anterior part of the cingulate gyrus and sulcus -1.14 0.64 0.242
Left Suborbital sulcus -0.77 0.643 0.108
Left Middle-anterior part of the cingulate gyrus and sulcus 1.10 0.653 0.352
Left Angular gyrus -1.84 0.659 0.58
Right Posterior-dorsal part of the cingulate gyrus 0.91 0.663 0.177
Left Middle-posterior part of the cingulate gyrus and sulcus -1.30 0.664 0.443
Right Transverse temporal sulcus 0.82 0.664 0.224
Right Short insular gyri 0.39 0.699 0.133
Left Posterior-ventral part of the cingulate gyrus 0.50 0.707 0.298
Right Paracentral lobule and sulcus 1.10 0.707 0.32
Left Lateral occipito-temporal sulcus -0.73 0.709 0.222
Right Middle-anterior part of the cingulate gyrus and sulcus 0.86 0.718 0.362
Right Anterior occipital sulcus and preoccipital notch -0.71 0.749 0.496
Right Pericallosal sulcus -0.82 0.755 0.128
Left Superior frontal sulcus 1.22 0.77 0.551
Right Parieto-occipital sulcus 1.01 0.777 0.435
Right Anterior segment of the circular sulcus of the insula -0.52 0.778 0.163
Right Inferior temporal gyrus 0.71 0.788 0.328
Left Sulcus intermedius primus -0.40 0.812 0.222
Right Fronto-marginal gyrus and sulcus 0.56 0.834 0.18
Left Inferior frontal sulcus -0.84 0.835 0.468
Right Transverse frontopolar gyri and sulci 0.55 0.841 0.35
Right Lateral orbital sulcus 0.33 0.869 0.136
Left Parieto-occipital sulcus -0.57 0.872 0.527
Left Superior part of the precentral sulcus 0.49 0.873 0.448
Right Opercular part of the inferior frontal gyrus -0.45 0.89 0.651
Right Lateral occipito-temporal sulcus -0.23 0.894 0.18
Right Triangular part of the inferior frontal gyrus -0.38 0.906 0.506
Right Middle temporal gyrus -0.36 0.917 0.49
Right Inferior occipital gyrus and sulcus -0.21 0.923 0.415
Right Posterior transverse collateral sulcus 0.18 0.937 0.339
Left Middle frontal sulcus 0.24 0.939 0.263
Left Temporal pole -0.12 0.948 0.267
Left Horizontal ramus of the anterior segment of the lateral sulcus 0.06 0.963 0.254
Left Subcallosal area 0.01 0.992 0.002
Left Postcentral gyrus 0.04 0.992 0.487
Right Subcentral gyrus and sulci -0.02 0.995 0.534



Appendix B

Deformation Fields: A new
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Figure B.1: Chronological Age versus predicted age of the model of Deformation Fields
(DF), GM, WM, CSF and fusion. (a) Each point represents the corresponding result for an
individual of the test set (b) Mean age and mean age prediction for the test set grouped by
modality and age bins of 10 years, the error bars represent the standard deviation of the
predictions for the corresponding bin.

Table B.1: Difference between the mean predicted age and the mean chronological for
each age bin for the deformation fields model.

Age bin 20-29 40-49 60-69 >=70.0

Mean age [years] 26.09 34.56 45.74 56.12 64.79 75.19
Mean predictions [years] 35.23 39.52 47.86 64.74 60.42 71.2
Difference [years] 9.14 4.96 2.12 8.62 -4.37 -3.99
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Table B.2: Difference between the mean predicted age and the mean chronological for
each age bin for the grey matter model.

Age bin 20-29 40-49 60-69 >=70.0

Mean age [years] 26.09 34.56 45.74 56.12 64.79 75.19
Mean predictions [years] 36.38 39.66 46.7 60.09 56.84 67.77
Difference [years] 10.29 5.1 0.96 3.97 -7.95 -7.42

Table B.3: Difference between the mean predicted age and the mean chronological for
each age bin for the white matter model.

Age bin 20-29 40-49 60-69 >=70.0
Mean age [years] 26.09 34.56 45.74 56.12 64.79 75.19
Mean predictions [years] 31.78 31.93 40.12 43.59 47.6 51.07
Difference [years] 5.69 -2.63 -5.62 -12.53 -17.19 -24.12

Table B.4: Difference between the mean predicted age and the mean chronological for
each age bin for the CSF model.

Age bin 20-29 40-49 60-69 >=70.0
Mean age [years] 26.09 34.56 45.74 56.12 64.79 75.19
Mean predictions [years] 39.43 42.96 49.52 64.64 63.75 75.59
Difference [years] 13.34 8.4 3.78 8.52 -1.04 0.4

Table B.5: Difference between the mean predicted age and the mean chronological for
each age bin for the fusion model (deformation fields and grey matter).

Age bin 20-29 40-49 60-69 >=70.0
Mean age [years] 26.09 34.56 45.74 56.12 64.79 75.19
Mean predictions [years] 34.37 38.61 47.17 64.08 59.84 71.79
Difference [years] 8.28 4.05 1.43 7.96 -4.95 -3.4

Table B.6: Mean and standard deviations of the MAE (in years) and R2 for the
validation set, 30-fold cross-validation, and MAE and R2 for the test for two fusion

models: one with deformation fields (DF) and grey matter (GM) and another with GM
and white matter (WM).

MAE [years] R2
Validation Test Validation Test

DF+GM 5.55 ± 1.14 6.90 0.79 0.76
GM+WM 5.45 ± 1.29 7.92 0.79 0.64
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Figure B.2: Original image and reconstructed image from 40-components of the
deformation fields (DF), GM, WM and CSF. The image is from the subject ID 510 of
the IOP site.
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Figure B.3: Boxplot of the MAE per fusion model: The statistical results for a paired
t-test. Each point in the boxplot is the (a) MAE (b) R2 for a cross-validation fold. The
horizontal black line represents the median value, and the limits of the boxes represent the
1st and 3rd quartiles. The red star identifies the result on the test set.
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C.1 Age Prediction and Sex classification

C.1.1 Methods

Table C.1: Demographics of the participants used to train and validate the autoencoder.
Repository Site Total of participants Number males Mean and standard deviation [years] Min Age [years] Max Age [years]
ABIDE I California Institute of Technology 37 30 28.4 ± 10.7 17.0 56.2
ABIDE I Carnegie Mellon University 26 20 26.8 ± 5.7 19.0 40.0
ABIDE I Kennedy Krieger Institute 54 41 10.1 ± 1.3 8.1 12.8
ABIDE I Ludwig Maximilians University Munich 56 49 25.7 ± 11.7 7.0 58.0
ABIDE I NYU Langone Medical Center 182 145 15.3 ± 6.6 6.5 39.1
ABIDE I Olin Institute of Livingat Hartford Hospital 16 14 16.9 ± 3.7 10.0 23.0
ABIDE I Oregon Health and Science University 28 28 10.8 ± 1.9 8.0 15.2
ABIDE I San Diego State University 36 29 14.4 ± 1.8 8.7 17.2
ABIDE I Social Brain Lab 28 28 33.4 ± 6.8 20.0 49.0
ABIDE I Stanford University 37 30 9.9 ± 1.6 7.5 12.9
ABIDE I Trinity Centre for Health Sciences 49 49 17.2 ± 3.6 12.0 25.9
ABIDE I University of California Los Angeles 97 86 13.0 ± 2.2 8.4 17.9
ABIDE I University of Leuven 64 56 18.0 ± 5.0 12.1 32.0
ABIDE I University of Michigan 143 116 14.0 ± 3.2 8.2 28.8

ABIDE I University of Pittsburgh
School of Medicine 55 48 18.9 ± 6.9 9.3 35.2

ABIDE I University of Utah School of Medicine 100 100 22.1 ± 7.7 8.8 50.2
ABIDE I Yale Child Study Center 56 40 12.7 ± 2.9 7.0 17.8
ABIDE II Barrow Neurological Institute 58 58 38.5 ± 15.5 18.0 64.0
ABIDE II ETH Zurich 37 37 22.7 ± 4.4 13.8 30.7

ABIDE II Erasmus University Medical
Center Rotterdam 54 44 8.1 ± 1.1 6.2 10.7

ABIDE II Georgetown University 103 68 10.7 ± 1.6 8.1 13.9
ABIDE II Indiana University 26 20 24.8 ± 8.5 17.0 54.0
ABIDE II Institut Pasteur and Robert Debré Hospital 55 25 20.1 ± 10.5 6.1 46.6
ABIDE II Katholieke Universiteit Leuven 28 28 23.6 ± 4.8 18.0 35.0
ABIDE II Kennedy Krieger Institute 207 137 10.3 ± 1.3 8.0 13.0
ABIDE II NYU Langone Medical Center Sample 1 74 67 9.9 ± 5.0 5.2 34.8
ABIDE II NYU Langone Medical Center Sample 2 27 24 6.8 ± 1.1 5.1 8.8
ABIDE II Oregon Health and Science University 93 57 10.9 ± 2.0 7.0 15.0
ABIDE II SanDiego State University 56 47 12.9 ± 3.1 7.4 18.0
ABIDE II Stanford University 41 37 11.1 ± 1.2 8.4 13.2
ABIDE II Trinity Centre for Health Sciences 42 42 15.2 ± 3.2 10.0 20.0
ABIDE II University of California Davis 32 24 14.8 ± 1.8 12.0 17.8
ABIDE II University of California Los Angeles 31 25 10.8 ± 2.4 7.8 15.0

ABIDE II University of California Los Angeles
Longitudinal Sample 37 35 13.5 ± 1.9 10.0 17.2

ABIDE II University of Miami 26 20 9.8 ± 2.1 7.1 14.3
ABIDE II University of Pittsburgh 34 26 14.9 ± 2.4 9.3 19.5
ABIDE II University of Utah School of Medicine 32 27 20.9 ± 7.9 9.1 38.9
ADNI – 18705 10233 75.3 ± 7.4 51.0 97.0
GSP – 1558 661 21.5 ± 2.9 19.0 35.0
OASIS1 – 1683 638 51.5 ± 25.3 18.0 96.0
OASIS2 – 1345 576 76.9 ± 7.6 60.0 98.0
OASIS3 – 2768 1185 70.7 ± 9.3 42.7 97.0
FCP1000 AnnArbor a 25 20 20.4 ± 7.7 13.0 40.0
FCP1000 AnnArbor b 36 17 348.0 ± 1732.7 19.0 9999.0
FCP1000 Atlanta 28 11 30.6 ± 9.2 23.0 54.0
FCP1000 Baltimore 23 8 29.3 ± 5.5 20.0 40.0
FCP1000 Bangor 20 16 22.6 ± 4.6 19.0 38.0
FCP1000 Beijing Zang 197 68 21.1 ± 1.8 18.0 26.0
FCP1000 Berlin Margulies 26 12 29.9 ± 5.2 24.0 44.0
FCP1000 Cambridge Buckner 198 68 20.9 ± 2.1 18.0 29.0
FCP1000 Dallas 24 10 42.9 ± 20.4 20.0 71.0
FCP1000 ICBM 86 0 – – –
FCP1000 Leiden 2180 12 9 23.6 ± 2.6 20.0 27.0
FCP1000 Leiden 2200 19 11 21.8 ± 2.7 18.0 28.0
FCP1000 Leipzig 37 13 25.8 ± 5.1 20.0 42.0
FCP1000 Milwaukee a 18 0 – – –
FCP1000 Milwaukee b 46 14 53.7 ± 5.9 44.0 65.0
FCP1000 Munchen 16 9 68.3 ± 4.1 63.0 74.0
FCP1000 NYU TRT session1b 12 0 –
FCP1000 NewHaven a 18 10 31.6 ± 10.3 18.0 48.0
FCP1000 NewHaven b 15 7 27.6 ± 6.4 18.0 42.0
FCP1000 NewYork a 84 40 24.3 ± 10.1 7.0 49.0
FCP1000 NewYork a ADHD 25 18 34.9 ± 9.6 20.0 50.0
FCP1000 NewYork b 20 1 40.0 ± nan 40.0 40.0
FCP1000 Newark 19 9 24.1 ± 3.9 21.0 39.0
FCP1000 Ontario 9 0 – – –
FCP1000 Orangeburg 20 12 41.6 ± 11.2 20.0 55.0
FCP1000 Oulu 102 33 21.5 ± 0.6 20.0 23.0
FCP1000 Oxford 22 11 29.3 ± 3.3 21.0 35.0
FCP1000 PaloAlto 17 2 31.6 ± 7.6 22.0 46.0
FCP1000 Pittsburgh 16 9 37.6 ± 8.7 25.0 54.0
FCP1000 Queensland 19 10 25.9 ± 4.1 20.0 34.0
FCP1000 SaintLouis 31 13 25.3 ± 2.3 21.0 29.0
FCP1000 Taipei a 14 0 – – –
FCP1000 Taipei b 8 0 – – –

Table C.2: Demographics of the participants used to train, validate and test the age
prediction and sex classification models.

Site Total of participants Number males Mean and standard deviation [years] Min Age [years] Max Age [years]
GH 312 139 50.73 ± 15.98 20.07 86.20
HH 179 85 47.63 ± 16.61 20.17 81.94
IOP 67 24 42.13 ± 16.60 19.98 86.32
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C.2 Results
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Figure C.1: Holdout test set MAE results for age prediction problem. Training
evolution for the age prediction problem with different dataset training sizes for the
four training strategies (3DCAE-MRI off-the-shelf, 3DCAE-MRI fine-tuning, training from
scratch and PCA-RVM). 3DCAE-MRI off-the-shelf and 3DCAE-MRI fine-tuning represents
the transfer learning from the 3DCAE-MRI to the CNN. The shaded band represents to the
standard deviation.
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Table C.3: LiteNet: ANOVA results for the holdout test set comparing the different
training strategies for the age prediction problem and for the different training dataset

sizes. The significant p−values are in bold.
ddof1 ddof2 F p-value

Number of training samples
25 4 116 63.84 2.01 × 10−28

50 4 116 95.79 7.91 × 10−36

100 4 116 104.66 1.51 × 10−37

200 4 116 55.10 5.9 × 10−26

300 4 116 66.32 4.41 × 10−29

Table C.4: LiteNet Age prediction: Post-hoc results for the statistically significant
ANOVA comparing the MAE on holdout test set across different training strategies for

different training dataset sizes. The significant p-values are shown in bold.
A B T dof cohen p-value

Number of training samples
25 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 5.98 29.0 1.28 1.67 × 10−61.67 × 10−61.67 × 10−6

25 3DCAE-MRI fine-tuning PCA -4.33 29.0 -0.94 0.000160.000160.00016
25 3DCAE-MRI fine-tuning Training from scratch -4.68 29.0 -1.06 6.23 × 10−56.23 × 10−56.23 × 10−5

25 3DCAE-MRI fine-tuning Training from scratch augmented -7.10 29.0 -1.63 8.11 × 10−88.11 × 10−88.11 × 10−8

25 3DCAE-MRI off-the-shelf PCA -24.36 29.0 -3.91 7.38 × 10−217.38 × 10−217.38 × 10−21

25 3DCAE-MRI off-the-shelf Training from scratch -11.26 29.0 -2.58 4.18 × 10−124.18 × 10−124.18 × 10−12

25 3DCAE-MRI off-the-shelf Training from scratch augmented -17.01 29.0 -3.58 1.26 × 10−161.26 × 10−161.26 × 10−16

25 PCA Training from scratch -1.96 29.0 -0.46 0.06
25 PCA Training from scratch augmented -4.80 29.0 -1.18 4.42 × 10−54.42 × 10−54.42 × 10−5

25 Training from scratch Training from scratch augmented -2.72 29.0 -0.47 0.0110.0110.011
50 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 4.13 29.0 0.58 0.000280.000280.00028
50 3DCAE-MRI fine-tuning PCA -15.83 29.0 -3.84 8.33 × 10−168.33 × 10−168.33 × 10−16

50 3DCAE-MRI fine-tuning Training from scratch -5.64 29.0 -1.22 4.24 × 10−64.24 × 10−64.24 × 10−6

50 3DCAE-MRI fine-tuning Training from scratch augmented -9.41 29.0 -2.30 2.58 × 10−102.58 × 10−102.58 × 10−10

50 3DCAE-MRI off-the-shelf PCA -26.62 29.0 -4.84 6.23 × 10−226.23 × 10−226.23 × 10−22

50 3DCAE-MRI off-the-shelf Training from scratch -9.56 29.0 -1.83 1.82 × 10−101.82 × 10−101.82 × 10−10

50 3DCAE-MRI off-the-shelf Training from scratch augmented -11.33 29.0 -2.74 3.59 × 10−123.59 × 10−123.59 × 10−12

50 PCA Training from scratch 10.26 29.0 2.22 3.69 × 10−113.69 × 10−113.69 × 10−11

50 PCA Training from scratch augmented 0.65 29.0 0.15 0.52
50 Training from scratch Training from scratch augmented -5.26 29.0 -1.36 1.23 × 10−51.23 × 10−51.23 × 10−5

100 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -1.13 29.0 -0.18 0.27
100 3DCAE-MRI fine-tuning PCA -34.15 29.0 -5.68 5.69 × 10−255.69 × 10−255.69 × 10−25

100 3DCAE-MRI fine-tuning Training from scratch -6.93 29.0 -0.92 1.28 × 10−71.28 × 10−71.28 × 10−7

100 3DCAE-MRI fine-tuning Training from scratch augmented -8.04 29.0 -1.81 7.33 × 10−97.33 × 10−97.33 × 10−9

100 3DCAE-MRI off-the-shelf PCA -28.12 29.0 -5.37 1.36 × 10−221.36 × 10−221.36 × 10−22

100 3DCAE-MRI off-the-shelf Training from scratch -4.13 29.0 -0.73 0.000280.000280.00028
100 3DCAE-MRI off-the-shelf Training from scratch augmented -7.62 29.0 -1.72 2.12 × 10−82.12 × 10−82.12 × 10−8

100 PCA Training from scratch 23.48 29.0 4.33 2.03 × 10−202.03 × 10−202.03 × 10−20

100 PCA Training from scratch augmented 2.86 29.0 0.69 0.00780.00780.0078
100 Training from scratch Training from scratch augmented -6.57 29.0 -1.33 3.35 × 10−73.35 × 10−73.35 × 10−7

200 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -3.66 29.0 -0.55 0.0010.0010.001
200 3DCAE-MRI fine-tuning PCA -13.41 29.0 -3.02 5.83 × 10−145.83 × 10−145.83 × 10−14

200 3DCAE-MRI fine-tuning Training from scratch -4.09 29.0 -0.67 0.000310.000310.00031
200 3DCAE-MRI fine-tuning Training from scratch augmented -5.20 29.0 -1.03 1.45 × 10−51.45 × 10−51.45 × 10−5

200 3DCAE-MRI off-the-shelf PCA -11.66 29.0 -2.50 1.8 × 10−121.8 × 10−121.8 × 10−12

200 3DCAE-MRI off-the-shelf Training from scratch -1.17 29.0 -0.17 0.25
200 3DCAE-MRI off-the-shelf Training from scratch augmented -3.53 29.0 -0.71 0.00140.00140.0014
200 PCA Training from scratch 10.84 29.0 2.21 1.02 × 10−111.02 × 10−111.02 × 10−11

200 PCA Training from scratch augmented 5.28 29.0 1.05 1.18 × 10−51.18 × 10−51.18 × 10−5

200 Training from scratch Training from scratch augmented -3.01 29.0 -0.58 0.00530.00530.0053
300 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -5.91 29.0 -0.70 2.03 × 10−62.03 × 10−62.03 × 10−6

300 3DCAE-MRI fine-tuning PCA -18.20 29.0 -3.20 2.07 × 10−172.07 × 10−172.07 × 10−17

300 3DCAE-MRI fine-tuning Training from scratch -6.28 29.0 -0.93 7.33 × 10−77.33 × 10−77.33 × 10−7

300 3DCAE-MRI fine-tuning Training from scratch augmented -9.13 29.0 -2.18 4.99 × 10−104.99 × 10−104.99 × 10−10

300 3DCAE-MRI off-the-shelf PCA -17.07 29.0 -2.60 1.15 × 10−161.15 × 10−161.15 × 10−16

300 3DCAE-MRI off-the-shelf Training from scratch -1.43 29.0 -0.23 0.16
300 3DCAE-MRI off-the-shelf Training from scratch augmented -7.79 29.0 -1.89 1.35 × 10−81.35 × 10−81.35 × 10−8

300 PCA Training from scratch 12.37 29.0 2.38 4.33 × 10−134.33 × 10−134.33 × 10−13

300 PCA Training from scratch augmented -2.33 29.0 -0.59 0.0270.0270.027
300 Training from scratch Training from scratch augmented -8.20 29.0 -1.79 4.82 × 10−94.82 × 10−94.82 × 10−9
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Table C.5: SFCN Age prediction: ANOVA results for the holdout test set when
comparing different training strategies for the age prediction problem and for the different

training dataset sizes. The significant p−values are in bold.
ddof1 ddof2 F p-value

Number of training samples
25 4 116 123.54 7.3 × 10−41

50 4 116 96.11 6.82 × 10−36

100 4 116 54.00 1.26 × 10−25

200 4 116 21.85 1.85 × 10−13

300 4 116 19.69 2.16 × 10−12

Table C.6: SFCN Age prediction: Post-hoc results for the statistically significant
ANOVA comparing the MAE of the holdout test set across different training strategies for

different training dataset sizes. The significant p-values are shown in bold.
A B T dof cohen p-value

Number of training samples
25 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf -1.28 29.0 -0.16 0.21
25 3DCAE-MRI Fine-tuning PCA -15.98 29.0 -3.43 6.45 × 10−166.45 × 10−166.45 × 10−16

25 3DCAE-MRI Fine-tuning Pre-trained SFCN Age -0.82 29.0 -0.11 0.42
25 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender -3.01 29.0 -0.48 0.00540.00540.0054
25 3DCAE-MRI Off-the-shelf PCA -17.34 29.0 -3.37 7.51 × 10−177.51 × 10−177.51 × 10−17

25 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age 0.18 29.0 0.03 0.86
25 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender -2.64 29.0 -0.35 0.0130.0130.013
25 PCA Pre-trained SFCN Age 15.08 29.0 2.94 2.91 × 10−152.91 × 10−152.91 × 10−15

25 PCA Pre-trained SFCN Gender 13.65 29.0 2.60 3.75 × 10−143.75 × 10−143.75 × 10−14

25 Pre-trained SFCN Age Pre-trained SFCN Gender -1.84 29.0 -0.33 0.076
50 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf -2.93 29.0 -0.65 0.00660.00660.0066
50 3DCAE-MRI Fine-tuning PCA -15.63 29.0 -3.33 1.15 × 10−151.15 × 10−151.15 × 10−15

50 3DCAE-MRI Fine-tuning Pre-trained SFCN Age -1.22 29.0 -0.25 0.23
50 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender -3.25 29.0 -0.59 0.0030.0030.003
50 3DCAE-MRI Off-the-shelf PCA -14.38 29.0 -2.95 9.9 × 10−159.9 × 10−159.9 × 10−15

50 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age 2.11 29.0 0.41 0.0440.0440.044
50 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender -0.54 29.0 -0.09 0.6
50 PCA Pre-trained SFCN Age 17.23 29.0 3.22 8.97 × 10−178.97 × 10−178.97 × 10−17

50 PCA Pre-trained SFCN Gender 13.37 29.0 2.22 6.22 × 10−146.22 × 10−146.22 × 10−14

50 Pre-trained SFCN Age Pre-trained SFCN Gender -2.31 29.0 -0.40 0.0280.0280.028
100 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf -5.30 29.0 -0.77 1.11 × 10−51.11 × 10−51.11 × 10−5

100 3DCAE-MRI Fine-tuning PCA -13.14 29.0 -3.20 9.74 × 10−149.74 × 10−149.74 × 10−14

100 3DCAE-MRI Fine-tuning Pre-trained SFCN Age -0.03 29.0 -0.01 0.98
100 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender -3.87 29.0 -1.00 0.000570.000570.00057
100 3DCAE-MRI Off-the-shelf PCA -11.48 29.0 -2.75 2.62 × 10−122.62 × 10−122.62 × 10−12

100 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age 3.25 29.0 0.64 0.00290.00290.0029
100 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender -1.65 29.0 -0.39 0.11
100 PCA Pre-trained SFCN Age 10.91 29.0 2.71 8.76 × 10−128.76 × 10−128.76 × 10−12

100 PCA Pre-trained SFCN Gender 7.62 29.0 1.87 2.13 × 10−82.13 × 10−82.13 × 10−8

100 Pre-trained SFCN Age Pre-trained SFCN Gender -4.20 29.0 -0.88 0.000230.000230.00023
200 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf -5.89 29.0 -1.36 2.18 × 10−62.18 × 10−62.18 × 10−6

200 3DCAE-MRI Fine-tuning PCA -5.34 29.0 -1.38 9.91 × 10−69.91 × 10−69.91 × 10−6

200 3DCAE-MRI Fine-tuning Pre-trained SFCN Age 0.87 29.0 0.19 0.39
200 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender -2.23 29.0 -0.57 0.0340.0340.034
200 3DCAE-MRI Off-the-shelf PCA -1.46 29.0 -0.23 0.15
200 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age 7.05 29.0 1.61 9.33 × 10−89.33 × 10−89.33 × 10−8

200 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender 3.37 29.0 0.69 0.00210.00210.0021
200 PCA Pre-trained SFCN Age 6.73 29.0 1.59 2.2 × 10−72.2 × 10−72.2 × 10−7

200 PCA Pre-trained SFCN Gender 4.41 29.0 0.81 0.000130.000130.00013
200 Pre-trained SFCN Age Pre-trained SFCN Gender -3.24 29.0 -0.77 0.0030.0030.003
300 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf -6.96 29.0 -1.35 1.19 × 10−71.19 × 10−71.19 × 10−7

300 3DCAE-MRI Fine-tuning PCA -5.95 29.0 -1.60 1.81 × 10−61.81 × 10−61.81 × 10−6

300 3DCAE-MRI Fine-tuning Pre-trained SFCN Age 0.24 29.0 0.07 0.82
300 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender -2.92 29.0 -0.66 0.00680.00680.0068
300 3DCAE-MRI Off-the-shelf PCA -1.59 29.0 -0.38 0.12
300 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age 6.11 29.0 1.48 1.17 × 10−61.17 × 10−61.17 × 10−6

300 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender 2.36 29.0 0.57 0.0250.0250.025
300 PCA Pre-trained SFCN Age 7.02 29.0 1.73 1.0 × 10−71.0 × 10−71.0 × 10−7

300 PCA Pre-trained SFCN Gender 4.07 29.0 0.86 0.000330.000330.00033
300 Pre-trained SFCN Age Pre-trained SFCN Gender -3.02 29.0 -0.75 0.00520.00520.0052
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Table C.7: LiteNet Age prediction: ANOVA comparing the means of MAE of the
external test set across different training strategies for the different training dataset sizes.

The significant p-values are in bold.
ddof1 ddof2 F p-value

Number of training samples
25 4 116 87.00 5.35 × 10−34

50 4 116 85.27 1.27 × 10−33

100 4 116 84.51 1.87 × 10−33

200 4 116 57.27 1.37 × 10−26

300 4 116 78.89 3.49 × 10−32

Table C.8: LiteNet Age prediction: Post-hoc results for the statistically significant
ANOVA comparing the mean MAE of the external test set across different training

strategies for different number of training instances. The significant p-values are shown in
bold.

A B T dof cohen p-value
Number of training samples
25 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 8.97 29.0 1.47 7.26 × 10−107.26 × 10−107.26 × 10−10

25 3DCAE-MRI fine-tuning PCA -7.51 29.0 -1.83 2.81 × 10−82.81 × 10−82.81 × 10−8

25 3DCAE-MRI fine-tuning Training from scratch -9.22 29.0 -1.65 3.99 × 10−103.99 × 10−103.99 × 10−10

25 3DCAE-MRI fine-tuning Training from scratch augmented -9.74 29.0 -1.71 1.19 × 10−101.19 × 10−101.19 × 10−10

25 3DCAE-MRI off-the-shelf PCA -19.21 29.0 -4.09 4.88 × 10−184.88 × 10−184.88 × 10−18

25 3DCAE-MRI off-the-shelf Training from scratch -13.46 29.0 -2.74 5.29 × 10−145.29 × 10−145.29 × 10−14

25 3DCAE-MRI off-the-shelf Training from scratch augmented -13.83 29.0 -2.80 2.69 × 10−142.69 × 10−142.69 × 10−14

25 PCA Training from scratch -2.51 29.0 -0.58 0.0180.0180.018
25 PCA Training from scratch augmented -2.82 29.0 -0.65 0.00850.00850.0085
25 Training from scratch Training from scratch augmented -0.39 29.0 -0.05 0.7
50 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 6.62 29.0 1.30 2.95 × 10−72.95 × 10−72.95 × 10−7

50 3DCAE-MRI fine-tuning PCA -13.24 29.0 -2.61 8.04 × 10−148.04 × 10−148.04 × 10−14

50 3DCAE-MRI fine-tuning Training from scratch -7.20 29.0 -1.48 6.26 × 10−86.26 × 10−86.26 × 10−8

50 3DCAE-MRI fine-tuning Training from scratch augmented -11.53 29.0 -2.26 2.35 × 10−122.35 × 10−122.35 × 10−12

50 3DCAE-MRI off-the-shelf PCA -26.23 29.0 -5.15 9.45 × 10−229.45 × 10−229.45 × 10−22

50 3DCAE-MRI off-the-shelf Training from scratch -9.73 29.0 -2.30 1.24 × 10−101.24 × 10−101.24 × 10−10

50 3DCAE-MRI off-the-shelf Training from scratch augmented -14.69 29.0 -3.28 5.8 × 10−155.8 × 10−155.8 × 10−15

50 PCA Training from scratch -0.16 29.0 -0.03 0.88
50 PCA Training from scratch augmented -3.26 29.0 -0.69 0.00280.00280.0028
50 Training from scratch Training from scratch augmented -2.58 29.0 -0.47 0.0150.0150.015
100 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 4.45 29.0 1.10 0.000120.000120.00012
100 3DCAE-MRI fine-tuning PCA -14.57 29.0 -3.04 7.14 × 10−157.14 × 10−157.14 × 10−15

100 3DCAE-MRI fine-tuning Training from scratch -5.27 29.0 -0.85 1.19 × 10−51.19 × 10−51.19 × 10−5

100 3DCAE-MRI fine-tuning Training from scratch augmented -11.63 29.0 -2.18 1.92 × 10−121.92 × 10−121.92 × 10−12

100 3DCAE-MRI off-the-shelf PCA -29.09 29.0 -6.35 5.2 × 10−235.2 × 10−235.2 × 10−23

100 3DCAE-MRI off-the-shelf Training from scratch -6.26 29.0 -1.55 7.83 × 10−77.83 × 10−77.83 × 10−7

100 3DCAE-MRI off-the-shelf Training from scratch augmented -12.01 29.0 -2.90 8.93 × 10−138.93 × 10−138.93 × 10−13

100 PCA Training from scratch 3.83 29.0 0.85 0.000630.000630.00063
100 PCA Training from scratch augmented -3.45 29.0 -0.75 0.00170.00170.0017
100 Training from scratch Training from scratch augmented -8.58 29.0 -1.17 1.9 × 10−91.9 × 10−91.9 × 10−9

200 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 3.51 29.0 0.91 0.00150.00150.0015
200 3DCAE-MRI fine-tuning PCA -7.90 29.0 -1.91 1.03 × 10−81.03 × 10−81.03 × 10−8

200 3DCAE-MRI fine-tuning Training from scratch -8.76 29.0 -1.86 1.21 × 10−91.21 × 10−91.21 × 10−9

200 3DCAE-MRI fine-tuning Training from scratch augmented -9.55 29.0 -1.98 1.84 × 10−101.84 × 10−101.84 × 10−10

200 3DCAE-MRI off-the-shelf PCA -16.00 29.0 -3.74 6.26 × 10−166.26 × 10−166.26 × 10−16

200 3DCAE-MRI off-the-shelf Training from scratch -8.98 29.0 -2.44 7.2 × 10−107.2 × 10−107.2 × 10−10

200 3DCAE-MRI off-the-shelf Training from scratch augmented -9.52 29.0 -2.46 2.0 × 10−102.0 × 10−102.0 × 10−10

200 PCA Training from scratch -3.74 29.0 -0.97 0.000820.000820.00082
200 PCA Training from scratch augmented -5.05 29.0 -1.22 2.18 × 10−52.18 × 10−52.18 × 10−5

200 Training from scratch Training from scratch augmented -1.85 29.0 -0.31 0.074
300 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 4.88 29.0 1.22 3.57 × 10−53.57 × 10−53.57 × 10−5

300 3DCAE-MRI fine-tuning PCA -2.41 29.0 -0.49 0.0230.0230.023
300 3DCAE-MRI fine-tuning Training from scratch -7.64 29.0 -1.80 2.03 × 10−82.03 × 10−82.03 × 10−8

300 3DCAE-MRI fine-tuning Training from scratch augmented -10.15 29.0 -2.58 4.75 × 10−114.75 × 10−114.75 × 10−11

300 3DCAE-MRI off-the-shelf PCA -12.40 29.0 -3.08 4.06 × 10−134.06 × 10−134.06 × 10−13

300 3DCAE-MRI off-the-shelf Training from scratch -10.05 29.0 -2.63 5.84 × 10−115.84 × 10−115.84 × 10−11

300 3DCAE-MRI off-the-shelf Training from scratch augmented -12.85 29.0 -3.25 1.68 × 10−131.68 × 10−131.68 × 10−13

300 PCA Training from scratch -7.07 29.0 -1.71 8.98 × 10−88.98 × 10−88.98 × 10−8

300 PCA Training from scratch augmented -9.70 29.0 -2.53 1.3 × 10−101.3 × 10−101.3 × 10−10

300 Training from scratch Training from scratch augmented -3.80 29.0 -0.97 0.000680.000680.00068
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Table C.9: SFCN Age prediction: ANOVA comparing the means of MAE of the holdout
test set across different training strategies for the different training dataset sizes. The

significant p-values are in bold.
ddof1 ddof2 F p-value

Number of training samples
25 4 116 306.94 1.07 × 10−60

50 4 116 240.50 3.71 × 10−55

100 4 116 232.30 2.22 × 10−54

200 4 116 63.12 3.13 × 10−28

300 4 116 28.59 1.56 × 10−16

Table C.10: SFCN Age prediction: Post-hoc results for the statistically significant
ANOVA comparing the mean MAE of the external test set across different training

strategies for different number of training instances. The significant p-values are shown in
bold.

A B T dof cohen p-value
Number of training samples
25 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf 1.43 29.0 0.18 0.16
25 3DCAE-MRI Fine-tuning PCA -30.54 29.0 -4.87 1.33 × 10−231.33 × 10−231.33 × 10−23

25 3DCAE-MRI Fine-tuning Pre-trained SFCN Age -0.68 29.0 -0.09 0.5
25 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender -3.42 29.0 -0.55 0.00190.00190.0019
25 3DCAE-MRI Off-the-shelf PCA -31.94 29.0 -5.60 3.77 × 10−243.77 × 10−243.77 × 10−24

25 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age -1.95 29.0 -0.30 0.06
25 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender -4.57 29.0 -0.74 8.46 × 10−58.46 × 10−58.46 × 10−5

25 PCA Pre-trained SFCN Age 30.20 29.0 5.37 1.82 × 10−231.82 × 10−231.82 × 10−23

25 PCA Pre-trained SFCN Gender 18.42 29.0 3.75 1.51 × 10−171.51 × 10−171.51 × 10−17

25 Pre-trained SFCN Age Pre-trained SFCN Gender -2.77 29.0 -0.51 0.00960.00960.0096
50 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf -1.31 29.0 -0.30 0.2
50 3DCAE-MRI Fine-tuning PCA -30.20 29.0 -6.14 1.83 × 10−231.83 × 10−231.83 × 10−23

50 3DCAE-MRI Fine-tuning Pre-trained SFCN Age -5.28 29.0 -1.00 1.17 × 10−51.17 × 10−51.17 × 10−5

50 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender -2.90 29.0 -0.70 0.0070.0070.007
50 3DCAE-MRI Off-the-shelf PCA -26.89 29.0 -6.47 4.72 × 10−224.72 × 10−224.72 × 10−22

50 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age -4.44 29.0 -0.82 0.000120.000120.00012
50 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender -2.12 29.0 -0.51 0.0430.0430.043
50 PCA Pre-trained SFCN Age 23.60 29.0 4.97 1.76 × 10−201.76 × 10−201.76 × 10−20

50 PCA Pre-trained SFCN Gender 18.71 29.0 4.57 9.97 × 10−189.97 × 10−189.97 × 10−18

50 Pre-trained SFCN Age Pre-trained SFCN Gender 0.67 29.0 0.17 0.51
100 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf 2.00 29.0 0.49 0.055
100 3DCAE-MRI Fine-tuning PCA -29.97 29.0 -6.17 2.25 × 10−232.25 × 10−232.25 × 10−23

100 3DCAE-MRI Fine-tuning Pre-trained SFCN Age -1.48 29.0 -0.32 0.15
100 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender -3.33 29.0 -0.78 0.00240.00240.0024
100 3DCAE-MRI Off-the-shelf PCA -28.57 29.0 -7.89 8.7 × 10−238.7 × 10−238.7 × 10−23

100 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age -4.05 29.0 -0.84 0.000350.000350.00035
100 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender -5.22 29.0 -1.24 1.39 × 10−51.39 × 10−51.39 × 10−5

100 PCA Pre-trained SFCN Age 22.93 29.0 5.59 3.93 × 10−203.93 × 10−203.93 × 10−20

100 PCA Pre-trained SFCN Gender 16.21 29.0 4.20 4.45 × 10−164.45 × 10−164.45 × 10−16

100 Pre-trained SFCN Age Pre-trained SFCN Gender -2.33 29.0 -0.49 0.0270.0270.027
200 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf 2.81 29.0 0.73 0.00870.00870.0087
200 3DCAE-MRI Fine-tuning PCA -16.75 29.0 -3.75 1.9 × 10−161.9 × 10−161.9 × 10−16

200 3DCAE-MRI Fine-tuning Pre-trained SFCN Age -2.17 29.0 -0.59 0.0380.0380.038
200 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender -2.62 29.0 -0.60 0.0140.0140.014
200 3DCAE-MRI Off-the-shelf PCA -22.16 29.0 -5.28 9.95 × 10−209.95 × 10−209.95 × 10−20

200 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age -5.19 29.0 -1.22 1.51 × 10−51.51 × 10−51.51 × 10−5

200 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender -5.16 29.0 -1.24 1.61 × 10−51.61 × 10−51.61 × 10−5

200 PCA Pre-trained SFCN Age 8.76 29.0 2.32 1.22 × 10−91.22 × 10−91.22 × 10−9

200 PCA Pre-trained SFCN Gender 11.32 29.0 2.36 3.69 × 10−123.69 × 10−123.69 × 10−12

200 Pre-trained SFCN Age Pre-trained SFCN Gender -0.01 29.0 -0.00 1.0
300 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf 6.98 29.0 2.05 1.12 × 10−71.12 × 10−71.12 × 10−7

300 3DCAE-MRI Fine-tuning PCA -3.67 29.0 -1.05 0.000960.000960.00096
300 3DCAE-MRI Fine-tuning Pre-trained SFCN Age -2.59 29.0 -0.64 0.0150.0150.015
300 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender 1.33 29.0 0.36 0.2
300 3DCAE-MRI Off-the-shelf PCA -21.15 29.0 -5.05 3.59 × 10−193.59 × 10−193.59 × 10−19

300 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age -8.01 29.0 -2.09 7.75 × 10−97.75 × 10−97.75 × 10−9

300 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender -5.34 29.0 -1.36 9.98 × 10−69.98 × 10−69.98 × 10−6

300 PCA Pre-trained SFCN Age -0.22 29.0 -0.06 0.83
300 PCA Pre-trained SFCN Gender 5.42 29.0 1.35 7.93 × 10−67.93 × 10−67.93 × 10−6

300 Pre-trained SFCN Age Pre-trained SFCN Gender 3.33 29.0 0.89 0.00240.00240.0024
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Table C.11: LiteNet Age prediction: ANOVA results comparing the stability metric
across different training strategies for the different dataset sizes tested. The significant

p-values are shown in bold.
ddof1 ddof2 F p-value

Number of training samples
25 3 87 244.51 2.87 × 10−42

50 3 87 71.63 2.0 × 10−23

100 3 87 89.77 1.52 × 10−26

200 3 87 120.87 6.32 × 10−31

300 3 87 102.65 1.75 × 10−28

Table C.12: LiteNet Age prediction: Post-hoc results for the statistically significant
ANOVA comparing the stability metric across different training strategies for the different

dataset sizes tested. The significant p-values are shown in bold.
A B T dof cohen p-value

Number of training samples
25 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 27.22 29.0 5.22 3.36 × 10−223.36 × 10−223.36 × 10−22

25 3DCAE-MRI fine-tuning Training from scratch -7.14 29.0 -1.49 7.49 × 10−87.49 × 10−87.49 × 10−8

25 3DCAE-MRI fine-tuning Training from scratch augmented -2.28 29.0 -0.43 0.030.030.03
25 3DCAE-MRI off-the-shelf Training from scratch -20.72 29.0 -5.71 6.25 × 10−196.25 × 10−196.25 × 10−19

25 3DCAE-MRI off-the-shelf Training from scratch augmented -26.19 29.0 -4.88 9.89 × 10−229.89 × 10−229.89 × 10−22

25 Training from scratch Training from scratch augmented 3.76 29.0 0.98 0.000770.000770.00077
50 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 13.34 29.0 3.29 6.68 × 10−146.68 × 10−146.68 × 10−14

50 3DCAE-MRI fine-tuning Training from scratch -3.68 29.0 -0.72 0.000940.000940.00094
50 3DCAE-MRI fine-tuning Training from scratch augmented -5.87 29.0 -1.59 2.31 × 10−62.31 × 10−62.31 × 10−6

50 3DCAE-MRI off-the-shelf Training from scratch -11.02 29.0 -2.75 6.96 × 10−126.96 × 10−126.96 × 10−12

50 3DCAE-MRI off-the-shelf Training from scratch augmented -14.27 29.0 -3.36 1.21 × 10−141.21 × 10−141.21 × 10−14

50 Training from scratch Training from scratch augmented -3.28 29.0 -0.81 0.00270.00270.0027
100 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 11.50 29.0 2.57 2.52 × 10−122.52 × 10−122.52 × 10−12

100 3DCAE-MRI fine-tuning Training from scratch -4.54 29.0 -0.79 9.15 × 10−59.15 × 10−59.15 × 10−5

100 3DCAE-MRI fine-tuning Training from scratch augmented -8.21 29.0 -1.98 4.77 × 10−94.77 × 10−94.77 × 10−9

100 3DCAE-MRI off-the-shelf Training from scratch -10.77 29.0 -2.51 1.18 × 10−111.18 × 10−111.18 × 10−11

100 3DCAE-MRI off-the-shelf Training from scratch augmented -14.97 29.0 -3.90 3.54 × 10−153.54 × 10−153.54 × 10−15

100 Training from scratch Training from scratch augmented -4.26 29.0 -0.95 0.00020.00020.0002
200 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 10.42 29.0 2.06 2.6 × 10−112.6 × 10−112.6 × 10−11

200 3DCAE-MRI fine-tuning Training from scratch -5.41 29.0 -1.03 8.02 × 10−68.02 × 10−68.02 × 10−6

200 3DCAE-MRI fine-tuning Training from scratch augmented -12.05 29.0 -2.68 8.16 × 10−138.16 × 10−138.16 × 10−13

200 3DCAE-MRI off-the-shelf Training from scratch -9.64 29.0 -2.19 1.49 × 10−101.49 × 10−101.49 × 10−10

200 3DCAE-MRI off-the-shelf Training from scratch augmented -16.39 29.0 -3.92 3.33 × 10−163.33 × 10−163.33 × 10−16

200 Training from scratch Training from scratch augmented -6.86 29.0 -1.22 1.54 × 10−71.54 × 10−71.54 × 10−7

300 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 10.64 29.0 2.36 1.6 × 10−111.6 × 10−111.6 × 10−11

300 3DCAE-MRI fine-tuning Training from scratch -6.72 29.0 -1.56 2.26 × 10−72.26 × 10−72.26 × 10−7

300 3DCAE-MRI fine-tuning Training from scratch augmented -9.79 29.0 -2.61 1.07 × 10−101.07 × 10−101.07 × 10−10

300 3DCAE-MRI off-the-shelf Training from scratch -11.81 29.0 -2.79 1.33 × 10−121.33 × 10−121.33 × 10−12

300 3DCAE-MRI off-the-shelf Training from scratch augmented -15.22 29.0 -4.03 2.3 × 10−152.3 × 10−152.3 × 10−15

300 Training from scratch Training from scratch augmented -3.49 29.0 -0.69 0.00160.00160.0016

Table C.13: SFCN Age prediction: ANOVA results comparing the stability metric across
different training strategies for the different dataset sizes tested. The significant p-values

are shown in bold.
ddof1 ddof2 F p-value

Number of training samples
25 3 87 14.66 8.25 × 10−8

50 3 87 39.38 3.58 × 10−16

100 3 87 32.52 3.42 × 10−14

200 3 87 67.84 1.05 × 10−22

300 3 87 108.71 2.48 × 10−29
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Table C.14: SFCN Age prediction: Post-hoc results for the statistically significant
ANOVA comparing the stability metric across different training strategies for the different

dataset sizes tested. The significant p-values are shown in bold.
A B T dof cohen p-value

Number of training samples
25 3D-CAEMRI Fine-tuning 3D-CAEMRI Off-the-shelf 1.83 29.0 0.47 0.077
25 3D-CAEMRI Fine-tuning Pre-trained SFCN Age 7.68 29.0 1.79 1.79 × 10−81.79 × 10−81.79 × 10−8

25 3D-CAEMRI Fine-tuning Pre-trained SFCN Gender 0.49 29.0 0.13 0.63
25 3D-CAEMRI Off-the-shelf Pre-trained SFCN Age 5.38 29.0 1.24 8.84 × 10−68.84 × 10−68.84 × 10−6

25 3D-CAEMRI Off-the-shelf Pre-trained SFCN Gender -1.29 29.0 -0.29 0.21
25 Pre-trained SFCN Age Pre-trained SFCN Gender -5.33 29.0 -1.38 1.0 × 10−51.0 × 10−51.0 × 10−5

50 3D-CAEMRI Fine-tuning 3D-CAEMRI Off-the-shelf 0.33 29.0 0.09 0.74
50 3D-CAEMRI Fine-tuning Pre-trained SFCN Age 10.19 29.0 2.62 4.26 × 10−114.26 × 10−114.26 × 10−11

50 3D-CAEMRI Fine-tuning Pre-trained SFCN Gender 3.68 29.0 0.91 0.000940.000940.00094
50 3D-CAEMRI Off-the-shelf Pre-trained SFCN Age 9.75 29.0 2.34 1.17 × 10−101.17 × 10−101.17 × 10−10

50 3D-CAEMRI Off-the-shelf Pre-trained SFCN Gender 2.86 29.0 0.75 0.00770.00770.0077
50 Pre-trained SFCN Age Pre-trained SFCN Gender -6.84 29.0 -1.86 1.63 × 10−71.63 × 10−71.63 × 10−7

100 3D-CAEMRI Fine-tuning 3D-CAEMRI Off-the-shelf -3.21 29.0 -0.75 0.00330.00330.0033
100 3D-CAEMRI Fine-tuning Pre-trained SFCN Age 7.01 29.0 2.04 1.05 × 10−71.05 × 10−71.05 × 10−7

100 3D-CAEMRI Fine-tuning Pre-trained SFCN Gender 1.03 29.0 0.27 0.31
100 3D-CAEMRI Off-the-shelf Pre-trained SFCN Age 8.23 29.0 2.00 4.55 × 10−94.55 × 10−94.55 × 10−9

100 3D-CAEMRI Off-the-shelf Pre-trained SFCN Gender 3.37 29.0 0.92 0.00210.00210.0021
100 Pre-trained SFCN Age Pre-trained SFCN Gender -8.17 29.0 -1.91 5.17 × 10−95.17 × 10−95.17 × 10−9

200 3D-CAEMRI Fine-tuning 3D-CAEMRI Off-the-shelf -5.19 29.0 -1.32 1.51 × 10−51.51 × 10−51.51 × 10−5

200 3D-CAEMRI Fine-tuning Pre-trained SFCN Age 11.78 29.0 2.85 1.42 × 10−121.42 × 10−121.42 × 10−12

200 3D-CAEMRI Fine-tuning Pre-trained SFCN Gender 0.62 29.0 0.18 0.54
200 3D-CAEMRI Off-the-shelf Pre-trained SFCN Age 11.84 29.0 2.93 1.25 × 10−121.25 × 10−121.25 × 10−12

200 3D-CAEMRI Off-the-shelf Pre-trained SFCN Gender 5.71 29.0 1.44 3.54 × 10−63.54 × 10−63.54 × 10−6

200 Pre-trained SFCN Age Pre-trained SFCN Gender -13.29 29.0 -2.78 7.26 × 10−147.26 × 10−147.26 × 10−14

300 3D-CAEMRI Fine-tuning 3D-CAEMRI Off-the-shelf -9.84 29.0 -2.37 9.48 × 10−119.48 × 10−119.48 × 10−11

300 3D-CAEMRI Fine-tuning Pre-trained SFCN Age 7.20 29.0 2.06 6.33 × 10−86.33 × 10−86.33 × 10−8

300 3D-CAEMRI Fine-tuning Pre-trained SFCN Gender -1.15 29.0 -0.26 0.26
300 3D-CAEMRI Off-the-shelf Pre-trained SFCN Age 17.88 29.0 4.19 3.32 × 10−173.32 × 10−173.32 × 10−17

300 3D-CAEMRI Off-the-shelf Pre-trained SFCN Gender 8.03 29.0 2.24 7.47 × 10−97.47 × 10−97.47 × 10−9

300 Pre-trained SFCN Age Pre-trained SFCN Gender -10.10 29.0 -2.54 5.27 × 10−115.27 × 10−115.27 × 10−11
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C.2.2 Sex Classification
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Figure C.2: Holdout test set accuracy results for sex classification problem.
Training evolution for the sex classification problem with different dataset training sizes
for the four training strategies. 3DCAE-MRI off-the-shelf and 3DCAE-MRI fine-tuning
represents the transfer learning from the 3DCAE-MRI to the CNN. The shaded band
represents to the standard deviation.
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Table C.15: LiteNet Sex prediction: ANOVA comparing the accuracy of the holdout test
set across training strategies for different training dataset sizes. The significant p-values

are in bold.
ddof1 ddof2 F p-value

Number of training samples
25 4 116 10.47 2.82 × 10−7

50 4 116 13.66 3.72 × 10−9

100 4 116 10.98 1.38 × 10−7

200 4 116 13.39 5.3 × 10−9

300 4 116 17.54 2.79 × 10−11

Table C.16: LiteNet Sex prediction: Post-hoc results for the statistically significant
ANOVA comparing the accuracy of the holdout test set across training strategies for

different training dataset sizes. The significant p-values are shown in bold.
A B T dof cohen p-value

Number of training samples
25 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -5.69 29.0 -1.18 3.73 × 10−63.73 × 10−63.73 × 10−6

25 3DCAE-MRI fine-tuning PCA -3.54 29.0 -0.80 0.00140.00140.0014
25 3DCAE-MRI fine-tuning Training from scratch -0.32 29.0 -0.08 0.75
25 3DCAE-MRI fine-tuning Training from scratch augmented -1.37 29.0 -0.33 0.18
25 3DCAE-MRI off-the-shelf PCA 3.82 29.0 0.58 0.000650.000650.00065
25 3DCAE-MRI off-the-shelf Training from scratch 5.05 29.0 1.13 2.2 × 10−52.2 × 10−52.2 × 10−5

25 3DCAE-MRI off-the-shelf Training from scratch augmented 4.39 29.0 1.01 0.000140.000140.00014
25 PCA Training from scratch 3.25 29.0 0.73 0.00290.00290.0029
25 PCA Training from scratch augmented 2.28 29.0 0.54 0.030.030.03
25 Training from scratch Training from scratch augmented -1.04 29.0 -0.25 0.31
50 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -3.68 29.0 -0.80 0.000950.000950.00095
50 3DCAE-MRI fine-tuning PCA -1.07 29.0 -0.27 0.29
50 3DCAE-MRI fine-tuning Training from scratch 2.35 29.0 0.54 0.0260.0260.026
50 3DCAE-MRI fine-tuning Training from scratch augmented 2.73 29.0 0.71 0.0110.0110.011
50 3DCAE-MRI off-the-shelf PCA 3.69 29.0 0.74 0.000920.000920.00092
50 3DCAE-MRI off-the-shelf Training from scratch 5.42 29.0 1.48 8.0 × 10−68.0 × 10−68.0 × 10−6

50 3DCAE-MRI off-the-shelf Training from scratch augmented 6.13 29.0 1.66 1.11 × 10−61.11 × 10−61.11 × 10−6

50 PCA Training from scratch 3.61 29.0 0.94 0.00110.00110.0011
50 PCA Training from scratch augmented 3.89 29.0 1.14 0.000540.000540.00054
50 Training from scratch Training from scratch augmented 0.79 29.0 0.18 0.44
100 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -4.95 29.0 -0.94 2.95 × 10−52.95 × 10−52.95 × 10−5

100 3DCAE-MRI fine-tuning PCA -3.36 29.0 -0.63 0.00220.00220.0022
100 3DCAE-MRI fine-tuning Training from scratch 0.31 29.0 0.05 0.76
100 3DCAE-MRI fine-tuning Training from scratch augmented 0.83 29.0 0.20 0.41
100 3DCAE-MRI off-the-shelf PCA 1.56 29.0 0.29 0.13
100 3DCAE-MRI off-the-shelf Training from scratch 5.17 29.0 1.14 1.59 × 10−51.59 × 10−51.59 × 10−5

100 3DCAE-MRI off-the-shelf Training from scratch augmented 4.46 29.0 1.08 0.000110.000110.00011
100 PCA Training from scratch 3.81 29.0 0.77 0.000660.000660.00066
100 PCA Training from scratch augmented 3.61 29.0 0.79 0.00110.00110.0011
100 Training from scratch Training from scratch augmented 0.78 29.0 0.17 0.44
200 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -5.14 29.0 -0.92 1.73 × 10−51.73 × 10−51.73 × 10−5

200 3DCAE-MRI fine-tuning PCA -4.58 29.0 -0.99 8.2 × 10−58.2 × 10−58.2 × 10−5

200 3DCAE-MRI fine-tuning Training from scratch 0.99 29.0 0.20 0.33
200 3DCAE-MRI fine-tuning Training from scratch augmented -0.50 29.0 -0.09 0.62
200 3DCAE-MRI off-the-shelf PCA -0.42 29.0 -0.08 0.68
200 3DCAE-MRI off-the-shelf Training from scratch 5.43 29.0 1.10 7.63 × 10−67.63 × 10−67.63 × 10−6

200 3DCAE-MRI off-the-shelf Training from scratch augmented 3.69 29.0 0.82 0.000930.000930.00093
200 PCA Training from scratch 5.82 29.0 1.17 2.65 × 10−62.65 × 10−62.65 × 10−6

200 PCA Training from scratch augmented 4.01 29.0 0.89 0.000390.000390.00039
200 Training from scratch Training from scratch augmented -1.15 29.0 -0.29 0.26
300 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -3.71 29.0 -0.80 0.000870.000870.00087
300 3DCAE-MRI fine-tuning PCA -5.09 29.0 -1.06 1.99 × 10−51.99 × 10−51.99 × 10−5

300 3DCAE-MRI fine-tuning Training from scratch 0.39 29.0 0.08 0.7
300 3DCAE-MRI fine-tuning Training from scratch augmented 2.04 29.0 0.48 0.05
300 3DCAE-MRI off-the-shelf PCA -1.53 29.0 -0.24 0.14
300 3DCAE-MRI off-the-shelf Training from scratch 3.94 29.0 0.95 0.000470.000470.00047
300 3DCAE-MRI off-the-shelf Training from scratch augmented 6.10 29.0 1.34 1.2 × 10−61.2 × 10−61.2 × 10−6

300 PCA Training from scratch 5.02 29.0 1.24 2.38 × 10−52.38 × 10−52.38 × 10−5

300 PCA Training from scratch augmented 7.55 29.0 1.63 2.53 × 10−82.53 × 10−82.53 × 10−8

300 Training from scratch Training from scratch augmented 1.89 29.0 0.43 0.069



206 APPENDIX C. TRANSFER LEARNING ON DEEP LEARNING MODELS

Table C.17: SFCN Sex prediction: ANOVA comparing the accuracy of the holdout test
set across training strategies for different training dataset sizes. The significant p-values

are in bold.
ddof1 ddof2 F p-value

Number of training samples
25 4 116 16.55 9.35 × 10−11

50 4 116 12.98 9.16 × 10−9

100 4 116 6.56 8.52 × 10−5

200 4 116 11.16 1.07 × 10−7

300 4 116 14.92 7.24 × 10−10

Table C.18: SFCN Sex prediction: Post-hoc results for the statistically significant
ANOVA comparing the accuracy of the holdout test set across training strategies for

different training dataset sizes. The significant p-values are shown in bold.
A B T dof cohen p-value

Number of training samples
25 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf -1.01 29.0 -0.19 0.32
25 3DCAE-MRI Fine-tuning PCA 4.61 29.0 1.18 7.44 × 10−57.44 × 10−57.44 × 10−5

25 3DCAE-MRI Fine-tuning Pre-trained SFCN Age 2.43 29.0 0.47 0.0210.0210.021
25 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender 1.22 29.0 0.23 0.23
25 3DCAE-MRI Off-the-shelf PCA 6.45 29.0 1.57 4.64 × 10−74.64 × 10−74.64 × 10−7

25 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age 4.44 29.0 0.76 0.000120.000120.00012
25 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender 2.70 29.0 0.49 0.0110.0110.011
25 PCA Pre-trained SFCN Age -3.90 29.0 -0.73 0.000530.000530.00053
25 PCA Pre-trained SFCN Gender -5.42 29.0 -1.06 7.87 × 10−67.87 × 10−67.87 × 10−6

25 Pre-trained SFCN Age Pre-trained SFCN Gender -1.58 29.0 -0.28 0.12
50 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf -0.99 29.0 -0.27 0.33
50 3DCAE-MRI Fine-tuning PCA 3.97 29.0 1.12 0.000430.000430.00043
50 3DCAE-MRI Fine-tuning Pre-trained SFCN Age 1.94 29.0 0.54 0.062
50 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender 4.13 29.0 1.03 0.000280.000280.00028
50 3DCAE-MRI Off-the-shelf PCA 6.38 29.0 1.43 5.61 × 10−75.61 × 10−75.61 × 10−7

50 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age 3.80 29.0 0.82 0.000690.000690.00069
50 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender 5.64 29.0 1.32 4.27 × 10−64.27 × 10−64.27 × 10−6

50 PCA Pre-trained SFCN Age -2.62 29.0 -0.53 0.0140.0140.014
50 PCA Pre-trained SFCN Gender -0.09 29.0 -0.02 0.93
50 Pre-trained SFCN Age Pre-trained SFCN Gender 2.37 29.0 0.48 0.0240.0240.024
100 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf -1.31 29.0 -0.26 0.2
100 3DCAE-MRI Fine-tuning PCA 1.21 29.0 0.25 0.24
100 3DCAE-MRI Fine-tuning Pre-trained SFCN Age 2.39 29.0 0.58 0.0240.0240.024
100 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender 3.50 29.0 0.68 0.00150.00150.0015
100 3DCAE-MRI Off-the-shelf PCA 2.45 29.0 0.51 0.0210.0210.021
100 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age 3.88 29.0 0.88 0.000550.000550.00055
100 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender 3.78 29.0 0.98 0.000730.000730.00073
100 PCA Pre-trained SFCN Age 1.44 29.0 0.32 0.16
100 PCA Pre-trained SFCN Gender 2.19 29.0 0.41 0.0370.0370.037
100 Pre-trained SFCN Age Pre-trained SFCN Gender 0.45 29.0 0.10 0.66
200 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf -1.57 29.0 -0.39 0.13
200 3DCAE-MRI Fine-tuning PCA -1.04 29.0 -0.24 0.31
200 3DCAE-MRI Fine-tuning Pre-trained SFCN Age 1.07 29.0 0.25 0.3
200 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender 4.06 29.0 0.93 0.000340.000340.00034
200 3DCAE-MRI Off-the-shelf PCA 0.84 29.0 0.14 0.41
200 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age 2.34 29.0 0.60 0.0270.0270.027
200 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender 5.26 29.0 1.23 1.24 × 10−51.24 × 10−51.24 × 10−5

200 PCA Pre-trained SFCN Age 2.01 29.0 0.46 0.054
200 PCA Pre-trained SFCN Gender 5.17 29.0 1.10 1.59 × 10−51.59 × 10−51.59 × 10−5

200 Pre-trained SFCN Age Pre-trained SFCN Gender 3.96 29.0 0.67 0.000450.000450.00045
300 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf -3.36 29.0 -0.83 0.00220.00220.0022
300 3DCAE-MRI Fine-tuning PCA -3.37 29.0 -0.69 0.00210.00210.0021
300 3DCAE-MRI Fine-tuning Pre-trained SFCN Age 0.78 29.0 0.16 0.44
300 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender 3.33 29.0 0.72 0.00240.00240.0024
300 3DCAE-MRI Off-the-shelf PCA 0.65 29.0 0.18 0.52
300 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age 3.62 29.0 0.96 0.00110.00110.0011
300 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender 6.25 29.0 1.61 8.11 × 10−78.11 × 10−78.11 × 10−7

300 PCA Pre-trained SFCN Age 3.64 29.0 0.83 0.00110.00110.0011
300 PCA Pre-trained SFCN Gender 5.65 29.0 1.49 4.22 × 10−64.22 × 10−64.22 × 10−6

300 Pre-trained SFCN Age Pre-trained SFCN Gender 2.63 29.0 0.54 0.0140.0140.014
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Table C.19: LiteNet Sex prediction: ANOVA comparing the accuracy of the external test
set across training strategies for different training dataset sizes. The significant p-values

are in bold.
ddof1 ddof2 F p-value

Number of training samples
25 4 116 22.05 1.49 × 10−13

50 4 116 12.14 2.8 × 10−8

100 4 116 10.30 3.6 × 10−7

200 4 116 17.91 1.78 × 10−11

300 4 116 20.94 5.17 × 10−13

Table C.20: LiteNet Sex prediction: Post-hoc results for the statistically significant
ANOVA comparing the accuracy of the external test set across training strategies for

different training dataset sizes. The significant p-values are shown in bold.
A B T dof cohen p-value

Number of training samples
25 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -5.77 29.0 -1.37 2.99 × 10−62.99 × 10−62.99 × 10−6

25 3DCAE-MRI fine-tuning PCA -6.75 29.0 -1.70 2.08 × 10−72.08 × 10−72.08 × 10−7

25 3DCAE-MRI fine-tuning Training from scratch -0.39 29.0 -0.11 0.7
25 3DCAE-MRI fine-tuning Training from scratch augmented -2.42 29.0 -0.47 0.0220.0220.022
25 3DCAE-MRI off-the-shelf PCA -1.77 29.0 -0.33 0.088
25 3DCAE-MRI off-the-shelf Training from scratch 5.45 29.0 1.37 7.21 × 10−67.21 × 10−67.21 × 10−6

25 3DCAE-MRI off-the-shelf Training from scratch augmented 4.86 29.0 0.94 3.75 × 10−53.75 × 10−53.75 × 10−5

25 PCA Training from scratch 7.21 29.0 1.73 6.23 × 10−86.23 × 10−86.23 × 10−8

25 PCA Training from scratch augmented 5.32 29.0 1.27 1.03 × 10−51.03 × 10−51.03 × 10−5

25 Training from scratch Training from scratch augmented -1.62 29.0 -0.40 0.12
50 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -2.98 29.0 -0.57 0.00580.00580.0058
50 3DCAE-MRI fine-tuning PCA -5.13 29.0 -1.13 1.78 × 10−51.78 × 10−51.78 × 10−5

50 3DCAE-MRI fine-tuning Training from scratch 2.23 29.0 0.54 0.0340.0340.034
50 3DCAE-MRI fine-tuning Training from scratch augmented 0.42 29.0 0.11 0.68
50 3DCAE-MRI off-the-shelf PCA -2.01 29.0 -0.46 0.054
50 3DCAE-MRI off-the-shelf Training from scratch 4.56 29.0 1.04 8.58 × 10−58.58 × 10−58.58 × 10−5

50 3DCAE-MRI off-the-shelf Training from scratch augmented 2.47 29.0 0.59 0.020.020.02
50 PCA Training from scratch 6.28 29.0 1.57 7.41 × 10−77.41 × 10−77.41 × 10−7

50 PCA Training from scratch augmented 4.37 29.0 1.02 0.000150.000150.00015
50 Training from scratch Training from scratch augmented -1.91 29.0 -0.37 0.067
100 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -2.10 29.0 -0.47 0.0440.0440.044
100 3DCAE-MRI fine-tuning PCA -4.79 29.0 -0.96 4.53 × 10−54.53 × 10−54.53 × 10−5

100 3DCAE-MRI fine-tuning Training from scratch 1.41 29.0 0.31 0.17
100 3DCAE-MRI fine-tuning Training from scratch augmented 1.45 29.0 0.39 0.16
100 3DCAE-MRI off-the-shelf PCA -4.19 29.0 -0.69 0.000240.000240.00024
100 3DCAE-MRI off-the-shelf Training from scratch 2.95 29.0 0.79 0.00630.00630.0063
100 3DCAE-MRI off-the-shelf Training from scratch augmented 3.94 29.0 0.96 0.000470.000470.00047
100 PCA Training from scratch 4.90 29.0 1.22 3.34 × 10−53.34 × 10−53.34 × 10−5

100 PCA Training from scratch augmented 5.45 29.0 1.45 7.32 × 10−67.32 × 10−67.32 × 10−6

100 Training from scratch Training from scratch augmented 0.17 29.0 0.05 0.87
200 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -3.12 29.0 -0.68 0.00410.00410.0041
200 3DCAE-MRI fine-tuning PCA -5.37 29.0 -1.26 9.02 × 10−69.02 × 10−69.02 × 10−6

200 3DCAE-MRI fine-tuning Training from scratch 0.24 29.0 0.06 0.81
200 3DCAE-MRI fine-tuning Training from scratch augmented 1.62 29.0 0.38 0.12
200 3DCAE-MRI off-the-shelf PCA -3.52 29.0 -0.72 0.00140.00140.0014
200 3DCAE-MRI off-the-shelf Training from scratch 3.70 29.0 0.80 0.000910.000910.00091
200 3DCAE-MRI off-the-shelf Training from scratch augmented 5.13 29.0 1.12 1.74 × 10−51.74 × 10−51.74 × 10−5

200 PCA Training from scratch 6.96 29.0 1.44 1.18 × 10−71.18 × 10−71.18 × 10−7

200 PCA Training from scratch augmented 7.88 29.0 1.72 1.07 × 10−81.07 × 10−81.07 × 10−8

200 Training from scratch Training from scratch augmented 1.72 29.0 0.35 0.097
300 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -2.00 29.0 -0.45 0.055
300 3DCAE-MRI fine-tuning PCA -2.97 29.0 -0.59 0.00590.00590.0059
300 3DCAE-MRI fine-tuning Training from scratch 3.66 29.0 0.74 0.0010.0010.001
300 3DCAE-MRI fine-tuning Training from scratch augmented 4.39 29.0 1.09 0.000140.000140.00014
300 3DCAE-MRI off-the-shelf PCA -0.26 29.0 -0.06 0.8
300 3DCAE-MRI off-the-shelf Training from scratch 5.05 29.0 1.11 2.21 × 10−52.21 × 10−52.21 × 10−5

300 3DCAE-MRI off-the-shelf Training from scratch augmented 7.01 29.0 1.45 1.05 × 10−71.05 × 10−71.05 × 10−7

300 PCA Training from scratch 5.70 29.0 1.28 3.66 × 10−63.66 × 10−63.66 × 10−6

300 PCA Training from scratch augmented 6.64 29.0 1.64 2.79 × 10−72.79 × 10−72.79 × 10−7

300 Training from scratch Training from scratch augmented 1.35 29.0 0.33 0.19
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Table C.21: SFCN Sex prediction: ANOVA comparing the accuracy of the external test
set across training strategies for different training dataset sizes. The significant p-values

are in bold.
ddof1 ddof2 F p-value

Number of training samples
25 4 116 4.87 0.0011
50 4 116 12.92 9.85 × 10−9

100 4 116 5.61 0.00037
200 4 116 15.64 2.93 × 10−10

300 4 116 6.11 0.00017

Table C.22: SFCN Sex prediction: Post-hoc results for the statistically significant
ANOVA comparing the accuracy of the external test set across training strategies for

different training dataset sizes. The significant p-values are shown in bold.
A B T dof cohen p-value

Number of training samples
25 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf -0.50 29.0 -0.12 0.62
25 3DCAE-MRI Fine-tuning PCA 0.78 29.0 0.20 0.44
25 3DCAE-MRI Fine-tuning Pre-trained SFCN Age 3.62 29.0 0.71 0.00110.00110.0011
25 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender 3.06 29.0 0.75 0.00470.00470.0047
25 3DCAE-MRI Off-the-shelf PCA 1.21 29.0 0.29 0.24
25 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age 2.91 29.0 0.77 0.00690.00690.0069
25 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender 3.27 29.0 0.80 0.00280.00280.0028
25 PCA Pre-trained SFCN Age 1.68 29.0 0.45 0.1
25 PCA Pre-trained SFCN Gender 2.03 29.0 0.49 0.052
25 Pre-trained SFCN Age Pre-trained SFCN Gender 0.26 29.0 0.06 0.79
50 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf 1.47 29.0 0.39 0.15
50 3DCAE-MRI Fine-tuning PCA 1.96 29.0 0.54 0.059
50 3DCAE-MRI Fine-tuning Pre-trained SFCN Age 4.66 29.0 1.19 6.48 × 10−56.48 × 10−56.48 × 10−5

50 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender 5.83 29.0 1.42 2.54 × 10−62.54 × 10−62.54 × 10−6

50 3DCAE-MRI Off-the-shelf PCA 0.85 29.0 0.22 0.4
50 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age 3.96 29.0 0.91 0.000450.000450.00045
50 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender 5.38 29.0 1.15 8.84 × 10−68.84 × 10−68.84 × 10−6

50 PCA Pre-trained SFCN Age 2.71 29.0 0.65 0.0110.0110.011
50 PCA Pre-trained SFCN Gender 3.34 29.0 0.87 0.00230.00230.0023
50 Pre-trained SFCN Age Pre-trained SFCN Gender 1.02 29.0 0.21 0.32
100 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf -1.18 29.0 -0.22 0.25
100 3DCAE-MRI Fine-tuning PCA -1.50 29.0 -0.31 0.15
100 3DCAE-MRI Fine-tuning Pre-trained SFCN Age 2.66 29.0 0.69 0.0130.0130.013
100 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender 1.62 29.0 0.37 0.12
100 3DCAE-MRI Off-the-shelf PCA -0.69 29.0 -0.12 0.5
100 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age 3.67 29.0 0.97 0.000980.000980.00098
100 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender 2.16 29.0 0.55 0.040.040.04
100 PCA Pre-trained SFCN Age 3.78 29.0 1.00 0.000720.000720.00072
100 PCA Pre-trained SFCN Gender 2.57 29.0 0.60 0.0150.0150.015
100 Pre-trained SFCN Age Pre-trained SFCN Gender -0.70 29.0 -0.18 0.49
200 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf -0.45 29.0 -0.12 0.65
200 3DCAE-MRI Fine-tuning PCA -1.86 29.0 -0.49 0.074
200 3DCAE-MRI Fine-tuning Pre-trained SFCN Age 3.17 29.0 0.89 0.00360.00360.0036
200 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender 3.92 29.0 1.10 0.00050.00050.0005
200 3DCAE-MRI Off-the-shelf PCA -1.89 29.0 -0.48 0.069
200 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age 4.18 29.0 1.13 0.000240.000240.00024
200 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender 5.12 29.0 1.40 1.8 × 10−51.8 × 10−51.8 × 10−5

200 PCA Pre-trained SFCN Age 6.04 29.0 1.34 1.43 × 10−61.43 × 10−61.43 × 10−6

200 PCA Pre-trained SFCN Gender 6.58 29.0 1.57 3.29 × 10−73.29 × 10−73.29 × 10−7

200 Pre-trained SFCN Age Pre-trained SFCN Gender 0.66 29.0 0.16 0.51
300 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf -1.07 29.0 -0.25 0.29
300 3DCAE-MRI Fine-tuning PCA -2.91 29.0 -0.57 0.00680.00680.0068
300 3DCAE-MRI Fine-tuning Pre-trained SFCN Age 2.00 29.0 0.42 0.055
300 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender 2.22 29.0 0.46 0.0340.0340.034
300 3DCAE-MRI Off-the-shelf PCA -1.54 29.0 -0.39 0.13
300 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age 3.13 29.0 0.66 0.0040.0040.004
300 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender 2.41 29.0 0.64 0.0220.0220.022
300 PCA Pre-trained SFCN Age 4.12 29.0 0.90 0.000290.000290.00029
300 PCA Pre-trained SFCN Gender 3.29 29.0 0.83 0.00260.00260.0026
300 Pre-trained SFCN Age Pre-trained SFCN Gender 0.47 29.0 0.11 0.65
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Table C.23: LiteNet Sex prediction: ANOVA results comparing the stability metric
across different training strategies for the different dataset sizes tested. The significant

p-values are shown in bold.
ddof1 ddof2 F p-value

Number of training samples
25 3 87 92.86 4.99 × 10−27

50 3 87 34.96 6.39 × 10−15

100 3 87 23.18 4.05 × 10−11

200 3 87 1.95 0.13
300 3 87 8.03 8.75 × 10−5

Table C.24: LiteNet Sex prediction: Post-hoc results for the statistically significant
ANOVA comparing the stability metric across different training strategies (training the

network from scratch, off-the-shelf and fine-tuning learning using the 3DCAE-MRI) for the
different dataset sizes tested. The significant p-values are shown in bold.

A B T dof cohen p-value
Number of training samples
25 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 21.55 29.0 6.17 2.14 × 10−192.14 × 10−192.14 × 10−19

25 3DCAE-MRI fine-tuning Training from scratch 5.83 29.0 1.41 2.54 × 10−62.54 × 10−62.54 × 10−6

25 3DCAE-MRI fine-tuning Training from scratch augmented 6.43 29.0 1.68 4.98 × 10−74.98 × 10−74.98 × 10−7

25 3DCAE-MRI off-the-shelf Training from scratch -8.80 29.0 -2.24 1.1 × 10−91.1 × 10−91.1 × 10−9

25 3DCAE-MRI off-the-shelf Training from scratch augmented -16.03 29.0 -3.73 6.03 × 10−166.03 × 10−166.03 × 10−16

25 Training from scratch Training from scratch augmented -0.81 29.0 -0.22 0.43
50 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 7.72 29.0 1.72 1.65 × 10−81.65 × 10−81.65 × 10−8

50 3DCAE-MRI fine-tuning Training from scratch 11.73 29.0 2.94 1.56 × 10−121.56 × 10−121.56 × 10−12

50 3DCAE-MRI fine-tuning Training from scratch augmented 12.62 29.0 3.47 2.63 × 10−132.63 × 10−132.63 × 10−13

50 3DCAE-MRI off-the-shelf Training from scratch -0.70 29.0 -0.17 0.49
50 3DCAE-MRI off-the-shelf Training from scratch augmented 0.36 29.0 0.10 0.72
50 Training from scratch Training from scratch augmented 1.79 29.0 0.47 0.084
100 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 7.26 29.0 1.41 5.4 × 10−85.4 × 10−85.4 × 10−8

100 3DCAE-MRI fine-tuning Training from scratch 6.05 29.0 1.39 1.39 × 10−61.39 × 10−61.39 × 10−6

100 3DCAE-MRI fine-tuning Training from scratch augmented 6.85 29.0 1.38 1.59 × 10−71.59 × 10−71.59 × 10−7

100 3DCAE-MRI off-the-shelf Training from scratch -2.10 29.0 -0.50 0.0440.0440.044
100 3DCAE-MRI off-the-shelf Training from scratch augmented -1.45 29.0 -0.33 0.16
100 Training from scratch Training from scratch augmented 0.85 29.0 0.19 0.4
300 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 3.25 29.0 0.81 0.00290.00290.0029
300 3DCAE-MRI fine-tuning Training from scratch 3.54 29.0 0.84 0.00140.00140.0014
300 3DCAE-MRI fine-tuning Training from scratch augmented 7.08 29.0 1.46 8.72 × 10−88.72 × 10−88.72 × 10−8

300 3DCAE-MRI off-the-shelf Training from scratch -0.35 29.0 -0.09 0.73
300 3DCAE-MRI off-the-shelf Training from scratch augmented 0.92 29.0 0.23 0.36
300 Training from scratch Training from scratch augmented 1.54 29.0 0.39 0.14

Table C.25: SFCN Sex classification: ANOVA results comparing the stability metric
across different training strategies for the different dataset sizes tested. The significant

p-values are shown in bold.
ddof1 ddof2 F p-value

Number of training samples
25 3 87 17.23 7.26 × 10−9

50 3 87 14.78 7.4 × 10−8

100 3 87 11.97 1.23 × 10−6

200 3 87 26.82 2.24 × 10−12

300 3 87 33.85 1.35 × 10−14
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Table C.26: SFCN Sex classification: Post-hoc results for the statistically significant
ANOVA comparing the stability metric across different training strategies for the different

dataset sizes tested. The significant p-values are shown in bold.
A B T dof cohen p-value

Number of training samples
25 3D-CAEMRI Fine-tuning 3D-CAEMRI Off-the-shelf -2.42 29.0 -0.62 0.0220.0220.022
25 3D-CAEMRI Fine-tuning Pre-trained SFCN Age 3.23 29.0 0.87 0.00310.00310.0031
25 3D-CAEMRI Fine-tuning Pre-trained SFCN Gender 2.74 29.0 0.74 0.010.010.01
25 3D-CAEMRI Off-the-shelf Pre-trained SFCN Age 7.65 29.0 1.79 1.98 × 10−81.98 × 10−81.98 × 10−8

25 3D-CAEMRI Off-the-shelf Pre-trained SFCN Gender 6.39 29.0 1.58 5.46 × 10−75.46 × 10−75.46 × 10−7

25 Pre-trained SFCN Age Pre-trained SFCN Gender -0.53 29.0 -0.14 0.6
50 3D-CAEMRI Fine-tuning 3D-CAEMRI Off-the-shelf -3.39 29.0 -0.83 0.00210.00210.0021
50 3D-CAEMRI Fine-tuning Pre-trained SFCN Age 2.85 29.0 0.69 0.00790.00790.0079
50 3D-CAEMRI Fine-tuning Pre-trained SFCN Gender 2.01 29.0 0.45 0.054
50 3D-CAEMRI Off-the-shelf Pre-trained SFCN Age 7.03 29.0 1.77 9.8 × 10−89.8 × 10−89.8 × 10−8

50 3D-CAEMRI Off-the-shelf Pre-trained SFCN Gender 4.70 29.0 1.33 5.77 × 10−55.77 × 10−55.77 × 10−5

50 Pre-trained SFCN Age Pre-trained SFCN Gender -0.65 29.0 -0.17 0.52
100 3D-CAEMRI Fine-tuning 3D-CAEMRI Off-the-shelf -4.48 29.0 -1.08 0.000110.000110.00011
100 3D-CAEMRI Fine-tuning Pre-trained SFCN Age -0.87 29.0 -0.24 0.39
100 3D-CAEMRI Fine-tuning Pre-trained SFCN Gender -0.03 29.0 -0.01 0.98
100 3D-CAEMRI Off-the-shelf Pre-trained SFCN Age 5.38 29.0 1.30 8.72 × 10−68.72 × 10−68.72 × 10−6

100 3D-CAEMRI Off-the-shelf Pre-trained SFCN Gender 5.93 29.0 1.54 1.91 × 10−61.91 × 10−61.91 × 10−6

100 Pre-trained SFCN Age Pre-trained SFCN Gender 1.26 29.0 0.36 0.22
200 3D-CAEMRI Fine-tuning 3D-CAEMRI Off-the-shelf -3.26 29.0 -0.78 0.00280.00280.0028
200 3D-CAEMRI Fine-tuning Pre-trained SFCN Age 1.50 29.0 0.41 0.14
200 3D-CAEMRI Fine-tuning Pre-trained SFCN Gender 4.75 29.0 1.18 5.02 × 10−55.02 × 10−55.02 × 10−5

200 3D-CAEMRI Off-the-shelf Pre-trained SFCN Age 6.88 29.0 1.38 1.46 × 10−71.46 × 10−71.46 × 10−7

200 3D-CAEMRI Off-the-shelf Pre-trained SFCN Gender 8.76 29.0 2.13 1.21 × 10−91.21 × 10−91.21 × 10−9

200 Pre-trained SFCN Age Pre-trained SFCN Gender 4.20 29.0 0.94 0.000230.000230.00023
300 3D-CAEMRI Fine-tuning 3D-CAEMRI Off-the-shelf -4.47 29.0 -1.10 0.000110.000110.00011
300 3D-CAEMRI Fine-tuning Pre-trained SFCN Age 3.28 29.0 0.59 0.00270.00270.0027
300 3D-CAEMRI Fine-tuning Pre-trained SFCN Gender 4.58 29.0 1.18 8.04 × 10−58.04 × 10−58.04 × 10−5

300 3D-CAEMRI Off-the-shelf Pre-trained SFCN Age 7.13 29.0 1.82 7.6 × 10−87.6 × 10−87.6 × 10−8

300 3D-CAEMRI Off-the-shelf Pre-trained SFCN Gender 9.71 29.0 2.34 1.27 × 10−101.27 × 10−101.27 × 10−10

300 Pre-trained SFCN Age Pre-trained SFCN Gender 2.59 29.0 0.66 0.0150.0150.015
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C.3 AD Classification

C.3.1 Methods

C.3.1.1 Data

The data considered for the Alzheimer’s disease (AD) classification problem was
from the OASIS3 and OASIS4 repositories. The number of healthy controls and
AD subjects is unbalanced in these repositories. Furthermore, the age range of both
groups also differs. Therefore, a subset of subjects matched for age and sex were
selected. In total, 220 and 68 individuals were selected from OASIS3 and OASIS4;
the demographics are in Table C.27. The data considered to train and validate the
models was from the OASIS3 dataset. The holdout dataset comprised a subset of 50
samples from the OASIS3 subsample. The OASIS4 subset was considered to assess
the performance of different models on an external test set.

Table C.27: Demographics of the participants used to train, validate and test the age
prediction and sex classification models.

Dataset Total Number of males Mean and standard deviation [years] Min age [years] Max age [years] Number of Control
OASIS3 220 104 75.57 ± 7.59 49 95 110
OASIS4 68 32 76.09 ± 5.32 65 88 34

C.3.2 Results

C.3.3 Holdout test set

The results for the holdout test set for the different shallow models and different
training strategies are in Table C.28. For LiteNet architecture, the results show
that the training strategy that attains the highest mean absolute error (MAE) is
transfer learning from the 3D-convolutional autoencoder magnetic resonance imag-
ing (3DCAE-MRI) either by fine-tuning or off-the-shelf. Concerning the simple fully
convolutional network (SFCN), the results show that off-the-shelf transfer learning
from the 3DCAE-MRI attains better or equivalent performance than pre-trained
models. The comparison between shallow and deep learning models outlined that
SFCN yields statistically similar performance to shallow learning for all training
instances. Fort the LiteNet architecture, off-the-shelf and fine-tuning yielded sig-
nificantly higher performance for 25 training samples, yet for 50 and 100 training
samples, the performance of both models was similar.

C.3.4 External test set

Table C.29 shows the accuracy of LiteNet and SFCN on an external test set. The
results for LiteNet evidence that the deep learning training strategy that attains
the highest performance is off-the-shelf transfer learning from the 3DCAE-MRI.
The difference between off-the-shelf and training from scratch (with and without) is
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Table C.28: Holdout test set mean and standard deviation of AD classification accuracy
for PCA-RVM and two CNN architectures, different training strategies and training set

sizes. The lowest value for each CNN architecture and training size is represented in bold;
the symbols * and † represent that PCA-RVM obtained better performance than the

LiteNet and SFCN architectures, respectively.

Training Strategy PCA-RVM
LiteNet SFCN

Training from scratch 3DCAE-MRI Pretrained 3DCAE-MRI
No augmentation Augmentation Fine-tuning Off-the-shelf Age Sex Fine-tuning Off-the-shelf

25 0.73 ± 0.07 0.70 ± 0.09 0.65 ± 0.11 0.75 ± 0.070.75 ± 0.070.75 ± 0.07 0.75 ± 0.060.75 ± 0.060.75 ± 0.06 0.72 ± 0.07 0.74 ± 0.06 0.75 ± 0.070.75 ± 0.070.75 ± 0.07 0.75 ± 0.070.75 ± 0.070.75 ± 0.07
50 0.77 ± 0.05 ∗ † 0.74 ± 0.08 0.73 ± 0.07 0.77 ± 0.050.77 ± 0.050.77 ± 0.05 0.77 ± 0.040.77 ± 0.040.77 ± 0.04 0.75 ± 0.05 0.77 ± 0.060.77 ± 0.060.77 ± 0.06 0.76 ± 0.04 0.77 ± 0.060.77 ± 0.060.77 ± 0.06
100 0.79 ± 0.05 ∗ † 0.75 ± 0.06 0.74 ± 0.06 0.78 ± 0.06 0.79 ± 0.060.79 ± 0.060.79 ± 0.06 0.77 ± 0.06 0.77 ± 0.06 0.78 ± 0.070.78 ± 0.070.78 ± 0.07 0.78 ± 0.060.78 ± 0.060.78 ± 0.06

significant in both cases. Concerning the SFCN, the results evidence that, in general,
transfer learning from age or sex pre-trained models yields equivalent performance
to transfer learning from 3DCAE-MRI either by off-the-shelf or fine-tuning. The
comparison of deep learning architectures and shallow learning outlines that shallow
learning,principal component analyis (PCA)-relevant vector machine (RVM), yields
higher or equivalent performance than SFCN and LiteNet.

Table C.29: External test set mean and standard deviation of AD classification accuracy
for PCA-RVM and two CNN architectures, different training strategies and training set

sizes. The lowest value for each CNN architecture and training size is represented in bold;
the symbols * and † represent that PCA-RVM performed better than the LiteNet and

SFCN architectures, respectively.

Training Strategy PCA-RVM
LiteNet SFCN

Training from scratch 3DCAE-MRI Pretrained 3DCAE-MRI
No augmentation Augmentation Fine-tuning Off-the-shelf Age Sex Fine-tuning Off-the-shelf

25 0.82 ± 0.03 ∗ † 0.74 ± 0.06 0.69 ± 0.11 0.80 ± 0.05 0.82 ± 0.030.82 ± 0.030.82 ± 0.03 0.78 ± 0.060.78 ± 0.060.78 ± 0.06 0.77 ± 0.04 0.76 ± 0.05 0.78 ± 0.030.78 ± 0.030.78 ± 0.03
50 0.84 ± 0.03 ∗ † 0.76 ± 0.04 0.76 ± 0.04 0.80 ± 0.04 0.81 ± 0.040.81 ± 0.040.81 ± 0.04 0.79 ± 0.040.79 ± 0.040.79 ± 0.04 0.78 ± 0.04 0.78 ± 0.04 0.78 ± 0.04
100 0.84 ± 0.02 ∗ † 0.78 ± 0.04 0.76 ± 0.04 0.80 ± 0.03 0.82 ± 0.030.82 ± 0.030.82 ± 0.03 0.80 ± 0.03 0.81 ± 0.040.81 ± 0.040.81 ± 0.04 0.80 ± 0.03 0.80 ± 0.02

C.3.5 Stability

The variation variability results are summarized in Table C.30. The results highlight
that for LitNet architecture, off-the-shelf transfer learning from 3DCAE-MRI is
significantly more stable than the other three deep learning training strategies.
Regarding SFCN, the results outline similar stability across the different transfer
learning strategies.

Table C.30: Mean and standard deviation of validation variability across different
training sizes and training strategies for the AD classification problem. The lowest value

for each training size is represented in bold.

Training Strategy
LiteNet SFCN

Training from scratch 3DCAE-MRI Pretrained 3DCAE-MRI
No augmentation Augmentation Fine-tuning Off-the-shelf Age Sex Fine-tuning Off-the-shelf

25 0.11 ± 0.01 0.11 ± 0.01 0.10 ± 0.01 0.07 ± 0.010.07 ± 0.010.07 ± 0.01 0.11 ± 0.010.11 ± 0.010.11 ± 0.01 0.11 ± 0.010.11 ± 0.010.11 ± 0.01 0.11 ± 0.010.11 ± 0.010.11 ± 0.01 0.11 ± 0.010.11 ± 0.010.11 ± 0.01
50 0.11 ± 0.01 0.11 ± 0.01 0.08 ± 0.01 0.06 ± 0.010.06 ± 0.010.06 ± 0.01 0.11 ± 0.010.11 ± 0.010.11 ± 0.01 0.12 ± 0.01 0.12 ± 0.01 0.12 ± 0.01
100 0.10 ± 0.01 0.10 ± 0.01 0.11 ± 0.01 0.07 ± 0.010.07 ± 0.010.07 ± 0.01 0.12 ± 0.010.12 ± 0.010.12 ± 0.01 0.12 ± 0.010.12 ± 0.010.12 ± 0.01 0.12 ± 0.010.12 ± 0.010.12 ± 0.01 0.12 ± 0.010.12 ± 0.010.12 ± 0.01
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Table C.31: LiteNet AD prediction: ANOVA comparing the accuracy of the holdout test
set across training strategies for different training dataset sizes. The significant p-values

are in bold.
ddof1 ddof2 F p-value

Number of training samples
25 4 116 16.39 1.14 × 10−10

50 4 116 4.78 0.0013
100 4 116 8.78 3.16 × 10−6

Table C.32: LiteNet AD prediction: Post-hoc results for the statistically significant
ANOVA comparing the accuracy of the holdout test set across training strategies for

different training dataset sizes. The significant p-values are shown in bold.
A B T dof cohen p-value

Number of training samples
25 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -0.67 29.0 -0.09 0.51
25 3DCAE-MRI fine-tuning PCA 1.22 29.0 0.20 0.23
25 3DCAE-MRI fine-tuning Training from scratch 3.75 29.0 0.64 0.000780.000780.00078
25 3DCAE-MRI fine-tuning Training from scratch augmented 5.61 29.0 1.05 4.62 × 10−64.62 × 10−64.62 × 10−6

25 3DCAE-MRI off-the-shelf PCA 1.82 29.0 0.31 0.08
25 3DCAE-MRI off-the-shelf Training from scratch 4.32 29.0 0.74 0.000170.000170.00017
25 3DCAE-MRI off-the-shelf Training from scratch augmented 5.24 29.0 1.15 1.29 × 10−51.29 × 10−51.29 × 10−5

25 PCA Training from scratch 2.78 29.0 0.48 0.00950.00950.0095
25 PCA Training from scratch augmented 4.71 29.0 0.93 5.67 × 10−55.67 × 10−55.67 × 10−5

25 Training from scratch Training from scratch augmented 2.31 29.0 0.47 0.0290.0290.029
50 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 0.07 29.0 0.01 0.95
50 3DCAE-MRI fine-tuning PCA 0.21 29.0 0.05 0.83
50 3DCAE-MRI fine-tuning Training from scratch 1.98 29.0 0.50 0.058
50 3DCAE-MRI fine-tuning Training from scratch augmented 3.03 29.0 0.69 0.00510.00510.0051
50 3DCAE-MRI off-the-shelf PCA 0.25 29.0 0.04 0.81
50 3DCAE-MRI off-the-shelf Training from scratch 2.68 29.0 0.52 0.0120.0120.012
50 3DCAE-MRI off-the-shelf Training from scratch augmented 3.46 29.0 0.72 0.00170.00170.0017
50 PCA Training from scratch 2.13 29.0 0.45 0.0420.0420.042
50 PCA Training from scratch augmented 2.55 29.0 0.63 0.0160.0160.016
50 Training from scratch Training from scratch augmented 0.71 29.0 0.13 0.48
100 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -0.59 29.0 -0.08 0.56
100 3DCAE-MRI fine-tuning PCA -0.53 29.0 -0.10 0.6
100 3DCAE-MRI fine-tuning Training from scratch 3.17 29.0 0.54 0.00360.00360.0036
100 3DCAE-MRI fine-tuning Training from scratch augmented 3.53 29.0 0.75 0.00140.00140.0014
100 3DCAE-MRI off-the-shelf PCA -0.07 29.0 -0.01 0.95
100 3DCAE-MRI off-the-shelf Training from scratch 3.70 29.0 0.59 0.00090.00090.0009
100 3DCAE-MRI off-the-shelf Training from scratch augmented 3.64 29.0 0.80 0.0010.0010.001
100 PCA Training from scratch 3.39 29.0 0.64 0.0020.0020.002
100 PCA Training from scratch augmented 4.65 29.0 0.88 6.63 × 10−56.63 × 10−56.63 × 10−5

100 Training from scratch Training from scratch augmented 0.74 29.0 0.15 0.46

Table C.33: SFCN AD prediction: ANOVA comparing the accuracy of the holdout test
set across training strategies for different training dataset sizes. The significant p-values

are in bold.
ddof1 ddof2 F p-value

Number of training samples
25 4 116 1.70 0.15
50 4 116 1.04 0.39
100 4 116 0.31 0.87

Table C.34: LiteNet AD prediction: ANOVA comparing the accuracy of the external test
set across training strategies for different training dataset sizes. The significant p-values

are in bold.
ddof1 ddof2 F p-value

Number of training samples
25 4 116 29.74 5.04 × 10−17

50 4 116 28.32 2.04 × 10−16

100 4 116 39.72 6.43 × 10−21
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Table C.35: LiteNet AD prediction: Post-hoc results for the statistically significant
ANOVA comparing the accuracy of the external test set across training strategies for

different training dataset sizes. The significant p-values are shown in bold.
A B T dof cohen p-value

Number of training samples
25 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -2.04 29.0 -0.47 0.051
25 3DCAE-MRI fine-tuning PCA -2.04 29.0 -0.47 0.051
25 3DCAE-MRI fine-tuning Training from scratch 4.85 29.0 0.96 3.89 × 10−53.89 × 10−53.89 × 10−5

25 3DCAE-MRI fine-tuning Training from scratch augmented 5.91 29.0 1.23 2.02 × 10−62.02 × 10−62.02 × 10−6

25 3DCAE-MRI off-the-shelf PCA 0.08 29.0 0.02 0.94
25 3DCAE-MRI off-the-shelf Training from scratch 8.78 29.0 1.52 1.15 × 10−91.15 × 10−91.15 × 10−9

25 3DCAE-MRI off-the-shelf Training from scratch augmented 5.96 29.0 1.54 1.79 × 10−61.79 × 10−61.79 × 10−6

25 PCA Training from scratch 7.84 29.0 1.54 1.2 × 10−81.2 × 10−81.2 × 10−8

25 PCA Training from scratch augmented 6.70 29.0 1.54 2.4 × 10−72.4 × 10−72.4 × 10−7

25 Training from scratch Training from scratch augmented 2.66 29.0 0.59 0.0130.0130.013
50 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -0.90 29.0 -0.23 0.38
50 3DCAE-MRI fine-tuning PCA -4.46 29.0 -1.10 0.000110.000110.00011
50 3DCAE-MRI fine-tuning Training from scratch 3.70 29.0 0.98 0.00090.00090.0009
50 3DCAE-MRI fine-tuning Training from scratch augmented 5.30 29.0 1.22 1.09 × 10−51.09 × 10−51.09 × 10−5

50 3DCAE-MRI off-the-shelf PCA -4.15 29.0 -0.82 0.000270.000270.00027
50 3DCAE-MRI off-the-shelf Training from scratch 4.68 29.0 1.17 6.17 × 10−56.17 × 10−56.17 × 10−5

50 3DCAE-MRI off-the-shelf Training from scratch augmented 5.03 29.0 1.41 2.36 × 10−52.36 × 10−52.36 × 10−5

50 PCA Training from scratch 8.80 29.0 2.06 1.11 × 10−91.11 × 10−91.11 × 10−9

50 PCA Training from scratch augmented 8.85 29.0 2.36 9.83 × 10−109.83 × 10−109.83 × 10−10

50 Training from scratch Training from scratch augmented 0.99 29.0 0.20 0.33
100 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf -3.16 29.0 -0.71 0.00370.00370.0037
100 3DCAE-MRI fine-tuning PCA -5.99 29.0 -1.58 1.62 × 10−61.62 × 10−61.62 × 10−6

100 3DCAE-MRI fine-tuning Training from scratch 2.80 29.0 0.55 0.0090.0090.009
100 3DCAE-MRI fine-tuning Training from scratch augmented 6.77 29.0 1.23 1.97 × 10−71.97 × 10−71.97 × 10−7

100 3DCAE-MRI off-the-shelf PCA -3.28 29.0 -0.68 0.00270.00270.0027
100 3DCAE-MRI off-the-shelf Training from scratch 5.27 29.0 1.11 1.19 × 10−51.19 × 10−51.19 × 10−5

100 3DCAE-MRI off-the-shelf Training from scratch augmented 8.21 29.0 1.76 4.74 × 10−94.74 × 10−94.74 × 10−9

100 PCA Training from scratch 6.79 29.0 1.79 1.89 × 10−71.89 × 10−71.89 × 10−7

100 PCA Training from scratch augmented 9.67 29.0 2.53 1.41 × 10−101.41 × 10−101.41 × 10−10

100 Training from scratch Training from scratch augmented 3.14 29.0 0.57 0.00390.00390.0039

Table C.36: SFCN AD prediction: ANOVA comparing the accuracy of the external test
set across training strategies for different training dataset sizes. The significant p-values

are in bold.
ddof1 ddof2 F p-value

Number of training samples
25 4 116 11.97 3.57 × 10−8

50 4 116 15.79 2.4 × 10−10

100 4 116 9.39 1.31 × 10−6
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Table C.37: SFCN AD prediction: Post-hoc results for the statistically significant
ANOVA comparing the accuracy of the external test set across training strategies for

different training dataset sizes. The significant p-values are shown in bold.
A B T dof cohen p-value

Number of training samples
25 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf -2.64 29.0 -0.51 0.0130.0130.013
25 3DCAE-MRI Fine-tuning PCA -7.05 29.0 -1.54 9.39 × 10−89.39 × 10−89.39 × 10−8

25 3DCAE-MRI Fine-tuning Pre-trained SFCN Age -2.13 29.0 -0.50 0.0410.0410.041
25 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender -2.14 29.0 -0.37 0.0410.0410.041
25 3DCAE-MRI Off-the-shelf PCA -6.03 29.0 -1.27 1.48 × 10−61.48 × 10−61.48 × 10−6

25 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age -0.56 29.0 -0.13 0.58
25 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender 0.60 29.0 0.12 0.55
25 PCA Pre-trained SFCN Age 3.66 29.0 0.72 0.0010.0010.001
25 PCA Pre-trained SFCN Gender 6.90 29.0 1.25 1.41 × 10−71.41 × 10−71.41 × 10−7

25 Pre-trained SFCN Age Pre-trained SFCN Gender 0.89 29.0 0.21 0.38
50 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf 0.36 29.0 0.11 0.72
50 3DCAE-MRI Fine-tuning PCA -7.38 29.0 -1.63 3.97 × 10−83.97 × 10−83.97 × 10−8

50 3DCAE-MRI Fine-tuning Pre-trained SFCN Age -0.90 29.0 -0.19 0.37
50 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender -0.27 29.0 -0.06 0.79
50 3DCAE-MRI Off-the-shelf PCA -6.36 29.0 -1.81 5.93 × 10−75.93 × 10−75.93 × 10−7

50 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age -1.15 29.0 -0.30 0.26
50 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender -0.66 29.0 -0.18 0.51
50 PCA Pre-trained SFCN Age 6.97 29.0 1.42 1.16 × 10−71.16 × 10−71.16 × 10−7

50 PCA Pre-trained SFCN Gender 6.86 29.0 1.68 1.55 × 10−71.55 × 10−71.55 × 10−7

50 Pre-trained SFCN Age Pre-trained SFCN Gender 0.58 29.0 0.14 0.57
100 3DCAE-MRI Fine-tuning 3DCAE-MRI Off-the-shelf 0.23 29.0 0.05 0.82
100 3DCAE-MRI Fine-tuning PCA -6.21 29.0 -1.46 8.97 × 10−78.97 × 10−78.97 × 10−7

100 3DCAE-MRI Fine-tuning Pre-trained SFCN Age -0.76 29.0 -0.17 0.45
100 3DCAE-MRI Fine-tuning Pre-trained SFCN Gender -1.48 29.0 -0.38 0.15
100 3DCAE-MRI Off-the-shelf PCA -8.65 29.0 -2.01 1.61 × 10−91.61 × 10−91.61 × 10−9

100 3DCAE-MRI Off-the-shelf Pre-trained SFCN Age -1.19 29.0 -0.27 0.24
100 3DCAE-MRI Off-the-shelf Pre-trained SFCN Gender -1.60 29.0 -0.48 0.12
100 PCA Pre-trained SFCN Age 5.42 29.0 1.38 7.9 × 10−67.9 × 10−67.9 × 10−6

100 PCA Pre-trained SFCN Gender 2.83 29.0 0.74 0.00830.00830.0083
100 Pre-trained SFCN Age Pre-trained SFCN Gender -0.94 29.0 -0.25 0.36

Table C.38: LiteNet AD prediction: ANOVA results comparing the stability metric
across different training strategies for the different dataset sizes tested. The significant

p-values are shown in bold.
ddof1 ddof2 F p-value

Number of training samples
25 3 87 137.38 6.78 × 10−33

50 3 87 154.64 9.35 × 10−35

100 3 87 67.37 1.29 × 10−22
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Table C.39: LiteNet AD classification: Post-hoc results for the statistically significant
ANOVA comparing the stability metric across different training strategies for the different

dataset sizes tested. The significant p-values are shown in bold.
A B T dof cohen p-value

Number of training samples
25 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 9.93 29.0 2.68 7.66 × 10−117.66 × 10−117.66 × 10−11

25 3DCAE-MRI fine-tuning Training from scratch -3.39 29.0 -0.99 0.0020.0020.002
25 3DCAE-MRI fine-tuning Training from scratch augmented -5.55 29.0 -1.37 5.51 × 10−65.51 × 10−65.51 × 10−6

25 3DCAE-MRI off-the-shelf Training from scratch -25.51 29.0 -4.87 2.05 × 10−212.05 × 10−212.05 × 10−21

25 3DCAE-MRI off-the-shelf Training from scratch augmented -22.61 29.0 -5.15 5.75 × 10−205.75 × 10−205.75 × 10−20

25 Training from scratch Training from scratch augmented -2.44 29.0 -0.56 0.0210.0210.021
50 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 7.82 29.0 1.77 1.26 × 10−81.26 × 10−81.26 × 10−8

50 3DCAE-MRI fine-tuning Training from scratch -12.11 29.0 -2.97 7.3 × 10−137.3 × 10−137.3 × 10−13

50 3DCAE-MRI fine-tuning Training from scratch augmented -7.90 29.0 -2.42 1.04 × 10−81.04 × 10−81.04 × 10−8

50 3DCAE-MRI off-the-shelf Training from scratch -18.70 29.0 -4.61 1.0 × 10−171.0 × 10−171.0 × 10−17

50 3DCAE-MRI off-the-shelf Training from scratch augmented -15.65 29.0 -4.13 1.12 × 10−151.12 × 10−151.12 × 10−15

50 Training from scratch Training from scratch augmented 2.42 29.0 0.69 0.0220.0220.022
100 3DCAE-MRI fine-tuning 3DCAE-MRI off-the-shelf 11.12 29.0 2.50 5.66 × 10−125.66 × 10−125.66 × 10−12

100 3DCAE-MRI fine-tuning Training from scratch 0.95 29.0 0.22 0.35
100 3DCAE-MRI fine-tuning Training from scratch augmented 1.65 29.0 0.29 0.11
100 3DCAE-MRI off-the-shelf Training from scratch -10.47 29.0 -2.23 2.28 × 10−112.28 × 10−112.28 × 10−11

100 3DCAE-MRI off-the-shelf Training from scratch augmented -11.75 29.0 -2.66 1.5 × 10−121.5 × 10−121.5 × 10−12

100 Training from scratch Training from scratch augmented 0.10 29.0 0.02 0.92

Table C.40: SFCN AD classification: ANOVA results comparing the stability metric
across different training strategies for the different dataset sizes tested. The significant

p-values are shown in bold.
ddof1 ddof2 F p-value

Number of training samples
25 3 87 1.90 0.14
50 3 87 6.35 0.00061
100 3 87 3.79 0.013

Table C.41: SFCN AD classification: Post-hoc results for the statistically significant
ANOVA comparing the stability metric across different training strategies for the different

dataset sizes tested. The significant p-values are shown in bold.
A B T dof cohen p-value

Number of training samples
50 3D-CAEMRI Fine-tuning 3D-CAEMRI Off-the-shelf 0.95 29.0 0.22 0.35
50 3D-CAEMRI Fine-tuning Pre-trained SFCN Age 1.65 29.0 0.44 0.11
50 3D-CAEMRI Fine-tuning Pre-trained SFCN Gender -2.30 29.0 -0.58 0.0290.0290.029
50 3D-CAEMRI Off-the-shelf Pre-trained SFCN Age 1.02 29.0 0.22 0.32
50 3D-CAEMRI Off-the-shelf Pre-trained SFCN Gender -3.06 29.0 -0.83 0.00470.00470.0047
50 Pre-trained SFCN Age Pre-trained SFCN Gender -3.91 29.0 -1.13 0.000510.000510.00051
100 3D-CAEMRI Fine-tuning 3D-CAEMRI Off-the-shelf -0.94 29.0 -0.26 0.35
100 3D-CAEMRI Fine-tuning Pre-trained SFCN Age -0.96 29.0 -0.25 0.34
100 3D-CAEMRI Fine-tuning Pre-trained SFCN Gender -3.07 29.0 -0.76 0.00470.00470.0047
100 3D-CAEMRI Off-the-shelf Pre-trained SFCN Age 0.05 29.0 0.01 0.96
100 3D-CAEMRI Off-the-shelf Pre-trained SFCN Gender -2.68 29.0 -0.62 0.0120.0120.012
100 Pre-trained SFCN Age Pre-trained SFCN Gender -2.35 29.0 -0.63 0.0260.0260.026
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D.1 Methods

D.1.1 Data

Table D.1: Demographics of the participants used to train and validate the autoencoder.
Repository Site Total of participants Number males Mean and standard deviation [years] Min Age [years] Max Age [years]
ABIDE I California Institute of Technology 37 30 28.4 ± 10.7 17.0 56.2
ABIDE I Carnegie Mellon University 26 20 26.8 ± 5.7 19.0 40.0
ABIDE I Kennedy Krieger Institute 54 41 10.1 ± 1.3 8.1 12.8
ABIDE I Ludwig Maximilians University Munich 56 49 25.7 ± 11.7 7.0 58.0
ABIDE I NYU Langone Medical Center 182 145 15.3 ± 6.6 6.5 39.1
ABIDE I Olin Institute of Livingat Hartford Hospital 16 14 16.9 ± 3.7 10.0 23.0
ABIDE I Oregon Health and Science University 28 28 10.8 ± 1.9 8.0 15.2
ABIDE I San Diego State University 36 29 14.4 ± 1.8 8.7 17.2
ABIDE I Social Brain Lab 28 28 33.4 ± 6.8 20.0 49.0
ABIDE I Stanford University 37 30 9.9 ± 1.6 7.5 12.9
ABIDE I Trinity Centre for Health Sciences 49 49 17.2 ± 3.6 12.0 25.9
ABIDE I University of California Los Angeles 97 86 13.0 ± 2.2 8.4 17.9
ABIDE I University of Leuven 64 56 18.0 ± 5.0 12.1 32.0
ABIDE I University of Michigan 143 116 14.0 ± 3.2 8.2 28.8

ABIDE I University of Pittsburgh
School of Medicine 55 48 18.9 ± 6.9 9.3 35.2

ABIDE I University of Utah School of Medicine 100 100 22.1 ± 7.7 8.8 50.2
ABIDE I Yale Child Study Center 56 40 12.7 ± 2.9 7.0 17.8
ABIDE II Barrow Neurological Institute 58 58 38.5 ± 15.5 18.0 64.0
ABIDE II ETH Zurich 37 37 22.7 ± 4.4 13.8 30.7

ABIDE II Erasmus University Medical
Center Rotterdam 54 44 8.1 ± 1.1 6.2 10.7

ABIDE II Georgetown University 103 68 10.7 ± 1.6 8.1 13.9
ABIDE II Indiana University 26 20 24.8 ± 8.5 17.0 54.0
ABIDE II Institut Pasteur and Robert Debré Hospital 55 25 20.1 ± 10.5 6.1 46.6
ABIDE II Katholieke Universiteit Leuven 28 28 23.6 ± 4.8 18.0 35.0
ABIDE II Kennedy Krieger Institute 207 137 10.3 ± 1.3 8.0 13.0
ABIDE II NYU Langone Medical Center Sample 1 74 67 9.9 ± 5.0 5.2 34.8
ABIDE II NYU Langone Medical Center Sample 2 27 24 6.8 ± 1.1 5.1 8.8
ABIDE II Oregon Health and Science University 93 57 10.9 ± 2.0 7.0 15.0
ABIDE II SanDiego State University 56 47 12.9 ± 3.1 7.4 18.0
ABIDE II Stanford University 41 37 11.1 ± 1.2 8.4 13.2
ABIDE II Trinity Centre for Health Sciences 42 42 15.2 ± 3.2 10.0 20.0
ABIDE II University of California Davis 32 24 14.8 ± 1.8 12.0 17.8
ABIDE II University of California Los Angeles 31 25 10.8 ± 2.4 7.8 15.0

ABIDE II University of California Los Angeles
Longitudinal Sample 37 35 13.5 ± 1.9 10.0 17.2

ABIDE II University of Miami 26 20 9.8 ± 2.1 7.1 14.3
ABIDE II University of Pittsburgh 34 26 14.9 ± 2.4 9.3 19.5
ABIDE II University of Utah School of Medicine 32 27 20.9 ± 7.9 9.1 38.9
ADNI – 18705 10233 75.3 ± 7.4 51.0 97.0
GSP – 1558 661 21.5 ± 2.9 19.0 35.0
OASIS1 – 1683 638 51.5 ± 25.3 18.0 96.0
OASIS2 – 1345 576 76.9 ± 7.6 60.0 98.0
OASIS3 – 2768 1185 70.7 ± 9.3 42.7 97.0
FCP1000 AnnArbor a 25 20 20.4 ± 7.7 13.0 40.0
FCP1000 AnnArbor b 36 17 348.0 ± 1732.7 19.0 9999.0
FCP1000 Atlanta 28 11 30.6 ± 9.2 23.0 54.0
FCP1000 Baltimore 23 8 29.3 ± 5.5 20.0 40.0
FCP1000 Bangor 20 16 22.6 ± 4.6 19.0 38.0
FCP1000 Beijing Zang 197 68 21.1 ± 1.8 18.0 26.0
FCP1000 Berlin Margulies 26 12 29.9 ± 5.2 24.0 44.0
FCP1000 Cambridge Buckner 198 68 20.9 ± 2.1 18.0 29.0
FCP1000 Dallas 24 10 42.9 ± 20.4 20.0 71.0
FCP1000 ICBM 86 0 – – –
FCP1000 Leiden 2180 12 9 23.6 ± 2.6 20.0 27.0
FCP1000 Leiden 2200 19 11 21.8 ± 2.7 18.0 28.0
FCP1000 Leipzig 37 13 25.8 ± 5.1 20.0 42.0
FCP1000 Milwaukee a 18 0 – – –
FCP1000 Milwaukee b 46 14 53.7 ± 5.9 44.0 65.0
FCP1000 Munchen 16 9 68.3 ± 4.1 63.0 74.0
FCP1000 NYU TRT session1b 12 0 –
FCP1000 NewHaven a 18 10 31.6 ± 10.3 18.0 48.0
FCP1000 NewHaven b 15 7 27.6 ± 6.4 18.0 42.0
FCP1000 NewYork a 84 40 24.3 ± 10.1 7.0 49.0
FCP1000 NewYork a ADHD 25 18 34.9 ± 9.6 20.0 50.0
FCP1000 NewYork b 20 1 40.0 ± nan 40.0 40.0
FCP1000 Newark 19 9 24.1 ± 3.9 21.0 39.0
FCP1000 Ontario 9 0 – – –
FCP1000 Orangeburg 20 12 41.6 ± 11.2 20.0 55.0
FCP1000 Oulu 102 33 21.5 ± 0.6 20.0 23.0
FCP1000 Oxford 22 11 29.3 ± 3.3 21.0 35.0
FCP1000 PaloAlto 17 2 31.6 ± 7.6 22.0 46.0
FCP1000 Pittsburgh 16 9 37.6 ± 8.7 25.0 54.0
FCP1000 Queensland 19 10 25.9 ± 4.1 20.0 34.0
FCP1000 SaintLouis 31 13 25.3 ± 2.3 21.0 29.0
FCP1000 Taipei a 14 0 – – –
FCP1000 Taipei b 8 0 – – –
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D.2 Results

D.2.1 MAE and BAG

Table D.2: MAE and the pearson correlation between BrainAGE and age, with and
without the bias correction.

MAE r
tissue method original corrected original corrected

min proc HH 4.46 4.08 -0.29 (p = 7.46 × 10−5)-0.29 (p = 7.46 × 10−5)-0.29 (p = 7.46 × 10−5) −9.16 × 10−6 (p = 1.00)
IOP 4.66 4.45 -0.43 (p = 0.00026)-0.43 (p = 0.00026)-0.43 (p = 0.00026) -0.17 (p = 0.17)

GM HH 5.75 4.68 -0.37 (p = 2.71 × 10−7)-0.37 (p = 2.71 × 10−7)-0.37 (p = 2.71 × 10−7) −3.29 × 10−6 (p = 1.00)
IOP 5.36 4.51 -0.69 (p = 8.93 × 10−11)-0.69 (p = 8.93 × 10−11)-0.69 (p = 8.93 × 10−11) -0.43 (p = 0.00023)-0.43 (p = 0.00023)-0.43 (p = 0.00023)

WM HH 5.26 4.01 -0.46 (p = 1.37 × 10−10)-0.46 (p = 1.37 × 10−10)-0.46 (p = 1.37 × 10−10) −5.20 × 10−6 (p = 1.00)
IOP 6.10 6.48 -0.78 (p = 2.60 × 10−15)-0.78 (p = 2.60 × 10−15)-0.78 (p = 2.60 × 10−15) -0.59 (1.51 × 10−7)-0.59 (1.51 × 10−7)-0.59 (1.51 × 10−7)

CSF HH 5.44 4.21 -0.42 (p = 4.11 × 10−9)-0.42 (p = 4.11 × 10−9)-0.42 (p = 4.11 × 10−9) −5.72 × 10−6 (p = 1.00)
IOP 5.61 5.47 -0.51 (p = 8.85 × 10−6)-0.51 (p = 8.85 × 10−6)-0.51 (p = 8.85 × 10−6) -0.17 (p = 0.18)

DF HH 6.53 4.14 -0.57 (p = 7.45 × 10−17)-0.57 (p = 7.45 × 10−17)-0.57 (p = 7.45 × 10−17) 1.74 × 10−5 (p = 1.00)
IOP 5.48 6.07 -0.49 (p=2.56 × 10−5)-0.49 (p=2.56 × 10−5)-0.49 (p=2.56 × 10−5) 0.044 (p = 0.72)

D.2.1.1 Schizophrenia

Table D.3: MAE and mean of BrainAGE, in years, results of the brain age models for the
schizophrenia analysis.

Metric [in years] Clinical condition Minimally processed GM WM CSF Deformation fields
MAE Control 3.56 4.10 4.09 4.45 4.16

Schizophrenia 4.79 5.30 6.09 5.64 6.22

BAG Control -0.01 1.12 2.09 1.98 1.13
Schizophrenia 2.39 2.59 4.91 3.90 3.50

D.2.1.2 Diabetes

Table D.4: MAE and mean of BrainAGE, in years, results of the brain age models for the
T2D analysis.

Metric [in years] Clinical group Minimally processed GM WM CSF Deformation fields
MAE Control 4.44 4.24 4.71 4.79 4.56

T2D 6.43 8.59 7.86 7.71 11.13

BAG mean Control -3.17 0.57 0.88 -1.21 0.90
T2D 3.58 8.24 6.47 5.99 9.37

D.2.1.3 Alzheimer
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Table D.5: MAE and mean of BrainAGE, in years, results of the brain age models for the
AD dataset.

Metric [in years] Clinical condition Minimally processed GM WM CSF Deformation fields
MAE Control 5.44 5.87 4.12 5.85 6.95

AD 6.36 11.43 8.41 10.31 12.70

BAG Control -3.81 1.25 0.98 -0.68 3.37
AD 5.23 11.21 8.41 9.01 12.41
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D.2.2 Morphometry and sensitivity maps analysis

(a) MP COBRE (b) MP Diamarker (c) MP AD

(d) GM COBRE (e) GM Diamarker (f) GM AD

(g) WM COBRE (h) WM Diamarker (i) WM AD

(j) CSF COBRE (k) CSF Diamarker (l) CSF AD

(m) DF COBRE (n) DF Diamarker (o) DF AD
Figure D.1: Mean of the morphometric maps per ROI for minimally processed (MP), grey
matter (GM), white matter (WM), Cerebrospinal fluid (CSF) and deformation fields (DF).

Table D.6: Percentage ROIs which were considered significant for the age factor on the
ANCOVA test on the morphometrics analysis.

dataset IXI–HH COBRE DIAMARKER CIBIT AD
tissue
Minimally processed 86.43 73.57 57.86 8.57
GM 95.71 94.29 84.29 0.00
WM 83.57 4.29 63.57 0.00
CSF 97.14 95.00 91.43 0.00
DF 75.00 66.43 41.43 0.00
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Table D.7: Percentage of the ROIs which were considered significant for the age factor on
the ANCOVA test on the sensitivity map analysis.

dataset IXI–HH COBRE DIAMARKER CIBIT AD
tissue
Minimally processed 100.00 100.00 100.00 99.29
GM 100.00 100.00 72.14 0.00
WM 98.57 97.86 98.57 0.00
CSF 100.00 100.00 10.00 0.00
DF 65.00 54.29 60.71 30.00

(a) MP COBRE (b) MP Diamarker (c) MP AD

(d) GM COBRE (e) GM Diamarker (f) GM AD

(g) WM COBRE (h) WM Diamarker (i) WM AD

(j) CSF COBRE (k) CSF Diamarker (l) CSF AD

(m) DF COBRE (n) DF Diamarker (o) DF AD
Figure D.2: Mean of the sensitivity maps per ROI for minimally processed (MP), grey
matter (GM), white matter (WM), Cerebrospinal fluid (CSF) and deformation fields (DF).
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Table D.8: Percentage ROIs which were considered significant for the clinical condition
factor on the ANCOVA test on the morphometrics analysis.

dataset IXI–HH COBRE DIAMARKER CIBIT AD
tissue
Minimally processed 0.00 20.00 34.29 30.00
GM 0.00 1.43 61.43 0.00
WM 0.00 0.00 74.29 0.00
CSF 0.00 56.43 33.57 85.00
DF 0.00 12.14 11.43 30.00

Table D.9: Percentage of ROIs which were considered significant for the clinical condition
factor on the ANCOVA test on the sensitivity map analysis.

dataset IXI–HH COBRE DIAMARKER CIBIT AD
tissue
Minimally processed 0.00 80.00 97.86 69.29
GM 0.00 0.00 18.57 0.00
WM 0.00 0.00 94.29 0.00
CSF 0.00 0.00 0.00 100.00
DF 0.00 0.00 26.43 0.00

Table D.10: Jaccard index comparing the significant ROIs on age factor of morphometric
with the sensitivity analysis.

dataset COBRE DIAMARKER CIBIT AD
Minimally processed 0.74 0.58 0.09
GM 0.94 0.72 0.00
WM 0.04 0.62 0.00
CSF 0.95 0.07 0.00
DF 0.41 0.31 0.00
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D.2.3 Noise impact on sensitivity maps per tissue

The relation of correlation between sensitivity and age with noise is depicted in Fig-
ure D.3 for the different modalities. The results reveal that each tissue achieves the
maximum correlation at a different noise level. Moreover, the correlation evolution
is specific to each tissue. white matter (WM) peaks at 2% and decreases drasti-
cally afterwards, the grey matter (GM) and deformation fields exhibit a smoother
relationship with noise, reaching their maximum at a noise level of 2% and 4%,
respectively. Minimally processed images plateau between 10% and 20%, reaching
their maximum at 28% and decreasing more abruptly subsequently. Cerebrospinal
fluid (CSF) experiences an abrupt transition to the maximum at 6%, with a smoother
decrease afterwards. The maximum correlation values attained are 0.87 for mini-
mally processed images, followed by GM, WM, and CSF with 0.82, 0.80, 0.63, and
deformation fields with 0.30, respectively.

Figure D.3: Evolution of the Pearson correlation means between saliency and age for
different noise levels using the IXI–HH data.

The correlation between sensitivity and age varies, drastically, with different noise
degrees. Furthermore, the correlation of evolution with age depends upon the
modality. This finding is in agreement with the results reported by Smilkov et
al, the most suitable noise level depends upon the input type. For natural images, it
is advantageous to apply noise within the 10-25% range, while the MNIST dataset
(black and white images) exhibited optimal results at approximately 50%. Similarly,
in these cases, GM, WM, CSF and deformation field images require reduced noise
values, while minimally processed images require higher levels of noise. Moreover,
in our results, minimally processed seems to be the modality more robust to noise.
Sensitivity maps yield reproducible results across datasets concerning the regions
correlated with age. A perfect agreement is reported between the baseline (IXI-HH
set) and the Cobre dataset. Regarding the diamarker, the agreement is perfect on
minimally processed images and WM and very high on GM and deformation fields.
Finally, for the Alzheimer’s disease (AD) dataset, the agreement with baseline
results is also perfect for the minimally processed image, but not for the other
modalities. The morphometric analysis also yields reproducible results between the
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baseline dataset and Diamarker and Cobre. The AD dataset yields poor agreement
with the baseline regarding the significant regions. As previously discussed this
result might be related to the age range and the reduced number of samples of the
AD dataset.
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