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Abstract

The planet Uranus and its satellites form one of the most mysterious systems in our Solar System. Ge-
ological traces of global resurfacing of the main satellites and the abnormally relatively high values of
some of their orbital elements suggest a rich dynamical evolution. The orbits are expected to slowly
drift away owing to tides raised on the planet. As a result, several mean motion resonances (MMR) be-
tween the satellites were likely encountered in the past. In this work, we address the dynamical and tidal
evolution of the five major satellites of Uranus, namely, Miranda, Ariel, Umbriel, Titania, and Oberon.

Resorting to an N-body model that takes into account the tidal evolution of the orbits and the
spins of all bodies, we re-estimated the interval of the specific dissipation factor of Uranus to be
5 800 < Q0 < 11 500. We determined that, at present, there are no spin-orbit resonances within the Ura-
nian satellites, invalidating them as a mechanism to decrease the inclinations of the satellites, as proposed
in previous studies. We confirmed that the current eccentricities of the satellites are not forced, and es-
timated the tidal damping timescales of the satellites’ eccentricities and inclinations. By simulating the
system from just after their formation, 4.5 Gyr ago, until the present days, we observed that it could have
crossed a large number of MMR during the orbital evolution, deviating the final orbits from the currently
observed. By adopting a step-by-step approach, we reconstructed the orbital evolution of the main satel-
lites just after the 5/3 Ariel-Umbriel MMR, and have shown that the system has not been much disturbed
since then. We also confirmed that, during capture within the 5/3 Ariel-Umbriel MMR, the orbits of the
five satellites are strongly excited. Consequently, the 5/3 MMR must be shortly skipped.

To study in detail the passage through the 5/3 Ariel-Umbriel MMR, we developed a secular two-
satellite model, where we adopt the weak friction tidal model, using complex Cartesian coordinates.
With the consideration of the conservation of the total angular momentum, we only need to perform
one average over one fast angle. We also portray the chaotic nature of the system with Poincaré surface
sections and stability maps.

By performing a large number of numerical simulations, we studied the passage through the 5/3
Ariel-Umbriel in the circular, planar, and eccentric-inclined cases. We have shown that the eccentricity of

Ariel is the key variable to evade the 5/3 MMR. Moreover, if
√

e2
1 + e2

2 < 0.007, long term capture within
the resonance is certain. We determined that, with e1 > 0.015 and e2 < 0.01, the system avoids capture
in at least 60% of the cases. We have also shown that, to replicate the currently observed inclinations
of Ariel and Umbriel (I1 = 0.0167◦, I2 = 0.0796◦), the initial inclinations of both satellites must be
I1 ≤ 0.05◦ and I2 ≈ 0.082◦. These initial inclination values are similar to the currently observed.

The results from the secular two-satellite body were finally confirmed with the N-body model, that
includes all the five main satellites.





Resumo

O planeta Úrano e os seus satélites formam um dos sistemas mais misteriosos do nosso Sistema Solar.
Vestı́gios geológicos observados nas superfı́cies das maiores luas de Úrano e os valores relativamente
altos de alguns dos seus elementos orbitais, sugerem uma evolução dinâmica complexa. Prevê-se que
as órbitas estejam a afastar-se lentamente devido às marés geradas no planeta. Como resultado, várias
ressonâncias de movimento médio (MMR) entre os satélites provavelmente ocorreram no passado. Neste
trabalho, estudou-se a evolução dinâmica e de marés dos cinco satélites principais de Úrano, nomeada-
mente, Miranda, Ariel, Umbriel, Titânia e Oberon.

Através de um modelo de N-corpos, que considera a evolução das órbitas e das rotações de todos
os corpos, estimou-se o intervalo do fator de dissipação especı́fica de Úrano como estando compreen-
dido entre 5 800 < Q0 < 11 500. Foi possı́vel determinar que atualmente não existem ressonâncias spin-
órbita entre os satélites uranianos, invalidando-as assim como sendo um mecanismo para diminuir as
inclinações dos satélites, conforme proposto em estudos anteriores. Confirmou-se que as excentrici-
dades livres atuais dos satélites não são forçadas e calcularam-se os tempos de amortecimento por maré
das excentricidades e inclinações dos satélites. Simulando o sistema desde após a sua formação, há 4,5
mil milhões de anos atrás, até ao presente, constatou-se que o sistema provavelmente cruzou um grande
número de MMRs durante a sua evolução orbital, desviando as órbitas finais das observadas atualmente.
Ao adotar uma abordagem etapa-a-etapa, reconstruiu-se a evolução orbital dos principais satélites logo
após a MMR 5/3 entre Ariel e Umbriel e mostrou-se que o sistema não foi muito perturbado desde então.
Confirmou-se também que, durante a captura na MMR 5/3 entre Ariel e Umbriel, as órbitas dos cinco
satélites são fortemente excitadas. Consequentemente, o sistema deve escapar rapidamente da MMR 5/3.

Para estudar detalhadamente a passagem pela MMR 5/3 entre Ariel e Umbriel, desenvolveu-se um
modelo secular de dois-satélites, onde se adotou o modelo linear de maré e coordenadas Cartesianas
complexas. Tendo em conta a conservação do momento angular total, apenas foi necessário realizar
uma média sobre um dos ângulos rápidos. Estudou-se também a natureza caótica do sistema através de
secções de superfı́cies de Poincaré e de mapas de estabilidade.

Realizando um grande número de simulações numéricas, estudou-se a passagem pela MMR 5/3
entre Ariel e Umbriel nos casos circular, planar e excêntrico-inclinado. Foi possı́vel mostrar que a

excentricidade de Ariel é fundamental para escapar à MMR 5/3. Além disso, se
√

e2
1 + e2

2 < 0.007,
a captura de longo prazo na ressonância 5/3 é garantida. Determinou-se ainda que, com e1 > 0.015
e e2 < 0.01, o sistema evita a captura em pelo menos 60% dos casos. Mostrou-se igualmente que,
para replicar as inclinações de Ariel e Umbriel atualmente observadas (I1 = 0.0167◦, I2 = 0.0796◦), as
inclinações iniciais de ambos os satélites devem ser I1 ≤ 0.05◦ e I2 ≈ 0.082◦. Estes valores iniciais de
inclinação são semelhantes às observações atuais.

Os resultados do modelo secular de dois-satélites foram por fim confirmados com o modelo de
N-corpos, que inclui os cinco principais satélites.
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está a “mexer nas coisas do espaço”. Mas nem por isso deixaram de me apoiar e de acreditar em mim
e, acima de tudo, por razões que me escapam, sei que estão orgulhosos de mim. Obrigado.
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Nomenclature

Notation Definition Notation Definition
bold Vector | | Vector module

¯ Complex conjugate i
√
−1

⟨ ⟩ Average ˙ Time derivative
t Time MMR Mean Motion Resonance

G
Gravitational constant
(G = 4π2 au3M−1

⊙ yr−2)
m Mass

µk G(m0 + mk) βk Reduced mass (m0mk/(m0+mk))
R Radius C Moment of inertia

J2
Second order gravity field
(Eq. (2.20))

k2 Second Love number

V Gravitational potential U Gravitational potential energy
S Generating function P Legendre polynomials

b( j)
s Laplace coefficients

R , r Position vectors P ,p Linear momentum vectors
L Angular momentum vector Γ Torque (Γ = L̇)

Q
Specific dissipation factor
(Eq. (2.69))

τ Tidal time lag

τecc , τinc
Damping timescales
(Sects. 2.4.4 and 4.4)

g , s Secular modes (Sect.2.4.2)

H Hamiltonian H̃ Averaged Hamiltonian (⟨H⟩γ)
a Semi-major axis M Mean anomaly
e Eccentricity ϖ Longitude of the pericentre
I Inclination Ω Longitude of the ascending node

ω Argument of the pericentre
ν True anomaly n Mean motion
ω Angular velocity vector ϵ Obliquity

Λk, λk,
Σk,−ϖk,
Φk,−Ωk

Poincaré variables
(Eqs. (3.26), (3.27), and (3.28))

Θk, θk
Andoyer variables for rotation
(Eq. (3.25))

Σ
Total angular momentum
(Eq. (3.36))

Γ, γ Eq. (3.39)

σ Resonant angle (Eq. (3.32)) σk, ϕk
Resonant angles (Eqs. (3.40),
(3.41), (3.42), and (3.43))

ϑk Eqs. (3.44), (3.45), and (3.46)
xk, xk,
yk, yk

Complex rectangular coordi-
nates (Eqs. (3.92) and (3.93))

Γ1 ,Γ2 Eqs. (3.49) and (3.50)
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Chapter 1

Introduction

Uranus, together with its satellites, is one of the least studied planets in the Solar System. Records suggest
that the earliest observations of this not so distant planet remount to the 2nd century BC, by the famous
Greek astronomer Hipparchus (Bourtembourg 2013). Often confused with a star by several astronomers
throughout the years (Wright 1987), its discovery is attributed to William Hershel on 13 March 1781, but
not before it was mistakenly confused with a comet (Herschel and Watson 1781). Latter observations,
(on 11 January 1787, i.e., about six years later) led to the discovery of the two largest satellites of
Uranus, Titania, and Oberon (Herschel 1787). Ariel and Umbriel, the two other large moons, innermost
to Titania’s orbit, were discovered in 1851 by William Lassell (Mozel 1986).

In Greek mythology, Uranus was the personification of the sky. Together with Gaia, whose Roman
name is Earth, they were the parents of the first generation of Titans, which includes Cronus (Saturn in
Roman mythology). Later, Cronus, together with his sister Rhea, gave birth to the first generation of
Olympians. Between them, there were Zeus, Poseidon and Hades, that is, Jupiter, Neptune, and Pluto
in Roman mythology. Ergo, according to mythology, the moons of Uranus were supposed to be named
after their children or grandchildren. To avoid mythological incongruities, William Hershel requested to
name the Uranian satellites as a tribute to famous English writers. Being Uranus the god of sky, Oberon
and Titania are the king and queen of the fairies in Shakespeare’s “Midsummer Night’s Dream”, while
Ariel is a sylph, and Umbriel a gnome in Pope’s “Rape of the Lock” (Barton 1946; Kuiper 1949). More
recently, Miranda, the innermost and smallest of the major Uranian satellites, was first photographed
on February 16, 1948, by Kuiper (1949), and was named once more as a Shakespeare character. Since
then, the number of known satellites has increased to twenty-seven, although due to the large distance of
Uranus from the Earth and the lack of spacecraft missions on the planet, the real number of satellites is
possibly higher than the currently known.

Voyager 2 was the only spacecraft to have visited Uranus so far, with a flyby mission early in 1986.
The large number of high-resolution images acquired by the spacecraft’s instruments allowed many de-
velopments in the comprehension of this mysterious planet, making the following years after this flyby
some of the most impelling of the study of Uranus. Since then, the interest in Uranus has decreased, as
can be seen by the decreasing number of published articles on the subject Uranus (see Fig. 1.1). How-
ever, new ground based observations (e.g. Jacobson 2014), together with improved theoretical models
and the will to launch a new spacecraft mission to the Uranian system (Bocanegra-Bahamón et al. 2015;
Cartwright et al. 2021; Xavier et al. 2022), have clearly made this system a hot topic again.

1.1 Uranus

Together with Neptune, Uranus is one of the outermost planets in the Solar system. They display a
significant number of similar key quantities, such as mass, radius, surface temperature, and atmospheric
composition. They represent a unique planetary class, the ice giants (Schubert 2015; Scheibe et al. 2021),
with numerous discovered exoplanets with similar mass and radius (Helled and Bodenheimer 2014;
Helled and Fortney 2020). Consequently, these two planets can be seen as a laboratory to understand
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Figure 1.1: Number of refereed articles per year on Uranus and its satellites in the last 63 years. Data
from ADS database (https://ui.adsabs.harvard.edu, accessed on October 30, 2023).

a unique set of formation processes, evolution, and stability of planetary systems. Contrarily to gas
giants Jupiter and Saturn, which are thought to have very low mass cores with massive gas envelopes,
measurements from Voyager 2 indicate that Uranus and Neptune have more massive cores, composed of
heavier elements and surrounded by icy mantles, allowing better constraints for the interior models and
gravitational properties than those for the gas giants (Helled et al. 2011; Nettelmann et al. 2016).

The most striking difference between the two ice giants is the extreme 98◦ tilt of the rotation axis
of Uranus relatively to the orbital plane, known as the obliquity. The origin of the large obliquity of
Uranus remains elusive. Two scenarios have been proposed: an impulsive tilt due to a collision with one
or multiple bodies (Safronov 1966; Morbidelli et al. 2012; Kurosaki and Inutsuka 2019) or a slow tilt
due to a resonance between the precession rates of the spin-axis and of the orbit of a migrating satellite
(Kubo-Oka and Nakazawa 1995; Saillenfest et al. 2022) or the theoretical planet nine (Lu and Laughlin
2022). More details and implications of the two distinct hypotheses will be later discussed in Sect. 1.2.

The rotation period of Uranus is usually accepted to be 17.24 hours. However, Helled et al. (2010)
suggests that winds within the atmosphere of Uranus could result in misleading models of the rotation of
the planet. The authors state that the rotation period of Uranus is in fact faster than the widely accepted,
imposing an uncertainty on this value. More recently, using observations taken by the Very Large Ar-
ray Telescope, Akins et al. (2023) found evidence of a cyclonic polar vortex on Uranus, similar to the
structures observed on Saturn’s and Neptune’s poles. This is yet another indicator of the scientific rich-
ness and how little knowledge we have of this cold giant and its complexity. The physical properties of
Uranus are summarized in Table 1.1.

Mass (a) 4.365628821047407 × 10−5M⊙ Obliquity (a) 98◦

Radius (a) 25 559 km J2
(a) 3.510 68 × 10−6

Density (b) 1.270 ± 0.001g.cm−3 k2
(d) 0.104

Rotation period (c) 17.24 ± 0.01 hour Moment of inertia (e) 0.2296

Table 1.1: Physical properties of Uranus. (a) Jacobson (2014); (b) Helled and Fortney (2020); (c) Desch
et al. (1986),(d) Gavrilov and Zharkov (1977);(e) estimated using the Darwin-Radau relation (e.g. Correia
and Rodrı́guez 2013).

1.2 Formation of the satellites

Natural satellites are believed to be formed in a protoplanetary disk around the host planet (e.g. Peale
1999), or to be “free bodies” that were captured by the host planet (e.g. Singer 1968; Agnor and Hamilton
2006; Jewitt and Haghighipour 2007). Data from Voyager 2 shows that the distribution of mass between

https://ui.adsabs.harvard.edu
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the satellites and Uranus and their chemical composition are consistent with these bodies having been
condensed from a concentric disk, withstanding the idea that the regular moons of Uranus formed in an
accretion disk around the planet (Prentice 1986; Pollack et al. 1991). However, the peculiar 98◦ obliquity
of Uranus, which places it in a nearly horizontal configuration, poses many unknowns about the origin
of the accretion disk.

One hypothesis proposes that a late giant impact with Uranus created a large debris disk, a mechanism
already proposed for the formation of the Moon (e.g. Canup and Asphaug 2001; Canup 2012; Asphaug
2014) and Charon (e.g. Canup 2005; Kenyon and Bromley 2021). This is a compiling scenario, since
some studies suggests that a collision could drive the extreme tilt of the Uranus (Harris and Ward 1982;
Korycansky et al. 1990; Slattery et al. 1992; Brunini 1995; Parisi and Brunini 1997; Brunini et al. 2002;
Parisi et al. 2008; Morbidelli et al. 2012; Kegerreis et al. 2018; Kurosaki and Inutsuka 2019; Ida et al.
2020; Rogoszinski and Hamilton 2021; Woo et al. 2022). One strong evidence of this possibility is the
fact that the orbits of the regular moons of Uranus are equally tilted, suggesting that they were formed
after the tilt of the spin-axis of the planet (Ida et al. 2020). Mosqueira and Estrada (2003) state that a
collision could not create a debris disk capable of originating the satellites, and such disk would have
to be retrograde, but recent results show that a collision is indeed compatible with the present value of
the angular moment of Uranus and the satellite system, as well as the masses of the regular satellites
(Kegerreis et al. 2018; Kurosaki and Inutsuka 2019; Salmon and Canup 2022). Considering that only
one impact drove obliquity to the observed value, an impactor with a mass larger than 1 M⊕ is required.
Yet, the probability of an encounter with such a large mass is very low (Rogoszinski and Hamilton 2021).
Morbidelli et al. (2012) have shown that to achieve the current high obliquity of Uranus simultaneously
with a prograde orbit of the regular satellites through an impact with a massive body, the planet must
have an initial non-negligible tilt prior to the event. This leads to the more likely hypothesis of multiple
impacts with smaller masses. In addition, such a massive collision could significantly alter the planet’s
primordial rotation period. Since the rotation periods of Uranus and Neptune are similar (TU = 17.24h,
TN = 16.10h), it is difficult to conciliate that one planet suffered multiple impacts and the other did not.
Furthermore, to achieve the necessary debris disk mass and size to form the satellites is very difficult,
with simulations generating disks of at least one order of magnitude more massive and smaller than
required to form the Uranian satellites (Rogoszinski and Hamilton 2021).

More recently, a collisionless scenario based on the increase of the precession rate of the spin-axis
of Uranus due to the presence of its satellites has been proposed by Boué and Laskar (2010). A similar
mechanism was previously proposed to explain Saturn’s 26.7◦ obliquity, through a commensurability
between the precession period of Saturn’s spin-axis and the precession period of Neptune’s orbital plane
(Ward and Hamilton 2004; Hamilton and Ward 2004). In the case of Uranus, a spin-orbit resonance
between the planet and an ancient moon, larger than any of the current moons, is invoked to increase
the obliquity. The main difficulty of this process is the missing satellite, especially because it needs a
minimum mass of 0.006M⊕ (Saillenfest et al. 2022), larger than the mass of any current Uranian satellites.
Resorting to the close encounters during the giant planet outward migration proposed by the Nice Model
(Tsiganis et al. 2005), it is possible to eject the satellite. However, a moon with this dimension should
leave traces of its existence. Yet, no such evidences were found so far. Alternatively, Rogoszinski and
Hamilton (2021) suggests a spin-orbit resonance not with a moon, but instead with a circumplanetary disk
in the final stages of its formation, the same disk that originated the current satellite system. Nonetheless,
the timescales of this process are either too short or near the age of the Solar system. In addition, unless
unrealistic masses of the ancient moon or the circumplanetary disk are taken into account, none of the
proposals successfully achieve the 98◦ obliquity of Uranus (Rogoszinski and Hamilton 2021).

Even so, Laskar and Robutel (1993) showed that the present obliquity of Uranus is stable and should
be considered primordial. Moreover, the regular satellites are immune to the migration effects of the
giant planets of the solar system (Deienno et al. 2011). Thus, the study of the satellite system can be
conducted as an isolated system, regardless if the spin-axis of Uranus was tilted by a collision or a
spin-orbit resonance.
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1.3 Satellites surfaces and interiors

We can divide the five regular Uranian moons into three groups of mass and radius. Titania and Oberon
are the largest satellites of Uranus, with very similar radius and masses (Table 1.2). However, Titania
is slightly bigger and more massive than Oberon. Ariel and Umbriel have almost a third of the mass
of Titania and Oberon, and radius of about ∼ 600 km. This places these moons with roughly the same
mean densities, suggesting similar bulk compositions. Miranda, is the smallest of the largest satellites,
with just ∼ 2% of the mass of Titania and a third of its radius, resulting in the lowest mean density of the
system.

The lack of observational constraints makes studies of the internal composition of the satellites very
challenging. Current models predict that all the satellites are differentiated, with rocky cores surrounded
by icy layers (Canup and Ward 2006; Kirchoff et al. 2022). However, the lower density of Miranda
indicates a higher percentage of ice than on the remaining satellites. A more tantalizing idea suggests
that Titania and Oberon can hold thick subsurface oceans (Hussmann et al. 2006; Cochrane et al. 2021;
Bierson and Nimmo 2022), placing the Uranian system as a candidate for search for life conditions in
the Solar system (Cartwright et al. 2021).

The images captured by the Voyager 2 flyby (Fig.1.2) display evidences of extreme to moderated
resurfacing of some Uranian moons (Smith et al. 1986). The surfaces of Umbriel and Oberon do not
show tectonic structures and are dominated by craters, dating to a period where the cratering rate was
significantly higher (Plescia 1987). Furthermore, there is a high degree of saturation, that is, multiple
overlapping of the craters. This indicates that the surfaces of both satellites are ancient, possible dating
to their formation (Strom 1987; Zahnle et al. 2003). On the contrary, the surfaces of Miranda, Ariel, and
Titania present complex geological structures and a much smaller density and size of craters. This is an
indicator of intensive melting of the surfaces at some point during their history, erasing the first popula-
tion of larger craters and reshaping the primordial surface (Smith et al. 1986; Thomas 1988; Avramchuk
et al. 2007). Miranda presents the largest amount of geological features, where the most distinguished
are the three large resurfaced regions, known as “coronae”, surrounded by heavily cratered regions (Ples-
cia 1988; Beddingfield and Cartwright 2020). Measurements of the fault system within these features
revealed that a heat flux of 31 − 112 mW m−2 is required to resurface these regions (Beddingfield et al.
2015). Ariel’s and Titania’s surfaces display similar geological features, with large cratered regions,
overlapped by long rifts 1 and ridges 2. For Ariel, depending on the surface composition, heat fluxes
ranging between 1 − 98 mW m−2 are necessary to create such structures (Peterson et al. 2015; Bedding-
field et al. 2022). The low image resolution of the surface of Titania do not allow resolving the tectonic
structures. Thus, estimates of the heat flux have not yet been performed (Prockter et al. 2010).

Analysing the crater densities, sizes, and depths allow us to estimate the ages of the features on the
surfaces of the satellites. However, the cratering rates of the Solar system are still under debate, posing
high uncertainties on these estimations (Zahnle et al. 2003; Kirchoff et al. 2022). Umbriel and Oberon
present the oldest surfaces and are possibly primordial. The surface of Miranda is believed to be the
youngest between the regular moons of the Uranian system, with studies pointing to regions with only
0.1-1 Gyr and the other with 2-3.5 Gyr. The crater density on Ariel and the rift system suggests that
some features have ∼ 1 Gyr. As for Titania, Zahnle et al. (2003) indicate that some features are 2 Gyr
old, while Kirchoff et al. (2022) states that resurfacing occurred just after their formation.

Gravitational interactions depend on the distance between two masses by a factor of 1/r2. Therefore,
taking into account the volume of two bodies, the gravitational force will be different throughout the
volume. If the bodies are not fully stiff, the masses will deform under the differential field. Furthermore,
if we consider that the relative position of the infinitesimal masses of both bodies are constantly changing,
e.g., if a satellite’s orbital period is different from the rotational period of the planet, the gravitational
field on which both masses lay is constantly changing, and the internal structures will be constantly

1Rifts are longitudinal faults along the surface. They are created by opposing forces acting on a region of the tectonic plane,
which divide the surface.

2Ridges are elevations on the surface, created by upward forces from the melted interior. It is common to find rifts along
these structures.
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Figure 1.2: Top left: Image from James Web Space Telescope from Uranus and the six largest Uranian
satellites (Credits: NASA, ESA, CSA, STScI, with image processing by Joseph DePasquale (STScI)).
Closest images of the five largest satellites of Uranus, taken by Voyager 2: top centre: Miranda; top right:
Ariel; bottom left: Umbriel; bottom centre: Titania; bottom right: Oberon (Credits: NASA).

rearranging. This process leads to friction within the internal layers of the bodies, and, consequently,
energy dissipation through heat. This process is known as tidal friction, and over large periods of time
can produce a significant impact on the dynamical and geological evolution of the bodies.

Radiogenic heating and primordial heat from the formation cannot solely explain the geological
features observed in Miranda, Ariel, and Titania (Peale 1988; Castillo-Rogez et al. 2023). Therefore,
tidal friction provides the best explanation to the energy dissipation. It could explain the fact that Miranda
and Ariel, the closest moons to the planet, present the youngest surfaces, respectively, and Umbriel and
Oberon, which are further from Uranus, have older surfaces. Though, with the current configuration of
the system, tidal dissipation cannot easily explain why Titania, which lays between Umbriel and Oberon,
also has a younger surface than its neighbours.

Thus, an intricate evolution of the system should have occurred in the past, and some dynamical
process, such as resonance capture (see Chap. 2), could explain a prolonged dissipation of energy of
Titania that did not take place in Umbriel and Oberon (Peale 1988).

1.4 Orbits of the Uranian system

The orbits of the five largest moons of Uranus pose many queries. Their proximity with the host body
and the short orbital periods make them a very compact system, similar to many exoplanetary systems
(Zhu et al. 2018) such as Trappist-1 (Barstow and Irwin 2016; Grimm et al. 2018), Kepler-11 (Lissauer
et al. 2011), TOI-178 (Leleu et al. 2021) or TOI-1136 (Dai et al. 2023). As can be seen in Fig.1.3, the
ratio between the mass of Uranus and the satellites is comparable to the ratio between the mass of the
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Satellite Miranda Ariel Umbriel Titania Oberon
Mass (×1010 M⊙) 0.323997 6.291561 6.412118 17.096471 15.468953

Radius (km) 235.8 578.9 584.7 788.4 761.2
Period (day) 1.413480 2.520381 4.144176 8.705883 13.463254

a (R0) 5.080715 7.470167 10.406589 17.069604 22.827536
e (×10−3) 1.35 1.22 3.94 1.23 1.40

I (◦) 4.4072 0.0167 0.0796 0.1129 0.1478
J2 6.10 × 10−3 1.39 × 10−3 6.13 × 10−4 1.13 × 10−4 1.48 × 10−5

Table 1.2: Physical and orbital mean parameters of the five largest Uranian satellites. The masses, orbital
periods, semi-major axis (a), eccentricities (e), and inclinations (I) are from Jacobson (2014), the radius
from Thomas (1988), and the second order gravity field (J2) from Chen et al. (2014).

host star and their planets. The same applies for the ratio between the orbital period of the innermost
orbiting body and the remaining satellites. This places the Uranian system as a perfect laboratory to
study a large set of multi-planetary compact systems.

Tides enable exchanges between the satellite’s orbital angular momentum and the rotational angular
momentum of the planet. If the satellite’s orbital period is higher than the planet’s rotational period, the
satellite moves away from the planet, while the planet’s rotation rate slows down. If the satellite’s orbital
period is lower than the planet’s rotational period, the reverse situation occurs. From Tables 1.1 and 1.2,
we can state that all the Uranian satellites are drifting away from Uranus, and a migration motion of
the satellites is undergoing, driven by energy dissipation within the planet due to tidal friction, mainly
between the moons and Uranus.

Tides are also very effective on damping the eccentricities, with a strong tendency to circularize orbits
over short periods of time. Despite small when compared with other bodies of the Solar System, the
eccentricities of the Uranian satellites are surprisingly large when tidal friction is taken into account (e.g.
Squyres et al. 1985), indicating that some dynamical process must have excited the system’s eccentricities
in a not very distant past. The inclinations of the regular moons of Uranus are also intriguing. The regular
satellites have very small, close to zero inclinations, except for Miranda, which has a value around 4.4◦

(Table 1.2). If the moons were formed by one of the processes discussed in Sect. 1.2, the inclination
of Miranda should have been smaller, like the remaining moons in the system. Thus, Miranda’s orbit
must have undergone through some process of excitation, leading to the present value (e.g. Tittemore
and Wisdom 1989, 1990; Ćuk et al. 2020).

Due to the proximity of the satellites to the planet, the migration rate is differential (Goldreich 1965).
The strength of the tidal forces decreases with distance, and so the migration rate is likely higher for the
innermost moons. As the inner satellites closes to the outer ones, simple numerical commensurabilities
between their orbital periods can be encountered, called mean motion resonances (MMRs). The present
orbits of the satellites are quasi-periodic, and the mutual perturbations cancel in the long-term. However,
if a MMR is reached, the perturbations no longer cancel and mutual gravitational interactions between
the bodies are enhanced, leading to the excitation of the eccentricities and the inclinations, as well as a
change in their migration rates (e.g. Murray and Dermott 1999). At present, there are no resonant pairs
in the Uranian system. Yet, considering the tidal induced drift on each individual moon, it is possible
to conclude that the satellites of Uranus may have crossed in the past several MMRs (Peale 1988).
During the evolution of the orbits, only Miranda, Ariel, and Umbriel can cross low order resonances,
as can be seen in Fig. 1.4, where the latest one was the 5/3 MMR between Ariel and Umbriel. The
effects of MMR resonances in the evolution of the Uranian satellite system were already studied in the
late 1980s by Tittemore and Wisdom, in a series of three papers encompassing the four most recent
low-order MMR possibly encountered, with a two-body analytical secular model (that only considers
long-term effects on the system). They found that, disregarding the effects of the inclination during the
5/3 Ariel-Umbriel MMR passage, in other words, assuming that both satellites orbit on the equatorial
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Figure 1.3: Comparison between the masses (top) and orbital periods (bottom) between the Uranian
satellites, and the exoplanetary system Kepler-11, TRAPPIST-1, K2-138, HD 23472, TOI-1136 and
TOI-178 . m0 is the mass of the central massive body, mk is the mass of the satellite or exoplanet, and
Td is the orbital period of the body subbed as d. Starting from the letter b, the satellites/exoplanets are
ordered in alphabetical order by the distance to the central body (subbed as a).

plane of Uranus, chaotic motion can increase the eccentricities to values 2 ∼ 3 times higher than the
values before the resonance encounter (Tittemore and Wisdom 1988). Currently, we do not observe
any commensurability within Ariel and Umbriel. Thus, the satellites must have escaped the MMR.
Tittemore and Wisdom (1988) results point that this is only possible if, at the resonance encounter, the
eccentricities of the satellites are much higher than the current ones. This would require some previous
mechanism to increase the eccentricities, which the authors could not explain. In addition, the increase
of the eccentricities is most likely not sufficient to melt the surface of Ariel. The impact of MMR passage
is much more striking for the 3/1 Miranda-Umbriel MMR. Assuming the circular approximation, that is,
considering both eccentricities null,Tittemore and Wisdom (1989) have shown that Miranda can escape
from the resonance with a high orbital inclination, providing a convincing explanation for the currently
observed 4.4◦ value. The 5/3 Miranda-Ariel MMR, could also have increased this value, not being
however as important as the 3/1 MMR (Tittemore and Wisdom 1990).

When analysing more distant MMR with a more complete analytical model that studies the effect of
eccentricity and inclination simultaneously, Tittemore and Wisdom (1990) concluded that, if the system
had encountered the 2/1 MMR, it would be most likely trapped on it until the present days. This is an
important result, since it imposes a threshold to the maximum tidal migration rate of the satellites.

In a recent work, Ćuk et al. (2020) revisited the passage through the 5/3 MMR using a N-body
symplectic numerical integrator, which includes the five main satellites, non-planar orbits, and spin evo-
lution. They started their simulations with the current eccentricities and adopted nearly zero inclination
for all satellites (< 0.1◦), and confirmed that low initial eccentricities translate into capture in resonance,
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Figure 1.4: Mean motion ratio evolution between Miranda, Ariel, and Umbriel, assuming tidal induced
migration without MMR capture.

which can nevertheless be broken after some time due to some chaotic excitation of the eccentrici-
ties. Furthermore, they suggested that the high inclination of Miranda can be explained not with the
3/1 Miranda-Ariel MMR, as proposed by Tittemore and Wisdom (1989), but as a consequence of the
more recent 5/3 Ariel-Umbriel MMR. This is a surprising result, since Miranda is not involved in the
5/3 MMR. However, the simulations also show that during the resonance passage, the inclination of all
satellites are severely affected. At the time of the resonance break, the satellites present relatively high
inclinations, with Ariel and Umbriel escaping resonance with inclinations of ∼ 0.1◦. To decrease the
inclinations to the currently observed values, the authors resort to a series of secular resonances among
the moon’s secular modes. These secular resonances transfer eccentricity and inclination from the orbits
of Ariel, Titania, and Oberon to that of Umbriel. Although Ćuk et al. (2020) took a purely numerical
approach with a more robust method, the authors fail to reproduce the current orbital architecture.

1.5 Objectives and manuscript outline

Tittemore and Wisdom (1988, 1989) and Ćuk et al. (2020) present contradictory conclusions. Neither
of these studies present a final result capable of explaining the full dynamical history of the Uranian
system. Despite using a more complete model, Ćuk et al. (2020) did not explore the system analytically,
not providing physical explanation for the dynamical evolution during the resonance crossing. On the
other hand, Tittemore and Wisdom (1988), using the planar approximation, did not fully capture the
richness of the dynamics of Uranian moons. Besides, more than three decades passed, and the current
computational capabilities far exceed what the authors had at their disposal at the time. Therefore, in this
work we pursue the Tittemore and Wisdom (1988, 1989, 1990) methodology, and engage in a complete
study of the dynamical evolution of the Uranian system.

We begin in Chapter 2 by describing the N-body problem with tides and spin, similar to Ćuk et al.
(2020). Using this model, we analyse the evolution of the Uranian satellites shortly after the dissipation
of the accretion disk, 4.5 Gyr ago. Applying the N-body problem, we have undergone in a series of nu-
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merical simulations and described the dynamical events that could have shaped the orbital architecture of
the satellites. In Chapter 3, we introduce a conservative secular two-satellite model with low eccentrici-
ties and inclinations using complex Cartesian coordinates. Next, in Chapter 4, we added dissipative tidal
effects to the conservative model, and investigated the morphology of the passage through the 5/3 MMR
between Ariel and Umbriel in the coplanar approximation and in the circular approximation. In Chapter
5, we performed massive numerical simulations to estimate the individual effects of eccentricity and the
inclination for the outcome of the passage through the resonance. Afterwards, the same methodology
was used to ascertain the passage with both inclination and eccentricity simultaneously. Finally, we used
the insights gained to simulate the five regular satellites with the N-body model.





Chapter 2

N-body problem

The classic N-body problem consists of some initial configuration of N bodies, represented as point-
mass particles, under the action of Newton’s law of gravitation. By taking into account extended bodies,
a wide range of physical effects can be added to the model, such as their spin and oblateness, as well
as tidal effects. However, the N-body problem it is not integrable and numerical methods are generally
used.

In this chapter, we begin by describing the N-body problem in the approximation of point-mass
particles (Sect. 2.1). Then, the contribution from rotation of the central mass (Sect. 2.2) and deformations
from mutual gravitational interactions are developed (Sect. 2.3). Finally, in Sect. 2.4, we use a numerical
integrator to study different stages of the dynamical evolution of the Uranus’ satellites and constrain some
properties of the system.

2.1 Point-mass particles

Consider a system with N+1 bodies, with masses mk, where m0 ≫ mk,0. The Hamiltonian of the system
is given by (e.g. Meyer and Hall 1992)

H =

N∑
k=0

P2
k

2mk
−

N∑
k=0

N∑
j>k

Gm jmk

|Rk − R j|
, (2.1)

where G is the gravitational constant, Rk the position vector of mk relatively to an inertial frame centred
at O (see Fig.2.1) and the linear momentum Pk = mkṘk is the conjugated momenta of Rk. The first term
ofH is the total orbital kinetic energy and the second term is the gravitational potential energy.

Figure 2.1: Schematic representation of a three-body system, with a massive central body, m0, and two
smaller masses, m1 and m2. The capital letters represent the position vector of each mass in an inertial
reference frame, centred at O. The lower case letters represent the position vectors of each mass with
respect to the centre of mass of m0, with r1 < r2.
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We now introduce a new set of canonical coordinates. We let (Laskar and Robutel 1993)

p0 = PCM =

N∑
k=0

Pk and pk = Pk (k , 0) , (2.2)

where p0 is the total linear momentum of the system. Using a type 2 generating function (S2):

S2 = P0 · R0 +

N∑
k=1

Pk · Rk =

p0 −

N∑
k=1

pk

 · R0 +

N∑
k=1

pk · Rk , (2.3)

the canonical conjugates of p0 and pk are obtained by r0 = ∂S2/∂p0 and rk = ∂S2/∂pk, yielding to

p0 , r0 = R0 , (2.4)

pk , rk = R0 − Rk . (2.5)

We note that ṖCM = 0, thus, p0 = constant. For simplicity, we can adopt p0 = 0. Substituting the new
set of canonical coordinates into the Hamiltonian (2.1), we get

H =

N∑
k=1

 p2
k

2βk
−
βkµk

rk

 + N∑
k=1

N∑
j>k

(
p j · pk

m0
−
Gm jmk

|rk − r j|

)
, (2.6)

where µk = G(m0 + mk), βk =
m0mk

m0+mk
is the reduced mass, and rk = |rk|.

The equations of motion are simply obtained using the Hamiltonian formalism by

ṙk =
∂H

∂pk
and ṗk = −

∂H

∂rk
, (2.7)

yielding to

ṙk =
pk

βk
+

N∑
j,k

p j

m0
, (2.8)

and
ṗk = −βkµk

rk

r3
k

−
∑
j,k

Gm jmk
rk − r j

|rk − r j|
3 . (2.9)

2.2 Permanent quadrupole moment

The mass of a real body is not constrained to a single adimensional point, but is distributed over some
volume,V0. We thus now consider the gravitational potential energy of an extended body with mass m0,
acting on an external mass m, from any distance from its centre of mass.

The potential energy at an arbitrary position R outside m0 is given by

U(R) = −
∫
V0

Gm
|R − R′|

dm′ , (2.10)

where m is an arbitrary mass at R and R′ is the position vector relatively to the origin of the referential
(O) of the mass element dm′ (Fig.2.2), with m0 =

∫
dm′.

It is convenient to express the potential energy in a referential fixed in the centre of mass of m0,
located at R0. We let r = R − R0 and r′ = R′ − R0. Then the denominator of Eq. (2.10) becomes

1
|R − R′|

=
1

|r − r′|
=

1
√

r2 + r′ 2 − 2 r · r′
. (2.11)
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Figure 2.2: Scheme of the position vectors of an arbitrary mass m on the vicinity of an extended body m0
with volumeV0. The capital letters are the position vectors on an inertial reference frame, centred at O.
The lower case vectors are the position vectors on the reference frame of the centre of mass (CM) of m0.

Let θ be the angle between the vectors r′ and r, and consider that r′ ≪ r. Expanding Eq. (2.11) in Taylor
series up to (r′/r)3, yields to (quadrupolar approximation)

1
r

1 + (
r′

r

)2

−
r′

r
cos θ

−1

=
1
r

1 + r′

r
cos θ +

(
3
2

cos2 θ −
1
2

) (
r′

r

)2 + O (
r′

r

)3

. (2.12)

Substituting the Eq. (2.12) on (2.10), we obtain a more convenient expression for the potential energy

U(r) = −
Gm

r

(∫
dm′ −

1
r

∫
r′ cos θ dm′ +

1
2r2

∫
r′ 2 dm′ −

3
2r2

∫
r′ 2 cos2 θ dm′

)
+ O

(
r′

r

)3

. (2.13)

Let us analyse each term of the equation individually. The first integral is simply the total mass,∫
dm′ = m0. Since we set the centre of mass of m0 as the origin of the referential, rCM = 0, the second

integral becomes ∫
r′ cos θ dm′ =

1
r

∫
r′ · r dm′ = m0

rCM · r
r
= 0 . (2.14)

To compute the remaining terms of Eq. (2.13), we can introduce the principal moments of inertia,A, B,
and C, defined as

A =

∫
(y2 + z2) dm′ , B =

∫
(z2 + x2) dm′ and C =

∫
(x2 + y2) dm′ , (2.15)

with r′ = x ex + y ey + z ez, where (ex, ey, ez) are the axes of symmetry of m0 (see Fig. 2.3), and ez is the
axis of rotation. We can replace the principal moments of inertia in the third term of Eq. (2.13), leading
to ∫

r′ 2 dm′ =
∫

(x2 + y2 + z2) dm′ =
A + B + C

2
. (2.16)

Analogously, the fourth term of the potential energy equation can be written in terms of the principal
moments of inertia as∫

r′ 2 cos2 θ dm′ =
1
r2

∫
(r′ · r)2dm′

=
1
r2

(
−A + B + C

2
r2 − (B −A)(r · ey)2 − (C −A)(r · ez)2

)
.

(2.17)
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Figure 2.3: Rotational deformation of a body rotating around the ez axis. Adapted from Murray and
Dermott (1999).

Thus, the potential of an extended body to the quadrupolar order (Eq. (2.13)) can then be written as

U(r) = −
Gm0m

r
−
Gm
2r3

(B −A)
1 − 3

(r · ey)2

r2

 + (C −A)
(
1 − 3

(r · ez)2

r2

) + O (
r′

r

)3

. (2.18)

A body rotating around the ez axis undergoes more intense centrifugal forces in the equatorial region
than in the poles. This induces a flattening of the body, where the polar radius decreases, while the equa-
torial radius increases evenly (see Fig.2.3). Therefore, the rotational flattening maintains the symmetry
between ex and ey. Within this regime, from Eq. (2.15) we can conclude thatA ≈ B, and Eq. (2.18) takes
the simpler form

U(r) ≈ −
Gm0m

r
−
Gm(C −A)

2r3

(
1 − 3

(r · ez)2

r2

)
. (2.19)

The difference between the principal moments of inertia (C −A) gives us a measure for the rotational
flattening of the body. This quantity can be related to the second order gravity field coefficient,

J2 =
C −A

mR2 . (2.20)

It depends on the angular velocity, ω, the radius, R, and the susceptibility of the body to deform.
Substituting the principal moments of inertia by Eq. (2.20), the potential energy can be finally rewrit-

ten as

U(r) ≈ −
Gm0m

r
−
Gm0mR2

0

2r3 J20

1 − 3
(r · ω0)2

r2ω2
0

 . (2.21)

The first term of Eq. (2.21) corresponds to the potential energy of a point-like mass body (Eq. (2.1)).
The second term is the potential energy due to the rotation of a rigid body (Ucent). The rotational kinetic
energy is given by (e.g. Goldstein et al. 2002)

Trot =
1
2
ω0 · L0 , (2.22)

where L0 = C0 ω0 is the rotational angular momentum of m0 and ω0 = ω0 ez is the angular velocity
vector.
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The additional Hamiltonian contribution of the rotational deformation is then the sum of the rotation
potential energy and the rotational kinetic energy of m0, that is,Hrot = Ucent+Trot. Using the Hamiltonian
formulation, from Eqs. (2.21) and (2.22) we can obtain the variation of linear momentum of m,

ṗ =
∂H

∂r
= −3Gm0m R2

0 J20

[
2

r · ez

r5 ez −

(
1
r5 + 5

(r · ez)2

r7

)
r
]
. (2.23)

The variation of the angular momentum, that is, the torque (Γ), is obtained by

L̇orb = Γorb = R0 × Ṗ0 + R × Ṗ . (2.24)

However, the total linear momentum is conserved. This means that Ṗ0 = −Ṗ, and Eq. (2.24) can be
written as

Γorb = r × ṗ , (2.25)

leading to (Eq. (2.23)),
Γorb = −6Gm0m R2

0 J20

r · ez

r5
(r × ez) . (2.26)

Since the total angular momentum is conserved, that is, L̇orb + L̇rot = 0, the rotational angular
momentum variation is simply obtained by Γrot = −Γorb, that is,

L̇rot = Γrot = 6Gm0m R2
0 J20

r · ez

r5
(r × ez) . (2.27)

2.3 Tidal deformation

In the previous section, we considered the effect of the rotational deformation of a body. Here, we
consider another kind of perturbation to the gravitational potential energy due to the presence of an
external body, known as tidal effects. Tides arise from differential and inelastic deformations of an
extended body owing to the gravitational effect of a perturbing mass. The resulting distortion gives rise
to a tidal bulge, which modifies the gravitational potential of the extended body (see Fig. 2.5).

Let us consider the configuration of Fig. 2.4, where m1 is orbiting m0. The gravitational potential
raised by m1 at an arbitrary point r′ of the extended body m0 in the frame of the centre of mass is

V(r′, r1) = − G
m1

|r1 − r′|
= G

m1

r1

1 − (
r′

r1

)
cos θ +

(
r′

r1

)2−
1
2

= − G
m1

r1

∞∑
l=0

(
r′

r1

)l

Pl(cos θ) ,

(2.28)

where Pl(cos θ) are the Legendre polynomials. We have (e.g. Goldstein et al. 2002),

P0(x) = 1 , P1(x) = x , P2(x) =
3
2

x2 −
1
2
. (2.29)

The first term (l = 0) corresponds to the potential at the centre of mass of m0 (Eq. (2.1)). Since we de-
scribe the problem in the frame of the centre of mass, the second term (l = 1), by Eq. (2.14), disappears
from the Hamiltonian. The third term, with the second-degree Legendre polynomial (Eq. (2.29)), corre-
sponds to the influence of the external body differential gravitational potential on m0. Assuming r1 ≫ r′,
the differential gravitational potential (Eq. (2.28)) can be approximated only by the second order of the
Legendre polynomial (quadrupolar approximation),

V(r′, r1) = −
Gm1

2r2
1 r′

(
r′

r1

)2 (
3r1 · r′ − 2r1 r′

)
+ O

(
r′

r1

)3

. (2.30)
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Figure 2.4: Scheme of the position vectors of a perturber, m1, on the vicinity of m0.

So far, we have only taken into account the influence of m1 on m0. However, the self-gravity of m0
and its composition induces an opposition to the differential deformation. The response of the internal
mass distribution of a body to a gravitational disturbance can be expressed in terms of Love numbers
(e.g. Kellermann et al. 2018). At the surface of m0, i.e., when r′ = R0, the tidal potential then becomes
(Mignard 1979)

V(R0, r1) = −
Gm1 k20

2r5
1

(
3(R0 · r1)2 − R2

0 r2
1

)
, (2.31)

where k20 is the second Love number of m0. The tidal potential generated by the deformed body at a
generic point r from its centre of mass can be obtained through the Laplace equation

∇2Vt(r) = 0 . (2.32)

The boundary conditions of the equation are the potential at the surface and the potential at very distant
points. At the surface, the tidal potential is given by Eq. (2.31), while at infinity the tidal potential simply
vanishes, that is, Vt(|r| → ∞) = 0. Applying these boundary conditions to the solution of the Laplace
equation (Eq. (2.32)), we obtain a unique solution of the tidal potential of m0 at a distance r from the
centre of mass

Vt(r, r1) = −
Gm1k20R5

0

2r5
1 r5

(
3(r · r1)2 − r2 r2

1

)
. (2.33)

The response of the extended body to an external potential, although very fast, is not instantaneous.
In general, the perturbing body m1 is moving with respect to m0, which rotates with an angular velocity
of ω0 (see Fig. 2.5). Therefore, we have to impose a correction to r1. Let us consider that m0 takes a
time τ0 to respond to the perturbing potential. Then, the corrected r′1(t) is r′1(t) = r1(t − τ0). Taking the
weak friction model (e.g. Singer 1968; Alexander 1973), which assumes a constant and small τ, we can
assume the linear approximation (e.g. Mignard 1979), that is,

r′1 ≈ r1 + τ0(ω0 × r1 − ṙ1) . (2.34)

Substituting r′1 in Eq. (2.33), and retaining only the first order terms in τ0, we get for the tidal potential

Vt(r, r1) = −
Gm1 k20R5

0

2 r5
1 r5

(
3(r · r1)2 − r2 r2

1

)
−

3Gm1 k20 R5
0

r5
1 r5

τ0

(
(r · r1) [r1 · (ω0 × r) + r · ṙ1] −

r1 · ṙ1

2r2
1

[
5(r · r1)2 − r2 r2

1

] )
.

(2.35)

For a body with mass m at r interacting with the tidal potential, we compute the tidal potential energy
simply as Ut(r, r1) = mVt(r, r1). Using Eq. (2.7), the variation of linear momentum of the interacting
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body with mass m with respect to m0 is given by

ṗ(r, r1) = −
Gm m1 k20R5

0

2 r5
1 r5

(
6(r · r1) − 15

(r · r1

r

)2
+ 3 r2

1

)
r

−
3Gm m1 k20R5

0

r5
1 r7

τ0

(
− 5(r · r1)

[
r1 · ω0 × r + r · ṙ1

]
+ 5

r1 · ṙ1

2 r2
1

[
5(r · r1)2 − r2 r2

1

] )
r

−
3Gm m1 k20R5

0

r5
1 r5

τ0

([
r1 · ω0 × r + r · ṙ1

]
r1 + (r · r1) [r1 × ω0 + ṙ1]

−
r1 · ṙ1

r2
1

[
5(r · r1)r1 − r2

1 r
] )
.

(2.36)

When the interacting body is the same as the perturbing body, we can replace r = r1 and m = m1, and
obtain the variation of linear momentum of m1,

ṗ1 =
3Gm2

1k20R5
0

r8
1

r1 −
3Gm2

1k20R5
0

r8
1

τ0

2r1 · ṙ1

r2
1

r1 + r1 × ω0 + ṙ1

 . (2.37)

The variation of orbital angular momentum of m0 can be obtained using Eq. (2.25),

Γorb = −
3Gm2

1k20R5
0

r8
1

τ0
(
(r1 · ω0)r1 − r2

1ω0 + r1 × ṙ1
)
. (2.38)

The variation of rotational angular momentum is given using the same arguments used in Eq. (2.27), that
is, L̇orb + L̇rot = 0→ Γrot = −Γorb, resulting in

Γrot =
3Gm2

1k20R5
0

r8
1

τ0
(
(r1 · ω0)r1 − r2

1ω0 + r1 × ṙ1
)
. (2.39)

2.3.1 Specific dissipation factor

Tidal forces dissipate energy due to inelastic deformations inside the extended body. To measure the
strength of the tidal dissipation, we introduce the specific dissipation factor, Q, which is a measure of the
fraction of energy dissipated over one tidal cycle. It can be calculated using

Q =
2πE0

∆E
, (2.40)

where ∆E is the energy dissipated over one cycle and E0 is the peak energy stored over one cycle (Murray
and Dermott 1999). The lower is Q, the greater is the energy dissipated by tides.

Due to the periodic nature of the tidal effects, the response is often compared to a forced harmonic
oscillator, which can be described by

ẍ = −ω2
0x −

1
τ

ẋ +
F
m

cos (ωt) , (2.41)

where x is the position of the tidal bulge, ω0 is the natural frequency of the oscillator, τ is the damping
timescale, F/m is the amplitude of the external force and ω the frequency of the external force. Using
the trial function x = A cos (ωt − δ) in Eq. (2.41) we get (Murray and Dermott 1999)

A =
F
m

[
(ω2

0 − ω
2)2 +

(
ω

τ

)2
]−1/2

and sin δ =
ω

τ

[
(ω2

0 − ω
2)2 +

(
ω

τ

)2
]−1/2

. (2.42)

This comparison allow us to calculate both energies present on Eq. (2.40). The energy dissipated over
one cycle (∆E) is equivalent to the work done by the drag force, that is,

∆E =
∫ 2π

ω

0
−

m
τ

ẋdx = −
m
τ

∫ 2π
ω

0
ẍxdt = −

A2mπω
τ

, (2.43)
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Figure 2.5: Phase shift of the tidal lag. The dashed lines of m0 correspond to the volume shape of the
body without a gravitational interaction. The solid line correspond to tidally elongated shape due to
perturbation of m1. The primed quantities represent the position of m1 at the time m0 reaches maximum
elongation.

while the energy stored during the cycle (E0) is the work done by the restoring force, i.e., the elastic
force on our comparison, described as

E0 =

∫ A

0
−mω2

0xdx = −
1
2

mω2
0A2 . (2.44)

If ω0 ≫ ω, the system is not close to any resonance and, from Eq. (2.42), we conclude that

Q =
1

sin δ
, (2.45)

where δ is the phase lag between the position of the perturber at the time of the interaction and the
position of the perturber at the moment of maximum tidal elongation (Fig. 2.5). The specific dissipation
function is then related to the phase shift between the perturbing potential and the maximum deformation
of the body. This means that if there is no displacement between the perturbing potential and the tidal
bulge, there is no tidal energy dissipation.

2.3.2 Tidal evolution equations

Tidal effects can modify the long-term evolution of the orbit and spin. It is thus important to understand
the consequences of these effects. Consider the system composed by m0 and m1 (Fig. 2.4). The total
angular momentum of the system (assuming zero inclinations and zero obliquities), is given by (e.g.
Murray and Dermott 1999),

L = L · ez = C0ω0 +
m1m0

m1 + m0
a2

1n1 , (2.46)

where ω0 and C0 are the angular velocity and moment of inertia of m0, respectively, and a1 and n1 are
the semi-major axis and mean motion (Eq. (A.22)) of m1. Since L is conserved (L̇ = 0),

C0ω̇0 = −
m1m0

2(m1 + m0)
n1a1ȧ1 . (2.47)

We note that, C0ω̇0 = Γrot ·ez. Assuming circular orbits, we have that r1 = a1, which yields to (Eq. (2.39))

ω̇0 = −
3Gm2

1

C0a1

(
R0

a1

)5

(ω0 − n1) k20τ0 . (2.48)

Due to the conservation of L (Eq. (2.47)), we also have that

ȧ1 = −
2(m1 + m0)
m1m0n1a1

C0ω̇0 = 6
m1

m0

(
R0

a1

)5

(ω0 − n1) k20τ0 n1a1 . (2.49)
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The total energy, considering circular orbits, is given by the rotational energy of m0 plus the orbital
energy of m1,

E =
C0ω

2
0

2
− G

m1m0

2a1
. (2.50)

The variation of the energy is then given by

Ė = C0ω0ω̇0 +
m1m0

2(m1 + m0)
n2

1a1ȧ1 . (2.51)

Replacing Eqs. (2.48) and (2.49) in Eq. (2.51) leads to

Ė = −
3Gm1

a1

(
R0

a1

)5

(ω0 − n1)2 k20τ0 < 0 . (2.52)

That is, for ω0 , n1, the energy of the system always decreases due to the tidal dissipation.
The results obtained in this section show that tidal forces are responsible for the migration of the

orbits. At the same time, due to the conservation of the total angular momentum, the rotation rate of the
extended body also varies. In other words, the system transfers angular momentum from the spin of m0
to the orbit of m1. The direction of the migration is determined by the sign of the difference between
the rotation rate of m0 and the mean motion of m1. If the mean motion is smaller than the rotation rate
(ω0 > n1), the system evolves with an outward movement of m1, while the rotation rate decreases. In the
opposite situation, where the mean motion is higher than the rotation rate (ω0 < n1), m1 migrates inwards,
while the rotation rate increases. This transfer of angular momentum occurs until the synchronous state
is reached, where ω0 = n1, and the dissipation of energy becomes null (Eq. (2.52)).

In a more realistic situation, the rotation rate of m1 changes as well. In a similar way, performing the
calculations for m1, the variation of the spin rate is (Eq. (2.48))

ω̇1 = −
3Gm2

0

C1a1

(
R1

a1

)5

(ω1 − n1) k21τ1 . (2.53)

Thus, if a system has sufficient time, tidal evolution changes the rotation rates and the mean motion
until synchronization. This is, for instance, the case of the Moon, where the spin rate of the moon is
synchronous with its own mean motion. The same is believed to occur for the five largest moons of
Uranus. Indeed, the passage of Voyager 2 was too fast, so not enough data was collected to give a
definite conclusion on the spin states of the moons. However, since the system most likely formed with
Uranus or shortly after, the synchronous state is therefore often assumed (Smith et al. 1986).

2.4 Numerical applications

We now numerically integrate the set of N-body Eqs. (2.8), (2.9), (2.27), (2.37), and (2.39) to simulate the
evolution of the Uranian system. For that purpose, we use the numerical code spins (Correia 2018). We
take into account the spin of Uranus and the orbits of the main five satellites: Miranda, Ariel, Umbriel,
Titania, and Oberon. In some simulations, we also consider the presence of the Sun (as an additional
“satellite”).

2.4.1 The present system

Jacobson (2014) provides the best precise estimation to date of the position and velocity vectors of the
satellite’s orbits, expressed on the Earth’s equatorial frame (Table 2.1). From these values, we computed
the corresponding elliptical elements (a, e, I,M,ω,Ω) (Appendix A), expressed in the Uranus equatorial
frame (Table 2.2), as follows.
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Satellite Position (km) (X,Y,Z) Velocity (km.s−1) (Ẋ, Ẏ , Ż)
Miranda −127430.9607930668 −0.422514450329333

23792.64617013941 −1.271890082631948
−3464.554580724168 6.552338419694388

Ariel −185785.2177189803 −0.384730129923274
42477.81018746200 −1.393752472818678
−2109.273462727150 5.325004225204424

Umbriel −176566.9475784755 −3.350588413391897
89016.12833946147 −0.153568184837806
−3.350588413391897 3.273855499527411

Titania −221240.1941919138 −3.049048602775958
145452.9878060127 0.138409610142017
−346697.1461249496 1.991437563896877

Oberon −155108.4287158760 −2.962407899779837
181606.6634411168 0.385864135361727
−532879.3651011410 0.993694238058708

Table 2.1: Instantaneous position and velocity vectors at 1 August 1985 on the Earth equatorial frame of
the five main satellites of Uranus (Jacobson 2014).

Departing from the position vector R = (X,Y,Z) and the velocity vector Ṙ = (Ẋ, Ẏ , Ż), we can
compute the corresponding elliptical elements by first calculating the specific energy,

E =
Ṙ2

2
−
µ

R
, (2.54)

which allows us to compute the semi-major axis , a,

a = −
µ

2E
. (2.55)

The eccentricity, e, inclination, I, and longitude of the ascending node, Ω, can be obtained using the
specific angular momentum vector, h = (hx, hy, hz) (Eq. (A.4)), by

e =

√
1 −

h2

a µ
, (2.56)

I = arccos
(
hz

h

)
, and (2.57)

Ω = arctan

(
−

hx

hy

)
. (2.58)

We then compute the true anomaly, ν, using

ν = arctan


√

a(1 − e2)
µ

R · Ṙ
a(1 − e2) − R

 , (2.59)

which yields the eccentric anomaly, E∗,

E∗ = 2arctan

√1 − e
1 + e

tan
(
ν

2

) , (2.60)
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Figure 2.6: Scheme of the spherical trigonometric relation between Earth’s and Uranus’s equatorial
frame, and a satellite orbit frame, and their respective angles. For further details, see Smart and Green
(1977).

and the argument of the pericentre, ω,

ω = arctan

(
Z

(X cosΩ + Y sinΩ) sin I

)
− ν . (2.61)

Finally, the mean anomaly, M, is obtained from Kepler’s equation (Kepler 1609)

M = E∗ − e sin (E∗) . (2.62)

These elliptical elements are also given in the Earth equatorial frame, but we want to express them
in the Uranian equatorial reference frame. We start from the Uranus’ pole orientation angles at 1 Au-
gust 1985, α = 77.31003302401596◦ and δ = 15.172593631449473◦, obtained from the Appendix
B of Jacobson (2014). Then, we calculate the obliquity and the longitude of the Uranus’ equator,
ϵ = 74.82740636855053◦ and ψ = 167.31003302401598◦, respectively, by solving (see Fig. 2.6)

cos ϵ = sin δ (2.63)

and
cosψ = −

cos δ sinα
sin ϵ

. (2.64)

Finally, the elliptical angles expressed in the Uranian equatorial reference frame are obtained by
solving (see also Fig. 2.6)

cos I = cos ϵ cos I′ + sin ϵ sin I′ cos (Ω′ − ψ) , (2.65)

cos(ω′ −ω) =
cos ϵ − cos I′ cos I

sin I′ sin I
, and (2.66)

cosΩ = cosΩ′ cos(ω′ −ω) − sin(Ω′ − ψ) sin(ω′ −ω) cos I′ , (2.67)

yielding the elliptical elements presented in Table 2.2.

2.4.2 Secular modes

As the Uranian satellites orbit the central planet, mutual gravitational interactions between them lead
to small oscillations in the eccentricities and inclinations over broad periods of time, known as secular
variations. Through semi-analytical simplified models, it is possible to estimate the oscillation frequency
associated to the eccentricity and inclination for each satellite, known as the secular modes (e.g. Dermott
and Nicholson 1986). These frequencies were estimated by Laskar (1986); Laskar and Jacobson (1987)
using an analytical model, called GUST (General Uranian satellite theory). Later, Malhotra et al. (1989)
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Satellite a (×10−3) (au) e (×10−3) I (◦)
Miranda 0.867 829 806 096 133 50 1.514 384 267 990 232 1 4.409 022 644 189 928 3

Ariel 1.275 948 662 323 624 6 1.805 443 506 830 879 5 0.016 291 682 978 667 430
Umbriel 1.777 460 690 547 404 9 4.191 314 031 279 796 3 0.063 682 350 178 256 561
Titania 2.915 953 942 255 327 8 2.691 429 331 439 770 1 0.121 328 358 382 614 83
Oberon 3.899 495 282 248 682 5 1.021 848 548 198 646 7 0.158 417 224 439 574 40

M (◦) ω (◦) Ω (◦)
Miranda 41.942 408 881 076 503 284.305 780 158 769 44 32.632 119 491 654 876

Ariel 33.218 135 927 489 953 63.302 552 850 506 800 262.704 359 532 296 85
Umbriel 13.588 624 937 743 543 55.213 489 878 652 354 247.494 695 744 495 12
Titania 90.650 344 474 884 832 220.392 997 600 391 08 353.260 064 668 545 00
Oberon 178.449 591 026 891 74 58.951 246 213 571 956 51.710 122 333 743 321

Table 2.2: Instantaneous elliptical elements of the five main Uranian satellites on the Uranus’ equatorial
frame.

revisited the results obtained with GUST, incorporating the effects of near first order mean motion reso-
nances, as a part of the LONGSTOP program (Carpino et al. 1987; Milani et al. 1987). Since then, the
estimations of the satellite masses were updated, as well as the orbital parameters (Jacobson 2014), thus,
a recalculation of these frequencies is required.

Departing from the orbital solution from Table 2.2 and the physical properties from Tables 1.1 and
1.2, we integrated the system composed by Uranus, Miranda, Ariel, Umbriel, Titania, and Oberon over
100 000 years, disregarding the tidal perturbations. Through the software TRIP (Gastineau and Laskar
2011), we performed a frequency analysis of the orbits (Laskar 1990, 1993) to determine the fundamental
frequencies of the eccentricities (gk) and inclinations (sk) of the major Uranian satellites. The results are
presented in Table 2.3, alongside the results obtained by Laskar and Jacobson (1987) and Malhotra et al.
(1989). The subscripts are ordered in ascending order of the semi-axis of the satellites.

The good agreement between the values in Table 2.3, allow us to conclude that the secular modes are
not very sensitive to the improvements of the physical parameters of the system performed by Jacobson
(2014).

GUST LONGSTOP N-body integrator GUST LONGSTOP N-body integrator
(deg/yr) (deg/yr) (deg/yr) (deg/yr) (deg/yr) (deg/yr)

g1 20.082 20.117 20.0417 s1 −20.309 −20.340 −20.2408
g2 6.217 6.186 6.2271 s2 −6.287 −6.239 −6.2363
g3 2.865 2.848 2.8506 s3 −2.836 −2.790 −2.7674
g4 2.079 2.086 2.1652 s4 −1.843 −1.839 −1.8309
g5 0.386 0.410 0.4063 s5 −0.259 −0.269 −0.2677

Table 2.3: Secular modes of Miranda (g1, s1), Ariel (g2, s2), Umbriel (g3, s3), Titania (g4, s4), and Oberon
(g5, s5).

2.4.3 Tidal evolution

Tittemore and Wisdom (1988, 1989, 1990) performed a series of studies encompassing the most impor-
tant low order commensurabilities of the Uranian system. One of their observations states that if the
system has crossed the 2/1 MMR between Ariel and Umbriel, escape is not likely and the system should
probably remain trapped until the present days. Since Ariel and Umbriel are not presently trapped in this
MMR, the system most likely never crossed it. Furthermore, their results show that the 3/1 Miranda-
Umbriel MMR could be the mechanism responsible to excite the inclination of Miranda to the current
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∼ 4.4◦ value. Using these statements, the authors constrained the Q-factor (Sect. 2.3.1) to be between
11 000 and 39 000. With this interval, passage through the 2/1 Ariel-Umbriel MMR cannot occur, while
forcing the passage through the 3/1 Miranda-Umbriel MMR. However, since then, the physical proper-
ties and the orbital parameters estimations of the Uranian moons were updated (Jacobson 2014; Chen
et al. 2014). In addition, tidal models were also improved, and more realistic models are now available.
Thus, using the same statements as Tittemore and Wisdom (1990), we re-estimated the minimum and
maximum values of Q.

Neglecting the effect of the eccentricity, inclination, and obliquity, the tidal evolution of the satellites
is given by Eq. (2.49), which can be generalized as

ȧk

ak
≈

6Gm2
kR5

0

βka8
k

k20τ0

(
ω0

nk
− 1

)
. (2.68)

We numerically integrated Eq. (2.68) backwards, until 4.5 Gyr ago, neglecting any resonant interactions.
To account for the variation of the angular velocity of Uranus’s spin-axis, we calculated the current total
angular momentum of the system, Σ = 9.446 070×10−10 M⊙ au2 yr−1 (see Sect. 3.3). Taking the rotation
period of the satellites synchronous with the orbital period (ωk/nk = 1), the rotation rate of Uranus, ω0,
is constantly adjusted so that Σ remains always constant.

Integrating Eq. (2.68) using a wide range of reasonable τ0 values, we note that for τ0 > 0.855 s, the
system crosses the 2/1 Ariel-Umbriel MMR (Fig. 2.7a), thus imposing an upper limit on τ0. On the other
hand, if τ0 < 0.429 s, the system does not pass through the 3/1 Miranda-Umbriel MMR (Fig. 2.7b). In
light of these results, we took τ0 = 0.617 s as a suitable mean value to accommodate our assumptions
(Fig. 1.4) and constrained 0.429 s < τ0 < 0.855 s. This places the latest commensurability, the 5/3
Ariel-Umbriel MMR, ∼ 640 Myr in the past.

The phase lag δ (Eq. (2.45)) can be related to the tidal time delay, τ, leading to (e.g. Correia and
Valente 2022),

Q0 =
1

2ω0τ0
and Qk =

1
nkτk

, (2.69)

where Q0 and Qk are the specific dissipation factors for the central planet and for the satellites, re-
spectively. Note that there is a correction factor of 1/2 between the two values, that arises from the
semi-diurnal tides at m0. From these expressions, the limits on τ0 are translated as 5800 < Q0 < 11500
(see Fig. 2.7), and the adopted mean τ0 as Q0 = 8000. With k20 = 0.104 (Table 1.1) and τ0 = 0.617 s,

3/1

5/3

2/1

-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

Miranda-Umbriel
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Ariel-Umbriel

time (Gyr)

(a) Q = 5800
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Ariel-Umbriel

time (Gyr)

(b) Q = 11500

Figure 2.7: Evolution of the ratio between the mean motions of Miranda and Umbriel (green), Miranda
and Ariel (red), and Ariel and Umbriel (blue) for Q = 5800 (left) and Q = 11500 (right). The dashed
lines mark the positions of the lowest second order nominal resonances.
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this leads to

k20τ0 = 0.064s ⇔
k20

Q0
= 1.3 × 10−5 . (2.70)

The corresponding semi-major axes of the regular satellite’s 4.5 Gyr ago are then

a1 =4.9032 R0 ,

a2 =6.7260 R0 ,

a3 =10.2992 R0 ,

a4 =17.0475 R0 ,

a5 =22.8202 R0 .

(2.71)

As for Uranus, the specific dissipation factor for the satellites is poorly constrained and precise
measurements are not currently available. Thus, we start by setting QS = 100, a common choice for
small bodies (Murray and Dermott 1999). Using the Love numbers obtained by Chen et al. (2014), we
computed k2kτk and k2k/QS , presented in Table 2.4. We also present the same amounts for QS = 500,
which will be used later in this work.

QS = 100 QS = 500
Satellite k2k τk (s) k2kτk (s) k2k/QS τk (s) k2kτk (s) k2k/QS

Miranda 8.84 × 10−4 194.3 0.171 8.84 × 10−6 38.9 0.034 1.77 × 10−6

Ariel 1.02 × 10−2 346.5 3.534 1.02 × 10−4 69.3 0.707 2.04 × 10−5

Umbriel 7.35 × 10−3 569.6 4.187 7.35 × 10−5 113.9 0.8374 1.47 × 10−5

Titania 1.99 × 10−2 1196.9 23.819 1.99 × 10−4 239.4 4.764 3.98 × 10−5

Oberon 1.68 × 10−2 1851.0 31.096 1.99 × 10−4 370.2 6.219 3.36 × 10−5

Table 2.4: Second Love number k2k and tidal lag τk of the main Uranian satellites. The second Love
numbers are from Chen et al. (2014) and τk were calculated through Eq. (2.69).

2.4.4 Free and forced orbital elements

Without tidal friction, the secular oscillations of the eccentricity and inclination are conservative and
constrained within a given range, known as free oscillations. As tidal friction damps the eccentricities
and the inclinations of the satellites (Sect. 2.3.2), the system evolves into an equilibrium state uniquily
dominated by its secular modes (Table 2.3), known as forced oscillations (e.g. Murray and Dermott
1999).

To estimate the average free orbital elements, we disabled tidal effects and integrate the current
configuration of the Uranian system (Table 2.2) over 50 000 years. Furthermore, in addition to the five
regular satellites, we performed one integration which also included the Sun and another without it.
The results are presented in Table 2.5. We note that there are no significant differences between the
results with and without the gravitational effect from the Sun, despite the high obliquity of Uranus. Such
happens because Uranus is one of the outermost planets of the Solar System, and perturbations from the
Sun are three orders of magnitude smaller than those from the satellites. These results confirm that the
Uranian system can thus be analysed as an isolated system within our Solar System.

To evaluate the forced orbital elements, we integrated the system departing from the same configura-
tion as for the free orbital elements. However, now we consider the tidal dissipation within the satellites,
that is, τk , 0. We do not need to include the tidal dissipation within Uranus (τ0 = 0), such that the semi-
major axes do not increase (Eq. (2.68)). To ensure that the eccentricities converge to the equilibrium
value, we need to integrate the system over a very long time span, which is computationally expensive.
One solution to decrease the computation time, is to enhance the tidal strength by increasing τk and
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Without the Sun
Satellite emin emean emax Imin (◦) Imean (◦) Imax (◦)
Miranda 8.62 × 10−4 1.31 × 10−3 1.76 × 10−3 4.404 4.409 4.414

Ariel 5.77 × 10−5 1.29 × 10−3 2.25 × 10−3 7.92 × 10−4 2.51 × 10−2 5.90 × 10−2

Umbriel 2.20 × 10−3 3.67 × 10−3 5.06 × 10−3 2.41 × 10−3 7.55 × 10−2 1.36 × 10−1

Titania 2.43 × 10−5 1.64 × 10−3 3.48 × 10−3 2.48 × 10−2 1.22 × 10−1 1.93 × 10−1

Oberon 3.64 × 10−5 1.75 × 10−3 3.46 × 10−3 6.62 × 10−2 1.39 × 10−1 1.96 × 10−1

With the Sun
Miranda 8.44 × 10−4 1.31 × 10−3 1.76 × 10−3 4.373 4.409 4.445

Ariel 5.27 × 10−5 1.29 × 10−3 2.31 × 10−3 8.70 × 10−5 2.72 × 10−2 8.50 × 10−2

Umbriel 2.21 × 10−3 3.53 × 10−3 5.18 × 10−3 5.09 × 10−4 7.35 × 10−2 1.67 × 10−1

Titania 1.95 × 10−5 1.64 × 10−3 3.50 × 10−3 1.58 × 10−2 1.32 × 10−1 2.59 × 10−1

Oberon 2.96 × 10−5 1.82 × 10−3 3.44 × 10−3 4.55 × 10−2 1.72 × 10−1 2.74 × 10−1

Table 2.5: Free orbital elements of the regular Uranus satellites with and without the influence of the
Sun.

rescale the evolution time by the same factor. This is possible because the tidal equations of motion are
proportional to τk (Eqs. (2.27) and (2.37)).

We start by comparing the results from different tidal multiplication factors, ×10, ×100, and ×1000.
In Fig. 2.8, we superimposed the eccentricity and the inclination of Miranda of an integration over 20
Myrs, 2 Myrs and 0.2 Myrs, where, for each simulation, we re-scaled the time axis by the respective
multiplication factor. It is noticeable that the general evolution of the orbital elements is insensitive to
the enhancement of the tidal strength. Therefore, we can speed up at least 1000 times the computation
time without compromising the results. We note that, contrarily to the eccentricity, tides are not very
efficient to damp the inclinations. After 200 Myr of evolution, the inclinations of all the satellites remain
virtually unchanged (Fig. 2.8). It is not feasible to determine the forced inclinations through this method,
and we then only focus on the eccentricities.

With a multiplication factor of ×100, we integrated the system over 2 Gyr departing from the current
orbital configuration (Table 2.2). As can be seen in Fig. 2.9, the eccentricities of Miranda, Ariel, and
Umbriel are quickly damped in less than 500 Myr to values at least three times smaller than the initial
ones (Table 2.6). The eccentricity damping timescale of Ariel, ∼ 50 Myr, is significantly smaller than
that for Miranda, ∼ 150 Myr, and Umbriel ∼ 330 Myr, indicating that tidal effects are stronger for Ariel.
For Titania and Oberon, the decrease in eccentricity over 2 Gyr is small when compared with the other
innermost moons. We also note that the forced eccentricities of Miranda, Ariel, and Umbriel (Table 2.6)
are one order of magnitude smaller than the currently observed values (Table 1.2). As a consequence,
we conclude that some mechanism must have excited the eccentricities of the three innermost Uranian
satellites in a not so distant past.

Satellite ⟨e f ⟩ τecc

Miranda 2.2 × 10−4 150 Myr
Ariel 1.6 × 10−4 50 Myr

Umbriel 6.0 × 10−4 330 Myr
Titania < 1.3 × 10−3 > 2000 Myr
Oberon < 1.4 × 10−3 > 2000 Myr

Table 2.6: Forced eccentricities for the major Uranian satellites. The values were numerically obtained
by integrating the current system for 2 Gyr and disregarding tidal effects from Uranus (Fig. 2.9).
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Figure 2.8: Comparison of the evolution of the eccentricity (left) and inclination (right) of Miranda be-
tween three distinct time lags τ′k. In black, τ′k = τk×10, in red, τ′k = τk×100, and in green τ′k = τk × 1000,
where τk are the values from Table 2.4 for QS = 100.

2.4.5 Spin-orbit resonances

Tidal effects drive the obliquity of the satellites to zero (Hut 1980), unless an additional perturbation
maintains a non-zero obliquity, such as a spin-orbit resonance (e.g. Fabrycky et al. 2007; Correia 2009).
Such a resonance is established if the spin precession period of the satellite and its orbital nodal preces-
sion are nearly equal (Ward and Hamilton 2004; Levrard et al. 2007), that is

αk cos ϵk ≈ |sk| , (2.72)

where ϵk is the angle between the spin vector and the vector normal to the orbital plane, know as obliq-
uity, sk the inclination secular mode (Sect. 2.4.2) and αk is the spin-axis precession constant, given by
(Millholland and Laughlin 2019)

αk =
1
2

m0

mk

(
Rk

ak

)3 k f

C′k
ωk , (2.73)

where C′k is the normalized moment of inertia (Jeffreys 1976),

C′ =
C

mR2 =
2
3

1 − 2
5

√
5

k f + 1
− 1

 , (2.74)

and k f is the potential Love number. The potential Love number of the satellites can be related with the
second order gravity field by (e.g. Correia and Rodrı́guez 2013)

J2 =
4
3

k f
ω2R3

Gm
. (2.75)

Using the values from Table 1.2, we obtain

C′1 = 0.3270081029518477 ,

C′2 = 0.3204444545209566 ,

C′3 = 0.3422604068886157 ,

C′4 = 0.3259712648677198 ,

C′5 = 0.3096258001542771 .

Adopting the present semi-major axes of the satellites (Table 1.2) and taking their rotation rates syn-
chronous with the orbital mean motion (Eq. (2.73)), we obtain the αk values listed in Table 2.7.
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Satellite Analytical (deg/yr) Numerical (deg/yr)
Miranda 4164.7182 4078.5164

Ariel 542.6365 540.3787
Umbriel 136.4137 136.1541
Titania 12.5519 12.5696
Oberon 3.3546 3.1287

Table 2.7: Comparison between the computed analytical spin-axis precession constant (α) and the nu-
merically estimated.

Using the same method performed to estimate the secular modes (Sect. 2.4.2), the αk can also be
obtained using a frequency analysis of the precession of the spin-axis of each satellite. From the results
of the integration of the Uranian system obtained in Sect. 2.4.2, we used TRIP to analyse the precession
frequency of the satellites. The numerical results are also shown in Table 2.7.

Ćuk et al. (2020) suggest a commensurability between the spin-axis precession of Oberon, α5, and
the inclination normal mode of Umbriel, s3, as a mechanism to decrease the relatively high inclinations
resulting from their numerical simulations. However, by comparing the obtained spin-axis precession
constants (Table 2.7) with the inclination secular modes from Table 2.3, it is possible to verify that, at
present, there are no commensurabilities between the precession of the spins and the nodes of the main
satellites if we consider that the obliquities of the satellites are very small.

The commensurability suggested by Ćuk et al. (2020) can nevertheless be achieved if the obliquity of
Oberon is ∼ 28◦ (Eq. (2.72)). Although the spins of the satellites are expected to be tidally evolved, non-
zero obliquities can be maintained by an equilibrium state, called Cassini state (see Ward and Hamilton
2004, for a detailed description). The forced obliquity from a Cassini state can be estimated by (Levrard
et al. 2007)

ϵk =

√
1

2αk
|sk |
− 1

. (2.76)

Eq. (2.76) leads to ϵ1 = 87◦, ϵ2 = 86◦, ϵ3 = 84◦, ϵ4 = 74◦, and ϵ5 = 78◦. Replacing the forced obliquities
into Eq. (2.72), we obtain that α1 cos ϵ1 = 213.5 deg/yr, α2 cos ϵ2 = 37.7 deg/yr, α3 cos ϵ3 = 14.2 deg/yr,
α4 cos ϵ4 = 3.46 deg/yr, and α5 cos ϵ5 = 0.6 deg/yr. Comparing these values with the inclination normal
modes from Table 2.3, we observe that there are no possible spin-orbit resonances within the Uranian
satellites at present, even if we consider Cassini-state obliquities. Therefore, the mechanism proposed
by Ćuk et al. (2020) does not seem suitable to decrease the inclinations of the satellites after the 5/3
Ariel-Umbriel MMR.

2.4.6 Long-term evolution

Using the tentative initial semi-major axes obtained with Eq. (2.71), we performed a series of numerical
integrations with the five satellites using the full set of N-body equations of motion with tides (Eqs.
(2.8), (2.9), (2.27), (2.37), and (2.39)). As initial conditions, we chose very low initial eccentricities
(ek = 2 × 10−3) and the current mean inclinations, except for Miranda, which was lowered to I1 = 0.1◦,
as this is the expected outcome of a satellite system formed in a circumplanetary disc (e.g. Prentice 1986;
Canup and Ward 2006; Szulágyi et al. 2018; Salmon and Canup 2022). The spin-axis rotation periods of
the satellites were adjusted so that the satellites were synchronous with their respective orbital period. We
set Q0 = 8000, QS = 100, and the corresponding dissipation parameters from Table 2.4. Since we expect
that the system is chaotic (Tittemore and Wisdom 1988, 1989, 1990; Ćuk et al. 2020), we integrated five
sets of initial conditions, where, for each run, we changed the mean longitude, λk = ϖk + Ωk, of the
satellites to capture different evolution outcomes.

In Fig. 2.10, we display one representative example of the above mentioned simulations. Initially, all
the satellites drift outwards, while tidal friction quickly damps the initial eccentricities. As expected, for
the inclinations the tidal damping is much weaker, almost imperceptible. As the different migration rates
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change the relative distances between the satellites, several orbital commensurabilities induce dramatic
changes on the orbital parameters. The first event takes place at t ≈ −3.84 Gyrs, with a capture in
a first order three-body MMR involving Ariel, Umbriel, and Oberon, −2n2 + 4n3 − n5 ≈ 0. During
capture, the eccentricities of all satellites are excited. The migration rate of Ariel slows down, Umbriel’s
speeds up, and Oberon starts migrating inwards. This is a typical signature of a three-body MMR with
dissipation (e.g. Petit 2021). After 400 Myr of entrapment, the resonance is broken and the semi-major
axes start once again to migrate solely due to the tidal friction. At t ≈ −2.95 Gyr, Miranda and Ariel
reach the 5/3 MMR. Although the satellites were not trapped into the resonance, an increase in the
eccentricity of Miranda is observed, together with the inclination rising to a value three times larger
than the initial one. Then, a series of three-body MMR are again observed. Between t ≈ −2.57 Gyr
and t ≈ −2.49 Gyr there is another first order three-body commensurability between Ariel, Umbriel,
and Oberon, −3nA + 6nU − 2nO ≈ 0, which increases the eccentricity of Ariel, while not significantly
exciting the remaining moons. Following, at t ≈ −2.08 Gyr, Ariel, Umbriel, and Titania were captured
in the −4nA + 9nU − 4nT ≈ 0 MMR. After 150 Myr of entrapment, the moons escaped the resonance,
only to be later captured once more on a lower index1 three-body resonance, −2nA + 4nU − nT ≈ 0.
Both captures induced an inward migration of Titania, sped up the outward migration of Umbriel and
slowed down that of Ariel. However, the higher index commensurability did not excite the eccentricities
and the inclinations of the satellites. On the contrary, the lower index commensurability increased more
the eccentricities of Umbriel and Titania than the remaining commensurabilities. Interestingly, we note
that low index three-body resonances involving either Titania or Oberon excite the eccentricities of both
satellites, even if one of them is not involved. This behaviour was observed for the −2nA + 4nU − nO ≈ 0
and the −2nA + 4nU − nT ≈ 0 MMR. Later on, at t ≈ −0.94 Gyr, there was an increase of Ariel’s
inclination due to a brief 50 Myr capture in the two-body 7/4 MMR between Ariel and Umbriel. This
is a third order resonance, ergo, should not affect the system as much as a second or first order MMR.
Nevertheless, this capture suggests that such commensurabilities can also play an important role in the
evolution of the Uranian moons. Finally, Miranda and Umbriel reach the 3/1 MMR at t ≈ −0.4 Gyr.
Right from the moment of capture, a sharp increase of Miranda’s inclination up to 3◦ confirm Tittemore
and Wisdom (1989) result that this resonance could explain the current high inclination of Miranda.
Capture within the resonance occurred at the late stages of the 4.5 Gyr integration, and at the end of the
simulation, the system remained trapped. Furthermore, although the eccentricities of the five satellites
and the inclinations of Titania and Umbriel are compatible with the currently observed values (Table
1.2), the semi-major axes and the inclinations of the three innermost satellites are largely off setted.
After 4.5 Gyr of integration, there is a clear misalignment between the final orbits of the satellites, and
the currently observed values (Table 1.2), marked with a red dot. This is not a surprising outcome since
the initial semi-major axes were obtained considering evolution solely due to tidal effects, assuming non
interacting circular orbits in the equatorial plane (Eq. (2.71)). Therefore, this estimation does not take
into account the effects of multiple resonance crossings, resulting in the observed deviation between the
evolution of the semi-major axes and the asymptotic evolution (blue line).

Attempting to replicate the current architecture observed, we integrated the system once more, but
readjusting the initial semi-major axes, so that they agree with the current semi-major axes. This adjust-
ment modifies the initial mean motion ratios between the satellites. Thus, the resonant configurations ob-
served in the previous integrations, either occurred at different evolutionary stages or were not achieved,
and different orbital resonances shaped the outcome of the integration.

In Fig. 2.11, we provide an example of the evolution of a system for which we increased the initial
semi-major axes of Miranda and Ariel, and decreased the semi-major axis of Umbriel, relatively to the
values from Eq. (2.71), while keeping the same semi-major axes for Titania and Oberon. Once more,
we were not able to attain the current configuration of the satellites. A series of additional iterations
with different initial semi-major axis were conducted, where, at each iteration, the semi-major axes were
slightly changed accordingly to the results from the previous integrations. Throughout the different

1The index of a three-body resonance is the sum of the absolute values of the integers, that is, |k1| + |k2| + |k3|, where k1, k2,
and k3 are the integers associated to n1, n2, and n3, respectively (Petit 2021).
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iterations, capture in three-body MMR often divert the migration of the satellites from the expected
“path”. This clearly suggests that this type of resonances may have played an important role in the
dynamical history of Uranus.

Some initial conditions, for which the initial semi-major axes of Ariel and Umbriel were carefully
placed in such a way that the passage of both 3/1 Miranda-Umbriel and 5/3 Ariel-Umbriel MMRs is
observed, show an intricate evolution of Miranda’s inclination. In Fig. 2.12, we show one of the simula-
tions where both MMRs were crossed. First, capture in the 3/1 MMR excites the initially low inclination
of Miranda up to ∼ 5◦. This once more replicates the result obtained by Tittemore and Wisdom (1989),
and was observed in most simulations where the 3/1 MMR was crossed. Later, capture in the 5/3 MMR
between Ariel and Umbriel induces an additional large increase on Miranda’s inclinations, as reported by
Ćuk et al. (2020). After leaving the 3/1 MMR, the inclination is already at ∼ 10◦, two times the current
value. In addition, Ariel and Umbriel leave the resonance with considerably higher inclination values
than the presently observed, also verifying the results from Ćuk et al. (2020). Therefore, we confirm that
both MMRs are able to reproduce the high inclination of Miranda. However, an evolution path with long-
term capture in both commensurabilities does not seem likely, since it can over inflate the inclination of
Miranda. Since the 3/1 MMR between Miranda and Umbriel reproduce Miranda’s inclination without
perturbing the remaining inclination of the satellites, we conclude that this commensurability provides
a simpler explanation for this observation, without needing to resort to further mechanisms to damp the
inclinations of the remaining moons.
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2.4.7 Backwards evolution

We were not able to achieve the current architecture of the Uranian system (not even close) in none
of the trial initial configurations. The inward migration of the largest satellites Titania and Oberon,
together with the changes on the semi-major axes migration rates, pose many uncertainties on the exact
evolutionary path of the satellites, and tuning the initial conditions proved to be very difficult and time
expensive. A more suitable approach consists in dividing the integration interval into smaller time slices,
and then study each dynamical event individually.

Accordingly to Eq. (2.68) and choosing Q0 = 8000, the latest commensurability encountered was
the 5/3 MMR between Ariel and Umbriel, about 640 Myr ago (see also Fig.1.4). We extrapolated the
semi-major axes of the satellites just after the MMR passage, using the same assumptions previously
considered, leading to

a1 =5.0570 R0 ,

a2 =7.3910 R0 ,

a3 =10.3892 R0 ,

a4 =17.0644 R0 ,

a5 =22.8234 R0 .

(2.77)

The initial eccentricities were set to

e1 =7.0 × 10−3 ,

e2 =8.5 × 10−3 ,

e3 =1.1 × 10−2 ,

e4 =2.0 × 10−3 ,

e5 =2.0 × 10−3 ,

(2.78)

and the initial inclinations were set to the presently observed values (Table 1.2), except for Miranda’s
inclination, which was slightly increased to 4.41◦ to match the current inclination at the end of the
simulation. We then performed 20 simulations, where, for each run, we changed the mean longitude λk

of the satellites.
In Fig. 2.13, we display the evolution of the semi-major axes, eccentricities and inclinations, resulting

from the integration of one of these initial conditions. As expected, no two-body MMR was crossed.
Furthermore, no three-body resonant interactions were observed either, and the migration rates are in
excellent agreement with the asymptotical predictions (Fig. 2.13). The final eccentricity closely match
the currently observed eccentricities, and the inclinations are in perfect agreement with the currently
observed values. Therefore, we conclude that, after the passage through the 5/3 MMR between Ariel
and Umbriel, the evolution of the system is mostly peaceful and dominated by tidal friction induced on
Uranus by the satellites.

The next step consists in studying in detail the passage through the 5/3 MMR between Ariel and
Umbriel. When a resonance is crossed, we cannot perform a backwards integration, because we have a
stochastic evolution. As a result, we need to place the system slightly before the resonance encounter
and then integrate it forwards. We also need to explore a large range of initial conditions and the role
of the eccentricity and the inclination to the outcome of the resonance crossing. In order to do that, we
cannot rely on slow N-body numerical integrations, which are time expensive. Therefore, in the next
chapters, we develop a simplified two-satellite secular averaged model, that we use to quickly cover
a large spectrum of configurations of Uranus, Ariel, and Umbriel before the resonant encounter, that
otherwise would not be possible to attain. Later, using the results from the simplified model, we will
once more resort to the N-body problem (Sect. 5.4), but now in a more efficient way, exploring only the
more interesting results from the simplified model.



2.4. NUMERICAL APPLICATIONS 35

5.
05

5.
06

5.
07

5.
08

7.
39

7.
40

7.
41

7.
42

7.
43

7.
44

7.
45

7.
46

7.
47

10
.3

85

10
.3

90

10
.3

95

10
.4

00

10
.4

05

17
.0

60

17
.0

64

17
.0

68

17
.0

72

17
.0

76

22
.8

15

22
.8

20

22
.8

25

22
.8

30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

4.
37

4.
39

4.
41

4.
43

3.
9

4.
0

4.
1

4.
2

4.
3

4.
4

4.
5

0.
00

0.
05

0.
10

0.
15

0.
20

3.
9

4.
0

4.
1

4.
2

4.
3

4.
4

4.
5

0.
00

0.
05

0.
10

0.
15

0.
20

3.
9

4.
0

4.
1

4.
2

4.
3

4.
4

4.
5

0.
00

0.
05

0.
10

0.
15

0.
20

3.
9

4.
0

4.
1

4.
2

4.
3

4.
4

4.
5

0.
00

0.
05

0.
10

0.
15

0.
20

3.
9

4.
0

4.
1

4.
2

4.
3

4.
4

4.
5

a(R0)

M
ir

an
da

A
ri

el
U

m
br

ie
l

T
it

an
ia

O
be

ro
n

e(×100)
I(◦)

ti
m

e
(G

yr
)

ti
m

e
(G

yr
)

ti
m

e
(G

yr
)

ti
m

e
(G

yr
)

ti
m

e
(G

yr
)

Fi
gu

re
2.

13
:

E
vo

lu
tio

n
of

th
e

or
bi

ts
of

th
e

U
ra

ni
an

sa
te

lli
te

s
fr

om
64

0
M

yr
ag

o
to

th
e

pr
es

en
t.

T
he

bl
ue

lin
e

is
th

e
as

ym
pt

ot
ic

ev
ol

ut
io

n
of

th
e

se
m

i-
m

aj
or

ax
es

,o
bt

ai
ne

d
by

E
q.

(2
.6

8)
.

T
he

fir
st

ro
w

gi
ve

s
th

e
se

m
i-

m
aj

or
ax

es
of

th
e

fiv
e

sa
te

lli
te

s,
th

e
m

id
dl

e
ro

w
sh

ow
s

th
e

ec
ce

nt
ri

ci
tie

s,
an

d
th

e
bo

tto
m

on
e

gi
ve

s
th

e
in

cl
in

at
io

ns
.T

he
cu

rr
en

to
rb

ita
lm

ea
n

pr
op

er
tie

s
w

er
e

su
pe

ri
m

po
se

d
as

re
d

ci
rc

le
s.





Chapter 3

Secular conservative motion

The three-body problem is not integrable and the large number of degrees of freedom limit the analytical
analysis of the problem. For quasi-periodic motion, the mutual gravitational interactions between two
satellites in the system can be decomposed into infinity series of the fundamental frequencies of the prob-
lem (e.g. Murray and Dermott 1999). High frequency terms are relevant for the short-period variations
and osculating orbital elements. Yet, at long-term, these interactions average out and do not reflect the
general evolution of the system. By considering only the long period interactions within the system, the
secular perturbations, together with some other considerations, we are able to decrease the number of
degrees of freedom of the problem and use a simplified model to describe the long-term evolution. In
this chapter, we develop a general two-satellite secular model to study the passage through second order
MMR.

Let us consider two masses, m1 and m2, orbiting around a central more massive mass, m0, such that,
m1,m2 ≪ m0. Taking an arbitrary inertial frame, R0, R1, and R2 are the positions of m0, m1, and m2,
respectively (Fig. 2.1), whereas r1 = R1 − R0, r2 = R2 − R0 are the positions of the satellites relative
to m0, where rk = ||rk||, r1 < r2, and r1,2 = R2 − R1 is the relative position between m1 and m2. The
Hamiltonian of the system is then given by Eq. (2.1), which can be rewritten as

H =

 p2
1

2β1
−
µ1β1

r1

 +  p2
2

2β2
−
µ2β2

r2

 + (
p1 · p2

m0
−
Gm1m2

r1,2

)
. (3.1)

The first two terms correspond to the Keplerian orbits of m1 and m2, and can be expressed in elliptical
elements as

HK = HK1 +HK2 = −
β1µ1

2a1
−
β2µ2

2a2
. (3.2)

The last terms of Eq. (3.1) arise from the mutual interactions between m1 and m2, dubbed by perturbative
function.

3.1 Perturbative Hamiltonian

The perturbative component of the Hamiltonian (3.1) is given by

HP =
p1 · p2

m0
−
Gm1m2

r1,2
, (3.3)

where we name the first term as the indirect contribution (HI) and the second term as the direct contri-
bution (HD). Similarly to the Keplerian contributions, the direct and indirect terms can be expressed in
elliptical elements by expanding the relative position and the conjugated momenta.

We start by developing the direct termHD, given by:

HD = −
Gm1m2

r1,2
. (3.4)



38 CHAPTER 3. SECULAR CONSERVATIVE MOTION

Expanding 1/r1,2 in elliptical elements1 and truncating to the first order in the mass ratios, mk/m0, and
second order in the eccentricities, ek, and the inclinations, Ik (with respect to the equatorial plane of the
central body),HD is given by

HD =
∑
s=0

[
As cos[s(λ1 − λ2)]

+Bs cos[s(λ1 − λ2) +ϖ1 −ϖ2] +Cs cos[s(λ1 − λ2) + Ω1 −Ω2]

+Ds cos[(1 − s)λ1 + sλ2 −ϖ1] + Es cos[(1 − s)λ1 + sλ2 −ϖ2]

+Fs cos[(2 − s)λ1 + sλ2 − 2ϖ1] +Gs cos[(2 − s)λ1 + sλ2 − 2ϖ2]

+Is cos[(2 − s)λ1 + sλ2 −ϖ1 −ϖ2]

+Ls cos[(2 − s)λ1 + sλ2 − 2Ω1] + Ns cos[(2 − s)λ1 + sλ2 − 2Ω2]

+Ps cos[(2 − s)λ1 + sλ2 −Ω1 −Ω2]
]
,

(3.5)

with

As = −G
m1m2

a2

(
1
2

b(s)
1
2
+

1
8

(e2
1 + e2

2)
[
− 4s2 + 2αD + α2D2

]
b(s)

1
2

(α)

+
1
4

(I2
1 + I2

2)
(
−αb(s−1)

3
2

(α) − αb(s+1)
3
2

(α)
))
,

(3.6)

Bs = −G
m1m2

a2

1
4

e1e2
[
2 + 6s + 4s2 − 2αD − α2D2

]
b(s+1)

1
2

(α) , (3.7)

Cs = −G
m1m2

a2
I1I2αb(s+1)

3
2

(α) , (3.8)

Ds = −G
m1m2

a2

1
2

e1
[
− 2s − αD

]
b(s)

1
2

(α) , (3.9)

Es = −G
m1m2

a2

1
2

e2
[
− 1 + 2s + αD

]
b(s−1)

1
2

(α) , (3.10)

Fs = −G
m1m2

a2

1
8

e2
1

[
− 5 s + 4 s2 − 2αD + 4 sαD + α2D2

]
b(s)

1
2

(α) , (3.11)

Gs = −G
m1m2

a2

1
8

e2
2

[
2 − 7 s + 4 s2 − 2αD + 4 sαD + α2D2

]
b(s−2)

1
2

(α) , (3.12)

Is = −G
m1m2

a2

1
4

e1e2
[
− 2 + 6 s − 4 s2 + 2αD − 4 sαD − α2D2

]
b(s−1)

1
2

(α) , (3.13)

Ls = −G
m1m2

a2

1
2

I2
1αb(s−1)

3
2

(α) , (3.14)

Ns = −G
m1m2

a2

1
2

I2
2αb(s−1)

3
2

(α) , (3.15)

Ps = −G
m1m2

a2
I2 I1[−α]b(s−1)

3
2

(α) , (3.16)

where λk is the mean longitude, ϖk is the longitude of pericentre, Ωk is the longitude of ascending node
(see Appendix A), α = a1/a2, D = ∂/∂α, and b( j)

s are Laplace coefficients (e.g. Murray and Dermott
1999).

For the indirect term,
HI =

p1 · p2

m0
, (3.17)

the linear momenta can be expressed as (Laskar and Robutel 1995)

pk = βkṙk =
βknkak√

1 − e2
k

R3(Ωk)R1(Ik)R3(ωk)

 − sin νk

ek + cos νk

0

 , (3.18)

1We used the algebric manipulator Maxima (Maxima 2020) to perform these kind of calculations throughout this manuscript.
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where ωk is the argument of the pericentre and νk is the true anomaly (see Appendix A). The linear
momenta p1 and p2 are then replaced into Eq. (3.17) and also expanded to the second order in the eccen-
tricities and the inclinations, leading to

HI =
β1β2n1n2a1a2

8m0

(
(8 − 4e2

1 − 4e2
2 − 2I2

1 − 2I2
2) cos (λ1 − λ2)

+ 8e1 cos (2λ1 − λ2 −ϖ1) + 8e2 cos (λ1 − 2λ2 +ϖ2)

+ e2
1(9 cos (3λ1 − λ2 − 2ϖ1) − cos (λ1 + λ2 − 2ϖ1))

+ e2
2(9 cos (λ1 − 3λ2 + 2ϖ2) − cos (λ1 + λ2 − 2ϖ2))

+ 8e1e2 cos (2λ1 − 2λ2 −ϖ1 +ϖ2)

− 2I2
1 cos (λ1 + λ2 − 2Ω1) − 2I2

2 cos (λ1 + λ2 − 2Ω2)

+ 4I1I2 cos (λ1 + λ2 −Ω1 −Ω2) + 4I1I2 cos (λ1 − λ2 −Ω1 + Ω2)
)
.

(3.19)

3.2 Planet oblateness

In Sect. 2.2 we developed the potential energy arising from a rotationally deformed body, given by

U(rk) ≈ −
k20mkω

2
0R5

0

6r3
k

1 − 3
(rk · ω0)2

r2
kω

2
0

 . (3.20)

Thus, the total contribution of the rotational deformation from the host planet to the Hamiltonian (3.1)
can be written as

HO =

2∑
k=1

Gm0mkR2
0J20

r3
k

P2(r̂k · ω̂0) , (3.21)

where J20 is the second order gravity field of the central body (Eq. (2.20)) and r̂k ·ω̂0 = sin Ik sin (ωk + νk)
(Eq. (A.27)). Expanding νk and rk in orbital elements and truncating up to the second order in the eccen-
tricities and the inclinations (see Appendix A),HO can be written as

HO = −

2∑
k=1

Gm0mk

2ak
J20

(
R0

ak

)2 (
1 + 3ek cos (λk −ϖk) +

3
2

e2
k
(
1 + 3 cos (2λk − 2ϖk)

)
−

3
2

I2
k
(
1 − cos (2λk − 2Ωk)

))
.

(3.22)

We note that J20R2
0 ≫ J2k R

2
k (Tables 1.1 and 1.2), and so we neglected the contribution arising from the

rotational deformation of the satellites.
The Hamiltonian in elliptical elements to the first order in the mass ratios, mk/m0, second order in

the eccentricities and the inclinations, with respect to the equatorial plane of the central oblate body and
with rotation then finally writes as

H = HK +HO +HD +HI +HΘ , (3.23)

where

HΘ =

2∑
k=0

Θ2
k

2Ck
(3.24)

is the total rotational kinetic energy, Ck is the principal moment of inertia of mk (Eq. (2.15)) and

Θk = Ckωk , (3.25)
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which corresponds to the rotational angular momentum, where ωk = θ̇k is the angular velocity and θk

is the rotation angle (we assume zero obliquity for all bodies). In the conservative case, the rotational
kinetic energy is constant and could be dropped from the Hamiltonian. Nevertheless, when we include
tidal dissipation (Chap. 4), there are angular momentum exchanges between the spins and the orbits, and
this term cannot be neglected.

3.3 Action-angle resonant variables

Although very useful and practical to use with a simple geometrical interpretation, the elliptical elements
are not canonical. Therefore, they do not allow to use the advantages of the Hamiltonian formulation. For
this reason, we introduce a set of widely used canonical variables (Λk, λk,Σk,−φk,Φk,−Ωk), known as
Poincaré variables (e.g. Murray and Dermott 1999), related with the elliptical elements by the following
expressions:

Λk = βk
√
µkak , λk = Mk +ϖk , (3.26)

Σk =Λk

(
1 −

√
1 − e2

k

)
, −ϖk , (3.27)

Φk = (Λk − Σk) (1 − cos Ik) , −Ωk . (3.28)

Expanded up to second order in the eccentricities and the inclinations, the semi-major axes, the eccen-
tricities, and the inclinations can be expressed using Poincaré variables using Eqs. (3.26)-(3.28) as:

ak =
Λ2

k

β2
k µk

, (3.29)

ek ≈

√
2Σk

Λk
, (3.30)

Ik ≈

√
2Φk

Λk
. (3.31)

We also adopt the canonical Andoyer variables (Andoyer 1915, 1923) for the rotation (Θ, θ), previously
used in the definition of angular momentum of rotation (Eq. (3.25)).

Suppose that the system is near a mean-motion commensurability of the form (p + q)/p, that is,
(p + q)Ṁ2 − pṀ1 ≈ 0, where p and q are positive integers, and q is the resonance order. We may then
introduce the resonance angle of the (p + q)/p MMR:

σ =

(
1 +

p
q

)
λ2 −

p
q
λ1 . (3.32)

Substituting λ1 =
(
1 + q

p

)
λ2 −

q
pσ, we now introduce a new set of canonical coordinates, that we dubbed

resonant variables, which are obtained from the Poincaré canonical variables using a type 3 generating
function (S3), given by (Eqs. (3.26)-(3.28))

S3 = − [Λ1 λ1 + Λ2 λ2 − Σ1 ϖ1 − Σ2 ϖ2 − Φ1Ω1 − Φ2Ω2 + Θ0 θ0 + Θ1 θ1 + Θ2 θ2]

= −

[
−

q
p
Λ1 σ +

((
1 +

q
p

)
Λ1 + Λ2

)
λ2 − Σ1 ϖ1 − Σ2 ϖ2 − Φ1Ω1 − Φ2Ω2 + Θ0 θ0 + Θ1 θ1 + Θ2 θ2

]
.

(3.33)

The new canonical momenta are simply obtained by P = −∂S3/∂Q, where P = (Pσ,Γ,Σk,Φk,Θk) are
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the new canonical momenta and Q = (σ, λ2,−ϖk,−Ωk, θk) are the new canonical angles, yielding to

Pσ = −
q
p
Λ1 , σ , (3.34)

Γ =

(
1 +

q
p

)
Λ1 + Λ2 , λ2 , (3.35)

Σk , −ϖk ,

Φk , −Ωk ,

Θk , θk .

We can also take advantage of the conservation of the total angular momentum of the system Ltot, that is,
the sum of the orbital angular momentum of m1 and m2, with the sum of the rotational angular momenta
of all the bodies of the system. Projecting Ltot along the direction of ez, we have

Σ = Ltot · ez

= (Λ1 − Σ1 − Φ1) + (Λ2 − Σ2 − Φ2) + Θ0 + Θ1 + Θ2

= β1

√
µ1a1(1 − e2

1) cos I1 + β2

√
µ2a2(1 − e2

2) cos I2 + C0ω0 + C1ω1 + C2ω2 .

(3.36)

Using a type 4 generating function (S4), which depends on the new and the old canonical moments, we
can obtain a new set of canonical variables, where we replaced Λ1 = Σ−Λ2 + Σ1 + Σ2 +Φ1 +Φ2 −Θ0 −

Θ1 − Θ2, that is,

S4 = −
q
p
Λ1 σ + Γ λ2 − Σ1 ϖ1 − Σ2 ϖ2 − Φ1Ω1 − Φ2Ω2 + Θ0 θ0 + Θ1 θ1 + Θ2 θ2

=Σσ + Γ (λ2 − σ) + Σ1 (σ −ϖ1) + Σ2 (σ −ϖ2) + Φ1 (σ −Ω1) + Φ2 (σ −Ω2)

+ Θ0(θ0 − σ) + Θ1(θ1 − σ) + Θ2(θ2 − σ) .

(3.37)

The new resonant canonical coordinates are simply obtained by Q = ∂S 4/∂P , giving

Σ , σ =

(
1 +

p
q

)
λ2 −

p
q
λ1 , (3.38)

Γ , γ = λ2 − σ , (3.39)

Σ̃1 = Σ1 , σ1 = σ −ϖ1 , (3.40)

Σ̃2 = Σ2 , σ2 = σ −ϖ2 , (3.41)

Φ̃1 = Φ1 , φ1 = σ −Ω1 , (3.42)

Φ̃2 = Φ2 , φ2 = σ −Ω2 , (3.43)

Θ̃0 = Θ0 , ϑ0 = θ0 − σ , (3.44)

Θ̃1 = Θ1 , ϑ1 = θ1 − σ , (3.45)

Θ̃2 = Θ2 , ϑ2 = θ2 − σ , (3.46)

where the angles σ1, σ2, φ1, and φ2 are the resonance angles associated with e1, e2, I1, and I2, respec-
tively.

It is important to note that Λ1 and Λ2 are no longer actions of the resonant variables, but can be
obtained as

Λ1 = Γ1 −
p
q

(Σ1 + Σ2 + Φ1 + Φ2) , (3.47)

Λ2 = Γ2 +

(
1 +

p
q

)
(Σ1 + Σ2 + Φ1 + Φ2) , (3.48)

with
Γ1 =

p
q
Γ (1 − ∆) , (3.49)
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Γ2 = −
p
q
Γ
(
1 −

(
1 + q

p

)
∆
)
, (3.50)

∆ = (Σ − Θ) /Γ , (3.51)

and
Θ = Θ0 + Θ1 + Θ2 . (3.52)

In the approximation of small eccentricities and small inclinations, we have that Σk ≪ Λk and
Φk ≪ Λk. As a consequence, we also have that Σk ≪ Γk and Φk ≪ Γk (Eqs. (3.47) and (3.48)), which
allows us to obtain:

Λα1 ≈ Γ
α
1

[
1 − α

p
q
Σ1 + Σ2 + Φ1 + Φ2

Γ1

]
, (3.53)

Λα2 ≈ Γ
α
2

[
1 + α

(
1 +

p
q

)
Σ1 + Σ2 + Φ1 + Φ2

Γ2

]
, (3.54)

and

ek ≈

√
2Σk

Γk
, (3.55)

Ik ≈

√
2Φk

Γk
. (3.56)

Substituting the resonant angles σk and φk inHD (Eq. (3.5)), the direct part becomes

HD =
∑
s=0

[
As cos

(
s

q
p
γ

)
+ Bs cos

(
s

q
p
γ + σ2 − σ1

)
+Cs cos

(
s

q
p
γ + φ2 − φ1

)
+ Ds cos

((
1 + (1 − s)

q
p

)
γ + σ1

)
+ Es cos

((
1 + (1 − s)

q
p

)
γ + σ2

)
+ Fs cos

((
2 + (2 − s)

q
p

)
γ + 2σ1

)
+Gs cos

((
2 + (2 − s)

q
p

)
γ + 2σ2

)
+ Is cos

((
2 + (2 − s)

q
p

)
γ + σ1 + σ2

)
+ Ls cos

((
2 + (2 − s)

q
p

)
γ + 2φ1

)
+ Ns cos

((
2 + (2 − s)

q
p

)
γ + 2φ2

)
+ Ps cos

((
2 + (2 − s)

q
p

)
γ + φ1 + φ2

) ]
,

(3.57)

the indirect partHI (Eq. (3.19)) becomes

HI =
β1β2n1n2a1a2

8m0

[ (
8 − 4e2

1 − 4e2
2 − 2I2

1 − 2I2
2

)
cos

(
q
p
γ

)
+8e1 cos

(
γ

(
1 +

2q
p

)
+ σ1

)
+ 8e2 cos

(
γ

(
1 −

q
p

)
+ σ2

)
+e2

1

(
9 cos

(
γ

(
2 +

3q
p

)
+ 2σ1

)
− cos

(
γ

(
2 +

q
p

)
+ 2σ1

))
+e2

2

(
9 cos

(
γ

(
2 −

q
p

)
+ 2σ2

)
− cos

(
γ

(
2 +

q
p

)
+ 2σ2

))
+8e1e2 cos

(
γ

2q
p
+ σ1 − σ2

)
− 2I2

1 cos
(
γ

(
2 +

q
p

)
+ φ1

)
− 2I2

2 cos
(
γ

(
2 +

q
p

)
+ φ2

)
+4I1I2 cos

(
γ

q
p
+ φ1 − φ2

)
+ 4I1I2 cos

(
γ

(
2 +

q
p

)
+ φ1 + φ2

) ]
,

(3.58)
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and the oblateness partHO (Eq. (3.22)) becomes

HO = −
Gm0m1

2a1
J20

(
R0

a1

)2 (
1 + 3e1 cos

[(
1 +

q
p

)
γ + σ1

]
+

3
2

e2
1

(
1 + 3 cos

[
2
(
1 +

q
p

)
γ + 2σ1

])
−

3
2

I2
1

(
1 − cos

[
2
(
1 +

q
p

)
γ + 2φ1

]) )
−
Gm0m2

2a2
J20

(
R0

a2

)2 (
1 + 3e2 cos

[
γ + σ2

]
+

3
2

e2
2
(
1 + 3 cos 2

[
2γ + 2σ2

])
−

3
2

I2
2
(
1 − cos 2

[
2γ + 2φ2

]))
.

(3.59)

We note that none of the angles θk appear in the expression of the Hamiltonian, and so, ϑk do not
appear as well. Consequently, ϑk are cyclic coordinates in the conservative approximation, and the Θk

are constants of motion. According to the d’Alembert rule (conservation of the angular momentum), the
remaining angles must be combined as

cos
(
k1λ1 + k2λ2 + k3ϖ1 + k4ϖ2 + k5Ω1 − (k1 + k2 + k3 + k4 + k5)Ω2

)
, k j ∈ Z . (3.60)

where
∑

j

k j = 0. Using the resonance angles (Eqs. (3.38)-(3.43)) the relation becomes

cos
[ ((

1 +
2
p

)
k1 + k2

)
γ − k3σ1 − k4σ2 − k5φ1 + (k1 + k2 + k3 + k4 + k5)φ2

]
. (3.61)

Hence, the angle σ does not appear in the Hamiltonian, and, consequently, its conjugated action, Σ, is
another constant of motion, as expected.

3.4 Average

Near the commensurability, the resonance angles σk and φk vary much slower than γ, i.e., σ̇k ≪ γ̇ and
ϕ̇k ≪ γ̇. Therefore, we can construct the resonant secular normal form of the Hamiltonian (to the first
order in mk/m0) by averaging over γ:

H̃ = ⟨H⟩γ =
1

2pπ

∫ 2pπ

0
H dγ . (3.62)

The Keplerian terms, HK (Eq. (3.1)), do not have a dependency on γ, and remain unchanged by the
average. For the oblateness contribution, HO (Eq. (3.59)), all the terms with cosines are removed. For
HD (Eq. (3.57)), if s = 0, only the terms with coefficients A0 (Eq. (3.6)), B0 (Eq. (3.7)), and C0 (Eq. (3.8))
do not depend on γ and are not avereged out. The resulting terms are known as the secular terms, and,
as the Keplerian and oblateness contributions, they remain for any order MMR.

The lowest order MMRs that possibly recently occurred in the Uranian system are second order
commensurabilities (Fig. 1.4), that is, q = 2. Thus, from now on, our study will be restricted to this
particular case. Then, only when s = p + 2 the terms ofHD (Eq. (3.57)) associated to the coefficients F2
(Eq. (3.11)), G2 (Eq. (3.12)), I2 (Eq. (3.13)), L2 (Eq. (3.14)), N2 (Eq. (3.15)), and P2 (Eq. (3.16)) do not
vanish by averaging over γ. Furthermore, in the particular case where s = p+2 and p = 1, that is, for the
3/1 MMR, the term with cos

[
γ(2 − q

p ) + 2σ2
]

of the indirect Hamiltonian (Eq. (3.58)) does not depend
on γ and is preserved. However, note that this term is only valid for the but for 3/1 MMR, since, if p , 1,
this term also vanishes. We name these terms as the resonant terms for the second order MMR. All the
remaining terms are removed by averaging the Hamiltonian over γ.

The average Hamiltonian expressed with the resonant angles is then given by

H̃ = HK + H̃O + H̃S + H̃R + H̃I +HΘ , (3.63)
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whereHK (Eq. (3.2)) is the Keplerian part,

H̃O = −

2∑
k=1

Gm0mk

2ak
J20

(
R0

ak

)2 (
1 +

3
2

e2
k −

3
2

I2
k

)
(3.64)

is the contribution from the oblateness of the planet,

H̃S = −
Gm1m2

8a2

[
4b(0)

1
2

(α) +
(
e2

1 + e2
2

) (
2αD + α2D2

)
b(0)

1
2

(α)

+ 2e1e2 cos (σ2 − σ1)
(
2 − 2α − α2

)
b(1)

1
2

(α)

−
(
I2
1 + I2

2 − 2I1I2 cos (φ2 − φ1)
)
α b(1)

3
2

(α)
] (3.65)

is the secular part, and

H̃R = −
Gm1m2

8a2

[
e2

1

(
4p2 + 11p + 6 + (4p + 6)αDα2D2

)
b(p+2)

1
2

(α) cos (2σ1)

+e2
2

(
4p2 + 9p + 4 + (4p + 6)αD + α2D2

)
b(p)

1
2

(α) cos
(
2σ2

)
−2e1e2

(
4p2 + 10p + 6 + (4p + 6)αD + α2D2

)
b(p+1)

1
2

(α) cos
(
σ1 + σ2

)
+
(
I2
1 cos

(
2φ1

)
+ I2

2 cos
(
2φ2

)
− 2I1I2 cos

(
φ1 + φ2

))
αb(p+1)

3
2

(α)
]

(3.66)

and

H̃I =
9
8

√
µ1µ2 β1β2

m0 a5/2
1 a5/2

2

e2
2 cos (2σ∗2) (3.67)

are the contributions from the second order resonant terms and HΘ (Eq. (3.24)) is the total rotational
kinetic energy, where σ∗2 = σ2 only exists for p = 1.

Now, we replace ek and Ik by Eqs. (3.55) and (3.56) and ak by Eqs. (3.29), (3.47) and (3.48) (see
Appendix B) and expand to the first order in Σk/Γk and Φk/Γk, that is, to the second order in the ec-
centricities and the inclinations. We finally obtain the secular Hamiltonian expressed in the resonant
canonical coordinates (Eqs. (3.38) to (3.46))

H̃ = (K1 + S1)(Σ1 + Σ2 + Φ1 + Φ2) +K2(Σ1 + Σ2 + Φ1 + Φ2)2

+ (O1 + S2)Σ1 + (O2 + S3)Σ2 + S4
√
Σ1

√
Σ2 cos (σ1 − σ2)

+ (O3 + S5)Φ1 + (O4 + S6)Φ2 + S7
√
Φ1

√
Φ2 cos (φ1 − φ2)

+ R1Σ1 cos (2σ1) + R2Σ2 cos (2σ2) + R3
√
Σ1

√
Σ2 cos (σ1 + σ2)

+ R4Φ1 cos (2φ1) + R5Φ2 cos (2φ2) + R6
√
Φ1

√
Φ2 cos (φ1 + φ2) ,

(3.68)

where

K1 = −
p
q

µ2
1β

3
1

Γ3
1

+
p + q

q

µ2
2β

3
2

Γ3
2

, (3.69)

K2 = −
3
2

 p2

q2

µ2
1β

3
1

Γ4
1

+
(p + q)2

q2

µ2
2β

3
2

Γ4
2

 , (3.70)

O1 =
3
2

J20R2
0

−2p + q
q

µ4
1β

7
1

Γ7
1

+
2(p + q)

q

µ4
2β

7
2

Γ7
2

 , (3.71)

O2 =
3
2

J20R2
0

−2p
q

µ4
1β

7
1

Γ7
1

+
2p + q

q

µ4
2β

7
2

Γ7
2

 , (3.72)
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O3 =
3
2

J20R2
0

− (2p − q)
q

µ4
1β

7
1

Γ7
1

+
2(p + q)

q

µ4
2β

7
2

Γ7
2

 , (3.73)

O4 =
3
2

J20R2
0

−2p
q

µ4
1β

7
1

Γ7
1

+
2p + 3q

q

µ4
2β

7
2

Γ7
2

 , (3.74)

S1 =
Gµ2m1m2β

2
2

Γ3
2

µ2β
2
2

µ1β
2
1

 p + q
q
Γ2

1

Γ2
2

+
p
q
Γ1

Γ2

 D +
p + q

q

 b(0)
1
2

(α0) , (3.75)

S2 = −
Gµ2m1m2β

2
2

2Γ1Γ
2
2

[
α0D +

1
2
α2

0D2
]

b(0)
1
2

(α0) , (3.76)

S3 = −
Gµ2m1m2β

2
2

2Γ3
2

[
α0D +

1
2
α2

0D2
]

b(0)
1
2

(α0) , (3.77)

S4 = −
Gµ2m1m2β

2
2

2Γ2
2

√
Γ1Γ2

[
2 − 2α0D − α2

0D2
]

b(1)
1
2

(α0) , (3.78)

S5 =
Gµ2m1m2β

2
2

4Γ1Γ
2
2

α0b(1)
3
2

(α0) , (3.79)

S6 =
Gµ2m1m2β

2
2

4Γ3
2

α0b(1)
3
2

(α0) , (3.80)

S7 = −
Gµ2m1m2β

2
2

2Γ2
2

√
Γ1Γ2

α0b(1)
3
2

(α0) , (3.81)

R1 = −
Gµ2m1m2β

2
2

2Γ1Γ
2
2

8p2 + 11pq + 3q2

q2 +
4p + 3q

q
α0D +

α2
0

2
D2

 b(p+2)
1
2

(α0) , (3.82)

R2 = −
Gµ2m1m2β

2
2

2Γ3
2

8p2 + 9pq + 2q2

q2 +
4p + 3q

q
α0D +

α2
0

2
D2

 b(p)
1
2

(α0) + R∗2 , (3.83)

R∗2 =


9
4
β1β2µ1µ2

Γ1Γ
2
2

if p = 1

0 if p , 1
, (3.84)

R3 = −
Gµ2m1m2β

2
2

Γ2
2

√
Γ1Γ2

8p2 + 10pq + 3q2

q2 +
4p + 3q

q
α0D +

α2
0

2
D2

 b(p+1)
1
2

(α0) , (3.85)

R4 = −
Gµ2m1m2β

2
2

4Γ1Γ
2
2

α0b(p+1)
3
2

(α0) , (3.86)

R5 = −
Gµ2m1m2β

2
2

4Γ3
2

α0b(p+1)
3
2

(α0) , (3.87)

R6 =
Gµ2m1m2β

2
2

2Γ2
2

√
Γ1Γ2

α0b(p+1)
3
2

(α0) , (3.88)

α0 =
µ2β

2
2Γ

2
2

µ1β
2
1Γ

2
1

, (3.89)

and q = 2. The K stands for the Keplerian terms, O for the oblateness terms, S for the secular terms,
and R for the resonant terms. The Keplerian part needed to be expanded to the second order in Σk and
Φk, because K2 it is much larger than the remaining terms.
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3.5 Cartesian complex coordinates

The secular equations of motion can be easily obtained from the Hamiltonian (3.68) using the Hamilton
equations. For instance,

σ̇1 =
∂H̃

∂Σ1
=K1 + O1 + S1 + S2 + 2K2(Σ1 + Σ2 + Φ1 + Φ2)

+
S4

2

√
Σ2

Σ1
cos (σ1 − σ2) + R1 cos (2σ1) +

R3

2

√
Σ2

Σ1
cos (σ1 + σ2) .

(3.90)

Analysing Eq. (3.90), we note that the terms with the coefficients S4 and R3 are not defined when Σ1 = 0.
The same occurs for σ̇2, φ̇1, and φ̇2, where, for the terms with coefficients S4, S7, R3, and R6, the
equations of motion present singularities for Σk = 0 or Φk = 0. This means that, for zero eccentricities
or inclinations of either bodies, the equations of motion are not defined.

To overcome this problem, Tittemore and Wisdom (1988) employed a set of rectangular coordinates.
In contrast, we choose to introduce a distinct set of coordinates, the complex Cartesian canonical coor-
dinates, denoted as xk =

√
Σkeiσk and yk =

√
Φkeiφk . Since this complex coordinates are composed, that

is, they contain a real and an imaginary component, we reduce the number of equations of motion by
half, resulting in a more simple formulation for describing the secular problem. Using a type 2 gene-
rating function (S2), which depends on the new canonical moments and the old canonical coordinates,
we obtain the new set of rectangular canonical variables by replacing Σk = x2

k e−2iσk and Φk = y2
k e−2iφk ,

yielding to

S2 =

∫
Σ1 dσ1 +

∫
Σ2 dσ2 +

∫
Φ1 dφ1 +

∫
Φ2 dφ2 + Θ0ϑ0 + Θ1ϑ1 + Θ2ϑ2

=i
1
2

(
x2

1 e−2iσ1 + x2
2 e−2iσ2 + y2

1 e−2iφ1 + y2
2 e−2iφ2

)
+ Θ0ϑ0 + Θ1ϑ1 + Θ2ϑ2 .

(3.91)

The conjugated canonical coordinates are obtained by Q = ∂S2/∂P , leading to the transformation
(Σk, σk,Φk, φk)→ (xk, ixk, yk, iyk), where

xk =
√
Σkeiσk , i xk = i

√
Σke−iσk , (3.92)

yk =
√
Φkeiφk , i yk = i

√
Φke−iφk . (3.93)

From Eqs. (3.55) and (3.56) we have

xk ≈ ek

√
Γk

2
eiσk , (3.94)

and

yk ≈ Ik

√
Γk

2
eiφk , (3.95)

and so, xk and yk are proportional to the eccentricities and the inclinations, respectively. The resonant
secular Hamiltonian (Eq. (3.68)) now becomes

H̃ = (K1 + S1)
(
x1x1 + x2x2 + y1y1 + y2y2

)
+K2

(
x1x1 + x2x2 + y1y1 + y2y2

)2

+ (O1 + S2)x1x1 + (O2 + S3)x2x2 +
S4

2
(x1x2 + x1x2)

+ (O3 + S5)y1y1 + (O4 + S6)y2y2 +
S7

2
(
y1y2 + y1y2

)
+
R1

2

(
x2

1 + x2
1

)
+
R2

2

(
x2

2 + x2
2

)
+
R3

2
(x1x2 + x1x2)

+
R4

2

(
y2

1 + y2
1

)
+
R5

2

(
y2

2 + y2
2

)
+
R6

2
(
y1y2 + y1y2

)
.

(3.96)
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In this formulation, the Hamilton equations are simply

dxk

dt
= i

∂H̃

∂xk
and

dyk

dt
= i

∂H̃

∂yk
, (3.97)

yielding the equations of motion free of singular terms as

ẋ1 = i
[

(K1 + S1) x1+2K2
(
x1x1 + x2x2 + y1y1 + y2y2

)
x1+(O1 + S2) x1+

S4

2
x2+R1x1+

R3

2
x2

]
, (3.98)

ẋ2 = i
[

(K1 + S1) x2+2K2
(
x1x1 + x2x2 + y1y1 + y2y2

)
x2+(O2 + S3) x2+

S4

2
x1+R2x2+

R3

2
x1

]
, (3.99)

ẏ1 = i
[

(K1 + S1) y1+2K2
(
x1x1 + x2x2 + y1y1 + y2y2

)
y1+(O3 + S5) y1+

S7

2
y2+R4y1+

R6

2
y2

]
, (3.100)

and

ẏ2 = i
[

(K1 + S1) y2+2K2
(
x1x1 + x2x2 + y1y1 + y2y2

)
y2+(O4 + S6) y2+

S7

2
y1+R5y2+

R6

2
y1

]
. (3.101)

3.6 Dynamical evolution

The values of mk, J20 and Rk are relativelly well determined for the Uranian system (Tables 1.1 and 1.2).
Therefore, to compute the coefficients K , O, S, and R appearing in the Hamiltonian (3.96), we only
need to know the values of the parameters Γ1 and Γ2 (Eqs. (3.69)-(3.88)), which in turn depend on the
parameters Γ and ∆ (Eqs. (3.49) and (3.50)).

If we neglect the O coefficients (oblateness terms), it is possible to eliminate the dependence in Γ,
because we get H̃ ∝ Γ−2 (Eqs. (3.69)-(3.88), see also Delisle et al. 2012, Sect. 2.1.4). Although here
we cannot use this simplification, the conservative dynamics is still not very sensitive to the Γ parameter
(e.g. Tittemore and Wisdom 1988, 1989), and so we fix it at the reference value

Γ = 2.6684 × 10−12 M⊙ au2 yr−1 , (3.102)

obtained by reversing the orbital tidal evolution of the system (Eq. (4.34)) until the nominal resonance
(Eq. (5.1)) is achieved and starting with the present semi-major axes (Table 2.2).

The dynamics of a second order MMR essentially depends on the ∆ parameter (Eq. (3.51)), which
measures the proximity to the resonance. Following Delisle et al. (2012), we write

δ =
∆

∆r
− 1 , (3.103)

where ∆r is the value of ∆ at the circular and planar (ek = 0 and Ik = 0) nominal resonance, that is
(Eqs. (3.36) and (3.51)),

∆r =
(
Λ1,r + Λ2,r

)
/Γr (3.104)

when n1/n2 = (p + 2)/p, where nk is the mean motion of the satellite with mass mk. At the nominal
resonance, using Kepler’s third law, we have the following relation for the Λk,r:

Λ2,r = ϱ
(

p+2
p

)1/3
Λ1,r , with ϱ =

β2µ
2/3
2

β1µ
2/3
1

≈
m2

m1
. (3.105)

From the expression of Γr (Eq. (3.39)), we additionally have

Λ2,r = Γr −
p + 2

p
Λ1,r , (3.106)
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which can be combined with Eq. (3.105) to give

Λ1,r =

(
p+2

p + ϱ
(

p+2
p

)1/3
)−1
Γr (3.107)

Λ2,r =

(
1 + ϱ−1

(
p+2

p

)2/3
)−1
Γr , (3.108)

and finally (Eq. (3.104))

∆r =

(
1 + ϱ

(
p+2

p

)1/3
) (

p+2
p + ϱ

(
p+2

p

)1/3
)−1

. (3.109)

3.7 Equilibrium points

The equilibrium points correspond to stationary solutions of the Hamiltonian. They can be found by
solving

∂H̃

∂x1
= 0 ,

∂H̃

∂x2
= 0 ,

∂H̃

∂y1
= 0 and

∂H̃

∂y2
= 0 , (3.110)

that is, finding the roots of Eqs. (3.98), (3.99), (3.100), and (3.101). Splitting these equations in their real
and imaginary parts, xk = xk,r + ixk,i and yk = yk,r + iyk,i, we get

x2,r = −2
K1 + 2K2 (Σ1 + Σ2 + Φ1 + Φ2) + O1 + S1 + S2 + R1

S4 + R3
x1,r , (3.111)

x1,r = −2
K1 + 2K2 (Σ1 + Σ2 + Φ1 + Φ2) + O2 + S1 + S3 + R2

S4 + R3
x2,r , (3.112)

x2,i = −2
K1 + 2K2 (Σ1 + Σ2 + Φ1 + Φ2) + O1 + S1 + S2 − R1

S4 − R3
x1,i , (3.113)

x1,i = −2
K1 + 2K2 (Σ1 + Σ2 + Φ1 + Φ2) + O2 + S1 + S3 − R2

S4 − R3
x2,i . (3.114)

y2,r = −2
K1 + 2K2 (Σ1 + Σ2 + Φ1 + Φ2) + O3 + S1 + S5 + R4

S7 + R6
y1,r , (3.115)

y1,r = −2
K1 + 2K2 (Σ1 + Σ2 + Φ1 + Φ2) + O4 + S1 + S6 + R5

S7 + R6
y2,r , (3.116)

y2,i = −2
K1 + 2K2 (Σ1 + Σ2 + Φ1 + Φ2) + O3 + S1 + S5 − R4

S7 − R6
y1,i , (3.117)

y1,i = −2
K1 + 2K2 (Σ1 + Σ2 + Φ1 + Φ2) + O4 + S1 + S6 − R5

S7 − R6
y2,i . (3.118)

Solving the equation system, yields that equilibria arise for

x1,r = x2,r = 0 and y1,r = y2,r = 0 , or

x1,r = x2,r = 0 and y1,i = y2,i = 0 , or

x1,i = x2,i = 0 and y1,r = y2,r = 0 , or

x1,i = x2,i = 0 and y1,i = y2,i = 0 .

(3.119)

A more deep analysis of the second derivatives of H̃ shows that the imaginary roots can be stable, while
the real roots are always unstable. We then focus on the imaginary roots to determine the exact position
of the stable equilibria. Since x1,r = x2,r = 0 and y1,r = y2,r = 0, we have (Eqs. (3.92) and (3.93))

x1,i = ±
√
Σ1 , x2,i = ±

√
Σ2 , (3.120)
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and
y1,i = ±

√
Φ1 and y2,i = ±

√
Φ2 , (3.121)

that we replace in Eqs. (3.113), (3.114), (3.117), and (3.118) to determine the possible values of Σ1 and
Σ2:

Σ1 = Σ2 = 0 , (3.122)

or

Σ1 =
(R3 − S4)εx± − 2(K1 + O1 + S1 + S2 − R1)

4K2(1 + ε2
x±)

−
1 + ε2

y±

1 + ε2
x±
Φ1 , (3.123)

Σ2 = ε
2
x± Σ1 , (3.124)

and Φ1, Φ2,
Φ1 = Φ2 = 0 , (3.125)

or

Φ1 =
(R6 − S7)εy± − 2(K1 + O3 + S1 + S5 − R4)

4K2(1 + ε2
y±)

−
1 + ε2

x±

1 + ε2
y±
Σ1 , (3.126)

Φ2 = ε
2
y±Φ1 , (3.127)

where

εx± =
O1 − O2 − R1 + R2 + S2 − S3

R3 − S4
±

√
(O1 − O2 − R1 + R2 + S2 − S3)2 + (R3 − S4)2

R3 − S4
, (3.128)

and

εy± =
O3 − O4 − R4 + R5 + S5 − S6

R6 − S7
±

√
(O3 − O4 − R4 + R5 + S5 − S6)2 + (R6 − S7)2

R6 − S7
. (3.129)

We note that the solutions of Eqs. (3.123) and (3.126) are only defined when Φ1 = 0 and Σ1 = 0,
respectively. That is, the equilibrium points can only be obtained in the planar (Ik = 0) or circular
(ek = 0) approximation. The equilibrium points at Σ1 = Σ2 = 0 and Φ1 = Φ2 = 0 are always present,
although they can be stable or unstable. The remaining equilibria only exist for some δ-values.

We now apply these results to the 5/3 MMR between Ariel and Umbriel. In Fig. 3.1, we show the
evolution of the equilibrium points as a function of δ. We rescale xk,i and yk,i by

√
Γk/2, such that we can

translate the different equilibria in terms of eccentricity and inclination values (Eqs. (3.94) and (3.95)).
For positive δ values far from zero, there is only one equilibrium point at ek = 0 and Ik = 0,

which is stable (in blue colour). For δ = 2.07 × 10−6, there is a first bifurcation in the equilibria of the
inclination: two new stable equilibrium appear at non-zero inclination (in green colour), while the point
at Ik = 0 becomes unstable. Later, the same occurs for the eccentricity equilibria, at δ = 1.20× 10−6. For
δ = −2.54×10−7, which is close to the resonance nominal value δ = 0 (Eq. (3.104)), a second bifurcation
arises for the inclination: two additional unstable equilibrium points appear at non-zero inclination (in
red colour), while the point at Ik = 0 becomes stable again. Once more, the same behaviour is observed
for the eccentricity, but for δ = −3.7 × 10−6.

3.8 Energy levels

For a better understanding of the dynamics, we can look at the energy levels of the resonant secular
Hamiltonian (3.96) for different values of δ (Eq. (3.109)). Since our problem has four degrees of freedom,
and thus eight dimensions, we need to adopt the planar or circular approximations. In order to all stable
equilibria become visible, we need to plot these levels on section planes. We choose the plane (x1,i, x2,i)
with x1,r = x2,r = 0 (Eqs. (3.120) (3.121)) for the planar case, and the plane (y1,i, y2,i) with y1,r = y2,r = 0
(Eqs. (3.120) and (3.121)) for the circular case. Once more, we apply the study of the energy levels to
the 5/3 MMR between Ariel and Umbriel.
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Figure 3.1: Evolution of the equilibrium points as function of δ. The green lines represent stable points
inside the resonance (in a libration region), the red lines represent hyperbolic points (unstable), and the
blue line represent stable fixed points (in a circulation region).

In Fig. 3.2, we show the energy levels for three values of δ, which are representative of the three
different equilibrium possibilities appearing in Fig. 3.1. Again, we rescale xk,i and yk,i by

√
Γk/2, and

so we actually show the energy levels in the plane (e1 sinσ1, e2 sinσ2) with cosσ1 = cosσ2 = 0 for
the planar approximation, and the plane (I1 sinφ1, I2 sinφ2) with cosφ1 = cosφ2 = 0 for the circular
approximation. The analysis and results for both approximations are very similar.

For δ = 5 × 10−6 > 0 (Fig. 3.2 a,d) there is a single equilibrium point (x1,i = 0, x2,i = 0) and
(y1,i = 0, y2,i = 0) at the centre (in blue). It corresponds to a fixed point of the Hamiltonian (3.96), which
is surrounded by a circulation region. Therefore, in this case (and for higher δ-values), all trajectories are
outside the 5/3 MMR.

For δ = 0 (Fig. 3.2 b,e), the system is at the nominal resonance (Eq. (3.103)). In this case, the
equilibrium points at the centre (x1,i = 0, x2,i = 0) and (y1,i = 0, y2,i = 0) are still present (in red), but
they are now unstable. Indeed, there is a separatrix (that is, a boundary between the circulation and the
libration regions) in a tilted 8-shape emerging from these points that surrounds two additional equilibrium
stable points (in green). Trajectories inside the separatrix that encircle the stable points are in libration
and correspond to orbits inside the 5/3 MMR. Trajectories outside the separatrix are in circulation.

Finally, for δ = −4 × 10−6 < 0 (Fig. 3.2 c,f), several equilibria exist. There are two hyperbolic
points (in red) from which emerges a separatrix with two “banana” shapes. This separatrix delimits the
phase space in libration and circulation regions. There are two stable points (in green), one inside each
banana island. Trajectories that move around these points are in libration and correspond to orbits inside
the 5/3 MMR. The points (x1,i = 0, x2,i = 0) and (y1,i = 0, y2,i = 0) at the centre (in blue) are again
stable and inside a small circulation region. Trajectories outside the separatrix are also in circulation.
This kind of phase space persists for smaller δ-values, but the central circulation region becomes larger,
while the resonant islands become thinner. Note that, for the planar case, the separatrix is tilted ∼ 45◦

angle relatively to the axis (Fig. 3.2 b,c). Thus, if the system follows one of the resonance islands, the
eccentricities of Ariel and Umbriel will increase more or less evenly. As for the circular approximation,
the separatrix is more inclined towards the y2,i axis (Fig. 3.2 e,f). Therefore, following the resonance
islands, the inclination of Ariel will be more excited than the inclination of Umbriel.
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Figure 3.2: Energy level curves in the planes: (e1 sinσ1, e2 sinσ2) with cosσ1 = cosσ2 = 0 (left);
(I1 sinφ1, I2 sinφ2) with cosφ1 = cosφ2 = 0 (rigth), for δ = 5 × 10−6 (top), δ = 0 (middle), and
δ = −5 × 10−6 (bottom). Stable equilibria are coloured in green (resonance) and blue, while unstable
equilibria are coloured in red, as well as the level curves that correspond to the separatrix.
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3.9 Surface sections

Using the conservative Hamiltonian (Eq. (3.96)), the energy levels from the previous Sect. (3.8) allowed
us to identify the different regions of the phase space, but a priori they do not correspond to trajecto-
ries followed by the system. Indeed, since our restricted problem has eight dimensions, they show the
trajectories when they cross the section plane with x1,r = x2,r = 0 or y1,r = y2,r = 0, which only re-
main constant for the equilibrium points. An alternative projection consists on fixing only y1,r = 0 (or
y2,r = 0) together with a constant energy, that is, to draw Poincaré surface sections. This projection
is less restrictive, and therefore allows us to distinguish between periodic (fixed points), quasi-periodic
(closed curves), and chaotic trajectories. For that purpose, we used the modified Hénon method (Henon
and Heiles 1964; Palaniyandi 2009).

In Fig. 3.2, we observe that, during the 5/3 Ariel-Umbriel MMR passage, the more diverse dynamics
occurs for δ = −2 × 10−6. We thus adopted this value to draw the surface sections for the circular
approximation (xk = 0). Since, in this approximation, the Hamiltonian (3.96) is a four-degree function
of yk, the intersection of the constant energy manifold by a plane may have up to four roots (families).
Each family corresponds to a different dynamical behaviour, and so we must plot one of them at a time.
However, the families are symmetric and actually we only need to show two of them. We chose to
represent the families with the positive roots (that we dub 1 and 2).

In Fig. 3.3, we show a set of surface sections for the motion of Ariel in the plane (y1,i, y1,r) with
y2,r = 0. We rescaled y1 again by

√
Γ1/2, and so we actually show the surface sections in the plane

(I1 sinφ1, I1 cosφ1) with cosφ2 = 0. Each panel corresponds to a different energy value, which coincides
with the energy levels that are shown in Fig. 3.2c (we adopted the same colour code). The lowest energies
occur in the circulation regions, H̃ < H0, the separatrix corresponds to a transition level, H̃ = H0, while
the largest energies occur in the libration region, H̃ > H0. The inner circulation region is delimited by
the levels 0 < H̃ < H0, where H̃ = 0 corresponds to the energy of the equilibrium point with y1 = y2 = 0
(blue point in Fig. 3.2c). For this energy range, there are four families, while for the remaining energies
only two families exist.

For H̃ ≪ 0 (Fig. 3.3a), only family 1 exists, and we observe that the system is always quasi-periodic,
corresponding to trajectories in the outer circulation region. As the energy increases, two islands ap-
pear, corresponding to trajectories that are in the libration region (in resonance). Initially, the motion
in these new regions is also quasi-periodic. However, as the energy approaches the threshold H̃ = 0
(Fig. 3.3b,c), some chaotic regions appear in the transition between the circulation and libration regions.
For 0 < H̃ < H0 (family 1), the chaotic regions increase, while the resonant islands shrink (Fig. 3.3d,e),
until they completely disappear for H̃ = H0 (Fig. 3.3f). For this specific energy range, we also needed to
plot family 2. Close to H̃ = 0, we observe quasi-periodic motion in the inner circulation region, but, as
we approach H̃ = H0, this area is also completely replaced by a chaotic region (Fig. 3.3j,k,l). Finally, for
H̃ > H0, we observe that the chaotic region progressively vanishes, and it is replaced by quasi-periodic
motion in the libration region (Fig. 3.3g,h,i). In this energy range, we only have family 1 and trajectories
in the outer circulation region also do not exist. Moreover, there is also a forbidden region at the centre
of each panel that grows with the energy value while the libration areas shrink.

In Fig. 3.4, we show the analogous set of surface sections for the motion of Umbriel in the plane
(y2,i, y2,r) with y1,r = 0. Again, we rescaled y2 by

√
Γ2/2, therefore showing the surface sections in the

plane (I2 sinφ2, I2 cosφ2) with cosφ1 = 0, and preserve the same colour scheme as in Figs. 3.2 and 3.3.
We note that, for the case of Umbriel, the circulation and libration regions are inverted relatively to the
case of Ariel. This can also be seen in Fig. 3.1, where the stable equilibrium points are always larger
than the unstable equilibrium points. Whereas for Umbriel, the stable equilibrium points quickly become
smaller than the unstable equilibrium points. As expected, the stable and chaotic regions appear for the
same H̃/H0 values. For H̃ ≪ 0 (Fig. 3.4a) the system is always quasi-periodic, and, as the energy
approaches the threshold H̃ = 0 (Fig. 3.4b,c), some chaotic regions appear in the transition between the
circulation and libration regions. For 0 < H̃ < H0 (family 1), the chaotic regions increase, while the
resonant islands shrink (Fig. 3.4d,e), until they completely disappear for H̃ = H0 (Fig. 3.4f). Again,
for this specific energy range, we also have the family 2. Close to H̃ = 0, we observe quasi-periodic
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Figure 3.3: Poincaré surfaces of section for Ariel in the plane (I1 sinφ1, I1 cosφ1) with cosφ2 = 0 and
δ = −2×10−6. Each panel was obtained with a different energy value, corresponding to the energy levels
shown in Fig. 3.2c (we adopted the same colour code), andH0 = 1.06 × 10−19 M⊙ au2 yr−2.
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Figure 3.4: Poincaré surfaces of section for Umbriel in the plane (I2 sinφ2, I2 cosφ2) with cosφ1 = 0
and δ = −2 × 10−6. Each panel was obtained with a different energy value, corresponding to the energy
levels shown in Fig. 3.2c (we adopted the same colour code), andH0 = 1.06 × 10−19 M⊙ au2 yr−2.
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motion in the inner circulation region. However, contrary to the case of Ariel, as we approach H̃ = H0,
the chaotic region does not replace entirely the quasi-periodic region, and the inner circulation region
is preserved (Fig. 3.4j,k,l). Finally, for H̃ > H0, we only have family 1 and trajectories in the outer
circulation region also do not exist. We observe that the chaotic region progressively vanishes, and it is
replaced by quasi-periodic motion in the libration region (Fig. 3.4g,h,i).

From the analysis of the surface sections, we conclude that the dynamics of the 5/3 MMR between
Ariel and Umbriel is very rich and depends on the energy of the system. In fact, the energy depends on the
value of the inclinations (Eq. (3.96)), given by the variables y1 and y2 (Eq. (3.95)). Therefore, the value of
the inclinations of Ariel and Umbriel when the system encounters the resonance can trigger completely
different behaviours. For H̃ < 0, the motion is quasi-periodic, either in circulation or libration. Near
the separatrix, H̃ ∼ H0, the motion is mainly chaotic. Finally, for H̃ ≫ H0, the motion is again
quasi-periodic, but only possible in libration with a small amplitude around the high inclination stable
equilibrium points (Fig. 3.1).

3.10 Stability maps

In the previous section we analysed the behaviour of Ariel and Umbriel in the circular approximation at
different stages of the crossing of the 5/3 MMR resorting to Poincaré surface sections. Here, we analyse
the global dynamics of this resonance using stability maps. To this end, we adopt the frequency analysis
method (Laskar 1990, 1993) to map the diffusion of the orbits. These results were partially presented in
Gomes and Correia (2023b).

For coherence, we fix δ = −2 × 10−6 (Eq. (3.103)) as for the surface sections (Sect. 3.9), for which
the most diverse dynamics can be found, and adopt the physical properties of the system from Tables 1.1
and 1.2. For each energy value, we build a grid of 200 × 200 equally distributed initial conditions in the
plane (y1,i, y1,r) for Ariel and in the plane (y2,i, y2,r) for Umbriel. We fix y2,r = 0 (for Ariel) or y1,r = 0 (for
Umbriel) for all initial conditions and compute y2,i (for Ariel) or y1,i (for Umbriel) for each family from
the total energy (Eq. (3.96)). We then numerically integrate the equations of motion (3.100) and (3.101)
for a time T . Finally, we perform a frequency analysis of y1 or y2, using the software TRIP (Gastineau
and Laskar 2011) over the time intervals [0,T/2] and [T/2,T ], and determine the main frequency in each
interval, fin and fout, respectively. The stability of the orbit is measured by the index

D ≡
∣∣∣∣∣1 − fout

fin

∣∣∣∣∣ , (3.130)

which estimates the stability of the orbital long-distance diffusion (Dumas and Laskar 1993). The larger
D, the more orbital diffusion exists. For stable motion, we have D ∼ 0, while D ≪ 1 if the motion is
weakly perturbed, and D ∼ 1 when the motion is irregular. It is difficult to determine the precise value
of D for which the motion is stable or unstable, but a threshold of stability Ds can be estimated such that
most of the trajectories with D < Ds are stable (Couetdic et al. 2010).

The diffusion index depends on the considered time interval. Here, we integrate the equations of
motion for T = 104 yr, because this interval is able to capture the main characteristics of the dynamics
regarding the resonant frequency, which lies within the range ∼ 60 yr. With this time interval, we estimate
that Ds ∼ 10−4. The diffusion index D is represented by a logarithmic colour scale calibrated such that
blue and green correspond to stable trajectories (D ≪ Ds), while orange and red correspond to chaotic
motion (D ≫ Ds).

In Fig. 3.5, we show the stability maps for Ariel. We rescale y1 by
√
Γ1/2, and so we actually plot

the maps in the plane (I1 sinφ1, I1 cosφ1) with cosφ2 = 0 (Eqs. (3.92) and (3.93)), as already done for
the Poincaré surface section (Fig. 3.3). Each panel corresponds to a different energy value H̃/H0, where
H0 = 1.06 × 10−19 M⊙ au2 yr−2 is the energy of the transition between the circulation and libration
regions, i.e., the energy of the separatrix. The lowest energies occur in the circulation regions, H̃ < H0,
while the largest energies occur in the libration region, H̃ > H0. The inner circulation region is delimited
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by 0 < H̃ < H0, where H̃ = 0 corresponds to the energy of the equilibrium point with y1 = y2 = 0. For
this energy range, there are four families, while for the remaining energies only two families exist.

For H̃ ≪ 0 (Fig. 3.5 a), only family 1 exists, and we observe that the system is always stable,
corresponding to trajectories in the outer circulation region. As the energy increases, two islands appear,
corresponding to trajectories that are in the libration region (in resonance). Initially, the motion in these
new regions is also stable, but the separatrix and some localized concentric regions outside the separatrix
are chaotic. As the energy approaches the threshold H̃ = 0 (Figs. 3.5 b,c), the chaotic regions expand
for the vicinities of the separatrix. For 0 < H̃ < H0 (family 1), the chaotic regions increase even further,
while the resonant islands shrink (Figs. 3.5 d,e), until they completely disappear for H̃ = H0 (Fig. 3.5 f).
We note that up to these energies, outside the chaotic regions, the circulation region remains stable. For
this specific energy range, we also need to plot family 2. Close to H̃ = 0, we observe stable motion
in the inner circulation region (Figs. 3.5 j,k). However, as we approach H̃ = H0, this area is replaced
by a chaotic region (Fig. 3.5 l). Finally, for H̃ > H0, we observe that the stable region progressively
vanishes, and chaotic motion dominates the phase-space, where only small libration regions remain
stable (Figs. 3.5 g,h,i). In this energy range, we only have family 1 and trajectories in the outer circulation
region also do not exist. Moreover, there is also a forbidden region at the centre of each panel that grows
with the energy value, while the libration areas shrink.

In Fig. 3.6, we show the analogous stability maps for Umbriel, that is, in the plane
(I2 sinφ2, I2 cosφ2) with cosφ1 = 0 (Eqs. (3.92) and (3.93)). As mentioned in Sect. 3.9, the libration and
circulation regions are inverted, relatively to the case of Ariel. Therefore, the circulation region is close
to center of the phase-space (yk = 0), and the libration region is located at the outer regions, surrounded
by the chaotic regions. Again, the stable and chaotic regions appear for the same energy values H̃/H0,
and family 2 only appear within the range 0 < H̃ < H0. In addition, the forbidden regions are at the
center of each panel, but at the outer regions.

The results in Figs. 3.5 and 3.6 are in good agreement with those shown in Figs. 3.3 and 3.4, re-
spectively. They show that chaos has a strong presence in the passage through the 5/3 MMR between
Ariel and Umbriel. The analysis of this resonance with stability maps allows to quantify the chaos for
each region. For H̃ < 0, the phase-space is dominated by stable orbits. As we approach the separatrix
energy, H̃ ∼ H0, the chaotic motion engorges the low inclination regions, while the outer circulation
regions remain stable. Finally, for H̃ ≫ H0, only small libration regions remain stable, surrounded by
large chaotic areas. This contrasts with the results from Sect. 3.9, since surface sections appeared to have
exclusive quasi-periodic motion for energies near the equilibrium resonance points.



3.10. STABILITY MAPS 57

Figure 3.5: Stability maps for Ariel in the plane (I1 sinφ1, I1 cosφ1) with cosφ2 = 0 and δ = −2 × 10−6.
The colour scale corresponds to the relative frequency diffusion index in logarithmic scale (Eq. (3.130)).
Each panel was obtained with a different energy value andH0 = 1.06 × 10−19 M⊙ au2 yr−2.
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Figure 3.6: Stability maps for Umbriel in the plane (I2 sinφ2, I2 cosφ2) with cosφ1 = 0 and δ = −2×10−6.
The colour scale corresponds to the relative frequency diffusion index in logarithmic scale (Eq. (3.130)).
Each panel was obtained with a different energy value andH0 = 1.06 × 10−19 M⊙ au2 yr−2.



Chapter 4

Secular tidal evolution

The resonant dynamics presented in Sect. 3 is conservative and thus the average semi-major axes remain
constant. However, the orbits of the Uranian system are expected to evolve because of dissipative tidal
interactions (Sect. 2.3.2).

Tittemore and Wisdom (1988, 1989, 1990) introduced the tidal effects in the system by artificially
evolving the first Keplerian term (K1). With this approximation, the authors only consider the evolution
of the semi-major axes, thus neglecting the tidal effects on the eccentricities, inclinations, and rotations.
In this chapter, we develop a more comprehensive model that takes into account tidal effects on all
coordinates of the system. The tidal contributions to the orbital and spin evolution can be obtained
by adding the contribution of the tidal potential (Eq. (2.33)) to the average conservative Hamiltonian
(Eq. (3.63)) (Darwin 1880; Kaula 1964; Mignard 1979).

4.1 Tidal potential energy

Tides arise from differential and inelastic deformations of an extended body (e.g. planet) owing to the
gravitational effect of a perturber (e.g. satellite). The resulting distortion gives rise to a tidal bulge, which
modifies the gravitational potential of the extended body. The dissipation of the mechanical energy of
tides inside the extended body introduces a time delay, τ, between the initial perturbation and the maximal
deformation. As the perturber interacts with the additional potential field, the amount of tidal potential
energy is given by (Eq. (2.33))

Ui, j = − k2 j

Gm2
i

2R j

(
R j

ri, j

)3  R j

r′i, j

3 (
3

(
r̂i, j · r̂′i, j

)2
− 1

)
, (4.1)

where k2 j is the second Love number for the potential of the deformed body, ri, j = ri, j(t) = ri − r j is the
position of the pertuber at a time t, and r′i, j = ri, j(t − τ j) is its position when it exerts the perturbation.
Although tidal effects do not preserve the mechanical energy, it is possible to extend the Hamiltonian
formalism from Sect. 3, by considering the primed quantities, r′i, j, as parameters (Mignard 1979). We
note that, for i, j , 0,

U0, j

Ui, j
∼

(
m0

m j

)2

≫ 1 and
Ui,0

Ui, j
∼

(
R0

R j

)5

≫ 1 . (4.2)

That is, the tidal interactions between the planet and the satellites are much stronger than the mutual
tidal interactions between the satellites, thus we neglect U1,2 and U2,1. The tidal Hamiltonian then reads
(Eqs. (3.23) and (4.1))

Ht = H + U0,1 + U1,0 + U0,2 + U2,0 . (4.3)

For the considered terms, we note that r0,k = rk,0 = rk . Therefore, in the following expressions of Ui, j

(Eq. (4.1)) we assume the subscript k = i + j.
As in Sect. 3.1, we initially expand Ui, j in elliptical elements. First, one must express the vectors rk

and r′k in a body centred reference of frame (I,J,K), instead of the generic inertial frame (i, j, k) (see



60 CHAPTER 4. SECULAR TIDAL EVOLUTION

Figure 4.1: Geometrical representation of the Euler angles. We depart from the initial frame (i, j, k)
and, through three rotations, end up in the frame (I, J, K). The first rotation is through an angle ϕ around
the k axis. The second rotation is through an angle ϵ around the i′ axis, where i′ = k × K/ sin ϵ. The
last rotation is through an angle ψ around the K axis.

Fig. 4.1). Using the Euler angles (ψ, ϵ, ϕ), this is achieved by performing a simple set of rotations around
the main axes, that is

r(i, j,k) = R3(ψ)R1(ϵ)R3(ϕ) r(I,J,K) = R(ψ, ϵ, ϕ) r(I,J,K) (4.4)

where R1 and R3 are the rotation matrices around the x-axis and z-axis, respectively (Eq. (A.24)). Using
the previous expression, we can express the positions of the satellite on the planet frame (I, J,K):

r̂k = R
T(ψ j, ϵ j, ϕ j)R(Ωk, Ik, νk + ωk) i , (4.5)

r̂′k = R
T(ψ′j, ϵ

′
j, ϕ
′
j)R(Ω′k, I

′
k, ν
′
k + ω

′
k) i . (4.6)

Using Eqs. (4.5) and (4.6), and considering that the obliquity is null (ϵ j = ϵ
′
j = 0), we can take θ j = ψ j + ϕ j

and θ′j = ψ
′
j + ϕ

′
j (see Fig. 4.1), and the inner product r̂k · r̂′k can be written as

r̂k · r̂′k = r̂T
k r̂′k = iT RT (Ωk, Ik, νk + ωk)R3(θ j)RT

3 (θ′j)R(Ω′k, I
′
k, ν
′
k + ω

′
k) i . (4.7)

Expanding Eq. (4.7) to first order in the mass ratios, second order in the eccentricities and in the inclina-
tions, we have
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(4.8)
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Then, inserting Eq. (4.8) in the Eq. (4.1), we finally get:
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(4.9)

As in the conservative case, we now perform a canonical change of variables that uses the res-
onant angles (Eqs. (3.38)-(3.46)), then followed by the change to the complex Cartesian coordinates
(Eqs. (3.92) and (3.93)), leading to
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...(continuation)
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k

)
cos

(
2(qkγ

′ + ϑ j − ϑ
′
j)
)

+ 12
√
ΓkΓ

′
k

(
yky′k + y′kyk

)
cos

(
ϑ j − ϑ

′
j

)
+ 12

√
ΓkΓ

′
k

(
yky′k + y′kyk

)
cos

(
2qk(γ − γ′) − ϑ j + ϑ

′
j

)
− 12

√
ΓkΓ

′
k

(
yky′k + yky′k

)
cos(2qkγ − ϑ j + ϑ

′
j) − 12

√
ΓkΓ

′
k

(
yky′k + yky′k

)
cos(2qkγ

′ + ϑ j − ϑ
′
j)

+ 6
√

2 i (xk − xk)
√
ΓkΓ

′
k sin (qkγ) + 6

√
2 i (x′k − x′k)Γk

√
Γ′k sin (qkγ

′)

+ 3
√

2 i (xk − xk)
√
ΓkΓ

′
k sin

(
qk(γ − 2γ′) − 2ϑ j + 2ϑ′j

)
− 3
√

2 i (x′k − x′k)Γk

√
Γ′k sin

(
qk(2γ − γ′) − 2ϑ j + 2ϑ′j

)
+ 21

√
2 i (xk − xk)

√
ΓkΓ

′
k sin

(
qk(3γ − 2γ′) − 2ϑ j + 2ϑ′j

)
− 21

√
2 i (x′k − x′k)Γk

√
Γ′k sin

(
qk(2γ − 3γ′) − 2ϑ j + 2ϑ′j

)
+ 102 iΓ′k

(
x2

k − x2
k

)
sin

(
2(2qkγ − qkγ

′ − ϑ j + ϑ
′
j)
)

− 102 iΓk
(
x′2k − x′2k

)
sin

(
2(qkγ − 2qkγ

′ − ϑ j + ϑ
′
j)
)

+ 18 i
(
xkx′k + x′kxk

) √
ΓkΓ

′
k sin

(
qk(γ − γ′)

)
+ 18 i

(
xkx′k + xkx′k

) √
ΓkΓ

′
k sin

(
qk(γ + γ′)

)
− 3 i

√
ΓkΓ

′
k

(
xkx′k − x′kxk

)
sin

(
qk(γ − γ′) − 2ϑ j + 2ϑ′j

)
+ 147 i

√
ΓkΓ

′
k

(
xkx′k − x′kxk

)
sin

(
3qk(γ − γ′) − 2ϑ j + 2ϑ′j

)
+ 21 i

√
ΓkΓ

′
k

(
xkx′k − xkx′k

)
sin

(
qk(γ − 3γ′) − 2ϑ j + 2ϑ′j

)
− 21 i

√
ΓkΓ

′
k

(
xkx′k − xkx′k

)
sin

(
qk(3γ − γ′) − 2ϑ j + 2ϑ′j

)
+ 6 iΓ′k

(
3x2

k − 3x2
k + y2

k − y2
k

)
sin

(
2qkγ

)
+ 6 iΓk

(
3x′2k − 3x′2k + y′2k − y′2k

)
sin

(
2qkγ

′
)

+ 6 iΓ′k
(
y2

k − y2
k

)
sin

(
2(qkγ

′ + ϑ j − ϑ
′
j)
)
+ 6 iΓk

(
y′2k − y′2k

)
sin

(
2(qkγ − ϑ j + ϑ

′
j)
)

+ 12 i
√
ΓkΓ

′
k

(
yky′k − y′kyk

)
sin

(
ϑ j − ϑ

′
j

)
+ 12 i

√
ΓkΓ

′
k

(
yky′k − y′kyk

)
sin

(
2qk(γ − γ′) − ϑ j + ϑ

′
j

)
− 12 i

√
ΓkΓ

′
k

(
yky′k − yky′k

)
sin(2qkγ − ϑ j + ϑ

′
j)

− 12 i
√
ΓkΓ

′
k

(
yky′k − yky′k

)
sin(2qkγ

′ + ϑ j − ϑ
′
j)
]
,

(4.10)
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where p1 = −p/2, p2 = 1 + p/2, q1 = 1 + 2/p, and q2 = 1.
Note that σ does not appear in the expression of tidal potential. Therefore, in presence of tides, the

parameter Σ (Eq. (3.36)) is still conserved (total angular momentum). The fast angle γ is still present
in the expression of Ui, j, but at this stage we cannot perform an average as in Sect. 3.4, because γ′ is
considered as a parameter that can later cancel with γ (see Eq. (4.19)).

4.2 Tidal equations of motion

The equations of motion are obtained from Eq. (4.10) using the Hamilton equations. The additional
contribution from tides derive only from the Ui, j (Eq. (4.1)), and are thus given by

ẋk =i
∂U0,k

∂xk
+ i

∂Uk,0

∂xk
, (4.11)

ẏk =i
∂U0,k

∂yk
+ i

∂Uk,0

∂yk
, (4.12)

Γ̇ = −
∂U0,1

∂γ
−
∂U0,2

∂γ
−
∂U1,0

∂γ
−
∂U2,0

∂γ
, (4.13)

Θ̇0 = −
∂U1,0

∂ϑ0
−
∂U2,0

∂ϑ0
, (4.14)

Θ̇k = −
∂U0,k

∂ϑk
. (4.15)

In principle, we should also write the equations for γ̇ and ϑ̇k, but these angles disappear from the equa-
tions of motion with some of the following simplifications, and so we do not need them to get a closed
set for the secular evolution of the system.

To handle the expression of the primed quantities, we need to use a tidal model. For continuity, we
adopt again the weak friction model (Sect. 2.3), which assumes a constant and small time delay, τ j,
between the tidal potential and the perturbing potentials. This model provides very simple expressions
for the tidal interactions, because it can be made linear (e.g. Mignard 1979),

λ′k ≈ λk − nk τ j , and θ′j ≈ θ j − ω j τ j . (4.16)

Substituting Eq. (4.16) into Eqs. (3.38)-(3.46) and (3.92)-(3.93), and expanding up to first order in τ j, it
follows for the remaining primed quantities,

x′k ≈ xk − ixk (p2n2 + p1n1) τ j , (4.17)

y′k ≈ yk − iyk (p2n2 + p1n1) τ j , (4.18)

γ′ ≈ γ − p1 (n2 − n1) τ j , (4.19)

ϑ′j ≈ ϑ j +
(
p2n2 + p1n1 − ω j

)
τ j , (4.20)

with
nk = β

3
kµ

2
k/Γ

3
k . (4.21)

We then substitute expressions (4.18) to (4.20) into the equations of motion (4.11)-(4.15) and average
over the fast angle γ (as in Eq. (3.62)) to finally get the secular equations for the tidal evolution

ẋ1 = −
3
2
D1,0

Γ13
1

(
i(2p + 5) + (19n1 − 12ω0)τ0

)
x1 + 3i(p + 2)

D2,0

Γ13
2

x1

−
3
2
D0,1

Γ13
1

(
i(2p + 5) + (19n1 − 12ω1)τ1

)
x1 + 3i(p + 2)

D0,2

Γ13
2

x1 ,

(4.22)
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ẋ2 = − 3ip
D1,0

Γ13
1

x2 −
3
2
D2,0

Γ13
2

(
i(1 − 2p) + (19n2 − 12ω0)τ0

)
x2

− 3ip
D0,1

Γ13
1

x2 −
3
2
D0,2

Γ13
2

(
i(1 − 2p) + (19n2 − 12ω2)τ2

)
x2 ,

(4.23)

ẏ1 = −
3
2
D1,0

Γ13
1

(2ip + n1τ0) y1 + 3i(p + 2)
D2,0

Γ13
2

y1 −
3
2
D0,1

Γ13
1

(2ip + n1τ1) y1 + 3i(p + 2)
D0,2

Γ13
2

y1 , (4.24)

ẏ2 = − 3ip
D1,0

Γ13
1

y2 +
3
2
D2,0

Γ13
2

(
2i(p + 2) − n2τ0

)
y2 − 3ip

D0,1

Γ13
1

y2 +
3
2
D0,2

Γ13
2

(
2i(p + 2) − n2τ2

)
y2 , (4.25)

Γ̇ = 3
D1,0

Γ13
1

(
1 +

2
p

)[ (
27x1x1 − y1y1 + 6p(x1x1 + x2x2 + y1y1 + y2y2) + Γ1

)
ω0

−
(
46x1x1 + 6p(x1x1 + x2x2 + y1y1 + y2y2) + Γ1

)
n1

]
τ0

+3
D0,1

Γ13
1

(
1 +

2
p

)[ (
27x1x1 − y1y1 + 6p(x1x1 + x2x2 + y1y1 + y2y2) + Γ1

)
ω1

−
(
46x1x1 + 6p(x1x1 + x2x2 + y1y1 + y2y2) + Γ1

)
n1

]
τ1

+3
D2,0

Γ13
2

(
1 +

2
p

) [(
27x2x2 − y2y2 − 6(p + 2)(x1x1 + x2x2 + y1y1 + y2y2) + Γ2

)
ω0

−
(
46x2x2 − 6(p + 2)(x1x1 + x2x2 + y1y1 + y2y2) + Γ1

)
n2

]
τ0

+3
D0,2

Γ13
2

(
1 +

2
p

) [(
27x2x2 − y2y2 − 6(p + 2)(x1x1 + x2x2 + y1y1 + y2y2) + Γ2

)
ω2

−
(
46x2x2 − 6(p + 2)(x1x1 + x2x2 + y1y1 + y2y2) + Γ1

)
n2

]
τ2 ,

(4.26)

Θ̇0 = −3
D1,0

Γ13
1

[ (
15x1x1 − y1y1 + 6p(x1x1 + x2x2 + y1y1 + y2y2) + Γ1

)
ω0

−
(
27x1x1 − y1y1 + 6p(x1x1 + x2x2 + y1y1 + y2y2) + Γ1

)
n1

]
τ0

−3
D2,0

Γ13
2

[ (
15x2x2 − y2y2 − 6(p + 2)(x1x1 + x2x2 + y1y1 + y2y2) + Γ2

)
ω0

−
(
27x2x2 − y2y2 − 6(p + 2)(x1x1 + x2x2 + y1y1 + y2y2) + Γ2

)
n2

]
τ0 ,

(4.27)

Θ̇1 = −3
D0,1

Γ13
1

[ (
15x1x1 − y1y1 + 6p(x1x1 + x2x2 + y1y1 + y2y2) + Γ1

)
ω1

−
(
27x1x1 − y1y1 + 6p(x1x1 + x2x2 + y1y1 + y2y2) + Γ1

)
n1

]
τ1 ,

(4.28)

Θ̇2 = −3
D0,2

Γ13
2

[ (
15x2x2 − y2y2 − 6(p + 2)(x1x1 + x2x2 + y1y1 + y2y2) + Γ2

)
ω2

−
(
27x2x2 − y2y2 − 6(p + 2)(x1x1 + x2x2 + y1y1 + y2y2) + Γ2

)
n2

]
τ2

(4.29)

where
Di, j = k2 jGm2

i β
12
k µ

6
kR5

j , with k = i + j , (4.30)

and τ0, τ1, and τ2 are the tidal lags of the bodies with masses m0, m1, and m2, respectively (see Sect.
2.4.3).

We note that in the expressions of ẋk (Eqs. (4.22) and (4.23)) and ẏk (Eq. (4.24) and (4.25)), we have a
conservative contribution (imaginary terms) and a dissipative contribution (real terms in τ j). The conser-
vative contributions result from a permanent tidal deformation and only slightly modify the fundamental
frequencies of the system, while the dissipative contributions modify the secular evolution.
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4.3 Orbital evolution

Although very useful mathematically and numerically, the tidal equations of motion presented in com-
plex rectangular coordinates are not intuitive. Nevertheless, we can also obtain their contributions to the
elliptical elements. Combining Eqs. (3.29), (3.47)-(3.51) with Eqs. (3.92) and (3.93), we can express the
semi-major axes as a function of the rectangular complex coordinates, that is,
ak(x1, x1, x2, x2, y1, y1, y2, y2,Σ,Γ,Θ0,Θ1,Θ2). Thus, the time derivatives can be obtained as

ȧk =
∂ak

∂x1
ẋ1 +

∂ak

∂x1
˙̄x1 +

∂ak

∂x2
ẋ2 +

∂ak

∂x2
˙̄x2 +

∂ak

∂y1
ẏ1 +

∂ak

∂y1
˙̄y1 +

∂ak

∂y2
ẏ2 +

∂ak

∂y2
˙̄y2

+
∂ak

∂Γ
Γ̇ +

∂ak

∂Θ0
Θ̇0 +

∂ak

∂Θ1
Θ̇1 +

∂ak

∂Θ2
Θ̇2 .

(4.31)

As for the eccentricities and the inclinations, since they only depend on ek(xk, xk,Σ,Γ,Θ0,Θ1,Θ2) and
Ik(yk, yk,Σ,Γ,Θ0,Θ1,Θ2) (Eqs. (3.49)-(3.51), (3.55), (3.56), (3.92) and (3.93)), the time evolutions are
obtained as

ėk =
∂ek

∂xk
ẋk +

∂ek

∂xk
˙̄xk +

∂ek

∂Γ
Γ̇ +

∂ek

∂Θ0
Θ̇0 +

∂ek

∂Θ1
Θ̇1 +

∂ek

∂Θ2
Θ̇2 , (4.32)

İk =
∂Ik

∂yk
ẏk +

∂Ik

∂yk
˙̄yk +

∂Ik

∂Γ
Γ̇ +

∂Ik

∂Θ0
Θ̇0 +

∂Ik

∂Θ1
Θ̇1 +

∂Ik

∂Θ2
Θ̇2 . (4.33)

Computing Eqs. (4.31)-(4.33) we obtain for the tidal evolution of ak, ek, and Ik,

ȧk

ak
≈

3Gm2
kR5

0

βka8
k

k20τ0

((
2 + 27e2

k − I2
k

) ω0

nk
−

(
2 + 46e2

k

))
−

3Gm2
0R5

k

βka8
k

k2kτk
(
19e2

k + I2
k

)
, (4.34)

ėk

ek
≈

3Gm2
kR5

0

2βka8
k

k20τ0

(
11
ω0

nk
− 18

)
+

3Gm2
0R5

k

2βka8
k

k2kτk

(
11
ωk

nk
− 18

)
, (4.35)

İk

Ik
≈ −

3Gm2
kR5

0

2βka8
k

k20τ0
ω0

nk
−

3Gm2
0R5

k

2βka8
k

k2kτk

(
ωk

nk
− 1

)
. (4.36)

4.4 Evolution timescale

The orbital evolution timescale depends on the tidal lag, τ, which is related to the specific dissipation
factor, Q (Eq. (2.69)).

Using Eq. (4.36) we can estimate the inclination damping timescale, τinc. Assuming the satellites as
synchronous, that is, ωk = nk, we have

τinc ≈
4 βka8

knk

3Gm2
kR5

0

(
Q0

k20

)
. (4.37)

This expression only depends on tides raised in Uranus (Eq. (2.70)), and yields an inclination damping
timescale of about 290 Gyr for Miranda, 180 Gyr for Ariel, 1 500 Gyr for Umbriel, 14 000 Gyr for Titania
and 105 000 Gyr for Oberon. These timescales are much longer than the age of the Solar System. Thus,
we conclude that the presently observed inclination values are likely unchanged since the system crossed
the 5/3 MMR, and confirm the numerical results obtained in Sect. 2.4.6.

Using Eq. (4.35), we can also estimate the damping timescale for the eccentricities of the satellites.
Assuming again ωk = nk, we have that, contrarily to the inclination, for the eccentricity the tides raised
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by the planet on the satellites have a much higher contribution than the tides raised by the satellites on
the planet, that is, ∣∣∣∣∣∣∣∣

m2
kR5

0k20τ0
(
11ω0

nk
− 18

)
7m2

0R5
kk2kτk

∣∣∣∣∣∣∣∣ ≪ 1 . (4.38)

Thus, the expression for the eccentricity tidal damping, τecc, can then be estimated as

τecc ≈
2 βka8

knk

21Gm2
0R5

k

(
Qk

k2k

)
. (4.39)

Assuming Q = 100 for the satellites, Eq. (4.39) leads to an τecc of approximately 250 Myr for
Miranda, 50 Myr for Ariel, 690 Myr for Umbriel, 3 700 Myr for Titania, and 23 000 Myr for Oberon.
These results are once more in agreement with the numerical results from Sect. 2.4.6, and show that tides
are very efficient to damp the eccentricities of Ariel and Miranda.

4.5 Capture/escape probability

The behaviour of the system when it crosses a MMR is not straightforward, since the problem has four
degrees of freedom. In order to get an idea of the critical eccentricities and inclinations that tend to
trap the system in resonance or skip it, we can nevertheless attempt to build a simplified one degree-of-
freedom model (e.g. Goldreich and Peale 1966; Henrard 1982; Batygin 2015).

The system can either be in resonance with the angle σ1, σ2, φ1, or φ2. Following Tittemore and
Wisdom (1988), we retained only the terms associated with each angle and obtained their associated one
degree-of-freedom simplified Hamiltonian (Eq. (3.96)). For the planar problem we have

Hk = Ak xkxk +K2 (xkxk)2 +
Bk

2
(x2

k + x2
k) , (4.40)

with
A1 = K1 + O1 + S1 + S2 , B1 = R1 , (4.41)

A2 = K1 + O2 + S1 + S3 , B2 = R2 . (4.42)

Whereas for the circular problem we have

Hk = Ak ykyk +K2 (ykyk)2 +
Bk

2
(y2

k + y2
k) , (4.43)

with
A1 = K1 + O3 + S1 + S5 , B1 = R4 , (4.44)

A2 = K1 + O4 + S1 + S6 , B2 = R5 . (4.45)

In this simplified case, we can directly apply the theory of the adiabatic invariant for resonance
capture (Henrard 1982; Henrard and Lemaı̂tre 1983). In general, the phase space of a given resonance
presents three different regions delimited by the separatrix (see Fig. 4.2): a libration region, with area
JR

k (green region of Fig. 4.2), and two circulation regions, one outside the libration region (white region
in Fig. 4.2) and another encircled by the separatrix, with an area JC

k (blue region of Fig. 4.2). Consider
an initial trajectory with some energyHk, smaller than the energy of the separatrix (see Eq. 4.48), that is,
Hk < H0. As the system evolves due to tides, the phase space and the areas of each region also change.
When the trajectory encounters the resonance, depending on the exact place where the separatrix is
crossed, the system can either evolve into the libration region (resonance) or into the inner circulation
region. We can compute the capture probability analytically, provided that the evolution is adiabatic,
that is, the tidal induced variations are much slower than the conservative eccentricity and inclination
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Figure 4.2: Energy level curves in the circular approximation for the single resonance Hamiltonian
(4.43), with A1, B1 (that is, for Ariel) and δ = −2.0 × 10−6. The libration regions are coloured in green
and have an area JR

k , the inner circulation region is coloured in blue and has an area JC
k .

variations. The capture probability can then be obtained by the modification of the phase space with
time, that is, by the change in the areas encircled by the separatrix (e.g. Yoder 1979; Henrard 1982):

Pcap =
J̇R

k

J̇R
k + J̇

C
k

. (4.46)

The area of the resonance region is obtained by integrating over the separatrix,

JR
k = i

∮
xk d xk or JR

k = i
∮

yk d yk . (4.47)

The energy of the separatrix (H0) can be found by finding the hyperbolic points (see Sect. 3.7) and
computing the Hamiltonians (4.40) and (4.43) at these points,

H0 = −
(Ak + Bk)2

4K2
. (4.48)

ReplacingH0 into Eq. (4.40), we find that, for the separatrix points in the planar approximation,

xk = −
2Akxk ±

√
−2Bk

(
Ak + 2x2

kK2 + Bk
)2
/K2

4x2
kK2 + 2Bk

, (4.49)

and replacingH0 into Eq. (4.43), we find that, for the separatrix points in the circular approximation

yk = −
2Akyk ±

√
−2Bk

(
Ak + 2y2

kK2 + Bk
)2
/K2

4y2
kK2 + 2Bk

. (4.50)

There are two solutions, the + corresponding to the branch between the libration and the outer circulation
region (J+k ), and the − corresponding to the branch between the libration and the inner circulation region
(J−k ). Therefore, we have JR

k = J
+
k +J

−
k and JC

k = −J
−
k , which gives (Eq. (4.46))
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Pcap =
J̇+k + J̇

−
k

J̇+k

= 1 +
∂J−k
∂Γ

/ ∂J+k
∂Γ

, (4.51)

where,

∂J−k
∂Γ
=

1
K2

2

arcsin


√
−
Bk

Ak

 + π2
 (K2A

′
k −AkK

′
2) +

1
K2

2

√
−
Bk +Ak

Bk
(K2B

′
k − BkK

′
2) , (4.52)

∂J+k
∂Γ
=

1
K2

2

arcsin


√
−
Bk

Ak

 − π2
 (K2A

′
k −AkK

′
2) +

1
K2

2

√
−
Bk +Ak

Bk
(K2B

′
k − BkK

′
2) , (4.53)

and A′k = ∂Ak/∂Γ, K ′2 = ∂K2/∂Γ, and B′k = ∂Bk/∂Γ. We note that since Γ is the only time-dependent
quantity in the expressions ofAk, K2, and Bk (Eqs. (3.69) to (3.88)), J̇k = Γ̇ ∂Jk/∂Γ (we neglected the
small changes in Θ from the oblateness coefficients, Ok).

In Fig. 4.3, we show the probability of capture in the σ1 (top left) and σ2 (bottom left) resonances
in the planar approximation, and in the φ1 (top right) and φ2 (bottom right) resonances in the circular
approximation, obtained with Eq. (4.51). For some eccentricity and inclination values, we also show
the results obtained with numerical integrations of the equations of motion derived from the simpli-
fied Hamiltonians (4.40) and (4.43) together with the secular tidal equations (Eqs. (4.22)−(4.27)). For
each initial eccentricity and inclination, we ran 100 simulations where the initial angles σk or φk were
uniformly sampled. The amount of simulations captured in resonance at the end of the simulation are
marked with a dot. The statistical fluctuation, represented as error bars, were estimated using binomial
statistics, with the expression

∆P =

√
Pcap

N

(
1 − Pcap

)
, (4.54)

where N = 100 is the number of simulations (e.g. Tittemore and Wisdom 1988). We observe that there is
a good agreement between the theoretical curve (Eq. (4.51)) and the output of the numerical simulations,
that is, the adiabatic approximation holds.

In Fig. 4.3, we observe that, in the planar approximation, for initial eccentricities lower than
5.0 × 10−3, the system is always captured in resonance. However, as we increase the initial eccen-
tricity, the capture probability quickly decreases, it becomes ∼ 50% for ek = 7.0 × 10−3, and drops to
∼ 30% for ek = 1.2 × 10−2. These results suggest that a system with nearly circular orbits cannot escape
the 5/3 MMR, but for eccentricities higher than about 7.0 × 10−3, it may be able to evade it.

As for the circular approximation, we observe that for initial inclinations lower than 0.05◦, the
system is always captured in resonance. However, as we increase the initial inclination, the capture
probability quickly decreases, it becomes ∼ 50% for Ik = 0.1◦, and drops to ∼ 30% for Ik = 0.2◦. These
results suggest that a system with nearly coplanar orbits cannot escape the 5/3 MMR, but for inclinations
higher than about 0.1◦, it may be able to evade it.

We cannot completely rely on the conclusions obtained with the simplified Hamiltonian, mainly for
two reasons. One is because the average secular Hamiltonian (Eq. (3.96)) depends on the eccentricities
and inclinations of the other body. When we simplified the Hamiltonian (4.40), for example, for x1, we
dropped all terms in x2 (and vice versa), which is equivalent to setting x2 = 0. However, if we set x2 , 0,
more terms appear in the Hamiltonian, leading to a different distribution in the capture probabilities. The
other reason is that the complete Hamiltonian has four degrees of freedom, and so for some combinations
of the eccentricity or inclination values, the system can be chaotic (see Tittemore and Wisdom (1988) and
Sects. 3.9 and 3.10). For the trajectories crossing the chaotic regions, the final outcome is unpredictable.
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Chapter 5

Numerical application to the 5/3
Ariel-Umbriel MMR

Ariel and Umbriel almost certainly encountered the 5/3 MMR at some time in the past. Depending on
the initial conditions of these satellites, the system may experience rather different behaviours. Near
circular and coplanar orbits are expected to become trapped in resonance, while some eccentricity or
inclination can lead to alternative evolution scenarios (Fig. 4.3). In order to get a global view of the
resonant dynamics with tides, in this chapter, we start by integrating the differential equations obtained
with the secular model (Chaps. 3 and 4). We then validate the results with the N-body model (Chap. 2).

5.1 Circular approximation

Since the inclination appears to play an important role in the passage through the 5/3 MMR between
Ariel and Umbriel, we begin by looking at this problem with a different perspective from previous studies
(Sect. 1.4). Instead of assuming a coplanar model (I1 = I2 = 0◦) with low initial eccentricities for Ariel
and Umbriel as in Tittemore and Wisdom (1988), we assume a circular model (e1 = e2 = 0) with low
inclinations using a similar approach to Tittemore and Wisdom (1989) for the study of the 3/1 MMR
between Miranda and Umbriel. With this approximation, we require none of Eqs. (3.98), (3.99), (4.22),
and (4.23), and the terms that depend on x1, x1, x2, or x2 can be removed from the equations of motion
(3.100), (3.101), and (4.24) to (4.29). For simplicity, in this section we assume the satellites as point
masses and solely consider tidal deformations raised on the planet.

The results in this section were published in Gomes and Correia (2023a).

5.1.1 Numerical setup

In Sect. 2.4.3, we have shown that Q0 = 8000 is a suitable value for the tidal dissipation within Uranus.
This value leads to τ0 ≈ 0.62 s (Eq. (2.69)) and k20τ0 = 0.064 s (Eq. (2.70)) and places the 5/3 Ariel-
Umbriel MMR encounter about 640 Myr in the past (Fig. 1.4). The physical properties of Uranus, Ariel,
and Umbriel can be found in Tables 1.1 and 1.2.

When a resonance is crossed, we cannot perform a backwards integration because we have a stochas-
tic evolution. Therefore, we need to place the system slightly before the nominal resonance encounter
(Eq. (3.105)),

a2/a1 ≈ (5/3)2/3 ≈ 1.4057 , (5.1)

and then integrate it forwards. We estimate that the 5/3 MMR was crossed about 640 Myr ago, with

a1/R0 = 7.39054 , a2/R0 = 10.38909 , (5.2)

where the total angular momentum of the system composed by Uranus, Ariel, and Umbriel is obtained
from the present system,

Σ = 9.367 247 × 10−10 M⊙ au2 yr−1 . (5.3)
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It is not possible to determine the exact semi-major axes prior to resonance crossing, but if the system
does not spend much time in resonance, the semi-major axes should not differ much from the estimation
given by Eq. (5.2). We still need to slightly decrease a1 (or increase a2) to move the system out of the
nominal resonance. Since tides are stronger in Ariel, we opted to shift a1 and kept a2 constant:

a1/R0 = 7.3892 , a2/R0 = 10.3891 . (5.4)

For some given initial inclination values, we compute the initial value of ∆ (Eq. (3.51)), which translates
into an initial δ > 0 (Eq. (3.103)).

Considering the satellites as synchronous, we determine the initial angular velocity of Uranus through
(Eqs. (3.49), (3.50), and (3.51)) using

ω0 =
1

C0
(Σ − Γ1 − Γ2 − Θ1 − Θ2) , (5.5)

so that the total angular momentum is conserved.

5.1.2 Comparison with analytical estimations

In general, tidal effects are weak and only correspond to small perturbations of the conservative dynamics
(adiabatic approximation). To verify that the numerical integrations do follow the theoretical predictions
from Sects. 3.7 and 4.3, we initially ran a few simulations and then superimposed the output in the
equilibria map as a function of δ (Fig. 3.1). Since ω0 > nk, tidal effects are expected to increase the value
of Γ (Eq. (4.26)) and thus decrease the value of δ (Eq. (3.103)). Therefore, the results of the simulations
as a function of time must be read from the right to the left in the Figs. 5.1 and 5.2.

In Fig. 5.1, we show the results of a first experiment with very small initial inclinations for both
satellites, I1 = I2 = 0.01◦. Initially, when δ > 0, the system is in circulation with a small amplitude
around the equilibrium point at zero (y1 = 0, y2 = 0). The system encounters the resonance when δ ≈ 0.
However, just before δ = 0, two stable equilibrium points emerge (corresponding to the 5/3 MMR),
and the equilibrium point at zero becomes unstable. The system is thus forced to follow one of the two
resonance branches. As the system evolves and δ < 0, the equilibrium point at zero becomes stable again.
However, because the amplitude of oscillation is small, the system closely follows the resonant branch,
which corresponds to an increase in the inclinations. We thus confirm that for initially near coplanar
orbits, the system cannot avoid capture in the 5/3 MMR (Sect. 4.5).

In Fig. 5.2, we show the results of a second experiment with higher initial inclinations for both satel-
lites, I1 = I2 = 0.1◦. The initial evolution for δ > 0 is similar to the case with lower initial inclinations
(Fig. 5.1), except that the amplitude of oscillation is ten times larger in this case (corresponding to a
system with a higher energy). As the system encounters the resonance at δ ≈ 0, it is not able to follow
one of the resonant equilibria and it remains in a chaotic region around the separatrix (Fig. 3.3f). In the
example on the left (Fig. 5.2a), after some time in the chaotic region with δ < 0, the system finds a way
into the libration region and follows one of the resonant branches in a quasi-periodic orbit (Fig. 3.3i).
On the other hand, in the example on the right (Fig. 5.2b), the system finds an alternative path back into
the circulation region around the equilibrium point at zero in a quasi-periodic orbit (Fig. 3.3k). We thus
confirm that for initial orbits with some inclination, the system experiences a chaotic regime for some
time (Sect. 3.9), after which it can either be captured in the 5/3 MMR, or escape it with some probability
(Sect. 4.5).

5.1.3 Capture probability

The present mean inclinations of Ariel and Umbriel (Table 1.2) are likely unchanged after the system
quits the 5/3 MMR (Eq. (4.37)). However, they may have been rather different before this encounter,
as the inclinations undergo some excitations while crossing the resonance (Chap. 3). The fact that the
system is not trapped in resonance at present, implies that the separatrix was crossed at some point and
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the inclinations had to experience some chaotic oscillations (Fig. 5.2b). Therefore, it is impossible to
simply integrate backwards and determine the exact inclination values prior to the resonance encounter.
To have a more clear idea of what the system may have been, we need to perform a statistical study of its
past evolution, starting with arbitrary initial inclinations for both Ariel and Umbriel and then reject those
that are not coherent with the present observations.

For that purpose, we explored a mesh of initial inclinations ranging between 0.001◦ and 0.2◦ with
a stepsize of 0.05◦. For each pair (I1, I2), we ran 1 000 simulations evenly sampled over the angle σ
(Eq. (3.38)) for 100 Myr, in a total of 25 000 experiments. In Table 5.1, we list the complete set of
initial conditions together with a summary of the outcome of the resonance crossing. The results of the
simulations are presented in percentage because they can be seen as a statistical distribution of a given
final evolution possibility. The total number of events of each kind can be simply obtained multiplying
the percent by ten.

For each run, we first evaluated whether capture in resonance occurred or not. Capture takes place
whenever at least one resonant angle, φk (Eqs. (3.42) and (3.43)), switches from circulation to libration,
and the mean motion ratio becomes approximately constant (n1/n2 ≈ 5/3). The mean motion ratio crite-
rion is usually more useful to automatically detect captures because inside chaotic regions the behaviour
of the resonant angles can be quite erratic. Conversely, capture does not occur when all resonant angles
remain in circulation, which introduces only a small jump in the mean motion ratios. For this last case,
we consider that the resonance is skipped. In Table 5.1, the relative number of these events is dubbed as
Ps (skip probability).

The capture probability can be simply evaluated as 1 − Ps. However, when a capture occurs, we still
have to distinguish between trajectories that remain captured for long periods of time from those that are
able to escape shortly after. Indeed, in many resonant lockings, the inclinations remain chaotic and the
system is able to evade the resonance after some time. In theory, all trajectories evading the resonance
could lead to the present system. In practice, that is not possible, because the longer the system stays
in resonance, the higher the final inclinations become (Fig. 5.1), and they cannot be conciliated with the
presently observed values (Table 1.2). Moreover, Ćuk et al. (2020) have shown that as long as Ariel
and Umbriel stay in resonance, the inclinations of the three other large satellites of Uranus also grow,
in particular that of Miranda. After only 10 Myr in resonance, is it impossible to explain the observed
values since tides are unable to efficiently damp the inclinations (Eq. (4.37)). Therefore, in our analysis,
we split the capture events into those that stay in resonance for more than 10 Myr and those that are
able to evade it before that time. In Table 5.1, the relative number of escapes is dubbed as Pe (escape
probability) and the relative number of long-term entrapments is referred to as Pc (capture for more than
10 Myr probability).

In most sets of the simulations shown in Table 5.1, all three scenarios described above (capture,
escape, and skip) are simultaneously present. To better illustrate the different possibilities, in Fig. 5.3,
we show one example of each case, corresponding to set #17 (with an initial I1 = 0.05◦ and I2 = 0.15◦).

In Fig. 5.3a, the system is permanently captured in resonance. Prior to the resonance encounter, the
semi-major axes ratio follows the asymptotic evolution predicted by Eq. (4.34). When the system comes
across the resonance (at t ≈ 11 Myr), the semi-major axes ratio becomes constant (since n1/n2 ≈ 5/3),
deviating considerably from the asymptotic line. Indeed, when capture occurs, instead of following the
black curve, the system follows the dashed line, corresponding to the nominal resonance (Eq. (5.1)).
Shortly after being captured, the system enters into the chaotic region. The inclinations of both satellites
are excited and grow steadily on average, in particular that of Ariel, which oscillates between the two
resonant branches (green lines in Fig. 3.1). For a time t ≈ 40 Myr, the system finds a way into the
libration region and becomes quasi-periodic, as in the example shown in Fig. 5.2a.

In Fig. 5.3b, the system is temporarily captured in resonance for less than 10 Myr. As in the previous
example, the semi-major axes ratio initially follows the asymptotic evolution predicted by Eq. (4.34),
but it switches to a constant ratio as soon as capture in resonance occurs (at t ≈ 11 Myr). As before,
during the resonant entrapment, the system enters into the chaotic region and the inclinations of both
satellites start to grow. However, for a time around t ≈ 18 Myr (that is, just 7 Myr after being captured),
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# I1 (◦) I2 (◦) Pc(%) Pe(%) Ps(%) ⟨I1⟩ (◦) ∆I1 (◦) ⟨I2⟩ (◦) ∆I2 (◦)
1 0.001 0.001 100.0 − −

2 0.05 0.001 100.0 − −

3 0.10 0.001 99.2 0.8 −

4 0.15 0.001 100.0 − −

5 0.20 0.001 100.0 − −

6 0.001 0.05 100.0 − −

7 0.05 0.05 100.0 − −

8 0.10 0.05 97.3 2.5 0.2
9 0.15 0.05 82.4 10.5 7.1 0.149 0.062 0.056 0.023
10 0.20 0.05 80.9 9.3 9.8 0.187 0.054 0.047 0.019
11 0.001 0.10 90.1 9.2 0.7 0.170 0.041 0.047 0.016
12 0.05 0.10 83.1 13.6 3.3 0.167 0.050 0.041 0.022
13 0.10 0.10 50.6 28.5 20.9 0.145 0.059 0.049 0.020
14 0.15 0.10 38.8 19.2 42.0 0.119 0.068 0.068 0.020
15 0.20 0.10 36.2 15.8 48.0 0.141 0.066 0.081 0.023
16 0.001 0.15 39.6 26.5 33.9 0.112 0.068 0.083 0.019
17 0.05 0.15 38.6 25.8 35.6 0.114 0.069 0.095 0.024
18 0.10 0.15 35.1 25.1 39.8 0.088 0.081 0.109 0.017
19 0.15 0.15 31.0 23.2 45.8 0.099 0.082 0.127 0.023
20 0.20 0.15 30.0 15.9 54.1 0.104 0.085 0.136 0.021
21 0.001 0.20 32.7 26.2 41.1 0.107 0.073 0.144 0.018
22 0.05 0.20 31.9 28.6 39.5 0.116 0.070 0.152 0.018
23 0.10 0.20 30.1 23.9 46.0 0.109 0.072 0.162 0.015
24 0.15 0.20 27.1 22.1 50.8 0.117 0.075 0.173 0.013
25 0.20 0.20 27.0 15.2 57.8 0.119 0.076 0.182 0.014

Table 5.1: Initial conditions and summary of the numerical simulations’s results of the 5/3 MMR cross-
ing. Ik is the initial inclination of each satellite; Pc is the percentage of simulations trapped in resonance
more than 10 Myr; Pe is the percentage of simulations that were captured in resonance, but escaped in
less than 10 Myr; Ps is the percentage of simulations that skipped the resonance; and ⟨Ik⟩ and ∆Ik are the
mean and the standard deviation, respectively, of a Rice distribution adjusted to the final results.

the system finds a way outside the chaotic region that breaks the resonant locking and returns into the
circulation region around the equilibrium point at zero (blue line in Fig. 3.1). From that point on, the
semi-major axes ratio again follows the asymptotic evolution predicted by Eq. (4.34), though restarting
with a slightly higher ratio, and the inclinations of both satellites stabilise around a given constant mean
value. The final inclination of Ariel is always higher than its initial value because of the forcing during
the resonant phase. The final inclination of Umbriel is less impacted by this mechanism and it does not
have a systematic trend because it oscillates around the initial value with a large amplitude during the
resonance crossing.

Finally, in Fig. 5.3c, the system shortly skips the resonance. As usual, the semi-major axes ratio
initially follows the asymptotic evolution predicted by Eq. (4.34), and it undergoes some perturbations
during the resonance crossing. However, it quickly returns to the asymptotic evolution, though restarting
with a slightly lower ratio. In this case, there is almost no chaotic evolution for the inclinations because,
just after crossing the separatrix, the system directly goes into the circulation region around the equilib-
rium point at zero (blue line in Fig. 3.1). The inclination of Ariel initially briefly grows since, owing to
the topology of the 5/3 MMR (Fig. 3.2), it is not possible to reach the inner circulation region without
moving around the resonant equilibrium for a short time (less than 1 Myr). Since in the example #17 the
initial inclination of Ariel is indeed relatively small, for a short moment the inclination of Ariel follows
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Figure 5.3: Three examples of a system crossing the 5/3 MMR with initial I1 = 0.05◦ and I2 = 0.15◦ (set
#17 in Table 5.1). We show the ratio between the semi-major axes (top), the inclination of Ariel (middle),
and the inclination of Umbriel (bottom) as a function of time. Each column corresponds to a different
simulation. We show an example of a system that is permanently caught in resonance (a), one that is
captured but evades the resonance in less than 10 Myr (b), and another that skips the resonance without
capture (c). The blue line gives the asymptotic evolution predicted by Eq. (4.34), while the dashed line
gives the position of the nominal resonance (Eq. (5.1)). The red dots mark the present mean inclinations
(Table 1.2).

the resonant branch and has to increase (green line in Fig. 3.1). Nevertheless, as soon as the equilibrium
point at zero becomes stable, the system moves back into the circulation region and the inclination of
Ariel drops. In the example shown in Fig. 5.3c, the inclination of Ariel decreases to a mean value smaller
than the initial one, but actually in other examples it can be anything between zero and the maximum
previously attained. The brief resonant excitation only involves the angle φ1, and so it does not impact
the inclination of Umbriel much. Its amplitude grows due to the mutual interactions with Ariel, but the
mean value remains constant. However, as the resonance is skipped, the mean value of Umbriel incli-
nation suddenly drops to a lower level. This reduction is always observed because the inner circulation
region is confined within a region of low inclination for Umbriel, in particular for δ values very close to
zero (Fig. 3.2c).

Fig. 5.3c also provides an example of a simulation where the system crosses the 5/3 MMR and sub-
sequently evolves into the presently observed configuration (red dots, taken from Table 1.2). Not all
simulations #17 that skip the resonance end in the present system, though a significant number is con-
sistent with it. On the other hand, some simulations starting with different initial conditions (Table 5.1)
can also evolve into the present state. Therefore, only a more refined analysis of the final distribution of
the inclinations of both Ariel and Umbriel can provide more insight into the occurrence likelihood of the
currently observed system.
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5.1.4 Statistics

For the set of simulations #1 − #8 (Table 5.1), that is to say those with initial I2 ≤ 0.05◦, the system is
captured in resonance nearly in 100% of the cases. For the initial inclination of Umbriel, these results
are thus in agreement with the predictions of the simplified model presented in Sect. 4.5. Since capture
in the 5/3 MMR is not observed today, we can immediately exclude this range of initial conditions. We
hence conclude that, regardless of the initial inclination of Ariel, the system requires some moderate
initial inclination for Umbriel (I2 ≳ 0.1◦) to evolve into the present state.

The resonance crossing is a stochastic process and therefore the same initial inclinations with a
slightly different initial resonant angle may end up in a completely different final state. In all of the
other sets of simulations that we performed (#9 − #25), the system can either remain captured for a
long time, escape the resonance in less than 10 Myr, or simply skip it. In general, as we increase the
initial inclinations of both satellites, the probability of capture in resonance decreases, in conformity with
the analysis from Sect. 4.5. Interestingly, the number of trajectories temporarily captured for less than
10 Myr does not change much with the initial conditions, they occur around 20% − 25% of the time.
This suggests that the chaotic diffusion, which characterizes this transient regime, is not very sensitive
to the initial inclinations. Finally, as a result of the previous two outcomes, as we increase the initial
inclinations of both satellites, the number of simulations that simply skip the resonance also increases.

For those systems that skip or escape the 5/3 MMR, one can ask if the final inclinations are in
agreement with the present observations. However, there is not an easy answer because of the chaotic
diffusion. Indeed, the final inclinations of Ariel and Umbriel never end exactly with the same values,
but they rather follow some kind of statistical distribution. Considering only the trajectories that quickly
evade or skip the resonance (Pe and Ps), we can build a histogram to better understand how they are
distributed for each set of simulations #9 − #25 (i.e. we only consider simulations with less than 95% of
capture probability).

In Fig. 5.4, we show three examples of histograms for the sets #9 (I1 = 0.15◦, I2 = 0.05◦), #17
(I1 = 0.05◦, I2 = 0.15◦), and #19 (I1 = 0.15◦, I2 = 0.15◦). The final inclinations of Ariel and Umbriel
are distributed in classes with a size of 0.015◦ and the number of events in each class is normalised by
the total number of trajectories that quickly evaded or skipped the resonance. We observe that for Ariel,
the final inclinations are more or less evenly distributed between 0.01◦ and 0.25◦, while for Umbriel the
final inclinations closely pile up around some mean value.

To better analyse the results in a systematic way, and since Ik ∝ |yk| (Eq. (3.95)), we fitted a Rice
distribution to each data set (Rice 1945), which describes the modulus of a random walk variable in two
dimensions. This function has the form

f (I) =
I
∆I2 B0

(
I ⟨I⟩
∆I2

)
exp

(
−

I2 + ⟨I⟩2

2∆I2

)
, (5.6)

where ⟨I⟩ is the mean inclination, ∆I is the standard deviation, and B0(x) is the modified Bessel function,
given by

B0 (x) =
∞∑

n=0

x2n

n!2 . (5.7)

In Fig. 5.4, for each histogram we also show the curve of the Rice distribution corresponding to the best
fit parameters ⟨I⟩ and ∆I. We verified there is a reasonably good agreement between the histogram and
the derived distribution, in particular for the final inclination of Umbriel. We hence adopted the best fit
parameters obtained in this way to characterise each data set.

The statistical results obtained are listed in Table 5.1. From a detailed analysis, for the trajecto-
ries that are not trapped in resonance, we observe the following: for Ariel, regardless of the its initial
inclination value, the final inclinations are always more or less uniformly distributed1 in the interval

1We note that by construction, the Rice distribution must be zero when the inclination is zero and it has to peak around the
mean value (Eq. (5.6)). As the final inclinations of Ariel are more or less uniformly distributed, a step function would provide
a better adjustment. Nevertheless, we kept the Rice distribution for Ariel for simplicity since it is able to correctly capture the
mean value and the dispersion around it.
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Figure 5.4: Histograms for the final distribution of the inclinations of Ariel (top) and Umbriel (bottom)
for different sets of initial conditions. We also plotted the best fit Rice distribution (Eq. (5.6)) to each
histogram (red curve) and the corresponding mean inclination, ⟨Ik⟩, and standard deviation, ∆Ik. We
used the sets #9 (left), #17 (centre), and #19 (right) from Table 5.1.

I1 ∈ [0.01◦, 0.25◦]; and for Umbriel, the final inclinations are gathered around the mean value with a
standard deviation ∆I2 ≈ 0.02◦, and the mean value for the final inclination of Umbriel increases with
the initial inclinations of both satellites. A more subtle analysis additionally shows that the average final
inclination of Umbriel is always lower than its initial value and it also depends on the initial inclination
of Ariel. It is approximately given by (see Fig. 5.5)

⟨I2⟩ − I2 ≈ −0.06◦ + 0.22 I1 , (5.8)

that is, to say the lower the initial inclination of Ariel is, the larger the decrease observed in the initial
inclination of Umbriel.

The present average inclinations of Ariel and Umbriel are I1 ≈ 0.02◦ and I2 ≈ 0.08◦, respectively
(Table 1.2). After crossing the 5/3 MMR, the inclination of Ariel is always approximately uniformly dis-
tributed and not very sensitive to the initial conditions. The presently observed value is thus compatible
with near zero or moderate initial inclinations of both satellites (Ik < 0.2◦), but no additional constraints
can be derived. However, the final inclination of Umbriel strongly depends on the initial inclination of
both satellites (Eq. (5.8)). We hence conclude that the best configuration that reproduces the present data
was obtained for initial I1 ≈ 0.20◦ and I2 ≈ 0.10◦ (#15, Table 5.1) or initial I1 ≲ 0.05◦ and I2 ≈ 0.15◦

(#16 and #17, Table 5.1).

The satellites of Uranus were likely formed in a circumplanetary disk (e.g. Pollack et al. 1991;
Szulágyi et al. 2018; Ishizawa et al. 2019; Inderbitzi et al. 2020), and so the initial inclinations should
have been extremely small. Therefore, initial inclinations of 0.15◦ or higher are very difficult to explain.
However, Umbriel was most likely previously involved in a 3/1 MMR with Miranda (Tittemore and Wis-
dom 1989, 1990), which can excite the inclination of Umbriel to 0.15◦ prior to the encounter with the
5/3 MMR. We hence conclude that, neglecting the effects of the eccentricities, the most likely scenario
for the initial inclinations of Ariel and Umbriel is I1 ≲ 0.05◦ and I2 ≈ 0.15◦ (#16 and #17, Table 5.1).
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Figure 5.5: Variation in the average inclination of Umbriel after crossing the 5/3 MMR as a function of
the initial inclination of Ariel. The points are taken from the simulations #11 to #25 in Table 5.1, and the
line gives the adjustment of a linear regression.

5.2 Planar approximation

The planar approximation (I1 = I2 = 0◦) was previously analysed in the work of Tittemore and Wisdom
(1988), which involved both analytical and numerical studies. Still, the lack of computational power in
the 1980’s as compared to today, did not allow the authors to perform the same systematic numerical
analysis applied in Sect. 5.1 for the circular approximation. Thus, in this section we adopted the same
grid method used in Sect. 5.1 to replicate the results from Tittemore and Wisdom (1988) and determine
which is the best configuration of initial eccentricities that allow to reproduce the current architecture of
the satellite system for a planar model.

5.2.1 Numerical setup

As done for the circular approximation, we departed from the semi-major axes at nominal resonance
(Eq. (5.2)), and slightly decreased a1 to move the system out of the nominal resonance (Eq. (5.1)):

a1/R0 = 7.3889 , a2/R0 = 10.3891 . (5.9)

The physical properties of Uranus and the satellites can be found in Tables 1.1 and 1.2. The to-
tal angular momentum was obtained from the present system (Eq. (5.3)). The initial rotational rate of
Uranus, ω0, is obtained from the conservation of Σ using Eq. (5.5) with the pre-resonance semi-major
axes (Eq. (5.9)), and considering that the satellites’ rotation are synchronous with their orbital period
(nk = ωk). For the tidal dissipation, we adopted again k20τ0 = 0.064 s (Eq. (2.70)). To prevent that tidal
dissipation on the satellites damp the eccentricity of the satellites, resulting in a lower eccentricity at the
resonance encounter than the intended, we neglected again the tidal effects acting on the satellites, i.e.,
τS = 0 s. We note that, in the planar approximation, I1 = I2 = 0◦, thus the xx and yk coordinates on
the equations of motion are decoupled and we can disregard the evolution of yk (Eqs. (3.100), (3.101),
(4.24), and (4.25)). We numerically integrated Eqs. (3.98), (3.99), (4.22), (4.23), (4.26), (4.27), (4.28),
and (4.29).

5.2.2 Impact of the initial eccentricity

Adopting the same approach used for the study on the impact of the inclination (Sect. 5.1), we explored
a mesh of initial eccentricities ranging between 1 × 10−5 up to 2 × 10−2, with a stepsize of 5 × 10−3. For
each combination (e1, e2), we integrated a set of 1 000 simulations evenly sampled over the resonance
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⟨e1⟩ ∆e1 ⟨e2⟩ ∆e2
# e1 e2 Pc(%) Pe(%) Ps(%) (×10−3) (×10−3) (×10−3) (×10−3)
1 1.0 × 10−5 1.0 × 10−5 100.0 − −

2 5.0 × 10−3 1.0 × 10−5 100.0 − −

3 1.0 × 10−2 1.0 × 10−5 78.5 11.9 9.6 3.2 0.41 3.4 1.4
4 1.5 × 10−2 1.0 × 10−5 54.8 30.9 14.3 7.5 1.3 5.4 1.5
5 2.0 × 10−2 1.0 × 10−5 40.1 20.2 39.7 12.0 1.2 6.8 1.3
6 1.0 × 10−5 5.0 × 10−3 100.0 − −

7 5.0 × 10−3 5.0 × 10−3 99.9 0.0 0.1
8 1.0 × 10−2 5.0 × 10−3 70.5 15.9 13.6 4.0 0.56 3.9 1.4
9 1.5 × 10−2 5.0 × 10−3 48.6 19.4 32.0 8.5 1.3 5.4 1.4

10 2.0 × 10−2 5.0 × 10−3 34.2 19.2 46.6 13.4 1.2 7.0 1.4
11 1.0 × 10−5 1.0 × 10−2 100.0 − −

12 5.0 × 10−3 1.0 × 10−2 99.5 0.0 0.5
13 1.0 × 10−2 1.0 × 10−2 79.0 12.4 8.6 5.3 1.3 7.7 1.3
14 1.5 × 10−2 1.0 × 10−2 61.9 19.4 18.7 9.4 2.0 8.5 1.4
15 2.0 × 10−2 1.0 × 10−2 50.1 21.8 28.1 14.0 2.0 10.4 1.1
16 1.0 × 10−5 1.5 × 10−2 100 − −

17 5.0 × 10−3 1.5 × 10−2 99.8 0.0 0.2
18 1.0 × 10−2 1.5 × 10−2 89.2 7.6 3.2 7.0 1.9 11.7 1.2
19 1.5 × 10−2 1.5 × 10−2 72.3 15.9 11.8 10.6 3.2 12.0 1.7
20 2.0 × 10−2 1.5 × 10−2 54.3 25.9 19.8 15.2 3.1 13.4 2.2
21 1.0 × 10−5 2.0 × 10−2 98.2 1.2 0.6
22 5.0 × 10−3 2.0 × 10−2 99.9 0.1 0.0
23 1.0 × 10−2 2.0 × 10−2 93.0 3.3 3.7 10.3 3.3 14.8 2.3
24 1.5 × 10−2 2.0 × 10−2 78.0 11.1 10.9 11.7 4.2 14.7 2.9
25 2.0 × 10−2 2.0 × 10−2 65.0 20.2 14.8 15.8 4.2 16.3 2.8

Table 5.2: Initial conditions and summary of the numerical simulations’s results of the 5/3 MMR crossing
in the planar approximation (I1 = I2 = 0◦). ek is the initial inclination of each satellite; Pc is the
percentage of simulations trapped in resonance more than 10 Myr; Pe is the percentage of simulations
that were captured in resonance, but escaped in less than 10 Myr; Ps is the percentage of simulations
that skipped the resonance; and ⟨ek⟩ and ∆ek are the mode and the variance, respectively, of a Lognormal
distribution adjusted to the final results.

angle σ, for 100 Myr. In Table 5.2, we display the 25 different combinations of (e1, e2) studied, as well
as the percentage of simulations that were permanently captured in the 5/3 Ariel-Umbriel MMR (Pc),
captured for less than 10 Myrs (Pe) or skipped the resonance (Ps).

We note that, for initial e1 < 0.005, the eccentricity of Umbriel does not affect the outcome of the
resonance crossing, and capture is almost certain, independently of the initial e2 value. However, for
initial e1 ≥ 0.010, increasing the initial e2 promotes an increase in the probability of capture. Thus, the
highest probabilities of escaping/skipping the resonance, 1−Pc, are achieved with simulations combining
a high eccentricity of Ariel and a low eccentricity of Umbriel. This is a configuration particularly difficult
to explain, since, as seen in Sect. 4.4, tides are more effective to damp e1 than e2, with Umbriel’s
eccentricity damping timescale being one order of magnitude larger than Ariel’s.

In the planar approximation, the mechanism of capture in resonance is similar to the one for the
circular approximation. However, here it takes place whenever at least one of the resonant angles, σk

(Eqs. (3.42), (3.43)), switches from circulation to libration. For each simulation, we evaluated whether
capture in resonance occurred by analysing if the semi-major axes ratio a2/a1 becomes constant, close
to the nominal resonance value (Eq.5.1).
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Figure 5.6: Three examples of a system crossing the 5/3 MMR with initial e1 = 1.5 × 10−2 and
e2 = 5.0 × 10−3 (set #9 in Table 5.2). We show the ratio between the semi-major axes (top), the ec-
centricity of Ariel (middle), and the eccentricity of Umbriel (bottom) as a function of time. Each column
corresponds to a different simulation. We show an example of a system that is permanently caught in res-
onance (a), one that is captured but evades the resonance in less than 10 Myr (b), and another that skips
the resonance without capture (c). The blue line gives the asymptotic evolution predicted by Eq. (4.34),
while the dashed line gives the position of the nominal resonance (Eq. (5.1)).

In Fig. 5.6, we provide examples from the set #9 (with initial e1 = 1.5 × 10−2 and e2 = 5.0 × 10−3)
of the three possible outcomes into which we grouped the results. If the system is captured for more
than 10 Myr, we consider that it is permanently captured (Fig. 5.6a). In Fig. 5.6a, up to t ≈ 18 Myr,
that is, before the resonance encounter, the semi-major axes ratio a2/a1 follows the asymptotic evolution
predicted by Eq. (4.34), represented as a blue line. Since we only consider dissipation in the planet,
the eccentricities remain nearly unchanged until the resonance encounter (Eq. (4.35)). However, as the
system approaches the resonance, at t ≈ 10 Myr, the oscillation amplitude of a2/a1 and e1 grow, together
with the average value of e2. When the resonance is crossed, the semi-major axes ratio becomes constant
(a2/a1 ≈ 1.4057). Shortly after resonance capture, the system starts to evolve chaotically, considerably
increasing the oscillation amplitude of the eccentricities of both satellites. The eccentricity of Ariel
ranges between 5.0 × 10−3 < e1 < 1.5 × 10−2, and the eccentricity of Umbriel between 0 < e2 < 10−2.
During the resonance entrapment, the eccentricities of both satellites continuously grow, in particular for
Umbriel.

In Fig. 5.6b, the system, evades the 5/3 MMR in less than 10 Myr after being captured. Up to the
break of the resonance, at t ≈ 24 Myr, the evolution of the system is similar to the case of permanent
capture (Fig. 5.6a). Only now, after the system escapes the resonance, the semi-major axes ratio a2/a1
follows once more the predicted asymptotic evolution (Eq. (4.34)). The large amplitude of libration of
the eccentricity enables Ariel to escape the resonance with an eccentricity value smaller than the initial
value previous to the resonance encounter. As for Umbriel, the increase of the average value near the
resonance and during resonant entrapment, excites the eccentricity to a higher value than the initial one.

In Fig. 5.6c, we show an example of a simulation where the system shortly escapes the resonance.
Once more, until the resonance encounter, the semi-major axes ratio follows the asymptotic evolution
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predicted by Eq. (4.34), with the eccentricity of Umbriel increasing in the vicinity of the resonance. In
this case, the system avoids entrapment and skips the nominal resonance. After the resonance crossing,
a2/a1 drops abruptly and returns to the asymptotic evolution. The same step decrease is observed for the
eccentricities of Ariel and Umbriel. Note that, despite the final post resonance eccentricity of Ariel is
lower than the initial one, the eccentricity of Umbriel skips the MMR with a higher value than the initial
one, due to an increase in its average value during the resonance approach.

To properly analyse the final distribution of the eccentricities of Ariel and Umbriel, we built his-
tograms with the final values of e1 and e2 of the simulations that either escaped or skipped the resonance.
In order to ensure statistical significance, we only consider sets of simulations with less than 95% of
capture probability, that is, for initial e1 > 5.0 × 10−3.

In Fig.5.7, we show three examples of histograms for the sets #4 (e1 = 1.5 × 10−2, e2 = 10−5), #9
(e1 = 1.5 × 10−2, e2 = 5.0 × 10−3), and #20 (e1 = 2.0 × 10−2, e2 = 1.5 × 10−2). The final eccentricities
of Ariel and Umbriel are distributed in classes with a size 1.5 × 10−3, and the number of events in each
class is normalized by the total number of trajectories that quickly escaped or skipped the resonance.
We noticed that the distribution of eccentricities of both Ariel and Umbriel are piled-up around a mean
value. However, the distribution of Ariel displays a smaller group in the vicinity of the class with higher
counts, that grows with the initial e2.

To analyse the results systematically, we fitted a distribution to each data set. We observe that the
shape of the final eccentricity distribution differs from that of the final inclination distribution in the cir-
cular approximation (Sect. 5.2). In the circular approximation, the final inclination distribution gradually
increases, reaching the mean value. Conversely, in the planar approximation, the final eccentricities can
quickly accumulate around the mean value. Thus, the Rice distribution is no longer suitable to evaluate
the planar approximation. After trying several distributions, we have found that the Lognormal distribu-
tion is the most suitable. The probability density function (PDF) of the Lognormal distribution is given
by

f (e) =
1

e η
√

2π
exp

(
−

(ln e − υ)2

2 υ2

)
, (5.10)

where υ and η are the parameters that define the distribution. The most likely value, that is, the peak of
the PDF, is given by

⟨e⟩ = exp (υ − η2) , (5.11)

and the variance is given by
∆e =

(
exp (η2) − 1

) (
exp (2υ + η2)

)
. (5.12)

The statistical results obtained are listed in Table 5.2. The final eccentricities of Umbriel are gathered
around the mean value with a variation ∆e2 ≈ 2 × 10−3. The same is also observed for Ariel when e2 is
small. However, in addition to the cluster around the mean value (main cluster), we also observe a smaller
cluster to the right of the main cluster, that is, around a slightly larger mean value (secondary cluster).
As e2 increases, the secondary cluster also grows, resulting in the most likely value of the distribution
lying at an intermediate value between the two clusters. Nevertheless, for e1 ≤ 2.0×10−2 the Lognormal
provides a good description of the distribution, and we observe that the mean final eccentricity of Ariel
and Umbriel increase with the initial eccentricities of both satellites.

Tidal forces most likely damp the eccentricity of Ariel to a value closer to the currently observed
e1 = 1.22 × 10−3 (Table 1.2) if the eccentricity just after the 5/3 passage is about ∼ 10−2 (Sect. 4.4).
On the other hand, the eccentricity tidal damping in the Umbriel is less effective than in Ariel. There-
fore, the final eccentricity of Umbriel after the resonance cross must be close to the currently observed
e2 = 3.94 × 10−3 (Table 1.2). We hence conclude that, in the planar secular approximation, the best
configurations that reproduce the present data were obtained for 1.5 × 10−2 < e1 < 2.0 × 10−2 and
e2 < 5.0 × 10−3 (#4, #5, #9 and #10, Table 5.2). This configuration is difficult to explain when we ac-
count for tidal forces, that efficiently damp the eccentricity of Ariel. The theoretical asymptotic evolution
displayed in Fig.1.4 shows that there are none previous low order two-body resonance for some Gyr.
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Figure 5.7: Histograms for the final distribution of the eccentricities of Ariel (top) and Umbriel (bottom)
for different sets of initial conditions. We also plotted the best fit Lognormal distribution (Eq. (5.10)) to
each histogram (red curve) and the corresponding mean eccentricities, ⟨ek⟩, and standard deviation, ∆ek.
We used the sets #4 (left), #9 (centre), and #20 (right) from Table 5.2.

5.3 Eccentric-inclined case

The study of the circular and planar approximations allowed us to gain important insights regarding
the individual role of the inclinations and the eccentricities for the outcome of the passage through the
5/3 MMR between Ariel and Umbriel. Yet, in a real system, the evolution of the eccentricities and the
inclinations are coupled, and mutually perturb each other. Therefore, for a comprehensive study of the
evolution of Ariel and Umbriel during the resonance crossing, we must take into account the case where
both eccentricities and inclinations are involved. As seen in Chaps. 3 and 4, this problem has 4 degrees
of freedom for the conservative motion, and 8 degrees of freedom for the dissipative motion (rotation of
the two satellites), rendering analytical studies very difficult. As a result, here we build on the analytical
results obtained for the approximated cases and perform numerical integrations, using the same methods
used to study circular and planar cases (Sect. 5.1 and 5.2). In this section, we integrate the complete set
of equations of motion, that is, Eqs. (3.98) to (3.101) for the conservative motion and (4.22) to (4.29) for
the tidal evolution.

5.3.1 Numerical setup

Up to now, we disregarded the tidal effects of Uranus acting on the satellites, that is, we considered
τS = 0. However, we note that the tidal evolution of the eccentricity (Eq. (4.39)) mainly depends on
the tidal strength of the satellites (QS /k2k ). Therefore, for completeness, from now on we also take into
account the tidal effects acting on the satellites.

It is common to choose a tidal strength QS = 100 for the satellites (e.g. Murray and Dermott 1999;
Ćuk et al. 2020). With this value, we obtain τecc of about ∼ 60 Myr for Ariel and ∼ 660 Myr for
Umbriel. Considering the results from Sect. 5.2 (see also Tittemore and Wisdom 1988; Ćuk et al. 2020),
the satellites can leave the 5/3 MMR with eccentricities of about ∼ 0.01. This means that, during the
640 Myr of tidal evolution from the resonance passage to the present, Ariel’s eccentricity should have
eroded to values smaller than the ones currently observed. In order to reproduce the current eccentricity
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of Ariel, we need to adjust QS to reproduce the current e1 = 1.22 × 10−3. By setting QS = 500, the
τecc of Ariel increases to 290 Myr, which places e1 close to the currently observed value after leaving
the 5/3 MMR with e1 ≈ 0.01. Although Umbriel’s τecc is one order of magnitude higher than Ariel’s, for
coherence, we adopt the same QS , resulting in an eccentricity damping timescale of 3300 Myr.

As done for the previous cases, we slightly decreased the semi-major axis of Ariel (a1), while keep-
ing a2 constant, in order to place the system just before resonance at the beginning of the simulation
(Eq. (5.2)). However, to ensure that δ > 0 (Eq. (3.103)) for a wide range of combinations of eccentrici-
ties and inclinations, here we need to shift a1 slightly more than in the previous sections:

a1/R0 = 7.3868 , a2/R0 = 10.3891 . (5.13)

The total angular momentum was again estimated from the present configuration (Eq. (5.3)), the satellites
were initially considered as synchronous, and the initial ω0 estimated using Eq. (5.5).

5.3.2 Capture probability

Once again, we start by exploring a mesh of initial eccentricities ranging between 10−5 and 2.0 × 10−2,
with a stepsize of 5.0 × 10−3, and initial inclinations ranging between 0.001◦ and 0.2◦, with a stepsize
of 0.05◦, totalling 625 different initial combinations of e1, e2, I1, and I2. For each initial combination,
we ran 1 000 simulations for 100 Myr, evenly sampled over the resonance angle σ (Eq. (3.32)). In
Table 5.3, the complete set of initial combinations is listed. For each run, we determine if the system is
captured in resonance, by analysing if the semi-major axes ratio a2/a1 becomes constant. We distinguish
between simulations that were captured for more than 10 Myr (Pc), and simulations that either skipped
the resonance or escaped in less than 10 Myr (Pe = 1 − Pc). In Table 5.3, we display Pe for each initial
combination of eccentricities and inclinations.

When capture takes place, at least one of the resonant angles σk and φk switches from circulation to
libration, that is, dσk/dt ≈ 0 or dφk/dt ≈ 0. The exact mean motion ratio at the resonance encounter is
given by

n1

n2
=

5
3
−

2
3
υ

n2
(5.14)

where υ = gk ≃ dϖk/dt for σk and υ = sk ≃ dΩk/dt for φk. In other words, υ is the frequency of
the secular modes (Sect. 2.4.2). From Table 2.3, we observe that g2 > g3 > s3 > s2. Since the exact
n2/n1 = 5/3 is approached from above (d/dt(n1/n2) < 0), φ1 is the first resonant argument that the
systems encounters. This can be seen in Fig. 5.8a, with initial e1 = 10−5, e2 = 10−5, I1 = 0.001◦, and
I2 = 0.001◦. Before the resonance encounter, the semi-major axes ratio follows the asymptotic evolution
predicted by Eq. (4.34), and the resonant arguments σk and φk circulate. At t ∼ 30 Myr, the semi-major
axes ratio locks with a value slightly higher than 5/3. Simultaneously, the resonance angles φ1 and φ2
start to librate around 90◦ and −90◦, respectively, while the angles σk continue to circulate. Just after the
capture into resonance, the inclinations of both satellites start to grow steadily on average.

In Fig. 5.8b, with initial e1 = 10−5, e2 = 5 × 10−3, I1 = 0.001◦, and I2 = 0.001◦, up to t ≈ 40
Myr, the initial evolution is similar to the evolution observed in Fig. 5.8a, where capture occurs at t ≈ 32
Myr. However, at t ≈ 40 Myr, φk leaves the libration region, and the eccentricities and the inclinations
start to evolve chaotically. After ∼ 7 Myr in this regime, the resonance angles σk start to librate, and the
eccentricities grow, while the inclinations become constant. Note that, between t ≈ 40 Myr and t ≈ 47
Myr, there is a decrease in the mean motion ratio constant value, resulting from the switch between the
resonance arguments, from φk to σk (Eqs. (3.40), (3.41), (3.42), and (3.43)).

For higher initial inclinations, the system can evade capture into the resonance arguments φk, and
becomes directly trapped into the arguments σk. In Fig. 5.9c, with initial e1 = 10−5, e2 = 10−2,
I1 = 0.15◦, and I2 = 0.20◦, the system is captured inside the chaotic region at t ≈ 32 Myr, with both
eccentricities and inclinations evolving chaotically. Shortly after, at t ≈ 36 Myr, σ1 and σ2 start to librate
around 90◦ and −90◦, respectively, and the eccentricities enters the libration region, while the inclinations
become constant. Despite different evolutionary paths for entrapment in the 5/3 MMR are observed in
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(a) Capture into φk resonances
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Figure 5.8: Two examples of a system crossing the 5/3 Ariel-Umbriel MMR with the secular model and
initial: (a) e1 = e2 = 10−5 and I1 = I2 = 0.001◦; (b) e1 = 10−5, e2 = 5.0 × 10−3 and I1 = I2 = 0.001◦. (a)
represents an example of permanent capture within the resonance argumentsσ1 andσ2 and (b) represents
capture within the resonant arguments σ1 and σ2, followed by resonance entrapment within φ1 and φ2.
From the top to the bottom figures, we show the semi-major axes ratio a2/a1; the eccentricities of Ariel
and Umbriel, respectively; the resonant arguments σ1 and σ2; the inclinations of Ariel and Umbriel,
respectively; and the resonance arguments φ1 and φ2. The blue line gives the asymptotic evolution
predicted by Eq. (4.34), while the dashed line gives the position of the nominal resonance (Eq. (5.1)).
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Figure 5.9: Two examples of a system crossing the 5/3 Ariel-Umbriel MMR with the secular model
and initial: (c) e1 = e2 = 10−5 and I1 = I2 = 0.2◦; (d) e1 = 10−2, e2 = 5.0 × 10−3, I1 = 0.1◦, and
I2 = 0.05◦. (c) represents an example of permanent capture within the resonance arguments σ1 and σ2
and (d) represents permanent chaotic capture. From the top to the bottom figures, we show the semi-
major axes ratio a2/a1; the eccentricities of Ariel and Umbriel, respectively; the resonant arguments σ1
and σ2; the inclinations of Ariel and Umbriel, respectively; and the resonant arguments φ1 and φ2. The
blue line gives the asymptotic evolution predicted by Eq. (4.34), while the dashed line gives the position
of the nominal resonance (Eq. (5.1)).
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Figs. 5.8 and 5.9c, the vast majority of the captured simulations evolve chaotically, as exemplified in
Fig. 5.9d, with initial e1 = 10−2, e2 = 5.0 × 10−3, I1 = 0.10◦, and I2 = 0.005◦. Within this regime, the
resonant arguments are constantly switching between the resonant branches (Sect.3.7), and no explicit
libration around ± 90◦ is observed.

Finally, in Fig. 5.10, we show two examples of non long term capture inside the 5/3 Ariel-Umbriel
MMR. Fig. 5.10e provides an example of a simulation that, after being captured, break the resonance
after a short period of time, that is, in less than 10 Myr. During the resonance entrapment, both eccentri-
cities and inclinations evolve in the chaotic region, with the inclinations growing on average. In this case,
the system leaves the resonance with a high I1, but with an I2 similar to the currently observed. Further-
more, after the resonance is broken, the eccentricity of Ariel is quickly damped, while the eccentricity of
Umbriel and the inclinations of both satellites remain constant on average.

In Fig. 5.10f, the resonance is shortly skipped. The eccentricity of Umbriel grows as the com-
mensurability is approached, and skip the resonance with a higher value than the initial one. After the
resonance passage, the eccentricity of Ariel decreases, together with the inclination of Umbriel. Owing
to the topology of the 5/3 MMR (Fig. 3.1), the inclination of Ariel, I1, initially small, increases slightly
as it approaches the nominal resonance (δ = 0). However, after the resonance passage, I1 quickly returns
close to its initial value. In both cases, capture and skip, after the resonance is crossed, the system returns
to the predicted asymptotic evolution.

From the analysis of Table 5.3, we observe that for initial eccentricities smaller than 5.0× 10−3, long
term capture is certain, independently of the choice of the initial inclinations. Actually, this very reduced
dependency on the initial inclinations is observed through the whole mesh of initial conditions. That is,
for the same pair of initial eccentricities (e1,e2), the escape probability is not very sensitive to changes in
the initial pair of inclinations (I1,I2). This result opposes to the conclusion obtained studying the circular
case (Sect. 5.1), where we observed that the initial inclination of Umbriel, I2, was very important for the
outcome of the resonance passage.

For a better analysis of the impact of the eccentricities on the escape probability of the 5/3 MMR,
we can condense Table 5.3 by, for each initial pair of (e1,e2), add the Pe of the 25 combinations of initial
pairs (I1,I2) (Table 5.4).

e1

e2 1.0 × 10−5 5.0 × 10−3 1.0 × 10−2 1.5 × 10−2 2.0 × 10−2

1.0 × 10−5 0.0 0.0 5.1 14.3 14.7
5.0 × 10−3 0.0 0.1 11.2 15.4 12.5
1.0 × 10−2 17.4 31.1 33.7 23.9 13.8
1.5 × 10−2 59.9 64.9 48.3 28.2 17.7
2.0 × 10−2 75.9 78.8 51.7 38.5 25.2

Table 5.4: Escape probabilities (Pe) of the 5/3 Ariel-Umbriel MMR for a mesh of 25 initial pairs of
(e1, e2), combining all sets of initial inclination pairs (I1, I2), computed from Table 5.3.

Comparing Table 5.4 with the escape and skip probabilities from the planar approximation (Table
5.2), we notice that there is a good agreement between the two results. As for the planar approximation
(Sect. 5.2), the capture probability is more sensitive to variations in e1 than in e2. Furthermore, the cap-
ture probability reaches a maximum for high values of e1 and e2 = 5.0× 10−3. Beyond these eccentricity
values, the capture probability decreases slightly with e2, when compared with the same e1 value. Yet, it
is noticeable that, by combining the effects of the inclination and eccentricity, the probability of escape
for e1 ≤ 5.0 × 10−3 and e2 > 10−2 becomes non-negligible, whereas for the planar approximation (Sect.
5.2), capture was observed in almost 100% of the simulations for e1 ≤ 5.0 × 10−3 (Table 5.2). Still, the
initial eccentricities dominate the outcome of the capture probability of the 5/3 Ariel-Umbriel MMR.



5.3. ECCENTRIC-INCLINED CASE 89

1.405

1.406

1.407

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

-90

0

90

180

-90

0

90

180

0.30

0.60

0.90

0.30

0.60

0.90

-90

0

90

180

-180

-90

0

90

180

0 20 40 60 80 100 0 20 40 60 80 100

a
2
/a

1

(e) Capture for less than 10 Myr
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Figure 5.10: Two examples of a system crossing the 5/3 Ariel-Umbriel MMR with the secular model
and initial e1 = 1.5 × 10−2, e2 = 10−5, I1 = 0.001◦, and I2 = 0.10◦. (e) represents a system that is
initially captured, but escapes the MMR in less than 10 Myr and (f) represents a system that evades
resonant entrapment. From the top to the bottom figures, we show the semi-major axes ratio a2/a1; the
eccentricities of Ariel and Umbriel, respectively; the resonant arguments σ1 and σ2; the inclinations
of Ariel and Umbriel, respectively; and the resonant arguments φ1 and φ2. The blue line gives the
asymptotic evolution predicted by Eq. (4.34), while the dashed line gives the position of the nominal
resonance (Eq. (5.1)).



90 CHAPTER 5. NUMERICAL APPLICATION TO THE 5/3 ARIEL-UMBRIEL MMR

5.3.3 Final orbital elements

To achieve the current orbital configuration of Ariel and Umbriel after the passage through the 5/3 reso-
nance, we must not only be able to evade this the resonance, but also to replicate the current eccentricities
and inclinations of the system. To analyse how the resonance crossing impacts the eccentricities and in-
clinations of Ariel and Umbriel, we created plots depicting the final distributions of the eccentricities
(Fig. 5.11a) and inclinations (Fig. 5.11b) for the 170 430 simulations that were not captured in reso-
nance beyond 10 Myr. Each pair of initial eccentricities and inclinations was assigned a distinct colour.
Consequently, in Fig. 5.11a, each colour represents the total of simulations with the same initial values
(e1, e2), and in Fig. 5.11b, each colour represents the total of simulations with the same initial values
(I1, I2).

We observe that the final eccentricities are disposed along one line, while the inclinations cluster
around some final values. We also observe that both distributions of final eccentricities and inclina-
tions are constrained within a cone2, whose vertex is located at the origin of the distribution, that is, at
(e1, e2) = (0, 0) and (I1, I2) = (0◦, 0◦), and widens as the values of eccentricity and inclination increase.
However, the underlying reason for this constraint on eccentricity and inclination values is still uncertain,
and additional studies must be conducted to determine its origin.

A closer look at the region in the vicinity of the currently observed inclinations (Fig. 5.12), shows a
pattern relation between the initial inclinations and the distribution of the final inclinations, where each
pair of initial (I1, I2) (represented using the same colours used in Fig. 5.11b) clusters around a mean
value. In Fig. 5.12 we superimposed straight dashed lines, where, when following a particular line, the
clusters of points along that same line represent the same initial inclination, Ik,0.

For near zero initial inclinations (Ik,0 = 0.001◦), the final inclination trend line remains close to the
boundary of the distribution. However, by increasing the initial Ik,0 ≥ 0.05◦, the trend line detaches
from the boundary and form an equally spaced, well-defined grid, correlating the initial and mean final
inclinations distributions. This grid is approximately described by[

⟨I1⟩

⟨I2⟩

]
≈

[
0.8112 0.0448
0.3292 0.7802

] [
I1,0
I2,0

]
. (5.15)

The solutions from Eq. (5.15) must be considered with caution, since they are only valid if two
conditions are met: the initial inclinations must be Ik,0 ≥ 0.05◦; and the final mean inclinations (⟨I1⟩, ⟨I2⟩)
must fall within the boundary cone. Indeed, the solutions of Eq. (5.15) that lay outside the permitted
region, appear to shift inward, moving to the nearest position inside the boundary cone. This can be
seen, for instance, for the dark green cluster of points located around (0.04◦, 0.15◦), which, according to
Eq. (5.15), should be situated outside the allowed cone region at (0.03◦, 0.15◦).

The damping timescale of the inclinations is several orders of magnitude larger than the age of the
satellite system (Sect. 2.4.3). Thus, the current inclinations of Ariel and Umbriel most likely remained
unchanged since the 5/3 MMR crossing. By inverting Eq. (5.15), we estimate that, in order to obtain
the current observed inclination of (⟨I1⟩, ⟨I2⟩) = (0.0167◦, 0.0796◦) (Table 1.2), the system should have
an initial inclination of (I1,0, I2,0) = (0.036◦, 0.082◦) prior to the resonant encounter. Also, the current
inclinations of Ariel and Umbriel lay slightly inside the boundary cone (see Fig. 5.12). Therefore, in
addition to the prediction from Eq. (5.15), the current inclinations can also be achieved by taking the
initial I2 obtained by Eq. (5.15), and a small initial I1, i.e., (I1,0, I2,0) = (0.001◦, 0.082◦).

To investigate whether these two sets of initial inclinations can effectively replicate the present in-
clinations of Ariel and Umbriel, we employed the same methodology used for the circular, planar, and
eccentric-inclined statistics. We fixed the initial (I1, I2), and explored a mesh of initial eccentricities
ranging between 10−5 and 2.0 × 10−2, with a step size of 5.0 × 10−3. For each set of initial (e1, e2, I1, I2),
we ran 1 000 simulations for 100 Myr, equally distributed over the resonance angle σ. As carried so far,
we evaluated for each run if the resonance was escaped in less than 10 Myr or if it was captured.

2Although in reality the geometric shape corresponds to an hyperbolic conic section crossing the vertex of the cone, for
simplicity we refer to it as a cone.
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Figure 5.11: Distribution of the final eccentricities (a) and inclinations (b) after the 5/3 Ariel-Umbriel
MMR passage. Both figures encompass 170 430 simulations that were not captured, where different
colours represent different pairs of initial (e1, e2) or (I1, I2). The black dashed lines at (b) are the boun-
daries of the distribution of final inclinations, given by I2 = 0.170 I1 and I2 = 4.817 I1.
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In Fig. 5.13, we show the histograms with the final inclinations of the two pairs of initial inclinations,
distributed over 51 classes ranging between 0.0◦ and 0.3◦, with a stepsize of 0.006◦. We only considered
the final inclinations from the simulations that escaped the MMR, totalizing 5923 simulations for initial
(I1, I2) = (0.001◦, 0.082◦), and 6685 simulations for initial (I1, I2) = (0.036◦, 0.082◦). For each pair
of initial (I1, I2), we combined the results from the 25 combinations of initial (e1, e2). Both histograms
display very similar distributions, with prominent peaks for the final inclinations of Ariel and Umbriel
around a well-defined mean value.
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Figure 5.13: Histograms for the final distribution of the inclinations of Ariel (top) and Umbriel (bottom)
for two sets of initial inclinations: (a) (I1 = 0.036◦, I2 = 0.082◦); (b) (I1 = 0.001◦, I2 = 0.082◦).
We also plotted the best fit Lognormal distribution (Eq. (5.10)) to each histogram (red curve) and the
corresponding inclination mode, ⟨I⟩, and variance, ∆I. The presently observed inclinations are marked
as red dots.

We fitted a Lognormal curve to each histogram (Eq. (5.10)), and calculated the mode (Eq. (5.11))
and the variance (Eq. (5.12)) of each PDF. As anticipated by Eq. (5.15) and the trend line corresponding
to I1 = 0.001◦, both distributions exhibit peaks in close proximity to the intended current inclinations,
(0.01697◦, 0.0796◦), with (⟨I1⟩, ⟨I2⟩) = (0.024◦, 0.090◦) ± (0.035◦, 0.004◦) for the initial conditions ex-
tracted solely from Eq. (5.15), and (⟨I1⟩, ⟨I2⟩) = (0.019◦, 0.084◦) ± (0.042◦, 0.003◦) for the initial condi-
tions obtained from the Eq. (5.15) and the trend line of initial I1 = 0.01◦.

Finally, we determined the escape probability for each pair of initial (e1, e2), for both sets of initial
inclinations (Table 5.5). The results obtained for both sets are very similar. Also, in accordance with the
results from Table 5.4, for ek ≤ 0.05, resonance capture always occurs. The best statistics for the system
to avoid resonance capture, are obtained when e1 ≥ 0.015 and ek ≤ 0.1, where Pe > 50%.
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I1 = 0.001◦; I2 = 0.082◦ I1 = 0.036◦; I2 = 0.082◦

e1

e2 10−5 0.005 0.010 0.015 0.020
e1

e2 10−5 0.005 0.010 0.015 0.020

10−5 0.0 0.0 7.3 12.4 11.4 10−5 0.0 0.0 7.4 15.3 11.2
0.005 0.0 0.0 13.5 14.6 9.5 0.005 0.0 0.0 15.5 14.3 10.8
0.010 33.1 43.3 31.6 19.3 8.3 0.010 32.5 42.2 35.7 15.1 10.3
0.015 56.5 67.4 37.7 20.9 16.4 0.015 57.0 61.0 35.7 24.7 14.5
0.020 51.1 58.9 38.8 28.9 18.7 0.020 51.2 59.5 43.7 30.8 14.3

Table 5.5: Escape probabilities of the 5/3 Ariel-Umbriel MMR (Pe) for a mesh of 25 initial pairs of
(e1, e2). At the left table, Pe for initial (I1, I2) = (0.001◦, 0.082◦) and at the right table Pe for initial
(I1, I2) = (0.036◦, 0.082◦).

5.3.4 Monte Carlo method

So far, we have established that the initial eccentricities and inclinations have distinct roles in shaping the
outcome of the resonance passage. By employing a discrete distribution of eccentricities and inclinations,
we have been able to calculate the capture probability for each set of initial conditions. Moreover,
we managed to retrieve two sets of initial conditions which are likely able to reproduce the current
eccentricities and inclinations of the system. However, the discrete nature of the distribution may conceal
some of the initial conditions that can also reproduce the current configuration of the system. To ensure
that all potential combinations of initial conditions are thoroughly examined, we employ the Monte Carlo
method to encompass the entire range of initial combinations.

To ensure statistical significant meaning, we conducted one million simulations in which, for each
run, we randomly selected an eccentricity within the range of 0 and 0.02, a random inclination within
the range of 0 and 0.2◦, and random σk and φk. The initial semi-major axes were the same used for the
discrete distribution (Eq. (5.13)). In each simulation, the initial ω0 was adjusted using Eq. (5.5), while
conserving Σ (Eq. (5.3)). Subsequently, for each simulation, we assessed whether the system becomes
captured in the resonance, escapes within 10 Myr, or skips the resonance. Overall, we find that 29.5% of
the simulations successfully avoided capture.

We first analysed the distribution of the initial eccentricities and inclinations that avoided captured
into resonance. In Fig. 5.14, we divided the range of initial eccentricities (0.00, 0.02) and initial inclina-
tions (0.00◦, 0.2◦) into a grid of 50× 50 equally spaced intervals, and evaluated the probability of escape
(Pe) for each bin. This provides a more in-depth examination of the escape probability distribution under
various initial conditions. Rather than relying on a fixed discrete set of initial conditions, we can now
analyse a more continuous dataset, and pinpoint the values where behavioural changes occur in the initial
conditions.

From the analysis of the eccentricity distribution (Fig. 5.14a), there are two distinct features that

stand out: for initial
√

e2
1 + e2

2 < 0.007, all simulations were captured into resonance (Pe = 0); there
is a clear bias for Ariel’s high initial eccentricities, where, for e1 < 0.01 and e2 > 0.01, the escape
probability is around ∼ 30%, whereas for the inverse case, that is, for e1 > 0.01 and e2 < 0.01, the
probability of escape reaches ∼ 80%. Concerning the initial inclinations (Fig. 5.14b), the distribution of
points exhibited an uniform spread across the phase space, devoid of any discernible trends, with escapes
probabilities around ∼ 35%.

In Figs. 5.15a and 5.15b, we plotted the distribution of the final eccentricities and inclinations,
respectively. We observe a similar distribution as the one in Fig. 5.11. However, now there is an even
spread of the inclinations over the phase-space. This allow us to confirm the confinement of the final
inclinations within the same cone described for the discrete distribution. Furthermore, we observe a
similar confinement for the final eccentricities, which was not very clear in the discrete distribution. It
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Figure 5.14: Probability of escape of the 5/3 MMR between Ariel and Umbriel for a grid of 50 × 50
intervals, equally spaced between: (a) 0 and 0.02 for the initial eccentricities; (b) 0 and 0.2◦ for the initial

inclinations. We also plotted a white circle, corresponding to
√

e2
1 + e2

2 = 0.0072.

is noticeable that there is a more dense concentration of results at the lower edge of the confinement
cone, that is, for higher final e1 and lower final e2. In addition, there is a clear void of results for final
eccentricities below 0.001. Both observations are perfectly related with the results shown in Fig. 5.14.
The impossibility of escaping the resonance with low eccentricities means that the initial eccentricity
must be high. Therefore, it is more challenging to obtain near zero eccentricities when the system
escapes the resonance. Similarly, the clustering of points in the region where e1 > e2 can be attributed to
the higher probability of escape associated with higher eccentricities of Ariel (e1 > 0.01) combined with
lower inclinations of Umbriel (e2 < 0.015).

From the distribution of the final inclinations, we can easily identify the simulations that closely
match the presently observed I1 and I2 (orange dot in Fig. 5.15b). For that, we established a circular
region around the current (I1, I2) point, with a radius equivalent to 10% of the smallest of the two current
inclinations, namely, I1. These points were coloured as red in Fig. 5.15.

We observe that the final eccentricities of the selected points are scattered across the confinement
cone (Fig. 5.15a), lacking any noticeable pattern that influences the resonance passage’s outcome. As
for the distribution of the initial eccentricities (Fig. 5.15c), we observe that the selected points are evenly
distributed over the interval where e1 > 0.005. In contrast, the initial inclinations of the selected points
(Fig. 5.15d) are well constrained within the interval (0.01◦, 0.05◦) for I1, and (0.06◦, 0.09◦) for I2.

The results of the Monte Carlo method not only validate the observations made by the discrete distri-
bution of initial conditions, but also provide more precise constraints on the necessary initial conditions
to replicate the current architecture of Ariel and Umbriel. In particular, they show that the initial incli-
nations have a minimal impact on the likelihood of the resonance capture. The pivotal factor are the
initial eccentricities. For low initial eccentricities, capture in the 5/3 MMR is certain. However, we have

now determined that a combination of
√

e2
1 + e2

2 > 0.007 is required to get a measurable number of
simulations that escape the resonance. This result was already predicted by the simplified one degree-
of-freedom model, used to infer analytically the capture probability (Sect. 4.5). Furthermore, e1 plays a
predominant role for the capture probability statistics, with e1 > 0.01 favouring resonance escape. In or-
der to achieve the current inclinations of the satellites, the initial inclinations must be 0.01◦ < I1 < 0.05◦

and 0.06◦ < I2 < 0.09◦. Finally, the simulations that reproduce the current inclinations of the satellites
leave the resonance with e1 > 0.005. The low eccentricity damping timescale of Ariel quickly erodes
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e1, and places the eccentricity close the current ∼ 0.001 value. As for e2, the much longer damping
timescale when compared with the one from Ariel, leads to a smaller decrease in e2, possibly explaining
the current larger eccentricity of Umbriel (e2 ≈ 0.004).
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Figure 5.15: Distribution of the final eccentricities (a) and inclinations (b) after the 5/3 Ariel-Umbriel
MMR passage. The figures encompass 295 953 runs with random initial (e1, e2, I1, I2) that avoid reso-
nance capture. From (b), we selected the points that lay inside a circle centred at the current inclinations
of Ariel and Umbriel and a radius with 10% of I1. The selected points were coloured in red, and their
corresponding initial eccentricities and inclinations are plotted in (c) and (d).

5.4 N-body simulations

The results from the previous sections were obtained using a two-satellite secular model. In this section,
we attempt to validate those results by adopting a more complete and general model, namely, by using
the full N-body model described in Chap. 2. For that purpose, we numerically integrate the Eqs. (2.8),
(2.9), (2.27), (2.37), and (2.39).
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5.4.1 Two-satellite simulations

We first compare the results obtained with the secular model with the full three-body problem (Uranus
and two satellites). This allow us to determine whether the secular model provides a good description of
the system, or if the high-frequency terms, which were averaged over one orbital revolution, introduce
some unexpected features in the long term evolution of the system.

As for the secular model numerical integrations (Sects. 5.1, 5.2, and 5.3), we integrated a system with
Ariel and Umbriel orbiting a central massive planet, Uranus, with the physical properties given in Tables
1.1 and 1.2. The initial semi-major axes were obtained by Eq. (4.34), with a1 being slightly decreased
to move the system away from the nominal resonance, leading to a1/R0 = 7.3868 and a2/R0 = 10.3891
(Eq. (5.13)). The tidal parameters also have the same values as in the eccentric-inclined secular study
(Sect. 5.3), with QU = 8000 and QS = 500. In the circular approximation (Sect. 5.1), we saw that the
initial inclination of Umbriel has a stronger impact to the capture probability in the 5/3 MMR than the
inclination of Ariel. In the planar approximation (Sect.5.2), we observed that Ariel’s initial eccentricity
is more important for the capture probability. Furthermore, from the eccentric-inclined study (Sect.
5.3), when we combine the effects from both eccentricities and inclinations, the inclinations no longer
seem to impact significantly the capture probability, which is mostly affected by the initial e1. Thus, to
verify if the low impact of the inclinations remains for the three-body model, we choose to fix the initial
I1 = 0.001◦, and vary I2 between 0.001◦ and 0.20◦, with a step size of 0.05◦. To confirm the role of e1 to
the capture probability, we fix the initial e2 = 10−5 and vary e1 between 10−5 and 0.02, with a step size
of 0.005. This totalizes 25 initial combinations of (e1, I2). Finally, the satellites were considered to be
synchronous at the beginning of the simulations, and the rotation of Uranus was calculated taking into
account the conservation of the total angular momentum of the system (Eq. (5.3) and (5.5)).

The computation time to integrate these initial conditions for the same time spam (100 Myr) with the
three-body model is 104 longer than with the secular model. Therefore, it is not feasibly to compute 1 000
runs equally distributed over the resonance angle σ for every pair of initial (e1, I2). We thus reduced the
number of simulations per initial condition by a factor of ten, to 100 runs for each pair, which gives a
total number of 2 500 simulations. Then, for each run, we determined again if the system was captured
into the 5/3 MMR or evaded the resonance by evaluating the semi-major axes ratio a2/a1.

In Table 5.6, we show the probability of escape and skip of the 5/3 Ariel-Umbriel MMR for the 25
pairs of initial (e1, I2) obtained with the three-body model (right table) and the secular model (left table)3.
For e1 ≤ 0.005, both models show that capture into resonance is certain, independently of the initial I2.
For I2 = 0.10◦, we notice a small increase in the escape probability for the three-body model, when
compared with the results from the secular model. For I2 ≥ 0.15◦, the escape probabilities of the two
models agree quite well.

Secular model Two-satellite model

I2

e1 10−5 0.005 0.010 0.015 0.020
I2

e1 10−5 0.005 0.010 0.015 0.020

0.001◦ 0 0 22 49 60 0.001◦ 0 0 37 46 59
0.05◦ 0 0 21 55 66 0.05◦ 0 0 37 54 48
0.10◦ 0 0 19 61 72 0.10◦ 0 0 27 55 54
0.15◦ 0 0 18 63 74 0.15◦ 0 0 16 62 56
0.20◦ 0 0 20 59 74 0.20◦ 0 0 36 67 48

Table 5.6: Escape probabilities of the 5/3 Ariel-Umbriel MMR (Pe) for a mesh of 25 initial pairs of
(e1, I2), with e2 = 10−5 and I1 = 0.001◦. In the left table, the escape probabilities were obtained with
the secular model (Sect. 5.3), while in the right table, the escape probabilities were obtained with a
two-satellite model.

3The results from the secular model were obtained in Sect. 5.3 and displayed here again for a more convenient comparison
between the two sets of results.
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The escape probabilities obtained with the two models are in good agreement, despite some small
local variations that likely arise from the smaller data set of the three-body model. In particular, we note
that the same tendency for the eccentricity of Ariel to dominate the escape probability, with very low
impact from the inclination of Umbriel, prevails outside the secular approximation.

From the secular study, we determined that, prior to the resonance encounter, the inclinations should
be (I1, I2) ≃ (0.001◦, 0.085◦) in order to replicate the currently observed values. In Fig. 5.16, we show
one example of a simulation with the three-body model, where the system skips the 5/3 Ariel-Umbriel
MMR. The initial eccentricities were (e1, e2) = (1.5 × 10−2, 5.0 × 10−3). Prior to the commensurability,
the average semi-major axes (top figures) follow the asymptotic tidal evolution (blue line), with the
eccentricities and inclinations (middle and bottom figures, respectively) librating around a mean value
close to the initial ones. As the system approaches the nominal resonance, the amplitude of libration of
the eccentricities increases. Then, a quick variation of the semi-major axes shifts the mean motion ratio
from the nominal resonance, returning to the asymptotic evolution. Simultaneously, the e1 and e2 drop to
lower average values, while the amplitudes of I1 and I2 decrease. In this example of resonance passage,
chaos does not significantly impact the system’s evolution. Note that, after resonance passage, both Ariel
and Umbriel are left with inclinations close to the current values, as well as the eccentricity of Umbriel
(red dot).

Using the pair of initial inclinations (I1, I2) = (0.001◦, 0.082◦) obtained in Sect. 5.3, we integrated
100 simulations evenly distributed acrossσ for 100 million years. To ensure a low capture probability, we
chose (e1, e2) = (1.5×10−2, 5.0×10−3). With these results, we built an histogram of the final distribution
of the eccentricities and inclinations (middle column of Fig. 5.17). For each distribution, we overlaid the
Lognormal curve obtained with the secular case (Eq. (5.10)). We observe a good agreement between the
distribution obtained with the three-body model and the distribution obtained with the secular model (left
column of Fig. 5.17). The eccentricities of Ariel and Umbriel are piled around a mean value, very close
to the mean value of the secular model. The distribution of the inclinations display the same diffusion
observed for the secular model. The only difference is in the mode of the distribution, which exhibits
a less pronounced peak. Nevertheless, the Lognormal curve obtained for the secular model presents a
remarkable adjustment to the results obtained with the three-body model.

The agreement observed in this section between the two models demonstrates that the secular model
provides a good description of the two-satellite system composed of Ariel and Umbriel and Uranus.
Therefore, we conclude that the high-frequency gravitational interaction terms are indeed dominated by
the secular terms in the long-term evolution of the system, as expected.

5.4.2 Five-satellite simulations

Up to this point, we isolated the two satellites directly involved in the 5/3 Ariel-Umbriel MMR. However,
mutual interactions between the remaining satellites may also influence the architecture of the entire
system during the resonance passage (Ćuk et al. 2020). Therefore, as in the previous Sect. 5.4.1, here we
adopt again the N-body model (Chap. 2), but now we add Miranda, Titania, and Oberon to the system
(five-satellite problem).

The physical properties of the five satellites are given in Table 1.2. The semi-major axes of the satel-
lites at nominal resonances were calculated using Eq. (4.34), assuming that the satellites are synchronous,
the orbits are circular and in the equatorial plane of Uranus, and the angular velocity of Uranus corrected
(Eq. (5.5)) such that the current total angular momentum of the system,

Σ = 9.446 072 × 10−10 M⊙ au2 yr−1 , (5.16)

is conserved. The semi-major axis of Ariel was slightly decreased to move the system from the nominal
resonance, leading to

a1/R0 =5.0794 , a2/R0 = 7.3868 , a3/R0 = 10.3891 ,

a4/R0 = 10.3892 , a5/R0 = 22.8239 .
(5.17)
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Figure 5.16: Simulation with the three-body model for the passage through the 5/3 MMR between Ariel
and Umbriel. At the top, the semi-major axes, at the middle the eccentricities and at the bottom the
inclinations. The system evolved from initial e1 = 1.5 × 10−2, e2 = 5.0 × 10−3, I1 = 0.001◦, and
I2 = 0.082◦. The asymptotic tidal evolution of the semi-major axis (Eq. (4.34)) is represented as a blue
line, and the present mean eccentricities and inclinations (Table 1.2) marked as red dots.

As in the previous two-satellite simulation, we use QU = 8000 and QS = 500 (Sects. 5.3 and 5.4.1).
When we increase the number of bodies in the system, the computation time inevitably increases

again. As a result, the five-satellite simulations require four times more time for integration compared
to the two-satellite system simulations (Sect. 5.4.1). Consequently, we needed to limit the total number
of simulations. We start by reproducing the Table 5.6, where we fix e2 = 10−5 and I1 = 0.001◦, by
integrating 100 simulations equally distributed over σ for each initial pair (e1, I2), over 100 Myr. The
initial eccentricities and inclinations for Miranda, Titania, and Oberon were kept at the currently observed
values (Table 1.2). For each simulation, we verified if the system was captured within the resonance for
more than 10 Myr. The results can be found in Table 5.7.

Although for initial e1 ≤ 0.005 resonance entrapment is certain, we observe that for e1 = 0.01 the
escape probability is lower than when compared with the secular model and the three-body model (Table
5.6). Contrariwise, for higher values of initial e1, the presence of the five satellites privileges resonance
escape. Again, the inclination of Umbriel does not impact the capture probability of the 5/3 MMR.

In another experiment, we integrated the set of 100 simulations equally distributed over σ with the
best suited initial eccentricities and inclinations obtained from the eccentric and inclined secular study
(Sect.5.3), that is, e1 = 1.5×10−2, e2 = 5.0×10−3, I1 = 0.001◦ and I1 = 0.082◦. The initial eccentricities
and inclinations for Miranda, Titania, and Oberon were kept at the currently observed values (Table 1.2),
and the semi-major axis from Eq. (5.17).

In Figs. 5.18, 5.19, and 5.20, we show three examples of the passage through the 5/3 MMR with
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Figure 5.17: Histograms for the final distribution of the eccentricities of Ariel (top) and Umbriel (bottom)
and the inclinations of Ariel (top) and Umbriel (bottom) for three different models. In the left column
we have the secular model; in the middle column the two-satellite model; and the right column the five-
satellite model, with initial e1 = 1.5×10−2, e2 = 5.0×10−3, I1 = 0.001◦ and I2 = 0.082◦. We also plotted
the best fit Lognormal distribution (Eq. (5.10)) to the histogram of the secular model (red curve), and
overlap this curve to the histograms of the two-satellite problem and five-satellite problem. The presently
observed eccentricities and inclinations are marked as red dots.
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Five-satellite model

I2

e1 10−5 0.005 0.010 0.015 0.020

0.001 0 0 4 62 82
0.05 0 0 13 72 77
0.10 0 0 7 67 85
0.15 0 0 15 70 86
0.20 0 0 10 65 90

Table 5.7: Escape probabilities of the 5/3 Ariel-Umbriel MMR (Pe) for a distribution of 25 initial pairs
of (e1, I2), with e2 = 10−5 and I1 = 0.001◦, with the five-satellite model, where 1 denotes Ariel and 2
denotes Umbriel.

all the regular Uranian moons. In Fig. 5.18, the system is permanently captured in resonance. Prior to
the 5/3 Ariel-Umbriel MMR, the semi-major axis of all the satellites (top figures) follow the asymptotic
line of tidal evolution (Eq. (4.34)). The eccentricities (middle figures) and inclinations (bottom figures)
remain nearly constant on average, oscillating around a mean value close to the initial ones. At t ≈ 15
Myr, Ariel and Umbriel are captured into the 5/3 MMR. The semi-major axes of Ariel and Umbriel de-
part from the asymptotic evolution, and the evolution of the eccentricities of all satellites in the system
becomes chaotic. The eccentricities of Ariel and Umbriel remain nearly constant on average, but the
chaotic regime increases the amplitude of the oscillations. Despite not being directly involved in the
resonance, the eccentricity of Miranda is also significantly affected, where, during the resonance entrap-
ment, it increases by a factor of 20. We note that the tidal evolution of the semi-major axes (Eq. (4.34))
has a dependency on the eccentricity and the inclination. If one of these elements reach a critical value,
the negative term of the expression becomes dominant (Eq. (4.34)), and the satellite starts to migrate
inwards. This can be observed in this example, where, at t ≈ 35 Myr, the eccentricity of Miranda reaches
a critical value of about 0.02, and the semi-major axis undergoes an inflection and starts decreasing. Al-
though in a smaller scale, the eccentricities of the remaining four satellites also grow on average. During
the resonance capture, the evolution of the inclinations of Miranda, Ariel, and Umbriel are also chaotic,
and, on average, the inclinations of these three innermost satellites grow. However, large oscillations are
observed, with moments of overall increase and others of overall decrease. The inclinations of Titania
and Oberon do not initially present changes in their evolution. Yet, around t ≈ 30 Myr they also enter in
the chaotic regime.

The excitation of all satellite’s orbits when Ariel and Umbriel are captured into the 5/3 MMR was
previously reported by Ćuk et al. (2020), with all eccentricities and inclinations increasing to values
much higher than the pre-encounter ones. However, the authors begin with Miranda having a near zero
inclination and show that the 5/3 MMR could be responsible for Miranda’s current 4.4◦ inclination. We
do not entertain this hypothesis and demonstrate that capture in the resonance can reconfigure the whole
system, making the current configuration unattainable.

In Fig. 5.19, we shown an example of a simulation that was captured in resonance, and then escaped
within 10 Myrs. Prior to the resonance encounter, the system evolves due to tidal interactions between the
planet and the satellites. The semi-major axes follow the asymptotic tidal evolution, and the eccentricities
and inclinations oscillate around a mean value. Then, at t ≈ 15 Myr, Ariel and Umbriel becomes trapped
in the 5/3 MMR. During resonance entrapment, the semi-major axes of Ariel and Umbriel deviate from
the asymptotic evolution, and the evolution of the eccentricities become chaotic. Simultaneously, the
eccentricity of Miranda starts to grow steadily on average, and the eccentricities of Titania and Oberon
are slightly perturbed, with an increase of the amplitude of oscillation. The inclination of Ariel also grows
during the capture, to a value one order of magnitude larger than the currently observed. The inclination
of Miranda starts to evolve chaotically, while the inclinations of the remaining satellites do not show a
general change of behaviour. After ∼ 6 Myr of entrapment, the system escapes the MMR. The semi-
major axes of Ariel and Umbriel return to the asymptotic evolution. The eccentricity of Umbriel drops
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to a slightly lower level, while the inclination remains nearly unchanged. Ariel leaves the resonance
with an eccentricity smaller than the one previous to the MMR encounter, but with a higher inclination.
As for Miranda, due to the proximity to Uranus, the large eccentricity acquired during the resonance
passage is quickly damped, while the inclination stabilises in a value close to the initial one. Both
Titania and Oberon are not much affected by the short entrapment, preserving the initial eccentricities
and inclinations.

Finally, in Fig. 5.20, we show an example of a simulation that skips the resonance. Until the reso-
nance encounter, the evolution of the five satellites is identical to the previous cases (Figs. 5.18 and 5.19).
However, as the system approaches the nominal resonance, the semi-major axes of Ariel and Umbriel
quickly shift, placing the mean-motion ratio below the nominal resonance, and thus avoiding resonance
entrapment. Due to the conservation of the total angular momentum, the eccentricity of Ariel quickly
drops, while the eccentricity of Miranda grows. The eccentricity of Umbriel, Titania, and Oberon, as
well as the inclinations of all the satellites, appear to be unaffected by the resonance crossing. After the
resonance passage, tidal effects damp the eccentricities of Miranda and Ariel, and the system evolves to
the present configuration.

Note that, in this example, the inclinations of the system subsequently evolve into the presently
observed configuration (red dots). This is only achieved if the system avoids resonance entrapment,
which requires e1 > 0.01 and e2 < 0.015, and if the inclinations before the resonance encounter were
I1 > 0.05◦ and I2 ≈ 0.082◦.

In order to observe the effects of considering the five satellites on the final distribution of eccentrici-
ties and inclinations of Ariel and Umbriel, we constructed a histogram with their distributions, at the right
column of Fig. 5.17. In each distribution, we overlaid the Lognormal curve obtained for the secular case.
Comparing the results with the histograms obtained with the secular (left column) and the two-satellite
models (central column), we can observe a very good agreement between the three sets of simulations.
This is particularly visible for the distribution of the eccentricities of Ariel and Umbriel, with the final e1
and e2 piling around 7.2× 10−3 and 3.3× 10−3 respectively. The inclination distribution of Ariel is more
diffuse than the previous cases and do not present a clear peak. Nevertheless, the distribution shows a
significant number of simulations within the class of the present inclination. The distribution of I2 for
the five-satellite model is also more diffuse than the previous studies. Still, there is a clear peak above
the present inclination of Umbriel.

The comparison between the secular, the two-satellite and the five-satellite models shows a good
agreement between the results obtained with the three different methods. Therefore, we conclude that the
results obtained from the approximated secular model can be extrapolated for the complete, five-satellite
case. With initial e1 = 1.5×10−2, e2 = 5.0×10−3, I1 = 0.001◦, and I2 = 0.082◦ we were able to reproduce
the current eccentricities and inclinations of the five major satellites of Uranus (Fig. 5.20). If the 5/3
Ariel-Umbriel MMR is shortly skipped, Titania and Oberon are insensitive to the resonance crossing. As
for Miranda, tides quickly erode the acquired eccentricity. To accomplish the high eccentricity of Ariel
and inclination of Umbriel, some past dynamical event must have occurred, and excited both values.
Since tides are very inefficient on damp the inclination, Umbriel’s value can be attributed to the possible
passage through the past 3/1 MMR between Miranda and Umbriel (Tittemore and Wisdom 1989). As for
the Ariel’s eccentricity, the small eccentricity damping timescale (Sect. 5.3.1) requires that the excitation
must have occurred nearly until the encounter with the 5/3 MMR.
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Chapter 6

Conclusion

6.1 Overview

In this thesis manuscript, we have studied the dynamical and tidal evolution of the five major Uranian
moons, namely, Miranda, Ariel, Umbriel, Titania, and Oberon. The geological traces of global surface
melting in Miranda, Ariel, and Titania (Sect. 1.3), the relatively high ∼ 4.4◦ inclination of Miranda (Sect.
1.4), and the fact that the current free eccentricities of the system are higher than expected (Sect. 2.4.4),
strongly suggest that the system experienced significant dynamical interactions across its past history.

We initiate our study of the Uranian system by adopting an N-body model that takes into account
the tidal evolution of the orbits and the spins of all bodies (Chap. 2). After deriving the equations
of motion (Sects. 2.1, 2.2, and 2.3), we estimated the tidal dissipation within Uranus and its satellites
(Sect. 2.3.2). We also determined the free and forced orbital elements of the satellites (Sect. 2.4.4),
and evaluated the possibility of spin-orbit resonances in the system (Sect. 2.4.5). Subsequently, we
conducted numerical simulations of the long-term evolution of the system over a time span of 4.5 Gyr,
using the initial semi-major axes values predicted by an asymptotic tidal evolution (Sect. 2.4.6). We
observed a series of MMRs crossings, with capture in several cases, that could have shaped the evolution
of the system. During the resonance entrapment, the evolution of the semi-major axes deviate from the
asymptotic prediction obtained through tidal effects (Eq. (2.68)), causing the final orbits to significantly
differ from the presently observed ones.

The inability to reproduce the current architecture of the Uranian system (Table 1.2), prompted us to
adopt a step-by-step approach, and study each dynamical event individually. The most recent MMR to
have occurred in the Uranian system was the 5/3 MMR between Ariel and Umbriel (see Fig. 1.4). Thus,
we integrated the system from just after the resonance passage until the present days (Sect. 2.4.7). We
did not observe any dynamical mechanism that excite the orbits of the satellites during that time.

The extensive computation time required for the N-body model, makes this model unsuitable for a
detailed analysis of the passage through the 5/3 MMR with a large number of simulations. Thus, in Chap.
3, we developed the conservative equations for a secular two-satellite model using a similar approach to
Tittemore and Wisdom (1988, 1989, 1990). However, in our model we introduce the spin evolution of
the planet and the satellites, and we adopted the total angular momentum of the system as a canonical
variable, which is conserved and naturally removes one degree of freedom from the problem. We thus
only need to perform one average over a fast angle, instead of the widely used average over two fast
angles (e.g. Tittemore and Wisdom 1989; Michtchenko and Ferraz-Mello 2001; Alves et al. 2016). We
also introduced a new set of complex rectangular coordinates (Sect. 3.5), that allow us to remove some
singularities and reduce by half the number of equations of motion.

Applying the conservative secular equations to the passage through the 5/3 Ariel-Umbriel MMR for
the circular approximation (i.e. e1 = e2 = 0) and for the planar approximation (i.e. I1 = I2 = 0◦), we
have shown that, prior to the 5/3 MMR encounter, Ariel and Umbriel are in circulation around an equi-
librium point at the origin of the coordinates (xk = yk = 0). As the system approaches the resonance,
this equilibrium becomes unstable, while two other stable symmetrical equilibria appear, corresponding



106 CHAPTER 6. CONCLUSION

to libration in resonance. Shortly after, the equilibrium at the origin becomes again stable, correspond-
ing to a new circulation region (see Fig. 3.1). For initial very low eccentricity and inclination values
(low energy), the system is thus forced to follow one of the resonant equilibria (capture) (see Fig. 5.1).
However, for moderate eccentricities or inclinations (higher energy), the system may encounter the reso-
nance when all the stable equilibrium possibilities are already available and directly go to the circulation
region (skip). Alternatively, the system enters in a chaotic regime and can subsequently evade into the
circulation (escape) or the libration regions (capture) (see Fig. 5.2). The chaotic nature of the system
as a function of the energy is clearly portrayed in a sequence of Poincaré surface sections obtained with
the modified Hénon method (Sect. 3.9) and in the stability maps obtained with the frequency analysis
method (Sect.3.10).

In Chap. 4, we developed a Hamiltonian extension to include tides based on the constant time-lag
model, which provides the tidal evolution for all variables in the problem. This is again an improvement
relative to the model of Tittemore and Wisdom (1988, 1989, 1990), where tides are artificially introduced
through the variation of the distance to the resonance, using the δ-parameter (Sect. (3.6)), thus neglecting
the tidal evolution on the orbits and spins. We then resorted to the simplified single resonance model
to estimate the capture probabilities on the 5/3 Ariel-Umbriel MMR, as a function of the individual
eccentricities and inclinations of each satellite.

In Chap. 5, we numerically studied in detail the passage through the 5/3 MMR between Ariel and
Umbriel. First, we studied the effect of the inclination to the outcome of the resonance crossing, by adopt-
ing the circular approximation (e1 = e2 = 0) (Sect. 5.1). The crossing of the 5/3 MMR is a stochastic
process, and so we performed a large number of numerical simulations covering many different com-
binations for the initial inclinations of Ariel and Umbriel. Then, we revisited the passage through the
5/3 Ariel-Umbriel MMR in the planar approximation (I1 = I2 = 0◦) with our secular model (Sect. 5.2).
Again, we conducted an extensive set of numerical simulations encompassing a wide range of different
combinations for the initial eccentricities for both Ariel and Umbriel. We then continued our study with
the more general case, encompassing the effects of both eccentricity and inclination (Sect. 5.3). Once
more, we performed a large number of numerical simulations across a mesh of discrete combinations of
initial eccentricities and inclinations of Ariel and Umbriel. The discrete nature of the previous analysis
compelled us to adopt a Monte Carlo methodology, and perform one million simulations with random
initial eccentricities, inclinations, mean anomaly, longitude of the pericentre, and argument of the peri-
centre (Sect. 5.3.4). The results obtained with the two-satellite secular model were then validated using
the N-body model presented in Chap. 2. First, we used a three-body model with Uranus, Ariel, and
Umbriel (Sect. 5.4.1). Finally, we studied the general case with a six-body model, with Uranus and
the five major satellites, and re-evaluated the results obtained from the secular model and the three-body
problem (Sect. 5.4.2).

6.2 Results and discussion

In this work, we re-estimated the specific dissipation factor of Uranus and constrain it to be
5 800 < Q0 < 11 500 (Sect. 2.4.3). These values clearly extend beyond the previously established range
outlined by Tittemore and Wisdom (1990). This is a consequence of the improvement in the determina-
tion of the physical parameters of the satellites, namely, in the radii and masses (Jacobson 2014).

Tittemore and Wisdom (1989) atribute the high inclination of Miranda to the crossing of the 3/1
Miranda-Umbriel MMR, while Ćuk et al. (2020) suggest that this could have been due to the 5/3 Ariel-
Umbriel MMR. The excitation of the satellites’ orbits not involved in this resonance, that is, Miranda,
Titania, and Oberon, requires some additional mechanism to reduce the high inclinations of these satel-
lites. In this work, we did not see the spin-orbit resonances invoked by Ćuk et al. (2020), and have
shown that currently there are not any spin-orbit resonance within the Uranian major satellites, even if
Cassini-state forced obliquities are considered (Sect. 2.4.5). Thus, we are led to conclude that the 5/3
MMR between Ariel and Umbriel must have been skipped or captured within a short interval of time,
and the 3/1 MMR between Miranda and Umbriel is the most likely responsible for the 4.4◦ inclination
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value of Miranda.
With the N-body model, we have shown that, since the formation, ∼ 4.5 Gyr ago, the Uranian

satellites could have encountered many different MMRs (Sect. 2.4.6). As a consequence, it is difficult to
reconstruct the entire evolution of the Uranian system. However, we have shown that after the passage
through the 5/3 Ariel-Umbriel MMR, the evolution of the system is not disturbed (Sect. 2.4.7). We were
thus able to reconstruct the evolution of the semi-major axes of the satellites from the resonance passage
(see Fig.2.13), until the present days. Since tides are not very effective on damping the inclinations of
the satellites, with damping timescales of at least 180 Gyr (assuming Q0 = 8 000), we have shown that
the inclinations most likely remained unchanged since then (Sect. 4.4). Yet, tides quickly erode the
eccentricities of Miranda, Ariel, and Umbriel, with damping timescales of 250 Myr, 60 Myr, and 690
Myr, respectively (assuming QS = 500). Therefore, the eccentricities of the three innermost satellites
must have been higher just after the resonance passage.

The statistical results from the secular two-satellite model show that, in the circular approximation
(Sect. 5.1), the initial inclination of Ariel must have been higher than about 0.05◦, and the initial inclina-
tion of Umbriel higher than about 0.1◦ to avoid a permanent capture. Moreover, we showed that the final
inclination distributions of Umbriel tend to cluster around a mean value, whereas the final inclination
distributions of Ariel spread between 0.01◦ and 0.25◦ with a nearly equal probability. As for the planar
approximation (Sect. 5.2), our results are in agreement with those obtained by Tittemore and Wisdom
(1988). Namely, we showed that the eccentricity of at least one of the satellites must be higher than
0.01 in order to avoid resonance capture. However, we have shown that, for the planar approximation,
the eccentricity of Ariel plays a key role in the 5/3 MMR capture probability. On the other hand, the
eccentricity of Umbriel does not appear to play a significant role in the probability of escape.

When adopting the more realistic eccentric-inclined case with the secular two-satellite model (Sect.
5.3), later validated with the N-body model, we have confirmed that Ariel’s eccentricity is the primary
factor influencing the capture probability in the 5/3 Ariel-Umbriel MMR. We also established that if

the initial
√

e2
1 + e2

2 ≤ 0.007, long-term capture within the resonance is certain. Moreover, the optimal
configuration to enhance the escape probability is achieved when the initial e1 ≥ 0.01 and e2 ≤ 0.015.
In contrast, the initial inclinations of both satellites do not significantly impact this statistical outcome of
the capture probability. Nonetheless, the pre-encounter inclinations determine the final inclinations after
the resonance passage. In fact, we have found a linear relation between the initial and final inclinations
(Eq. (5.15)), which allows us to estimate initial pairs of inclinations required to achieve the presently
observed inclinations. However, the distribution of the eccentricities and inclinations lie within a cone,
with its origin at ek = Ik = 0, that widens with the eccentricity and inclination values (Figs. 5.11
and 5.15). Therefore, the results obtained with Eq. (5.15) must be taken with caution, as they are not
valid for final Ik ≤ 0.05◦, and for final inclination values that lay outside the restriction cone. Still,
from Monte-Carlo simulations (Sect. 5.3.4), we conclude that the initial inclination of Ariel should
have been I1 ≤ 0.05◦, and the initial inclination of Umbriel I2 ≈ 0.082◦, so that the final inclinations
after the resonance passage match the current inclinations of the system (Table 1.2). Following the
resonance passage, the eccentricities of the satellites are higher than the currently observed ones (Table
1.2). However, these eccentricities should be quickly eroded, particularly for Ariel, as tidal forces exert
a stronger influence compared to Umbriel.

When comparing the results from the secular model with the three-body model (Sect. 5.4.1), we
observed that both models present a very good agreement, with no substantial differences to be noted
between them. This shows that the long-term evolution through the 5/3 Ariel-Umbriel MMR is ruled
by secular interactions within the two satellites and the planet, and that high frequency terms can be
averaged.

Finally, no significant differences between the secular, the two-satellite, and the five-satellite models
were found for the evolution of Ariel and Umbriel (Sect. 5.4.2). We confirm the results from Ćuk et al.
(2020), and observe that Miranda, although not involved in the 5/3 resonance, is severely excited by the
resonance entrapment, increasing both eccentricities and inclinations by several times the initial values.
Nevertheless, we also observed that, in several cases, the increase in eccentricity lead to an inward
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migration of the satellite, and the eccentricities and inclinations of Titania and Oberon, after some time
of resonance entrapment, are also affected by the resonance and display chaotic motion.

The satellites of Uranus were presumably formed in a circumplanetary disk, and so the primordial ec-
centricities and inclinations should have been extremely small. Before the encounter with the 5/3 MMR,
the Uranian satellites may have crossed other MMRs (e.g. Peale 1988; Ćuk et al. 2020). In general, these
resonances excite the eccentricities and the inclinations of the bodies involved in the commensurabilities.
Tides are very efficient at damping the eccentricities, but not the inclinations. Therefore, while the rem-
nant eccentricities are quickly eroded, the inclinations are fossilized until the next resonant encounter.
The hypothesis that the present inclination of Miranda can be explained by the passage through the 3/1
MMR between Miranda and Umbriel that could have occurred several billion years ago is captivating.
This resonance also involves Umbriel, whose inclination can therefore also be excited, though to a much
lower value than that of Miranda (Tittemore and Wisdom 1989). As a consequence, prior to the en-
counter with the 5/3 MMR, it is reasonable to assume a near zero inclination for Ariel and an inclination
around 0.082◦ for Umbriel. Yet, a high eccentricity of Ariel is difficult to explain. Tidal evolution of the
semi-major axes does not predict any two-body MMR close to the 5/3 MMR between Ariel and Umbriel
(see Fig. 1.4). Thus, some other event must be found to excite the eccentricity of Ariel. According to
the Eq. (2.68), we have determined that ∼ 300 Myr prior to the 5/3 MMR, Miranda, Ariel, and Oberon
could have encountered a first order three-body MMR described as 3n1 − 8n2 + 4n3. Also, Miranda,
Ariel, and Umbriel could have crossed the −4n1 − 10n2 − 5n3, approximately 250 Myr before the 5/3
MMR. Note that, contrarily to zeroth order three-body MMR, first order three-body MMR can excite
the eccentricities and inclinations of the bodies (Petit 2021). Therefore, a preceding three-body MMR
prior to the two-body MMR scenario appears to be a compelling explanation, especially when we take
into account that the most recent geological features on Ariel’s surface are estimated to be ∼ 1 Gyr old
(Zahnle et al. 2003).

6.3 Perspectives

The work conducted in this thesis enables the reconstruction of the orbital evolution of the five major
Uranian satellites from their passage through the 5/3 Ariel-Umbriel MMR until the present day. However,
the exact past evolution of the system, since the formation, about 4.5 Gyr ago, until the 5/3 MMR between
Ariel and Umbriel remains unknown.

In this work, we assume that the 5/3 Ariel-Umbriel MMR was most likely skipped. Therefore, we
did not take into account the energy dissipated during resonance entrapment due to the orbital excitation
of the satellites. However, the signs of geological resurfacing observed at Miranda, Ariel, and Titania
are indicators that during the satellites’ evolution, large amounts of energy had to be dissipated for their
surfaces to melt. Then, future studies to the passage through resonances within the Uranian system
should account for the energy dissipation on the system. The tidal energy dissipated by a synchronous
satellite orbiting in the equatorial plane of the planet is given by (e.g. Peterson et al. 2015)

Ėt = −
21
2

k2k

Qk

n5
kR5

k

G
e2

k . (6.1)

In Fig. 6.1, we estimated Ėt per unit of area for the five major Uranian satellites, in the example of
Fig. 2.12. For Miranda, Ariel, and Titania, we also plotted the minimum energy required to form
the geological features observed in their surfaces, 31 mW/m2 (Beddingfield et al. 2015), 28 mW/m2

(Peterson et al. 2015), and 5 mW/m2 (Beddingfield et al. 2023), respectively. For the remaining satellites,
we did not found estimations of these energies in the literature. As can be seen, there are several periods
of time where the energy dissipation surpass the minimum energy required to melt the surface of the
satellite. Combined with the estimation of the ages of the geological features given by Zahnle et al.
(2003), this could pinpoint the precise temporal location of each MMR.

Our model can be directly applied to the passage through the 3/1 MMR between Miranda and Um-
briel. Such would allow us to study with an unprecedented detail the influence of this resonance on



6.3. PERSPECTIVES 109

the inclination of Miranda, and possible to ascertain the origin of its high value (Tittemore and Wisdom
1989; Ćuk et al. 2020). Moreover, our model is also valid for any second order MMR with low incli-
nations and eccentricities, and thus not restricted to the Uranian satellites. Thus, it can also be used to
study a large number of planetary systems near second order resonances, such as the 3/1 MMR for HD
60532 (Laskar and Correia 2009), the 5/3 MMR for HD 33844 (Wittenmyer et al. 2016), the 7/5 MMR
for HD 41248 (Jenkins et al. 2013), or the 9/7 MMR for Kepler-29 (Vissapragada et al. 2020), as long
as we keep the low eccentricity and inclination approximation. We could also generalize our model to
higher eccentricities and inclinations, by developing the model up to higher orders of eccentricity and
inclinations.

In our secular model, we restricted ourselves to second-order two-body MMRs. However, we can
also easily apply our methodology to first-order two-body MMRs, by preserving the linear eccentricity
and inclination terms in Eq. (3.57), (3.58), and (4.9), and developing the resulting Hamiltonian. We
could also study, for instance, the 2/1 Ganymede-Europa and the 2/1 Europa-Io MMRs on the Jovian
system(Sinclair 1975), or the 2/1 Dione-Enceladus (Sinclair 1972) and the 4/3 Hyperion-Titan MMRs
(Colombo et al. 1974) on the Saturnian system.

The mechanism that excites the eccentricity of Ariel prior to the 5/3 MMR still needs to be explained.
As already proposed, three-body MMRs could provide such a mechanism. In addition, in Sect. 2.4, we
have noticed the presence of several of these resonances in the Uranian system, especially first order
three-body MMR. Thus, we could apply the methodologies developed in this work, and build a secular
model with tides to study the influence of these resonances into shaping the Uranian system.
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Appendix A

Elliptical elements

Gravitational forces drive almost all the dynamics of the celestial bodies. Isaac Newton provided a simple
set of relations that allow us to describe and explain these dynamics. These relations are simple to solve
for systems with only two bodies. Let us consider two point-like masses, m1 and m2. The gravitational
force acting on each body due to the mass of the other is given by Newton’s universal law of gravitation:

F1 =G
m1m2

r3 r = m1R̈1 , (A.1)

F2 = − G
m1m2

r3 r = m2R̈2 , (A.2)

where R1 and R2 are the position vectors of m1 and m2, respectively, r = R2 − R1, r the norm of r, and
G = 4π2 au M−1

⊙ yr−2 is the universal gravitational constant. Using Eqs. (A.1) and (A.2), and since the
sum of the forces must be zero, we can write the equation of relative motion

r̈ + µ
r
r3 = 0 , (A.3)

where µ = G(m1 + m2).
Taking the vector product of r with Eq. (A.3) we have r × r̈ = 0, which integrating leads to

r × ṙ = h , (A.4)

where h is a constant vector normal to the orbital motion, the specific angular momentum. Since the
motion is constrained to a plan, polar coordinates (r, f ) are more suitable to express the motion of the
system, where r̂ = (cos f , sin f ) and f̂ = (− sin f , cos f ). Then

r =r r̂ , (A.5)

ṙ =ṙ r̂ + r ḟ f̂ , (A.6)

r̈ =(r̈ − r ḟ 2) r̂ +
(
1
r

d
dt

(r2 ḟ )
)
f̂ . (A.7)

Substituting Eq. (A.6) in Eq. (A.4), yields to

|h| = h = r2 ḟ (Kepler’s second law) . (A.8)

Comparing the radial terms of Eq. (A.3) and Eq. (A.7) we get that

r̈ − r ḟ 2 = −
µ

r2 . (A.9)

Now, performing the change of variable u = 1/r, and replacing Eq. (A.8) in Eq. (A.9), we obtain

d2u
d f 2 + u =

µ

h2 . (A.10)
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Figure A.1: Geometric representation of the elliptical elements. Left: the geometry of the ellipse of
semi-major axis a, eccentricity e and longitude of pericentre ϖ. Right: orbital motion with respect to the
reference plane with inclination. Figures from Murray and Dermott (1999).

This is a second-order linear differential equation, with solution

u =
µ

h2 (1 + e cos ( f −ϖ)) , (A.11)

where e is the amplitude and ϖ the phase. Substituting back to r in Eq. (A.11), we obtain the general
equation of a conic in polar coordinates, that is,

r =
a(1 − e2)

1 + e cos( f −ϖ)
(Kepler’s first law) , (A.12)

where a is known as the semi-major axis, e the eccentricity, f the true longitude, ϖ the longitude of the
pericentre (see Fig. A.1), and

h =
√
µa(1 − e2) . (A.13)

This equation describes Kepler’s first law of planetary motion, which states that planets move in ellipses
with the Sun at one focus.

The angle inside the cosine is often substituted by the true anomaly ν = f − ϖ. This angle has a
period of 2π, but it is only a linear function of time for circular orbits, that is, when e = 0. Hence, let’s
define the commonly used mean anomaly, M, and the mean longitude, λ, as

M(t) = n(t − τ) , (A.14)

λ = M +ω + Ω = M +ϖ , (A.15)

where
n = 2π/T , (A.16)

is the mean motion, T the orbital period, τ is the time of pericentre passage, and

ϖ = ω + Ω . (A.17)

The relation between the true anomaly and the mean anomaly is given by (Murray and Dermott 1999)

ν = M + 2e sin M +
5
4

e2 sin 2M + e3
(
13
12

sin 3M −
1
4

sin M
)
+ O(e4) . (A.18)

In addition, it will be important for the following sections to have a relation between the mean motion
(n) and semi-major axis (a). The area of the ellipse defined by the orbit is given by

A =
1
2

∫ 2π

0
r dν . (A.19)
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Substituting Eq. (A.12) into the equation, we obtain

A = π a (1 − e2) . (A.20)

We can also compute the area by replacing Eqs. (A.8) and (A.13) in Eq. (A.19), yielding to

A =
1
2

hT =
1
n

√
µa(1 − e2) . (A.21)

Combining Eqs. (A.20) and (A.21), we obtain

n2a3 = µ (Kepler’s third law) , (A.22)

which states that the square of the orbital period (T ) of a planet is proportional to the cube of its semi-
major axis.

So far, we only describe the orbit of a mass on the orbital plane. To describe the motion in a general
plane, e.g., the orbits of the objects of the Solar System with respect to the ecliptic plane, an additional
set of parameters is required. Let’s take (x̂, ŷ, ẑ) as an orthogonal referential, where ẑ is perpendicular to
the orbital plane and x̂ is taken to lie along the major axis of the ellipse (Fig. A.1). To represent the orbit
with respect to a general Cartesian reference frame (X̂, Ŷ, Ẑ), we need to perform a change of referential.
First, a rotation around the ẑ axis through an angle ω, followed by a rotation of I around x̂, and finally
a rotation about ẑ through an angle Ω. The line where both planes cross is the ascending node, ω the
argument of pericentre, I the inclination, and Ω the longitude of the ascending node. Mathematically,
this can be described as XY

Z

 = R3(Ω)R1(I)R3(ω)

r cos ν
r sin ν

0

 , (A.23)

where (X,Y,Z) are the coordinates of the body in the reference plane, and R1 and R3 are the rotation
matrices around the x-axis and z-axis, respectively, given by

R1(x) =

1 0 0
0 cos (x) − sin (x)
0 sin (x) cos (x)

 and R3(x) =

cos (x) − sin (x) 0
sin (x) cos (x) 0

0 0 1

 . (A.24)

Performing the matrix products we reach the relation between the coordinates of a body in a reference
plane and the orbital elements

X =r [cosΩ cos(ω + ν) − sinΩ sin(ω + ν) cos I] , (A.25)

Y =r [sinΩ cos(ω + ν) + cosΩ sin(ω + ν) cos I] , (A.26)

Z =r [sin(ω + ν) sin I] . (A.27)
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Secular and resonance Hamiltonian
expansion in resonant variables

Departing from the conservative secular Hamiltonian written in elliptical elements (Eq. (3.63)), one can
replace the semi-major axis (ak), the eccentricity (ek) and the inclinations (Ik) by the momenta Σ1, Σ2, Φ1
and Φ2 (Eqs. (3.29)-(3.31)) and the constants Γ1 and Γ2 (Eqs. (3.49) and (3.50)). Furthermore, we can
isolate the contributions from each individual terms from the momenta. The secular Hamiltonian (3.65)
then writes as

HS 1 = −
Gµ2m1m2β
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HS 3 = −
Gµ2m1m2β
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HS 4 = −
Gµ2m1m2β

2
2

Γ2
2

2

 2[
1 + (p+q)

q

(
Σ1
Γ1

Γ1
Γ2
+
Σ2
Γ2
+
Φ1
Γ1

Γ1
Γ2
+
Φ2
Γ2

)]5/2 [
1 − p

q

(
Σ1
Γ1
+
Σ2
Γ2

Γ2
Γ1
+
Φ1
Γ1
+
Φ2
Γ2

Γ2
Γ1

)]1/2

−2
µ2β

2
2

µ1β
2
1

Γ2
1

[
1 − p

q

(
Σ1
Γ1
+
Σ2
Γ2

Γ2
Γ1
+
Φ1
Γ1
+
Φ2
Γ2

Γ2
Γ1

)]3/2

Γ2
2

[
1 + (p+q)

q

(
Σ1
Γ1

Γ1
Γ2
+
Σ2
Γ2
+
Φ1
Γ1

Γ1
Γ2
+
Φ2
Γ2

)]9/2 D

−
µ2

2β
4
2

µ2
1β

4
1

Γ4
1

[
1 − p

q

(
Σ1
Γ1
+
Σ2
Γ2

Γ2
Γ1
+
Φ1
Γ1
+
Φ2
Γ2

Γ2
Γ1

)]7/2

Γ4
2

[
1 + (p+q)

q

(
Σ1
Γ1

Γ1
Γ2
+
Σ2
Γ2
+
Φ1
Γ1

Γ1
Γ2
+
Φ2
Γ2

)]13/2 D2


b(1)

1
2

(
α

(
Σ1

Γ1
,
Σ2

Γ2
,
Φ1

Γ1
,
Φ2

Γ2

)) √
Σ1

Γ1

√
Σ2

Γ2
cos (σ1 − σ2) ,

(B.4)



116
APPENDIX B. SECULAR AND RESONANCE HAMILTONIAN EXPANSION IN RESONANT
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and the resonant and indirect Hamiltonian (Eqs. (3.66) and (3.67)) writes as
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