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Abstract

Modern enterprises rely on software systems to run their business: financial,
healthcare, government, and e-commerce, among many others. However, many
systems are deployed with vulnerabilities caused by a design flaw or an imple-
mentation bug. The malicious exploitation of those security vulnerabilities may
lead to various problems with financial or legal implications.

Vulnerability detection techniques can be divided into two main groups: static
techniques and dynamic techniques. The most known static technique is Static Code
Analysis (SCA) that reports potential problems (alerts) without requiring the exe-
cution of the code. There are other more recent techniques, for example, based on
ML, where static properties extracted from the source code are used as features to
predict vulnerabilities. On the dynamic techniques, the most known is Software
Penetration Testing (SPT) that simulates attacks in a controlled environment.

Vulnerability detection techniques have strong limitations. Tools are frequently
too expensive for most organizations, and they either report many false positives
or false negatives. Consequently, developers are required to spend a considerable
amount of time analyzing the reported cases without being sure that all vulner-
abilities have been detected. This thesis advances the state-of-the-art on the
characterization of software code units from a security vulnerability perspec-
tive, making use of static data from the source code.

The first contribution is a dataset of static data on vulnerability fixes. This dataset
includes vulnerabilities from five open-source C/C++ projects (Linux Kernel,
Mozilla, Xen, Apache httpd, and glibc), and static data (Software Metrics (SMs)
and alerts from Static Analysis Tools (SATs)) extracted from the vulnerable and
neutral versions of the code. Vulnerabilities are organized into categories, de-
vised based on the improper or lack of use of the OWASP best practices.

To better understand static vulnerability detection, we present two studies. In the
first, vulnerabilities from the Mozilla project are used to study the performance of
SATs in detecting different types of software vulnerabilities. Results confirm that
none of the SATs used (CppCheck and Flawfinder) can be trusted, as they fail to
detect a large number of vulnerabilities while raising a large number of false pos-
itives. Developing on these observations, in the second study, we analyze the char-
acteristics of a set of buffer overflow vulnerabilities from the Linux Kernel, Mozilla,
and Xen projects, using both static data and a classification of the vulnerabilities
with ODC. The main findings are that there is no strong correlation between the
static information considered and the occurrence of vulnerabilities and that fixing
overflow vulnerabilities typically increases the code size and complexity.

Pursuing the use of ML to detect vulnerabilities, we present two studies. In the
first one, classical ML algorithms are used to predict the presence of vulnerabilities in
files of the Mozilla project. Both SMs and SAT alerts are used as features for the
ML algorithms (DT, RF, XGB, and Bagging). In the second, we follow an ap-
proach based on deep learning to detect vulnerabilities, grounded on DGCNN and
VGG networks. In this case, features extracted from the CFG of functions of the
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Linux Kernel project are used. We conclude that none of the Machine Learning
(ML) approaches considered can predict software vulnerabilities with acceptable
performance. In fact, although we can obtain good precision and good recall in
some cases, no configuration allowed us to obtain both simultaneously.

The low performance of SATs and ML observed in the studies above led us in
a different direction. The Security Characterization of Open-source functions using
Logic Scoring of Preference (SCOLP) allows categorizing code units using static in-
formation, including SMs and memory management-related attributes extracted
from the CFG. In practice, SCOLP assigns the code units into priority groups,
from most critical to least critical, based on the output of a set of Quality Models
(QMs) focusing on different properties. We demonstrate the approach with func-
tions of the Linux Kernel project and rely on the judgment of security experts to
validate the outputs. Results show that SCOLP provides categorizations similar
to security experts.

The last contribution is the Trustworthiness Monitoring & Assessment (TMA) frame-
work, which brings self-adaptation abilities to software systems. TMA relies on
QMs to characterize properties of interest regarding the managed system. The in-
tegration with the managed system happens through probes and actuators. The
framework can be used at design-time (e.g., to collect security evidence) and at
run-time (to detect and mitigate potential issues; e.g., intrusions). To demonstrate
TMA, we present a scenario of scaling containers in a microservice application.

Keywords

Software Security, Software Vulnerabilities, Software Metrics, Static Code Analy-
sis, Machine Learning
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Resumo

As empresas modernas dependem de sistemas de software para gerir os seus
negócios nas mais diversas áreas. No entanto, muitos sistemas são implantados
com vulnerabilidades causadas por uma falha de design ou um defeito de imple-
mentação. A exploração maliciosa dessas vulnerabilidades de segurança pode
levar a vários problemas com implicações financeiras ou jurídicas.

As técnicas de deteção de vulnerabilidades podem ser divididas em dois grupos:
técnicas estáticas e técnicas dinâmicas. A técnica estática mais conhecida é a análise
estática de código, que reporta possíveis problemas (alertas) sem requerer a ex-
ecução do código. Existem outras técnicas mais recentes, por exemplo baseadas
em ML, onde propriedades estáticas extraídas do código-fonte são usadas como
recursos para prever vulnerabilidades. Nas técnicas dinâmicas, a técnica mais
conhecida é baseada em testes de penetração, que simulam ataques em um am-
biente controlado.

As técnicas de deteção de vulnerabilidades existentes têm fortes limitações. As
ferramentas são frequentemente demasiado dispendiosas para grande parte das
organizações e reporta um elevado número de falsos positivos ou de falsos nega-
tivos. Consequentemente, os desenvolvedores são obrigados a gastar uma quan-
tidade considerável de tempo a analisar alertas, sem ter certeza de que todas
as vulnerabilidades foram detetadas. Esta tese avança o estado-da-arte na car-
acterização de unidades de código de uma perspetiva de vulnerabilidades de
segurança, fazendo uso de dados estáticos extraídos do código-fonte.

A primeira contribuição é um repositório de dados estáticos sobre correções de vulner-
abilidades. Este repositório inclui vulnerabilidades de cinco projetos C/C++ de
código aberto (Linux Kernel, Mozilla, Xen, Apache httpd e glibc) e dados estáti-
cos (métricas de software e alertas de ferramentas de análise estática) extraídos
das versões vulneráveis e neutras do código. As vulnerabilidades estão organi-
zadas em categorias, definidas com base no uso impróprio ou na falta de uso das
melhores práticas da OWASP.

Para melhor compreender a deteção por análise estática, apresentamos dois estu-
dos. No primeiro, as vulnerabilidades do projeto Mozilla são usadas para analisar
o desempenho de analisadores estáticos na deteção de diferentes tipos de vulnerabilidades
de software. Os resultados confirmam que nenhuma das ferramentas usadas (Cp-
pCheck e Flawfinder) é confiável, pois falham na deteção de um grande número
de vulnerabilidades enquanto reportam um elevado número de falsos positivos.
Com base nestas observações, no segundo estudo, analisamos as características de
um conjunto de vulnerabilidades de buffer overflow dos projetos Linux Kernel, Mozilla
e Xen, usando dados estáticos e uma classificação das vulnerabilidades com ODC.
As principais descobertas são: i) não se observa uma forte correlação entre os da-
dos estáticas consideradas e a ocorrência de vulnerabilidades, e ii) a correção de
vulnerabilidades de buffer overflow normalmente aumenta o tamanho e a com-
plexidade do código.
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Focando na utilização de ML para detetar vulnerabilidades, apresentamos dois
estudos. No primeiro, usamos algoritmos clássicos para prever a presença de vulnera-
bilidades em ficheiros do projeto Mozilla. Métricas de software e alertas de análise
estática são usados como recurso para os algoritmos de ML (DT, RF, XGB e Bag-
ging). No segundo estudo, seguimos uma abordagem baseada em deep learning
para detetar vulnerabilidades, assente em redes DGCNN e VGG. Neste caso, são
utilizados recursos extraídos do CFG de funções do projeto Linux Kernel. Os es-
tudos levam a concluir que nenhuma das abordagens consideradas é capaz de
prever vulnerabilidades de software com desempenho aceitável. De facto, emb-
ora possamos obter uma boa precisão e uma boa sensibilidade em alguns casos,
nenhuma configuração permitiu obter ambos em simultâneo.

O baixo desempenho das abordagens baseadas em análise estática e em ML ob-
servado nos estudos acima, levou o trabalho a seguir uma direção diferente.
A técnica SCOLP permite categorizar unidades de código usando informações
estáticas, incluindo métricas de software e atributos relacionados à gestão de
memória extraídos do CFG. Na prática, esta técnica distribui as unidades de
código em grupos de prioridade, do mais crítico ao menos crítico, com base
no resultado de um conjunto de modelos de qualidade com foco em diferentes
propriedades. A abordagem é demonstrada em funções do projeto Linux Ker-
nel, tendo o julgamento de especialistas em segurança sido usado para validar
as classificações. Os resultados mostram que o SCOLP fornece categorizações
semelhantes às dos especialistas.

A última contribuição é a abordagem e plataforma TMA, que traz capacidades de
auto-adaptação para sistemas de software. A solução baseia-se em modelos de
qualidade para caracterizar propriedades de interesse em relação ao sistema alvo.
A integração com esse sistema dá-se através de sondas e atuadores. A plataforma
pode ser usada em durante o desenho (por exemplo, para recolher evidências de
segurança) e em tempo de execução (para detetar e mitigar potenciais problemas,
por exemplo, intrusões). Para demonstrar o TMA, apresentamos um cenário de
dimensionamento de contentores em uma aplicação baseada em micro-serviços.

Palavras-Chave

Segurança de Software, Vulnerabilidades de Software, Métricas de Software,
Análise Estática de Código, Aprendizagem de Máquina
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Chapter 1

Introduction

Most organizations rely on software systems to perform their core activities and
functions, frequently dealing with large amounts of money and sensitive data.
Such systems are normally connected to the Internet, which increases their expo-
sure [Rizvi et al., 2020; Zhang et al., 2021]. Additionally, software applications are
spread on many devices that people interact with on a daily basis [Moore, 2022;
Okman, 2022]. Although development teams do their best to deploy software
without weaknesses (e.g., relying on detection techniques integrated into the Soft-
ware Development Life Cycle (SDLC) [Mouratidis et al., 2005]), most applications
are released to their end-users with vulnerabilities, a particular type of defect that
opens the door to security attacks that can have severe consequences to the orga-
nizations and the users [SC27, 2018]. Examples of consequences include unautho-
rized access, access to confidential information, data breaches, and data integrity
violations, ultimately leading to reputation damage, financial losses, and even
safety-related violations [Dowd et al., 2006; Neves et al., 2006].

Several vulnerabilities have been discovered in the last few years in widely used
software systems, and the consequences are many. For instance, the Log4Shell
vulnerability in the widely used Java logging component Apache Log4j2 al-
lows remote code execution [Guardian, 2021]. Because Log4j2 is a Java com-
ponent widely used in many applications (some of which not maintained any-
more), even though this vulnerability has already been fixed, it is still present
in some applications, being considered ’the most critical vulnerability of the last
decade’ [Guardian, 2021]. Another example is the Facebook Business Page, in
which the attacker could grant himself administrative permission to a Facebook
page [Muthiyah, 2015]. In an episode known as the Panama Papers Incident, sev-
eral documents (including financial information) were leaked in 2015 [Maunder,
2016; of Investigative Journalists, 2016]. The data breach was possible because
Mossack Fonseca (the Panama-based law firm whose data was compromised)
was using the WordPress Content Management System (CMS) with a vulnerable
component named Revolution Slider. These attacks caused several consequences,
and the common cause was software vulnerabilities.

Software security is nowadays a major concern, with 26,448 vulnerabilities re-
ported in 2022, an all-time record [Targett, 2023]. This is the consequence of soft-
ware systems being used in more enterprises and by more people, but that is not
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the only reason. In fact, software developers do not always know the best security
practices, and although more techniques are being used to identify software vul-
nerabilities, their effectiveness is disappointing in most scenarios. Additionally,
attackers are improving their skills, taking advantage of such security breaches.
Consequently, more investment in cybersecurity is being made and is expected
to grow, reaching a market value of US$ 46.3 by 2027 [Brooks, 2023].

Several techniques and tools exist to detect software vulnerabilities. They can
be divided in two main groups: (i) static techniques, based on the analysis of the
source code, and (ii) dynamic techniques, in which the software needs to be exe-
cuted to identify the vulnerabilities. The most known static technique is Static
Code Analysis (SCA) [Louridas, 2006]. Static Analysis Tools (SATs) report poten-
tial problems (alerts), which need to be analyzed by the software development
team to decide if they are an actual problem (e.g., a vulnerability) or not. Such
tools can be used by software developers from the early stages of the software
development. There are other more recent static techniques that can also be used,
for example, based on Machine Learning (ML) [Walden et al., 2014] or genetic al-
gorithms [Medeiros et al., 2017]. In these, static properties are extracted from the
source code (e.g., software metrics) and used as input (features) for ML algorithms
to predict if an instance (e.g., file or function) is vulnerable or not. On the dynamic
techniques, the most known one is Software Penetration Testing (SPT), supported
by Penetration Testing Tools (PTTs). Vulnerabilities are detected by simulating
attacks in a controlled environment. There are also hybrid approaches, which
combine static and dynamic techniques [Amin et al., 2019; Hanif et al., 2021; Kim
et al., 2016].

Although several software vulnerability detection techniques do exist, they have
key limitations. Tools (i.e., SATs and PTTs) are frequently too expensive for most
organizations, but even though they either report a high number of False Posi-
tives (FPs) (cases reported that are not actual problems) or a high number of False
Negatives (FNs) (unidentified vulnerabilities). As a consequence, development
teams are forced to spend a considerable amount of time analyzing the reported
cases without being sure that all vulnerabilities have been detected. Hence, al-
ternative approaches that help development teams increasing the security of
their software, either by improving vulnerability detection or by helping the
team focusing the effort on the most relevant parts of the code (from a security
perspective), are urgently needed.

1.1 Problem Statement

Agile Software Development is followed by most software organizations nowa-
days, with the goal of decreasing the time to market of the systems being devel-
oped [digital.ai, 2022]. In fact, agile methodologies (such as Scrum and Kanban)
are used by more than 50% of the organizations nowadays [digital.ai, 2022]. De-
vOps is also a trend [Leite et al., 2019], aiming at breaking the silos between the
development team (responsible for the software development) and the operation
team (responsible for deploying and monitoring the system in a production en-
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vironment), and thus support a smoother and continuous transition between the
two [Ebert et al., 2016]. DevOps became popular as a repercussion of the Ex-
treme Programming (XP) agile methodology, which suggests the use of Continu-
ous Integration (CI) as a key practice (requiring new source code to be integrated
frequently into the code repository; e.g., GitHub).

The need to shorten the time to market impacts the SDLC. The frequency of de-
ployment to a production environment varies from multiple times a day to once
every six months, with most organizations deploying between once per week
and once per month [Cloud, 2022]. Every time the source code is pushed to the
repository, the CI server starts the build of the source code to check if the code has
compiling errors. If there are automated tests, they can be run, and verifications
(such as checking the coding standards with the support of a SAT) can be done
and reported to the team.

Security related actions can also be conducted to warn the team about potential
weaknesses. For instance, software vulnerability detection tools can be automat-
ically triggered by the CI server (e.g., Jenkins, Microsoft Azure DevOps, Atlas-
sian Bamboo, JetBrains TeamCity). These checks are part of a DevSecOps1 cycle,
where a security team is also involved in the DevOps, and security validations
are performed as part of the CI build [Prates et al., 2019; Sánchez-Gordón and
Colomo-Palacios, 2020]. The sooner the security problems are found, the less ex-
pensive it is to fix them and handle the consequences [Chess and McGraw, 2004].

Dynamic vulnerability detection techniques (e.g., penetration testing) usually re-
quire a more comprehensive involvement of experts, besides taking considerably
more time to execute. Furthermore, a change in a single line of code generates a
new version of the software, requiring the complete set of tests to be rerun, and
penetration testing tools do not report the exact location of a vulnerability, only
that there is a vulnerability that can be exploited via some interface. Static tech-
niques, on the other hand, report the code unit (i.e., file, function, or class) where
the potential vulnerability exists. It is also faster to apply static techniques as part
of the CI workflow when a change happens, and the analysis can be done only
on the modified code units. The focus of this work is on static techniques (and
not on the dynamic ones) with the goal of helping development teams improving
security from the early stages of the SDLC.

Although SCA can be easily integrated into the DevSecOps lifecycle and is able
to report vulnerabilities by scanning the complete source code base (or a part of
it) at a low cost, it suffers from three main problems. The first one is the high
number of reported FPs, leading software development teams to spend too much
time on their analysis (or even giving up on the use of SATs) [Johnson et al., 2013].
The second problem is the FNs, which are actual security problems that are not
detected: even if a team analyzes all the reported items, it is not guaranteed that
all vulnerabilities in the source code will be found. The third problem is the lack
of a complete understanding of how such tools behave in projects with a large
source code base, as most studies assess SATs using source code snippets specifi-

1 Other terms can be used as a synonym of DevSecOps, such as SecDevOps and De-
vOpsSec [Sánchez-Gordón and Colomo-Palacios, 2020]. The term DevSecOps will be used through-
out this thesis.
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cally crafted for the evaluation. As large software systems are frequently used by
a large number of people, not having effective approaches to avoid vulnerabilities
leaves the system more prone to attacks with enormous impacts.

Static techniques based on ML suffer from the same issue: either a high number
of FPs or FNs [McGraw, 2006; Muske and Khedker, 2015]. Additionally, instead
of reporting potentially vulnerable code statements, such techniques usually re-
fer to code units (i.e., files, functions, or classes) [Shin et al., 2011; Walden et al.,
2014]. This way, software development teams have to analyze such code units in
detail to identify the potential vulnerabilities before fixing them, without being
sure if a vulnerability is indeed present in the code unit or not. Consequently,
most teams neglect these techniques [Imtiaz et al., 2019]. Nevertheless, given the
continuously evolving nature of the ML field, there are clear opportunities for
studying its use as support for software security improvement.

The limitations of existing vulnerability detection techniques puts a greater focus
on the security efforts of the development team. Due to the limited resources nor-
mally available, support is needed to help developers directing the time available
to the parts that are more prone to have security issues. This may be done by clas-
sifying and ranking the source code [Fischer et al., 2021], but existing techniques
mostly focus on previously identified vulnerabilities, making the approach reac-
tive instead of proactive [Morrison et al., 2018; Zeng et al., 2022]. Obviously, the
characterization/prioritization of code units can be used to drive further static
analysis and testing activities, which may improve vulnerability detection per-
formance.

Datasets with vulnerability-related information are needed to support the devel-
opment and improvement of vulnerability detection and security improvement
techniques. Although several datasets exist [Alves et al., 2016a; Fan et al., 2020;
Zheng et al., 2021], these are usually tailored for specific contexts. For instance,
they either contain information from synthetic vulnerabilities (i.e., source code
that is not part of a real project [SAMATE, 2005]), or do not contain a large num-
ber of vulnerabilities [Fan et al., 2020], or are focused in one or a small number of
vulnerability types [Li et al., 2018]. Additionally, existing datasets do not include
information on how the vulnerability is fixed and the changes in the source code
after the fix.

Even when a DevSecOps team puts the best effort on avoiding and detecting soft-
ware vulnerabilities, some will for sure escape all the security tests and analysis.
Mitigating such cases calls for run-time solutions capable of identifying security
incidents. For example, as part of the operation activities, an online monitor-
ing mechanism should be deployed to identify and deal with potential issues,
either with or without human interaction; e.g., by performing self-adaptation (for
self-protection [Yuan et al., 2014] and self-healing [Ghosh et al., 2007]) or imple-
menting Moving Target Defense (MTD) actions [Cai et al., 2016; Cho et al., 2020].
At the very least, the DevSecOps team can be notified to take adequate actions.
The problem is that such solutions are either not available to a large audience or
are hard to be used.

4



Introduction

1.2 Contributions

This thesis advances the state-of-the-art on the characterization of software code
units (e.g., files or functions) from a security vulnerability perspective, making
use of static data obtained from the source code. The proposed techniques can
be integrated into the CI pipeline as part of a DevSecOps cycle [Pittet, 2023]. In
general, we make use Software Metrics (SMs), alerts reported by the SATs, and
information obtained from the Control Flow Graph (CFG) of the code units as
input for the proposed techniques. Nevertheless, other static information can be
used and integrated into such techniques.

We focus on C/C++ as these languages are the basis for developing widely used
systems software (e.g., Operating Systems (OSs) and hypervisors), where the im-
pact of the exploit of a vulnerability may be catastrophic. In fact, according to a
White Source report, C and C++ account for 52% of vulnerabilities in open source
software (C = 46%; C++ = 6%) [Source, 2021], being improper use of memory, which
may lead to buffer overflow, the most frequent type of vulnerability [Source, 2021].

In short, the main contributions of this thesis are:

• Vulnerability data collection process and a dataset of vulnerable and non-
vulnerable code units (based on publication [D’Abruzzo Pereira et al.,
2022]). The process consists of obtaining information about vulnerabil-
ities of selected open-source projects from online vulnerability databases
(e.g., CVE Details [Özkan, 2023]), as well as the vulnerable and the neutral
(patched) versions of the source code from the corresponding code repos-
itories. From these two versions of the source code, we collect relevant
information, namely Software Metrics (SMs) and alerts reported by SATs.
The software vulnerabilities are assigned to categories that reflect the lack
of use of the security best practices suggested by the Open Web Applica-
tion Security Project (OWASP). The dataset currently contains vulnerability
data from five C/C++ open-source projects (Mozilla, Linux Kernel, Xen,
Apache httpd, and glibc) collected using the SciTools Understand tool [Sc-
iTools, 2011] and two open-source SATs (CppCheck [Marjamäki, 2007] and
Flawfinder [Wheeler, 2001]). This dataset is used as support for the remain-
ing contributions of this thesis.

• Analysis of the use of SATs in large C/C++ open-source projects (based
on publication [D’Abruzzo Pereira and Vieira, 2020]). Several vulnera-
bilities from the Mozilla open-source project are used to study the be-
havior and performance of two SATs (CppCheck [Marjamäki, 2007] and
Flawfinder [Wheeler, 2001]). For each vulnerability, the two versions of
the source (vulnerable and fixed/neutral) are used to assess if static anal-
ysis could have been used to identify the vulnerabilities before deployment
(i.e., to prevent the release of the source code to production with vulnera-
bilities). Furthermore, we analyze the performance by type of vulnerability.
Overall, CppCheck performs better than Flawfinder in terms of the vulner-
abilities detected, at the cost of a high number of FPs. In two categories
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(Data Protection and Coding Practices), CppCheck could detect most of the
vulnerabilities.

• Buffer overflow vulnerabilities analysis using the Orthogonal Defect
Classification (ODC) (based on publication [D’Abruzzo Pereira et al.,
2021]). Software vulnerabilities classified with the MITRE’s CWE-119 iden-
tifier (Improper Restriction of Operations within the Bounds of a Memory Buffer)
identifier [MITRE, 2006b] from three large projects (Linux Kernel, Mozilla,
and Xen) are analyzed, using both SMs and SAT alerts. In practice, we study
the potential correlation between SMs and buffer overflow vulnerabilities,
and the differences in terms of SAT alerts in the vulnerable and neutral ver-
sions of code units. Furthermore, the vulnerabilities were classified by two
researchers using ODC [Chillarege et al., 1992]. Both the defect type and
the qualifier were used in the classification. The main finding is that most
buffer overflow vulnerabilities are fixed by adding a check before using a
memory space and that fixes typically increase the size and complexity of
the source code.

• Two studies using ML algorithms with static data to predict software vul-
nerabilties. In the first study, four classical ML algorithms (Decision Tree
(DT), Random Forest (RF), Extreme Gradient Boosting (XGB), and Bagging)
are used to predict the presence of vulnerabilities in files of the Mozilla
project (based on publication [D’Abruzzo Pereira et al., 2021]). Both SMs
and SAT alerts are used as features for the ML algorithms. An analysis of
the file characteristics (such as the similarities in the SMs) is also presented.
In the second study, we follow an approach based on deep learning with a
Deep Graph Convolution Neural Network (DGCNN) and a Visual Geome-
try Group (VGG) network (based on publication [D’Abruzzo Pereira et al.,
2023]). In this case, features extracted from the CFG of each function of
the Linux Kernel project are used. These features include attributes related
to the CFG structure and memory management. We could observe a high
recall in both studies at the cost of a low precision.

• Security Characterization of Open-source functions using Logic Scoring
of Preference (SCOLP) to characterize code units from a security perspec-
tive (based on publication [D’Abruzzo Pereira and Vieira, 2023]). SCOLP
categorizes the code units (e.g., files, functions, or classes) using static in-
formation from the source code, including SMs and memory management-
related attributes extracted from the CFG. Our approach assigns the code
units into priority groups, from most critical to least critical. For this, Qual-
ity Models (QMs) considering different properties (e.g., memory manage-
ment, input validation, and permission) were developed, and their output
is used to assign the code units into priority groups. Software development
teams can integrate SCOLP into the DevSecOps lifecycle and use the prior-
ity groups to decide the work. We demonstrate the approach with functions
of the Linux Kernel project and rely on the judgment of security experts to
validate the outputs. Results show that SCOLP provides categorizations
similar to experts without involving experienced personnel.
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• Trustworthiness Monitoring & Assessment (TMA) framework (see publi-
cation [D’Abruzzo Pereira et al., 2020])2. TMA brings self-adaptation capa-
bilities to software applications and implements the MAPE-K cycle [IBM,
2006]. A Kubernetes cluster is used to deploy the framework, and each
MAPE-K component (Monitor, Analyze, Planning, Execute, and Knowl-
edge) is mapped into a Kubernetes component. TMA relies on QMs to
characterize properties of interest regarding the managed system. The in-
tegration with the managed system (system target of the adaptation) hap-
pens through probes and actuators. Libraries for different programming
languages were created and are available to smooth the integration. Due to
the nature of the TMA framework, it can be used not only at design-time
(e.g., to collect security evidences), but also to detect and mitigate other is-
sues (e.g., intrusions) at run-time. To demonstrate the TMA framework,
we present a scenario to scale containers in a microservice application de-
ployed in a Kubernetes cluster3. It is important to mention that SCOLP can
be easily integrated within the TMA (Analyze component).

1.3 Outline of the Thesis

The remainder of this thesis is structured as follows.

Chapter 2 provides background on dependability and security concepts. It fur-
ther details existing software vulnerability detection techniques and other con-
cepts used throughout this thesis. A thorough overview of relevant works in the
literature is also presented.

Chapter 3 presents the methodology to collect static information about software
vulnerabilities and describes the dataset built. The dataset contains both SMs
(for three levels of code units: files, functions, and classes) and alerts generated
by two SATs (CppCheck and Flawfinder) for five open-source C/C++ projects
(Mozilla, Linux Kernel, Xen, Apache httpd, and glibc).

Chapter 4 presents the study on the use of SATs in large projects. The methodology
to evaluate the SATs in vulnerable and neutral versions of the code is presented.
SATs are evaluated considering both the ability to detect vulnerable code units
and the ability to distinguish vulnerability types (multiclass classification).

Chapter 5 presents an analysis of how buffer overflow vulnerabilities are fixed in
large open-source C/C++ projects. The chapter proposes a methodology to col-
lect the vulnerabilities and other relevant information, as well as to classify their
fixes. Following, a classification of the vulnerabilities with ODC is presented and
discussed, and an analysis of the SMs and SAT alerts is provided. Key observa-

2 TMA follows a research direction different from the remaining contributions of this thesis.
The approach and the platform were designed and developed prior to some of the other contribu-
tions and independently from those. Nevertheless, we consider that it can be applied in a security
context, especially in a close and smooth integration with SCOLP.

3 The TMA platform has been used in the context of the ATMOSPHERE project for monitoring
security policies and providing a hierarchy of scores that allow the security team deciding when
and where to act.
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tions for software developers to avoid buffer overflow vulnerabilities in C/C++
projects are presented.

Chapter 6 presents two studies that use ML to detect software vulnerabilities. The
first one uses classical ML algorithms, with SMs and SAT alerts as their features to
classify vulnerable files. Both binary and multiclass classification are performed,
and the results are presented and discussed. The second one uses deep learning
(DGCNN + VGG) to classify vulnerable functions. Features extracted from the
CFG structure and memory management-related attributes are used as input of
the network. The methodology on how to extract the features from the CFGs of
the functions is presented. The classification results are presented and discussed.

Chapter 7 presents the SCOLP approach, which can be used to characterize code
units using Logic Scoring of Preference (LSP). Several QM instances, reflecting
different properties of code units, are presented. A demonstration of SCOLP is
done with functions of the Linux Kernel project. Finally, the chapter presents a
characterization of a small set of functions done by security experts, which is then
compared with the results of SCOLP.

Chapter 8 details the TMA framework, which is based on the MAPE-K cycle for
self-adaptive systems. The TMA architecture is detailed, and a demonstration
of its use in the context of a microservice application deployed in Kubernetes is
presented. The results are discussed and compared with an autoscaling solution
target for Kubernetes applications (Kubernetes HPA [Google, 2014a]).

Chapter 9 closes this thesis by presenting the final remarks and putting forward
ideas for future research topics.

Appendix A presents an exploratory study on using ML algorithms to detect soft-
ware vulnerabilities using alerts from SATs. A dataset with two types of vulnera-
bilities (SQL Injection (SQLi) and Cross-Site Scripting (XSS)) in PHP components
of the WordPress CMS is used. Appendix B presents the complete list of Software
Metrics (SMs) used in the experiments and stored in the dataset.
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Background and Related Work

Advancing the state of the art on software security requires understanding con-
cepts related to dependability, security, and vulnerability detection. Furthermore,
throughout the work developed in this thesis, several techniques not directly re-
lated to security were also used. This way, this chapter discusses not only security
concepts but also introduces other relevant concepts, such as Software Develop-
ment Life Cycles (SDLCs) and classification performance metrics. Furthermore,
the chapter puts in perspective the most relevant related works on vulnerability
detection, Static Code Analysis (SCA), Software Penetration Testing (SPT), Soft-
ware Metrics (SMs), vulnerability datasets, and code characterization/prioritiza-
tion.

The outline of this chapter is as follows. Then, Section 2.1 presents background
concepts. Vulnerability detection techniques are discussed in Section 2.2. Finally,
Section 2.3 presents an overview of the most relevant related works.

2.1 Background Concepts

Understanding the contributions in this thesis requires mastering some key con-
cepts on dependability and security, software vulnerabilities, software develop-
ment life cycles, classification of vulnerabilities, and metrics for evaluating vul-
nerability detection tools. These are introduced in the following.

2.1.1 From Dependability to Security

Avizienis et al. [2004] define dependability as the “ability to avoid service fail-
ures that are more frequent and more severe than is acceptable” [Avizienis et al.,
2004]. They also define the attributes that compose dependability: 1) availability:
readiness for correct service; 2) reliability: continuity of correct service; 3) safety:
absence of catastrophic consequences on the user(s) and the environment; 4) in-
tegrity: absence of improper system alterations; and 5) maintainability: ability to
undergo modifications and repairs.
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Dependability Security
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Safety

Confidentiality

Integrity

Maintainability

Figure 2.1: Dependability and Security Attributes (adapted from [Avizienis et al.,
2004])

Target System 

intrusion error failure

attacks

vulnerability

Figure 2.2: Fault model of Vulnerability Discovery Methodology (adapted
from [Neves et al., 2006])

Security is “the practice of building software to be secure and function properly
under intentional malicious attack” [McGraw, 2006]. Nevertheless, no technique
or set of rules will ever be perfect for detecting all security vulnerabilities be-
cause security problems evolve over time. Avizienis et al. [2004] also define the
attributes of security, which have some overlap with dependability, as shown
in Figure 2.1. In addition to availability and integrity, security includes confiden-
tiality. Such attributes can be defined as Avizienis et al. [2004]: confidentiality -
the absence of unauthorized disclosure of information; integrity - the absence of
improper system alterations; and availability - the readiness for correct service.

2.1.2 Software Vulnerabilities

ISO/IEC 27000:2018 [SC27, 2018] defines vulnerability as a “weakness of an asset
or control that can be exploited by one or more threats”. According to the Open
Web Application Security Project (OWASP) [Foundation, 2021], a vulnerability is
a weakness in an application, and it can be caused by “a design flaw or an imple-
mentation bug”. When an attack on the application is successful, a vulnerability
is activated, resulting in an intrusion (the attacker gains access to the system),
as depicted in Figure 2.2. A successful attack may lead to safety violations, data
breaches, and financial loss, among other consequences [Neves et al., 2006], de-
pending on the type of vulnerability exploited, the assets, and the intentions of
the attacker.
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OWASP periodically organizes a list of the Top 10 most critical vulnerabilities in
web applications. For that, they group and analyze vulnerabilities based on their
CWE identifier. The Common Weakness Enumeration (CWE) [MITRE, 2006a]
provides a community-developed list of known software and hardware weak-
nesses/vulnerabilities for a large set of systems. The last Top 10 list was issued in
2021, and the most critical vulnerabilities are listed in the Table 2.1 [Foundation,
2021]:

Table 2.1: The Top 10 list of OWASP from 2021

OWASP Category Description
Broken Access Control When the user acts outside the intended permissions.
Cryptography Failures Data that must be encrypted is hard-coded or when a

risky crypto algorithm is used.
Injection When data provided by the user is not sanitized before

use.
Insecure Design A new category from 2021 expressed as “missing or inef-

fective control design”.
Security Misconfiguration When unnecessary features are installed or enabled.

Vulnerable and
Outdated Components

When outdated (potentially) vulnerable components are
used.

Identification and
Authentication Failures

When brute-force is allowed, or when the software al-
lows weak passwords.

Software and Data
Integrity Failures

Related with software updates (usually using Continu-
ous Integration (CI) pipelines) without verifying the in-
tegrity.

Security Logging and
Monitoring Failures

Related with insufficient security information logging or
when sensitive information is included in the log file.

Server-Side Request
Forgery (SSRF)

When a web application fetches a remote resource with-
out validating the user-supplied URL.

We discuss some types of frequent vulnerabilities in the following paragraphs.

The third type in the OWASP Top 10 List is Injection Flaw, which consists on the
possibility of untrusted data being sent to an application with the goal of “exe-
cuting an unintended command or accessing data without proper authorization”.
One of the most common types is SQL Injection (SQLi), but injection vulnerabil-
ities can be of many different types, such as NoSQL injection, Operating System
(OS) command injection, and LDAP injection. Injection usually happens due to
the lack or improper validation of the input provided by an untrusted source.

Another widely known vulnerability in web applications is Cross-Site Scripting
(XSS) that occurs when untrusted data is sent through a browser API in order to
execute malicious scripts. It usually happens due to the lack of proper valida-
tion or escaping in the user-supplied data using a browser API. XSS is found in
around two-thirds of all web applications. When exploited, XSS flaws can lead
the attacker to execute code remotely. XSS vulnerabilities can be of three types: i)
Reflected XSS, ii) Stored XSS, and iii) DOM-based XSS [Johns et al., 2008].

Buffer overflow is a weakness related to inadequate memory management. It
occurs when the software allows reading or writing in a memory space out-
side the allocated memory [MITRE, 2006b]. Buffer overflow is not listed as part
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of the OWASP Top 10, as most programming languages used in web applica-
tions handle memory management properly. On the other hand, C and C++ lan-
guages, widely used for the development of systems software, leave the memory
management to the developers, and consequently, buffer overflow vulnerabili-
ties may happen. In fact, buffer overflow is the most frequent vulnerability in
C/C++ code [Source, 2021]. A typical example of a buffer overflow weakness is
the use of the C function strcpy, as it copies a string from one memory location
to another without checking the boundaries of the destination buffer. As an ex-
ample, we show below a vulnerable code snippet from the Linux Kernel project
(sound/oss/soundcard.c before the vulnerability fix CVE-2010-4527). It uses the
strcpy function in an old version of the Linux Kernel. This vulnerability can be
fixed either by replacing the vulnerable function (i.e., strcpy) with another func-
tion, such as strlcpy, or by adding a checking before the use of strcpy.

n = num_mixer_volumes ++;

s t rcpy ( mixer_vols [ n ] . name , name ) ;

i f ( present )
mixer_vols [ n ] . num = n ;
e lse
mixer_vols [ n ] . num = −1;

In the Common Weakness Enumeration (CWE) categorization system, most
memory management-related vulnerabilities are classified under the CWE-119:
Improper Restriction of Operations within the Bounds of a Memory Buffer identi-
fier [MITRE, 2006b]. Although this is a known problem, it is still the most fre-
quent weakness found in most C/C++ software systems for several reasons: i)
there is no built-in protection in C/C++ applications against accessing/overwrit-
ing data in memory; ii) C/C++ software systems do not automatically check
whether data written to a buffer respects the bounds of that buffer; and iii) several
and different possibilities and paths in the code may lead to the buffer overflow
issue, which makes it challenging to find all possibilities, especially in complex
and large projects.

Among many other resources available, the secure coding practices from the
OWASP [Turpin, 2010] and the coding standards from the Software Engineer-
ing Institute (SEI) CERT [Software Engineering Institute – Carnegie Mellon Uni-
versity, 2006] provide fundamental guidelines and checklists to handle memory
management properly. Despite that, many software systems are still released
with buffer overflow vulnerabilities, which are usually caused by the lack of
knowledge and experience in applying coding practices and guides throughout
the software development cycle.

Although formal approaches to detect vulnerabilities (such as Fagan Inspection
[Fagan, 1976]) can be used, automated and experimental approaches are usually
preferred. A survey by Liu et al. on vulnerability detection details four of the
most used techniques [Liu et al., 2012]. SCA is the “evaluation of a system or
component without the program execution” [Chess and West, 2007]. Fuzzing is
a randomized testing technique that generates random character streams for the
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tests. SPT evaluates the success of simulated attacks of malicious users. Vulnera-
bility Discovery Models (VDMs) are based on Software Reliability Models (SRMs),
and “specify the general form of the dependence of the vulnerability discovery
process on the principal factors that affect it”. Details about vulnerability detec-
tion techniques are presented in Section 2.2.

There are also tools to detect intrusions (at run-time), such Intrusion Detec-
tion Systems (IDSs) [Sabahi and Movaghar, 2008]. For instance, a network
IDS collects data from the network and analyzes the transmitted packets inside
it. Milenkoski et al. [2015] categorize the attack detection methods as: i) mis-
use-based; ii) anomaly-based; and iii) hybrid-based (use both the misuse-based
and anomaly-based). Misuse can be detected based on attack signatures (signa-
tures at the database are used to identify intrusions), rules (“if-then” rules are
used to characterize computer attacks), or the analysis of state transitions (a fi-
nite state machine is deduced to identify intrusions). Anomaly-based methods use
a baseline profile of the regular network of the system activities to distinguish
the regular behavior from anomalous behavior. To do that, regular activities are
monitored to build the baseline activity profiles.

2.1.3 Software Development Life Cycle

Software security should be considered throughout the whole SDLC, but not all
life cycles have specific phases targeted to security activities. Most times, security
is something that organizations address in their tailored processes. In this section,
we detail the most used SDLCs nowadays and their integration with security
activities.

Agile Software Development is widely used in most software organizations [dig-
ital.ai, 2022]. It emerged as an alternative to the waterfall SDLC and other SDLCs
that focused on finishing the first phases of the life cycle (requirements, architec-
ture, design, implementation) before moving to validation with the client. The
Agile Manifesto [Beck et al., 2001] was published in 2012, focusing on a set of
principles. Since then, several agile methodologies/frameworks arose, and the
most used nowadays are Scrum and Kanban, by more than 50% of the software
organizations [digital.ai, 2022].

Scrum is a framework that defines roles, ceremonies, and artifacts [Schwaber and
Beedle, 2001]. The backlog items are organized in a product backlog. During a
planning meeting, a sub-set of items are selected to compose a sprint backlog. These
are the items that will be developed by the team during a sprint, a period of two
to four weeks for the development. After that, a potentially shippable product in-
crement is presented to the product owner (client liaison) during the spring review
meeting. The team discusses process improvements during the sprint retrospective
meeting, which is usually moderated by the scrum master (role responsible for
making Scrum to work properly).

Kanban is another popular agile framework used to manage work [Anderson,
2010]. Differently from Scrum, Kanban is less prescriptive and requires only three
practices: i) visualize the workflow (usually with the kanban board); ii) limit the
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WIP (work in progress, per state of the backlog items); and iii) measure the cycle
time (time that it takes to develop a backlog item). No ceremonies or roles are de-
fined by Kanban, leaving this responsibility to the team. The constant completion
of backlog items creates new challenges for the software development teams.

DevOps emerges as a solution to solve some of the issues not addressed by other
agile methods, and it is the trend nowadays [Leite et al., 2019]. It aims at break-
ing the silos between development and operation teams, supporting a smoother
and continuous transition between the two [Ebert et al., 2016]. As a consequence,
CI practices, which gained popularity with the Extreme Programming (XP) agile
methodology, are being widely used. Such practices involve building and run-
ning automated tests and static analysis every time new source code is pushed
into the code repository. Many teams also apply Continuous Delivery (CDE) or
Continuous Deployment (CD) practices [Pittet, 2023], in which the new code can
be deployed automatically to production after successfully running automated
acceptance tests or human acceptance tests. The difference is that CDE deploys
to the acceptance environment automatically but not to production, while CD
deploys to the production environment automatically [Shahin et al., 2017]. How-
ever, while this reduces the burden of deploying a new software version, it may
introduce more bugs and vulnerabilities if the CI/CDE/CD pipeline is not prop-
erly configured.

DevSecOps brings together security and DevOps [Prates et al., 2019; Sánchez-
Gordón and Colomo-Palacios, 2020]. Similarly to DevOps, it requires changing
the culture of software development organizations and automating processes.
This calls for integrating security checks into the development pipeline to re-
port potential problems or, at least, categorize code units with potential issues
and guide the development team in the analysis. In practice, continuous verifi-
cation techniques can be used to identify problems or test the source code in the
CI/CDE/CD pipeline [Duvall et al., 2007; Shahin et al., 2017]. For example, inte-
grating Static Analysis Tools (SATs) and Penetration Testing Tools (PTTs) into the
pipeline allows the development team to be continuously warned about potential
issues.

Security aspects should be considered in all the phases of a SDLC [Vieira and
Antunes, 2013], from requirements elicitation to the decommissioning of the soft-
ware system. However, most SDLCs do not focus on security or consider it only
in some specific phases (e.g., implementation, verification). Although this thesis
focuses on approaches to be used only in a concrete phase, it is important to keep
in mind the need for security-by-design throughout the complete SDLC.

2.1.4 Common Vulnerability Scoring System

Software systems are frequently deployed with software vulnerabilities, and in
many situations, it is important to understand the impact of each vulnerability
by providing a measurable value for them. The Common Vulnerability Scoring
System (CVSS) is a system to provide a score to vulnerabilities [First, 1995]. It is
managed by the Forum of Incident Response and Security Teams (FIRST) [FIRST,
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Figure 2.3: Metrics used to calculate the CVSS score (adapted from [FIRST, 2019])

2005], and is currently in version 3.1, released in June 2019. Online databases
(e.g., CVE Details [Özkan, 2023] and NVD [of Standards and Technology, 2020])
usually provide the score of a vulnerability using the CVSS.

Three groups of metrics comprises the Common Vulnerability Scoring System
(CVSS): i) base: intrinsic characteristics of the vulnerability (ranging from 0 to 10);
ii) temporal: characteristics that change over time; and iii) environmental: char-
acteristics unique to the environment of a user. Temporal and Environmental
metrics can modify the Base metrics score.

The Base Metrics group is composed of i) Exploitability Metrics (Attack Vector
(AV), Attack Complexity (AC), Privileges Required (PR), and User Interaction
(UI)); ii) Impact Metrics (Confidentiality Impact (CFI), Integrity Impact (II), and
Availability Impact (AVI)); and iii) Scope (S) [Mell et al., 2022]. The Temporal Met-
rics are composed of Exploit Code Maturity (ECM), Remediation Level (RL), and
Report Confidence (RC). Finally, the Environmental Metrics include the Mod-
ified Base Metrics and Security Requirement Metrics (Confidentiality Require-
ment (CR), Integrity Requirement (IR), and Availability Requirement (AR)). A
representation of the metrics to calculate the CVSS score can be seen in Figure 2.3.

Spring et al. [2018] criticize the CVSS v3.0. CVSS was created to measure technical
severity. However, it is often used for vulnerability prioritization and risk assess-
ment. Thus, one of the criticisms is related to what people want to know, which
is the security risk, while CVSS focus on severity. Currently, FIRST is working in
CVSS v4.0.

2.1.5 Classification Performance Metrics

To better understand vulnerability detection techniques and tools, we need met-
rics that support quantitative evaluating (to help us deciding which technique or
tool works better depending on the context). Such metrics are also considered
in pattern recognition and classification (Machine Learning (ML)) problems, and
are used in some chapters of this thesis, such as Chapter 4 and Chapter 6.

In our work, the instances (output of a technique/tool or item being evaluated)
are code units (such as files or functions, when evaluating the prediction or clas-
sification provided by Machine Learning (ML) algorithms) or alerts reported (by
a SAT being tested). Each instance can be classified as:
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i) True Positive (TP): a vulnerable code unit correctly classified or an alert
properly issued

ii) False Positive (FP): a neutral (non-vulnerable) code unit classified as vul-
nerable or an alert that does not represent a problem

iii) True Negative (TN): a neutral (non-vulnerable) code unit correctly classi-
fied or not identified (alert not reported)

iv) False Negative (FN): a vulnerable code unit classified as non-vulnerable or
not identified (alert not reported)

Using the classification of all items, we can calculate several performance metrics.
The following ones are the most known [Alpaydin, 2014]:

Precision (also known as Positive Predictive Value (PPV)): Ratio of TPs
among all the identified instances:

Precision =
TP

TP + FP
(2.1)

Recall (also known as sensitivity or True Positive Rate (TPR)): ratio of iden-
tifying the TPs among all the positive instances:

Recall =
TP

TP + FN
(2.2)

F-Measure: harmonic mean of precision and recall:

F − Measure = 2 ∗ precision ∗ recall
precision + recall

(2.3)

Other metrics are also mentioned in this thesis:

Specificity (also known as selectivity or True Negative Rate (TNR)): Ratio
of TNs among all the negative instances:

Speci f icity =
TN

TN + FP
(2.4)

Accuracy: Proportion of correct classifications - both TPs and TNs - among
the total number of instances:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.5)

Bookmaker Informedness: How consistently the classification mechanism
predicts the outcome of both TPs and TNs:

BookmakerIn f ormedness = TPR + TNR − 1 (2.6)
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Figure 2.4: Vulnerability Lifecycle (adapted from [Marconato et al., 2012])

Negative Predictive Value (NPV): The proportions of negative results in
the classification among the TN results:

NPV =
TN

TN + FN
(2.7)

Markedness: How consistently the classification mechanism has the out-
come as a marker (i.e., how marked a condition is for the specified classifi-
cation mechanism, versus chance):

Markedness = PPV + NPV − 1 (2.8)

2.2 Vulnerability Detection Techniques

During the lifecycle of a vulnerability (shown in Figure 2.4), several events may
happen [Marconato et al., 2012]:

• the discovery of the vulnerability: the discoverer is aware of the vulnerability
and can use it either for a malicious or non-malicious purpose

• the disclosure of the vulnerability: the vulnerability is available in a
public vulnerability database, such as National Vulnerability Database
(NVD) [of Standards and , NIST(2005]

• the release of the vulnerability patch: the system can have the patch applied to
remove the vulnerability

• the availability of the exploit: the attacker population can exploit the vulnera-
bility

During execution, a system may go through several states [Marconato et al.,
2012]: i) vulnerable: when a vulnerability is present in the system; ii) exposed:
when an exploit to the vulnerability is available; iii) compromised: when an at-
tack happens to the system and is well-succeeded; iv) patched: when the vulner-
ability is patched, but the system can still be facing some consequences (e.g., the
attacker still has administrative privileges); and v) secure: when no vulnerabilities
are present, and no side-effects happen due to previous attacks. The transitions
between the states can be seen in Figure 2.5.
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Figure 2.5: Possible status of a system (adapted from [Marconato et al., 2012])

Several techniques allow the discovery of software vulnerabilities [Hanif et al.,
2021], which can be divided into (1) conventional techniques, and (2) data mining
and machine learning-based techniques. Among the conventional techniques,
there are dynamic techniques, static techniques, and hybrid techniques [Hanif
et al., 2021; Liu et al., 2012]. Dynamic techniques, such as SPT and Fuzzing [Arkin
et al., 2005], involve the execution of the software system and testing it against
simulated (or emulated) attacks. When an attack is well-succeeded, a vulnera-
bility is detected and exploited. On the other hand, static techniques try to find
potential vulnerabilities by analyzing the source code without executing it [Chess
and McGraw, 2004]. Examples of static techniques are SCA, VDM, and white-box
testing. Hybrid techniques combine both static and dynamic techniques to dis-
cover vulnerabilities.

This thesis focuses on discovering software vulnerabilities and characterizing po-
tentially vulnerable code units (files and functions) using static techniques. Any-
way, for completeness, the next sections discuss static techniques (SCA), dynamic
techniques (SPT and fuzzing), and the use of SMs (usually with ML algorithms)
for vulnerability detection. Other approaches are also introduced.

2.2.1 Static Analysis for Vulnerability Detection

Static Code Analysis (SCA) can be defined as the “evaluation of a system or com-
ponent without the program execution” [Chess and West, 2007]. Static Analysis
Tools (SATs) are used to decrease the time spent on code reviews, which may in-
volve many people and are expensive [Louridas, 2006]. The output of a SAT is a
list of issues to be analyzed by the software development team. Each issue iden-
tified and reported by a SAT is called an “alert”. An alert includes the following
main attributes: i) a type (source of the problem), ii) a filename, and iii) the line of
code in which the alert is raised. Other attributes can also be reported, such as the
alert severity, category of the vulnerability, CWE, and a message or a description.
In practice, each SAT defines some additional attributes to report.

Different types of analysis can be performed by SATs, and the tools can be of any
of the following categories:

• Type Checking: validates if the value being assigned to a variable corre-
sponds to the variable type. Most compilers and Integrated Development
Environments (IDEs) perform type checking when compiling the code
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• Style Checking: validates if whitespace, naming, deprecated functions,
commenting, and program structure are according to the pre-established
pattern. Examples of SATs are PMD [PMD, 2004] and Checkstyle [Check-
style, 2001]

• Program Understanding: reasons over the program and are usually inte-
grated within the IDE. It allows finding all the usages of a method or find-
ing a variable declaration. Some companies provide solutions such as CAST
Software [CastSoftware, 1990]

• Program Verification and Property Checking: allows receiving a body of
code to prove that the implementation is according to the specification. It
is related to formal verification. Some companies provide solutions such as
Escher Technologies [EscherTechnologies, 1997] and Grammatech [Gram-
maTech, 2018]

• Bug Finding: points out the places where the software will not work as
the software developer intended. A set of rules is present in the SATs of
this type. Examples of SATs are SpotBugs [SpotBugsTeam, 2017] (which is
formerly known as FindBugs [Ayewah et al., 2008]), Coverity [Synopsys,
2006], and Klocwork [Software, 2014]

• Security Review: identifies security problems. In this case, SATs can
be considered as a hybrid of property checkers and bug finders. Ex-
amples of SATs are Pixy [Jovanovic et al., 2006], RIPS [Dahse and Holz,
2014], phpSAFE [Nunes et al., 2015], WAP [Medeiros et al., 2014], WeV-
erca [Hauzar and Kofron, 2015], ITS4 [Viega et al., 2000], CppCheck [Mar-
jamäki, 2007], Flawfinder [Wheeler, 2001], CppTest [Parasoft, 2010], and
SonarQube [Campbell and Papapetrou, 2013]

Static Analysis Tool (SAT) normally checks a set of rules specified for a specific
programming language to emit the alerts. The alerts can be of diverse types,
such as memory errors, resource leaks, violation of APIs or framework rules, ex-
ceptions, encapsulation violations, race conditions, and security vulnerabilities.
Diverse techniques can be used to identify the alerts [Austin et al., 2013; Freitez
et al., 2009; Gosain and Sharma, 2015], including (i) syntactic pattern matching,
(ii) lexical analysis, (iii) Data Flow Analysis (and its particular case of taint analy-
sis), (iv) parsing, (v) model checking, and (vi) symbolic execution.

The simplest technique is syntactic pattern matching [Chess and McGraw, 2004]. If
the source code matches a rule that indicates a problem, then an alert is raised.
An example is presented below, where the switch statement does not account
for all possible values of the enumerated type (adapted from [Chess and West,
2007]):
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typedef enum { red , green , blue } Color ;

char * ge tC olorS t r i ng ( Color c ) {
char * r e t = NULL;
switch ( c ) {

case red : p r i n t f ( " red " ) ;
}
return r e t ;

}

Data Flow Analysis (DFA) is another technique [Ayewah et al., 2008]. SATs use the
possible values that variables can have and evaluate if an exception may happen
when running the code, such as a null pointer exception. This is done by evalu-
ating all the definitions of a variable, its use to compute other values, and its use
in predicates [Horgan et al., 1994]. An example (using Java) can be seen below
where the third line raises an exception in case the variable g is null (adapted
from [Ayewah et al., 2008]):

i f ( g != null )
p a i n t S c r o l l B a r s ( g , c o l o r s ) ;

g . dispose ( ) ;

A special case of DFA is taint analysis (also known as tainted data-flow anal-
ysis [Ghaffarian and Shahriari, 2017]), used for vulnerability detection. In
the taint analysis, all data provided by an untrusted source is considered as
tainted [Schwartz et al., 2010]. If tainted data reaches a Sensitive Sink (SS), the
SAT will report and alert with a vulnerability [Medeiros et al., 2016]. A Sensitive
Sink (SS) is a request or the output to another source. For instance, the execution
of a Structured Query Language (SQL) query is a SS. The alert will not be issued
either if no data provided by another source is used or if the tainted data goes to
a sanitization process. An example using Java can be seen below, where the user
input (i.e., tainted data) is used in the SQL query without sanitizing the source.

data = System . getProperty ( " user . home" ) ;
dbConnection = IO . getDBConnection ( ) ;
sq lStatement = dbConnection . c rea teS ta tement ( ) ;
sqlQuery = " i n s e r t i n t o users ( s t a t u s ) values ( ’ updated ’ ) "

+ " where name= ’ "+data+" ’ " ;
i n t rowCount = sqlStatement . executeUpdate ( sqlQuery ) ;
IO . wri teLine ( " Updated " + rowCount +

" rows s u c c e s s f u l l y . " ) ;

SATs can usually detect this type of vulnerability, but there are some challenging
aspects. Two examples are the use of variables that are literals and the use of
sanitization functions unknown by the detection tool, which frequently lead to
FPs or FNs. An example can be seen in the following source code.
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data = " foo " ;
dbConnection = IO . getDBConnection ( ) ;
sq lStatement = dbConnection . c rea teS ta tement ( ) ;
sqlQuery = " i n s e r t i n t o users ( s t a t u s ) values ( ’ updated ’ ) "

+ " where name= ’ "+data+" ’ " ;
i n t rowCount = sqlStatement . executeUpdate ( sqlQuery ) ;
IO . wri teLine ( " Updated " + rowCount +

" rows s u c c e s s f u l l y . " ) ;

2.2.2 Penetration Testing and Fuzzing

A key problem with security testing is that people focus on validating that the
tested features work (positive) instead of focusing on detecting potential situa-
tions where they can lead to not working properly (negative). Even when the
negative is tested, it can not be said that there are no faults, but it can be said that
faults are not discovered under certain conditions/scenarios [Arkin et al., 2005].

Security assessments are usually done at the end of the SDLC, in a time-boxed
manner [Vieira and Antunes, 2013]. However, it should be done throughout the
whole process, and different assessment techniques can be used to do that. Exam-
ples of security assessments include attack surface analysis, red teams, fuzzing,
and SPT.

Software Penetration Testing (SPT) is a specialization of robustness testing, which
consists of submitting the program to exceptional data values [Kropp et al., 1998].
In addition to valid inputs, in which the program should work properly, invalid
inputs are used to validate whether or not the program responds with a repro-
ducible failure. In both testing approaches, the tester does not need to know the
implementation details. Unlike robustness testing, the goal of SPT is to stress the
application from the perspective of the attacker in order to reveal vulnerabilities.

Similarly to SCA, SPT should be supported by tools, which are called PTTs.
They allow an application to be tested automatically for vulnerabilities based on
tampered input values. Examples of PTTs are IBM AppScan [IBM, 2019] and
Acunetix [Acunetix, 2019]. SPT should be done prior to system integration and
should start at the feature, component, or unit level. When a vulnerability is dis-
covered, developers should also do a root-cause analysis. However, this is not
always done in many cases.

An example of a vulnerability that can be detected through SPT is SQLi. When a
SQLi vulnerability is exploited, an SQL statement is altered, and an attacker can
read or modify the database data. An example of SQL construct with a SQLi can
be seen below:

S t r i n g s q l = "SELECT * FROM users WHERE " +
" username = ’" + email + " ’ AND " +
" password = ’" + password + " ’ " ;
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If the attacker uses the string ’ OR 1=1 – instead of an actual email, the expres-
sion will be evaluated as true due to 1 = 1 comparison, and it becomes a tautol-
ogy. As a consequence, the attacker will gain access to the system. Using SPT, the
tester tries to simulate an attack by using malicious inputs.

Fuzzing (also known as random-testing [Ghaffarian and Shahriari, 2017]) is an-
other dynamic security testing approach [Bekrar et al., 2011]. Random or invalid
values are injected into a program to identify errors and potential vulnerabilities.
Such values are randomly mutated from well-formed input data [Ghaffarian and
Shahriari, 2017]. Three different methods can be used [Beaman et al., 2022]:

1. Blackbox fuzzing: correct data are used to generate random values. No
previous knowledge of the application (such as the code execution path) is
used to help guide the fuzzer tool

2. Whitebox fuzzing: complete knowledge of the application code and behav-
ior is assumed. To increase the code coverage, techniques such as symbolic
execution and program analysis are used to guide the fuzzer through the
code execution paths

3. Greybox fuzzing: between Blackbox and Whitebox fuzzing, and takes ad-
vantage of both. However, even though techniques such as program analy-
sis are used, the fuzzer is limited compared to whitebox fuzzing

The following code presents an example of a challenging situation for SPTs. As
the method is void, no value is returned to the invocator of the function (e.g., the
testing tool). Also, the exception related to SQL malformation is neither handled
nor thrown to the invocator.

public void operat ion ( S t r i n g s t r ) {
t r y {

S t r i n g s q l = "DELETE FROM t a b l e " +
"WHERE id = ’ " + s t r + " ’ " ;

s tatement . executeUpdate ( s q l ) ;
} catch ( SQLException se ) { }

}

2.2.3 Software Metrics as Indicators of Vulnerabilities

Software Metrics (SMs) are frequently used as indicators of the quality and main-
tainability of the source code [Gaffney, 1981]. Ghaffarian and Shahriari [2017]
define this technique as vulnerability prediction models. From the systematic
literature review performed by Heckman and Williams [2011], most of the stud-
ies use code characteristics as input to automate the Static Code Analysis (SCA).
They result from the metrics of the source code.

A classic set of metrics for Object-Oriented Programming (OOP) Paradigm was
proposed by [Chidamber and Kemerer, 1991], being later improved in [Chi-
damber and Kemerer, 1994]. They are commonly known as “Metrics CK” due
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to the authors that proposed them (Chidamber and Kemerer), and the set con-
tains six metrics:

• Weighted Methods per Class (WMC): the sum of the complexity of all the
methods of a class

• Depth of Inheritance Tree (DIT): maximum length from one (class) node
to the root of the tree (most primitive class);

• Number of Children (NOC): number of sub-classes subordinated to a class
in the class hierarchy

• Coupling Between Object Classes (CBO): count of the number of other
classes to which a class is coupled

• Response For a Class (RFC): cardinality of the response set of a class

• Lack of Cohesion in Methods (LCOM): the difference between the pairs of
methods that are similar and the pairs of methods that are not similar

One of the first metrics to define complexity is Cyclomatic Complexity, defined
by Thomas J. McCabe in [McCabe, 1976]. This metric is calculated through the
Control Flow Graph (CFG) of a program, and the number of feasible paths in the
graph represents the cyclomatic complexity. The following formula can also be
used to calculate the cyclomatic complexity C:

C = E − N + 2

where E is the number of edges in the graph, and N is the number of nodes in the
graph.

The cyclomatic complexity was initially defined to help deciding the number of
test cases to be run when testing a program. Another way of calculating it is
by counting the number of regions that a CFG has. An example can be seen
on Figure 2.6, in which five closed regions of the graph are represented.

Halstead [1977] defines complexity metrics. His goal was to establish metrics
that could relate to each other, such as physical properties. Some of the metrics
are related to the operators, operands, the size of a program, its vocabulary, the
length, the difficulty, and the effort. Shen et al. [1983] publishes another paper
criticizing Halstead’s theory of Software Science. Nevertheless, his metrics have
been used in the security context [Al-Far et al., 2018; Davari and Zulkernine, 2016]
and to predict software vulnerabilities [Chen et al., 2020; Viszkok et al., 2021].

SMs can be classified into different categories:

• Complexity: indicate how complex the code unit is, e.g. cyclomatic com-
plexity

• Volume: characterize the size of the code unit, e.g. lines of code
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Figure 2.6: Example of a Control Flow Graph (adapted from [McCabe, 1976])

• Coupling: indicate how coupled or not the code unit is with other units, e.g.
coupling between objects

• Cohesion: characterize how cohesive or not the code unit is, e.g. lack of
cohesion

Different tools can be used to calculate SMs. An example is SciTools Under-
stand [SciTools, 2011]. The metrics are divided into three categories (complexity
metrics, volume metrics, and object-oriented metrics). SciTools Understand sup-
ports many programming languages including Java, C/C++, C#, and Python,
among others.

Other tools are also available, such as Eclipse Metrics Plugin (http://metrics.so
urceforge.net/), CodeMR (https://www.codemr.co.uk/). Another widely used
tool is SonarQube (https://www.sonarqube.org/), which is a tool whose goal is
continuous inspection. It aggregates rules for different programming languages
to detect bugs, code smells, and vulnerabilities, in addition to SMs.

Previous studies have used SMs as indicators of vulnerabilities. Ghaffarian and
Shahriari [2017] designate the works using this technique as vulnerability predic-
tion model based on Software Metrics (SMs). For instance, Chowdhury and Zulker-
nine [2010] validate the correlation of complexity, coupling and cohesion metrics
with vulnerabilities using statistical approaches. Medeiros et al. [2017] use ge-
netic algorithms to combine SMs and predict vulnerabilities, while Alves et al.
[2016b] use ML algorithms from a previously classified database of vulnerabili-
ties. See Sections 2.3.4 and 2.3.5 for more details on related work.
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2.2.4 Other Vulnerability Detection Techniques

Other characteristics can be used for vulnerability detection. Ghaffarian and
Shahriari [2017] define three categories of techniques:

1. Anomaly detection: find patterns that do not conform to the expected be-
havior. This is done in runtime and consists of a search for abnormal pat-
terns in the historical profile of valid behavior [Antunes and Vieira, 2015]

2. Vulnerable code pattern recognition: identify vulnerabilities through the
analysis of source code structures, such as Abstract Syntax Trees (ASTs),
Code Property Graphs (CPGs), or system calls [Li et al., 2022]

3. Miscellaneous approaches: other works that do not constitute a coherent
category. Usually, they use different Artificial Intelligence (AI) and data
science techniques. For instance, genetic algorithms [Medeiros et al., 2017]

Heckman and Williams [2011] identify different types of features or data that can
be used to support vulnerability detection: i) Source Code Repository Metrics
(e.g., code churn, revision history), ii) Bug database metrics (such as mapping the
bug change in the source code repository to identify fault fixes), and iii) Dynamic
Analysis Metrics (dynamic analysis results serving as input to or refinement of
SCA).

Austin et al. [2013] state that a “single technique for vulnerability discovery is in-
sufficient for finding all types of vulnerabilities”. The Integrated Software Source
Code Analysis (ISA) approach uses data fusion to combine the output of 3 SATs
(Rats, Its4, Flawfinder) [Kong et al., 2007]. The analyzed projects are wu-ftpd,
Net-tools, Pure-ftpd. A score for each vulnerability is defined based on the score of
each tool for each vulnerability and the weight of each tool. The authors compare
the FPs and FNs of each tool.

Shin et al. [2011] analyze the ability of three groups of metrics (complexity, code
churn, and developer activity metrics) to discriminate vulnerable files from neu-
tral files. Two projects were used in their study: Mozilla and Red Hat Linux
Kernel. For both projects, some releases between 2005 and 2008 were considered.
The number of vulnerable files was small (always less than 200 files) per release,
which contained between 10,000 and 13,500 files. Nevertheless, their results show
that 24 of the 28 analyzed metrics have the power to discriminate the vulnerable
from the neutral (non-vulnerable) files for both projects.

The attack surface measurement is defined by Manadhata and Wing [2011] and
is used as an indicator of the security of the system. It is based on the subset of
the resources (methods, channels, and data) that can be potentially used to attack
the system. Although it is a good measurement to understand the vulnerability
fixes, it can also be a problem since adding new features results in an increment
in the attack surface measurement.

The concept of AST can also be used as another source of information [Neamtiu
et al., 2005]. An AST is a representation in a tree of the source code created by the
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compiler, and it contains the variables assignments and conditions as tree nodes.
The compiler also uses it to optimize the code to be run.

Another possible source of information is code smells, a characteristic of the code
that may “correspond to a deeper problem in the system” [Fowler, 2006]. Exam-
ples of code smells are duplicated code, large code, and long parameter list. Some
of the SATs can also detect code smells, but there are also tools specifically with
this goal (sometimes integrated with the IDE).

2.3 Related Work

The following sections present works related to the problem addressed in this the-
sis, including the evaluation of vulnerability detection tools, vulnerability analy-
sis, vulnerability datasets, the use of ML in security, and vulnerability characteri-
zation and prioritization.

2.3.1 Evaluation of Vulnerability Detection Tools

Austin et al. [2013] evaluate the effectiveness and efficiency of four vulnera-
bility discovery techniques: exploratory manual penetration testing, systematic
manual penetration testing, automated penetration testing, and automated static
analysis. They analyze three health-system open-source projects, and eight vul-
nerability types (such as SQLi, XSS, and command injection) are identified. SCA
is the most effective technique, although not the most efficient as the False Posi-
tive Rate (FPR) is 98%.

Nong et al. [2021] evaluate vulnerability detection tools (both static and dynamic
analysis tools) to identify memory-related vulnerabilities. They use the dataset
created by Toyota, with 638 test cases, and consider one SAT (i.e., CBMC) and
four dynamic analysis tools (i.e., AddressSanitizer, Valgrind, MemorySanitizer,
DrMemory). Their results show that SAT accuracy needs to be improved and
that it is difficult to obtain both good precision and recall for the same tool. More-
over, tools that use a hybrid approach (static and dynamic techniques) usually
have better accuracy. Due to the limitations of the dataset selected, it may not be
representative of vulnerabilities in real projects.

Antunes and Vieira [2009b] compared the effectiveness of three commercial PTTs
and one developed in a previous work [Antunes and Vieira, 2009a] with three
SATs for SQLi vulnerabilities. The tests are performed in web services, either
from TPP-App or from a public code from the internet. Their results show better
coverage for SATs. Nevertheless, both SATs and PTTs have a high FPR.

Zheng et al. [2006] evaluate the capability of static techniques to detect faults.
Three Nortel projects written in C/C++ are analyzed using the data from three
SATs (FlexeLint, Klockwork, and Reasoning’s Illuma) previously included in the
Nortel inspection process. They use Orthogonal Defect Classification (ODC) to
identify the faults and failure types detected by the three techniques studied
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(static analysis, inspection, and testing). The results indicate that testing is two to
three times more effective than SCA and inspection, which have similar perfor-
mance. Additionally, the used SATs are effective at identifying two ODC defect
types (assignment and checking). Their results also indicate that SATs can be
used to find vulnerabilities caused by programming errors. However, their find-
ings are limited to the projects of a single organization (Nortel) and may not be
valid in other contexts.

Arusoaie et al. [2017] benchmark 11 distinct open source C/C++ SATs using 638
test cases from a test suite created by Toyota [Shiraishi et al., 2015]. Different
SAT configurations (Code Sonar, Clang Static Analyzer, CPPCheck, Flawfinder,
Flint++, Frama-C, Facebook Infer, Oclint, Sparse, Splint, and Uno) are used. In
addition to the three statistics proposed in the original ITC test suite (detection
rate (DR), FPR, and productivity), they suggested the new metric called robust
detection rate (RDR). Their results show that Oclint has the best detection rate and
the highest FPR. Also, Frama-C has the best productivity value and the highest
robust detection rate. Although the test suite includes an extensive number of test
cases, they are not from real projects. Their goal is to benchmark the SATs using
a well-defined set of vulnerabilities that can potentially be detected by the tools,
and the work does not analyze the vulnerabilities that could not be detected.
Nevertheless, results clearly show that SATs have great limitations.

Braga et al. [2019] study the use of SATs to identify the incorrect use of cryp-
tography functions. The evaluated SATs (FindBugs/FindSecBugs, Xanitizer,
SonarQube/sonar-scanner, VisualCodeGrepper, and Yasca) presented a low re-
call (0.337 or less). Nevertheless, they believe that SATs can help in the develop-
ment of cryptography software. Their results show that most of the cryptography
misuses are not identified by any evaluated SATs. Also, the identified misuses are
detected by a small number of SATs.

Harzevili et al. [2023] evaluate the ability of SATs to detect vulnerabilities in ML
libraries. The authors used the following SATs: Flawfinder, RATS, CppCheck,
Facebook Infer, and Clang static analyzer. Four ML libraries were used in their
evaluation: Mlpack, MXNet, PyTorch, and TensorFlow. The tools could identify
only 5 of the 410 known vulnerabilities of these libraries. Their results show
that Flawfinder could achieve a TPR of 4.95%, and RATS 3.07%. The other three
tools could not detect any vulnerability (TPR = 0%). The authors also suggested
improvements for the SAT to address the weaknesses of the ML libraries, such as
handling the macros allowed by the C programming language.

Filus and Domańska [2023] study the ability of three SATs (CppCheck,
Flawfinder, and Visual Code Grepper (VCG)) to detect vulnerabilities in the Ten-
sorFlow, a platform used in ML. They focused on vulnerabilities reported in CVE
Details and with a CWE that belongs to the CWE Top 25 Most Dangerous Soft-
ware Weaknesses [MITRE, 2021]. Their dataset contains 104 vulnerabilities of six
CWEs (CWE-125, CWE-476, CWE-787, CWE-20, CWE-119, CWE-190) related to
memory management issues, integer overflow, improper input validation, and
NULL point dereference. The authors used the ODC, and they realized that a
missing or incorrect checking statement causes most vulnerabilities. The CVSS
scores were analyzed, and the ones with the highest values are the ones related to
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memory-related issues (CWE-787, CWE-119, and CWE-125). The SATs were also
run in the vulnerable version of the code and the neutral (after the vulnerability
is removed). Flawfinder and VCG decreased by two and one alerts, respectively,
in the neutral version compared to the vulnerable version for the CWE-125. For
the CWE-190, VCG in the neutral version reported an extra alert, which is a FP.
CppCheck had exactly the same number of alerts in the vulnerable and neutral
versions.

Antunes and Vieira [2015] proposed a benchmark to evaluate vulnerability de-
tection tools. They use three SATs, four penetration testing tools, and an anomaly
detector to detect SQLi vulnerabilities. The workloads for the benchmark are
based on a set of web services, although the user can define the workload. Re-
sults show that the benchmark can effectively rank tools.

Nunes et al. [2018] created a benchmark for evaluating SATs for Web Security.
It includes a workload with vulnerabilities of 134 WordPress plugins, and four
scenarios are considered, ranging from business-critical applications to lower-
quality applications. They focus on SQLi and XSS vulnerabilities since they are
some of the most critical web application vulnerabilities. They use five SATs (ph-
pSAFE, RIPS, WAP, Pixy, and WeVerca), which were ranked during the bench-
marking campaign.

Martínez et al. [2022] created an approach to benchmark security tools. It fol-
lows a Multi-Criteria Decision Making (MCDM) approach, which relies on ex-
pert judgment. Each expert was requested to compare metrics (recall, precision,
F-measure, informedness, and markedness) for four scenarios (business-critical,
heightened-critical, best-effort, and minimum effort). They performed case stud-
ies using vulnerability detection tools and IDS tools to validate their approach.
The authors needed to ensure that all answers were consistent because the com-
parison was pairwise between all the metrics for each scenario. Hence, they calcu-
lated the consistency ratio (CR), which was used to discard inconsistent answers.
Using the remaining answers, they could prioritize the tools.

2.3.2 Vulnerability Detection and Analysis

Algaith et al. [2018] combine the results of different SATs to decrease the FNs. The
results are obtained from the alerts of five SATs (namely phpSAFE, RIPS, WAP,
Pixy, and WeVerca) of PHP plugins of WordPress Content Management System
(CMS). Three heuristics used to combine the SATs are proposed to identify SQLi
and XSS vulnerabilities: i) 1-out-of-N (1ooN): raises the alert when any of the
SATs report the alert; i) N-out-of-N (NooN): raises the alert when all of the SATs
report the alert; and iii) simple majority: raises the alert when the simple majority
of the SATs reports the alert. Results show that NooN has a better specificity than
1ooN or simple majority. 1ooN leads to a better detection (i.e. higher recall), but
also large number of FPs (i.e. low precision).

Meng et al. [2008] use a data fusion approach, and the following SATs are used:
FindBugs [Ayewah et al., 2008], PMD [PMD, 2004], JLint [JLint, 2002]. The output
of the different tools is presented in a single report. Two policies are used to
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prioritize the results: i) using the alert severity, and ii) using the count of tools
that produced alerts of that type for that place in the code.

Sampaio and Garcia [2016] use an early vulnerability detection approach. They
reason that SCA is performed late in the SDLC, and they suggest detecting
vulnerabilities during the development. Context-sensitive Data Flow Analysis
(DFA) is used for improving vulnerability detection and mitigating the limita-
tions of pattern matching. They notice that Context-sensitive DFA reduces the
number of FPs and early vulnerability detection improves the awareness of the
developers about the vulnerabilities being introduced. A plugin for detecting
vulnerabilities in Java code was created for Eclipse IDE. They analyze the results
using precision, recall, and F-Measure.

Balzarotti et al. [2008] present an approach that combines static and dynamic
analysis to identify wrong sanitization procedures. Sanitization is the process
of removing possible malicious elements from the input to avoid an attack. The
developed tool is called Saner, and it analyzes PHP applications. It is based on the
vulnerability scanner Pixy [Jovanovic et al., 2006]. Their process involves creat-
ing a sanitization graph and labeling the variables as tainted/untainted to report
the vulnerabilities. Five PHP applications are used to validate their methodol-
ogy. From the experiments, they noticed that sanitization mechanisms used in
real-world applications are not always effective and can be bypassed by some
attackers.

Shin et al. [2006] propose an approach that combines static and dynamic analysis
to detect SQLi vulnerabilities, and the prototype tool is SQLUnitGen. Two tools,
AMNESIA and JCrasher, are the base for building SQLUnitGen. While the for-
mer creates an automata using SCA that will allow running dynamically defined
queries, the latter generates test cases with predefined input values using JUnit.
Two small web applications are used to evaluate their approach, which has no
FPs and a small number of FNs. The results are compared to FindBugs [Ayewah
et al., 2008].

Peng et al. [2023] analyzed Text-To-SQL models of six commercial applications
(Baidu-Unit, ChatGPT, AI2SQL, AIHelperBot, Text2SQL, and ToolSKE) that can
be used to produce SQL queries from human language. However, the generated
SQL queries can be prone to SQLi vulnerabilities. In the evaluation performed
by the authors, it was noticed that Baidu-Unit received a payload for a Denial
of Service (DoS) attack, and one of the nodes became unavailable, revealing that
this tool can be potentially impacted by a Distributed Denial of Service (DDoS) at-
tack. Four tools (ChatGPT, AiHelperBot, Text2SQL, and ToolSKE) can be prone to
simple in-band injection attacks, a specialization of a SQLi attack in which the re-
sponse is received by the same communication channel as the expected behavior.
The authors also highlighted some risk mitigation strategies, such as examining if
the inputs contain suspicious strings (to avoid black-box attacks), double-check if
the model supplier is trustworthy (against backdoor attacks), and use good soft-
ware engineering practices (e.g., using the Principle of the Least Privilege, and
maintain regular database backups). Such tools should not allow words that are
reserved by the language (such as drop) and should use the “Prepared Statement
technique” [Thomas et al., 2009] to generate the queries.
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Jia et al. [2017] propose an offline analysis solution called HOTrace to identify
heap vulnerabilities. To do that, HOTrace uses execution traces and identifies
taint attributes during the execution. The whole process is done in the pro-
grams themselves, without the source code. The evaluation was performed in
17 Windows x86/x64 applications. Using their prototype, they identified 47 pre-
viously unknown heap overflow vulnerabilities, including two vulnerabilities in
Microsoft Word.

Haller et al. [2013] created the fuzzer Dowser to detect buffer overflow violations.
To do that, they combine taint tracking, program analysis, and symbolic execu-
tion. Dowser ranks the source code to perform the analysis, which is done based
on the data-flow graph. It uses the intuition that complex control flows are more
prone to buffer overflow vulnerabilities. They also reduce the symbolic input
using dynamic taint analysis to improve the performance of Dowser. The evalua-
tion was performed in six applications (nginx, ffmpeg, inspircd, libexif, poppler,
and snort). They could identify two previously unknown buffer overflow vul-
nerabilities.

Liu et al. [2020] analyzed five open-source C/C++ projects (Linux Kernel, FFm-
peg, ImageMagick, OpenSSL, and php-src) and presented 12 findings, which
were applied to find 10 zero-day vulnerabilities. The authors wanted to under-
stand if more vulnerabilities can be found close to identified vulnerabilities. Us-
ing the commits to fix the identified vulnerabilities, they built the call-graph for
the vulnerable code snippets. They found that the vulnerabilities usually follow
the Pareto law and that 60% of the vulnerabilities have at least another one close
to them (in a 2-jump range in the call-graph).

Morrison et al. [2018] created ODC+V, which is an extension of ODC tailored to
classify software vulnerabilities. As the standard ODC has a single value, “secu-
rity/integrity”, for the “impact” attribute, authors claim that it is not possible to
characterize the impact of vulnerabilities in a precise way. ODC+V proposes a
new attribute called “security impact”, which may have one of the following val-
ues from Microsoft STRIDE [Shostack, 2014]: spoofing, tampering, repudiation,
information disclosure, denial of service, and elevation of privilege. The work
presents an evaluation considering 583 defects and 583 vulnerabilities from three
projects (Firefox, PHPMyAdmin, and Chrome). The goal is to compare if defects
and vulnerabilities are fixed and discovered in the same manner. Results show
that vulnerabilities are usually found later in the SDLC compared to “classical”
defects. Moreover, vulnerabilities are primarily classified in one of the following
ODC defect types: Checking, Assignment/Initialization, or Algorithm/Method.
Furthermore, vulnerabilities are often fixed by adding a checking condition (such
as an if-clause) rather than other defects. The use of STRIDE in the “impact” at-
tribute has a side-effect: ODC+V is not orthogonal (like the standard ODC) as
each attribute may have more than one value.
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2.3.3 Vulnerability Datasets

Hanif et al. [2021] presents a taxonomy for software vulnerability detection and
the main ML approaches used in the detection process. The authors propose a
survey in which they analyzed 90 works of software vulnerability detection from
2011 to 2020. From the analyzed papers, supervised learning and deep learning
approaches are a trend, and the types of vulnerabilities most analyzed are buffer
overflow, SQLi, and XSS. The vulnerability detection techniques can be conven-
tional (e.g., static analysis, dynamic analysis, or hybrid analysis) or related to data
mining and ML (e.g., based on SMs, anomaly detection, or vulnerable code pat-
tern recognition). Nevertheless, most studies suffer from the same issue: they
usually have a high number of FNs (unidentified vulnerabilities) or a high num-
ber of FPs. The authors show that most works focus on vulnerability detection,
and a few are on code and dataset problems. Some of the open issues high-
lighted by the authors include the need for gold-standard vulnerability datasets
and works focusing on multi-vulnerability detection, as most works focus on the
most common vulnerability types.

Alves et al. [2016a] developed a dataset with five C/C++ projects (Mozilla, Linux
Kernel, Xen Hypervisor, Apache httpd, and glibc) to explore the relationship be-
tween SMs and the source code vulnerabilities. The goal was to determine if SMs
can discriminate between vulnerable and neutral (non-vulnerable) code. This
study found that some SMs were highly correlated, meaning they contain redun-
dant information and should be reduced to one. As such, functions with vulner-
abilities in the past are prone to have more vulnerabilities with a probability 55
times higher than functions that never had vulnerabilities in the past.

Reis and Abreu [2017] build a dataset with vulnerabilities and a method to extract
them from GitHub’s projects. The dataset contains 682 real security vulnerabil-
ities mined from 248 projects from GitHub and almost 2 million commits. The
projects belong to several programming languages of the top 5 most popular pro-
gramming languages on GitHub: JavaScript, Java, Python, Ruby, and PHP. To
identify the vulnerabilities, the commit messages are automatically analyzed to
look for patterns. Then, a manual diagnosis is performed on the identified com-
mits. Results show that 62.5% of the repositories have real vulnerabilities, and
37.5% do not have vulnerabilities. Hence, there are enough vulnerabilities avail-
able in open-source repositories to create a database of real security vulnerabili-
ties. Furthermore, the most common security standards in those repositories are
Injection (such as OS injection and SQLi), XSS, and Memory Leaks.

Zheng et al. [2021] created a vulnerability dataset based on the alerts reported
by the SATs in real-world C/C++ programs (OpenSSL, FFmpeg, httpd, nginx,
libtiff, and libav). The process consists of running the SAT Infer [Facebook, 2013]
in a GitHub commit before and after a vulnerability fix. If the alert disappears
from one version to the other, it is considered fixed. The commits were selected
based on their commit message, and they used the NVD database [of Standards
and Technology, 2020] to relate to a vulnerability report. Different from other ex-
isting datasets, which contain the vulnerable/non-vulnerable label at a function
level, they define their samples from inter-procedural analysis. As the number
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of samples was large and did not have a ground truth, they manually reviewed
a few issues. With the resulting dataset, they used ML algorithms to reduce the
reported false alarms. Among the analyzed metrics, they used the False Positive
Reduction Rate, achieving results ranging from 65.5% to 95.8% for the six projects
analyzed.

Fan et al. [2020] created the Big-Vul dataset with 3,754 vulnerabilities from 348
GitHub projects (e.g., Chrome, Linux, Android, ImageMagick, Tcpdump, among
others). These are collected from CVE Details, such as in our work. However,
differently from [Fan et al., 2020], we enrich the vulnerability data with SMs and
alerts from SATs. Additionally, our dataset has more vulnerabilities than Big-Vul.

2.3.4 ML for Software Security

Walden et al. [2014] use static data (extracted from the source code) as input (fea-
tures) for several ML algorithms (i.e., Decision Tree (DT), k-Nearest Neighbors
(k-NN), Naive Bayes (NB), Random Forest (RF), and Support Vector Machine
(SVM)) to detect software vulnerabilities. Two types of features (SMs and text
mining) are extracted from PHP applications (Drupal, Moodle, and PHPMyAd-
min). As the density of vulnerability is smaller than defects, defect prediction
models cannot be used to predict vulnerabilities, and new ones have been sug-
gested by the authors. They analyzed both recall and inspection ratio, and their
results show that a higher recall is obtained when text mining is used when com-
pared to software metrics. Overall, their results are better when using the text
mining features in the three projects (recall varying from 0.737 to 0.805, while
with SMs, it ranges from 0.663 to 0.769). This is probably related to the small
number of SMs considered, which is 12. The results may also be overfitted for
text mining, which leads to better performance.

Alves et al. [2016b] use different ML techniques in a software metric dataset to
predict vulnerabilities in C/C++ projects. The dataset contains SMs of both before
and after the patch of a vulnerability in the Common Vulnerability and Exposures
(CVE), and it is created in a previous work of the authors [Alves et al., 2016a]. The
SMs were extracted using the SciTools Understand tool [SciTools, 2011]. The ana-
lyzed projects are Mozilla, httpd, glibc, Linux Kernel, and Xen Hypervisor. The used
ML classifiers are NB, DT, RF, and Logistic Regression (LR). Seven metrics were
used to analyze the results: Accuracy, FPR, Precision, Recall, F-Measure, Bookmaker
Informedness, and Markedness. The results varied a lot: precision varied from 0.32%
to 30.50%, and recall from 0.36% to 100.00%.

Flynn et al. [2018] propose an approach to determine if the alerts reported by the
SATs are actual vulnerabilities. They developed an alert aggregation tool from
the multiple SATs and mapped them into the CERT Coding Rule [CERT, 1988]
or CWE [MITRE, 2006a]. The used ML algorithms are Lasso Logistic Regression,
Classification and Regression Trees (CART), RF, and Extreme Gradient Boosting
(XGB). The validation technique used is the holdout method, in which the data
are divided into training and test sets. Both per-rule classifiers and all-rules clas-
sifiers are created and evaluated. Some of the techniques used are alert type se-
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lection, contextual information, data fusion, machine learning, and mathematical
and statistical models. For their datasets, combined results of the SATs produce
results with better accuracy than the tools separately. Results show poor accuracy
in a per-rule prediction due to the little labeled data.

Pang et al. [2015] create an approach using N-Gram analysis and statistical fea-
ture selection to predict vulnerable software. N-Gram is the process of creating
features by the composition of words in a text, with a varying number of words
(N in this case). The text used to create features is the source code of the vulner-
able code to be classified. For the experiment that the authors performed, four
Android Java Applications were used. Additionally, statistical feature selection
is used to reduce the number of features to be used in the prediction. Three met-
rics are analyzed (accuracy, precision, and recall), and the results are good when
training and testing are done using data from the same project. However, the
results are not so good when one project is used to train and another one to test.

Medeiros et al. [2017] studied whether SMs could be used to distinguish vulner-
able and neutral (non-vulnerable) code at a file and function level and showed
how a near-best subset of these metrics could be found. The dataset from Alves
et al. [2016a] was used in this study, with the following projects: Mozilla Fire-
fox, Linux Kernel, Xen Hypervisor, Apache httpd, and glibc. A heuristic search,
which combined genetic algorithms with the RF classifier, was performed. The
genetic algorithm converged to the best accuracy of 97.66% seven out of ten times
at a file level. Complexity metrics were in most of the best solutions/models at
the file level. In contrast, volume metrics (e.g., Line of Code (LOC)) were the ma-
jority at the function level. Statistical analysis is done using Pearson and Spear-
man correlations, and the results are analyzed using the metrics accuracy and
Cohen’s Kappa. The best accuracy and Cohen’s Kappa results were 97.30% and
37.03%, respectively.

Medeiros et al. [2020] use SMs to predict vulnerable code with ML algorithms
(DT, RF, XGB, and SVM) at two levels of code units (file and function) of five
C/C++ projects (Mozilla, Linux Kernel, Xen, httpd, and glibc) using the dataset
by Alves et al. [2016a]. The algorithms with the best performance at the file level
are RF and XGB in all the scenarios evaluated. The file-level results are usu-
ally better (recall about 0.900) than the function-level (recall about 0.800). Nev-
ertheless, the prediction does not take into consideration the vulnerability type.
Additionally, the work suffers from the problem of the use of SMs: the predic-
tion indicates potentially vulnerable code without indicating the exact place of
the vulnerability. Furthermore, the good results for recall hide a low precision,
meaning that a large number of false alarms are raised. Consequently, additional
time needs to be spent by development teams to identify the true vulnerabilities.

Li et al. [2018] proposes VulDeePecker, a deep learning-based approach to detect
vulnerabilities that automatically selects features for the vulnerability detection
process without human intervention. This is done using Code Gadgets, which
are used as input for the deep learning algorithm. Code Gadgets are a vector
representation of the functions. This is done with the help of the deep learning-
based approach VulDeePecker. To evaluate VulDeePecker, they present a dataset
of code gadgets with three projects (Xen, SeaMonkey, Libav), in which they were
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able to discover four previously unknown vulnerabilities. The dataset has 61, 638
code gadgets, 17, 725 of which are vulnerable: 10, 440 code gadgets with buffer
overflow errors (CWE-119 [MITRE, 2006b]), and 7, 285 with resource manage-
ment errors (CWE-399 [MITRE, 2006e]). VulDeePecker could detect 4 vulnera-
bilities not previously reported in the NVD [of Standards and , NIST(2005]. Nev-
ertheless, these vulnerabilities were silently fixed in future versions of the eval-
uated software projects. Their results also show a lower FPR (5.7%) and False
Negative Rate (FNR) (7.0%), when compared to the other techniques evaluated
in the study. A key limitation of VulDeePecker is that it only deals with vulnera-
bilities related to library/API function calls (e.g., strcmp).

Yamaguchi et al. [2014] develop the Code Property Graph (CPG) data structure to
assist in the discovery of software vulnerabilities. The CPG is the merge of three
other representations: Abstract Syntax Tree (AST), Control Flow Graph (CFG),
and Program Dependence Graph (PDG). They use a graph database that con-
tains the following vulnerability types: buffer overflows, integer overflow, format
string vulnerabilities, or memory disclosures. They could detect 18 vulnerabili-
ties previously unknown in the Linux Kernel using their approach. They also
developed Joern [Yamaguchi, 2014], a tool used to extract the CPGs and the inter-
mediate representations.

Bilgin et al. [2020] use a binary representation of ASTs to predict vulnerable C
functions, using the Draper VDISC dataset [Russell et al., 2018], with functions
of open-source projects such as Debian Linux. The dataset includes memory-
related vulnerabilities, such as CWE-119 (“Improper Restriction of Operations
within the Bounds of a Memory Buffer” [MITRE, 2006b]) and CWE-120 (“Classic
Buffer Overflow” [MITRE, 2006c]). As the dataset is imbalanced, they used ran-
dom undersampling, leading to a balanced dataset (50% vulnerable, and 50%
non-vulnerable functions). Nevertheless, they ended up with a small dataset
(no more than 2, 684 vulnerable functions in the largest configuration). To de-
crease the processing time, they pruned the ASTs, and evaluated ASTs of differ-
ent depths (of 6, 8, 10, and 12). Both a multi-layer perceptron (MLP) and Con-
volutional Neural Network (CNN) were used in their evaluations. For the best
configuration, they had a precision of 70.1%, a recall of 52.1%, and an F-measure
of 59.8%.

Wu et al. [2022] developed VulCNN, which is a method to detect vulnerabili-
ties based on CNN. To evaluate their method, they used a dataset with 13, 687
vulnerable functions and 26, 970 non-vulnerable C/C++ functions from the Soft-
ware Assurance Reference Dataset (SARD) from the National Institute of Stan-
dards and Technology (NIST), and the NVD. They extracted the program depen-
dency graphs (PDGs) using Joern [Yamaguchi, 2014]. Their methodology uses an
image-inspired approach. After extracting the PDGs, they use a sentence embed-
ding technique (sent2vec) for each statement of the function. Then, they generate
images for the functions by applying three centrality techniques (degree central-
ity, Katz centrality, and closeness centrality). Each one represents a channel of
an “image” of the function. Finally, they train their classification model using a
CNN model. They were able to detect 73 vulnerabilities previously unknown in
a case study with three projects (Libav, Xen, Seamonkey).
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Cao et al. [2021] propose a bidirectional graph to detect vulnerabilities using neu-
ral networks. To extract the information from the graphs, they combine the AST,
the CFG, and the Data Flow Graph (DFG) into the Code Composite Graph (CCG).
The CCG is the bidirectional graph that they use to extract the features with the
Word2Vec algorithm [Mikolov et al., 2013]. To demonstrate their approach, they
used 113 vulnerable functions (in 69 vulnerable files) of four projects (Kernel,
FFmpeg, Wireshark, and Libav). Their approach can obtain a precision of 45.1%.

Wartschinski et al. [2022] create VUDENC, which is a Vulnerability Detection
technique that uses Deep Learning. VUDENC automatically learns the features
from Python codebase projects, and Word2Vec is used for that. Their dataset,
which had 1, 009 vulnerability-fix commits, included 7 types of vulnerabilities:
SQLi, XSS, Command Injection, XSRF, Remote Code Execute, Path Disclosure,
and Open Direct. Using a network of LSTM (long-short-term memory) cells,
they could obtain a precision between 82.2% and 96.0% and a recall of 78.0%
and 87.2%. The authors concluded that higher metrics (e.g., precision, recall, and
F-Measure) are obtained when using a single project and predicting if the whole
file is vulnerable or not instead of predicting vulnerable functions.

Yan et al. [2019] present MAGIC, which is a technique to categorize malware pro-
grams using their CFGs as input. The approach consists of extracting features
related to the vertex structure and code sequence for each node of the CFG. These
are used as input to a Deep Graph Convolution Neural Network (DGCNN) and
pooled using one of two techniques (Adaptive Max Pooling or Sort Pooling), be-
fore applying the network Visual Geometry Group (VGG). As part of the DGCNN
process, they use the graph kernels defined by Zhang et al. [2018]. They could ob-
tain results higher than 96% for both precision, recall, and F-measure.

2.3.5 Vulnerability Characterization and Prioritization

Chowdhury and Zulkernine [2010] conduct a statistical analysis to compare com-
plexity, coupling and cohesion SMs with vulnerabilities. Their work aims to un-
derstand which level of metrics (design or code) are better indicators of vulnera-
bilities. The case study is conducted in several releases of the project Mozilla Fire-
fox. The authors conclude that the metrics are positively related to the number of
vulnerabilities, and code-level metrics are strongly correlated than design-level
metrics.

The ISA approach (Integrated Software Source Code Analysis) is presented
in [Kong et al., 2007]. The output of the different SATs (namely Rats, Its4,
Flawfinder) are fused to take advantage of the different tools, and the outcome
is presented in an XML format. Three C/C++ projects are analyzed (wu-ftpd, net-
tools, pure-ftpd). Additionally, a score of the vulnerabilities is defined based on
the severity reported by each tool for each vulnerability and a weight given to
each SAT.

A similar approach is used by [Meng et al., 2008], in which the results of the
SATs are merged based on the specification of the defect pattern. Moreover, two
policies are used to prioritize the results, which use both the severity of the alert
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and the count of each alert by multiple tools. The analyzed projects are written in
Java, and the analyzed SATs are FindBugs, PMD, and JLint.

Neto and Vieira [2011] suggest an approach to use the output of different SATs
to define a trustworthiness metric. Their focus is on SQLi vulnerabilities. Three
SATs are used: SpotBugs (FindBugs at the time that the work was published),
Yasca, and IntelliJ IDEA Analyzer. The metric normalizes the results to cre-
ate a benchmark, allowing the comparison of different applications. Seven Java
projects are used, and the metrics are analyzed.

Muske and Serebrenik [2016] conduct a survey that lists the main approaches
to prioritize the alerts reported by the SATs. They are: i) statistical analysis-based
ranking (either more simple approaches or based on Bayesian statistics), ii) history-
aware ranking (the reasoning is usually based on the quickest fixes are usually the
most important ones), and iii) user feedback-based self-adaptive ranking (using the
user input to rank the alerts).

Le et al. [2022] surveyed the works that assess and prioritize software vulnera-
bilities using ML and deep learning. They categorized the key tasks and the at-
tributes for performing such prioritization. Many studies focus on predicting the
exploitation (exploit time, likelihood, or characteristics), impact, severity, type,
and other miscellaneous characteristics. Other works focus on predicting the
CWE or custom vulnerability types. A few other studies use other techniques
to prioritize, such as rule-based methods, SCA, and socio-technical aspects.

Sharma et al. [2023] proposed VIEWSS (Variable Impact-Exploitability
Weightable Scoring System), a scoring system for prioritizing software vul-
nerabilities. VIEWSS varies the weights of impact and exploitability to better
understand the severity of the final score. The authors created a hybrid approach
based on two other scoring systems (Vulnerability Rating and Scoring System
(VRSS) [Liu and Zhang, 2011] and Weighted Impact Vulnerability Scoring System
(WIVSS) [Spanos et al., 2013]) that use the six base metrics from CVSS [First,
1995]. Results show that VIEWSS provides scores to the vulnerabilities that have
a close to normal distribution and can prioritize the more critical vulnerabilities
better than the individual VRSS, WIVSS, and CVSS scoring systems.

Zeng et al. [2022] proposed LICALITY for prioritizing vulnerabilities. LICAL-
ITY uses a threat modeling method, neural networks, and probabilistic logic pro-
gramming to extract information from vulnerability reports. To validate the ap-
proach, they used two datasets: (1) Microsoft Vulnerabilities [BeyondTrust, 2020]
and (2) Advanced Persistent Threat Vulnerabilities [CISA, 2020]. Compared with
CVSS and other prioritization approaches, results show that LICALITY can re-
duce the vulnerability remediation work of future threats by at least 1.85.

Medeiros et al. [2018] proposed a trustworthiness benchmark based on SMs. A
score is calculated to indicate the trustworthiness of files or functions. A weight
should be defined for each SM to calculate the trustworthiness score. Three tech-
niques are used to define the weights: Mean Decrease Accuracy (MDA), Mean
Decrease Gini (MDG), and MDAMDG (sum of MDA and MDG). In a validation
phase, nine experts were asked to compare five files and five functions pairwise.
Aggregated rankings of the files and the functions are obtained with the compar-
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ison responses. Results indicate that the benchmark provides rankings similar
to the experts. In another work, the same authors used SMs and ML to create
trustworthiness models to characterize code units [Medeiros et al., 2023]. The
models are based on the Simple Additive Weighting (SAW), which is also MCDM
method. Each SM receives a weight from each ML model. That weight is used to
calculate scores that are used to place code units into code categories represent-
ing the likelihood of being vulnerable or not. Results show that code units more
prone to be vulnerable can be effectively distinguished.

2.4 Summary

This chapter presented the background concepts required to understand the stud-
ies and the solutions proposed in this thesis, including software security and
vulnerability detection techniques. Also, related work was presented, includ-
ing tools and techniques for vulnerability detection, vulnerability analysis, vul-
nerability datasets, vulnerability characterization and prioritization, and ML for
security.

Despite the current focus on techniques for improving software security, vulner-
abilities are still present in most software applications. Hence, developing new
mechanisms to improve the characterization and detection of software vulnera-
bilities is essential. In the following chapters, we propose approaches to create a
vulnerability dataset, detect software vulnerabilities, and characterize code units,
always supported by the analysis of static data extracted from the source code.
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Building a Vulnerability Dataset

Developing techniques and tools to detect software vulnerabilities and charac-
terize code units is not straightforward. It requires a large amount of data to
validate such techniques. Although datasets with vulnerability information are
available, they usually need to be updated or do not contain all the data required
for the work. To support the development of the techniques later discussed, we
created a dataset of software vulnerabilities collected from the CVE Details web-
site [Özkan, 2023]. We enhanced with static information for both the vulnerable
version of the source code and the fixed (neutral) one.

To build the dataset, we developed a generic and automated process capable
of collecting software vulnerabilities from online vulnerability databases (in our
case, CVE Details) and enriched them with data from bug trackers (e.g., Bugzilla),
version control systems (e.g., GitHub), and static code information (SMs and
alerts from SATs). In practice, for each vulnerability, we retrieve the correspond-
ing source code units from the project repository (including both vulnerable and
fixed versions) and then use SciTools Understand tool to compute a large set of
SMs for those code units and run two SATs (Flawfinder and CppCheck) to collect
security alerts (i.e., potential vulnerabilities and/or weaknesses). The code units
can be of three different levels: files, functions, or classes.

In short, the contributions of this chapter are two-fold:

• An automated process to collect the vulnerabilities from CVE Details and
extract both SMs and SAT alerts from the vulnerable and non-vulnerable
versions of the code collected from code repositories. This process can be
used and/or adapted by other developers to build similar datasets for other
projects.

• A dataset currently encompassing 5, 214 vulnerabilities from five large
open-source C/C++ projects: Mozilla, Linux Kernel, Xen, Apache httpd,
and Glibc. The dataset is publicly available and can be easily updated with
new vulnerabilities and new projects using a set of scripts that implement
the proposed data collection process.
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It is important to emphasize that our dataset can be used in many different con-
texts, including prediction of vulnerable code units, analysis of reported SAT
alerts, identification of code not following best practices, etc. Each of the follow-
ing chapters may use a different slice of this dataset, either referring to a specific
period in time or a subset of projects. Thus, each chapter clearly details the slice
being used.

The rest of this chapter is organized as follows. Section 3.1 presents the process
developed for building the dataset. Section 3.2 presents and discusses the dataset
itself. Threats to validity are discussed in Section 3.3. Finally, the chapter closes
with a summary in Section 3.4.

3.1 Process to Build the Dataset

This section presents the automated process for building datasets of vulnerability
metadata, including SAT alerts and SMs. The dataset is created from information
initially collected from online sources and later analyzed by third-party tools. The
steps are depicted in Figure 3.1. They are: (A) Retrieve the reported vulnerabili-
ties from online platforms, such as CVE Details, security advisories from projects,
as well as their bug trackers; (B) Retrieve vulnerable and neutral (patched) source
code files from version control systems (e.g., GitHub); (C) Generate SAT alerts and
SM from the source code; and (D) Store the collected data in a database.

For convenience, we will refer to this diagram throughout each subsection. The
term SAT is henceforth used to refer exclusively to tools that report possible vul-
nerabilities in source code, also known as SAT alerts. The scripts implementing
the process detailed in the next sections can be accessed through the following
URL: https://eden.dei.uc.pt/~josep/thesis/

3.1.1 Collect Vulnerabilities from Online Platforms

The process starts with a query to the CVE Details website (https://www.cved
etails.com/) to obtain a list of reported vulnerabilities for each selected project
(“A. Retrieve Reported Vulnerabilities from Online Platforms” action on the top
left corner of Figure 3.1). For each vulnerability, the information provided by CVE
Details is analyzed, and any relevant fields in the metadata are saved, including:
i) a unique identifier from CVE; ii) a value known as the CVSS score, which rep-
resents how severe it is given its properties and environment [Özkan, 2020]; iii)
how much it impacts the confidentiality, integrity, and availability of a system; iv)
how hard it is to exploit; v) whether or not authentication is required to exploit
it; vi) zero or more vulnerability types; and vii) an optional numerical identifier
known as CWE, which maps a vulnerability to a specific type of weakness.

The Common Weakness Enumeration (CWE) provides a catalog of known soft-
ware and hardware weaknesses/vulnerabilities [MITRE, 2006a]). Including
CWEs for all the vulnerabilities in the dataset allows grouping and studying
the different vulnerability types. A challenge in the collection process is that, al-
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Figure 3.1: Dataset creation pipeline. This process begins with retrieving vulner-
abilities’ metadata and ends with generating an enriched set of data samples for
each code unit

though the CVE Details website has a field for the vulnerability types, it can have
multiple values for each vulnerability. For instance, a vulnerability can have both
the values Denial of a Service and Execute Code, which are consequences instead of
the root cause of the vulnerability. For this reason, we decided to define a classi-
fication that allows us to reflect on the actual root cause of the vulnerabilities.

Several initiatives have already defined categories for vulnerabilities, such as the
Seven Pernicious Kingdoms [Tsipenyuk et al., 2005]. However, they either focus
on the vulnerability source or the consequence/effect in case it is exploited. For
our dataset, we prefer categories that are actionable by the developer (e.g., in
Chapter 7, we use these categories to characterize code units for the development
team). Hence, we propose the use of a set of categories based on the groups of
best practices defined by OWASP [Turpin, 2010]. This means that a vulnerability
listed in a given category exists because the developers probably did not follow
the OWASP guidelines in that same category. OWASP guidelines are complete
and widely used, especially when studying about developing secure source code.

As shown in Table 3.1, most groups of best practices from OWASP are mapped
into a category in our classification. The exception is the Permission category,
which is composed of three OWASP categories: 1) Authentication and Password
Management, 2) Session Management, and 3) Access Control. These three cate-
gories are related to the Permission aspects of the software system, and grouping
them allows us to have a larger and more cohesive group than having them sep-
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arate. In practice, CWEs can be mapped to a vulnerability category. For example,
CWE-119 [MITRE, 2006b] is assigned to the Memory Management category, and
CWE-20 [MITRE, 2006d] is assigned to the Input Validation category.

Table 3.1: The vulnerability categories considered for this work and examples of
CWEs

OWASP Groups Category Examples of CWEs

Memory Management Memory Management 119 (Improper Restriction of Operations within the Bounds of a
Memory Buffer), 416 (Use After Free)

Input Validation Input Validation 78 (Improper Neutralization of Special Elements used in an OS
Command (’OS Command Injection’)), 94 (Improper Control of
Generation of Code (’Code Injection’))

Authentication and
Password Management Permission 284 (Improper Access Control), 287 (Improper Authentication)
Session Management

Access Control

Data Protection Data Protection 199 (Information Management Errors), 200 (Exposure of Sensi-
tive Information to an Unauthorized Actor)

Coding Practices Coding Practices 19 (Data Processing Errors), 254 (7PK - Security Features)

Cryptography Cryptography 310 (Cryptographic Issues), 261 (Weak Encoding for Password)

System
Configuration

System
Configuration 16 (Configuration), 260 (Password in Configuration File)

File Management File Management 22 (Improper Limitation of a Pathname to a Restricted Directory
(’Path Traversal’)), 59 (Improper Link Resolution Before File Ac-
cess (’Link Following’))

Output Encoding Output Encoding 116 (Improper Encoding or Escaping of Output), 838 (Inappro-
priate Encoding for Output Context)

Error Handling
and Logging

Error Handling
and Logging 532 (Insertion of Sensitive Information into Log File), 209 (Gen-

eration of Error Message Containing Sensitive Information)
Communication

Security
Communication

Security 319 (Cleartext Transmission of Sensitive Information), 419 (Un-
protected Primary Channel)

Database Security Database Security 202 (Exposure of Sensitive Information Through Data Queries),
502 (Deserialization of Untrusted Data)

Each CVE page lists several relevant external references, including the software
changelog, discussion boards, the project bug tracker, and the version control sys-
tem. These references may contain several hyperlinks, some of which link to the
version in the code repository where the vulnerability was patched. Specifically,
we retrieved an identifier known as commit hash that allowed us to locate any files
affected by the vulnerability in a given version (i.e., the commit) of the software
(these files are later retrieved and processed). As this identifier is not available in
some cases, we may need to consult other references. In practice, missing refer-
ences in CVE Details can be handled by searching two other sources: the project
bug tracker (e.g., Mozilla uses Bugzilla to store the issues containing references
to the commit fixes) and the security advisories (e.g., Mozilla uses the MFSA -
Mozilla Foundation Security Advisories). Both contain specific identifiers or key-
words that may, in turn, be used to find the commit associated with a given CVE
in the code repository. In the cases where no further information can be obtained
(about one-third of the reported vulnerabilities in our case), the vulnerability can-
not considered for the upcoming steps of the process. Without references for the
commits, we cannot identify the source code changes that fix the vulnerabilities
(i.e., we could not obtain the vulnerable code and the neutral code).
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3.1.2 Retrieve Source Files from Version Control Systems

We used the commit hashes (obtained when gathering the metadata of the vulner-
abilities) to collect the vulnerable version (file(s) before the vulnerability commit
changes) and the neutral version (file(s) after the vulnerability commit changes)
for each vulnerability (“B. Retrieve Source Files from Version Control System”
action on the top right corner of Figure 3.1).

This step is performed by interfacing with the version control system of the
project and requesting the files for a specific version. Although this method ap-
plies to different version control systems, in this work, we focused on Git reposi-
tories (because the selected projects are available on this version control system).
The Git rev-list1 command can be used to list every file path affected by a com-
mit, as well as each commit’s tag name, author date, and a set of line number
ranges that show where each file was modified. In practice, we followed the
approach used in other works [Alves et al., 2016a; Fan et al., 2020; Zheng et al.,
2021], and obtained the (neutral) code version where the vulnerability was cor-
rected (patched) and the one immediately before the patch (vulnerable).

Any file present in a neutral commit or a commit not affected by a vulnerabil-
ity is assumed to be neutral. This is represented in Figure 3.2, where all the files
modified by a commit are considered vulnerable in the previous commits and the
remaining ones as neutral. Likewise, the smaller granularity code units present in
the file (i.e., classes, functions) are also seen as non-vulnerable. For a vulnerable
commit, each affected file is assumed to be vulnerable, but the same might not
be true for its code units. For example, a vulnerable file with five functions may
have only been patched in one of them. Hence, we need extra care in checking
whether the changed lines overlap with any code units inside vulnerable files.
Consequently, the code units labeled as vulnerable are only the ones changed in
the vulnerability commit fix. The Clang compiler2 can be used to locate func-
tions and classes inside files. Note that because structs and unions from C source
files are categorized as classes by the tool used to extract the Software Metrics
(SciTools Understand), we decided to follow that same approach.

3.1.3 Generate SAT Alerts and Software Metrics

In this step, third-party tools are used to perform SCA in the C/C++ code units
(files, functions, classes), and extract security alerts (SAT alerts) and SMs (“C.
Generate SAT Alerts and Software Metrics” action in the middle right side of
Figure 3.1) for the files identified during the execution of the previous step.

To generate security alerts many SATs can be used, including both commer-
cial and open source (e.g., Parasoft CppTest, SonarQube, Clang Static Analyzer,
Frama-C, Facebook Infer, Oclint, Sparse, Splint, and Uno). Due to licensing
restrictions and considering their wide use, and due to restrictions mentioned
above, in this work, we resort to the following two open-source tools:

1https://git-scm.com/docs/git-rev-list
2https://clang.llvm.org/
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(A) Flawfinder is an open-source SAT for C/C++ code [Wheeler, 2001]. It
uses simple text pattern matching, and it ignores comments and strings.
Flawfinder provides the following data for each alert: filename, line, level
of severity, category, name and message of the alarm, and the CWE.
Flawfinder is considered CWE-compatible. Flawfinder version 2.0.10 was
used in this study (currently, it is in version 2.0.19).

(B) CppCheck is another open-source SAT for C/C++ code [Marjamäki, 2007].
CppCheck provides the following data for each alert: filename, line, sever-
ity, alert identifier (with a message), and CWE. A large number of security
issues have been detected in many projects with CppCheck, which can be
integrated into a high number of development tools. In this study, we used
version 1.82 (it is currently in version 2.12).

Although there are many open-source C/C++ SATs available, many of them use
a build automation tool make. Many projects use make to build the software, but
not all of them. For example, Mozilla was built using make for C/C++ code, but
mach3 started being used in 2012, as it is tailored for the Mozilla needs. On the
one hand, it eases the build process for the developers; on the other hand, it
hinders the use of some SATs that require make to run. mach is based on make,
but the latter cannot be directly invoked since the introduction of the former.
The current version of mach allows performing static analysis on the source code
(based on CLang). However, it was introduced only after 2016, and the dataset
has vulnerabilities reported in versions from 2000 onward. Therefore, no SAT

3https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/mach

44

https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/mach


Building a Vulnerability Dataset

based on make can be used to identify the alerts in all cases. Otherwise, we end
up with alerts only for part of the vulnerable code versions but not for all of them,
as mach restricts the use of make.

The output of the SATs are alerts about potential weaknesses or vulnerabilities
located on a specific line of a source file. These tools take the source files as in-
put and output their analysis in a textual file format, usually a CSV (comma-
separated values) file. As we mapped the initial and final line of code corre-
sponding to each function and class, we could assign each SAT alert to the corre-
sponding code unit. Flawfinder and CppCheck were selected as they are widely
used and do not require compiling and building the source code. Consequently,
it takes less time to run in the complete project repository. Nevertheless, our pro-
cess is generic and can be applied using other SATs. Examples of an alert type
reported by these tools are strcpy (Flawfinder issues an alert of this type when
the code is using the unsafe strcpy function) and nullPointerRedundantCheck (Cp-
pCheck issues this type of alert when the code checks more than once if a variable
is null). Flawfinder provides 126 rules for different alert types, while CppCheck
provides 228 rules. Examples of rules for Flawfinder and CppCheck can be seen
in Tables 3.2 and 3.3, respectively.

Table 3.2: Examples of SAT rules from Flawfinder. Each example corresponds to
the use of a vulnerable function

Rule Category Example of Rule
buffer strcpy
misc fopen
race chown
shell ShellExecute
tmpfile GetTempFileName

Table 3.3: Examples of SAT rules from CppCheck (complete list can be seen on-
line: https://sourceforge.net/p/cppcheck/wiki/ListOfChecks/)

Rule Category Example of Rule
Check function usage memset() third argument is zero
Exception Safety Throwing exceptions in destructors
Leaks (auto variables) Detect when a auto variable is allocated but not deal-

located or deallocated twice.
Memory leaks (address not taken) Not taking the address to allocated memory
Null pointer null pointer dereferencing

The next step is to calculate the SMs for both the vulnerable and neutral versions
of the source code. Although there are many tools to support this step, we used
SciTools Understand4 version 4.0.837. This version was also previously used to
collect software metrics for vulnerable code by Alves et al. [2016a]. Furthermore,
Understand is widely used in the field in projects with different programming
languages and has also been considered in other research works, such as [Shin
et al., 2011] and [Sultana et al., 2021]. The complete list of 54 metrics (related to

4 https://www.scitools.com/
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complexity, volume, cohesion and coupling, etc.) can be seen in Appendix B and
can also be obtained online5.

3.1.4 Store the Data in a Database

After collecting the vulnerability metadata and generating the SAT alerts and
SMs for the vulnerable and neutral (non-vulnerable) versions, the data should
be stored in a database to simplify the analysis and the creation of relationships
among different entities (the action of storing the collected vulnerabilities, SAT
alerts, and software metric information in a database is represented by the “D.
Store Collected Data in the Database” step in Figure 3.1).

To accomplish this, we redesigned and improved the relational model proposed
by Alves et al. [2016a], where entities such as vulnerabilities, code units, and
patch information are related to one another based on their attributes. In practice,
we inherited the base design and augmented it with additional fields and tables to
store other types of data, namely the security alerts, SAT properties, vulnerability
categories, and CWEs. With these new additions to the database schema, we can
easily export datasets focusing on selected (or all) vulnerabilities and including
information about the corresponding code units, namely Software Metrics (SMs),
SAT alert occurrences, vulnerability categories, and whether or not each code unit
was affected by a CVE. The data can be easily extracted and tailored according
to the needs of the specific research at hand by means of simple SQL queries that
slice and dice the data.

3.2 Dataset Characterization

Table 3.4 overviews the five open source C/C++ projects included in our dataset:
Mozilla (i.e., the source code for the Firefox browser), the Linux Kernel, the Xen
Hypervisor, the Apache HTTP Server (httpd), and the GNU C Library (Glibc).
In practice, the dataset includes projects with different sizes, complexities, and
security needs. For example, Mozilla and Linux Kernel are the largest projects,
with 24.6 million and 21.6 million lines of code, respectively. On the other hand,
the other three projects (xen, httpd, and glibc) are much smaller, with less than
10% the size of the two largest projects. Projects of similar sizes have a number of
known vulnerabilities in the same order of magnitude.

A summary of the number of vulnerabilities, patches, and vulnerable code units

5 https://support.scitools.com/support/solutions/articles/70000582223-what-metrics-does-
understand-have-

5 https://www.openhub.net/
6 https://github.com/mozilla/gecko-dev
7 https://github.com/torvalds/linux
8 https://xenbits.xen.org/gitweb/?p=xen.git;a=summary
9 https://svn.apache.org/repos/asf/httpd/httpd/trunk/

10 https://github.com/apache/httpd
11 https://sourceware.org/git/glibc.git
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Table 3.4: A summary of the five large C/C++ projects used in our work. The
total number of lines of code was taken from the Open Hub website6on January
2022

Project Language Version Control Lines of Code Website
Mozilla C++ Git7 24.6 million Mozilla.org

Linux Kernel C Git8 21.6 million Kernel.org
Xen Hypervisor C Git9 0.6 million XenProject.org

Apache HTTP Server C SVN10and Git11 1.5 million Apache.org
GNU C Library (Glibc) C Git12 1.4 million Gnu.org

Table 3.5: A summary of the number of patches and vulnerable code units con-
sidered for the generated datasets

Project Vuln. Patches Files Functions Classes

Vuln. Total Vuln. Total Vuln. Total
Mozilla 2,215 5,917 12,418 1,787,723 8,643 48,185,503 2,302 5,043,307
Linux 2,355 1,523 43,639 1,971,130 9,004 32,793,147 120 4,403,349
Xen 306 649 878 25,982 965 221,375 21 22,571

Httpd 230 115 201 8,632 154 60,433 2 3,647
Glibc 108 96 322 141,447 105 215,720 3 23,630
Total 5,214 8,300 57,458 3,934,914 18,871 81,476,178 2,448 9,496,504

for each project is also included in Table 3.5. A patch is a commit for a vulner-
ability, which may take more than one commit to be fixed. Note that this table
shows more vulnerabilities than patches in some of the projects since it is not
always possible to associate a commit hash to every CVE given the informa-
tion available in CVE Details, bug trackers (e.g., Mozilla project uses Bugzilla:
https://bugzilla.mozilla.org/), and security advisories. A possible reason is
that the vulnerabilities may be in third-party components used by these projects
and not in their own source code. Consequently, these third-party components
need to be updated without modifying the project’s source code.

Mozilla and Linux Kernel account for most of the vulnerabilities. The latter has a
number of vulnerabilities (2, 355) larger than the former (2, 215), even if Linux has
a smaller codebase. This probably happens because Linux is a project older than
Mozilla. Among the smallest projects, we can highlight that Xen has many more
reported vulnerabilities than Apache httpd and glibc, even if it has the smaller
code base of the five projects.

To better understand the dataset, let us analyze the vulnerabilities included as
well as their categories. As mentioned before, we mapped the vulnerabilities to
categories based on their CWE. In practice, we mapped the CWEs to the cor-
responding categories, which are based on OWASP best security coding prac-
tices [van der Stock et al., 2017] (e.g., CWE-416 (Use After Free) [MITRE, 2006f]
was assigned to Memory Management category). The resulting distribution per
category can be seen in Table 3.6. The categories with the largest number of re-
ported vulnerabilities for the selected projects are Memory Management (27.57%),
Input Validation (14.77%), and Permission (10.15%).
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Table 3.6: The vulnerability categories and the respective number of vulnerabili-
ties.

Category CWEs Vulnerability Count (%)

Memory Management 119, 362, 399, 416, 476, 824 1437 (27.57%)

Input Validation 20, 78, 79, 91, 94, 134, 189 770 (14.77%)

Permission 255, 264, 269, 284, 287, 352 529 (10.15%)

Data Protection 199, 200 435 (8.34%)

Coding Practices 17, 19, 254 92 (1.76%)

Cryptography 310 44 (0.84%)

System Configuration 16 23 (0.44%)

File Management 22, 59 23 (0.44%)

Output Encoding - 0 (0.00%)

Error Handling and Logging - 0 (0.00%)

Communication Security - 0 (0.00%)

Database Security - 0 (0.00%)

Missing CWEs - 1861 (35.69%)

Total - 5214 (100%)

A detailed analysis of the dataset shows that the categories with the largest num-
ber of reported vulnerabilities remained the same over the years. However, the
most frequent CWEs have been evolving. This can be observed in Figure 3.3.
The chart shows the evolution of the number of reported vulnerabilities with the
same CWE. Up until 2012, the most frequent was CWE-399 (Resource Management
Errors) [MITRE, 2006e]. From 2013 to 2019, CWE-119 (Improper Restriction of Oper-
ations within the Bounds of a Memory Buffer) [MITRE, 2006b] was the most reported
CWE in 4 out of the 7 years, being in the top 3 in all of them. Both CWE-399 and
CWE-199 belong to the Memory Management category, which accounts for about
one-third of the reported vulnerabilities in the dataset. As shown in Table 3.6, the
remaining most frequent vulnerability types belong to the following categories:
Input Validation, Permission, and Data Protection.

The dataset has been built using the process and scripts described in the previous
section. Overall, the process of collecting the vulnerabilities from CVE Details
and their patches took about four days to execute for the five projects. The process
of locating every file affected by a vulnerability and extracting its functions and
classes took roughly three weeks. Following that, generating software metrics
for all projects took about two weeks. The complete database is available at the
following URL: https://eden.dei.uc.pt/~josep/thesis/
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Figure 3.3: Analysis of the most common vulnerability types (CWEs) along the
years

3.3 Threats to Validity

This section discusses weaknesses that might have influenced the construction of
the dataset.

External Validity refers to the ability to generalize the results. Five C/C++ open-
source projects were considered for the vulnerabilities included in the dataset.
Although the number of projects considered is not big, they are widely used.
Moreover, all the projects are coded in C/C++ programming languages, the num-
ber of vulnerabilities per category is not large, and the information collected for
each vulnerability is restricted to SMs and SAT alerts. Nevertheless, the dataset is
prepared to be updated with more vulnerabilities of the selected projects as well
as with other projects (and generic scripts are provided for doing so). Also, other
SMs and alerts from more SATs can be easily added.

Internal Validity refers to the possibility of having unanticipated relationships.
Due to the output format of SciTools Understand and Clang, possibly some SAT
alerts were not adequately assigned to functions. SciTools Understand does not
emit line numbers, meaning that many code units had to be associated by name.
Moreover, it was noted that Clang does not always include certain functions or
classes in the AST output. Put together, this means that while a SAT may have
generated alerts for a function, the corresponding entry in the database might be
missing its line numbers (which happens for about 15% of the functions). Thus,
vulnerable functions can become associated with zero alerts, although they exist
and could represent potential vulnerabilities.

Construct Validity refers to the vulnerability categories that we have proposed,
and mistakes may have happened in the mapping of CWEs into categories. Al-
though we followed the OWASP best practices as guidelines and carefully re-
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viewed the CWEs, some CWEs may have been misplaced. Consequently, the
results per category could slightly differ if a different assignment was done.

3.4 Summary

In this chapter, we presented an automated process for building datasets of vul-
nerable code units along with data collected using SCA. We showed how the
online platform CVE Details can be scraped for vulnerability metadata, how we
can find any affected files, functions, and classes by querying the version control
system of the project, and how these distinct kinds of data were collated into a
relational database. We enriched this data with Software Metrics using the tool
SciTools Understand and SAT alerts using the SATs Flawfinder and CppCheck.

The dataset is composed of vulnerabilities from five open-source C/C++ projects
(Mozilla, Linux Kernel, Xen, Apache httpd, and Glibc). The categories with more
vulnerabilities are Memory Management, Input Validation, Permission, and Data Pro-
tection. These indicate the main areas that software developers of C/C++ should
pay more attention to avoid security issues. Although the projects used to create
the dataset are all of the same programming language, the proposed methodol-
ogy is generic and can be replicated in other projects using different program-
ming languages. It is important to emphasize that the content of the dataset
evolved throughout the development of the work presented in the thesis (to in-
clude vulnerabilities reported over the years).

The following chapters are based on the dataset presented in this chapter. How-
ever, not the entirely dataset is used in all experiments (for practical reasons and
due to the evolution of the dataset over the time). In each chapter, we detail the
dataset slice being used. We refer to the term dataset slice to indicate the portion of
data, and each dataset slice can be a restriction of a project(s), a timeframe, or both.
For instance, the work in the following chapter uses only the vulnerabilities of
the Mozilla project reported from 2000 to 2016. In this case, the dataset slice refers
to the project and timeframe.
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Evaluating Static Analysis Tools in
Large Projects

Static Code Analysis (SCA) can be used from the early stages of the development
life cycle, and its execution can be automated. In fact, a large set of Static Analysis
Tools (SATs) are available nowadays, following different approaches to report
potential problems (which we call alerts). The problem is that most tools report
a high number of FPs and miss actual vulnerabilities (TPs), leading developers
to disregard their use [Imtiaz et al., 2019]. This issue is even more critical when
the project has a large code base and the use of SATs was not considered from the
beginning of the software development. Hence, the software development team
must handle a large technical debt when it starts using it.

Vulnerabilities have different characteristics, and different SATs can be more suit-
able to some of them. This chapter aims to understand the applicability of SATs
in a large project and the vulnerability categories they can detect. Thus, we es-
tablished the following Research Question (RQ):

• RQ1: Are SATs effective in detecting different types of software vulnerabil-
ities in large-scale software projects?

In practice, we run two SATs in a well-known and widely used and large soft-
ware system written in C/C++ to collect performance metrics (precision, recall,
f-measure) that allow comparing alternative tools. Results show that CppCheck
could detect 83.5% of the vulnerabilities, and Flawfinder could detect 36.2%, al-
though the number of false alarms is high (7.2% for CppCheck and 93.2% for
Flawfinder). Regarding the different categories, the two SATs showed quite di-
verse performances (e.g., CppCheck could detect 92.6% of Data Protection vulner-
abilities and 62.5% of Coding Practices vulnerabilities, while false alarms are 99.1%
and 99.9%, respectively). In general, we can confirm the performance challenges
faced by SCA tools.

The remainder of this chapter is organized as follows: Section 4.1 discusses ad-
ditional details on the vulnerabilities and presents the approach followed in the
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Figure 4.1: Number of commits that fixed vulnerabilities

study. Results are presented and discussed in Section 4.2. Section 4.3 discusses
threats to validity. Section 4.4 closes this chapter with a summary.

4.1 Vulnerabilities and Approach

The dataset slice used to support our study consists of the vulnerabilities discov-
ered between 2000 and 2016 in the Mozilla project1. Mozilla is one of the projects
with the most significant number of vulnerabilities in the dataset (a total of 2, 441
at the time of the analysis in 2020). Such vulnerabilities are fixed in 1, 590 patch-
es/commits, and 1, 251 files were changed by the vulnerability fixes. The vul-
nerabilities are of different categories, being the most frequent ones: improper
input handling (13.03%) and incorrect memory management (24.42%). Our re-
sults show a wide range of performance values (precision from 0.00 to 0.71 and
recall from 0.19 to 0.93) for the different vulnerability categories.

Figure 4.1 shows the number of Mozilla commits (known as patches) that fixed
vulnerabilities from the dataset (a total of 1, 590). The number of files in the
repository is significant, and it varied from 15, 900 to 48, 612 files during this pe-
riod. Also, the interval between the first two patches is of four years, as the first
is of 2000 and the second is of 2004. Most of these vulnerabilities (more than
two-thirds) were fixed after 2010, with more fixes in 2012 and 2013.

A summary of the number of vulnerabilities per category is presented in Table 4.1.
Not all CWEs are presented in the table, but only the CWEs for the Mozilla project
slice that we are considering for this study are presented. We observe that almost
half (49.61%) of the vulnerabilities do not contain an associated CWE. They are
either listed as “CWE id is not defined for this vulnerability” on the CVE Details
website (980 vulnerabilities) or do not have data on CVE Details (2 vulnerabili-
ties: CVE-2012-3977 and CVE-2014-1495). Moreover, 229 vulnerabilities are listed
only on the Mozilla bug tracker but do not have a record in CVE Details. Hence,
we do not consider such vulnerabilities when analyzing the SATs performance

1 At the time of this particular work, the dataset included only vulnerabilities until that year.
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Table 4.1: Vulnerability categories for the Mozilla dataset

Category CWEs Count (%)

Memory Management CWE-119, CWE-399, CWE-362 596 (24.42%)

Input Validation
CWE-20, CWE-79, CWE-189,

CWE-94
318 (13.03%)

Permission2 CWE-264, CWE-255, CWE-284,

CWE-287, CWE-352
177 (7.25%)

Data Protection CWE-199, CWE-200 65 (2.66%)

Coding Practices CWE-17, CWE-254, CWE-19 31 (1.27%)

Cryptography CWE-310 18 (0.74%)

System Configuration CWE-16 16 (0.66%)

File Management CWE-22, CWE-59 9 (0.37%)

Output Encoding - 0 (0.00%)

Error Handling

and Logging
- 0 (0.00%)

Communication Security - 0 (0.00%)

Database Security - 0 (0.00%)

CWEs not found - 1,211 (49.61%)

Total - 2,441 (100.00%)

per category of vulnerability (but we consider them in the analysis of the overall
performance of the tools).

The approach followed in this study is represented in Figure 4.2. The vulnerable
and neutral (non-vulnerable) snapshots of the source code are analyzed using the
SATs. As the dataset provides information about the files changed to fix each vul-
nerability, we used this information to run the SATs, following two approaches:

i) only the vulnerable files are submitted to the SAT (both vulnerable and fixed
versions, i.e., commits before and after fix)

ii) the complete repository (again, vulnerable and fixed/neutral versions) is
submitted to the SAT

Although the second approach is more complete, it takes more time to obtain the
alerts. Hence, we use both approaches in a complementary way. While approach
i) shows if a SAT can detect the known vulnerabilities (i.e., the ones in the dataset),
approach ii) allows us to obtain vulnerability alerts for the entire source.

Using the alerts, we evaluate the SATs both on their ability to detect all vulnera-
bilities (regardless of their category) and per category. As the number of reported
alerts is too large to be analyzed manually, we compared the number of alerts
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Figure 4.2: Methodology to run the SATs in the different snapshots source code

reported in the vulnerable and the neutral (non-vulnerable) versions. If the num-
ber of alerts decreases in the neutral version, we conclude that the SAT can detect
that vulnerability.

The generic approach described above involves executing the SATs to obtain the
alerts. However, as we already have those alerts in the dataset described in Chap-
ter 3, we resorted directly to it in order to facilitate the experiments.

4.2 Results and Discussion

This section presents and discusses the results obtained. We start by analyzing
the overall results in terms of the vulnerabilities detected by the SATs (also con-
sidering the evolution in the number of alerts), and then we present the global
performance metrics for each tool. Finally, we discuss the performance of the
SATs per vulnerability category.

4.2.1 Overall Observations

The first analysis is related to the number of vulnerabilities identified by the SATs.
We use the alerts for the source code files of the 1, 590 patches (commits) related to
the vulnerabilities considered. Note that the number of patches (1, 590) is smaller
than the number of vulnerabilities (2, 441). This happens for two main reasons:
i) some patches fix more than one vulnerability, and ii) some vulnerabilities are
fixed without code changes in C/C++ files (e.g., integration with libraries). This
was done both for the commit fixing the vulnerability and for the previous one
(approach i) as described in the previous section).

Figure 4.3 shows a Venn diagram with the relation between the known vulner-
abilities and the ones reported by the two tools. In this case, the total number
of patches/commits is 1, 017, as 573 out of the 1, 590 patches/commits are not
related to vulnerable files included in the dataset (i.e., refer to non-C/C++ files

1Permission is composed of Authentication and Password Management, Session Management, and
Access Control.
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Figure 4.3: Number of patches/commits detected by the SATs

such as header files, which are not the target of the analysis). As shown, only 348
(34.22%) of the patches are reported as vulnerable by both SATs. 328 vulnerabili-
ties (32.25%) are reported only by CppCheck, while a smaller number is reported
only by Flawfinder (83 vulnerabilities, 8.16%). One-fourth of the known vulner-
abilities (258, 25.37%) are not identified by any of the SATs. This shows that the
use of these SATs would leave a high number of vulnerabilities undiscovered if
SCA is the only technique used to detect them.

As it is not feasible to analyze all the alerts manually to confirm the reports from
the SATs, we decided to use the following approach: if the number of alerts in
a file changes from the vulnerable version to the fixed (neutral) version, we con-
sider that the SAT can detect the original file as vulnerable; otherwise, the SAT
cannot detect the vulnerability. Although this is a weak approach, it is adequate
to have a first idea of how precise the SATs are.

To better understand the results, we continue with an analysis at the file level.
Considering all the known vulnerable files over time, the goal is to understand
which ones are reported by the SATs. The corresponding Venn diagram is in Fig-
ure 4.4. Note that, as before, we consider only the files with C/C++ extensions as
the vulnerabilities are in these files.

From all the vulnerable files (1, 251), the majority is reported by either CppCheck
or Flawfinder (86.01%). However, the two SATs report a high number of poten-
tial FPs. CppCheck reports 661 FPs files, representing 38.74% of the files reported.
Regarding Flawfinder, the number of FPs files is even more significant since 8, 590
files (94.60%) do not contain actual known vulnerabilities. Although we consider
these as FPs, some may indeed refer to unknown vulnerabilities (we cannot man-
ually validate them due to the very large number of alerts). In any case, as the
number of potential FPs is so high, even if some are actual vulnerabilities, our
conclusions do not change.

Figures 4.5 and 4.6 show that, in general, the number of alerts increases for both
CppCheck and Flawfinder over time (following approach ii) described in the pre-
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Figure 4.4: Vulnerable files reported by the SATs with all C/C++ extensions in the
relevant directories

vious section). Both SATs have an increase in the number of alerts for patches
from 2000 to 2016. This is an expected behavior since the source code increased
as more functionalities were added to Mozilla. Also, CppCheck reports more
alerts over time (from about 20, 000 to 45, 000) than Flawfinder (5, 000 to 22, 500).
As we can see in Figure 4.4, the number of distinct files reported by Flawfinder is
much more significant than the ones reported by CppCheck. As a consequence,
we can conclude that Flawfinder alerts are more spread in multiple files and that
CppCheck alerts are more concentrated in some files.
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Figure 4.5: Number of alerts per commit along the time (CppCheck)

56



Evaluating Static Analysis Tools in Large Projects

0 200 400 600 800 1000 1200 1400 1600
Version (commit number)

5000

7500

10000

12500

15000

17500

20000

22500

Nu
m

be
r o

f a
le

rts 20
00

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

Figure 4.6: Number of alerts per commit along the time (Flawfinder)

4.2.2 Performance of the Tools

Each alert raised by a SAT falls in one of the following four cases: i) True Positive
(TP): an actual vulnerable file reported by the SAT; ii) FN: an actual vulnerable
file not reported by the SAT; iii) False Positive (FP): a file reported by the SAT as
vulnerable that is not vulnerable; and iv) True Negative (TN): a non-vulnerable
file that is not reported by the SAT. This is the basis for computing the perfor-
mance metrics of interest (precision, recall, and f-measure). Table 4.2 presents the
classification results and the performance metrics for each SAT.

Table 4.2: SAT Results and Metrics - (A): CppCheck, (B): Flawfinder

TN FP FN TP Precision Recall F-measure

(A) 92.8%
(8,552)

7.2%
(661)

16.5%
(206)

83.5%
(1,045) 0.61 0.84 0.71

(B) 6.8%
(623)

93.2%
(8,590)

60.8%
(761)

36.2%
(490) 0.05 0.39 0.10

As noticed in the previous section on the analysis of the Venn diagrams, Cp-
pCheck presents better results than Flawfinder. In addition to the higher number
of FPs reported by Flawfinder (8, 590), the number of TPs is significantly lower
(490) than the one reported by CppCheck (1, 045). Consequently, Flawfinder has
worse values than CppCheck for the three performance metrics. Although one
of the SATs clearly performs better (CppCheck) than the other (Flawfinder), the
overall results are not satisfactory. Thus, in the following section, we analyze
their performance when considering individual vulnerability categories.

4.2.3 Performance per Vulnerability Category

The same analysis can be done per vulnerability category. The detection results
for CppCheck and Flawfinder can be seen in Tables 4.3 and 4.4, respectively, and
the performance metrics in Tables 4.5. Regarding the categories with more known
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vulnerabilities (Memory Management and Input Validation), CppCheck can detect
more than 80% of them. On the other hand, the number of FPs is higher than
the number of TPs. As a consequence, the precision is between 0.46 and 0.47.
Flawfinder does not have good results for these categories. The recall is 0.3837
for Input Validation and 0.4278 for Memory Management, and the precision is 0.0192
for the latter and 0.0113 for the prior. Except for the recall for CppCheck, all the
values for these two categories are low (below 0.5). As a consequence, we can say
that neither CppCheck nor Flawfinder can perform acceptably in the detection of
these categories of vulnerabilities.

Table 4.3: Results of the SATs - Vulnerability Categories - CppCheck

CppCheck
TN FP FN TP

Memory
Management

96.4766%
(9,748)

3.5234%
(356)

13.6111%
(49)

86.3889%
(311)

Input
Validation

97.8080%
(9,995)

2.1920%
(224)

17.5510%
(43)

82.4490%
(202)

Permission 98.6678%
(10,147)

1.3322%
(137)

32.2222%
(58)

67.7778%
(122)

Cryptography 99.9139%
(10,446)

0.0861%
(9)

22.2222%
(2)

77.7778%
(7)

Data
Protection

99.1162%
(10,318)

0.8838%
(92)

7.4074%
(4)

92.5926%
(50)

System
Configuration

99.8468%
(10,427)

0.1532%
(16)

28.5714%
(6)

71.4286%
(15)

File
Management

99.6457%
(10,405)

0.3543%
(37)

9.0909%
(2)

90.9091%
(20)

Coding
Practices

99.9809%
(10,454)

0.0191%
(2)

37.5000%
(3)

62.5000%
(5)

Table 4.4: Results of the SATs - Vulnerability Categories - Flawfinder

Flawfinder
TN FP FN TP

Memory
Management

21.9913%
(2,222)

78.0087%
(7,882)

57.2222%
(206)

42.7778%
(154)

Input
Validation

19.6203%
(2,005)

80.3797%
(8,214)

61.6327%
(151)

38.3673%
(94)

Permission 30.4454%
(3,131)

69.5546%
(7,153)

56.6667%
(102)

43.3333%
(78)

Cryptography 42.6791%
(4,462)

57.3219%
(5,993)

22.2222%
(2)

77.7778%
(7)

Data
Protection

30.8069%
(3,207)

69.1931%
(7,203)

50.0000%
(27)

50.0000%
(27)

System
Configuration

65.2782%
(6,817)

34.7218%
(3,626)

80.9524%
(17)

19.0476%
(4)

File
Management

98.8795%
(10,325)

1.1205%
(117)

63.6364%
(14)

36.3636%
(8)

Coding
Practices

58.8753%
(6,156)

41.1247%
(4,300)

75.0000%
(6)

25.0000%
(2)
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Table 4.5: Performance of the SATs

Precision Recall F-Measure

C
pp

C
he

ck

Memory Management 0.4663 0.8639 0.6056
Input Validation 0.4742 0.8245 0.6021

Permission 0.4710 0.6778 0.5558
Cryptography 0.4375 0.7778 0.5600

Data Protection 0.3521 0.9259 0.5102
System Configuration 0.4839 0.7143 0.5769

File Management 0.3509 0.9091 0.5063
Coding Practices 0.7143 0.6250 0.6667

Fl
aw

fin
de

r

Memory Management 0.0192 0.4278 0.0367
Input Validation 0.0113 0.3837 0.0220

Permission 0.0108 0.4333 0.0210
Cryptography 0.0012 0.7778 0.0023

Data Protection 0.0037 0.5000 0.0074
System Configuration 0.0011 0.1905 0.0022

File Management 0.0640 0.3636 0.1088
Coding Practices 0.0005 0.2500 0.0009

The categories that CppCheck has the highest recall are Data Protection and File
Management. In both cases, the value is above 0.90. On the other hand, these
are also the cases where CppCheck presents the lowest precision values (about
0.35). For each category except Coding Practices, CppCheck has a precision that is
lower than its overall precision. Also, CppCheck does not present a F-Measure
value for any category that is higher than its overall F-Measure. This happens
because the number of TPs is smaller (due to a smaller number of instances per
vulnerability category), and the number of FPs does not decrease in the same
proportion (reported TPs of other vulnerability categories are considered as FPs
when a particular category is being analyzed).

Flawfinder has a good recall of 0.7778 for Cryptography, although it ties with Cp-
pCheck. On the other hand, it has one of the worst precision (0.0012) and F-
Measure (0.0023) results for this category, as a consequence of the high number of
FPs. Due to the highest value of precision (0.0640), Flawfinder presents the high-
est value of F-Measure (0.1088) for the File Management category. These results
are better than the overall Flawfinder results. Considering recall, Flawfinder per-
formed better in four categories (Memory Management, Permission, Cryptography,
and Data Protection) than when not considering categories.

Answering the RQ1 on whether SATs are effective in detecting different types of soft-
ware vulnerabilities in large-scale software projects?, we conclude that none of the
two SATs can be trusted to effectively detect vulnerabilities of any category. This
is evident considering the F-Measure results, which ranged from 0.50 to 0.67 for
CppCheck and from 0.01 to 0.11 for Flawfinder.
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Key Observations:

• Some vulnerabilities are fixed without code changes

• None of the SATs presents good results, but CppCheck is overall better
than Flawfinder

• The SATs present better results for some categories, but such categories
have few reported vulnerabilities

4.3 Threats to Validity

Internal Validity refers to the possibility of having unanticipated relationships.
Although we have a dataset of actual vulnerabilities, we cannot assure that the
source code does not have other vulnerabilities. Thus, some of the alerts classified
as FPs can be actual vulnerabilities. As the number of alerts is large, we cannot
validate them manually. The use of other SATs could help deciding if each alert
is a vulnerability or not, using a simple majority approach.

External Validity refers to the ability to generalize the results. In this case, it
refers to the used SATs. CppCheck and Flawfinder use mainly syntactic pattern
matching and data flow analysis techniques to detect vulnerabilities. SATs with
different techniques should be used to enrich the results. SATs with different
techniques other than the ones used here may perform better in some of the vul-
nerability categories. Although other open-source SATs were analyzed, none of
them could be run in the Mozilla repository.

4.4 Summary

This chapter studied the use of open-source SATs in large C/C++ projects. The
evaluation was performed considering 2, 441 Mozilla vulnerabilities from 2000 to
2016. Such vulnerabilities are fixed through 1, 590 patches/commits, being 1, 017
of them the target of our analysis (as they change C/C++ files). The SATs are
evaluated in the complete set of vulnerabilities and per vulnerability category.

Results show that none of the used SATs present good results in any case, al-
though CppCheck performs better than Flawfinder. When vulnerability cate-
gories are considered, the overall results are similar (although the tools are able to
identify almost all vulnerabilities for the categories with fewer samples). The best
F-Measure is 0.71, obtained by CppCheck when all the vulnerabilities are consid-
ered, which is not an acceptable value for most development teams. Neverthe-
less, this SAT may help teams identifying vulnerabilities at the cost of analyzing
a high number of FPs.

Applying SATs in a mature and large project may lead to a large number of false
alerts, in addition to not detecting many vulnerabilities. For a better understand-
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ing of vulnerabilities and their fixes, in the next chapter, we present a detailed
analysis of a key type of vulnerability in systems software: buffer overflow. Both
the SAT alerts and the SMs support the analysis, and vulnerability fixes are ana-
lyzed and classified using the Orthogonal Defect Classification (ODC). The goal
is to understand how vulnerability fixes impact the code, shedding some light on
the causes why SATs do not work in some cases.
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Understanding Buffer Overflow
Vulnerabilities

Vulnerabilities in projects developed in C and C++ account for 52% of the known
vulnerabilities in open source software [Source, 2021]. Among these vulnerabili-
ties, improper use of memory, which may lead to buffer overflows, is the most
frequent type in these programming languages [Source, 2021].

Techniques to detect vulnerabilities are usually weaker for buffer overflow vul-
nerabilities [Kratkiewicz and Lippmann, 2005]. To improve the current situation,
we need to better understand how buffer overflow vulnerabilities are fixed and
what are the capabilities and limitations of using SATs and SMs to detect such
weaknesses. SATs indicates potential problems in the source code (as discussed in
Chapter 4), while SMs reveal code structural characteristics. This helps research-
ing new approaches for vulnerability detection or improve the existing ones (e.g.,
by creating new detection rules for SATs). For instance, to support our work on
vulnerability detection using ML (Chapter 6) and on the characterization of code
units from a security perspective (Chapter 7).

This chapter studies the characteristics of code with buffer overflow vulnera-
bilities and of the fixes applied to remove them. To support the study, we rely
on SMs and SAT alerts as they are frequently used to collect information about
the quality of the code during the development phase [Jiang et al., 2008] and can
be easily extracted from the code under development. Furthermore, vulnerabil-
ity fixes are analyzed to understand how software developers remove the buffer
overflow vulnerabilities from the source code. Although this type of study is
also important for other types of vulnerabilities, they should be treated indepen-
dently, as different conclusions may be reached depending on the specific char-
acteristics of each type.

The analysis follows three complementary directions: i) study the changes in the
source code when fixing buffer overflow vulnerabilities by applying the Or-
thogonal Defect Classification (ODC); ii) study the SAT alerts in the vulnerable
and neutral versions of code units by running two widely known C/C++ SATs
(CppCheck and Flawfinder); and iii) understand the eventual correlation of SMs
with the existence of buffer overflow vulnerabilities by comparing their varia-
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tion between the vulnerable and neutral versions of the code. In practice, the goal
is to cast light on the following RQs:

• RQ1: What are the main changes in the code when fixing buffer overflow
vulnerabilities?

• RQ2: What are the differences between SAT alerts reported before and after
fixes?

• RQ3: What is the impact of buffer overflow vulnerability fixes on SMs that
portray code characteristics?

The analysis follows three complementary directions: i) study the changes in the
source code when fixing buffer overflow vulnerabilities by applying the Or-
thogonal Defect Classification (ODC); ii) study the SAT alerts in the vulnerable
and neutral versions of code units by running two widely known C/C++ SATs
(CppCheck and Flawfinder); and iii) understand the eventual correlation of SMs
with the existence of buffer overflow vulnerabilities by comparing their varia-
tion between the vulnerable and neutral versions of the code. Results show that
there is no correlation between SMs and the existence of buffer overflow in the
code. Also, most of these vulnerabilities are fixed by adding a checking statement
before using a memory space.

The rest of this chapter is organized as follows. Section 5.1 describes the approach
and the experiments conducted. The results are presented and discussed in Sec-
tion 5.2, including the ODC classification and the analysis of the SAT alerts and
SMs of the vulnerability fixes. Section 5.3 discusses the limitations of the work
and highlights the threats to validity of the results. Finally, Section 5.4 summa-
rizes the chapter.

5.1 Vulnerabilities and Approach

The vulnerabilities (dataset slice) in the study are from three C/C++ open-source
projects: Linux Kernel, Mozilla, and Xen. From the five projects in the dataset (see
Chapter 3), we selected the three with the largest codebase and with the highest
number of known vulnerabilities. We analyze the vulnerable version and the
neutral version (after a code fix) of a set of 159 code units of the selected projects
(also corresponding to 159 vulnerabilities).

The approach followed, depicted in Figure 5.1, is composed of six steps: i) select
several representative software projects, from a security perspective; ii) retrieve
vulnerability metadata; iii) collect source code versions; iv) classify the vulnera-
bilities using ODC; v) collect and analyze SATs alerts; and vi) collect and analyze
SMs. Note that our approach is generic and can be applied to other vulnerabil-
ities and other contexts (e.g., vulnerabilities in web applications or specific for a
project). An example of its use is an analysis of vulnerabilities of the deep learn-
ing library TensorFlow presented in [Filus and Domańska, 2023]. Each step is
detailed in the following sections.
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Figure 5.1: Approach for analysis of buffer overflow vulnerabilities

5.1.1 Select Software Projects

The projects selected (Linux Kernel, Mozilla, and Xen) are representative from a
security perspective as they are widely used and were frequently the target of
security attacks during a long period of time, as it can be seen in CVE Details,
the three projects are listed as the top-50 vendors with distinct vulnerabilities1.
The other two projects in the dataset (glibc and httpd) are not considered in this
study, as they are small projects with a small number of reported vulnerabilities,
thus not allowing to draw relevant observations and conclusions.

CVE Details provides several pieces of information about known vulnerabilities,
including the CVSS, the impact, the vulnerability type (which can have multiple
values), and the Common Weakness Enumeration (CWE) (although not all vul-
nerabilities have a CWE assigned). As we are dealing particularly with “Buffer
Overflow”, we consider only the records with the identifier CWE-119: Buffer
Overflow [MITRE, 2006b], which represent between 12.2% to 14.2% of all vul-
nerabilities in each of the three projects. From the vulnerabilities with a CWE-
119 identifier, we only selected the ones whose type attribute includes the value
“Overflow”, which represent between 2.3% to 11.3% of the vulnerabilities in each
project. This is shown in Table 5.1, which provides a quantitative summary of the
vulnerabilities of the three projects.

Although the number of records for analysis is not large (only 159), it is accept-
able as we are dealing with a single type of vulnerability. The vulnerabilities
were detected over a considerable period of time (from 2000 to 2016) in several
versions of the three C/C++ projects, which have different purposes and func-
tionalities (an operating system, a browser, and a hypervisor). This results in
diverse samples with potentially different root causes, allowing to draw relevant
observations and meaningful conclusions.

1https://www.cvedetails.com/top-50-vendors.php

65

https://www.cvedetails.com/top-50-vendors.php


Chapter 5

Table 5.1: Number of Vulnerabilities: A) all vulnerabilities, B) vulnerabilities with
the CWE-119 identifier, C) CWE-119 vulnerabilities with “Overflow” in vulnera-
bility type

Linux Kernel Mozilla Xen Total

A 867 (100.0%) 2441 (100.00%) 148 (100.0%) 3456 (100.0%)

B 123 (14.2%) 336 (13.8%) 18 (12.2%) 477 (13.8%)

C 98 (11.3%) 56 (2.3%) 5 (3.4%) 159 (4.6%)

5.1.2 Retrieve Vulnerability Metadata

The information about the vulnerabilities was collected from CVE Details. Each
vulnerability entry has a unique identifier called CVE-ID, which is composed of
the prefix “CVE”, the year in which the vulnerability was reported, and a se-
quential number. Each CVE-ID includes basic information about the vulnerabil-
ity, such as the CVSS, the impact, the vulnerability type (which can have multiple
values), the CWE, and a table with all software versions affected by that vulnera-
bility. For some vulnerabilities, information on how they can be exploited is also
included.

Each CVE-ID was complemented with data from BugTrackers, which are soft-
ware applications that are used to manage the issues reported for a project (e.g.,
Mozilla uses Bugzilla as BugTracker). BugTrackers include key information about
the specific commit where a vulnerability was fixed.

5.1.3 Collect Source Code Versions

The source code of the projects considered in this study is either stored in GitHub2

or in a mirror of the repository available in GitHub. Knowing the commit that
fixes a vulnerability (from the BugTracker entries), we obtained the neutral ver-
sion of the source code (with the vulnerability fixed) and its previous version (the
vulnerable one). With these, we can manually analyze the code and run the tools
to extract the required information (e.g., SATs alerts and SMs).3

5.1.4 Classify Vulnerabilities using ODC

The next step is to classify the vulnerabilities using ODC [Chillarege et al., 1992],
which is a systematic approach to classify defects identified in a software system.
It is widely used for root-cause analysis and defines several attributes to be filled
when the defect is open and closed based on a predefined set of values. ODC is

2 https://github.com
3 Although the static data (SAT alerts and SMs) and the fixing commit hash are already in the

dataset (as presented in Chapter 3), the source code for the changes is not. Hence, we retrieved
the source code from the repositories to apply ODC and used the static data from the dataset.
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considered orthogonal as attributes cannot have more than one value assigned.
The attributes registered when a defect is open include: i) activity, ii) trigger,
and iii) impact. When the defect is closed, the following attributes are captured:
i) target, ii) defect type, iii) qualifier, iv) source, and v) age.

Although ODC includes several attributes, we focus on two of them: defect type
and qualifier. We do not consider the other ones as they bring no relevant in-
formation towards identifying potential improvements to vulnerability detection
(e.g., activity characterizes the moment that the vulnerability was discovered, but
we are focused on how it was fixed and not when). We use the definition of defect
type from [Chillarege et al., 1992], and the possible values are:

1. Assignment/Initialization: a problem related to an assignment of a variable
or no assignment at all

2. Checking: a problem with conditional logic (e.g., condition in a if-clause or
in a loop)

3. Timing: a problem with serialization of shared resources

4. Algorithm/Method: a problem with implementation that does not require
a design change to be fixed

5. Function: a problem that needs a reasonable amount of code to be fixed due
to incorrect implementation or no implementation at all

6. Interface: a problem in the interaction between components (e.g., parameter
list)

As for the qualifier, we can have:

1. Missing: new code needs to be added to fix the defect

2. Incorrect: the code is incorrectly implemented and needs adjustment to fix
the defect

3. Extraneous: unnecessary code needs to be removed to fix the defect

As GitHub highlights the code changes from the vulnerable to the neutral ver-
sion, we have the information needed to classify these two attributes for each
vulnerability. However, because the classification has to be done manually, we
decided to have it done by two different researchers to get more accurate results.
To have a common baseline for the two researchers, they started by analyzing
and classifying together a sub-set of 30 vulnerabilities (out of the 159), which al-
lowed discussing divergences in the approach and reaching a common rationale.
This is very important as the experience of the two researchers is different. While
one is a post-doctoral researcher who has worked with ODC before, the other is a
Ph.D. student4 having the first practical experience with ODC in this work. After

4 The author of this thesis was the Ph.D. student working with ODC.
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that step, each researcher classified the remaining 129 vulnerabilities individu-
ally, and the results were merged and consolidated at the end (the divergences in
the classification were discussed to come up with a final classification).

As the fix of some vulnerabilities involves several code changes (in more than one
block of code in a file or even in several files), each vulnerability may lead to a
different number of ODC classifications by different researchers. Hence, the total
number of ODC classifications (as presented in subsection 5.2.1) is larger than the
total of vulnerabilities analyzed (Table 5.1).

To assess if the classification of the researchers is consistent, we calculated the
Inter-Rater Reliability (IRR) metric Cohen’s Kappa [Cohen, 1960] on the items
classified separately by the two researchers. To interpret the metric, we use the
Landis and Koch interpretation [Landis and Koch, 1977]: a) less than 0: no agree-
ment; b) 0–0.20: slight agreement; c) 0.21–0.40: fair agreement; d) 0.41–0.60: mod-
erate agreement; e) 0.61–0.80: substantial agreement; and f) 0.81–1.0 almost per-
fect.

5.1.5 Collect and Analyze SAT Alerts

As the dataset already contains alerts from two SATs (CppCheck and Flawfinder),
these data were used. If the alerts were not available, we would need to select
relevant SATs and run them in the source code to obtain them. By analyzing the
differences in terms of the alerts reported in the two versions of each code unit,
we can study the ones that disappear due to a vulnerability fix (when compared
with the vulnerable version) and the ones that appear in a vulnerability fix (which
can lead to other vulnerabilities in the future).

5.1.6 Collect and Analyze Software Metrics

From that dataset, we used the file-level metrics for the Linux Kernel, Mozilla,
and Xen projects (for the 159 buffer overflow vulnerabilities)5. We considered
only the SMs at the file level, as most of the C/C++ code in these projects is not
structured in classes. Also, for our analysis, the function metrics would not pro-
vide more information compared to file metrics, as some files are not structured
in functions (such as scripts or header files). The SMs are detailed in Appendix B.

5.2 Results and Discussion

This section presents and discusses the results. First, we present the ODC clas-
sification of the buffer overflow vulnerabilities. Then, we analyze the main dif-
ferences in terms of the SAT alerts raised in vulnerable and patched versions.
Finally, we discuss the impact of vulnerability fixes in the SMs.

5 Tools such as the SciTools Understand [SciTools, 2011] can be used to calculate the SMs in
scenarios where a dataset like our is not available.
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5.2.1 Main Code Changes when Fixing Vulnerabilities

The 159 buffer overflow vulnerabilities were classified according to the two ODC
attributes (defect type and qualifier) by the two researchers. The subset of 30
vulnerabilities classified by the two researchers together (in a meeting that lasted
a bit more than one hour) led to a total of 35 classifications, as some vulnerabilities
were classified with more than a pair of type/qualifier values. Although ODC is
an orthogonal classification (meaning that an attribute should not have more than
one value assigned), this happens in our case as a vulnerability fix may require
one or more independent code changes. In other words, several block changes
may be needed in a single fix, which leads to more than one ODC classification
per vulnerability (in practice, we can say that several code weaknesses/faults
lead to one vulnerability).

The 129 vulnerabilities that were classified separately resulted in 167 and 177 clas-
sifications by each researcher (each one spent between 5 to 6 hours in this clas-
sification step). With these data, we computed the IRR Cohen’s Kappa metric to
assess the consistency between the classifications. We obtained the following val-
ues: i) defect type: 0.4476 (moderate agreement), and ii) qualifier: 0.3939 (fair agree-
ment). Additionally, we computed the Cohen’s Kappa considering both ODC
attributes (defect type + qualifier) as a single classification. The result is 0.4255, a
moderate agreement between the researchers. Although these results do not indi-
cate an excellent agreement, they show a fair to moderate agreement according to
Landis and Koch interpretation [Landis and Koch, 1977], suggesting that our ODC
classification for the buffer overflow vulnerabilities is quite consistent.

The divergences in the classifications were discussed (in a meeting that lasted 2
hours), resulting in 216 classifications (pairs of defect types and qualifiers) for the
159 vulnerabilities. This happens because 35 (22.01%) vulnerabilities were fixed
by changing more than one file, as can be seen in the box plot in Figure 5.2, which
indicates that some buffer overflow vulnerabilities are due to the interaction of
more than one software component. Such interactions clearly make the vulnera-
bility detection process difficult to automate.

A summary of the ODC classification process is shown in Figure 5.3, and the
consolidated results are presented in Table 5.2. Regarding the defect type, the
most frequent vulnerabilities are from “Checking” (85 cases, 39.35%), followed
by “Algorithm/Method” (64 cases, 29.63%), and “Assignment/Initialization” (42
cases, 19.44%). This confirms the observations of Morrison et al. [2018] in their
study using ODC+V. Regarding the qualifier, “Incorrect” is the most frequent one
(123 cases, 56.94%) followed by “Missing” (88 cases, 40.74%).

Table 5.3 (defect type) and Table 5.4 (qualifier) summarize the results of classifi-
cation per project. Similar to the overall results, the majority of the classifications
belong to the “Checking” defect type, for both Linux Kernel and Mozilla projects.
This seems to be an obvious approach to prevent out-of-bound access, but devel-
opers still fail to add them to the source code. This probably happens as the
developers do not anticipate the need for the “Checking” since it is difficult to
consider all possibilities and identify the ones that may lead to a buffer overflow
problem. Moreover, the developers are probably not supported by adequate tools
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Figure 5.3: Analysis of the buffer overflow vulnerabilities using ODC

Table 5.2: Vulnerability distribution across the ODC Defect Type and the Quali-
fiers

Defect Type Incorrect Missing Extraneous Total

Checking 31 (14.35%) 51 (23.61%) 3 (1.39%) 85 (39.35%)

Algorithm/Method 50 (23.15%) 12 (5.56%) 2 (0.93%) 64 (29.63%)

Assignment/Initialization 24 (11.11%) 18 (8.33%) 0 (0.00%) 42 (19.44%)

Interface 16 (7.41%) 3 (1.39%) 0 (0.00%) 19 (8.80%)

Function 2 (0.93%) 4 (1.85%) 0 (0.00%) 6 (2.78%)

Timing 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Total 123 (56.94%) 88 (40.74%) 5 (2.31%) 216 (100.00%)

that help them identifying or verifying the “Checking” conditions. Another pos-
sible reason is the lack of testing skills, such as applying boundary-value analysis
when creating the functionality.

Regarding the qualifier attribute, more than half of the Linux Kernel classifica-
tions are labeled as “Incorrect” (74 cases, 61.67%), while for the Mozilla project,
the number of “Incorrect” (46 cases, 50.55%) and “Missing” (42 cases, 46.15%) are

70



Understanding Buffer Overflow Vulnerabilities

Table 5.3: Vulnerability distribution across the ODC Defect Type for the projects
(Linux Kernel, Mozilla, Xen)

Defect Type Linux Kernel Mozilla Xen

Checking 45 (37.50%) 39 (42.86%) 1 (20.00%)

Algorithm/Method 33 (27.50%) 27 (29.67%) 4 (80.00%)

Assignment/Initialization 27 (22.50%) 15 (16.48%) 0 (0.00%)

Interface 11 (9.17%) 8 (8.79%) 0 (0.00%)

Function 4 (3.33%) 2 (2.20%) 0 (0.00%)

Timing 0 (0.00%) 0 (0.00%) 0 (0.00%)

Total 120 (100.00%) 91 (100.00%) 5 (100.00%)

Table 5.4: Vulnerability distribution across the ODC Qualifier for the projects
(Linux Kernel, Mozilla, Xen)

Qualifier Linux Kernel Mozilla Xen

Incorrect 74 (61.67%) 46 (50.55%) 3 (60.00%)

Missing 45 (37.50%) 42 (46.15%) 1 (20.00%)

Extraneous 1 (0.83%) 3 (3.30%) 1 (20.00%)

Total 120 (100.00%) 91 (100.00%) 5 (100.00%)

quite similar. The small number of classifications for the Xen project does not
allow further analysis.

The above results help answering the RQ1, about the main changes in the code when
fixing buffer overflow vulnerabilities, and indicate that projects lack mechanisms
to verify simple conditional logic (“Checking” defect type) and assignment and
initialization of variables (“Assignment/Initialization” defect type). Moreover,
some review effort could be beneficial to identify major issues in the implemen-
tation (“Algorithm/Method” defect type). In all cases, issues can be either ab-
sent (“Missing” qualifier) or poorly implemented (“Incorrect” qualifier) code. At
first sight, the detection of some of these cases may be easily automated (e.g., by
adding simple rules to SATs), but many others require human intervention or
other advanced detection techniques (e.g., in the case of vulnerabilities that occur
due to multiple weaknesses in different files). As an example, let’s take a look
at the Linux Kernel vulnerability CVE-2014-0049, whose fix can be seen below.
It shows the code of the Linux Kernel file arch/x86/kvm/x86.c after the fix of
CVE-2014-0049.

if (vcpu ->mmio_cur_fragment >= vcpu ->mmio_nr_fragments) {
// removed due to space constraints

}

In this example, the if-clause was classified as being “Incorrect” because the op-
erator had to be changed from == (equal comparison in C/C++) to >= (greater
than or equal comparison) to fix the vulnerability. The buffer overflow happened
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as the execution of the function was not interrupted when the number of the cur-
rent fragment exceeded the total number of fragments. This cannot be automated
through SAT rules as it requires a complex and semantic interpretation. Although
the Linux Kernel development team could create a rule for this specific case, it
turns out to be totally context-specific, thus, when used in different contexts, it
would lead to a high number of false alarms.

Key Observations:

• Most buffer overflow vulnerabilities are fixed by a simple change in con-
ditional logic (either incorrect or missing), which is not anticipated by
developers and not identified by tools

• Some vulnerabilities could have been detected with the use of adequate
SATs

• Not all vulnerabilities can have their identification automated as they in-
volve intricate issues in several files

• A manual review process could help identifying vulnerabilities earlier in
the SDLC

5.2.2 SAT Alerts Before and After Vulnerability Fixes

The analysis of the SAT alerts started by querying the alerts of two SATs (Cp-
pCheck and Flawfinder) of the two versions of each code (vulnerable and neutral)
for each buffer overflow vulnerability. With this, we can analyze what has been
changed between the vulnerable and the neutral versions. Three cases are possi-
ble: i) alerts disappearing from the vulnerable version to the neutral version due
to the code fix; ii) new alerts appearing in the code that fixed the vulnerability;
and iii) SAT alerts either appearing or disappearing in untouched code (part of
the code that was not affected by the fixes). Depending on the techniques used by
the SATs (e.g., data flow analysis, taint analysis), some code changes may cause
the SATs to raise new alerts in parts of the code that were not touched. Thus, we
consider all the alerts, and not only the ones in the changed code. Nevertheless,
as most alerts are kept equal from one version to the other, we can filter these out.
In practice, we are simplifying the analysis by excluding the alerts that have the
same type and are raised in the same (or corresponding) lines of code in both the
vulnerable and the neutral versions of each code unit.

Considering the types of SAT alerts for which we identified variations between
the vulnerable and the neutral versions of each vulnerability, none appeared in
more than one project. For example, the alert type wcscpy from Flawfinder is
raised in the Mozilla project but not in the Linux Kernel and Xen projects. This
happens both for CppCheck and Flawfinder alerts in the different projects. Due
to the reduced number of vulnerabilities in Xen, we could not observe much re-
garding SAT alerts changing due to code fixes: only one alert with CppCheck
(doubleFree) and none with Flawfinder.
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Table 5.5: Number of alerts (minimum and maximum among all commits) re-
ported by the SATs for the complete code-base in all vulnerabilities

CppCheck Flawfinder

Linux Kernel
35, 110 (min.)

79, 135 (max.)

32, 157 (min.)

55, 930 (max.)

Mozilla
24, 660 (min.)

45, 769 (max.)

5, 755 (min.)

22, 543 (max.)

Xen
4, 545 (min.)

4, 717 (max.)

3, 079 (min.)

3, 216 (max.)

Table 5.6: CppCheck SAT alerts reported in Linux Kernel that changed from the
vulnerable to the neutral versions

Linux Kernel

SAT Vulnerable Neutral

nullPointerRedundantCheck 3 0

unusedStructMember 1 0

Total 4 0

Table 5.5 shows a summary of the minimum and the maximum number of alerts
per SAT raised for different commits of each project. For example, Linux Kernel
has 98 vulnerabilities analyzed in this study (see Table 5.1), we ran the SATs for
those vulnerabilities for different commits and counted all reported alerts per vul-
nerability for each commit. The smallest number of alerts raised for Linux Kernel
by CppCheck belongs to a specific commit and is equal to 35, 110 alerts, and the
largest number of alerts raised for Linux Kernel by CppCheck belongs to another
commit and is equal to 79, 135. Overall, CppCheck reports more alerts for the
complete codebase of each project than Flawfinder. The project with the largest
number of alerts is Linux Kernel (maximum of 79, 000 reported by CppCheck).
On the other hand, Xen is the project with the smallest number of reported alerts
(minimum of 3, 000 reported by Flawfinder).

Table 5.6 and Table 5.7 show the CppCheck results for Linux Kernel and Mozilla,
respectively. Table 5.8 and Table 5.9 show the Flawfinder results (as this tool de-
fines categories for the types of alerts, they are also included in the tables). As
shown, the total number of alerts that vary from vulnerable to neutral versions is
very small when compared to the number of alerts raised per project. For exam-
ple, for the Mozilla project, the total number of Flawfinder alerts varies between
5, 755 and 22, 543 (Table 5.5) over the 56 commits considered. However, the alerts
that changed between the vulnerable and neutral versions of all vulnerabilities
are only 21 (Table 5.9). In other words, 21 alerts that were raised in vulnerable
versions disappeared when fixes were implemented. On the other hand, 19 new
alerts appeared after vulnerability fixes.

73



Chapter 5

Table 5.7: CppCheck SAT alerts reported in Mozilla that changed from the vul-
nerable to the neutral versions

Mozilla

SAT Vulnerable Neutral

syntaxError 1 1

toomanyconfigs 0 1

uninitMemberVar 1 0

unusedFunction 1 0

memsetClassFloat 1 0

Total 4 2

Table 5.8: Flawfinder SAT alerts reported in Linux Kernel that changed from the
vulnerable to the neutral versions

Linux Kernel

Category SAT Type Vulnerable Neutral

Buffer

memcpy 8 5

char 6 6

strlen 7 4

strcpy 6 3

sprintf 6 1

strncpy 4 3

strncat 1 0

Format

syslog 14 14

printf 0 8

vsnprintf 1 1

Total 53 45

From the 159 vulnerabilities analyzed, only 22 fixes (13.84%) impacted the SAT
alerts, but only one impacted the alerts raised by both SATs (CVE-2007-6151). Fur-
thermore, although all projects are written in the same programming languages
(C/C++), and the vulnerabilities analyzed are of the same type (CWE-119), very
different SAT alerts are raised in the three projects (with no clear overlap), sug-
gesting that the root causes of buffer overflow vulnerabilities differ a lot from
each other. Let’s analyze a couple of examples.

The following code snippet presents the fix of the Linux Kernel CVE-2010-4527
vulnerability in the file linux/sound/oss/soundcard.c. In this case, the vulnera-
ble function strcpy has been replaced by strncpy, which is also considered vul-
nerable (line 102). Flawfinder raised alerts in both the vulnerable and the (sup-
posedly) neutral versions, meaning that part of the alerts on the strcpy version
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Table 5.9: Flawfinder SAT alerts reported in Mozilla that changed from the vul-
nerable to the neutral versions

Mozilla

Category SAT Type Vulnerable Neutral

Buffer

wcscpy 19 0

wcsncpy 0 19

wcslen 1 0

Format fprintf 1 0

Total 21 19

migrated to strncpy version. This fix also changes the strcmp (considered unsafe)
to strncmp (line 90), but none of the SATs raised an alert for the unsafe function
strcmp.

// Line 90
if (strncmp(name , mixer_vols[i].name , 32) == 0) {

// Unchanged lines: 91 -101

// Line 102
strncpy(mixer_vols[n].name , name , 32);

To replace the vulnerable function strncpy with a safe
one, strlcpy can be used, as done in CVE-2013-2850 (file
drivers/target/iscsi/iscsi_target_parameters.c). Note that the use of vul-
nerable functions is a known weakness still present in many software systems.
In fact, OWASP lists using “Vulnerable and Outdated Components” as one of the
top 10 weaknesses that software developers should prevent [Foundation, 2021].

strlcpy(extra_response ->key , key , sizeof(extra_response ->key));

The following code snippet shows an example of a “Checking“ that was miss-
ing in the code and that was not detected by any of the SATs. This is part of the
vulnerability CVE-2013-1721. In the vulnerable version, only the first part of the
condition was included; the second condition has been added to fix the vulnera-
bility by checking the required space needed for a buffer in use.

else if (mWritePosition + requiredSpace > mBufferSize ||
mWritePosition + requiredSpace < mWritePosition) // Recycle

These results help answering RQ2 about the difference between SAT alerts reported
before and after fixes. As shown, in most cases, the vulnerability fixes do not change
the outcome of the SATs, suggesting a low capability of these tools to detect buffer
overflow vulnerabilities.
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Key Observations:

• A small number of vulnerabilities are detected by SATs, especially when
unsafe functions are used

• Some fixes lead to new SAT alerts, sometimes related to the use of other
unsafe functions (e.g., wcscpy to wcsncpy)

• Not all vulnerabilities can be detected by SATs as they involve the inter-
action among diverse components

• New SAT rules are needed to detect specific vulnerabilities, in particular,
the other related to checking conditions

5.2.3 Impact of Vulnerability Fixes on Software Metrics

One of the main arguments in previous works for using SMs to detect software
vulnerabilities is that they allow portraying the size and complexity of the source
code and, usually, more complex code is more prone to have vulnerabilities [Shin
et al., 2011; Walden et al., 2014]. However, this assumption needs to be confirmed
in order to gain trust in the use of SMs to detect software vulnerabilities. The 54
SMs used in this study portray different characteristics of the source code, such
as volume, coupling, cohesion, and complexity.

Table 5.10 presents the top 10 of the SMs that changed more frequently when
buffer overflow vulnerabilities were fixed, which are mostly volume metrics. For
example, considering the Linux Kernel project, we can observe that the CountLine
metric changed for 68 files out of a total of 75 files modified to fix 98 vulner-
abilities. The CountLine metric indicates the number of physical lines in a file.
As shown, nine out of the ten metrics are the same for the three projects. They
either reflect the size of the code (CountLine, AltCountLineCode, CountLineCode,
CountStmt, CountLineCodeExe, CountSemicolon, and CountStmtExe) or its complex-
ity (SumCyclomaticStrict and SumCyclomaticModified). Table B.1 in the Appendix B
details all the SMs presented in this section.

Although this suggests a correlation between vulnerability fixes and the value of
some metrics, there may not be causality. In fact, a detailed analysis of the values
of volume (e.g., lines of code) and complexity (e.g., McCabe cyclomatic complex-
ity) metrics allows observing that the value of most metrics increases when a
buffer overflow vulnerability is fixed. This is confirmed by the ODC analysis, in
which 40.74% of the classifications showed that some code had to be added to
fix a vulnerability. The problem is that this may go against the assumption that
smaller and simpler code is less prone to be vulnerable.

Moreover, although the value of some metrics is frequently varying from the vul-
nerable to the neutral versions, it does not say much about the potential existence
of vulnerabilities. For example, the metric Henry Kafura Size (HK), which was
proposed by Henry and Kafura [1981], also appears as being frequently impacted
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Table 5.10: Top 10 SMs impacted by the vulnerability fixes per project (more than
10 items listed as Xen ties in some SMs)

SM Linux Kernel Mozilla Xen

CountLine 68/75 (90.7%) 44/51 (86.3%) 6/6 (100.0%)

AltCountLineCode 66/75 (88.0%) 43/51 (84.3%) 6/6 (100.0%)

CountLineCode 59/75 (78.7%) 38/51 (74.5%) 5/6 (83.3%)

CountStmt 56/75 (74.7%) 34/51 (66.7%) 5/6 (83.3%)

CountStmtExe 53/75 (70.7%) 27/51 (52.9%) 5/6 (83.3%)

CountSemicolon 53/75 (70.7%) 32/51 (62.7%) 5/6 (83.3%)

CountLineCodeExe 53/75 (70.7%) 33/51 (64.7%) 5/6 (83.3%)

HK 49/75 (65.3%) - 4/6 (66.7%)

SumCyclomaticStrict 46/75 (61.3%) 24/51 (47.1%) 4/6 (66.7%)

SumCyclomaticModified 42/75 (56.0%) 23/51 (45.1%) 4/6 (66.7%)

SumCyclomatic - 23/51 (45.1%) 4/6 (66.7%)

AltCountLineBlank - - 4/6 (66.7%)

CountLineBlank - - 4/6 (66.7%)

by vulnerability fixes (in fact, it is among the metrics whose values vary more).
HK is the result of the multiplication of three other metrics, being two of them
squared (length ∗ (FanIn ∗ FanOut)2, where length is a volume metric, such as
LOC). Consequently, small changes in the code can result in a large value varia-
tion for HK, but we cannot assure that is not strictly related to vulnerability fixes
(in fact, we can observe similar variations across different versions of the same
file, even when no vulnerabilities are being dealt with).

Table 5.11 shows the SMs that remain unchanged due to vulnerability fixes per
project. For example, the SM MaxNesting has the same value before and after fix-
ing the vulnerability in all the analyzed files for Mozilla and Xen projects. Among
these, there is one, CountDeclClass (number of classes), that never varies at all (in
italic in the table). Clearly, these are metrics that cannot help in the detection of
software vulnerabilities.

These results help answering RQ3 about SMs changing when buffer overflow vulner-
abilities are fixed. Although most of the fixes lead to changes in SMs, metrics are
not more impacted by fixes than by other code improvements. In fact, there is no
clear causality between the value of a metric and the existence of a vulnerability.
Hence, no SM can be used to detect the presence of buffer overflow vulnerabil-
ities. This has been confirmed by other works that use SMs to detect software
vulnerabilities [Medeiros et al., 2020; Shin and Williams, 2013].
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Table 5.11: Unchanged SMs in the vulnerability fixes per project

Project Unchanged SMs

Linux Kernel
CountDeclClass, DIT, NOC, CBC,

RFC, CBO, LCOM

Mozilla
MaxNesting, CountStmtEmpty, CountDeclClass,

AvgLineBlank, AltAvgLineBlank

Xen

NOC, DIT, CBC, RFC, CBO, AltAvgLineBlank,

RatioCommentToCode, MaxNesting,

CountStmtEmpty, CountLinePreprocessor,

CountDeclFunction, CountDeclClass,

AvgLineComment, AvgLineCode, AvgLineBlank,

AvgLine, AvgEssential, AvgCyclomaticStrict,

AvgCyclomaticModified, AvgCyclomatic,

AltAvgLineComment, LCOM

Key Observations:

• Most vulnerability fixes add code to the codebase, leading to an increase
in the value of the metrics that are related to volume and complexity

• Causality between vulnerability fixes and the variation in metrics cannot
be established

• Code changes related to vulnerability fixes cannot be easily distinguished
from other improvements using software metrics

• SMs are not good indicators of the existence of vulnerabilities, in particu-
lar buffer overflow, but probably can be used to indicate less trustworthy
code units

5.3 Threats to Validity

This section discusses the threats to the validity of the approach and the results
obtained. The threats are mainly related to the projects considered, the ODC clas-
sification, the SATs used, and the number and types of vulnerabilities analyzed.

External Validity refers to the ability to generalize the results beyond the experi-
ment settings. The study considers a single type of vulnerability: buffer overflow.
Although it is the most relevant vulnerability type for C/C++ projects, other vul-
nerabilities (e.g., related to improper or lack of input validation) are not consid-
ered and may lead to different observations and conclusions as the SAT alerts and
SMs may vary.
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All the projects analyzed in this study are developed in C/C++ and have a large
code-base. Buffer overflow vulnerabilities are more relevant for C/C++ projects
but not limited to them. Hence, some key observations may not be the same for
projects in other programming languages and with different sizes. Nevertheless,
the observations are still relevant as buffer overflow is still one of the most fre-
quent issues in many programming languages and has a severe impact on soft-
ware security, particularly in C/C++ projects that compose many essential and
highly used software projects.

The different levels of experience of the researchers and the complexity of some
of the fixes may lead to different classification results. We tried to mitigate this by
performing an initial joint classification effort before the individual ones. More-
over, individual classifications were discussed in a consensus meeting to reach
a final agreed classification. However, both researchers may have misclassified,
in the same way, some vulnerabilities. To mitigate this issue in the future, more
experts can be asked to perform the classification.

Internal Validity refers to the possibility of having unanticipated relationships.
The number of SATs used for the analysis of alerts is limited to two. Nevertheless,
these two SATs (CppCheck and Flawfinder) are widely used and have a high
number of rules to detect software issues and vulnerabilities. Hence, they provide
relevant input for the analysis.

Although the main objective of the selected tools for this study is to detect vul-
nerabilities, we used them to characterize only buffer overflow vulnerabilities.
Thus, another limitation of the study is related to the limited techniques used
for the characterization of the buffer overflow vulnerabilities, as other software
vulnerability detection techniques, in particular, dynamic techniques such as SPT
and fuzzing, could reveal additional characteristics of the buffer overflow vulner-
abilities. Nevertheless, due to the project characteristics and the time span of the
vulnerabilities, it would not be doable to apply techniques like that in the dataset
considered for this study.

Construct Validity refers to the 159 vulnerabilities analyzed to validate our study.
This is not a large number, but the diversity of the causes and the representative-
ness of the projects support some relevant observations. Moreover, most of the
analysis involves manual validation of the vulnerability fixes. Hence, performing
this study in a larger dataset would be even more time-consuming. Automatiz-
ing the ODC classification would be an option (such as it was performed in other
studies such as [Lopes et al., 2020]). However, a manual review would still be
needed to validate the classification and fix the incorrect ones.

5.4 Summary

In this chapter, we analyzed a set of buffer overflow vulnerabilities to study
potential ways to improve vulnerability detection, either by improving existing
techniques or devising new ones. The vulnerabilities of three open-source C/C++
projects (Linux Kernel, Mozilla, and Xen) were used in the analysis. Each vulner-
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ability was classified using ODC. Moreover, the SAT alerts and SMs were ana-
lyzed and compared for both the vulnerable and neutral versions.

Results show that most of the vulnerable code units are labeled with ODCs defect
types checking and algorithm/method. On the other hand, SATs lack rules to detect
most vulnerabilities, in particular missing or incorrect checking logic. Also, we
could not find any causality between buffer overflow vulnerability fixes and the
value of SMs.

Considering the low performance of SATs observed in Chapter 4 and the observa-
tions in this chapter, next present two studies in an attempt to assess the potential
use of ML with static code features to detect vulnerabilities. In the first, we use
classical ML algorithms are used to predict the presence of vulnerabilities in files.
In the second, we follow an approach based on deep learning to detect vulnerable
functions grounded on DGCNN and VGG networks.
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Detecting Software Vulnerabilities
with Machine Learning

Machine Learning (ML) is being widely used in software engineering, includ-
ing for cybersecurity [Kurtz, 2019]. Some studies have used SMs as features for
ML algorithms to detect defects in the source code [Catal and Diri, 2009; Prasad
et al., 2015], and a similar rationale has also been considered to detect vulnerabil-
ities [Alves et al., 2016b; Medeiros et al., 2017; Walden et al., 2014]. The problem
is that there is insufficient evidence of the performance and practical applicability
of ML (and different types of features) in this context.

This chapter presents two studies that use ML algorithms to detect vulnerable
code units. In the first one, we evaluate the possibility of using SMs and SAT
alerts to detect software vulnerabilities by means of classical ML algorithms (De-
cision Tree (DT), Random Forest (RF), Extreme Gradient Boosting (XGB), and
Bagging). The Mozilla project is used in this evaluation. The focus is not only
on the ability to predict if a file is vulnerable (binary prediction) but also on the
prediction of the vulnerability category (multiclass prediction).

Considering more modern algorithms, the second study uses Deep Graph Con-
volution Neural Network (DGCNN) to detect vulnerable functions. The process
is based on MAGIC [Yan et al., 2019], an approach used to detect and classify mal-
ware programs in one malware category (multiclass classification). The Control
Flow Graph (CFG) of C functions of the Linux Kernel project is explored to extract
customized memory management-related features. In addition to the traditional
SMs, such features are used as input for deep learning. Note that we use a project
different from the first study (Mozilla), as more vulnerabilities were available for
the Linux Kernel at the time of the work.

The remaining of this chapter is organized as follows. Section 6.1 presents the
study with classical ML algorithms with SAT alerts and SMs as features. Sec-
tion 6.2 presents the study with DGCNN. The threats to validity are discussed in
Section 6.3. Finally, Section 6.4 summarizes the main findings of the two studies.
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6.1 Classical Machine Learning

This study aims at validating the hypothesis of combining alerts of multiple
SATs with SMs as features for ML algorithms to predict software vulnerabili-
ties in large software projects. In particular, we aim at answering the following
RQs:

• RQ1: Can alerts from several SATs be combined to predict vulnerable code
using ML algorithms?

• RQ2: Can SAT alerts be complemented with SMs to improve vulnerability
detection using ML algorithms?

• RQ3: Do ML algorithms perform better when considering vulnerabilities
split per category?

In practice, our contribution is two-fold. We present an experiment on the use of
SAT alerts and SMs as inputs (features) for ML algorithms to predict software
vulnerabilities. Four well-known ML algorithms are used in the experiments:
DT, RF, XGB, and Bagging. Based on the observations, we analyze the SMs of
the vulnerability fixes aiming at identifying software characteristics that help or
make it difficult to create ML models with good performance. Results show that
ML algorithms create better models using SMs than using SAT alerts, although
neither of them achieves good precision and recall at the same time.

The remainder of this section is organized as follows: Section 6.1.1 presents the
approach followed in this work. The results of the binary classification, binary
classification per category, and multiclass classification are in Section 6.1.2. An
analysis of source code characteristics with regards to the SMs is presented in
Section 6.1.3.

6.1.1 Vulnerabilities and Approach

The dataset slice for this study is based on the vulnerabilities of the Mozilla project
reported from 2000 to 20161. Table 6.1 shows the number of vulnerabilities per
category and the number of files that were changed to fix those vulnerabilities.
Note that fixing a vulnerability may require modifying several files, and a file
may have several vulnerabilities.

Using the data extraction features mentioned in Chapter 3, we extracted a tabular
dataset for training and testing the ML models. Figure 6.1 provides a simplified
view of its organization. Each sample corresponds to a file in a specific version,
and a version corresponds to a GitHub commit. Hence, a file can be identified as
vulnerable in one commit and as non-vulnerable (neutral) in another one (SATs
alerts and SMs were collected for both the vulnerable and the neutral versions of
each file). This is exactly what happens in the hypothetical file1 of Figure 6.1.
This file is non-vulnerable in commit v1 and vulnerable in commit v2.

1 At the time of this study, the dataset contained only vulnerabilities until 2016.
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Table 6.1: Vulnerabilities and number of fixed files per vulnerability categories
in the Mozilla dataset. Permission category is the combination of three OWASP
groups: Authentication and Password Management, Session Management, and
Access Control

Category # Vuln. (%) # Files (%)

Memory Management 596 (24.42%) 603 (20.36%)

Input Validation 318 (13.03%) 399 (13.48%)

Permission2 177 (7.25%) 251 (8.48%)

Data Protection 65 (2.66%) 64 (2.16%)

Coding Practices 31 (1.27%) 12 (0.41%)

Cryptography 18 (0.74%) 9 (0.30%)

System Configuration 16 (0.66%) 36 (1.22%)

File Management 9 (0.37%) 23 (0.78%)

Output Encoding 0 (0%) 0 (0%)

Error Handling and Logging 0 (0%) 0 (0%)

Communication Security 0 (0%) 0 (0%)

Database Security 0 (0%) 0 (0%)

CWEs not found 1,211 (49.60%) 1,564 (52.82%)

Total: 2,441 (100.00%) 59,151 (100%)

In practice, the features include both SMs and counts of reported alerts per
type per file per SAT. The total number of file-level SMs is 54 (as detailed in
Appendix B), and there are 228 SAT alerts types for CppCheck and 126 for
Flawfinder, corresponding to a total of 408 features. It is essential to notice
that, for each file, most of the SAT features have zero as value, as most files do
not have alerts of many types. Nevertheless, they are kept as we later use fea-
ture selection techniques to remove them. Each vulnerable sample has a label
indicating the vulnerability category. As we also perform experiments to pre-
dict vulnerabilities regardless of their category, different versions of the tabular
dataset were created to be used in the different experiments (as discussed be-
low). The datasets used in this study can be found online in the following URL:
https://eden.dei.uc.pt/~josep/thesis/

As expected, the dataset slice is highly unbalanced, as the number of vulnera-
ble samples (2, 441 samples; 0.4%) is much smaller than the number of the non-
vulnerable ones (597, 259 samples; 99.6%). To create a feasible tabular dataset
including both SATs alerts and SMs, we decided to make the 2, 441 vulnerable
samples to represent 5% of the total number of samples. For this, during the
extraction process, random non-vulnerable samples were obtained from the orig-
inal dataset slice to complete the remaining 95% of the samples (in practice, it cor-
responds to discarding a subset of samples). The repository of source code files is
organized into directories, and each file is in a directory. As vulnerable files con-
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Figure 6.1: Example of the resulting dataset

centrate more in some directories than others, we used the vulnerable file distri-
bution to select the non-vulnerable samples. For example, if 5% of the vulnerable
samples are from the directory layout, we select the same proportion of neutral
files (5%) from that same directory. The remaining 95% of each group (vulnerable
and neutral) are selected in the same manner from the remaining folders. This
way, the data remains unbalanced but still representative of the complete data.

To answer the RQs presented before, we designed three experiments:

1. Binary Classification: the samples in the dataset are labeled either as vul-
nerable or as non-vulnerable (neutral), regardless of the vulnerability cate-
gory (related to RQ1 and RQ2).

2. Binary Classification per Category: the samples in the dataset are labeled
as vulnerable in one category or as non-vulnerable in that specific category
(e.g., memory management vulnerability / non-vulnerable in the memory man-
agement category). In this case, only the three categories with the most sig-
nificant number of samples are considered (memory management, input val-
idation, and permission), as the small number of samples in the remaining
categories is not enough to train and test ML models. In practice, the non-
vulnerable instances may be a file without (known) vulnerabilities or with
vulnerabilities of a different category (related to RQ3).

3. Multiclass Classification: the samples in the dataset are labeled as vulnera-
ble or non-vulnerable, where each vulnerable sample contains an identifier
corresponding to the vulnerability category (class). The samples without a
known category are labeled with the same identifier. In other words, they
are considered as a different category altogether (related to RQ3).

For each experiment, we considered three dataset configurations: a) both SAT
alerts and SMs are included as features; b) only SMs are included as features; and
c) only SAT alerts are included as features. In practice, each experiment consists
of using the three dataset configurations to train and test different ML models
to predict if samples are vulnerable or not. For that, we considered the four al-
gorithms (DT, RF, XGB, and Bagging) that achieved the best results in a set of
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Table 6.2: Algorithms and Techniques

Parameter Values

Algorithms DT, RF, XGB, Bagging

Feature

Selection

Variance, Correlation, Variance+Correlation,

Principal Component Analysis (PCA)

Sampling

No sampling technique, Random undersampling,

Random oversampling,

Random Undersampling + Random Oversampling

preliminary tests, and diverse feature selection and sampling techniques widely
used in the ML domain. While the feature selection techniques filter the features
to reduce the complexity of the dataset for the ML algorithms, the sampling tech-
niques aim to balance the classes to have the same proportions (vulnerable and
non-vulnerable samples). A summary of the algorithms and techniques can be
seen in Table 6.2.

All the experiments are performed using Propheticus [R. Campos et al., 2019],
a tool to automate the execution of ML algorithms based on the Python library
scikit-learn [Pedregosa et al., 2011]. As hyperparameter values for each algo-
rithm, we used the default ones provided by scikit-learn. For the RF, XGB, and
Bagging algorithms, the number of estimators is defined as 100.

To evaluate the performance of each ML instance, we need to split the dataset
into a training subset and a testing subset. While the former is used by the ML
algorithm to train the model, the latter is used to evaluate its performance (i.e., if
the model can predict the actual class of a sample). The technique used for this
evaluation is Cross Validation (CV), in which the original set is divided into k
subsets, and k − 1 are used to train, and the remaining subset is used to test. This
process is performed k times until the whole dataset is tested [Alpaydin, 2014].

Each prediction can be classified as: i) TP: a vulnerable file correctly classified;
ii) FP: a non-vulnerable file classified as vulnerable; iii) TN: a non-vulnerable
file correctly classified; iv) and FN: a vulnerable file classified as non-vulnerable.
The evaluation of each instance (experiment with a dataset configuration and an
algorithm configuration) is done through the analysis of the precision, recall, and
F-measure metrics. For the multiclass problem (classification per vulnerability
category), each metric is calculated for each class.

6.1.2 Results and Discussion

This section presents and discusses the results obtained with the classical ML
algorithms. We start with the binary classification results, then the results of the
binary classification focusing on each category at a time, and conclude with the
results of the multiclass classification (each class is a vulnerability category).
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Table 6.3: Performance metrics for the binary classification (P: best precision, R:
best recall)

Dataset Configuration Precision Recall F-Measure Algorithm

(P): SM + SAT 0.8855 0.0833 0.1522 Bagging

(R): SM + SAT 0.2328 0.9019 0.3701 Bagging

(P): SM 0.9404 0.0622 0.1166 Bagging

(R): SM 0.2274 0.8990 0.3630 XGB

(P): SAT 0.9389 0.0091 0.0181 Bagging

(R): SAT 0.1186 0.5835 0.1971 Bagging

Binary Classification

Table 6.3 shows the best performance results for the first experiment. As men-
tioned before, three dataset configurations are considered regarding the used fea-
tures: a) SAT alerts and SMs, b) only SMs, and c) only SAT alerts. For each, we
present only the ML algorithm that led to the best model in terms of precision
(represented by the letter (P)) and the one that led to the best recall (represented
by the letter (R)). As we can see, most are based on the Bagging algorithm, except
one (best recall with only SMs as dataset configuration - b) that uses XGB. As for
the remaining ML algorithms, they all presented worst results in all cases (their
analysis is not included here as we prefer focusing on the impact of the dataset
configurations/features).

The best precision is in the dataset with only SMs as features (0.9404). Although
the best model for the dataset configuration with only SAT alerts has a similar
precision (0.9389), the recall is much worse (0.0091 for SAT features and 0.0622
for SM features). This means that most of the files predicted as vulnerable are ac-
tually vulnerable files, at the cost of leaving most of the vulnerable files uniden-
tified. Note that different cases in Table 6.2 are based on the same ML algorithm
but use different hyperparameters (e.g., for the dataset configuration using SAT
alerts and SMs, the bagging algorithm is the best in both cases, but the one with
the best precision does not use a sampling technique, while the one with the best
recall uses random undersampling).

Regarding the dataset with SAT alerts and SMs, it has the worst precision among
the three dataset configurations (0.8855). However, it achieves the best recall
(0.0833) and the best f-measure (0.1522). This means that fewer non-vulnerable
samples are misclassified at the cost of missing many vulnerable samples.

When considering the cases with the best recall, similar results are obtained for
the dataset configurations with SMs and SAT alerts and the one with only SMs.
The former has a recall of 0.9019 and a precision of 0.2328, while the latter has a
recall of 0.8990 and a precision of 0.2274. The dataset with only SAT alerts has the
worst results, with a recall of 0.5835 and a precision of 0.1186, meaning that most
vulnerable samples are identified although there is a high number of FPs.
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Table 6.4: Performance metrics for the binary classification per category - Memory
Management (P: best precision, R: best recall)

Memory Management

Dataset Configuration Precision Recall F-Measure Algorithm

(P): SM + SAT 0.7996 0.1297 0.2232 Bagging

(R): SM + SAT 0.0490 0.8823 0.0928 XGB

(P): SM 0.8447 0.1479 0.2518 Bagging

(R): SM 0.0480 0.8826 0.0911 XGB

(P): SAT 0.5769 0.0597 0.1082 XGB

(R): SAT 0.0150 0.7028 0.0293 XGB

These results answer RQ1, as it is clear that SAT alerts cannot be used to predict
the vulnerable files for the Mozilla dataset. This also helps answer RQ2 since
there are no promising results for the dataset with SAT alerts and SMs.

Binary Classification per Category

In this second experiment, we consider the three categories with the largest
number of vulnerable files: memory management, input validation, and permission.
Again, the letters (P) and (R) indicate the model with the best precision and the
one with the best recall, respectively. As in the previous section, the algorithms
with the best results are bagging and XGB.

Table 6.4 shows the results for the memory management category. The best pre-
cision is 0.8447 in the dataset configuration with only SM features. This value
is worse than any of the best precision of the binary experiment (see Table 6.3).
Regarding recall, slightly better results were achieved for the SM dataset (0.8826)
than for the one with both SMs and SAT alert features (0.8823). Again, the worst
results are obtained for the dataset with only SAT alert features. On the other
hand, the best recall using this dataset configuration (c) is obtained in this cate-
gory (0.7028).

The results for the input validation category can be seen in Table 6.5. The best pre-
cision is obtained in the dataset with both SMs and SAT alerts, with a value of
1, which means that all files predicted as vulnerable are actual vulnerable files.
However, it comes at the cost of a very low recall (0.0391), meaning that most vul-
nerable files are left out of the prediction. Unlike what was noticed in the memory
management category, this dataset allows achieving slightly better precision than
the one with only SMs (0.9877). For both dataset configurations, there is a case
with a recall above 0.88. Again, the dataset with only SAT alerts is the one with
the worst results (precision 0.4072; recall 0.6556).

The overall conclusions for the permission category are similar to the ones for
the memory management and input validation categories. The results can be seen
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Table 6.5: Performance metrics for the binary classification per category - Input
Validation (P: best precision, R: best recall)

Input Validation

Dataset Configuration Precision Recall F-Measure Algorithm

(P): SM + SAT 1.0000 0.0391 0.0753 Bagging

(R): SM + SAT 0.0365 0.8822 0.0702 Bagging

(P): SM 0.9877 0.0401 0.0771 Bagging

(R): SM 0.0363 0.8852 0.0696 Bagging

(P): SAT 0.4072 0.1022 0.1635 Bagging

(R): SAT 0.0126 0.6556 0.0246 XGB

Table 6.6: Performance metrics for the binary classification per category - Permis-
sion (P: best precision, R: best recall)

Permission

Dataset Configuration Precision Recall F-Measure Algorithm

(P): SM + SAT 0.8571 0.0143 0.0282 Bagging

(R): SM + SAT 0.0213 0.8948 0.0415 Bagging

(P): SM 0.8889 0.0064 0.0126 Bagging

(R): SM 0.0214 0.8956 0.0418 Bagging

(P): SAT 0.4124 0.0845 0.1402 Bagging

(R): SAT 0.0063 0.5625 0.0126 XGB

in Table 6.6. The best precision is 0.8889 in the dataset configuration with only
SMs, which is worse than the results for the binary experiment with the same
dataset configuration. With regards to recall, the best result is 0.8956, also in a
configuration of the dataset with SMs as features. As for the other two cases
analyzed above, the ML algorithms do not obtain good results when only the
SAT alerts are used as features.

Based on the results above, we can say that the ML algorithms do not perform
better at identifying vulnerable files per vulnerability category than in the binary
experiment. This clearly answers RQ3 about the ability of the ML algorithms
to classify vulnerabilities per category. Nevertheless, it is important to highlight
that the number of vulnerable instances for each vulnerability category is much
smaller than in the dataset with all vulnerable files. Even for the largest cate-
gory (memory management), the number of vulnerable files is only about 20% of
all vulnerable files. The results also corroborate the idea that SAT alerts cannot be
used as features to predict vulnerable files with ML algorithms (RQ1). Similarly,
SAT alerts do not improve the prediction when using a SM dataset (RQ2) for the
binary problem per category.
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Table 6.7: Performance metrics per category (multiclass classification)

Class (Category) Precision Recall F-Measure

Non-Vulnerable 0.9824 0.9999 0.9824

No Category 0.7692 0.6202 0.4394

Memory Management 0.6050 0.3419 0.3734

Input Validation 0.6602 0.2867 0.3364

Permission 0.5576 0.3386 0.3809

Cryptography 0.0007 0.0003 0.0004

Data Protection 0.3878 0.1218 0.1833

System Configuration 0.8347 0.5737 0.6508

File Management 0.0030 0.0024 0.0027

Coding Practices 0.6136 0.2547 0.3307

Multiclass Classification

Unlike the previous experiments, this one has more than two classes to be pre-
dicted by the ML algorithms. Hence, the performance metrics (precision, recall,
f-measure) for these multiclass experiments are calculated per class [Ferri et al.,
2009], as can be seen in Table 6.7. Note that the values in each category may not
be achieved by the same ML model. Instead, we show the best values of each
metric per category (e.g., the best precision for the memory management category
has been obtained with the Bagging algorithm and the best recall with XGB). This
allows us to evaluate how well the ML algorithms can predict the vulnerable files
in a multiclass configuration compared to the binary class configuration.

Each vulnerability category is represented as a class in the dataset, but some of the
categories have few samples in the dataset (e.g., coding practices, with 12 samples).
A possible approach would be to keep only the largest categories and group the
smallest ones as one class. However, we decided to keep them in the dataset as a
separate class to evaluate if they can be detected.

Overall, the performance metrics of the multiclass experiment are worse than
the ones of the binary class configurations. For example, considering the memory
management category, the best precision for any model is 0.6050, which is smaller
than the results of the binary prediction per category, regardless of the dataset
configuration (the best result is 0.8447). The same happens for recall (0.3419 in
the multiclass; 0.8826 in the binary). Similar observations can be done for the
input validation (precision 0.6602; recall 0.2867) and permission (precision 0.5576;
recall 0.3386) categories.

These results help answering RQ3, regarding the ML models ability to identify
vulnerabilities per category. In fact, the results of the binary classification ex-
periment are better than the ones obtained when categories are considered (both
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binary per category and multiclass). Hence, we can conclude that it is possible to
achieve slightly better results using binary classes (vulnerable/neutral) for this
Mozilla dataset. This is probably because the number of samples in the binary
classes is larger. Consequently, the ML algorithms have more information to cre-
ate a model that better predicts vulnerabilities.

There are two categories (cryptography and file management) for which the perfor-
mance metrics are almost zero. Together with vulnerabilities related to coding
practices (last row of Table 6.7), these classes have the smallest number of samples
in the dataset. This means that the algorithms probably cannot distinguish them
during the training phase, which happens not only for the ML models presented
in Table 6.7 but for several ML other models that achieve similar results. This also
suggests that vulnerabilities in the coding practices category (precision 0.6136, re-
call 0.2547) can be better identified using ML algorithms with SAT alerts and SMs
than the other categories (we observed good detection results with a reduced
number of samples in this category). However, due to the reduced number of
samples of vulnerable files in these three categories, this cannot be confirmed.

6.1.3 Understanding the Classification Results

As none of the ML models developed in the experiments presented before pro-
vide acceptable performance, we decided to investigate the characteristics of the
source code files that led to these results. The goal is to study if there are any
characteristics that may impact the predictions of the models. In fact, although
we know that it is not possible to achieve perfect results without overfitting the
data, we expected better results than the ones we obtained.

To try to understand why the performance is so low, we compared the SMs of
vulnerable files with the corresponding neutral (non-vulnerable) versions. We
focused on SMs as these led to better results in the experiments presented before.
Also, SMs are a better indicator of the specific code characteristics than SAT alerts.
The hypothesis is that the SM values of a vulnerable file are equal or similar to
the ones of the neutral files. This way, we started by comparing all the vulnerable
samples with the corresponding non-vulnerable samples in an attempt to find
combinations with the exact same values for the 54 SMs considered.

Out of the 2, 961 vulnerable files in the dataset slice, only 24 (0.81%) of them have at
least a neutral version (of the same file) with exactly the same values for all SMs.
Furthermore, for 45 vulnerable files, we could find at least one other file (not an-
other version of the same file) with the same SM values. This is a small portion of
the dataset samples and does not justify the poor results observed. This way, we
decided to study the proportion of SMs with the same values in the vulnerable
and non-vulnerable samples. The results are presented in the histogram in Fig-
ure 6.2, where the x-axis represents the number of metrics and the y-axis is the
number of files. For example, the first column indicates that 150 vulnerable files
have between 11 to 16 SM values that are equal to another non-vulnerable file in
the dataset.

The histogram shows that, for almost half of the vulnerable samples (1, 447 of
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Figure 6.2: Histogram with the maximum number of equal software metrics in
the vulnerable files compared with the neutral (non-vulnerable) files

the 2, 961), less than 50% of the SMs have values that are equal to non-vulnerable
samples. This can be seen in the three first columns of the histogram, which
represent the files with 27 of the 54 SMs with equal values. Also, the largest
number of shared SMs values is in the 21 to 27 interval, with 730 files (24.7%
of the dataset). Moreover, the right-hand side of the histogram shows that only
130 vulnerable samples (4.4% of the dataset) have more than 48 SMs with equal
values to at least one non-vulnerable sample.

The number of vulnerable samples having almost all SMs with the same value
as neutral samples is not high (only 130 vulnerable samples if we consider the
ones with more than 48 SMs). However, as shown in Figure 6.2, more than 50%
of the vulnerable files have SM values similar to other neutral files. These charac-
teristics make it hard to train ML models with good performance (as vulnerable
and neutral files share many SM values, this makes it difficult for algorithms to
distinguish vulnerable from neutral files).

Key Observations:

• The combination of SAT alert with SMs does not produce better results
than using only SMs as features to predict software vulnerabilities using
ML algorithms

• Vulnerable and neutral files share similar characteristics (a large number
of SMs have the same values)

• The ensemble algorithms based on DTs perform better than others
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6.2 Deep Learning

Yan et al. [2019] proposed MAGIC, which uses a deep learning technique to detect
and categorize malware programs. Their proposal is divided into two steps. In
the first one, they create and extract features from the CFG, which are used as
input for the DGCNN network to create an embedding. In the second step, this
embedding information is passed to an Artificial Neural Network inspired by
VGG [Simonyan and Zisserman, 2014] to perform the classification, i.e., to see if
that program is malware or not.

Inspired by the results presented in [Yan et al., 2019], we adapted the approach to
detect vulnerable C functions. In the same way MAGIC can be used to separate
benign from non-benign (malware) programs, we hypothesized that it could be
used to distinguish neutral (benign) from vulnerable functions (non-benign). In
concrete, our research question (RQ4) is the following:

• RQ4: Can the MAGIC approach, based on DGCNN and VGG, detect vul-
nerable C functions using their CFGs?

In practice, the main contributions of this study are: i) the definition of memory
management-related features for C functions, and ii) an evaluation of vulnerable
C functions detection using the CFGs as input for DGCNN and VGG. During the
evaluation, we managed to obtain high values for recall (above 0.96). However,
the precision was very low, with values smaller than 0.04. Hence, we conclude
that the technique does not provide results in detecting vulnerable functions as
good as the ones obtained when classifying malware. In the experiments con-
ducted by Yan et al. [2019] for malware detection, the dataset used was mostly
balanced in what concerns the number of examples. However, our dataset slice
has a small number of vulnerable functions (< 1%), which raises an additional
challenge. Nevertheless, our results show that the models can successfully find
most of the positive instances, i.e., the vulnerable functions.

The remaining of this section is organized as follows. Section 6.2.1 presents the
approach followed in the study, while Section 6.2.2 presents and discusses the
results.

6.2.1 Vulnerabilities and Approach

A dataset slice of C functions from the Linux Kernel project, labeled either as vul-
nerable or neutral (non-vulnerable), is used in this study. Using the source code
of the functions obtained from GitHub, we extracted their CFGs with the Joern
tool [Yamaguchi, 2014]. Similarly to Yan et al. [2019], we extracted features related
to code sequence and vertex structure. However, we enhanced the data with fea-
tures related to memory management, as the most frequent types of vulnerabil-
ities in the dataset are precisely related to such features: CWE-119 - Improper Re-
striction of Operations within the Bounds of a Memory Buffer [MITRE, 2006b], CWE-20
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- Improper Input Validation [MITRE, 2006d], and CWE-399 - Resource Management
Errors) [MITRE, 2006e].

In the following, we describe each of the steps of the approach followed in this
study. First, we explain the process to obtain the CFGs and the adjustments we
performed on them. Then, we detail the process to extract the features for each
node of the function CFGs. Finally, we present the network used to classify the
functions. Figure 6.3 shows the high-level approach.
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Figure 6.3: Approach followed to detect vulnerable functions

CFG Extraction and CFG Reduction

To obtain the CFGs, we used the Python application Joern [Yamaguchi, 2014],
which was developed by Yamaguchi et al. [2014]. Although this application also
provides other types of graphs related to the source code (e.g., the AST), we de-
cided to use only the CFG, as in [Yan et al., 2019]. To avoid issues related to the
extracted CFGs, we manually reviewed some CFGs for some functions.

Joern models each statement from the C/C++ code as a node in the CFG and
also extracts the actual statement. However, most functions contain several state-
ments in a row without branching. As one of the features from Yan et al. [2019]
is the number of instructions in a node, and to reduce the complexity of the
problem, we decided to reduce the CFGs. Every time two or more nodes are
sequential, we merge them into a single node. This can be done for all the nodes
with both in-degree and out-degree equal to one (i.e., only one edge reaching the
node, and only one edge leaving the node) that have a previous node with an
out-degree equals to zero or one (i.e., only one edge leaving the previous node or
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no edges leaving the previous node). An example of CFG reduction can be seen
in Figure 6.4. Functions with degree one, i.e., with only one node in the CFG,
were removed from the classification process as their features would not help the
training of the model to classify the functions.

CFG

Reduce
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C

D E

F

G

H

A

Reduced CFG

AB

C

D E

F

G

H

Figure 6.4: An example of a CFG being reduced. In this case, nodes A and B (in
orange) are merged into a single node (in green)

Feature Extraction

The features extracted can be divided into three groups: i) Vertex Structure, ii)
Code Sequence, and iii) Memory Management Features. Both Vertex Structure
and Code Sequence features are adapted from the work of [Yan et al., 2019]. The
complete list of features can be seen in Table 6.8.

Regarding the Vertex Structure features, we use the in-degree, the out-degree,
and the number of instructions of a node. The in-degree is the count of edges
that reach a certain node. Conversely, the out-degree is the count of edges that
depart from a node. Differently from Yan et al. [2019], who use the degree of
the node, we decided to use both the in-degree and out-degree as the CFGs are
directed graphs. Additionally, we have the number of instructions that are in a
node, which we could obtain due to the CFG reduction.

Regarding the code sequence features, we use the information obtained during
the CFG extraction process. When the Joern tool extracts the CFGs, each node
contains both the statement that generated it and its type. Examples of types
include and, greaterThan, assignment, among others. All of these types were
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Table 6.8: Features used for the DGCNN+VGG evaluation

Attribute Type Attribute Description

From Vertex Structure In-degree, Out-degree, # of instructions

From Code Sequence

transfer instructions, call instructions,

arithmetic instructions, compare instructions,

mov instructions, termination instructions,

data declaration instructions

Related to Memory Management

allocation functions, deallocation functions,

point assignment, memory address of,

convert unsafe, string unsafe,

scanf unsafe, and other unsafe functions

mapped into one of the code sequence features. The only feature not mapped
here is “numeric constants”, as Joern did not report any node type that could be
mapped into this feature. For example, the “assignment” type is mapped to the
“mov instructions” feature.

We have created Memory Management features. The reasoning for using these
lies in the fact that most of the vulnerabilities in the dataset are related to memory
management issues. Hence, they may reveal important aspects of the vulnerabil-
ity detection process. These features are:

• Allocation Functions: functions that allocate memory such as malloc,
kalloc, realloc, new

• Deallocation Functions: functions that deallocate memory such as free,
delete, vfree, kfree

• Point Assignment: all assignments that are made in a pointer

• Memory Address Of: all node types labeled with type addressOf

• Convert Unsafe: functions considered unsafe when converting the types of
a variable, such as atoi, atol, atoll, and atof

• String Unsafe: the use of string manipulation functions that are considered
unsafe, such as gets, getpw, strcat, strcpy, sprintf

• Scanf unsafe: the use of functions to scan streams of data such as scanf,
fscanf, sscanf, vscanf;

• Other unsafe functions: the use of other unsafe functions such as realpath,
getopt, getpass, streadd
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Classification Framework

The features described in the previous section serve as input to an artificial neural
network used to perform the classification. This follows the same methodology
proposed by Yan et al. [2019], consisting of two networks: a DGCNN and a VGG.

The first part of the classification framework is a DGCNN, which is a CNN tai-
lored for graphs. As with any deep learning classification model, we have a
first layer where the input is the sample (in our case, the CFG of the function).
Then, we have several hidden fully connected layers. Finally, we have an output
layer, which can either produce the classification or features to be used by another
model. We moved with the former approach, as we have another network to be
fed (i.e., VGG).

As the samples in our dataset (functions) are CFGs, they may have different sizes.
Hence, we need a way to reduce them to the same size. Otherwise, the network
will not be able to be trained and later perform the classification. Although the
number of features is the same for each node of the CFG, the number of nodes
changes, as each function may have a different number of statements. Hence, we
use a DGCNN approach and perform a pooling mechanism in the last layer of
the network.

Although Yan et al. [2019] considered two different pooling approaches (Sort-
Pooling and AdaptiveMaxPooling), we decided to use the one that produces the
best results: Adaptive Max Pooling (AMP). AMP [Yan et al., 2019] consists of
pooling the features from a graph using a predefined output size. For instance, if
we use a 3 x 3 AMP, all samples (CFGs in our case) will be reduced to an output of
3 x 3, regardless of the number of nodes that each CFG has. To do that, the AMP
algorithm adjusts both the kernel size (small matrix applied to the input to pool
the max value of that small window) as well as the stride (the movement that the
kernel does to pool the next value) according to the input to AMP algorithm.

AMP is applied after the last layer of DGCNN, and its output is used as in-
put to VGG, which will perform the final prediction. In our case, we are us-
ing VGG11. This is the same approach followed by Yan et al. [2019] in MAGIC.
Figure 6.5 shows the detailed approach used to classify the functions, while Fig-
ure 6.6 shows how AMP works. Table 6.9 shows the hyperparameters used for
this evaluation (adopted from Yan et al. [2019]).

Even though Yan et al. [2019] do not explicitly use normalization, we decided
to use a min-max normalization process, where all the features are normalized
before being used by the DGCNN process. This was done to smooth the variation
in the feature values (that, in our case, may have very different domains). No
feature selection technique is used, as the number of features is small (i.e., 18).

6.2.2 Results and Discussion

This section presents the results obtained during the evaluation of DGCNN +
VGG approach to detect vulnerable C functions. We also discuss and cast some
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Figure 6.5: Detailed approach of the deep learning classification process
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Figure 6.6: An example of a 2x2 Adaptive Max Pooling with different input sizes.
The kernel size (highlighted window) is different in order to have the same out-
put size. For both cases, the stride was 3x2, padding = 0 (adapted from [Yan et al.,
2019])

Table 6.9: Algorithms and Techniques

Parameter Values

Algorithm DGCNN + VGG

Normalization Min-Max

Pooling Type Adaptive Max Pooling

Pooling Ratio 0.3

Graph Convolution Size (32, 32, 32, 32)

2D Convolutional Channels [16, 32]

Dropout Rate [0.1, 0.5]

Batch Size [10, 40]

light on the possible reasons concerning the obtained results. As before, we focus
on precision, recall, and F-measure metrics.
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The combination of the selected hyper-parameters generated different algorith-
mic configurations. Each configuration run takes from 17.5 to 18.5 hours to ex-
ecute. Note that we performed preliminary experiments without the memory
management-related features (i.e., only with the vertex structure and code se-
quence features), but the results were not promising. Hence, we focused on the
experiments with all features. Nevertheless, the results were pretty similar. Pre-
cision varied from 3.36% to 3.43%, recall varied from 96.93% to 99.38%, while
F-measure varied from 6.50% to 6.63%. Looking at the recall results, it is possible
to see that the model can successfully identify most of the vulnerable functions
(recall > 98%). However, when we take a look at the precision values, we see
that the model reports a large number of FPs (see Figure 6.7, as an example of
a Confusion Matrix), i.e., it is classifying non-vulnerable functions as vulnerable.
Although this is preferable to classifying vulnerable functions as non-vulnerable,
a very high number of FPs makes the results useless.

Figure 6.7: Confusion Matrix with the prediction for an experiment run

Compared to Yan et al. [2019], who obtained precision, recall, and F-measure with
values higher than 0.96 for one of the datasets that they analyzed, our results are
much worse. There are three main reasons for that.

The first is concerned with the number of examples of each type of function that
we have to perform the training of the ML model. After removing functions with
degree one, the dataset slice used includes 65, 685 functions (samples), being 2, 160
(3.29%) vulnerable, and the remaining 63, 525 (96.71%) non-vulnerable. This is
a highly unbalanced dataset. The datasets used by Yan et al. [2019] to bench-
mark the approach were not as severely unbalanced as ours. For the MSKCFG
dataset, the largest class has 2, 942 samples (27.07%) out of 10, 868 samples, while
the largest class for the YANCFG dataset has 3, 980 samples (24.34%) out of 16, 351
samples.

Second, the sizes of the CFGs are quite different. More than one-fourth of our
dataset has functions with a degree of one. Though we removed them for the
training process, the median of the degree is 10, and more than 75% of the func-
tions lead to 19 nodes or less in the CFG. Conversely, CFGs in the work by Yan
et al. [2019] had at least 30 nodes, being the median 241. Consequently, a larger
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number of features were available to be selected by the pooling mechanism dur-
ing the use of the AMP technique.

Finally, the nature of the problem is different. While Yan et al. [2019] aim to clas-
sify different classes of malware, for which almost all classes can cause damage to
the end user, our goal is to separate the potentially problematic functions (vulner-
able) from the neutral functions (non-vulnerable). Although the malware classes
in [Yan et al., 2019] also contain a “benign” class, the number of samples in this
class is small. Furthermore, the damage caused by a wrong classification, in our
case, is much more severe than a wrong malware class classification.

Regarding the answer to RQ4, and from a technical point of view, it is possible
to use the MAGIC framework, which relies on DGCNN + VGG, to detect vul-
nerable C functions based on their CFGs. However, the results obtained in our
experiments, using features related to vertex structure, code sequence, and mem-
ory management, yielded poor results when distinguishing between vulnerable
and neutral (non-vulnerable) functions in the Linux dataset due to the low num-
ber of existing vulnerabilities, which results in a highly unbalanced dataset. This
opens new avenues for further research, namely regarding the development of
more informative features that allow for a better distinction between vulnerable
and non-vulnerable functions and/or the development of techniques to create a
more balanced dataset.

Key Observations:

• A deep learning approach (based on DGCNN + VGG) can obtain high
recall when predicting vulnerable functions at the cost of a low precision

• Compared to MAGIC, the dataset is highly imbalanced, which represents
a key challenge

6.3 Threats to Validity

In this section, we discuss the limitations and threats to the validity of the two
studies presented in this chapter.

External Validity refers to the ability to generalize the results beyond the ex-
periment settings. The first threat concerns the number of projects used in the
studies. The first study considered only Mozilla, while the second considered
only the Linux Kernel. Although they are representative open-source projects,
it is harder to generalize the obtained results in another context, and the study
would be more complete if more projects were used. Other projects could have
been used to generalize these findings. Nevertheless, the results presented are
still relevant, as they are large projects with a wide variety of vulnerabilities over
a large period.

The second threat is the SATs selected in the first study. In fact, the results of
the ML algorithms are restricted to the quality of CppCheck and Flawfinder. Al-
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though these SATs have limitations (as we noticed in Chapter 4), they are widely
used in the industry [Arusoaie et al., 2017].

The third threat is related to the nature of the ML algorithms used in the first
study, as they are all based on decision trees. RF, XGB, and Bagging are ensem-
ble algorithms that use DT as weak learners to come up with a final prediction.
The results could have been different if classification algorithms that use different
techniques were used (for instance, SVM). To confirm this, we conducted a pre-
liminary experiment with other algorithms (SVM and Neural Network (NN)), but
the results were also poor (precision and recall below 0.70). It is thus clear that
the information provided by SMs and SAT alerts is not enough to create good
prediction models using ML algorithms.

Construct Validity refers to the number of vulnerable samples per category. This
is the fourth threat and applies to the first study. In fact, even in the largest cat-
egory (memory management), the number of vulnerable files is only 603, and it is
expected that having more vulnerable samples would improve the performance
of the ML algorithms. Although sampling techniques were used to mitigate this
issue, this was not enough to achieve better performance metrics.

The next threat is related to the maturity of the selected projects. Both Mozilla
and Linux Kernel are stable projects, and although they are open-source projects,
they follow a very mature development process. Consequently, in the second
study, the functions may be very similar, resulting in similar CFGs, regardless of
whether they are vulnerable or not.

Internal Validity refers to the possibility of having unanticipated relationships.
This threat is related to the application used to extract the CFGs (Joern [Yam-
aguchi, 2014]) in the second study. Although it is a widely used application, it
may have defects. Nevertheless, we used it to extract the CFGs for our study and
manually reviewed some of the functions with the extracted CFGs to guarantee
that we would not find further issues.

6.4 Summary

This chapter studied the use of ML algorithms (either classical ones or using deep
learning) to detect vulnerable code units in C/C++ open-source projects. In the
first study, three sets of features were used: SAT alerts, SMs, and both SAT alerts
and SMs. Experiments using all vulnerabilities and vulnerabilities classified per
category were performed. The results show that combining SMs with SAT alerts
does not significantly change the vulnerability prediction when compared with
using SMs and SATs alerts separately. Additionally, a manual analysis showed
that vulnerable and neutral (non-vulnerable) files share similar characteristics,
making the vulnerability prediction harder using ML on top of SMs and SAT
alerts. Anyway, the ML algorithms that perform better are ensemble algorithms
based on DTs. They can achieve good precision or recall, but not both at the same
time.
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In the second study, we evaluated the possibility of using a state-of-the-art deep
learning technique (with DGCNN and VGG) to classify vulnerable C functions
of the open-source project Linux Kernel. Our approach is based on the work de-
veloped by Yan et al. [2019] and uses the CFGs of the functions to collect features
that an Artificial Neural Network then uses to detect if a function is vulnerable or
not. In concrete, we used the Joern tool to extract the CFGs and reduced them to
decrease the training time. In addition to the features related to vertex structure
and code sequence, we added new types of features related to memory manage-
ment. The results show that the proposed approach can successfully identify the
vulnerable functions and obtain high recall values (greater than 0.96). However,
the precision values are very low, indicating that the framework classifies non-
vulnerable (neutral) functions as vulnerable. Even though this is the preferable
scenario, it is not ideal. The reason for these results might be explained by the
fact that we have a highly unbalanced dataset, where few examples correspond
to vulnerable functions.

Based on the results of the two studies, we can conclude that none of the ML
approaches considered is able to predict software vulnerabilities in an acceptable
manner. Although we can obtain good precision and good recall in some cases, no
configuration of the hyperparameters allowed us to obtain both simultaneously.
Consequently, either a high number of FPs or FNs is obtained. For this reason, we
decided to move forward and propose an approach that, instead of attempting to
classify code units as vulnerable or not, provides an overall characterization of
those units, considering their proneness to be vulnerable. Such characterization
can guide the development team when addressing potential security hotspots.
This approach, named Security Characterization of Open-source functions using
Logic Scoring of Preference (SCOLP), is presented in the next chapter.
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Characterizing Code Units with
Logic Scoring of Preference

SCOLP (Security Characterization of Open-source function using Logic Scor-
ing of Preference) is a methodology that, based on static properties of the source
code, is able to categorize code units (e.g., functions) into priority groups consid-
ering the perceived proneness to have security issues. SCOLP is based on Logic
Scoring of Preference (LSP) [Dujmovic, 2018], a well-known MCDM technique.
In practice, characteristics extracted from the source code (e.g., SMs and the at-
tributes related to memory management, as introduced in the previous chapter)
are used as input for LSP that, in the present work, is implemented through Qual-
ity Models (QMs). A QM is a tree structure composed of attributes, weights,
thresholds, and operators that are combined to calculate a score for each entry
(i.e., each code function under assessment).

Due to the complexity of the problem, we focus on C functions from large open-
source software projects. This way, we developed a set of QMs that take SMs
and memory management-related attributes and output a score to support the
categorization. Each QM emphasizes different characteristics of the code by as-
signing different weights to the input attributes and using diverse aggregation
operators. We use SMs as these portray quality characteristics that are usually
associated with the existence of bugs (volume and complexity) [Meiliana et al.,
2017; Premraj and Herzig, 2011], and memory management-related attributes as
these are related to very frequent vulnerabilities in C code. Based on the output
of the QMs, code units are categorized into five priority groups that, in practice,
provide a prioritization of the code units from a vulnerability susceptibility per-
spective: critical, high, medium, low, and lowest. Note that by integrating our
mechanism into a CI pipeline, developers can be continuously informed when
functions do not achieve a minimum categorization level.

We demonstrate the proposed solution on top of Linux Kernel, one of the projects
from the dataset presented in Chapter 3. As expected, different categorizations
are provided by the different QMs (allowing teams to define their own priorities),
but, in most cases, the vulnerable versions are placed in the most critical prior-
ity groups, while the non-vulnerable (neutral) ones are placed in the less critical
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groups. It is important to emphasize that the goal of Security Characterization of
Open-source functions using Logic Scoring of Preference (SCOLP) is not to detect
vulnerabilities or vulnerable code units (like the studies of the previous chapter)
but instead to categorize code based on the perceived propensity to be vulnera-
ble, which our results show to be the case.

To validate SCOLP, we compare the categorizations with the view of a group of
security experts. A small set of vulnerable and non-vulnerable functions was cho-
sen to be manually categorized by the experts into the priority groups mentioned
above, and the outcome was later compared with SCOLP mapping. In practice,
even considering the subjectiveness of individual judgments, we observe that the
SCOLP categorization is aligned with the categorizations provided by the secu-
rity experts (the functions were mapped into the same or a very close priority
group in most cases).

The remainder of this chapter is organized as follows. Section 7.1 presents
SCOLP. The different QM instances are discussed in Section 7.2. Section 7.3
presents the experimental evaluation and discusses the results. The validation
based on the judgment of security experts is in Section 7.4. Section 7.5 discusses
the threats to the validity. Finally, Section 7.6 summarizes the chapter.

7.1 SCOLP Methodology

SCOLP is based on Logic Scoring of Preference (LSP), a Multi-Criteria Decision
Making (MCDM) approach that allows considering specific preferences in the
categorization process. In practice, LSP allows the evaluation of complex systems
to be made by comparing the attributes of the evaluated object (in our case a code
unit) against the predefined criteria [Dujmovic, 2018] (which is not the case for
other techniques such as some ML algorithms).

Figure 7.1 depicts the four steps of SCOLP to characterize code units from a secu-
rity perspective. The process starts with the definition of the QMs, followed by
the extraction of the attributes (e.g., SMs) to feed the QMs and the score compu-
tation. This score is then used to map the code units into the priority groups. As
our approach allows using several QMs simultaneously, the final step combines
the different categorizations. This is an optional step, which is only required if
more than one QM is being used and the software development team wants to
get a combined categorization (instead of the individual ones). These steps are
detailed in the next sections.

7.1.1 Quality Model Definition

The first step is to define one or more QMs based on static attributes of the source
code. A QM is a MCDM technique based on LSP used to evaluate the quality of
products, services, or processes. In our case, the QM outputs a score that is used
to assign the code units (e.g., functions) to a priority group. To create a QM, which
has a tree structure, the following properties need to be defined: i) Attributes,
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ii) Weights, iii) Thresholds, and iv) Operators. Figure 7.2 shows an illustrative
example of a QM. This QM has four attributes (CountStmt, CountStmtExe, Cyclo-
matic, and CyclomaticStrict), each of them with an assigned weight (w1, w2, w3,
and w4, respectively). They are combined with two operators that output two
values. Each value has another weight (w5 and w6) to be combined by the final
operator. As a result, a score for the QM is obtained.

The interpretation of the score depends on the type of attributes, which can be
either a benefit or a cost attribute. In a benefit attribute, the lower values represent
the worst values and the higher values represent the best values. An example
of a benefit attribute is throughput. For cost attributes, the interpretation is the
opposite, and the lower the values, the better. For instance, memory usage is a
cost-type attribute.

To create a QM we need to define the QM focus, which will guide the selection
of the attributes. Attributes are the quantification of a characteristic of the target
object of the QM (i.e., the code units in our case). Different QMs can target spe-
cific security aspects, such as memory management, input validation, and permission
(see vulnerability categories defined in Chapter 3). For example, if we want to
evaluate memory management characteristics, we can use the number of memory
allocation functions in the source code as an attribute.
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For each attribute, we need to define the thresholds, specifying the minimum and
maximum acceptable values. If an attribute has a value that is outside the range
of minimum and maximum acceptable values, the value considered for the score
calculation should be the one closest to the threshold value for that attribute. For
instance, if an attribute accepts values between 1 and 50, and a code unit has a
value 52 for that attribute, then 50 should be considered for the calculation.

In some cases, attribute values may need to be normalized to use a common scale,
such as from 0 to 1. The first alternative is min-max normalization, using the fol-
lowing equation:

s(x) =
x − Xmin

Xmax − Xmin

where s(x) is the scaled value for an attribute whose value is x. Xmin and Xmax
represent the minimum and maximum value allowed for that attribute, respec-
tively. The second normalization approach is Z-Score, using the following equa-
tion:

s(x) =
x − µ

σ

where µ indicates the average of the attribute, and σ the standard deviation for
the attribute.

Weights need to be assigned to each QM tree node. The leaf nodes are the at-
tributes, and the others are the aggregation of leaf nodes or other aggregation
nodes. Dujmovic explains seven ways to assign the weights to each node [Duj-
movic, 2018]. Regardless of the technique, the sum of all weights of the attributes
under a node should be 1. We use three of those techniques, which help to under-
stand the impact on the aggregated scores and can be easily applied in SCOLP
(find further details in [Dujmovic, 2018]):

• Importance Decomposition Method (IDM): each attribute weight is de-
fined based on the overall qualitative importance among all the attributes
of the upper node. The importance helps define other variables according to
the aggregation mechanism. Table 7.1 shows the range of importance levels
possible and their andness propensity.

• Direct Weight Assessment (DWA): this is the most straightforward tech-
nique, in which a person defines each attribute weight based on their indi-
vidual judgment.

• Weight based on Ranking (WBR): in this technique, each attribute is
ranked from 1 to n, where n is the number of attributes that form the upper
node. The most important attribute is ranked 1, the second most important
is ranked 2, and so on until the least important one, which is ranked n. After
that, each weight Wi is defined using its importance (ranking) and the total
number of attributes with the following formula:
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Table 7.1: Attributes overall importance (adapted from [Dujmovic, 2018])

α S Overall Importance

1.0000 16 Highest

0.9375 15 Slightly below highest

0.8750 14 Very high

0.8125 13 Slightly above high

0.7500 12 High

0.6875 11 Slightly below high

0.6250 10 Medium-high

0.5625 9 Slightly above medium

0.5000 8 Medium

... ... ...

Wi =
2(n + 1 − i)

n(n + 1)

The operators define how each attribute should be used in the aggregation. They
can be any of the following:

• Simultaneity: when two or more attributes should be satisfied. This is
equivalent to the and logic operator, and it is called full conjunction

• Substitutability: when either of the attributes should be satisfied. This is
equivalent to the or logic operator, and it is called full disjunction

• Neutrality: is the arithmetic mean of both simultaneity and substitutability

There are some rules for the use of the operators, such as in the case of full con-
junction (logic and), where the aggregated value can be at most equal to the mini-
mum value of all the input attributes (e.g., when aggregating 0.3 and 0.1 the result
is 0.1). This allows, for example, to consider several volume metrics in the evalu-
ation but allows the criteria to be equally satisfied with any of them. To provide
flexibility regarding how each attribute contributes to the score, other operators
ranging from full conjunction (simultaneity) to full disjunction (substitutability)
are defined in [Dujmovic, 2018] and summarized in Table 7.2.

There are several techniques to aggregate the attribute values and calculate the
score [Dujmovic, 2018]. In SCOLP, we use two of them as they can be easily
applied in our context:

(i) Simple Arithmetic Mean: the defined weights are used to aggregate the
scores directly
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Table 7.2: GGCD.17 operators (adapted from [Dujmovic, 2018])

Type of

logic model
Form Mode Level Symbol Andness Orness

Substitutability

Pure disjunction Hard Extreme D 0.0000 1.0000

Partial disjunction

Hard

Very high D++ 0.0625 0.9375

High D+ 0.1250 0.8750

Mid-high D+- 0.1875 0.8125

Medium DA 0.2500 0.7500

Soft

Mid-low D-+ 0.3125 0.6875

Low D- 0.3750 0.6250

Very low D– 0.4375 0.5625

Neutrality A 0.5000 0.5000

Simultaneity
Partial conjunction

Soft

Very low C– 0.5625 0.4375

Low C- 0.6250 0.3750

Mid-low C-+ 0.6875 0.3125

Hard

Medium CA 0.7500 0.2500

Med-high C+- 0.8125 0.1875

Very high C++ 0.9375 0.0625

Pure conjunction Hard Extreme C 1.0000 0.0000

(ii) Weighted Power Mean: not only the weights are used to calculate the score,
but also the coefficient that represents the operator, as illustrated in Table 7.2

For the Weighted Power Mean case, in addition to pure disjunction (or operator),
neutral, and pure conjunction (and operator), there are intermediate aggregation
levels that can be used in a Generalized Conjunction/Disjunction (GCD). One
example is GGCD.17, which can be seen in Table 7.2. The number in the name of
the aggregation level represents the 17 possible values for the operators, varying
from the pure disjunction to the pure conjunction.

7.1.2 Attribute Extraction and Score Calculation

The second step is to extract the attribute values of code units, which are used as
the input for the QMs. In this work, we propose the use of static information that
can be obtained from the source code (i.e., by running SATs over the source code).
These attributes were chosen as they can be easily extracted and integrated into
a CI pipeline. Nevertheless, properties other than static could be used in SCOLP.

Using the QMs (attributes, thresholds, weights, and operators) and the attribute
values, we can compute a score. In practice, each code unit gets a score used to
categorize it. Note that scores represent the aggregation of several characteristics
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based on some subjective criteria specified by human experts and, thus, do not
have any concrete meaning.

7.1.3 Map Code Units into Priority Groups

Using the score for each code unit being assessed, we can map them into priority
groups. We propose dividing each priority group boundary uniformly, consider-
ing the minimum and maximum values of the scores. The number of groups can
be configured. For example, if we consider five priority groups (as in our experi-
ments) and the score varies from 0.0 to 1.0, the first group has boundaries 0.0 and
0.2. The code units with scores greater than the minimum (0.0) and smaller than
the maximum (0.2) are mapped into this group. Other approaches may be used
for defining the boundaries of each priority group (e.g., to allow the software de-
velopment team to adjust the categorization according to the needs). We propose
the following priority groups to be used in most cases:

(i) Critical: the source code is hard to understand and very likely to be faulty
or vulnerable (scores in range ]0.8..1])

(ii) High: the source code has some complexity, but it can be understood af-
ter reading it carefully, being still prone to be vulnerable (scores in range
]0.6..0.8])

(iii) Medium: the source code can be easily understood, but it would benefit
from refactoring to reduce the probability of having vulnerabilities (scores
in range ]0.4..0.6])

(iv) Low: the source code is easy to understand and not so prone to be vulnerable
(scores in range ]0.2..0.4])

(v) Lowest: the source code does not need any maintenance change (scores in
range [0.0..0.2])

The assignment to the priority groups may require require adjustments depend-
ing on the characteristics of the code units and the software development context.
Such adjustments should be decided by the users of SCOLP. For example, in our
experiences (see Section 7.3), we decided to perform some adjustments, namely
shifting code units that do not have a minimum quality criteria (e.g., outliers in
terms of size) to the more critical priority groups.

7.1.4 Combine Priority Groups into a Unified Categorization

The final step is to combine the categorization output obtained by applying each
QM into a single categorization. This is an optional step that can be used when
the code units have special characteristics or when a software development team
wants to consider specific types of vulnerabilities that require using alternative
models. For instance, large functions may require a QM different from the one
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used for small functions; or functions that essentially do memory management
operations may require a QM different from those that mostly do database access
operations. Different QMs should be used for different code units in this case.
Thus, the output priority groups must be combined. For example, each QM can
be assigned a weight, and the outputs can be combined using LSP through an
aggregation technique such as simple arithmetic mean or weighted power mean.

7.2 Quality Model (QM) Instances

Our QMs are based on two sets of attributes that can be directly extracted from
the source code: (i) SMs, and (ii) memory management-related attributes. While
the former has been used in several contexts (e.g., detect faults [Meiliana et al.,
2017; Premraj and Herzig, 2011], detect vulnerabilities [Walden et al., 2014]), the
latter is usually related to most vulnerabilities in C language, as discussed in
Chapter 5.

SMs can be extracted at different code levels (e.g., file, function, and class level),
as presented in Chapter 3. However, only the function level SMs are used in
this work, as these represent a fine-grained characterization of the code, allowing
the software development team to be more effective in the analysis (less code is
analyzed than if file or class SMs were considered). Nevertheless, metrics at other
levels can also be used to build alternative QMs.

Regarding the memory management-related attributes, we extract the CFGs of
each function and count the number of occurrences of the relevant types of nodes.
For instance, we count all the memory allocation functions (such as malloc) and
use that as the value for the memory allocation functions attribute. Obviously, the
attributes should be related to relevant security issues. The attributes considered
in this work (memory management-related) are the ones defined in the previous
chapter (see Section 6.2.1).

To create the QM instances, we defined a baseline QM with SMs and used it to
create other models focusing on different characteristics. As most vulnerabilities
in C projects are related to improper memory management, we created special-
ized QMs that focus on these security characteristics, namely: Memory Manage-
ment (MM), Input Validation (IV), and Permission (PER). These characteristics are
indicative of the most frequent vulnerability categories in open-source C/C++
projects [Higgins, 2020; Team, 2022], namely in the Linux Kernel project used in
our experimental evaluation. QMs including such characteristics allow SCOLP
to provide priority group assignments with an enhanced security perspective.

The base QM, depicted in Figure 7.3, comprises three groups of attributes: two
groups related to volume (statements and lines of code) and another group re-
lated to complexity. The metrics considered are some of the most used to charac-
terize the size and complexity of the code. The operators are either variations of
conjunction (and) or of disjunction (or), as discussed in the previous section and
summarized in Table 7.2 [Dujmovic, 2018].
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Figure 7.4: Quality Model with Memory Management (MM) attributes

The first specialized QM instance focuses on Memory Management (MM) and
can be seen in Figure 7.4. As this model aims to identify potential security issues
related to improper memory management, we added two attributes related to the
use of functions that are well known to lead to such vulnerabilities: the number of
memory allocation functions and the number of memory deallocation functions.

The second specialized QM focuses on Input Validation (IV) and can be seen
in Figure 7.5. The attributes on this model are related to how the user input is
handled and are divided into two groups: the first one has one attribute based on
the count of address of statements (as the user input may influence the address
location); while the second focuses on the occurrences of unsafe functions being
used. Such functions can be related to data type conversion, string conversion,
scanf (family of C functions that read the input from the standard input1), or

1 https://www.tutorialspoint.com/c_standard_library/c_function_scanf.htm
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Figure 7.5: Quality Model with Input Validation (IV) attributes
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Figure 7.6: Quality Model with Permission (PER) attributes

Table 7.3: Configurations used in the experiments

Configuration Possible Alternatives

Quality Model
QM of SMs, Memory Management QM,

Input Validation QM, Permission QM

Label Binary, Multiclass

Normalization Technique Min-Max, Z-Score

Weight Assignment Technique

Importance Decomposition Method (IDM),

Direct Weight Assessment (DWA),

Weight based on Ranking (WBR)

Aggregation Mechanism
Simple arithmetic mean,

weighted power mean

other unsafe uses. The outputs of these two groups are aggregated, and the result
is combined with the base QM score.

The last specialized QM focuses on Permission (PER) aspects. This model aims
to identify code units with potential permission violations. Only one additional
attribute is considered (count of memory address of), representing the existence
of code patterns that potentially violate some permission when accessing unau-
thorized memory areas.

In the experiments, we used several configurations: we varied the QMs, the
weight assignment technique, and the aggregation mechanism. A summary of
the configurations is in Table 7.3.

7.3 Experimental Evaluation

The following sections present the experimental evaluation of SCOLP. First, We
introduce the vulnerabilities considered and the approach of the evaluation.
Then, we present and discuss the results.
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Table 7.4: Summary of the functions per vulnerability category (when vulnerable)
of the Linux Kernel project

Category CWEs # of Functions (%)

Memory Management
119, 125*, 190*, 362, 399, 400*,

404*, 416, 476, 772*, 787*, 824
37 (7.30%)

Input Validation 20, 78, 79, 91, 94, 134, 189 2 (0.39%)

Permission
255, 264, 269, 284, 287,

352, 862*
1 (0.20%)

Data Protection 199, 200 2 (0.39%)

Coding Practices 17, 19, 254 0 (0.00%)

Cryptography 310 0 (0.00%)

System Configuration 16 0 (0.00%)

File Management 22, 59 0 (0.00%)

Output Encoding - 0 (0.00%)

Error Handling

and Logging
- 0 (0.00%)

Communication

Security
- 0 (0.00%)

Database Security - 0 (0.00%)

Missing CWE - 11 (2.17%)

Non-Vulnerable - 454 (89.55%)

Total - 507 (100.00%)
* CWEs added to the category in the updated database presented in this
work.

7.3.1 Vulnerabilities and Approach

To demonstrate SCOLP, we make use of Linux Kernel, a slice of the dataset pre-
sented in Chapter 3. A summary of the number of code units (functions) per vul-
nerability category is shown in Table 7.4. For every function with a vulnerability
previously reported at CVE Details [Özkan, 2023], we consider SMs and memory
management-related attributes of both the vulnerable and the fixed versions.

After analyzing the SMs of the code units, we noticed that some of them have val-
ues that we consider too high. For instance, a function with more than 80 state-
ments is hard to maintain, being more likely to have security issues [Walden et al.,
2014]. After analyzing all functions, we established minimum and maximum val-
ues (thresholds) for some attributes. Functions with attribute values outside the
threshold range are considered as not achieving a minimum quality criteria.
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Figure 7.7: Workflow to validate if a code unit (function) satisfies the minimum
quality criteria

Table 7.5: Configurations used in the experiments

Software Metric Minimum Value Maximum Value

CountStmt 2 80

CountLineCode 1 20

Cyclomatic 1 20

Knots 0 80

For the code units not achieving the minimum quality criteria, we shifted their
priority to two groups to the left. In other words, the code units mapped into the
Lowest priority group were moved to the Medium priority group. Also, the code
units initially mapped to the Medium and High priority groups were moved to the
Critical priority group. The reasoning is that code units not achieving the mini-
mum quality criteria should not be in the low-priority groups. As for the code
units that achieve the minimum quality criteria, the priority groups provided by
the QMs are kept in the final mapping. The workflow followed to calculate the
scores can be seen in Figure 7.7. The established thresholds can be seen in Ta-
ble 7.5. It is important to highlight that functions with CountStmt smaller than 2
were discarded, as volume and complexity metrics cannot reveal information in
this case, and these code units must be evaluated manually.

We defined the weights using the IDM, DWA, and WBR techniques explained in
Section 7.1.1. The weights for the base QM (SMs as attributes) are on Table 7.6,
while the weights for the specialized QMs (MM, IV, PER) are on Tables 7.7, 7.8,
and 7.9, respectively.

7.3.2 Results and Discussion

This section presents the results, focusing on how code units (functions) were
placed in the priority groups using the QMs with the configurations discussed
previously. We aim to answer the following RQ:

• RQ1: Can we use SCOLP with QMs based on SMs and memory
management-related attributes to characterize open-source code units
(functions)?
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Table 7.6: Weights used in the base SM QM

QM node IDM DWA WBR

V1

CountStmtDecl 0.33 0.35 0.33

CountStmtEmpty 0.22 0.05 0.17

CountStmtExe 0.44 0.65 0.50

V2

CountLineCodeDecl 0.28 0.30 0.30

CountLineCodeExe 0.33 0.65 0.40

CountLineComment 0.21 0.03 0.20

CountLineInactive 0.19 0.02 0.10

C1

Cyclomatic 0.26 0.30 0.30

CyclomaticStrict 0.34 0.35 0.40

Essential 0.21 0.20 0.20

Knots 0.19 0.15 0.10

V1_V2
V1 0.62 0.65 0.67

V2 0.38 0.35 0.33

V1_V2_C1
V1_V2 0.39 0.40 0.33

C1 0.61 0.60 0.67

Table 7.7: Weights used in the specialized MM QM

QM node IDM DWA WBR

MM
ALLOCATION_FUNCTIONS 0.52 0.55 0.67

DEALLOCATION_FUNCTIONS 0.48 0.45 0.33

V1_V2_C1_MM
V1_V2_C1 0.41 0.45 0.33

MM 0.59 0.55 0.67

The function distribution in the priority groups varies according to the QM con-
figuration. Figure 7.8 shows the results for some QM instances. Two of them
(A and G) have the majority of the functions in one priority group (Lowest or
Medium). Others have a distribution in the lowest groups (C and F). On the other
hand, some instances have one or more groups with few functions (B, D, E). Fi-
nally, some instances (e.g., H) have a more even distribution among the priority
groups.

To better understand the results, we further discuss four QM instances. The first
one uses the IV model, and the function distribution can be seen in Figure 7.9. It
uses IDM as the weight assignment technique and the simple arithmetic mean to
aggregate the inputs. The vulnerable functions are mainly assigned to the most
critical priority groups (Medium with 24 functions, High with 15, and Critical
with 5). Note that the largest number of functions (both vulnerable and neutral)

115



Chapter 7

(a)

Lowest Low Medium High Critical
Priority Group

0

25

50

75

100

125

150

175

200

# 
Fu

nc
tio

ns
 - 

%

16
7.0%

0
0%

0
0%

2
0.9%

1
0.4%

191
84.1%

7
3.1% 2

0.9%

8
3.5% 0

0%

Vulnerable
Non-Vulnerable

(b)

Lowest Low Medium High Critical
Priority Group

0

25

50

75

100

125

150

175

200

# 
Fu

nc
tio

ns
 - 

%

21
5.0%

0
0%

22
5.3%

5
1.2% 3

0.7%

186
44.5%

0
0%

147
35.2%

18
4.3% 16

3.8%

Vulnerable
Non-Vulnerable

(c)

Lowest Low Medium High Critical
Priority Group

0

20

40

60

80

100

120

140

# 
Fu

nc
tio

ns
 - 

%

13
5.7% 5

2.2% 1
0.4%

0
0%

0
0%

139
61.2%

58
25.6%

9
4.0% 1

0.4%
1

0.4%

Vulnerable
Non-Vulnerable

(d)

Lowest Low Medium High Critical
Priority Group

0

25

50

75

100

125

150

175

200

# 
Fu

nc
tio

ns
 - 

%

19
4.5%

0
0%

15
3.6%

0
0%

1
0.2%

207
49.5%

0
0%

170
40.7%

2
0.5%

4
1.0%

Vulnerable
Non-Vulnerable

(e)

Lowest Low Medium High Critical
Priority Group

0

25

50

75

100

125

150

175

200

# 
Fu

nc
tio

ns
 - 

%

0
0%

0
0%

24
5.7%

0
0%

27
6.5%

0
0%

0
0%

203
48.6%

0
0%

164
39.2%

Vulnerable
Non-Vulnerable

(f)

Lowest Low Medium High Critical
Priority Group

0

20

40

60

80

100

# 
Fu

nc
tio

ns
 - 

%

8
3.5% 5

2.2%
5

2.2% 1
0.4% 0

0%

97
42.7%

65
28.6%

35
15.4%

9
4.0%

2
0.9%

Vulnerable
Non-Vulnerable

(g)

Lowest Low Medium High Critical
Priority Group

0

50

100

150

200

250

300

350

# 
Fu

nc
tio

ns
 - 

%

0
0%

0
0%

34
8.1%

0
0%

1
0.2%

0
0%

0
0%

375
89.7%

6
1.4% 2

0.5%

Vulnerable
Non-Vulnerable

(h)

Lowest Low Medium High Critical
Priority Group

0

20

40

60

80

100

120

140

160

# 
Fu

nc
tio

ns
 - 

%

8
1.9%

7
1.7%

25
6.0%

9
2.2% 2

0.5%

97
23.2%

63
15.1%

166
39.7%

31
7.4%

10
2.4%

Vulnerable
Non-Vulnerable

Figure 7.8: Examples of QM instances with different configuration

116



Characterizing Code Units with Logic Scoring of Preference

Table 7.8: Weights used in the specialized IV QM

QM node IDM DWA WBR

IV

CONVERT_UNSAFE 0.28 0.25 0.30

STRING_UNSAFE 0.26 0.25 0.20

SCANF_UNSAFE 0.30 0.25 0.40

OTHER_UNSAFE 0.16 0.25 0.10

IV_MM
MEMORY_ADDRESS_OF 0.46 0.30 0.33

IV 0.54 0.70 0.67

V1_V2_C1_IV_MM
V1_V2_C1 0.46 0.45 0.33

IV_MM 0.54 0.55 0.67

Table 7.9: Weights used in the specialized PER QM

QM node IDM DWA WBR

V1_V2_C1_PER
V1_V2_C1 0.58 0.7 0.67

MEMORY_ADDRESS_OF 0.42 0.30 0.33

in the Medium group is related to the shift that some functions had for not achiev-
ing the minimum quality criteria (191 out of the 418 functions with more than one
statement).

The second configuration uses the PER model. Figure 7.10 shows the distribu-
tion of the functions in the priority groups. Unlike the previous configuration, it
uses WBR for weight assignment but maintains the simple arithmetic mean to ag-
gregate the score. Once again, most vulnerable functions are placed in the most
critical priority groups (Medium with 24 functions, High with 17, and Critical
with 5). As before, the Medium group has more occurrences due to the shift of
functions that do not achieve the minimum quality criteria.

The third case is based on the IV QM, and Figure 7.11 shows the function distribu-
tion. Unlike the previous configurations, it considers only memory management-
related vulnerabilities (functions with vulnerabilities in other categories are con-
sidered non-vulnerable). This configuration uses IDM and simple arithmetic
mean to aggregate the scores. Most non-vulnerable functions are in the Medium
priority group (39.95%), followed by the Lowest (22.25%) and Low (15.07%). On
the other hand, most vulnerable functions (29 of the 35) are placed in the most
critical groups (Medium, High, and Critical). This is expected, as they are the
most critical from the security perspective compared to non-vulnerable functions.

The last QM configuration uses the PER QM, and the function distribution can
be seen in Figure 7.12. As in the previous QM configuration, only functions with
memory management-related vulnerabilities are considered vulnerable. Weights
were defined using WBR, and scores were aggregated using the simple arithmetic
mean. The groups with the largest number of non-vulnerable functions are the
same as in the previous configuration (IV model): Medium, Lowest, and Low. As
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Figure 7.9: Function distribution - Quality Model IV
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Figure 7.11: Function distribution - Quality Model IV. Only memory
management-related functions are considered vulnerable

for the vulnerable functions, most of them (30 of the 35) are placed in the most
critical groups (Medium, High, and Critical). Only 5 functions (about 16.66% of
the vulnerable ones) are in the remaining groups (Lowest and Low).

The results above help us positively answering RQ1, as we can indeed use
SCOLP with SMs and memory management-related attributes to characterize
code units. Different from other techniques (e.g., SATs and PTTs), whose goal is
to detect vulnerabilities, SCOLP goal is to characterize code from a security per-
spective. Hence, a comparison with these techniques would not be fair. Although
we have demonstrated SCOLP in a project developed in one programming lan-
guage, it can be used for projects in other languages. It would require defining
the attributes considering the language idiosyncrasies and following the process
to calculate the scores accordingly. The following section presents a comparison
of the SCOLP output with categorizations performed by experts.

7.4 Expert Ranking and Validation

This section describes the validation process with security experts. We aim to
answer the following RQ:

• RQ2: Can SCOLP provide a categorization similar to security experts?

We start by introducing the experts that are part of the validation process; then,
we explain the questionnaire answered by each expert; and, finally, we present
the expert results and compare them with the categorization provided by SCOLP.
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Figure 7.12: Function distribution - QM PER. Only memory management-related
functions are considered vulnerable

7.4.1 Profile of the Experts

The experts that participated in this validation are researchers that work with
software security: thirty-two holding a Ph.D. (one from the industry and the
remaining from different universities), three Ph.D. Students, and one software
engineer (with more than six years of experience). Although people from sev-
eral countries and several affiliations were invited, not everyone accepted the
invitation to answer the questionnaire. On the other hand, some participants
forwarded the invitation to other colleagues and students. The countries and
affiliations breakdown can be seen in Table 7.10. They are located in Europe
(75.0%), South America (19.4%), and North America (5.6%). The questionnaire
was anonymous, meaning identifying oneself was not mandatory. Hence, the
total number of accepted invitations by country/affiliation is smaller (15) than
the total number of responses (20) as we could not infer who provided 5 of the
responses.

7.4.2 Questionnaire to Validate the Results

SCOLP can be used to characterize many code units fast as it is an automated
process. Still, it was not viable to ask the experts to characterize all of them.
Hence, we selected a small number (10) of functions to be analyzed, including
five vulnerable and five neutral (non-vulnerable). We selected only functions
with at least 50 lines of code to better understand if SCOLP can categorize sim-
ilarly to experts in more complex scenarios. The functions selected can be seen
in Table 7.11, as well as some metrics related to their size and complexity. The
validation process is depicted in Figure 7.13.

120



Characterizing Code Units with Logic Scoring of Preference

Table 7.10: Invited experts by country and affiliation

Country Affiliation Invited Accepted

Belgium KU Leuven 1 0

Brazil

Federal University of Alagoas (UFAL) 1 0

Federal University of

Mato Grosso (UFMT)
1 1

State University of Campinas (UNICAMP) 5 3

Canada University of British Columbia 1 0

France LAAS 1 0

Italy
University of Florence (UNIFI) 1 0

University of Naples Federico II (UNINA) 4 1

Norway
Norwegian University of

Science and Technology (NTNU)
4 1

Portugal

Codacy 1 0

Critical Software 1 1

Faculty of Sciences of the

University of Lisbon (FCUL-UL)
2 0

Polytechnic Institute of Guarda (IPG) 2 0

Instituto Superior Técnico

University of Lisbon (IST-UL)
1 1

University of Coimbra (UC) 7 7

UK City University of London 2 0

USA University of Maryland 1 0

Total 36 15

The questionnaire was divided into two parts: (i) a categorization of the func-
tions, and (ii) a pairwise comparison among the functions. In the first part, all
experts received the ten functions and were asked to map them into one prior-
ity group (Critical, High, Medium, Low, or Lowest), defined in Section 7.1.3. A
detailed explanation of the priority groups was provided to the experts. In the
second part, the experts were asked to compare the functions pairwise with the
priority they would put to improve/refactor them from a maintainability per-
spective. They received several pairs of two functions (A and B) from the first
part and had to provide one of the classifications: i) A has more priority than B;
ii) A and B have the same priority; and iii) A has less priority than B.

As the total number of pairwise comparisons of the ten functions would be too
large for an expert to answer (45 comparisons), we reduced this number. Hence,
we asked each expert to provide the 5 comparisons of 10 functions. As we wanted
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Table 7.11: Description about the selected functions

File - Function Commit # Lines Cyclomatic

V
ul

ne
ra

bl
e

(a) sound/core/timer.c - snd_timer_user_params 242658f 101 17

(b) fs/fuse/dev.c - fuse_dev_splice_write 8fde12c 83 9

(c) fs/splice.c - splice_pipe_to_pipe 8fde12c 111 13

(d) fs/cifs/smb2pdu.c - SMB2_write 618d919 76 8

(e) fs/ext4/xattr.c - ext4_xattr_set_entry 327eaf7 238 34

N
on

-V
ul

ne
ra

bl
e (f) fs/ext4/xattr.c - ext4_xattr_set_handle 5369a76 147 31

(g) net/core/skbuff.c - skb_cow_data 8605330 91 12

(h) fs/dcache.c - dentry_lru_isolate 946e51f 57 4

(i) sound/usb/mixer.c - parse_audio_feature_unit daac071 168 26

(j) sound/usb/mixer.c - volume_control_quirks daac071 111 32
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Figure 7.13: Validation process of the Expert Responses

all the comparisons, we would need 9 people to compare different pairs of func-
tions, leading to the total number of expected comparisons (45). Furthermore, for
every pair of functions to be compared at least twice, the minimum number of an-
swered questionnaires is 18. We had 20 answers, and each questionnaire version
was answered by at least two experts. Before sending the questionnaire to the
experts, it was validated by another security expert (a Ph.D. student). We made
some adjustments based on the obtained feedback, such as adjusting the ques-
tionnaire form to make the questions clearer to the respondants. These responses
were not considered in the final results.

Experts were asked to classify the functions one at a time and to compare func-
tions pairwise; thus, some inconsistencies happened. An inconsistency is found
when the pairwise comparison contradicts the individual classification. For in-
stance, an expert classifies a function A as Critical and a function B as Medium in
the first part of the questionnaire. However, in the second part, the expert consid-
ers A less priority than B. We asked the experts with two or more inconsistencies
to review their answers.
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Table 7.12: Priority groups provided by QM instances and by the experts

Function QM - IV QM - PER Lowest Low Medium High Highest

V
ul

ne
ra

bl
e

(a) High High 0 1 4 13 2

(b) High High 0 4 2 9 5

(c) Medium High 0 5 5 8 2

(d) Medium Medium 1 7 9 1 2

(e) Highest Highest 0 1 5 5 9

N
on

-V
ul

ne
ra

bl
e (f) Highest Highest 0 3 3 6 8

(g) High High 1 3 7 5 4

(h) Medium Medium 6 11 2 1 0

(i) Highest Highest 0 1 8 6 5

(j) Highest Highest 1 9 5 2 3

The criteria used to consider the expert responses were: i) no inconsistency is
found in the questionnaire; ii) only one inconsistency is found in the question-
naire; and iii) two inconsistencies are found in the questionnaire, but at least one
of the two functions is classified in the same criticality in the first part of the ques-
tionnaire (e.g., functions A and B are classified as High, but in the second part, one
of them has more priority than the other). In other words, if an expert has two
inconsistencies and both have different criticality or if the expert has three incon-
sistencies or more, their response is considered inconsistent.

For the reevaluation process, we explained that at least one inconsistency was
found (without disclosing details about where the inconsistency was), and they
could change their answers. This process helps to reduce possible bias in the re-
sults. From the 20 answers, 6 experts had at least two inconsistencies. We could
reach out to 4 of them, who revised their responses. The other 2 did not iden-
tify themselves, so they were not asked to revise their answers. Only one expert
reviewed the individual classifications, but all 4 fixed the pairwise comparisons.

7.4.3 Experts vs SCOLP

The distribution in the priority groups made by the experts and those provided
by the selected QMs can be seen in Table 7.12. For this analysis, we use the same
QMs from Section 7.3.2 (the ones providing the more even distribution among
the groups and the vulnerable files placed in the more critical ones). Note that
the two QMs for IV (vulnerabilities related to Input Validation) and the two for
PER (Permission vulnerabilities) provide the same results for the five functions
under analysis. Thus, we present them once in the table to avoid repetitions.

As mentioned before, all the functions in the validation process have at least 50
physical lines of code. Because the QMs consider two groups of volume SMs
(statements and lines of code), as shown in Figure 7.3, functions with more lines
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have a higher score and a higher probability of being assigned to the more critical
priority groups. As shown in Table 7.12, all the selected functions were assigned
to the Medium, High, or Highest priority groups by the QMs.

Regarding the vulnerable functions, the selected QMs provided the same cate-
gories as most experts in most functions. The first two functions (a and b) listed in
the table are assigned to the High priority group. This is the same as most experts.
The same happens for the fourth (d) and fifth (e) functions, assigned to Medium
and Highest priority groups by the QMs, respectively. Again, they are in the same
groups assigned to them by the experts. The only difference is the third function
(c), in which two QMs assigned to High (such as most experts), and the other two
assigned to Medium (second most frequent priority group used by the experts).

All selected QMs provided the same classification for the non-vulnerable func-
tions. The first non-vulnerable function (f ) is assigned to the Highest priority
group by all QMs and by the experts. The same does not happen to the other
functions (g, h, i, and j), whose classification is impacted by the high number of
lines of code. Nevertheless, they are assigned in most cases to a priority group
adjacent to the one given by most experts (e.g., the functions g and h).

These results help answer RQ2. Although the results provided by the QM in-
stances are not the same as the ones provided by the security experts, they are
similar. Hence, SCOLP can be used to provide a similar categorization as secu-
rity experts without the need for their involvement.

7.5 Threats to Validity

This work addresses the issue of characterizing potentially problematic code
units from a security perspective. Nevertheless, some threats should be dis-
cussed.

Construct Validity refers to the QMs used as LSP for the code unit character-
ization. A QM with SMs was defined and used as a base for the specialized
QMs. While we considered attributes related to volume, complexity, and mem-
ory management, other attributes could also be considered. Although the results
are consistent, different QMs (either different structure or attributes) could lead
to better results. Additionally, the weights for the QMs were defined by the au-
thor of this thesis and were validated by his supervisor. Other options could be
used to validate or explore different use scenarios.

External Validity refers to the ability to generalize the results. Only one project
was used for the code unit characterization in our evaluation. Although it is
a large project with an extended period since its development started, using a
single project may affect the conclusions. In fact, QMs that are good enough
for this project may work differently for others. Nevertheless, the approach can
be customized considering the idiosyncrasies of each project and programming
language. Additionally, a validation with security experts was performed. On
one hand, this helps reducing this threat. On the other hand, the experts may

124



Characterizing Code Units with Logic Scoring of Preference

have different security knowledge, especially about C programming language,
which can affect the results.

Internal Validity refers to the possibility of having unwanted or unanticipated
relationships. From a security perspective, one or more attributes could lead to
a more critical priority group. However, no other works in the literature could
establish a relationship between attributes and their criticality or the presence of
security issues. Hence, we can claim that this possibility is reduced.

7.6 Summary

In this chapter, we proposed SCOLP to characterize the security of code units
(functions) using LSP. To do so, we defined QM instances that use SMs and mem-
ory management-related attributes as their attributes. Each QM calculates a score,
which maps the code unit to a priority group. Consequently, the software devel-
opment team gets categorized groups of functions considering their proneness to
have security problems. The Linux Kernel project was used to evaluate SCOLP.
We also performed a validation process with security experts. They classified ten
functions using the same priority groups and compared them pairwise.

The results show that SCOLP can be used to categorize open-source code units
(functions) using QM with different characteristics. Furthermore, SCOLP catego-
rization is similar to the categorization provided by security experts. The QMs
can be extended to address diverse code characteristics, enabling development
teams to get tailored categorizations in an automated manner.

Although SCOLP can be easily integrated into CI servers to provide information
while building the software, CI servers do not monitor the software at run-time.
In the next chapter, we present a self-adaptive platform, named Trustworthiness
Monitoring & Assessment (TMA), that can be used both at design-time (e.g., to
collect security evidence) or at run-time (to promote adaptation while the soft-
ware system is being used). Although TMA was built before SCOLP, they share
similarities (such as the QMs) and can be easily integrated.
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Framework to Promote
Self-Adaptation

Trustworthiness can be defined as the worthiness of a service and its provider for
being trusted [Medeiros et al., 2017], thus including a multitude of properties
(e.g., reliability, availability, security, privacy, coherence, isolation, fairness, de-
pendability, etc. [Mohammadi et al., 2013]). Continuously monitoring and as-
sessing the trustworthiness of systems is not trivial due to many factors, such as
the number of properties involved in trustworthiness. Also, trust is a subjective
concept that is built based on guarantees, experiences, transparency, and account-
ability. However, current self-adaptive capabilities are rather limited and based
only on CPU usage and memory consumption [Google, 2014a].

Self-Adaptive Systems (SASs) are capable of reflecting their own behavior and
their environment and adjusting their behavior according to existing current
needs [Krupitzer et al., 2015]. To promote self-adaptiveness, an adaptation con-
trol loop is normally added to the software system [de Lemos et al., 2013]. The
most used adaptation control loop was introduced by IBM and is named MAPE-
K [IBM, 2006]. Its name is an acronym for five components: Monitor, Analyze,
Plan, Execute, and Knowledge. The Monitor is responsible for collecting details
about the managed resource, while Analyze reasons over the data collected in
the previous phase. Decisions are made in the Plan to achieve the goal and objec-
tives. Execute is responsible for interacting with the managed element to ensure that
the adaptations are made. Finally, Knowledge is a repository that supports other
phases. TMA implements all MAPE-K components, allowing other systems to
have self-adaptive properties when using TMA.

This chapter presents the Trustworthiness Monitoring & Assessment (TMA)
platform, which brings self-adaptation abilities to software applications and con-
tributes to the assessment and improvement of the trustworthiness, considering
the relevant properties and a trustworthiness life cycle inspired in the MAPE-K
cycle [IBM, 2006]. The TMA platform supports these activities by providing a
solution for applications that require self-adaptation for maintaining/achiev-
ing trustworthiness without the need for creating a managing element from
scratch. Compared to existing solutions (e.g., HPA [Google, 2014a]), our proposal
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adds flexibility and allows the user to prepare their systems to adapt according
to a wide range of properties. The interface between the application and TMA
is supported by probes to monitor the status of the application and by actuators
to perform the adaptations [IBM, 2006]. Quality Models (QMs) aggregate data
collected from the cloud application and generate trustworthiness scores. A basic
trustworthiness QM is explained in [Medeiros et al., 2017]1.

Each TMA component is designed as a microservice [Lewis and Fowler, 2014]
that can be easily deployed in a container-based system (e.g., Kubernetes, Docker
Swarm). A usage scenario shows the applicability and flexibility of the plat-
form. In practice, we monitor resource consumption (CPU usage and memory
consumption) and performance (response time and throughput) of a cloud appli-
cation. TMA calculates its trustworthiness level, and adaptations are made when
needed. The scale up/down actions of the application server are dispatched
according to the workload. Results allow observing how the scores can guide
the system adaptation. Further information about TMA can be found online:
http://tma.dei.uc.pt/

It is important to emphasize that TMA was used in the context of the ATMO-
SPHERE project2 by the Dell company. A QM for security was designed for their
context, focusing on sub-properties based on the security triad (confidentiality, in-
tegrity, and availability). A probe developed by Dell collects configuration prop-
erties and gathers security policies. If the score calculated using the QM is below
a given threshold, the security team is alerted to act.

The remainder of this chapter is structured as follows. Section 8.1 presents con-
cepts on SASs. Architecture and implementation details are presented in Sec-
tion 8.2. The usage scenario is presented in Section 8.3 and the results and discus-
sion in Section 8.4. Finally, Section 8.5 summarizes this chapter.

8.1 Concepts on Self-Adaptive Systems

There are two components in a Self-Adaptive System (SAS): i) the target of the
adaption called manage element, and ii) the managing element responsible for pro-
moting the adaptation. The adaptation control loop is implemented in the manag-
ing element. All the interaction between the managing element and the managed
element happens through the manageability endpoints. Sensors or Probes are used
to send all the data from the managed element to the managing element. Effectors
or Actuators perform the adaptations on the managed element.

There are different approaches to promote self-adaptation, such as the
architecture-based solution used by Rainbow [Garlan et al., 2004]. It adds the

1 Similarly to SCOLP (presented in the previous chapter), TMA uses QMs to support the
decision-making process. However, while the prior uses them to categorize code units at design
time, the latter can also support the adaptation of running applications (in addition to design time
aspects). Although SCOLP and TMA are not integrated, such integration would be straightfor-
ward due to the TMA architecture.

2 https://www.atmosphere-eubrazil.eu
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adaptation control loop in the architectural layer, while probes and effectors stay
in the system layer along with the managed element. The architecture-based self-
adaptation allows a global perspective of the system, and system-level properties
and integrity constraints are exposed.

Several self-adaptation features are found in a cloud environment. For instance,
the infrastructure provider Amazon Web Services has the AWS Auto Scaling ser-
vice [Amazon, 2009], which provides a rule-based autoscaling service for the re-
sources deployed on the Amazon Cloud. For container-based systems (e.g., Ku-
bernetes [Google, 2014b], Docker Swarm [Docker, 2017], Apache Mesos [Apache,
2009]), orchestrator frameworks are usually responsible for autoscaling features.
For instance, Horizontal Pod Autoscaler (HPA) [Google, 2014a] for systems de-
ployed using Kubernetes. Both Amazon AWS and Kubernetes HPA usually use
metrics of memory consumption and CPU usage to support the scaling.

Our solution differentiates from existing ones in terms of flexibility (of monitor-
ing and adaptation and on supporting diverse systems). Also, we use Quality
Models (QMs), such as the ones presented in the previous chapter, to aggregate
diverse metrics according to user-defined preferences, and that simplifies the task
of decision-making based on several properties. In practice, it is useful in scenar-
ios that require: i) more diverse or more complex adaptations; ii) the analysis of
diverse trustworthiness properties and scores (e.g., security, privacy, dependabil-
ity, and coherence); and ii) the computation of scores that require inputs from
multiple levels of the managed element (e.g., at the client level, service level).

8.2 TMA Platform Architecture

The TMA platform supports the trustworthiness assessment that involves dif-
ferent attributes, properties, and characteristics, which vary depending on the
objectives of the system that is being assessed [Medeiros et al., 2017]. Our trust-
worthiness framework for applications is composed of:

• A definition of the relevant properties and metrics used to characterize
trustworthiness

• A trustworthiness lifecycle (Figure 8.1), inspired in the MAPE-K cycle and
that covers two main phases: design-time, when the application is being
developed, and run-time, when the application is being used

• A monitoring platform that receives measurements and events from the
managed application

• Measurement instruments that allow gathering the information to be used
(measurements and events)

• Quality Models (QMs) that define how the measurements from the at-
tributes will be used to compute the scores (more details on how to define a
QM can be seen in the previous chapter)
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• Actuators that implement the adaptation logic are included in the managed
system and allow adaptations that aim at improving the system trustwor-
thiness

Design-Time  Run-Time 
Run 

trustworthiness
 tests

Build

Accepted
Trustworthiness
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Deploy the
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Figure 8.1: Lifecycle of Trustworthiness Assessment

Figure 8.2 presents a high-level architecture of the TMA platform, which follows a
microservice architecture [Pahl and Lee, 2015], where each component represents
one MAPE-K function (Monitor, Analyze, Plan, Execute, and Knowledge) [IBM,
2006]. Each one of the components is deployed into a container inside a Kuber-
netes pod. Kubernetes is an open-source system that allows automatizing the
deployment and management of container-based applications [Google, 2014b].
Kubernetes starts the containers and deploys them according to the specification
of the pod (wrapper defined by Kubernetes and its base unit of management).
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Figure 8.2: Architecture and Interfaces of TMA

The implementation details of each component are in the following sections.
To ensure that the communication among the components is handled in a reli-
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able way, a fault-tolerant mechanism is used. The FaultTolerantQueue is im-
plemented using Apache Kafka, which allows creating topics that the compo-
nents can subscribe to consume the messages [Apache, 2011]. Details on how
to create a probe and an actuator are described in Sections 8.2.1 and 8.2.4, re-
spectively. A Docker image and a YAML (YAML Ain’t Markup Language) file
were created for each component of the TMA to support the deployment into
a Kubernetes cluster. The YAML file contains the specification of a Kubernetes
object, and Kubernetes uses it to decide what to deploy (e.g., the image con-
tainer that will be used, and the ports that will be open to be invoked). We
automate the platform deployment through bash scripts and recipes (https:
//github.com/eubr-atmosphere/tma-yaml).

8.2.1 Monitor Component

The Monitor component provides a RESTful API interface for the probes to post
JSON messages (observations) of the managed element (i.e., the application) to
TMA. This component is responsible for validating all data collected by probes
according to a JSON schema. The service is deployed using the web microframe-
work Flask [Ronacher, 2010]. TMA is prepared to receive the results of both
design-time assessment tasks (in which performance and scalability requirements
are not so stringent) and run-time measurements (when the behavior changes ac-
cording to the system execution).

This component validates all data collected by probes according to a JSON schema.
SSL/TLS encryption is used to secure communication between the probes and the
Monitor component. Hence, all probes must have the Monitor digital certificate
acquired during the initial registration of the probe in the platform. Later, when
a probe sends data to the Monitor, its certificate is used to authenticate.

The JSON schema is used to validate data received from the probes. The content
of the message contains also its data type, which can be: i) measurement: any nu-
merical value that can be assessed (e.g., execution time, memory allocated, CPU
in use, response time); ii) event: any occurrence that needs to be stored (e.g., the
scale up process has started). Additionally, both the value and the time of the
measurement are sent. If the data received are valid, the Monitor sends them to
the FaultTolerantQueue through an Apache Kafka topic named monitor. Other-
wise, the data are discarded, and an error message is returned to the probe.

The QueueListener subcomponent is implemented through the DataLoader com-
ponent. It pulls data from the monitor topic and executes the data normalization
process, so the data are correctly inserted in the Knowledge database.

A few probes were developed to demonstrate and validate the TMA platform,
and libraries to develop new probes were created for Java, Python, and C#, as
well as a Docker image. Using the supporting tools described above, we make
available 12 concrete probes for different measurements, and information about
them can be found online (http://tma.dei.uc.pt/probes). The ones listed be-
low are used in the usage scenario (see Section 8.3):
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• probe-k8s-metrics-server – gathers information about pods and nodes
in a Kubernetes cluster. It collects measurements of CPU usage and mem-
ory consumption using the monitoring open-source component metrics-server
(https://github.com/kubernetes-sigs/metrics-server), which replaces
the deprecated Heapster [Google, 2014b].

• probe-client-java – collects performance metrics of a client that performs
REST requests to a server. It is able to monitor response time, throughput, and
rate of served requests under a predefined threshold.

8.2.2 Analyze Component

The Analyze component is responsible for reasoning over the data gathered by
the Monitor component and aggregating the measurements into a trustworthi-
ness score. The data are read from the Knowledge component, and the scores are
calculated and stored. Several aspects may be considered to support the decision-
making (adaptation) process. Hence, a combination of different sources of infor-
mation is necessary.

Quality Models (QMs) allow aggregating measurements and computing a score.
The focus of the Analyze component is on trustworthiness properties, as this is
the main goal of the platform. Thus, QMs for different properties (e.g., secu-
rity, privacy, coherence, isolation, stability, fairness, transparency, dependability,
etc.) can be used to compute trustworthiness scores [Mohammadi et al., 2013].
A Dashboard that allows users to analyze information at runtime and adjust the
parameters of the QMs and thresholds (objectives) is also available.

Operator: +

w3 = 1.0

A4: Total Resource
Consumption

A1: Ratio of CPU usage of
the Pod

A2: Ratio of Memory usage
of the Pod

w2 = 0.35w1 = 0.65

w4 = 1.0

A3: Pods Count

Operator: ÷

Resource Consumption
per pod Score

Figure 8.3: Resource Consumption QM used in this practical demo

As an example, the score of resource consumption per pod QM is defined in Fig-
ure 8.3. The leaf nodes (A1 and A2) show ratios of both CPU usage and memory
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consumption of a pod in comparison to the working node where the pod is de-
ployed. The ratios are calculated by dividing the value obtained from the probe
(either CPU usage or memory consumption of the pod at a particular time) by
the total available in the working node (total CPU and memory available, respec-
tively). They are aggregated into a metric of Total Resource Consumption (A4).
In this scenario, CPU Usage (A1) has more weight (w1 = 0.65) than the Memory
Consumption (A2) (w2 = 0.35), as CPU usage is more sensitive when the appli-
cation server receives a higher workload. Finally, the Total Resource Consump-
tion Score is divided by the leaf node Number of Pods (A3) to compute the final
score. All the attribute weights are defined using the DWA method. As explained
in Section 7.1.1, the attributes can be of two types: benefit or cost attribute. The
attributes are represented in Figure 8.3 with different colors: benefit attributes in
green and cost attributes in orange.

The partial values of the leaf nodes A1 and A2 can be summarized by the follow-
ing formulas:

A1 = cpu_pod/cpu_node

A2 = memory_pod/memory_node

where both cpu_node and memory_node are constants known in advance. The
score resource consumption per pod can be calculated by the following formula:

score = (0.65 ∗ A1 + 0.35 ∗ A2)/pod_count

The Analyze component needs to know the following configurations in advance:
i) periodicity of calculation, and ii) observation window. The observation window
defines the amount of data in a period used to calculate the score. The periodicity
of calculation defines how often the score will be calculated. For instance, a score
is calculated every minute using the data from the last ten minutes. In this case,
the observation window is ten minutes, while the periodicity of calculation is
once per minute.

8.2.3 Planning Component

The Planning component is responsible for checking the scores and coming up
with a plan in case an adaptation is needed. An adaptation plan is a set of actions
to achieve the required goals or to recover the desired trustworthiness levels.
There are different adaptation decision approaches, e.g., models, rules/policies,
goals, or utility [Krupitzer et al., 2015]. A rule-based approach [Macías-Escrivá
et al., 2013] is used by the TMA.

TMA uses the business rules management system Drools [RedHat, 2011], which is
a Java-based tool. It provides an easy-to-read and easy-to-understand language
to specify rules, with conditions and actions in case the conditions are met. The
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decision to adapt is made based on the score calculated by the Analyze compo-
nent. If the score is either above or below a threshold, an adaptation is dispatched.
In case the user needs to extend it, a Java class can be created and invoked by the
specified rules.

An example of the Drools rule used by TMA is shown on Listing 8.1. The per-
formance score (calculated using the QM detailed in Section 8.2.2) is used to spec-
ify the condition through the when directive. When the score value exceeds the
threshold of 0.08, and the number of pods is smaller than 2, an adaptation is dis-
patched to increase the number of pods to 2. The adaptation plan is specified
through the then directive. Details about the execution of the plan are presented
in Section 8.2.4.

1 rule "Score validation - Wildfly Scale up"
2 when
3 $score: TrustworthinessScore ( performanceScore.score > 0.08, podCount <

2 )
4 then
5 Action action = new Action(1, "scale", 9, 5);
6 action.addConfiguration(
7 new Configuration(
8 2, "metadata.name", "wildfly"));
9 action.addConfiguration(

10 new Configuration(
11 3, "spec.replicas", "2"));
12 AdaptationManager.performAdaptation( action , AdaptationManager.

obtainMetricData($score) );
13 end

Listing 8.1: Scale up Drools rule example

A similar rule is needed to scale down the number of pods. In that case, a differ-
ent, lower-bound threshold should be used.

8.2.4 Execute Component

The Execute component is responsible for communicating with the Actuators to
perform the adaptations. This is done through RESTful operations. All commu-
nication is secure, and all the messages are encrypted using the keys of both the
Execute component and the actuator to be used.

The Execute uses the public key from the corresponding actuator to encrypt the
message (which is obtained when the actuator is registered in the platform). The
public key is stored by the Knowledge component. When the actuator receives
an encrypted message, it uses its private key to decrypt it. Then, the actuator
performs the actuation and responds to the Execute. This message is encrypted
using the public key of the Execute, and it is signed using the private key of the
Actuator. When the Execute receives the response, it verifies the signature using
the public key of the actuator and decrypts the message using its private key.

Currently, two libraries are provided to ease the communication with ac-
tuators developed in Java and Python. Three actuators are available: i)
kubernetes-actuator: used to scale up and scale down Kubernetes pods; ii)
email-actuator: used to send e-mail notifications when the scores are not in the
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expected thresholds; and iii) api-actuator: used to interact with a third-party
API.

The actuator kubernetes-actuator is used in the practical demonstration pre-
sented in Section 8.3, and it was developed using the Actuator Java Library. It
receives a JSON object, which needs information to perform the action, including
the parameter values. The values presented on Listing 8.1 of Section 8.2.3 are
mapped into this attribute).

8.2.5 Knowledge

The Knowledge component is responsible for storing all the data, such as mea-
surements and events, QM definitions, trustworthiness scores, information about
the application architecture, resources and assets available, and adaptation plans.
Its implementation contains a MySQL DBMS (knowledge database) and a block-
storage solution Ceph.

Data collected by the probes are inserted in the corresponding table. The TMA
database follows a star schema as the one shown on Figure 8.4. The fact table
Data contains the basic numerical facts provided by the probes, and the dimen-
sions include all the different perspectives needed to characterize them. The re-
maining information about the architecture is represented in the Resource and
Probe tables. The Description table contains the specification about either the
measurements or events provided by each probe. Finally, the Time dimension
is represented in the conceptual diagram, but the information about the time is
stored directly in the Data table (for performance reasons).

Figure 8.4: Data model used by TMA for the Monitor Component

The model used by the Execute component reflects the data to dispatch the adap-
tations (see Figure 8.5). Information about the actuator, as well as the actions that
they can perform, is stored in the tables represented in the adaptation model. The
Actuator table stores all the active actuators, and the possible actions are stored
on the Action table. The Configuration table contains the specification of ad-
ditional parameters needed by the actions. The action is related to a resource,
which is the target of the adaptation.

An application called Admin was developed to ease the configuration of the plat-
form via the knowledge database. It allows registering probes and actuators to
the database, besides information about the architecture of the managed element.
It is split between two different components: the REST API and the GUI. Both
components are deployed as a Kubernetes pod.
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Figure 8.5: Data model used by TMA for the Actuators

The REST API is implemented in Java, using the Spring framework to expose the
REST services. The API takes care of every request and proceeds to update the
Knowledge database. The GUI provides a user-friendly interface that allows the
TMA administrator to invoke the REST API service. Features such as adding a
probe, adding an actuator and configuring their actions, and adding the resources
of the managed system are available in this application.

8.3 Usage Scenario: Scaling Containers

The usage scenario presented in this section shows one application that consists
of a set of web services from TPC Benchmarks [TPC, 2014]. To store the data,
both the web application server Wildfly [RedHat, 2014] and MySQL database are
used. We focus on performance-related experiments as these are the ones that
have alternatives even if limited (e.g., HPA), and they are easy to understand.
However, TMA can be used with other metrics such as dependability, privacy,
and security.

The experiment consists of varying the request workload to the application and
observing the adaptations and the scores. Four different scenarios are used:

A: No adaptation approach

B: Using Kubernetes HPA [Google, 2014a]

C: Using our proposal with Resource Consumption QM (Figure 8.3)

D: Using our proposal with Performance QM (Figure 8.7)
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The application is deployed on Kubernetes. It is configured using the controller
StatefulSet from Kubernetes, which guarantees the order in which the pods are
created and scaled. As it is using the StatefulSet controller, every time the number
of pods changes through a scale action, a pod is either created or deleted when
the remaining ones are running properly to avoid disruptions in the service. This
solution allows scaling the number of pods, as the requests are sent to the same
endpoint. All the load is balanced among the pods by Kubernetes.

An example of adaptation is shown in Figure 8.6. The hexagon represents the
working node where the pods are deployed. A working node is a machine (either
physical or virtual machine) that contains the resources to run pods. Although
all the pods are represented in one working node, this is not known in advance
since Kubernetes is responsible for assigning the pods to the working nodes. The
dashed ellipse represents the Wildfly service. The blue circles represent the pods,
and the green cubes show the containerized applications. Initially, only one pod
is created. When the workload increases, more pods are created to balance the
load. As the MySQL database does not scale during the experiment, it is not
represented in the diagram. It is also deployed in a StatefulSet with one pod.

wildflyB
ef
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e

A
fte

r

wildfly wildfly

Figure 8.6: Example of scaling up the number of pods (before and after the adap-
tation)

All the experiments were performed in a machine which has the following con-
figuration:

• CPU: Intel(R) Xeon(R) Gold 5118 CPU 2.30GHz x 24

• Memory: 96GB DDR4 RAM

• Disk: Dell SSD PERC H330 Adp 1TB

This server, used to create Virtual Machines (VMs), uses the tool Infrastructure
Manager (IM) [Caballer et al., 2015]. IM automates the deployment and config-
uration of VMs. For this practical demonstration, four VMs were created for the
Kubernetes cluster:

• Control Plane: instance that contains the control plane of the Kubernetes
cluster. It allows creating the Kubernetes objects (e.g., nodes, pods, volume
storage)

• Working Node (2 instances): instances where the pods with Docker con-
tainers are deployed and run. After joining the cluster through the control
plane, pods can be deployed in the nodes by the control plane
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• Storage Node: an instance where the block storage is configured (Ceph [Weil
et al., 2006]). As data stored in the pods are ephemeral, there is a need for a
persistent solution for the data

The configuration of all instances has 4 CPU cores, 16GB of Memory, and 200GB
of disk storage.

When both the managed element and the TMA are properly set up, the experi-
ment is started. The scenario consists of varying the demand of requests to the
application (requests per second - rps) for 30 minutes. Each slot run during three
minutes, and the configuration of each one can be seen in the Table 8.1.

Table 8.1: Slots of demand in the experiment

Slot Demand (rps)
I 150
II 300
III 650
IV 1000
V 2500
VI 2000
VII 650
VIII 1000
IX 650
X 300

During the phases of the experiment, two scores were calculated: i) the Resource
Consumption per Pod Score (according to the QM defined in Figure 8.3), and ii) the
Performance Score (according to the QM defined in Figure 8.7). They are used to
decide when scale up or scale down actions are needed.

8.3.1 Resource Consumption per Pod Quality Model

This is the same QM that was defined in Section 8.2.2. The probe
probe-k8s-metrics-server pushes the data to RESTful interface of the Moni-
tor component every 5 seconds. It is important to notice that the CPU usage and
memory consumption weights (w1 = 0.65 and w2 = 0.35) were empirically de-
fined by using the DWA method. It was noticed that CPU usage varies more than
memory consumption when the workload increases, and this is the reason the
CPU usage weight is larger than memory consumption.

The score is calculated every five seconds (periodicity of calculation), providing an
up-to-date status of the managed element. The tool used to collect CPU usage
and memory consumption does not provide accurate information more often.
As all the attributes from the Resource Consumption per Pod Score are cost at-
tributes (represented with orange color in the figure), the final score can also be
interpreted as a cost score. In other words, the higher the score, the worse from a
resource consumption perspective.
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8.3.2 Performance Quality Model

The measurements used by the Performance QM are obtained through the
probe-client-java probe (described in Section 8.2.1). Different from the
probe-k8s-metrics-server probe, which is deployed with the application, this
probe is deployed on the client side, and it collects measurements from the user
perspective. The leaf attributes contain either values obtained from the probe
(e.g., throughput - A1, response time - A2, or rate request under contracted - A3), or
obtained from the calculation of values by the probes (e.g., rate served requests -
A4, which is the division of throughput by demand).

Among the leaf attributes, some of them are benefit attributes (throughput - A1
and rate served requests - A4), and others are cost attributes (response time - A2
and rate requests under contracted - A3). They are represented in Figure 8.7 with
different colors: benefit attributes in green and cost attributes in orange. Hence,
an adjustment needs to be made to combine them.

w1 = 0.5

A1: Throughput

w2 = 0.5

A2: Response 
Time

w5 = 0.25

A5: System Performance

Operator: + Operator: +

w4 = 0.5

A4: Rate Served Requests
(Throughput / Demand)

A3: Rate Request Under
Contracted

w3 = 0.5

w6 = 0.75

A6: Service Performance

Performance Score

Operator: +

Figure 8.7: Performance QM used for this practical demonstration

From a semantics perspective, it makes sense to have a performance score as a
benefit attribute. Therefore, the adjustment needs to be done in the cost attribute
to be interpreted as a benefit attribute. As all the attributes are normalized and
are in a 0-to-1 range, the transformation is done through the following formula:
bene f it_attribute = 1 − cost_attribute. After the transformations, the attributes
can be combined, resulting in another benefit attribute.

The first partial score is System Performance (A5). It is composed by the through-
put (A1), and response time (A2), and they have equal weight (w1 = w2 = 0.5).
Similarly, the second partial score is the Service Performance (A6). Its attributes
(rate request under contracted - A3, and rate served requests - A4) also have the same
weight (w3 = w4 = 0.5) and are aggregated through the sum operator.

To come up with the final performance score, the neutrality operator is also used.
However, partial attributes have different weights. As the Service Performance
partial score is more important, it received the weight w6 = 0.75. This way, the
System Performance partial score has a weight of w5 = 0.25. This score is calculated
every second. As the probe sends data to the Monitor component only when it is
running, and due to the adjustment made on the cost attributes, it was necessary
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to adjust the score when no data is being informed to the platform. Hence, this
value is set to zero when no data are present from the client side.

8.4 Results and Discussion

This section presents the results of each run per configuration of the demonstra-
tion application based on TPC Benchmarks. Figure 8.8 (a) shows the run chart
of the scores when no adaptation mechanism is enabled. The blue line presents
the resource consumption per pod score, which varies based on both CPU usage and
memory. Looking closely at the data, we can observe that the score is linearly
related to CPU usage, which is influenced by the demand (rps). The performance
score is presented in red, as well as their partial sub-scores (dashed lines). Be-
tween instant 105 and 160, the performance score drops, as one of the replicas
cannot handle a load of 2,500 rps.

Differently from the previous scenario (Figure 8.8 (a)), Kubernetes HPA [Google,
2014a] is used as an adaptation approach, and one chart is shown on Figure 8.8
(b). As it can be seen on the performance score, it does not vary so much, although
there are some peaks. Throughout this experiment, a new pod is created. How-
ever, even when the demand decreases, and when no demand is present, the
number of pods remains equal to two. Regarding the resource consumption per pod
score line, there is a peak around instant 61. This is related to the scaling promoted
by HPA, which happened some instants earlier. When a new pod is created, both
CPU usage and memory are high. Consequently, the score increases. When the
pod set up stabilizes, the values also go back to normal.

The remaining run charts in Figure 8.8 (c and d) show the results when the adap-
tation is dispatched by the TMA platform. Every time a score calculated through
a QM is either above an upper threshold or below a lower threshold, an adapta-
tion plan is created. The adaptation plan is executed by the Execute component,
which invokes the kubernetes-actuator. It is first invoked when the score ex-
ceeds the upper threshold.

Figure 8.8 (c) shows the scores during one execution. When the adaptations are
performed using the resource consumption QM, four adaptations are performed
(two scale up, two scale down). The two peaks on the resource consumption per pod
score chart represent the creation of the new pods. Differently from the adaptation
with HPA, the scale down happens. Thus, the scores fall when no demand is
being performed, and the resources are not allocated when they are idle. Also,
the performance score does not vary so much, but there are some peaks during the
higher load of the experiment.

The adaptations triggered by the performance QM have similar behavior as the
resource consumption per pod QM. Figure 8.8 (d) shows the scores during an
experiment execution using the performance QM, and the peaks on the resource
consumption per pod score chart represent the creation of the new pods. As the
performance score is being used to decide about the adaptation actions, it varies
more during the experiment.
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Figure 8.8: Charts of the Resource Consumption per pod and Performance Scores
during one experiment of the TPC Benchmark usage scenario: (a) without adap-
tations; (b) with adaptations dispatched by HPA; (c) adaptations using the Re-
source Consumption per pod QM; (d) adaptations using the Performance QM
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Table 8.2 shows the average response time (top of the cell) and the average
throughput (bottom of the cell) per slot configuration. The stars (*) represent
the slots when an adaptation happens (either scale up or scale down). It can be
noticed that only one adaptation happens in the HPA configuration, while the
adaptations using the platform scale up and scale down during the experiment.

The response time values show that the mean is higher when no adaption is per-
formed. In configurations B, C, and D, the response time is lower because a new
replica is created, which means that the requests are distributed by the two repli-
cas. This decrease can be observed with more impact in slots V and VI when the
response time decreases by about 2.5 milliseconds.

The throughput values show that the mean is higher in configurations that auto-
matically create a new replica of the service. With two replicas, the service can
handle loads of slots V and VI (2,500 and 2,000rps, respectively), which increases
the mean in configurations B, C, and D in comparison with configuration A.

Table 8.2: Average response time and throughput of each configuration (A - No
Adaptation, B - HPA, C - Resource Consumption, D - Performance)

Slot Demand Response time (ms) / Throughput (rps)
A B C D

I 150 4.64
149.94

4.77
149.97

4.58
149.97

4.59
149.97

II 300 4.37
299.82

4.42
299.89

4.54
299.62

4.50
299.53

III 650 4.68
649.62

5.22
649.92 *

4.85
649.93

4.85
649.02

IV 1000 5.40
999.59

6.37
998.30

5.89
996.10 *

6.18
998.19 *

V 2500 6.40
1403.63

3.61
2499.71

3.21
2499.51

2.88
2499.96

VI 2000 6.38
1451.96

3.81
1996.14

3.37
1999.13

2.69
1999.2

VII 650 5.95
649.03

4.75
649.94

5.04
649.93 *

5.04
649.94 *

VIII 1000 5.39
998.81

5.32
999.62

4.82
999.09 *

4.87
999.82 *

IX 650 4.69
649.94

4.67
649.96

4.86
649.95 *

4.93
649.92 *

X 300 4.37
299.66

4.42
299.87

4.45
299.82

4.58
298.93

Average 920
(100.0%)

5.23
755.20

(82.1%)

4.73
919.33

(99.9%)

4.56
919.31

(99.9%)

4.51
919.45

(99.9%)

142



Framework to Promote Self-Adaptation

8.5 Summary

This chapter presented the TMA platform, which consists of an assessment life-
cycle, a monitoring platform, and measurement instruments (probes) and adap-
tation services, and it allows defining a trustworthiness level for the applica-
tions. TMA enables the self-adaptation of applications based on trustworthiness
properties. Quality Models (QMs), which are defined using attributes, weights,
operators, and thresholds, are used to portray the trustworthiness level of a
cloud application. The attributes reflect the measurement of trustworthiness sub-
properties.

We also presented a running example that uses TMA to promote self-adaptation
in a cloud application. The managed application is deployed on a Kubernetes
cluster, and the performed adaptations scale up and down the number of pods
of a server according to resource consumption and performance. The application
is tested in an experiment that consists of different workload requests with dif-
ferent request demands (requests/second), and the adaptations are dispatched
to meet the expected response time (seconds) and throughput (request respons-
es/second) requirements. We can conclude that TMA allows adaptations based
on QMs that measure trustworthiness properties.

TMA can be used either at design-time (while the software is being developed) to
identify potential security hotspots (by using SCOLP) or at run-time (during the
software execution) to identify trustworthiness problems, such as an intrusion
in the system. This is possible due to its flexibility of TMA to interact with the
managed application through probes and actuators and their RESTful interfaces.
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Conclusions and Future Work

The security of software systems is a problem that most enterprises frequently
have to deal with. Every day, new vulnerabilities are discovered as a conse-
quence of more software systems being present in our lives and the lack of con-
cern from the developers with security. As of the end of September 2023, more
than 20, 000 vulnerabilities had been reported according to CVE Details [Özkan,
2023]. New technologies (e.g., Cloud Environments, Edge Computing, Internet
of Things (IoT), Large Language Models (LLMs)) are being used, and security
mechanisms need to be created to address their security weaknesses.

9.1 Conclusions

The work presented in this thesis advances the state-of-the-art on software se-
curity from the vulnerability avoidance perspective. The thesis started by intro-
ducing a dataset of software vulnerabilities of five open-source C/C++ projects
(Mozilla, Linux Kernel, Xen, Apache httpd, and glibc) enhanced with static in-
formation, namely SMs from the source code and alerts reported by SATs. Such
vulnerabilities are organized by categories, which correspond to the lack or im-
proper use of one of the OWASP best practices for secure development. The static
information is extracted from both the vulnerable and neutral (non-vulnerable)
versions, and this allows the work that we performed afterward.

An analysis of the SAT alerts in one of the C/C++ projects (Mozilla) was pre-
sented to better understand the use of static analysis in large projects. The large
size of the project results in a considerable number of reported alerts, making
it difficult for the development team to analyze them all. Also, none of the ana-
lyzed SATs (CppCheck and Flawfinder) presented good metrics (precision, recall,
or f-measure) for the reported vulnerabilities. The SATs were also analyzed con-
sidering different vulnerability categories, but the results are not good as well,
although CppCheck performs slightly better than Flawfinder.

The fixes of buffer overflow vulnerabilities were studied to understand how de-
velopers usually correct them. The vulnerabilities of three projects of the dataset
(Linux Kernel, Mozilla, and Xen) are classified using the Orthogonal Defect Clas-
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sification (ODC). Most vulnerability fixes involve a checking (e.g., an if-clause)
that is either missing or incorrect in the source code, which is difficult to be de-
tected by the analyzed SATs. Furthermore, fixes usually add more code to the
codebase, which results in an increase in the SMs related to volume and com-
plexity.

We demonstrated the use of ML to detect vulnerable code units in two differ-
ent studies. In the first one, SMs and SAT alerts are used as input (features) to
classical ML algorithms (DT, RF, XGB, and bagging) to detect vulnerable files.
Although it was possible to obtain good values for precision and recall, it was
not possible to obtain them in the same configuration with the same hyperpa-
rameters. Bagging and XGB are the ones that performed better. The second study
used a deep learning approach (with DGCNN and VGG) to detect vulnerable
functions. The CFGs of each function are used as input for the network, and
the features are the SMs and attributes that we defined related to memory man-
agement. The results were similar to the ones obtained with the classical ML
algorithms.

Based on the results obtained with the ML algorithms, we decided to character-
ize the code units instead of detecting vulnerable ones. Hence, we developed
SCOLP, an LSP-based approach to categorize the code units and guide the soft-
ware development team analysis. SCOLP uses SMs and memory management-
related attributes as input of QMs, which outputs a score to each code unit. This
score is used to assign each code unit to priority groups. We demonstrated its
use with code units (functions) of the Linux Kernel project. A validation was per-
formed with security experts, showing that SCOLP results are comparable with
the assignment of security experts.

The last contribution of this thesis is the TMA platform, which allows adding
self-adaptation capabilities to applications. As it also uses QMs, it can be in-
tegrated with SCOLP. Due to its self-adaptation abilities, it allows adaptations
during run-time, i.e., while the software is in execution. It could also be used to
detect security issues, such as an intrusion. We demonstrated TMA in the con-
text of a Kubernetes application, which has its pods (components) scaled up and
down through the QMs and adaptation plans created by the TMA platform.

9.2 Future Work

Based on the results and conclusions from our work, we propose several research
directions for the future:

• Expand the vulnerability dataset: the process presented in this thesis is
generic, and it can be easily expanded to add other projects regardless of
the programming languages, as long as their vulnerabilities are reported on
CVE Details and the source code is hosted in a Git-based repository. Also,
due to the structure of the database, it allows adding other SMs and alerts
of different SATs. The vulnerability collection mechanism should also be
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automated to allow a continuous checking of CVE Details to obtain new
vulnerabilities and update the already collected vulnerabilities. Hence, au-
tomation and a more frequent execution should be performed to have the
most recent disclosed vulnerabilities.

• Use ODC to analyze other vulnerabilities beyond buffer overflow: the
analysis of the vulnerability fixes was performed only to buffer overflow
vulnerabilities. Other vulnerability types would also benefit from an ODC
with the support of SMs and SAT alerts. The findings could further support
the development of SATs and other vulnerability detection techniques.

• Historical data to predict vulnerable code units: the vulnerabilities and at-
tacks evolve over time. Hence, it is important to predict potentially vulner-
able code units based on the previously reported vulnerabilities. Also, more
recent vulnerability data should have a larger weight than the oldest vul-
nerability data. This may help predicting vulnerabilities more accurately.

• Expand the use of deep learning to detect vulnerable code units: the work
presented uses only one project (Linux Kernel). However, other projects
should be used besides adding attributes tailored to other vulnerability
types, and not only attributes related to memory-management. Other deep
learning techniques may also be explored.

• Expand and create other QMs for SCOLP: the created QMs are only for
function code level. Other QMs need to be created for this level, as well as
for other code levels (i.e., files and classes). Also, a visual tool may be cre-
ated to validate the QMs structure and weights, allowing the visualization
of the scores and the assignment to the priority groups. The number of pri-
ority groups can also be varied to obtain a fine-grained assignment of the
code units in the priority groups.

• Apply SCOLP to other projects: not only C/C++ projects but also projects
of other programming languages can be categorized using SCOLP. This
would allow understanding the characteristics of such projects, as well as
making the use of SCOLP not limited to a single project of C/C++.

• Integrate SCOLP in a CI tool: the categorization provided by SCOLP can be
integrated in a CI tool (e.g., Jenkins, Microsoft AzureDevOps). This would
allow the software development teams to understand the categorization of
the code units when a new commit happens in the source code as part of a
DevSecOps methodology. As soon as a code unit is assigned to a potential
critical priority group, the development team can start addressing the issue.

• Integrate dynamic data to support the security characterization: all the
work presented in this thesis focuses on static information obtained from
the source code (static data). However, data obtained from execution may
also reveal information about the software system utilization. Such data can
be analyzed and integrated into mechanisms such as SCOLP and TMA to
improve software vulnerability detection and characterization.
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Katarzyna Filus and Joanna Domańska. Software vulnerabilities in tensorflow-
based deep learning applications. Computers & Security, 124:102948, 2023. ISSN
0167-4048. doi: https://doi.org/10.1016/j.cose.2022.102948. URL https:
//www.sciencedirect.com/science/article/pii/S0167404822003406.

First. Common Vulnerability Scoring System SIG. https://www.first.org/cvss
/, 1995. Accessed: 2019-04-13.

FIRST. FIRST - Improving Security Together, 2005. URL https://www.first.org.
Accessed: 2023-10-28.

FIRST. Common Vulnerability Scoring System v3.1: Specification Document. ht
tps://www.frst.org/cvss/v3.1/specifcation-document., 2019. Accessed:
2023-11-07.

Felix Fischer, Yannick Stachelscheid, and Jens Grossklags. The effect of google
search on software security: Unobtrusive security interventions via content re-
ranking. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, page 3070–3084, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450384544. doi: 10.1145/34
60120.3484763. URL https://doi.org/10.1145/3460120.3484763.

Lori Flynn, William Snavely, David Svoboda, Nathan VanHoudnos, Richard
Qin, Jennifer Burns, David Zubrow, Robert Stoddard, and Guillermo Marce-
Santurio. Prioritizing Alerts from Multiple Static Analysis Tools, Using Classi-
fication Models. In Proceedings of the 1st International Workshop on Software Qual-
ities and Their Dependencies, SQUADE ’18, pages 13–20, New York, NY, USA,
2018. ACM. ISBN 978-1-4503-5737-1. doi: 10.1145/3194095.3194100. URL
http://doi.acm.org/10.1145/3194095.3194100.

The Open Web Application Security Project Foundation. Welcome to the OWASP
Top 10 - 2021. https://owasp.org/www-project-top-ten/2017/, 2021.
Accessed: 2023-10-22.

Martin Fowler. Codesmell. https://martinfowler.com/bliki/CodeSmell.html,
2006. Accessed: 2019-05-29.

Willy Ronald Jimenez Freitez, Amel Mammar, and Ana Rosa Cavalli. Software
vulnerabilities, prevention and detection methods: a review. In SEC-MDA
2009: Security in Model Driven Architecture, pages 1–11, 2009.

J. E. Gaffney. Metrics in software quality assurance. In Proceedings of the ACM ’81
Conference, ACM ’81, page 126–130, New York, NY, USA, 1981. Association for
Computing Machinery. ISBN 0897910494. doi: 10.1145/800175.809854. URL
https://doi.org/10.1145/800175.809854.

155

https://www.sciencedirect.com/science/article/pii/S0167865508002687
https://www.sciencedirect.com/science/article/pii/S0167865508002687
https://www.sciencedirect.com/science/article/pii/S0167404822003406
https://www.sciencedirect.com/science/article/pii/S0167404822003406
https://www.first.org/cvss/
https://www.first.org/cvss/
https://www.first.org
https://www.frst.org/cvss/v3.1/ specifcation-document.
https://www.frst.org/cvss/v3.1/ specifcation-document.
https://doi.org/10.1145/3460120.3484763
http://doi.acm.org/10.1145/3194095.3194100
https://owasp.org/www-project-top-ten/2017/
https://martinfowler.com/bliki/CodeSmell.html
https://doi.org/10.1145/800175.809854


Chapter 9

David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. Rainbow: Architecture-Based Self Adaptation with Reusable Infras-
tructure Rainbow: Architecture- Based Self-Adaptation with Reusable Infras-
tructure. Computer, 37(10):46–54, 2004. doi: 10.1109/MC.2004.175.

Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. Software vulnerability
analysis and discovery using machine-learning and data-mining techniques: A
survey. ACM Comput. Surv., 50(4), aug 2017. ISSN 0360-0300. doi: 10.1145/30
92566. URL https://doi.org/10.1145/3092566.

Debanjan Ghosh, Raj Sharman, H. Raghav Rao, and Shambhu Upadhyaya. Self-
healing systems — survey and synthesis. Decision Support Systems, 42(4):2164–
2185, 2007. ISSN 0167-9236. doi: https://doi.org/10.1016/j.dss.2006.06.011.
URL https://www.sciencedirect.com/science/article/pii/S01679236060
00807. Decision Support Systems in Emerging Economies.

Google. Kubernetes Horizontal Pod Autoscaler, 2014a. URL https://kubernetes
.io/docs/tasks/run-application/horizontal-pod-autoscale/. Accessed:
2018-12-01.

Google. Kubernetes - production-grade container orchestration, 2014b. URL ht
tps://kubernetes.io. Accessed: 2018-11-29.

Anjana Gosain and Ganga Sharma. Static analysis: A survey of techniques and
tools. In Durbadal Mandal, Rajib Kar, Swagatam Das, and Bijaya Ketan Pan-
igrahi, editors, Intelligent Computing and Applications, pages 581–591. Springer
India, 2015. ISBN 978-81-322-2268-2.

GrammaTech. GrammaTech - Software Assurance and Cyber-Security Solutions.
https://www.grammatech.com/, 2018. Accessed: 2019-05-30.

The Guardian. Recently uncovered software flaw ‘most critical vulnerability of
the last decade’, 2021. URL https://www.theguardian.com/technology/2
021/dec/10/software-flaw-most-critical-vulnerability-log-4-shell.
Accessed: 2023-06-20.

Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos.
Dowsing for overflows: A guided fuzzer to find buffer boundary violations.
In 22nd USENIX Security Symposium (USENIX Security 13), pages 49–64, Wash-
ington, D.C., August 2013. USENIX Association. ISBN 978-1-931971-03-4. URL
https://www.usenix.org/conference/usenixsecurity13/technical-sessi
ons/papers/haller.

Maurice H Halstead. Elements of Software Science (Operating and programming sys-
tems series). Elsevier Science Inc., 1977.

Hazim Hanif, Mohd Hairul Nizam Md Nasir, Mohd Faizal Ab Razak, Ahmad
Firdaus, and Nor Badrul Anuar. The rise of software vulnerability: Taxonomy
of software vulnerabilities detection and machine learning approaches. Journal
of Network and Computer Applications, page 103009, 2021.

156

https://doi.org/10.1145/3092566
https://www.sciencedirect.com/science/article/pii/S0167923606000807
https://www.sciencedirect.com/science/article/pii/S0167923606000807
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io
https://kubernetes.io
https://www.grammatech.com/
https://www.theguardian.com/technology/2021/dec/10/software-flaw-most-critical-vulnerability-log-4-shell
https://www.theguardian.com/technology/2021/dec/10/software-flaw-most-critical-vulnerability-log-4-shell
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/papers/haller
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/papers/haller


References

Nima Shiri Harzevili, Jiho Shin, Junjie Wang, Song Wang, and Nachiappan Na-
gappan. Automatic static bug detection for machine learning libraries: Are
we there yet? In 2023 IEEE 34th International Symposium on Software Reliability
Engineering (ISSRE), pages 795–806, 2023. doi: 10.1109/ISSRE59848.2023.00042.

David Hauzar and Jan Kofron. Framework for Static Analysis of PHP Appli-
cations. In John Tang Boyland, editor, 29th European Conference on Object-
Oriented Programming (ECOOP 2015), volume 37 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 689–711, Dagstuhl, Germany, 2015. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-939897-86-6. doi:
10.4230/LIPIcs.ECOOP.2015.689.

Sarah Heckman and Laurie Williams. A systematic literature review of actionable
alert identification techniques for automated static code analysis. Information
and Software Technology, 53(4):363 – 387, 2011. ISSN 0950-5849. doi: https:
//doi.org/10.1016/j.infsof.2010.12.007. URL http://www.sciencedirect.
com/science/article/pii/S0950584910002235. Special section: Software
Engineering track of the 24th Annual Symposium on Applied Computing.

S. Henry and D. Kafura. Software structure metrics based on information flow.
IEEE Transactions on Software Engineering, SE-7(5):510–518, 1981. doi: 10.1109/
TSE.1981.231113.

Seah Higgins. Finding and Fixing C++ Vulnerabilities, 2020. URL https://ww
w.securecoding.com/blog/finding-and-fixing-c-vulnerabilities/.
Accessed: 2023-05-04.

J.R. Horgan, S. London, and M.R. Lyu. Achieving software quality with testing
coverage measures. Computer, 27(9):60–69, 1994. doi: 10.1109/2.312032.

IBM. An architectural blueprint for autonomic computing. IBM White Paper, 31:
1–6, 2006.

IBM. IBM AppScan. https://www.ibm.com/security/application-security/
appscan, 2019. Accessed: 2019-05-30.

N. Imtiaz, A. Rahman, E. Farhana, and L. Williams. Challenges with Responding
to Static Analysis Tool Alerts. In 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), pages 245–249, 2019.

Nasif Imtiaz, Brendan Murphy, and Laurie Williams. How Do Developers Act on
Static Analysis Alerts? An Empirical Study of Coverity Usage. In 2019 IEEE
30th International Symposium on Software Reliability Engineering (ISSRE), pages
323–333, 2019. doi: 10.1109/ISSRE.2019.00040.

Xiangkun Jia, Chao Zhang, Purui Su, Yi Yang, Huafeng Huang, and Dengguo
Feng. Towards efficient heap overflow discovery. In 26th {USENIX} Security
Symposium ({USENIX} Security 17), pages 989–1006, 2017.

Yue Jiang, Bojan Cuki, Tim Menzies, and Nick Bartlow. Comparing design and
code metrics for software quality prediction. In Proceedings of the 4th Inter-
national Workshop on Predictor Models in Software Engineering, PROMISE ’08,

157

http://www.sciencedirect.com/science/article/pii/S0950584910002235
http://www.sciencedirect.com/science/article/pii/S0950584910002235
https://www.securecoding.com/blog/finding-and-fixing-c-vulnerabilities/
https://www.securecoding.com/blog/finding-and-fixing-c-vulnerabilities/
https://www.ibm.com/security/application-security/appscan
https://www.ibm.com/security/application-security/appscan


Chapter 9

page 11–18, New York, NY, USA, 2008. Association for Computing Machin-
ery. ISBN 9781605580364. doi: 10.1145/1370788.1370793. URL https:
//doi.org/10.1145/1370788.1370793.

JLint. JLint. http://jlint.sourceforge.net, 2002. Accessed: 2019-05-30.

M. Johns, B. Engelmann, and J. Posegga. Xssds: Server-side detection of cross-
site scripting attacks. In 2008 Annual Computer Security Applications Conference
(ACSAC), pages 335–344, Dec 2008. doi: 10.1109/ACSAC.2008.36.

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
Why Don’t Software Developers Use Static Analysis Tools to Find Bugs? In
Proceedings of the 2013 International Conference on Software Engineering, ICSE ’13,
pages 672–681, Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-3076-3.

N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static analysis tool for detecting
Web application vulnerabilities. In 2006 IEEE Symposium on Security and Privacy
(S P’06), pages 6 pp.–263, May 2006. doi: 10.1109/SP.2006.29.

Adam Kieyzun, Philip J. Guo, Karthick Jayaraman, and Michael D. Ernst. Auto-
matic Creation of SQL Injection and Cross-site Scripting Attacks. In Proceedings
of the 31st International Conference on Software Engineering, ICSE ’09, pages 199–
209, Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-1-4244-
3453-4. doi: 10.1109/ICSE.2009.5070521.

Seokmo Kim, R Young Chul Kim, and Young B Park. Software vulnerability
detection methodology combined with static and dynamic analysis. Wireless
Personal Communications, 89:777–793, 2016.

Deguang Kong, Quan Zheng, Chao Chen, Jianmei Shuai, and Ming Zhu. ISA:
A Source Code Static Vulnerability Detection System Based on Data Fusion.
In Proceedings of the 2Nd International Conference on Scalable Information Systems,
InfoScale ’07, pages 55:1–55:7, ICST, Brussels, Belgium, Belgium, 2007. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering). ISBN 978-1-59593-757-5. URL http://dl.acm.org/citation.cf
m?id=1366804.1366875.

Kendra Kratkiewicz and Richard Lippmann. Using a diagnostic corpus of c pro-
grams to evaluate buffer overflow detection by static analysis tools. In Proc. of
Workshop on the Evaluation of Software Defect Detection Tools, page 19, 2005.

N. P. Kropp, P. J. Koopman, and D. P. Siewiorek. Automated robustness testing
of off-the-shelf software components. In Digest of Papers. Twenty-Eighth Annual
International Symposium on Fault-Tolerant Computing (Cat. No.98CB36224), pages
230–239, June 1998. doi: 10.1109/FTCS.1998.689474.

Christian Krupitzer, Felix Maximilian Roth, Sebastian Vansyckel, Gregor Schiele,
and Christian Becker. A survey on engineering approaches for self-adaptive
systems. Pervasive and Mobile Computing, 17(PB):184–206, February 2015. ISSN
15741192. doi: 10.1016/j.pmcj.2014.09.009.

158

https://doi.org/10.1145/1370788.1370793
https://doi.org/10.1145/1370788.1370793
http://jlint.sourceforge.net
http://dl.acm.org/citation.cfm?id=1366804.1366875
http://dl.acm.org/citation.cfm?id=1366804.1366875


References

Zachary Kurtz. The Vectors of Code: On Machine Learning for Software. https:
//insights.sei.cmu.edu/sei_blog/2019/06/vectors-of-code-on-the-f
oundations-of-machine-learning-for-software.html, 2019. Accessed:
2019-06-11.

J Richard Landis and Gary G Koch. The measurement of observer agreement for
categorical data. biometrics, pages 159–174, 1977.

Triet H. M. Le, Huaming Chen, and M. Ali Babar. A Survey on Data-Driven
Software Vulnerability Assessment and Prioritization. ACM Comput. Surv., 55
(5), dec 2022. ISSN 0360-0300. doi: 10.1145/3529757. URL https://doi.org/
10.1145/3529757.

Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles. A
Survey of DevOps Concepts and Challenges. ACM Comput. Surv., 52(6), nov
2019. ISSN 0360-0300. doi: 10.1145/3359981. URL https://doi.org/10.1145/
3359981.

James Lewis and Martin Fowler. Microservices, 2014. URL https://martinfowl
er.com/articles/microservices.html. Accessed: 2018-11-09.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. VulDeePecker: A Deep Learning-Based System for
Vulnerability Detection. In Proceedings 2018 Network and Distributed System Se-
curity Symposium. Internet Society, 2018. doi: 10.14722/ndss.2018.23158. URL
https://doi.org/10.14722%2Fndss.2018.23158.

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen.
Sysevr: A framework for using deep learning to detect software vulnerabilities.
IEEE Transactions on Dependable and Secure Computing, 19(4):2244–2258, 2022.
doi: 10.1109/TDSC.2021.3051525.

B. Liu, L. Shi, Z. Cai, and M. Li. Software Vulnerability Discovery Techniques:
A Survey. In 2012 Fourth International Conference on Multimedia Information Net-
working and Security, pages 152–156. IEEE, Nov 2012. doi: 10.1109/MINES.20
12.202.

Bingchang Liu, Guozhu Meng, Wei Zou, Qi Gong, Feng Li, Min Lin, Dandan
Sun, Wei Huo, and Chao Zhang. A large-scale empirical study on vulner-
ability distribution within projects and the lessons learned. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering, ICSE
’20, page 1547–1559, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450371216. doi: 10.1145/3377811.3380923. URL
https://doi.org/10.1145/3377811.3380923.

Qixu Liu and Yuqing Zhang. Vrss: A new system for rating and scoring vul-
nerabilities. Computer Communications, 34(3):264–273, 2011. ISSN 0140-3664.
doi: https://doi.org/10.1016/j.comcom.2010.04.006. URL https:
//www.sciencedirect.com/science/article/pii/S014036641000174X.
Special Issue of Computer Communications on Information and Future Com-
munication Security.

159

https://insights.sei.cmu.edu/sei_blog/2019/06/vectors-of-code-on-the-foundations-of-machine-learning-for-software.html
https://insights.sei.cmu.edu/sei_blog/2019/06/vectors-of-code-on-the-foundations-of-machine-learning-for-software.html
https://insights.sei.cmu.edu/sei_blog/2019/06/vectors-of-code-on-the-foundations-of-machine-learning-for-software.html
https://doi.org/10.1145/3529757
https://doi.org/10.1145/3529757
https://doi.org/10.1145/3359981
https://doi.org/10.1145/3359981
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.14722%2Fndss.2018.23158
https://doi.org/10.1145/3377811.3380923
https://www.sciencedirect.com/science/article/pii/S014036641000174X
https://www.sciencedirect.com/science/article/pii/S014036641000174X


Chapter 9

Fábio Lopes, João Agnelo, César A. Teixeira, Nuno Laranjeiro, and Jorge
Bernardino. Automating orthogonal defect classification using machine learn-
ing algorithms. Future Generation Computer Systems, 102:932–947, 2020. ISSN
0167-739X. doi: https://doi.org/10.1016/j.future.2019.09.009. URL https:
//www.sciencedirect.com/science/article/pii/S0167739X19308283.

P. Louridas. Static code analysis. IEEE Software, 23(4):58–61, July 2006. ISSN
0740-7459. doi: 10.1109/MS.2006.114.

Frank D. Macías-Escrivá, Rodolfo Haber, Raul del Toro, and Vicente Hernandez.
Self-adaptive systems: A survey of current approaches, research challenges and
applications. Expert Systems with Applications, 40(18):7267 – 7279, 2013. ISSN
0957-4174. doi: https://doi.org/10.1016/j.eswa.2013.07.033.

P. K. Manadhata and J. M. Wing. An attack surface metric. IEEE Transactions on
Software Engineering, 37(3):371–386, May 2011. ISSN 0098-5589. doi: 10.1109/
TSE.2010.60.

G. V. Marconato, V. Nicomette, and M. Kaâniche. Security-related vulnerability
life cycle analysis. In 2012 7th International Conference on Risks and Security of
Internet and Systems (CRiSIS), pages 1–8, Oct 2012. doi: 10.1109/CRISIS.2012.
6378954.

Daniel Marjamäki. Cppcheck - A tool for static C/C++ code analysis, 2007. URL
http://cppcheck.sourceforge.net. Accessed: 2019-08-30.

J.P. Marques de Sá. Pattern Recognition. Springer-Verlag Berlin Heidelberg, 1 edi-
tion, 2001. ISBN 9783642566516.

Miquel Martínez, Juan-Carlos Ruiz, Nuno Antunes, David de Andrés, and Marco
Vieira. A multi-criteria analysis of benchmark results with expert support for
security tools. IEEE Transactions on Dependable and Secure Computing, 19(4):
2151–2164, 2022. doi: 10.1109/TDSC.2020.3048202.

Mark Maunder. Panama Papers: Email Hackable via WordPress, Docs Hackable
via Drupal, 2016. URL https://www.wordfence.com/blog/2016/04/panama-p
apers-wordpress-email-connection/. Accessed: 2023-06-22.

T. J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering,
SE-2(4):308–320, Dec 1976. ISSN 0098-5589. doi: 10.1109/TSE.1976.233837.

Gary McGraw. Software Security: Building Security In. Addison-Wesley Profes-
sional, 2006. ISBN 0321356705.

Nancy Mead, Eric Hough, and Ted Stehney II. Security Quality Requirements En-
gineering Technical Report. Technical Report CMU/SEI-2005-TR-009, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 2005. URL
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7657.

Ibéria Medeiros, Nuno F. Neves, and Miguel Correia. Automatic Detection and
Correction of Web Application Vulnerabilities Using Data Mining to Predict
False Positives. In Proceedings of the 23rd International Conference on World Wide

160

https://www.sciencedirect.com/science/article/pii/S0167739X19308283
https://www.sciencedirect.com/science/article/pii/S0167739X19308283
http://cppcheck.sourceforge.net
https://www.wordfence.com/blog/2016/04/panama-papers-wordpress-email-connection/
https://www.wordfence.com/blog/2016/04/panama-papers-wordpress-email-connection/
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7657


References

Web, WWW ’14, pages 63–74, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2744-2. doi: 10.1145/2566486.2568024.

Ibéria Medeiros, Nuno Neves, and Miguel Correia. Dekant: A static analysis
tool that learns to detect web application vulnerabilities. In Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA 2016, page
1–11, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450343909. doi: 10.1145/2931037.2931041. URL https://doi.org/10.114
5/2931037.2931041.

N. Medeiros, N. Ivaki, P. Costa, and M. Vieira. Software Metrics as Indicators of
Security Vulnerabilities. In 2017 IEEE 28th International Symposium on Software
Reliability Engineering (ISSRE), pages 216–227, Oct 2017. doi: 10.1109/ISSRE.20
17.11.

N. Medeiros, N. Ivaki, P. Costa, and M. Vieira. Vulnerable Code Detection Using
Software Metrics and Machine Learning. IEEE Access, 8:219174–219198, 2020.
doi: 10.1109/ACCESS.2020.3041181.

Nadia Medeiros, Naghmeh Ivaki, Pedro Costa, and Marco Vieira. Trustworthi-
ness models to categorize and prioritize code for security improvement. Jour-
nal of Systems and Software, 198:111621, 2023. ISSN 0164-1212. doi: https:
//doi.org/10.1016/j.jss.2023.111621. URL https://www.sciencedirect.
com/science/article/pii/S016412122300016X.

Nádia Medeiros, Naghmeh Ivaki, Pedro Costa, and Marco Vieira. An Approach
for Trustworthiness Benchmarking Using Software Metrics. In 2018 IEEE 23rd
Pacific Rim International Symposium on Dependable Computing (PRDC), pages 84–
93, 2018. doi: 10.1109/PRDC.2018.00019.

Syaeful Karim Meiliana, Harco Leslie Hendric Spits Warnars, Ford Lumban Gaol,
Edi Abdurachman, and Benfano Soewito. Software metrics for fault prediction
using machine learning approaches: A literature review with promise reposi-
tory dataset. In 2017 IEEE International Conference on Cybernetics and Computa-
tional Intelligence (CyberneticsCom), pages 19–23, 2017. doi: 10.1109/CYBERN
ETICSCOM.2017.8311708.

Peter Mell, Jonathan Spring, Dave Dugal, Srividya Ananthakrishna, Francesco
Casotto, Troy Fridley, Christopher Ganas, Arkadeep Kundu, Phillip Nordwall,
Vijayamurugan Pushpanathan, et al. Measuring the common vulnerability
scoring system base score equation. National Institute of Standards and Tech-
nology, Gaithersburg, MD, 2022.

N. Meng, Q. Wang, Q. Wu, and H. Mei. An Approach to Merge Results of Multi-
ple Static Analysis Tools (Short Paper). In 2008 The Eighth International Confer-
ence on Quality Software, pages 169–174, Aug 2008. doi: 10.1109/QSIC.2008.30.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space, 2013. URL https://arxiv.org/abs/
1301.3781.

161

https://doi.org/10.1145/2931037.2931041
https://doi.org/10.1145/2931037.2931041
https://www.sciencedirect.com/science/article/pii/S016412122300016X
https://www.sciencedirect.com/science/article/pii/S016412122300016X
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781


Chapter 9

Aleksandar Milenkoski, Marco Vieira, Samuel Kounev, Alberto Avritzer, and
Bryan D. Payne. Evaluating computer intrusion detection systems: A survey
of common practices. ACM Comput. Surv., 48(1), sep 2015. ISSN 0360-0300. doi:
10.1145/2808691. URL https://doi.org/10.1145/2808691.

MITRE. Common Weakness Enumeration - A Community-Developed List of
Software Weakness Types. https://cwe.mitre.org, 2006a. URL https:
//cwe.mitre.org. Accessed: 2021-05-03.

MITRE. CWE-119: Improper Restriction of Operations within the Bounds of a
Memory Buffer. https://cwe.mitre.org/data/definitions/119.html,
2006b. Accessed: 2021-05-03.

MITRE. CWE-120: Buffer Copy without Checking Size of Input (’Classic Buffer
Overflow’). https://cwe.mitre.org/data/definitions/120.html, 2006c.
Accessed: 2023-11-04.

MITRE. CWE-20: Improper Input Validation. https://cwe.mitre.org/data/d
efinitions/20.html, 2006d. Accessed: 2022-01-16.

MITRE. CWE-399: Resource Management Errors. https://cwe.mitre.org/data
/definitions/399.html, 2006e. Accessed: 2022-01-16.

MITRE. CWE-416: Use After Free. https://cwe.mitre.org/data/definitions
/416.html, 2006f. Accessed: 2022-05-19.

MITRE. CWE Top 25 Most Dangerous Software Weaknesses. https://cwe.mi
tre.org/top25/archive/2021/2021_cwe_top25.html, 2021. URL https:
//cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html. Accessed:
2023-11-10.

Nazila Mohammadi, Sachar Paulus, Mohamed Bishr, Andreas Metzger, Holger
Könnecke, Sandro Hartenstein, and Klaus Pohl. An analysis of software quality
attributes and their contribution to trustworthiness. In CLOSER 2013 - Proceed-
ings of the 3rd International Conference on Cloud Computing and Services Science,
Aachen, Germany, 8-10 May, 2013, pages 542–552. SciTePress, 2013.

Susan Moore. 7 top trends in cybersecurity for 2022, 2022. URL https://www.ga
rtner.com/en/articles/7-top-trends-in-cybersecurity-for-2022.

Susan Moore and Emma Keen. Gartner Forecasts Worldwide Information Secu-
rity Spending to Exceed $124 Billion in 2019. https://www.gartner.com/en
/newsroom/press-releases/2018-08-15-gartner-forecasts-worldwide-i
nformation-security-spending-to-exceed-124-billion-in-2019, 2018.
Accessed: 2019-06-03.

Patrick J Morrison, Rahul Pandita, Xusheng Xiao, Ram Chillarege, and Laurie
Williams. Are vulnerabilities discovered and resolved like other defects? Em-
pirical Software Engineering, 23(3):1383–1421, 2018.

Haralambos Mouratidis, Paolo Giorgini, and Gordon Manson. When security
meets software engineering: a case of modelling secure information systems.

162

https://doi.org/10.1145/2808691
https://cwe.mitre.org
https://cwe.mitre.org
https://cwe.mitre.org
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/399.html
https://cwe.mitre.org/data/definitions/399.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://www.gartner.com/en/articles/7-top-trends-in-cybersecurity-for-2022
https://www.gartner.com/en/articles/7-top-trends-in-cybersecurity-for-2022
https://www.gartner.com/en/newsroom/press-releases/2018-08-15-gartner-forecasts-worldwide-information-security-spending-to-exceed-124-billion-in-2019
https://www.gartner.com/en/newsroom/press-releases/2018-08-15-gartner-forecasts-worldwide-information-security-spending-to-exceed-124-billion-in-2019
https://www.gartner.com/en/newsroom/press-releases/2018-08-15-gartner-forecasts-worldwide-information-security-spending-to-exceed-124-billion-in-2019


References

Information Systems, 30(8):609–629, 2005. ISSN 0306-4379. doi: https://doi.or
g/10.1016/j.is.2004.06.002. URL https://www.sciencedirect.com/science/
article/pii/S0306437904000626.

Ian Muscat. Cyber Threats vs Vulnerabilities vs Risks. https://www.acunet
ix.com/blog/articles/cyber-threats-vulnerabilities-risks/, 2017.
Accessed: 2019-06-20.

T. Muske and A. Serebrenik. Survey of approaches for handling static analysis
alarms. In 2016 IEEE 16th International Working Conference on Source Code Anal-
ysis and Manipulation (SCAM), pages 157–166, Oct 2016. doi: 10.1109/SCAM.2
016.25.

Tukaram Muske and Uday P. Khedker. Efficient elimination of false positives
using static analysis. In 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE), pages 270–280, 2015. doi: 10.1109/ISSRE.2015.7
381820.

Laxman Muthiyah. Hacking Facebook Pages, 2015. URL https://thezerohack.
com/hacking-facebook-pages. Accessed: 2023-06-20.

Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks. Understanding source code
evolution using abstract syntax tree matching. SIGSOFT Softw. Eng. Notes, 30
(4):1–5, May 2005. ISSN 0163-5948. doi: 10.1145/1082983.1083143. URL
http://doi.acm.org/10.1145/1082983.1083143.

A. A. Neto and M. Vieira. Trustworthiness Benchmarking of Web Applications
Using Static Code Analysis. In 2011 Sixth International Conference on Availability,
Reliability and Security, pages 224–229, Aug 2011. doi: 10.1109/ARES.2011.37.

N. Neves, J. Antunes, M. Correia, P. Verissimo, and R. Neves. Using attack in-
jection to discover new vulnerabilities. In International Conference on Dependable
Systems and Networks (DSN’06), pages 457–466, 2006.

Yu Nong, Haipeng Cai, Pengfei Ye, Li Li, and Feng Chen. Evaluating and compar-
ing memory error vulnerability detectors. Information and Software Technology,
page 106614, 2021.

P. Nunes, I. Medeiros, J. Fonseca, N. Neves, M. Correia, and M. Vieira. On Com-
bining Diverse Static Analysis Tools for Web Security: An Empirical Study.
In 2017 13th European Dependable Computing Conference (EDCC), pages 121–128,
Sep. 2017. doi: 10.1109/EDCC.2017.16.

P. Nunes, I. Medeiros, J. C. Fonseca, N. Neves, M. Correia, and M. Vieira. Bench-
marking Static Analysis Tools for Web Security. IEEE Transactions on Reliability,
67(3):1159–1175, Sep. 2018. ISSN 0018-9529. doi: 10.1109/TR.2018.2839339.

P. J. C. Nunes, J. Fonseca, and M. Vieira. phpSAFE: A Security Analysis Tool
for OOP Web Application Plugins. In 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pages 299–306, June 2015. doi:
10.1109/DSN.2015.16.

163

https://www.sciencedirect.com/science/article/pii/S0306437904000626
https://www.sciencedirect.com/science/article/pii/S0306437904000626
https://www.acunetix.com/blog/articles/cyber-threats-vulnerabilities-risks/
https://www.acunetix.com/blog/articles/cyber-threats-vulnerabilities-risks/
https://thezerohack.com/hacking-facebook-pages
https://thezerohack.com/hacking-facebook-pages
http://doi.acm.org/10.1145/1082983.1083143


Chapter 9

The International Consortium of Investigative Journalists. Giant Leak of Offshore
Financial Records Exposes Global Array of Crime and Corruption, 2016. URL
https://www.occrp.org/en/panamapapers/overview/intro/. Accessed:
2023-06-22.

National Institute of Standards and Technology (NIST. National Vulnerability
Database, 2005. URL https://nvd.nist.gov. Accessed: 2021-08-24.

National Institute of Standards and Technology. National vulnerability database
- vulnerabilities. https://nvd.nist.gov/vuln, 2020. Accessed: 2020-11-21.

Tom Okman. Cybersecurity predictions for 2022, 2022. URL https://www.forb
es.com/sites/forbestechcouncil/2022/03/11/cybersecurity-predictions
-for-2022/?sh=22aca7257749.

C. Pahl and B. Lee. Containers and clusters for edge cloud architectures – a tech-
nology review. In 2015 3rd International Conference on Future Internet of Things
and Cloud, pages 379–386, Aug 2015. doi: 10.1109/FiCloud.2015.35.

Y. Pang, X. Xue, and A. S. Namin. Predicting Vulnerable Software Components
through N-Gram Analysis and Statistical Feature Selection. In 2015 IEEE 14th
International Conference on Machine Learning and Applications (ICMLA), pages
543–548, Dec 2015. doi: 10.1109/ICMLA.2015.99.

Parasoft. Parasoft cppTest - C/C++ Static Code Analysis, 2010. URL https:
//www.parasoft.com/products/parasoft-c-ctest/c-c-static-analysis/.
Accessed: 2021-05-11.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Journal
of machine learning research, 12(Oct):2825–2830, 2011.

Xutan Peng, Yipeng Zhangira, Jingfeng Yang, and Mark Stevenson. On the vul-
nerabilities of text-to-sql models. In 2023 IEEE 34th International Symposium on
Software Reliability Engineering (ISSRE), pages 1–12, 2023. doi: 10.1109/ISSRE5
9848.2023.00047.

Sten Pittet. Learn Continuous Deployment with Bitbucket Pipelines, 2023. URL
https://www.atlassian.com/devops/continuous-delivery-tutorials/con
tinuous-deployment-tutorial. Accessed: 2023-04-24.

PMD. PMD - An extensible cross-language static code analyzer. https://pmd.gi
thub.io/, 2004. Accessed: 2019-05-30.

MC Prasad, Lilly Florence, and Arti Arya. A study on software metrics based
software defect prediction using data mining and machine learning techniques.
International Journal of Database Theory and Application, 8(3):179–190, 2015.

Luís Prates, João Faustino, Miguel Silva, and Rúben Pereira. DevSecOps Metrics.
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Appendix A

ML to Combine Security
Vulnerability Alerts from SATs

Security risks, business needs, and industry changes are listed as the top three
drivers for security spending according to a survey conducted by Gartner in
2017 [Moore and Keen, 2018]. At the same time, the implementation of the Gen-
eral Data Protection Regulation (GDPR) and other security and privacy regula-
tions are driving change and growth in the security services market [Voigt and
Bussche, 2017]. For example, among many other aspects, such regulations re-
quire companies to report personal data breaches, otherwise they can get fines
that may compromise their revenue. The problem is that software systems are
often deployed with vulnerabilities that can open the door for successful attacks.

A software vulnerability is a weakness in a system, and it represents a security
risk. When exploited, it may lead to an intrusion [Muscat, 2017] with severe con-
sequences, including financial and data losses. There are many techniques to pre-
vent software vulnerabilities, including best coding practices and vulnerability
detection approaches and tools [Liu et al., 2012]. For example, security require-
ments can be elicited and prioritized using the Security Quality Requirements
Engineering (SQUARE) methodology [Mead et al., 2005]; during the application
development phase, software developers can use guidelines such as the OWASP
secure coding practices to avoid introducing vulnerabilities [Turpin, 2010]; and
when the code source is ready, either static (such as SCA) or dynamic (such as
penetration testing) approaches can be used.

SCA is one of the most used design-time techniques to detect vulnerabilities,
especially through SATs. Many different automated SATs are available in the
field (including open-source and commercial ones). However, although practice
shows that SATs are typically able to achieve a high vulnerability detection cov-
erage, they usually report a high number of false alarms [Chess and West, 2007],
also known as FPs. This happens because the SATs have to make approxima-
tions depending on the detection approach being used (such as finding patterns
in the source code) and on the size and complexity of the code being analyzed.
As the penalty for not detecting a vulnerability may be high, the preference is to
not lose vulnerabilities, which may naturally lead to an increase in the number of
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FPs [Chess and McGraw, 2004].

An obvious approach to reduce the number of FNs (i.e., unreported vulnerabili-
ties) is to combine the output of diverse SATs. Combination heuristics that sug-
gest raising an alert when one of a set of SATs reports an issue was already ad-
dressed in the literature [Algaith et al., 2018]. However, this leads to a significant
increase in the FPs as it multiplies the potential sources for vulnerability detection
mistakes. Hence, alternative techniques are needed to reduce false alerts.

ML techniques have been used in several areas, including software engineering.
Their application reveals good results for classification problems, and some stud-
ies have already used ML to detect vulnerabilities [Alves et al., 2016b; Russell
et al., 2018; Walden et al., 2014]. However, to the best of our knowledge, no study
has explored the use of SCA outputs as input for the ML classifiers.

The contribution is twofold:

• Explore the use of ML classification algorithms to detect software vulner-
abilities using the output of different SATs, aiming at reducing the num-
ber of FPs without compromising the ability to detect vulnerabilities;

• Validate the possibility of creating ranked lists of vulnerable source code
files using the output of SATs to guide the analysis by software develop-
ment teams. This is particularly important in projects with a high number
of files, as well as with time and budget constraints, which is the reality of
most projects.

To support our study, we use a dataset of vulnerabilities detected by five SATs on
a large set of WordPress plugins developed in PHP [Nunes et al., 2017]. We fo-
cus the study on two of the most critical vulnerability types for web application
security, SQLi and XSS [van der Stock et al., 2017]. Compared with the tradi-
tional 1ooN heuristic (where an alert is raised when 1 of N detectors raises an
alarm [Algaith et al., 2018]), results show an improvement for the case of SQLi
vulnerabilities (namely a reduction in the false alarms). On the other hand, for
XSS vulnerabilities, the results using ML are equal to the ones obtained using
1ooN. Additionally, results show that it is possible to create a ranking of the
source code files considering an estimation of the potential number of vulner-
abilities in each file, as reported by the multiple SATs (a clear improvement when
compared to the use of the alerts raised by any SAT individually). In practice,
this information can be used by the developers to prioritize their work and focus
on the files with more vulnerabilities.

The rest of this appendix is structured as follows. Section A.1 presents back-
ground and related work. The exploratory study to predict vulnerabilities from
the SATs output is presented in Section A.2. The approach for ranking vulnera-
ble files is presented in Section A.3. Section A.4 discusses threats to validity, and
Section A.5 concludes this study and puts forward ideas for future work.
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A.1 Background and Related Work

This section presents background concepts and related work on vulnerability de-
tection using SCA and ML algorithms.

A.1.1 Vulnerability Detection and Static Code Analysis

There are several techniques to detect software vulnerabilities. A survey by Liu
et al. [Liu et al., 2012] details four of the most used ones: SCA, fuzzing, SPT, and
VDM. SCA is the “evaluation of a system or component without the program ex-
ecution” [Chess and West, 2007]; fuzzing is a randomized testing technique that
generates random character streams for the tests; SPT simulates attacks of ma-
licious users; and VDMs are based on software reliability models, and “specify
the general form of the dependence of the vulnerability discovery process on the
principal factors that affect it”. The present study focuses on static code analysis
as it does not require the execution of the software to detect vulnerabilities and is
typically able to achieve a high detection rate.

SATs are used to decrease the time needed for security code reviews, which may
involve many people and thus be very expensive [Louridas, 2006]. Such tools
are able to cover the entire source code and can thus be used early in the SDLC.
The outcome of the SATs are alerts, reporting issues of diverse types, such as
memory errors, resource leaks, violation of APIs or framework rules, exceptions,
encapsulation violations, race conditions, and security vulnerabilities.

Different SCA techniques can be used to identify potential issues in the
code [Austin et al., 2013]. The simplest one is to scan the source code for simple
patterns [Chess and McGraw, 2004]: if a piece of code matches a rule that indi-
cates a problem, then an alert is raised. Data flow analysis is a technique [Ayewah
et al., 2008] where the SAT uses the possible values that variables can have to
evaluate if an exception (e.g., a null pointer exception) can happen at runtime. A
Java example can be seen below, where the third line will raise an exception in
case the variable g is null.

1 if (g != null)
2 paintScrollBars(g, colors);
3 g.dispose ();

A technique used for detecting vulnerabilities is taint propagation. It is a data
flow technique that involves tracking tainted sources, such as user inputs, and
validating if specific computations are affected by them [Chess and West, 2007].
SATs use taint propagation to detect SQLi and XSS vulnerabilities. When a SQLi
vulnerability is exploited, a SQL statement is altered, and an attacker can read or
modify the database content. An example of a SQL construct that contains a SQLi
vulnerability can be seen below:
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1 <?php
2 $email = $_GET[’email ’];
3 $password = $_GET[’password ’];
4

5 $mysqli = new mysqli(’localhost ’, ’dbuser ’,
6 ’dbpasswd ’, ’sql_injection_example ’);
7 $sql = "SELECT * FROM users WHERE " .
8 "username=$email AND password=$password";
9

10 if ($result = $mysqli ->query($sql)) { /* code */ }
11 ?>

For example, if the malicious string ’ OR 1=1 – is used by the attacker instead
of an actual email, the expression will be evaluated as true due to the 1 = 1 com-
parison (tautology). As a consequence, the attacker may gain access to the system
if such construct is used to support authentication. To avoid this vulnerability, the
inputs should be validated, parameterized queries should be used, and the user
data should be sanitized.

A XSS vulnerability allows attackers to inject malicious client-side scripts into
web pages that will be viewed by other users. Such vulnerabilities are due to
the lack of proper validation or escaping of the user-supplied data and are found
in around two-thirds of all web applications [van der Stock et al., 2017]. When
this vulnerability is successfully exploited, the attacker is able to execute scripts
remotely in the user web browser.

SQLi and XSS attacks target vulnerable SSs [Kieyzun et al., 2009]. A Sensitive
Sink (SS) is a command that uses external data (e.g., data provided by the user),
also called an entry point. For instance, a SQL query that contains entry point(s)
is a SS. If one of those entry points is unsafe, it can lead to a SQLi vulnerability.
The same happens for XSS vulnerabilities. For instance, the PHP command echo
“$name $city” has two entry points that may lead to two distinct XSS vulnera-
bilities [Nunes et al., 2018].

Several studies compared tools to detect vulnerabilities. For example, Antunes et.
al. compared the effectiveness of four penetration testing tools with three SATs
for detecting SQLi vulnerabilities [Antunes and Vieira, 2009b]. The tests were per-
formed on top of vulnerable and non-vulnerable web services, and results show
that SATs are able to achieve a higher coverage of vulnerabilities. Nevertheless,
both SATs and penetration testing tools reported a considerable number of FPs.
Other studies on the topic include the comparison of a SAT with a penetration
testing tool [Scandariato et al., 2013], and the comparison of different vulnerabil-
ity detection techniques [Austin and Williams, 2011].

Algaith et. al. combined the output of different SATs to decrease the FNs [Algaith
et al., 2018]. The results were obtained from the alerts raised by five SATs on a
large set of WordPress plugins developed in PHP. Three combination approaches
to identify SQLi and XSS vulnerabilities were used: 1) 1-out-of-N: raises the alert
when any of the tools report the alert; 2) N-out-of-N: raises the alert when all
the tools report the alert; and 3) simple majority: raises the alert when the simple
majority of the tools reports the alert. Results show that N-out-of-N has a better
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specificity than 1-out-of-N or simple majority, at the cost of a low recall. The heuris-
tic with the best performance regarding the detected vulnerabilities is 1-out-of-N,
resulting in a very high recall. On the other hand, the number of FPs increases,
which reduces the precision. The main limitation of this approach is the inability
to explore different performance trade-offs, as basic and rigid combination rules
are followed.

A.1.2 Machine Learning for Vulnerability Detection

In recent years, ML algorithms have been successfully used in a variety of com-
plex problems, including vulnerability detection. Such algorithms can find com-
plex patterns in the data and learn from them without relying on a predetermined
model. Afterward, they can be used to make predictions on unseen data based
on what was learned.

Considering the ML terminology, a Sensitive Sink (SS) represents a sample in the
dataset and contains a label. In this case, two values are possible: actual vulnera-
bility (positive) or not (negative). The output of the SATs for each SS are consid-
ered as features, and they are part of the sample. Thus, the vulnerability detec-
tion problem can be considered as a classification problem, which is concerned
with separating data into distinct classes. Examples of classification algorithms
include DT and SVM [Alpaydin, 2014].

As the complexity of any model depends on the number of inputs, reducing di-
mensionality (e.g., Feature Selection/Extraction) may be important. Additionally, to
help algorithms to cope with the infeasibility of very large datasets, Instance Se-
lection techniques (e.g., sampling, boosting [Alpaydin, 2014]) can be used. To deal
with imbalanced datasets, which may compromise the performance of the algo-
rithms on the minority classes, there are specific solutions such as Undersampling
and Oversampling.

To get a realistic estimate of the performance of a model, two main sets of data
are normally used: train and test. The training set is used for training the model,
while the testing set is used to estimate its generalization error. This division is
not trivial, as it may inadvertently influence the performance/representativeness
of the model. Thus, several techniques have been proposed over the years (e.g.,
Partition/Leave-one-out, Bootstrap Methods [Marques de Sá, 2001]).

Various studies have used ML to predict software vulnerabilities. An example
is the study by Walden et al. [2014], where software metrics (such as the metrics
CK [Chidamber and Kemerer, 1994]) and text mining were used as input for the
RF ML algorithm. Datasets with software metrics and text mining data were
created using three PHP applications (Drupal, Moodle, and PHPMyAdmin). The
authors analyzed both recall and inspection ratios, and results show that a higher
recall is obtained when using text mining data than when considering software
metrics.

Alves et al. [2016b] used several ML classifiers (Naïve Bayes, Decision Trees, Random
Forest, and Logistic Regression) to predict vulnerabilities in C/C++ projects using
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datasets of software metrics. A dataset contains metrics obtained both before and
after applying the patches for a number of vulnerabilities previously reported in
the CVE repository. The following projects were considered: Mozilla, httpd, glibc,
Linux Kernel, and Xen Hypervisor. In general, results showed a low precision (from
0.32% to 30.50%) and a wide range for recall (from 0.36% to 100.0%).

A.2 Exploratory Study of ML Techniques

This section presents the exploratory study on the use of ML classification algo-
rithms to detect software vulnerabilities using the output of different SATs. The
goal is to reduce the number of FPs without compromising the ability to detect
vulnerabilities. We present the dataset used, introduce the ML algorithms tested,
and discuss the results.

Figure A.1 depicts the overall process. As shown, the SATs are run in the same
source code. Then, the alerts are combined in a dataset, where each sample refers
to a SS and contains the output of each SAT (alert raised or not). The ML algo-
rithms are run using the dataset, and a prediction (either as vulnerable or non-
vulnerable/neutral) is given to each sample in the dataset. The performance of
each ML model is analyzed considering precision, recall, and F-Measure metrics.

AlertsSAT 1

Dataset
AlertsSAT 2

AlertsSAT N

Source Code

.

.

.

ML
Algorithms

Prediction 
(Vulnerable /

Non Vulnerable)

Figure A.1: Overall methodology to combine diverse SATs

A.2.1 Datasets

Two datasets were considered in this study, one with known SQLi vulnerabili-
ties and the other with XSS vulnerabilities [WPScan, 2014]. In practice, the two
datasets are based on the alerts raised by five different SATs that were used to
analyze 134 WordPress plugins developed in PHP. WordPress is a widely used
CMS and many websites of all sizes are built with it. phpSAFE [Nunes et al.,
2015], RIPS [Dahse and Holz, 2014], WAP [Medeiros et al., 2014], Pixy [Jovanovic
et al., 2006], WeVerca [Hauzar and Kofron, 2015]. They are well-known SATs for
PHP and quite referenced in the literature as security review tools. The datasets
have been created by Nunes et al. and first used in [Nunes et al., 2017]. In our
study, we considered their updated version from [Nunes et al., 2018].
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Figure A.2: Representation of the dataset with samples and features

Each sample (line) in the datasets corresponds to a SQLi or XSS sensitive sink
and contains the following information: a) file name of the SS, b) line number of
the SS, c) report of the five SATs (either 1 when an alert was reported by the SAT
or 0 otherwise), and d) label that indicates if the SS contains real a vulnerability
or not. A representation of the datasets can be seen in Figure A.2. The original
datasets (from Nunes et al. [Nunes et al., 2018]) include information for all SSs in
the plugins, being they vulnerable or not.

The WordPress plugins have 466,164 Logical Lines of Code (LLOC), and the num-
ber of SSs is 5,216 for SQLi, and 25,290 for XSS. From the datasets provided by
Nunes et al., we removed the vulnerable SSs that were not reported by any SAT,
as they could lead the ML algorithms to wrong predictions. In practice, these
SSs were originally identified as vulnerable not because they were reported by
static analysis but after either a manual review process or through the report of
the vulnerability on the WPScan Vulnerability Database (WPVD) [WPScan, 2014]
(which makes them out of the scope of this study). The non-vulnerable SSs that
were not reported by any tool were also removed, as they do not add any relevant
information to the ML models and their elimination allows reducing the time/-
model complexity. Hence, the filtered datasets contain only the samples (SSs) that
have at least one alert raised by one of the five SATs. Additionally, the alerts re-
garding plugins that are not available in the WordPress repository anymore were
also removed (20 for SQLi and 9 for XSS).

As the samples (sensitive sinks) in the datasets are already classified with two
labels (vulnerable/non-vulnerable), we can classify each alert reported by each
SAT according to the following: a) True Negative (TN): a SS not reported by a
SAT as a vulnerability and that is not an actual vulnerability (not vulnerable code);
b) False Positive (FP): a SS reported by a SAT as a vulnerability that is not an
actual vulnerability (not vulnerable code); c) False Negative (FN): a SS not reported
by a SAT as a vulnerability that is an actual vulnerability (vulnerable code); and d)
True Positive (TP): a SS reported by a SAT as a vulnerability that is an actual
vulnerability (vulnerable code).
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Table A.1: Algorithms and Techniques

Parameter Values

Feature Selection Variance, Correlation

Sampling
Random under/oversampling, Synthetic Minority

Over-Sampling Technique (SMOTE)

Algorithms
DT, NN,

RF, SVM, Gradient Boosting (GB), Bagging

The datasets that resulted from the filtering discussed above contain 928 SQLi
samples (670 (72.20%) vulnerable SSs and 258 (27.80%) non-vulnerable SSs),
and 5,968 XSS samples (4,930 (82.61%) vulnerable SSs and 1,038 (17.39%) non-
vulnerable SSs). The datasets are thus unbalanced, as there are many more
samples in the positive class (vulnerable SSs) than in the negative one (non-
vulnerable SSs). Hence, sampling techniques should be considered before run-
ning the ML algorithms. Normalization of the features is not needed as they are
all in the same scale: they either represent the presence of an alert in a given SS
(value 1) or not (value 0).

It is important to mention that, although the SATs report alerts for a particular
type of vulnerability, it can not be said that each TP corresponds to a single vul-
nerability. In fact, an alert may correspond to more than one vulnerability if the
SS uses more than one entry point (as in the SQL example in Section A.1). The re-
sults presented in this study refer to the vulnerable SSs and not the total number
of vulnerabilities, as the SATs report one occurrence for each vulnerable SSs.

A.2.2 Machine Learning Algorithms and Techniques

Several ML algorithms were initially experimented using the Propheticus tool [R.
Campos et al., 2019], and the ones that showed more promising results were stud-
ied in more detail considering a large list of configurations, as described in this
section.

The list of algorithms used in the study, as well as the feature selection and sam-
pling techniques applied are listed in Table A.1 (details on each technique can be
found in [Alpaydin, 2014]). Although not all the possible parameter configura-
tions are listed in the table (due to space constraints), they can be easily obtained
by combining the different values: for example, applying variance and correlation
at the same time for feature selection, or random undersampling and Synthetic Mi-
nority Over-Sampling Technique (SMOTE) for sampling. The values used for the
hyperparameters of each algorithm can be seen in Table A.2. Their values were
also combined and submitted to the Propheticus tool. For example, for the DT
algorithm, we have 24 configurations (as three of the hyperparameters have 2
possible values and one has 3 possible values: 23 ∗ 3 = 24).
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Table A.2: Algorithms’ Hyperparameters

Alg. Hyperparameters

DT
criter.: [gini, entropy], min_samp_split: [.001, 2],

max_feat.: [.1, .55, 1.0], min_samp_leaf: [.001, 1]

NN

hidden_layers: [(100,1), (100, 20), (100, 20, 10)],

activation: [logistic, relu], solver: [sgd, adam],

learning_rate: [constant, invscaling, adpative]

RF

estimators: [10, 50, 100, 200], max_feat.: [.1, .55, 1.0],

criter.: [gini], min_samp_leaf: [.001, 1],

min_samp_split: [.001, 2], bootstrap: [1, 0]

SVM
kernel: [linear, polynomial], C: [.01, .1, 1],

gamma: [.1, 1], degree: [2]

GB

estimators: [50, 100, 200], learning rate: [1, .1],

min_samp_leaf: [.001, 1], max_feat.: [.1, .55, 1.0],

min_samp_split: [.001, 2]

Bagging
max_features: [.1, .55, 1.0], bootstrap: [1, 0],

estimators: [50, 100, 200]

To evaluate the results, the datasets were divided into training and testing sets.
The training set was used to train the model, while the testing set was used to
evaluate it. The method to split the datasets into training and testing is Cross
Validation (CV). It consists of dividing the datasets in k folds and using k − 1
for training and the remaining one for testing. Then, one of the folds used for
training is replaced by one used for testing, and the model is trained and tested
once again. After k iterations, the whole dataset has been used for training and
testing [Alpaydin, 2014]. This process aims at avoiding problems like overfitting
or selection bias. Note that each of the folds should be divided in a manner that
the proportion of the classes remains approximately the same as in the original
dataset. This process is called stratification [Alpaydin, 2014]. In our study, stratifi-
cation aimed at maintaining not only the proportion of the classes in each of the
folds (5-folds were used) but also the proportion of features (SATs in this case).
For instance, if a set of SSs is reported as vulnerable by only one SATs, we make
sure that these SSs are evenly distributed across the folds.

To add variability to the results, the fold partitioning was repeated 5 times per
configuration tested. Each partition is called a seed, and this is used to avoid
that a particular configuration presents the best results by chance. Consequently,
the results reported by the Propheticus tool are the values multiplied by the seed
number (5 in this case). For example, if the number of FPs is 50, the reported
number is 50 ∗ seed_number = 50 ∗ 5 = 250. It is important to notice that this does
not affect the conclusions of the study, as the performance metrics are presented
as proportions.
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Precision, Recall, and F-Measure are the metrics used to characterize the perfor-
mance of each model. Precision represents the ratio of TP among all the identified
values, and it can be calculated using the equation precision = TP/(TP + FP).
Recall represents the ratio of identifying the TP among all the positive values,
and it can be calculated using the equation recall = TP/(TP + FN). F-Measure
is the harmonic mean of precision and recall, and it can be calculated using the
equation F − Measure = 2 ∗ precision∗recall

precision+recall .

It is important to emphasize that, when computing the performance metrics for
each model, we take into account all the SSs, including the ones for which no
SAT alerts were generated (and that were removed from the datasets to reduce
time/model complexity, as explained in Section A.2.1). This allows comparing
the results of our study with other approaches, namely with the results reported
by Algaith et al. [2018] for the original datasets from Nunes et al. [2018].

A.2.3 Results and Discussion

This section presents the results obtained. We start by presenting the results using
the 1ooN diversity heuristic. Then, we present an analysis of the dataset using
Venn diagrams. Finally, we present the results of the ML algorithms and compare
them with the ones obtained with the 1ooN heuristic.

Combination of SATs using the 1ooN Heuristic

Algaith et al. [2018] proposed a set of state-of-the-art heuristics to combine the
output of SATs for vulnerability detection: a) 1ooN: raises an alert when any of
the SATs raises the alert; b) NooN: raises an alert when all the SATs raises the
alert; and c) Simple Majority Voting: raises an alert when the simple majority of
the SATs raises the alert. As baseline for our exploratory study, we consider the
1ooN heuristic, with the number (N) of SATs equal to 5. According to Algaith
et al. [2018], this heuristic has the best performance when considering recall, as the
number of FNs is the lowest one. Both simple majority and NooN have a higher
precision, but that comes at the cost of a significant decrease in the number of
detected vulnerabilities.

The detailed 1ooN results are presented in Table A.3, and the respective perfor-
mance metrics (precision, recall, and F-measure) are presented in Table A.4. Note
that, the numbers slightly differ from the Algaith et al. paper [Algaith et al., 2018]
as we removed some out-of-scope samples from the dataset (as discussed in Sec-
tion A.2.1). As it can be noticed, the recall for both vulnerability types is high
(0.931 for SQLi and 0.999 for XSS). This is related to the fact that almost all known
vulnerabilities are identified by at least one of the SATs. Additionally, a good pre-
cision is obtained for both vulnerability types (0.722 for SQLi and 0.826 for XSS).
As the number of FPs is higher than the number of TNs, the precision values are
not as good as the recall values. This is due to the higher number of FPs raised by
the use of this heuristic (that joins together the FPs of all the SATs). Although the
performance metrics are already quite satisfactory, decreasing the number of the
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FPs is obviously the most promising approach for improving the overall results
(Precision and F-Measure).

Table A.3: Results using the 1ooN diversity heuristic for XSS and SQLi vulnera-
bilities

TN FP FN TP

SQLi 94.66%
(4,570)

5.34%
(258)

6.94%
(50)

93.06%
(670)

XSS 95.18%
(20,505)

4.82%
(1,038)

0.10%
(5)

99.90%
(4,930)

Table A.4: Metrics for the 1ooN diversity heuristic for XSS and SQLi vulnerabili-
ties

Precision Recall F-Measure
SQLi 0.722 0.931 0.813
XSS 0.826 0.999 0.904

Analysis of the SATs Outputs

As the metrics obtained when using the 1ooN heuristic are already very good, it
is important to analyze the relationship among the alerts raised by the several
SATs. To this end, we generated Venn diagrams for both TP and FP, which allow
understanding the number of vulnerabilities that are detected exclusively by one
SAT or by multiple SATs. Figure A.3 and Figure A.4 show the Venn diagrams for
SQLi and XSS vulnerabilities, respectively.

Figure A.3: Venn Diagrams of True Positives (left) and False Positives (right) for
SQLi vulnerabilities

When analyzing the SQLi Venn diagrams, it can be noticed that only one true
vulnerability is reported by all the SATs. Additionally, phpSAFE is the SAT that
identified the largest number of TPs, but it is also the responsible for most of the
FPs. Moreover, Pixy does not detect any vulnerabilities that are not reported by
the remaining SATs. Overall, we can see that the different SATs complement well
each other with respect to TPs. On the other hand, when it comes to FPs, a big
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Figure A.4: Venn Diagrams of True Positives (left) and False Positives (right) for
XSS vulnerabilities

overlap can be noticed. In fact, all the FPs reported by WAP, Pixy, and WeVerca are
also reported by at least another SAT (this is why their region is equal to zero in
the diagram). This means that the FPs are shared by at least two SATs. Another
observation is that no TP is reported in the intersection of RIPS-WeVerca, but a
high number of FPs are observed (23).

Regarding XSS, a higher number of vulnerabilities (54) are detected by all SATs,
when compared to SQLi. RIPS is the SAT with the largest number of exclusive
alerts for both TPs (1,470) and FPs (490). As noticed for SQLi, Pixy does not report
any TP that is not reported by any of the remaining SATs. Additionally, neither
Pixy nor WeVerca report any FP exclusively.

The likelihood of an alert being a FP is smaller when more SATs report it. The
diagrams show that no FP is reported by all SATs for both SQLi and XSS vul-
nerabilities. For SQLi, the 4-SAT intersection also does not contain any FP, and
almost all the intersection groups of three SATs do not contain FPs (except for the
RIPS-Pixy-WeVerca intersection). Although the number of FPs for SQLi is small
in the 4-SAT and 3-SAT intersection groups, the same conclusion cannot be made
for the XSS vulnerabilities. This may be related to the size of the datasets: as there
are more XSS than SQLi samples, the likelihood of the group intersections (alerts
reported by the several tools) having items is higher (the number of groups is the
same). Another possible explanation is related to the nature of the problem: SATs
are usually more prepared for SQLi than for XSSs vulnerabilities.

Using Machine Learning

As presented before, the baseline results using the 1ooN heuristic are already
very good, as most of the true vulnerabilities are detected with a reasonable rate
of FPs. Still, the main possibility for improvement is on the reduction of the FPs, a
challenging problem to be addressed by applying ML techniques. Note that this
approach also allows considering trade-offs (such as reducing the number of FPs
at the cost of missing some TPs) that are not possible using the 1ooN heuristic.

The results obtained are represented in the form of a Confusion Matrix (CM),
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which is a graphical representation of both the actual value (rows) and the pre-
dicted value (columns). Figures A.5 and A.6 present two examples that we will
discuss later in this study. As shown, the negative values (non-vulnerable - TNs
and FPs) are presented in the first row, while the positive values (vulnerable - FNs
and TPs) are presented in the second row. The cells contain both the percentage
and the count of samples. For space reasons, in the next paragraphs we will dis-
cuss only the results of the best ML algorithm configurations for both SQLi and
XSS vulnerabilities (detailed results can be found online1).

As mentioned in section A.2.2, the results are multiplied by 5 (due to the seed
number used in the study). Also, even though we have removed from the dataset
the non-vulnerable SSs and the vulnerable SSs without SAT alerts (to reduce com-
plexity and because vulnerable SSs without SAT alerts are not useful in the con-
text of this study), the results reported consider all the existing SSs. This allows
creating the CMs and also comparing them with the results obtained with the
1ooN heuristic.

Figure A.5 presents the CM for the best results obtained for SQLi vulnerabilities.
In this case, the Bagging algorithm is used, with no sampling technique. The
performance metrics for this case are: precision of 0.737, recall of 0.931, and F-
measure of 0.822. These results are slightly better than the 1ooN baseline (an
increase in the precision, from 0.722 to 0.737, while maintaining exactly the same
recall), which is due to the decrease of 18.4 FPs (that corresponds to 7.08% less
false alarms than in the 1ooN baseline - decimal values related to the fact that we
average the FPs according to the number of seeds/executions). Consequently, the
F-measure also increases (from 0.813 to 0.822).

Venn diagrams based on the predictions were also created to understand and in-
terpret the improvements (not included here due to space constraints, but avail-
able online (see footnote 1). Comparing the intersection regions of the different
diagrams (Figure A.3 and the Venn based on the predictions) allows understand-
ing in which intersection the improvements are noticed. For example, we ob-
served a reduction in the FPs, from 23 to 4.6, in the RIPS-WeVerca intersection/-
combination. Analyzing the Venn diagram for TPs, we see that no TP is detected
exclusively by RIPS and WeVerca. In general, we can conclude that the Bagging
algorithm is able to learn this pattern, and that is why it is able to provide better
results than the 1ooN heuristic.

Figure A.6 presents the CM of the best configuration for XSS. This configuration
uses the RF algorithm with no sampling technique. The performance metrics in
this case are: precision of 0.826, recall of 0.999, and F-measure of 0.904. Compar-
ing with the 1ooN heuristic, we can see that the results are the same (this is also
confirmed by the analysis of the different Venn diagrams). This happens because
the ML algorithm classified all the SSs having any SAT alert as vulnerable. Con-
sequently, no changes in the number of FPs or FNs are noticed, leading to the
same overall performance metrics. Nevertheless, as the baseline 1ooN results are
already very good, we can conclude that good performance can also be achieved
with ML algorithms.

1Detailed results can be found at https://eden.dei.uc.pt/~josep/LADC2019/
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Figure A.5: CM for SQLi vulnerabil-
ities of the prediction (Bagging)

Figure A.6: CM for XSS vulnerabili-
ties of the prediction (RF)

In an attempt to improve the results, we removed Pixy from the dataset, as it
does not report alerts that are not reported by the other SATs (the Pixy region
in the Venn diagrams does not have any items/alerts, as shown in Figure A.4).
However, the results obtained neither improved (confirming the vulnerable SSs
or rejecting possible FPs) nor deteriorated, which means that no further conclu-
sion can be made.

Although the results obtained with ML are not significantly better than the ones
with the 1ooN heuristic, for the case of SQLi vulnerabilities, there are some con-
figurations that allow reducing the FPs at the cost of missing some TPs. This is
a trade-off that cannot be explored using the 1ooN approach and is very useful
when the time and budget are not enough for analyzing all the potential vulner-
abilities. For instance, a reduction of 24.8 FPs (9.61% reduction) can be achieved
in some cases at the cost of missing 2.4 TPs (0.36% reduction). In other cases,
a reduction of 35.0 FPs (13.57%) can be achieved at the cost of 3.0 TPs (0.45%).
Trade-offs can also be considered for XSS vulnerabilities, although our results
show a higher penalty in the TPs. For instance, a reduction of 11.2 FPs can be
obtained at the cost of 31.0 TPs.

A.3 Prioritizing Vulnerable Files

As most of the projects have time and resource constraints, developers need ap-
proaches that help them prioritizing their work (in addition to having fewer FPs
when analyzing SAT alerts). This way, devising a mechanism to rank the source
code files in terms of the potential vulnerabilities that have to be analyzed/fixed
can help development teams to focus on the ones with the biggest potential to
be vulnerable. In this section, we study the possibility of creating ranked lists of
vulnerable source code files using the output of SATs. The approach is based on
regression algorithms, where the variables are the output of the SATs.
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Figure A.7: Representation of the file dataset with the actual vulnerability num-
ber

A.3.1 Dataset

The same set of WordPress plugins is used to create the dataset for this study. As
the PHP files may have more than one vulnerability, which may result in more
than one alert reported per file, we need to compute the total number of vulner-
abilities per file.

The representation of the dataset can be seen in Figure A.7. The samples are
the files, and the process to create the dataset consists of two steps: 1) count the
number of true vulnerabilities per file for each vulnerability types; and 2) count
the number of alerts reported by each SAT. In practice, the dataset includes the
following features: a) file name; b) number of alerts reported by each SAT; c)
binary value (0 or 1) that, for each SAT, indicates if the SAT reported alerts in the
file; and d) the number of true vulnerabilities per file (equivalent to the label in
the previous section). The features b and c repeat for the five SATs.

A.3.2 ML Techniques

Differently from the ML algorithms studied in the previous section, whose pre-
diction is a categorical value in two classes (vulnerable/non-vulnerable), the pre-
diction for the prioritization of vulnerable files requires a continuous value (num-
ber of vulnerabilities per file). The case study thus becomes a regression problem,
and supervised learning algorithms should be chosen accordingly (i.e. one needs
regression algorithms) [Alpaydin, 2014].

Three regression algorithms were studied: linear regression (uses the ordinary least
squares method), decision trees regression (uses the DT classification algorithm as
base for this regressor), and Lasso (model that estimates sparse coefficients). Due
to time constraints, it was not possible to thoroughly explore and tune all the
meta-learner hyperparameters. Thus, an ad-hoc approach based on the default
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values of Scikit-learn is used [Pedregosa et al., 2011]. Nevertheless, the obtained
results allow prioritizing the files by the potential presence of vulnerabilities per
file and hence show that this is a promising approach.

The dataset is divided into training and testing sets (5-fold CV). To evaluate the
results, three performance metrics were used: a) number of actual vulnerabilities
in a Top-N set of files; b) proportion of vulnerabilities estimated in a Top-N set
of files compared to the real number of vulnerabilities known; and c) overlap
proportion of files in the two sets (Top-N prioritized by the regression algorithm
and Top-N prioritized by the number of vulnerabilities).

A.3.3 Results and Discussion

Using the regression models, we calculated a prediction of the number of vulner-
abilities for each file. The predicted value allows sorting the files by the number
of predicted vulnerabilities. The results presented in this section are only for lin-
ear regression, as it consistently performed better than the other two approaches
(decision trees and Lasso). Complete results can be found online (see footnote 1).
The coefficient of determination r2 is 0.8253 for linear regression.

Table A.5 shows the estimates for both SQLi and XSS using linear regression, i.e.
actual number of vulnerabilities in the Top-50 files (sorted by the number of vul-
nerabilities). This corresponds to metrics a and b presented above. When analyz-
ing the Top-50 files, we can observe that they contain a large portion of the total
set of true vulnerabilities (58.06% for SQLi and 35.40% for XSS). This largely over-
laps the Top-50 files when ranked by the actual number of vulnerabilities (64.03%
for SQLi and 40.93% for XSS). Note that the number of files in the analysis (50 in
our case) can be adjusted according to the needs of the project at hand.

Table A.5: Vulnerabilities identified by the Top-50 files using linear regression
and actual number of vulnerabilities

Vulnerability Count (%)
Regression Actual

SQLi 389 (58.06%) 429 (64.03%)
XSS 1,745 (35.40%) 2,018 (40.93%)

A way to understand how the number of detected vulnerabilities increases is to
analyze the progression of vulnerabilities when the number of top files (N) is
enlarged. Figure A.8 shows the proportion of vulnerabilities in Top-N files as
estimated by the regression algorithm in comparison to the Top-N list sorted by
the number of true vulnerabilities, varying the N from 10 to 50 files, in increments
of 10.

The results are quite good, as the proportion of vulnerabilities detected is always
above 75.0%. For example, for the Top-10, the proportion is 76.05% for SQLi
and 83.97% for XSS vulnerabilities. As it can be noticed, the proportion always
increases for SQLi, but the same does not happen for XSS. For instance, the pro-
portion decreases from the Top-10 to the Top-20 files. This is related to the fact
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Figure A.8: Proportion of vulnerabilities detected by the Top-N files
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Figure A.9: Proportion of files detected compared with the Top-N files

that the selected files in that range (Top-11 to Top-20) have less predicted vul-
nerabilities than real values. Although the proportion decreases, the number of
vulnerabilities increases as more files are added.

Another analysis that can be made is the comparison of the ordered lists of files.
This can be done by analyzing the list created by the regression techniques with
the list ranked by the actual number of vulnerabilities. Figure A.9 represents the
overlap of files of the prioritized lists created by the regression techniques and
the actual number of vulnerabilities. Although the order may not be the same,
what is important is whether the two lists have a large overlap of files (metric
c presented in the previous section). As can be seen in Figure A.9, the two lists
have a large overlap, where the only exception is for the Top-10 files for SQLi,
where the overlap is only 50.0%. For all the other cases, the overlap is larger,
varying from 60.0% to 76.0%. This is an interesting outcome, as it shows that
the regression-based list largely overlaps the top set of files when sorted by the
number of actual vulnerabilities.
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As shown, our prioritization approach provides a very good starting point to
identify the files that should be analyzed first. Nevertheless, this should be com-
bined with the output of the vulnerability detection using ML classification algo-
rithms (see Section A.2).

A.4 Threats to Validity

The work presented here is an exploratory study on the use of ML algorithms
to improve vulnerability detection. Although the algorithms used are some of
the most relevant in the state-of-the-art, other algorithms may also present good
results for the same problem.

The dataset was created from the SATs of various alerts. Only a small number of
known vulnerabilities in the plugins were not detected by those SATs (some vul-
nerabilities in the original dataset from Nunes et al. [2018] were either manually
detected or they were listed in the WPVD). Nonetheless, there may be unknown
vulnerabilities in the source code, thus we cannot state that the dataset contains
all vulnerable SSs.

The alerts were manually analyzed and classified by experts, either as vulnerable
or non-vulnerable. Although they have experience in security and in SQLi and
XSS vulnerabilities, they may have committed mistakes when labeling the SSs,
which may influence the results of this study.

The original dataset contained vulnerabilities that are not identifiable by any of
the SATs. Consequently, the ML algorithms do not have a way to predict these
SSs as vulnerable. Hence, other features (either other SATs or another source of
vulnerability information) can be used when running the ML algorithms.

The file prioritization does not consider how critical a vulnerability is or the like-
lihood of being exploited. Although the approach highlights the files that poten-
tially contain many vulnerabilities, those may not be the ones that lead to more
damage when exploited.

A.5 Conclusion and Future Work

Software vulnerabilities are a relevant problem in software as their consequences
may involve data and financial losses. Thus, detecting them before releasing the
software to production is of utmost importance. Approaches that combine the
output of several SATs have good results, but they suffer from a key problem: a
high number of FPs.

This exploratory study shows that is possible to decrease the number of FPs for
SQLi vulnerabilities in a dataset that contains alerts from different SATs on Word-
Press plugins. Good results are obtained for XSS vulnerabilities, but they are
equivalent to the 1ooN heuristic. The study also shows that using linear regres-
sion based on the output of SATs allows prioritizing the files with potentially
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more SQLi and XSS vulnerabilities. This can be used as a starting point of analy-
sis by the development teams.

For future work, the same ML algorithms need to be applied considering other
vulnerability detection techniques, including software metrics. Additionally, dy-
namic techniques can be used to either confirm an alert as a vulnerability or re-
ject it as a FP. The prioritization mechanism also needs to be improved using
alternative approaches. Finally, the same techniques need to be applied in other
datasets, either of different project size, different programming languages, or of
other vulnerability types. This will allow us to propose a systematic methodology
in addition to confirming it for projects with different characteristics.
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Software Metrics

Table B.1: Description of the Software Metrics (SMs) at the File level (adapted
from SciTools Understand (https://support.scitools.com/support/solutio
ns/articles/70000582223-what-metrics-does-understand-have-))

SM Name Description
AltAvgLineBlank Average Number

of Blank Lines
(Include Inactive)

Average number of blank lines for all
nested functions or methods, includ-
ing inactive regions.

AltAvgLineCode Average Number
of Lines of Code
(Include Inactive)

Average number of lines containing
source code for all nested functions or
methods, including inactive regions.

AltAvgLineComment Average Number
of Lines with
Comments (In-
clude Inactive)

Average number of lines containing
comment for all nested functions or
methods, including inactive regions.

AltCountLineBlank Blank Lines of
Code (Include
Inactive)

Number of blank lines, including in-
active regions.

AltCountLineCode Lines of Code (In-
clude Inactive)

Number of lines containing source
code, including inactive regions.

AltCountLineComment Lines with Com-
ments (Include
Inactive)

Number of lines containing comment,
including inactive regions.

acho que estão faltando
duas SMs aqui
AvgCyclomatic Average Cyclo-

matic Complex-
ity

Average cyclomatic complexity for all
nested functions or methods.

AvgCyclomaticModified Average Modi-
fied Cyclomatic
Complexity

Average modified cyclomatic com-
plexity for all nested functions or
methods.

AvgCyclomaticStrict Average Strict
Cyclomatic Com-
plexity

Average strict cyclomatic complexity
for all nested functions or methods.

Continued on next page
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Table B.1 – continued from previous page
SM Name Description
AvgEssential Average Essential

Cyclomatic Com-
plexity

Average Essential complexity for all
nested functions or methods.

AvgFanIn Average Inputs Average of the number of calling sub-
programs plus global variables read.

AvgFanOut Average Output Average of the number of called sub-
programs plus global variables set.

AvgLine Average Number
of Lines

Average number of lines for all nested
functions or methods.

AvgLineBlank Average Number
of Blank Lines

Average number of blank for all
nested functions or methods.

AvgLineCode Average Number
of Lines of Code

Average number of lines containing
source code for all nested functions or
methods.

AvgLineComment Average Number
of Lines with
Comments

Average number of lines containing
comment for all nested functions or
methods.

AvgMaxNesting Average Nesting Average nesting level of control con-
structs.

CBC (CountClassBase) Base Classes Number of immediate base classes.
(aka IFANIN)

CBO (CountClassCou-
pled)

Coupling Be-
tween Objects

Number of other classes coupled to.

CountDeclClass Classes Number of classes.
CountDeclFunction Function Number of functions.
CountLine Physical Lines Number of all lines. (aka NL)
CountLineBlank Blank Lines of

Code
Number of blank lines. (aka BLOC)

CountLineCode Source Lines of
Code

Number of lines containing source
code. (aka LOC)

CountLineCodeDecl Declarative Lines
of Code

Number of lines containing declara-
tive source code.

CountLineCodeExe Executable Lines
of Code

Number of lines containing exe-
cutable source code.

CountLineComment Lines with Com-
ments

Number of lines containing comment.
(aka CLOC)

CountLineInactive Inactive Lines Number of inactive lines.
CountLinePreprocessor Preprocessor

Lines
Number of preprocessor lines.

CountPath Paths Number of possible paths, not count-
ing abnormal exits or gotos. (aka
NPATH)

CountSemicolon Semicolons Number of semicolons.
CountStmt Statements Number of statements.
CountStmtDecl Declarative State-

ments
Number of declarative statements.

CountStmtEmpty Empty State-
ments

Number of empty statements.

Continued on next page
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Table B.1 – continued from previous page
SM Name Description
CountStmtExe Executable State-

ments
Number of executable statements.

DIT (MaxInheritance-
Tree)

Depth of Inheri-
tance Tree

Maximum depth of class in inheri-
tance tree.

FanIn Inputs Number of calling subprograms plus
global variables read. (aka CountIn-
put)

FanOut Outputs Number of called subprograms plus
global variables set. (aka CountOut-
put)

HK Henry Kafura
Size [Henry and
Kafura, 1981]

Interconnectivity of a procedure with
its environment.

LCOM (PercentLackOf-
Cohesion)

Lack of Cohesion
in Methods

100% minus the average cohesion for
package entities. (aka LCOM, LOCM)

MaxCyclomatic Max Cyclomatic
Complexity

Maximum cyclomatic complexity of
all nested functions or methods.

MaxCyclomaticModified Max Modified
Cyclomatic Com-
plexity

Maximum modified cyclomatic com-
plexity of nested functions or meth-
ods.

MaxCyclomaticStrict Max Strict Cyclo-
matic Complex-
ity

Maximum strict cyclomatic complex-
ity of nested functions or methods.

MaxEssential Max Essential
Complexity

Maximum essential complexity of all
nested functions or methods.

MaxMaxNesting Max Nesting Maximum of Maximum nesting level
of control constructs.

MaxNesting Nesting Maximum nesting level of control
constructs.

NOC (CountClass-
Derived)

Number of Chil-
dren

Number of immediate subclasses.

RatioCommentToCode Comment to
Code Ratio

Ratio of comment lines to code lines.

RFC (CountDeclMetho-
dAll)

Methods Number of methods, including inher-
ited ones. (aka RFC: response for
class)

SumCyclomatic Sum Cyclomatic
Complexity

Sum of cyclomatic complexity of all
nested functions or methods. (aka
WMC)

SumCyclomaticModified Sum Modified
Cyclomatic Com-
plexity

Sum of modified cyclomatic complex-
ity of all nested functions or methods.

SumCyclomaticStrict Sum Strict Cyclo-
matic Complex-
ity

Sum of strict cyclomatic complexity of
all nested functions or methods.

SumEssential Sum Essential
Complexity

Sum of essential complexity of all
nested functions or methods.

Continued on next page
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Table B.1 – continued from previous page
SM Name Description
SumMaxNesting Sum Max Nest-

ing
Sum of maximum nesting level of con-
trol constructs.

Table B.2: Description of the Software Metrics (SMs) at the Function level
(adapted from SciTools Understand (https://support.scitools.com/support
/solutions/articles/70000582223-what-metrics-does-understand-have-))

SM Name Description
AltCountLineBlank Blank Lines of

Code (Include
Inactive)

Number of blank lines, including in-
active regions.

AltCountLineCode Lines of Code (In-
clude Inactive)

Number of lines containing source
code, including inactive regions.

AltCountLineComment Lines with Com-
ments (Include
Inactive)

Number of lines containing comment,
including inactive regions.

CountInput Inputs Number of calling subprograms plus
global variables read. Also known as
FANIN.

CountLine Physical Lines Number of all lines. (aka NL)
CountLineBlank Blank Lines of

Code
Number of blank lines. (aka BLOC)

CountLineCode Source Lines of
Code

Number of lines containing source
code. (aka LOC)

CountLineCodeDecl Declarative Lines
of Code

Number of lines containing declara-
tive source code.

CountLineCodeExe Executable Lines
of Code

Number of lines containing exe-
cutable source code.

CountLineComment Lines with Com-
ments

Number of lines containing comment.
(aka CLOC)

CountLineInactive Inactive Lines Number of inactive lines.
CountLinePreprocessor Preprocessor

Lines
Number of preprocessor lines.

CountOutput Outputs Number of called subprograms plus
global variables set. Also known as
FANOUT.

CountPath Paths Number of possible paths, not count-
ing abnormal exits or gotos.

CountSemicolon Semicolons Number of semicolons.
CountStmt Statements Number of statements.
CountStmtDecl Declarative State-

ments
Number of declarative statements.

CountStmtEmpty Empty State-
ments

Number of empty statements.

CountStmtExe Executable State-
ments

Number of executable statements.

Continued on next page
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Table B.2 – continued from previous page
SM Name Description
Cyclomatic Cyclomatic Com-

plexity
McCabe Cyclomatic complexity.

CyclomaticModified Modified Cyclo-
matic Complex-
ity

Modified cyclomatic complexity.

CyclomaticStrict Strict Cyclomatic
Complexity

Strict cyclomatic complexity.

Essential Essential Com-
plexity

Essential complexity.

Knots Knots Measure of overlapping jumps.
MaxEssentialKnots Max Essential

Knots
Maximum Knots after structured pro-
gramming constructs have been re-
moved.

MaxNesting Max Nesting Maximum nesting level of control
constructs.

RatioCommentToCode Comment to
Code Ratio

Ratio of comment lines to code lines.

Table B.3: Description of the Software Metrics (SMs) at the Class level (adapted
from SciTools Understand (https://support.scitools.com/support/solutio
ns/articles/70000582223-what-metrics-does-understand-have-))

SM Name Description
AltAvgLineBlank Average

Number of
Blank Lines
(Include Inac-
tive)

Average number of blank
lines for all nested functions
or methods, including inac-
tive regions.

AltAvgLineCode Average
Number of
Lines of Code
(Include Inac-
tive)

Average number of lines con-
taining source code for all
nested functions or methods,
including inactive regions.

AltAvgLineComment Average
Number of
Lines with
Comments
(Include Inac-
tive)

Average number of lines
containing comment for all
nested functions or methods,
including inactive regions.

AltCountLineBlank Blank Lines of
Code (Include
Inactive)

Number of blank lines, in-
cluding inactive regions.

AltCountLineCode Lines of Code
(Include Inac-
tive)

Number of lines containing
source code, including inac-
tive regions.

Continued on next page
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Table B.3 – continued from previous page
SM Name Description
AltCountLineComment Lines with

Comments
(Include Inac-
tive)

Number of lines containing
comment, including inactive
regions.

AvgCyclomatic Average
Cyclomatic
Complexity

Average cyclomatic complex-
ity for all nested functions or
methods.

AvgCyclomaticModified Average
Modified
Cyclomatic
Complexity

Average modified cyclomatic
complexity for all nested func-
tions or methods.

AvgCyclomaticStrict Average Strict
Cyclomatic
Complexity

Average strict cyclomatic
complexity for all nested
functions or methods.

AvgEssential Average
Essential
Cyclomatic
Complexity

Average Essential complexity
for all nested functions or
methods.

AvgFanIn Average In-
puts

Average of the number of call-
ing subprograms plus global
variables read.

AvgFanOut Average Out-
put

Average of the number of
called subprograms plus
global variables set.

AvgLine Average
Number of
Lines

Average number of lines for
all nested functions or meth-
ods.

AvgLineBlank Average
Number of
Blank Lines

Average number of blank for
all nested functions or meth-
ods.

AvgLineCode Average
Number of
Lines of Code

Average number of lines con-
taining source code for all
nested functions or methods.

AvgLineComment Average
Number of
Lines with
Comments

Average number of lines
containing comment for all
nested functions or methods.

CountClassBase Base Classes Number of immediate base
classes.

CountClassCoupled Coupled
Classes

Number of other classes cou-
pled to. Also known as Cou-
pling Between Objects (CBO).

CountClassDerived Derived
Classes

Number of immediate sub-
classes. Also known as Num-
ber of Children (NOC).

CountDeclClassMethod Class Meth-
ods

Number of class methods.

Continued on next page
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Table B.3 – continued from previous page
SM Name Description
CountDeclClassVariable Class Vari-

ables
Number of class variables.

CountDeclInstanceMethod Instance
Methods

Number of instance methods.

CountDeclInstanceVariable Instance Vari-
ables

Number of instance variables.

CountDeclInstanceVariablePrivate Private In-
stance Vari-
ables

Number of private instance
variables.

CountDeclInstanceVariableProtected Protected
Instance Vari-
ables

Number of protected instance
variables.

CountDeclInstanceVariablePublic Public In-
stance Vari-
ables

Number of public instance
variables.

CountDeclMethod Methods Number of local methods.
CountDeclMethodAll All Methods Number of methods, includ-

ing inherited ones. Also
known as Response for a
Class (RFC).

CountDeclMethodConst Const Meth-
ods

Number of local const meth-
ods.

CountDeclMethodFriend Friend Meth-
ods

Number of local friend meth-
ods.

CountDeclMethodPrivate Private Meth-
ods

Number of local private meth-
ods.

CountDeclMethodProtected Protected
Methods

Number of local protected
methods.

CountDeclMethodPublic Public Meth-
ods

Number of local public meth-
ods.

CountLine Physical
Lines

Number of all lines. (aka NL)

CountLineBlank Blank Lines of
Code

Number of blank lines. (aka
BLOC)

CountLineCode Source Lines
of Code

Number of lines containing
source code. (aka LOC)

CountLineCodeDecl Declarative
Lines of Code

Number of lines containing
declarative source code.

CountLineCodeExe Executable
Lines of Code

Number of lines containing
executable source code.

CountLineComment Lines with
Comments

Number of lines containing
comment. (aka CLOC)

CountLineInactive Inactive Lines Number of inactive lines.
CountLinePreprocessor Preprocessor

Lines
Number of preprocessor lines.

CountStmt Statements Number of statements.
CountStmtDecl Declarative

Statements
Number of declarative state-
ments.

Continued on next page
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Table B.3 – continued from previous page
SM Name Description
CountStmtEmpty Empty State-

ments
Number of empty statements.

CountStmtExe Executable
Statements

Number of executable state-
ments.

MaxCyclomatic Max Cy-
clomatic
Complexity

Maximum cyclomatic com-
plexity of all nested functions
or methods.

MaxCyclomaticModified Max Mod-
ified Cy-
clomatic
Complexity

Maximum modified cyclo-
matic complexity of nested
functions or methods.

MaxCyclomaticStrict Max Strict
Cyclomatic
Complexity

Maximum strict cyclomatic
complexity of nested func-
tions or methods.

MaxEssential Max Essential
Complexity

Maximum essential complex-
ity of all nested functions or
methods.

MaxInheritanceTree Max Inheri-
tance Tree

Maximum Depth of Inheri-
tance Tree (DIT).

MaxNesting Nesting Maximum nesting level of
control constructs.

PercentLackOfCohesion Percent Lack
Of Cohesion

100% minus the average cohe-
sion for package entities. Also
known as Lack of Cohesion in
Methods (LCOM).

RatioCommentToCode Comment to
Code Ratio

Ratio of comment lines to
code lines.

SumCyclomatic Sum Cy-
clomatic
Complexity

Sum of cyclomatic complex-
ity of all nested functions or
methods. (aka WMC)

SumCyclomaticModified Sum Mod-
ified Cy-
clomatic
Complexity

Sum of modified cyclomatic
complexity of all nested func-
tions or methods.

SumCyclomaticStrict Sum Strict
Cyclomatic
Complexity

Sum of strict cyclomatic com-
plexity of all nested functions
or methods.

SumEssential Sum Essential
Complexity

Sum of essential complex-
ity of all nested functions or
methods.
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