
 

 
 
 
 

 
 
 
 
 
 

Gustavo Miguel Santos Assunção 
 
 

EMOTIONAL COMPETENCE AND 
ADAPTABILITY IN ARTIFICIAL 

INTELLIGENCE 
 
 
 
 

 
Tese no âmbito do Doutoramento em Engenharia Electrotécnica e 

de Computadores, ramo de especialização em Computadores e 
Electrónica, orientada pelo Professor Doutor Paulo Jorge 

Carvalho Menezes e pelo Professor Doutor Miguel de Sá e Sousa 
de Castelo-Branco, apresentada ao Departamento de Engenharia 

Electrotécnica e de Computadores da Faculdade de Ciências e 
Tecnologia da Universidade de Coimbra. 

 
 
 
 
 

Novembro de 2023



 

 



Faculty of Science and Technology
Department of Electrical and Computer Engineering

Emotional Competence and Adaptability
in Artificial Intelligence

Gustavo Miguel Santos Assunção

Thesis submitted to the Department of Electrical and Computer Engineering of the Faculty

of Science and Technology of the University of Coimbra in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

Supervised by:
Prof. Dr. Paulo Jorge Carvalho Menezes
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Abstract

The advent of deep learning and Artificial Intelligence (AI), combined with the
recent hardware advancements that made it possible, has brought on a wave of new
and successful approaches to many problems previously unsolvable. However, crit-
ical challenges remain linked with algorithm dependency on big data, user input,
and related issues, hindering autonomy. Simultaneously, increasingly independent
systems must account for user admissibility as well as develop rapport with the
human counterparts they accompany. These issues require attention if the current
progress rate in AI is to continue. Thus, the main focus of this research was the study
and development of deep learning solutions pertaining to emotional competence and
adaptability, emulating biological factors that mitigate the specified issues. Conse-
quently, this document encompasses two major parts where the developed solutions
are appropriately presented within each of their corresponding areas of research.

While formulation and development of bio-inspired solutions encompassed most
of this thesis’ duration, such an endeavor was premised by familiarization with
and computational adaptation of how biological phenomena occur and affect the
brain concerning learning, affection, and information processing. This constitutes
the first part of the manuscript and was done to ensure the validity of the solu-
tions with respect to Neurophysiology. Respectively, neural circuitry involved in
emotional processing and demeanor adaptation to stimuli was overviewed in depth.
This was studied in tandem with the interpretative take of Psychology on the effect
emotion has on decision-making and behavior. Principal factors to consider for both
emotion recognition and expression by artificial agents were also surveyed. More-
over, adaptive characteristics, particularly relating to neuromodulation and plastic
re-organization, were assessed in terms of their suitability for emulation within the
context of artificial intelligence.

Solutions within the context of emotion recognition/expression were addressed
in the second part of this thesis, mitigating issues on the loss of valuable information
and the development of empathic behavior by agents. Both resulted in successful
improvements within their respective fields, with applications envisioning the service
and assistive systems as well as companionship robotics largely for health and elder-
care. Regarding the third part of this thesis, two different methods were proposed
following dopamine emulation in artificial neural networks. While effects over learn-
ing efficiency were negligible, hindering the initial goal, an interesting parallelism
was observed between biological neuromodulation and this work. This is particu-
larly important as it still demonstrates the validity of the work developed. Secondly,
given interdisciplinary knowledge’s importance for the advancement of research, an
experiment was designed based on psychology guidelines for human participants

ix



Emotional Competence & Adaptability

and a neurological background implemented for correlating emotional stimuli with
action selection. With this foundation, artificial agents successfully demonstrated
surprise-exploration and pride-exploration correlations similar to those learned by
living beings for adequate survival and goal achievement. Naturally learning useful
correlations between intrinsic qualities and decision-making is tremendously impact-
ful for AI, with the outcome of this research having spun off into works on more
autonomous social robotics. The final part of this thesis presented open-ended ques-
tions regarding the previous chapters as well as proposed a bio-inspired strategy for
dealing with overfitting issues prevalent in neural network training, with promising
early-stage results.

Keywords

Adaptability; Artificial Intelligence; Deep Learning; Emotional Competence; Rein-
forcement Learning
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Resumo

O crescimento de deep learning e AI, combinado com os recentes avanços em hard-
ware que o permitiram, despoletaram uma onda de novas e bem-sucedidas aborda-
gens a vários problemas, antes irresolúveis. No entanto, diversos desafios existem
ainda relacionados com dependência de algoritmos em big data, input do utilizador e
outros problemas impeditivos de maior autonomia. Simultaneamente, sistemas mais
independentes devem ter em consideração a sua aceitação por parte do utilizador,
bem como o desenvolvimento de conexão com os humanos que acompanham. Estes
problemas requerem especial atenção, para que esta taxa de progresso em AI se
mantenha. Como tal, o cerne desta tese foi o estudo e desenvolvimento de soluções
em deep learning ligadas à competência emocional e adaptabilidade, através da em-
ulação de fatores biológicos mitigantes dos problemas mencionados. Consequente-
mente, este documento inclui duas partes principais e distintas, onde as soluções
desenvolvidas são apresentadas dentro das suas áreas de pesquisa correspondentes.

A formulação e desenvolvimento de soluções bio-inspiradas ocupou grande parte
da duração desta tese. Contudo, tal foi precedido por familiarização e adaptação
para computação dos fenómenos biológicos que ocorrem e afetam o cérebro no que
toca a aprendizagem, afetividade e processamento de informação. Este segmento de
trabalho constitui a primeira parte do manuscrito e foi feito de modo a assegurar
a validade das soluções relativamente a Neurofisiologia. Respetivamente, circuitos
neuronais envolvidos em processamento emocional e adaptação comportamental a
est́ımulos foram estudados compreensivamente. Conjuntamente foi explorada a per-
spetiva interpretativa da Psicologia sobre os efeitos que emoção acarreta sobre com-
portamento e tomada de decisões. Deste modo, foram averiguados quais os principais
fatores a considerar tanto para reconhecimento como para expressão de emoção por
parte de agentes artificiais. Adicionalmente, carateŕısticas adaptativas, maioritaria-
mente relacionadas com neuromodulação e re-organização plástica, foram avaliadas
em termos da sua adequação à emulação no contexto de inteligência artificial.

Trabalhos enquadrados na área de reconhecimento/expressão de emoção foram
expostos na segunda parte desta tese, com um intuito de mitigar problemas rela-
cionados com perda de informação valiosa e desenvolvimento de empatia por agentes.
Ambos os trabalhos foram bem-sucedidos e resultaram em melhorias dentro das
suas respetivas áreas, com aplicações ponderadas para sistemas de assistência e
serviço, bem como robótica de companhia no campo da saúde e tratamento de
idosos. Em relação à terceira parte desta tese, dois métodos diferentes foram pro-
postos em concordância com emulação de dopamina em redes neuronais artificiais.
Enquanto que efeitos sobre eficiência na aprendizagem foram despreźıveis, travando
o cumprimento do objectivo inicial, um paralelismo interessante foi observado en-
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tre este trabalho e neuromodulação biológica. Isto é particularmente importante
uma vez que contribui para a validação do trabalho desenvolvido. Além deste tra-
balho, visando a importância do conhecimento interdisciplinar para o avanço de
pesquisa, uma experiência foi desenhada tendo por base orientações da psicolo-
gia explicitadas para participantes humanos e também numa base neurológica re-
sponsável por correlacionar est́ımulo emocional com seleção de ações. Estabelecidos
estes alicerces, agentes artificiais demonstraram com sucesso correlações surpresa-
exploração e orgulho-exploração semelhantes às adquiridas por seres vivos, para
sobrevivência e cumprimento de objetivos. Naturalmente, aprendizagem de cor-
relações úteis entre qualidades intŕınsecas e tomada de decisões é extremamente
impactante para AI, com o resultado desta pesquisa tendo levado a outros trabalhos
de aplicação em robótica social mais autónoma. A parte final desta tese apresentou
questões abertas com respeito aos caṕıtulos anteriores, assim como propôs uma es-
tratégia bio-inspirada para lidar com questões de overfitting prevalentes no treino
de redes neuronais. Resultados iniciais desta abordagem demonstraram ser promis-
sores.

Palavras-Chave

Adaptabilidade; Aprendizagem Profunda; Aprendizagem por Reforço; Competência
Emocional; Inteligência Artificial
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This thesis addresses AI and deep learning (DL) specifically as areas which, despite
fomented by an intent to emulate attributes of a brain to solve complex computa-
tional tasks, have deviated from a biological basis. Given its potential, a bio-inspired
methodology, largely but not solely related to emotion, is proposed and its perfor-
mance is reported to identify viable paths for future DL research.

1.1 Context

AI is an umbrella term for decision-making and task-oriented methodology, seem-
ingly resembling human cognition/behavior, which is employed in computers and
other machinery. Specifically, typical machine learning (ML) procedures involve
training a model to perform some task the user intends to automate, which is em-
ployed once performance metrics reach acceptable values. Inputs may be sourced
from virtually any modality, through corresponding peripherals (e.g. microphones,
RGB-D cameras, various sensors). As the integration of AI into industry and society
becomes more prominent, new challenges emerge and prompt an increased focus on
innovation. If solutions are to be widely applicable and not single-use, standard
goals such as adaptability, admissibility by users, and to some degree autonomy,
become pivotal in research. Naturally, innovations must be developed under simu-
lated conditions from which knowledge can be obtained and transferred to real-world
deployment. This is necessary to account for the lack of data or its difficult collec-
tion in several areas, end-user safety, and also the strain it would put on real-world
platforms to serve as test benches of novel techniques.
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Biological neural functioning provides a multitude of unmatched examples of
how cognition can be developed and improved. For instance, the neurotransmission
processes linking the cerebral cortex with limbic structures such as the amygdala
demonstrate how emotion can mediate learning by instigating internal drives [1,
2]. Relatedly, emotional competence in humans has been flagged as paramount for
adequate development as well as social success [3]. Other examples include neuro-
modulatory processes and plasticity, which confer to the brain an ability to optimize
paths for specific tasks, by potentiating frequently activated neuron connections and
weakening underused ones [4]. Also, neural pattern replay during dreamless sleep
has been shown critical for abstracting core knowledge and consolidating memory
[5]. Despite being dismissed by most AI research, emulation of these and other
useful characteristics of brain operation could prove highly beneficial for the field.

DL is a particular branch of ML and AI whose performances have progressively
surpassed those of conventional methods and which can largely benefit from the
emulation of biological processes. Artificial Neural Networks (ANNs), whose units
model real neurons, could very well be improved in terms of adaptability were inter-
nal drives and plasticity integrated into their functioning. AI agents would benefit
from emotional competence in terms of user acceptance. Considering these and
other cases, it seems worthwhile to explore further emulation of biological neural
processes in DL.

1.2 Motivation

Longevity has been demonstrated to be a preponderant issue with implications to-
wards sustainable development in this day and age [6]. A decay in health and overall
life quality matched by failure to accommodate caregiving demands are natural con-
sequences of this development path. Complications encompass both physical aspects
and psychological factors, as people experience a growing body of disorders plus re-
duced independence, along with loneliness or lack of companionship. This scenario
unfortunately worsens daily and requires innovations in healthcare technology so as
not to spiral down further. In line with aging, statistical data points to the shrinkage
of the active population as another obstacle to sustainability. This reduction has a
socioeconomic impact with a wider reach than mere assistive services. As several
activities in industry and infrastructure depend on manual intervention to function
properly, the growing lack of humanpower also becomes a time-sensitive issue.

Some recent technological advances in the fields of robotics and AI have pro-
vided leeway in terms of meeting the demands that aging and shrinkage of active
population have created. Nursing and service robotics are demonstrative of this [7]
but still show limitations concerning user acceptance, adaptability, navigation, and
other factors that prevent wider adoption. Likewise, identical problems are prevalent
in industry-adopted AI and ML solutions [8], particularly pertaining to autonomy
and requirements related to putting or maintaining the human in the loop. These
societal challenges could be mitigated to some degree by biologically emulating DL,
as it can provide a range of solutions that are not currently available. To exemplify,
emotionally competent agents can integrate socially and offer care better suited to
users. Additionally, internally driven models capable of restructuring are better
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equipped to deal with unexpected scenarios or new tasks.
Besides assistive or industrial machinery, it would be senseless to not consider

other consumer-level robotics as tremendous beneficiaries of bio-emulating DL. Par-
ticularly emotional competence can spur a new generation of socially interactive
robots, requiring engagement with users to be perceptively affective [9] for easy
acceptance. Thus, the implementation of procedures and/or limbic structures asso-
ciated with the perception, expression, or learning-related aspects of emotion most
likely will become a standard for human-robot interaction (HRI) shortly, adding to
the importance of their study now.

On a side note from robotics, neuroscientific and psychological findings tend to
be analyzed separately [10], despite often describing the same processes. Moreover,
there is a lack of frameworks on which theories of neural functioning can be corrob-
orated. This issue ultimately stunts research, as it prevents the correlation between
interdisciplinary findings and the consequential advancement of the fields. Never-
theless, DL emulating neural processes could be used to resolve simulations for both
Neuroscience and Psychology. By recreating systems as DL models operating ac-
cording to a proposed theory, experimental results can serve as empirical proof of
that theory’s veracity or lack thereof. As a concrete example, one could perform
modifications to an ANN in a manner thought to be related to developmental disor-
ders in a real brain, and observe its later performance. This is still limited to basic
dynamics, such as [11] observing habituation patterns in emotional reinforcement
learning (RL) agents.

Given these reasons, DL research should certainly prioritize analyzing the ben-
efits of biological neural processes and consider integration when adequate. Hence
this thesis focuses on this very topic, presenting a detailed evaluation on DL imple-
mentations regarding emotional competence and adaptability in terms of interaction,
learning, and other scenarios. Validation is performed on standard datasets or real-
world scenarios when possible. Contributions developed during the duration of this
doctoral program are addressed in the following sections.

1.3 Primary Contributions

The main objectives of this thesis encompassed presenting techniques useful for
DL adaptability and learning autonomy, as well as user acceptance and engagement,
largely focusing on applications within assistive robotics and general AI research.
Here are listed the main themes approached during its duration.

• Emotional competence for improved assistive services and HRI - A
set of techniques for emotion recognition, assessment, and expression focusing
on better understanding user affective needs and evolving robotic agents, from
tools to companions. The recognition and expression of emotion were explored
in the auditory and visual modalities, interfacing via standard cameras or
microphones and computer screens or basic LED arrays, as these are commonly
available and can be easily deployed in most cases. The evaluation involved
elements of supervised learning (SL), fuzzy logic, and RL, either developed solo
or combined for application in two devised experimental scenarios. Specifically,
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one of these performed fuzzification of emotional features extracted from audio
to benefit from the correlation of absolute states and improve recognition rates.
The other explored continuous optimization of facial emotion expression using
deep Q-networks and user feedback for later empathic interactions post-user
emotion recognition.

• Dopamine emulation in ANNs for learning efficiency - Emulation of
the potentiating mechanism of dopamine in the connections of artificial neu-
rons. The main ambition of this topic was to explore how the performance
of conventional ANNs would be affected if a neuromodulator mediating con-
nectivity were to be integrated into the system. Respectively, a dopaminergic
trace was implemented in certain neurons throughout the network, forming
“dopaminergic” variations of fully connected layers. This trace was used to
manipulate the strengths of neurons’ corresponding connections to the rest of
the network. Additionally, the emulation of D1 and D2 dopaminergic receptor
behaviors was also done in an attempt to improve the previous approach.

• Epistemic emotion as a learning mediator for DL - Integration of per-
sonal emotion scores of surprise and pride, factored based on the performance
of a model to mediate some aspect of its learning. The goal of this approach
was to provide insight into possible ways the learning autonomy of ANNs
can be improved, and consequently the autonomy and adaptability of AI. In
particular, a combination of RL and SL models as a mechanism capable of
regulating its rate of novel training data was introduced. Here, the amount
of novel data to be fed into a recognition network during its training was
regulated by a Deep Deterministic Policy Gradient (DDPG) model based on
its own epistemic emotions of surprise and pride. As a benefit, the DDPG
model is agnostic to the architecture of the network being regulated, making
it applicable to various other scenarios.

• Artificial dreaming algorithm to prevent overfitting in ANNs - Devel-
opment of an algorithm for autonomous data augmentation by ANNs through
the forcing of patterns on instances, based on the maximization of layer ac-
tivations through gradient ascent, and posterior interpretation according to
the network’s current knowledge level. This process was designed for ANNs
to perform sporadically if overfitting were to occur and attempt to reduce its
effect, showing similarities with biological REM-phase dreaming in that the
brain also undergoes these latency periods where random or warped data is
analyzed for potential overfitting prevention. By integrating the augmented
data in the training set the severity of overfitting can potentially be reduced.
Additionally, the algorithm makes no assumptions regarding network struc-
ture or tasks being learned. Thus theoretically, it can be employed in virtually
any feedforward architecture and corresponding problem with few tweaks.
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1.4 Publications and Technical Contributions

1.4.1 Key Publications

The following list cites first author works and other collaborations that were pub-
lished during the duration of the Ph.D., which are considered relevant to this thesis:

Journals

• G. Assunção, P. Menezes, F. Perdigão. “Speaker Awareness for Speech Emo-
tion Recognition.” International Journal of Online and Biomedical Engineer-
ing (iJOE), vol. 16, no. 4, pp. 15–22, 2020, doi:10.3991/ijoe.v16i04.11870.

• G. Assunção, N. Gonçalves, P. Menezes. “Bio-Inspired Modality Fusion for
Active Speaker Detection,” in Applied Sciences, vol. 11, no. 8, pp. 3397,
2021, doi:10.3390/app11083397.

• G. Assunção, B. Patrão, M. Castelo-Branco and P. Menezes, “An Overview
of Emotion in Artificial Intelligence,” in IEEE Transactions on Artificial Intel-
ligence, vol. 3, no. 6, pp. 867-886, Dec. 2022, doi: 10.1109/TAI.2022.3159614.

Conference Proceedings

• G. Assunção, P. Menezes. “Intermediary fuzzification in speech emotion
recognition,” 2020 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), 2020, pp. 1-6, doi: 10.1109/FUZZ48607.2020.9177699.

• G. Assunção, M. Castelo-Branco, P. Menezes. “ANNs Dream of Augmented
Sheep: An Artificial Dreaming Algorithm.” In Proceedings of the 2nd Inter-
national Conference on Image Processing and Vision Engineering (IMPROVE
2022), pp. 135-141, 2022, ISBN 978-989-758-563-0, ISSN 2795-4943, doi:
10.5220/0011055700003209.

• A. Sorrentino, G. Assunção, F. Cavallo, L. Fiorini, P. Menezes. “A Rein-
forcement Learning Framework to Foster Affective Empathy in Social Robots.”
In: Social Robotics. Springer Nature Switzerland, 2022, pp. 522–533. doi:
10.1007/978-3-031-24667-8 46.

• G. Assunção, M. Castelo-Branco, P. Menezes. “Leveraging emotion-mediated
exploration to adapt agent behavior.” 2023 6th Experiment International Con-
ference (exp.at’23), Evora, Portugal, 2023, In Press.

• G. Assunção, A. Sorrentino, J. Dias, M. Castelo-Branco, P. Menezes, F.
Cavallo. “Adapting Behavior and Persistence via Reinforcement and Self-
Emotion Mediated Exploration in a Social Robot.” In: 2023 32nd IEEE
International Conference on Robot and Human Interactive Communication
(RO-MAN). IEEE, Aug. 2023. doi: 10.1109/ro-man57019.2023.10309410.
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Preprints

• G. Assunção, M. Castelo-Branco, P. Menezes. “Self-mediated exploration
in artificial intelligence inspired by cognitive psychology.” arXiv preprint
2302.06615, 2023.

Workshops

• G. Assunção, B. Patrão, N. Gonçalves, M. Castelo-Branco, P. Menezes.
“Sound-based Emotional Regulation for Improved HRI,” in Workshop: Sound
in Human-Robot Interaction, 2021 ACM/IEEE International Conference on
Human-Robot Interaction (HRI ’21), 2021.

• A. Sorrentino, G. Assunção, F. Cavallo, L. Fiorini, P. Menezes. “Model-
ing affective empathy by teaching emotion expressions to a social robot,” in
Workshop: Social Robots for Personalized, Continuous and Adaptive Assis-
tance (ALTRUIST 2021), 13th International Conference on Social Robotics
(ICSR), 2021.

1.4.2 Other Publications

The following list cites other works also published during the duration of the PhD
program, but which are not directly within the scope of this thesis:

Journals

• G. Assunção, B. Patrão, P. Menezes. “Crowd Interest Mapping to Assess
Engagement.” International Journal of Online and Biomedical Engineering
(iJOE), vol. 18, no. 2, pp. 167-180, 2022, doi:10.3991/ijoe.v18i02.25445.

Conference Proceedings

• B. Ferreira, G. Assunção, P. Menezes. “MIST: A Multi-sensory Immersive
Stimulation Therapy Sandbox Room,” in Proceedings of the 15th International
Joint Conference on Computer Vision, Imaging and Computer Graphics The-
ory and Applications (GRAPP), vol. 1, pp. 160-168 ISBN 978-989-758-402-2,
2020, doi:10.5220/0009118401600168.

1.4.3 Other Contributions

Here are detailed other contributions besides publications, which were accomplished
during this program:

• ROS node for wakeword detection and rotation towards its direction of arrival,
based on Pocketsphinx [12] and time cross correlation between mic pairs on a
MATRIX Creator [13] microphone array.
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• Active speaker detection DL tool, combining facial and speech recognition over
time with modality correlation via a novel fusion technique, as presented in
[14].

• Automated data mining technique based on the combination of metaheuristic
techniques such as Simulated Annealing or genetic algorithms, and a conven-
tional ANN.

1.5 Thesis Outline

Here is provided a summary general structuring of each topic presented in this
document, in addition to related publications and contributions. The outline is as
follows:

• Chapter 2 - DL Basics and Functioning This technical section introduces
the DL topics employed in the works that constitute this thesis, concisely and
objectively.

Part I - Biological Overview

• Chapter 3 - Neurophysiology This summary overviews concepts essential
to understanding biological neural circuitry, particularly involved in emotional
processing and decision-making, as well as how learning occurs and how real
brains adapt to deal with real-world variability.

• Chapter 4 - Psychology This section provides insight into the interpretative
take of Psychology over emotion, reviewing the cognitive-motivational-emotive
system proposal as well as the effects learning has on the body and behavioral
response.

Part II - Emotional Competence

• Chapter 5 - Fuzziness of Emotion This chapter presents an approach
to speech emotion recognition, combining deep learning and fuzzy c-means
clustering to account for interstate information when assessing emotional ut-
terances.

• Chapter 6 - Empathy in Social HRI This chapter proposed a reinforce-
ment learning technique for social robots to develop empathy, via direct human
feedback received when attempting to match facial expressions with their re-
spective users in an interactive scenario.

Part III - Adaptability

• Chapter 7 - Emulating Dopamine This chapter describes an approach to
mimicking dopamine effects in artificial neural networks, intending to improve
learning efficiency. A basic dopaminergic trace is first developed, followed by
integration of D1 and D2 receptor emulation.
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• Chapter 8 - Exploration from Internal Drives This chapter reviews
a deep learning technique, combining insight from cognitive psychology and
neurophysiology, and developed for artificial agents to learn useful correlations
between artificial emotion and exploratory behavior, via reinforcement.

Part IV - Final Remarks

• Chapter 9 - Artificial Dreaming This chapter describes an autonomous
data augmentation algorithm designed for artificial neural networks to benefit
from the overfitting prevention effect that real dreams are theorized to induce
on a biological brain.

• Chapter 10 - Final Remarks This section brings the manuscript to a close
by summarizing the achievements of the work presented, as well as providing
paths for future research to continue development.
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Chapter 2

Deep Learning Basics and Function-
ing

Contents
2.1 Representation learning . . . . . . . . . . . . . . . . . . . 9

2.2 ANNs & Supervised Learning . . . . . . . . . . . . . . . . 10

2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . 11

2.3.1 Deep Q-Learning Networks . . . . . . . . . . . . . . . . . 12

2.3.2 Actor-Critic Methods . . . . . . . . . . . . . . . . . . . . 13

Neurophysiologic concepts were first adapted for computational simulation
in the 1940s and 50s, with researchers striving to better understand basic neuro-
functioning. Yet even after the formulation of the artificial neuron (perceptron) [15],
ANN development did not gather much support due to the technological setbacks
of the time. It was not until the late 20th and early 21st century that DL, a field
focusing on optimization via multi-layered ANN architectures with representation
learning, became a mainstream approach to engineering problems. This chapter
presents some theoretical background of DL as well as the techniques that were
employed for this thesis.

2.1 Representation learning

This concept is a cornerstone of ML and more importantly DL. It is characterized
by a form of learning based on data abstractions from which useful information
can be easily extracted and serve as suitable inputs for predictor/decision-making
models [16]. Naturally, it is very typical of stochastic models, where representations
can capture a posterior distribution that fits input data instances to a good extent,
as well as suggesting priors that may not be data specific but are still useful to
learning related tasks. Hence, with neural networks, data representations become
increasingly refined as they progress through the models and as training optimizes
layer weights. Hence, deeper or wider architectures may generate progressively more
abstract features, even from complex data types whose description is not straight-
forward. Examples of this include supervised learning, where data representations
commonly serve as descriptors of meaningful cues to the learned task, and reinforce-
ment learning, where internal representations characterize the intrinsic or extrinsic
value of a state or chosen action.
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Moreover, ANNs also have the ability for representation reuse or distributed use,
which allows different perspectives over the same data description and can poten-
tially lead to better results. Nevertheless, the relationship between representation
abstraction and suitability for task learning is not linear, and thus care must be
taken when designing neural networks for specific tasks. In terms of emotion, a
naturally subjective concept, representation learning appears to be a suitable tool
as it can capture the abstractness of this concept.

2.2 ANNs & Supervised Learning

The SL class of ML encompasses techniques to model the relationship between data
instances and their labels (the training set), for subsequent usage as predictors for
unlabelled instances of the same or similar type (the testing set). The data-label
tuples are considered to be sampled from an independent and identical distribution
(i.i.d.) which remains the same over time, so the split between and generalization
from training to testing instances can be considered valid. When progressing to DL,
with basic feedforward ANNs, layers are composed of basic units called neurons. The
output of these is typically a linear combination of its inputs rated by the intensity
of the connections (weights) with the respective previous neurons and activated by
a function which determines if/how the information will progress to the following
neurons. This computation, resembling the functioning of a real neuron, is repeated
along the network structure until a final output is obtained. A chosen loss function L
is then used to quantify the deviation of the outcome (prediction error) produced by
the network and the expected value which is the corresponding label. The gradients
of L with respect to a layer’s weights can then be used to update them towards
optimized values, with the chain rule being sequentially used as we move upstream
until all weighted layers have been updated. This is done iteratively until the network
reaches an acceptable performance for the task it is being trained for. Selecting
an appropriate loss function depends on the nature of the task, as optimization is
performed differently for distinct types of problems (e.g. regression vs classification).

ANN architectures have varied considerably, with modifications presented to
match demands found for specific problems. For instance, in Convolutional Neural
Networks (CNNs) a layer’s neurons constitute filters that are convolved with the
input data to reduce complex patterns into smaller simpler patterns. With training,
filter weights gradually begin to accentuate the patterns they generally detect and
become highly useful for image analysis. In residual networks (ResNets), neurons
may connect with others not necessarily in the following layer, via skip connec-
tions. This methodology allows for deeper and more robust networks since fewer
connections equate to less feature space exploration and gradients may flow up-
stream through the skips rather than vanish entirely. Recurrent Neural Networks
(RNNs) relax the independence between input and output since neurons consider
feedback from prior samples as additional input to the analysis of a current sample.
This enables optimization according to the temporal correlations of data samples
and can be useful for the network to recognize any sequential characteristics of that
data. In addition to these network types, several other examples exist, being ei-
ther sub-variations, a combination of one or more types, or a distinct architecture
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altogether. However, addressing them would be out of scope for this thesis.

2.3 Reinforcement Learning

RL, as described by Sutton and Barto [17], is arguably the branch of ML which
most closely resembles the neurological learning processes described in Chapter 3.
In broad terms, this methodology usually considers an environment on which an
agent, with no prior knowledge, performs an action at ∈ A leading it from one state
st to the next, in a finite or infinite state space S. The outcome of an action is
signaled by a reward function r(st, at), and thus the return or value from a state
can be regarded as a sum of discounted future rewards with a discounting factor
λ ∈ [0, 1]:

Rt =
T∑
i=t

= λ(i−t) · r(si, ai) (2.1)

With this knowledge, reward can be interpreted as signaling what is immediately
good and coveted by an agent. Separately, value refers to potential future rewards
associated with a state, and thus a value function is meant to determine the worth
of a state.

The i.i.d. perspective does not apply to problems in RL. Instead, these are
commonly devised in the form of a Markov Decision Process (MDP) where given an
initial state distribution p(s), p(st+1|st, at) represents the probability of the agent
transitioning to state st+1. The behavior of the agent at a reached state, or mapping
from that state to the probability of an action, is commonly defined as a policy
π : S → P(A). Moreover, by designing a signal r consistent with the objectives
of a task, it becomes possible for agents to approximate an optimal policy for it,
which maximizes the expected return J = E [R1] from the initial distribution. This
represents the major objective of the RL paradigm and is affected by an exploration-
exploitation dichotomy. At earlier stages of training, exploration is usually preferred
but should fade as the agent gathers knowledge from the environment and later relies
more on exploitation. Without this exploratory preference, an agent is characterized
as greedy as it relies (almost) exclusively on exploitation. Regardless, by the end of
training the agent should be able to predict the value associated with a state-action
pair and appropriately decide on an action for each state. This process mirrors
that of associative learning via primary and secondary reinforcers in a real brain,
as an agent appraises state-action pairs and employs this knowledge in the decision-
making process so that it can meet its goal and/or maximize its chances of survival.
With this premise, it seems plausible that RL methodology would be an adequate
framework for the emulation of biological processes in AI research.

Methodologies can be categorized as on-policy or off-policy. The former refers
to techniques that actively and directly improve upon the probability distribution π
which the agent uses for decision-making, as training progresses. On the contrary,
off-policy techniques attempt to improve performance by updating a target policy
distinct from the behavior policy π, thus being independent of the agent’s action.
There is a range of advantages and disadvantages to both types of RL methodology.
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For instance, off-policy methods may inaccurately estimate the value of an action
if the behavior and target policies differ a great deal. This does not happen with
on-policy techniques since there is a single policy to use. On the other hand, on-
policy techniques may become trapped in local minima, as the policy used for action
selection iteratively becomes better at reaching a certain result. This drawback is
prevented in off-policy methods by greater flexibility and exploration, as learning
assumes the use of a greedy (target) policy while action selection employs another
(behavior) policy.

In addition to policy, RL methodology may be further characterized by the
availability of a model, which the agent can use for predicting environment responses.
This is done via the future reward associated with an action selected for some state.
In model-based approaches, algorithms either employ a model of the environment
available from the get-go or one may be built based on observations performed as
the agent explores the environment. On the contrary, model-free algorithms rely
solely on sampling the real environment and never reference a model to predict the
next state/reward. Considering the nature of most real-world scenarios and the
inaccessibility or complexity of generating a model describing them, techniques in
this area are largely model-free. They are also categorized as deep RL, as deep
neural networks often compose the models employed. Further terminology includes
history, referring to the sequence of observable variables (e.g. action, reward) up
to a certain moment, replay, for when an agent reuses history information to learn
rather than the most recent sample, and others specific to the RL techniques they
describe, such as Deep Q-Learning Networks (DQNs) or DDPGs.

2.3.1 Deep Q-Learning Networks

Q-Learning [18] was first introduced as a model-free, off-policy algorithm for learning
a function Q(st, at) which models the value associated with some state-action pair
in discrete space, with which the best action is chosen for the current state. This
decision depends on a look-up table, where the reward values for each (st, at) pair
are stored. The process aims to maximize reward and optimize this function by
iteratively updating it according to knowledge gathered from the environment in the
form of temporal difference (TD) of optimal and Q-values experienced for actions
based on a deterministic policy, using:

Qnew(st, at) = (1− α) ·Qold(st, at) + α ·
[
r(st, at) + γ ·max

a′
Q(st+1, a

′)
]

(2.2)

A learning rate α determines the weight of the update over Q when at is chosen
at state st, preventing the algorithm from racing to a poor solution. The update is
based on the accumulation of the obtained reward and the estimate of the optimal
future value at the next state assuming a greedy policy. In other words, this second
term considers the Q-value associated with the best possible action at state st+1, so
the agent may consider possible future rewards before performing a step. A discount
factor γ strains the effect of this consideration on the immediate decision-making
of the agent. This is so that earlier rewards the agent discovers may cascade down
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to the current state and still be valued. An issue occurs with this process when an
agent becomes greedy and stuck selecting the action corresponding to the maximum
Q-value at any given state, even though these values are still not optimal. To counter
this, a decaying factor ϵ may be used to determine whether or not the action chosen
should be randomized or according to policy. Thus, exploration is initially boosted
and scales down over time so the agent may focus on exploitation of accumulated
knowledge at later steps.

When dealing with high-dimensional problems, it becomes infeasible to approx-
imate a Q-function using information from look-up tables. As such, DQNs were
introduced as a combination of Q-learning and deep ANNs to approximate the Q-
value function for a scenario. Input consists of the state, while the network outputs
the Q-values for each possible action, so the agent may then decide what is the best
course of action. As the training of this network progresses, output values should
be near those produced by (2.2), and therefore the loss function should be:

L(θ) = E
[(

r(st, at) + γ ·max
a′

Q(st+1, a
′|θ)−Q(st, at|θ)

)2
]

(2.3)

The first two terms constitute the target value, whilst the third term is obtained
directly from the network as a prediction. Therefore, the subtraction enables min-
imization of the loss and eventual convergence to a solution. While guaranteeing
performance here is impossible with non-linear and large function approximators
such as ANNs, convergence is possible as several applications have shown to this
day. Otherwise, techniques such as replay buffers and target networks may be used
[19] to stabilize learning.

2.3.2 Actor-Critic Methods

Another methodology in deep RL consists of two separate structures working in
tandem and which serve as the policy and estimate of value functions, respectively
called actor and critic, in a dynamic resembling that of the basal ganglia (BG)
process described in section 3.3. While both the actor and critic receive the state
st as input, the former decides on an action at which the latter then critiques by
outputting the associated valueQ(st, at). This allows the critic to determine whether
the chosen action led the agent to a better or worse situation, and pass on the TD
error to the actor. Given how this occurs at each timestep, actor-critic methods may
be applied to continuous action spaces, unlike Q-learning. The update over critic
parameters employs the Bellman equation, while the update over actor parameters
(i.e. the probability distribution of actions) is based on the policy gradient theorem
[20], and aims for actions with a higher expected reward at a state to have a higher
probability value. The dynamic of this methodology is exemplified in Fig. 2.1.
Learning in natural actor-critic methods is considered on-policy, given how the critic
learns based on the same policy used for action selection - the actor. Still, variations
have been proposed, including off-policy versions [21], which have the advantages
against on-policy counterparts mentioned previously while also being robust to noise
in updates. Evidently, in off-policy versions, the critic learns a value estimate for
a policy distinct from the behavior policy, which is updated by the actor based on
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said estimate.

Figure 2.1: Simplification of the actor-critic architecture and relationship with the
environment.

2.3.2.1 Deep Deterministic Policy Gradients

First proposed in [22], DDPGs are a variation of policy gradients employed in actor-
critic, with a valuable level of exploration stemming from a stochastic behavior
policy. However, Bellman-based critic updates consider a deterministic target policy
estimate, which is far easier to learn. Assuming a neural network scheme, with one
parameterized by ω as the critic model Qω, and another by θ as the actor model
µθ (deterministic policy mapping state st to action a), the Deterministic Policy
Gradient (DPG) is obtained from applying the chain rule to a performance objective,
here being the expected return J(µθ):

∇θJ = E
[
∇θµθ(st)∇aQ(st, a|ω)|a=µθ(st)

]
(2.4)

Given how this gradient describes the performance of the policy, it is used for
updating the actor parameters. In addition, the issue with using large function
approximators such as ANNs still holds for DDPGs as convergence cannot be guar-
anteed. As such, the proposed architecture for this technique also uses a replay buffer
to reduce the variance from temporal correlations. In it, a (st, at, r(st, at), st+1) tuple
is recorded with each step. Subsequently, a N -long mini-batch of index i may be
obtained from the buffer to update network parameters. Besides the replay buffer,
target networks are also used to regularize learning. These networks, respectively
µ′(st) and Q′(st, a), copy the weights of their actor and critic counterparts and are
used to compute the TD target by summing their outputs with the reward for each
sample. The loss of the critic model is then based on this target and the output
Q(si, ai) obtained for the ith sample. Thus, for each mini-batch:

L =
1

N
Σ
i

ri + γ ·Q′(si+1, µ
′(si+1|θ′)|ω′)︸ ︷︷ ︸

target

−Q(si, ai|ω)2
 (2.5)

Gradients from this loss function are then used to update critic network param-
eters. Subsequently, at the end of a training step or another pre-defined interval,
the target networks are updated with the newly calculated actor and critic weights,
respectively. However, these updates are softened by a factor τ << 1 so learning
is slower and consequently more stable. Finally, a noise process may be integrated
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with the behavioral policy of the agent to boost exploration, taking advantage of
the off-policy nature of DDPGs.
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Part I

Biological Overview

19





Prologue

AI and robotics have gained immense traction over the past decade, producing in-
creasingly successful applications as we strive to explore and exploit various new
possibilities. In this sense, realistic behavioral attributes and learning autonomy
are natural next steps for their development. Yet, in terms of neural adaptability
and emotion, failing to understand the link between Psychological subjective influ-
ence and Neurophysiologic objective processes is a potential reason why research
into the artificial implementation of such traits is only now emerging. Plus, often
publications in areas of biological study do not target interdisciplinary interest. Con-
sequentially, its intelligibility may require additional time and effort before it may
be useful as a basis for AI development. To mitigate this and other issues limiting
interdisciplinary synergy, this part of the thesis introduces a general overview of neu-
rophysiologic and psychological concepts relevant to the presented DL approaches,
which may also serve as a starting point for additional works in bio-inspired AI.
Accordingly, no assumptions are made whatsoever regarding familiarity with termi-
nology or knowledge of either area.

The information here provided is adapted from surveyance work, partially pub-
lished already in [23], but ongoing. It benefits from the complementarity of both
Neurophysiology and Psychology, as in the field of Cognitive Neuroscience. The
first chapter scrutinizes the underlying biology of the brain, focusing on learning
and emotion, and how these processes affect and lead the body to act. On the other
hand, the second chapter studies the causes and consequences of said processes in
human life, attempting to model them. These two information groups are useful
as they demonstrate not only what could be attained in artificial agents emulating
biological characteristics, but also how those may be exploited in research to fulfill
other objectives.
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Chapter 3

Neurophysiology

Contents
3.1 Basic Functioning . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Neural (Limbic) Circuitry and Emotion . . . . . . . . . . 24

3.3 Dopamine and Related Structures . . . . . . . . . . . . . 27

3.4 Learning through Reinforcement . . . . . . . . . . . . . . 28

One way to further autonomous learning and behavior in AI and robotics is
to look for solutions where these traits are already established. The brain already
boasts unparalleled autonomy and learning capabilities. Thus, this chapter explores
neural circuitry and processes related to adaptability and emotion, introducing key
parts of their biological foundation as a basis for AI emulation. Naturally, the
overview is not exhaustive and instead is meant to highlight certain topics of emo-
tional neural processing, neural plasticity and modulation, and reinforcement learn-
ing in the brain which are considered relevant for the DL work developed in this
thesis.

3.1 Basic Functioning

The brain is essentially a large compound of basic cell units, known as neurons, oc-
casionally compartmentalized into specialized and interconnected structures, which
form highly convoluted neural networks. The neuron is commonly modeled as an
accumulate-and-fire trigger cell [24], receiving input from either other neurons or
receptor nerve cells. In a process called a chemical synapse, information is conveyed
via chemical messengers, the neurotransmitters, which traverse thin clefts in between
neurons and reach receptors in cell body ramifications called dendrites capable of
converting those chemical signals into small electric impulses. This process either
depolarizes or hyperpolarizes the postsynaptic cell, respectively representing either
inhibitory or excitatory transmission of information. Should it lead to a strong
enough electric disturbance, the resulting action potential (the spike) is conducted
to a set of terminals where it initiates the release of the mentioned neurotransmitters
via gated channels.

The described synaptic process varies considerably in terms of speed, bursting
activity, structural efficiency, and other factors. These fluctuations are mediated by a
set of chemicals known as neuromodulators, analogous to neurotransmitters. Unlike
these, however, neuromodulators are diffused, not necessarily at synaptic sites, and
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received by a distinct type of receptors. Consequently, they may affect a group
of adjacent neurons or even be widespread enough to reach proportionally distant
neural structures. Moreover, effects over synaptic or even cellular properties tend to
be long-lasting, causing a potentiation or attenuation of neuron connections. This
process, often referred to as synaptic plasticity, depends on factors such as membrane
excitability, synaptic transmission, and integration, the sensitivity of receptors to
neurotransmitters as well as the probability of neurotransmitter release, and several
others. Dopamine is an example of a neuromodulating chemical, having a key role
in motivation, reinforcement, and reward but also mediating the plasticity of neural
connections. As such, it is addressed below to better understand the methodology
implemented for this thesis.

This summary of a brain’s functioning is enough to understand how its sections
specialized and how certain elements came to be, depending on the information
flowing through and which body parts they interface with, to allow beings a better
chance of survival in the real world. Emotion is an example of these elements,
strongly modulated by specific positive or negative instrumental reinforcers [25]. It
is processed in regions commonly referred to as limbic structures and it significantly
impacts learning and behavioral aspects relevant to this work, thus also being shortly
overviewed hereafter. Regarding the neural information presented below, it should
be noted circuitry and operation expositions are not fully comprehensive and reflect
only aspects of functioning pertinent to the work developed in this thesis. Further
analysis would be out-of-scope for this document.

3.2 Neural (Limbic) Circuitry and Emotion

The historical idea of a well-bound limbic system has been relaxing over the years
[26, 25, 27]. Thus, when it comes to emotion, processing is generally considered
to be decentralized and following a tiered fashion. First, sensory cortices receive
a stimulus from their corresponding organs, identifying it. Following this, the in-
formation is then assigned value by limbic structures which largely account for the
appraisal, storage, and recollection of environmental stimuli representations refined
for emotionally motivated learning and behavior. Primarily, this encompasses the
amygdala, nucleus accumbens (NAc), and the medial prefrontal/orbitofrontal re-
gions of the prefrontal cortex (PFC), but also other structures such as the ventral
tegmental area (VTA). Finally, decisions are made as to how the body should react
or behave, in response to the perceived stimulus. The fallout of body action is like-
wise captured by sensory cortices [28] and then used to feedforward update those
same neural structures. A diagram of this emotional system, along with relevant
inter-structure connectivity and approximate locations within the brain is shown in
Fig. 3.1.
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Among the structures with the highest intervention rate in emotional process-
ing, the amygdala is a major processor of conditioned reinforcers that performs an
appraisal of stimuli relevance regarding appropriate body action [31]. Moreover,
sections of the amygdala (e.g. the basolateral region) maintain the reinforcing prop-
erties of a stimulus as part of their linkage to sensory structures elsewhere in the
brain [32, 33], forming a type of affective memory. Consequently, the amygdala
enables appetitive/aversive discrimination of stimuli [34] and attentional capture
through prolongation of response times [35]. This causes emotional salience (i.e.
filtering) of the environment [30] and contributes to reactive behavior, impacting af-
fective and low-level aspects of social conduct [36], as well as mediating associative
learning [37]. In terms of connectivity, the central nucleus of the amygdala mediates
arousal and autonomic response systems such as the hypothalamus [32], whilst pro-
jection to higher-level neural structures such as the medial prefrontal cortex (mPFC)
relates more with cognition and knowledge consolidation [38]. Given this duality,
the decision tier encompasses a more intuitive side where the autonomic component
enables us to act based on what is colloquially known as gut feeling, which contrasts
with a cognitive control section for rational thinking. Both sides influence affective
valuation as it depends on robust feedback connectivity from structures at this level.

Likewise to the amygdala, the PFC also boasts major emotional processing
through its anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC) areas
[32]. Unlike the amygdala, however, the OFC is also involved in affective stor-
age and reinforcement [25, 39] yet by stocking representations of value associated
with reward/punishment outcome. In addition to influencing autonomic and motor
responses [37] analogously to the amygdala, the OFC also enables high-level percep-
tual integration and cognitive control. Moreover, firing from both these structures
activates the ACC and its adjoining regions, which compute action costs and enable
appropriate goal-directed behavior [40]. Ergo, the ACC facilitates learning of rele-
vant action-outcome patterns by actively monitoring associated error [39]. Not only
does this process affect mood but, based on intrinsic value representations, it allows
us to decide on what is most advantageous from conflicting environmental cues and
plan for survival [32, 33, 30].

The NAc section of the Ventral Striatum (VS) is another meaningful region for
emotional processing, receiving appraisal patterns from the amygdala and PFC.
With these, it codifies the incentive value of emotionally significant stimuli [37].
This feature enables the accommodation of reward delays, which helps refine prepar-
ative action as well as switch between goal-oriented and habit-based behavior [32].
Similarly, the VTA also affects this cognitive-intuitive behavioral switch, via the
mesolimbic and mesocortical pathways. This is because the former affects limbic
circuitry, such as the amygdala and NAc [41], while the latter projects mainly to
the PFC. The amount of dopaminergic projections accommodated by these pathways
is rather high, also affecting decision-making factors [42], such as arousal, reward,
and Prediction Error (PE), and mediating incentive salience.
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3.3 Dopamine and Related Structures

As introduced above, dopamine as a neuromodulator is a major enforcer of neural
reconfiguration through modulation of synaptic plasticity. Within the brain, it is
mainly sourced from cell groups dubbed dopaminergic, such as the VTA, a small-
scale structure named substantia nigra (SN), and the NAc in the VS [43]. Both
the former, through the mentioned mesolimbic and mesocortical pathways, and the
latter, via the nigrostriatal pathway, are responsible for a large majority of the
dopaminergic projections occurring in the brain. An adjusted detail of Fig. 3.1
showing these structures, in particular, is provided in Fig. 3.2A.

(A) Approximate locations

(B) Actor-Critic System

Figure 3.2: Overview of the dopamine system and related actor-critic modeling of the
basal ganglia. (A) shows the approximate location of structures most responsible
for dopaminergic projection in the brain, and corresponding connections to BG
components. Based on [25] and [43]. (B) demonstrates a simplified system where a
BG can learn an appropriate action, encouraged by dopaminergic projections (green)
which vary depending on the corresponding outcome’s PE (red). Based on [44] and
[45].

At a cellular level, dopamine signaling presides over a synergy between two fam-
ilies of receptors, D1 and D2, respectively with potentiating or attenuating capa-
bilities [46]. Succinctly, when activated, D2 receptors at postsynaptic cells mediate
inhibitory transmission from presynaptic neurons, while on the contrary D1 recep-
tors in excitatory synapses extend a transmission further than it would otherwise
last. Moreover, dopamine concentration strongly determines the activation of these
receptors [47], with D1 activation occurring at low dopamine levels while higher
concentrations target both D1 and D2 receptors, albeit with a premium over the
latter family. This behavior of D1/D2 receptors is fundamental for Spike Timing
Dependent Plasticity (STDP) to occur, a process wherein synaptic strength is ad-
justed based on the relative timing of neuron spikes [48]. Not only does STDP make
coincident stimuli increasingly associable [46], demonstrating dopamine’s influence
over several components of reinforcement learning, it also represents a cornerstone of
Hebbian learning, the theory that continued activation of pre and postsynaptic neu-
rons potentiate the synapse in-between them [49]. Thus it also exposes the strong
influence dopamine has over the structural tuning of a network.
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At a structural level, dopaminergic projections from the VTA and SN heav-
ily target components of the BG. This group of nuclei influences motivation and
decision-making, being generally posited as modulatory in the action selection pro-
cess of the brain [44]. Further, BG functioning has been modeled as an actor-critic
RL process where an action’s predicted and real outcomes are compared and learn-
ing occurs by trial and error. Here the Dorsal Striatum (DS) typically represents the
actor, learning stimulus-action pairs and regulating motor function. This portion
works in parallel with the VS as a critic, itself composed of parts such as the NAc
which codifies the action’s associated value based on received appraisal patterns as
explained previously. Both striatum sections have been observed receiving signaling
from dopaminergic neurons in the SN and VTA, proportionately to the reward PE
associated with a chosen action [45]. This transient dopamine influx or lack thereof,
associated with D1/D2 receptor behavior, regulates the expedition or gating of that
same action by the actor-critic pair in future similar scenarios. An exemplification
of this process is modeled in Fig. 3.2B for easier understanding.

3.4 Learning through Reinforcement

Learning here refers to how knowledge is obtained and solidified in the brain through
an amalgam of neural processes involving reinforcement, reward-based, and associa-
tive algorithms [32, 50]. These learning mechanics particularly are highly subject
to emotional influence and most often take place over the neural circuitry described
above.

Stimuli captured from the environment inadvertently triggers certain involuntary
responses (e.g. the sense of taste) and a consequential feeling of pleasantness or lack
thereof, in a process known as primary reinforcement. In case secondary but simul-
taneous stimuli also occur (e.g. sight of food), the latter becomes associated with the
emotional value the primary stimuli was appraised with, as well as the autonomic re-
sponse it induced. The secondary stimuli are then dubbed secondary reinforcement
[25, 39], as its influence over the body is based on its relation with primary rein-
forcers. The creation of these associations constitutes knowledge acquisition by the
brain, in the form of an emotional dimension. This is updated continuously so that
new appraisals (i.e. predictions of value) more closely fit the information stored
about previously experienced outcomes. This knowledge is employed in decision-
making so that a being’s actions over its environment meet some goal but also
maximize its chances of survival. The process of selecting an action is based on the
anticipated reward, which itself is represented internally by the emotional value of
the action’s expected outcome [30]. Naturally, the more an environment is trialed,
the better reward prediction becomes. This process is summarized in the diagram
of Fig. 3.3.

This learning mechanism is made possible by the neurotransmission chemical
process, described previously, which conveys information to receiving cells. Through
it, neurons may signal different aspects of reinforcement and decision-making [51,
52], in addition to potentially inducing an emotional impact [53] across different
brain regions. Dopamine, overviewed above in terms of its neuromodulatory prop-
erties, is also heavily involved in the broadcast of PE [50] as a neurotransmitter.
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Figure 3.3: Learning model based on emotional appraisal and reinforcement. Asso-
ciations between primary and secondary reinforcers may be created so that environ-
mental stimuli may be emotionally appraised and appropriately responded to, based
on the predicted reward of their corresponding outcome and avoiding involuntary
reaction. As presented in [23], based on [25] and [50].

Progressive transfer from post-reward to pre-stimulus activation has been observed
for dopamine [54], demonstrating its importance for communicating anticipation
and forming predictions, respectively. Before dopaminergic error prediction, stimuli
salience may be based on another neurotransmitter named norepinephrine. This is
because its diffuse projections from the locus coeruleus structure of the brain boost
attention and arousal. These elements are pivotal to attentional reward components
[55], leading to the activation of dopaminergic neurons. Neurotransmitter roles on
emotional salience, learning, and attention can be further explored in [56, 50], as a
further review would be out of scope for this thesis.
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Psychology

Contents
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4.4 Contagion and Empathy . . . . . . . . . . . . . . . . . . . 35

Bio-inspired processes, given their function role in human cognitive processes,
are naturally causal of behavioral tendencies, expression, and what constitutes the
social construct we live in. Simultaneously, these factors determine the contextual
information that the brain captures, triggering the processes described previously.
However, Neuroscience alone may not provide sufficient attention to these properties
and study them in correlation with neural inner workings. For example, when deal-
ing with emotion as an entity, it becomes necessary to model it in computationally
applicable terms, and not simply as a consequence or effect of relationships between
limbic structures. Thus this chapter provides a psychological perspective on topics
related to learning and emotion which are important for some DL areas. With equal
reasoning to the previous chapter, this overview of psychological concepts addresses
only what is considered relevant to the computational work developed in this thesis.

4.1 Basis Outline

Despite decades of focus, lack of consensus is prevalent and a direct consequence of
the perplexing multitude of theories for emotion [57] proposed in Psychology. Yet it
is clear how most research agrees on appraisal theory [58], where emotion directly
or indirectly stems from the personal meaning an individual assigns to the context
of some triggering event. For instance, Keltner and Gross’ construct of emotion [59]
is consensual, envisioning patterns of perception, communication, and action which
are episodic and triggered by challenges/opportunities of a physical or social nature.
Thus it makes sense that emotional states would be diverse. Moreover, emotion
itself weighs in as feedback to the subjective experience or outcome of an event’s
appraisal. This process leads to physiological responses and consequential leakage of
multi-modal cues, internal and external, as well as diverse behavioral tendencies [60,
61, 62, 63] which translate to action. Through it, emotion motivates behavior by
coordinating body systems to react toward some situation in an attempt to optimize
a person’s chance of survival or goal achievement [64, 65]. This link between context
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and the intra-individual factors that motivate emotion response generation is better
understood through Fig. 4.1, demonstrating the relationship between cognition,
motivation, and emotion [66].

Figure 4.1: The Cognitive-Motivational-Emotive system, abridged from [66]. The
emotional appraisal of some scenarios is directly affected by the context it occurs
and the individual’s personality. A relationship between these two, determining how
the person perceives the context, is also influential. This process elicits a response
from the body in the form of autonomic reactions such as facial expressions and
physiological changes, in addition to motivating some specific behavioral tendencies.
The combination of those components translates to an action meant to cope with
the appraised situation in a manner again dependent on intra-individual factors.
This in turn will affect the appraisal process of subsequent scenarios.

The observation of populational trends during physical/social manifestations is
generally what enables emotional states to be understood and cataloged since the
analysis of each expression separately usually causes a lack of consensus [67]. Addi-
tionally, emotions tend to be regarded as innate, with separate people manifesting
them and the corresponding physiological reactions identically when experiencing
similar situations. There is a degree of complexity associated with each emotional
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state. Some elicit a more overt response (e.g. anger) and can be considered pri-
mary, while other secondary ones require further analysis (e.g. boredom). In ob-
jective terms, the visual and auditory modalities arguably provide the most readily
available information about emotional states, with analysis of physiological signals
(e.g. galvanic skin response) following in a close second. For instance, behavioral
responses such as body posture, facial expression, or prosody variation are com-
monly observed and may constitute input to a model attempting to understand and
predict human emotional states.

4.2 Modelling

Emotions can be more primitive and influence our automatic survival mechanism
in threatening situations (e.g. fear), with heavy autonomic effects (e.g. heart rate,
body temperature), intrinsic scenario appraisal, and adequate action selection known
as the fight-or-flight-or-freeze response [68, 69]. These are typically well-known
states, easily recognizable. Other states are of a social nature (e.g. shame) and de-
velop as we fit the environmental settings and interactions we are exposed to during
growth [70], with identification not being as straightforward. Nonetheless, there is
a positive or negative valence to emotion, depending on the situations it correlates
with, either successful or threatening respectively [65]. Likewise, its arousing effect
on the body can be used to characterize the specific state. Moreover, physical or
body-based metrics can be considered as emotional features and used to monitor the
internal and external components of a state, as well as reporting intrinsic appraisals
during particular events or experiences [71, 72].

In terms of objective modeling, emotion is generally divided into two major sub-
groups. The most well-known and historically adopted one corresponds to a discrete
categorization of emotions, where these are commonly associated with a finite closed
set of archetypal states (e.g. happy, sad, anger, surprise) defined as physiological-
related and measurable by Plutchik [73] and Ekman [74]. Typical examples consider
around six archetypal states as universal, though the set size varies, with more com-
plex states resulting from a combination of the former and neutrality denoting a
lack of emotion. The second subgroup instead uses a multidimensional approach
to define emotion. Usage is largely elicited by a need to analyze the qualitative
nature of emotional states, which is often neglected or only partially described by
discrete models. To define the full spectrum of emotion, Lang [75] initially pro-
posed the qualities of valence and arousal, respectively ranging from negative to
positive and low to high. This model is depicted in Fig. 4.2A, additionally show-
ing the approximate placing of discrete archetypal states within the valence-arousal
dimensional space. As more complex states or states with similar characteristics
become harder to distinguish (e.g. anger and frustration, both of negative valence
with high arousal), other dimensions have also been proposed to model emotion. To
exemplify, Mehrabian [76] introduced an additional dominance factor to the emo-
tion representation space, ranging from completely dominant to highly submissive
to note the feeling or lack thereof control over situations or other people. While the
classification of emotion through categorical models may be more straightforward,
limitations of oversimplification when dealing with more complex emotional states
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(A) 2D Valence-Arousal Space

(B) 3D Valence-Arousal-Dominance Space

Figure 4.2: Juxtaposition of archetypal emotional states from discrete modeling over
2-dimensional (up) and 3-dimensional (down) space.

occasionally warrant translation to multidimensional approaches. A 3D model as
shown in Fig. 4.2B, may also allow for better classification of states not clearly
separable by 2D valence-arousal standards. Nevertheless, it should be noted any of
these types of models are valid and their usage is highly dependent on the desired
real-world application.
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4. Psychology

4.3 Epistemic/Achievement States

By now, the role of emotion in learning through conditioning and reinforcement
should be clearer. In addition to this, there is also a set of emotional states that
serve as major drivers of the knowledge acquisition process, dubbed epistemic when
motivating critical reflection and inquiry, or achievement emotions when being a
direct consequence of success or failure [77, 78, 79, 80]. When prompted with a
type of (complex) data previously undealt with or when confronted with informa-
tion contradictory to current knowledge, we enter an epistemic state of confusion.
This can instigate engagement and knowledge exploration, so long as the source
of that confusion is resolved by this incitement [81]. Surprise may be manifested
under high PE or similar conditions to confusion, and has been observed to increase
attention on what triggered it [82]. This is possibly due to the reaction underlying
the feeling of surprise, which may or may not be enjoyable to the subject. When
positive, the subject can seek to reproduce the same feeling by evaluating more
data of the same type or even exploring further unrelated information, demonstrat-
ing curiosity. A similar but contrasting result occurs with the state of pride. This
achievement emotion seemingly stems from a sense of accomplishment in laborious
tasks, requiring some level of ability, and has a rewarding effect [83]. Thus, it is a
way to sustain learning and can correlate positively with motivation and knowledge
exploration. These learning characteristics would be highly beneficial in the context
of DL, which by itself is currently lacking in terms of motivation and autonomy. As
such, it would be useful to study if these correlations, observed in common human
behavior, would transfer to implementations of learning algorithms.

4.4 Contagion and Empathy

In a social setting, the emotion of an individual directly or indirectly impacts that
of the surrounding group, and vice-versa, in a process known as emotional conta-
gion [84]. This has been observed not only in humans but some animals as well, as
individuals display increasingly confluent behavior during an interaction, and even
in digital or online settings [85], where emotional expression is achieved through a
different medium altogether. Arousal, a key component of emotion, has been iden-
tified as a major catalyst of emotional contagion [86] as it is excitatory to peers and
likely a consequence of aroused behavior being notably apparent. When positive,
this emotional transfer can translate into improvements in work performance, coor-
dination, and group cooperation, as has been observed in sports from team member
to team member and work-related scenarios where the emotional state of workers
converges to that of people in leadership roles [87]. Studies that have observed this
additionally report the positive effect that subject perception of ongoing positive
emotional contagion, either personal or in others, can itself boost the effectiveness
of the transfer as feedback. Naturally, the advantages of contagion may become
drawbacks should the displayed emotion be negative. This remarks the importance
of not only using emotional contagion as a way to boost desired behavioral aspects
but also taking care to prevent a negative state from spreading in undesirable set-
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tings.
Emotional contagion is not far from the concepts of cognitive and affective empa-

thy. These are respectively defined as either a conscious attempt at understanding
a peer’s state and considering it for ourselves [88], affected by our perspective, or
one’s emotional reaction as a consequence of perceiving or predicting the emotion
of another individual [89], which causes mirroring or adoption of an affiliated emo-
tional state. Furthermore, empathic interactions can foment benefits similar to those
caused by emotional contagion, as influence over a person’s state will also affect their
interest and motivation levels. In addition, empathy promotes greater social devel-
opment and bonding with peers, aspects that are fundamental for a healthy lifestyle.
Nevertheless, there is a difference related to the innate nature of emotional conta-
gion which, despite also being a feature of empathy, does not characterize it fully.
This is because empathy as a skill is generally considered to be learnable and a
product of the social environment humans live in [90]. Not surprisingly, empathy
has been observed in HRI [91] which is useful for building rapport and improving
acceptance of a growing preponderance of robotic and AI assistants in society. Like-
wise, the efficacy of AI and social robots as agents of emotional contagion has also
been observed [86], showing the potential of these concepts to be integrated into AI
applications.
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Part II

Emotional Competence
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Prologue

Emotional competence here refers to a complex repertoire of skills expected of human
companions, encompassing identification and perception of states for situationally
adaptive and appropriate behavior, such as awareness of emotional communication
within relationships and the ability to categorize and discern subjective emotional
experience from its active expression in peers [92]. This is because, as explained pre-
viously, emotional activations in the brain always impact actions and their elements,
either directly or indirectly. Thus, incorporating emotion in responsive behavior, for
instance in the form of empathic involvement, is necessary to foment trust and build
successful relationships with our peers, given our social nature. Thus, doing so also
constitutes the emotional competence of an individual, as the capacity for emotion
recognition and emotion expression are naturally correlated.

The increasing prevalence of robots and other user-aiding agents in society [93],
amplified by an ambition to avert uncanny feelings during their use [94] points to the
integration of emotional competence as a strong possibility for the future of social AI.
Not only that but assistive artificial systems also boast greater user acceptance [95]
and can account for shortcomings in the care of people with developmental disorders
(e.g. ASD) [96], when conveying emotion. Not surprisingly, techniques must be
explored first concerning conditions set for the accurate perception of emotion in
artificial agents [97]. This refers to the detection of user emotion and adequate
responsive expression, which allow AI research to then focus on the adaptive and
customizable activity that is becoming a necessity for users.

This part of the thesis addresses two topics of emotional competence respectively
related to the importance of considering the correlative nature of emotional states
during their analysis, and with the benefit of learning and integrating human social
traits (namely empathic involvement) in artificial agent behavior during interactions.
While the former may help reduce the effect of missing information during user state
analysis and is shown to improve emotion recognition rates, the latter posits a way
for robots to learn better social etiquette via user feedback, concluding how the
usage of that new knowledge can ease integration and even foster user preference for
agents capable of context-appropriate behavior. The impact of these works could
also extend to emotion regulation, as perception improves and an agent’s ability to
adapt towards a certain user emotional goal becomes possible.
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State-of-the-art

As mentioned, emotional competence is largely based on two major fields of research.
Emotion recognition aims to identify the state or states of a solo or group of users by
evaluating patterns displayed in physical/social manifestations of emotional states.
Techniques in this field typically involve some form of signal processing methodol-
ogy combined with DL and deal with one to several modalities to situate data in
emotional space based on psychological models of emotion. This can follow either
a categorical or dimensional approach, as mentioned in section 4.2. As reviewed
in [23], the visual modality and facial emotion recognition (FER) specifically ar-
guably get the most attention, with noteworthy recent works including [98] where
expressions were modeled as trajectories on a Riemannian manifold, and [99] where
authors augmented texture images with information from local geometric descrip-
tors of their respective 3D meshes. Similar approaches have also been presented for
body movement analysis [100]. In terms of speech emotion recognition (SER), novel
techniques include mappings to discriminant projection subspaces [101] and acous-
tic space being partitioned for phoneme posterior probability to highlight emotional
relevance [102]. As for other areas, research is comparably reduced as challenges
become progressively specific. For example, emotion recognition in physiological
signals has attempted to assess the adequacy and explore correlations between EEG
channels [103, 104]. In text-based methods there has been focus on semantic analysis
with knowledge transfer between different label sets [105]. Regardless, there appears
to be a trend in emotion recognition research to focus on refining available data with
information potentially relevant for a more holistic perspective or developing novel
representations better suited for emotional analysis.

The field of emotion expression is highly interconnected with recognition as these
belong to the same action-perception cycle. Its main objective is to generate phys-
ical/social reactions in artificial agents, which users can understand and perceive
as emotional (i.e. recognize). While preset mappings between eliciting factors and
emotional manifestations have been used as non-cognitive approaches in expres-
sion research [106, 107, 108], generative DL and RL approaches have become more
prevalent here [23], to provide a broader range of multi-modal responses to varied
scenarios. To exemplify the former, in [109] authors generated postures and motion
patterns through a GAN, while in [110] a dynamic cell structure ANN optimized
robot kinematics to appear emotional. Both architectures were made to observe or
perform real interactions with users. In [111] facial emotion expression data shaped
the latent space of a calligraphy-generating GAN while [112] demonstrated emo-
tional dialog generation via an autoencoder encoding audiovisual information with
attention. From these, it is apparent how emotional expression research employs
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user imitation of some form. As for RL techniques, hard-wired feedback is used
to adapt expression according to reinforcement, as in [113] where an agent’s facial
grimace and vocalizations were rewarded by the laughter caused in the user. Re-
inforcement may also be indirect, as when obtained from the evaluation metrics of
models pre-trained with user emotional data [114]. Nonetheless, explicit feedback
is preferred not only to avoid noise when teaching emotional behavior to an agent
[115], but also for adaptation to target user preferences during social contexts. [116]
demonstrates this by reporting improved HRI when a robot would adapt its speech
characteristics using a DQN according to user ratings provided on the fly. Ulti-
mately, RL methodology boasts a framework to consider user feedback, which is not
always straightforward or possible in generative techniques and thus may provide
some edge in expression research.

Emotion expression may be interpreted in other experiments not targeting user
interaction specifically, wherein agents may also be considered somewhat emotion-
ally competent. For instance, Castro-González et al. [117] devised a RL appraisal
mechanism to learn how dangerous current circumstances may be for a robot’s safety.
The latter ends up displaying behaviors similar to animals in fear. Similarly in [118],
authors described robot navigation as happy or fearful, when based on a common
emotional subspace between behavior and environment reinforcement to learn ideal
actions. Word-attentive ANNs coupled with meshed-memory transformers expressed
perspectives of abstract emotional content in paintings [119], after learning associa-
tions between images and user-generated captions. A paradigm was developed that
enabled the translation of infant-directed speech features to other modalities, mod-
ulating the expression of emotion through these other means besides speech [120].
While these works may be deemed more genuine in terms of true emotional expres-
sion and competence, there is controversy largely caused by the topic’s complexity
[121] and a lack of objective conventions for emotional authenticity.

On another note, standalone models of emotion for recognition or expression may
be combined and are occasionally integrated into the drive systems of social robots,
such as Sophia [122] and Geminoid [123]. These then form action-perception loops
where detected user emotion may, in part or as a whole, constitute the reinforce-
ment signal provided to an agent for behavioral adaptability. In turn, the agent’s
expressive reaction should elicit another emotion in the user, which the system then
detects and repeats the process. Not surprisingly these exact steps, namely state
acquisition, analysis, and understanding, followed by adaptive interaction, have also
been outlined as a basis scheme for the development of those same emotional HRI
and drive systems [124]. Nevertheless, the third step is usually the least robust
given how often adaptability pertains to a small set of scenarios while considering
more leads to increased complexity and correspondingly decreased performance or
interaction quality.

Computational models of emotion represent another section of emotional com-
petence research, not as prominent as others already described. In general, these
models are employed as simulators of theories on biological emotional functioning
and initially originated from a psychological standing. Contrarily, recent research
is more associated with objectivity and neurophysiology, defining characteristics of
emotional elicitation and perception in the form of stimuli [23]. The SHArE [125]
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and HED-ID [126] frameworks exemplify this specifically, focusing on aspects such as
valence, arousal, and duration to determine emotion outputs. The lack of popularity
here may be related to noted low interaction safety [127] and significant implemen-
tation complexity, as well as occasional ethical concerns [128]. These authors have
also argued for the development of these models to be more domain-independent
and focus on more modulatory associations between appraisal and emotion inten-
sity. This entails requirements analysis and, from a software engineering standpoint,
researchers are advised to first identify relationships and data flow between compo-
nents of an emotion theory when designing computational models for it [129].

All these works have in common the fact that they presented some form of AI
with a degree of emotional competence. Yet as mentioned, agreeing on the plau-
sibility of artificial emotional competence is a complicated issue. Thus, requisites
for plausibility could be outlined based on human experience of emotional compe-
tence, for future research. For instance, agent transition between emotions should
be contextually adaptive and smooth/fluid instead of abrupt, as adopted by current
approaches. As progress is made, other requisites such as meta-cognition [130] and
reaction-action cycling [131] should constitute new objectives. Respectively, these
would provide agents awareness of their emotional intelligence plus the ability to
control it as well as benefit from its automated facets. As postulated in [23], these
traits could enable greater cognitive control for emotional AI agents, by operating
proactively and reactively both simultaneously and independently [132], as humans
do. Ultimately, user credibility of emotional competence is still a far-out accom-
plishment and current research must, for the foreseeable future, focus on resolving
smaller issues as the ones described previously. This could provide further validity
to empirical studies of emotional competence presented by Cognitive Neuroscience,
which are based on theory of mind and intention understanding.
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Chapter 5

Fuzziness of Emotion
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This chapter presents an experiment that combines DL and fuzzy clustering to
support the understanding that emotion analysis would benefit from considering a
fuzzy rather than discretized emotional distribution model during recognition. The
proposed approach encompassed developing a neural network layer that implements
a fuzzy clustering algorithm to fuzzify the emotional features received from upstream
layers, so classification is instead based on correlations between states. The aim
was towards SER and testing employed four standard emotional speech databases.
Obtained results surpassed other SER techniques and were presented in [133], from
where this chapter’s content is adapted.

5.1 Context

Emotional intelligence is a logical future feature of AI assistive services, given how
these are expected to provide support [134] and appropriately empathize with user
limitations [135]. This also generalizes to social HRI, where understanding users is
key for agent acceptance. To endow machines with this competence, however, it is
first required to provide some degree of context awareness through recognition of
the emotional states displayed by users through several modalities including speech
and prosody, whose variations resonate with emotion. This is because the flow of
emotion-related activations over speech-processing neural structures induces changes
in intonation and prosody [23], similarly to the introduction of noise over data or
the convolution of two separate signals occurring in tandem in the same locale.

While varied models of emotion have been proposed, as previously described,
the large majority of works about SER adopt categorical alternatives and DL [23].
To exemplify, recent works include [136], where speech features were mapped to a
discriminant projection subspace and classification of states was performed based
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on a distance metric, or [137], which proposed classifying emotion based on the dis-
tributional structure of combined labeled and unlabelled speech data, learned by a
generative adversarial network. In [138], authors hard-clustered utterance sequences
using a bidirectional LSTM-CNN to recognize states from emotionally dominant
features. While these approaches are interesting, simpler techniques have achieved
similar results, such as [139] where mel-frequency cepstrum coefficients and mod-
ulation spectral features of emotional utterances fed to a small RNN were enough
to recognize the respective state. In [140], authors extracted eGeMAPS features
and fed these to a Deep Belief Network [141], obtaining accuracies in the high 70%
mark despite using few target-corpus instances for training. Regardless of approach,
these works fail to consider the correlations between archetypal emotional states that
critics have pointed out as missing from categorical models [142], one of which is
exemplified in Fig. 5.1A. Transitions between emotions clearly demonstrate this
issue, given states are inherently fuzzy and overlapping in real life, more closely
resembling the adapted model in Fig. 5.1B, but are limited by sharp divisions in
categorical models. This characteristic resonates with fuzzy logic, where bound-
aries between classes are blurred and evaluated quantitatively or qualitatively, most
commonly involving some degree of overlap to better approach the nonlinearity of
data. Consequently, data instances may comprise several distinct classes with cor-
responding degrees of membership or their examination may consider correlations
between one another before assigning them labels. A direct benefit of this stems
from how these correlations can help fill in information missing from instances of a
particular state if common features are shared with other states of lower member-
ship. Approaches have been proposed for FER which employ fuzzy logic to attain
these advantages. For example, [143] implements two layers in a neural network
for calculating matching degrees of incoming emotional features and uses these to
determine the weighting respective of each fuzzy rule employed in the classification
averaging, dubbing this fuzzy neural network. A similar technique is used in [144],
though with a wavelet network layer in between. In [145], authors adjusted the
weights of an emotional neural network using fuzzy c-means clustering combined
with a genetic algorithm. Contrastingly, fuzzy logic remains largely unexplored in
SER, despite prosody varying similarly for different emotional states. Plus, works
reporting improved results over non-fuzzy approaches in the related field of FER
add up to the validity of employing these techniques in SER.

Considering the lack of approaches combining fuzzification and SER, we proposed
a new technique based on fuzzification of speech features at an intermediate level of a
neural network. At a preprocessing stage, spectrograms of emotional utterances are
computed. These are passed on as input to a CNN for emotional feature extraction.
Obtained results then undergo fuzzy clustering, before classification. While a similar
process has been employed in other areas such as object recognition [146], ours differs
in that there is heavy dimensionality reduction and specialization of features before
fuzzification. This is justified by the fact that these algorithms tend to fail when
dealing with data at dimensions greater than a few dozen. Moreover, our approach
is a novel step in SER and allowed us to confirm the suitability of fuzzified emotional
features for classification. Testing was carried out over four standard SER databases
and results were compared with those of other state-of-the-art works in the field.
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(A) (B)

Figure 5.1: Common version of Plutchik’s Emotional Wheel [73] (left) and a fuzzy
more plausible adaptation of the same model (right).

5.2 Pipeline Overview

As mentioned, the proposed approach encompassed a preprocessing and feature ex-
traction stage, where spectrograms were generated for each emotional utterance,
then analyzed by a CNN trained for large-scale speaker recognition and refined by a
newly trained multi-layer perceptron. This was followed by the fuzzification stage,
which employed the fuzzy c-means algorithm to cluster the extracted speech fea-
tures, with the number of clusters greatly surpassing the number of classes. Finally,
membership degree vectors were classified into archetypal emotions by a perceptron.
This pipeline is depicted in Figure 5.2 for easier understanding. Each of these stages
is overviewed in the following sections.

5.2.1 Preprocessing & Feature Extraction

To retain as much emotional information as possible, utterances were analyzed in
their raw spectral form. This was done by computing spectrograms, representations
of energy variation at different frequencies over time which embed prosodic variations
(e.g. pitch, tone) as visual characteristics. Specifically, a sliding Hamming window
with 25ms of width was applied to each considered audio clip, with a step of 10ms for
smoothing, after which the corresponding discrete Fourier transform was obtained.
The respective means and variances were also normalized at every frequency bin
(i.e. the intervals between samples in the frequency domain) of the spectrum so
all utterances would be in the same range of values before being analyzed. No
additional preprocessing was performed over the data.
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5. Fuzziness of Emotion

Given the bi-dimensional nature of the preprocessed spectral data, CNNs were
an evident choice for its analysis and feature extraction. However, the unavailability
of big data in emotional speech precludes acceptable performance by directly trained
DL architectures, meaning the obtained features would not be very useful. Never-
theless, other speech-related tasks exist where data is abundant with models trained
on them being capable of successfully extracting useful prosody information. Thus
the VGGVox model [147], a large-scale CNN specifically designed for the analysis of
audio in its spectral form and respective recognition of speaker, was pruned and its
upstream layers employed for feature extraction. Being a VGG-M architecture, the
model is composed of a sequence of convolutional layers each of which is followed
by a pooling operation. As for the section of VGGVox employed in our approach,
6 levels of the convolution-pooling sequence were kept while the rest of the network
was removed. This is because at this level the network is capable of extracting fea-
tures useful for speech-related tasks, while not yet being fully specialized only for
the task of speaker recognition [148]. After this pruned VGGVox model, two fully
connected layers were directly trained to further specialize the features extracted
for emotion recognition, using the emotional speech data available. Moreover, the
variable input length capability of VGGVox was also implemented in the final layer
of this section, as it is desirable for audio analysis since the model becomes invariant
to temporal position but not frequency [149].

5.2.2 Fuzzification

For the fuzzification part of the proposed architecture, the developed layer employed
the fuzzy c-means method [150] to cluster embeddings according to their similarities.
This algorithm was selected given that its simplistic approach makes it ideal for
establishing a baseline of fuzzy logic techniques in SER, which is nonexistent, and
enables subsequent comparison with more complex techniques such as possibilistic-c-
means. Considering an instance xj made up of L features F = (f1, ..., fL) and given
a pre-set number of clusters K, the algorithm starts with C = {c1, ..., cK} cluster
centroids, initialized according to a uniform distribution, which are then iteratively
updated to better match the data. These are computed through a weighted average
of all points:

ck =

∑N
j=1 ω

m
jk · xj∑N

j=1 ω
m
jk

(5.1)

Here, m > 1 is the fuzziness intensity of a cluster which asserts how much it
may overlap with others in proximity. This was kept at a default value of 2. The
membership degree of embedding xj in cluster k is represented by ωjk and obtained
through:

ωjk =
1∑K

i=1(
||xj−ck||
||xj−ci|| )

2
m−1

(5.2)

This implementation was made a type-1 fuzzy system since, while a level of
uncertainty could have been associated with ωjk, that was not added due to the
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potential introduction of noise and excessive homogeneity in classification caused by
too many cluster centroids being considered. Minimization of the weighted sum of
all possible instance-centroid pair squared norms was performed until a maximum
number of iterations was reached or centroid updates became negligible, to find op-
timized locations. The maximum number of iterations was set as 150, while the
centroid threshold was set as 0.00001. Once trained, this new fuzzy layer received
the emotion-specialized feature vectors from the CNN+perceptron basis model and
provided a set of membership degrees ω respective to each cluster and its centroid.
Finally, these membership vectors were progressed through a fully connected layer,
likewise newly trained with the available emotional speech data, for final classifica-
tion.

5.3 Experimental Results

The experimental section designed for this system first encompassed determining an
appropriate number of clusters to be used for fuzzification. This is because there is an
ideal range for this parameter to benefit model performance. Secondly, an ablation
study was carried out to assess the utility of the fuzzification layer for improving
classification. The databases considered were EMODB [151], EMOVO [152], SAVEE
[153] and ELRA-S0329 [154] given their widespread use in SER, making comparison
of results easier. Each database uses a different language and considers 7 emotional
states with the common ones being anger, happiness, sadness, fear, disgust, and
the neutral state. Boredom is considered by EMODB, while the rest adopt surprise
instead.

It was hypothesized that considering a group of emotions intermediate to the
main set of archetypal states could help analyze ambiguous utterances. Naturally,
by making this set of intermediate states larger, correlations between states become
increasingly more prevalent until a certain point where individual state information
becomes overly diluted. For this reason, increasing quantities of cluster centroids
were tested until a performance drop was observed. This was achieved by training
and testing the fuzzy model with the SER data from all databases using 10-fold
cross-validation and 30 epochs. As can be observed from Table 5.1, there was a
steady increase in performance from 10 until 200 clusters, at which the expected
drop occurred. For this reason, the fuzzy model employed in the following part of
the study was implemented using 150 clusters.

Table 5.1: Fuzzy layer performance variation by number of clusters, using 30 epochs
and 10-fold cross-validation. Accuracy values are percentage points.

Clusters 10 25 50 100 150 200

Acc (Std) 63.75 (4.00) 64.12 (5.32) 65.42 (8.25) 67.10 (4.82) 68.93 (5.35) 63.33 (6.68)

For the ablation part of this study, we intended to demonstrate how the fuzzy
layer can account for shortcomings in emotional data and improve the performance of
an SER model by taking advantage of inter-emotional state relationships. The main
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goal was to obtain a performance increase similar to reports from FER works, where
fuzzification has been successfully incorporated. To this end, the same training
process and hyperparameters were applied to the fuzzy model described thus far (see
Fig. 5.2), and to a basis model with the same added fully connected and classification
layers albeit abstained from any data fuzzification. This process considered each
emotional database individually and followed a 10-fold cross-validation policy for
training and testing, systematically increasing the number of epochs. The obtained
results are detailed in Table 5.2 in terms of mean accuracy and standard deviation,
with respect to the policy used. Results from three other state-of-the-art works
are also reported for comparison. As can be observed, the fuzzy model performed
better than its non-fuzzy counterpart in all but the 30-epoch test with the EMOVO
database. Additionally, the best results obtained with the fuzzy model were on par
with or surpassed those of other works in the field, again except for the EMOVO
database.

Table 5.2: Comparison of accuracy results between the non-fuzzy and fuzzy models
trained over 30, 50, or 100 epochs and tested based on 10-fold cross-validation, and
against other state-of-the-art techniques. Accuracy values are percentage points.
The mean of performance increases across databases is shown in the rightmost col-
umn.

Epochs Model
EMODB SAVEE EMOVO S0329 Mean

GainAccuracy µ (Standard Deviation σ)

30 Non-Fuzzy 67.05 (5.61) 58.54 (8.08) 51.02 (8.02) 88.38 (3.47)
1.66

Fuzzy 68.93 (5.35) 61.25 (5.88) 50.85 (7.19) 90.61 (3.03)

50
Non-Fuzzy 71.94 (5.30) 63.54 (4.61) 55.42 (4.55) 88.97 (2.97)

1.65
Fuzzy 74.17 (5.71) 66.04 (6.27) 55.93 (3.26) 90.31 (2.11)

100
Non-Fuzzy 76.62 (8.41) 68.54 (2.98) 62.20 (7.42) 90.91 (3.19)

1.71
Fuzzy 78.48 (7.86) 71.04 (4.76) 64.07 (7.72) 91.51 (2.68)

Other

Works

Kerkeni [139] 69.6 - - 90.1

Latif [140] 72.4 56.8 76.2 -

Sidorov [155] 74.6 63.8 - -

5.4 Discussion

Results in Table 5.2 clearly highlight an increased performance when employing
fuzzification in the DL model, regardless of the database when completing 50 or
more epochs. Based on this, we can conclude how archetypal emotional states do
share common traits and are frequently correlated with one another when expressed
vocally. As for the lack of improvement over EMOVO with 30 epochs, this may
imply a high level of emotion heterogeneity in the used language (Italian) which
hinders the classification of fuzzified data since emotional states are less or not
at all correlated. Regardless, improvement becomes apparent for EMOVO as well
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when employing a greater number of epochs. In fact, this is also true for the tests
performed with each database, indicating a trend for performance growth which
could be explored in further works. Nevertheless, given how the mean performance
gain remains nearly constant despite the epoch number, it can be concluded that
this hyperparameter variation does not intervene in the increased accuracy from
the non-fuzzy to the fuzzy model. Consequently, these results support the initial
hypothesis that fuzzification can be used to take advantage of inter-state correlations
to account for potentially missing information and produce features better suited
for classification or at the very least increase robustness, similarly to what has been
attained in FER.

While the lower EMOVO accuracy in comparison with other works may be simi-
larly due to the heterogeneity of Italian emotional speech which renders fuzzification
counterproductive, the increased performance on other databases is expected and
follows our initial hypothesis. This additionally motivates studying the effect of
fuzzification on other DL architectures as well as more robust fuzzy logic techniques
for SER in general, since an improvement baseline has now been established. Fi-
nally, given this first approach to fuzzy SER was successful, joint fuzzification of
emotional audio and visual features should be explored towards multi-modal emo-
tion recognition and to assess the degree to which two states may correlate and
complement one another even when expressed in distinct modalities.
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Empathy in Social HRI
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This chapter describes an experiment meant to assess the impact of affective
empathy on human-robot interactions. The process involved training a DL module
to perform facial expressions appropriate to each emotional state, via reinforcement
learning. A real interaction scenario was then designed, with a set of participants
being asked to engage with a robot endowed with said trained module. The ex-
periment was designed and carried out in collaboration with colleague Alessandra
Sorrentino, PhD., from the BioRobotics Institute of Scuola Superiore Sant’Anna in
Pisa, Italy, and presented in [156] and [157], from where this content is adapted.

6.1 Context

Understanding how humans perceive robots and the impact of certain behavioral
traits in the quality of HRI is a natural step towards bettering engagement and user
acceptance. One way to contribute to that objective involves integrating the affective
characteristics of empathy and emotional contagion in robot frameworks. To mimic
the learnable nature of the former in social robots, computational empathy emerged
as a field wherein techniques are developed for agents to be capable of behaving
empathically with their users and benefit from it. Naturally, techniques also involve
contagion, considering its innateness, which indirectly benefits interactions.

HRI studies have posited the importance of artificial agents understanding the
human psyche so a rapport can be built with their users [158], with some researchers
even arguing that empathy could be achieved in AI if agents were endowed with an
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artificial nervous system and pain induction [159]. Plus, a clear preference for em-
pathic agents has been observed in cooperative tasks [160]. Furthermore, empathic
behavior has been shown to boost user trust and fondness in human-robot relation-
ships [161]. This is likely a consequence of the comfort increase and stress decrease
advantages of empathic interactions which transfer to HRI [162]. Empathy can be
perceived through as many modalities as emotion can be expressed or recognized in,
which by themselves generally depend on both physical and behavioral attributes.
While many studies fixate on improving human likeness in robots to showcase em-
pathy, this study focused on a behavioral aspect of the trait as well due to this being
a major component of empathy in real life [163]. Hardware restrictions and a more
challenging perception of user state [164] are the probable causes of the reduced
number of works being developed for empathic behavior in real robots. Thus, even
though related literature here could encompass works where virtual scenarios serve
as proof of concept, this study focused more on implementations that have been
deployed and tested in the field. For instance, in [135], authors analyzed whether
elderly users perceived empathy from a NAO robot performing affective acts based
on utterances, body movement, and color variation in line with the state perceived
from user speech, facial expressions, and gestures. Recognizing and imitating user
facial expressions was found to benefit a robotic head in terms of how users per-
ceived it during dialogue in [165]. Similar effects were observed in [166], as users
rated interactions more positively when the mimicking of emotional gestures by a
robot head was more pronounced. The work in [167] describes a mobile virtual
agent which varies its facial expression, movement and sound effects to mimic the
perceived emotion of autistic children. This models interaction patterns for distinct
personalities and thus foments engagement. Bagheri et al. reported increased com-
fort and confidence in users interacting with a Pepper robot which matched detected
user emotions and personality in its utterances, learned via a contextual bandit RL
approach. Despite not mentioning empathy explicitly, [168] teaches a robot to ex-
press the emotion of its user by using human feedback to minimize the error between
the target state, perceived visually, and a perceptron-chosen robot expression. In
[169], the same authors further their work by using an actor-critic RL technique
to associate robot expressions to emotions described by a growing-when-required
network in a story-telling scenario, leading to a more natural interaction.

The main issues identified in the reviewed literature are related to robot behavior,
for instance, via vocalizations or facial expressions, being hard-wired to rather than
learned from user emotion. Moreover, a part of the studies also lacks an adequate in-
teraction scenario, reporting results based on a bird’s-eye evaluation of performance
without much user-robot interaction. In our experiment, eye and mouth configura-
tions are associated by feedback to archetypal emotional states expressed by human
users to mirror them and simulate affective empathy, in an initial stage. A DQN was
developed as the learning approach to teach the robot an adequate action-selection
policy when it came to expressing emotions via its facial configuration. This was
elicited by the high-dimensional state space associated with mapping facial expres-
sions to emotional states. Our methodology is most closely related with [168, 169],
given RL was used to determine expression. Nevertheless, besides employing the
same set of archetypal emotions, we developed a distinct learning approach and
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considered a fairly larger set of facial expressions that stem from a combination of
eye and mouth configurations learned by distinct branches of a model. Thus, the
algorithm is meant to learn an adequate combination of physical attributes rather
than merely selecting the most appropriate expression from a list. Moreover, this
can equate to the same eye/mouth configuration being mapped to different states or
vice-versa, which is more plausible in a real scenario. Finally, in the second stage,
the robot’s learned empathy module is deployed in a short dialogue scenario with
real users to determine whether empathy was conveyed.

6.2 Learning Stage - Mirroring Optimization

As mentioned, this stage focused on training a model to map emotional states with
combinations of eye and mouth configurations. Emotion was viewed as categorical,
being either neutrality, happiness, sadness, anger, surprise, fear, and disgust, as this
is the most commonly employed approach and archetypal states are typically innate
and readily apparent [23]. Regarding the artificial agent, the GrowMU robot [170]
was used, which allowed us to define the eye and mouth configurations based on
its available modules as well as on the Facial Action Coding System (FACS) [171],
which isolate specific points of the human face involved in affective expression. This
resulted in 13 mouth and 4 eye configurations, which combined makeup 52 possible
facial expressions, shown in Fig. 6.1.

Figure 6.1: Possible combinations of eye and mouth configurations to form the
robot’s facial expression. As presented in [156].

6.2.1 RL Outline

Following the formulation of ϵ-greedy DQNs in section 2.3.1, the environment’s
action-space A envisioned for this experiment encompassed the 52 combinations of
eye and mouth styles. Also, the state-space S was made up of two disparate states
representing empathy or lack thereof, respectively whether the robot-generated fa-
cial expression matched the detected user emotional state or not. Based on this
framework, a reward system rt was designed to motivate the agent at each step t
towards demonstrating what its implementation considered to be empathy. Specif-
ically, the system rewarded the agent one of two possible constant values, rt = 2
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whenever it moved from the non-empathic to the empathic state and rt = 10 should
the agent decide to remain in the empathic state. This is because it should be the
robot’s objective to demonstrate empathy as much as possible towards its users dur-
ing an interaction. Consequently, moving to or remaining in a non-empathic state
resulted in a null reward rt = 0 being provided to the agent. This reward was not
made negative as an agent being non-empathic was not necessarily considered to be
incorrect behavior, thus not requiring punishment.

In terms of the neural network architecture designed as the DQN of this exper-
iment, its root section was composed of two fully connected layers and received as
input the concatenation of both the current state st and user emotion. The archi-
tecture was kept simple to avoid convergence issues stemming from larger function
approximators. From this section, two further fully connected layers were special-
ized, with one corresponding to eye and another to mouth features. The processing
of these features was implemented in separate layers in conformity with biological
neural processing, where upstream information stemming from limbic structures is
passed on to outward cortices specialized for each facial function. Finally, each
branch outputs a configuration out of the 4 or 13 available for either the eyes or
mouth, respectively. The RL environment and neural architecture designed for the
robotic agent are both depicted in Fig. 6.2, for easier understanding.

Figure 6.2: Environment (left) and neural architecture (right) designed for the RL
robotic agent to demonstrate empathy by matching user emotion with its facial
expression. Adapted from [156].

6.2.2 Training Process

An agent requires quite a large amount of samples of the environment if it is to
learn an adequate policy using DQNs. While it is possible to obtain these samples
via physical interactions with one user at a time, implementation over a single robot
would mean these would consume an amount of time infeasible with the completion
of this experiment. For this reason, an online platform was developed and con-
nected to the RL algorithm via a WebSocket, so the artificial agent could learn from
several users simultaneously. An exemplary screenshot of the platform is shown in
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Fig. 6.3. Based on a randomly generated target emotion and the agent’s current
state concerning a user, eye and mouth configurations were obtained by the DQN
and replicated in the user’s browser identically to how they would be shown by the
physical robot. To determine the reward value to award the agent, the user was then
asked to classify the demonstrated facial expression as either coherent or incoherent
with the target emotional state, according to their own opinion by clicking a button.
This rating was stored locally in a log file and used by the algorithm to perform an
iteration according to standard DQN procedure.

Figure 6.3: Screenshot of a training session using the developed online platform.
The target emotion is shown on top, based on which the user should classify the
simulated robot facial expression as coherent or incoherent. The bottom left corner
shows the elapsed session time while the right corner shows the number of expressions
evaluated so far.

In order to gather a large number of participants in this stage of the experiment,
the URL of the platform was disseminated by various means such as e-mail blasts and
social media. By accepting the invitation, participants were shown a brief tutorial
detailing what to do in this experiment, as well as a short overview of its objective.
Subsequently, the user would have to fill out a short socio-demographic form, for
statistical purposes. Following this, each participant was directed to the training
page, where facial expressions were evaluated, after consenting to their anonymous
data being stored and used for research purposes. Once there, a training session
would last as long as the user wanted or until a maximum of 10 minutes, at which
time the user could restart the process and perform more sessions or end their
participation. Moreover, the target emotion would change every 250 user responses,
corresponding to the number of steps per learning episode, with a pop-up alert
informing the user of that change. With this process the training of the RL model
was continuous and copies of it were stored locally at periodical intervals so that
the model could be accessible to the physical robot at different stages of training.

6.2.3 Results

Based on the short socio-demographic survey, a total of 105 participants were regis-
tered, with 46 females and 59 males at an average age of 32.01 years (σ = 10.06). In
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terms of educational background, a small percentage of participants had high-school
qualifications or lower (5.83%), with the remainder reporting either a bachelor’s de-
gree (13.59%), a master’s degree (60.19%) or higher (20.39%). Though most of the
participants were either Italian (58.25%) or Portuguese (26.21%), other nationali-
ties were also registered from Asia (5.83%), Europe (6.8%), South America (1.94%)
and North Africa (0.97%). All in all, participants provided an average of 155.6 re-
sponses each (σ = 92.95), with the total amount of facial configurations generated
by the model and evaluated by users being 22251. The total amount of expres-
sions generated for each emotional state is shown on the bottom row of Table 6.1.
Additionally, the response log showed that each facial configuration was explored
several times for each emotional state, meaning the RL algorithm adequately ex-
plored its environment while training. Coherent ratings of facial configuration to
emotional state composed 42.51% of all responses provided by participants. In fact,
referring to the matrix of expressions shown in Fig. 6.1 in terms of [eye,mouth],
the combinations [1, 1], [1, 6], [1, 11], [2, 1], [2, 2], [2, 6], [2, 11], [2, 12], [3, 1], [3, 6], [3, 11]
received the most coherent ratings from the participants, based on a threshold of
200 coherent responses. The ratings of these 11 configurations, normalized by the
total number of expressions per emotion, are also shown in Table 6.1 along with
the ratio of coherent to incoherent feedback per configuration. As can be observed,
each state exhibits 1 to 3 configurations with higher ratings than the remaining 8
to 10. In addition, 9 out of the 11 configurations boast a ratio higher than 1. Con-
sequently, it is plausible to assume configurations with higher ratios would be more
associated with the emotional states where the respective ratings are also higher if
the RL model converged properly.

Considering how episode length varied depending on the number of user re-
sponses per session, the cumulative reward was considered unsuitable to indicate
model convergence. Instead, since the implemented DQN was saved periodically
during training, three instances were selected for analysis corresponding to initial,
final, and mid-training copies of the model. These were tested by progressing each
emotional state through them and comparing the obtained expressions, reported on
the bottom rows of Table 6.1, with the information extracted from the user response
log files. While the first model yields only 3 distinct facial configurations for the
7 different states, these become more diversified in the middle and final models in-
dicating convergence. Moreover, some configurations were retained either partially
(e.g. mouth configuration for the neutral state, eye configuration for sadness) or
fully (e.g. anger state, surprise state) when comparing the middle and final mod-
els. The associations made by the latter also closely match the results expected
from the previous analysis of the user response log files. Specifically, the expressions
yielded by the final model for the neutral, happiness, and anger states correspond
to the ones that got the highest coherent ratings, whilst the expressions obtained
for the sadness and surprise states are fairly close to the highest rating values. The
expression obtained for fear somewhat deviates from the ratings metric, though it
corresponds to one of the higher ratios of coherent to incoherent responses. Finally,
the expression for disgust was the only one not matching any of the 11 expected
expressions, likely as a drawback of using a large function approximator such as a
DQN. Regardless, based on these results, it can be concluded the model converged
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Table 6.1: Coeherent ratings of the 11 facial expressions most rated as coeherent,
normalized by the total number of expressions per emotional state (at the bottom)
and with a ratio of coeherent to incoeherent feedback shown on the rightmost col-
umn. Cells in bold correspond to the associations of facial configuration to emotional
state made by the final RL model. Expressions associated with each emotion by the
RL model at different training stages compose the bottom three rows.

Facial
Expression

Emotional State

Neutral Happiness Sadness Anger Surprise Fear Disgust Ratio

[1,1] 0.0 0.0 16.4 0.1 0.0 0.0 0.2 2.68
[1,6] 0.7 0.6 14.0 0.0 0.0 0.2 0.3 3.06
[1,11] 0.2 0.0 16.4 0.3 0.0 0.1 0.2 1.61
[2,1] 0.0 0.0 0.8 0.1 0.0 5.7 1.0 0.7
[2,2] 0.0 16.7 0.0 0.0 3.3 0.1 0.0 0.75
[2,6] 28.1 0.5 0.1 0.1 3.8 5.9 1.7 1.13
[2,11] 4.6 0.1 0.3 0.0 14.9 12.8 5.8 1.48
[2,12] 0.0 0.0 0.0 0.0 13.4 3.8 0.0 2.43
[3,1] 0.0 0.0 0.2 21.9 0.0 0.1 12.1 2.9
[3,6] 1.8 0.0 0.1 10.3 0.0 0.2 1.6 1.85
[3,11] 4.1 0.1 0.1 11.8 0.0 0.1 4.5 1.41

Total Expressions 2158 2437 3417 3923 3562 3477 3277

Initial Model [1,12] [2,9] [2,9] [1,12] [1,12] [1,12] [2,7]
Middle Model [3,6] [0,6] [1,1] [3,1] [2,12] [0,12] [3,1]
Final Model [2,6] [2,2] [1,6] [3,1] [2,12] [2,12] [3,12]

appropriately enough to be employed in the next phase of the experiment.

6.3 Deployment Stage - Interaction

For the sake of completion, this section presents an abridged overview of the exper-
iment’s second stage, jointly designed as a testbench of the RL model but mainly
implemented by Dr. Alessandra Sorrentino. During an interaction the aim was for
the robotic agent, endowed with the model, to match its facial expression with the
detected user state, to evaluate the impact of empathy over user perception. Despite
the initial plan envisioning a GrowMU robot, a CloudIA robot [172] available at the
time of implementation was used.

6.3.1 Design and Setting

The module implemented received input from the visual and auditory modalities,
with the former employed for FER of the user via a pre-trained CNN1 which outputs
the 7 emotional states considered in the experiment’s first stage. While speech
emotion recognition as described in Chapter 5 could have been an alternative here,
FER techniques are generally more robust and consistently provide higher accuracy
[23]. The user emotion was subsequently employed by the DQN trained previously,

1https://github.com/SanjayMarreddi/Emotion-Investigator
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along with the current agent state, to compute a facial configuration demonstrative
of empathy. This result was passed onto CloudIA’s tablet, which displays the chosen
configuration to the user during the interaction. As for the auditory modality,
the Vosk2 automatic speech recognition (ASR) model was used to capture user
utterances, to which the robot responds as a conversation scenario. This exchange
of utterances is managed by a finite state machine, based on what the user says,
to determine a response for the robot to vocalize. These vocalizations employ the
ROS wrapper of svox-pico Text-to-Speech engine 3, with which the robot’s prosody
is adapted in terms of tone, pitch, and speed. The communication between the ROS
processes controlling the described modules was done using the ROSBridge Server.
A diagram of this implementation is shown in Fig. 6.4A.

(A) System Diagram

(B) Non-Empathic

(C) Empathic

Figure 6.4: Overview of the design implemented in CloudIA and experimental set-
ting showing empathic and non-empathic behavior examples.

The conversation between the robot and the user was divided into three levels.
The first included welcoming remarks from the robot and basic questions (e.g. ”How
are you today?”) as a way to gently initiate an interaction with a single user. In
the second step, the robot actively tried to elicit emotional states in the user by
showing videos composed of combined data from the International Affective Picture
System (IAPS) [173] and the International Affective Digitized Sounds (IADS) [174]
databases. Images corresponding to a particular emotional state were matched with
appropriate sounds of the same state and played. Thirdly, an Akinator-styled game
was played using the process described in [165], with CloudIA asking a fixed set of
questions to guess a character pictured by the user. The robot’s behavior during
this interaction was set as either empathic or non-empathic (Figs. 6.4C, 6.4B).
Users were asked to participate in two interactive sessions with it, one per behavior
type with a five-day interval in between. In the first case, the DQN-based facial
configuration was active and functioning as described. Moreover, when playing
eliciting videos, the robot’s utterance sought to confirm and encourage/discourage
the emotional state detected in the user via FER, if it matched the video’s target

2https://alphacephei.com/vosk/
3https://github.com/ScazLab/svox tts
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emotion. Otherwise, the robot vocalized the video’s target emotion as its own.
When being non-empathic, the robot’s facial configuration was kept neutral and
comments were randomized, being either vague (e.g. ”wow”), positive, or negative.

6.3.2 Results

All 9 users signed a consent form and were asked to fill out a socio-demographic
questionnaire to log user characteristics and experience with robots, followed by the
BFI-10 survey [175] to assess the impact of user personality on robot perception, and
the PANAS survey [176] to determine their mood at the beginning of the session.
After each session, users evaluated their perception of the robot by filling out a
modified Godspeed questionnaire [177]. Post both sessions, a short interview was
conducted to determine how participants considered robot behavior to differ per
session and if so, which of the two they preferred.

Figure 6.5: Box plot of ratings associated with each Godspeed domain in each
behavior mode.

Participant mood was consistently reported as having a discrete presence of pos-
itive and a low presence of negative affects at the start of each session. The influence
of socio-demographic traits on experimental results was found to be negligible. Re-
sults from BFI revealed less conscientious users perceive the robot as safer, more
extroverted, and socially intelligent when in empathic mode, while people with lower
self-confidence also reported a higher perception of social intelligence in the agent.
Despite non-empathic behavior not correlating with BFI reports, PANAS revealed
an association between perceived robot intelligence and positive affects in this mode.
The Godspeed questionnaire provided the most insight, displayed in Fig. 6.5. Per-
ceived safety (PES) aside, all other domains show a higher score for the empathic
mode, indicating users may feel safer with an emotionless robot. Contrastingly,
the difference between modes was most significant in the emotion (EMO) domain,
meaning the robot was successfully perceived by users as empathic and more hu-
mane when in empathic mode rather than non-empathic. This was corroborated by
the final interview results, in which 88.89% of users noted CloudIA’s facial expres-
sion in empathic mode to vary considerably, with 66.67% stating utterances were in
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line with video content. Altogether, users preferred the robot’s empathic behavior
described as more expressive and aware over its non-empathic version.

6.4 Overall Discussion

This experiment sought to create an empathic behavior framework to understand
how this phenomenon can impact and improve HRI. The backbone of this frame-
work relies on deep learning to detect the user’s emotional state and to select an
adequate facial configuration for the robot indicative of empathy. While the former
was achieved by a pre-trained CNN, the latter employed a new RL model trained
via a web-based replication of robot facial behavior. This strategy allowed us to
reach a wider population of users and obtain an amount of feedback comparable
to several weeks of one-on-one HRI, which would be infeasible. The resulting RL
model successfully converged to a set of configurations congruent with the feedback
provided by human users, out of 52 combinations of distinct eyes and mouth dispo-
sitions. Even though this stage lacked physical embodiment, it could be concluded
that robot emotional expression is possible and interpretable by humans. More im-
portantly, given how this computational process resulted in an empathic framework,
it is plausible to conclude humans develop empathy, a learnable skill, via a similar
but more complex system. Considering how humans are a social species and inter-
pret perceived emotions as positive or negative during interactions, this feedback
can serve as a guide for children to adjust their behavior to become more empathic.
Consequently, the goal of greater social acceptance is achieved and interactions be-
come easier.

The developed model for empathic facial configurations was integrated into a real
robot and employed during a conversation scenario, to assess the effect empathy had
over user perception of that robot as well as how user traits would influence this
process. Surveying participant opinions via standardized questionnaires revealed
a preference for the robot displaying emphatic behavior during the interaction, as
this was associated with greater compassion and awareness. This observation shows
the importance of enabling artificial agents to adapt their facial expressions to the
context they are integrated with, at each moment. Nevertheless, the lower perceived
safety by users during empathic sessions may indicate an adaptation period, during
which humans distrust agent behavior but which is eventually surpassed. Given how
user personality has a discrete effect on robot perception, profiling by an empathic
framework may also help reduce this user adaptation period. Regardless, on a
broader note, these findings emphasize the significance of not only empathy but
general emotional competence in artificial social companions and HRI, as agents
become increasingly acceptable the more their social behavior corresponds to that
of their users, enabling bonding and improved life quality.
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Part III

Adaptability

67





Prologue

Human and most other animal brains boast numerous organizational and adaptive
characteristics that may determine the extent of their behavioral intelligence [178]
and consequently provide an evolutionary edge over organisms lacking similar traits.
These, as summarily overviewed in Chapters 3 and 4, influence how learning occurs,
its efficiency and efficacy, as well as several other variables. Hence, adaptability
here concerns the cognitive neural processes related to learning and behavior which
enable some degree of autonomy and/or provide an advantage to their host being,
when executing some given task. Examples include the neuromodulatory backbone
of neuroplasticity and the correlation between certain emotions and exploration
which, respectively, can alter the physical structure of neural circuitry to better suit
a task and modulate motivation to perform that same task without the need for
external intervention.

The term narrow is used to describe current AI methodologies, given their inabil-
ity to cope with scenarios outside their scope [179]. Recurring issues include lack of
autonomy, intrinsic motivation, and plastic structuring. This is differentiated from
general AI or AGI, an ambitious ideology of general-purpose systems more similar
to humans and versatile towards multi-tasking, which could solve those issues cur-
rently affecting social and industrial robotics. Yet, AGI is quite far from realization
[180]. A more plausible solution entails emulating and testing the viability of neuro-
physiological processes in AI methodology so benefits may be obtained for learning
and behavior similar to the effects observed in real life [181]. For instance, artificial
agents self-motivated by internal processes could decide to analyze data without
user instructions, acquiring knowledge during idle time. Moreover, the testing of
theorized neural processes in DL architectures could also provide further insight
into their veracity and help other fields of research.

This part of the thesis presents two works carried out in an attempt to improve
AI adaptability by simulating biological neural processes. First, an emulation of
dopaminergic neurons was attempted in ANNs to potentiate connection weights
according to the respective changes during training. The goal was to expedite model
convergence while also observing dopaminergic behavior when neural networks deal
with different data categories (e.g. novel). The second work focused on integrating
into artificial agents the modulatory effects that epistemic and achievement emotions
have on exploratory behavior. The process involved mimicking underlying neural
circuitry, intending to demonstrate how intrinsic motivation can be achieved in AI
via emotion integration. Additionally, this work was intended as a corroboration
of findings reported in Psychology research, besides providing a path for future
experiments correlating emotion and exploration.
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State-of-the-art

Emotion is particularly important for adaptability, as is well-documented. Moreover,
it is already a significant part of AI research [23], given its role as a reinforcer of
efficient learning and adaptive behavior. In RL works specifically, emotion is largely
employed in a bottom-up approach (e.g. [182, 183, 184]), wherein emotional traits
are implemented in agents as intrinsic boosting of environmental/extrinsic rewards
or regulators of state-space. The goal is then to enable new capabilities in agents
stemming from appraisal-modulated rather than purely stochastic decision-making
[185]. Contrarily, while top-down RL approaches where emotion is emergent or an
epiphenomenon are also common [118, 117], its subsequent consideration for agent
behavior is considered as emotional competence and thus was overviewed in the
previous part of this thesis.

As initially presented by Moerland [186], current emotional RL can be catego-
rized compositely in terms of elicitation, type (either categorical, dimensional, or
neither), and function. Thus, some techniques implement emotion as a derivation of
agent homeostasis, in turn affected by extrinsic elements tied with state action. This
has been demonstrated in [187] and [188], where the variation of robot consumed
energy constituted its emotion. Diversely, in [189], [182], and [190], agent emo-
tion stemmed from valence, novelty or uncertainty. This constitutes another form
of elicitation termed stimuli appraisal, with agents being motivated by the worth
perceived from data features. It should not be confused with approaches where
emotion is elicited by the value and/or reward functions of an agent, such as [191]
or [192] where emotion was derived from the temporal difference error calculation or
difference between short and long-term mean reward entropy, respectively. Finally,
elicitation may also be hard-wired, wherein emotion is obtained from sensory input
instead of internal agent parameters. In [193], this was demonstrated from decay
dynamics, while in [194] user feedback was employed.

Aside from epiphenomenons, emotion can serve several functions consistently af-
fecting agent hyperparameters. Meta-learning encompasses techniques where elicited
emotion modifies learning parameters, while in action-selection works it is employed
as a main factor of exploration/exploitation. For example, in [195] emotion coef-
ficients modified the agent’s learning rate. Distinctly, in [196] coefficients instead
tuned action confidence. Yet, there has also been an overlap of the two function-
alities, as in [192] the emotion element both served as the learning rate and tuned
exploration randomness. Additionally, there is also reward modification, where emo-
tion factors in the reward function as occurred in [197], and state modification, in
which emotional values integrate state-space and adjust Q-Values as in [193]. Over-
all, as overviewed in [23], the majority of emotional RL techniques elicit emotion
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from stimuli appraisal, representing it dimensionally, and apply it to reward/state
modification. Contrarily, value/reward function-based elicitation and meta-learning
as a function are the least common categories in this research area. Regardless,
choosing elicitation, type, and function modes is highly dependent on problem/task
specifics and constitutes a problem in and of itself, considering emotion’s debatable
nature. More importantly, the positive impact of emotion is self-evident as all works
report better learning or behavioral adaptability in some form, stemming directly
or indirectly from its integration into artificial agents or robots.

On a separate note, AI adaptability also encompasses plasticity in terms of pa-
rameter and structural optimization concerning single-task, multi-task, and other
objectives. Still, ANN weight tuning aside, design typically is rigid in that architec-
tural arrangement and parameterization remain static during learning and inference
phases [198]. Approaches to this issue have been varied. Some attempt selective
activation of network branches or elements, either conditionally or through the use
of masking. For instance, [199] grew network depth progressively according to hard-
ware capabilities whilst dropout masking was used for the reduction of network width
with similar objectives in [200]. Nonetheless, these fail to adapt dynamically during
training and thus provide little benefit to learning. Relatedly, masking has also re-
cently been applied to gradient updates [201], adaptively and congruent with biolog-
ical functioning in that changes only affect parameters deemed relevant to a current
task [202]. While this technique does enable more plastic architectures via sectional
or joint network training, it raises concerns over impaired convergence. Data-based
topology optimization and dynamic routing are also possibilities in graph neural
networks [203], following real neural circuitry. However, adopting this methodology
raises a panoply of other issues. While several other approaches exist, techniques
that employ some form of neuron activity tracking seem most promising. For exam-
ple, [204, 205] proposed a cumulative trace of the product between pre- and post-
synaptic neuron activity, self-modulated by a network-computed signal, to adjust
weights according to connection eligibility. Also, in [206], weight updates rely on
a contrastive predictive loss function wherein connection potentiation/depression
depends on the accordance of expected and actual neuron activity. Not only are
these latter works more akin to real neural processes, but they also provide a great
deal of plasticity and flexibility towards data, albeit with increased complexity and
computational requirements.

Plasticity of hyperparameters other than structural is likewise explored outside
of emotional RL research, given the complexity of manual tuning on increasingly
larger or smaller but trickier ANNs [207]. Plus, as the optimization of any network
parameter has been deemed possible through minimization concerning variational
free energy [208], the recent trend of bio-inspired methodology addressing that same
objective appears highly appropriate, given the high likelihood of real neural cir-
cuitry adapting and behaving by the free energy principle [209]. To exemplify,
current works focusing on adaptive learning rate in ANNs have proposed layer-wise
scheduling of the parameter [210] and neuron-wise rate variability consistent with
the alignment between forward and feedback neuron activity [211], both congruent
with real neural functioning. On a separate note, in [212] activation function param-
eters were also varied according to cell-specific dynamics. These works all resulted
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in considerably faster convergence when compared to less biologically plausible ap-
proaches, in support of the mentioned hypothesis. Furthermore, other researchers
have begun to counter the rigidity of ANN parameterization by introducing signals
mimicking neuronal dynamics, which have led to superior performance when com-
pared with conventional approaches [213]. Naturally, this generated discontent for
the lack of adaptability in current ANN development frameworks.

The works mentioned in this overview all provided AI some level of increased
adaptability, having done so through either direct emulation of neural processes or
by abstracting learning/behavioral characteristics that prove advantageous in real
life and then integrating these in the current methodology. Nonetheless, this area is
only presently becoming mainstream, with many paths of research in neuromorphic
AI design still being unexplored. Plus, while we may be distant from the goal of a
self-developing and autonomous artificial agent, its precursors are already becoming
a very real possibility, as is the case for self-procreation [214] and self-motivated
open-world learning [215]. Yet to achieve these and related goals, intrinsic motiva-
tion to learn or act and structural/parameter optimization are required capabilities.
The former can likely be achieved through the integration of emotion in an agent’s
cognitive process, while cell or layer activity monitoring is a promising approach for
the latter. Consequently, current AI research should prioritize the development of
these capabilities in agents.
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This chapter explores the effects of emulating the neuromodulator dopamine
as a hyperparameter of artificial neurons. This work was originally carried out in an
attempt to hasten convergence of DL models towards ideal solutions, yet later moved
more towards observing the parallelism between biological and artificial dopamine
effects. First, substantial weight variation was employed as signaling of dopamine
release and consequential boosting of strength change in neuron connections. Sub-
sequently, this scheme was allied with D1 and D2 receptor functioning, respectively
to observe the impact potentiated excitation and suppressed inhibition would have
over model convergence. While obtained results have yet to warrant a publication,
this content is still presented considering its emulative interest.

7.1 Context

The integration of neurophysiological characteristics in AI methodology has proved
beneficial in the past for greater understanding of brain development [216]. Re-
latedly, the interpretation of neural network functioning under a neurobiological
premise has also provided leeway into how these systems may be further improved
[217]. Naturally, there is a growing motivation to consider a range of brain-like phe-
nomena when designing and/or evaluating AI frameworks to advance their efficiency
while also providing interdisciplinary insight.

The adaptive convenience of synaptic plasticity, and particularly the potentia-
tion role dopamine has over this process, has constituted a significant motive for
its computational modeling [43]. Particularly in terms of AI and deep learning,
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synaptic plasticity through dopaminergic emulation has been presented as a con-
vergence catalyst in DL [218], among other benefits. This is achieved through the
application of the potentiation-silencing dichotomy of connections, typical of the
brain, in ANN architectures. Nonetheless, this remains a somewhat overlooked
research topic. Some techniques that target it often formulate this neuromodula-
tory process via Hebbian learning. For instance, in [219] authors considered both
modulatory and non-modulatory neurons, so weight updates of non-modulatory
connections were mediated by the sum of modulatory inputs to the corresponding
downstream neurons and a Hebbian rule. This both improved model performance
and prevented catastrophic forgetting. Tracing of neuron activity is also occasionally
used to influence neighboring neuron connections. In [220], artificial neurons boast
conventional and plastic weights, the latter of which is based on a Hebbian trace
retaining recent activity information. A dopamine-like signal is then used to gate
this component, improving the fine-tuning of a CNN in a transfer learning scenario.
The similar approach of [204] also achieved improved performance and lower per-
plexity when learning distinct tasks. Other options for neuromodulated plasticity
include considering separate networks to adapt activation parameters in the main
branch, leading to faster learning as in [221]. While these works demonstrate the
potential of introducing neuromodulated plasticity in ANNs, techniques are often
not readily applicable to standard DL frameworks in their current form. Instead,
authors typically develop ANN mechanics from scratch to test their hypodetheses.
While beneficial for customization, this is both time-consuming and often impeding
result reproducibility. Moreover, neuromodulatory process emulations developed for
neural networks are generally not faithful enough to possibilitate analogy with bio-
logical bases, perpetuating the separation between brain-inspired AI and the brain
[217]. Naturally, mitigating this issue could aid in bolstering further interdisciplinary
collaboration, aside from the benefits bio-inspiration brings to AI and DL research.

This short experiment focused on an emulation of dopaminergic neuron impact
over ANN performance, combining aspects of both [219] and [220] yet instead em-
ployed over the standard Keras framework [222] for DL. The main goal encompassed
assessing whether any improvements would emerge in terms of model convergence
speed, as well as discussing any potential similarities with biological counterparts.
To achieve this, activity tracing was implemented in scattered positions across a
shallow network architecture. Connections between neurons with this ability and
regular units were then affected by the trace, with stronger ones being potentiated
while weaker ones were further silenced. Initially, the implementation was kept
simple, with dopaminergic neurons influencing their regular counterparts directly.
Subsequently, D1 and D2 receptor behaviors were also emulated for comparison.
A standard CIFAR10 [223] object recognition task was employed for testing these
approaches.

7.2 General Overview

As mentioned, this formulation considered dopaminergic artificial neurons as sepa-
rate from their conventional neighbors, akin to the reduced and somewhat central-
ized dopaminergic cell groups that synthesize dopamine in the brain [43]. Thus,
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these represented a fraction of units within ANN layers, boasting an additional pa-
rameter Tr compared to their conventional neighbors. As per equation 7.1, the
parameter is designed to accumulate in a dopaminergic neuron i the mean differ-
ence in strength of connection with neurons k from the preceding layer, as training
progresses to the current iteration t from its antecedent.

Tri(t) = γ · ΣN
k=1

wi,k(t)− wi,k(t− 1)

N
+ (1− γ) · Tri(t− 1) (7.1)

The γ factor here determines the impact of new mean differences over Tr. As-
suming the trace surpasses a preset threshold, then it may influence the synaptic
connections of neighboring neurons, as depicted in Fig. 7.1. The rationale behind
this process stems from monitoring a real dopaminergic neuron’s excitability and its
necessity for a strong enough action potential at the presynaptic terminal to freely
diffuse dopamine into the synaptic cleft [224].

Figure 7.1: Structural overview of a dopaminergic neuron in a fully connected net-
work layer, accumulating a trace Tr based on its connections with neurons from a
preceding layer. The same trace is then used to influence connections of neighboring
conventional artificial cells.

7.2.1 Basic Influence

In the first instance of implementation, Tr was made to directly potentiate or weaken
neighboring synapses. Thus, for each neuron h, the output passed on to neurons in
succeeding layers followed equation 7.2. Here, dop represents the set of dopaminergic
neurons in the current layer, σ is the activation function, and η adjusts the impact
of a dopaminergic trace based on the spatial proximity of neuron h to dopaminergic
neuron i.

xh(t) = σ{Σk=inputs

(wh,k + Σi∈dopηi · Tri(t))︸ ︷︷ ︸
synaptic strength

·xk(t)

}, h /∈ dop (7.2)
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With this formulation, it becomes possible for synaptic connections of conven-
tional neurons to be either potentiated or suppressed based on the traces accumu-
lated by dopaminergic neurons. As traces are indicators of positive and negative
change in dopaminergic synapses, they can gauge dopamine release and thus be em-
ployed as a direct influence (for the sake of simplicity). This direct influence is meant
to mimic the dopamine-dependent shaping of plasticity in a real brain [225], which
can boost learning efficiency via the mentioned silencing/amplification of unimpor-
tant/important connections. Plus, adaptability towards novelty also improves as
new experiences are more easily consolidated by plastic components in real neural
structures [226]. In addition to this formulation, while real dopaminergic neurons
do boast self-feedback regulatory mechanisms [227], this implementation did not
consider such type of inter-neuron influence. Hence, dopaminergic neuron output
followed a standard linear combination of its input. On the other hand, conven-
tional neuron output was impacted by the proximity-weighted traces of neighboring
dopaminergic cells, forming the synaptic strength factor of 7.2.

7.2.2 D1 & D2 Receptors

Following the initial implementation of dopamine effects over conventional neurons,
a second iteration of this framework was developed considering the intervention of
D1 and D2 dopamine receptors. As detailed in section 3.3, D2 receptors at postsy-
naptic cells suppress inhibitory transmission from presynaptic neurons, whereas D1
receptors exert an opposing action by extending it further than it would otherwise
last and vice-versa for excitatory transmissions. Moreover, considering traces Tr as
a simplistic direct dopaminergic influence over neighboring cells, these can be either
excitatory or inhibitory to their connection weights depending on whether they are
positive or negative, respectively. Thus, conventional cells of this framework can
be considered to have additional gating parameters simulating receptor behavior,
similar to Fig. 7.2.

Naturally, each conventional neuron would have its own uniqueD1 andD2 gating
behaviors, these being variants of the general behavior depicted above. For the sake
of simplicity, these variations were considered as random parameter differences for
each receptor behavior function in the form of step and backward step functions for
D2 and D1 receptors respectively. Adapting eq. 7.2 to include this D1|D2 gating
simply results in eq. 7.3.

xh(t) = σ{Σk=inputs

[(
wh,k +GD1|D2{Σi∈dopηi · Tri(t)}

)
· xk(t)

]
}, h /∈ dop (7.3)

7.3 Observations

In order to test these formulations, object recognition was learned by a simple VGG-
like architecture considering the CIFAR10 dataset [223]. The architecture itself was
composed of two convolutional layers, each followed by a respective max pooling
layer. The result of this network segment underwent 50% dropout and was then
fed to a fully connected layer for final classification. Within this architecture, the
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Figure 7.2: Exemplary behavior of D1 and D2 receptors at post-synaptic conven-
tional neurons, in terms of extension or reduction of excitatory and inhibitory sig-
naling.

developed dopaminergic-like framework was implemented as a new type of fully
connected layer wherein several cells take on the dopaminergic behavior described.
This new layer was used as a replacement of the classification fully-connected layer
in the architecture, for performance comparison. In terms of hyperparameters, the
γ factor was kept at 0.3 so the past accumulated change would not be forgotten
and remain impactful for the trace, despite new change. The Adam optimizer was
employed for model training, considering the default learning rate of 0.001 across all
tests which encompassed 100 epochs each with a batch size of 64 and a validation
split of 20%. Finally, the proximity parameter η was implemented as decaying
according to neuron distance, by having conventional neurons consider ηi as 0.5 for
immediately neighboring dopaminergic cells and sequentially halved per each cell
location moving sideways on the fully connected layer. This is exemplified in Fig.
7.3.

Figure 7.3: Example progression of η halving according to neuron distance in a fully
connected layer.
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7.3.1 Performance Efficiency

To assess the usefulness of this emulative framework, a comparison was performed
between the conventional architecture, the basic dopaminergic, and the D1/D2
dopaminergic architectures described to assess whether learning was more efficient
with the latter ones. The dopaminergic architectures were varied in terms of the
number of dopaminergic neurons, scattered as 10− 50% of the cells in the replaced
fully-connected layers. Results from this comparison are shown in Fig. 7.4, display-
ing both accuracy and loss curves for the architectures considered.

Figure 7.4: Detail of accuracy and loss curves for a conventional architecture, as-
sessed against a dopaminergic architecture, either non-gated (U) or gated (G) and
with 1 to 5 dopaminergic neurons among 10 total cells, in terms of performance
efficiency improvement.

7.3.2 Adaptability Towards Novelty

The second experiment of this work envisioned understanding how the dopaminergic
architectures would handle the introduction of novel data instances during training,
compared to their conventional counterpart. Considering the dopaminergic poten-
tiation/depression mechanism, it could be possible for new data to be assimilated
faster or for forgetting to occur less in such architectures when compared to conven-
tional ones. Thus, the CIFAR dataset was split into five slices, each containing all
examples of 2 random classes, and added to the training dataset of a model periodi-
cally over its 100 epochs of learning. Specifically, training started with classes {0, 1}
at epoch 0, then progressed to classes {0, 1, 2, 3} at epoch 20, and so forth until all
classes were considered by epoch 80. Again, the dopaminergic architectures were
varied in terms of the number of dopaminergic neurons, scattered as 10−50% of the
cells in the replaced fully connected layers, while the conventional architecture was
kept intact. Results from this comparison are shown in Fig. 7.5, displaying both
accuracy and loss curves for the architectures considered.
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Figure 7.5: Detail of accuracy and loss curves for a conventional architecture, as-
sessed against a dopaminergic architecture, either non-gated (U) or gated (G) and
with 1 to 5 dopaminergic neurons among 10 total cells, in terms of adaptability
towards data novelty.

7.4 Discussion

Results from the first experiment are depicted by proximity in both accuracy and
loss curves across all architectures. Nevertheless, a small increment in terms of
accuracy tied with a decrement in loss can be observed when comparing the perfor-
mance of the conventional architecture against dopaminergic ones. Additionally, a
clear separation cannot be made between non-gated and D1/D2 gates dopaminergic
architectures. For instance, while the best performance has been attained for the
gated dopaminergic architecture with 2 non-conventional cells, the same architecture
with 5 non-conventional cells does not perform better than a non-gated architecture
with 4 dopaminergic neurons. However, it can be observed that the non-gated archi-
tecture with 2 dopaminergic neurons and the gated architecture with 3 dopaminergic
neurons appear to be the closest in terms of performance to the conventional archi-
tecture.

In general, the observed curve proximity precludes a conclusion that dopaminer-
gic architectures provide a significant improvement in terms of learning performance
against conventional architectures. While this increase does appear to exist on this
preliminary testing, standard backpropagation training procedures may be impeding
it from being greater by suppressing the impact of dopaminergic traces in a manner
akin to what occurs to noise. Regardless, result variability with different numbers of
dopaminergic cells may suggest there is an optimal quantity to be found for either
non-gated or gated architectures, also dependent on the total number of neurons.
Further testing with larger and more heterogeneous architectures would be required
to verify this hypothesis.

In terms of the experiment regarding adaptability towards data novelty, spikes
were to be expected and can be observed in the accuracy and loss curves, corre-
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sponding to the introduction of novel classes in the training dataset. This is also
naturally accompanied by an initial overall decrease in accuracy and a rise in loss.
Additionally, proximity in both accuracy and loss curves can again be observed
across all architectures. Unlike the first test, however, the separation between the
conventional and dopaminergic architectures appears even slimmer, with no single
architecture maintaining a lead performance throughout the whole training period.
This is clear from how different architectures spike at different moments of class in-
troduction. For example, a gated dopaminergic architecture with 3 non-conventional
cells does so at the introduction of classes {6, 7} at epoch 60, yet at epoch 80 with
the introduction of classes {8, 9} it is the same but non-gated architecture which
spikes the most.

The shortage of separation between performance curves again supports a lack
of usability for this dopaminergic framework. Nevertheless, it could be possible
that the suitability of an architecture towards the introduction of particular data
instances, while already considering other specific data, is also dependent on its
dopaminergic characteristics. To test for this more robustly, different data class
combinations and modes of introduction during training should be considered along
with the architectural variation. Moreover, other learning tasks should be evaluated
with various ANN types in order to generalize such conclusions.

Overall it can be concluded that results from this emulation, either non-gated or
gated, were rather underwhelming. Withal, observations were interesting and con-
stituted a first step towards a dopaminergic formulation for ANNs, since they pro-
vided valuable insight into its requirements and usefulness. Certain aspects should
be considered for the future, however, such as spatial correlations in data whose im-
portance could be better-captured thanks to the implemented dopaminergic spatial
impact mechanism. While on fully-connected layers this is not as noteworthy given
their longitudinal arrangement, architectures such as CNNs could benefit from such
a characteristic considering their specificity to spatial data analysis. Hence, while
the obtained results were not ideal, it is not necessarily true that this same con-
cept could not be further scrutinized and become useful across other tasks and deep
learning methodologies.
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In this chapter a phenomenon through which epistemic and achievement emo-
tions mediate knowledge exploration is examined for AI, inspired by observations
in humans reported in cognitive psychology studies. The goal was to enable artifi-
cial agents to analyze data under their perceived needs, emulating human learning
autonomy. Thus, based on a neurophysiological background, RL and SL methodolo-
gies were combined to develop a model capable of learning the mentioned emotion-
exploration relationship whilst performing a generic task. Results corroborated psy-
chological findings in humans and were presented in [228], from which this chapter’s
content is partially adapted. Additionally, a hypothesis was put forth regarding the
impact of simultaneous emotional states over exploration, to be explored further in
cognitive psychology. Finally, it was demonstrated how artificial emotion can be
objectively useful for AI as an exploratory drive and autonomy catalyst, given the
learning advantages it entails.

8.1 Context

Emotion, as a natural phenomenon of sentient life, has an impact far beyond its
social characteristics. As detailed in Chapters 3 and 4, it intervenes in a panoply of
neural processes involved with learning, environmental salience, and its exploration,
which allow humans and other animals to better navigate through their day-to-day
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activities. Whilst endowing artificial agents with real emotion appears dubious still,
developing the conditions with the current methodology for byproducts of emotion
to manifest as well as be advantageous for their tasks is a real possibility. Regardless,
studies that explore this are virtually nonexistent despite the advantages to learning
autonomy being self-evident and obtained results also representing a suitable way to
corroborate Psychology and/or Neurophysiology. Relatedly, exploration is a funda-
mental aspect of cognitive development and independent behavior in human beings
[229]. Specifically, the onset of confirmation bias influences the way information is
actively sought to ratify prior beliefs and inference [230]. Thus, if AI is ever to grow
autonomous, research must strive to develop similar behaviors.

As mentioned, epistemic and achievement states, respectively emotions which
are triggered by cognitive incongruity and intrinsic success [79] such as surprise and
pride, are mediators of knowledge acquisition and learning given the triggering or
halting effect they have on exploratory behavior. These traits are both currently
lacking and highly desirable for autonomous AI methodology. Specifically, state-
of-the-art surveying has posited the need for an exploratory drive to oversee new
data acquisition for long-term autonomy to become a possibility [231]. Otherwise,
without it an agent is limited to the small set of data it knows, possessing no control
over its quality or repeatability. Issues such as overfitting and lack of generalizabil-
ity are natural consequences. Hence this problem ties with the trade-off limitations
of AI in terms of its exploration-exploitation dichotomy and the open challenge
that is designing systems whose learning is supported by intrinsic motivations [232].
Nonetheless, recent reviews argue these limitations may be mitigated via a synergy
with RL components [214]. While few areas have approached autonomous explo-
ration in AI via RL and/or some interpretation of internal motivation, such as robot
path planning [233] and navigation [189], published techniques consistently target
their domains only. Moreover, these are typically restrictive and rely on optimizing
the order by which all data is examined, regardless of usefulness, or on following
a preset escape protocol when unplanned scenarios are encountered. Contrarily,
the presented study aimed to understand if an internal exploratory drive could be
sourced from artificial emotion, akin to real life, which entails some scarcity of closely
related literature. Nevertheless, that literature could include [234], where a latent
dynamics model was endowed with Bayesian surprise as the dissimilarity from its
posterior to prior beliefs to reward exploration, or [235] whose process estimates the
change in prediction error (PE) as a metric of learning progress so if low, explo-
ration is shifted to more interesting change-inducing goals. Both reported efficient
and effective exploration. Also in [236], analogously to pride effects, authors suggest
a form of intrinsic rewarding reliant on competence progress, based on which agents
can explore their goal space.

Assessing the effects of emotional states such as surprise and pride on exploration
is not exclusively beneficial to AI research. As advocated in [237], ANNs constitute
a valid framework on which to explore a range of phenomena covered by Psychology
and Neuroscience. Thus, should the obtained results match the findings of these
areas, they can serve as additional corroboration or go even further by proposing
additional paths to research in those fields. This process is not unlike what has been
presented in [238], where ANN testing showed responses were following probability
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matching, when in a RL scenario. This further supports the suitability of AI models
to emulate animal behaviors typically observed when studying the matching law.
For these reasons, one way to formulate corroborative experiments is to establish
a hypothesis based on findings reported in Psychology or Neuroscientific studies,
devise a biologically inspired artificial system that follows the respectively derived
theory or theories, and apply the final product to scenarios analogous with real-life
learning. As a consequence, the resulting performance may be relevant for inter-
disciplinary comparison. Currently, this procedure is not intentionally followed by
any mainstream research, to the best of our knowledge.

In terms of the proposed experiment, it stems from the Psychological research of
Vogl et al. on the origins and outcomes of epistemic and achievement emotion [79,
80]. Specifically, a group of within-person studies on task-related emotional outcome
and interest assessment demonstrated correlations between high-confidence errors,
the onset of epistemic and achievement states, and their precipitation of curiosity
and exploration. The (here abridged) results demonstrated that:

• R1 - Surprise produced by cognitive incongruity positively predicts curiosity,
which itself leads to an increase in exploratory behavior.

• R2 - Pride stemming from intrinsic success positively predicts exploratory
behavior, though not necessarily after correct answers.

Stemming from these observations, our approach was to design an analogous ex-
perimental scenario using DL methodology and determine whether the same conclu-
sions could be drawn from artificial learning. To this end, participants were emulated
as artificial agents, themselves combinations of task-oriented and RL systems. For
each of these, a task-oriented system was subjected to a SL testing procedure while
being mediated by feedback from the RL system. Naturally, our architecture closely
followed the theory and neurophysiologic circuitry seemingly most responsible for
the findings reported in [79].

8.2 System Background & Design

The link between the increase of attention activity towards certain features and
encoding of feature-specific PE error (rPE), as observed in frontostriatal circuits,
strongly resonates with the direct relationship between epistemic/achievement emo-
tion and the onset of PE or internally attributed reward [50], which has been ex-
tensively reported in cognitive psychology. In particular, authors have denoted
dopaminergic neurons of the VTA as mediators of ”liking” responsiveness to stim-
uli [239] and encoders of rPE, shifting their firing to feature-specific stimuli post-
learning experience [240]. Concurrently, the VS projects particularly strong surprise
signals for goal-relevant features, contributing an attentional bias towards relevant
matter and consequential high reward attainment. Cortical areas have likewise been
observed to track positive affect and pride, with activation largely targeting the VS
when task outcomes depend on performance decisions [241]. Moreover, SN neurons
are known to engage with attentional functions and project to the DS, which itself
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Figure 8.1: The proposed system employs a task-oriented module and a RL actor-
critic module to associate emotion and exploration in a way conducive to improved
performance in a given task. a, The task-oriented module first samples one data in-
stance from the environment, to perform a simple classification task. It does this via
a pre-trained neural model, whose convolutional layers extract meaningful visual in-
formation. b, The loaded data encompasses handwritten digit images from a dataset
partially adulterated so that half of its labels will not match with their respective
instances’ visual content. c, The actor-critic module is composed of two separate
neural models, for the actor and the critic respectively. The variable accuracy re-
sulting from the task-oriented model is compounded with a random high-confidence
score, to compute an epistemic or achievement emotion, according to reports in cog-
nitive psychology research. The actor model θ receives this emotional score (either
of pride or surprise) as its sole input and decides on an appropriate exploratory rate
for the task-oriented model. The critic model also receives a computed emotional
score as input to its branch ωs, in addition to the actor’s chosen exploration rate
on its ωa branch. The resulting merged features are processed by ϕ to generate
a feedback signal scrutinizing the actor’s decision and the critic’s performance. d,
The AI system performs this routine continuously, sampling a new instance whose
task-oriented evaluation triggers an emotional response, then processed into the
actor-chosen exploratory rate. In turn, this determines the size of a same-type data
batch to be analyzed in the following step.

has been demonstrated as paramount to the successful expression of surprise-induced
learning functions, yet not so much on their establishment [242]. These observations
firmly indicate the involvement of basal ganglia (BG) circuitry, and principally its
classic actor-critic structuring, in modulating feature attention and learning param-
eters. Plus, modulation of focus and knowledge exploration by the BG is strongly
supported by literature [243, 244, 245, 246]. Following this paradigm, the critic,
commonly associated with the VS, employs its rPE-based attentional shifting and
performance/outcome appraisal capacity to adjust the reactive processes put into
play by the actor, represented by the DS. Various other neural structures involved
in the current task will also be influenced as well as relay information back to this
BG circuitry, supporting the exploration-exploitation dichotomy.
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Based on this neurophysiologic foundation of the BG, an artificial agent architec-
ture was designed wherein an actor-critic module (Fig. 8.1C) sustains the causality
relationship between epistemic/achievement emotions and the exploration rate of a
task-oriented module (Fig. 8.1A). This design drew from RL methodology to ac-
count for the neuron signaling process which enables self-appraisal and increase of
attention towards stimuli inducive of PE. Moreover, the system was endowed with
epistemic and achievement emotion formulae so this signaling would stem directly
from the feelings of surprise and pride. These formulae were fixed and factor in
metrics of the task-oriented module while implicated in a cognitive task. Finally, to
complete the action-reaction loop, this latter model’s activity was made dependent
on the rate generated by the BG-like architecture.

Considering knowledge exploration within a guided task is a form of directed
rather than stochastic exploration, a deterministic approach was hypothesized to fit
this behavior more adequately. Thus, DDPGs were deemed appropriate and imple-
mented as the actor-critic module emulative of the biological BG circuitry. Within
an artificial agent, both the actor and critic receive as input the current state of that
agent, which is made up of its solo or combined emotions. With this information,
the actor outputs the exploration rate to be passed on to the task-oriented mod-
ule, while the critic judges the actor’s decision indirectly based on the task-oriented
module’s performance with the provided parameter. A simple SL task was selected
for this latter module as any more complex tasks would be out-of-scope for this
work. Hence, it interacts with the environment (i.e. the experimental scenario) by
making predictions over input data and being informed of their veracity. Results
of this disclosure constitute the task outcome, based on which error is computed,
implicitly following the mechanics of other limbic circuitry. Reward is also provided
by the environment, depending on task performance. These signals are then used
to optimize the actor and critic models. This overview is depicted in Fig. 8.1D.

8.2.1 Emotion Functions

As mentioned, cultivating real emotion in AI is still a dubious claim. However, we
maintain that replicating cognitive conditions promotive of epistemic and achieve-
ment emotion is achievable within AI by considering performance metrics or other
scores as condition determinants. For instance, accuracy may serve as a pointer
of error and achievement considering it gauges model correctness on a task. As
a consequence, accuracy spikes may be interpreted as increasing success, whereas
de-escalation entails a less favorable scenario. Pride variations could thus trail be-
hind task accuracy variations, corresponding to personal achievement or lack thereof
[247]. This accuracy-pride matching would likely entail a curve of positive slope and
unknown convexity with small variations (see Fig. 8.2A). The set of representable
emotions may be broadened by factoring in additional pointers, such as confidence,
besides standard performance metrics. For example, high-confidence errors trigger
the feeling of surprise as a result of their inherent cognitive incongruity. Plus, sur-
prise may also be induced from insecure or unexpected attainment of success [248],
while reduction of this feeling may occur in each of these scenarios if confidence
is to decrease or increase, respectively. Accordingly, surprise appears to boast a

87



Emotional Competence & Adaptability

saddle-like behavior, with polarized variations of accuracy and confidence implying
intense bursts of this feeling, whilst matching magnitudes of the two factors indicate
reduced or emotional lack thereof (see Fig. 8.2B). These perspectives on surprise
and pride are widely backed by cognitive psychology literature [79, 80, 249, 250],
supporting their explicit implementation as drivers of AI behavior.

(A) Pride (B) Surprise

Figure 8.2: Example curves following a positive prediction of pride based on in-
creasing accuracy (left) and a multiple perspective surface view demonstrating how
the emotion of surprise may correlate with accuracy and confidence (right), both of
which stem from cognitive psychology research [79, 80].

Considering Fig. 8.2, multiple alternatives may represent surprise and pride,
and thus a single set of functions, meeting the requirements defined by psychology
research, was selected at random for the experimental part of this work. These
factored in performance metrics of the task-oriented module, with accuracy a being
readily available and already bound to the [0, 1] interval. Therefore, a positive
prediction of pride P based on task accuracy could be obtained from (8.1), which
was chosen for this achievement emotion.

Pride : [0, 1]→ [0, 1]

a 7→ Clip
[
(100 · C1)

−(a−1)2 +N (µ, σ2)
]
, C1 > 1 (8.1)

This function considers C1 > 1 and added Gaussian noise N to account for any vari-
ability related with personality differences. Overall clipping secures the bounding
of the emotion to an acceptable range of [0, 1]. On a separate note, surprise com-
putation additionally considered a confidence score c bound to the interval [0.8, 1].
This was introduced to simulate the high levels of confidence expected of the task-
oriented module, whose training ensured top performance. The saddle-like rough
surface of this epistemic emotion S could therefore be obtained from (8.2), which
was chosen for the experiments.

Surprise : [0, 1]× [0, 1]→ [0, 1]

c, a 7→ Clip
[
T
(
R

(
a2 − c2

))
+ 0.5 +N (µ, σ2)

]
(8.2)
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Here, R denotes a 45◦ ± C2 rotation around the surface’s saddle point, with C2 ∈
[−20◦, 20◦]. This is followed by a translation T to each domain interval midway (i.e.
[0.5, 0.5]), making it so low-confidence success and high-confidence mistakes are met
with high surprise, while opposite scenarios induce less or no surprise. Similarly
to pride, Gaussian noise is introduced for added variability and clipping ensures
bounding to the [0, 1] interval. Finally, N (0, 0.03) was employed for both functions,
along with combinations of randomly generated C1 and C2 values. The goal of this
was to obtain varied artificial agents with individual differences yet following the
same grand pattern, much like human participants.

8.2.2 Overview of Experimental Scenario

This proposal attempted to mimic the experiments of [79, 80], wherein a human
participant was informed of 20 potentially incorrect general knowledge statements,
one by one, and asked to determine their veracity. Immediately after each, the
participant was informed of their accuracy and evaluated on various epistemic and
achievement emotion scales. Additionally, the participant had an exploratory option
to request additional statements on the same topic which caused cognitive incon-
gruity, demonstrating interest and curiosity. This process was repeated for a large
number of participants over 2 studies, to correlate the several factors evaluated.

Figure 8.3: Flow diagram of a RL episode, which composes the experimental scenario
designed to replicate in artificial agents the same psychological testing procedure
used by Vogl et al. with human participants [79, 80].

In our artificial emulation, the task-oriented module employed a model to classify
handwritten digit images from the MNIST dataset [251]. This model was pre-trained
on half the dataset, achieving a test accuracy above 99% and near 0 loss. The
unused half had a percentage of its labels adulterated (see Fig. 8.1B) to simulate
the original studies’ statements with varying degrees of truth and prompt high-
confidence errors in an agent when classified by its pre-trained task-oriented model.
Thus, an agent is first provided with a single random instance from the subset with
adulterated labels. The classification of this instance and outcome disclosure (based
on label correctness) induces an emotional state in the artificial agent. This happens
accordingly with the functions described above, using single instance accuracy and
the random yet fixed high confidence value. This fixation is purposeful, to represent
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the tonic nature of confidence in real life. The DDPG section of the agent then uses
the derived state to decide how much the task-oriented system will be exploring
(µexploration) in the coming segment of the step, with a set batch maximum of 64.
Emotion is likewise derived in the multi-instance segment for later analysis, following
the same procedure. A flow diagram of this process is shown in Fig. 8.3.

Given a standard assumption that participants intend to perform well in this
activity, artificial agents are given a basis reward whose polarity corresponds to that
of the difference between explored batch accuracy am and single instance accuracy
as. This deems exploration useful only if it yields improvement in terms of task per-
formance. A sparse component is also added to the reward, matching the variation
of epistemic/achievement emotion that occurs during a step. This serves to either
minimize surprise or maximize pride, in an attempt to comply with the free-energy
principle which illustrates the necessity of self-organizing agents to reduce uncer-
tainty in future outcomes [252]. In the cases of no exploration, emotion variation
is null and reward is obtained directly from the only available accuracy score as,
normalized to the [0, 1] interval. Considering the signfunction, this results in:

R =

{
0.5 · sign(am − as)±∆emotion , 0 < µexploration ≤ 1
2 · as − 1 , µexploration = 0

(8.3)

Finally, the evaluation of 20 single instances and their subsequent batch analy-
ses constitutes an episode, following Vogl’s 20 statement procedure, with each agent
performing a fixed number of episodes. Expectantly, analysis of a single instance
happening to have an incorrect label, following the described process and considering
a well-trained SL model, results in a high-confidence error (low accuracy - high con-
fidence). In theory, the agent should learn to associate the consequent high surprise
with an appropriate exploratory variation targeting the type of data that caused its
emotional state. Contrarily, analyzing a legitimately labeled instance should directly
yield a high reward without the need for further exploration. A similar but simpler
principle applies to pride so that agents should learn to associate its variation with
exploration, so higher rewards can be achieved. Moreover, by allowing the agents
to decide on their rate of exploration for the data types observed, their actions then
dictate surprise minimization and pride maximization in accordance with the free-
energy principle. The sparse component of the reward function further backs this
objective, by making the emotion variation negative for surprise and positive for
pride.

8.3 Results

In [79], two studies were carried out totaling 247 participants. Proportionately, a
total of 250 distinct artificial agents were created by introducing distinct random
variations in the free parameters of their emotion function, and initial confidence
scores. Each of the artificial agents was made to undergo the experimental procedure
for 100 training episodes, with obtained results being averaged across the total
number of participants in the experiment. Moreover, the usage of a multiple-class
dataset was intended to draw general conclusions from results more invariant to any
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effects of data class/type which may occur with data of single or low-class amount.

8.3.1 Surprise/Pride vs Exploration

Towards assessing the correlation between knowledge exploration and epistemic or
achievement states, surprise and pride functions were first implemented separately
in the experimental process. Results of this experiment are shown in Fig. 8.4. These
paralleled Vogl’s studies as similar conclusions were obtained for statements R1 and
R2.

Figure 8.4: Results for surprise and pride as separate exploratory drives. Leftmost
column: Episodic mean of emotion differential between single sample and subsequent
batch analysis steps, across all implemented agents over the entire learning cycle.
Middle column: Mean cumulative reward obtained by agents at each episode of the
cycle. Rightmost column: Mean actor behavior at the end of the learning cycle,
correlating surprise/pride with exploration.

Cumulative reward increased over learning episodes for either emotion (Fig. 8.4
middle column) and plateaued by the end of the cycle. This indicates model con-
vergence and ensures the behaviors learned by the artificial agents are not random.
In terms of surprise (top), reward peaked at maxs

r = 19.87, rising from a mini-
mum mins

r = −13.64 and averaging at 6.26 by the end of the cycle. As for pride
(bottom), reward fluctuated between a minimum minp

r = −15.97 and a maximum
maxp

r = 19.05, whilst its final value averaged at −3.41. The mean trend of cu-
mulative reward also demonstrates an increase in both emotions. However, pride
boasts only a slight growth whereas surprise exhibits a short depression in earlier
episodes followed by a steady increase later on. Regardless, both indicate agents
successfully learned to match emotional states to actions and consequentially im-
proved their performance. The success of the experiment can also be corroborated
by the fluctuation of emotion observed in artificial agents over time (Fig. 8.4 first
column). As can be seen, the initial variation is well-balanced for both pride and
surprise as the amount of increases matches that of decreases in the first learning
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episode. Over time, surprise appears to reduce or stagnate as bursts of this emotion
become on average ∆s = 38.52% less frequent by the final episode, even despite
the clear preference for stasis in the first 10 episodes. Though not as prominent,
pride average variation still shows an upward tendency, with decreases occurring
∆p = 5.90% fewer times by the end of the cycle. Increases also do not appear to be
favored over stasis for pride, as the observed trend is mainly fostered by the latter.

After the experiment and despite random differences and noise, agents demon-
strated similar and monotonic behaviors relating exploration with either emotion
(Fig. 8.4 third column). A causation effect was most evident for the surprise experi-
ment, which resulted in agents displaying a 15.4% increase in exploration stemming
from greater surprise. This positive correlation was observed in 217 of all agents,
outshining the remainder of 33 who displayed a slightly negative correlation. As
for pride, a mean deflating effect was instead observed from the full set of agents,
obtained from 222 positive weak correlations and 28 negative correlations. Out of
these, 22 correlations amply decreased exploration between 25% and 75%, which is
reflected by the modest 2.8% exploratory reduction observed for increasing pride.

Figure 8.5: Agent episodic mean of Spearman’s correlation coefficient between actor-
chosen exploratory rate and its causal surprise or pride score (pale), smoothed by a
moving window of 40 samples (bold).

Robustness of the relationships between emotion and exploration also varied
throughout the cycle, as shown in Fig. 8.5 by the evolution of Spearman’s correlation
coefficient ρ [253]. A sliding window of 40 episodes was applied to smoothen the
considerable variability observed. These mean trends demonstrate an increase for
surprise which results in ρsurprise = 0.461, indicating a strong positive correlation
with exploration, and a decrease for pride which results in ρpride = −0.237, implying
instead a weak negative correlation.
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8.3.2 Combo Proposal

In this experiment, surprise and pride functions were implemented together in arti-
ficial agents. Results of this experiment are shown in Fig. 8.6, wherein a three-way
relationship is demonstrated between exploration, epistemic, and achievement emo-
tion. This is therefore proposed as a topic for future Psychological research to
corroborate.

Figure 8.6: Results for surprise and pride combined as one exploratory drive. a,
Mean actor behavior at the end of the learning cycle, correlating both emotions
with exploratory behavior. b, Mean cumulative reward obtained by agents at each
episode of the cycle. c, Episodic mean of emotion differential between a single
sample and subsequent batch analysis steps, across all implemented agents over the
entire learning cycle.

Compared to the previous experiments, cumulative reward (Fig. 8.6B) here in-
creased much earlier and plateaued at a higher value, with few agents even reaching
maxr = 24.5 while the average trend settled at 14.86. Thus, the behavior learned
by artificial agents is expected to be even more robust than in either single-emotion
scenario. Moreover, it is clear how emotional fluctuation (Fig. 8.6C) stabilized quite
early and more prominently than before, for both emotions. While initial varia-
tion was well-balanced, on average surprise bursts were reduced by ∆s = 70.4%
while pride reduction became ∆p = 30.9% less frequent by the last learning episode.
However, rather than respective increases/decreases, a preference for stasis is the
evident cause for this stabilization. In terms of actor behavior (Fig. 8.6A), the over-
all trend of exploratory variability appears to be retained for surprise and pride yet
at different rates. For instance, while exploration still increases monotonically with
surprise, this is largely dampened by the feeling of pride. As the latter reaches its
maximum, the relationship between surprise and exploration becomes nearly negligi-
ble. Contrarily, pride’s sole dampening effect over exploration appears less effective
if surprise is also occurring, as agents report higher rates following greater scores of
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that epistemic emotion. This results in a wave-like surface, peaking exploration at
maximum surprise combined with minimum pride levels and smoothly reducing the
rate as surprise nears zero and pride spikes.

8.4 Discussion

Results from the separate emotion experiments strongly resonate with emotion-
mediated exploration reported for humans. Vogl et al. [79] twice demonstrated
a causal relationship between surprise and exploration of knowledge in separate
studies, evidenced by positive path coefficients obtained for surprise-induced curios-
ity, and ensuing exploration. Coefficients of 0.285 or 0.262 correlated surprise and
exploratory behavior, respectively in the first and second studies. The mean ex-
ploratory increase of 15.4% attained by our artificial agents with growing surprise
follows the postulated path relationships. Moreover, this parallelism demonstrates
how the adoption of human-like behavior by AI grants it a better standing over
time when placed under similar testing conditions. Finally, the non-windowed mean
Spearman’s correlation coefficient of 0.311 we obtained for the final episode indi-
cates the same relationship robustness as the within-person correlation values of
either study.

In terms of pride, Vogl’s results across studies contrasted with those of surprise
by lacking consistency. While both reported negative correlation coefficients, respec-
tively of −0.073 and −0.177, their closeness to zero indicates a weak relationship
between pride and exploration, if any. In addition, the second study’s negative path
coefficient contradicted the first study’s positive coefficient, despite both nearing
zero. The weak correlation between exploration and this achievement emotion was
corroborated by our experiment wherein Spearman’s coefficient was likewise negative
yet took longer to deviate from null, compared to the surprise experiment, and still
stagnated at a lower absolute value. The obtained 2.8% mean exploratory decrease
over growing pride is also congruent with the path coefficient of the second study,
supporting a dampening effect from this emotion. Nevertheless, this percentage de-
crease is slim, and considering it was obtained from various strongly divergent agent
behaviors, the polar discrepancy of either study’s path coefficient appears more valid
and demonstrative of the negligible effect pride alone has over exploratory behav-
ior. The fact that pride as a unique positive state may be damaging to cognitive
performance [254], for which exploratory behavior is key [255], could justify the ob-
served decrement of exploration. Nonetheless, additional experimentation would be
required to assert this hypothesis.

Still, regarding the solo emotion experiments, minimization of surprise was con-
siderably successful, ensuring agent behavior complied with the free-energy princi-
ple. The same cannot be concluded for pride, as maximization was feeble. Regard-
less, both experiments corroborated findings from cognitive psychology, with agents
learning to self-mediate knowledge exploration and improve task performance by
exploiting internal emotional drives.

The merging of emotional states employed as an exploratory drive, while not
drawing inspiration from a psychological research basis, revealed an interesting cross-
effect between surprise and pride. Respectively, boosting of minimization and max-
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imization of these emotions over time is clear, as both achieved considerably larger
differentials between the first and last learning episodes. Pride increases specifically
went from negligible to a steady change, while surprise decreases also peaked at a
higher value and stabilized earlier in the experiment. This suggests either emotion
has a complementary effect over the other, as their combination led to agents more
closely adhering to the free-energy principle. This complementarity is further cor-
roborated by the fact that agents were able to accumulate more reward overall and
also significantly sooner in the experiment, compared to the previous solo emotion
runs. As for the correlation observed between the emotional mix and exploratory
behavior, pride’s dampening effect also appears more intense here, whereas before
it was only slight. The near elimination of surprise exploration boosting in the pres-
ence of pride spikes also supports this notion. Therefore, we would conclude that
pride’s impact on exploration is indirect and more likely perceptible in the presence
of surprise, whose impact is comparably more overt but susceptible to the variations
of that achievement emotion.

Overall, this work demonstrated how psychology and neurophysiology combined
may provide a basis for research into AI autonomy. Artificial agents performing this
sort of emulation can plausibly develop traits useful for learning, as demonstrated
by our results. Likewise, theory on human cognition and behavioral traits may be
corroborated or scrutinized if AI displays some postulated behavior under similar
conditions [256]. Nevertheless, considering agents are likely to remain unconscious
and refrain from supporting humans in any foreseeable future[257], it is unlikely
they will replace biological participants in experimental scenarios. Thus, while bio-
logical emulation is an inspiring topic, comparison of outcomes obtained via AI and
human/animal observation should be approached with care.

8.5 Applications

In order to demonstrate the usability of the developed models, two applications have
since been designed in the field of social agents and robotics. Both works employed
the methodology described in this chapter, more concisely yet still conducive to
authentic surprise-exploration correlations as shown in Fig. 8.7. Each resulted in a
publication [258, 259], from where the contents of this section are adapted.

8.5.1 Adaptive Attention

This work [258] presented an agent that performed adaptive broadening of its famil-
iarity with user facial features in real time. This functionality reiterated the usability
of emotion as a learning/behavioral metaparameter as well as the importance of this
chapter’s work for considering biological traits when designing artificial agents.

Specifically, a loop was implemented wherein faces within a camera’s field of
view were detected and a similarity comparison was carried out against knowledge
stored in memory already. Each mean comparison value was obtained as a squared
Euclidean distance between OpenFace [260] features of a detected face and those
of faces known previously. Should a mean of these comparisons surpass a preset
threshold, then the face was considered new and its embedding stored in memory.
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Figure 8.7: Simplified learning loop for a task-agnostic agent to manifest a realistic
matching between surprise and exploratory behavior. Task performance is inter-
preted in terms of surprise induction, which an actor model then uses to infer an
adequate exploration ratio. The actor’s decision is optimized by a critic model
receiving a reward signal from the environment.

Moreover, the mean comparison value of each detected face was interpreted as a
surprise score and normalized to the interval [0, 1], with the highest of all being fed
to the actor model. This determined how much this most surprising face should be
explored, based on which a robotic agent’s eyes would stare at the corresponding
person. Finally, the purpose of this mediated agent focus was so that the representa-
tion of a new, surprising face would be stored in memory and continuously updated
until it no longer triggered surprise. A diagram of this process is shown in Fig. 8.8.

Figure 8.8: Adaptive attention based on facial feature similarity and surprise-
induced exploration.

8.5.2 Adaptive Persistence

The experiment presented in [259] envisioned adapting the level of persistence ap-
plied by a social robot to its actions, based on surprise-induced exploration. Like-
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wise, to the previous work, this design validates the usability of emotion as a learn-
ing/behavioral meta-parameter.

In summary, a Q-learning based decision-making network architecture was im-
plemented for selecting the most appropriate social action at each given interaction
state. Each selected action was then adapted by a separate model meant to modulate
its persistence, as per a generated exploratory ratio. This latter value stemmed from
the artificial emotion of surprise interpreted as the incongruity between an expected
and the corresponding detected user reaction, and fed to an actor model trained
according to the process described earlier. This matching was likewise employed
for the calculation of the reward necessary for the Q-learning algorithm. Moreover,
the user reaction was observed within the subsequent interaction state caused by
the robot’s selected action, forming a continuous loop of actions with persistence
optimization. A flow diagram of this process is shown in Fig. 8.9 for easier under-
standing. The framework was implemented in a NAO robot from Softbank Robotics
[261] and an experiment with 22 real users was carried out as depicted in Fig. 8.10.

Figure 8.9: Social action and corresponding persistence optimization loop.

Figure 8.10: Top view of the experimental setup.
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Part IV

Final Remarks and Future Work
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Prologue

While this thesis has presented a broad perspective on emotional competence and
adaptability, it is virtually impossible to develop work in each of their many po-
tential research sub-topics. Moreover, each work presented here is but a fraction of
what can be done in its respective sub-topic. As a consequence, future work plans
may always entail delving deeper into an existing proposal or devising a new one
altogether. Both options have value as the former progresses a field further, while
the latter may become a starting point for other members of the research commu-
nity to develop their works. Nevertheless, given the under-researched stage that
bio-like and autonomous AI is currently in, providing new paths to be explored here
appears more promising for the future. For this reason, even though future work
overviews are provided for both emotional competence and adaptability, another
chapter is first included. This chapter is a demonstration of how other sub-topics
about this thesis are available and can be explored in the future, apart from the
ones presented already in former chapters. Specifically, it presents an idealization of
artificial dreaming for ANNs to prevent overfitting, inspired by theories attempting
to explain dreaming in biological beings.
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Chapter 9

Artificial Dreaming
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The work presented in this chapter drew inspiration from a theoretical view-
point on biological dreaming as an overfitting coping mechanism. That viewpoint
was used as a basis for developing an algorithm for AI to deal with the same prob-
lem autonomously, via periodical data augmentation and interpretation based on the
model’s current state of knowledge. To this end, a data augmentation procedure
was developed, which integrates a core version of Google’s DeepDream generative
system [262], followed by a labeling process contingent on minimizing the impact of
generated data over an ANN’s state, similar to the method described in the works of
Sucholutsky et al. [263]. Early testing appears promising and led to the publication
of a position paper [264], from which part of this chapter’s content is adapted. Re-
gardless, further substantial experimentation is warranted so more solid conclusions
may be drawn on the efficacy/efficiency of the proposed method.

9.1 Context

The overfitting issue commonly observed in machine learning applications represents
a major setback to general AI and the achievement of greater learning autonomy.
More often than not, provisioning of quality data is limited. Thus, as most mod-
els lack any form of independent exploration, methods such as network reduction,
data augmentation according to pre-set rules, and early stopping are typically im-
plemented to prevent further loss of generalization [265]. Naturally, these require a
hands-on approach from users, choosing which network sections to prune, augmen-
tation rules, and stopping criteria based on personal expertise or trial and error.
This may not always yield a solution or it may prove too complex for some models,
beckoning a necessity for overfitting to be dealt with by the model itself.

Dreaming is one of the most characteristic aspects of sleep. These are essentially
virtual concoctions of memory, emotion, and knowledge, recent or consolidated,
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which result in multi-sensorial experiences and hold disputed significance. Research
has postulated an evolutionary origin for dreaming, being developed by the brain as
a mechanism to simulate threatening or unsettled matters to determine the course
of action most likely to result in survival and success [266, 267]. Reports of un-
conscious solution perception being catalyzed in dreaming participants during sleep
studies [268] further support the idea that dreaming provides new perspectives and
information analysis. Moreover, evaluation of internalized problems during sleep is
congruent with attempted task integration in dreams [269]. Dream absurdity could
also be associated with the emotional factor of subconscious simulations, contribut-
ing to a mental preparation by hyperbolization of potential scenarios [270]. Never-
theless, dreamless sleep has likewise been correlated with performance improvement
and learning [271]. In the case of non-dream sleep stages, neural pattern replay is
critical for abstracting core knowledge and consolidating memory, as evidence sug-
gests [5]. However, the latter is unable to explain the purpose of dreams during other
sleep stages. Plus, the odd and consistently scattered nature of dreams disfavors the
objective usefulness in the daily life of these unconscious experiences, as noted by
[272]. Overall, these observations strongly point to dreaming as a coping mechanism
for the homogeneity of data and stimuli experienced during daily life. This is espe-
cially true considering how the scarcity of distinct examples perceived during a day
is contradictory to a brain’s generalization capabilities. Finally, the intuitiveness of
the human brain is what enables the incorporation of scattered priors in condensed
experiences to generate new intelligence [273]. Such information has recently led
to the development of the overfitted brain hypothesis [272]. This theory, strongly
backed by neuroscience, posits that the brain dreams to warp statistically proximal
instances observed throughout a day and consequently can prevent its overfitting or
increase its generalization capabilities. The stochastic corruption of typical sensory
input

Sleep is commonly divided into two major types throughout a single session.
These are designated as REM (rapid eye movement) when idiosyncratic dreams
most often occur, and NREM (non-REM) or thought-like sleep. Clear differences
in terms of brain wave activity make for an easy distinction between the two types
[274], with slow-wave activity being characteristic of NREM. Here, posterior and
central brain regions occasionally present off-states that hinder experience genera-
tion [275], and neural pattern replay occurs [5]. As such, events are often recalled as
mundane and memory-related. As off-states subside and the brain cycles to REM,
it shifts to higher frequency (gamma) activity with more vivid events and a surre-
alistic tendency [276]. Thus, it is presumable that NREM sleep accounts for the
consolidation necessities of the brain, whereas REM deals with the cognitive and
data-augmenting aspects detailed by the overfitted brain hypothesis.

Emulation of REM dreaming in neural networks could cause the resulting data
warping to function as a source of creativity for AI. In this scenario, the remaining
stages of NREM and wakefulness could be considered homologous to conventional
training and post-training model usage. While ambitious, this is not the first in-
stance of work correlating sleep phenomena and DL processing. For instance, sta-
tistical corruption of data as that performed by Google’s DeepDream [262] has been
used for multi-candidate dreamed object classification, by correlating real image fea-
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ture vectors with decoded brain activity patterns obtained from sleeping subjects
[277]. Thus, employing these data warping techniques in generating augmented data
for ANNs, based on their knowledge state, to prevent overfitting would be both plau-
sible in terms of its biological foundation, and represent a next step for research into
AI autonomy.

9.2 Idealization

Adhering to the overfitted brain hypothesis as inspiration, this work focused on
developing a form of artificial dreaming wherein data can be augmented or inferred
by models mid-training, in an attempt to reduce or prevent the impact of overfitting.
Ensuring the process could be integrated into most existing ANN frameworks was
also taken into consideration during the design process.

9.2.1 Artificial REM

Brain activity during REM resembles that of its awake state, with seemingly ran-
dom bursts of intense, fast, and out-of-sync waves. Moreover, the body enters a
separate homeostatic balance wherein optimized functioning is no longer its target
[278]. Data is then processed differently, as the brain forgoes risk aversion and
considers novel associations. Plausibly, information flowing through the brain at a
given moment has patterns drawn from general knowledge, memory, and episodic
information [279] forced on it to simulate possible future scenarios. These patterns
may already correspond to content similar to the initial information or, as the dream
progresses, become increasingly decipherable as novel albeit unconventional data in-
stances. Figure 9.1 depicts this hypothesis using visual data, despite its applicability
to other modalities.

This theory can be adjusted for AI. For instance, initial data may be noise from
random activation of certain neural regions or external stimuli to a dormant brain,
which is directly re-creatable in standard DL methodology. It may also stem from
out-of-context memory accesses induced by the shifted electrical connectivity in the
brain. This lack of context can be achieved in neural networks by simply presenting
them with other data, unrelated to their task. Homologously to the statistical
warping of information performed by a dreaming brain, ANNs can be made to force
global patterns of learned data on those initial inputs through excitation of one or
more of the layers processing them (i.e. DeepDream’s procedure) [262]. An example
of this augmentation is shown in Figure 9.2.

After securing self-fabricated data examples, ANN models must then interpret
and understand their content, similarly to how the brain attempts to make sense of
dreams as they occur. Naturally, labels assigned to these augmented instances must
reflect both original characteristics and those integrated by maximization of layer
activations, entailing a strong level of ambiguity. Regardless, this combination of
distinct traits in a shared data instance is what may enable new knowledge inference
and disrupt overfitting in the model. Moreover, the ambiguity of that augmented
data is also congruent with real dream recalling (often fuzzy). Such a level of im-
precision may be accounted for by employing soft rather than hard labels, ensuring
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Figure 9.1: Dream data augmentation, from left to right. The dream starts either by
random memory access or activation of brain structures. Based on current knowl-
edge, personal interest, persisting thoughts, and others, the dream is morphed to
match the current state of the brain. Simultaneously it attempts to interpret this
information in order to form a response to it. As a side effect, this helps negate
latent overfitting.

Figure 9.2: Deepdream’s maximization of layer activations used for augmentation
of a rocky formation image (left), results in buildings resembling pagodas (right).
This was done using a network trained on places by MIT Computer Science and
AI Laboratory as presented in [262]. The new image could be useful for disrupting
overfitting, as the network continues training on place identification, using soft labels
to account for its augmented characteristics (i.e. the pagodas).

data usability post-dreaming. These soft labels can be made learnable as dream
data is iteratively interpreted according to its respective model’s current knowledge.
Thus, the labels would be optimized, to reduce the impacts of their instances over
the model’s regular training and prevent catastrophic forgetting from hindering its
task performance. This part of the proposal is inspired by Soft-Label Dataset Dis-
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tillation [263], where a similar notion has been employed successfully. In it, labels
are perfected so as to minimize the error of a model over real data, when trained
with a single forward pass of distilled data.

Finally, in case dream-generated data is found to be nonsensical as the network is
unable to find an interpretation for it, this procedure requires an escape option. Hu-
mans typically deal with dream absurdity by disregarding the corresponding episodes
completely. Respectively, a similar process may be implemented for ANNs to as-
sign an absurdity class to augmented data deemed meaningless. Instances with
an acceptable interpretation could then be added to the network’s current dataset
and increase heterogeneity during training, whereas nonsense data would simply be
discarded.

9.2.2 Algorithm Design

This algorithm relies on typical ANN nomenclature to remain generalizable to most
existing frameworks. For the same reason, it was designed using the same basic
notation as [263] and related works. This presumes a K-layered neural network f
parameterized by θ, with typical backpropagation based on a twice-differentiable
loss function l1(x

r
i , y

r
i , θ). The goal is to find an optimal set of parameters θ∗, using

a training dataset r = {xr
i , y

r
i }Ni=1, according to (9.1).

θnew = arg min
θ

1

N

N∑
i=1

l1(x
r
i , y

r
i , θ) ≜ arg min

θ
l1(x

r,yr, θ) (9.1)

This optimization is performed iteratively with stochastic gradient descent being
computed against a batch of training data using (9.2), with a learning rate η. Addi-
tional parameters could be considered, such as momentum α, yet were disregarded
in this algorithm for the sake of simplicity.

θt+1 = θt − η∇θtl1(x
r
batch,y

r
batch, θt) (9.2)

Assuming that a network shows early signs of overfitting at a moment t > 1 of
training, then this process should be halted and the model switched to dreaming
mode. This mode can be divided into 4 major phases, as shown in Fig. 9.3, according
to our idealization: initialization, augmentation, interpretation, and assessment.
The first phase of initialization parallels the random flow of data characteristic of
REM sleep, represented by a dream dataset d = {xd

i , y
d
i }Li=1. Instances of this

dataset, henceforth named augmentation themes, make up the general setting of a
model’s dream and will have patterns forced on them according to its current state
of knowledge. Moreover, these instances should only encompass content dissimilar
from that represented in the regular dataset r used for training. Accordingly, dataset
d may be created in several ways, depending on data availability and application
goals. Pure noise instances can be used, in which case dream themes have no inherent
meaning. Contrastingly, real data may be sourced from another dataset, provided it
is unrelated to the training dataset yet available in its same modality. To exemplify,
face images may be used as themes for a model being trained for object recognition
with the CIFAR10 [280] datasets.
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Figure 9.3: Overview of the neural network’s workflow, with the dream stage being
used as a mechanism to tackle overfitting.

The augmentation phase is aimed at incepting network knowledge over the dream
themes of dataset d, according to DeepDream’s procedure [262]. This augmen-
tation is achieved through the excitation of a few randomly chosen layers k ∈
K \ {input, output}, which will force over the themes any patterns they typically
enhance during regular functioning. This presupposes a loss objective L2 which de-
pends on layer activations a = fθ(x

d), meaning the chosen layers’ outputs given a
forward pass of a theme. Since different abstraction and feature levels are dealt with
by separate layers, the depth and extraction purpose of each chosen layer will deter-
mine the characteristics of the patterns to be imposed over theme instances. Hence,
the objective L2 can be defined with a differentiable loss function l2(xdbatch, ak) based
on layer activation according to (9.3), to be calculated individually for each theme
using (9.4).

L2(x̃
d, θt) := l2(x̃

d, ak) (9.3)

x̃d
new = arg max

x̃d

L2(x̃
d, θt) = arg max

x̃d

l2(x̃
d, ak) (9.4)

Interpretation of the new, potentially meaningful information now incepted on
themes constitutes a dream’s third phase. The goal here is to optimize the labels for
the augmented data to enable the minimization of a loss objective L1, corresponding
to the differentiable loss function typically used in backpropagation as shown in (9.5),
in a single step θ1 = θ0 − η∇θ0l1(x̃

d, ỹd, θ0).

L1(x̃
d, ỹd; θ0) := l1(x

r,yr, θ1) (9.5)

Unlike soft-label dataset distillation [263], only ỹd are considered here, whilst
x̃d are disregarded for this minimization. That is because the model should merely
interpret the augmented dream themes rather than optimize them as well, according
to its current state of knowledge. Consequently, label updates should adhere to
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equation (9.6).

ỹd
new = arg min

ỹd

L1(x̃
d, ỹd; θ0) = arg min

ỹd

l1(x
r,yr, θ0 − η∇θ0l1(x̃

d, ỹd, θ0)) (9.6)

By performing the second and third phases of this artificial dreaming procedure
several times, not only do forced patterns become more prevalent on each dream
theme but their labels become increasingly more reliable. Furthermore, the number
of classes represented by these labels may be extended to include an additional
class pertaining to absurdity or non-meaningful data. Naturally, instances majorly
assigned to this class should be dropped by the algorithm when entering its final
phase: assessment. Here, the augmented data instances paired with their optimized
soft labels are integrated into the regular training dataset r, and regular training
is resumed. Intuitively according to the overfitted brain hypothesis, this should
help disrupt overfitting as the neural model analyses these new data samples in
tandem with the task-related data. Algorithm 1 realizes the overview provided in
this section.

Algorithm 1 REM Dream Emulation for Overfitting Disruption

Input: M : Number of themes to occur during dream; α: step size; n: batch size; T :
Dream depth in steps; ỹd0 : initial value for ỹd.

Output: Augmented dream data (x̃d,ỹd).

Dream Data of Theme Initialisation :
1: ỹd = {ỹdi }Mi=1 ← ỹd0

2: x̃d = {x̃di }Mi=1 randomly OR sample batch from dream dataset d

3: for each training step t = 1 to T do

4: for each layer k ∈ {randomly chosen layers} do
5: for dream theme x̃di do

6: Forward pass the theme
7: Evaluate objective function on activations

L(k,i)2 = l2(x̃
d
i , ak)

8: end for
9: Compute updated model parameters with SGD:

θ1 = θ0 − η∇θ0 l1(x̃
d, ỹd, θ0)

10: Evaluate objective function on real training data:

L(k)1 = l1(x
r
batch,y

r
batch, θ

(k)
1 )

11: end for

12: Update dream data:

ỹd ←− ỹd − α∇ỹd

∑
k L

(k)
1 , and

x̃di ←− x̃di + α∇x̃d
i

∑
k L

(k,i)
2

13: end for

111



Emotional Competence & Adaptability

9.3 Preliminary Results

While this bio-inspired algorithm is a working idea, its potential can be observed
using a simple example as that demonstrated in Table 9.1. In this case, handwritten
digit recognition was considered as the main task being learned by a shallow CNN
with two convolutional layers using the MNIST dataset [251]. CIFAR10 [280] images
are evidently unrelated to this task and thus may serve as dream themes on which
to force patterns. This was done on two randomly chosen CIFAR10 images by
exciting either the first or the second convolutional layers separately. Even without
performing soft-label optimization, a single forward pass of these augmented images
through the model reveals that these hold meaningful handwritten digit information.
For instance, the image of a ship enhanced by the second convolutional layer of
the original model produces something interpreted by the network as resembling
digits 2, 3, and 5. Moreover, considering this CNN was not yet overfitted, low
loss supports the validity of these predictions. Additional digits or partial features
could potentially be further interpreted by the model, were it overfitted, or if more
augmentation iterations were carried out. With optimized labels reflecting this
content multitude, these instances could be useful for disrupting the homogeneity
of the original training data.

Table 9.1: Exemplary run of two CIFAR10 images as themes (top - airplane, bottom
- ship) over a single dream iteration, using a double-layered CNN trained exclusively
for MNIST handwritten digit recognition. ’Original’ rows show the untouched CI-
FAR10 images, while ’Conv1’ and ’Conv2’ each refer to an 800-step run of the
Deepdream technique over the CIFAR10 images activating the first and second con-
volutional layers, respectively. Probabilities, shown as percentages, refer to the
evaluation of the resulting images by the MNIST-trained CNN (i.e. the soft labels
they would attribute after this initial iteration).
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9.4 Discussion

This work sought to develop a way for the effects of overfitting to be reduced au-
tonomously in AI methodology. Following the brain’s ability to deal with this issue
via sleep and dreaming, an attempt was made at emulating the latter in ANNs. This
involved halting the regular training of a model, followed by an augmentation step
wherein patterns detected by its layers were forced over data unrelated to training.
The resulting information was then interpreted according to model knowledge, with
labels optimized to have little impact over model parameters, and integrated with
regular training data to reduce its homogeneity.

While this technique can produce data holding meaningful content to the conven-
tional training, it is largely distinct from common generative methodology. First,
architecture agnosticism entails its applicability to most neural network designs.
Moreover, it does not require additional models or network branches to be inte-
grated into the main architecture or perform augmentation-specific training. In
comparison with such techniques, ours does not incur this additional memory usage
and computational costs. An interpretation phase according to model knowledge is
also inexistent in typical generative methodology, with labels often being transcribed
from related real data or inferred from latent space distribution.

Naturally, there are limitations to be considered when implementing our algo-
rithm. For instance, gradient ascent is used to corrupt dream themes with patterns
retained by model layers. Similarly to gradient descent, this increases the com-
putational cost of conventional training, with deeper layers requiring further steps
for their activations to be maximized over the themes. Nonetheless, this is coherent
with the brain’s heightened activity during REM sleep which matches and may even
exceed that of wakefulness, as demonstrated by energy expenditure. Despite this,
deeper layers are still preferable for augmentation as those are more likely to incept
meaningful information and prevent reliance on the absurdity class of the soft la-
bels. Otherwise, shallower dreams are less likely interpretable by the network and
resulting instances may be overwhelmingly disregarded, in which case the dreaming
process loses its usefulness in terms of mitigating the effects of overfitting. Overall,
these issues can potentially be alleviated by increasing dream depth. Thus, pro-
vided there are no critical time constraints imposed for training, enough steps can
be carried out for them to become negligible.

In terms of validation, it is also necessary to design experimental scenarios to
assess the efficacy of the proposed algorithm against overfitting. These should con-
sider factors such as architecture depth, as efficacy may be hindered with shallower
networks. Different data sources must also be evaluated for dream themes, to deter-
mine if some are indeed more adequate depending on the task being learned by a
model. Likewise, it would be interesting to explore what influences layer suitability
for excitation during a dream. This could greatly reduce the time consumed by the
model as, instead of choosing random layers until dream augmented data is consid-
ered useful, appropriate instances could promptly be generated and passed on to
the interpretation phase. Finally, if the algorithm does prove effective against over-
fitting, it will further support the usefulness of neuroscientific theory and findings
for addressing common issues in AI and improve its adaptability.
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This thesis explored topics related to bio-inspired artificial intelligence, both
from a socio-interactive application side based on emotional competence, as well as
from a learning adaptability standpoint with neurophysiological bases. This chapter
summarizes primary contributions and presents potential paths for future research.

10.1 Conclusion

This thesis covered two major themes related to bio-inspired artificial intelligence,
namely emotional competence, and adaptability. The main goal of this research
was to further the autonomy of AI systems within the context of interaction and
learning, benefiting from insight into naturally optimized processes observed in real
beings. The pursuit of this goal was partly motivated by a desire to mitigate so-
cietal problems on the growing need for assistance, which is unmatched by current
personnel standards, social companionship, and lack of interactivity among people.
While emotional competence is mostly trivial for humans and a major adjuvant for
the appropriate attainment of these requirements in daily life, its artificial recre-
ation is far from straightforward. Therefore it was imperative to address two main
areas of artificial emotion in this document. These were its expressions, encompass-
ing an understanding of user perception and behavioral appropriateness by artificial
agents, and its recognizability by those same agents, this latter being a gateway to
the fluidity we expect of peers during an interaction.

The fuzzification of the emotional features approach, which was first proposed
as an extension of previous work on recognition, constituted the first contribution of
this thesis. While human emotional expression is often archetypal in that there is one
predominant state being manifested at a time, interpreting it is not a straightforward
task. First, states are not necessarily overt, and a lack of characteristic cues may im-
pose constraints or require analysis to inefficiently ponder over the possibilities of a
categorical approach through exclusion. Considering information gathered by a DL
approach may not necessarily pertain to the desired class, embedding fuzzification
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can help to still benefit from that information. This ensures the current state is ex-
amined based on its correlation with more apparent cues and precludes the necessity
for further user sampling, which may be bothersome and have detrimental effects on
perception. The proposed approach was capable of performing this process within a
discrete group of emotions expressed in prosodic speech features, where recognition
is often miscalculated. Hence it was guaranteed that both speaker-specific cues and
inter-emotional correlations were considered for improved accuracy, justifying its in-
tegration in user-adaptive social behavior algorithms for artificial agents. Validation
of the approach was carried out in a controlled manner through the use of emotional
speech databases which constitute the current experimental standard in the area. A
performance improvement was observed when compared to the non-fuzzy baseline
architecture developed in previous works. Furthermore, the basis for the approach is
not necessarily unique to the speech modality, as the same principle holds for other
forms of emotional expression.

Pertaining to an artificial expression of emotion, a RL-based methodology was
presented for the development of empathic behavior in social agents. Nonverbal
communication, which empathy integrates, is a major aspect of interpersonal rela-
tionships. Its absence is consequently found to be disconcerting and may hinder the
acceptance of artificial systems originally incapable of evolving emotional skills. As-
sistive and companionship services are often faced with situational delicacy wherein
the need for the latter is exacerbated. Here, user information ranging from physical
cues to deliberate speech is already gathered and updated constantly according to
service demands. Hence, techniques such as the one proposed may be integrated
into those systems almost seamlessly to form a repertoire of more lifelike social
skills. Respectively, facial analysis and explicit feedback were leveraged to recognize
a user’s emotional state and via reinforcement adapt a robotic agent’s facial con-
figuration to match that of the user’s. Validation was carried out with real users
during a conversation scenario, with posterior surveying corroborating the expec-
tation that empathy would improve HRI. Given the generality of the experimental
setup, conclusions are likewise applicable to assistive and social services.

Contributions to greater autonomy and less reliance on human aid aligned more
with the adaptability section of this thesis. This is because there is motivation to
improve current solutions in social, but more importantly industrial technology, to
capacitate it for conformance and flexibility towards the variety of issues that may
occur in a work environment. Natural bio-optimization has made it so living be-
ings developed this ability for survival, thus making their neural features the best
source of inspiration for adaptable AI. Consequently, adaptability was addressed
at three major levels, first encompassing cell-based learning modulation, and sec-
ondly emulating neural structure interactivity. The former constituted an attempt
at improving learning efficiency as well as providing a better understanding of neu-
romodulatory effects, whereas the latter targeted natural behavioral development
by benefiting from interdisciplinary knowledge. The third level of adaptability con-
sidered here focused on the re-creation of a brain-wide mechanism for coping with
overfitting autonomously.

While the mimicking of neuromodulatory processes served as a major source of
inspiration for other bio-inspired works in this thesis, the results of this particular
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trial were underwhelming. The emulation of a dopaminergic boosting to neural con-
nections could entail benefits for artificial neurons similar to those shared by their
biological counterparts, through the potentiation of meaningful synapses paralleled
by suppression of unimportant ones. The goal of this formulation was to improve
learning efficiency, reducing the time needed for training as well as the amount of
data. A straightforward approach to achieve this goal was to create an activity
trace between two neurons, similar to the signaling of dopamine release, which in
turn would influence the synapse between the two cells. Regardless, the effect of
this weight change acceleration appeared to be insignificant, possibly due to the
dopaminergic trace being considered as noise by standard backpropagation training
procedures. An additional emulation of D1 and D2 dopaminergic receptors in the
artificial neurons was considered as a next step, to observe whether these would
improve the impact of dopamine release compared to the basic activity trace ap-
proach. While improvement was not significant, it was interesting to observe the
overall behavior of this neuromodulator emulation and consider possible paths for
future development.

The emulation of neural structure interactivity arguably constituted the great-
est contribution of this thesis, both towards AI as well as interdisciplinary research.
This is because the association of psychological findings with a neurophysiological
foundation for the deep learning methodology presented in Chapter 8 not only fur-
thered AI autonomy but also provided a framework on which to test human behav-
ior hypotheses artificially. The generality retained in the technique enables further
studies on the relationship between various emotional states and possible human
behaviors they influence to be studied empirically. Consequently, this may adopted
by researchers in various fields, constituting a contribution greater than other works
presented here. Specifically, experimental conditions subjected to human partic-
ipants during a psychological study were adapted for application to artificial RL
agents implementing an emulation of the neurophysiological circuitry responsible
for associating emotional activation with behavioral optimization in living beings.
Replication over hundreds of artificial agents demonstrated that the correlations
learned, addressing the emotions of surprise and pride respectively over their in-
fluence towards exploratory behavior, matched those demonstrated by the human
participants in the basic psychological study. The applicability range of these mod-
els is wide in AI, enabling researchers to increase the independence level of their
systems. It entails an autonomous exploration estimate based on artificial emo-
tion, which can be adapted according to application specifics much like the spin-off
works of this topic, developed for proof of concept in the field of social robotics.
Additionally, it was further demonstrated that when combined, the emotions of sur-
prise and pride can have a stabilizing effect over each of their respective impacts
on exploratory behavior. This was proposed as a research topic for Psychology to
validate, conversely to the process followed in this work.

The final work included in this thesis was presented as an open-ended research
topic. A theory on the dreaming mechanism employed by the brain to cope with
overfitting was considered for ANNs, in an attempt to attribute these the same
benefits boasted by their biological counterparts. Adaptability towards overfitting
can boost the autonomy of continual learning systems by reducing the necessity for
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solutions such as user-added data variability. Moreover, datatype agnosticism en-
tails broader applicability in the real world, as industrial services typically require
a level of flexibility and issue compliance which most other solutions are unable
to cope with. In technical terms, the proposed methodology encompassed forcing
patterns of knowledge acquired by different layers of a neural network over random
data instances unrelated to the task being learned, via gradient ascent. The warped
representations that result from this process are akin to the sensorial concoctions
characteristic of real dreams, which are then interpreted by the brain in an attempt
to make sense of their content. In the proposed technique, this is achieved via a
soft-label optimization process whose goal is to minimize the impact of such new
data over network parameters. Mixing of regular training data with few warped
non-impactful instances is then theorized to reduce the likability of overfitting, with
preliminary testing supporting this notion. Applicability of this algorithm is cur-
rently planned for several areas of AI research, to demonstrate its validity.

The original outline plan of this thesis envisioned exploring bio-inspired solutions
for improved autonomy in deep learning, via emulation of emotional and plasticity
processes of the brain. Overall it can be concluded that all goals set previously
were achieved, resulting in meaningful contributions to the research community and
betterment of AI towards greater emotional competence and adaptability.

10.2 Future Research

Works presented in this thesis are open-ended in that they may be further devel-
oped as standalone research, be combined for mutual improvement, or also provide
insight and serve as starting points into broader topics within emotional competence
and adaptability. Thus, the research directions proposed below address these three
possibilities, ranging from concrete to more general goals for the future.

10.2.1 Emotion

As has been mentioned, a combination of works in emotion is often synergistic
and yields improvement. Thus, it would be interesting to employ the principle
presented in Chapter 5 regarding emotion fuzzification in an empathic experimental
scenario as the one in Chapter 6. This can serve to understand whether empathy is
only perceived from exact matches of emotion during an interaction or if its effects
also occur when correlated states are demonstrated. For instance, a human-robot
relationship may be strengthened by the artificial agent disliking or becoming angry
at what made its user sad, considering how the same user could perceive such a
reaction as the robot demonstrating concern for their well-being. An experimental
procedure for this scenario could be similar to the one in Chapter 6. Yet instead,
the ANN in charge of generating facial configurations for the artificial agent would
include a fuzzification layer mid-way in its architecture so generation would consider
emotional state correlations. Relatedly, training users would reward the agent when
its facial expressions were somewhat related to the displayed emotional state, besides
matching it perfectly. Finally, interaction with users could be evaluated in the
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same fashion to understand whether empathy would still be perceived, and results
compared with those already published.

In terms of each work individually, and considering the growing adoption of
dimensional approaches in emotional analysis, fuzzification of emotion dimensions
could be explored to assess whether similar conclusions can be drawn compared to
categorical techniques, both for recognition and expression. As for the work of Chap-
ter 6, other emotional behaviors and social characteristics [281] should be explored
depending on their usefulness for HRI. Projection, for example, could be explored
to determine its detrimental effects on a relationship. Considering a more advanced
robot system with emotion, it would be interesting to explore whether associating
negative emotional states, caused by external factors, could also be detrimental to
HRI despite users not being responsible for them. If so, this would mimic as well as
provide valuable insight into human-human interaction.

Focusing on the bigger picture, research into emotionally competent AI must
eventually adopt conventions regarding what is and/or what causes artificial emo-
tion. This is paramount to allow the field of emotional expression to advance into
naturally affective robotics, benefiting HRI, assistive services, and several other ar-
eas. One possibility is to draw inspiration from human development, in that emotion
recognition and expression can result from a combination of continuous appraisals:
internal state and peers’ emotion, thus optimizing mimicry of states perceived as
similar. Ergo, the following scheme could be used in future work, assuming an AI
system whose internal variables constitute state r:

1. Scenario induces autonomic responses in agent coincidentally in state r;

2. Agent associates those responses and behavior with corresponding r;

• Recognition - Similar behavior detected in peers. Categorized as an expression
of known state r;

• Expression - Re-occurrence of r due to external factors. Associated behavior
used as a coping mechanism;

10.2.2 Adaptability

This concept is often addressed within the scope of specific abilities possessed by an
artificial agent. As such, opportunities for research and development of AI adapt-
ability are as numerous as AI characteristics and their applications. For instance,
dopamine emulation could impact other aspects of learning besides convergence
speed. This is because, while our results with neuromodulator emulation were un-
derwhelming, other research has proved successful. Therefore, it would be fascinat-
ing to adapt the kind of signaling implemented in Chapter 7 to mediate engagement
in a multi-task DL environment. Specifically, dopaminergic incentive salience could
work to determine the order by which each stimulus is addressed. This would be
achieved over recurrent contact with that environment, as greater dopamine release
would be associated with preferred or more profitable tasks. Moreover, effects could
be further expanded by integrating other neuromodulators, such as norepinephrine.
Agents equipped with noradrenergic signaling could undergo arousal spikes, which
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could serve as drives to explore and seek out novel tasks within their environment.
Several other chemicals (e.g. adrenaline, serotonin) could be considered and, sim-
ilarly to Chapter 8, findings from these emulations could prove complementary to
psychology and/or neuroscience studies.

Adaptive behavior is likewise a very broad topic. While Chapter 8 focuses on cor-
relating emotion with exploration, the proposed framework retains the competence
to study other behavioral traits and their relationship with internal drives. Mediat-
ing exploitation or engagement through variable emotion during cognitive operation
could be a possibility, similar to how agents in that work learned to explore when
seemingly more useful for their reward objective. On a separate note, Chapter 8
could also be extended to consider a more biologically plausible overlap of states. In
this case, rather than considering emotions individually, several states could have a
combined effect on general behavior. For instance, epistemic and achievement states
could be employed in tandem, equitably, or via weighted contributions, as inputs to
an actor module. This technique could entail either feature merging at a midstream
level or an already multi-emotional input derived from a separate module.

In addition to the presented approaches, adaptability may also encompass deal-
ing with unexpected issues during regular functioning. Lack of data, depletion of
memory or computational resources, and overfitting all constitute examples of prob-
lems that are currently dealt with manually in AI methodology. Consequentially,
it would be beneficial to research how these problems, or their biologically similar
counterparts, are dealt with by the brain, to come up with possible solutions for
artificial agents to achieve the same goal. Chapter 9 addressed this specifically,
considering overfitting and presenting a way for neural networks to deal with the
issue autonomously, inspired by a theory on how the brain addresses the same issue.
While lacking thorough results, preliminary experimentation appeared promising,
and so this work constitutes a solid road map for future research.
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[128] Enrique Osuna, Luis-Felipe Rodŕıguez, and J Octavio Gutierrez-Garcia. “To-
ward integrating cognitive components with computational models of emo-
tion using software design patterns”. en. In: Cogn. Syst. Res. 65 (Jan. 2021),
pp. 138–150. doi: 10.1016/j.cogsys.2020.10.004.

[129] Enrique Osuna et al. “Development of computational models of emotions: A
software engineering perspective”. en. In: Cogn. Syst. Res. 60 (May 2020),
pp. 1–19. doi: 10.1016/j.cogsys.2019.11.001.

[130] Pablo Brinol, Richard E Petty, and Derek D Rucker. “The role of meta-
cognitive processes in emotional intelligence”. en. In: Psicothema 18 Suppl
(2006), pp. 26–33.

[131] K. Richard Ridderinkhof. “Emotion in Action: A Predictive Processing Per-
spective and Theoretical Synthesis”. In: Emotion Review 9.4 (Aug. 2017),
pp. 319–325. doi: 10.1177/1754073916661765. url: https://doi.org/
10.1177%2F1754073916661765.
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