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pelo	Professor	Doutor	Fernando	Boavida,	e	apresentada	ao	Departamento	de	
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Abstract

Over time, the concept and the scope of the Internet of Things have
evolved, and nowadays it is being boosted with new approaches where
various elements are integrated into smart ecosystems. This goes bey-

ond the mere interconnection of perception layer devices, giving rise to the no-
tion of the Internet of Everything. On the road toward the latter concept,
innovative Internet-of-Things-based paradigms propose the integration of hu-
man factors and activities as intrinsic elements within a hyperconnected world.
Currently, Human-Centered Internet-of-Things leverages the widespread use of
smart devices, their sensing capabilities, and their technical features, along with
their seamlessly interactive nature, to carry out data acquisition and service
provisioning. Systems based on these premises may be deployed within different
domains, offering a wide variety of services.

While the benefits that Human-Centric Internet of Things systems offer to end
users appear promising, there are still significant challenges to address, namely
privacy and data protection. Currently, different regulations across the globe lay
the legal groundwork to tackle these specific issues. These regulations demand
the adoption of transparent practices for the collection, processing, and use of
personal data, as well as more meaningful user involvement in privacy protec-
tion. In addition to the protective measures outlined by legal frameworks, an
increasing number of people agree with the notion that data control mechanisms
should be integrated into modern information systems. This empowerment of
end users with the ability to manage their privacy settings is seen as essential,
as relying solely on the safeguards of a legal framework, while exceedingly im-
portant, may not prove entirely effective. Moreover, despite the existence of
user-centric solutions in the literature, there are no proposals that directly fall
within the context of Human-in-the-Loop Cyber-Physical Systems.

Therefore, in this thesis, we delve into this specific context and address the chal-
lenge of privacy preservation from a user-centric approach. As a starting point,
we review, analyze, classify, and discuss state-of-the-art contributions in the field
of user-centric privacy preservation. We then present our privacy-preserving
model, which results from the combination of two approaches: the first one is
oriented toward the data acquisition phase, while the second approach is related
to the state-inference phase. Additionally, we propose an integration model that
aims to evaluate our model and foster the vision of smart and sustainable cities.
Moreover, this thesis provides the details of our case studies, describes the de-
velopment and implementation aspects of the components of each of our models,
their assessment, and the respective results.

Keywords: Privacy Preservation, Internet of Things, User-
Centric, Privacy Awareness, Human-in-the-Loop, Data Protection,
Consent
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Resumo

Ao longo do tempo, o conceito de Internet das Coisas e o seu alcance
evoluíram e, hoje em dia, estão a ser impulsionados por novas abor-
dagens, onde vários elementos são integrados em ecossistemas inteli-

gentes. Isto vai para além da simples interconexão de dispositivos da camada de
perceção, dando origem à ideia de Internet de Tudo. No caminho para este úl-
timo conceito, paradigmas inovadores baseados em Internet das Coisas propõem
a integração de fatores e atividades humanas como elementos intrínsecos num
mundo hiperconectado. Atualmente, o Internet das Coisas centrada no Ser Hu-
mano aproveita o uso generalizado de dispositivos inteligentes, suas capacidades
de deteção e suas características técnicas, juntamente com sua natureza inter-
ativa, para realizar a aquisição de dados e prestação de serviços. Sistemas basea-
dos nestas premissas podem ser implantados em diferentes domínios, oferecendo
uma ampla variedade de serviços.

Embora os benefícios que os sistemas centrados no Ser Humano da Internet das
Coisas oferecem aos utilizadores finais sejam promissores, ainda existem desafios
importantes a enfrentar, nomeadamente nas áreas da Privacidade e da Proteção
de dados. Atualmente, diferentes regulamentos em todo o mundo fornecem a
base legal para abordar estas questões temáticas específicas. Esses regulamen-
tos exigem a adoção de práticas transparentes para a recolha, processamento
e uso de dados pessoais, bem como uma maior participação do utilizador na
proteção da sua privacidade. Complementarmente às medidas de proteção prev-
istas nos quadros legais, cada vez mais pessoas concordam com a ideia de que
os mecanismos de controlo de dados devem ser incluídos nos sistemas de in-
formação modernos para capacitar os utilizadores finais com a capacidade de
gerir as suas configurações de privacidade, uma vez que depender apenas da
proteção de um quadro legal, embora extremamente importante, pode não ser
eficaz. Além disso, apesar da existência de soluções centradas no utilizador na
literatura, não existem propostas que se enquadrem diretamente no contexto de
Sistemas Ciberfísicos com Humanos no Loop.

Assim sendo, nesta tese, exploramos este contexto específico e abordamos o de-
safio da preservação da privacidade a partir de uma abordagem centrada no
utilizador. Como ponto de partida, analisamos, classificamos e discutimos con-
tribuições de ponta no campo da preservação da privacidade centrada no utiliz-
ador. Em seguida, apresentamos o nosso modelo de preservação da privacidade,
que é o resultado da combinação de duas abordagens: a primeira orientada para
a fase de aquisição de dados, enquanto a segunda abordagem está relacionada
com a fase de inferência do estado. Além disso, propomos um modelo de integ-
ração que visa avaliar a nossa solução e promover a visão de cidades inteligentes
e sustentáveis. Além disso, esta tese fornece os detalhes dos nossos estudos de
caso, descreve os aspetos de desenvolvimento e implementação dos componentes
de cada um dos nossos modelos, a sua avaliação e os respetivos resultados.
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CHAPTER 1. INTRODUCTION

The dawn of a new era in the IoT has arrived, with a profound shift
that places humans at the core of its development. Termed as Human-
Centric IoT, this evolution embraces new concepts, wherein individu-

als are intricately connected with and integral to the operation of these sys-
tems. Amidst this transformative landscape, privacy emerges as a paramount
challenge to confront. This chapter furnishes the background, and motivation
for the current research, which is directed toward tackling the critical issue of
privacy-preservation in this new era of the IoT. Moreover, the thesis objectives
and contributions are expounded upon. Finally, an outline of the document’s
structure is provided, offering a clear roadmap for the reader.

1.1 Background and Motivation
Networking evolution has led us to a world of ubiquitous connections, from
small devices to large components seamlessly interacting with each other, even
without human intervention, in what we now know as the IoT. Based on this
paradigm, the scientific community has been able to define and propose new
mechanisms for obtaining, processing, and communicating real-time data from
the environment, through the use of sensors, actuators and portable devices,
with the aim of either improving the quality of life [Al-Fuqaha et al., 2015], or
optimizing and automating industrial processes. According to Cisco’s forecasts
and trends [Barnett et al., 2018], Machine–to–Machine (M2M) communication
has grown exponentially, from 6.1 billion connections in 2017 to almost 15 billion
by the end of 2022, reaching a traffic of around 25 Exabytes. Moreover, this trend
is leading to an even greater traffic rate increase due to multimedia applications
in areas such as smart-car navigation and smart healthcare.

Naturally, the IoT scope is constantly evolving and nowadays it is being ex-
tended with approaches where other elements are integrated into these smart
domains, beyond the mere interconnection of perception layer’s devices [Al-
Fuqaha et al., 2015]. Innovative IoT-based paradigms propose the integra-
tion of the end-user as an integral part of this hyperconnected realm [Boavida
et al., 2016]. These particular paradigms include approaches namely People-
Centric IoT, Social Internet of Things (SIoT), Internet of People (IoP), and
Human-in-the-Loop (HiTL) control for Cyber-Physical Systems (CPSs) [Wood
and Stankovic, 2008; Nunes et al., 2015].

Taking a human-centric approach, IoT-based systems extend the spectrum of
services and solutions to a large variety of areas, and at the same time, they
spawn many technological and multidisciplinary challenges. Naturally, a sub-
stantial part of these challenges relates to technological aspects such as the
device, the network, or even the data. Among the most important are connectiv-
ity, mobility, ubiquity, high availability, fault tolerance, Quality of Service (QoS),
interoperability, reliability, and security [Boavida et al., 2016]. However, one
of the most relevant challenge in this kind of approach is privacy [Grace and
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Surridge, 2017]. Especially in these new-generation IoT paradigms, where the
personalization of a provided service is a function of the acquired data, the more
data available, the more profile-oriented the outcome. As a result, more privacy
is demanded.

Nevertheless, we must recall that privacy is not only a technological challenge
but a multidisciplinary one, since it includes human factors interacting with and
within a digital environment. Each person has a different perception of how to
deal with privacy, as there are users who have more concerns than others. A
clear example is the way we handle conventional devices such as smartphones,
where applications require different permissions to access files or execute actions.
In this case each of us will have different concessions that meet our needs.

In 2018, General Data Protection Regulation (GDPR) came into force, stating
fundamental rights for European Union (EU) citizens concerning the use of their
personal data [Edwards, 2016]. This regulation contemplates two prime actors:
the Data Subject (DS) and the Data Controller (DC). The former is identified
or identifiable natural persons from whom the data is collected. The latter is
the entity that “alone or jointly with others, determines the purpose and means
of the processing of personal data” [Parliament et al., 2016].

As long as there is no legal bond by the DC, the GDPR states that the collection
of personal information can only happen after notice and through the express
consent of the DS [Cate, 2006]. Moreover, according to GDPR Art. 4-11,
data processing consent must be freely given, by means of an affirmative, clear,
informed, specific and unambiguous statement or action [Parliament et al., 2016].
This consent is no longer free when the DS has no possibility of refusing without
suffering detriment.

To be better aligned with what is stipulated in the European Regulation, and to
face the privacy challenge in mainstream IoT environments, many authors have
contributed to the state-of-the-art with different proposals to assure users that
their data is properly acquired, processed and stored. However, some of these
contributions are leaving out or limiting the human interaction or participation
in the decision-making process.

From the users’ perspective, the simple act of being left apart from a system
that is handling their data, could eventually affect its adoption [Munjin and
Morin, 2011; Lafontaine et al., 2021], its trust perception and also raise some
concerns such as: Where do the data go? For how long will the data be stored?
With whom will the data be shared? What kind and how much information can
be inferred from the collected data? How could this jeopardize user privacy?
Are the privacy policies properly announced to the users? Can users control
to some extent the information that they are sharing? These are the questions
that research initiatives are trying to address by proposing user-centric privacy-
preserving models. At this point it is important to emphasize that although
there are already proposals in the state of the art aimed at granting a certain
level of control to the user in this context, none of them focuses on the concept
of Human-in-the-Loop Cyber-Physical System (HiTLCPS).
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1.2 Objectives
The main objective of this research is to address the challenge of privacy preser-
vation from a user-centric perspective in the context of HiTLCPSs, a concept
that is framed within the set of proposals that encompass this new era of the
IoT. To achieve this goal the following objectives have been established:

• Review and evaluate the state-of-the-art of existing contributions in the
field of privacy preservation with a user-centric approach in the context of
an evolved IoT paradigm.

• Identify, discuss, and summarize possible challenges and open issues in
this field.

• Propose a new framework for privacy-preserving data acquisition in the
realm of HiTLCPSs, that merges the best features from the existing con-
tributions in the literature with innovative features.

• Design and develop a unified privacy-preserving model for HiTLCPSs
based on the proposed framework.

• Design and develop a model that integrates different privacy-preserving
HiTLCPSs to be applied in a realistic scenario (e.g., a smart city).

• Validate the new models by extending our current HiTLCPSs case studies.
This task will comprise new implementations, deployment, and different
assessments.

1.3 Contributions
Taking into consideration the goals described above, this thesis has produced
the following contributions:

• Review of the state-of-the-art regarding user-centric privacy pre-
serving models In order to gain a comprehensive understanding of the
current contributions in this field, and identify the gaps in the existing
research we performed a literature review. This is covered in Chapter 2.

• Creation of classification for user-centric privacy-preserving
models In the state-of-the art, proposals that revise and categorize user-
centric privacy preserving models in this particular IoT context are scarce.
In order to set a common language for the analysis we created a classific-
ation. This is covered in Chapter 2.

• Creation of a new privacy-preserving model for HiTLCPSs After
studying the concept of HiTLCPSs, we proposed two privacy-preserving
approaches oriented to the data acquisition and state inference phase re-
spectively. Based on these two approaches a new privacy-preserving model
for HiTLCPSs is created. This is covered in Chapter 3.

• Definition of a new framework for HiTLCPSs From the reviewed
models in the state-of-the-art, we extracted certain features that were
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later used to build and define our framework. This framework was then
employed in the development of our initial approach, which encompasses
the privacy-preserving model. This is covered in Chapter 3.

• Creation of a new decentralized consent management procedure
for HiTLCPSs One component that integrates the data acquisition phase
of our privacy model is consent management. In this regard, one of our
contributions is the development of a decentralized consent management
process to enhance transparency. This is covered in Chapter 3.

• Creation of a new model for integrating privacy-preserving
HiTLCPSs After proposing the privacy preservation model, the sub-
sequent step involved creating a solution that enables the integration of
various privacy-preserving HiTLCPSs to address a specific requirement. In
our case, our model is oriented toward promoting sustainability in smart
cities. This is covered in Chapter 4.

• Development of a new HiTLCPS case study Alongside the imple-
mentation of the privacy model, we also developed a new case study pro-
posal focused on the sustainability of smart cities. This is covered in
Chapter 5.

• Creation of a new platform that integrates different services from
HiTLCPSs Each case study came with its own dedicated platform, des-
pite sharing certain features. Capitalizing on this, we developed a new
platform that facilitates the integration of services offered by the indi-
vidual platforms. This is covered in Chapter 5.

• Creation of a Federated Learning model for state inference in
HiTLCPSs In our HiTLCPSs case studies, the inference process has tra-
ditionally been conducted using machine learning models on servers out-
side the user’s control (e.g., servers in a cloud managed by the inference
process responsible). To establish an inference process that does not re-
quire data to leave the user’s device, we employed Federated Learning and
developed a new model. This is covered in Chapter 6.

In addition to the aforementioned contributions, it is important to highlight
the dissemination of our work throughout the global scientific community, ac-
complished through publications in international journals and conferences. The
succeeding sections of this document will now delve into the underlying found-
ations that substantiate these contributions. Following this, the subsequent
section outlines the structure and content of the rest of this document.

1.4 Outline of the Thesis
Apart from the introduction, this thesis is structured into six additional
chapters.

Chapter 2 commences by giving an overview of the evolution of the tradi-
tional IoT concept toward novel paradigms where end-users and their data play
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a crucial role. Privacy stands out as a major challenge in these paradigms.
Subsequently, a thorough review and analysis of current user-centric privacy-
preserving models follow, wherein they are categorized based on a proposed clas-
sification. Finally, challenges and open issues are identified and discussed.

Chapter 3 introduces the concept of HiTLCPSs and its distinct phases. Fol-
lowing this, it presents two approaches to privacy preservation: one focused
on the data acquisition phase and another aimed at the state inference phase.
These two approaches pave the way toward a unified privacy-preserving model
for HiTLCPSs.

Chapter 4 proposes a new model that serves as a reference for the development,
implementation, and integration of innovative privacy-preserving HiTLCPSs.
This model not only addresses the immediate requirements of our specific con-
text but also holds the potential for broader applications across various domains.
While its adaptability makes it suitable for diverse settings, our primary focus
lies in leveraging this integration model to significantly enhance urban sustain-
ability. By promoting seamless interoperability among the technological com-
ponents of stakeholders within a smart city, our objective is to drive positive
ecological and social outcomes.

Chapter 5 delves into two case studies exemplifying the implementation of the
HiTLCPS concept. Each of these case studies revolves around the deployment
of distinct platforms, individually tailored to address different objectives in spe-
cific contexts. Subsequently, the chapter introduces SPACES, an implementa-
tion solution aiming to combine simultaneously different contexts and integrate
the services offered by the aforementioned platforms while considering the com-
ponents of the models proposed in Chapters 3 and 4. This chapter provides
technical details regarding the development of these components and their un-
derlying technology.

Chapter 6 addresses the assessments of the models and their results. The first
two sections of this chapter approach the evaluations from a quantitative per-
spective. Additionally, this chapter includes a section dedicated to a qualitative
study conducted to understand the perception of trust in IoT mobile applica-
tions, a relevant aspect shared by the platforms derived from the case studies
described in the previous chapter, as well as the current platform.

Chapter 7 concludes the document, offering a synthesis of the thesis, a compil-
ation of the resulting contributions, and an identification of possible research
paths for continuing the work presented in this thesis.
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CHAPTER 2. A REVIEW OF USER-CENTRIC PRIVACY PRESERVING
MODELS IN A NEW IOT ERA

Concepts emerging from the IoT propose the integration of the human
factor as a fundamental component within interconnected ecosystems,
enabling the provision of novel services and features. However, the

data acquisition process conducted by devices facilitating the deployment of
these new paradigms raises concerns regarding the type of information these
entities can collect and infer. In many cases, users remain unaware that their
information is being gathered and lack necessary control over these data flows.
Currently, data protection regulations advocate for the adoption of transparent
practices that encompass adequate notification mechanisms, effective consent
management schemes, and the development of models that empower users as
active participants with complete control over data flows, incorporating privacy
preservation techniques.

In this chapter, we begin by providing an overview of the evolution of the main-
stream IoT concept toward new paradigms where end-users and their data play a
key role. One of the main challenges in these paradigms is privacy. We then con-
duct a revision and analysis of current user-centric privacy-preserving models,
categorizing them based on a proposed classification. Finally, we identify and
discuss challenges and open issues that can serve as starting points for upcoming
research initiatives in this domain.

2.1 A new IoT Generation and Privacy Preservation
Typically, technology is created and developed with the objective of supporting
humans in their tasks, from simpler to more convoluted activities, becoming a
powerful ally over time. In this vein, traditional analogue models have been re-
shaped into cyber-physical environments comprising a variety of interconnected
devices to support human activities by as many services as we can imagine,
giving rise to what is commonly known as IoT. In this process, the relation
between humans and IoT-based systems has become a focal point, giving rise to
all sorts of privacy concerns.

2.1.1 Toward a new IoT Era
The IoT paradigm is built upon the idea of seamless integration, grouping, inter-
connection, and interaction of heterogeneous objects and devices in communica-
tion networks [Gubbi et al., 2013; Al-Fuqaha et al., 2015]. Realizing this vision
is not straightforward due to the various challenges that need to be addressed
[Koohang et al., 2022], including availability, reliability, security, management,
scalability, and privacy. Before the emergence of the IoT paradigm, the Ubiquit-
ous Computing notion already explored the idea of a closer and more natural
relationship between users and computing devices.

This paradigm is in a constant ever-changing toward what is already known
as Internet of Everything (IoE) [Langley et al., 2021; Miraz et al., 2015]. The
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evolutionary process has giving rise to new concepts where the human factor is an
essential component within an overall technological ecosystem. In the literature,
there is a vast number of approaches that leverage this vision, including, among
others: People-Centric IoT [Silva et al., 2017], HiTLCPSs and Internet of All
[Nunes et al., 2015], Crowdsensing [Shu et al., 2017; Lashkari et al., 2019], Social
Sensing [Wang et al., 2019a], SIoT [Rho and Chen, 2018], and IoP [Guillén
et al., 2014; Boavida et al., 2016]. There are even approaches where humans
are modeled as sensors within a system [Wang et al., 2014], leveraging the fact
that, typically, users carry one or more smart devices with multiple, active, and
built-in sensors of different nature and characteristics composing walking sensor
networks.

Another possible way where humans contribute to an IoT environment in order
to achieve a social objective or make the relevance of an event of interest known
to a specific group of people, is through Crowdsensing [Shu et al., 2017]. For
this data acquisition technique, the members of a community collect information
using their own smart devices such as smartphones, smartwatches, and even from
their social networks, in what is known as a Social Sensing.

An alternative way of interaction between IoT and Online Social Networks
(OSN) is what is known as SIoT [Atzori et al., 2012]. This paradigm explores
the assumption that objects or “things”, within IoT, are capable of autonom-
ously establishing social relationships with other objects. Similarly, the concept
supports the idea of an ecosystem where people and smart objects can interact
within a social structure of relationships. SIoT is positioning itself to become
one of the most popular applications paradigm [Rho and Chen, 2018].

Regarding IoP, Boavida et al. [2016] argue that it can be considered as a specific
area within the IoT paradigm, where the source and sink of data are the humans
and their interactions, while in Miranda et al. [2015] this concept is seen as
closing the gap between humans and the IoT, thus achieving total integration
and paving the way for the development of new services and applications.

Currently, these IoT-based variants and its applications play an essential role
in providing better quality of life for people [Petrov et al., 2019]. Thus, the
development of platforms, systems, and applications based on this approach,
able to obtain and process data through user interaction or by built-in sensors
within the user’s devices, is a topical issue.

Nevertheless, it must be recalled that the fuel for all the possible implement-
ations of these concepts as a highly integrated technological environment with
several services, ends up being the same. We refer as fuel as the data that user’s
appliances and interconnected devices can capture, such as physical conditions,
environmental states, sensor variations, preferences, activities, location, social
network’s data, among others. Such data can be exploited and analyzed either
by whoever captures them or by third parties and, in the case of misuse, this
could eventually threaten and/or jeopardize the user’s privacy.
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2.1.2 Privacy-Preservation
Barhamgi et al. [2018] argue that existing solutions that are intended for privacy
protection in CPSs do not meet the objective of implementing controls to notify
the users about the purpose of information collection, when, by whom, and for
what reason. There is a clear lack of transparency around these systems, which
leads users to be unaware of the volume of sensitive information that can be
collected, processed, shared and even worse, inferred [Lippi et al., 2019]. An
average user is generally unaware of how securely their information is stored
[Rao et al., 2016], or the amount of sensors that exist in their surroundings [Lee
et al., 2018], or even which devices are currently collecting personal information,
making them vulnerable to attacks, whether they consist of identity theft or
scams [Rashtian et al., 2014]. All this adds up to the users’ lack of knowledge
about topics such as privacy policies and preferences [Smith, 2003]. Moreover,
systems that gather personal information focus on extracting and processing
as much data as possible to maximize their revenue, rather than considering
user privacy, and merely state data usage policies and user guides, forgetting
the integration of privacy mechanisms within their models. Last but not least,
given the undeniable relationship between data security and privacy, privacy in
the context of devices is often limited to mechanisms that target the security of
the hoarded data [Corcoran, 2016].

All this adds up the dichotomy presented by Pötzsch [2009], in which it is men-
tioned that although there are people who are generally aware of privacy (stated
attitude), their actions could be contradictory(behavior). This is known as the
Privacy Paradox. This author argues that one way to overcome this problem is
not only with technical solutions, but also considering behavioral and cognitive
aspects. The author concludes that people can only make informed decisions
when, in addition to knowing the possible benefits of disclosing personal data,
they are informed about privacy risks and the possible intentions of data recip-
ients, in other words, the potential privacy hazards.

In this sense, it can be argued that although technology has taken giant steps
toward an information-driven world, humans are losing prominence within this
ecosystem, and privacy is being threatened for the sake of information value. In
addition, we must not neglect that privacy is an inherent human right that spans
both the physical (offline) world and the digital (online) world. In fact, accord-
ing to the United Nations (UN), human beings have the same rights, whether
they are in a digital environment or in a real environment [Chander and Land,
2014; Nyst and Falchetta, 2017]. To safeguard privacy within the digital side,
this organization has requested all countries to review the methods, practices,
and legislation regarding the surveillance and interception of communications.
In this respect, EU-GDPR seeks to align with the UN requirement, although,
as mentioned by Notario et al. [2014], having a consistent legal framework is
not the ultimate solution, since this does not guarantee that stakeholders ad-
opt practices regarding privacy. Moreover, it is crucial to provide users with
platforms, systems and transparent mechanisms that allow them to effectively
re-gain control over their information [Edwards, 2016].
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Currently, DCs are using different mechanisms for data acquisition, which can
undermine the privacy of the DS. It is for this reason that the current proposals
for the control and preservation of privacy by the user are through intermediary
systems or entities. Intermediary components are modules typically positioned
between the DS and DC, more specifically within the data distribution pipeline.
Roughly, these intermediaries may contain one or more mechanisms that support
and/or provide user’s privacy preservation. A closely related concept is proposed
by Davies et al. [2016], where these intermediaries are called privacy mediators.
According to the authors, these mediators allow the DS, among other things, to
control the release of their data.

2.2 User-Centric Privacy Preserving Models
During the last decade, the state-of-the-art has considerably grown, with a fair
number of privacy-preserving approaches in various areas and some proposals for
their classification. For example, Vergara-Laurens et al. [2017] classify Privacy
Preserving Mechanisms (PPM) for Crowdsensing, while in Satybaldy and No-
wostawski [2020] a taxonomy of privacy preservation techniques based on block-
chain is elaborated.

In health cloud environment, Kanwal et al. [2021] propose a classification of
requirements for privacy preservation solutions and more closely related to the
IoT sphere, there has been some taxonomic efforts. For instance, Firoozjaei et al.
[2020] propose a taxonomy for privacy-preserving solutions for blockchain-based
IoT applications, while the categorization made by Kounoudes and Kapitsaki
[2020] is based on GDPR features and challenges.

Our review is structured according the classification proposed in Figure 2.1 and
aims to provide an order to the contributions that come under the realm of
user-centric privacy-preserving models. This sort of proposals pose end-users a
way to empower themselves with the control of their privacy aspects, and their
interaction is essential. For instance, a DS can discover and select IoT resources
in his/her vicinity, set privacy preferences manually or through assistance, grant
and revoke consent, etc. In this chapter we will focus mainly on this subset of
privacy-preserving solutions since we consider that in the new generation of the
IoT, the role of the human should not be limited only as a data source but an
active element able to interact and coexist within this ecosystem, accessing ser-
vices or be part of them without their rights being affected. Which is consistent
with the idea set forth by Nunes et al. [2015], that “human technology is made
by humans, for humans”.

The proposed classification consists of four categories. The first group of models
is organized based on what has been labeled as the smart domain. This cat-
egory encompasses four areas: Smart Cities, Smart Buildings, Smart Homes,
and Smartphones. Each of these areas incorporates various technologies aimed
at enhancing users’ quality of life and their experiences. However, they all share
a common characteristic: their operations are primarily data-driven. While this
feature is essential, it also gives rise to privacy concerns.
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Figure 2.1: Proposed classification for User-Centric Privacy Preserving Models

The second category organizes the contributions based on the approach to data
acquisition. Data can be collected either opportunistically or through particip-
atory means. Opportunistic sensing is a passive form of data collection that
occurs with minimal direct user interaction with applications, sensors, or per-
sonal devices [Guo et al., 2013], and sometimes without any interaction at all.
Conversely, participatory sensing involves users actively participating in the data
collection process by completing assigned tasks such as taking a photo or sharing
specific data in a particular moment or venue [Pournajaf et al., 2016].

The third division classifies models based on their privacy approach, categor-
izing them into three subsets: Privacy Policies and Preferences, Privacy Risks
Estimation, or a Dual Approach. The first subset includes models that require
the definition of privacy policies and their incorporation into a decision-making
phase. The second category encompasses proposals that rely on privacy risks as
their underlying mechanism. In other words, these models include a dedicated
component within their structure responsible for assessing the risks associated
with the information intended to be disclosed to a DC. The last category con-
sists of methods that implement a combination of both approaches, incorporat-
ing elements from both Privacy Policies and Preferences as well as Privacy Risks
estimation.

Lastly, the fourth group classifies models based on their architecture. Historic-
ally, centralized models have been prominent in the state-of-the-art. However, in
recent years, new alternatives have emerged, promoting decentralized approaches
or even hybrid models. In the case of hybrid models, certain tasks or processes
require an intermediary entity to execute them, while for other functions, the
mediator becomes dispensable.

— 12 —



CHAPTER 2. A REVIEW OF USER-CENTRIC PRIVACY PRESERVING
MODELS IN A NEW IOT ERA

2.2.1 Smart Domain
The integration of places, services, and devices, used by citizens to carry out their
daily activities, is increasingly seamless, transforming the environment around
them into an intelligent ecosystem. At present, each of the components that
comprise a smart domain is studied and approached individually due to their
intrinsic characteristics. However, a common concern that rise all the areas
that comprise an smart domain is privacy preservation. Within the literature
there are some proposals that aim to mitigate this issue [Seliem et al., 2018].
For instance, Eckhoff and Wagner [2018] review building blocks for Privacy
Enhancing Technologies (PET) within a smart city context. Based on their
analysis, they were able to propose a set of strategies at the system design level,
to incorporate privacy aspects. Similarly, a taxonomy is proposed to classify
risks, comprising five types of privacy, namely privacy of location, privacy of
state of body and mind, privacy of behavior and action, privacy of social life,
and privacy of media.

An alternative that aims to ensure security and privacy for data dissemination
in a smart-city context is SMARTIE, a people-centric IoT platform proposed by
Martínez et al. [2017]. This approach is intended to provide end-users with a flex-
ible and scalable model to protect the access to smart meters data. To address
privacy requirements, SMARTIE’s architecture includes a policy-based author-
ization model along with advance cryptographic scheme. Under such approach,
SMARTIE’s users are empowered to define their own access control preferences
through eXtensible Access Control Markup Language (XACML), integrating
Ciphertext-Policy Attribute-Based Encryption (CP-ABE). The authors of this
proposal consider that the next step for this framework is a deployment on
FIWARE, one of the main reference IoT platforms [Sinche et al., 2020b].

In order to guarantee the security and privacy of data and communications
within IoT applications like smart homes, smart cities, smart grids, and health-
care, Banerjee et al. [2019] introduce a lightweight anonymous user authenticated
session key agreement scheme. This scheme emphasizes anonymity and untrace-
ability as its core features. It employs a three-factor authentication method that
utilizes smart cards, passwords, and biometric information of the DS to estab-
lish secure communication. Furthermore, Kumar et al. [2019] propose another
authentication-based approach specifically designed for smart grids, aiming to
ensure data integrity, anonymity and untraceability.

In the study conducted by Makhdoom et al. [2020], the authors introduce “Privy-
Sharing”, an innovative framework supported by blockchain technology that
aims to facilitate secure and privacy-preserving sharing of IoT data within a
smart city environment. The key novelty of this work lies in the design of block-
chain channels, which are divided into specific categories such as health, mobility,
energy, and finance, allowing a limited number of organizations to process data
within each channel. This division ensures focused data processing in accord-
ance with the context of smart cities. Moreover, the framework employs smart
contracts to regulate and embed an access control process, enabling organiza-
tions to access user data while ensuring compliance with the GDPR. However,
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the authors acknowledge the need for a secure integration system to connect IoT
devices with the blockchain network, which is an aspect that requires further
attention and implementation.

Pappachan et al. [2017] propose a privacy-aware model for smart-building en-
vironments, which is made up of three main components. The first component
is the IoT Resource Registry (IRR), responsible for broadcasting the data col-
lection and sharing policies of IoT technologies that are going to interact with
the DS. The second component, dubbed IoT Assistant (IoTA), manages user
notifications regarding the privacy policies issued by IRRs, and allows the set-
up of privacy preferences. The last element is the Privacy-Aware smart building
management system, based on the Testbed for IoT-based Privacy Preserving
Pervasive Spaces (TIPPERS) [Mehrotra et al., 2016]. The latter component has
the function of receiving user privacy preferences and enforcing what is stipu-
lated by the user when an IoT device begins to capture the data. As a first
point, through TIPPERS, the building administrator defines the data collection
and management policies within the smart location, which will be distributed
by one or more IRRs. Once the policies have been established, the sensors begin
the data gathering process. By the time the user accesses the premise, the IoTA
installed on the user’s handheld device will be able to discover the IoT devices
around it, along with their privacy policies. The IoTA displays the relevant
elements of these policies to the user, based on the privacy preferences. The
relevance that IoTA gives to an element of the policy is based on a modeling of
the user’s privacy preferences learned over time. Figure 2.2 illustrates the inter-
actions between each of the elements of this framework. In this model, privacy
policies and preferences have been defined using a language based on JavaScript
Object Notation (JSON)-Schema v4.

Figure 2.2: Testbed for IoT-based Privacy Preserving Pervasive Spaces. Adap-
ted from Pappachan et al. [2017]

In a smart-home context, Chhetri and Genaro Motti [2022b] first conducted a
qualitative study and based on their findings propose a privacy control frame-
work with the aim of guide designers. The framework highlights several factors
associated to privacy controls such as data-related controls, transparency, cent-
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ralized interface, device control, multi-user controls, user support and security
controls. An implementation of this framework in a prototype fashion called
MyCam is carried out in Chhetri and Genaro Motti [2022a].

Zavalyshyn et al. [2018] propose HomePad, a privacy-aware smart hub for smart-
homes. The goals of this model are empowering end users with a way to con-
trol which applications can access and process sensitive data collected by smart
devices, and limit applications’ execution unless they fulfill the privacy restric-
tion set by the DS. HomePad manages the access to all smart home devices
and provides a platform for applications execution. The DS can access the hub
through a management interface to install and uninstall home apps, register
new smart devices, and set privacy policies. HomePad exposes an Application
Programming Interface (API) through which home apps can obtain sensed data,
send data to actuators, access Internet services and perform data computation.
For the implementation, the authors developed four applications, namely Lights
Control, FaceDoor, Tide Pooler, and Spotify Control. According to the per-
formance assessment, HomePad introduces an overhead between 4.7% and 6%,
and the execution time varies between 2.2 and 4.1 seconds. The authors claim
that these overheads do not hamper the User Experience (UX).

To enhance privacy awareness concerning the data gathered by IoT devices in
smart homes, a solution called PrivacyCube has been proposed by Muhander
et al. [2022]. PrivacyCube serves as an interactive device that enables DS to
acquire knowledge about the IoT devices present in their surroundings and their
respective data practices.

According to Wijesundara [2020], some privacy violations occur when smart
homes’ occupants interact with shared smart devices through User Interface
(UI). Thus, an adaptive UI framework is proposed to model different user pri-
vacy preferences, user capabilities, and UI preferences. This proposal includes
algorithms for detecting privacy violations and adapt the UI to fulfill users’
privacy preferences without hindering usability. In contrast to other models,
these privacy preferences are represented with the Rei policy language [Kagal
et al., 2003]. To overcome the lack of users’ control over their privacy in smart
homes, a privacy decision model is proposed by Keshavarz and Anwar [2018].
This proposal seeks to assist users to easily express their privacy preferences. To
carry out this task, the model leverages ML techniques to classify information
as sensitive or non-sensitive.

A smart-home data inference framework based on ML models is proposed and
implemented by Kounoudes et al. [2021] as a privacy tool called PrivacyEnhACT.
The idea behind this proposal is to notify the user regarding unwanted inferences
that could happen after processing different types of environmental data such as
temperature, humidity, sound level, light intensity, motion a real time water flow
consumption. These notifications are meant to be used as a privacy awareness
mechanism to aid DS to refine the privacy setting of the collecting devices. This
model could be complemented with EPIC, a privacy-preserving traffic obfusca-
tion framework that prevents traffic analysis attacks [Liu et al., 2018] within
an smart home environment. Its core is a utility-optimal differential privacy
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mechanism to obfuscate the traffic flows’ source, and also a privacy-preserving
multihop routing model to assure unlinkability between source and destination.
Another approach, described in Datta et al. [2018], involves shaping traffic flows.
In this case, the authors propose, develop, and evaluate a Python library that
enables the fitting of traffic to fixed distributions, effectively obfuscating user
activity.

Xu et al. [2018] introduce a framework called Local Differential Privacy Obfusca-
tion (LDPO) for data analytics, aiming to preserve data privacy while maintain-
ing data utility. The framework operates by distilling IoT data on edge servers,
utilizing a two-layer privacy approach. The first layer focuses on minimizing
data on the IoT device itself, while the second layer implements obfuscation on
the intermediate edge server. Data aggregation plays a crucial role in this server
to prevent information leaks and reduce communication overhead. Certain user
contents are customized based on requests from a DS, while others are diffused.
Implementing LDPO faces several challenges, including designing lightweight
algorithms to support real-time services, developing practical schemes for veri-
fying privacy computations on resource-constrained IoT devices, and finding a
suitable balance between data privacy and data utility.

Closer to the user level, we find the smartphone, one of the most popular smart
devices with greater adoption and use in society. In this kind of devices, pri-
vacy problems are considerable. Smartphones are immersed in our daily lives,
and generally they are equipped with a wide variety of sensors, communication
interfaces, and considerable processing power. Thus, they represent a potential
privacy risk [Dai et al., 2017]. A large amount of private information can be in-
ferred from the data that the built-in sensors can capture. To ease this, Xu and
Zhu [2015] propose SemaDroid, a privacy-aware sensor management model, to
provide fine-grained access control over the smartphone’s sensors. This frame-
work allows the user to check sensors’ usage by a third-party app based on
the context and on the quality of the sensor data being supplied. To define
in what context the data acquisition is allowed and the level of quality for the
sensor data, SemaDroid uses Extensible Markup Language (XML) sensor usage
policy.

Another alternative to prevent privacy inference attacks based on Android
sensors data is Sensor Guardian [Bai et al., 2017]. This privacy protection sys-
tem comprises two approaches. The first is a static instrumentation technique
to insert hooks into the code of an Android Application Package (APK) file and
control API calls used for accessing sensors. The second one is a policy man-
ager running on the Android device as an app, managing and deploying control
policies for the instrumented application. These policies allow or deny access to
the sensor’s data. Liu et al. [2016] propose a Personal Privacy Assistant (PPA)
for mobile app permissions, this PPA is able to identify a suitable privacy pro-
file following the preferences established by the user. According to the privacy
profile the PPA recommends to the DS a group of permission settings.
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2.2.2 Data Acquisition Approach
Another possible classification for this kind of privacy-preserving models is based
on the data acquisition approach. Boubiche et al. [2019] present a taxonomy
based on scalability criteria, the sampling rate, and the user involvement level.
However, for our classification, we define two scenarios, one based on opportun-
istic sensing, and other based on participatory sensing.

Wang et al. [2013] propose a framework to mitigate the privacy problems associ-
ated with the opportunistic sensing of groups of users’ location, named Privacy
and Energy-Aware Location Service (PEALS). PEALS privacy model is based
on the collection of privacy and energy preferences, along with the position of all
the members of the group, as well as the privacy policies, the level of precision
regarding the location, and the energy requirements for the operation of a mo-
bile application. PEALS acts as an intermediary or broker between users and
mobile applications that require user location for their operation. The frame-
work determines whether the position of a particular DS (consumer’s location)
can be replaced by the one from another member of the contributor group when
it is delivered to a mobile application. In this sense, it safeguards the privacy
of the consumer (based on a privacy preference) and achieves energy savings
on the user’s device since the sensor or sensors intended for geolocation are
deactivated.

Lee et al. [2018] proposed and developed a system named IoT Service Store (ISS)
(Figure 2.3), based on a client-server approach. This implementation allows
users to discover and interact with IoT services, announcing the privacy implic-
ations of their use. Additionally, ISS allows DS to control the collection and use
of information obtained through the sensors. IoT services are registered within
ISS, including data collection policies, possible inferences that can be derived
from the collected information, and the service evaluation in terms of benefits
and privacy risks using a five-star rating system. Each IoT service broadcasts a
Bluetooth beacon containing a unique Uniform Resource Locator (URL), which
will be detected by the user’s device. This URL redirects the user to a web-
site hosted on ISS, which contains information regarding the IoT service and
its privacy policies. Possible interactions between the user and ISS include the
subscription to a particular IoT service, the privacy preferences set-up, and
service rating, among others. In addition to the system implementation, the au-
thors proposed an information architecture to correlate the data obtained by the
sensors with the personal information that can be inferred from it, thus contrib-
uting to achieve a better understanding of privacy risks by users, whenever they
agree to use a certain service. For this architecture, the authors defined eight
data types that can be obtained by sensing, against sixteen types of personal
information that can be inferred.

In the context of location-based services deployed through opportunistic sens-
ing, there are some proposals and techniques for privacy preservation. Unfor-
tunately, in scenarios where participatory sensing prevails, these techniques are
not directly applicable, since the participant is required to provide additional
information.
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Figure 2.3: IoT Service Store. Adapted from Lee et al. [2018]

Participatory system has components and mechanisms that help people share,
search, and publish information from their mobile devices [Lane et al., 2008].
This type of sensing is more active, and users usually perform a designated task
[Chi et al., 2018; Pilloni, 2018]. Techniques based on mobile device sensing have
advantages over traditional sensor networks, namely low cost, wide-coverage,
and high mobility [Gong et al., 2019].

In this category the PiRi framework [Kazemi and Shahabi, 2011] aims to solve
the problem of Privacy-Aware Participatory Assignment. The proposal assumes
a privacy model where the participants trust each other but do not trust the
server. Mistrust in the server stems from the fact that every time a participant
wants to execute a task, a query with his location (which generally might include
a private address) must be sent to the server, to retrieve a set of nearby places
for the execution of the tasks. This process can be used to reveal the main
locations of the participant, allowing the user to be tracked.

An extension of this previous the work is the Trustworthy privacy-aware par-
ticipatory sensing (TAPAS) framework [Kazemi and Shahabi, 2013], which ad-
dresses both the privacy and trust issues of participatory sensing. Its objective
is to encourage the participation of users without affecting their privacy and, in
turn, improve the trustworthiness of the collected data. Another model proposal
that offers a solution for assigning tasks to participants without the necessity
to reveal their location is proposed by Yuan et al. [2020]. This model adopts a
grid-based location protection method along with a hybrid encryption algorithm
to preserve the location of tasks and participants.

2.2.3 Privacy Approach
One of the first models capable of providing the user with some control over pri-
vacy decisions based on privacy policies dates back to 2002, with the proposal
and implementation of the Privacy Awareness System (pawS) for Ubiquitous
Computing Environments [Langheinrich, 2002]. For this proposal design, the

— 18 —



CHAPTER 2. A REVIEW OF USER-CENTRIC PRIVACY PRESERVING
MODELS IN A NEW IOT ERA

author adopts four of the six privacy preservation principles defined by Langhein-
rich [2001] – Notice, Choice and Consent, Proximity and Locality, Access and
Recourse – to elicit the requirements, which are later translated into prototype
functionalities. PawS generates privacy beacons announcing the data collection
of each of the services, along with the privacy policy, using Bluetooth or Infrared
Data Association (IrDA) technology. These beacons are processed by a Privacy
Assistant (PA), which resides on the user’s personal device. The PA delegates
the contact with the Service Proxy (SP) to the Privacy Proxy (PP), which re-
quests the privacy policy and is able to compare it with the privacy preferences
established by the user, to accept or decline the service. In this proposal, the
privacy policies are encoded in machine-readable XML, and they include the
procedures for data collection and the future use of it, for example, who is col-
lecting the data, what kind of data, for whom, and why. From the user’s side,
the privacy preferences can be defined using APPEL [Cranor et al., 2002], a
machine-readable language used for privacy policies.

Chow [2017] proposes the Privacy Stack, a four-layer conceptual model that
globally outlines and synthesizes the functionalities and characteristics that a
privacy-aware IoT system should possess. The four layers composing this stack
are Awareness, Inference, Preferences, and Notification. The first layer encom-
passes everything related to the communication channel opening by the IoT
service to users, and how they manage to discover the privacy properties of
these services. The communication channel can be established through visual
signifiers or through traditional network protocols between the service and the
user. The second layer tackles the limited knowledge that a user might have
about the information that can be inferred from the captured data. For this
point, the author proposes that IoT services must expose the basic inferences
through privacy policies. The Preferences layer shows that the user is the entity
in charge of making the privacy decisions regarding a particular IoT data col-
lection scenario. However, these decisions must depend on the context. Finally,
the Notification layer is the one related with the user interaction. The notifica-
tion mechanisms that are deployed from it must be based on the results of the
previous layers, for the user to find them useful without becoming annoying. In
addition to notifications, the author leaves open the possibility of other types
of interactions, for example, the display of privacy policies and the setting of
privacy preferences by the user through a privacy proxy.

In Wang et al. [2013], the privacy preferences’ definition is also made on the user’s
handheld device, while each IoT resource is in charge of the privacy policies’ pro-
vision. The privacy policies can be managed by a central infrastructure in charge
of their distribution, as in the case of the privacy preference model for IoT ap-
plications proposed by Cha et al. [2018], called Privacy Bat, based on Bluetooth
Low Energy (BLE). This model provides a method and a format for IoT devices
management, allowing the registration of the devices along with their privacy
policies. On the user side, the model defines a standard way for privacy pref-
erence notifications toward BLE devices. In this model the Device Information
Service (DIS) stands out as the core component. DIS implements two interfaces.
The first interface, called Device Registration and Management, is responsible
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for the registration and management of IoT devices. For the registration, the
administrator identifies each of the devices using a 128-bit Universally Unique
identifier (UUID). Each IoT device must periodically broadcast its identifier
using BLE. The moment the user’s device captures a beacon, DIS is contac-
ted through the second interface, called Device Information and Privacy Policy
Provision, to obtain the privacy policies associated with the IoT device. Once
the privacy policies have been received, the user can express his/her privacy
preferences through the Privacy Preference Expression Generic Attribute Pro-
file (GATT) Service, accepting or rejecting the IoT device policies. This model
implements the Platform for Privacy Preferences (P3P) [Cranor, 2003], relying
on the definition of privacy policies by the DC, who is responsible for data col-
lection and its subsequent use. The model also establishes the means for the
DS to access their information. For the validation of Privacy Bat, the authors
implemented a proof-of-concept through a centralized system.

Inspired on Pappachan et al. [2017], Das et al. [2018] consider that there is a
pressing need to implement a model capable of discovering and obtaining in-
formation about IoT resources (devices, services, and applications) around us,
that may collect and use our data without our explicit consent. This infrastruc-
ture prototype was implemented and deployed in the Carnegie Mellon University
campuses. It is made up of three main components, the IRR, PPA for IoT, and
the Policy Enforcement Point (PEP).

IRRs allow IoT resource owners to provide descriptions of resources, including
the purpose of data collection, retention period, and the third-party data sharing
police. The PPA is an application for smartphones that assists users in the IoT
resource discovery process, based on their location. However, the PPA is limited
to only listing the available resources registered in the IRRs. It should be noted
that the information that the PPA deploys is based on the privacy preferences
previously established by the DS. Lastly, the PEP is responsible for controlling
the collection and use of data according to the privacy settings. This component
oversees verifying that the data obtained through the IoT resource is processed
as established by the user. The PEP component can be embedded in the IoT
resource or implemented as an external proxy. The IoT resource registration
with an IRR is performed through a portal, where the resource owners must
authenticate themselves. The registry can be executed from scratch or by custom
templates with predefined values. After this process, the PPA installed in the
user’s smartphone can discover the published IoT resources and configure some
privacy settings through interaction with the application. Finally, the PEP
enforces the privacy settings of each user when IoT resources start collecting
data. This IoT infrastructure is an extension with a very similar approach to
the proposal presented in Das et al. [2017] in the field of privacy-oriented facial
recognition, where users are warned about the presence of smart cameras in their
whereabouts.

Halcu et al. [2015] propose a privacy model for HiTLCPS guided by the privacy-
aware design principles introduced in Wicker and Schrader [2011]. The Pri-
vacy/Security Engine in one of the components of the model and acts as an
intermediary between the Data Provider and the Data Post-Processing within
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the pre-processing stage, anonymizing the data and considering the Privacy
Policies defined by the user. Those policies include restrictions in sharing loca-
tion, notifications, and tracking. Also, this model defines the use of Transport
Layer Security (TLS) connections, an anonymous authentication scheme based
on certification messages and a privacy rule generator for the HiTL control
based on the emotion classification and the user’s feedback. In this model the
authors define two privacy levels namely Low Level and High Level. The former
is directly related to negative emotions while the latter is associated to posit-
ive emotions. For both levels, there is a set of actions and settings that are
configurable by the user.

A generic framework for consent and information in IoT was proposed by Mo-
rel et al. [2019]. The underlying technical functional requirements are based
on the recommendations established by GDPR [Parliament et al., 2016] and
on the published guidelines on transparency and consent of the Working Party
29 (WP29) [Commission, 2016; Party, 2018]. In this model, the interaction
between DC and DS is defined, and divided into two parts, the first between
the DS and its Gateway Device, and the second between the Gateway Device
and the DC device. The privacy policies definition and semantics are based on
what is stated by Pardo and Le Métayer [2019]. Within the technical options,
this framework considers two possibilities: the first one is direct communication
between DC and the DS devices (Gateway Device and other devices), and the
second one is indirect communication using registers. Direct communication can
be implemented using wireless communication technologies, such as Bluetooth
or Wi-Fi, without an internet connection and without affecting other services.
On the other hand, indirect communication requires the implementation of re-
gistries, used by both, DC and DS. In the case of DC, the registry will be a
privacy policies repository, to which DS can access regardless of their location,
minimizing the risk of location inference through direct communication. How-
ever, having indirect communication requires a periodical record update by DC.
DS-side records can be implemented for DC to access the provided consents.
However, this option is weaker in terms of privacy, since DS must disclose their
privacy policies. Finally, within the model, the authors also define an element
called Personal Data Custodian (PDC), which is essentially software for the DS
Gateway Device. This software allows DS to consult the information retrieved
from DC and to express privacy preferences. PDC interact with DC for allowing
or denying data collection.

Another approach similar to the previous one is proposed by Lee et al. [2019]
where the DC asks the DS for consent for personal information collection. Un-
like other contributions, the information exchanged between DSs and DCs is
encrypted using asymmetric keys. The privacy preservation model includes four
elements within the interaction: the user’s IoT device, the user’s agent, the
Gateway device, and the data collection server. The IoT device and the user
agent make up the DS, while the Data Collecting Server represents the DC.
The Gateway device works as the intermediary between the DC and the DS.
Within this proposal, the format of the messages to be exchanged between DS
and DC is defined. The interaction defined in this procedure begins with the
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sending of the Personally Identifiable Information (PII) Message by the User IoT
Device. In this message, each type of PII is encrypted with a different public
key, in addition to containing the public key of the DS. Once the message has
arrived, the DC selects which PII requires, and requests consent from the User
Agent by sending it an encrypted consent message with the DS public key. The
consent request message includes the Device ID, DC certificate and the privacy
policy document. The former element is displayed to the DS through the User
Agent. The DS is going to select and check the items in the collection list that
are allowed for the DC. in the case of approving the collection, it encrypts the
private keys using the public key of the DC and sends the consent message.
Once the message is received, the DC can decrypt the fields of the PII to which
the DS allowed access. It is worth mentioning that this procedure has not been
evaluated in a real scenario nor through a prototype.

Sun et al. [2020] propose iRyP a purely edge-based privacy-respecting system for
mobile cameras where the DS privacy preferences are piggybacked into the BLE
advertisement messages. In this proposal DSs define their privacy preferences
offline and then upload it to their smart devices. Once the smart device contains
the privacy profile, this is going to be broadcast to other smart appliances with
camera capabilities for privacy enforcement. Similarly, Rios et al. [2022] propose
a distributed Privacy Manager system based on Edge Computing (PMEC), to
handle personal IoT devices in extended home ecosystems. The privacy prefer-
ences are expressed based on a context-aware policy language to aid DSs in this
task. Through these preferences is possible to define the data access and data
management privacy policies.

An augmented reality based privacy management interface is proposed by Ber-
mejo Fernandez et al. [2021]. This model called Privacy Augmented Reality
Assistant (PARA) serves as a privacy-preserving assistant specifically designed
for smart devices in a home environment. The main goal of PARA is to provide
real-time contextualization of data disclosure to users and empower them to
control their privacy preferences through the utilization of privacy filters.

Barhamgi et al. [2018] present a vision of how DSs will have a central and
effective role in protecting their privacy within a cyber-physical environment,
through the proposal and implementation of a data exchange architecture. This
implementation allows DSs to evaluate implicit privacy risks and contrast them
with the benefits of information sharing. The proposed solution can be adapted
to the IoT environments context. Additionally, this proposal analyzes the re-
quirements that future data collection architectures must implement to provide
effective protection in terms of privacy. The first requirement is related to capab-
ility for users to understand privacy risks, given the subjectivity of their vision,
in addition to having the necessary mechanisms to control the exchange of in-
formation. The second requirement is that there must be a pragmatic stance
from the user, being able to assess the risk and balance it against the benefits
established by the DC and, if necessary, to negotiate before starting the data
exchange process. Finally, it is recognized that the decision to share data may
depend on the context of the DS and, therefore, the architecture must detect
possible context changes to take necessary actions. In addition to the architec-
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ture depicted in Figure 2.4, the authors propose a model capable of balancing
the exchange of information based on risks and benefits. To calculate the risk,
the query sensitivity, the degree of confidence in the DC, and the potential in-
formation leakage in the case of answering the query are considered. In the
case of profit measurement, this proposal is still very subjective. Similarly, in
Markovic et al. [2018], an IoT privacy risk assessment service is proposed, which
evaluates the input information based on a risk model that takes into account
the parameters of the IoT device, the communication channel, and the data
storage location.

Figure 2.4: An architecture for user-centric privacy preservation for the IoT.
Adapted from Barhamgi et al. [2018]

It is also worth mentioning that some models adopt a dual approach, where
both approaches are proposed and implemented within their architecture, as is
the case of the model presented by Torre et al. [2016b]. In this contributions
the authors introduce a framework for personal information protection that in-
tegrates a Personal Data Manager (PDM) and an Adaptive Inference Discovery
Service (AID-S) [Torre et al., 2016a]. These two components form a block la-
belled as [PDM + AID-S], placed between the user and third parties. Among
the PDM functions, the main one is privacy policies or policy statements revi-
sion from IoT Services and third parties, to maintain consistency with the users’
privacy settings prior to the decision to access the information. On the other
hand, AID-S calculates inference risk associated with the disclosure of personal
information. [PDM + AID-S] comprises five functionalities –managing the in-
teraction among parties, access control, recommendations, inference discovery
and user profiling– composed of eight tasks –Dialog management, Authentica-
tion/Authorization, Policy statement evaluation, Privacy Preferences settings,
Privacy Preferences and thresholds estimation, Inference risks computation, Op-
timal privacy setting, and Transformation to sanitize shared data–. The PDM
delegates communication coordination to the Dialog Management task, by using
dedicated interfaces between the user (PDM2User), third parties (PDM2Third-
Party), and AID-S (PDM2AID-S). For the access control functionality, there
are two tasks. The first one addresses the request evaluation from third parties,
based on Privacy Statements containing information that describes what data
will be collected, processed, and stored, the quantity and frequency, and the pos-
sible uses. The second task, named Authentication and Authorization, is done
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by managing a list of authenticated third parties. Third party authorization is
given once the request is certified and accepted. To carry out the evaluation of
third-party requests, the PDM creates user profiles where privacy preferences
are declared and configured. There are some PDMs which partially implement
the tasks shown in this framework, such as Databox [Chaudhry et al., 2015],
Enigma [Zyskind et al., 2015], and ipShield [Chakraborty et al., 2014].

Similarly, in the privacy management model described by Psychoula et al. [2017],
when a DC wants to access the user data collected in a smart home context,
the request must pass through a Privacy Risk Detector. This component along
with the Privacy Management component estimate the requested data sensitivity
based on the privacy preferences established by the DS and implement an access
control feature to allow or denied the access to the data, according to the access
level of the DC. All the allowed data is anonymized before being accessible by
the DC. This model was assessed using a case study comprising 16 smart homes
equipped with ambient sensors and actuators.

Data Bank is proposed by Jaimunk [2019], as a model to manage data from
IoT devices and control its transfer to cloud services. This proposal provides
the DS and the DC with a model to declare data collection policies and data
sharing policies respectively. The architecture of this model comprises three
main features namely data repository, privacy-utility mechanism, and access
control enforcement. The first feature allows the data to be store locally in a
component called Data Pocket before transferring to the data repository in the
cloud. This component keeps the predefined privacy policy and filter’s user data.
The second feature looks for finding the right balance between benefits against
possible privacy lost. Finally, access control enforcement restricts DC to access
to the DS’s data based on an access control policy.

2.2.4 Model Architecture
Thus far, the majority of the examined models exhibit a centralized architecture,
wherein a prominent intermediary component assumes a crucial role. These
mediators primarily serve to coordinate data protection-related operations and
processes. For instance, in Pappachan et al. [2017], TIPPERS serves as the
convergence and management point for services, sensors, and policies. Similarly,
in Das et al. [2018] this role is assumed by the IRR. A similar pattern emerges
in Lee et al. [2018], where the ISS facilitates service management and enforces
privacy preferences.

Although the centralized proposals are the majority group in this review, over
the years, there has been a gradual shift from these approaches to decentralized
proposals. As the proliferation of connected devices continues to expand, the
reliance on a centralized infrastructure for data processing, storage, and decision-
making has become increasingly impractical and prone to single points of failure.
Acknowledging these challenges, the scientific community and the industry has
started to embrace decentralized approaches as a promising solution

Notably, Rantos et al. [2019] and Agarwal et al. [2020] leverage blockchain
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technology to ensure consent integrity and versioning respectively. The first
approach, called ADVOCATE, presents a user-centered solution for handling
provisioned consents, validating them, identifying conflicts between rules and
policies, and assisting DS in making appropriate privacy decisions. Conversely,
the second framework named Consentio, primarily focuses on a consent manage-
ment model based on a permissioned blockchain. In this proposal, the consent
management process is decoupled from the data management process, and the
consent is jointly managed among the involved parties.

Alhajri et al. [2022a] propose a blockchain-based consent mechanism for access-
ing fitness data in a healthcare context. The designed model strives to meet
multiple requirements, including transparency, security, scalability, auditabil-
ity, preservation of original functionality, and compliance with data protection
regulations. The authors present an architecture that incorporates various par-
ticipants and actions. To validate security requirements such as authentication
and proof of authenticity, they rely on a security modeling framework called
SeMF.

The model presented by Saha et al. [2020] focuses on IoT applications in the
healthcare sector, where the privacy and confidentiality of DS’s data are of para-
mount importance. To achieve this, the model utilizes a private blockchain to
devise an access control scheme. Under this scheme, every new DS is required
to authenticate themselves with the trusted Hospital Authority. By adopting
such an approach, the model ensures the anonymity and un-traceability of the
DS, thereby safeguarding their sensitive information. Similarly, Saha et al. [2021]
propose a novel consortium blockchain-based access control scheme that primar-
ily targets edge devices. In addition to supporting access control functionalities,
this scheme also facilitates key management between edge devices and cloud
servers, specifically within the DC infrastructure.

Manzoor et al. [2021] propose a hybrid model aimed to tackle the issue of
one-time consent in centralized consent management and relies on a proxy re-
encryption scheme to ensure secure and anonymous transfer of IoT data. This
model leverages blockchain technology to tackle scalability, trust issues, and
automate payments for shared data, thus addressing additional challenges in
the IoT data ecosystem.

Another hybrid approach for data sharing is proposed in Lin et al. [2021] in the
scope of sensing-as-service in smart cities. This model integrates some crypto-
graphic techniques such as symmetric and asymmetric encryption schemes, and
a signature scheme. According to the authors, their model meets identity man-
agement, key renewal, pseudonymity, confidentiality, traceability, fairness and
universality challenges.

Egala et al. [2021] proposed Fortified-Chain, a novel model for decentralized
healthcare CPS, that includes a Selective Ring-based Access Control (SRAC)
mechanism, device authentication algorithms and also aims to preserve DS an-
onymity. Each table record is a ring for a particular DS. Each entry in the table
is referred to as a ‘ring’ specific to a particular patient. The DS is given the
ability to generate multiple distinct static rings for various files. Simultaneously,
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based on the index value, the patient can establish a dynamic ring to accept valid
file access requests from a remote location. For different categories of files, the
patient assigns different index values based on critical information. The SRAC
compares the requester’s index value with the required index value in the ring
to grant secure read-only access to remote actors. Each hospital independently
calculates the local actor index values for dynamic file access control. The model
is implemented and assessed based on a logical analysis.

At this point and after reviewing the most relevant contributions in this area,
it is worth emphasizing two aspects. The first one is that the reviewed models
are not category-exclusive in the taxonomy. They were ordered in this section
according to its predominant category. However, they can be classified into one
or more groups based on their features and the approach they implement, as
shown in Table 2.1. The second aspect is that the models we have reviewed,
while providing openness for user interaction, also have their own privacy and
security mechanisms, such as encryption, anonymization and/or access control.
Table 2.1 presents this information for those models that explicitly mentioned
the use of any of these mechanisms.

2.3 Open Challenges and Research Opportunities
In the previous section, user-centric privacy-preserving models was thoroughly
reviewed. In this section, we are going to synthesize and discuss those contribu-
tions, and identify the open challenges and research opportunities that arise from
them. The analysis of the literature carried out so far in the current survey shows
that some of the challenges identified in early proposals have been addressed in
more recent contributions. Nevertheless, we can still identify several directions
and considerable challenges to be approached by future research.

For the sake of organization and clarity, we are going to discuss the proposals
and identify open challenges based on some common aspects that these models
offer, namely:

• privacy preferences and privacy policies management;

• notice and discovery mechanisms;

• consent management;

• risk inference;

• enforcement points and compliance;

• user engagement and incentives

• real scenario deployment and assessment.

2.3.1 Privacy Preferences and Privacy Policies Management
User Privacy Preferences establishment and Privacy Policies declarations are ex-
amples of functionality common to several of the revised proposals. In Langhein-
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Table 2.1: User-Centric Privacy Preserving Models
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Barhamgi et al. [2018] X X X X A-DP Prototype
Lee et al. [2018] X X X X AC-E X Prototype

Martínez et al. [2017] X X X E-AC Prototype
Banerjee et al. [2019] X X X E-AC Simulation
Kumar et al. [2019] X X X E-AC Prototype

Makhdoom et al. [2020] X X X AC Prototype
Pappachan et al. [2017] X X X X A-AC Prototype

Chhetri and Genaro Motti [2022a] X X X X AC Prototype
Zavalyshyn et al. [2018] X X X AC-E-A Prototype
Muhander et al. [2022] X N/S Prototype

Wijesundara [2020] X X X N/S X Theoretical
Keshavarz and Anwar [2018] X X X AC X N/S

Kounoudes et al. [2021] X X N/S X Prototype
Liu et al. [2018] X DP Simulation

Datta et al. [2018] X X DO Simulation
Xu et al. [2018] X X DP Simulation

Xu and Zhu [2015] X AC Prototype
Bai et al. [2017] X AC Prototype
Liu et al. [2016] X X X N/S X Prototype

Wang et al. [2013] X X X X N/S Prototype
Kazemi and Shahabi [2011] X X A N/S
Kazemi and Shahabi [2013] X A Simulation

Yuan et al. [2020] X X E Simulation
Langheinrich [2002] X X X AC Prototype

Chow [2017] X X X X N/S X Theoretical
Cha et al. [2018] X X X X AC Prototype
Das et al. [2018] X X X X AC-A X Prototype
Das et al. [2017] X X X X AC-DO Prototype

Halcu et al. [2015] X X E-A X Prototype
Morel et al. [2019] X X X AC-A Prototype
Lee et al. [2019] X X E N/S
Sun et al. [2020] X X DO X Prototype
Rios et al. [2022] X X AC Prototype

Bermejo Fernandez et al. [2021] X X AC-DO X Prototype
Markovic et al. [2018] X X X E-AC N/S
Torre et al. [2016b] X X X AC N/S

Psychoula et al. [2017] X X X X A-AC Theoretical
Jaimunk [2019] X X X AC N/S

Rantos et al. [2019] X X X X AC Prototype
Agarwal et al. [2020] X X X AC Prototype
Alhajri et al. [2022a] X X X X AC Theoretical

Saha et al. [2020] X X X E-AC Theoretical
Saha et al. [2021] X X E-AC Prototype

Manzoor et al. [2021] X X X E-AC Prototype
Lin et al. [2021] X X X E-AC Prototype

Egala et al. [2021] X X X E-AC Prototype
(E) Encryption, (A) Anonymization, (AC) Access Control, (DO) Data Obfuscation, (DP), Differential Privacy

rich [2002], privacy preferences are managed by the personal privacy proxy, while
the privacy policies are handled by the service privacy proxy. Similarly, in Za-
valyshyn et al. [2018], the DS can establish this privacy preference using a man-
agement interface of the HomePad. In the case of the models from Pappachan
et al. [2017] and Das et al. [2017], privacy preferences are defined in the IoTA and
the PPA modules respectively, while the privacy policies of the IoT resources
are managed by IRRs. In the model proposed by Lee et al. [2018], the ISS
stores the IoT services’ privacy policies and allows users to set-up their privacy
preferences.

In Cha et al. [2018], a service called Privacy Preference Expression GATT is
used to communicate the privacy policies of a device. However, in this model,
the preferences are not defined by the user, and the privacy policy evaluation
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leads to the consent. In Morel et al. [2019], two possible communication scen-
arios are contemplated, each one implementing its own type of privacy policy
management: in direct communication, the DC privacy policy is sent by the
system to the DS smartphone, while in indirect communication, privacy policy
management is based on the use of registries. In Torre et al. [2016b] the func-
tionality called User Profiling, which is shared between the PDM and the AID-S,
defines the configuration of the users’ privacy preferences. In this model, third
parties never share their privacy policy.

Setting privacy preferences or access control policies is a challenge as in Martínez
et al. [2017] and Wijesundara [2020], especially for people who are not familiar
with this area. Therefore, assistance features for this type of configuration should
be included in future proposals. In Keshavarz and Anwar [2018] and Das et al.
[2018], the authors propose the use of ML models to reduce user burden and also
to establish a common taxonomy to describe data collection and use practices.
The idea proposed by Lee et al. [2018] is based on the prediction of future
decisions and on a historical record of interactions, using ML models. The use of
technology based on Artificial Intelligence (AI) in privacy policies is encouraged
by Lippi et al. [2019], as a preliminary analysis and legal evaluation could support
DSs in identifying unlawful clauses and potential threats.

Morel et al. [2019], argue that improving Graphical User Interfaces (GUIs) would
allow DSs to establish these configurations in a better way. Similarly, solu-
tions should be considered for DCs, assisting them in properly declaring privacy
policies. Pappachan et al. [2017] propose the development of abstract models
for the specification of privacy policies in different contexts. Chow [2017] pro-
poses the idea of context-based privacy preference generators and the privacy
metadata standardization for policy declaration, to reduce the cognitive bur-
den for decision making. A way forward can be to take advantage of the HiTL
concept, as in Halcu et al. [2015] or using a Privacy Profiles and Recommenda-
tions through a PPA as in Liu et al. [2016].

2.3.2 Notice and Discovery Mechanisms
Notice, also known as the principle of openness [Langheinrich, 2001], establishes
that systems should notify their users about the services and IoT devices that
are around them, as well as the data collection practices, expressed in the form
of privacy policies. Thus, the mechanisms and the announcement formats must
be defined. Some of the reviewed proposals cover this principle. For instance, in
Langheinrich [2002], the use of Bluetooth or IrDA technology for advertising, and
P3P as the selected format for privacy policies, are contemplated. In Pappachan
et al. [2017] and Das et al. [2017], a central registry is used as a repository, known
as IRR, where privacy policies are declared by the system administrator or by
IoT service providers, and propagated using Bluetooth beacons. These beacons
are subsequently received by the users’ mobile device. Similarly, the framework
proposed in Lee et al. [2018] uses Bluetooth beacons.

However, in the latter proposal these frames only contain an identifier for a
subsequent connection with a server where the privacy policies are stored. In
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Cha et al. [2018], the authors propose the use of BLE for propagation, and P3P
for the policy format. The framework proposed in Morel et al. [2019] mentions
the possibility of using both registers in the style of the proposals presented by
Pappachan et al. [2017] and Das et al. [2017], as well as BLE technology and
Wi-Fi for the policies announcement. In Torre et al. [2016b] and Barhamgi et al.
[2018], there is no mention to any mechanism for announcing or discovering IoT
resources. This principle is specifically addressed in Chow [2017], both in the
awareness layer and in the notification layer of its conceptual model.

IoT resources discovery and initial exchange of information with the user is a
challenge, especially in ubiquitous environments, where the advertisement of ser-
vices of this nature is distributed. Current solutions propose the use of centrally
managed records, or the diffusion of broadcast messages using wireless techno-
logy. However, a unified way of carrying out this task has not been defined, as
suggested by Pappachan et al. [2017], which also mentions the need to work on
new models for user notification. In this revision, we observed that most frame-
works declare their presence using Bluetooth or BLE as the enabling-technology.
However, their solutions have not been tried and tested with other types of
wireless schemes. So, establishing a comparison with other protocols would be
desirable in the quest for a standard solution. An alternative to overcome com-
patibility problems is proposed in Lee et al. [2018], by implementing a gateway
(Gate-Keeper) for legacy BLE devices that do not support the framework.

2.3.3 Consent Management
In most implemented models, consent is derived from the relative weight of
the privacy policies and the preferences established by the DS. The framework
developed by Langheinrich [2002] delegates to the PP the task of granting a sort
of consent, after considering preferences and policies. In Pappachan et al. [2017]
and Das et al. [2017], consent is granted through a PPA running on the user’s
smartphone. However, in those proposals the consent management definition is
not explicitly addressed. Something very similar happens in Morel et al. [2019],
where, besides the PDC, this model allows the management of previously granted
consents.

Regarding automatic consent, Colnago et al. [2020] discuss that this is one open
issue arising from the use of PPAs. Users tend to perceive automatic consent
negatively as it limits their sense of control. The authors propose a solution of
keeping the data in custody during the data DS review process. However, this
approach may introduce challenges in handling time-sensitive requests.

In Lee et al. [2018], information collection permission is given at subscription
time to an IoT service, while in Cha et al. [2018] the user grants or denies
the consent once the privacy policy has been received by IoT device. In the
conceptual framework proposed by Chow [2017], the third layer of the model
encompasses this principle. In the case of the proposals presented by Barhamgi
et al. [2018] and Torre et al. [2016b], the delivery of explicit consent for the
collection of information is not addressed.
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Like the discovery of IoT resources, obtaining and managing consent is a critical
process. In Morel et al. [2019], the implementation of authentication mechanisms
to ensure the integrity and authenticity of consent is proposed as future work
by using a secure ledger to store the granted consents and thus safeguard their
integrity.

Blockchain technology and consent management are crucial in today’s digital
landscape. The importance of blockchain lies in its ability to provide transpar-
ency, immutability, and security in managing consent [Peyrone and Wichadakul,
2023]. By leveraging this technology, organizations can create decentralized and
tamper-resistant systems for recording and managing consent-related transac-
tions. This empowers individuals to have control over their personal data, ensur-
ing that their consent is obtained and respected in a verifiable manner [Rantos
et al., 2019].

Several models rely on a combination of blockchain and cryptographic techniques
like proxy re-encryption for consent management and data sharing [Manzoor
et al., 2021]; however, one main concern in this approaches is the possibility of
collusion attacks. In this sense some contributions like Obour Agyekum et al.
[2019], Guo et al. [2021] or Lin et al. [2022] propose enhancing this cryptographic
scheme with novel techniques that can be incorporated and must be validated
in future user-centric privacy-preserving models.

Moreover, for data sharing tasks directly related with consent management pro-
cesses, effective authentication, access control and key agreement mechanisms
ensures that only authorized individuals or entities can interact with IoT devices
and access the data they generate and acquire. This safeguards against unau-
thorized access, data breaches, and potential misuse of sensitive information.
In this sense, the models proposed and assessed through security analysis in
Banerjee et al. [2019]; Saha et al. [2020, 2021]; Sutrala et al. [2022]; Alhajri
et al. [2022a,b], are paving the way for more secure and reliable future imple-
mentations in the user-centric IoT scope.

2.3.4 Risk Inference
Based on the information provided by IoT resources, and after some processing,
additional information can be inferred, without DSs being aware of this. Some of
the reviewed models address this problem. In the model proposed by Lee et al.
[2018], information given to the users about IoT services includes inference types
that can be performed based on the collected data. The framework presented
by Kounoudes et al. [2021] is able to notify the user regarding unwanted infer-
ences based on environmental data collected by smart home devices. In Torre
et al. [2016b], the framework allows inference risks calculation before disclosing
personal data, as in Barhamgi et al. [2018], where, in addition to the calculation
of the risk, there is also a context inference module. In the framework presen-
ted by Chow [2017], one of its layers includes the handling of inferences, while
the proposal in Corcoran [2016] delegates to the industry the responsibility of
establishing guidelines to minimize risks.
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Improving personal information’s inference based on sensor data is one of the
challenges mentioned in some of the reviewed articles. According to Lee et al.
[2018], this is a complex task, highly context-dependent, and subject to con-
siderable misunderstandings. In this article, the authors propose a probabil-
istic information retrieval system to derive relationships from sensor data and
personal information. Likewise, in Barhamgi et al. [2018], the development of
models and techniques for the representation and monitoring of context related
to user privacy that can detect modifications is identified as a challenge. User
interactions with the environment must also be further studied.

2.3.5 Enforcement Points and Compliance
An enforcement point is an entity that ensures privacy preferences set by the user
will be respected. From the group of the reviewed models, only those proposed
by Das et al. [2018], Pappachan et al. [2017], and Lee et al. [2018] contemplate
this feature. Das et al. [2017] includes an element known as PEP within its
architecture, which can reside in the IoT resources or be implemented as an
independent element. In Lee et al. [2018], the authors provide and propose the
use of an enforcement engine.

Another proposal that includes an enforcement element, although it is not a
User-Centric IoT framework, is the ‘VisiOn Privacy Platform’ by Diamanto-
poulou et al. [2017]. Apart from the Privacy Level Agreement (PLA), which
is essentially a contract between DC and DS, the Privacy Runtime component
controls the data access request, and enforces the data access policies generated
automatically based on system models information and DSs’ privacy prefer-
ences.

To achieve timely control of compliance with the privacy preferences of the
DS by DCs, in Pappachan et al. [2017], the authors propose to work on the
optimization of the control process for privacy policies, with reference to the
privacy preferences established by the user and in Lee et al. [2018], the idea
of a vetting system in IoT devices is suggested, to verify how personal data is
managed.

One possible approach to evaluating the compliance of privacy policies with data
protection regulations is through the use of AI-based technologies namely ML
and Natural language Processing (NLP), as advocated by Lippi et al. [2019].
This approach references CLAUDETTE [Contissa et al., 2018], an automatic
detection component that identifies potentially unfair clauses in online terms of
service. Furthermore, CLAUDETTE can also be applied to privacy policies to
assess their compliance with the GDPR.

2.3.6 User engagement and Incentives
An important aspect of participatory and opportunistic sensing is the incentives
in exchange for performing a task or registering into a service [Bobolz et al.,
2020]. In Jin et al. [2018], a model called INCEPTION integrates mechanisms
for incentives, aggregation, and data disturbance. The incentive mechanism
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is based on reverse auction to compensate the workers, while the aggregation
and disturbance mechanisms of the data aim to increase the reliability and
precision of the sensed data and, therefore, protect the workers’ privacy. In
Gong et al. [2019], the Privacy-Aware Task Assignment Framework (PATA)
includes incentive mechanisms, similarly to the ones in Jin et al. [2018]. This
model publishes the set of tasks to be executed, including their position and the
incentives associated with them. Based on the workers density, the incentive is
determined. Users who are within the range where tasks have been released can
choose which tasks are more convenient according to their profile. Although, this
framework does not declare a mechanism for data disturbance or anonymization,
it is understood that the user has the power to choose the task that most closely
aligns with his privacy profile. A user location privacy-aware incentive model is
proposed by Koh et al. [2017], to promote users’ participation in sensing tasks
and therefore increase the range of dataset coverage. The privacy approach
adopted by this model is based on cloaking regions to obfuscate the workers’
precise location.

From the list of reviewed models only Liu et al. [2016] explicitly cover some
strategies for engagement such as example simplified controls, enhanced aware-
ness and privacy nudges. However, despite the good engagement achieved with
the privacy nudges, the authors argue that only a 5.1% of privacy settings were
modified by the DS after these notifications. Also, they consider that micro-
interaction at appropriate times and tailored the context of the DS could increase
the usability of this strategy.

Related to consent management, Peyrone and Wichadakul [2023] state that fu-
ture work must include incentive mechanism to assess DS compensation against
data sharing cost and balance incentives for all stakeholders.

2.3.7 Real Scenario Deployment and Assessment
The frameworks presented by Das et al. [2017] and Pappachan et al. [2017]
have been deployed at the Carnegie Mellon University and the University of
California Irvine, respectively, as part of the TIPPERS1 and Privacy Assistant2

projects. The study presented by Cha et al. [2018] implements a proof of concept.
Similarly, in Morel et al. [2019], the authors establish a direct communication
prototype based on BLE Privacy Beacons within the “Bluetooth-based tracking”
case study. The model proposed by Barhamgi et al. [2018] was put into practice
through a case study for the monitoring of twenty chronic patients aged between
20 and 67. In the case of PMEC, Rios et al. [2022], provide to the community
a proof-of-concept implementation of their Privacy Manager Instances (PMI)
however it does not include Peer–to–Peer (P2P) protocols for synchronization
an negotiation.

For models proposed by Notario et al. [2014] and Senarath et al. [2017], valid-
ation is necessary in terms of efficiency, practicality, and alignment with best

1http://tippersweb.icsprojects.uci.edu
2http://privacyassistant.org
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practices and legal constraints in real scenarios. The authors consider that in
order to continue refining the frameworks, it is necessary to apply them together
with existing, well-established development methodologies. With a perspective
oriented to the IoT, and given the lack of specific frameworks for the design of
this type of applications and platforms, Perera et al. [2016] propose a model
made up of a set of thirty privacy guidelines, based on the eight strategies raised
by Hoepman [2014]. The authors argue that these guidelines should not be used
to compare different IoT platforms or applications, but to evaluate them and
find privacy gaps, since each implementation is designed for a specific purpose.
In the case of the consent management framework for fitness data proposed
by Alhajri et al. [2022a], one of its main limitations of the is the lack of an
experimental evaluation.

User perception is fundamental in user-centric system development and adoption
where the main objective is to preserve privacy. Some of these models go a step
further empowering users with control over their privacy. However, none of the
previously reviewed proposals has addressed this challenge by executing any kind
of qualitative study, such as in the case of Chhetri and Genaro Motti [2022a],
Chhetri and Genaro Motti [2022b], Worthy et al. [2016], Zheng et al. [2018] and
Colnago et al. [2020]. In Lee et al. [2018], it is mentioned that previous studies
using hypothetical IoT services do not reveal the true perception of privacy
that users have and, therefore, it is necessary to analyze the behavior in terms
of privacy within a real scenario. As future work, Cha et al. [2018] suggest
the implementation of usability tests to determine users’ attitude toward the
application, and to improve the experience.

The main features of the addressed models, as well as the open challenges and re-
search opportunities presented in this section, are summarized in Table 2.2.

2.4 Summary
Without privacy, the deployment of user-centric IoT solutions is non-viable.
IoT is impacting our lives and, as such, it is crucial to devise and put into place
approaches and mechanisms that preserve and guarantee individual rights, of
which the right to privacy is one of the most important. The proposal and
development of privacy-preserving models and solutions is gaining momentum
among the scientific community. Nevertheless, there is still a long way to go
in this area, where Human-Computer interaction (HCI), HiTL, ML models,
and M2M communication mechanisms will play an important role in privacy
preservation within new digital environments.

In the dynamic landscape of privacy and data protection, an array of promising
research avenues and challenges have emerged across various domains. Within
the area of Privacy Preferences and Privacy Policies Management, innovative
ML models have surfaced to alleviate user burden, enhance graphical user in-
terfaces, and generate context-aware privacy preferences. The integration of
the HiTL concept and personalized privacy assistants has also gained traction,
empowering users with tailored privacy profiles and recommendations. Lever-
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Table 2.2: Summary of models, features, current deployments and open chal-
lenges

Feature Relevant
Contributions

Current
Deployments

Research
Opportunities

and
Challenges

Privacy Preferences
and

Privacy Policies
Management

Langheinrich [2002]
Zavalyshyn et al. [2018]
Pappachan et al. [2017]

Das et al. [2017]
Lee et al. [2018]
Cha et al. [2018]

Morel et al. [2019]
Torre et al. [2016b]

Martínez et al. [2017]
Wijesundara [2020]

Keshavarz and Anwar [2018]
Lippi et al. [2019]
Halcu et al. [2015]
Liu et al. [2016]

- Privacy Proxies
- IoTA + IRR
- PPA + IRR

- ISS
- Privacy Preference
- Expression GATT
- PDM and AID-S
with User Profiling

- ML models to
reduce user burden
- Improving GUIs

- Context-based privacy preference generators
- HiTL concept

- Personalized Privacy Assistants
(Privacy Profiles and Recommendations)

- AI-based models to
identify unlawful clauses and

contradictory privacy preferences

Notice
and

Discovery
Mechanism

Pappachan et al. [2017]
Das et al. [2018]

Barhamgi et al. [2018]
Lee et al. [2018]
Cha et al. [2018]

- Central registry (IRR)
- Bluetooth beacons with JSON Schema v4

- Bluetooth beacons with URL
- BLE beacons and P3P
- IoT Service Diffusion

- Unified discovery mechanism
- Taxonomy to describe data collection

and use practices.
- Abstract models for privacy policies’

specifications
- New models for user notification
- Gatekeepers for legacy devices

Consent
Management

Colnago et al. [2020]
Lee et al. [2018]

Rantos et al. [2019]
Morel et al. [2019]
Saha et al. [2020]
Saha et al. [2021]

Alhajri et al. [2022a]
Agarwal et al. [2020]

Guo et al. [2021]
Lin et al. [2022]

Manzoor et al. [2021]

- Privacy Proxies Delegation
- Consent Provision using the PA

(PPA and IoTA)
- Granted through the PDC

- Several access control mechanisms
for decentralized environments

and secure authentication protocols
for exchanging the sensitive information

- Authentication mechanisms for
integrity and authenticity.

- Efficient Secure ledgers to store consent
- Implementation and assessment
of access control mechanisms and
novel proxy-re-encryption models

for data-sharing tasks
- Models for consent revision in

time-sensitive request

Risks
Inference

Barhamgi et al. [2018]
Lee et al. [2018]
Corcoran [2016]

Chow [2017]
Torre et al. [2016b]

Kounoudes et al. [2021]

- Inferences in the user devices
- Calculation of inference risks
- Context inference modules

- User notification unwanted inferences

- Probabilistic information retrieval systems.
- Models and techniques for

context representation
and its monitoring

Enforcement Points
and

Compliance

Das et al. [2018]
Pappachan et al. [2017]

Lee et al. [2018]
Das et al. [2017]
Lee et al. [2018]

Diamantopoulou et al. [2017]
Lippi et al. [2019]

Contissa et al. [2018]

- PEP
within the infrastructure or in

the user device.
- Enforcement Engine

-CLAUDETTE

-Enforcement Agents
- Control process optimization

- Vetting systems
- AI-based models (ML and NLP) to

assess compliance with privacy regulations

User engagement
and

Incentives

Bobolz et al. [2020]
Jin et al. [2018]

Gong et al. [2019]
Koh et al. [2017]
Liu et al. [2016]

Peyrone and Wichadakul [2023]

- Simplified controls
- Enhanced awareness

- Privacy nudges
- INCEPTION

- PATA

- Micro-interactions in opportune
times and based on the user’s context

Real scenario
deployment

and
assessment

Das et al. [2017]
Cha et al. [2018]

Morel et al. [2019]
Barhamgi et al. [2018]

Rios et al. [2022]
Notario et al. [2014]

Senarath et al. [2017]
Chhetri and Genaro Motti [2022a]
Chhetri and Genaro Motti [2022b]

Worthy et al. [2016]
Zheng et al. [2018]

Colnago et al. [2020]

- TIPPERS testbed
- Privacy Assistant Project
- Bluetooth-based tracking

- Monitoring of chronic patients
- PrivacyEnhACT

- PMEC

- User’s perception
based on qualitative studies

and usability tests
- Validation in terms of efficiency,

practicality,
and alignment with existing
development methodologies

- People-Centric IoT platforms assessment
- Methodology for frameworks’

assessment
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aging AI-driven techniques to identify unlawful clauses and conflicting privacy
preferences is another compelling direction. Meanwhile, the evolution of No-
tice and Discovery Mechanisms presents an array of challenges, including the
need for unified discovery mechanisms, taxonomies for comprehensive data col-
lection descriptors, abstract models for privacy policy specifications, and novel
approaches to user notification. Additionally, the landscape of Consent Manage-
ment beckons for exploration, encompassing aspects like authentication mech-
anisms, secure ledgers for consent storage, innovative access control strategies,
and dynamic proxy re-encryption models.

Risks Inference offers enticing research prospects, prompting the development
of probabilistic information retrieval systems and refined techniques for contex-
tual representation and monitoring. On the front of Enforcement Points and
Compliance, the potential lies in crafting enforcement agents, optimizing con-
trol processes, devising vetting systems, and harnessing AI-powered models for
precise evaluation of compliance with privacy regulations. Lastly, regarding Real
Scenario Deployment and Assessment necessitates user-centric insights derived
from qualitative studies and usability tests, validation encompassing efficiency
and practicality, evaluation of People-Centric IoT platforms, and establishment
of methodologies for framework assessment. This multidimensional landscape
invites researchers to shape the future of privacy preservation.

In this chapter, we have surveyed the state-of-the-art regarding the specific field
of privacy preservation in the context of an evolved IoT paradigm. Through a
classification proposal, we were able to better understand the scope and features
of existing approaches, and to delve into some of their most relevant character-
istics. Subsequently, this allowed us to identify and discuss open issues and
research challenges, which is crucial for deciding on which way to go. This over-
all view and analysis of existing work, limitations and challenges is one of the
main contributions of this Thesis.

Publications based on this chapter’s work
• Rivadeneira, J. E., Silva, J. S., Colomo-Palacios, R., Rodrigues, A., and

Boavida, F. (2023c). User-centric privacy preserving models for a new era
of the internet of things. Journal of Network and Computer Applications,
page 103695 (Q1);
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The inclusion of human-related aspects in the IoT paradigm leads to the
development of models and solutions that address several challenges
of our society. The adoption of these novel approaches is expanding

rapidly on the road to what is now termed Society 5.0. However, leaving aside
all the potential benefits that come from the interaction with these novel sys-
tems, an increasing number of people are concerned with the amount of data
these systems can collect and share with Data Requesters (DRs). Several legal
frameworks call for the adoption of practices regarding data protection and
pushing for data control by the data owners. Unfortunately, user-centric IoT-
based systems, like those that follow the HiTLCPS concept, lack mechanisms
for managing resources and data in the user domain.

In this chapter, we begin by introducing the concept of HiTLCPS and its dis-
tinct phases. We explore its fundamental notion, which emphasizes the active
involvement of humans in the functioning and decision-making processes of CPS.
Following that, we present two approaches to privacy preservation: one focused
on the data acquisition phase and another aimed at the state inference phase.
With these two approaches we aim to pave the way toward a unified privacy-
preserving model for HiTLCPS .

3.1 Human-in-the-Loop Cyber Physical Systems
HiTLCPSs regards humans as a component to the control-loop of a CPS, with
applications focusing on the individual over any other element. A HiTLCPS
takes into account intentions, actions, emotions, and mental states such as be-
liefs, and desires. This inner feature enables the creation of intelligent and
adaptable advice systems [Nunes et al., 2015]. Leveraging this concept, it is
possible to develop services that sway emotions, actions, psychological states,
human drives, and motivations as part of larger–scale systems considering not
only physical devices but software-based solutions and humans themselves for
sensing and actuation purposes.

The process carried out by a HiTLCPS as depicted in Figure 3.1, includes
three main phases. The first one is data acquisition, which comprises physical
electronic-based devices, software-based entities, and human beings by consid-
ering activities from OSN. The second is the state inference phase, capable of
gleaning intents, states, emotions, and actions. Finally, the third phase, actu-
ation, seamlessly integrates both human-driven and human-like approaches to
deliver actionable feedback and motivational cues to the user. It is important
to emphasize that the user can indeed function as an agent of action within the
system, either individually or as part of a collective, thus establishing a nuanced
parallel with concepts from the realm of particle physics, where the fundamental
behavior of particles governs the system’s dynamics on both macro and micro
scales. This intriguing concept opens the door to exploring a rich spectrum
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of possibilities where user interaction shapes the system’s behavior akin to the
intricate interplay of particles that define the physical universe.

Figure 3.1: An implementation of the HiTLCPS notion in a closed-loop case

This shift in the traditional IoT approach is looking forward to fostering the cre-
ation of services that can effectively engage individuals. These services aim to
enhance the user’s quality of life by providing personalized assistance. However,
to ensure their effectiveness, integration of IoT data analytics and AI mechan-
isms becomes imperative to deliver accurate feedback, precise assistance, and
tailored recommendations.

The implementation of systems grounded in this notion introduces a host of
challenges, chief among them being the imperative preservation of the privacy of
the human factor. Our conception of the distinct phases comprising a HiTLCPS
reveals a significant insight: privacy considerations hold the greatest prominence
in the data acquisition and state inference phases. This strategic perspective is
underpinned by several factors that underscore the central role of privacy in
shaping these phases.

Firstly, during data acquisition, sensitive information about individuals is collec-
ted, thus requiring meticulous safeguards to prevent unauthorized access or mis-
use. Secondly, in the state inference phase, the amalgamation of data streams
can yield nuanced insights into users’ behaviors and actions, heightening the
sensitivity of privacy preservation.

While the actuation phase is undoubtedly vital in a closed-loop approach, its
prime emphasis lies on translating inferred states into actions rather than on
the preservation of personal information. The real-time nature and immediate
effects of actions in this phase pose a different set of challenges. However, the
privacy considerations in the actuation phase are distinctly intertwined with
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the outcomes of the preceding phases, as well as the executed actions them-
selves.

In this sense, the next sections of this chapter will provide an approach to
privacy-preservation oriented toward the data acquisition and state inference
phases of HiTLCPSs.

3.2 An approach to Privacy-Preservation in the Data Acquis-
ition Stage

Even though HiTLCPSs can positively contribute to its users, we should not
overlook the fact that the amount of data that these modern implementations
are collecting to gauge skills and behavioral parameters, has increased signific-
antly. IoT devices and mobile phones are currently responsible for the generation
of large amounts of data, often becoming a source of highly sensitive information.
This poses a challenge as accessing and sharing data often conflicts with widely
accepted privacy policies and ethical principles. While certain privacy and secur-
ity mechanisms aim to protect the sensitivity of datasets through anonymization
processes, the risk of compromising users’ privacy remains inherent.

Addressing this challenge in a HiTLCPS is possible through the adoption of
a Human-Centric Security and Privacy approach [Ra et al., 2021]. It involves
designing and implementing mechanisms that empower users to have control over
their data and make informed decisions about its collection and usage [Nepal
et al., 2022]. By incorporating user consent, transparency, and granular data
access controls, this human-centric vision can help mitigate the risk of com-
promising users’ privacy while still allowing for data-driven applications and
services.

An important insight can be highlighted from the revision conducted in Chapter
2 regarding current privacy-preserving models and frameworks. Generally, the
state-of-the-art contributions do not encompass the features of a Human-Centric
Security and Privacy approach. Therefore, there remains a need for a solution
that aims to integrate all or at least the majority of these characteristics. In this
context, one of the significant contributions of this research is the proposal of a
framework that enables privacy-aware data acquisition and privacy-preserving
data sharing within the scope of the HiTLCPS concept.

3.2.1 PACHA: A Privacy-Aware Component for a HiTL-IoT Ap-
proach

The Privacy-Aware Component for a Human-in-the-Loop IoT Approach
(PACHA) is our proposed framework that defines a mediation model for privacy-
aware IoT data acquisition and privacy-preserving data sharing in a HiTL en-
vironment between Data Owners (DOs) and DRs. On one side, the DO is the
individual or end-user who manages a set of IoT resources that produce data
either passively or through interaction, and on the other side, the DR is the
entity that seeks access to that data.
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The two main components that make up the architecture of this proposed frame-
work are the PACHA Privacy Orchestrator (PPO) and the PACHA Privacy
Interagent (PPI), as depicted in Figure 3.2.

Figure 3.2: PACHA: The Privacy-Aware Component for a Human-in-the-Loop
IoT Approach Framework

The main functions of the PPO are twofold. Firstly, it serves to facilitate and
moderate the exchanges between the DO and DR. Secondly, it securely retains
the data related to the IoT resources that the DO has chosen to share in an
encrypted manner. The PPO is based on a modular architecture, as shown in
Figure 3.2. Each of these modules fulfills a specific function, which is detailed
in Table 3.1.

On the other hand, the PPI is an instance on both the DO and the DR side.
On the DO side, the PPI allows the DO to learn about the DRs, access their
respective privacy policies, set privacy preferences, and manage their resource
data-sharing profiles. When a DR fulfills the role of a service provider, the PPI
also informs the DO about the nature of the offered services. In that case, the
PPI on the DR side enables the IoT services management module in addition
to the consent-requesting tasks, and the definition of privacy policies. Table
3.2 sums up these modules with their respective functionality in each of the
entities.

3.2.2 Privacy-Preserving Model
To align with the PACHA framework, a privacy aware data acquisition imple-
mentation for HiTLCPSs must ensure that the elements responsible for data
acquisition and interaction with the DO and DR embody the characteristics of
the components. For the DO interagent, a device or a collection of personal
devices could perform the necessary functions. Similarly, the technological in-
frastructure of the DR could instantiate the PPI. As for the PPO, it was initially
designed to reside in an accessible resource, such as cloud infrastructure, that is
available to both DS and DR.

However, the fact that an element such as the PPO is meant to be instantiated
within a third-party centralized environment, such as a cloud server, implies
a relationship of trust. Although the framework includes a module dedicated
to transparency and auditing, the fact that all actions derived from the data-
sharing events (e.g., consent requests and responses) are handled and recorded
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Table 3.1: PACHA Privacy Orchestrator Modules and Functions

PACHA PRIVACY ORCHESTRATOR
MODULE FUNCTION

IoT Service
Providers Repository

(ISPR)

Gathers the information from each of the data
consumers, including descriptions, privacy policies,

and previous user evaluations.
Provides DR with a query token to

interact with the DRSM.

IoT Services
Diffusion (ISD)

Dissemination of IoT
services information including

privacy policies, to keep users informed.

Consent Manager
(CM)

Handles the permissions
granted by the DO to DR.

Includes a notification engine
that interacts directly with the PPI.
Communicates with DRSM to inform

DR regarding any DO decision.
Privacy Enforcement

Bridge (PEB)
On-the-fly rule generator that

interacts with the CM and the DDM.
Audit and

Transparency
Unit (ATU)

The transparency module was devised
as a compliance information

portal for regulatory authorities.

Data Acquisition
Module (DAM)

Responsible for the data acquisition
procedures and registry for DO devices.

Acts as a re-encryption point of the DO data

Data Dispatcher
Module (DDM)

Holds the values of the
IoT Resource data attribute.
Creates the subscriptions for

DRs, based on the PEB rules.
Data

Requests
and

Subscription
Module
(DRSM)

Manages all queries, requests,
and responses.

In the case of a consent request,
this entity routes it to the CM.

by a centralized entity undermines their traceability. These problems could
exacerbate in the case of a compromised server.

To cope with these issues in this section we present a privacy-preserving model
that leverages the intrinsic features of the blockchain technology for consent
management and transparency in Human-Centered IoT environment. Its archi-
tecture is depicted in Figure 3.3.

This novel proposal leverage the conceptual features of PACHA, by providing
a transparent data sharing and consent management for all participants in the
system, and by leveraging the features of blockchain. The components and
participants of this model are described below.

Data Owner: DO hold the title of the IoT resources that generate the data
within their domain. From the point of view of the privacy-preserving model,
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Table 3.2: PACHA Privacy Interagent Modules and Functions

PACHA PRIVACY INTERAGENT
ENTITY MODULE FUNCTION

DO IoT Services
Panel

Allows the DO to explore the registered
and suitable IoT Services.

This module holds the services’ details,
the provider’s id, and the privacy policy.

DR
IoT Services
Management

Module

Allows the DR with service-providing
capabilities to manage its services.

DO Consent Management
Module

Through this module, the DO
can establish and

manage (grant, reject, or revoke)
his/her consent.

DR Consent Request
Module

This module enables the DR to
request consent to

access the data from
the IoT devices from the DO

DO/DR Notification
Module

This module oversees
displaying incoming

alerts issued by the PPO.

DO
Privacy

Preferences
Module

In this module, the DO can define
his/her privacy preferences.
Based on these definitions

the IoT Service Panel highlights
certain services over others

DR Privacy Policy
Module

This module allows the DR to define
the privacy policy to handle the data flows

DO/DR Security
Module This module carries out cryptographic tasks

DR Data Intake
Module

Through this module, the DR can access
the data shared by the DOs either

for internal processing or to provide a service.

the main tasks of DO are related to the management and consent control of
IoT resources (grant, deny or revoke data access), with respect to the various
DRs.

IoT Resources: These are physical or virtual manageable elements that generate
IoT data. Examples of these resources are the sensors in a hand-held device or
within a wearable, or those sensors attached to new domestic appliances. These
elements can sense data from the environment and context.

IoT Gateway: The IoT Gateway funnels all the data produced by the IoT
resources and enables actions to be taken by the DO within the data sharing and
consent management process, including the management of resources. The IoT
Gateway also acts as a blockchain node and holds an instance of the PPI.

Data Requester: This is the party interested in obtaining data from IoT resources
for further processing. A DR can be a plain data consumer interested in receiving
a single stream of sensed data or even an elaborate IoT service provider that
combines a variety of sensed data. Among its main actions are the definition
and registry of a privacy policy which includes data treatment details. Also,
this participant is responsible for issuing consent and IoT data access requests.
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Figure 3.3: A Decentralized Privacy-Preserving Model for Consent Management,
Data Sharing and Transparency between DOs and DR.

In the case that the DR is a services provider, the party must provide sufficient
details regarding the service.

IoT Broker : This is an intermediary component that enables the interactions
between IoT Gateways and DR devices. Its main actions are storing and safe-
guarding the data of the IoT resources shared by the DO, and retaining an
internal DRs record, which includes, among other details, their privacy policy.
This component implements a modified version of the PPO.

DR System: This is the component belonging to the DR through which all the
actions of this participant are channeled. This component holds an instance of
the PPI and acts as a blockchain node.

Blockchain Network (BN): This is a decentralized network made up of nodes
or peers that hold an immutable ledger. This immutability feature ensures the
integrity of every transaction generated by the nodes during the process. Each
component in this model - IoT Broker, DR Device, and IoT Gateway - runs
a node of the blockchain network, which allows them to keep a replica of the
ledger and trigger transactions.

Regulatory Entity (RE): This is a passive entity in what concerns the resource
management, consent, and data sharing process. Its role is to enforce the DR’s
privacy policies and supervise their compliance. The role of this entity is to audit
DRs and IoT Brokers, as per the guidelines established by higher regulatory
authorities (e.g., national data protection agencies). This entity also mediates
between DOs and DRs, when a dispute arises. Likewise the rest of participants,
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this entity is also part of the blockchain network.

3.2.3 Threat Model
It is important to emphasize that from the perspective of a DO, the IoT Broker,
the DR Systems, and the RE are third party components with different trust
relationships. In this sense, our threat model starts by assuming that the RE is a
trusted party that oversees DR systems’ actions and their behaviour. DRs could
be initially considered as untrusted parties; nonetheless, they must be approved
by the RE before joining the network. Only endorsed DR can register into the
IoT Brokers, instantiate the PPI with their system along with the blockchain
node, and carry out the consent and data release process. Therefore, for this
threat model we assume that IoT Brokers and DRs are semi-trusted party, which
honestly follow the overall consent and data release process but could be inter-
ested in learning any additional information derived from the procedures. This
honest-but-curious nature could drive these two entities into performing misbe-
haved activities and/or even attacks, turning them into malicious parties.

For instance, a malicious IoT Broker would be tempted to collect the data,
to further use it without the owners’ consent leveraging the fact that this en-
tity is in charge of temporarily storing the data from the registered DOs’ IoT
resources.

Regarding the DRs, although they are certified by the RE, this fact does not
guarantee that any of them will not carry out a malicious action. For instance,
a DR - acting as an adversary - would intend to gain access to as many IoT
resources’ data as possible, even the non-consented ones, generating many data
access requests to saturate the IoT Broker, or generate several consent request
to overwhelm the DO with new notifications.

The series of actions proposed in the next subsection comprise the consent and
data release process. The design of this process considers the components and
the actions of participants of the model along with the threat model, attack
assumptions, and attacker capabilities.

3.2.4 Consent and Data Release Process
By the time the privacy orchestrator and the interagents have been instantiated
within the corresponding components, the participants can register themselves
and the consent-based data sharing process can initiate. At this point, it is
assumed that during the registration process, the orchestrator and its agents
have been issued with asymmetric cryptographic key pairs (public and private).
Generated public keys are distributed among all components.

To ease the description, the consent and data release process has been divided
into five phases, namely IoT Resources Provision, Consent Request, Consent Re-
sponse, Data Release, and Consent Revocation. These are outlined below.
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3.2.4.1 IoT Resources Provision Phase

IoT Resources Provision is the first phase of the process and is illustrated in Fig-
ure 3.4. It begins with the interaction between the DO and the IoT Gateway,
by selecting the IoT resources to be shared. Once the choice is done, the PPI in
the IoT Gateway generates the list of shareable resources (R) and requests its
blockchain node to invoke the Smart Contract (SC) to update the ledger. This
list includes some features of each shareable IoT Resource, namely its identi-
fier, its type, and its data acquisition-frequency. When the resource registration
transaction (TX) is generated and properly stored in the blockchain, the trans-
action identifier (TXid) is sent back to the IoT Gateway, and it is encapsulated
into a message by the PPI. This message (M1) is signed with the private key of
the DO (DOpri) and forwarded to the IoT Broker. The PPO checks the proven-
ance of the message, pulls the TXid, and requests its peer in the BN to fetch R.
Once the list of resources is retrieved, the PPO allocates resources to store the
IoT resource data that will be transmitted from the IoT Gateway. When the
infrastructure is in place, the PPO notifies the PPI in the IoT Gateway to start
sending the resource data. These data before leaving the IoT Gateway is en-
crypted with the public key of the DO (DOpub) to preserve their confidentiality
in front of the IoT Broker. At the same time, the PPO informs the registered
DR agent, that a new set of IoT resources is available.

Figure 3.4: Sequence Diagram to illustrate the IoT Resources Provision Phase

3.2.4.2 Consent Request Phase

To gain access to the data of the IoT resources, the DR must issue consent
requests via its PPI, which periodically fetches the list of shareable resources
from the ledger. Each consent request is formed by the identifiers of the resources
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(R′) whose data is intended to be acquire by the DR. For instance, let us
suppose a particular DR would like to access the data from three IoT resources
managed by DO1, one resource from DO2 and two resources from DO3. In this
assumption, the DR device would generate six consent requests regardless of the
type of IoT resource; in other words, the DR can select the same or different
types of resources from the available pool. Each request is handled separately
and, by invoking the SC, a series of transactions is generated. The PPI in the DR
system sends to the IoT Broker these transactions’ identifiers (TXsid) embedded
in a message (M2) signed with the DR private key (DRpri). The PPO verifies
the provenance of the message and extracts the TXsid, which will be later used
by its peer. The transaction details are retrieved by querying the ledger after
invoking the SC. The IoT Broker receives R′ and, from its internal registry,
generates consent request messages (M3) addressed to each of the respective
DOs. In the case of the previous hypothetical scenario, the IoT Broker would
generate three consent request messages, one for each of the DO.

The consent messages are signed by the IoT Broker and include the DR privacy
policy (DRP P ) endorsed by the RE, the DR public key(DRpub), and TXsid.
Figure 3.5 represents this phase as a sequence diagram.

Figure 3.5: Sequence Diagram to illustrate the Consent Request Phase

3.2.4.3 Consent Response Phase

Once M3 is received, the IoT Gateway checks its provenance and requests its
BN node to extract the details of the transaction(s). With the list of requested
IoT resources (R′) and DRP P , the DO can take one of the following decisions:
i) grant full consent (authorize the accessing and the processing of all requested
resource data); ii) grant partial consent (some of the requested resources are
approved for accessing and processing); iii) deny the request (accessing and
processing of the requested resources is not allowed). The decision taken by
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the user is expressed through its PPI. In case there is at least partial consent,
the IoT Gateway generates a consent state matrix structured by the list of
approved resources, their ID, its consent state (granted/rejected), and the period
of validity (in the case of granted resources). This structure is later registered
within the blockchain as a new transaction. Meanwhile, the PPI generates
the re-encryption key (rek) based on its private key and the public key of the
requesting DR. The transaction ID and the re-encryption key are forwarded
to the IoT Broker in a message (M4) signed by the IoT Gateway-PPI. The
PPO checks the provenance of the message and requests its node to invoke the
SC to pull the content of the transaction. The PPO caches the re-encryption
key during the consent validity, updates its inner registry according to the new
consent state of the registered resources, and produces a notification message to
the PPI of the DR informing the DO’s response. The re-encryption key is stored
by the PPO during the consent validity Figure 3.6 depicts this process. In this
phase, the PPO keeps permanently updated its inner registry, and since each
DO has its specific fields on it, the IoT Broker is capable of handling consent
responses from multiple DO.

Figure 3.6: Sequence Diagram to illustrate the Consent Response Phase

3.2.4.4 Data Release Phase

From the moment the DR’s PPI receives the consent granting notification, this
participant can retrieve data from the IoT Broker through its agent during the
period of validity of the consent. The DR selects the granted IoT resources from
which he/she wants to retrieve data (R′′) and issues a data access request that
transacts in the BN. The ID of this transaction (TXid) is forward from the DR
device to the IoT as a signed data access request message (M5). The IoT Broker
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verifies the message sender, and fetches the data access request by querying
the SC. Once retrieved this request, this entity can update its inner registry
by invoking the SC and compare the request with the updated registry. If the
requested resources match the consent the updated registry, the IoT Broker
re-encrypts the data with the re-encryption key generated by the DO in the
previous phase. The data sharing event details are recorded into a transaction
within the ledger. The TXid is sent to the IoT Gateway in a message (M6),
signed by the IoT Broker using its private key (IBpri), to keep the DO informed
about the amount of data requested by the approved DR. On the DR side,
the received resource data is decrypted by its PPI using the DR’s private key.
However, in the case the data request does not match with the inner registry,
the IoT Broker increases his non-allowed requests counter. While the counter
does not exceed an established threshold the IoT Broker notifies the DR that
the request is invalid. Else, the DR is blocked and reported to the RE. Figure
3.7 presents this process as a sequence diagram.

Figure 3.7: Sequence Diagram to illustrate the Data Release Phase.

3.2.4.5 Consent Revocation and Data Deletion Phase

Every consent issued by a DO has a set expiration date. Nevertheless, it may
be revoked by the issuer before the end of its validity. The DO may revoke
previously granted consents to one or more DRs through the PPI in the IoT
Gateway. The revocation evidence is recorded within the ledger as a TX after
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the IoT gateway node invokes the SC. The TXid is forwarded to the IoT Broker
in a signed message (M7). The PPO verifies the origin of the message and deleg-
ates it to its blockchain node to invoke the SC to retrieve the transaction details.
Based on the details that include the new version of the consent state matrix,
the IoT Broker updates its internal registry and notifies the corresponding DR
about the revocation. It is possible that within the consent revocation trans-
action, the DR may be asked to delete all previously obtained and processed
data. In this case, after the notification, the DR must perform the data deletion
processes and generate a transaction that will be stored within the ledger with
the data deletion details. The ID of this transaction is embedded in a signed
data deletion message (M8) and sent to the RE, who is going to verify its origin
and retrieve the details of the transaction by invoking the SC. These details
will be used in the audit processes over the DR system. Figure 3.8 depicts this
process in a sequence diagram.

Figure 3.8: Consent Revocation and Data Deletion Phase as a sequence diagram.

To show the feasibility of this approach, the proposed model was implemented,
deployed in a test environment, and assessed using a realistic scenario. The
details of the implementation will be covered in Chapter 5, while its assessment
will be addressed in Chapter 6.
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3.3 An approach to Privacy-Preservation for the State Infer-
ence Stage

Current applications and services provided by HiTLCPSs still rely on a cloud-
based AI approach, which means, that the data produced by the end-user devices
is pushed to a third-party infrastructure, where the data inference is carried out
through AI. Sending all this data over to an entity outside the user’s scope
involves not only additional privacy risks but also storage and communication
challenges, especially those related to latency and bandwidth consumption.

To tackle some of these issues, new proposals that come out with novel man-
ners of distributed processing are drawing attention and becoming increasingly
relevant. One clear example is Edge AI, which is intended as an alternative to
relocating the state inference processes closer to or at the data sources. Edge AI
combines the capabilities of edge computing and artificial intelligence to provide
systems where learning algorithms can be deployed at endpoints, including user
devices. This allows, among other benefits, to reduce latency, and decrease
bandwidth and cloud storage requirements, hence speeding up decision-making
processes. However, since learning models to be deployed on edge devices require
prior training on a centralized server, this could still lead to privacy concerns.
Therefore, a distributed training approach on the edge would mitigate this issue.
In this regard, FL has become the de facto paradigm for collaborative training
in a network of devices. Its most salient feature is achieving distributed training,
bypassing the need to move data to an external server managed by an untrusted
third party [Khan et al., 2021; Nature, 2021].

3.3.1 Artificial Intelligence at the Edge
AI has established itself as one of the most disruptive technologies ever, and
together with cloud computing has improved upon various processes from a
variety of industries and businesses. The integration of AI with cloud computing
delivers greater productivity, efficiency, and accuracy in the AI pipeline. It also
allows the agile development of solutions tapping into the high data volume
capacity that cloud environments offer.

Nonetheless, the high demand for services and applications based on this
paradigm is generating storage and connectivity issues (latency and bandwidth
consumption). Also, the uncontrollable collection and use of data increase the
concerns of end users regarding the preservation of their privacy.

In this regard, a paradigm called Edge AI comes up with the idea that AI
workflows should include the devices at the very edge of a network, standing in
contrast to the notion of cloud-based AI where the pipeline runs entirely in a
centralized entity. Edge computing supports Edge AI by bringing computation
and storage closer to the point of request to decrease bandwidth consumption
and deliver low latency. Edge AI enables learning algorithms to be deployed
directly onboard end devices; hence, the processing stage is performed at the
edge.
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However, deploying Deep Learning (DL) models in constrained-edge-device en-
vironments is setting up new stakes. For instance, Bhardwaj et al. [2021] spe-
cify three main challenges namely, computation-aware learning on IoT, data-
independent model compression from small-data, and communication-aware de-
ployment of deep learning models on multiple IoT devices. The first challenge
is related to the size of the learning model to be deployed into edge devices,
and how to reduce it without affecting its accuracy. The second challenge lies
in the lack of the original data sets to perform model compression. Finally, the
last challenge encompasses the heavy communication at each layer of the deep
network when a model is distributed among devices.

To these challenges, we can add that the large volume of data collected from the
IoT environment may prevent big data analytics from performing quickly. Also,
some approaches in the IoT context are limited to domains with low-dimensional
sensory inputs [Wei et al., 2020].

Addressing these challenges would allow a large-scale adoption of intelligence
at the IoT edge. This also would overcome most of the issues derived from
cloud-based approaches; however, Edge AI still resorts to some extent to the
cloud for training models before their deployment. Therefore, it is necessary
to complement this edge approach with privacy-preserving mechanisms. In this
regard, FL has emerged as a potential solution that eases collaborative learning
without disclosing training data sets [Nguyen et al., 2021]. FL is a PET pro-
posed by Google, where several entities collaborate in solving a learning problem
orchestrated by a service provider or central server [Kairouz et al., 2021].

In a traditional learning approach, a group of n end-users {U1, ..., Un} consolidate
their data {D1, ..., Dn} into a new dataset A = D1 ∪ ... ∪ Dn to train a learning
model MT , achieving an accuracy PT . Whereas in FL, each data owner Ui,
where i ∈ [0, n], trains a model MF ED collaboratively, without disclosing its
data Di to the rest of the participants, ensuring that the accuracy of this model
PF ED is close to PT . For a federated model is possible to determine its accuracy
loss δ as follows:

|PF ED − PT | < δ (3.1)

Only the train parameters of the federated clients’ models return to the server
for aggregation and the update of a global learning model. Finally, the new
global model is sent back to the end-user devices. This approach represents a
paradigm shift in the way models have learned until now.

FL is a collaborative learning approach with a promising application in several
domains in which data cannot be directly aggregated for training learning models
due to data security, privacy protection, or intellectual property rights [Yang
et al., 2019]. Its intrinsic privacy preserving characteristic makes it a suitable
candidate for the HiTLCPS state inference tasks.

Nevertheless, despite FL’s great potential, some critical research challenges must
be overcome. For instance, according to Zhao et al. [2018], non - Independent
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and Identically Distributed (IID) local data can directly impact FL models by
reducing their performance. Bonawitz et al. [2019] even claim that FL workflow
requires a model that needs human intervention. Moreover, node selection and
heterogeneity, communication, and synchronizing issues are contributing to the
slow convergence rate and therefore must be properly addressed. Additionally,
training overheads impose several restrictions, mainly with huge data volumes
produced in IoT environments.

3.3.2 State inference in the IoT Gateway
The privacy-preserving model presented in section 3.2.2 comprises various com-
ponents and defines a set of interactions to provide DOs with a way to man-
age their IoT resources and conduct a secure data-sharing process following a
consent-based access control approach. Moreover, this approach aims to make
transparent the intents and actions from the involved entities regarding IoT data
access.

While up to this point, the model contributes with a privacy-aware data ac-
quisition phase for HiTLCPS, privacy issues at the inference phase level remain
latent. Currently, this type of implementation performs data processing on an
infrastructure belonging to the HiTLCPS service provider. These actions result
in inferences that may disclose sensitive aspects of DO, leading to additional
privacy concerns and ultimately affecting the adoption of these systems.

In this regard, to minimize third-parties data collection, there is a growing trend
to move the processing tasks closer to the edge. This action would allow to bet-
ter preserve DO privacy and at the same time tap into the unused processing
power of some edge devices. Given this premise, in this section, we introduce our
approach by extending our previous proposal described in section 3.2.2 and com-
bining it with a suitable approach based on FL to carry out the state inference
phase at the IoT Gateway level.

For a state inference at the IoT Gateways level, the IoT Broker, in addition to
implementing the Privacy Orchestrator functions, must furnish service providers
with the necessary resources to instantiate the HiTLCPS service. After service
instantiation, this component will act as a central aggregation server to manage
learning models and coordinate the collaborative learning mechanism with the
associated IoT Gateways. This implies that each IoT Gateway subscribed to
that service, contains a local version of a learning model trained with the data
from its associated IoT Resources. The trained models are periodically sent
to the IoT Broker for its aggregation and the generation of a global version
of the learning model, which will be redistributed among the federated clients.
In this manner, HiTLCPS services can be offered within each personal domain
without the need for the data produced by the IoT Resources to leave the DO
premise.

This approach is represented in Figure 3.9 and explained through a use case in
which two service providers interact with DO through an IoT Broker. In this
case, the first service provider maintains the inference process on its side, whereas
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the second service provider instantiates the service in the IoT Broker. All DOs
are subscribed to the second provider’s service, and only one is subscribed to
both. As can be seen in the graph, only the IoT data from the last DO are sent
to the IoT Broker to access the service furnished by the first provider. In the
case of the second service, all DOs collaborate in the training process and share
their learning models with the IoT Broker, before receiving back the aggregated
model. Once the final model is available, inferences can be performed locally.
Although in both cases, the second phase of the HiTLCPS concept is fulfilled,
an important aspect to be evaluated is the accuracy of these inferences.

Figure 3.9: Extending the privacy preserving model with state inference in the
IoT Gateway

Similar to the previous approach, the details of this implementation and assess-
ment are cover in Chapter 5 and Chapter 6 respectively.

3.3.3 State Inference through IoT Resources
Apart from proposing an approach that considers the IoT Gateway as an element
capable of performing state inference and based on a theoretical perspective, this
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section provides a roadmap for a future iteration of this approach in which this
task can be delegated to and performed by the IoT resources from the DO
domain.

A common feature among these components is their constrained hardware in
terms of memory and computation. Therefore, to execute HiTLCPS state
inference through these devices, it is necessary to tackle the three major
challenges pinpointed in Section 3.3.1 namely computation-aware learning on
IoT, data-independent model compression for learning from small data, and
communication-aware deployment of deep learning models on multiple IoT
devices.

The first challenge could be addressed by using a compression model to make
deep learning algorithms more suitable for edge devices [Hinton et al., 2015; Han
et al., 2015]. In our model, the IoT Gateway would adapt AI models to reduce
both computation and communication costs without affecting accuracy in IoT
devices. For that, the IoT Gateway should use Pruning to remove redundant
or useless weights or even channels; Quantization, to reduce the number of bits
used for representing weights and activations; and Knowledge Distillation (KD)
to train a significantly smaller student network to mimic a large one, based
on the compressed IoT Gateway’s teacher model. This latter technique would
allow us to directly reduce the number of layers compared to the teacher model
[Bhardwaj et al., 2020].

The second challenge could be tackled using Dream Distillation [Bhardwaj et al.,
2019b], a KD-based technique that does not rely on access to any real data. It
compresses a deep learning network without using the original training set or
any alternate real data while achieving comparable accuracy. It uses metadata
and the previous teacher network to generate a new dataset of synthetic data,
that can effectively distill relevant knowledge from the teacher to the student
without using raw data.

For the third challenge, this new approach would consider Networks of Neural
Networks (NoNN) [Bhardwaj et al., 2019a], a highly-efficient compressed deep
learning paradigm for inference on resource-constrained devices. Training an
individual student to mimic a specific partition of the teacher’s knowledge
is significantly easier than mimicking the teacher’s entire knowledge. NoNN
achieves higher accuracy with minimal communication overhead among the stu-
dents. Parallelizing the student architecture model results in significantly lower
memory, computations, and communication. The individual student models do
not communicate with each other until the final fully connected layer.

The use of Edge AI at the IoT resource level does not incur privacy issues,
since the deep learning models to be deployed are previously trained by the IoT
Gateway, which is a fully manageable element controlled by the DO. Moreover,
the HiTL approach is also considered in the outcome of the processing stage
by including reinforcement learning capabilities to fine-tune predictive learning
models. By considering these approaches, the vision of a model that allows other
kinds of state inference processes and the deployment of services in different
contexts becomes feasible.
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3.4 Privacy-preserving HiTLCPS integration
HiTLCPS are designed to operate within a specific context. However, in larger
environments such as smart cities, the objective is to integrate these systems to
enable interoperability. In terms of services, it is possible for one or more services
to be shared across multiple systems. Additionally, from the DO perspective, a
user registered in one system may also be associated with other ones.

Considering the proposed privacy preserving approaches, Figure 3.10 sketches a
scenario in which coexists diverse HiTLCPSs environments and at the same time
integrate different the data acquisition and state-inference approaches presented
previously. In this figure, three IoT Brokers can be observed, representing three
different domains, a group of DOs, and a set of DRs, including service providers.
In this model representation, it can also be seen for instance, that DO III,
DR II, and service provider III are associated with more than one IoT Broker
simultaneously.

Figure 3.10: A HiTLCPS environment with different state inference approaches
and integrating diverse contexts.

In the case of interoperable systems, all settings related to preferences and pri-
vacy policies can be set only once, which would contribute to the seamless in-
teraction between both DOs and DRs. In addition, this integration can be con-
sidered beneficial, especially for improving the processes related to state infer-
ence at the IoT Gateway level. By having channels linking several IoT Brokers,
Federated Transfer Learning techniques [Chen et al., 2020] could be used to
transfer learning models previously trained in one environment to improve the
performance of a model trained on a different dataset.

This conceptualization serves as the preamble to the proposed integration model,
which will be addressed in the next chapter of this thesis.
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3.5 Summary
With the proliferation and widespread adoption of personal IoT devices, the
original concept of IoT has evolved, giving rise to new paradigms such as
HiTLCPSs. While these implementations offer numerous benefits and posit-
ive influences on individuals, their pervasive nature raises significant privacy
concerns, particularly regarding data acquisition and processing.

This chapter introduced the notion behind HiTLCPSs, highlighting the data
acquisition and state inference phase. It then explores approaches toward a
privacy-preserving model for HiTLCPSs. The proposed model incorporates a
human-centric mechanism for control, leveraging our proposed PACHA frame-
work, making data acquisition and sharing tasks transparent with a state infer-
ence process supported by AI in the edge.

Finally, this chapter lays the groundwork for a model that integrates diverse
privacy-preserving HiTLCPSs from different contexts. The forthcoming chapter
of the thesis will delve deeper into the development of a proposal aligned with
this idea.
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In close alignment with the groundwork laid in the previous chapter, which
introduced the concept of HiTLCPSs and provided a model toward privacy
preservation particularly emphasizing the phases of data acquisition and

state inference, this current chapter extends to the integration of these systems
within the larger context of Sustainable Smart Cities (SSC).

Nowadays SSC are gaining momentum, supporting a wide variety of applications
and solutions to not only improve citizens’ quality of life but also the efficiency of
urban services while meeting the economic, social, cultural, and environmental
needs of present and future generations. To provide sustainability, smart cities
are deploying cutting-edge IoT solutions based on on-the-fly data sensing and
tapping into the proliferation of new urban and personal devices.

Currently, an increasing number of IoT-based proposals have targeted sustainab-
ility in smart cities. Unfortunately, these solutions, in addition to their hetero-
geneous nature, are primarily proprietary implementations that do not interact
outside their scope and range [Brutti et al., 2019]. Thus, to integrate these
solutions from various domains and truly provide efficient and effective services
for stakeholders, one of the main challenges in tackling this multilayer complex
system is interoperability [Tsampoulatidis et al., 2022].

The European Interoperability Framework for Smart Cities and Communit-
ies (EIF4SCC) [Commission et al., 2021] sets out a group of principles and
recommendations for the improvement of service delivery at local, national, and
EU levels. Among the principles on which this proposal and its recommendations
are based are the human-centered approach, the protection of individual privacy,
the guarantees of transparency and security among stakeholders, a participatory
approach, data portability, and the implementation of seamless solutions based
on advanced technologies (e.g., IoT, blockchain, AI, etc.).

In this chapter, our aim is to align with these principles and recommendations
to propose a model that serves as a reference for the development, implement-
ation, and integration of novel privacy-preserving HiTLCPSs, by leveraging the
features of decentralized technology, such as blockchain. The objective of this
integration model is to contribute to urban sustainability and foster interoper-
ability among the various technological components of stakeholders in a smart
city.

4.1 Background and Related Work
Before delving into the integration model’s details, this section will provide
definitions, review the background, and explore related work on this topic.
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4.1.1 Interoperability
One of the features regarding the model is to enable the interoperability of
smart city initiatives. NIST extends the IEEE definition of interoperability
as “the capability of two or more networks, systems, devices, applications, or
components to work together, and to exchange and readily use information —
securely, effectively, and with little or no inconvenience to the user” [Gopstein
et al., 2021].

In the context of this topic, several authors have proposed interoperability mod-
els focused on user data within the dynamics of smart cities. For example,
Rahman et al. [2022] propose a hierarchical blockchain-based platform to ensure
the integrity of IoT data and blockchain interoperability in smart cities. Their
platform enhances confidence in managing citizens’ information by guaranteeing
the integrity of IoT data and traceability of operations. The authors address
the complexity of heterogeneity within city organizations through a structured
‘blockchain of blockchains’ approach, creating a trustworthy platform for secure
data communication. However, it is important to note that the number of lay-
ers in the hierarchical model of the blockchain of blockchains can affect latency,
execution time, and validated transactions.

Kundu [2019] explores the crucial aspect of trust within a smart city, discuss-
ing use cases and examples of trust consensus in citizen dynamics. The paper
also examines how blockchain and smart contracts can establish trust in data
sanctity, verifiability, interoperability, and institutionalization. It presents ex-
amples categorized across four key areas relevant to smart cities: the impact of
network effects on trust in governments and industries, strengthening the eco-
nomy through trusted transactions, the concept of a liquid economy, and the
exchangeability and interoperability of economies. The article further analyzes
the significance of blockchain in gamification and reward systems for smart city
ecosystems, emphasizing the role of trust in fostering closer and more secure eco-
nomies among citizens. Lastly, the article explores the importance of blockchain
in the governmental dynamics of smart cities, highlighting how implementing
these technologies at the governmental regulatory level could contribute to the
development of smarter and more trustworthy cities.

Brutti et al. [2019] propose a methodology and a modular, scalable, and multi-
layered ICT platform to tackle the challenge of cross-domain interoperability in
Smart City applications. The paper addresses the secure, effective, and trans-
parent exchange of information between systems with minimal inconvenience to
users and active elements within smart cities. The platform, employing a modu-
lar non-blockchain approach, enables the integration of registry managers, urban
data, business data, ontology data, authentication, and national or governmental
services. By offering a horizontal platform, it facilitates the connection of di-
verse urban services while also enabling the provision of vertical services tailored
to specific application contexts. This transparent information sharing between
services benefits citizens within their respective contexts. While these services
greatly contribute to interoperability among smart city systems, they must in-
herently instill trust and address privacy concerns, which could be achieved
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through the implementation of blockchain systems.

Kusumastuti et al. [2022] conducted an empirical evidence study in Indonesia
to analyze the influence of seeking and sharing data on these platforms. This
paper focuses on how such behavior affects citizens’ intention to share data that
can be utilized in various domains and platforms beyond their own city. The
study also presents a model that examines the positive or negative impact of
users sharing data when smart city initiatives need to be aligned across different
cities in the country. The model analyzes the influence of platform attributes,
user attitudes toward the initiatives, perceived knowledge, social factors, user
experience, and perceived user privacy. The authors conclude that smart city
initiatives with greater interaction and the provision of useful information can
influence usage and interest in data sharing, even if the initiatives originate from
cities other than where the users reside

4.1.2 Privacy Preservation
In addition to ensuring interoperability, models must also prioritize the privacy
of users and their data to increase human participation in HiTLCPS. For in-
stance, Makhdoom et al. [2020] present ‘PrivySharing,’ an innovative blockchain-
based framework designed for secure and privacy-preserving IoT data sharing
within a smart city environment. The framework introduces a data preservation
innovation based on the division of blockchain channels, where each channel is as-
signed a limited number of organizations responsible for processing specific data
categories within the context of smart cities, such as health, mobility, energy, or
finance. Furthermore, organizations can access user data through a regulated
and embedded access control process facilitated by smart contracts, ensuring
compliance with EU regulations, including GDPR data protection. However,
the authors acknowledge the need for the implementation of a system that se-
curely integrates IoT devices into the BN.

Kumar et al. [2021] present a Privacy-Preserving and Secure Framework (PPSF)
for IoT-driven smart cities. This framework primarily focuses on two key fea-
tures: a privacy scheme and an intrusion detection scheme. The privacy scheme
is built on blockchain technology, while the intrusion detection scheme utilizes
a module called Gradient Boosting Anomaly Detector (GBAD). The frame-
work is motivated by the preservation and confidentiality of authorized citizen
data, along with alerts for unauthorized users attempting to access the network.
While this framework is specifically designed for IoT-driven data, it has yet to
be tested in prototypes that can be deployed in real-world city environments.
The authors plan to conduct future work to validate the framework through
prototypes that can be utilized by citizens.

Some works approach privacy preservation from different fields but with some-
thing in common, which allows combining fields of action where the combined
interaction generates privacy concerns. For example, in Xu et al. [2023], a
privacy-preserving distributed optimization algorithm is established. Also, it
is considered a multi-agents-based distributed convex optimization problem,
where the objective functions can be non-smooth. Additionally, Qi et al. [2022]
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discuss the potential of combining blockchain with the Internet of Healthcare
Things (IoHT) concept, focused mainly on the privacy preservation of these sys-
tems. This survey addresses the care and protection of data leakage in medical
systems and the risk that this may cause to patients. Therefore, this review
aims to improve the reliability and privacy of the systems based on a blockchain
approach and distributed ledgers. In Wang et al. [2019b], privacy preservation
is evaluated in the challenges of social vehicular networks, taking into account
the potential risks encouraged by the interaction of passengers in the natural
dynamics of the network. The diversity of participants moving from vehicular
to social vehicular networks requires a solution that mitigates security risks and
personal data protection. Finally, Liu et al. [2021] address the privacy concerns
in cross-organizational process workflows. These processes involve multiple or-
ganizations that commonly require collaborative tasks. Therefore, the paper
proposes a correctness verification approach for cross-organizational workflows
with task synchronization patterns. The approach ensures globally correct ex-
ecution by leveraging the local correctness of each sub-organizational workflow
process.

4.1.3 Solutions based on contemporary technologies
This review also considers the integration of advanced technologies such as IoT-
based systems with Blockchain. IoT services play a significant role in driving
smart features in cities, and the adoption of these systems can be influenced by
the trust that blockchain provides in safeguarding citizens’ data transactions.
Khang et al. [2022b] present the concepts, methodologies, and solutions involved
in designing infrastructure for smart city ecosystems. Their paper explores how
IoT applications drive smart city systems and how they can be integrated with
advanced data management and artificial intelligence technologies. The import-
ance of monitoring systems over long-distance networks, such as LoRaWAN, and
the need for trust systems for the monitored data, such as blockchain, are contex-
tualized. Additionally, Khang et al. [2022a] delve into the updated frameworks
for modeling, procuring, and building systems for smart cities by integrating
blockchain and IoT technologies in greater detail. However, they also acknow-
ledge the need to address privacy and interoperability challenges that arise from
combining LoRaWAN and blockchain within the same context.

In addition to integrating network technologies with blockchain, it is crucial to
explore the integration of IoT-embedded devices into this technology. Arnaudo
et al. [2023] present a lightweight transaction protocol that facilitates the inter-
action and integration of embedded devices in blockchains using the LoRaWAN
protocol. This protocol enables securely authenticated devices to integrate IoT
devices despite the limited resources of embedded systems. It aims to reduce the
amount of metadata transmitted by IoT devices and optimize the power con-
sumption of embedded devices in blockchain systems. However, it is important
to consider aspects such as latency and communication errors associated with
LoRaWAN in these models.
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4.2 The CONFLUENCE Model
One of the motivations behind the proposal of a model oriented to integration
of HiTLCPSs within the context of smart cities is sustainability. As evidenced
in Nunes et al. [2015] and Fernandes et al. [2020], HiTLCPSs aim to generate
a positive influence on individuals. However, most of these systems operate in
isolation in a particular ambience and are limited to the data generated within
that particular environment. While each of these systems could individually con-
tribute to sustainability in a smart city context, interoperability between them
would allow for a substantial contribution at the city level with the improvement
of current services and even the deployment of new ones.

The purpose of the model is to be implemented in the context of smart city
sustainability, which involves meeting current needs while ensuring the ability
of future generations to meet their own needs. Sustainability encompasses three
pillars: environmental, social, and economic, which are interconnected and in-
terdependent [Purvis et al., 2019]. Figure 4.1 illustrates this connection.

Environmental sustainability focuses on preserving natural spaces and ecosys-
tems. In the context of smart cities, there is an emphasis on utilizing green spaces
and developing technologies that minimize pollution and manage resources ef-
fectively. This includes recycling, promoting green spaces, and encouraging sus-
tainable transportation options like bicycles [Almalki et al., 2021].

Figure 4.1: The three pillars of sustainability. Adapted from [Purvis et al., 2019].

Social sustainability places the community as a central actor in the model. It
aims to involve citizens actively in technology and reduce the costs of specific
technologies while promoting human participation. The model seeks to create a
sense of ownership and responsibility toward sustainable practices by engaging
the community [Ramírez-Moreno et al., 2021; Almalki et al., 2021]. From an eco-
nomic perspective, the model aims to establish a reliable and secure framework
that allows third-party organizations to support and sponsor the implementa-
tion of this technology in cities. The goal is to create a sustainable incentive
structure that encourages the integral contribution of the community through
green activities while ensuring economic viability.
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In this sense, our proposed model - named CONFLUENCE, seeks to provide
a solution for the integration of various HiTLCPSs used in a smart city, so
that they can eventually interoperable, considering proactive data protection by
citizens as a fundamental pillar of its design. The architecture of this model
is composed of a set of entities, components, and interactions, as illustrated in
Figure 4.2. The following subsections will provide a detailed description of each
part of the model.

Figure 4.2: The CONFLUENCE model: entities, components and interactions.

4.2.1 Entities

4.2.1.1 Citizen

This entity is the first stakeholders within a smart city, and its participation is
active, both in the interaction with services provided by HiTLCPS and in the
management of its data coming from its IoT resources. This entity is typically
assigned the role of DO ; however, there may also be times when its role is that
of a DR .
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4.2.1.2 Local Government

It is the second stakeholder in a smart city. Its functions include intermediation
between entities and first-level regulation of services proposed by third-party
organizations. To this end, the design, execution, and development of public
policies and infrastructure to support IoT services are necessary. This entity
fulfills the mixed role of the DO and DR because it can manage the data of its
IoT resources distributed in the city, as well as offer services that depend on
citizens’ data.

4.2.1.3 Third-Party Organizations

These group stakeholders form the third entity in the model. Their role is to
implement HiTLCPSs in the city and collaborate with the local government to
promote sustainability. Similar to local governments, this entity implements
technological infrastructure to deliver services. However, the deployment of IoT
resources is limited to their environment. In this model, the main role assigned
to this entity is that of a DR ; nonetheless, it may eventually also act as a
DO.

4.2.2 Components

4.2.2.1 IoT Resources

These are the physical or virtual elements that generate IoT data. This model
defines two types of resources: public and private. On the one hand, public IoT
resources are managed by the local government and distributed across the city.
Some of these resources comprise small systems meant for citizen interaction.
On the other hand, the second category comprise the private IoT resources
managed by citizens or organizations. Citizens’ resources can accompany them
during their daily routine (e.g., sensors in their wearables or personal devices)
or remain within a personal context (e.g., sensors inside a smart home). In the
case of organizations, resources are distributed only within their environments
(e.g., devices or sensors installed in an academic institution).

4.2.2.2 IoT Gateway

This component allows citizens to register and manage their IoT resources and
it also structures and funnels all the data produced by them. As an exclusive
element of this entity, it has interfaces designed to support the interactions
between the user and its technological infrastructure, without neglecting aspects
related to the protection of their data.

4.2.2.3 IoT Orchestrator

This is a common element across all entities and allows interaction between them.
Depending on the entity, the component has its own features and functions. For
instance, in the case of third-party organizations and local governments, this
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component enables the registration of IoT resources, a function performed by
the IoT Gateway on the citizen’s side. However, a common feature among all
entity orchestrators in the CONFLUENCE model is that they act as nodes in
the BN.

4.2.2.4 Blockchain Network

It is a network formed by a set of peers or nodes to maintain and synchronize a
shared registry of digital transactions without the need for a central authority
or intermediary. The nodes of this blockchain execute a set of pieces of code
known as smart contracts, where rules and business logic are defined.

4.2.3 Interactions
CONFLUENCE is a model that involves multiple M2M interactions among its
various components, as illustrated in Figure 4.2. The first set of interactions
pertains to IoT resources, where data generated by these elements are funneled
to their corresponding IoT Gateway (Interaction A). Notably, the IoT Gate-
way also allows citizens to register and manage their IoT resources in addition
to its data collection function. By contrast, local governments and third-party
organizations receive data from their respective IoT resources through their in-
teractions with the IoT orchestrator (Interactions E and I, respectively).

The second set of interactions involves the IoT Gateway, with the most com-
mon being between it and its citizen orchestrator (Interaction B). In this case,
the collected resource data are sorted, stored, and made available for sharing,
based on user preferences. Citizens can choose which resources can be directly
shared, select those that require consent-based data sharing, or keep apart those
that are not for public access. The citizen orchestrator is designed as part of a
household’s technological infrastructure and should support multiple users (e.g.,
members of a family). A less common, but possible, scenario involve an IoT
Gateway linking directly to the local government or third-party organization or-
chestrator (Interactions C and D). This interaction may take place, for instance,
in a participatory sensing task as part of a subscribed service in which data
from some personal IoT resource are yielded by the citizen. Such interactions
are voluntary and can only occur if the citizen allows it, because by default, the
IoT Gateway will always seek to link to its corresponding orchestrator.

The last batch of interactions (F, G, and H) involves IoT orchestrators. In-
teractions F and G occur between the citizen’s orchestrator and others during
enrollment in a service, accessing open data provided by other entities, or dur-
ing data-sharing processes. Local government and organization orchestrators
(Interaction H) may interact during the service registration processes or data
sharing between the two entities. It is essential to note that entities can only
share data from their IoT resources and not data obtained from another entity,
unless there is prior consent or agreement to support such an action. To keep
a track of all interactions involving data sharing or related processes, they are
recorded in the blockchain to ease auditing by the RE and provide transparency
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to the rest of the entities.

4.2.4 Privacy preserving data sharing
For the data-sharing process, the model components consider the characterist-
ics defined by PACHA, the privacy-preserving framework addressed in section
3.2.1. This theoretical approach proposes a complete privacy-preserving data-
sharing architecture between DOs and DRs, and defines two main elements: the
privacy orchestrator and the privacy interagent. Both elements are based on
modular architecture, as shown in Figure 3.2, and each module fulfills a specific
function.

The original idea for the PPO was to act as an intermediary that would provide
infrastructure to DRs to host and expose their services. This component offers
a controlled alternative for accessing the DO collected data based on a consent
process to the rest of the DRs that are not assigned the role of service providers.
Nonetheless, in our model, the characteristics of the PPO were inherited by IoT
Orchestrators from the stakeholders.

The PPI component allows DO to interact with the PPO via its IoT resource
management and privacy preference modules. It also allows access to services
from specific DRs. In our model, these capabilities are also part of the IoT
Gateway.

Lastly, but certainly not least, our new proposal involves storing interactions
generated within consent management processes, data sharing processes, and
interactions between citizens and various IoT resources in a decentralized re-
gistry. This provides more transparency and makes it easier to audit and ensure
compliance.

4.2.5 Re-Encryption Scheme
This proposed model primarily focuses on data generated by devices closely
associated with citizens, as they constitute the majority within a city. Previous
research indicates that from this data, various sensitive aspects of the user can
be inferred [Kröger, 2019; Kröger et al., 2019]. Therefore, it becomes imperative
to implement privacy-preserving measures. One effective approach is to ensure
the confidentiality of information during a consented data-sharing process. By
doing so, the data can be securely shared and processed exclusively by authorized
entities or entity.

Within this model, the components and interactions are described in such a
way that IoT gateways serve as conduits for the data generated by citizens’ IoT
resources, primarily directing it toward their IoT orchestrators (interaction B).
The IoT orchestrators not only facilitate interactions among different entities
but also play a pivotal role in the data-sharing process. Initially, they act as
custodians of this information, owing to their storage capacity. Moreover, they
serve as the primary contact point for other entities seeking access to the data
generated by citizens’ resources (interactions F and G).
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While a citizen IoT orchestrator is designed to operate within a familiar en-
vironment, it remains crucial to establish robust security measures. Hence,
it is deemed essential to encrypt all the information collected by this com-
ponent right from its source, ensuring that only authorized entities can de-
crypt the data during the sharing process. To fulfill this objective, our model
considers a state-of-the-art encryption scheme called Conditional Proxy Re-
Encryption (CPRE) [Weng et al., 2009], which represents an enhanced version of
the traditional proxy re-encryption scheme implemented in the model proposed
in Chapter 3. Specifically, this new proposal adopts the CPRE scheme presen-
ted in Lin et al. [2022] known as Blockchain-based Condition Invisible Proxy
Re-encryption (BCIPRE).

Figure 4.3: The Blockchain-based Condition Invisible Proxy Re-encryption
scheme adapted to the CONFLUENCE model for a secure data
sharing event between Alice (a citizen) and Bob (a member of a
third-party organization)

In the example depicted in Figure 4.3, we have Alice on the left side with her IoT
Gateway, responsible for collecting and organizing data from her IoT resources.
This IoT Gateway is associated with Alice’s corresponding IoT orchestrator,
enabling various functionalities, including granting consent to members of other
entities who seek access to her data. On the right side, we have Bob, who has
obtained prior authorization through the consent process, as described in section
3.2.4, to access specific data from Alice’s IoT resource.

The process starts with the generation of the cryptographic material (private
keys and public keys) from the different entities that make up the model. In
this case, Alice (SkA and PkA) and Bob (SkB and PkB).

This generation also includes global security parameters (derived from a security
parameter k), as well as the sharing of the public keys.

After the collection and organization of IoT resource data over a defined time
period, the IoT Gateway proceeds with the extraction of a keyword (w) from
each set of data (Step 1). Using PkA the IoT Gateway encrypts the data (m)
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Table 4.1: Additional Notation

Notation Type Description

e

Global
security

parameter

Bilinear map
e : G × G → GT

q Prime number
G, GT Groups of order q
f , h Random generators f, h ∈ G
H1 Hash function H1 : {0, 1}∗ → G
H2 Hash function H2 : {0, 1}∗ → Z∗

q

idα Global identity idα : identity of user α
aα, bα, t, s, r Group elements aα, bα, t, s, r ∈ Z∗

q

Skα Private Key
Private key of user α

Skα =
(
Skα1

, Skα2

)
Skα1

= aα, Skα2
= bα

Pkα Public Key
Public key of user α

Pkα =
(
Pkα1

, Pkα2

)
Pkα1

= faα , Pkα2
= hbα

Rkw
α→β Re-encyption Key

Re-encryption key generated
by user α to user β

Rkw
α→β = (Rk1 , Rk2 , Rk3)

(Step 2), resulting in the generation of a ciphertext (CT ) and the corresponding
keyword index (Iw).

CT = (C1, C2, C3, C4, C5) (4.1)

Iw = (C1, C4) (4.2)

Each of the components of the CT and the Iw is calculated as follow:

C1 = Pkr
A2 (4.3)

C2 = f
s
r (4.4)

C3 = Pks
A1 × f−s×H2(idA) (4.5)

C4 = e (h, H1 (w))r (4.6)

C5 = m × e (h, f)−s (4.7)

Afterwards, the CT is transmitted to the IoT orchestrator for secure storage
(Step 3). Simultaneously, the associated Iw is preserved within the BN ledger
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(Step 4).

Following this, the IoT gateway proceeds to generate the re-encryption key
(Rkw

A→B) associated with the CT . This is achieved by using Alice’s private
key, part of Bob’s public key, and w (Step 5), as follows:

Rk1 = Pk
1

SkA1 −H2(idA))

B2 (4.8)

Rk2 = H1(w)
1

SkA2 (4.9)

Rk3 = e(H1(w), h)
1

SkA1 −H2(idA)) (4.10)

Once Rkw
A→B is generated, it is sent to the IoT Orchestrator (Step 6).

On the side of the third-party organization, Bob generates a trapdoor Tw by
employing part of his private key in combination with the w (Step 7).

Tw = H1(w)
1

SkB2 (4.11)

This trapdoor is then evaluated by a smart contract within the blockchain net-
work (Step 8). If e(Tw, C1) = C4 is met, then the corresponding Iw is sent to
Alice’s IoT Orchestrator. This index enables the IoT Orchestrator to retrieve the
encrypted data for re-encryption using Rkw

A→B. As this key incorporates the w,
the IoT Orchestrator is restricted to re-encrypting only the data that includes
the keyword, thereby ensuring effective control over the data (Step 9). The
resulting re-encrypted ciphertext CTB = (C ′

1, C
′
2, C

′
3, C

′
4, C

′
5) can be obtained

through the following process:

C
′

1 = Rkt
1 (4.12)

C
′

2 = C
1
t

3 (4.13)

C
′

3 = C3 (4.14)

C
′

4 = Rkt
3 (4.15)

C
′

5 = C5 (4.16)
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Ultimately, the re-encrypted text CTB is transmitted to the IoT Orchestrator of
the organization (Step 10), and subsequently relayed to Bob (Step 11). Bob can
successfully decrypt the data m (Step 12) using his private key. The decryption
process involves the following steps:

m = C
′

5 × e(C ′

1, C
′

2)
1

SkB2 (4.17)

As previously mentioned, this model incorporates the BCIPRE encryption
scheme introduced in Lin et al. [2022]. The authors of this scheme provide
a comprehensive description of the solution and conduct a formal security ana-
lysis, demonstrating its adherence to essential security properties namely collu-
sion resistance and non-transferability.

4.2.6 Incentives Mechanism
One of the main challenges of HiTLCPSs is user involvement. Occasionally, the
lack of participation is mainly due to the absence of personal data protection
mechanisms, the development of artifacts without considering human-computer
interaction approaches, and the scarcity of incentives. When these systems are
intended to operate in isolation or interoperate in a smart-city context, it is
imperative to massively increase their use. And thus these challenges must be
addressed.

The first two challenges have been considered both in the proposal of the model
and at the time of the implementation of the IoT gateway, the latter being the
main component of interaction with citizens. For the third challenge, we propose
an improvement to the incentive mechanism presented in our case-study [Sanchez
et al., 2022].

In that proposal, citizens can benefit from exclusive services and discounts in
retail stores by interacting with IoT resources, including a mobile application
managed by the local government. This central entity assigns a point to a
citizen each time he or she interacts or participate in a defined activity. The
greater the participation, the more points citizens can earn. At the end of
each month, citizens with the highest scores can trade their points. For the
redemption process the citizens generates a QR codes to preserve their identity.
However, those codes must be validated by the local government before accessing
benefits.

In this new proposal, we introduce a mechanism that improves and makes the
allocation of points transparent and eliminates the need for the citizen to use
and validate against the local government (or any incentive provider) a code
generated prior to obtaining the benefit. Owing to the use of a smart contract,
every time a citizen interacts with an IoT resource within the context of a defined
activity, the smart contract is invoked by the node in charge of managing the
resource and the interaction is recorded as a transaction within the ledger. The
blockchain will keep track of the amount points its citizens have earned in the
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different activities, as well as the incentives that must be registered by the
sponsoring entities. This mechanism is not limited to incentives derived from
interaction with local government IoT resources, as it can be implemented and
work together with incentives proposed by third-party organizations. Even in
the case of joint activities between different entities, it is possible to keep track
of the points earned by citizens in such activities regardless of the rest of the
points. For the redemption process, the smart contract periodically verifies the
status of each participant and grants benefits to the top-ranked ones without
requiring a face-to-face verification process.

4.3 Summary
In this chapter, we have presented a model named CONFLUENCE that incor-
porates contemporary technologies like Blockchain and LoRa to integrate privacy
preserving citizen-centric solutions, fostering the vision of SSC. This model is
the result of integrating HiTLCPSs that implement the first privacy-preserving
approach proposed in our third chapter. This integration model seeks to engage
the community through green activities and incentivize sustainability at an eco-
nomic level. By promoting citizen engagement, utilizing green technologies, and
fostering economic support, the model aims to drive sustainable development in
smart cities. Hence, in technical and general terms, the entities in the model refer
to a city’s stakeholders, while the components represent the technological ele-
ments with predefined functions in which the stakeholders engage. The model
establishes and defines multiple interactions that can take place among these
components. Additionally, CONFLUENCE introduces a mechanism for incent-
ives to encourage citizen participation and interaction with these systems. The
next chapter will provide further details regarding the implementations of the
components from this model and the one presented in Chapter 3.

Publications based on this chapter’s work
• Rivadeneira, J. E., Sánchez, O. T., Dias, M., Rodrigues, A., Boavida, F.,

and Silva, J. S. (2023d). Confluence: An integration model for human-in-
the-loop iot privacy-preserving solutions towards sustainability in a smart
city. Submitted to IEEE Internet of Things Journal (Q1);
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The development and widespread deployment of IoT systems that handle
personal information are an inevitable trend as our society embraces
higher levels of information-based systems. In this chapter, we delve

into our two case studies that exemplify the implementation of the HiTLCPS
concept. Each of these case studies revolves around the deployment of dis-
tinct platforms, each tailored to address different objectives in specific contexts.
Subsequently, we introduce SPACES, an implementation solution that aims to
integrate the services offered by the aforementioned case study platforms. How-
ever, this time, considering the privacy-preserving features of the model pro-
posed in Chapter 3. Furthermore, this implementation will serve as a Proof-of-
Concept (PoC) artifact for our integration model - CONFLUENCE - introduced
in Chapter 4. This chapter provides technical details regarding the development
of these components and the underlying technology used to implement this new
testbed.

5.1 Group Case Studies

5.1.1 ISABELA
The IoT Student Advisor and BEst Lifestyle Analyzer (ISABELA) is our first
case study designed for an educational domain. Its aim is performing a con-
tinuous students’ lifestyles monitoring to infer their academic progress and try
to assist them in their daily routine to enhance their academic performance,
prevent failing grades, and decrease school dropout rates. From a technical per-
spective, this case study comprises a platform that implements the HiTLCPS
concept [Fernandes et al., 2020], and its architecture is depicted in Figure 5.1.
ISABELA has already been used in some field trials in different venues, both in
Portugal and Ecuador with more that 40 participants per trial [Fernandes et al.,
2019, 2020]. It is worth noting that the primary obstacle to widespread parti-
cipation, as highlighted by the students, is the assurance of their privacy.

ISABELA’s platform comprises services and operates using smartphones run-
ning a mobile app, wearable devices and IoT Boxes (hardware components that
integrate environmental sensors) to gather data. These data, mainly originated
from physical sensors, electronic-based sensors, and OSN [Armando et al., 2018]
is then processed by a core infrastructure to figure out students’ emotions, in-
tents, and actions. This modular infrastructure is an arrange of elements based
on FIWARE Generic Enablers (GEs).

5.1.1.1 FIWARE

FIWARE is an open ecosystem for experimentation that has emerged in response
to the dynamic landscape of the information technology market [Sinche et al.,
2020a], simplifying:
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Figure 5.1: ISABELA’s platform architecture. Adapted from Fernandes et al.
[2019]

• The development of applications in the Internet of the future.

• The hosting capacities and access “as a service” to the functions that
facilitate the connection with the IoT.

• The management and knowledge processing (context information) and the
analysis of large-scale multimedia content in real time.

• The incorporation of advanced functions in user interfaces, among others.

FIWARE, from a streamline perspective, presents an interconnected node in-
frastructure formed by Backbone, Network, Computing, Storage and Scalability
Power. This middleware offers an open and standardized platform and a set of
GEs.

The GEs are generic, adaptable and reusable software components used as
building blocks to rapidly develop specific applications and services based on
the Internet of Future. These components are available in the GEs catalog of
FIWARE1.

Features of these GEs include Public Specifications available through the API
and some of them are open source. Any implementation of a GE is formed by
a set of components that supports specific group of functions and APIs based
on the open specifications. Research centers, public and private institutions are
behind the development of GEs.

GEs are classified into seven technical chapters:

• Data/Context Management

• IoT Services Enablement

1https://www.fiware.org/catalogue/
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• Advanced Web-based user interface

• Security

• Architecture of Applications/Services Ecosystem and Delivery Framework

• Interface to Networks and Devices

• Cloud Hosting

As depicted in Figure 5.1, the ISABELA’s plaform leverages IDAS, IDM,
COMET, CYGNUS and ORION, from the pool of available FIWARE GE. An
in-detail description of the design, development, deployment, and assessment of
this HiTLCPS can be found in Fernandes et al. [2020], while a complete ana-
lysis of student academic performance based on ISABELA is described in Sinche
et al. [2020a].

5.1.2 Green Bear
Green Bear, also known as ‘Urso Verde’ in Portuguese, is our second case study
aiming to improve the city’s sustainability, the lifestyle of its citizens, and the
dynamics of the city. Green Bear extends the idea behind ISABELA into a smart
city system context as it not only collects information of citizens extracted from
their mobile phones but also enhances the experience with data obtained through
the interaction of users with various IoT devices [Sanchez et al., 2022].

As our previous case study, Green Bear provides a HiTLCPS, but in this time
the system comprises a mobile application interacting with LoRaWAN nodes
strategically located in the city, which collect data on the users’ activity. This
solution includes LoRaWAN nodes using a public The Things Network (TTN)
gateway, a TTN application to integrate external services, a FIWARE based
back-end, a dashboard for system management, and a mobile application that
integrates humans in the system. Figure 5.2 shows the overall architecture of
the Green Bear solution.

In both case studies, the smartphone plays a key role, not only as a data source
but as a way that the systems interact with their users. Each system offers
its own application, which include a chatbot that provides recommendations
on sleep hours and physical activity, depending on the user’s performed activ-
ities. Notifications help participants to become more involved in the system.
Additionally, the chatbot allows the system to ask questions and set mobile
parameters, assisting the user in configuring the system. The overall objectives
of the mechanisms implemented in the Green Bear application are to foster the
citizens’ interaction with city spaces, e.g., green spaces, outdoor activities, re-
cycling dynamics, and also to incentivize the users’ physical activity, sleep time,
and quality of life. The latter being common in the case of ISABELA’s mobile
application.
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Figure 5.2: Green Bear’s platform architecture. Adapted from Sanchez et al.
[2022].

5.2 SPACES Platform
A common aspect of ISABELA and Green Bear platforms is the lack of user-
centric data protection mechanisms. Both systems do not offer its users a way to
control the data flows that are being collected and sent for inference processes.
Although certain privacy aspects, such as data anonymization and the use of
pseudo-identifiers, have been considered in the design of both systems, the ab-
sence of a model that empowers the end user and allows respecting the right to
privacy is one of the main milestones to be met in both case studies.

In this sense, and taking into account the common points of both HiTLCPS,
for the assessment of our proposed models introduced in the previous chapters,
it has been decided to develop a new unified platform – named SPACES –
aligned with our privacy-preserving model components (based on the PACHA
framework) and with the aim of integrating various services derived from the
HiTLCPS previously developed.

As in ISABELA and Green Bear, this new platform leverages users’ smart-
phones, IoT Boxes, and other hardware elements to represent the components
of our proposed models. In this section, we present the implementations de-
scriptions of these components, including details of the underlying technology
that allowed the implementation of these components.

5.2.1 IoT Broker, IoT Orchestrator and IoT Gateway
Both, the IoT Broker (first model) and the IoT Orchestrator (second model)
implement the modules proposed by the PPO. However, in the case of the IoT
Orchestrator, depending on the entity, the number of modules varies, but in
general, all orchestrators implement the Data Acquisition Module (DAM), the
Consent Manager (CM), a Privacy Enforcement Bridge (PEB), a Data Requests
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and Subscription Module (DRSM), and the Data Dispatcher Module (DDM).
In the case of the local government and the third-party organizations, their or-
chestrators implement the IoT Service Providers Repository (ISPR), the IoT
Services Diffusion (ISD) module and an extra module for IoT Resource Man-
agement module.

To implement these modules and their functions, services were developed us-
ing JavaScript through NodeJS, while certain modules were enhanced with the
existing features offered by the FIWARE GEs.

In our implementation the identity management feature of the ISPR is carried
out by Keyrock-GE. A core part of DDM and the DRSM is the Orion Con-
text Broker-GE, while for data acquisition from IoT gateways, DAM relies on
IDAS-GE. Apart from GE, some third-party solutions were integrated within
the implementation of this component. For instance, in the case of ISD, Firebase
Cloud Messaging is used to ease the generation of notifications for the agents,
while JSON Web Token (RFC 7519) is used for token issuing. In the case of
the IoT Orchestrator from the local government the DAM implements also a
Message Queuing Telemetry Transport (MQTT) client.

In addition to their own functions, each of these modules exposes a set of
APIs, which provides flexibility and interoperability between the various mod-
ules.

In the case of the IoT Gateway from both models, this component implements
the modules comprising the PPI plus an IoT Resource Management Module.
This latter module allows the DO to pick up and control which resources are
going to be part of the consent and data release process. The modules with user-
interaction capabilities are implemented in a smartphone application developed
in Xamarin (C#) to ensure cross-platform compatibility (Figure 5.3). In the
case of the IoT Gateway from our first model, the modules that perform ac-
tions that do not depend on user interaction were developed as microservices in
JavaScript, integrating existing libraries like crypto-js, bcryptjs, and recrypt-js.
Also, this IoT Gateway instantiates Orion Context Broker-GE and IDAS-GE for
data management functionalities, complementing the functions of the developed
modules.

As in the case of the IoT Gateway, the DR system implements a lightweight ver-
sion of the PPI instance. This version is comprised of a consent request module,
a compact notification module, and a privacy policy and security module. In
particular, the consent request module supports the DR to select simultaneously
different IoT resources from the same DO or from different ones.

All these modules were written in JavaScript through NodeJS and provide a
set of APIs. However, to fulfill the interactive features of the consent request
and notification modules of this PPI version, it includes a front-end application
developed using React (Figure 5.4).
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Figure 5.3: SPACES Mobile Application as part of the IoT Gateway component.

5.2.1.1 HiTL-IoT based Services

The Green Bear services are included in the pool of HiTL-IoT based services that
the IoT Gateway’s implementation offers and in the case of our second model, as
already mentioned its aim is to promote sustainable living habits among citizens
namely encouraging recycling, the use of bicycles, using public transportation,
and participating in voluntary actions.

To develop this service, we identified functional requirements by considering the
target audience (in our case, citizens) and the desired features. This service en-
compasses several features and components, such as activity tracking, objectives
displaying, a chatbot, a QR code validator, and a BLE advertiser. To encourage
participation, the service implements a point-based reward system called Citizen
Points based on our proposed incentive mechanism.

For implementing this service, we have followed an agile methodology, partic-
ularly the principle of “working software over comprehensive documentation”
[Wagenaar et al., 2018] and the practice of “code reuse” [Frakes and Kang, 2005],
this involved employing a code reuse approach, which entails adapting previous
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Figure 5.4: SPACES front-end application developed in React for DR consent
requesting.

code to enhance the efficiency and efficacy of the development process.

One of the services’ capabilities is to communicate with public IoT resources
through a BLE advertiser to validate user actions. For instance, when a citizen
performs a recycling task and interacts with a public IoT resource (e.g., pressing
a button), this resource is capable of fetching the advertised user pseudo ID from
the IoT Gateway to validate the interaction. Later, the collected data are sent
to the IoT orchestrator for the Citizen Point assignment.

However, there is another validation method supported by this service. Through
the QR validator, the actions of the citizens can be verified instead of interacting
directly with the hardware of IoT resources. For example, after completing a
task, the IoT resource can generate a QR code, and a citizen leveraging this
smartphone camera can read the QR code to validate the action.

To provide the citizens with a friendly interaction interface, this service im-
plements three main views: Activity, Chatbot, and Objectives (Figure 5.4).
The first view displays charts with user activity metrics, such as steps taken,
time spent in green zones, and the number of Citizen Points (accumulated and
spent).

The second view retrieves the objectives and shows the user’s Citizen Points, as
well as their classification. Each objective is color-coded to show the progress,
with red indicating that the objective is far from completion, yellow indicating
that it is almost complete, and green indicating that the objective is complete.
In addition to the weekly objectives, there are monthly objectives. These tasks
are typically difficult to complete and may require more effort from citizens,
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such as through voluntary work. However, they offer more points and can be a
great way to earn rewards through the Citizen Points system.

The Chatbot view provides users with a convenient and user-friendly way to ask
questions and receive feedback regarding their activities. Using Dialogflow2, the
Chatbot can analyze citizen intents and provide accurate and relevant answers
to their queries. This is achieved through machine learning algorithms that
enable the Chatbot to recognize and interpret natural language inputs from
users, allowing for more natural and conversational interaction. In the future,
the integration of ChatGPT with Dialogflow could further enhance the user
experience by allowing for more complex and engaging conversations.

HiTL-IoT services like Green Bear, play a crucial role as catalysts for human-
system interaction, necessitating the design of a citizen participation platform.
This platform supports sustainable initiatives, enabling individuals to provide
real-time feedback on system usage and its proposed activities. Furthermore,
HiTLCPS, such as the one proposed, enable interventions to promote sustain-
able behavior among citizens. These interventions specifically aim to encourage
sustainable practices related to outdoor activities and recycling. Also, imple-
menting and integrating the Green Bear service represents a significant milestone
in developing the IoT Gateway to promote sustainable living habits. Finally, the
incentive systems within the proposed framework aim to facilitate the generation
of green businesses and investments by local companies, leveraging citizen points
as a mechanism. By incorporating a transparent scheme, the platform minimizes
investment risks for companies, thereby supporting the transition toward sus-
tainable habits within the city. Furthermore, as observed in Xiao et al. [2022],
gamification systems have effectively motivated user participation, leading to
higher acceptance rates and improved performance of systems.

5.2.2 IoT Resources
In the case of our first model, the platform leverages the internal sensors of the
DO handheld device as IoT Resources. However, the nature of our second model
required the implementation of new resources in addition to those previously
mentioned. These resources are classified into two groups. The first one presents
the development of an IoT resource intended to be implemented by a local
government while the second one is oriented toward an IoT resource within a
third-party organization.

5.2.2.1 Local government IoT resource

As indicated in the previous chapter, public IoT resources are distributed around
a city and must be ready to interact passively or actively with citizens. In
addition to their functionalities, deploying these devices outside a controlled
environment brings challenges, such as communications with the orchestrator
and power supply.

2Dialogflow: https://cloud.google.com/dialogflow/docs?hl=en-en
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These devices collect data and transmit it to a central system. The nodes
were created using Pycom devices with a microcontroller that can be pro-
grammed using Micropython. Pycom FiPy devices provide connectivity op-
tions for LoRaWAN and BLE, enabling the development of flexible systems
with diverse communication capabilities. These devices are based on ESP32
SoC and offer low power consumption, 4MB RAM, 8 MB Flash Memory, and
various peripherals suitable for IoT applications. Moreover, the Pycom firm-
ware permits developers to use several microcontroller functions such as inter-
rupts, timers, analogue-to-digital converters, digital-to-analogue converters, and
general-purpose input/output pins, among other features.

Furthermore, by placing IoT devices in strategic locations, the accuracy and reli-
ability of environmental and activity measurements can be ensured, and citizens
can be incentivized to participate in smart city initiatives. This participatory
approach helps from both sustainability and community engagement perspect-
ives. The devices use BLE to interact at close range with citizens’ IoT gate-
ways. In addition, considering our previous work [Sanchez et al., 2022], we kept
the frame format within the PDU advertisements, communicating the pseudo-
identifier or user pseudo ID through 2 bytes, which will be determined through
the users’ application. While for long-distance communication, the devices use
LoRaWAN, which similarly maintains the 3-byte format, as in Sanchez et al.
[2022], communicating the 2-byte pseudo-user ID plus one additional byte for
device identification and functionality. Using BLE for communication can help
minimize the energy consumption of IoT resources and users’ mobile devices
when notifying activities defined by the local government.

These public IoT nodes consist of a Pycom device, LiPo battery, developing
board, LoRaWAN antennas, and control buttons to trigger node operations.
Figure 5.5 provides an overview of the appearance of the LoRaWAN nodes.
These devices operate in sleep mode until a user activates them by pressing a
control button, which triggers an interruption and wakes them up. Once the
node has awakened and the pin handler has been activated, it passes the type
of activated button to a function that initializes BLE within the node that
processes the user pseudo ID and saves the information to send a LoRaWAN
packet with all IDs processed once a day. To keep things simple, these nodes
are manually activated as a first step, though more automated approaches may
be considered in the future.

The local resources devices use the public TTN, a collaborative platform that
The Things Industries created for developing and deploying LoRaWAN net-
works, devices, solutions, and documentation. IoT devices establish LoRa com-
munication with public gateways provided by TTN services, which are respons-
ible for sending the collected data to the application server. This server then
enables the information to be decoded and extracted using external connectors.
IoT devices send LoRaWAN frames that contain identifiers and function types,
and the platform structures the message for external connections. TTN also al-
lows for the definition of payload formats in JavaScript, decodes incoming node
messages, and reformats them before sending them to subscribing applications.
The decoded payload is designed to establish the object format for external con-

— 84 —



CHAPTER 5. CASE STUDIES AND ENGINEERING OF THE TESTBED

Figure 5.5: Local government IoT resource device

nections [Sanchez et al., 2022]. TTN supports MQTT connections and acts as
a broker, enabling third-party applications to publish and subscribe to estab-
lished topics. The subscribing upstream traffic topics include joining, data, and
acknowledgement information. At the same time, TTN can push external data
or commands to the nodes using the downstream topics, providing end-to-end
communication between external applications and LoRaWAN nodes.

The TTN platform includes connectors that support two methods for clients:
subscribing to upstream traffic and publishing downlink traffic. An MQTT
broker should be considered for the local resources because it allows subscribing
to the topic v3/application id@tenant id/devices/deviceid/up and extracting
upcoming information provided by the devices. The prescribed information file
contains all the necessary details for communication in LoRaWAN. This file
includes device identifiers, application identifiers, connection identifiers, signal
strength information, and decoded payload. The decoded payload is in JSON
format and allows for extracting the user pseudo identifier information. This
information can be used for the incentives’ mechanism carry out by the local
government and third-party entities.

It is worth mentioning that the design of the architecture of the components and
especially of the IoT public resources was done with the active participation of
the Coimbra city council. Through initiatives such as the Future City Challenge3

in collaboration with TTN, the creation of solutions using public gateway in-
frastructure has been encouraged, and the chamber has allowed the installation
and use of municipal spaces for the implementation of these resources. The
active participation of local governments in these sustainable solutions allows
these solutions to be monitored and reported for their emergence through gov-
ernment budgets, in addition to guaranteeing a certain commitment with public
and private companies for investment in view of the viability of the systems and
platforms.

3Future City Challenge: https://futurecity.pt/
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5.2.2.2 Third-party organization IoT resource

Unlike previous IoT resources, third-party organization ones have the advantage
of being deployed on their premises as part of its provided service. This is a
significant advantage in terms of the connectivity and energy provision. In our
case, we leverage the implementation of an IoT Box, developed for our HiTLCPS,
called ISABELA [Fernandes et al., 2020].

These IoT boxes are hardware structures consisting of Arduino and Raspberry
PI boards, a voltage converter, and a set of environmental sensors, including a
temperature sensor (DTH11), light sensor (IM120710017), sound sensor based
on an electret microphone, and LM386 amplifier (Grove M0A160719024). An
Arduino board was used to process the information generated by the sensors.
In the case of sound sensors, the raw information is analog, whereas in the case
of light and temperature sensors, the information coming from them is digital.
The Raspberry PI is used to communicate the information processed by the
Arduino board via the Internet. All the data from this IoT resource is funneled
by the DAM in the orchestrator through an IoT agent provided by IDAS-GE.
Regarding energy supply, this IoT resource uses a voltage converter since the
Raspberry Pi and Arduino operate with different voltage levels. Figure 5.6 shows
the implementation of an IoT Box used to sense environmental conditions.

Figure 5.6: IoT Box representing a third-party organization IoT resource

5.2.3 Blockchain Networks
Both models relies on a blockchain network as one of its essential components.
In fact, one type of interactions between the entities in the second model is
through this component. In this sense, Hyperledger Fabric (HLF) was chosen as
distributed ledger technology [Honar Pajooh et al., 2021]. HLF is a permissioned

— 86 —



CHAPTER 5. CASE STUDIES AND ENGINEERING OF THE TESTBED

blockchain framework supported by the Linux Foundation. This framework has
been devised for the development of distributed applications with a modular
architecture, allowing different networks and services to be connected in a simple
and scalable fashion [Li et al., 2020]. HLF can manage large amounts of data
with an outstanding performance compared to permissionless schemes. The
main elements that comprise a typical HLF network are the peers, the ordering
service, the channel, the chaincode and the Membership Service Provider (MSP).
Table 5.1 summarizes each of these elements.

The peers and the orderers are nodes of the network with different roles but
with the common goal of ensuring that the ledger is kept up to date. The main
functions of the peers are threefold: keep a copy of the ledger, execute transac-
tion proposals submitted by the client application, and validate transactions. A
peer can be broadly classified as an endorser (or endorsing peer) and committer
(or committing peer). The former is responsible for executing transaction pro-
posals, while the latter saves the validated transactions into the ledger. Peers
can also be categorized as Anchor peers within an organization. Anchor peers
facilitate inter-organizational communication between peer nodes by utilizing
the gossip protocol in HLF. Through this protocol, anchor peers locate other
accessible member peers, disseminate ledger data among peers within a channel,
and ensure efficient updates for newly added peers.

On the other hand, the orderers are nodes that in conjunction provide the or-
dering service. This service settles consensus regarding transactions order. The
channel is a private communication mechanism where specific members of a
network can perform transactions. Each channel deploys a ledger to record the
transactions of its members. The fourth relevant element is the chaincode, dir-
ectly related to the smart contract. The chaincode is a piece of software instan-
tiated in the blockchain containing the application logic which must be invoked
to generate transactions to be further recorded on the ledger. The chaincode
and the peer are loosely coupled and exchange messages using Google Remote
Procedure Call (gRPC). Finally, the MSP keeps the nodes’ identities and issues
credentials for authentication and authorization purposes [Androulaki et al.,
2018]. The MSP turns verifiable identities into roles within the network and
determines which Certification Authorities are approved to specify the members
of a trusted domain.

In our current implementations, HLF stable version 2.2 has been selected. In the
first model, the peers and the orderers are distributed across the IoT Broker, IoT
Gateways, and the Data Requester Systems, while in the second model, the peers
are instantiated in all the IoT Orchestrators. In the case of the ordering service,
it implements RAFT, a crash fault-tolerant protocol to achieve consensus among
orderers regarding the order of the transactions. All the peers form a channel,
thereby they share a single ledger. The chaincode used in this prototype has
been developed in JavaScript using the HLF-Software Development Kit (SDK).
For this PoC, all the cryptographic material was generated a priori using the
HLF cryptogen binary.
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Table 5.1: Overview of key elements in a Hyperledger Fabric network

Element Description

Peer

Nodes that keep a copy of the ledger,
execute transaction proposals
submitted by the client’s application
and validate transactions.
Peers could be:
- Endorsers: Execute transaction proposals
- Committers: Record validated
transactions to the ledger
- Anchors: Peers on a channel that
other peers can discover and
communicate with.

Orderers

Nodes that provide the ordering
service to settle consensus regarding
the transaction order.
The ordering service is implemented
as a cluster of orderer nodes.
HLF supports the following ordering
service protocols:
- Solo ordering
- Kafka-based ordering
- Raft-based ordering
- Practical Byzantine Fault Tolerance

Channels

Private communication mechanisms
that enable specific members of the
network to perform transactions.
Each channel deploys a ledger
to record its peers’ transactions.

Chaincode

A piece of software instantiated
in the blockchain that contains
the application logic, which must
be invoked to generate transactions
to be recorded on the ledger.
Chaincode and peers are loosely
coupled and exchange messages
using gRPC.

Membership
Service
Provider

Responsible for keeping nodes’
identities and issuing credentials
for authentication and
authorization purposes. It transforms
verifiable identities into roles
within the network and determines
which Certification Authorities
are approved to specify
the members of a trusted domain.
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5.3 Summary
On the path to validating our models, especially when following an experimental
approach, the next step after their proposal is the implementation. In this
chapter we began by introducing of our two HiTLCPS case studies, which has
allowed us to contextualize and justify the development of our new testbed. The
outcome of this implementation has enabled the transformation of our concep-
tual models into tangible and functional systems. The implementation process
has demanded meticulous attention to detail, as each component and mechan-
ism is carefully crafted to ensure seamless integration and adequate performance.
The next chapter will provide the description of the experimental setup used,
and the experiments designed to validate these models, as well as the discussion
of the results obtained.
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Once the components of our SPACES platform are implemented, which
are based on the elements proposed in our previously developed mod-
els, the next step is their deployment in test environments and valid-

ation. In this regard, the first two sections of this chapter approach the eval-
uations from a quantitative perspective. Additionally, this chapter includes a
section dedicated to a qualitative study conducted to understand the perception
of trust in IoT mobile applications, a relevant aspect shared by the platforms
derived from the case studies described in the previous chapter, as well as our
current platform.

6.1 Privacy Preserving Model for HiTLCPS
After the SPACES platform implementation described in the previous chapter,
we deployed it with the objective of assessing our proposed privacy-preserving
model in a prototype setting. This section begins by describing the architecture
of the testbed for this PoC. Subsequently, extensive assessment results are
presented. Finally, this section identifies the differences between this proposal
and existing solutions.

6.1.1 Prototype Platform Deployment - Test Environment
The test environment comprised several physical devices and virtual machines
(VMs), as depicted in Figure 6.1. In this testbed, the IoT Gateways were im-
plemented in physical machines while the IoT Broker and the DR Systems were
deployed in VMs. The PPIs and the PPO of these components, along with
the GE of the IoT Gateways and the IoT Broker, ran on top of Docker con-
tainers. The mobile application, with the supplementary functionalities of the
IoT Gateway, was installed on two smartphones (iOS and Android devices). A
fourth virtual instance represented the Regulatory Entity. All these compon-
ents formed an overlay network using Docker Swarm and each one ran a HLF
peer and an ordering service node. Finally, a third physical machine was used
for benchmarking purposes and assessment. The technical specifications of the
devices used to deploy the elements in this testbed are summarized in Table
6.1.

Table 6.1: Technical Specifications SPACES Testbed Platform Components

IoT
Gateway

1

IoT
Gateway

2

SP
1

SP
2

IoT
Broker

DR
System

1

DR
System

2

Regulatory
Authority

Assessment
Machine

CPU

Intel
Core i3

6100
2x

3.70 GHz

Intel
Core i5
3330S

4x
2.70 GHz

A10
Fusion

4x
2.34 GHz

HiSilicon
Kirin 659
Cortex

A53
4x

2.36 GHz

Intel
Core i7

2x
3.1 GHz

Intel
Core i5
10300H

4x
2.5 GHz

Intel
Core i7
1165G7

2x
2.80 GHz

Intel
Core i5
10300H

4x
2.5 GHz

Intel
Core i7

2x
3.1 GHz

RAM 8GB 8GB 2GB 4GB 12GB 8GB 8GB 4GB 16GB
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Figure 6.1: SPACES Testbed - comprising physical (including smartphones) and
virtual machines to deploy the components of the model and the
blockchain peers.

6.1.2 First approach assessments
The consent procedures and data sharing process from the first approach that
comprise the privacy-preserving model, rely on the interaction of components
with the IoT Broker and also with their peers on the blockchain network, either
by reading from or writing to the ledger. Based on this premise, this assessment
consists of a series of experiments to measure the response of the IoT Broker,
the transaction throughput and latency of the BN and the impact of the data
re-encryption process.

6.1.2.1 IoT Broker Response

Another aspect that was validated in this proposal is the response of the IoT
Broker to DOs and DR requests due to the fact in a full-scale deployment, the
amount of IoT Gateways and DR endpoints will always be on the rise. The
IoT Broker was subjected to stress tests utilizing HTTP traffic to thoroughly
evaluate its performance and scalability under demanding conditions. The stress
test duration was a total of 15 minutes, consisting of nine separate intervals of
varying duration and virtual user (VU). Table 6.2 describes the duration of
each stage and the number of VU. We evaluated the performance under two
types of HTTP requests (GET and POST). GET requests were used to retrieve
data from the IoT Broker regarding the IoT services, while POST requests were
used to submit the IoT data from the IoT Gateways. After the experiment,
we collected performance metrics, such as response time, throughput, and error
rate, to evaluate the IoT Broker performance under different load levels.

Figures 6.2 and 6.3 represent the throughput of the IoT Broker under increasing
levels of load, measured in VUs, over a period of time. The Y-axis on the left
shows the throughput in operations per second (ops/s), while the Y-axis on the
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Table 6.2: Stress Test stages

Stage Number of Virtual
Users VU

Duration
(sec)

1 Increases from 0 to 500 60
2 Remains at 500 120
3 Increases from 500-1000 60
4 Remains at 1000 120
5 Increases from 1000-1500 60
6 Remains at 1500 120
7 Increases from 1500-2000 60
8 Remains at 2000 120
9 Decreases from 2000-0 240

Figure 6.2: IoT Broker Throughput (POST Requests)

right shows the number of VUs. The X-axis represents the time intervals. For
both types of requests, these figures show that as the number of VUs increases,
the server’s throughput initially rises linearly, indicating that the IoT Broker can
handle the increased load efficiently. The request rate used in the experiments
was 1 request per VU per second. In the case of the POST requests (Figure
6.2) after the 750 VUs, the throughput fluctuates severely compared to the
GET requests (Figure 6.3), where the throughput begins to plateau with more
controlled fluctuations.

Based on the same load-increasing scenario, Figures 6.4 and 6.5 show the re-
sponse time and error rate of the IoT Broker, where the y-axis on the left rep-
resents the response time in milliseconds, and the y-axis on the right represents
the number of error requests. It can be observed that for 750 VUs, the response
time for types of requests was low and remained constant throughout the test
duration. This suggests that the IoT Broker can effectively and efficiently handle
a moderate number of user requests. However, as the number of VUs increases,
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Figure 6.3: IoT Broker Throughput (GET Requests)

Figure 6.4: IoT Broker Response Time (POST Requests)

the response times for both types of requests also increase significantly, implying
that the IoT Broker begins to struggle to handle heavier loads. As the load in-
creased, the response time became increasingly variable, with higher peaks and
greater fluctuations in the case of POST-type requests (Figure 6.4). In the case
of GET-type requests (Figure 6.5), the response time also increased, but with
low fluctuations. For both experiments, all the requests were completed without
any errors.

6.1.2.2 BN Throughput

Once the operation of the elements from the testbed was verified and the chain-
code was instantiated within the peers that make up the decentralized network,
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Figure 6.5: IoT Broker Response Time (GET Requests)

the first assessment metric was the throughput. This metric represents the
number of successful transactions per second (TPS). To run this experiment,
the network was subject to several bursts of TPS, starting with 25 TPS and
reaching 350 TPS in the case of ledger-querying operations, and 300 TPS in
ledger-updating operations. These transactions invoke the functions defined in
the chaincode whose purpose is to write to or read into the ledger. Each of the
bursts was executed 30 times and, based on the obtained data, the values for
the average throughput (Ψ) were obtained, as shown in Figures 6.6 and 6.7. To
run these experiments, a Hyperledger Caliper v0.4.2 container was used as a
benchmarking tool.

In the case of ledger-querying operations (Figure 6.6), Ψ linearly grows up to 125
TPS bursts. After this point, a slight decrease of Ψ is observed, for bursts from
150 to 200 TPS. In the case of the transactional blocks from 225 to 250 TPS,
it is observed that Ψ is close to 199 (ΨMAX) and 197 respectively. For higher
burst rates, a drop of Ψ to a range between 141 and 129.4 is observed. In the
case of the ledger-updating operation (Figure 6.7), Ψ is always lower than the
values of the bursts, which means that the network was never able to write to
the ledger the total number of TPS of each burst. For the first burst (25 TPS),
Ψ= 22.5. ΨMAX is reached at the 125 TPS burst, with a throughput value of
42.7 TPS. From that point on, Ψ oscillates between 38.77 and 41.45 TPS.

6.1.2.3 BN Latency

The second metric to be assessed was latency, which represents the time interval
elapsed between the transaction proposal and its execution. Based on the ob-
tained data, the graphs of the average latency values (Γ) were drawn, as shown
in Figures 6.8 and 6.9.

In the case of ledger-querying operations (Figure 6.8), Γ grows slightly during
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Figure 6.6: Average throughput for the case of ledger-querying operations

Figure 6.7: Average throughput for the case of ledger-updating operations

the first five transaction bursts, and keeps values that are always lower than
0.1 seconds. For the cases of burst values of 150 TPS to 300 TPS, Γ has a
more accelerated growth, reaching a value of 0.8 seconds. From that point on,
latency stabilizes at a value close to 0.85 seconds (input bursts of 325 and 350
TPS). For the case of ledger-updating operations (Figure 6.9), Γ starts at 1.37
seconds for the 25 TPS burst and grows to its maximum value ΓMAX = 3.89
seconds, which is reached in the case of 225 TPS input burst. However, from the
150 TPS burst onwards, a mostly stable Γ value is observed, ranging from 3.60
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Figure 6.8: Average latency for the case of ledger-querying operations

Figure 6.9: Average latency for the case of ledger-updating operations

seconds to 3.89 seconds. The difference between ledger-updating and ledger-
querying latency mean values is due to the additional processes in the former
case. For the ledger-querying case, the process is straightforward, since the peer
only consults its local copy of the ledger to complete the operation. However,
in a ledger-updating case, it relies upon the rest of the peers and the ordering
service, and only after a consensus is reached the operation is complete.
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6.1.2.4 Impact of the Proxy Re-encryption

Before delving into the details of the last set of experiments, it is important to
further characterize the testbed. There are two data owners (DO1 and DO2).
Both have selected a total of 30 IoT resources through their PPIs. The data
from these resources is encrypted by the IoT Gateways and forwarded to the IoT
Broker. The former has made these resources available to two DRs (DR1 and
DR2). They have generated consent requests and the DOs have had the oppor-
tunity to decide whether to grant or deny those requests. Eighteen resources,
among them accelerometer, compass, GPS, gyroscope, geospatial orientation
sensor, ligth sensor, proximity sensor, sound sensor, device information(operat-
ing system, current app in foreground, battery level, network interfaces inform-
ation), activity-recognition virtual sensor, have been granted by both DO, and
thus the DRs can request the data from those resources to the IoT Broker.

This set of experiments was oriented to measure the impact of the re-encryption
process. For these experiments, data access requests were generated to the
IoT Broker, which is the custodian of the approved resource data. Resource
data sizes range from 5.12KB to 76.56 KB. As in the first experimental stage
(subsections 5.2.1 and 5.2.2), 30 requests were made for each resource, both for
the scenario without the re-encryption process and for the one that includes this
process. For each request, the time it takes for the IoT Broker to retrieve the
requested resource data and the execution or non-execution of the re-encryption
process was measured. From the 30 iterations per resource, the mean value in
milliseconds was determined. The results of this experiment are presented in
Figure 6.10.

Figure 6.10: Impact in time of re-encryption process in the response time of a
data release phase.
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6.1.3 Second approach assessments
In this section, we describe the assessment to second approach of out model,
related to the state inference of a HiTLCPS.

6.1.3.1 HiTL Service

For this evaluation we leveraged the Sleep Detection service provided by
ISABELA [Fernandes et al., 2020]. This service infers whether the user is sleep-
ing according to the data retrieved from smartphone sensors. As the smartphone
cannot directly record a person’s sleep, most studies use passively sensed data
and user reports to detect sleeping behaviors and label the data used in the
Machine Learning process [Kulkarni et al., 2022].

Sleep detection is a service that includes sensitive information such as location
and microphone level. Because of these characteristics, we evaluate the gener-
ated models considering the traditional centric approach with the FL one. We
aim to understand the performance impact to increase privacy protection. For
that, we describe in the following three sections: (1) the description of different
learning methods which we compare here; (2) the description of the data; (3)
the experiment results and further discussions.

6.1.3.2 Used machine learning methods

The tradition ML and FL procedures involve distinct stages of interaction and
model generation. To facilitate the depiction of the processes employed in our
experiments to assess both models, we provide a visual representation in Figure
6.11. This illustration highlights local device activities in blue, communication
activities in green, and server operations in red.

Local Devices

PreprocessingUpload data

Server

ML Training ML Model 
Update

Gather data

Local Devices

Preprocessing

Server

ML Training ML Global 
Model Update

ML Model  
Upload

Traditional Machine Learning Model

Federated Learning Model

Model 
Aggregation 

Process

Update local models

Gather data Merge all 
gathered data

Figure 6.11: Processes of Machine Learning and Federated Learning performed
on the experiments

The traditional ML model follows a procedure that commences with the com-
pilation of data from all devices, which is then transmitted and stored within
a central database on the server. Once the requisite data is gathered, it under-
goes preprocessing to ready it for the generation of the ML model. Following
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the model’s creation, it can be dispatched to the devices. In our scenario, we
employed the finalized model to assess our test dataset.

In contrast, the FL model employs an iterative learning approach where data
remains on the respective devices. Consequently, all testing data remains parti-
tioned by users. For each individual device, its data is utilized to train a distinct
ML model, which is then dispatched to the server after generation. Subsequently,
the server aggregates these models into a global model. This global model is then
circulated to each user, initiating the process anew for every iteration. The ulti-
mate model produced through these iterations is also subjected to testing using
the same test dataset that was employed in the conventional ML model.

6.1.3.3 Data description and treatment

The dataset1 was subject to treatment and preprocessing akin to the method-
ology employed in Fernandes et al. [2020]. The features utilized in our present
case study are outlined in Table 6.3. Categorical attributes such as Location,
Activity, Phone Lock, and Day of the Week were translated into numeric values
ranging from 1 to N. Following preprocessing, all data underwent normalization
for the ML process, ensuring values resided between 0 and 1. The output class is
dichotomous, comprising ”awake” and ”asleep,” which we transformed into two
output neurons via one-hot encoding [Dahouda and Joe, 2021]. In the context
of FL datasets, preprocessing transpires on each device, prompting the adoption
of a fixed reference value for the normalization process across all local datasets.
This value is also presented in Table 6.3.

Table 6.3: Dataset Features and Specifications
FEATURE DATA DESCRIPTION REFERENCE VALUE

Activity Categorical values: Unknown, Still, Tilting, Exercise, In-vehicle 5
Location Categorical values: Other, University, House 3

Day of the Week Categorical values: Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday, Monday 7
Phone Lock Categorical values: not locked, locked 2

Sound amplitude A numeric value between 0 and 32768 32768
Minutes_day A numeric value between 0 and 1439 minutes (equivalent to 24hs) 1439

Time to Next Alarm A numeric value between 0 and 604800000 milliseconds in a day (the equivalent of 7hs am) 604800000
Light intensity A numeric value between 0 and 211880 211880

Proximity Sensor
A numerical value between 0 and 10 centimeters.
We consider a binary value of 0 or 1 if the value is different from 0 because
we only need information on whether the device is inside a container or not.

1

The dataset provided by Fernandes et al. [2020] encompasses information
gathered from 30 users over a 4-week experimental period spanning from
11/05/2018 to 13/06/2018. However, for the analysis at hand, only 27 out
of the 30 users were considered, as three users did not respond to the form util-
ized for data labeling. Once the data was labeled, the distribution of samples
revealed 289,267 instances for the ”awake” class and 118,184 instances for the
”asleep” class. It’s important to note that this dataset comprises diverse data
from all 27 valid users.

However, several users were unable to share specific smartphone sensor data,
leading to data heterogeneity. Among these restrictions, ten users refrained

1The dataset, following the anonymization process, is accessible on our public Kaggle repos-
itory: https://www.kaggle.com/dsv/5804700. The source code is available in our public
GitHub repository: https://shorturl.at/efyB8.
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from sharing light sensor data, while two users each withheld sound sensor and
proximity sensor data. Additionally, two users did not set up the time for
the next alarm, a parameter employed as a software sensor. Moreover, within
the 965 recorded sleep period entries reported by users, certain abnormal sleep
periods were identified, attributed to human errors. Specifically, there were 58
sleep periods lasting between 12 to 24 hours and 73 sleep periods exceeding 24
hours.

The dataset was then segregated into two distinct sets. The initial set served
as the training dataset, encompassing data from 19 users, constituting 75% of
the complete dataset. The second dataset, designated as the test dataset, in-
corporated data from nine users. In the context of the traditional approach,
all data was amalgamated into a single dataset. Conversely, for the FL scen-
ario, individual client datasets were processed autonomously to replicate the
distributed environment. Despite the different data processing routes, the same
testing dataset was utilized to compute metrics for all models. The assessment
of results relied on established machine learning metrics, including Accuracy,
Precision, Recall, and F1-Score (F-measure).

6.1.3.4 Experiment result and discussion

The experiment setup was performed considering two ML models: Multi-Layer
Perceptron (MLP) [Pal and Mitra, 1992] and Long Short-Term Memory (LSTM)
[Hochreiter and Schmidhuber, 1997]. Both ML models were opted for, as they
showcased over 90% accuracy in identifying sleep periods as affirmed by Kulkarni
et al. [2022]. Furthermore, they align with the Neural Network-based models
compatible with the FedAvg Algorithm [McMahan et al., 2017], the default FL
aggregation process in TensorFlow Federated2. The MLP configuration entailed
two hidden layers employing Rectified Linear Unit (ReLU) activation. On the
other hand, LSTM operated via a unidirectional model, employing 2-minute
epochs for sleep/wake state detection, encompassing input data sequences of 4
instances. Both models utilize the Softmax activation function to categorize the
output layer into two outputs.

Regarding the traditional approach, 30 epochs were configured for MLP, and
50 for LSTM. This choice was prompted by the observation that accuracy
ceased to increase beyond these epochs. Notably, as the FL approach attains
superior results with fewer epochs compared to the traditional approach, this
study employed 10 epochs across 13 rounds for LSTM and 3 epochs throughout
9 rounds for MLP. After each round, the FedAvg Algorithm was executed to
merge models from all 19 training clients into a global model [McMahan et al.,
2017].

The comparison between traditional ML and FL outcomes is visualized in Figure
6.12, in the case of MLP, and in Figure 6.13 in the case of LSTM. This results
are also summarized in Table 6.4. Notably, both MLP and LSTM are sensitive
to the unbalanced dataset, where instances from the awake class outnumbered

2https://www.tensorflow.org/federated
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Figure 6.12: Results from traditional ML and FL models approach using MLP

those from the asleep class by approximately 2.44 times. This imbalance is more
pronounced in Precision, F1-scores, and Recall metrics compared to Accuracy.
Nevertheless, it is noteworthy that across all ML classifiers, the traditional ap-
proach consistently outperformed the FL variants across all metrics, albeit by
a minor margin (averaging an absolute 0.025 accuracy discrepancy or 3.27%
relative accuracy improvement). This implies that the accuracy trade-off for
enhanced privacy protection in our application remains negligible.

However, when evaluating metrics such as precision, recall, and F1-score, the
MLP exhibited an average reduction of 18.16% in its values within the federated
solution compared to the traditional approach concerning the minority class:
asleep. This divergence primarily stemmed from the fact that the variability in
data from each user found more robust representation in a learning model that
utilized the entire training set as a whole. This distinction is manifest in the
overall improved average values as detailed in Table 6.4.

Furthermore, some users refrained from sharing certain device data or reported
abnormal information in their submissions. As a consequence, the quality of
data was compromised, subsequently influencing the aggregation process carried
out by the FedAvg Algorithm [McMahan et al., 2017] and, consequently, the
generalization process. These challenges arising from localized data irregularities
are topics to research in future works.

— 103 —



CHAPTER 6. ASSESSMENTS AND RESULTS

Figure 6.13: Results from traditional ML and FL models approach using LSTM

Table 6.4: Values between ML and FL models Experiments

CLASSIFIER APPROACH ACCURACY CLASS PRECISION RECALL F1-SCORE

MLP Traditional 0.746
Asleep 0.608 0.413 0.492
Awake 0.781 0.887 0.830
Avg 0.694 0.650 0.661

LSTM Traditional 0.749
Asleep 0.611 0.436 0.212
Awake 0.786 0.883 0.831
Avg 0.698 0.659 0.670

MLP Federated 0.716
Asleep 0.543 0.305 0.390
Awake 0.751 0.891 0.815
Avg 0.647 0.598 0.602

LSTM Federated 0.730
Asleep 0.589 0.299 0.396
Awake 0.753 0.912 0.825
Avg 0.671 0.605 0.611

6.2 Integration Model
Once the implementation of the elements defined by our model is described,
the next step is to integrate each element into a PoC to assess the viability of
our proposal. Therefore, this section is divided into two parts: the first part
describes the testbed architecture for this PoC, and the second part presents
the results of a set of tests executed over the prototype platform.

6.2.1 Prototype Platform Deployment - Test Environment
For the deployment of this prototype, a scenario composed of the entities of
the model was defined, and virtual instances and physical devices were used to
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Figure 6.14: SPACES Testbed for the CONFLUENCE model

represent each component, as illustrated in Figure 6.14. With respect to the
entities, the scenario included one local government, two third-party organiza-
tions, six citizens, and one regulatory entity. The technological infrastructure
of each of these entities is represented by a virtual machine deployed within our
institutional cloud. Each of these virtual instances forms an IoT Orchestrator,
which includes a corresponding node of the blockchain network, with the ex-
ception of the VM of the regulatory entity, which only implements the node of
the decentralized network. These nodes integrate an overlay network based on
Docker Swarm and fulfill the functions of peers and, in turn, are part of the
ordering service defined by HLF.

In the case of IoT resources, the local government manages three physical devices
deployed in different parts of the city. In the case of third-party organizations,
one of the organizations manages the IoT Box. On the other hand, mobile
devices have been used to perform the functions of the IoT Gateway; therefore,
sensors from these devices are also part of the IoT resource pool.

Finally, an additional virtual instance was used for benchmarking purposes and
running tests on the components. The technical specifications of the virtual
instances as well as the devices used are summarized in Table 6.5.

— 105 —



CHAPTER 6. ASSESSMENTS AND RESULTS

Table 6.5: Technical specifications testbed platform components

Components CPU RAM OS
Local Government
IoT Orchestrator

Intel(R) Xeon(R)
E5-2650 v42 x 2.20GHz 6 GB Ubuntu

20.04.5 LTS

Citizen
IoT Orchestrator

Intel(R) Xeon(R)
E5-2650 v4
2 x 2.20GHz

3 GB Ubuntu
20.04.5 LTS

Organizations
IoT Orchestrator

Intel(R) Xeon(R)
E5-2650 v4
2 x 2.20GHz

4.5 GB Ubuntu
20.04.5 LTS

IoT Gateway 1 A10 Fusion
4 x 2.34 GHz 2 GB iOS 15.5

IoT Gateway 2

HiSilicon
Kirin 659
Cortex-A53
4 x 2.36 GHz

4 GB Android 8

IoT Gateway 3
A15 Bionic
6 x
2.34 GHz

4 GB iOS 16.3

IoT Gateway 4

Snapdragon 855
Qualcomm
1x 2.84 GHz Kryo 485
3x 2.42 GHz Kryo 485
4x 1.8 GHz Kryo 485

6 GB Android 11

IoT Gateway 5
Snapdragon 450
Qualcomm
8 x 1.8 GHz

3 GB Android 8.1

IoT Gateway 6 4x 2.45 GHz Kryo 280
4x 1.9 GHz Kryo 280 6 GB Android 10

Assessment VM
Intel(R) Xeon(R)
E5-2650 v4
4 x 2.20GHz

4 GB Ubuntu
20.04.5 LTS
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6.2.2 Assessment
The actions triggered by the interactions between entities and components dur-
ing the processes related to data sharing (registration of IoT services and DR
profiles, exchange of privacy policies, consent management, and data access), as
well as those associated with the incentive mechanism, are closely related to the
actions to be executed on the blockchain. Based on this premise, the first part
of the evaluation focused on determining the network throughput and latency.
The first metric identifies the number of transactions that can be processed by
the network in different time periods, while the second metric is the time the
network takes to process a set of transactions. To generate the workloads, the
experiment used Hyperledger Caliper 0.5.0 as a benchmarking artifact. The
second part of the assessment was oriented toward the communication aspects
of public IoT resources.

6.2.2.1 Throughput

Two scenarios are considered in the evaluation of this metric. The first corres-
ponds to a network in which the proposed transactions have the objective of
executing ledger-updating operations, whereas the second scenario corresponds
to transactions involving only ledger-querying operations. In both cases, the
network was subjected to a set of bursts of TPS, starting with 20 TPS and up
to 400 TPS in a fixed-interval of 20 TPS. These transactions aim to invoke write
(in the case of ledger updating) and read (in the case of ledger querying) func-
tions defined within a chaincode that was previously instantiated in the network
nodes. Each burst was executed 30 times, and the average throughput (Ψ) was
obtained from the data.

As shown in Figure 6.15, the value of Ψ does not approach the value of the
transaction rate of each burst, except for the first burst, where the average value
is 19.56 TPS. This means that as the transaction rate increases, the network
cannot execute the ledger-updating operation in one second. ΨMAX is reached
in the eleventh burst, with an average throughput of 37.14 TPS. Similarly, it
can be observed that from the third burst onwards the value of Ψ oscillates
between 33.8 and 36.5 TPS, with the notable exception of bursts 280, 300, 380,
and 400 TPS where the average value is below this lower limit. In the case
of penultimate burst, a significant decrease to an average throughput value of
22.48 TPS is observed.

In the case of ledger-querying operations (Figure 6.16), linear growth is observed
up to 240 TPS, which means that the network has been able to process all
transactions of each of these bursts. A slight decrease in Ψ is observed in the
subsequent three bursts. However, from 320 TPS onwards, the value of Ψ does
not drop bellow 290 TPS and reaches a maximum average value of 311.50 TPS
in the penultimate burst.
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Figure 6.15: Average throughput for the case of a ledger-updating operation

Figure 6.16: Average throughput for the case of a ledger-querying operation

6.2.2.2 Latency

As in the case of throughput, the second experiment aimed to determine the
average latency (Γ) for both the scenarios. This metric represents the time
interval between the proposal and execution of a transaction. Figures 6.17 and
6.18 show this metric for both the cases.

For transactions involving ledger-invoking operations (Figure 6.17), Γ starts with
a mean value of less than one second during the first burst. When the transaction
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Figure 6.17: Average latency for the case of a ledger-updating operation

rate reaches 40 TPS, the latency suddenly increases on average to 7.16 seconds;
however, a small decrease is observed at the 60 TPS burst. Between the 80
and 260 TPS bursts the value of Γ ranges from 7.7 seconds to 9.1 seconds. As
expected, when the transaction rate was 280 TPS, the latency increased by
21.6%, which is related to what was observed during the first experiment, where
the throughput decreased considerably. For the next three bursts, the value of
Γ decreased slightly, and it was not until the 380 TPS rate that Γ reached its
maximum value (ΓMAX) of 13.29 seconds. In the case of transactions that trigger
ledger-query operations (Figure 6.18), Γ remains below 0.06 seconds until 280
TPS and increases in the next burst to 0.107 seconds. From then on and during
the next three bursts, Γ oscillated between that value and 0.07 seconds. ΓMAX

was reached at 380 TPS (0.144 s).

6.2.2.3 Public IoT resources in a TTN Network

The interactions carried out by the entities within a platform directly impact
the execution of actions within the blockchain. Therefore, this section evaluates
the public IoT resources, devices or nodes utilized, and the public TTN platform
that interacts with the local government’s IoT orchestrator.

The assessment was conducted in Coimbra, Portugal, based on the general ar-
chitecture of the “Green Bear” [Sanchez et al., 2022] case study, which utilizes
LoRaWAN for sustainable cities. This architecture leverages the infrastructure
and public LoRaWAN gateway distribution offered by TheThingsNetwork to
communicate via LoRaWAN using Pycom nodes. Moreover, the “Green Bear”
3-byte frame was used as the foundation, where 2 bytes are allocated to com-
municate the user pseudo identifier, 5 bits to identify the node activity, and 3
bits to sub-identify the node functionality.
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Figure 6.18: Average latency for the case of a ledger-querying operation

This section presents insights into the quality of communication between public
IoT resources and LoRaWAN gateways, specifically focusing on the predefined
distribution of devices in spaces of interest to public entities. The assessment of
LoRaWAN gateway performance in terms of their capacity to process pseudo-
identifiers and achieve optimal signal quality is of paramount importance, as it
enables informed decision-making in terms of device placement within the solu-
tion prior to integration with the blockchain network. By identifying LoRaWAN
gateways that exhibit higher processing capabilities and superior signal quality,
public entities can effectively manage the positioning of devices, thereby optim-
izing the overall performance and reliability of the LoRaWAN communication
network.

To conduct the tests, we positioned three nodes in different locations around the
city of Coimbra, as detailed in Table 6.6. Furthermore, we performed coverage
tests to discover which LoRaWAN gateway the nodes can communicate with
considering a modulation SF7; those LoRaWAN gateways are also specified in
Table 6.6. The LoRaWAN gateways’ distribution, as shown in Table 6.7, was
taken into account, and we will henceforth refer to the numbers presented in that
table. Figure 6.19 visually represents the distribution of nodes and LoRaWAN
gateways used for these tests. We deliberately selected green spaces where public
entities, such as the City Council of Coimbra, could implement this system.

The experiments entailed progressively generating user load to be transmit-
ted by each node. We considered the restrictions imposed by the number of
bytes allowed per message, as outlined in Sanchez et al. [2022], which specifies
a maximum of 74 identifiers per frame. Consequently, the nodes progressively
transmitted frames ranging from 1 to 74 identifiers to test various scenarios and
message sizes. The testing took place over 21 days, during which the nodes trans-
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Table 6.6: Devices, coordinates and LoRaWAN gateways that receives frames
from each node

Node Coordinates LoRaWAN Gateways

Node 1 Latitude: 40.186702
Longitude: -8.415076

eui-647fdafffe00577c
eui-fcc23dfffe0ddccb
eui-fcc23dfffe0efabb

Node 2 Latitude: 40.219295
Longitude: -8.4367507

eui-647fdafffe00577c
eui-647fdafffe0057a0-1
eui-647fdafffe00c66d
eui-fcc23dfffe0dbc0a
eui-fcc23dfffe0ddccb
eui-fcc23dfffe0efabb
eui-fcc23dfffe2ea900
eui-fcc23dfffe2eb0f0

Node 3 Latitude: 40.190836
Longitude: -8.406120

eui-647fdafffe00577c
eui-647fdafffe0057a0-1
eui-fcc23dfffe0dd4e8
eui-fcc23dfffe0ddccb
eui-fcc23dfffe2ea900
eui-fcc23dfffe2eb0f0

Table 6.7: Public LoRaWAN Gateways information

Ref LoRaWAN Gateway ID Coordinates

1 eui-647fdafffe00577c Latitude: 40.1954487
Longitude: -8.4038303

2 eui-647fdafffe0057a0-1 Latitude: 40.21766
Longitude: -8.405659

3 eui-647fdafffe00c66d No GPS information
4 eui-fcc23dfffe0dbc0a No GPS information

5 eui-fcc23dfffe0dd4e8 Latitude: 40.192282
Longitude: -8.411066

6 eui-fcc23dfffe0ddccb Latitude: 40.205111
Longitude:-8.41559

7 eui-fcc23dfffe0efabb Latitude: 40.186861
Longitude: -8.417793

8 eui-fcc23dfffe2ea900 Latitude: 40.21135
Longitude: -8.42898

9 eui-fcc23dfffe2eb0f0 Latitude: 40.20702
Longitude: -8.42443
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Figure 6.19: Map Distribution of IoT resources nodes and public LoRaWAN
gateways

Figure 6.20: Mean of RSSI for each number of identifier

mitted the progressive uploads at different intervals, ranging from 10 seconds to
600 seconds.
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Figure 6.21: Mean of SNR for each number of identifier

Figure 6.22: Percentage Frames per LoRaWAN Gateway

Figure 6.20 presents the average Received Signal Strength Indicator (RSSI)
measured for each number of identifiers transmitted by the nodes. Node 3 ex-
hibits the best location and LoRaWAN gateway access communication quality,
whereas nodes 1 and 2 have comparable communication quality. These results
raise the possibility of enhancing the location of the first node since it is near a
LoRaWAN gateway, yet the average RSSI is relatively low. Moreover, a mod-
erate improvement in the communication quality of the nodes is observable as
the number of identifiers increases, indicating that it is preferable to maintain
the users at the maximum before communicating with the TTN servers. This
observation is reinforced by the Signal-to-Noise Ratio (SNR) of each node, as
shown in Figure 6.21, which becomes more consistent between each node when
the messages reach the maximum number of transmitted identifiers, reaching as
high as 7 or 8 dB.

In this evaluation, great importance was given to the involvement of TTN gate-

— 113 —



CHAPTER 6. ASSESSMENTS AND RESULTS

Figure 6.23: Number of identifiers per LoRaWAN gateway

ways and the communication of the nodes. Figure 6.22 shows the percentage
of frames processed by each LoRaWAN gateway. In the case of node 1, the
frames were mostly received by LoRaWAN gateway 7, located at the Univer-
sity of Coimbra. For node 2, despite its proximity to LoRaWAN gateway 8,
the highest percentage of frames was processed by LoRaWAN gateway 9, also
belonging to the University of Coimbra. LoRaWAN Gateway 8, located in the
municipality of Coimbra, requires improvement in its antenna height or gain.
For node 3, the highest percentage of frames was processed by LoRaWAN gate-
way 1, which is unsuitable for public solutions as it belongs to a private entity
that could modify the LoRaWAN gateway’s working conditions.

In this study, a crucial aspect to consider is the number of identifiers processed
by each LoRaWAN gateway during the tests. To analyze this aspect, we pro-
gressively increase the number of identifiers sent by the nodes. It is worth noting
that the capacity of the LoRaWAN gateways to receive larger frames can affect
the number of identifiers in their limited frame size. In this context, Figure
6.23 illustrates the number of identifiers processed by each LoRaWAN gateway,
providing insights into their ability to receive larger frames compared to other
LoRaWAN gateways.

Moreover, as pointed out in a previous study Attia et al. [2019], the probability of
successful packet reception is affected by environmental noise and collisions and
the effective acquisition of the packet preamble, which represents the limiting
factor. Our results support this finding, as we observed that some LoRaWAN
gateways were more prone to receive larger frames. In contrast, others were
more suitable for smaller ones, resulting in variations in the number of identifiers
processed by each LoRaWAN gateway.

In addition to analyzing the capacity of LoRaWAN gateways to process identi-
fiers, the quality of communication for each LoRaWAN gateway was also con-
sidered in this study. As expected, Figure 6.24 shows that nodes one and three
exhibit higher average RSSI values for certain LoRaWAN gateways. However,
for the second node, it is noteworthy that the ninth LoRaWAN gateway pro-
cesses the highest number of identifiers despite not having the highest average
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Figure 6.24: RSSI per LoRaWAN gateway and node

Figure 6.25: SNR per LoRaWAN gateway and node

RSSI—LoRaWAN gateways two and three exhibit higher average RSSI values.
Furthermore, when comparing the fifth and the sixth LoRaWAN gateways, it is
observed that the number of identifiers processed is similar, but the average RSSI
values vary considerably. This suggests that nodes may prefer to communicate
with LoRaWAN gateways that provide a stronger signal or faster processing on
the server side. This leads to a diverse range of LoRaWAN gateways used in the
communication process by certain nodes.

Additionally, when examining the SNR, a higher correlation is observed between
the number of messages or identifiers processed by a LoRaWAN gateway and
the average SNR value for that LoRaWAN gateway. This is evident in Figure
6.25, where all the nodes exhibit the highest SNR values in LoRaWAN gateways
that process many messages and identifiers. This suggests that the volume of
messages or identifiers in the SNR influences the performance of a LoRaWAN
gateway.
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The evaluation of this system primarily focused on assessing its performance
based on parameters such as throughput, latency, and the evaluation of public
IoT resources. These evaluations were conducted through controlled tests in-
volving participating researchers and peers and analyzing the system’s usage in
the specified locations. The objective of these evaluations was to ensure that the
system is well-prepared and tested for future implementation with natural com-
munities, specifically to evaluate the sustainability aspects of the model. Sub-
sequent phases of the project will encompass the evaluation of environmental,
social, and economic metrics through prototypes and pilot projects. Key aspects
to be analyzed include measuring the impact on the city’s recycling practices
through the system’s interaction and assessing the utilization of green spaces.
These data will provide the Municipality of Coimbra with valuable insights to
evaluate the feasibility of scaling up the project. From a social perspective,
future implementations will prioritize citizen engagement as a crucial element.
The commitment and enthusiasm with which citizens receive these initiatives
will be assessed, along with the accessibility of the services to ensure widespread
usage among the majority of Coimbra’s population. The central aim is to en-
hance the well-being of citizens, fostering healthier, active, and participatory
engagement in the city’s green activities.

Moreover, the economic dimension will be addressed in the upcoming project
phases. The feasibility of public and third-party IoT resources will be eval-
uated alongside the cost of implementing the application for a community of
approximately 150,000 inhabitants. The participation data will also highlight
the interest of private entities in engaging with the community incentive system,
further enhancing the system’s dynamics.

In summary, the evaluation of the system initially was focused on performance
aspects, and future phases will encompass comprehensive assessments of the
environmental, social, and economic dimensions. These evaluations will provide
valuable insights to support decision-making, assess feasibility, and optimize the
system’s sustainability per the Municipality of Coimbra’s objectives.

6.3 Trust Perception in IoT Mobile Applications
ISABELA, Green Bear, and currently SPACES share a common ground. All
these platforms aim to implement the concept of HiTLCPS by leveraging mobile
applications and the convenience of smartphones, which have become indispens-
able personal devices in our daily lives. These applications, besides serving as
means of interaction, also act as data generators based on inputs from internal
sensors or other applications, such as social networks or native operating system
applications. We will refer to them as IoT mobile applications. To apprehend
the trust perception from DOs in this kind of applications, we will carry out a
qualitative assessment.
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Table 6.8: Participants Information

Participant Academic Background Age Country

P1 Biomedical
Engineering 28 Portugal

P2 High School 28 Portugal
P3 Physiotherapy 34 Portugal
P4 Design 28 Portugal

P5 Design and
Computer Science 28 Portugal

P6 Social Communications
Marketing 29 Portugal

P7
Business Administration

and Computer
Science

30 Ecuador

P8 Civil Engineering 23 Ecuador
P9 Mechanic Engineering 20 Ecuador
P10 Electronic Engineering 24 Ecuador
P11 Electronic Engineering 25 Ecuador

6.3.1 Participants and Interviews
We conducted semi-structured interviews with eleven participants to understand
their perception of trust regarding IoT mobile applications. The age of the
participants who collaborated with the research was between 20 and 34 years
old, and their backgrounds are diverse as shown in Table 6.8. We believe it is
relevant to mention that, unlike quantitative research, the number of subjects
is handled differently in a qualitative approach. Thus, the sampling procedure
is not limited to a predetermined number of interviews, but rather a model
saturation. In a short, new interviews and/or observations are performed until
all categories are saturated or in other words, when the research has discovered
all emerging categories and their interaction [Lejeune, 2019].

The length of the interviews ranged from 9 to 15 minutes and all the interviews
were recorded: six of them were face-to-face while the rest were conducted using
video-conference. The interviewers initially provided context to the participants
but without a prior introduction to the study objective, since we did not want
to introduce possible bias. Some participants asked the purpose of the questions
which was explained after the end of the dialogue.

In these conversations, users were asked the following: i) how and what type
of information they feel mobile applications collect from them; ii) what type of
information users usually would share with this kind of applications; iii) what
type of information service providers could infer; iv) what type of protection
providers could give to the data they collect and possible infer; v) what were
their concerns regarding data sharing; vi) how they think companies use shared
information; and vii) if they let applications retrieve more information for im-
proving user-experience and why. The interview was conducted in the form of a
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natural discussion with the participants and, at the end, the interviewer asked if
the participant wanted to add some comment or express something that might
have forgotten.

6.3.2 Qualitative Method Selection
For a proper interview processing, the first step was to transcribe the audio
recordings. Then, through open coding [Salinger et al., 2008], all the answers
obtained by the participants were reviewed and labeled with short phrases or
terms. Those terms were the basis for the categories definition. After the defini-
tion, we built a model depicting the relationship between each of the categories.
It is worth mentioning that this qualitative study is framed within Grounded
Theory and the procedure of data analysis was based on Emerging Design [Miller
and Salkind, 2002] which is less subject to predefined categories, and where the
theory arises from the empirical data rather than from a set of prefixed categor-
ies as is the case with axial coding. In this design, the theory and model arise
from the connection or relationship of the different emerging categories.

6.3.3 Interview insights
With the analysis of the interviews, we obtained a model concerning the percep-
tion of trust on mobile applications, as presented in Figure 6.26. We can see that
Perception of Trust is directly influenced by three main factors: Privacy Aware-
ness, Perception of Information Exploitation and the Degree of Development of
the application or Company Reputation (connections 1, 2 and 3). Furthermore,
these are also influenced by other, as depicted in connections 4, 5, and 6. Finally,
Media takes a critical significance in the total model as it involves graphically
the three factors and Perception of Trust itself.

For the sake of simplification, some factors encompassed the emerged categories.
In the case of Privacy Awareness, it includes not only the idea that some of
the participants have regarding the way that service providers (applications
owners) protects the collected data, but also the participants’ concerns regarding
third-party surveillance, quantity and type of information shared. Degree of
Development of the application or Company Reputation concerns participants’
opinion on applications that are popular or that belong to big companies.

Exploitability of Information category refers to how the application providers use
the information that users share by using an application, such as: for improving
user-experience, the application itself, consuming trends, applying marketing
strategies and for manipulating mass behaviors.

Media represents the information and influence caused by mass media, as the
case of the internet news, newspaper and the ones that appear on television.
Since none reported personal experience or friends opinions, direct social inter-
action tended to not have a strong influence in the model as itself.
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Figure 6.26: The chronology of the built model: A) where the main concepts
emerged; B) where the direct connections with the perception of
trust were firstly discovered; C) when trying to understand their
interactions, the authors reached the conclusion of a direct influence
among them; and finally D) where the role of the Media and Social
interactions as included, influencing directly all factors.

6.3.3.1 Privacy Awareness

Participants’ trust is directly related with Privacy Awareness, which can be
justified by relating the superficially shared information (connection 1). Par-
ticipants reported a lower trust with location-based applications, health and
even social networks, where some level of direct information is prone to be ex-
tracted.

However, they did not feel this mistrust in applications that did not require
a direct interaction or that the data sensing process is not noticeable. This,
besides privacy, is also a problem of awareness; none of participant considered
inference attacks from raw sensing data as accelerometer and gyroscope [Bai
et al., 2017].

Participants may think their routine cannot be identified with applications that
apart from a specific function like a game, are collecting sensor raw data. How-
ever, it does not necessarily mean that these are not sensing in background.
This leads participants to think that a company that develops this kind of
applications, for example, is not able to exploit information by other means
(connection 4). Here is an example from two participants:

“... Social networks applications does not have much information
about me. I barely post stuff on my mural. They can only see my
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conversations on the chat ... I delete all the built-in applications like
maps and health applications but I do play games...(P2)”.

“...I believe that Maps (location-based app) saves only my locations,
the places that I usually visit and perhaps my phone number...(P7)”.

6.3.3.2 Degree of development of the application

When an application is widely used or is provided by a renowned multinational,
the perception of trust is altered (connection 2). When concerning two equally
big companies, people tend to prefer the most used ones:

“...I don’t use the the built-in applications from which I have similar
ones in Google because they are better and easier to use”...(P1).

“I prefer to use Google applications than Huawei’s one, actually, I
try to use all of them for my daily routine”...(P10).

In fact, in most cases, this trust perception is influenced simultaneously by
Privacy Awareness (connection 5) when one pays attention to the nature of
information that an application needs to work properly: daily routine data or
passwords, bank account credentials, among others. In terms of this data nature,
perception of trust changes radically.

Participants that affirmed big companies would use every opportunity to make
money by sharing data with third-parties for marketing studies, manipulating
behaviour and other purposes, did not shared an equal mistrust regarding bank
account information or passwords. In fact, when sharing these information, they
preferred renowned companies or widely used applications, since participants
consider these would have a strong security system to protect the data. Some
examples:

“...I’m pretty sure big companies, if they can, they will sell
everything. Their final goal is and it will always be money, profit...
(P5)”.

“...Big Companies can sell the information to other parties for mar-
keting reasons, to understand the market...(P10). ”.

“...In bank accounts and passwords, I believe applications like App-
Store are very protected and secure...(P4)”.

“...I think that Apple saves all my keys and passwords in their private
cloud that nobody else except me can access...(P9)”.

In terms of what people perceive regarding the use of people routine data. In a
general way, people think big providers protect better their data from hackers or
threats while the purpose of exploration of data is the reason of mistrust.

We could observe how participants trust small and big companies regarding
handling more critical information as bank accounts credentials and passwords,
where the big ones are preferred. In this case, people trust in both cases in
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terms of information exploitation but they considered that the big company
applications are more trustful in terms of security and information storage.

6.3.3.3 Exploitability of Information

People tend to trust more or less in an application depending how they perceive
that the Exploitation of Information is done (connection 3). People that do
not see marketing studies personalized for a user as bad, tend to trust more and
use more freely applications. Moreover, others tend to claim that they allow to
share more data to improve user experience only when they think the data will
not be used for any other purpose.

“...I only let an application retrieve more information from me when
I am sure that they are not going to use it for any other purpose
than improving the application or user-experience...(P6)”.

“...I don’t mind if they use my information for marketing reasons,
as long as I have a good experience using the application is fine for
me...(P8) ”.

“...I use the applications and it doesn’t bother me that they use the
information for marketing, since it is already done in commercials
in TV and in real-life...(P3) ”.

If a company or application with a high level of development, that is, an ap-
plication from a big company as the mentioned ones, people will assume the
exploitation of information will be directed toward different uses that are not
the one concerned with improving the application itself (connection 6). This
leads people to trust less in the applications. However, when is a small com-
pany or a start-up, people directly assume the collected data will be used for
improving the application.

“...Big Companies, if they get the chance to make money with the
data, they will do it ” ... If it is an application from a start-up
company, I think they are only interested first in developing the ap-
plication first...(P5)”.

6.3.3.4 Media and Social Interaction

Media is connected to all factors, since influences them: Privacy Awareness,
Degree of Development of the App or Company Reputation and Exploitability of
Information. The exploitation of information and the use of an application or
the company reputation are directly related with the media, since many of the
interviewers justified the majority of their opinions with news that they read
or saw. When they did not explicitly justified the opinions with them, they
mentioned facts that are from the public domain precisely because of the news.
This trust is indirect, it is build on the recommendations and opinions, also
know as transitive trust [Abdelghani et al., 2016].

These concerned the elections in the USA, security breaches and hacking attacks.
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Furthermore, the idea one has if a company is more or less developed is also
related with media news and social interaction.

“...Since I saw the news regarding USA elections, I don’t trust as
much in applications from Facebook or Twitter as I trust in Google
ones...(P5)”.

“...I always have afraid of some hacker on Facebook or other social
networks, as I have already read in some news...(P1)”.

6.3.4 Remarks
The final model was obtained through an iterative process of analyzing and
coding the participants responses, as seen in Figure 6.26. When connections
were made, it was attempted to understand the origin of the concepts that
linked and its variability. In a first phase, some initial concepts appeared. In
fact and as mentioned before, a higher number of concepts and smaller ones were
obtained but for the sake of a simplified model, the concepts of Exploitability of
Information, Privacy Awareness and Degree of Development of an Application
or Company Reputation were the most prominent (phase A).

The next step was intuitive, achieving connections between every concept to the
perception of trust model, as seen in phase B. However, when these links were
performed, most of the participant answers that provided these conclusions had
also a major influence from the other concepts. Due to this, it was concluded
that the three concepts were also linked mutually, since they all influence each
other (phase C).

The media and social interactions appeared later in phase D, where it was at-
tempted to understand the origin of the participant opinions concerning pro-
viders, privacy and exploitation of information. Thus, and remembering the
strong influence of the social factor in humans, media and social interactions
were added as involving the whole scheme diagram, since all these concepts are
immersed within common opinion and participant’s beliefs. Specially the social
interaction leads to the use of these applications, even when the perception of
the trust that a user may have is not the best.

Nevertheless, some findings were relevant. For example, when we asked indir-
ectly about privacy, all participants ended up moving their answers to trust
without any intervention by the interviewer. In a generalized way, people seem
to trust less in the use of information than in the protection of it.

Some justifications were related with the existence of protocols and legislation
such as the GDPR, mentioned only by one of the participants (P11), and iron-
ically from outside the EU. Besides the fact that a fault in information storage
would be result in a tremendous damage to a company’s reputation. This was
also the motives why participants trusted in specific applications by renowned
companies when sharing bank account details and passwords, since a major flaw
in these systems would be unbearable to this kind of companies. Thus, even
when participants trust in this kind of applications, it seems that is never for a
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naive good reason but always for a profitable one.

Consequently, from the participants’ opinion the providers should advertise to
a certain extent their data handling, and safety strategies and how the inform-
ation shared by users is processed, if they want to improve user’s perception
of trust. To big companies, it would be better to invest in advertising their
use of information than in safety. Regarding small ones, it would be a better
strategy to advertise their capability of preventing and defending themselves
from cyber-attacks.

6.4 Summary
In this chapter, we have carried out quantitative validations and assessments of
the proposed models implemented in this study, showcasing their effectiveness
and feasibility. Additionally, we conducted a qualitative study focusing on a
shared aspect among the case study implementations. The forthcoming chapter
will provide a comprehensive overview of the work accomplished throughout the
course of the PhD, along with the valuable contributions made to the field. Fur-
thermore, we will engage in an insightful discussion, exploring potential future
directions for further improvement and advancement.
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The user-centric approach for privacy-preservation in HiTLCPSs pro-
posed in this research shows promising potential for safeguarding user
data, providing users with a way to control their data flows and pro-

moting transparency. However, it is evident that there is still much ground to
cover, especially concerning the seamless integration of emerging technologies.
As we move forward, continued research and development efforts are necessary
to address the challenges and complexities that arise in this rapidly evolving
domain.

In this chapter, we summarize the developed work, highlight the contributions
of this thesis, and look into the future challenges.

7.1 Synthesis of the Thesis
The work carried out in this thesis focused on providing solutions to address pri-
vacy preservation within the context of human-centric IoT-based systems, more
specifically, HiTLCPS. The work was organized and presented as follows.

Chapter 2 offered an overview of the transformation of the conventional IoT
concept into novel human-centric paradigms, where end-users and their data
played a vital role while simultaneously highlighting privacy as a significant
challenge within these frameworks. Subsequently, a thorough review and ana-
lysis of current user-centric privacy-preserving models followed, wherein they
were categorized based on a proposed classification. This chapter was concluded
by identifying and discussing challenges and open issues.

Next, in Chapter 3, we began by providing the concept, the process, and the
importance of HiTLCPS in this new IoT era. We also highlighted that one
of the most significant challenges in implementations based on this notion was
privacy preservation. To address this concern, this chapter provided two privacy-
preserving approaches, one oriented toward the data acquisition phase, and the
other to the state-inference phase. For the first approach, this chapter described
our privacy-aware framework called PACHA, its components, and the modules
comprising them. The proposed privacy-preserving approach was built upon
the features of this framework, emphasizing the consent management process
and tackling the challenge related to transparency, by proposing the use of a
permissioned blockchain to preserve the integrity of transactions derived from
both data-sharing and consent actions. For the privacy-preserving approach, this
chapter provided some background regarding AI at the edge and extended the
current model with FL to carry out the state inference on the DO side. Finally,
the chapter described a roadmap for the integration of multiple HiTLCPSs and
the incorporation of Edge AI mechanisms at the DO domain for a future iteration
of the current model.

In Chapter 4, we presented a model that integrated citizen-centric IoT privacy
preservation solutions to foster the vision of smart and sustainable cities. This
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chapter began by providing an overview of the background and related work
in this area, identifying limitations, and providing the rationale for the current
work. Later, we introduced our CONFLUENCE model, which was oriented
to HiTLCPSs and aimed to define the necessary entities, components, and in-
teractions for a privacy-preserving data sharing among the stakeholders that
integrate a smart city. This model incorporated contemporary technologies like
blockchain and LoRa. Moreover, this model included the description of a re-
encryption scheme and incentives mechanism.

In Chapter 5, we introduced our two case studies, ISABELA and Green Bear,
which exemplified the implementation of the HiTLCPS concept. Each of these
case studies revolved around the deployment of distinct platforms, individually
tailored to address different objectives in specific contexts. The presentation of
the case studies included a description of FIWARE and its used in the imple-
mentation of ISABELA and Green Bear platforms. Subsequently, the chapter
introduced SPACES, our unified platform with the objective of integrating the
services offered by ISABELA and Green Bear while considering the components
of the models proposed in Chapters 3 and 4. This chapter provided technical
details regarding the development and implementation of these components and
the selected underlying technology.

Chapter 6 addressed the assessments of the main components from the models
proposed in Chapters 3 and 4 and their results. The first two sections of this
chapter approached the evaluations from a quantitative perspective. Specifically,
the first section addressed the privacy-preserving model, starting with its test
environment description. Then, regarding the assessment, this section evaluated
the IoT Broker response, the throughput and latency of the blockchain network,
the impact of the re-encryption process, and also described the creation of an
FL model and its validation using a dataset obtained in a trial of one of our pre-
vious case studies. The second section of this chapter addressed the integration
model. Similar to the first one, this section described the prototype platform
deployment, including the technical specifications. The round of assessments
focused on the blockchain network implementation and the public IoT resources
in a TTN network. Finally, this chapter concluded with a section dedicated to a
qualitative study conducted to understand the perception of trust in IoT mobile
applications, a relevant aspect shared by the platforms derived from the case
studies described in the previous chapter, as well as the current platform. The
description of this study included details regarding the participants, the type of
approach, the qualitative method selection, the insights, and a discussion of the
results.

7.2 Contributions
The research work conducted in the context of this thesis was driven by the
objectives described in Chapter 1. With these objectives in mind, this thesis led
to the contributions described below:

• Review of the state-of-the-art regarding user-centric privacy pre-
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serving models In order to gain a comprehensive understanding of the
current contributions in this field, and identify the gaps in the existing
research we performed a literature review. We consider that this can be
used by other researches as starting point to delve into the research field
and fast track the development of novel proposals.

• Creation of a classification for user-centric privacy-preserving
models In the state-of-the-art, proposals that revise and categorize user-
centric privacy-preserving models in this particular IoT context are scarce.
In order to establish a common language for the analysis, we have proposed
a classification. Through this contribution, the aim is to provide a more
structured guide that better directs new researchers in this field.

• Creation of a new privacy-preserving model for HiTLCPSs After
studying the concept of HiTLCPS, we proposed two privacy-preserving ap-
proaches oriented toward the data acquisition and state inference phases,
respectively. Based on these two approaches, a new privacy-preserving
model for HiTLCPSs is created. This model can be used as a foundation
for the development of new privacy-preserving HiTLCPSs.

• Definition of a new framework for HiTLCPSs From the reviewed
models in the state of the art, we extracted certain features that were
later used to build and define our framework. This framework, named
PACHA, was then utilized in the development of our initial approach,
which includes the privacy-preserving model. PACHA defines a compre-
hensive privacy-preserving data sharing architecture among stakeholders.
The functionalities defined in this framework have been incorporated into
the components of the models proposed in this thesis.

• Creation of a new decentralized consent management procedure
for HiTLCPSs One component that integrates the data acquisition phase
of our privacy-preserving model is consent management. In this regard,
one of our contributions is the development of a decentralized consent
management process to enhance transparency. This procedure consists of
five phases and involves all the entities of the model with their respective
components.

• Development of a new HiTLCPS case study Alongside the imple-
mentation of the privacy model, we also developed a new case study pro-
posal focused on the sustainability of smart cities. This case study, known
as Green Bear, aims to enable citizens to assess their involvement in as-
pects that enhance the city’s sustainability through a gamification scheme.
Participants can earn points for engaging in various activities in the city’s
public spaces and taking personal actions to improve their quality of life.

• Creation of a new model for integrating privacy-preserving
HiTLCPSs After proposing the privacy preservation model, the sub-
sequent step involved creating a solution that enables the integration of
various privacy-preserving HiTLCPSs to address a specific requirement. In
our case, our model is oriented toward promoting sustainability in smart
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cities, leveraging our aforementioned case study. However, we believe that
to make a significant change in the city’s sustainability, it is necessary to
integrate multiple services proposed by HiTLCPSs from different contexts
that consider privacy aspects from their design.

• Creation of a new platform that integrates different services from
stand-alone HiTLCPSs As it is observed that the systems used in
ISABELA and Green Bear share common characteristics but are managed
individually, resulting in duplicated efforts, the creation of an integral plat-
form has been proposed. This platform will allow the implementation and
comprehensive channeling of services offered by these individual systems.

• Development of a FL model for state inference in HiTLCPSs In
our HiTLCPS case studies, the inference process has traditionally been
conducted using machine learning models on servers outside the user’s
control (e.g., servers in a cloud managed by the responsible inference pro-
cess). To establish an inference process that does not require data to
leave the user’s device, we employed FL and developed a new model. Al-
though our FL-based proposal delivered a slightly lower level of accuracy
compared to the traditional machine learning model, the former ensures
privacy preservation during the state inference phase.

In addition to the contributions described above the work conducted in this
thesis directly led to publications in international journals and international
conferences. We would like to highlight specially the publications on journals
of the first quartile. Additionally, it also led to active cooperation inside and
outside the research group which, in turn, contributed to several joint publica-
tions.

7.3 Future Work
During our review of the state of the art within the context of this thesis, we have
found that efforts to develop systems aligned with principles such as ‘Privacy
by Design’ date back to the times of ‘Ubiquitous Computing’. However, since
the proposal and enforcement of regulations aimed at the protection of personal
data worldwide, we have observed a significant increase in contributions. This
growth reflects a genuine concern for preserving privacy, which, in turn, presents
an ongoing challenge, especially in the new human-centric concepts, a result of
the evolution of the ‘Internet of Things’ paradigm.

Data protection and control have never been as important as nowadays. Al-
though our thesis revolves around and contributes to this topic by proposing
a user-centric, privacy-preserving model, we believe that there is still plenty of
room for further work. For instance, regarding the first proposed approach that
comprises our model, a challenge can arise if the threat model is extended by con-
sidering a scenario where malicious IoT Brokers and DRs collude to gain access
to more data from IoT resources than approved by the DO. To overcome this
limitation and control the re-encryption capacity of the IoT Brokers, a future
model iteration could explore, incorporate, and validate an enhanced encryption
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approach (e.g., conditional and accountable proxy re-encryption).

Regarding the overall consent procedures, the current consent request process
does not foresee the possibility for a DR to select IoT resources based on their
locations, as this would disclose the position of the user in the case of mobile
IoT resources. Another aspect to consider is the possibility for DRs to waive the
granted consent if the data do not satisfy their needs. Furthermore, the data
deletion request process could be enriched by coupling an InterPlanetary File
System, where access to the stored data is removed after a consent revocation.
These considerations could be taken into account for an enhanced version of this
model in a future proposal.

In the case of the second approach of the model, the feasibility of the pro-
posed roadmap still needs validation, particularly concerning the state inference
process at the IoT resource level. Additionally, new mechanisms based on re-
inforcement learning techniques might be studied and taken into account for
future work. We consider that exploring and integrating these techniques would
allow greater interaction with DOs to refine their learning models as the basis
of HiTL services, whether at the level of IoT Gateways or IoT Resources, and
also address ethical issues within services from different contexts.

Regarding the implementation of the models, we believe that future work could
involve deploying them with a larger number of interacting devices. This would
allow for invaluable insights into the scalability of our proposals and identify
areas for further improvement. In addition to quantitative measures, we also
recognize the significance of qualitative evaluation. Specifically, in the case of
our integral model, the system should be carefully assessed through the lens of
the three pillars of sustainability, encompassing environmental, social, and eco-
nomic dimensions. Qualitative evaluation could provide a deeper understanding
of user experiences, perceptions, interactions and attitudes toward privacy, com-
plementing the technical assessments. This comprehensive approach would help
us assess the system’s impact and effectiveness in promoting sustainable prac-
tices within a real deployment environment. Moreover, in the context of future
work, it is crucial to validate the proposed incentive mechanism as outlined in
the thesis. The successful validation of this mechanism holds the potential to
address one of the most vexing challenges encountered in the implementation of
HiTLCPSs, namely, the issue of user participation.

To sum up, by implementing a user-centric privacy-preserving model, individu-
als can maintain control over their sensitive data, aligning with the principles of
data protection mandated by most regulations. Moreover, the use of Edge AI
and FL techniques further enhances privacy by minimizing the transmission and
centralization of personal information, thus reducing the risks of data breaches
and unauthorized access. However, it is crucial to acknowledge the challenges
and counter-effects that may arise by interoperating across different IoT do-
mains, especially in the case of Healthcare where specific requirements from
regulations, like Health Insurance Portability and Accountability Act (HIPAA),
must be considered, such as consent and data de-identification, to ensure com-
pliance with healthcare data privacy standards. Similarly, aligning with GDPR
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principles, such as lawful data processing, individual rights, and cross-border
data transfers, addresses the regulations’ comprehensive approach to data pro-
tection. Risk analysis tasks and continuous monitoring of the proposed systems
are necessary to identify and mitigate potential vulnerabilities and ensure ongo-
ing compliance with regulations.
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