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Abstract 

Modelling the plastic deformation and the onset of fracture of structural and functional ductile me-

tallic materials is a long-standing problem in the field of solid mechanics. Given the intimate relation-

ship between the porosity degree and the occurrence of failure in a ductile material, the framework of 

porous media offers a powerful and natural approach for modelling damage phenomena. Traditionally, 

the development of plastic potentials for porous solids based on homogenization theories is aimed at 

obtaining a final expression in analytical form. This is in line with the well-known micromechanical-

inspired criterion of Gurson (1977). However, due to the complexity of the upscaling analysis, obtaining 

closed-form expressions often entails the adoption of several simplification hypotheses, or may even be 

impossible. This is particularly true when dealing with complex plasticity criteria for the matrix (i.e. the 

dense phase of the porous aggregate). Opportunely, the ever-increasing computational power-cost ratio 

has been empowering the adoption of a numerical approach to this problem, which, by its very nature, 

bypass the above limitations, while allowing the numerical simulation of large-scale engineering prob-

lems to be carried out in a reasonable computational time. 

The aim of this dissertation is to develop and implement numerical-based plastic potentials for duc-

tile porous materials whose matrix behaviour is governed by advanced orthotropic criteria which ac-

count both for tension-compression asymmetry and an arbitrary number of linear transformations. The 

analysis follows the kinematical Hill-Mandel homogenization scheme and considers porous solids con-

taining randomly distributed spherical voids. The matrix behaviour is described by the Plunkett et al. 

(2008) orthotropic yield criterion, and two types of trial velocity fields are adopted: those of Rice and 

Tracey (1969); and the so-called Eshelby-type fields, based on the exterior point solution of the well-

known Eshelby (1959) inclusion problem for the particular case of a spherical inclusion. The microscale 

strain-rate potential is a key ingredient of the upscaling analysis. The exact dual of non-quadratic stress 

potential of Plunkett et al. (2008) is therefore derived.  

The novelty of this contribution is that the macroscopic potentials are no longer evaluated analyti-

cally, but by numerical integration of the relevant local fields entering the homogenization scheme. 

Hence, an efficient cubature method for the volume averaging operations over the spherical domain is 

developed. The proposed method is grounded on the split of the volume integrals into surface integrals 

over the spherical surfaces and one-dimensional integrals over the radial direction. The former are eval-

uated based on the theory of spherical t-designs and the latter are determined using a tailor-made adap-

tative integration scheme based on cubic splines. It is shown that the computational cost of evaluating 
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the proposed macroscopic strain-rate potentials, with a tolerance compatible with that usually used in 

nonlinear computational continuum mechanics, is not prohibitively expensive. 

Finite element-based limit analyses on spherical unit cells are performed in order to assess the accu-

racy of the developed criteria. The results show that the proposed numerical-based potentials are in very 

good agreement with the finite element results and that their predictive performance is far superior to 

that of analytical criteria in the literature. 

The numerical-based criteria proposed in this work are formulated with the aim of being easily in-

corporated into actual engineering simulations. In order to demonstrate this process, these are imple-

mented in a large-strain constitutive framework grounded on an hyperelastic-based elastic-plastic mul-

tiplicative split formulation coupled with a strain-rate potential flow rule for describing the plastic dis-

sipation. The efficiency and performance of the developed constitutive framework is assessed by means 

of two application examples with industrial relevance. 

Undoubtedly, analytical solutions are preferable, both from a conceptual and computational point of 

view. However, if these are obtained at the cost of an oversimplification of the underlying problem, then 

their relevance is questionable. This work demonstrates that existing analytical porous criteria are inca-

pable of representing important porosity-induced micro-macro plasticity couplings observed in unit cell 

micromechanical studies. The key conclusion is that these limitations are not attributable to the quality 

of the employed velocity fields, but to the simplification hypotheses, whether or not upper-bound pre-

serving, employed in the respective analytical analyses which, ultimately, erase the intrinsic modelling 

capability of the homogenization. This clearly emphasizes the value of pursuing a numerical-based ho-

mogenization approach, since the predicted micro-macro plasticity couplings are as accurate as permit-

ted by the scale transition operation. 
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Resumo 

A modelação da deformação plástica e da fratura de materiais dúcteis metálicos é um problema de 

longa data no domínio da mecânica dos sólidos. Dada a relação íntima entre o teor de porosidade e a 

ocorrência de rutura num material dúctil, a teoria dos meios porosos constitui uma abordagem poderosa 

e natural para modelar fenómenos de dano. Tradicionalmente, o desenvolvimento de potenciais plásti-

cos para sólidos porosos com base em teorias de homogeneização é efetuado de modo a obter uma 

expressão final analítica. Esta abordagem está em consonância com a conhecida teoria de Gurson 

(1977). No entanto, devido à complexidade da análise de homogeneização, a obtenção de expressões 

analíticas implica frequentemente a adoção de várias hipóteses de simplificação, ou pode mesmo ser 

impossível. Isto é especialmente evidente quando são considerados critérios de plasticidade complexos 

para a descrever o comportamento da matriz. Oportunamente, o aumento constante da relação potên-

cia/custo computacional permite atualmente a adoção de uma abordagem numérica para este problema, 

que, pela sua própria natureza, contorna as limitações acima referidas permitindo, no entanto, que a 

simulação numérica de problemas de engenharia seja realizada num tempo computacional razoável. 

O objetivo desta dissertação é desenvolver e implementar potenciais plásticos de base numérica para 

materiais porosos dúcteis cujo comportamento da matriz é regido por critérios ortotrópicos avançados, 

que têm em conta a assimetria tensão-compressão e um número arbitrário de transformações lineares. 

A análise segue o método de homogeneização cinemática de Hill-Mandel para o caso de sólidos porosos 

com vazios esféricos distribuídos aleatoriamente. O comportamento da matriz é descrito pelo critério 

de plasticidade ortotrópico de Plunkett et al. (2008) e são adotados dois tipos de campos de velocidade 

de ensaio: os de Rice e Tracey (1969); e os ditos campos do tipo Eshelby, baseados na solução para os 

pontos exteriores do problema da inclusão de Eshelby (1959). O potencial de taxa de deformação à 

microescala é um ingrediente fundamental da análise de homogeneização. O conjugado exato do po-

tencial plástico não quadrático de Plunkett et al. (2008) é, portanto, inicialmente derivado. 

A novidade desta contribuição assenta no facto dos potenciais macroscópicos deixarem de ser ava-

liados analiticamente, mas sim através da integração numérica dos campos locais que entram no pro-

blema de homogeneização. Assim, foi desenvolvido um método de integração numérica eficiente para 

as operações de cálculo da média sobre o volume do domínio esférico. O método proposto baseia-se na 

divisão dos integrais de volume em integrais de superfície sobre as superfícies esféricas e integrais 

unidimensionais sobre a direção radial. Os primeiros são determinados com base na teoria dos designs 

esféricos e os últimos através um esquema de integração adaptativo baseado em splines cúbicas. De-

monstra-se que o custo computacional para a determinação dos potenciais desenvolvidos, com uma 
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tolerância compatível com a habitualmente utilizada no domínio da mecânica computacional não-linear, 

não é proibitivamente alto. 

De modo a avaliar a precisão dos critérios desenvolvidos, realizam-se análises de elementos finitos 

em células unitárias esféricas. Os resultados mostram que os potenciais numéricos propostos estão em 

excelente concordância com os resultados das células unitárias e que o seu desempenho preditivo é 

muito superior ao dos critérios analíticos na literatura. 

Os critérios de base numérica propostos neste trabalho foram formulados com o objetivo de serem 

facilmente incorporados em simulações de engenharia. Para demonstrar este procedimento, estes crité-

rios são implementados no âmbito de uma formulação constitutiva de grandes deformações, baseada na 

decomposição multiplicativa elástico-plástica com uma lei hiperelástica, associada a uma lei de plasti-

cidade associada baseada no potencial de taxa de deformação para descrever a dissipação plástica. O 

desempenho e a eficiência da formulação constitutiva proposta são avaliados através de exemplos de 

aplicação com relevância industrial. 

Incontestavelmente, as soluções analíticas são preferíveis, tanto do ponto de vista conceptual como 

computacional. No entanto, se estas forem obtidas à custa de uma simplificação excessiva do problema 

subjacente, então a sua pertinência é questionável. Este trabalho mostra que os critérios analíticos para 

sólidos porosos existentes na literatura são incapazes de representar a complexa relação entre a plasti-

cidade à micro- e macro- escala induzida pela porosidade. A principal conclusão é que estas limitações 

não são imputáveis à qualidade dos campos de teste utilizados, mas sim às hipóteses de simplificação 

assumidas nas respetivas análises analíticas que, em última análise, suprimem a capacidade de modela-

ção inerente ao processo de homogeneização. Isto reforça claramente o interesse em adotar uma abor-

dagem numérica, uma vez que, neste caso, a qualidade das previsões é tão exata quanto o permitido 

pela operação de transição de escala. 
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Notation 

General convention of symbols 

The mathematical meaning associated with adopted font styles is given in the following. Some ex-

ceptions do occur in the text; however, these are explicitly marked and no conflict arises. 

 , , ...a A   Scalars and scalar-valued functions in  and indices of tensorial quantities 

 , , ...a A   Points, vectors and vector-valued functions in 3  

 , , ...a A   Second-order tensors and tensor-valued functions in 3  

 ...  Fourth-order tensors and tensor-valued functions in 3  

 ...  Spaces, sets, groups or bodies 

 , , ...a A   Computational column array representing vectors or the pseudo-vectorial representa-

tion of second-order tensors in Voigt notation 

 , , ...a A   Computational matrix array representing second-order tensors or the pseudo-matrix 

representation of fourth-order tensors in Voigt notation 

Operators and functions 

 det( )  Determinant operator 

 div ( )p   Divergence operator with respect to p 

 ( )p   Gradient operator with respect to p 

 ( )    Averaging over (the surface or volume) domain  of the field ( )  

 vol( )  Volume of a domain ( )  

 ( )M   Characteristic function of a subset M (convex analysis)  

 LF ( )  Legendre-Fenchel transformation 

 ( )  Lagrangian function 

 exp( )  Exponential and tensor exponential  

 ln( )  Natural logarithm and tensor logarithm 

 diag( )  Assignment of a vector to a square diagonal second-order tensor or matrix 

 eig( )  Diagonal tensor whose diagonal components are the eigenvalues of ( )  

 sgn( )  Signum function 

 min( )  Minimum function  
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 max( )  Maximum function 

 inf ( )  Infimum function  

 sup( )  Supremum function 

 cosh( )  Hyperbolic cosine 

 skew( )  Skew-symmetric part of ( )  

 sym( )  Skew-symmetric part of ( )  

 ( ) '  Deviatoric part of ( )  

 m( )  Hydrostatic part of ( ),  i.e. m( ) tr( ) / 3 =   

 
T( )  Transpose of ( )  

 
-1( )  Inverse and tensor inverse 

 
1

dev( )−  Deviatoric inverse of an arbitrary tensor ( )  or its pseudo-matrix notation 

 tr( )  Trace of ( )  

 ( )   Increment of ( )  (typically a FE time increment) 

 ( )   Iterative (quasi)-Newton increment of ( )  

 ( )D   Increment of ( )  within FE equilibrium iterations 

 ( )d   Infinitesimal increment of ( )   

 ( )   Boundary of the domain ( ) ; Subdifferential operation (Chapter 4) 

 ( )/ p    Partial derivative with respect to p 

 ( )I   Exact integral of ( )  

 ( )NQ   Approximate integral of ( )  with a positive weight quadrature rule with N points  

 
.

( )  Material time derivative of ( )  

 a b  Single contraction of two arbitrary vectors ( , )a b  

 :a b  Double contraction of two arbitrary tensors ( , )a b  

 a b  Cross product of two arbitrary vectors ( , )a b   

 a b  Tensor product of two arbitrary tensors ( , )a b   

 |( )|  Norm (absolute value) of a scalar ( )  

 |( )|p  Element-wise absolute value operation to the power p of an arbitrary tensor ( )  

 || ||pa  p-norm of an arbitrary vectors a   

 || ||pa  p-norm of an arbitrary second-order tensor or matrix a  

 vM|| ||a  von Mises norm of an arbitrary second-order tensor or matrix a  

 ( )  In the order of ( )  

 :a b=  Assignment operation in computational algorithms 

 a b  General assignment operation  

 a b  a  is by definition equal to b  
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 a b  a is approximately equal to b  

 a b  a is identical to b, i.e., an equality that holds regardless of the values of the variables 

Indices 

 0( )  Initial value; Relative to initial configuration (Chapter 7)  

 f( )  Final value 

 ( )t  Field at instant t 

 vM( )  Relative to the von Mises norm 

 Caz( )  Relative to Cazacu et al. (2010) criterion 

 iso( )  Relative the isotropic case 

 
e( )  Elastic part/contribution of ( )  

 
p( )  Elastic part/contribution of ( )  

 ( )n  Relative to the reference configuration of the incremental problem 

 1( )n+  Relative to the current configuration of the incremental problem 

 ( )+  An upper-bound of ( )  

 
E( )  Relative to the Eshelby-type fields 

 
RT( )  Relative to the Rice and Tracey (1969) fields 

 
( )( ) n  Relative to the n-th orthotropic transformation of the Plunkett et al. (2008) criterion 

 m( ) or hid( )  Hydrostatic part of ( )  

 dev( )  Deviatoric part of ( )  

 eq( )  Equivalent quantity of ( )  

 T( )   Relative to a uniaxial tensile loading 

 C( )   Relative to a uniaxial compressive loading 

 
T
1( )   Relative to a uniaxial tensile loading along the 1-direction of orthotropy 

 
C
1( )   Relative to a uniaxial compressive loading along the 1-direction of orthotropy 

 
(5)( )  Tensorial quantity in the auxiliary pentadimensional space (Appendix B)  

 
*( )  Unknown tensorial quantity to be determined  

 min( )  Minimum value of ( )  

 max( )  Maximum value of ( )  

 ( ) = v Dx  Relative to uniform strain-rate boundary conditions 
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Chapter 1. 

 

Introduction 

This chapter presents a brief background on the framework of porous media in the context of ductility assessment 

of metals and alloys, highlighting the growing industrial interest on damage modelling and its current challenges. 

The main objectives of the thesis are identified with the aim of answering some of the raised research failings. 

The structure and contents of the thesis are also presented. 

1.1 Motivation 

It is well established that computational mechanics nowadays plays a major role at the design stage 

of many engineering components and industrial processes. This is particularly true in highly competitive 

industries, such as the automotive and aeronautical sectors, where cost-effectiveness and flexibility of 

the project of high value-added products benefit the most from such scientifically-based approach, as 

prototype development via experimental trial-and-error steps is considered either too costly or time-

consuming. The increasing geometrical complexity and tight specifications on weight reduction, me-

chanical performance and reliability set by these industries on new, enhanced, components further con-

tribute to the need for computational analyses, viz. simulation tools based on the Finite Element Method 

(FEM). In addition to its economical and industrial relevance, computational mechanics can facilitate 

the development new grades of materials with enhanced engineering properties. 

Modelling the inelastic deformation and fracture of structural and functional materials is a long-

standing problem in the field of solid mechanics. Ductile materials such as metals and alloys are char-

acterized by their ability to dissipate large amounts of mechanical energy before fracture. Ductile frac-

ture results from a gradual internal (i.e. microstructural) deterioration process, associated with high 

inelastic straining. Accurate prediction of the occurrence of ductile fracture is of particular relevance in 

the field of structural engineering. The interest is quite evident, especially in safe-critical applications, 

such as the nuclear and transport sectors, where accidental failure may entail catastrophic consequences 

beyond economic issues. Moreover, ecological-motivated ever-stringent standards on greenhouse gas 

emissions reduction continuously compel the automotive and aeronautical industries to implement ma-

terials with improved strength-to-weight ratio performance, while preserving the safety, (in particular, 

crash-worthiness) of the structural components. Unfortunately, these advanced materials typically pre-

sent reduced ductility at room-temperature, and thus product and manufacturing design face increased 
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difficulties. Among these materials, one can emphasize the titanium and magnesium alloys which have 

been gaining increasing technological relevance due to their outstanding specific strength. The hexag-

onal crystal structure and, typically, strong basal texture of these materials lead to competing defor-

mation mechanisms at the crystal level, which, in turn, manifest themselves in quite intricate forms of 

anisotropy and tension-compression asymmetry at the macroscale. Naturally, the reliability of a com-

putational analysis rests, for the most part, on the predictive performance of the constitutive relations 

assumed to reproduce the underlying physical phenomena, particularly, the ability to translate the mi-

crostructural features to the macroscopic behaviour. It is therefore clear that the development of new, 

advanced, constitutive models for accurately describing the complex plasticity-damage couplings of 

such ductile materials constitutes a highly topical research field, both from the academic and industrial 

standpoint. 

Traditionally, constitutive models are developed such that a closed-form expression is attained. The 

reasons are twofold: first, to minimize the computational cost; and second, to facilitate the implemen-

tation of the models within a numerical simulation scheme, e.g. the FEM. Unfortunately, due to math-

ematical limitations, obtaining closed-form expressions may entail the consideration of one or more, 

often detrimental, simplification hypotheses, or may even be impossible. Opportunely, advances in 

computational power/cost ratio have been enabling the adoption of mixed analytical-numerical and 

fully-numerical constitutive approaches, which, by design, bypass these problems, and, currently, per-

mit numerical simulations to be carried out in a reasonable computational time. More crucially, the 

already impressive microprocessor development is due to accelerate in next few years, driven by the 

demand of emerging technologies such as virtual reality (VR) and artificial intelligence (AI), which 

renders the adoption of such type of formulation even more relevant.  

In summary, the development and application of state-of-the-art material models, even if not in 

closed-form, implemented within and efficient numerical scheme should provide engineers an improved 

and more robust tool for dealing with ductile fracture in relevant industrial application, (e.g. sheet and/or 

bulk metal forming operations). The current processing power permits to consider fully-numerical con-

stitutive models, which was deemed prohibitively expensive in a recent past. Ultimately, the usage of 

the latest scientific and technological tools should allow the automotive and aeronautical industrial sec-

tors to maintain a competitive edge by innovating, developing and optimizing engineering components 

at lower costs. 

1.2 Brief literature review and research-relevant issues 

Most metals fail in a ductile fashion at room temperature. Ductile fracture is a physical process that 

results from the accumulation of plastic damage and leads to the formation and propagation of cracks. 

In turn, damage can be understood as the physical process of progressive deterioration of the material. 

At the microscopic level, damage is related to the mechanisms of nucleation, growth and coalescence 

of micro-cracks and micro-cavities (e.g., see Benzerga et al. (2004a); Hancock and Mackenzie (1976); 

McClintock (1968); Rice and Tracey (1969); Rousselier (1987); Tipper (1949)). At the macroscopic 
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level, damage translates into a decrease of the material stiffness, strength and a reduction of the remain-

ing ductility. The void distribution in metallic materials originates from pre-existing voids (e.g., manu-

facturing defects) or from nucleation at second-phase particles, either by matrix-particle decohesion or 

by micro-cracking of second-phase particles (e.g. inclusions, impurities). Following nucleation, voids 

grow due to plastic deformation of the surrounding dense phase and eventually coalesce due to micro-

necking of the ligaments between neighbouring voids. Fracture in ductile materials is thus a multi-scale 

phenomenon involving the generation and interaction of defects across several length scales.  

Is this work one refers to a porous solid (or aggregate) to denote a material containing voids, which, 

upon mechanical handling, may grow or collapse. In practice, the porous aggregate may be viewed as 

a two-phase composite containing: the actual dense material, known as the matrix; and the pore net-

work, known as the voids. While the application of the concept of porous media to deal with metallic 

foams, metal additive manufacturing (AM) parts and to natural materials such as rocks, soils and bio-

logical tissues (e.g. bones, wood, cork) is evident, considering more conventional engineering metals 

and alloys as porous media may not be so obvious, since (i) the initial porosity of the majority of struc-

tural metallic materials is extremely low, typically ranging between 10-5 and 10-2; and (ii) the macro-

scopic softening induced by the void nucleation and void growth in the early deformation stages of 

these materials may be quite weak, as evidenced by numerical studies on unit cells (Pineau and Pardoen, 

2007). Nevertheless, it turns out that constitutive modelling involving the coupling of porosity with the 

mechanical response of the material offers a powerful and quite natural approach for predicting ductile 

failure in these materials. This is closely related with the relationship between porosity, quantifying the 

accumulated damage of the material in the form of micro-voids, and ductile failure occurrence. Unfor-

tunately, explicit tracking of the evolution of each micro-void in a sample, in the spirit of a bottom-up 

(alias inductive) approach, is still not viable from the computational standpoint. Instead, damage mod-

elling typically follows a top-down (alias deductive) approach, where macroscopic (alias phenomeno-

logical) internal variables are defined in order to characterize the damage evolution of a thermomechan-

ically equivalent homogeneous medium in a statistical fashion. The focus of this work is on modelling 

the void growth stage within the latter modelling framework, more specifically, following a microme-

chanical approach. In the following a brief literature review of this class of models is presented. 

The first ductile damage models were developed by McClintock (1968) and Rice and Tracey (1969) 

to describe the growth of isolated cylindrical and spherical voids in a rigid perfectly plastic matrix. 

These pioneer works outlined the role of the stress triaxiality on the void growth. Inspired by these 

observations, Gurson (1977) carried out an upper bound limit load analysis of a single cylindrical and 

spherical void embedded in a cylindrical and spherical rigid-plastic matrix, respectively, obeying the 

classical von Mises criterion and developed approximate analytical criteria for ductile porous solids. 

The work in this dissertation follows the procedure originally outlined in Gurson (1977) hence a more 

comprehensive description of this subject is presented in a dedicated subsection. Gurson (1977) model 

is widely used to this day and has been shown to reproduce several experimentally-observed trends of 

ductile fracture (e.g. the cup-cone fracture of cylindrical tensile specimens (Tvergaard and Needleman, 
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1984); the formation of shear bands under plane-strain conditions (Tvergaard, 1981). Several modifi-

cations of empirical nature were later proposed to the spherical criterion of Gurson (1977) based on the 

results of finite element (FE) unit cell computations in order to improve the flexibility and accuracy of 

the original model (e.g., Koplik and Needleman (1988); Tvergaard (1981, 1982a, 1982b)). The proposal 

of Tvergaard and Needleman (1984) accounting for void interaction and void coalescence is, quite prob-

ably, the most popular extension of Gurson (1977) work and the corresponding model is usually referred 

in the literature as the Gurson-Tvergaard-Needleman (GTN) model. Despite the popularity of Gurson-

type criteria, there are two main limitations associated with these models which stem from the underly-

ing assumptions in the formulation. First, the assumption of isotropy of the plastic flow of the matrix. 

In practice, engineering metallic materials display a more or less pronounced texture as a result of their 

manufacturing process (e.g. cold-rolled metallic sheets), and thus display elastoplastic anisotropy. Sec-

ond, the choice of the spherical geometry for the voids. In truth, even if nucleated voids are nearly 

spherical, spherical symmetry is violated under low triaxiality loadings as voids undergo rotation and 

shape change (Pardoen and Hutchinson, 2000; Thomason, 1990; Weck et al., 2008). In order describe 

void shape effects, Gologanu et al. (1993, 1994, 1997) extended the analysis of Gurson (1977) by con-

sidering a spheroidal volume containing a confocal spheroidal cavity. Madou and Leblond (2012a, 

2012b, 2013) and Madou et al. (2013) extended the analysis to the case of general ellipsoidal cavities. 

Plastic anisotropy of the matrix was first incorporated by Liao et al. (1997) based on Gurson’s (1977) 

cylindrical model for transversely isotropic solids under plane stress conditions using  Hill (1948) yield 

criterion. Benzerga and Besson (2001) later extended Gurson’s (1977) spherical criterion for fully or-

thotropic metals subjected to triaxial loadings also assuming the using the Hill (1948) criterion for the 

matrix. Stewart and Cazacu (2011) proposed an approximate orthotropic criterion for orthotropic porous 

solids displaying tension-compression asymmetry (i.e., that have different yield strengths in tension and 

compression) based on a simplified and quadratic form of the Cazacu et al. (2006) (often referred to as 

the CPB06) yield criterion. These works have shown that the anisotropic behaviour of the matrix trans-

lates into the macroscopic scale in an intricate fashion (Cazacu et al., 2019). The abovementioned or-

thotropic porous criteria result from a rigorous rework of Gurson’s kinematic limit analysis. Conversely, 

orthotropy has also been modelled in a heuristic fashion via the straightforward substitution of the mac-

roscopic von Mises equivalent stress by another orthotropic yield criterion. Heuristic extensions of this 

type were first proposed by Doege et al. (1995) considering the Hill (1948) criterion and more recently 

adopted, for instance, in Besson (2010); Bron and Besson (2006); Dæhli et al. (2017); Gruben et al. 

(2017); Shinohara et al. (2016); Steglich et al. (2010) regarding more advanced, non-quadratic, yield 

criteria. The task of combining the effects of void shape and matrix orthotropy was initiated in Benzerga 

et al. (2004b) and set the stage for other contributions accounting for more general loadings, void ge-

ometries and trial velocity fields (Keralavarma and Benzerga, 2008, 2010; Monchiet et al., 2006, 2008; 

Morin, Leblond and Kondo, 2015), all of which considering the Hill (1948) yield criterion for the matrix 

phase. 
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In agreement with Gurson (1977) all the above works regarding the spherical void geometry are 

based on the Rice and Tracey (1969) velocity fields. Apart from the constitutive criteria considered for 

the matrix phase, the homogenization analysis can be modified by employing different velocity fields. 

Based on this idea, Monchiet et al. (2011) reworked the limit analysis of Gurson (1977) by replacing 

the Rice and Tracey (1969) local velocity fields with those of the exterior point solution of the well-

known Eshelby inclusion problem for the particular case of a spherical inclusion Eshelby (1957, 1959). 

Later, Monchiet et al. (2014) extended the analysis for spheroidal voids (see also Monchiet et al., 2007). 

In addition to the analytical approach to the limit analysis problem of Gurson (1977), several studies 

have been devoted to numerical-based limit analysis (Alves et al., 2014; Castañeda and Zaidman, 1994; 

Dæhli et al., 2019; Fritzen et al., 2012; Guo et al., 2008; Lebensohn et al., 2011; Lebensohn and Cazacu, 

2012; Madou and Leblond, 2012b; Michel et al., 2001; Morin et al., 2014; Pastor et al., 2009, 2012, 

2013; Thoré et al., 2011; Trillat and Pastor, 2005). Such computational analyses have proven useful in 

guiding the development and assessment of analytical criteria and play a key role for understanding the 

basic phenomenology governing ductile fracture at the mesoscale. 

From what precedes, note that most efforts concerning the development of improved micromechan-

ical models for porous metallic materials have been devoted to the description of the effects of void 

shape and orientation. In fact, in most contributions, the matrix material is assumed isotropic and de-

scribed by the von Mises yield criterion or orthotropy is dealt with basic, rather primitive, criteria, viz. 

the Hill (1948) criterion. However, technologically advanced engineering metallic materials generally 

display pronounced texture, and thus a complex anisotropic behaviour. More critically, lightweight ma-

terials such as titanium, magnesium and their alloys have a hexagonal close-packed (hcp) crystal struc-

ture, which is known to promote strength differential (SD) effects due to the occurrence of twinning. 

The lack of representation of these features in porous criteria renders them virtually irrelevant in current 

engineering applications. In fact, the use of a state-of-the-art description of the void attributes (shape, 

orientation, size, void-particle interaction) seems questionable if the stress-strain history up to the point 

where these may actually play a part, typically at high porosities, is not properly captured by the model. 

Preliminary observations indicate the prevalence of plastic anisotropy over void morphology effects on 

the rate of void growth (e.g. Benzerga et al., 2019; Pineau et al., 2016). This is not to say that accounting 

for the shape of the voids, or, more generally, damage anisotropy, is a hopeless task. It just advocates 

that in order to do so, the description of the matrix properties should be of primary concern, as this 

should play a more important role, at least, in the early stages of the deformation process. Accordingly, 

more effort should be invested in the integration of the specific plastic flow characteristics of the matrix 

material, (viz. plastic anisotropy, isotropic and kinematic hardening, tension-compression asymmetry, 

etc.), and their evolution within the context of macroscopic porous models. This issue has already been 

tackled, but only to some extent. The task initiated by Cazacu and Stewart (2009) paved the way for the 

inclusion of tension-compression asymmetry in the analysis (see also Revil-Baudard et al., 2012, 2016; 

Yoon, Stewart, et al., 2011). As mentioned above, Stewart and Cazacu (2011) later extended their work 

to account for anisotropy based on the linear transformation method embedded in Cazacu et al. (2006) 
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yield criterion. Unfortunately, their proposal considers only six anisotropic coefficients (of which five 

are actually independent), i.e., the same number of those of the Hill (1948) criterion. Evidently, such 

formulations are not flexible enough to describe with appropriate accuracy the highly anisotropic be-

haviour of materials with hcp structure (e.g. the description of both tensile and compressive uniaxial 

yield stresses and Lankford/r-values in the context of thin metallic sheets). Moreover, existing ortho-

tropic analytical criteria are restricted to quadratic yield functions for the matrix phase. However, theo-

retical, experimental, and numerical investigations have shown that some materials can be more accu-

rately described by non-quadratic yield criteria (Hershey, 1954; Hosford, 1972; Lian and Chen, 1991), 

even in the isotropic case (e.g. some face-centred cubic (fcc) crystal structure materials such as alumin-

ium alloys). 

Accordingly, orthotropic criteria based on a single transformation and restricted to a quadratic form 

may not be able to capture with satisfactory accuracy the complex mechanical behaviour encountered 

in hcp metals (e.g. zirconium, uranium) and advanced structural engineering alloys (e.g. aluminium, 

magnesium and titanium alloys). In such cases, more anisotropic coefficients must be introduced in the 

formulation to increase the flexibility of the potentials. In this spirit, Plunkett et al. (2008) extended the 

general form of the CPB06 (Cazacu et al., 2006) criterion to account for multiple linear transformations 

(see also Barlat et al., 2005). 

It is therefore clear that the development of Gurson-like criteria considering non-quadratic yield 

functions and/or a greater number of anisotropy coefficients is of paramount importance for the ductility 

assessment of advanced engineering materials. Moreover, the adoption of more flexible trial velocity 

fields in the homogenization process, such as the Eshelby-type ones, should lead to improved solutions. 

Unfortunately, for these complex velocity fields and microscale plasticity models, obtaining the respec-

tive macroscopic closed-form expression in the general case can be very challenging, if not impossible, 

and the problem must be tackled numerically. 

1.3 Main objectives 

The aim of this dissertation is to develop and implement improved plastic potentials for porous duc-

tile solids containing spherical voids whose matrix behaviour is described by an advanced orthotropic 

criterion accounting both for tension-compression asymmetry and an arbitrary number of linear trans-

formations. The non-quadratic form of the Plunkett et al. (2008) yield criterion is adopted for the matrix 

phase. Since the proposed problem does not admit a close-form analytical solution, the entire microme-

chanical-based homogenization must be solved numerically. Accordingly, a robust and efficient numer-

ical integration scheme must be developed in order to evaluate the volume integrals involved in the 

expressions of the macroscopic plastic potentials and their respective derivatives. Two types of velocity 

fields will be considered in the kinematic homogenization problem: the Rice and Tracey (1969) fields; 

and the Eshelby-type fields (Eshelby, 1957, 1959). This work aims at comparing the predictions of these 

formulations, both from the constitutive and computational cost viewpoint. Moreover, the accuracy of 



Introduction 

7 

the developed macroscopic potentials is assessed through comparison with the results of finite element 

limit analyses on spherical unit cells. 

The developed criteria and the associated numerical integration scheme must be suitable to the sim-

ulation of large-scale engineering problems. Accordingly, this work also intends to provide remarks on 

the implementation of the developed criteria in the context of finite element analyses. In order to demon-

strate the applicability and to assess the cost-effectiveness of the proposed framework, a fully-implicit 

algorithm for large-strain elasto-plasticity based on a strain-rate plasticity formulation is formulated and 

application examples with industrial relevance are presented. 

In summary, the successful development of such numerical-based constitutive framework should 

provide a more accurate description of the yielding behaviour of orthotropic porous solids under quasi-

static conditions while bypassing the conventional simplification hypothesis (e.g. the Cauchy-Schwarz 

inequality) and miscellaneous heuristics (e.g. Tvergaard’s load-dependent fitting parameters). Naturally, 

such models should yield ‘sufficiently’ accurate results in a reasonable computational time and be prac-

tical enough to be relevant in the fast-paced industrial environment. 

1.4 Layout  

This section presents a summary of the contents covered in this work. In line with the above objec-

tives, the thesis is organized in eight chapters. Following the general introduction and motivation pre-

sented in this first chapter, the outline of the thesis is as follows. 

Chapter 2 presents an overview of the physical mechanisms governing deformation and fracture of 

metals and alloys at room temperature. Emphasis in laid on micromechanisms involved in the ductile 

damage process and ensuing ductile crack formation. 

Chapter 3 provides a literature review on damage constitutive modelling, particularly on microme-

chanical models describing the yielding behaviour of porous metallic materials during the void growth 

stage of the damage process. 

Chapter 4 is devoted to the derivation of the expression for the strain-rate potential conjugated with 

the Plunkett et al. (2008) yield criterion. Some basic concepts regarding constitutive modelling of plas-

tic deforming materials are firstly provided. An algorithm is proposed for evaluating the proposed strain 

rate potential numerically and some application examples are provided employing the dual formulation. 

Chapter 5 presents the proposed three-dimensional orthotropic plastic potentials for porous media 

containing spherical voids. The mathematical framework regarding the variational characterization of 

porous solids is first recalled. This includes the kinematic homogenization approach of Hill-Mandel 

(Hill, 1967; Mandel, 1971) and the limit-analysis theory (Drucker et al., 1952; Hill, 1951). The em-

ployed local velocity fields and respective strain rate tensors, viz. those of the Rice and Tracey (1969) 

analysis and the Eshelby-type approach (Eshelby, 1957, 1959), are described. The developed numerical 

integration methods are presented in detail. A method for evaluating the macroscopic stress potential, 

conjugate of the obtained macroscopic strain-rate potential, is provided. The algorithmic aspects of the 

computational homogenization scheme are summarized in pseudo-code format. 
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Chapter 6 is devoted to the comprehensive assessment of the developed potentials. Firstly, the pre-

dictions of the formulations using different trial velocity fields are compared. Then, both are compared 

with existing approximate analytical criteria, in particular for isotropic matrices with no tension-com-

pression asymmetry (viz., Gurson, 1977; Monchiet et al., 2011) and with tension-compression asym-

metry (viz., the criterion of Cazacu and Stewart, 2009). Then, the accuracy of the developed macro-

scopic potentials is assessed through comparison with finite element limit analysis results on spherical 

unit cells. The employed finite element limit analysis scheme is briefly described. Lastly, some statistics 

regarding the computational performance and efficiency are provided. 

Chapter 7 deals with the implementation of the proposed numerical homogenization scheme in the 

finite element method. A fully-implicit algorithm for large strain elasto-plasticity based on a hyperelas-

tic formulation and strain-rate plasticity is developed. The constitutive formulation is described in detail 

and the algorithmic details of the implementation are provided. Two application examples are presented 

in order to discuss the applicability of the proposal and its computational performance in the context of 

finite element analyses. 

Chapter 8 presents a summary of the issues addressed in the thesis, emphasising the main contribu-

tions of this work and the key conclusions withdrawn from it. The main advantages and limitations of 

the proposed approach are highlighted. Some recommendations for future work are suggested, mostly 

with the aim of further improving the developed criteria. 
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Chapter 2. 

 

Ductile fracture of metallic materials: 

fundamentals 

This chapter presents an overview of general concepts regarding the mechanisms of deformation and fracture of 

metallic materials at room temperature. The main goal is to present a number of remarks in order to formulate and 

justify the hypothesis upon which the macroscopic phenomenological theories are often based.  

2.1 Mechanical behaviour of metals and alloys: physical aspects of plasticity 

This introductory subsection is devoted to a brief presentation of the physical mechanisms governing 

the irreversible deformation mechanisms of metallic solids. For a more comprehensive description of 

the metallurgical phenomena reviewed here, the reader is referred to dedicated books and articles, e.g., 

Cottrell (1961); Dieter and Bacon (1986); Hull and Bacon (2001); Kocks et al. (1998); Lemaitre and 

Chaboche (1994); McClintock and Argon (1966). 

2.1.1 Structure of metals 

The majority of metals and alloys used in engineering practice are found to consist of polycrystalline 

structures. Polycrystals are composed of a large number of crystallites (alias grains) of varying size and 

orientation, each having the structure of a crystal. The interface between adjacent grains is known as 

grain boundary. The crystalline state is characterized by a regular and repeating atomic arrangement of 

an elementary parallelepipedal pattern fully-defining the symmetry and the structure of the entire crystal 

– the lattice. The most common metallic lattices belong to one of the following: body centred cubic 

(bcc), face centred cubic (fcc) and hexagonal close packed (hcp). The crystalline lattice possesses axes 

and planes of symmetry. The slip planes denote the planes of greatest atomic planar density (in general, 

coincident with the symmetry planes of the lattice). Within each slip plane there are preferred slip di-

rections which, in turn, correspond to the direction of highest linear density of atoms. A slip plane and 

a slip direction constitute a slip system. The faultless crystalline structure as described above (i.e., a 

crystal containing the exact number of the same type of atoms occupying their regular positions in the 

lattice), can only undergo reversible deformation and a so-called brittle fracture, in which loss of cohe-

sion occurs without noticeable macroscopic deformation. However, this behaviour is not observed in 
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actual engineering metallic materials. This discrepancy is explained by the presence of defects that 

disturb the original lattice (see Figure 2.1), which emerge during crystal growth (solidification) or in-

duced by subsequent handling. These imperfections can be classified as: (i) point defects (e.g. foreign 

atoms, vacancies); (ii) linear defects (e.g. edge and screw dislocations); (iii) surface defects (e.g. grain 

boundaries, twin crystal boundaries, stacking faults); and (iv) bulk defects, e.g. voids (clusters of va-

cancies), cracks and inclusions (e.g. phases, precipitates). Bulk defects occur on a much larger scale 

than their atomic-level counterparts. The bulk defects associated with presence of voids and cracks are 

a particularly relevant subject in this work, hence are explored later in a dedicated section. 

Remark 2.1 The crystalline defects present in a crystal lattice are at the physical origin of irreversible 

(or inelastic) strains and, ultimately, the occurrence of ductile fracture. 

The crystalline structure of metals and alloys is formed during solidification during cooling from the 

liquid state. As the temperature of the melt decreases, the interatomic distances become smaller and, 

eventually, nuclei of crystalline arrangements form in randomly distributed sites. Each nucleus develops 

into a crystal whose growth is limited by neighbouring ones. The result is a polycrystalline structure. 

The size and orientation of the monocrystals within the aggregate largely depend on the nature of the 

constitutive elements of the metal (or alloy), and on subsequent mechanical and thermal treatments. The 

distribution of the orientation of crystallites of a polycrystalline sample is known as texture. The absence 

of long-range order in a polycrystal due to the presence of defects greatly alters its physical properties 

when compared to those of the corresponding perfect monocrystalline structure. 

Remark 2.2 A polycrystalline structure displaying randomly oriented grains and defects is said to have 

no texture. In this case, its properties at length scales sufficiently larger than the size of the grains can 

be regarded as isotropic, even if its constituent monocrystals essentially display anisotropic properties. 

 

Figure 2.1 General structure of a polycrystalline metal containing several types of defects. The lattice spacing is 

largely exaggerated for illustrative purposes (after Engel and Klingele (1981). 
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In practice, engineering metals and alloys do not remain macroscopically isotropic when subjected 

to thermo-mechanical handling, viz. in the form of finite irreversible straining. This is due to the devel-

opment of texture in the material, as the crystallographic orientations and distribution of lattice defects 

are no longer random but have preferred orientations. Depending on the proportion of grains having a 

given preferred orientation, the polycrystal can be classified has weak, moderate, or strongly textured. 

In such cases, the hypothesis of macroscopic isotropy is not accurate, and the aggregate should be re-

garded as macroscopically anisotropic. 

2.1.2 Deformation mechanisms 

This subsection intends to describe the role played by the crystalline structure and lattice defects on 

the basic deformation mechanisms of metals and alloys: reversible and permanent deformations. 

Reversible deformation results from the expansion and compression of the interatomic bonds of the 

crystal lattice. Upon removal of the external load, the interatomic spacing returns to the original equi-

librium state and no permanent microstructural rearrangements within the material occur. This self-

reversing behaviour is often referred to as elasticity. An elastic deformation can also include reversible 

movement of dislocations. 

Permanent deformation results from the irreversible movement of atoms in the crystal lattice under 

the effect of the external load. This irreversible behaviour is often referred to as plasticity. Irreversible 

deformation of monocrystals is mainly governed by two basic mechanisms: slip and twinning. 

Slip refers to the gliding of successive rows of atoms in the form of dislocations along specific lattice 

planes and directions – the slip systems. In order to reduce the free energy of the deformation process, 

the dislocation movements on active slip planes tend to concentrate in low-energy regions in the form 

of slip bands (see Figure 2.2a). von Mises showed that five independent slip systems must be available 

at the single crystal level to accommodate an arbitrary plastic deformation only by slip (Mises, 1928; 

Taylor, 1938). The slip activity of any given system depends on the loading type and its relative orien-

tation to the crystal axes. If five independent slip systems are not available, phase transformations or 

fracture at the crystal level may occur (Vitek et al., 2004). 

Deformation (or mechanical) twinning manifests by a simultaneous cooperative movement of blocks 

of atoms in a symmetrical fashion. Twinning occurs under local shear loadings and produces a two-part 

crystal with equal lattice structure, but different orientation: the parent crystal (associated with the orig-

inal/undeformed atomic arrangement) and the twin denoting the sheared region (see Figure 2.2b). These 

regions differ in shape by a simple-shear type deformation (Clayton, 2011). The restoration of the 

twinned lattice to its original orientation is referred to as detwinning. 

Remark 2.3 An important feature of twinning is that it is a polarized (or directional) deformation mech-

anism. This means that the crystal lattice can prevent the development of twins of equal shearing mag-

nitude on opposite directions. It follows that the activation of a given twin mode in the crystal depends 

on the sign of the applied stress. 
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(a) (b) 

Figure 2.2 Scanning electron microscopy (SEM) micrographs of the surface slip morphology of polycrystalline 

brass: (a) slip bands in a Cu-30wt.%Zn alloy (after Carstensen, 1998). Note the presence of voids within the 

crystal; (b) Twins and twin boundaries in a Cu-10wt.%Zn alloy. Several slip bands are activated both in the par-

ent crystal and in the twins (after Zhang et al., 2008). 

 

Polarized deformation is not expected from the slip mechanism in close-packed crystal structures, 

viz. fcc and hcp, since, typically, the dislocation motions on a given slip plane can initiate with equal 

ease in opposite directions. In this case, slip in the single crystal is said to obey the Schmid law (Schmid, 

1924). This law states that slip is triggered when the so-called resolved shear stress along a given slip 

system reaches a threshold value. However, this deformation theory does not hold for all crystal lattices. 

For instance, directional slip mechanisms can develop in bcc structures due to distorted or non-planar 

core structure of screw dislocations motions resulting from the so-called non-glide stresses (the stress 

components that do not lay in the slip planes) (Duesbery et al., 1973; Knezevic et al., 2014; Steinmann 

et al., 1998). Crystal slip phenomena that do not obey the Schmid law are referred to as non-Schmid 

effects. Similarly to twinning, non-Schmid effects induce asymmetry of the mechanical response of 

single crystals regarding the sign of the applied stress (Christian, 1983; Duesbery and Vitek, 1998; Qin 

and Bassani, 1992; Vitek, Mrovec and Bassani, 2004; Vitek, Mrovec, Gröger, et al., 2004). 

Remark 2.4 The directional plastic deformation mechanisms of twinning and non-Schmid type slip lead 

to a difference between the tensile and compressive yield strengths at the single crystal level. This phe-

nomenon is referred to as tension-compression asymmetry or strength differential effect. 

While twinning-detwinning mechanisms are the main source of tension-compression asymmetry in 

low-symmetry lattice structures, such as hcp, the non-Schmid effects are the main cause of this type of 

asymmetry in bcc metals and alloys (Knezevic et al., 2014). Mechanical twinning has also been reported 

in fcc and bcc cubic structures as a secondary deformation mechanism (Christian and Mahajan, 1995; 

Hosford and Allen, 1973; Richman, 1964; Venables, 1961), particularly for loadings with high strain 

rates or at very low temperatures (Hosford, 2010). However, the activation of twinning in these cubic 

lattices is rare due to the large number of “easy” slip systems available. Generally, this is not the case 

with hcp lattices where the number of such slip systems is scarce. Hence, mechanical twinning plays a 

crucial role in the deformation process of hcp materials, by relaxing the number of the required slip 

systems. As in the case of the cubic structures, twinning in hcp metals and alloys becomes increasingly 
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prominent with increasing strain rate and decreasing stacking-fault energy and temperature. In a broader 

sense, the plastic deformation process should be regarded as the interaction of several competitive and 

possibly coexisting deformation mechanisms at the single crystal level. For instance, slip-twinning in-

teractions, twin-twin interactions, twinning-detwinning mechanisms, among others. The relevance of 

each mechanism on the final macroscopic response largely depends on the crystal structure, loading 

history and other conditions such as the temperature. 

Remark 2.5 The irreversible nature of plastic deformation renders it a thermodynamically dissipative 

phenomenon. When metals and alloys experience a plastic deformation, most of the provided energy is 

dissipated as heat by the dislocations motions as the result of lattice friction. A residual energy fraction 

is retained internally associated with the purely elastic distortions of the lattice around the dislocation 

sites and of the grains due to residual stresses. 

Regarding the deformation of polycrystalline materials, the physics governing deformation within the 

grains, i.e. the intragranular deformation, is virtually similar to those of single crystals. However, given 

the different lattice orientation of each grain of the polycrystal, upon macroscopic straining, intragran-

ular slip occurs in stages, rather than simultaneously activated in all grains, since the Schmid-type slip 

condition is met heterogeneously in the sample. Moreover, the onset of slip in a crystallite must a priori 

satisfy the strain compatibility criteria on the grain boundary. This means that the intragranular defor-

mation of each grain is, to some degree, constrained by its neighbours. This ensures that grain bonding, 

and ultimately the continuity of the aggregate, is preserved. This additional kinematic restriction par-

tially explains the improved macroscopic resistance to plastic flow displayed by polycrystalline aggre-

gates when compared to the response of a single crystal. The compatibility condition at the grain bound-

aries is guaranteed only by elastic micro-deformations (Lemaitre and Chaboche, 1994). The occurrence 

of twinning and/or non-Schmid slip at the grain level may also lead to a macroscopic tension-compres-

sion asymmetry at the polycrystalline level. Such behaviour is evident in the case of textured polycrys-

tals, however, although it may not be so clear, it holds for texture-free ones (Hosford and Allen, 1973). 

In the absence of phase transformations and other structural transformations (e.g. precipitation, re-

crystallization), plastic deformation of metallic polycrystals is virtually isochoric at the microscale, i.e., 

at level of the grains. This phenomenon, often referred to as plastic incompressibility, is explained by 

the insignificant volume change of the grains due to the increase of the density of dislocations (Lemaitre 

and Chaboche, 1994). This is not the case for the elastic deformation process where noticeable volume 

changes can take place due to the expansion and compression of the atomic bonds. 

Remark 2.6 If bulk lattice defects such as micro-voids and/or micro-cracks are present in the polycrys-

tal, the hypothesis of macroscopic plastic incompressibility is no longer adequate. 
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2.1.3 Hardening mechanisms 

As discussed above, the ability of a polycrystalline material to undergo plastic deformation greatly 

depends on the ability of its lattice dislocations to move. This implies that the resistance to plastic de-

formation can be enhanced by restricting the motion of dislocations by acting on the degree of nuclea-

tion, propagation, and interaction of dislocations and mechanical twins, both at the intragranular and 

intergranular level. The yield (or flow) stress – the stress necessary to continue deformation at any stage 

of plastic strain – of a polycrystalline lattice can be increased via the so-called hardening mechanisms.  

Hardening mechanisms, also known as strengthening mechanisms, describe how lattice defects (see 

§2.1.1) can act as barriers to dislocation motions. These include: (i) grain boundary hardening, associ-

ated with dependence of the initial flow stress on the average crystallite size of the aggregate, as ex-

pressed by the classical Hall-Petch relationship (Hall, 1951; Petch, 1953); (ii) strain hardening, alias 

work hardening, related with the increase of the density of dislocations and their ensuing interaction 

resulting a monotonic increase of the applied stress required to progress the plastic deformation of a 

crystal; (iii) solid solution hardening, related with the presence of punctual crystalline defects, both 

substitutional and/or interstitial; (iv) dispersion hardening promoted by the inclusion of finely dispersed 

particles in the polycrystal alloy (e.g. age or precipitation hardening of supersaturated solid solutions 

and/or from internal oxidation of the alloy (Hosford, 2010)); (v) martensitic phase hardening regarding 

a particular type of inclusion-based hardening of the lattice obtained by diffusionless transformations. 

These hardening mechanisms can coexist and interact with each other. Typically, the relative importance 

of each mechanism and the effect of its activation on the macroscopic response varies during the defor-

mation process. The hardening characteristics of a given polycrystal crucially defines its ability to un-

dergo irreversible deformation before mechanical failure – a property referred to as ductility. This topic 

will be revisited in forthcoming sections, where a comprehensive description of failure phenomena in 

metals and alloys is provided. 

In general, the underlying hardening mechanisms governed by the interaction of lattice defects, as 

described above, remain valid at high temperatures. However, in this case, other thermally activated 

mechanisms, intrinsically time-dependent (viz. strain-rate dependent) due to the diffusion phenomena 

involved, are favoured. These include: viscoplasticity, restoration (or recovery), recrystallization, and 

other microstructural instabilities such as precipitation, phase and/or structural changes, static and/or 

dynamic aging (e.g. in the form of the so-called Piobert–Lüders bands and the Portevin-Le Chatelier 

effect), among others. The description of temperature and rate-effects on the behaviour of metals and 

alloys falls outside the scope of this thesis, thus no further discussion on the subject is provided. 
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2.2 Physics of the fracture of metals and alloys 

This subsection provides an overview of the physics governing fracture phenomena in polycrystal-

line metallic solids. Emphasis is laid on ductile fracture, particularly under quasi-static loadings and at 

room temperature. The dynamic aspects of the crack formation and propagation are not covered as these 

do not concern the scope of the thesis. For a more detailed description of the phenomena reviewed here, 

the reader is referred to the works of Anderson (2017); Broek (2012); Garrison Jr and Moody (1987); 

Knott (1973); Lawn (1993); Pineau et al. (2016). 

2.2.1 Fracture types 

The reversible and permanent deformation mechanisms as described previously (§2.1) preserve the 

cohesion of the matter at the atomic and crystalline level, respectively. Fracture, in turn, refers to the 

destruction of this cohesion due to the irreversible rupture of interatomic bonds, ultimately resulting in 

the creation of surface and volume discontinuities within the solid. Accordingly, fracture encompasses 

mechanisms acting across different length scales. In a broad sense, the term damage describes the un-

desired evolution of one or more (micro)-structural features of a material that impair its engineering 

performance (Tekkaya et al., 2020). Thus, regarding the study of fracture, one refers to damage to de-

note any local change in the microstructure of a material that leads to a reduction of its load-bearing 

capacity. The most representative example leading to such internal degradation process in ductile metals 

and alloys is the nucleation, growth, and coalescence of deformation-induced discontinuities in the ma-

terial, namely in the form of microcracks and/or micro-voids.  

Remark 2.7 The internal degradation of a material by the formation and propagation of micro-voids 

and/or micro-cracks is a plasticity-controlled irreversible thermodynamic process. Accordingly, damage 

can be regarded as a specific dissipative phenomenon. 

Another important aspect regarding fracture phenomena in engineering applications is the concept 

of toughness. In essence, toughness is the ability of a material to absorb energy before fracturing. While 

a reasonable amount of ductility is required to deform metals and alloys into engineering parts, viz. in 

forming processes (e.g. forging, rolling, extrusion, stamping), toughness is required to prevent failure 

during service and to ensure the crashworthiness of a structure (Hosford, 2010). Naturally, absorbing 

energy entails plasticity. Accordingly, toughness associates the ductility and strength of a material. The 

polycrystalline structure (together with the density of built-in lattice defects), the deformation condi-

tions, (viz. loading type, strain-rate, temperature), and any other features affecting the plastic flow of a 

material (e.g. geometric constrains), largely set the type of the fracture. A fracture is said ductile or 

brittle depending on the amount of irreversible deformation that precedes it. 

Brittle fracture refers to the rupture of interatomic bonds without noticeable plastic deformation at 

the macroscale. Cleavage fracture is the most representative mechanism of transgranular brittle fracture. 

It consists in the direct separation of particular crystallographic planes – the cleavage planes, intrinsic 

to the crystal structure. In essence, cleavage fracture develops in a crystallite when the normal stress 
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across its cleavage planes reaches a critical value, i.e. when the installed strain energy reaches the energy 

necessary to pull the atomic layers apart (Hosford, 2010; Lemaitre and Chaboche, 1994). As one would 

expect, regions of high stress concentration in the lattice are preferred sites for triggering the nucleation 

of brittle microcracks, e.g., the stress developing at bulk lattice defects (e.g. inclusions, voids) and at 

dislocation pile-ups (e.g. at grain and/or twin boundaries) (Lemaitre and Chaboche, 1994; Pineau et al., 

2016; Stroh, 1954). Within a crystal, several cleavage facets can develop concurrently which, after join-

ing with each other, provide the typical “stair-step” surface fracture (Figure 2.3a). Likewise, the cleav-

age facets must change direction at grain boundaries (and twin boundaries) in order to follow the crys-

tallographic cleavage planes of the next crystal (or twin) (Lemaitre and Chaboche, 1994; Pineau, Ben-

zerga and Pardoen, 2016). Cleavage fracture occurs most often in metallic materials with bcc and hcp 

lattice structures displaying high strength and very limited ductility (generally fcc metals do not exhibit 

a brittle behaviour due to ‘recovery processes’ at the crack tip, e.g. dislocation cross-slip and climb, 

inhibiting stress concentration at dislocation pile-ups (Ebrahimi et al., 2006)). High strain-rates and low 

temperatures facilitate brittle fracture as plasticity is hindered. Fracture cannot occur totally by trans-

granular cleavage. The propagation of a microcrack to neighbouring grains requires the activation of an 

intergranular mechanism. Intergranular fracture is a particular type of cleavage that follows the grain 

boundaries (Figure 2.3b). The propagation of a brittle fracture after the nucleation of a microcrack is 

very rapid (approaching the speed of sound of the material) and virtually unstoppable (Mouritz, 2012). 

The presence of a smooth fracture surface whose orientation is perpendicular to the major applied stress 

is convincing evidence that the fracture in the material has a strong brittle component. The catastrophic 

and unanticipated nature of this type of fracture renders it particularly detrimental in engineering prac-

tice.  

Ductile fracture involves extensive plastic deformation in the vicinity of microstructural bulk defects 

(§2.1.1) and results from a plasticity-controlled process often described by a three-stage process: the 

nucleation, growth and coalescence of voids (McClintock, 1968; Rousselier, 1987). Depending on the 

density of defects and the promptness of the damage accumulation process, a material may or may not 

display noticeable plastic deformation at the macroscopic scale (Lemaitre and Chaboche, 1994). The 

void distribution in a material can occur for several reasons. During solidification of the metallic melt, 

voids can form due to: (i) shrinkage of the solid (often referred to as cavitation); (ii) trapped gas bubbles 

(e.g. air and/or hydrogen); (iii) non-metallic impurities on the melt; (iv) defective or insufficient bond-

ing in the grains (Pires, 2005). These are known as pre-existing voids. Additionally, during deformation, 

voids can nucleate at inclusions due to particle cracking and/or decohesion at the inclusion-matrix in-

terface. The elastoplastic deformation of the material surrounding these cavities causes them to undergo 

volumetric and, possibly, shape changes. These phenomena are referred to as void growth and void 

distortion, respectively. Void coalescence marks the transition from the relatively diffuse plastic defor-

mation surrounding the voids to a highly concentrated deformation mode within the intervoid ligaments 

(Pineau and Pardoen, 2007). In contrast to the growth stage, void coalescence necessarily involves 

strong interaction between voids. Intervoid linkage leads to the formation of microcracks in the lattice. 
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The propagation of a macroscopic crack takes place by several void coalescence events occurring at the 

crack tip, often involving the interaction of micro-void populations of varying size, spacing and/or ori-

entation (Pineau et al., 2016). Crack propagation in ductile media is a stable process since an external 

energy supply is required to growth an existing crack. This is in clear contrast with the brittle fracture 

where the energy needed to initiate a crack, largely stored as elastic energy, is higher than the one needed 

to propagate it. The stable nature of ductile crack propagation is intimately related with the dissipation 

of plastic energy in the vicinity of the crack tip of ductile metals, which constitutes a considerable part 

of the total energy released during fracture (Rice and Budiansky, 1973). Moreover, propagation occurs 

at a speed which is a function of the remote loading rate (Lemaitre and Chaboche, 1994), and material 

dependent. Of course, in both fracture types, the crack propagates along the path which minimizes the 

energy dissipated of the creation of new surfaces. Fractographic analyses under scanning electron mi-

croscopy (SEM) of metals exhibiting ductile failure reveal scooped out regions known as ‘dimples’ (see 

Figure 2.4). The dimpled surfaces result from the nucleation around pre-existing particles and the plas-

ticity-controlled breaking of the ligaments of the voids during the coalescence stage. Under quasi-static 

loadings at room-temperature, fracture of most metals is of the ductile type (Pineau and Pardoen, 2007). 

 

  

(a) (b) 

Figure 2.3 SEM micrographs of the fracture surface of a low carbon steel that experienced temper-induced em-

brittlement (after Koneti et al. (2011)): (a) transgranular cleavage fracture; (b) intergranular fracture. 

  

(a) (b) 

Figure 2.4 SEM micrographs of the fracture surface of a Nb-micro-alloyed steel at different magnifications  

(after Wu et al. (2005)): (a) 500×; (b) 2000×. Note that dimples appear in a spectrum of length scales. The  

remaining part of the dimples (and possibly the inclusions that triggered them) are on the mating surface. 
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2.2.2 Ductile failure modes 

Ductile fracture invariably results from the plasticity-controlled process of void nucleation, growth 

and coalescence. However, for practical purposes, it is convenient to distinguish two failure modes: (i) 

damage-controlled; and (ii) plastic localization-controlled (Pineau and Pardoen, 2007). In the former, 

the damage process evolves more or less evenly in homogenously deformed regions of the material 

until the onset of failure. Therefore, only at the very end of the process, macroscopically heterogenous 

deformation zones may arise due to coalescence events at void clusters and ensuing crack propagation 

in the solid by ductile tearing1. In the latter, a macroscopic plastic instability, viz. in the form of shear 

bands (often preceded by local ‘necking’2), develops early in, or even prior to, the damage process. In 

such case, damage-induced softening may or may not be accountable for triggering the plastic instability 

(Pineau et al., 2016). In engineering practice, the onset of strain localization in a material critically 

restricts its (remaining) ductility. Accordingly, localization it is often regarded as a standalone ductile 

failure mechanism. One cannot emphasize enough that the usual three-stage damage process still takes 

place within the localization band, being the ultimate responsible for the ductile fracture itself. Typi-

cally, the increasing stress constraint in the band accelerates the damage process and the final fracture 

follows rapidly (Pineau and Pardoen, 2007). Whether a ductile fracture is dominated by straightforward 

coalescence events or preceded by macroscopic plastic instability is a long-debated topic (Benzerga et 

al., 2019; Keralavarma et al., 2020; Morin et al., 2019; Tekoğlu et al., 2015). In short, the ductile failure 

mode strongly depends on the material behaviour, homogeneity, geometrical constraints and boundary 

conditions, viz. stress state history. For instance, ductile failure is typically coalescence-controlled in 

notched and pre-cracked specimens (Pineau et al., 2016), i.e., geometries inducing multiaxial stress 

states. In contrast, planar geometries (e.g. thin sheets) and/or stress states approaching the uniaxial path 

are notorious for being conducive to a localization-controlled fracture (Benzerga et al., 2019; Kõrgesaar 

et al., 2014; Tasan et al., 2009). Slant fracture denotes a ductile fracture mode associated with the oc-

currence of strain localization at the crack tip. The surface of a slant fracture can exhibit total or partial 

slanting and typically occurs in plane strain specimens and thin metal sheets (Benzerga and Leblond, 

2010; Pineau et al., 2016). A material may also experience a mixed ductile fracture mode. This is often 

the case of round smooth bars: the fracture is damage-controlled at the centre of the specimen, resulting 

in a flat fracture in this region; and localization-controlled at the outer rim, leading to the formation of 

so-called shear lips due to a slant fracture mode. Round tensile bars usually form a so-called cup-cone 

fracture, consisting of a flat part, which presents a quasi-equiaxed dimpled aspect; and of a slant part, 

displaying elongated dimples with a lower degree of roughness (Benzerga and Leblond, 2010). Material 

anisotropy can however lead to a full slant-type fracture in such specimens, as recently showed in Ben-

zerga et al. (2019). Figure 2.5 represents a schematic of the two failure modes associated with the ductile 

fracture, as discussed above. 

 
1 The ductile tearing process denotes the mechanisms of void growth and coalescence ahead of the crack front. 
2 Localized necking is a strain localization phenomenon characterized by a non-uniform reduction of the cross 

section of a material during tensile stretching. 
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Strain localization-controlled  Damage-controlled 

Mechanism I  Mechanism II  Mechanism III 

 

 

 

 

 

(a)  (b) 

Figure 2.5 Two main modes of ductile failure: (a) strain localization-controlled (with damage playing either a 

primary – Mechanism I, or secondary – Mechanism II, role in the nucleation of a shear band); and (b) damage-

controlled (Mechanism III). Adapted from Tekoğlu et al. (2015). 

Strain localization (alias shear banding) denotes the formation of mesoscopic band-like planar zones 

of intense deformation developing from a more or less homogeneous deformation field (Raabe, 2014) 

(see Figure 2.5a). Strain localization is characterized by an intense dislocation (and/or twinning) activity 

within a narrow band, while the adjacent material undergoes comparably low and homogeneous plastic 

flow, or even elastic unloading (Raabe, 2014; Tekoğlu et al., 2015). Accordingly, strain localization is 

a material instability since the homogeneity of the deformation of the solid cannot be restored after the 

nucleation of a shear band, which is preceded by a bifurcation of the trivial (or fundamental) equilibrium 

path (Bigoni, 2012). Strain localization can thus be regarded as an additional mesoscopic, (i.e. involving 

multiple grains), and non-crystallographic deformation mode. Although microstructural details of the 

crystalline lattice play a key role in the nucleation of the shear-band, the mesoscopic orientation of the 

band, typically oblique to the main deformation axis, does not follow a specific crystallographic direc-

tion (e.g. a slip or twinning system) (Benzerga et al., 2019; Raabe, 2014). Instead, the band orientation 

is mainly defined by the specimen geometry, stress state and/or macroscopic material behaviour (e.g. 

anisotropy). Conversely, the band width is typically set by the microstructure, particularly, the grain 

size (Pineau and Pardoen, 2007). 

Despite strain localization being one of the most frequently observed failure modes in ductile mate-

rials, the basic understanding of the microstructural features involved in this phenomenon remain some-

what elusive (Benzerga et al., 2019; Raabe, 2014). Literature on strain localization phenomena, whether 

analytical (Anand and Spitzig, 1980, 1982; Hill, 1962; Hutchinson and Tvergaard, 1981; Leblond, Per-

rin and Devaux, 1994; Needleman and Rice, 1978; Rice, 1976; Rudnicki and Rice, 1975; Yamamoto, 

1978) or computational (Becker and Needleman, 1986; Benzerga et al., 2001, 2019; Al Kotob et al., 

2019; Kuroda and Tvergaard, 2007; Needleman, 1989; Tvergaard, 1987; Tvergaard et al., 1981; 

Tvergaard and Needleman, 1995), primarily attempts to tackle the following problem: given a particular 

material behaviour and boundary conditions, viz. stress state, rationalize the occurrence of plastic strain 
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localization. This leads to the formulation of a collection of potentially sufficient conditions thought to 

be responsible for shear band formation (e.g. see Pineau et al. (2016) for a detailed description). These 

include, for instance: (i) pressure-sensitive plasticity (Rudnicki and Rice, 1975); (ii) anisotropic plas-

ticity (Anand and Kalidindi, 1994; Benzerga et al., 2019; Harren et al., 1988; Kuroda and Tvergaard, 

2007; Lloyd and Priddy, 2017; Steinmann et al., 1998); (iii) thermal softening (Curran et al., 1987; 

Needleman, 1989); (iv) non-associative flow (Anand and Spitzig, 1982; Greer et al., 2013); (v) strain 

softening (Coleman and Hodgdon, 1987), viz., damage-induced (Benzerga et al., 2001; Leblond, Perrin 

and Devaux, 1994; Tvergaard, 1981; Tvergaard and Needleman, 1995; Yamamoto, 1978). However, in 

engineering practice, the inverse problem is more realistic: given a structure experiencing strain locali-

zation, identify the (possibly competitive) features of the material that played a role in the nucleation of 

the shear band. Naturally, answering the inverse problem is more challenging since engineering mate-

rials can simultaneously meat several of the ‘sufficient conditions’ for shear banding described above. 

Moreover, the formation of shear bands in actual components (or specimens) is not solely governed by 

the material response. Material structural heterogeneity and geometrical constraints may also induce 

localization. Geometric-induced localization denotes the occurrence of localization as a result of local 

stress and strain gradients triggered by geometric constraints imposed to the specimen, rather than by 

the remote loading itself. The most representative example is the phenomena of necking in ductile me-

tallic sheets (Rice, 1976). Geometry can facilitate or hinder the propagation of a shear band, and thus 

the propensity towards a slant fracture. In general, planar geometries, particularly with flat side surfaces 

and decreasing thickness are conducive to slant-type fractures (Asserin-Lebert et al., 2005; Benzerga et 

al., 2019; Pineau et al., 2016; Rice, 1976). On the other hand, axisymmetric geometries (axisymmetric 

stress and strain states are extremely ‘stiff’ against localization, surface grooves, and planar geometries 

with high thickness values inhibit premature localization, thus promoting damage-controlled flat frac-

tures (Figure 2.5b). Note that localization may still occur in these geometries, however in such cases, 

localization is triggered by material behaviour, e.g. anisotropy (Benzerga et al., 2019), or strain hard-

ening saturation (Asserin-Lebert et al., 2005), rather than geometry. 

Whether the presence of micro-voids and/or micro-cracks plays a primary or secondary role in the 

nucleation of plastic localization is often doubtful. This motivates the partition of the localization-con-

trolled failure mode in two alternative mechanisms (Figure 2.5a). In some cases, damage-induced sof-

tening overrules strain hardening and leaves the possibility wide open for a macroscopic instability to 

set an effective limit on ductility (Keralavarma et al., 2020) (Mechanism II, Figure 2.5a). In others, the 

pre-existing voids are, however, either not evident or decisive, and the plastic instability follows from 

a range of alternative mechanisms, many of which do not involve such microstructural defects (Mech-

anism I, Figure 2.5a). Strain localization phenomena is difficult to study experimentally given its un-

stable and abrupt nature (Benzerga et al., 2019). The experimental work in Tasan et al. (2009) related 

the material microstructural homogeneity with the role played by ductile damage on strain localization. 

It was observed that, for a single-phase steel, damage did not display a significant role on strain locali-

zation; on the contrary, damage accumulation in a dual-phase steel was responsible for triggering plastic 



Ductile fracture of metallic materials: fundamentals 

21 

localization. Moreover, recent high-resolution in situ synchrotron X-ray laminographic observations on 

an AA2198 (Al-Cu-Li) alloy revealed that the formation of shear bands ahead of a crack tip of a pre-

cracked sheet specimen (by flat-to-slant crack transition) and final slant fracture were virtually unaf-

fected by the accumulated damage before fracture (Morgeneyer et al., 2014). In summary, the onset of 

plastic instability in the form of strain localization results from an intricate relationship between intrinsic 

(i.e. material) and non-intrinsic contributions. 

2.2.3 Ductile crack formation 

This subsection is devoted to a more in-depth discussion on the mechanisms of nucleation, growth, 

and coalescence of voids. The contents of this subsection are mainly based on the overarching works of 

Benzerga and Leblond (2010); Garrison Jr and Moody (1987); Pineau et al. (2016); Pineau and Pardoen 

(2007). The micromechanisms involved in the ductile damage process are initially discussed individu-

ally. To close, their collective manifestation for the ductile crack initiation is analysed. 

Void nucleation 

Early studies on ductile fracture of metals and alloys established that voids primarily nucleate at 

inclusions, through inclusion-matrix decohesion and particle cracking, either within the grains or along 

the grain boundaries (Argon et al., 1975; Beremin, 1981; Fisher and Gurland, 1981; Goods and Brown, 

1979; Puttick, 1959; Tipper, 1949; Wilsdorf, 1983). Nucleation phenomena are usually associated with 

strain incompatibility and stress concentration in the vicinity of lattice defects (Lemaitre and Chaboche, 

1994; Tekkaya et al., 2020). The local stress field leads to intense plastic deformation of the matrix 

material near the defects. The inclusions, often being more brittle than the matrix, ultimately experience 

decohesion (by microcrack propagation at the inclusion-matrix interface) or brittle-like fracture of the 

inclusion itself, typically, by cleavage. Factors favouring one mode of nucleation over the other include: 

the matrix flow properties, viz. yield strength and hardening behaviour; the particle shape and orienta-

tion (relative to the remote loading); the matrix-particle stiffness mismatch, and loading, (viz. the triax-

iality) (Benzerga and Leblond, 2010). These factors and their trends on nucleation type are summarized 

in Table 2.1. 

 

Table 2.1 Key parameters governing void nucleation and relative trends upon the increase of each parameter for 

the activation of a nucleation mode (after Benzerga and Leblond, 2010). 

Parameter Type 
Nucleation trend 

Decohesion Cracking 

Matrix yield strength  ↘ ↗ 

Matrix hardening exponent  ↘ ↗ 

Particle elongation  ↘ ↗ 

Matrix-particle stiffness mismatch  ↗ ↗ 

Relative loading orientation Axial ↘ ↗ 

 Transverse ↗ ↘ 

Loading triaxiality   ↗ ↘ 
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The ductility of structural alloys is strongly affected by their volume fraction of inclusions  (Edelson, 

1962). Some alloys involve several inclusion types. The existence of populations of particles of different 

size is particularly relevant regarding ductile fracture (Asserin-Lebert et al., 2005; Bron et al., 2004; 

Cox and Low, 1974; Hahn and Rosenfield, 1965). The size and shape of the voids mostly depend on 

the type of inclusions that originate them. In general, voids nucleated by particle cracking or by partial 

particle decohesion are initially flat and ‘penny-shaped’ (Lassance et al., 2006), while the ones nucle-

ated by complete particle decohesion are initially spherical (Pineau et al., 2016). Likewise, elongated 

inclusions, typical in heavily rolled products, lead to the formation of channel-shaped voids (e.g. MnS 

inclusions in steel (Beremin, 1981)). As pointed out in Benzerga et al. (2016), it is still not clear what 

role, if any, the shape of the incipient voids plays on ensuing fracture events. In addition to particle 

decohesion and cracking, other microstructural surface and bulk defects, viz., interfaces, deformation-

induced boundaries and other miscellaneous heterogeneities, may act as nucleation sites (Bieler et al., 

2009; Cuitino and Ortiz, 1996; Gardner et al., 1977; Greenfield and Margolin, 1972; Inoue et al., 2008; 

Kondori and Benzerga, 2014; Lemaitre and Chaboche, 1994; Lubarda et al., 2004; Noell et al., 2017, 

2018; Rodriguez et al., 2016; Tan et al., 2007; Tasan et al., 2009; Thompson and Williams, 1978)), yet 

these nucleation mechanisms are rarely observed in engineering alloys.  

Void growth 

Void growth and void distortion mechanisms denote, respectively, the volumetric enlargement and 

shape change of the nucleated (or pre-existing) voids by plastic deformation of the surrounding matrix. 

Early macroscopic observations on the ductile fracture of metals and alloys, as firstly reported in Han-

cock and Mackenzie (1976) and followed by many others (Becker et al., 1988; Devaux et al., 1985; 

Johnson and Cook, 1985; Marino et al., 1985; Le Roy et al., 1981), established that ductility deteriorates 

monotonically with increasing stress triaxiality. Such behaviour is intimately related to the exponential 

increase of the micro-void growth rate with increasing stress triaxiality of the remote loading (Rice and 

Tracey, 1969). Therefore, the hydrostatic stress, which has little to no influence on the plastic response 

of fully dense materials, exhibits a critical role on the behaviour of porous ones (i.e. containing voids), 

particularly on the void growth and coalescence stages (Nahshon and Hutchinson, 2008). Indeed, the 

stress triaxiality plays a major role in the ductile fracture formation. Under sufficiently high stress tri-

axiality loadings, volumetric enlargement of the voids dominates over the shape changing effect so that 

void growth is essentially spherical (Rice and Tracey, 1969). In such case, the micro-voids nucleated 

by particle cracking tend to open and become spherical with accumulated plastic deformation of the 

matrix material (Pineau and Pardoen, 2007). Conversely, under low stress triaxiality, void growth in the 

volumetric sense is relatively smaller (or even inexistent) and void distortion by large ‘deviatoric’ shape 

changes govern the damage process (Thomason, 1990). In the latter case, the initially quasi-spherical 

voids nucleated by particle decohesion tend to elongate in the principal loading direction (Pineau and 

Pardoen, 2007) (while contracting in the perpendicular directions). Accordingly, while the role played 

by the shape of the incipient voids is somewhat uncertain, thus often relegated, the micro-mechanics of 

void distortion and its role on the ductile damage process is a subject of ongoing research (Pineau et al., 
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2016). At intermediate stress triaxialities there is a combined effect of volumetric and shape changes of 

the voids. Naturally, void distortion may also result from the presence of a shear component in the 

remote loading. If so, the elongated voids also undergo rotation. Void rotation can also take place if the 

void axis is not aligned with the principal loading direction, as shown in Benzerga et al. (2004a); Roth 

et al. (2018). In both cases, the rotation experienced by the voids can influence the interaction with the 

neighbouring voids in the coalescence stage (Pineau et al., 2016; Tvergaard, 2012). In the absence of 

localization in the intervoid ligaments, an initially spherical void subjected to a shear stress field may 

elongate and rotate to the point where eventually it closes into a penny-shape crack (McClintock et al., 

1966; Tvergaard, 2012). This is referred to as void-rotation mediated closure. In practice, however, the 

particles responsible for void nucleation are still present within the voids. In turn, during the damage 

process, the kinetics of the void may be constrained by the particle itself. Void-particle interactions are 

particularly relevant at low stress triaxialities such as in uniaxial tension, compression and shear (Pineau 

et al., 2016). The forced contact between the void and the particle is referred to as void locking (Lee 

and Mear, 1999; Siruguet and Leblond, 2004a, 2004b). Void locking leads to a net increase of the po-

rosity, both in shear (Achouri et al., 2013) and uniaxial loadings (Babout, Brechet, et al., 2004) since 

the void collapse effect in the directions perpendicular to the direction of void elongation is precluded 

by the particle. In summary, the evolution of the size, shape and orientation of the voids is governed 

both by intrinsic (micro-structure) and by extrinsic factors (loading conditions). 

State-of-the-art in situ 3-D X-ray tomographic (non-destructive) experiments have been allowing a 

more detailed characterization of the damage process, viz. the evolution of the size and morphology of 

the micro-voids (Babout et al., 2001; Babout, Maire, et al., 2004; Maire et al., 2005; Weck et al., 2008). 

Numerous other studies on void growth in metals and alloys were carried out using more tedious de-

structive methods, which allow to explore stress triaxiality effects and smaller porosity regimes on the 

void growth process, e.g. Benzerga et al. (2004a); Chae and Koss (2004); Pardoen and Delannay (1998). 

Void coalescence 

Void coalescence denotes the phenomenon of concentration of the plastic deformation within the 

ligaments of adjacent micro-voids, preceding their final linkage. Void coalescence governs the physical 

transition to fracture, i.e. the formation and propagation of discontinuities within the solid; ultimately 

controlling the resistance of the material to undergo ductile failure (Pineau and Pardoen, 2007). A sig-

nificant part of the total energy associated with the damage process may be spent on the microscopic 

plasticity involved in this final stage (Besson, 2010). During the damage accumulation, void nucleation, 

growth and/or distortion leads to the reduction of the spacing between neighbouring voids. As the in-

tervoid ligaments contract, the rather diffuse plastic deformation of the matrix that governs the void 

growth process is interrupted and plasticity concentrates within the intervoid ligaments. The first coa-

lescence events often take place inside void clusters and/or at zones involving high stress triaxiality or 

large plastic deformation (Pineau et al., 2016). Depending on the displayed strain concentration at the 

ligaments, two coalescence modes are often distinguished: (i) internal necking; (ii) internal shearing. A 

third mode, so-called ‘necklace’ coalescence, based on the conjectural evidence reported in Benzerga 
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(2000), may also be distinguished, yet this mode can be regarded as a particular case of the former 

coalescence mode.  

The most commonly observed mode of void coalescence is internal necking (Benzerga and Leblond, 

2010). In this mode, intervoid ligament contraction results in the formation of a neck-like plastic insta-

bility. After the onset of internal necking coalescence the involved micro-voids expand rapidly in the 

radial direction as the ligament necks down while their axial growth remains small. This often grants 

the voids a characteristic diamond shape, particularly when internal necking takes place near their equa-

tors (Pineau and Pardoen, 2007). Internal necking and final ligament failure may also occur away from 

the equators of the voids, due to prior void distortion events. Intervoid necking and ligament failure at 

the largest voids may be facilitated by the presence of a secondary population of smaller voids within 

the ligament (Bao, 2003), as reported in Benzerga (2000).  

Internal shearing is driven by localization at the mesoscale and concerns voids that undergone void 

distortion and rotation in the growth stage. In contrast to internal necking, coalescence by internal shear-

ing of large (primary) voids can be triggered while the voids are still quite apart (Benzerga and Leblond, 

2010). The nucleation of a secondary population of smaller voids within a planar microshear band at 

the ligament or primary voids can facilitate intervoid linkage (Noell et al., 2018). Internal shearing tends 

to produce a macroscopic crack along the shear band plane. 

As in the void growth stage, the stress triaxiality displays a major role on the activated coalescence 

mode. Failure by internal necking of the ligaments mainly occurs at high stress triaxiality. As the stress 

triaxiality decreases and the deviatoric component of the stress state increases, shearing-based coales-

cence mechanisms are promoted (e.g. see work of Barsoum and Faleskog (2007), for experimental ev-

idence). This is intimately related with the propensity to shear band formation at such stress states. At 

intermediate stress triaxialities there is a combined activation of internal necking and shearing mecha-

nisms, i.e., the intermediate stress triaxiality range is a transition range (Bao, 2003). Again, one must 

stress that shearing-based coalescence modes are not limited to failure under shear-dominated loadings. 

Internal shearing coalescence has been observed under triaxial stress states developing inside the neck 

of a notched bar, due to void rotation during the damage process (Pineau et al., 2016). This reinforces 

that the triggered coalescence mode is a statistical process, which depends on the relative position (viz. 

spacing and orientation) of the ligaments between neighbouring voids. 

From damage to cracking 

A material is said to be in a damaged state if it has progressively undergone the processes of void 

nucleation, growth (and/or distortion), as well as a few isolated and inconsequential void coalescence 

events (Pineau et al., 2016). As damage accumulates either: (i) a crack initiates; (ii) a pre-existing crack 

propagates; or (iii) a plastic instability occurs. The latter outcome eventually leads to one of the former 

ones, i.e. either the nucleated shear band induces fracture in a crack-free specimen; or a crack propa-

gating in a specimen undergoes transition from flat to slant mode. Typically, the onset of a macroscopic 

crack follows the coalescence of few of the largest voids (Benzerga et al., 2004a). A coalescence event 

gives rise to a larger flat void resembling a microcrack. Further void coalescence events occurring near 
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the crack tip can then propagate the microcrack. A material can concurrently experience this process at 

other locations. Nevertheless, at some point, one main crack eventually develops and controls the re-

maining ductile fracture process, leading to the final loss of load-bearing capacity of the solid, while 

plasticity ceases elsewhere (Pineau et al., 2016). The end of a coalescence process in metals usually 

involves the premature failure of the intervoid ligaments, rather than a plasticity-controlled radial void 

growth until void impingement, (alias void touching). Ligament failure mechanisms include (micro)-

cleavage and crystallographic shearing, which may be additionally aided by the presence of a second 

population of smaller voids in the ligament (Pineau and Pardoen, 2007). To some extent, the transition 

between internal necking and internal shearing coalescence modes can be related to the transition be-

tween flat fracture to slant fracture surfaces (Figure 2.6a) (Pineau and Pardoen, 2007). The former char-

acteristically exhibits a dull and fibrous aspect with quasi-equiaxed dimples (as in Figure 2.6b) whereas 

the latter exhibits parabolic elongated dimples, as represented in Figure 2.6b. In ductile materials, crack 

initiation usually occurs past the maximum macroscopic load, while in less ductile alloys, fracture may 

even initiate during the rising part of the load (Pineau and Pardoen, 2007). 

 

  

(a) (b) 

Figure 2.6 Fracture morphology of a Ti-6Al-4V alloy: (a) two distinct fracture modes in a rectangular uniaxial 

tension specimen: a flat zone (mode I, plane strain) and a shear lip (mode II, plane stress) (Noell et al. 2018);  

(b) SEM micrograph of parabolic shear dimples after failure in torsion. Magnification of 1400× (Miller, 2002). 

2.3 Concluding remarks 

In this section, the main metallurgical phenomena governing the mechanical behaviour of poly-crys-

talline metals and alloys were described. The role of the microstructure, in particular the built-in lattice 

defects, was highlighted, demonstrating its crucial impact on the physical aspects of deformation, hard-

ening, softening and fracture of these materials.  

Remark 2.8 Plasticity and damage are strongly coupled dissipative phenomena that govern the occur-

rence of ductile fracture. A good understanding of the physics of the ductile fracture in metals and alloys 

relies on the proper appraisal of the theory of plasticity. 
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This implies the integration of the inherently heterogeneous phenomena, associated to discrete entities 

(viz. voids) at the microscopic level, with homogeneous continuum models, at the macroscopic level. 

In summary, such macroscopic models must fundamentally account for the following phenomena: 

i. Elastoplastic flow (§2.1.2) and hardening (§2.1.3): the reversible and irreversible movement of 

atoms (slip, twinning and other dislocation motion mechanisms at the atomic level); the creation 

and interaction of slip and twinning systems; 

ii. Texture (§2.1.1): initial preferred orientation of the grains; deformation-induced and twinning-

induced crystallographic lattice reorientation relative to the loading direction;  

iii. Strength differential effects (§2.1.2): mechanical twinning and/or non-Schmid type slip; 

iv. Damage (§2.2.3): irreversible rupture of interatomic bonds and the nucleation and growth of de-

formation-induced discontinuities in the material, viz. voids. 

These are strongly interdependent physical phenomena, involving complex couplings and interactions, 

from the diffuse deformation stage up to the onset of fracture. Hence, they should be modelled as such. 
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Chapter 3. 

 

Modelling ductile failure of metals and alloys 

This chapter provides a literature review on damage constitutive modelling, continuum damage mechanics mod-

elling schemes and a state-of-the-art review of the micromechanical-based void growth models for porous ductile 

solids, in particular, criteria of the Gurson-type. 

3.1 Chapter introduction 

Modelling is the approximation of reality. By definition a model is a simplified representation of a 

system and its features. Models are employed to identify, describe and better understand the fundamen-

tal principles and the cause-effect relationships between the features of the system which it represents. 

The proper rheological characterization of engineering materials by constitutive modelling contributes 

to a deeper understanding of the observed reality, in particular the intricate phenomena involved in the 

ductile fracture. Additionally, material models may also be applied for design proposes, viz. by improv-

ing the performance of mechanical components, both from the security and ecological point of view; 

and to aid the design of new grades of materials, by enhancing particular microstructural features (e.g. 

grain size, texture) in order to intrinsically improve their engineering performance (Besson et al., 2009).  

Continuum solid mechanics and thermodynamics constitute the basic theoretical tools and axioms 

for the formulation of the physical phenomena of deformation and fracture. In order to not overly extend 

this text, these general concepts are omitted here when possible and the focus is placed on the constitu-

tive modelling concerning ductile damage. For a comprehensive description of such fundamental con-

cepts, the reader is referred to ‘classical’ handbooks such as those of Besson (2010); Bonet and Wood 

(1997); De Borst et al. (2012); Germain (1973); Hill (1998); Jirásek and Bazant (2002); Lubarda (2002); 

Lubliner (2008); Mandel (1966); Simo and Hughes (2006); de Souza Neto et al. (2011); Zienkiewicz 

and Taylor (2005) on the framework of solid mechanics; and in particular to Benzerga and Leblond 

(2010); Cazacu et al. (2019); Lemaitre (2012); Lemaitre and Chaboche (1994); Lemaitre and Desmorat 

(2005); Saanouni (2013); Voyiadjis (2015) on damage modelling. 
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3.2 Overview of the possible modelling schemes 

The local state method approach (Germain, 1973; Lemaitre and Chaboche, 1994) is remarkably well-

suited for the formulation of constitutive equations involving several dissipative, often strongly cou-

pled, phenomena. This approach is based on the assumption that the thermodynamic state at a given 

material point of the continuum can be fully defined at any instant of a thermokinetic deformation pro-

cess by the knowledge of a finite number of state variables. Since no time derivatives of these variables 

are involved in the definition of the thermodynamic state, this approach implies that any evolution can 

be considered as a succession of equilibrium states (Lemaitre and Chaboche, 1994). The state variables, 

(alias independent/thermodynamic variables), in general, of scalar, vectorial or tensorial nature, may be 

grouped into two classes: observable and internal. For reversible phenomena (e.g. pure elasticity), the 

thermodynamic state depends at any instant uniquely on the observable variables3. In contrast, internal 

variables are introduced to account for dissipative phenomena (which are known to render the current 

state dependent on the history of the deformation). Each dissipative phenomenon envisioned to be mod-

elled (e.g. plasticity, damage, etc.) entails the introduction of its own internal state variable, involving 

a more or less level of abstraction, in order to represent the current micro- or meso-structural state of 

the material (Lemaitre and Chaboche, 1994). By definition, an internal variable cannot be directly ob-

served nor even directly measured (Saanouni, 2013). 

Remark 3.1 The success of the constitutive model based on the local state method critically depends on 

the choice of an appropriate set of internal variables. 

Naturally, for practical reasons, no plausible model may be general enough to describe the response of 

a wide range of materials under all types of applications. This way, the choice of internal variables must 

be guided not only by the envisioned class of materials but also by the (thermo)-kinetic processes under 

which the model is meant to describe the (thermo)-mechanical behaviour of the material (e.g. tempera-

ture range, strain-rate, etc.) (de Souza Neto et al., 2011). For a more in-depth assessment on the local 

state method approach, refer for instance to Bataille and Kestin (1979); Kestin and Bataille (1977). In 

this work, this approach is adopted since it is appropriate for modelling the behaviour and fracture of 

deformable solids under large plasticity conditions. 

Within the local state method, two particular approaches may be distinguished regarding the smallest 

scale which one intends to deal with in order to describe the desired reversible and/or dissipative phe-

nomena: (i) the micromechanical; and (ii) the macroscopic phenomenological approach. Before briefly 

discussing these alternative approaches, it is of all interest to, at first, introduce and describe the concept 

of representative volume element (RVE). The existence of a RVE is intimately connected to the notion 

of separability of scales. The RVE defines the smallest volume holding, a priori, all the statistical (or 

deterministic, in the periodic case) information describing the distribution and the morphology of the 

heterogeneities of a material such that the volume element of matter can be regarded as a homogeneous 

 
3 In materially simple continua (e.g. Saanouni, 2013) one refers to observable variables, (alias external variables), 

to denote the following thermomechanical quantities: the deformation gradient (or any total strain measure ten-

sor); the absolute temperature; and the temperature gradient. Naturally, time may be included in this definition. 
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continuum (Besson et al., 2009; de Souza Neto et al., 2011). Accordingly, by definition, any larger 

volume of material may be deduced through successive translations or additional realizations of the 

known statistical RVE. From the continuum solid mechanics viewpoint, the RVE must be large enough, 

with respect to the local material heterogeneities; and small enough, compared with the dimensions of 

the structure, for the classical mathematical operations (e.g. derivation and integration) at a spatial point 

of the continuum to be meaningful4 (Lemaitre and Chaboche, 1994; Saanouni, 2013). In what follows, 

it is assumed that such RVE does exist. Returning to the previous topic, one distinguishes: 

i. the micromechanical (alias bottom-up or inductive) approach, which describes the physical phe-

nomena with state variables related to the nano- (viz. atomic, molecular) and/or microscopic (viz. 

crystalline) level. The basic idea behind this approach is the application of appropriate localiza-

tion-homogenization techniques in order to deduce the ‘macroscopic’ behaviour of the RVE from 

the knowledge of the local (thermo)-mechanical fields of each of the elementary constituents of 

the RVE at lower length scales (Lemaitre and Chaboche, 1994; Saanouni, 2013; de Souza Neto 

et al., 2011). This implies an explicit definition of the RVE a priori, viz. microstructural features 

(e.g., phases, grains and their size and orientations distribution for each phase); 

ii. the macroscopic phenomenological (alias top-down or deductive) approach, which describes the 

behaviour of the RVE exclusively in a global fashion, totally disregarding the heterogeneities and 

specificities of the phenomena at lower length scales (Lemaitre and Chaboche, 1994; Saanouni, 

2013; de Souza Neto et al., 2011). Accordingly, the RVE is treated as a ‘black box’ during the 

task of determining the cause-effect relationship between input and output of the thermodynamic 

process under study. The dissipative behaviour observed at the macroscopic level, associated with 

microscopic physical phenomena, is modelled with macroscopic (alias phenomenological) inter-

nal variables. Such state variables should however, as far as possible, be related to the underlying 

microscopic dissipation mechanisms which they concern (de Souza Neto et al., 2011). 

In summary, while both approaches are based on the existence of a RVE, the idea behind the formulation 

of the continuum constitutive models is indeed distinct: the micromechanical approach aims to explic-

itly describe the ‘true’ physical mechanisms acting within the RVE; whereas the macroscopic phenom-

enological approach aims to directly couple continuum mechanics with phenomenology. 

The micromechanical -based continuum models have, due to their very principle, a sounder physical 

background and are an undeniably promising and powerful approach. Nonetheless, it is unlikely that 

these may offer similar accuracy to the phenomenological, top-down, approach in the foreseeable future 

given the complexity involved in modelling the microscopic mechanisms of actual engineering materi-

als (Benzerga and Leblond, 2010). Nevertheless, a growing number of studies are being devoted to the 

description of the behaviour of highly heterogeneous solids using this approach (see e.g. the books of 

Asaro and Lubarda (2006); Besson et al. (2009); Lubarda (2002); Raabe (1998); Tome and Lebensohn 

(2023)). On the other hand, the purely phenomenological approach to irreversible thermodynamics has 

 
4 In practice, from the numeric point of view, the RVE materializes as an integration point (often a Gauss point), 

when using the finite element method. 
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been historically successful in the field of solid mechanics, where numerous well-established models 

of elastoplastic solids have been developed. Indeed, despite its heuristic nature, the latter approach re-

mains highly practical and efficient in the development of new constitutive equations (Saanouni, 2013). 

Developing constitutive laws with this modelling scheme entails the construction of the so-called state 

and dissipation potentials, which are closed, convex, scalar-valued functions of their arguments, as to 

be discussed in forthcoming sections. The constitutive laws developed in this work are based on the 

macroscopic phenomenological approach. 

3.3 Damage constitutive modelling 

The present subsection presents an overview concerning constitutive modelling within the damage 

mechanics framework. An introduction to this branch of continuum solid mechanics is provided, placing 

particular emphasis on the definition of damage variables. The section starts by distinguish the domains 

of application of the fields of damage mechanics and fracture mechanics (§3.3.1); following it, the 

framework of continuum damage mechanics (CDM) is presented and its two main branches, the phe-

nomenological and the micromechanical approaches are described (§3.3.2). A first mathematical defi-

nition of the damage variable is provided. The section ends by describing a different scheme for mod-

elling ductile damage, known as the uncoupled approach (§3.3.3). 

3.3.1 Damage mechanics and fracture mechanics 

The theory of damage mechanics is employed to describe the progressive deterioration of the matter, 

from the virgin state up to macroscopic fracture, within the continuum solid mechanics framework; viz. 

working with the RVE concept. In this context, the changes at the microstructural level due to the evo-

lution of damage phenomena are incorporated in the continuum model by means of a set of scalars 

and/or tensor-valued internal state variables, either micromechanically or phenomenologically inspired, 

known as damage variables (Besson et al., 2009; De Borst et al., 2012; Lemaitre and Chaboche, 1994). 

Recall that, in a given material, damage (i.e. the irreversible rupture of interatomic bonds) may be trig-

gered by a wide range of physical mechanisms, fundamentally depending on the type and rate of load-

ing, temperature, as well as other environmental factors (e.g. oxidation, corrosive substances, radiation). 

Accordingly, damage mechanics must consider the material-process-environment triad, rather than the 

material alone (de Souza Neto et al., 2011). Naturally, different damage variables, each describing a 

particular damage feature, can accumulate and interact with each other in a constitutive model. In any 

case, by knowing the stress and strain history of a given volume element of the structure, the evolution 

of a damage variable is provided by integration with respect to time of a damage law, consistent with 

the fundamental conservation and/or thermodynamic laws (Lemaitre and Chaboche, 1994). The final 

damage state is identified by the fulfilment of a failure criterion at a volume element of the continuum, 

representing the onset of a crack of the size of the RVE, often referred to as macrocrack (Figure 3.1). 

More specifically, as depicted in Figure 3.1, depending on the scale of the crack in a metallic material, 
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typically, one refers to a microcrack to denote a crack of an order of 0.01 – 0.1 mm (mesoscale); and to 

a macro-crack regarding length scales superior to the tenths of a millimetre (macroscale). 

Remark 3.2 The growth of a micro- in to a macrocrack marks the transition of the domains of damage 

mechanics to fracture mechanics (Figure 3.1). While the notions of damage mechanics are often em-

ployed to predict the onset of a macrocrack in the continuum, the theory of fracture mechanics can be 

applied to study the propagation of this macrocrack up to the complete failure of the structure. 

The theory of fracture mechanics (alias crack mechanics) deals with the description of the behaviour 

of solids with embedded macroscopic geometric discontinuities at the scale of the structure, viz. mac-

rocracks. In the presence of these discontinuities, the crack geometry and dimensions must be directly 

taken into consideration in a fracture mechanics model as they modify the stress-strain fields on a scale 

that renders the assumption of a homogeneous medium no longer meaningful (Lemaitre and Chaboche, 

1994).  

An important remark is that damage and fracture mechanics are not incompatible nor mutually ex-

clusive5. Fracture mechanics, which is often related to the study of concepts such as the fracture tough-

ness, crack growth stability, intrinsic resistance to cracking, crack path prediction; does not exclude the 

possibility of studying the behaviour of a cracked medium within the theory of damage mechanics, thus 

staying in the framework of continuum mechanics. On the contrary, one should in fact account for the 

diffuse internal degradation of the solid both prior and during the fracture process, and thus adopt the 

theory of damage mechanics in the entire thermomechanical deformation process. 

This work mainly concerns the framework of damage mechanics. Hereafter, one refers to continuum 

damage mechanics model (CDMM) to any continuum constitutive model that includes a set of internal 

variables representing, directly or indirectly, the density and/or distribution of the microscopic features 

that characterise the damage state of the solid, i.e., the damage variables. In the following subsection, 

the definition of these variables regarding their physical significance is addressed. 

 

 

 

Figure 3.1 Bridge between the framework of damage mechanics and fracture mechanics, regarding the typical 

magnitude of the cracks in metals and alloys (adapted from Besson et al., 2009). The gradient filled area repre-

sents the transition from micro- to macroscopic fracture. The domain of validity of each theory is defined some-

where in this zone. 

 
5 Figure 3.1 may suggest otherwise, however, the partition of these fields in it is merely based on the crack size. 
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3.3.2 Continuum damage mechanics: notions and general concepts 

In practice, prior to fracture, there is virtually no macroscopic observable indication which allows 

to distinguish a highly damaged volume element and a virgin one (Lemaitre and Chaboche, 1994). The 

introduction of a damage variable which, by definition, cannot be directly observed nor measured, is 

thus necessary for representing the deteriorated state of the matter. CDMM are proposed to link field 

variables defining a current thermodynamic state (e.g. strain and/or stress tensors) to the material dete-

rioration towards fracture, by means of damage laws. As with any internal state variable, the definition 

of the damage variables crucially sets the predictive ability and the domain of validity of the continuum 

model envisioned for the description of the dissipative phenomena regarding microstructural damage. 

Given the diversity of forms in which damage may manifest at the microscopic level, the definition of 

an adequate damage variable presents a difficult problem on itself (Lemaitre and Chaboche, 1994; de 

Souza Neto et al., 2011). Depending on the proposed measurement method for evaluating the damage 

state of a volume element, one can classify it as a direct or an indirect method. The direct measurement 

method aims to describe the actual microstructural features of the matter, viz., the density and/or distri-

bution of the lattice defects, e.g. the volume fraction and shape of the micro-voids in the case of ductile 

damage. Conversely, the indirect measurement method, inherently more phenomenological-biased, is 

based the couplings between the global behaviour of the material and its damaged state, in particular: 

(i) the modification of macroscopic mechanical properties (e.g. the elastic modulus); (ii) the modifica-

tion of physical properties (e.g. density, resistivity, acoustic emission); (iii) remaining lifetime measure-

ments (e.g. the well-know Palmgren-Miner rule (Miner, 1945) for fatigue damage modelling).  

The direct and the indirect method based on macroscopic mechanical properties are, by far, the most 

renowned and pragmatic approaches for introducing damage variables within the framework of CDM. 

In fact, these lead to the distinction of the two main CDM theories: the so-called micromechanical and 

the phenomenological CDM models. Before describing these alternative theories, it is interesting to 

present an initial mathematical definition of the damage state variable and describe the concepts of 

effective stress, intimately related with the adopted damage description. 

A first definition of the damage variable 

Consider a damaged solid in which an element of finite volume δ ,V  sufficiently large with respect 

to its heterogeneities (e.g. an RVE), as represented in Figure 3.2. Let δS  be the area of a section of this 

volume element, defined by its normal, ;n  and DδS define the ‘effective’ surface area of deterioration, 

concurrently accounting for: (i) the area of intersection of micro-cracks and micro-voids with the plane 

δ ,S  denoted 0δS  (Figure 3.2); as well as (ii) possible correction terms accounting for stress concentra-

tion in the vicinity of the discontinuities and their interactions. Accordingly, one may instead define the 

net section of resistance, 
*δS  of the damaged solid as: 

 
*

0δ δ δ ,S S S= −  (3.1) 

as well as the effective section of resistance, δS  as: 
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 Dδ δ δ ,S S S= −  (3.2) 

the latter accounting for both the net section and the abovementioned possible corrections for the effects 

of stress concentration and microdefect interactions. Hence, one may define a mechanical measure of 

the local damage relative to the direction n  as (Lemaitre and Dufailly, 1987): 

 D
( )

δ δ δ
,

δ δ

S S S
D

S S

−
= =n  (3.3) 

where ( )D n is the damage variable, denoting the effective (or corrected) surface density of discontinuities 

within the RVE, in the plane normal to .n  From the mathematical point of view, the condition ( ) 0D =n   

corresponds to undamaged (or virgin) state of the matter; ( ) 1D =n  corresponds to the fracture of the 

volume element along the plane normal to ;n  and ( )0 1D n  characterizes an arbitrary damage state 

(Lemaitre and Chaboche, 1994). Being defined on the RVE, the damage variable represents a statistical 

information characterizing the density and distribution of defects associated with a given direction. 

The above expression accounts for the general case of anisotropic damage which considers the pos-

sibility of the micro-cracks and/or micro-voids to have preferred orientations (e.g. the micro-cracks in 

metals tend to propagate in a direction normal to that of the maximum stress (Lemaitre and Chaboche, 

1994). In practice, this feature may be introduced in a constitutive model via damage variables repre-

sented by second or fourth order tensors, depending on the adopted modelling scheme. Conversely, a 

damaged medium whose microdefects have a statistically random distribution of orientations is said to 

obey the hypothesis of isotropic damage. In such case, the directional nature of the variable is dropped, 

and the damaged state can be completely characterized by a single scalar, D: 

 ( )D D n , .n  (3.4) 

This thesis is restricted to the case of isotropic damage. Recall from §2.2 that this assumption is actually 

reasonable given the typical random shape and distribution of the microstructural particles triggering 

damage initiation (viz. void nucleation). 

Effective stress concept 

The foundations of CDMM can be traced back to Kachanov (1958) who proposed a model for creep 

failure of isotropic metals under uniaxial loads. Specifically, in order to describe the plastic strain rate 

increase in the tertiary creep regime due to damage accumulation, Kachanov (1958) replaced the true 

uniaxial stress,   with a uniaxial effective stress, :  

 ,
1 D


 =

−
 (3.5a) 

in the standard constitutive equation (Norton’s law) for creep (de Souza Neto et al., 2011). Kachanov’s 

damage variable, D was originally introduced without a clear physical meaning. Only later, Rabotnov 

(1963) proposed an actual physical interpretation for this variable, assuming the reduction of the cross-

section area due to microcracking, as a suitable measure of the state of internal damage. 
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Figure 3.2 Idealization of a damaged solid. Adapted from Pires (2005). 

As the name implies, the effective stress is defined over the section which effectively resists the loading 

in the RVE satisfying the equilibrium equation, i.e.: 

 
δ

,
δ

S

S
 =  (3.5b) 

in the uniaxial case. Evidently,  =  for a virgin material and  →  at the onset of fracture of the 

RVE. In the case of multiaxial isotropic damage, the ratio δ /δS S  does not depend on the orientation of 

the normal, ,n  of the RVE, hence the operator (1 )D−  (often referred to as material continuity or in-

tegrity) can be applied equally to all the components of a stress tensor, viz. the Cauchy stress tensor, ,σ  

i.e.: 

 ,
1 D

=
−

σ
σ  (3.6) 

where σ  is the effective stress tensor. 

The phenomenological and micromechanical approaches 

The phenomenological approach to CDM is grounded on the replacement of the standard definition 

of damage in terms of the reduction of the (neither well-defined nor easily measurable) effective load-

bearing section by the evaluation of the deterioration of a macroscopic, hence more easily measured, 

material property describing the overall behaviour of the damaged material. In view of this approach, 

the constitutive relations are formulated within the framework of irreversible thermodynamics. If the 

hypothesis of damage isotropy is not applicable, the generalization to multiaxiality of the effective stress 

concept (Eq. (3.5b)) can be achieved either by the so-called principle of strain equivalence (Chaboche, 

1977; Lemaitre and Chaboche, 1978) or by the principle of energy equivalence (Cordebois and Sidoroff, 

1979). In either case, the resulting effective stress tensor is employed in the constitutive equations in 

place of the actual stress tensor, in order to describe the impact of the damage on the material behaviour 

at the scale of the RVE. 

Remark 3.3 Consistency and thermodynamic admissibility, i.e. the fulfilment of the conservation laws 

of materially simple continua and of the fundamental inequality of thermodynamics, respectively, is not 

a sufficient condition for a CDM model to be accurate. 

If, in contrast, one aims to represent the internal damage as some average measurement describing, 

with a more or less level of abstraction, the actual microstructural damage features characterizing the 

current state of internal deterioration, one is referred to a micromechanical approach to CDM. 
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Remark 3.4 Micromechanical-based CDM models take advantage of the intimate relationship between 

the density and distribution of material microdefects and the onset of fracture: the ability to accurately 

describe the evolution of these microstructural features describing damage accumulation allows an ac-

curate prediction of the mechanical failure of the material. 

Unfortunately, at the present, computational constraints render explicit tracking of the evolution of each 

microdefect unreasonable in most engineering applications. Thus, as an alternative to the latter method, 

scale transition operations, viz. homogenization procedures, allow to translate the microstructural fea-

tures into macroscopic (averaged) properties, entering some macroscopic constitute model. In this case, 

the damage variables describe, even if in an average fashion, some well-defined microstructural feature; 

as opposed to the ‘hidden’ internal state variables characteristic of the phenomenological approach to 

CDM. Moreover, their evolution is often explicitly set by physical considerations (e.g. conservation of 

mass and material continuity), rather than postulated by means of a somewhat arbitrary thermodynamic 

damage dissipation potential. 

Following the pioneering work on creep failure of Kachanov-Rabotnov (Kachanov, 1958; Rabotnov, 

1963) who established the framework of CDM, the concept of damage variable was soon adopted by a 

number of authors in order to model other types of damage and/or material behaviour, either following 

(what is here distinguished as) a phenomenological or micromechanical approach. Within the phenom-

enological approach to CDM, several theories describing a variety of materials and damage processes 

can be highlighted, e.g. creep damage (Chaboche, 1978, 1981, 1984; Leckie and Hayhurst, 1974; Saano-

uni et al., 1989); fatigue damage (Chaboche, 1988; Janson, 1978), creep-fatigue interaction (Chaboche, 

1988; Lemaitre, 1987); and ductile damage, both isotropic (Lemaitre, 1984, 1985a, 1985b; Marquis and 

Lemaitre, 1988) as well as anisotropic (Cordebois and Sidoroff, 1979; Lemaitre et al., 2000; Simo and 

Ju, 1987). Regarding the micromechanical approach, the following are worth mentioning: creep damage 

(Krajcinovic and Selvaraj, 1984; Murakami and Ohno, 1981); brittle damage (Fonseka and Krajcinovic, 

1981; Krajcinovic and Fonseka, 1981); and ductile damage, either with vectorial damage variables de-

scribing the distribution of planar penny-shaped micro-cracks (Krajcinovic, 1983, 1985), or with a sca-

lar variable denoting the volume fraction of spherical micro-voids, according to the well-known Gurson 

theory (Gurson, 1977). Refer to the books of Lemaitre and Chaboche (1994) and de Souza Neto et al. 

(2011) for a further description of these. 

This subsection intended to demonstrate that damage variables of different tensorial nature, hence, 

holding different physical meaning, viz. the reduction of load bearing area, loss of stiffness, distribution 

of micro-voids, have been employed in the description of damage under various areas of solid mechan-

ics. In this work an analogous theory to that of Gurson (1977) is pursued in order model damage accu-

mulation of ductile materials.  

Before proceeding to next subsection, it is important to sort out two nomenclature-related aspects. 

The first is associated with the acronym CDM. This acronym is often applied in the literature to denote 

exclusively the phenomenological approach; this is however an ill-judged designation, since its micro-

mechanical counterpart also relies on a continuous description of damage. The second remark is related 
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with the recurrence to the term ‘micromechanical approach’ in the previous (§3.2) and in the present 

subsection. It must be clear that these represent in fact distinct concepts. For instance, in theory, the 

micromechanical approach to CDM can be pursued both with a top-down and a bottom-up (alias mi-

cromechanical) approach, depending on the smallest scale which one intends to deal with. As stated in 

§3.2, this work focusses solely on the top-down approach. This does not impede one to describe damage 

phenomena by means of some statistical microstructural-based measurements, it simply means that such 

description must be provided via ‘macroscopic’ internal state variables, related with some constitutive 

laws written exclusively at the macroscopic level. 

3.3.3 Other damage and failure criteria 

This short subsection aims to present an alternative scheme for modelling ductile damage, known as 

the uncoupled approach. Some uncoupled models, alias failure criteria, are mentioned and briefly de-

scribed. 

As mentioned in the previous subsection, by definition, a damage model links the history of field 

variables (e.g. strain tensor, stress tensor, or their invariants) to the predicted damage state of the solid. 

In the literature, this connection is established either by means of the so-called uncoupled or coupled 

models. In the former there is no interaction between the damage variable(s) (hence the current damaged 

state) and the material behaviour; whereas in the latter the opposite holds true, i.e. damage is indeed 

incorporated in the constitutive equations of the material at some scale, and thus one or more properties 

of the material are considered to be related with the damage state, usually the macroscopic elastic and/or 

plastic behaviour. The CDM framework, as defined in §3.3, is based on the coupled approach. 

According to the uncoupled approach, damage evolution laws are formulated empirically or semi-

empirically through a scalar variable, D. Regarding ductile damage, one may write as general criterion: 

 
p
f p p

c
0

( , ) ,D f d D


=  σ ε  (3.7) 

where 
p  is an equivalent plastic strain, 

p
f  is the critical value of the equivalent plastic strain at fracture 

for a given loading path, σ  is the Cauchy stress tensor and 
p
ε  is the plastic strain tensor. The integrand,  

p( , ),f σ ε  is the so-called weighting function of damage, representing here an all-purpose function of 

the field variables. The weighting function can be phenomenologically- or micromechanically-inspired 

and may also account for thermal and/or strain rate effects (not represented in the integrand). According 

to the above expression, fracture is considered to occur when the damage variable exceeds a critical 

value, c .D  Several uncoupled criteria, i.e. weighting functions, have been proposed in the literature. 

Regarding the fully-empirical models, one may highlight the ones based on: the critical value of plastic 

work (Freudenthal and Geiringer, 1958); the maximum principal stress and/or stress triaxiality (Ayada, 

1987; Brozzo et al., 1972; Cockcroft and Latham, 1968); and the concept of ‘fracture locus’ in which a 

measurement of a ‘strain to fracture’, under proportional loadings, is explicitly defined as a function of 

some invariants of the stress state, viz. the stress triaxiality and the Lode angle (Bai and Wierzbicki, 

2008; Bao and Wierzbicki, 2004, 2005; Mohr and Marcadet, 2015; Wierzbicki et al., 2005). Regarding 
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the micromechanically-inspired models, special mention is given to the classical works of McClintock 

(1968) and Rice and Tracey (1969), which analytically described the combined role of the stress triax-

iality and the plastic flow on the growth of isolated cylindrical and spherical voids, respectively, in an 

infinite rigid, perfectly plastic matrix subjected to a uniform remote strain field. More recently, semi-

empirical micromechanically-motivated failure criteria have been developed (Lou et al., 2012, 2014, 

2017; Mohr and Marcadet, 2015), to concurrently account for the nucleation, growth and coalescence 

of voids on the explicit definition of the fracture locus concept. 

In practice, within a numerical simulation scheme, the uncoupled approach evaluates the damage 

state of the matter exclusively at a post-processing stage of the final solution. Since these models do not 

modify the material behaviour, convergence issues characteristic of their coupled counterparts are hin-

dered. As a result, uncoupled damage models do not generally lead to pathological mesh-dependent 

results. Given they relatively simpler formulation, implementation, and, usually, parameter calibration, 

uncoupled criteria are popular in the industrial community, especially in the early product development 

stages (Tekkaya et al., 2020; Xue et al., 2010). Nevertheless, it should be emphasized that, given the 

over-simplification of the mechanical behaviour of the materials, uncoupled models often display lim-

ited accuracy, hence predictive ability, specially, when applied to complex (e.g. non-proportional), load-

ing paths. Moreover, the critical damage value cD  is often considered dependent on the loading path. 

This violates the notion of ‘material parameter’, thus further undermining the physical significance of 

this approach. As such, these models should be employed only in a qualitative fashion. In closing, note 

that, from the physical viewpoint, the uncoupled approach is, in part, counterintuitive: it intends to 

model a damage process (which is known to be governed by strongly coupled damage-plasticity dissi-

pative phenomena), without actually taking into account the effect of damage on the material behaviour. 

This interpretation is in total disagreement with the modelling framework adopted in the present work; 

the uncoupled approach reviewed here was presented just for the sake of completeness. 

3.4 State-of-the-art of micromechanical-based criteria for porous ductile solids 

This section provides an overview of some recent developments concerning constitutive modelling 

within the continuum mechanics of porous ductile materials, regarding each of the three micromecha-

nisms. Major emphasis is laid on the micromechanics-based framework originally proposed by Gurson 

(Gurson, 1977). A more in-depth review of the models described here is available in the extensive re-

views of Benzerga and Leblond (2010); Besson (2010); Pineau et al. (2016); and Pineau and Pardoen 

(2007). The section starts by introducing the framework of porous media (§3.4.1). Following it, consti-

tutive models representative of growth (§3.4.2), nucleation (§3.4.3) and coalescence (§3.4.4) stages are 

discussed in detail, with emphasis laid on the first (void growth models are intentionally presented at 

the outset with the intention to provide a clear reference framework in which the latter models can be 

more easily introduced). 
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3.4.1 Fundamentals of porous models 

A porous solid (alias aggregate or medium) refers to a material containing pores which may grow or 

collapse when the solid is loaded. Two phases of the solid can be distinguished: the actual dense ‘frame’, 

known as the matrix; and the pore network/distribution, known as the voids. Constitutive models for 

porous elastic-(visco)plastic solids, (also known as dilatant plasticity models), adopt micromechanical-

inspired internal variables to describe the state of the voids (e.g., size, shape, orientation) of the porous 

solid and form the basis of several ductile failure theories.  

Constitutive models for porous solids have been proposed based both on micromechanical (e.g., 

Castañeda and Zaidman (1994); Gurson, (1977)) and phenomenological (e.g., Green (1972); Rousselier 

(1987); Schofield and Wroth (1968)) considerations. The basic idea behind these is the (either direct or 

indirect) introduction of a variable known as the void volume fraction (or porosity), f, defined as the 

ratio between the total volume of voids within the RVE and the total volume the RVE. Let Ω denote the 

total domain, ω the domain occupied by the voids and ∂Ω and ∂ω their respective boundaries (see 

Figure 3.4). Assuming that ,  =  i.e. none of the void boundaries coincides with the external 

surface of the RVE, it follows that: 

 
vol( )

,
vol( )

f


=


 (3.8) 

where vol( )  denotes the volume of a domain. 

The framework of Gurson (1977) is, quite possibly, the micromechanical-based approach currently 

receiving most attention in the literature (Pineau and Pardoen, 2007). As discussed in the forthcoming 

sections, its original form is, however, only representative of the void growth stage. Moreover, having 

a single scalar damage state variable, it can only represent an isotropic damage distribution. In theory, 

a more general model could include, in addition to the porosity (which accounts for the relative size of 

the voids), other microstructural-based internal state variables describing, for instance, the morphology, 

orientation and spacing of the voids within the RVE. This is exactly the idea followed by many works 

aiming to extend Gurson’s theory in order to account for damage anisotropy (Gologanu et al., 1993, 

1994, 1997; Madou and Leblond, 2012b, 2012a; Morin, Leblond and Kondo, 2015). Whether damage 

anisotropy plays an important role on ensuing fracture events, in particular when compared to the role 

of the matrix plastic flow anisotropy, is a key question that, to the authors’ knowledge, is still open.

  

 

Figure 3.3 An arbitrary porous RVE with domain Ω, containing voids occupying a domain ω, at the reference 

temperature (adapted from Benzerga and Leblond, 2010). 
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Given the complexity of the micromechanisms of damage initiation and propagation, analytical 

models describing these phenomena inevitably rely on several simplifying hypothesis, especially if one 

aims to arrive at closed-form constructive expressions (and provided that scale separation is possible). 

In this context, computational micromechanical analyses, either finite element (FE)-based (Needleman, 

1972a, 1972b; Tvergaard, 1981) or fast Fourier transform (FFT)-based (Lebensohn, 2001; Lebensohn 

et al., 2011; Lebensohn and Cazacu, 2012; Michel et al., 2001), have proven useful in guiding the 

development of improved ductile fracture models (Benzerga et al., 2016; Benzerga and Leblond, 2010; 

Besson, 2010; Pineau et al., 2016; Pineau and Pardoen, 2007). These computational analyses are based 

on so-called unit cells, in which the microstructure is idealized considering simple void and/or particle 

arrangements, on which proper boundary conditions are enforced to represent the full material (Figure 

3.4). The term unit cell is occasionally coined in the literature as RVE. However, such nomenclature is 

not pursued here since, in general, a unit cell does not necessarily coincide with the concept of RVE, as 

defined in §3.1. In summary, cell model studies are a major tool for understanding the basic phenome-

nology governing ductile fracture at the mesoscale. Numerous lessons can be drawn from these, the 

ultimate goal being the development of improved closed-form, micromechanics-based constitutive 

models. Naturally, unit cell studies may also be useful to validate the derived analytical solutions and 

to provide a database for tuning possible phenomenological-based parameters present in the derived 

constitutive laws. The advent of ultra-high-resolution tomography may eventually complement these 

analyses, especially for dealing with fracture mechanisms that are poorly described by state-of-the-art 

computational micromechanics (e.g. intervoid crack propagation). 

 

 

  

   

(a) (b) (c) 

Figure 3.4 FE-based numerical micromechanical analyses of the cyclic response of porous ductile solids 

(adapted from Cheng et al., 2017): (a) initial 3-D unit cell comprising 30 voids with a total porosity f = 0.05. 

Effect of the matrix elasticity on the local axial (x2-) direction plastic strain distribution for a uniaxial load in the 

same direction: (b) E/σ0 = 300; (c) E/σ0 = 1000. 
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3.4.2 Void growth models 

The first developments on micromechanical-based ductile damage modelling are coined to the un-

coupled void growth criteria of McClintock (1968) and Rice and Tracey (1969). According to these, 

fracture is predicted when the normalized void radius has reached a critical value (cf. Eq.(3.7)). How-

ever, these models describe the growth of isolated voids, therefore these cannot take into account inter-

void interactions, nor the effect of void growth on the material response (i.e. damage-induced softening) 

(Besson, 2010). In this context, two questions naturally arise: (i) for a given constitutive description at 

the microscale, i.e. the scale at which each void is resolved, what relationship exists between stress and 

strain at the macroscale, i.e. one which contains (a sufficiently) large number of voids; and (ii) how the 

microstructural information, viz. the void population characteristics and the matrix properties, entering 

in such macroscopic constitutive laws evolve (Benzerga and Leblond, 2010). This problem was first 

addressed by Gurson (1977) using homogenization, alias averaging, methods similar to those applied 

by Bishop et al. (1945). Its principle consisted in combining the classical theory of limit-analysis with 

the kinematic-type Hill-Mandel (Hill, 1967; Mandel, 1971) homogenization approach.  

Other micromechanical-based models for porous elastic-(visco)-plastic media were also proposed, 

e.g., Castañeda and Zaidman (1994); Kailasam and Castaneda (1998) and, more recently, in Cheng et 

al. (2017); Danas and Castañeda (2009); and Vincent et al. (2009) based on alternative homogenization 

procedures, viz. the nonlinear variational approach of Castañeda (1991) (see also Michel and Suquet, 

1992). The latter models are however known to underperform for high stress triaxiality loadings, given 

that damage growth is proposed to vary linearly with the stress triaxiality (Besson, 2010). Such assump-

tion may be valid for viscous solids, but it is apparently erroneous for plastic materials, for which this 

dependence is known to be exponential, as considered in the criterion of Rice and Tracey (1969) and 

that of Gurson (1977). The latter approach, which this work concerns, suffers its own drawbacks, viz. 

poor results at low stress triaxialities and for high porosities (Benzerga and Besson, 2001) (e.g. in me-

tallic foams, Ponte-Castañeda (Castañeda, 1991) approach is often preferred (Blazy et al., 2004)). Nev-

ertheless, a noteworthy, yet still incomplete, degree of convergence between recent developments within 

both micromechanical schemes has been pointed out in recent works (Benzerga et al., 2016). The ques-

tions stated above were also tackled within the phenomenologically by Rousselier (1987) however such 

approach leads to a rather weak coupling between ductile damage and plasticity.  

This thesis is heavily grounded on the framework established by Gurson (1977). Within this frame-

work, expressions for the onset of plastic yielding of the porous aggregate, i.e. macroscopic flow po-

tentials (in the form of yield functions in the rate-independent limit), as well as evolution laws for the 

microstructural-based variables are derived based on the variational characterization of porous media. 

The mathematical details regarding the backbone theories used in the development of such potentials, 

in particular, the homogenization and the limit-analysis theories are reviewed in Chapter 5. The criteria 

of Gurson (1977) and their more relevant extensions are now presented. 
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Original work of Gurson (1977) 

Gurson (1977) developed closed-form criteria for ductile materials containing either randomly dis-

tributed spherical or cylindrical voids. A hollow sphere RVE and a cylindrical tube RVE were adopted 

for the spherical and for the cylindrical criterion, respectively. The matrix was assumed rigid-ideal plas-

tic, obeying the classical von Mises criterion (j2 flow theory), and the Prandtl-Reuss associated plastic 

flow rule; The criteria are based on an axisymmetric form of the velocity fields proposed by Rice and 

Tracey (1969). The porosity, f is the single microstructural variable. Gurson (1977) arrived at a macro-

scopic yield criterion for spherical voids, G
sph ,  as: 
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and for cylindrical voids, G
cyl ,  as: 
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where eq  is the macroscopic von Mises equivalent stress (von Mises norm of the deviator of ),Σ T  

is the yield stress of the matrix in uniaxial tension (homogeneous in the matrix), and   is the sum of 

the in-plane stresses (e.g., 11 22 )(   =  +  if the 3-direction is the out-of-plane direction). Note that 

even with the matrix assumed to obey a standard j2 flow theory, the homogenization of Gurson (1977) 

demonstrated that the overall behaviour of the porous solid depends not only on the second invariant of 

the macroscopic stress deviator tensor, 2
eq2 ( ) /3J  =  , but also on the first invariant of the macroscopic 

Cauchy stress tensor, 1 tr( )I  = Σ  (Stewart, 2009).  

Remark 3.5. Regardless of the assumed plasticity model for the matrix, the presence of voids in a solid 

induces dependence on all invariants of the applied (i.e. macroscopic) stress state. 

In order to simplify the volume integrals of the matrix plastic dissipation associated with the von Mises 

criterion and the assumed axisymmetric trial velocity field, Gurson approximated this dissipation func-

tion with a truncated one, which only depended on the radial coordinate of the RVE (thus obtaining and 

upper-bound estimate of an otherwise approximated plastic dissipation). Recently, Cazacu, et al. (2013) 

demonstrated that the insensitivity of Gurson’s (1977) spherical void criterion to the third invariant of 

the macroscopic stress deviator, 3 det( '),J  = Σ  is a consequence of this approximation. In the latter 

work, the authors solved the limit-analysis problem without assuming the truncation hypothesis of Gur-

son and derived an analytical, yet in parametric form, yield locus for porous solids obeying von Mises 

theory which, in this case, captured particular and non-trivial couplings between the signs of the mac-

roscopic hydrostatic stress, m , and the third invariant of the stress deviator tensor, 3 ,J 
(for more details 
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see e.g. Alves et al. (2014)). Both numerical (Alves et al., 2014; Alves and Cazacu, 2015; Cazacu and 

Stewart, 2009; Kim et al., 2004; Zhang et al., 2001) and experimental (Bao and Wierzbicki, 2004; 

Barsoum and Faleskog, 2007) studies seem to support this result. 

Returning to the original work of Gurson (1977) it should be highlighted that: (i) in the absence of 

voids ( 0),f =  the above criteria reduce to that of the matrix, i.e. the von Mises criterion; (ii) for purely 

hydrostatic loadings eq( 0), =  the yield locus regarding the spherical criterion coincides with the exact 

solution of the limit-analysis problem of a rigid-perfect plastic hollow sphere, viz. Tm| | (2/3) ln( )f =  

(see e.g. Cazacu et al. (2019) for a formal proof); (iii) for purely deviatoric loadings m( 0), =  Gurson 

criteria predicts the macroscopic yield limit as eq T(1 ) .f  = −   

The cylindrical void criterion of Gurson has received less attention in the literature than its sphere-

based counterpart. This is partially explained by the restrictions related to the loading conditions in the 

former. This work intends to follow the spherical void framework. Nevertheless, it is worth noting that 

the cylinder-based homogenized model has been pointed out more appropriate to model metallic sheets 

containing elongated void-nucleating particles (Benzerga and Besson, 2001). 

Extensions of the work of Gurson (1977)  

The analysis leading to the previously stated ‘minimal form’ of the work of Gurson (1977) assumed 

a rigid, perfect-plastic, rate independent matrix. The first extensions to this framework are due to Gurson 

himself who included, in a heuristic fashion, the effects of elasticity and strain hardening, (Leblond et 

al., 2018): (i) elasticity was incorporated by supplementing the macroscopic plastic strain rate, ,D with 

an elastic contribution 
e ,D  given by some weak-elasticity (viz. hypoelastic) law, i.e., 

e p ,+D = D D  

while disregarding the influence of the porosity on the elastic behaviour; and (ii) the isotropic hardening 

of the matrix was introduced preserving the analytic form of the criterion (Eq. (3.9)) and replacing the 

(constant) yield stress T ,  of ideal plastic materials, by an ‘average’ yield stress value, Y ,  assumed 

to obey a relation of the type 
p

Y Y ( ); =  where Y ( )   denotes a hardening-type function with respect 

to the equivalent plastic strain, 
p ,  of some fictitious material that would deform uniformly in the RVE 

(cf. phenomenological approach to CDM) (Benzerga and Leblond, 2010). From the above reasoning, 

Gurson proposed a simple, yet elegant, expression for the evolution law of 
p , as: 

 
p p

Y ,( :1 )f  =− Σ D  (3.11) 

which expresses the heuristic assumption of equality of the plastic dissipation rate in the real, heteroge-

neous (i.e. with a spatially variable yield stress) porous aggregate and of the fictitious ‘equivalent’ ho-

mogeneous one. A noteworthy feature of the above equation is that it accounts for the hardening of the 

matrix arising from both the deviatoric and hydrostatic parts of p
D  (Benzerga et al., 2016). 

The application of the original criteria of Gurson (1977) model the damage process of engineering 

metals and alloys whose mechanical behaviour greatly differs from that employed within his microme-

chanical analysis may be ill-judged. Following Gurson, many other authors have done a vast amount of 

research aimed at extending his framework, either heuristically or micromechanically, by reformulating 

the homogenization problem and modifying one or more of its basic ‘ingredients’, viz. the geometry of 
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the RVE, the plasticity criteria for the matrix material, and/or the subset of trial local velocity fields; as 

well as introducing additional microstructural variables accounting for void shape and distribution. In 

essence, such extensions attempt to tackle, directly or indirectly, three main limitations of the Gurson 

model, intimately related with each of the simplifying hypotheses assumed in the formulation of his 

original problem: (i) the spherical void geometry; (ii) the j2 flow theory; and (iii) the basic (viz. axisym-

metric and truncated) velocity fields. This thesis concerns the last two points. It turns out that the format 

of the extended models found in the literature remains basically the same as the criterion of Gurson. A 

brief review of some of these extensions is provided in Table 3.1. A further discussion on some of its 

elements is provided next, as necessary. 

 

Table 3.1 Some extensions of the Gurson model (partially adapted from Pineau and Pardoen, 2007). 

Purpose of the extension 

and respective references 
Brief description 

Improve global accuracy   

Tvergaard (1981, 1982b) Better agreement toward FE unit cell computations can be achieved by 

adding some ‘fitting parameters’, q1 and q2, into the expression of the 

spherical-void yield criterion of Gurson: 
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 Recommended values of q1 = 1.5 and q2 = 1, based on the FE results;  

Perrin and Leblond (1990) Estimate of the fitting parameters based on a theoretical self-consistent 

scheme. Recommended values of 1 4/ 1.47q e=   and q2 = 1; 
 

Koplik and Needleman 

(1988) 
Estimate of the fitting parameters based on FE unit cell computations for 

the void growth rate, at fixed stress triaxiality. Recommended values 

of q1 = 1.25 and q2 = 1; 

 

Faleskog et al. (1998) Calibration of the fitting parameters toward FE unit cell computations. 

The best set (q1,q2) is thought to depend on some matrix flow proper-

ties, viz. a plastic hardening exponent, n, and the ratio of the yield 

stress over an elasticity modulus, T / .E  The product q1q2 for the rec-

ommended values is approximately constant and equal to 1.5. 

 

Vadillo et al. (2016) Heuristically incorporate the effects of the third invariant of deviatoric 

stress tensor into the Gurson model, in the range of high stress triaxial-

lities, by specifying the set (q1,q2) directly as a function of the stress 

triaxiality and Lode angle parameter. 

 

Richmond and Smelser 

(1985); Spitzig et al. (1988) 
Based on experimental tests on compacted iron specimens the following 

modified version of Gurson's spherical criterion is proposed: 
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 where m is a heuristic-based material parameter, ranging between 2/3 

and unity, typically depending upon the strain hardening of the matrix. 
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Improved modelling of strain hardening  

Leblond et al. (1995) Based on an approximate analytical solution of the problem of a rigid-

hardening hollow sphere, the following modification was proposed: 
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 where Σ1 and Σ2 denote internal variables connected to the overall yield 

stresses, under purely deviatoric and purely hydrostatic loadings, re-

spectively. Somewhat complex closed-form evolution equations for 

these are provided in the cited reference, under the assumption of pos-

itively proportional straining at the macroscale; 

 

Lacroix et al. (2016) The above hypothesis of positively proportional straining is relaxed. The 

analytical evaluation of Σ1 and Σ2 is no longer possible, hence numer-

ical integration is necessary. This approach leads to an improved de-

scription of the distribution of hardening around the voids. 

 

Kinematic hardening   

Mear and Hutchinson 

(1985); Leblond et al. 

(1995); Arndt et al. (1997); 

Ristinmaa (1997); Besson 

and Guillemer-Neel (2003); 

Mühlich and Brocks 

(2003); Cheng et al. (2017); 

Morin et al. (2017)  

Several extensions of the Gurson model to account for kinematic hard-

ening of the matrix have been proposed in the literature. The typical 

yield criterion writes: 
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where 
2
eq 1 11( ) (3/2)( ' ) : ( ' )− = − −Σ X Σ X Σ X is a von Mises norm; 'Σ

denotes the deviator of the stress tensor; and X1 and X2 denote a general 

traceless second-order tensor and a scalar, respectively, (often X2 = 

tr(X1)/3), describing the effect of the local back-stress tensor, i.e. in the 

matrix, at the macroscale. The model must be supplemented with evo-

lution laws for these; see the references for further details. 

 

Void shape and rotation effects  

Gologanu et al. (1993, 

1994, 1997); 

Pardoen and Hutchinson 

(2000);  

Gărăjeu et al. (2000);  

 Madou and Leblond 

(2012a, 2012b, 2013);  

Madou et al. (2013);  

Scheyvaerts et al. (2011); 

 Kailasam and Castaneda 

(1998); 

 Castañeda and Zaidman 

(1994); 

 Monchiet et al. (2014) 

Several extensions of the Gurson model to account for non-spherical 

void shapes have been proposed in the literature (e.g. the so-called 

GLD model proposed in Gologanu et al. (1993, 1994, 1997). These are 

obtained by means of rigorous micromechanical analysis. The general 

form of the yield criterion writes (after Madou et al. (2013)): 
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where ( )Σ  is some quadratic term of the components of ;'Σ  and

( )Σ  is a linear term of the diagonal components of .Σ  In addition 

to the porosity, f, these entails, in the general case, two microstructural 

variables – the void shape parameters (alias aspect ratios), (w1,w2) –  

which describe the ratios of the size of the voids of two axes over a 

third one. ( ),Σ ( )Σ and g are analytical functions of the above state 

variables (see the reference for complete expressions). The evolution 

laws for the length, aspect ratios and orientation of the axes of the voids 

follow from micromechanical analysis, often heuristically augmented 

using numerical limit analysis studies on unit cells. 
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Rate dependency and viscoplasticity 

Pan et al. (1983); 

Tvergaard (1989); 

Moran et al. (1991); 

Haghi and Anand (1992); 

Duva and Hutchinson 

(1984); Duva (1986); Licht 

and Suquet (1988); Michel 

and Suquet (1992); Cocks 

(1989); Leblond, Perrin and 

Suquet (1994)   

 

A number of authors have proposed models for rigid, nonlinear viscous 

porous solids whose matrix obeys a standard Norton constitutive law. 

See e.g. Benzerga and Leblond (2010) for a detailed analysis of these. 

A notable contribution is that of Leblond, Perrin and Suquet (1994), 

who proposed a macroscopic flow potential for spherical voids, which 

recovers the exact solution of the problem of a viscous hollow sphere 

loaded hydrostatically, viz.: 
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 which reduces to the criterion of Gurson and the associated flow rule 

for an ideal-plastic matrix (i.e. n → +∞), n being the Norton exponent. 
 

Klöcker and Tvergaard 

(2003)  
Extension of the abovementioned rate-dependent spherical void model 

to spheroidal voids. 
 

Flandi and Leblond (2005) Improved spheroidal void model that no longer violates the Castañeda 

(1991) non-linear Hashin-Shtrikman bounds condition. 
 

Improve accuracy at low or vanishing stress triaxiality  

Nahshon and Hutchinson 

(2008)  
Numerous extensions have been proposed in the literature in order to 

better describe the experimentally observed onset of fracture under 

shear-dominated loadings while retaining the Gurson-type form. In es-

sence, these introduce a heuristic dependency of the damage evolution 

law on the third invariant of the stress deviator tensor, 3 ,J 
 (as known 

as Lode angle dependence), in order to describe the material softening. 

Such extensions can be formulated based either on geometrical or on 

purely phenomenological considerations. Regarding the latter, the one 

of (Nahshon and Hutchinson, 2008) is highlighted here: 
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 where 
p(1 )tr( ),f f= − D k  is a heuristic parameter to be calibrated, 

and ( ) Σ  is a weight function of the applied stress state, ranging from 

zero for dominant tensile stress states to unity for shear dominant stress 

states. Note that the introduction of such heuristic term in the evolution 

law of the microstructural variable violates the axiom of mass conser-

vation of the porous solid. As such, the physical meaning of the varia-

ble f is lost, hence porosity should, in this case, be treated as an arbi-

trary damage parameter, ,f  such as in the phenomenological CDM 

approach, rather than a micromechanical variable as in Gurson (1977). 

 

Nielsen and Tvergaard 

(2010) 
A heuristic stress state-dependent linear scaling factor (as well as cut-off 

value) to the abovementioned additional shear term, in order to better 

represent damage evolution at moderate to high stress triaxialities, 

which is known to be well described by the Gurson model. 

 

Dæhli et al. (2018); Jiang et 

al. (2016); 

Malcher et al. (2014) 

An alternative scaling function, ( ) Σ  in Eq. (3.18) for the damage law. 
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Xue (2008); Butcher et al. 

(2009) 
A heuristic (yet, more physically-sound) shear damage term based on 

geometrical considerations, viz. the solution of McClintock (1968) for 

the coalescence of holes in a shear band. 

 

Zhou et al. (2014) A phenomenologically extended Gurson model based on two damage 

variables, distinguishing volumetric damage (govern by porosity) and 

shear-induced damage.  

 

Highly dynamic material behaviour  

Addessio and Johnson 

(1993); 

Maudlin et al. (1999); 

Bronkhorst et al. (2006)  

Modified model in order to deal with problems involving highly dy-

namic material behaviour (i.e. high strain rates and temperature ef-

fects). It uses Mie-Gruneisen equation of state (e.g. Burshtein, 2008) 

to specify the pressure and a mechanical threshold strength (MTS) 

model. 

 

Two populations of voids   

Perrin and Leblond (2000); 

Enakoutsa et al. (2005); 

Morin and Michel (2018) 

Reformulation of the homogenization scheme in order to derive macro-

scopic yield criteria to account for the presence of a second population 

of voids, (often nucleating on smaller particles and thus, at least, of one 

order of magnitude smaller than primary voids), on the ductility of the 

porous solid. In general, these account for the couplings between the 

growth of primary (larger) voids (as in Gurson original model) and the 

growth (and, possibly, nucleation and coalescence) of the small ones. 

 

Void-particle interaction   

Siruguet and Leblond 

(2004a, 2004b) 

 

The Gurson model intrinsically assumes that void growth is not influen-

ced by the particle which served as nucleation site. Under low stress 

triaxiality conditions, the presence of a hard particles within the void 

prevents the void to contract in the direction transverse to the main 

loading direction (recall discussion in §2.2.3 on the ‘void locking by 

the particle’ phenomenon). Such interaction can only be accounted for 

within a model which incorporates void shape effects. 

 

Void size effects   

 Wen et al. (2005); 

 Monchiet and Bonnet 

(2013) 

When the size of the voids is comparable to or smaller than an internal 

length of the plastic solid, physically attributed to the generation and 

the storage of geometrically necessary dislocations, the application of 

the Gurson model appears to be questionable. In this context, closed-

form models for ductile porous solids containing spherical micro- and/ 

or submicron voids have been proposed in order to account for void 

size effects, e.g. in the form of Monchiet and Bonnet (2013):  

 

 
2

eq 2m

T T

3
2 cosh 1 0,

2
f f

 

   
 + − − =   

   
 (3.19) 

 where η is a coefficient, evaluated by the limit-analysis scheme for the 

particular case of a pure hydrostatic loading, which introduces the size 

effect, as a function of the current size of the voids and on some mate-

rial intrinsic length. When the voids are large enough, the η → 1 and 

Gurson’s original criterion is recovered. These models predict that 

smaller voids growth slower than larger ones, as reported in numerous 

numerical studies in the literature (see e.g. Li and Steinmann (2006)). 
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Non-quadratic isotropic yield criterion for the matrix  

Benallal (2017) Mixed analytical-numerical criterion for isotropic porous solids based 

on the non-quadratic Hershey-Hosford yield criterion (Hershey, 1954; 

Hosford, 1972): 
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 where , , ,a P R Q  are functions of the macroscopic stress triaxiality, 

Lode angle, porosity and material and the matrix homogeneity expo-

nent, m, are not generally available in closed-form, hence must be de-

termined numerically.  

 

Tension-compression asymmetry of the matrix  

Cazacu and Stewart (2009) An approximate yield criterion of isotropic porous solids displaying 

tension-compression asymmetry. The matrix is considered rigid-plas-

tic, containing randomly distributed spherical voids, and governed by 

the isotropic and quadratic form of the Cazacu et al. (2006) (alias 

CPB06) yield criterion The criterion is in the form: 
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 (3.21) 

 where k is material parameter describing tension-compression asym-

metry effect, C  is the uniaxial compression yield stress, i  are the 

principal values of the macroscopic stress); m  is a constant, function 

of k; and 2 2
T C( / ) (3 2 3)/(3 2 3)k k k k  = + + − + is the SD ratio. 

The criterion predicts the exact solution of a hollow sphere with SD 

effects loaded in hydrostatic tension and compression. 

 

Plastic anisotropy effects of the matrix  

Liao et al. (1997) 

 

Semi-empirical spherical void-based porous model for transversely iso-

tropic solids under plane stress conditions. The matrix is assumed to 

obey Hill (1948) associative plasticity criterion: 
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 where T  is the in-plane yield stress in uniaxial tension of the matrix; 

R is the anisotropy parameter, (or plastic strain ratio), characterizing 

the in-plane isotropy via the ratio of the transverse plastic strain rate 

to the through-thickness plastic strain rate of the metallic sheet under 

uniaxial loadings; e  is the macroscopic equivalent stress associated 

with Hill (1948) criterion under plane stress (see reference for details). 

For isotropic materials, R = 1, Gurson’s spherical criterion is recov-

ered. An equivalent model for cylindrical voids is also proposed.  

 

Benzerga and Besson 

(2001) 
Approximate yield criterion of orthotropic porous solids subjected to 

triaxial loadings. The matrix is assumed to obey Hill (1948) criterion 

and to contain randomly distributed spherical cavities (remaining 

spherical). The macroscopic yield criterion reads: 
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 where T
1  is the uniaxial tensile yield stress along an axis of orthotro-

py of the matrix, (e.g. the rolling direction of the metal sheet), denoted 

the 1-direction here; and h is the so-called anisotropy factor (h = 2 for 

isotropy) and is a function of the macroscopic fourth-rank anisotropy 

tensor, Hill'48  (see reference for more details). An equivalent model 

for cylindrical voids was also proposed by the authors, which is 

shown to reduce to the analogous one of Liao et al. (1997), under the 

assumption of transverse isotropy and to the criterion of Gurson for 

cylindrical voids for an isotropic matrix Hill'48( ).=  In the case of 

a dense matrix (f = 0), these criteria reduce to Hill (1948) quadratic 

criterion. 

 

Stewart and Cazacu (2011) An approximate yield criterion of orthotropic porous solids displaying 

tension-compression asymmetry. The matrix is considered rigid-plas-

tic, containing randomly distributed spherical voids, and governed by 

the quadratic form of the Cazacu et al. (2006) (alias CPB06) ortho-

tropic yield criterion The macroscopic yield criterion reads: 
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 where k is material parameter describing tension-compression asym-

metry effects;  is the macroscopic fourth-rank tensor describing the 

anisotropy; Σ̂  is the transformed stress tensor, (and ˆ
i  its principal 

values); and m̂  is a constant, function of k and .  The scalars T
1  

and h have the same meaning as in Eq. (3.23), (see the reference for 

more details on the explicit definition of the latter parameter, defined 

in terms of the plastic properties of the matrix). If the matrix is ortho-

tropic (such that Σ̂  is deviatoric), and has no tension-compression 

asymmetry (k = 0), the above criterion reduces to that of Benzerga 

and Besson (2001); for an isotropic matrix (i.e., ),= the criterion 

reduces to the one of Cazacu and Stewart (2009) for isotropic porous 

materials displaying SD effects (Eq. (3.21)); and to a particular case 

of the quadratic form of the CPB06 orthotropic yield criterion in the 

absence of voids (f = 0). 

 

Combined plastic anisotropy and void shape effects  

Benzerga et al. (2004b)  

 

 

Semi-empirical yield criterion, combining features of the porous model 

of Benzerga and Besson (2001) to describe plastic anisotropy and that 

of Gologanu et al. (2001) to account for morphological void anisot-

ropy. 

 

Monchiet et al. (2006, 

2008)  
Extension of the model of Benzerga and Besson (2001) to the case of 

spheroidal void geometry, using the velocity fields considered in the 

earlier versions of the GLD model (see Gologanu et al., 1993, 1994). 

The approximate criterion resulting from the homogenization analysis 

is restricted to axisymmetric loadings and microstructures for which 

the void axes are aligned with the material orthotropy axes. 
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Keralavarma and Benzerga 

(2008, 2010) 

 

Deals with a similar homogenization scheme to the one of Monchiet et 

al. (2006, 2008), considering however a richer description of the trial 

velocity fields, viz. the ones discovered by Lee and Mear (1992). As 

such, the proposed yield criterion is applicable to non-axisymmetric 

loadings and to cases where the spheroidal void axis is no longer cons-

trained to be aligned with a principal direction of orthotropy. 

 

Morin, Leblond and 

Kondo (2015); Morin 

(2015) 

 

Extension of the model of Madou et al. (2013); Madou and Leblond 

(2012a, 2012b) for general ellipsoidal (rather than spheroidal) voids, 

embedded in an orthotropic matrix obeying Hill (1948) criterion. No 

coincidence is assumed between the principal axes of the voids and 

those of the material. The obtained approximated criterion is formally 

analogous to that in Eq. (3.16), (albeit with different expressions for 

( )Σ  and ( )).Σ  

 

Refined trial velocity fields  

Monchiet et al. (2007); 

Monchiet et al. (2011) 

Consideration of Eshelby-like exterior point trial velocity fields in place 

of those of Rice and Tracey (1969) for the determination of the mac-

roscopic plastic potentials for the particular case of a spherical inclu-

sion (Eshelby, 1957, 1959). The approximate criterion is in the form: 
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 The authors showed that the obtained closed-form criterion provided 

a significant modification of the Gurson in the domain of low stress 

triaxialities. Later, Monchiet et al. (2014) extended the analysis for 

spheroidal voids. 

 

   

 

As discussed previously, the FEM provides a powerful tool for solving the homogenization problem. 

Accordingly, in principle, heuristic modifications of existing closed form (approximate) criteria can be 

proposed based on such numerical analysis. Based on this idea, Tvergaard (1981, 1982b) proposed a 

modification of the spherical void criterion of Gurson (1977) by making use of the change of variables: 

1f q f→ and m 2 m ,q →   as defined in Eq. (3.12). The meaning of the qi factors has been debated for 

some time (Pineau et al., 2016). In theory, these allow a more accurate description of the observed void 

growth kinetics in unit cell computational analysis of periodic array of voids. As such, a classical inter-

pretation of these is that they allow to account for the influence of neighbouring voids, i.e., for void 

interaction effects. A more recent interpretation is that the physical meaning of such heuristic factors is, 

however, multi-faceted, e.g. they may account for: void shape effects, heterogeneous hardening in the 

matrix, loading conditions, etc. (Benzerga et al., 2016; Leblond and Morin, 2014). As such, the intro-

duction of the qi factors is likely to correct some inaccuracies occurring in the model itself (possibly 

due to the simplification hypotheses applied during its derivation), rather than being associated with a 

particular physical aspect. Note moreover that the exact solution for yielding of a hollow sphere under 

hydrostatic loadings is no longer recovered setting 1q  and 2q  different from unity. 
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Most engineering metallic materials display anisotropic plasticity. The roots of the plastic anisotropy 

and its role on the mechanical behaviour of the materials has long been recognized (recall §2.1). It is 

therefore of great interest to extend the isotropic model of Gurson to account for the plastic anisotropy 

of the matrix phase in the overall behaviour of the porous solid. A straightforward approach to tackle 

this problem would be the application of the conventional tools to extend existing isotropic yield criteria 

to orthotropy (viz., the linear transformation approach or the generalized invariants approach (Cazacu, 

2018), and thus obtain some ‘equivalent stress’ quantity to replace that of Gurson (see Eq. (3.9)), while 

preserving the original form of the expression of the macroscopic criterion. Based on this purely heu-

ristic approach, several authors, e.g. Brunet et al. (2005); Brunet and Morestin (2001); Doege et al. 

(1995); Grange et al. (2000); Rivalin et al. (2001) and more recently, Besson (2010); Dæhli et al. (2017); 

Gruben et al. (2017); Shinohara et al. (2016); Steglich et al. (2010), proposed extensions to account for 

plastic anisotropy within the framework of Gurson. It turns out that such crude formulations do not lead 

to any effect of the plastic anisotropy on the void evolution (hence on damage accumulation). Naturally, 

such outcome is totally irrational from the physical point of view, given the intrinsically coupled nature 

of these dissipative phenomena. This demonstrates that porous models cannot be postulated or obtained 

heuristically by simply modifying existing macroscopic models accounting for distinct plasticity criteria 

at the microscale (Cazacu et al., 2019). A more physically sound alternative consists in entirely rework-

ing the homogenization scheme, by assigning the anisotropic behaviour of the matrix to a closed-form 

expression of the local plastic dissipation to be integrated over the employed RVE. This rigorous ap-

proach was indeed followed in works highlighted in Table 3.1 (i.e. Eqs. (3.22)-(3.24)). Note that, in this 

case, the form of the resulting criteria differs from that of Gurson. Such modifications can be understood 

by the following change of variables: (i) the macroscopic von Mises equivalent stress is replaced with 

some counterpart, referred to a given anisotropic criterion, eq e ; →   and (ii) a factor h, so-called ani-

sotropy factor, arises in the argument of the hyperbolic cosine, such that m m(2/ ) .h →   More crucially, 

the anisotropic plastic flow of the matrix has a direct effect on the rate of void growth, in other words, 

plastic anisotropy induces damage evolution anisotropy. Despite the great number of phenomenological 

anisotropic plasticity criteria in the literature, note that the porous models described in Table 3.1 ac-

counting for anisotropy consider the matrix material obeying either the criterion of Hill (1948) or the 

minimal form of that of Cazacu et al. (2006). This is explained by the fact that only for these the exact 

strain-rate plastic potential associated to the stress-based plastic potential of the matrix are known in 

closed-from. This renders the analytical derivation of improved porous criteria, i.e., accounting for more 

accurate/elaborated local plasticity criteria, extremely difficult or impossible. Moreover, even if these 

potentials are known, the evaluation of the macroscopic plastic dissipation may turn out to be impossible 

to carry out analytically, even for the simplest loading states, viz. hydrostatic loadings. This encourages 

the usage of a numerical approach to the problem, as pursued in this work. In closing, it should be noted 

that the focus here is on porous models for which the matrix is characterized by some phenomenological 

theory of plasticity, rather than within the crystal plasticity framework. For the latter approach refer e.g. 

to Cazacu et al. (2019); Han et al. (2013); Lebensohn and Cazacu (2012); and Paux et al. (2015). 
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3.4.3 Void nucleation models 

Since most structural engineering metals and alloys display virtually no initial porosity, void nucle-

ation criteria constitute the first essential ingredient in the formulation of a damage constitutive model. 

Models that fit within the void nucleation framework are now outlined. Depending on the size of the 

particles operating as nucleation sites, void nucleation criteria have been proposed based on the theory 

of dislocations and on pure continuum mechanics principles (Besson, 2010; Pineau and Pardoen, 2007). 

Here the focus is solely on the latter description, i.e. the size-independent regime (refer e.g. to Berdin 

(2004); Montheillet and Moussy (2012) for a review on the dislocation-based analysis).  

As discussed in §2.2.3, void nucleation results from one of two competing events: particle fracture 

and fracture/debonding at the matrix-particle interface. If one considers the particles as purely elastic, 

brittle, and containing some form internal microdefects (as the size of the particle increases, so does the 

probability that the particle contains flaws (Goods and Brown, 1979)), a necessary condition for void 

nucleation by particle cracking can, in principle, be derived based on a simple one-parameter condition  

motivated from linear-elastic fracture mechanics arguments, similar to that of Griffith (1921). In this 

context, particle fracture is assumed to take place as soon as the elastic energy release rate equals or 

exceeds the particle fracture toughness, which can be also translated into an effective critical stress 

condition within the particle (Huber et al., 2005). For relatively small, defect-free particles, a critical 

stress condition based on some material-dependent strength is also valid (Pineau and Pardoen, 2007). 

In contrast, in theory, such necessary conditions do not hold when predicting void nucleation by means 

of interface fracture. In this case, stress concentration mechanisms, generally involving plastic flow in 

the matrix and dislocation accumulation at the particle interface, render the critical stress for interface 

fracture not intrinsic to the particle, i.e. it also depends on the plastic features of the matrix. When a 

particle-strengthened material is loaded, the matrix material undergoes plastic deformation, while the 

particles deform mostly elastically (Goods and Brown, 1979). In this case, both the separation energy 

and the interface strength play a role in the problem. In particular, decohesion will not take place unless: 

(i) the elastic energy released by removing the stress (or some fraction of it) from the particle is at least 

equal to the surface energy created in forming the new internal surfaces; and (ii) the interfacial stress is 

sufficient to break the interface (or fracture the particle itself) (Goods and Brown, 1979). It turns out 

that the energy condition can be easily met, while plastic deformation must still be accumulated on the 

interface in order to raise the interfacial stress above its critical value (Pineau and Pardoen, 2007). Even 

if at the scale of the individual particles the necessary nucleation conditions are fundamentally based 

both on energetics and interfacial strength, several sufficient conditions for void nucleation have been 

proposed in the literature solely in terms of critical stresses (Pineau et al., 2016). Moreover, while the 

attainment of a critical local strain is neither necessary nor sufficient for voids to nucleate, strain-based 

models have also been proposed based on the stress-based criteria (e.g. see Ashby (1966); Goods and 

Brown (1979); Tvergaard and Hutchinson (1992)). In fact, neither the critical-strain-based models nor 

the stress-based models are entirely physically-sound (Pineau and Pardoen, 2007). The formulation of 

local conditions for void nucleation by interface fracture via micromechanical considerations is a very 
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challenging topic, which remains open to further research. This problem is still largely tackled through 

phenomenological considerations (e.g. Chu and Needleman (1980)), involving both strain- and stress-

controlled conditions, for which the critical stress and critical strains for nucleation are macroscopic 

values rather than their actual 'local’ values in the particle or along the interface. 

Micromechanical-inspired criteria describing the onset of particle cracking and interfacial debond-

ing have been proposed both based on static and kinematic homogenization approaches. The analytical 

criteria of Argon and co-workers, (Argon, 1976; Argon et al., 1975; Argon and Im, 1975), and Beremin 

(1981) and the hybrid numerical-analytical criterion of Lee and Mear (1999) deserve mention. Unit cell 

numerical simulations have also been performed in order to study void nucleation, e.g. the analysis in 

Wilner (1988) for spherical elastic particles, and in Lee and Mear (1999) for prolate spheroidal particles; 

and, later, the ones in Steglich et al. (1999); Steglich and Brocks (1997) to include particle damage and 

Needleman (1987, 1990); and Segurado and LLorca (2004) regarding interface decohesion, using co-

hesive zone models. More details on these works can be found in Benzerga (2000); Benzerga and Le-

blond (2010); Pineau et al. (2016); Pineau and Pardoen (2007). The focus is now shifted to the presen-

tation of models that fall within the scope of the model for void nucleation using distribution functions, 

in particular, the one of Chu and Needleman (1980). 

Continuum void nucleation models using distribution functions 

Within the CDM framework for ductile porous solids based on a single damage variable, viz, the 

void volume fraction, f, as in the constitutive model of Gurson (1977), the nucleation of voids can be 

introduced through a rate equation of the form: 

 growth nucl ,f f f= +  (3.26) 

where f  is the total void volume fraction rate, growthf  denotes the growth rate of pre-existing voids and 

nuclf  represents the term related with the nucleation of new voids. Such formulation goes back to Gurson 

(1975) and was further developed by Chu and Needleman (1980). In the latter work, the authors pro-

posed a general expression for the nucleation term, nucl ,f  consisting of two possible contributions: 

 ( )nucl 1
p

2 m ,f = + +   (3.27) 

where the first term represents plastic strain-controlled nucleation, and the terms within the parentheses 

represent stress-controlled nucleation, under the condition 1 2 m 0. +    In the above expression, 

p  and   are the rates of the local ‘effective’ values of the flow stress and plastic strain of the matrix, 

respectively (Eq. (3.11)).  and 1 2( , )  are functions describing the nucleation rate of voids per unit 

of plastic strain, p , and the dependence of the nucleation rate on the increment of the matrix flow 

stress,  , and on the increment of macroscopic hydrostatic stress, m , respectively. In general, both 

depend on the loading and deformation history (Chu and Needleman, 1980). One can adopt a formula-

tion that assumes a purely strain-driven nucleation, 1 2( , ) 0,=  or a purely stress-driven nucleation, 

0.=   A ‘mixed’ formulation for describing the nucleation kinetics is also possible. In the latter case, 

one often assumes 1 0 = , since ( )f =  and thus the first term of the stress controlled nucleation 
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law in Eq. (3.27) is equivalent (in the plastic case) to strain driven nucleation (Besson, 2010; Chu and 

Needleman, 1980). Based on earlier studies (Argon et al., 1975; Goods and Brown, 1979) the authors 

suggested  to be a function of p and that the stress-controlled nucleation can be described by a single 

parameter, ,  as a function of the arguments m( ), +   respectively. Chu and Needleman (1980) fur-

ther assumed that  and  ought to follow a statistical expression, viz. in the form of a normal/Gauss-

ian distribution. For plastic strain-controlled nucleation, the nucleation strain is thus distributed in a 

normal fashion about some average nucleation strain, N , in the form: 
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provided that 
p 0 , otherwise 0=  (Tvergaard, 1989). In the expression, Ns  is the standard devia-

tion of the distribution and Nf  represents the volume fraction of strain-driven nucleating particles. 

Analogously, for plastic strain-controlled nucleation, one writes: 
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provided that m( ) +  is at its maximum over the deformation history and that m( ) 0, +    otherwise 

0=  (Tvergaard, 1989). In the last equation, p  is the average nucleation stress; ps  and pf  represent 

the standard deviation and volume fraction of stress-driven void-nucleating particles, respectively. Note 

that the proposal of Chu and Needleman (1980) in Eqs. (3.26)-(3.29) rests on purely phenomenological 

evidence. The above nucleation parameters must be tuned based on experimental observations and/or 

via inverse identification in order to capture, as good as allowed by the distribution laws, the damage 

kinetics at inclusions.  

While a stress-controlled formulation appears to be more comprehensive, strain-controlled void nu-

cleation laws may present an expedient and reasonable way of representing the outcome of a more basic 

stress-based criterion (Needleman, 1987). Moreover, strain-controlled criteria can be more easily im-

plemented in a numerical scheme, which further contributes to its prominence (note that if nucl mf   , 

a strong non-normality of the macroscopic plastic flow rule arises, ultimately entailing a non-symmetric 

tangent matrix; this is not the case if a strain-controlled law, l
p

nuc ,f   is adopted). Unfortunately, the 

strain-controlled law does not capture the dependence of void nucleation upon stress triaxiality (a fact 

that has been noted both from analytical (Beremin, 1981) and numerical results (Lee and Mear, 1999; 

Needleman, 1987). More critically, such formulation tends to predict an increasing amount of nucleation 

with decreasing stress triaxiality, simply due to the larger accumulated plastic strain in the matrix under 

low stress triaxialities (Keralavarma and Benzerga, 2010). Studies on plastic strain localization within 

the framework of Rice (1976) indicate that strain-controlled and stress-controlled nucleation models 

may lead to quite different predictions of the macroscopic ductility, the latter approach potentially dis-

playing a stronger destabilizing effect (Needleman and Rice, 1978; Saje et al., 1982). 
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To close, one should note that the model described in Eqs. (3.26)-(3.29) does not refer to a specific 

nucleation mode nor it is able to distinguish particle debonding from particle cracking. Moreover, phe-

nomena such as void-locking by the particles, particle shape effects, deformation-induced nucleation 

not involving particles (e.g. at twin boundaries), are merely regarded in an empirical fashion. In practice, 

one could formulate criteria similar to that of Chu and Needleman (1980) in order to account for several 

void populations (e.g. varying size, shape and/or orientation) in order to extend this framework to void 

growth models that allow to account for such features (hence, necessarily entailing additional damage 

variables) (Benzerga et al., 2016). Despite its limitations, currently, the model of Chu and Needleman 

(1980) is, by far, the most well-established approach to account for void nucleation within the Gurson-

type framework. Other proposals have attempted to account for more complex stress-state effects (Hor-

stemeyer and Gokhale, 1999), damage initiation conditions (Hu and Ghosh, 2008), void shape effects 

(Tvergaard, 1989), though these have not yet been widely adopted. In general, there is still a need for 

more comprehensive and accurate micromechanical studies of void nucleation phenomena, as well as a 

need to employ such studies into the development of improved, more physically-sound, void nucleation 

criteria (Benzerga et al., 2016).  

3.4.4 Void coalescence models 

If the stable growth of voids, as modelled within the framework of Gurson (§3.4.2), is assumed to 

hold during the entire deformation process, then a unitary porosity value would be required to reach the 

complete loss of load carrying capacity of the RVE. Such approach would lead to a significant overes-

timation of the ductility and associated fracture properties of actual porous media (Pineau et al., 2016). 

Indeed, the volume fraction of voids at the onset of fracture of structural engineering metals and alloys 

need not to reach unity6. This suggests that, in general, void growth theory alone, even when accounting 

for the modifications in Table 3.1, is unable to deliver quantitative predictions of ductility of engineering 

materials (Pineau et al., 2016). This is related to the fact that Gurson-like criteria are established on the 

hypothesis that plastic flow takes place in the entire RVE, i.e. a diffuse mode of plasticity. Nevertheless, 

it is well-established that void coalescence events govern the final stages of the ductile damage process, 

which, by definition, consists in the transition from a diffuse plastic deformation stage to a concentrated 

plasticity mode within the ligament separating two or more voids (see §2.2.3). From this point on, the 

velocity fields employed in the Gurson-like models are no longer accurate, as certain modes of concen-

trated plastic strain rate within the RVE can deliver a lower plastic dissipation of the matrix (Pineau et 

al., 2016). Predicting the onset of this final stage of the damage process, as well as how it develops, in 

particular, by describing the gradual loss of stress-bearing capacity during the post-localization regime, 

is a crucial step in the quest for accurate constitutive models describing ductile fracture. In essence, 

void coalescence may be regarded as a particular case of a void growth process, in which voids growth 

under some restrained kinetics induced by intervoid interactions (Benzerga and Leblond, 2010). Thus, 

 
6 Observations on post-mortem failed sections, in situ experimental observations, as well as FE micromechanical 

studies, point that the porosity level at vanishing macroscopic stress typically ranges between 0.15 and 0.3 (Ben-

zerga and Leblond, 2010). 
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modelling void coalescence should, in principle, entail the introduction of some microstructural infor-

mation related to the geometry and size of the intervoid ligaments (e.g. the void spacing), in addition to 

the description of the void itself (Pineau and Pardoen, 2007). 

Fundamentally, coalescence models can be categorized into two categories: (i) models to predict the 

onset of coalescence; and (ii) models to describe the coalescence process, (alias, post-coalescence mod-

els). As the terms suggest, the former is employed to predict the transition from diffuse to a concentrated 

plastic flow within the voids, whereas the latter describe the gradual loss of stress-bearing ability during 

the ‘post-localization’ regime. While models for the growth of voids of porous media have been devel-

oped with increasing degree of sophistication since the seminal work of Gurson, modelling void coa-

lescence is, in part, still in its infancy (Morin, Leblond and Benzerga, 2015; Morin, Leblond, Benzerga, 

et al., 2016). This is mainly explained by the major difficulties arising from the large interacting nature 

of the voids, intrinsic to the coalescence phenomenon.  

Nonetheless, some micromechanical-inspired models the onset of void coalescence have been pro-

posed in the past decades. The most promising approach was initiated by the novel work of  Thomason 

(1985), who attempted to model the onset of internal necking by means of a semi-analytical criterion, 

providing the limit-load of coalescence of primary voids. Thomason formulated the problem of rigid-

plastic limit analysis of a cylindrical cell of either square or circular section containing a coaxial void 

of finite height. Plastic flow in the matrix was described by an associated von Mises yield criterion and 

restricted to intervoid ligaments, the regions above and below the voids being taken as rigid. The con-

centration of the plastic strain rate in the ligaments was represented by some discontinuous, yet kine-

matically admissible, trial velocity fields (see e.g. Benzerga and Leblond (2010) for more details). In 

the past two decades, some extensions of the analysis of Thomason (1985) have been proposed, either 

heuristically or physically-inspired (Benzerga and Leblond, 2014; Gallican and Hure, 2017; Hure and 

Barrioz, 2016; Keralavarma, 2017; Keralavarma and Chockalingam, 2016; Morin, Leblond and Ben-

zerga, 2015; Morin, Leblond, Benzerga, et al., 2016; Scheyvaerts et al., 2010; Torki et al., 2015, 2017). 

These mainly aim to account for more realistic material behaviour, void shapes, as well as more general 

loading conditions, whose effects were oversimplified (or totally disregarded), in the original criterion. 

For a more in-depth overview of these contributions, the reader is referred to Benzerga et al. (2016); 

Benzerga and Leblond (2010); Morin, Leblond, Benzerga, et al. (2016); Pineau et al. (2016). 

Unfortunately, models for the onset of void coalescence and post-coalescence regime derived based 

on micromechanical arguments, viz. Thomason-like criteria. have not received much attention in terms 

of critical assessment (Scheyvaerts et al., 2010). Indeed, the current practice on coalescence modelling 

is still largely based on (more or less physically sound) alternative methods. These include: (i) the nu-

merical reduction of the load-carrying capacity (e.g. ramping down the stress state by means of a cohe-

sive zone-type model (Gao et al., 1998; Gullerud et al., 2000; Krüger et al., 2019; Xia and Shih, 1995a, 

1995b)); (ii) phenomenological acceleration of the void growth rate, while staying on the void growth 

framework. Details regarding the latter approach are described in the following, given its popularity in 

the literature.  
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Phenomenological void coalescence and post-coalescence models 

The most commonly employed criterion for the onset of void coalescence states that coalescence 

initiates at a constant (unique) critical porosity value, c ,f  characteristic of the material (d’Escatha and 

Devaux, 1979; McClintock, 1968, 1971). Based on a similar phenomenological viewpoint, Tvergaard 

and Needleman (1984) (see also Needleman and Tvergaard, 1984) proposed an augmented model to 

describe the post-coalescence regime. The authors replaced the actual void volume fraction, f, entering 

the spherical void growth yield criterion of Gurson with an ‘effective’ counterpart, * ( ),f f  function of 

the former, such that the rate of void growth is artificially accelerated past some threshold value in order 

to mimic the strain concentration effects in the intervoid ligaments. Therefore, the framework of Gurson 

is retained after the onset of coalescence. The criterion reads: 

 ( )
c*

c c c

if  ,
 

,if  

f ff
f
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where the critical porosity, c ,f  describes the onset of coalescence and ,q the acceleration factor/slope, 

is related to the actual porosity at complete macroscopic failure, f ,f  as: 
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 (3.30b)  

where *
uf  denotes the ultimate value of the effective void volume fraction, (e.g., *

u 1f =  for the original 

Gurson model; and *
u1( ) 1q f =  if the fitting parameters of Tvergaard (1981, 1982b) in Eq. (3.12) are 

employed). The range of the acceleration parameter is, typically, [3,8]q   (Pineau and Pardoen, 2007). 

Equation (3.30a) combined with Gurson criterion (Eq. (3.9)) states that, as f ,f f→  thus
* *

u ,f f→  the 

material loses all stress-bearing capacity. Since the physics underlying the void growth acceleration are 

left unspecified, experiments are used to provide calibration of the involved parameters, cf  and q  at 

the smallest scale of relevance (Hutchinson and Evans, 2000). Note that such formulation is unable to 

distinguish the coalescence mode. In the literature, Tvergaard and Needleman (1984) proposal is often 

referred to as the “f * approach”. Moreover, if coupled with the qi fitting parameters (Eq. (3.12)) and the 

description of the void nucleation after Chu and Needleman (1980) (Eqs. (3.26)-(3.29)), this framework 

is widely known as the Gurson-Tvergaard-Needleman (GTN) model. While the two-parameter criterion 

in Eq. (3.30a) is rather crude, it is very attractive from the numerical implementation point of view, as 

it allows to describe coalescence is an expedient and efficient fashion, which partially explains its ex-

tensive adoption. An equivalent expression to Eq. (3.30a) for void growth models accounting for void 

shape effects can also be heuristically formulated (Morin, Leblond and Tvergaard, 2016).  
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3.5 Concluding remarks 

Given the growing understanding of the mechanisms of damage at the micro-scale, known to govern 

failure of materials at the macroscale, micromechanics has revealed to be a quite natural, yet powerful, 

framework for its modelling. Micromechanical models are built on the idea that a proper description of 

the phenomena at the micro- or meso- scale will strengthen the predictions of the model at larger scales 

(viz., actual components and structures). In the particular case of ductile damage modelling, the frame-

work of ‘porous solids’ is often adopted. It turns out that viewing metals and alloys as porous media 

leads to an effective framework for deriving constitutive equations from micro-mechanical considera-

tions. Being based on scale transition micromechanical models display an innate predictive capability 

as they directly account for the microstructural features of the matter and their effect on the plastic flow 

and damage state. On the contrary, Lemaitre-based phenomenological damage models rely on the meas-

urement of some apparent elastic modulus to quantify the damage state. While this allows to obtain a 

lighter identification procedure, recent studies point out that the modification of the elastic modulus 

with increasing plastic strain in uniaxial tension tests go far beyond the effect of the accumulated dam-

age (Hering and Tekkaya, 2020). This fundamentally weakens the principles on which such models are 

built. Moreover, the effect of damage on the overall elastic behaviour may also been accounted in an ad 

hoc fashion using the micromechanical counterparts. This dependence is however very often neglected 

(Besson, 2010). 

One could argue that the micromechanical models reviewed in this work are already too cumbersome 

to be used by engineers. However, in fact these are in their early development stages. In the void growth 

models, the incorporation of void shape effects and of plastic anisotropy are, perhaps, the most inter-

esting developments of the field in the past two decades (see Table 3.1). Meanwhile, more incremental, 

yet valuable, developments are needed to improve certain aspects of existing models, in order to better 

describe the ductility of engineering materials. One of the most, if not the most, relevant aspect is the 

improvement of the plasticity description of the matrix phase, which, as shown in this subsection, has 

been mainly dealt with isotropic or basic, rather unsophisticated, orthotropic plasticity criteria. 

The current limitations of the micromechanical approach are far greater regarding the void nuclea-

tion and coalescence stages. This is in part explained by the increased difficulties inherent to modelling 

these phenomena: nucleation is a statistical process, strongly dependent on the geometry and properties 

of the inclusions and the inclusion/matrix interfaces; and void coalescence introduces problems of scale 

separability which render classical homogenization procedures not applicable. Accordingly, only rela-

tively crude, phenomenological-inspired, void nucleation and coalescence criteria are often employed 

to supplement the (more sophisticated) void growth models. The development and implementation of 

advanced void nucleation and coalescence models falls outside the scope of this thesis, and the above 

topics were reviewed above just for the sake of completeness. 
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Chapter 4. 

 

Non-quadratic orthotropic strain-rate 

potential: development and implementation 

This chapter deals with the development and implementation of a non-quadratic orthotropic strain-rate potential 

based on an arbitrary number of linear transformations. The proposed strain-rate potential is the exact work-con-

jugate of the stress potential of Plunkett et al. (2008). Similarly to the reference stress potential, the derived strain-

rate potential is able to describe both the anisotropy and the tensile and compressive asymmetry of the plastic 

response of textured metals. These potentials are applied to describe the behaviour of dense materials with hex-

agonal crystal structure, viz. a commercially pure titanium and a AZ31B magnesium alloy, in order to highlight 

the flexibility of the model and to graphically illustrate the duality between the yield surface and strain-rate po-

tential isovalue surfaces. 

4.1 Chapter introduction 

In order to model the elastic-plastic behaviour of metallic materials it is vital to accurately describe 

the plastic dissipation, i.e., the irreversible mechanical work. Based on the work equivalence principle, 

Ziegler (1977) and Hill (1987) shown that a meaningful strain-rate potential can be associated with any 

convex stress potential. Accordingly, one can use a strain-rate potential, in place of the classical stress 

potential, to describe the plastic dissipation response of a deforming solid. While the development of 

stress potentials has received a lot of attention, that of strain-rate potentials has been somewhat inactive 

(Kim et al., 2007). The reasons are mainly twofold: (i) the derivation of a strain-rate potential from an 

existing stress potential can be very challenging, if not impossible; and (ii) in contrast to the yield func-

tion, the strain-rate potential does not provide an explicit definition of the boundary between elastic and 

plastic domain, thus the determination of the plastic loading/unloading conditions is more expensive 

from the computational viewpoint (Bacroix and Gilormini, 1995). However, without knowledge of the 

expression for the strain-rate potential associated with a given stress potential, it is not possible to derive 

the corresponding macroscopic stress potential for a porous solid by means of the kinematic homoge-

nization approach, as in the theory of Gurson (1977). Furthermore, with the advent of full-field Digital 

Image Correlation (DIC) techniques, a strain-rate-based formulation can be advantageous from the ex-

perimental point of view given that, in truth, one measures strain and strain-rate fields rather than stress 

fields, and thus a constitutive model can be calibrated based on strain information in addition to (or in 
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place of) global stress measurements, which implicitly introduce dubious assumptions such as of stress 

homogeneity in the test specimens. 

Strain-rate potentials can be defined based on the crystal plasticity theory or on purely phenomeno-

logical grounds. Within the former approach, a numerical crystallographic strain rate potential is ap-

proximated by a suitable analytical function. This approach was applied in Fortunier (1989) for face-

centred cubic (fcc) single crystals and in Arminjon et al. (1994); van Bael and van Houtte (2003); Hi-

watashi et al. (1997); van Houtte (1994); van Houtte and van Bael (2004) regarding body-centred cubic 

(bcc) polycrystals, and employed in finite-element simulations, for example, in Bacroix and Gilormini 

(1995); Hu et al. (1998); Li et al. (2001); Szabó and Jonas (1995); Zhou et al. (1998), among others. 

Within the phenomenological (macroscopic) approach, analytic expressions of the exact strain-rate po-

tentials are only known for a few cases, among these, the classical yield criteria for materials with cubic 

crystal structure, viz. von Mises, Tresca and Hill (1948). Recently, an orthotropic strain-rate formulation 

for metals with hexagonal crystal structure, which are known to display tension-compression asym-

metry, was proposed by Cazacu et al. (2010) as the exact dual of a simplified and quadratic form of the 

Cazacu et al. (2006) (alias CPB06) stress potential. In the same spirit as the Hill-type dual potentials, 

Cazacu et al. (2010) imposed a constrain to the fourth-order orthotropic tensor so that the transformed 

stress (and therefore strain-rate) tensor is deviatoric. While such restriction was introduced for mathe-

matical convenience, this is not a necessary condition to ensure plastic incompressibility (see the dis-

cussing in Cazacu et al. (2006)) and, ultimately, hinders the flexibility of the general form of the CPB06 

stress potential. In an effort to improve the description of the behaviour of textured polycrystals with 

cubic structure, Barlat and his co-workers proposed several non-quadratic orthotropic strain-rate poten-

tials of heuristic nature based on the linear-transformation method using: one (Barlat et al., 1993; Chung 

et al., 1999; Kim et al., 2003); two (Barlat and Chung, 2005; Kim et al., 2007); and multiple (Rabahal-

lah, Balan and Barlat, 2009) transformations of the plastic strain-rate tensor. None of these formulations 

are strictly dual (or work-conjugate) of the respective non-quadratic stress potential. Indeed, the trans-

formation tensors of the stress and strain-rate space are actually independent, only agreeing in the num-

ber of coefficients. Nevertheless, these authors demonstrated that some of the above potentials can be 

regarded as pseudo-conjugates, since their description of the plastic anisotropy is similar to that of the 

respective stress potential. Phenomenological strain-rate potentials are more convenient and computa-

tionally time-efficient regarding finite-element simulations (e.g. Yoon et al. (1995) using the non-quad-

ratic potential of Barlat et al. (1993); Rabahallah et al. (2009) using the dual of the Hill (1948) and the 

Barlat and Chung (2005) non-quadratic potential; and Yoon et al. (2011) and Balan and Cazacu (2013), 

using the Cazacu et al. (2010) strain-rate potential for fully-dense and porous solids, respectively). For 

a review of the majority of phenomenological strain-rate formulations mentioned in this paragraph, the 

reader is referred to the book of Cazacu et al. (2019). 

The derivation of suitable strain-rate potentials for materials concurrently displaying anisotropy and 

tension-compression asymmetry was tackled in Cazacu et al. (2010), but only to some extent. Indeed, 

orthotropic stress and strain-rate potentials based on a single transformation and restricted to a quadratic 
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form may not be able to capture the complex mechanical behaviour encountered in strongly textured 

hexagonal crystal structure metals with satisfactory accuracy. In such cases, more coefficients must be 

introduced in the formulation to increase the flexibility of the potentials. In this spirit, Plunkett et al. 

(2008) extended the general form of the CPB06 criterion to account for multiple linear transformations. 

The goal of this chapter is to provide the dual potential of the Plunkett et al. (2008) stress potential. 

It is shown that the proposed non-quadratic orthotropic strain-rate potential is an exact dual (rather than 

pseudo-conjugate). The strain-rate potential accounts for tension-compression asymmetry and assumes 

an arbitrary number of linear transformations on the (full 3-D) strain-rate space. Given the exact duality 

property, the material parameters are the same for the stress and strain-rate potentials.  

4.2 Theoretical background 

In the following, some basic concepts regarding constitutive modelling of plastic deforming materi-

als using strain-rate potentials and orthotropic extensions using the linear transformation method are 

reviewed. The expression of the Cazacu et al. (2010) strain-rate potential and the stress potential of 

Plunkett et al. (2008), are also recalled, the latter being the starting point of the analysis. 

4.2.1 Strain-rate potentials: definitions and review 

Within the theory of thermodynamics a constitutive relation can be based on the existence of a scalar 

function, ,  known as dissipation potential, for which the thermodynamic force, ,D  (e.g., stress-like 

variable), is defined by a tensor gradient relationship of the type:  
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





, (4.1) 

where   denotes some flux variable (e.g. strain-like variable), dual of .D  If   is non-negative, convex 

with respect to ,  and respects ( ) 0, =0  then the model is thermodynamically admissible, in the sense 

that non-negative dissipation is guaranteed. The inverse relation can be written from the so-called dual 

dissipation potential,  
 – the Legendre-Fenchel transformation (e.g. Fenchel (1949)) of ,  as: 

 
( )D

D


=







. (4.2) 

The above relationships often include state variables which are omitted here for readability. Let us now 

focus on the description of rate-independent perfect isochoric plasticity. Let   denote the Cauchy stress 

tensor and 
p

d  the Eulerian (plastic) strain-rate tensor. In the rate-independent case, the dissipation po-

tential ( )    is non-differentiable. Hence a convex yield function of the type ( ) ( )f  = −   is intro-

duced, where   is a positive scalar with the dimension of stress and ( )   an equivalent stress function. 

The elastic domain is therefore defined as the set of all the elastic stress states, i.e.: 

  2 | ( ) 0f=    , (4.3) 
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where 2  denotes all symmetric second-order tensors. Moreover one defines the closure of  as ,  to 

describe the set of all the plastically admissible stress states, and its boundary as ,  describing the set 

of stress states satisfying the yield condition, i.e. defining the yield surface, ( ) 0f =  (Jirásek and 

Bazant, 2002). Based on the yield function, a dissipation potential in the stress space ( ),    can be 

defined as the characteristic function7, ( ),  (reciprocal of the indicator function), of the set of all plas-

tically admissible stress states, ,  i.e.: 
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Differentiation of this expression leads to the set (cf. Eq. (4.2)): 
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where ( )   denotes the subdifferential operation (generalization of the differential of smooth functions, 

see e.g. Moreau, (1970, 1966) for more details) and ( )  the normal cone with outward normals of 

the yield surface, ,  at point .  If the yield surface is regular (i.e. not a vertex) at point   this cone 

reduces to the semi-infinite ray given by: 
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The last two expressions can be rewritten as:  
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for 0,   0,f   and 0,f  =  which denotes the well-known associated flow rule as well as the load-

ing-unloading (or Kuhn-Tucker) conditions, where   is a Lagrange multiplier known as plastic multi-

plier rate. The dual potential of ( ),    
p( ), d  results from the Legendre-Fenchel transform as: 
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p p
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= = −d d
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where LF ( )  and sup( )  denote the Legendre transformation and the supremum operations, respec-

tively. This expression can be simplified since ( )p    vanishes for all p   (see Eq. (4.4)) and 

( )p =   for ,p   hence it suffices to perform the supremum operation over , i.e.: 

 ( )p p( ) sup :
p

p


=d d


 , (4.9) 

An important result is that, for the class of rate-independent models, the dissipation potential 
p( ) d  is 

a homogeneous function of degree one with respect to positive multipliers: 

 
7 Let X be a set and M a subset of X. In convex analysis the characteristic function : { }M X →  + of a subset 

M, is defined as: ( ) 0M x =  if x M  and ( )M x = +  if .X M  
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 ( ) ( )p p p p( ) sup : sup : ( ),  0
p p

p p     
 

= = =  d d d d
 

  , (4.10) 

and therefore, the dissipation potential 
p( ) d  is equal to the dissipation function, 

p( ),d  i.e.: 

 ( )p p p p( ) : sup : ( )
p

p 


= =d d d d


  , (4.11) 

where   denotes the actual stress (resulting from the applied plastic strain-rate, 
p )d  and p  denotes 

all plastically admissible stress states. The last equation implicitly assumes the convexity and normality 

(the flow rule is associated) conditions. Note that the inequality p p p( ) : :p= d d d   p   is 

no more than the postulate of maximum plastic dissipation. Unfortunately, under the classical flow rule 

in Eq. (4.7), the stress gradient of the yield function constrains the strain-rate in ‘type’ (or ‘direction’) 

but not in magnitude, and thus there is not a one-to-one relationship between stress and strain-rate, 

which precludes the determination of a dual potential, 
p( ), d  of the Legendre-type. Nevertheless, it 

turns out that, based on the work-equivalence principle, an alternative meaningful dual can be associated 

with any convex yield function (Chung and Richmond, 1993; Hill, 1987; Ziegler, 1977). If the yield 

function is homogeneous of degree one with respect to positive multipliers, i.e. ( ) ( ), 0,f f  =     

then, from the Euler theorem, : ( )/ ( ).f     =   Combining Eq. (4.7), Eq. (4.11) and the yield con-

dition, ( ) , =  results in: 

 
p p p( )

( ) : : ( )
f

   


= = = =


d d d


 


, (4.12) 

where the function 
p( ) d  in the strain-rate space, often referred to as the strain-rate potential (SRP), 

was defined as: 

 
p( ) =d . (4.13) 

The scalar function 
p( ) d  acts as a work-equivalent strain-rate measure (as 

p p( ) ( )=d d  and thus 

isovalue surfaces 
p( ) d  correspond to the same dissipation) and is always homogeneous of degree one 

with respect to positive multipliers. Based on geometrical considerations, Hill (1987) showed that the 

hypersurfaces ( / ) 1  =  and 
p( / ) 1  =d  are polar reciprocates with respect to the unit hypersphere, 

and thus 
p( ) d  is necessarily convex (since ( )   is convex) and its gradient acts as a conventional 

dissipation potential (c.f. Eq. (4.1)), for which a constitutive relation for the stress can be stated as: 

 
p

p

( )



=


d

d
 . (4.14) 

One refers to the strain-rate potential, 
p( ), d  as the dual of the equivalent stress function, ( ),   in 

turn also known as stress potential8. This duality is not of Legendre type but reflects a sound relationship 

based on the notion of polar reciprocity. Naturally, either potential is readily constructed from the other 

 
8 The dual potentials 

p{ ( ), ( )}  d  must not be confounded with the dual potentials of the Legendre-type, i.e., 
p{ ( ), ( )}, 

d  respectively. Note moreover that these have, in fact, different physical dimensions. 
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since duality is a two-way relationship. The naming convention between the primal and dual potentials 

is simply a matter of preference. 

Given a closed-form expression for the stress potential ( ),   the derivation of the expression of the 

associated strain-rate potential, 
p( ), d  entails a mathematical manipulation which can be summarised 

by a four-step procedure: (i) the strain-rate tensor, 
p ,d  is determined from the associated flow rule (Eq. 

(4.7)), i.e. 
p p ( , , ) d d  ; (ii) the obtained expression is inverted in order to isolate the stress tensor 

(or, more precisely, its deviator), 
p( , , );  d   (iii) the latter expression for the stress tensor is sub-

stituted in the scalar equation ( ) =  (yield condition), which leads to the elimination of ;  (iv) the 

plastic multiplier rate, ,  is isolated from the latter equation resulting in a final expression for the SRP: 

p p( ) ( ).  d d  In truth, this seemingly straightforward procedure can turn out to be quite challeng-

ing, if not impossible, when the reference (stress) potential involves complex forms, (e.g. eigenvalues, 

piecewise defined due to absolute values, exponentiation, etc.), namely in the abovementioned variable 

isolation tasks. This explains the limited number of exact dual formulations in the literature. In the 

following paragraphs the strain-rate potential function proposed in Cazacu et al. (2010), which is of 

special interest to the present work, is presented. 

4.2.2 Review of the Cazacu et al. (2010) strain rate potential 

Cazacu et al. (2010) derived the exact dual of the quadratic form of the CPB06 (Cazacu et al., 2006) 

orthotropic stress potential. The quadratic form of the CPB06 yield criterion, acting as the primal po-

tential, is given by: 

 
T T
1 1( , , , ) ( , , ) 0f k k  − =    with  ( )

3
2

1

ˆ ˆ( , , ) i i

i

k m s ks
=

= − , (4.15) 

where 
T
1  is the yield stress in uniaxial tension in along the 1-direction of the orthotropy axes (say, the 

rolling direction), [ 1,1]k  −  is a material parameter describing the tension-compression asymmetry, 

:=  is the deviatoric projection of a symmetric fourth-order orthotropic tensor , 1 2 3ˆ ˆ ˆ( , , )s s s  are 

the eigenvalues values of the transformed stress tensor ˆ : ,=s   and m is a constant defined such that 

( )  reduces 
T
1  for uniaxial tensile loadings (refer to Cazacu et al. (2006) for its expression). In rela-

tion to the original form of the stress potential, Cazacu et al. (2010) further assumed a constraint to the 

‘type’ of orthotropy such that  is (major) symmetric, and thus ŝ  is traceless. The expression of Ca-

zacu et al. (2010) orthotropic strain-rate potential is given by a piecewise function of the type: 

 
( )

( )

( )
( )

2
2 2 2

1 2 3 1 2 3 32

p

2
2 2 2

1 2 3 1 2 3 32

1 3 10 3
  if  , ,

1 3 2 3
( , , )

1 3 10 3
  if  , ,

1 3 2 3

k k
b b b b b b D

m k k k
k

k k
b b b b b b D

m k k k



−

+

  − +
 + +  

− + +  
= 
  + +

+ +  
+ − + 

d , (4.16) 

where 1 2 3( , , )b b b  are the eigenvalues of a deviatoric transformed strain-rate tensor: 
p: ,=b d   is 

an orthotropic fourth-order symmetric tensor such that : =  and  is the deviatoric fourth order 
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unit tensor. Note that  is the counterpart of  in the strain-rate space. The domains 3D−
 and 3D+

 in 

Eq. (4.16) are given as follows: 

 

( )
( )( )

2
3

3 1 2 3
2 2 2 2 2

1 1 1

3 2 3
, , |

6 3 3 1

b k k
D b b b

b b b k k

−

 
− + 

=  
+ + + + 

 

, 

( )
( )

( )( )

2

3
3 1 2 3

2 2 2 2 2
1 1 1

3 2 3
, , |

6 3 3 1

k kb
D b b b

b b b k k

−

 − + + 
=  

+ + + + 
 

. 

(4.17) 

For brevity, Eq. (4.16) represents only two (out of six) branches of the potential. The expressions of the 

remaining branches of 
p( ) d  corresponding to the domains iD−

 and ,iD+
 1,2,i =  are readily obtained 

from Eq. (4.16) by symmetry. The interested reader is referred to Cazacu et al. (2010) for the expression 

of the components of ,  the full piecewise representation of the potential and its first derivatives. For 

0,k =  i.e., no tension-compression asymmetry, the Cazacu et al. (2010) strain-rate potential reduces to 

that of Hill (1987, 1979), the latter being the exact dual of the well-known orthotropic stress potential 

of Hill (1948). 

4.3 Linear transformation-based criteria 

Most orthotropic plastic potentials are developed based on isotropic criteria. This inherently ensures 

that the developed orthotropic functions are able to reduce to isotropy, which otherwise could lead to 

spurious anisotropic effects (Barlat et al., 2005). Two rigorous formulations for extending to orthotropy 

existing isotropic criteria can be distinguished: (i) the generalized invariants approach; and (ii) the linear 

transformation approach. The former is based on the theory of tensor representation of orthotropic scalar 

functions (see e.g. Cazacu and Barlat, 2001, 2003) and is applicable for criteria that are written in terms 

of invariants of the deviatoric stress tensor, whereas the latter is based on the use of one or more linear 

transformations to the stress tensor (or its deviator), similarly to the criterion in Eq. (4.15). This work 

concerns the latter approach. Indeed, the linear transformation approach has received more attention in 

the literature. The reasons are twofold: first, linear transformations on the arguments of a convex iso-

tropic function automatically preserves its convexity (which, in contrast, can be difficult to verify in the 

generalized invariants formulation); and second, it is a quite simple method, applicable to virtually any 

isotropic criterion. The main idea of this methodology is as follows. Let iso ( )  iso 1 2 3( , , ) s s s de-

scribe a convex isotropic potential, defined in terms of the eigenvalues of the deviatoric stress tensor, 

1 2 3( , , ),s s s  and 
( )k

 denote the k-th fourth-order orthotropic transformation tensor defined such that: (i) 

orthotropic symmetry is preserved; and (ii) the condition of plastic incompressibility is satisfied. There-

fore one can define a transformed stress tensor 
( )ˆ ,k

s  not necessarily traceless, as the k-th linear trans-

formation of the actual stress tensor, ,  i.e., 
( ) ( )ˆ : .k k=s   The orthotropic potential, ,  is then defined 

based on the isotropic (reference) counterpart, iso ,  as: 
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   ( )
ex

ex(1) ( ) ( ) ( ) ( )
iso

1

ˆ ˆ ˆ ˆ,..., ,..., ( )
n

k n n n

n

   
=

= = =s s s s , with 1 p n   (4.18) 

when exn  linear transformations are considered. An appropriate scaling factor should also enter the 

above expression such that ( )   for a given reference yield stress value, ,  usually the uniaxial 

tensile yield stress. Increasing the number of transformations potentially improves the mathematical 

flexibility of the model. For an overview of the criteria developed within this framework refer, for ex-

ample, to the works of Barlat et al. (2005), Plunkett et al. (2008), Aretz and Barlat, (2013) and references 

therein. The general form of the stress potential of Plunkett et al. (2008) is now presented which operates 

as the primal potential for the strain-rate potential worked out in this chapter. 

4.3.1 Review of the Plunkett et al. (2008) stress potential 

Plunkett et al. (2008) orthotropic yield criterion is no more than an extension of Cazacu et al. (2006) 

(CBP06) criterion, by incorporating ex 1n   linear transformations (cf. Eq. (4.18)), i.e.: 

 

( ) ( ) T ( ) ( ) T
1 1( , , , , ) ( , , , ) 0,n n n nf k a k a  − =   ex1,...,n n= , 

( )
1

am F = , with 
ex

( )

1

n

n

n

F F
=

=  and ( ))( )
3

( ) (

1

( )ˆ ˆ
i i

n n
a

n

i

p p
nF sks

=

= − , 
(4.19) 

where a  is the homogeneity degree, ( )ˆ ,
i

n
ps  1,2,3,i =  are the eigenvalues of the n-th transformed stress 

tensor, 
( )ˆ ,n

s  
( ) ( ) :n n=  is the corresponding fourth-order deviatoric transformation tensor, and 

( )n
 

is a major-symmetric orthotropic tensor whose Voigt 6x6-matrix notation, 
( ) ( )n nC  is in the form: 

 

( ) ( ) ( )
11 12 13

( ) ( ) ( )
12 22 23

( ) ( ) ( )
13 23 33( )

( )
44

( )
55

( )
66

0 0 0

0 0 0

0 0 0
,

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

n n n

n n n

n n n

n

n

n

n

C C C

C C C

C C C

C

C

C

 
 
 
 

=  
 
 
 
  

C  (4.20) 

( )nk  is tension-compression asymmetry parameter associated with the transformation n, and m is a ma-

terial constant defined such that ( )   reduces 
T
1  for uniaxial tensile loadings and it is given in terms 

of 
( )n

and 
( )nk  as: 

 
ex

1

( )

1

n a
n

i

m m

−

=

 
=  
 
 , with ( )

3
( ) ( ) ( ) ( )

1

a
n n n n

i i

i

m k
=

=  −  , (4.21) 

where 
( )n
i , 1,2,3i =  are the components 

(n)
11,ii  1,2,3i =  (no sum), respectively, (or, equivalently, the 

non-zero components of the first column of the 6x6-matrix form representation of 
(n) ,  see Eq. (4.51) 

in §4.4.4). In Eq. (4.19), 
( ) ,nF  is the general form of the CBP06 criterion in Eq. (4.15), the latter being 

a particular case for 2.a =  The criterion in Eq. (4.19) is often referred to as CPB06exn, where n is 

replaced by the number of transformations adopted in the formulation (CPB06ex2, CPB06ex3, etc.). 

Plunkett et al. (2008) criterion reduces to that of Cazacu et al. (2006) if only one linear transformation 
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is used or if all nex transformations are equal (or multiples of each other). Convexity is guaranteed for 

any integer 1a   and for 
( ) [ 1,1]nk  −  (for the proof see Cazacu et al. (2006)). In the following the dual 

of the Plunkett et al. (2008) criterion is presented. 

4.4  Derivation of the exact dual of the Plunkett et al. (2008) criterion 

4.4.1 Definition of the strain rate potential 

Let 1a   and 
( ) ] 1,1[.nk  −  The expression for the proposed strain-rate potential,  , is in the form: 

 

( )
1

p ( ) ( ) T
1

1
( , , , )

a
n n

ak a G
m

 
−

=d ,  ex1,...,n n= , with  

ex

p ( ) ( ) ( )

1

( , , , )
n

n n n

n

G k a G
=

=d  and 

( ) 13
( )

( ) ( )
1

| |

1 sgn( )

i

i

a
n a

pn

n n
i p

b
G

b k

−

=

 
=   − 
  

(4.22) 

where ( ) ,  1,2,3
i

n
pb i =  are the eigenvalues of the n-th, transformed strain rate tensor, ( ) .n

b  The scalar 
T

1  

is the effective plastic strain rate associated with the adopted equivalent stress, ( ), =   entering the 

dual/stress potential, (in this case, the uniaxial tensile yield stress, see Eq. (4.19)), under the plastic work 

rate equivalence principle. The transformed strain tensors, 
( ) ,n

b  ex1,...,n n= , are given by: 

 
( ) ( ) p:n n=b d , (4.23) 

where 
( )n

 is the fourth order plastic strain-rate transformation tensor9 associated with transformation 

n and is given by: 

 

( )
1( ) ( ) ( )

dev
: :n n n −

= b b , with  

( )( )T ( ) ( ): :n n n

n

=b b  
(4.24) 

where ( )
1

dev

−
  represents the ‘deviatoric inverse’ operation ( ) ( )

1 1

dev dev
: :

− −
= =  and  the de-

viatoric fourth order unit tensor. The fourth order tensor 
( )n

b  has the major symmetry and it is defined 

based on a symmetric second order tensor 
( )n

bT  such that the following equality holds: 

 ( ) ( ) ( ): ,n n n=b b ba T a = aT  or, equivalently, ( ) ( ) ( )n n n
ijkl kl ik kj jk kia T a a T= = , , 1,2,3i j = , (4.25) 

where a  denotes an arbitrary symmetric second order tensor, and tensor 
( )n

bT  is expressed as follows: 

 

( ) ( )
( ) ( ) T

n n
n n= b b bbT V T V , where 

1 2
( ) ( ) ( )1 1eig( )

a
n n na a

−

− −=bT D b , 

(4.26) 

and 

 ( )( ) ( ) ( )diag 1 sgn( ) ,  1,2,3,
a

n n n
ib k i = − =

  
D  (4.27) 

 
9 The term ‘tensor’ is, to some extent, abused in this text as it is also employed to describe mappings which, in 

truth, are not linear. Nevertheless, this tensor notation adopted here for numerical convenience. 
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where ( )nbV  denotes the orthogonal matrix whose columns are the corresponding right eigenvectors of 

( ) ,n
b  (thus ( ) ( )

( ) ( ) Teig( ) ,n n
n n= b bb V b V  and, equivalently, ( ) ( )

( ) T ( )eig( ) ).n n
n n= b bb V b V  In Eq. (4.27) sgn( ) rep-

resents the sign function, diag( )  represents the assignment of vector components to a square diagonal 

matrix, eig( )  represents a diagonal square matrix whose diagonal components are the eigenvalues of 

the argument tensor (not necessarily ordered), and | |p  represents the element-wise absolute value op-

eration to the power p, (i.e. | | | |p p
ij ija a= ). The physical meaning of 

( ) ,n
bT  

( ) ,n
bT

( ) ,n
D and b  is discussed 

in the next subsection. 

 

Remarks 4.1  

(i) The strain rate potential expression given in Eq. (4.21) is the exact dual of the orthotropic non-

quadratic stress potential of Plunkett et al. (2008) (see Eq. (4.19)); 

(ii) The SRP is convex and homogeneous of degree one with respect to positive multipliers, i.e., 

p p( ) ( ),  =d d  0;   

(iii) The material parameters 
( ) ( ){ , , }n nk a entering the SRP are those of the respective dual (stress) 

potential, rather than independent parameters. Hence, no specific parameter identification pro-

cedure is needed. This is a direct consequence of the exact dual nature of the potentials.  

(iv) No constrains are imposed on the form of the fourth order orthotropic tensors 
( )n

 (see Eq. 

(4.20)) (hence 
( )n

) and thus the number of independent anisotropy coefficients is maximum; 

(v) Equations (4.23)-(4.27) fully define the input of the SRP in Eq. (4.22), namely, the eigenvalues 

of the transformed strain rate tensors, ( ) .n
b  Note that generally 

( )n
b  depends on the eigenval-

ues and eigenvectors of all equivalent isotropic spaces ex1,..., ,n n=  and on all 
( )nk  and 

( )n
 

(via the sum in Eq. (4.24)), and not only of those associated with transformation n, as is the 

case of the stress potential formulation; 

(vi) The strong non-linear nature of Eqs. (4.23)-(4.27) precludes the explicit closed-form determi-

nation of the tensors 
( )n

b  in the general case10, (note that 
( ) ( ) p( )n n= d ). Numerical meth-

ods are therefore required to evaluate the SRP value and its derivatives. Nevertheless, it must 

be emphasized that these equations present a well-posed and mathematically sound problem 

for evaluating the potential. 

(vii) Exact duality is preserved for any real number 1a   for the homogeneity parameter. However, 

since the convexity of the stress potential was formally proven only for integer numbers 1,a 

one should similarly adopt this restriction in the strain-rate potential in Eq. (4.22). 

In the following, the proof and discussion of the presented expressions is in order.  

4.4.2 Derivation of the expression 

Departing from the associated flow rule (Eq. (4.7)) and applying the chain rule yields:  

 
10 Closed-form solutions do exist for some particular cases, as described in subsection §4.4.3. 
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  
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s s

d d
σ s s σ s

, with  

( ) ( )T ( ):n n n=d b , 

(4.28) 

where, for readability, 
T

1   and: 

 
( )

( )ˆ

n

n






b

s
, with ex1,..., .n n=  (4.29) 

The previous expression describes the normality principle between the transformed stress and the strain-

rate tensors in the transformed space n (Figure 4.1) at the reference frame associated with the orthotropy 

axes, 1 2 3( , , ).e e e  The local isotropy condition implies that the eigenvectors of 
( )n

b  and ( )ˆ n
s  are the 

same. Therefore, this expression can be recast to the principal transformed space as: 

 ( )( ) ( )

( )
eig

ˆ

n n
p n

p





=


b b
s

,  (4.30) 

where ( ) ( )ˆ ˆeig( ),n n
p =s s  i.e. ˆ

ips  are the eigenvalues of the transformed stress tensor 
( )ˆ .n

s  Differentiation 

of the expression of the Plunkett et al. (2008) stress potential, ,  (Eq. (4.19)), results in: 
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(

1
( ) ( ) ( )(

T
)

)
diag ,  1,2,3,
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i i i

a
n n n

p
n

p p
a

p
a n n

n
p

s s ksm k i


   −
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− − = = =
  

b
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 (4.31) 

which can be more conveniently written as: 

 ( )( )T

2
( ) ( ) (( ) 1 )( )

( )
,  1,2,3.ˆ ˆ ˆdi g

ˆ
a 1 sgn

i i in

a a
n n n

p p
n a a n

p

p

pm k is s s


  
−

−
=  = −

 
=

 
b

s
 (4.32) 

Inverting the above expression, and assuming 1a   and 
( ) ] 1,1[nk  −  leads to: 
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1
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1 1

ˆ diag sgn( ) ,   1,2,3.
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i
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i
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s  (4.33) 

where the property 
) ( )(sgn( ) sgn( ),ˆ

i i

n
pp
nb s=  1,2,3,i =  was employed, as trivially proven by examining Eq. 

(4.32) and noting that 
( ) ( )ˆ(1 sgn( ) )  ]0,2[ ,

i

n n
ps k−  1,a   T 0,   0,m   and 0   if 

p . 0d  Substitution 

of Eq. (4.33) for 
( )ˆ

i

n
ps  into the stress potential in Eq. (4.19), and isolating the factor  , leads, finally, to 

Eq. (4.22). 

Let us now focus on the determination of the ex 1n   transformed strain tensors 
( ) ,n

b  given a total 

plastic strain rate tensor, 
p ,d  entering in the SRP. Recalling the definition of 

( )n
D  in Eq. (4.27), Eq. 

(4.32) can be written in matrix form as the product of the diagonal matrices: 

 ( )( ) 1 ( ) ( ) ( )
T)

2

(
ˆ ˆ .

ˆ

n a a n n n
p p pn

a

p

m


  
−

−=


=


b D s s
s

 (4.34) 

Performing a similar rearrangement to Eq. (4.33), applying the | |p  operator (defined in the text follow-

ing Eq. (4.27), with ( 2)p a= −  and left multiplying by 
( )n

D  leads to the equality: 
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 ( )
2 1 2

2
( ) ( ) 1 ( ) ( )1 1 1

T
ˆ

a a
a

n n a a n na a a
p pm 

− −
−

− − − −=D s D b . (4.35) 

Combining the last two equations results in: 

 

1

1 1
( ) ( ) ( )

( )
T

ˆ ,
ˆ

a

a a
n n n

p pn
p

m 




− −
 

  
=  

=
 

bb T s
s

 (4.36) 

where 
( )n

bT  was defined in Eq. (4.26). The previous expression shows that 
( )n

bT  is the diagonal tensor 

which modifies the relationship between the principal stress and strain tensors in the eigenspace asso-

ciated with the linear transformation n. Note that the operator 
( )n

bT  is not a linear mapping in the general 

case. Indeed, the above relationship is linear only for 2,a =  i.e. for a quadratic stress potential. The 

diagonal tensor 
( )n

D  holds the mathematical representation of the material behaviour associated with 

tension-compression asymmetry phenomena. Similarly, Eq. (4.36) can be recast to the orthotropy frame 

as: 

 

1

1 1
( ) ( ) ( )

( )
T

ˆ
ˆ

a

a a
n n n

n

m 




− −
 

  
=    

bb T s
s

, (4.37) 

where 
( )n

bT  was also defined in Eq. (4.26). Naturally, the symmetric tensor 
( )n

T  holds the exact same 

physical interpretation as 
( ) ,n

bT  only in a different base. Moreover, 
( )n

bT  and 
( )ˆ n

s  commute. The mathe-

matical manipulation when transforming Eq. (4.34) into Eq. (4.36) may seem detrimental since an ex-

plicit stress-strain relationship is converted to an implicit one. In fact, in the same spirit as 
( ) ,n

bT  one 

could define an alternative formulation to Eq. (4.34), (henceforward denoted the stress-based formula-

tion) as: 

 ( ) ( )( ) 1 ( ) ( ) ( ) 1 ( ) ( )
T T ˆ

2

( )
ˆ ˆ ˆ ,

ˆ

n a a n n n a a n n
p p p pn

p

a

m m


    
−

− −
= ==


sb D s s T s

s
 (4.38) 

with ( ) ( )
2

( )
ˆ .ˆn n n

p

a−

=sT D s  However, the main idea here is to isolate and eventually cancel the hanging 

stress term in Eq. (4.37) so that, ultimately, no stress quantities appear in the formulation, which is not 

a straightforward task when working with 
( )

ˆ
n

sT  instead of 
( ) .n

bT  Nevertheless, a formulation grounded 

on 
( )

ˆ
n

sT  may be advantageous from the numerical point of view, as demonstrated later on in this work. 

Replacing Eq. (4.37) in Eq. (4.28) yields: 

 ( )

1

1 1
p ( )T ( ) ( )T ( ) ( )

T

ˆ: : : .

a

a a
n n n n n

n n

m



− −
 
 


==  


  bd b s  (4.39) 

Recalling that 
( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ:n n n n n n=b b bT s s T s  (Eq. (4.25)) and the definition 

( ) ( )ˆ : ,n n=s s  one obtains: 

 ( )

1 1

1 1 1 1
p ( )T ( ) ( )T ( ) ( )

T T

: : : : : ,

                                                          

a a

a a a a
n n n n n

n n

m m 

 

− − − −
   
    = =    
   

=  b bd b s s  (4.40) 
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with b being defined in Eq. (4.24). The previous expression shows that b  is the tensor that describes 

the pseudo-linear relationship (actually linear in the case of 2a = ), resulting from the normality prin-

ciple between the deviatoric stress, s, and the plastic strain rate tensor, p .d  For completeness, if 
( )

ˆ
n

sT is 

used instead of 
( ) ,n

bT  then the alternative form of Eq. (4.40) writes: 

 ( )p ( )T ( ) 1
T: : ,n n a a

n

m  −== sd b s  (4.41) 

with 

 
( )T ( ) ( )( : : ),n n ns s  and ( ) ( )

( ) ( ) T
ˆ ˆˆˆ ,n n

n n= s sssT V T V  (4.42) 

where the properties 
( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ

ˆ ˆ ˆ:n n n n n n= ss sT s s T s  and ( ) ( )ˆ n n=s bV V  were applied. Tensor s has thus the 

same physical reasoning as .b  

Remark 4.2. The fourth-order tensors  (both b or )s  are major symmetric and enjoy the property 

: : ,= =  i.e., ,ijkl klij=  and 0,ijkk kkij= = , , , 1,2,3,i j k l =  respectively. Thus, admits 

a deviatoric inverse tensor, 
1

dev( ) ,−
 such that 

1 1
dev dev( ) : : ( ) .− −= =  Moreover, 

1
dev( )−  (denoting 

1
dev( )−b  or 

1
dev( ) )−

s  is also major symmetric and enjoys the property 
1

dev( ) :− 1
dev: ( )−= 1

dev( ) .−=  

Accordingly, one can invert Eq. (4.40) (and Eq. (4.41)) in order to determine the deviatoric stress 

tensor, s, associated with p
d , resulting in: 

 ( )
1

pT

1 dev
1 1

: ,
a

a am





−

− −

 
=  
 
 

bs d  (4.43) 

for the purely strain-based formulation and 

 ( )
1

p

1 dev
T

1
: ,

a am 

−

−

 
=  
 

ss d  (4.44) 

for the stress-based counterpart. Note that Eq. (4.43) defines s in an explicit fashion, i.e., s is actually 

isolated. This does not hold true for Eq. (4.44), as stress terms appear in both sides of the expression. 

Nevertheless, from the numerical point of view, 
( )n

b  and ŝ (and their respective inverse tensors) hold 

the same mapping, only differing by a scale factor. Substitution of Eq. (4.43) (and Eq. (4.44)) into Eq. 

(4.37) (and Eq. (4.38)), respectively, leads, at last, to Eq. (4.23) (rewritten here for readability purposes): 

 
( ) ( ) p:n n=b d , (4.23) 

where the factors 
1

1 1 1
T( )

a
a am − − −  and 

1
T( ),a am  −

 appearing in Eq. (4.36) and Eq. (4.38), respectively, 

were cancelled out. The transformation tensor 
( )n

 can be determined either using 
( )n

b  (as defined in 

Eq. (4.24)) or with 
( )

ˆ ,n

s  i.e.: 

 

( ) ( ) ( )
ˆ

n n n= =b s , with  

( )
1( ) ( ) ( )

dev
: : ,n n n −

=b b b  and ( )
1( ) ( ) ( )

ˆˆ ˆ dev
: : .n n n −

= ss s  
(4.45) 
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The above equality is to be expected since the mapping between p
d  and 

( )n
b  must be unique (in the 

same spirit to the one-to-one mapping between s and 
( )ˆ )n

s  and corroborates the equivalence between 

the strain-based and stress-based formulations for the determination of 
( ) .n

b  

 

Remarks 4.3  

(i) In general, the transformed strain rate tensors, 
( ) ,n

b  and respective work-conjugate, 
( )ˆ n

s , are 

not deviatoric. This results from the fact that the restriction of major symmetry of the linear 

operator 
( ) ,n

 i.e. ( ) ( ) ,n n
ijkl klij=  , , , 1,2,3,i j k l =  was not employed, contrary to the practice in 

the literature. In fact, such condition is not necessary to guarantee plastic incompressibility 

and it is application is uniquely motivated to define an orthotropic transformation tensor of 

the type 
T 1

dev( ) ,−=  which exists if and only if  is major symmetric. In fact, if  is not 

major symmetric it still admits a deviatoric inverse, i.e. there exists a tensor  such that

: ,=  however it is not possible to define an analogous inverse tensor for 
T ,  entering 

Eq. (4.28); 

(ii) Similarly to 
( ) ,n

 
( )n

 are not major symmetric and enjoy the property 
( ) ( ): ,n n=  as 

( ) 0,n
ijkk =  , , 1,2,3,i j k =  (yet 

( ) ( ): ).n n  This means that 
( )n

 admits some ‘left’ de-

viatoric inverse tensor, 
( ) 1 ( )

dev( ) : ,n n− =  but not an analogous ‘right’ inverse operator; 

(iii) Recalling that the total plastic strain rate tensor, 
p ,d can be interpreted as the sum of the con-

tribution of each transformation 
( )n

d  (see Eq. (4.28) and Figure 4.1), one can define tensors 

( ) ,n
ex1,..., ,n n=  such that: 

 
( ) ( ) p: ,n n=d d  where 

( ) ( )T ( ): .n n n=  (4.46) 

( )n
 is not major symmetric however it is ‘fully’ (both right and left) deviatoric, i.e. it verifies 

( ) ( ) ( ): : ,n n n= =  as ( ) ( ) 0,n n
ijkk kkij= =  , , , 1,2,3.i j k l =  Therefore one can determine 

a non-symmetric tensor 
( ) 1

dev( )n −
 such that 

( ) 1 ( ) ( ) ( ) 1
dev dev( ) : : ( ) ,n n n n− −= =  which ver-

ifies 
( )T 1 ( ) 1 T

dev dev( ) ( ) .n n− −=  While the practical relevance of 
( )n

 is limited (as tensors 
( )n

d  

do not enter the SRP definition, but rather their transformed counterparts), it is worth noting 

that 
( ) .n =  Moreover, in the same spirit as the partition in 

( )n
d , the deviatoric stress 

tensor, s, can be subdivided in exn  parts, 
( )n

s , (not to be mistook with 
( )ˆ ).n

s  Combining Eq. 

(4.39), (4.43) and (4.46), one arrives at: 

 
( ) ,n

n

=s s  with  
( ) ( )T : .n n=s s  (4.47) 

The fourth-order tensor 
( )n

 can also be used to define scalars 
( ) ,n  ex1,..., ,n n=  such that 

the total plastic work rate, p ,w  can be written as the sum of parcels ( )
p
nw  corresponding to 

each transformation n as: 

 

( )p ( ) ( ) p ( )
p p p: : : ,n n n

n n n

w w w= = = =  s d s d  with   

p
( ) ( )

T

: :n n
 

  
=   
   

s d
, ex1,..., ,n n=  

(4.48) 
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where equality 
( ) ( ) ( )ˆ: :n n n=s d s b  was applied. Naturally, ( )0 1n   and 

( ) 1.n =  Thus, 

( )n  can be used to quantify the relative weight of each linear transformation, n, for a given 

stress-strain associated pair;  

(iv) While for non-quadratic stress potentials (i.e. 2),a   ŝ  (and thus 
1

ˆ dev( ) )−
s  depend on the 

magnitude of the stress quantities 
( )ˆ n

s  through s,  the operation ( )
1( )

ˆˆ dev
:n −

ss  eliminates this 

dependence. Accordingly, 
( )n

 is indeed independent of the magnitude of s, only depending 

on its ‘direction’, / ( ).s s  In the particular case of 2,a =  the equality in Eq. (4.35) is trivial 

and 
( ) ( ) ( )

ˆ ,n n n=b sT T T  (with ( ) ( ) ( ) ),n n n= =T D D  i.e. the so-called strain- and stress-based for-

mulations coincide as the stress-strain rate relationship becomes linear. 

 

   Transformed Spaces    

        T-SP 

 

 T-SRP    

  

 

Transformation 1 

 

  

       

  

  

Stress Potential 

(SP) 
 Transformation 2  

Strain Rate Potential 

(SRP) 

 

 

  

 

 
(…) 

  Transformation exn    

  

  

  

  ex1,...,n n=  

         

Figure 4.1 Schematic view of the principle of the equivalent ‘isotropic’ transformed spaces in the definition of 

the actual plastic stress potential, ( ), s and the respective strain rate potential, 
p( ), d  for a non-quadratic or-

thotropic criterion accounting for tension-compression asymmetry. The surfaces are projected in the orthogonal 

(π-) plane and are at scale. The dual relationship holds for each transformation, n. The dashed lines represent the 

contributions 
( )n

s  and 
( )n

d  to the total stress, 
( ) ,n= s s  and strain-rate, 

p ( )n= d d  tensors, respectively. 
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4.4.3 Particular cases  

Table 4.1 resumes the relevant particular cases of the strain-rate potential presented in the subsection 

§4.4.1. Some of these are now described. 

If a single linear transformation is employed and the (unique) orthotropy tensor 
( ) ,n  is defined 

such that :=  is symmetric, then the derived SRP expression reduces to that of Cazacu et al. 

(2010) (see §4.2.2). When comparing these formulations, the reader may question the increased com-

plexity of the expressions presented in this work, which, in fact, do not lead to an explicit expression 

for the (unique) transformed strain rate tensor 
( ) ,nb b  even in this basic case. However, it is important 

to understand that these formulations originate from different approaches. The orthotropic form of the 

SRP of Cazacu et al. (2010) was obtained by a straightforward, yet sound, extension of its isotropic 

counterpart, in turn resulting from the application of the normality rule to an isotropic stress potential; 

conversely, in this work, one departs from the normality rule of a stress potential in which orthotropy 

(of the more general form) is assumed a priori (see Eqs. (4.28)-(4.29)). Consequently, in Cazacu et al. 

(2010) the tension-compression asymmetry information, quantified by 
( ) ,nk k  enters solely in the 

actual potential function (Eq. (4.16)), since the respective strain rate tensor, Caz ,b  necessarily devia-

toric, depends exclusively on the orthotropy coefficients. On the other hand, tension-compression asym-

metry (and/or non-quadratic potentials) render b, as defined in Eq. (4.23), not deviatoric, even if  is 

symmetric. In summary, Cazb  and b  hold different physical meanings, yet  Caz Caz( ) ( ). =b b  A note-

worthy remark is that  Caz : ,=b b  i.e. Cazb  is the deviatoric part of ,b  since ( )
1

Caz dev
: .

−
= =  

Obviously, for this particular orthotropy case, the approach of in Cazacu et al. (2010) is much preferred 

from the computational point of view. Nevertheless, if one intends to increase the flexibility of the 

description of the plastic orthotropy, either by relaxing the restriction 
T ,=  or by adding more trans-

formation spaces, such formulation is not appropriate. 

Under the condition of no tension-compression asymmetry, i.e. 
( ) 0,nk =  the orthotropic strain rate 

potential proposed in this paper (Eq. (4.22)) does not reduce to any of the non-quadratic formulations 

presented in subsection §4.1. Recall that this is to be expected as the latter functions are, in fact, heuristic 

pseudo-conjugated forms of the respective stress-based potentials, and thus duality is not guaranteed. 

Moreover, note that, if more than one linear transformation is applied, the contribution of each trans-

formation to the overall strain rate potential materialises implicitly in the definition of the tensors 
( )n

b  

and is not necessarily equal (see Eq. (4.48)). Figure 4.1 illustrates this idea by the size of the respective 

transformed strain rate spaces (T-SRP): the greater the surface, the greater its contribution to the overall 

SRP, and vice versa. This is in opposition to previous proposals (c.f. Barlat and Chung, 2005; Rabahal-

lah et al., 2009a), where the variable of the number of transformations, ex ,n  is explicitly imposed in the 

respective SRP functions to average the contribution of each transformation by equal factor ex1 / .n  
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Table 4.1 Summary of particular forms of the derived expression for the strain-rate potential. 

Description 
Simplified  

expressions 
Explicit form Expression of ( )n

b   

No tension-compression 

asymmetry 
( ) 0nk =  

( ) ,n =D I   

2
( ) ( ) 1eig( ) .

a
n n a

−

−=bT b  
No --- 

No tension-compression 

asymmetry and the stress 

potential is quadratic  

( ) 0,nk =  2a =    

( ) ,n =D I  
( ) ,n =bT I  

( ) .n =b  

Yes 

(1 branch) 
( )

1

( ) ( ) ( )T ( ) p

dev

: : :n n n n

n

−  
=   

   
b d  

No tension-compression 

asymmetry, the stress po-

tential is quadratic and 

isotropic   
( ) 0,nk =  2,a =  ( )n =   

T ,= =  
( ) .n =b  

Yes 

(1 branch) 

( ) p1
:n

n

  
=   

  
b d  

A single transformation 

exp 1n =  

( ) ,n D D
( ) ,n bT T  

( ) ,n 

( ) ,n   

T T: : .= =  

No --- 

A single transformation, 

no tension-compression 

asymmetry and the stress 

potential is quadratic 
( ) 0,nk =  2,a =  exp 1n =  

( ) .n  =b b  
Yes 

(1 branch) 
( )

1
T p

dev
: : :

− =
  

b d  

A single transformation, 

no tension-compression 

asymmetry, the stress po-

tential is quadratic, and 

the transformed space is 

deviatoric 
( ) 0,nk =  2,a =  exp 1,n =   

( ) ,n

ijkk A=  ( )A +   

,=b  

T ,=  
T .=  

Yes 

(1 branch) 
( )

1 p

dev
:

− =
 

b d  

The plastic strain rate 

tensor is in a principal 

frame (no shear terms)  

( )n =bV I   

( ) ( )n n= bbT T  No --- 

The strain rate tensor is 

in a principal frame (no 

shear terms) and the 

stress potential is quad-

ratic 

( ) ,n =bV I  2a =  

( ) ( ) ( ) ,n n n= =bbT T D  

8 permutations of 
( )sgn( ),  1, 2,3.n

ib i =  

Yes 

(8n branches) 
( )

1

( ) ( ) ( ) ( )T ( ) ( ) p

dev

: : : : :n n n n n n

n

−  
=   

   
b bb d  

The strain rate tensor is 

in a principal frame (no 

shear terms), the stress 

potential is quadratic, 

and the transformed 

space is deviatoric 

( ) ,n =bV I 2,a = ( ) ,n

ijkk A=  

 ( )A  

( ) ( ) ( )n n n= =bbT T D  

6 permutations of 
( )sgn( ),  1, 2,3,n

ib i =  

( )ˆ(tr( ) 0).n =s  

Yes 

(6n branches) 
( )

1

( ) ( ) ( ) ( )T ( ) ( ) p

dev

: : : : :n n n n n n

n

−  
=   

   
b bb d  
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4.4.4 Numerical evaluation 

As shown in subsection §4.4.1, the determination of the transformed strain-rate tensors 
( )n

b  entering 

the strain rate potential function in Eq. (4.22) generally encompasses laborious mathematical operations 

(e.g., matrix eigendecomposition, tensorial product, deviatoric inversion, exponentiation) which render 

closed-form solutions virtually impossible and inevitably lead to a numerical approach to the problem. 

In this section an efficient algorithm for determining these tensors is presented.  

Let us start by rewriting Eqs. (4.23)-(4.24) in a more computationally suitable fashion. Using Voigt 

notation, one arrives at: 

 ( ) ( ) p ,n n=b H d  (4.49) 

with 

 

( ) ( )
1 1

( ) ( ) ( ) ( ) ( )

dev dev
,n n n n n

− −

= =H T L T T L Tb b s s  with 

( )( )T ( ) ( ) ,n n n

n

=T L T Lb b  and ( )( )T ( ) ( )

ˆ ,n n n

n

=T L T Ls s  

(4.50) 

where ( )n
L  is the classical 6x6-matrix form of the orthotropic tensor 

( ):n
  

 

( ) ( ) ( )
11 12 13

( ) ( ) ( )
21 22 23

( ) ( ) ( )
31 32 33( )

( )
44

( )
55

( )
66

0 0 0

0 0 0

0 0 0
,

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

n n n

n n n

n n n

n

n

n

n

L L L

L L L

L L L

L

L

L

 
 
 
 

=  
 
 
 
  

L  (4.51) 

( )n
H  is the 6x6-matrix form of 

( )n
 (non-symmetric, full matrix), 

( )n
b  and 

p
d  are the pseudo-vectorial 

representation of tensors 
( )n

b  and 
p ,d  respectively, assuming the standard correction on the shear terms: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) T
11 22 33 23 13 12[ 2 2 2 ]n n n n n n nb b b b b b=b  and 

p T
11 22 33 23 13 12[ 2 2 2 ] ,p p p p p pd d d d d d=d  such that the scalar in-

variance 
p T p p: = =s d s d s d  is preserved, where 

T
11 22 33 23 13 12[ ]s s s s s s=s  denotes the pseudo-

vectorial representation of the deviatoric stress tensor, s. In Eq. (4.50) the 6x6-matrices 
( )n

Tb  and 
( )
ˆ
n

Ts  

are obtained by the components of the second-order tensors 
( )n

bT  (defined in Eq. (4.37)) and 
( )
ˆ

n

sT  (de-

fined in Eq. (4.42)) and denote the 6x6-matrix notation of 
( )n

b  and 
( )

ˆ ,n

s  respectively (see Appendix 

A for details on their determination). The operator 
1

dev( )−  in Eq. (4.50) represents the deviatoric inverse 

of a 6x6-matrix, defined such that 
1 1

dev dev( ) ( ) ,− −= =A A A A K  where K is the 6x6-matrix Voigt represen-

tation of the fourth-order deviatoric unit tensor, .  Adopting the above convention, tensors Tb  and Ts  

are symmetric (and thus admit a symmetric deviatoric tensor). Accordingly, the constitutive relation in 

Eq. (4.40) and Eq. (4.41) can be rewritten in Voigt format as: 

 

1

1 1
p

T

,

a

a am



− −
 
 

=  
 

d T sb  (4.52) 

for the strain-based formulation, and 
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 ( )p 1
T ,a am  −=d T ss  (4.53) 

for the stress-based formulation, respectively. Note that Tb  in Eq. (4.52) depends on all transformed 

tensors 
( ),n

b  ex1,..., ,n n=  i.e., ex(1) ( )( , ..., ),n=T T b bb b  which, in actual fact, are unknown a priori. This 

means that the construction of a numerical method grounded on such formulation would generally en-

compass the assumption of ex6n  variables, e.g., the independent components of each tensor 
( ) ,n

b  (or 

their eigendecomposition). On the other hand, irrespective of the number of linear transformations, Ts  

in Eq. (4.53) can be completely determined knowing s , i.e., ( ),=T T ss s  which has only 5 independent 

values (tr( )s 0).=  Both approaches are mathematically sound, however, it is clear that the latter should 

be more efficient from the computational point of view. In this view, the proposed numerical resolution 

scheme is grounded on the following non-linear system (c.f. Eq. (4.53)): 

 

Find s  such that:  ( ) p ,− =F s T s d 0s  with  

( ) ( )( )( )T ( ) ( )

ˆ= ,n n n

n

 =
 T T s L T s Ls s s  

(4.54) 

where s  is an auxiliary deviatoric pseudo-vector with the same physical interpretation of the actual 

deviatoric stress tensor, s, obtained by the change of variable: ( )1
T ,a am  −

s s  Ts  is the value of Ts  

evaluated for ,s s  and ( )F s  is the error function. Note that the above system has six equations but 

only five are linear independent. To regularize the problem, the above system is mapped into the pen-

tadimensional deviatoric space (see Appendix B for details) and obtain the, now unique, solution in this 

space, as the pentadimensional Jacobian is no longer singular. Following the constitutive relation in Eq. 

(4.38), once s  is known, the eigenvalues of the transformed strain rate tensors, ( ) ,n
pb  are trivially deter-

mined using: 

 
( ) ( ) ( ) ( )

ˆeig( ,) ˆn n n n
p p= = sb b T s  (4.55) 

where 
( )

ˆ
n

sT  denotes the 3x3-tensor 
( )

ˆ
n

sT  (see text definition following Eq. (4.38)) evaluated for ,s s  

and ( ) ( )ˆ ˆeig( )n n
p =s s  where 

( )ˆ n
s  denotes the transformed stress tensors replacing ,s s  i.e. 

( ) ( )ˆ .n n=s L s  

Box 4.1 and Box 4.2 resume the proposed numerical scheme in a pseudo-code format. The superscript 

(5)( ) is employed to denote variables cast into the auxiliary pentadimensional space, as in Appendix B. 

Remarks 4.4  

i. A valued by-product of such formulation is the determination of the ‘normalized’ deviatoric 

stress tensor, 
p p( )/ , s = d d  associated with 

p ,d  which can be obtained with virtually no 

added computational cost as: 

 
( )

( )

p

p
= ,









d s
s

d s
  (4.56) 

where the homogeneity of the stress potential, ,  was employed. Indeed, such expression is 

fundamental when using a strain-rate-based formulation to model (elasto-) plasticity. 
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ii. No deviatoric inversion operation is actually performed in the proposed stress-based numeri-

cal scheme. In fact, computation of the tensors 
( )n

H  (see Eq. (4.50)) is not a mandatory step 

to determine the transformed strain rate tensors, 
( ) ,n

b  (or their eigenvalues, ( ) ),n
pb  as these can 

be directly determined from the normality relationship in each transformed space (as used in 

Eq. (4.55)), rather than from fractioning the actual deviatoric stress and/or strain-rate tensors 

in exn  contributions (recall point (iii) in Remarks 4.3) which would imply the (computational 

costly) determination of ( )
1

dev .
−

Ts
 

The algorithm in Box 4.1 inputs a plastic strain-rate tensor 
p ,d  and outputs the respective potential 

value, 
p( ), d  and its first derivative (the normalized deviatoric stress tensor, ,s  Eq. (4.56)). In practice 

one can also formulate the inverse problem: given a deviatoric stress tensor, s, determine its equivalent 

stress value, ( ), s  and the associated normalized plastic strain-rate tensor, 
p .d  Naturally, if the expres-

sion of the stress potential ,  is known in closed-form, them the stated problem is trivial. However, if 

only the expression of the SRP is known, the problem can be solved by the following non-linear system: 

 Find 
p( , )d  such that:  

pp

p

( , ) ,
0

( ) 1








 
−   

 =   
  − 

s 0
dF d

d

 (4.57) 

where   is the equivalent stress associated with s and p
d  is the plastic strain-rate tensor of unitary SRP 

value associated with s by the normality principle, i.e. 
p / ,=  d s  and 

p
d  its pseudo-vectorial notation. 

Note that both 
p/ d  and 

p( ) d  in Eq. (4.57) are the outputs of the algorithm in Box 4.1, and thus 

no numerical derivatives are actually needed to evaluate the error function, .F  The scalar expression in 

Eq. (4.57) is added to regularize the problem. Indeed, even if 
p( ) d is homogeneous of degree one 

with respect to positive multipliers, 
p/ d  is homogeneous of degree zero, i.e. 

p p( )/  d d

p p( )/ ,=  d d  +  and therefore 
p

d  must be ‘constrained’, otherwise the system would be sin-

gular. The system in Eq. (4.57) has seven equations but only six are linear independent, hence the vec-

torial equation of the error function is F  actually solved in the pentadimensional space. The proposed 

inverse problem is summarized in Box 4.3 and Box 4.4 in a pseudo-code format. 

In the following, the developed strain rate potential is to describe the strong asymmetry and anisot-

ropy observed in textured metallic sheets. 
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Box 4.1 A numerical resolution scheme for determination of the proposed orthotropic strain rate potential for 

dense materials: the direct problem.  

0. Inputs: 
p ,d

( ) ( ){ , , , }n nk a mL   

1. Compute the auxiliary tensor s    

1.1. Set initial guess 0s  and relative convergence tolerances  fun x

tol tol,  
 

▪ Transform 0s  into the pentadimensional space: 
(5)

0 00→s s  % (Appendix B) 

 

1.2. Solve the system in Box 4.2 for 
(5)

s  with a quasi-Newton method, such that: 

 ▪ 

(5) (5)

1 fun2
tolp(5)

2

( )k


+

 
 
 
 

F s

d
  and  

(5) (5)

1 x2
tol(5)

2

k k

k


+ 

 −
 
 
 

s s

s
, where k is the number of the iteration 

 

1.3. Pull-back to reference space 
(5) →s s  % (Appendix B)  

2. Compute the eigenvalues of 
( )n

b  

for ex1:n n=  % loop over the number of transformations 

▪ Compute stress transformations: ( ) ( )ˆ n n→s L s  

▪ Eigendecomposition of ( )ˆ :n
s  ( )

( )
ˆˆ ,  n

n

p ss V  

▪ Compute 
( ) ( )( , )n nk aD  % (Eq. (4.27)) 

▪ Compute 
2

( ) ( ) ( )

ˆ
ˆn

a
n n

p

−

= ssT D   

▪ Compute 
( ) ( ) ( )

ˆ
ˆn n n

p p= sb T s  

end 

 

3. Compute the strain-rate potential 

3.1. Compute the scalar G  % (Eq. (4.22)) 

▪ Initialize : 0G =  

for ex1:n n=  % loop over the number of transformations 

for 1:3i =  

▪ Compute auxiliary scalar: ( )( ) 1( ) ( )

,
ˆ1 sgn s

a

an n
i p i k

−
−

= −  

▪ Add to the sum: ( ) 1
,:

a
n a

i p iG G b −= +  

end 

end 

3.2. Compute the SRP: ( )
1

1/
a

am G
−

=  

 

4. Compute the normalized deviatoric stress tensor 

▪ Compute the equivalent stress associated with :s
( ) ( )( , , , )n nk a Ls  % (Eq. (4.19)) 

▪ Compute ( )/=s s s  

 

5. Output: { , } s   
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Box 4.2 Computation of the error function in the pentadimensional space for the determination of the proposed 

orthotropic strain rate potential for dense materials. 

0. Inputs: 
(5) ,s  

p ,d  ( ) ( ){ , , }n nk aL  

1. Compute Ts  

▪ Pull-back to reference space: 
(5) →s s  % (Appendix B) 

▪ Initialize =T 0s  

for ex1:n n=  % loop over the number of transformations 

▪ Compute stress transformations: 
( ) ( )ˆ n n→s L s  

▪ Eigendecomposition of 
( )ˆ :n

s  ( )
( )

ˆˆ ,  n
n

ps sV  

▪ Compute 
( ) ( )( , )n nk aD  % (Eq. (4.27)) 

▪ Compute 
2

( ) ( ) ( )

ˆ
ˆ

a
n n n

p

−

=sT D s  and its rotation ( ) ( )
( ) ( ) T

ˆ ˆˆˆ
n n

n n= s sssT V T V  % (Eq. (4.42)) 

▪ Convert 
( )

ˆ

n

sT  to the equivalent Voigt notation: 
( ) ( )

ˆ ˆ

n n→ Ts sT  % (Appendix A) 

▪ Perform the notation correction ( ) ( )( ) ( )

ˆ ˆT 2 T ,n n

IJ IJ
s s  4,5,6,I =  1,..., 6J =  

▪ Add to the sum: ( )( )T ( ) ( )

ˆ: n n n= +T T L T Ls s s  

end 

 

2. Determine the error function 

▪ Transform Ts  and 
p

d  into the pentadimensional space: 
(5)→T Ts s , 

p p(5)→d d  % (Appendix B) 

▪ Compute the error function: 
(5) (5) (5) p(5)= −F T s ds  % (Eq. (4.54)) 

3. Output: 
(5)

F  
 

 

Box 4.3 A numerical resolution scheme for the inverse problem of the proposed orthotropic strain rate potential 

for dense materials. 

0. Inputs: σ , 
( ) ( ){ , , }n nk aL  

1. Solve the system of equations 

1.1. Compute the deviatoric stress tensor: (1/3)tr( )→ −s σ Iσ  

1.2. Set initial guess 0 0( , )d  and relative convergence tolerances  fun x

tol tol,  
 

1.3. Solve the system in Box 4.4 for 
(5)( , )d  with a quasi-Newton method, such that: 

 ▪ 

(5)

(1:5) 1 1 fun2
tol

2

( , )k kF 


+ +
 
 
 
 

d

s
  and ( )(5) fun

(6) 1 1 tol( , ) ;k kF  + + d  and  

(5) (5)

1 x2
tol(5)

1
2

k k

k


+ 

+

 −
 
 
 

d d

d
,  

where k is the number of the iteration and ( : )I JF  denotes the I to J components of vector F  with  

1 6.I J    

1.4 Pull-back to reference space: 
(5)

1 1k k+ +→d d  % (Appendix B) 

2. Output: 1k  + , 
p p

1k+d d  
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Box 4.4 Determination of the error function vector for the inverse problem of the proposed orthotropic strain 

rate potential for dense materials. 

0. Inputs: s , 
(5)( , )d , 

( ) ( ){ , , }n nk aL  

1. Compute the SRP and normalized deviatoric stress tensor 

▪ Pull-back to reference space: 
(5)→d d  % (Appendix B) 

▪ CALL Box 3.1 for d  to get / d  and ( ) d  

2. Determine the error function 

▪ Transform / d  and s  into the pentadimensional space: 
(5)/ ( / )   →  d d , 

(5)→s s   

▪ Compute the error function: 
(5) (5)( / )

( ) 1





   −
  

− 

d s
F

d
 % (Eq. (4.57)) 

3. Output: F  

 

4.5 Application examples   

4.5.1 Remarks on parameter identification 

The description of the constitutive behaviour of any class of materials involves essentially two main 

tasks. First, the formulation of appropriate mathematical functions; second, the development and selec-

tion of tests and calibration tools to determine the parameters entering these models. The goal of this 

chapter is on the first task (described in subsection §4.4). Nevertheless some comments regarding the 

second task are presented in the following. 

Ideally, an identification procedure should have (at least) the same number of available experimental 

data as the number of coefficients to be fitted11. Given the considerable number of parameters allowed 

by the strain-rate (or, equivalently, stress) potential described in this work, extensive experimental char-

acterization would be needed to take full advantage of the predictive capabilities of this model. This 

includes, but is not limited to, mechanical tests with monotonously proportional loadings along various 

directions of the orthotropic axes, e.g., uniaxial tensile and compressive yield stresses, r-values (alias 

strain-ratios or Lankford coefficients), balanced biaxial yield stress, simple shear tests, among others. 

In the particular case of thin metallic sheets, the out-of-plane experimental data is not readily available, 

and thus the determination of the corresponding orthotropic coefficients, (e.g. 
( ) ( ) ,n n
II IIC L=  4,5I =  (no 

sum) in Eq. (4.51)) is unfeasible. Alternatively, the identification of these parameters can be grounded 

on pseudo-experimental results based on the theory of crystal-plasticity (e.g. using the self-consistent 

polycrystal model (VPSC), Barlat et al. (2005)) if the texture or any other microstructural information 

is available. If this is not the case, one can assume, as a first approximation, that the out-of-plane ortho-

tropic coefficients respect one of the following assumptions: (i) equal to their reference isotropic values, 

( ) ( )
44 55( 1);n nC C= =  (ii) determined such that the out-of-plane pure shear response is isotropic (e.g. equal 

 
11 This is not however a sufficient condition for arriving at a quality identification. 
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to that of von Mises, T / 3); =  (iii) equal to respective in-plane counterpart, (i.e. 
( ) ( )
44 55
n nC C= ( )

66 ).nC=  

In summary, the use of texture-based predictions, combined with actual experimental data in a properly 

weighted objective function, allows the identification of virtually any number of orthotropic (as well as 

tension-compression asymmetry) coefficients. 

 According to the theorem of representation for orthotropic scalar functions, invariance with respect 

to the orthotropic group requires orthotropic yield criteria to involve at most seventeen independent 

orthotropic coefficients, (see e.g. Cazacu et al. (2019)). In the case of the linear transformation method, 

this constraint would correspond to the case of two linear transformations using tensors of the form 
( )n

 

(see Eq. (4.20)). In this view, linear dependence between coefficients can take place when working with 

more than two transformation spaces and, as such, non-uniqueness, in the sense that the overall response 

can be replicated by a separate set of parameters, may follow. Nevertheless, it is important to emphasise 

that adding more transformations, hence coefficients, for a given number of available experimental data 

is not a fruitless task12. In practice, no orthotropic model is general enough to fit all possible convex 

sets. However, by increasing the number of coefficients, the flexibility of stress (or strain-rate) poten-

tials is invariably increased, which allows for an improved identification. In other words, the addition 

of a new transformation space n can be viewed as a correction of the potential with ( 1)n −  transfor-

mations. This process is repeated until a desired level of accuracy in the description of the plastic be-

haviour is obtained (note that, in the limit, an infinite number of transformations would return the opti-

mal fitting, similarly to a convergent series). In practice, the accuracy improvement resulting from each 

added transformation must be balanced with the inevitably increase of the computational cost, both in 

the identification task, and, more critically, in the subsequent numerical simulations. In the following 

application examples of the developed strain-rate potential using one, three and four transformations 

are presented. 

4.5.2 Commercially pure titanium 

Commercially pure (CP) titanium exhibits outstanding engineering properties, namely high strength 

and ductility, moderate weight, exceptional heat- and corrosion resistance, which explains its extensive 

application in the aerospace (viz. high-performance parts under extreme environments) and biomedical 

(viz. osseointegration) industries. Titanium and its alloys are found to have a hexagonal close-packed 

(hcp) crystal structure at ambient temperature and pressure. Twinning is known to play a crucial role in 

the plastic deformation process of hcp materials due to the lack of available slip systems, in particular 

those which can accommodate deformation along the c-axis of the hcp lattice. Being a polarized mech-

anism twinning leads to tension-compression asymmetry at the macroscopic level (recall Remark 2.4 

and its adjacent discussion). Moreover, CP-Ti sheets usually have a pronounced basal texture as a result 

of processing operations. The competitive deformation mechanisms at the single crystal level and crys-

tallographic texture from prior deformation history ultimately render CP-Ti sheets to display plastic 

anisotropy and tension-compression asymmetry. These properties can evolve during the deformation 

 
12 Practical examples of this statement are discussed in subsections §4.5.3 and §4.5.4. 



Non-quadratic orthotropic strain-rate potential: definition and evaluation 

83 

process due to slip-twinning and twin-twin interactions, twinning-detwinning mechanisms and defor-

mation-induced texture evolution. For insights on the mechanical behaviour of CP-Ti under quasi-static 

conditions at room temperature, the reader is referred to dedicated studies, e.g., Hama et al. (2015); Ma 

et al. (2019); Won et al. (2016); Yang et al. (2022); Yi et al. (2016) regarding crystallographic aspects 

and to those of Nixon et al. (2010) (on high-purity (HP)-Ti); Baral et al. (2018); Raemy et al. (2017); 

Revil-Baudard et al. (2016, 2021); Zhai et al. (2016) regarding the macroscopic aspects of deformation 

and phenomenological constitutive modelling. The latter works have shown that classic plasticity mod-

els, such as those of von Mises and the Hill (1948) cannot describe the plastic behaviour of hcp materials 

with adequate accuracy. The reason is twofold: firstly, these models cannot account for asymmetry of 

the material; and secondly, they lack the flexibility to describe the complex orthotropic behaviour asso-

ciated with hcp crystal structures. Thus, modelling titanium (or its alloys) should involve a criterion 

which is sensitive to the asymmetry of the material, such as the potentials described in this work. 

Let us now focus on the experimental investigation of the quasi-static room temperature behaviour 

reported in Baral et al. (2018), regarding a CP-Ti (Grade 2) hot-rolled plate. The reported data consists 

of uniaxial tension and compression and plane-strain tension tests at several angles between the rolling 

direction (RD) and the transverse direction (TD) (increments of 15º) and uniaxial tension and compres-

sion along the through-thickness (alias normal) direction (ND), the latter two using miniature specimens 

machined along of the 12.7 mm thickness plate. The authors used this experimental data to characterize 

the material according to the quadratic form of the CPB06 criterion (a single linear transformation) for 

six levels of plastic work, or, equivalently, ‘equivalent’ plastic deformation, 
p ,  (work-conjugate of the 

equivalent stress, ,  associated with the CPB06 stress potential). The coefficients are given Table 4.1. 

No data was available for the out-of-plane parameters. The authors recommended 44 55 1.C C= =  Note 

that the sum 
3

1( )J IJC=  (fixed I), , 1,2,3,I J =  when using the parameters in Table 4.1 is not constant, 

and thus the tensor =L CK  in Eq. (4.51) is not symmetric. This is in contrast with the parameters given 

in Cazacu et al. (2010) for describing the behaviour of a high-purity (HP) α-titanium using the same 

criterion, for which the restriction of the symmetry of L was employed, ultimately resulting in six (rather 

than nine) independent orthotropic coefficients. Figure 4.2 represents the yield, or stress potential (SP), 

loci and the respective strain-rate potential (SRP) loci (obtained by Eq. (4.22)) for several accumulated 

equivalent plastic deformation levels, as well as the relevant experimental yield data used to calibrate 

the potentials. The isovalue surfaces are represented in the π-plane13 (alias deviatoric plane or octahedral 

plane) in a polar-like plot. The yield loci are normalized by the initial tensile yield stress along the 1-

direction, i.e., 1 0/( ) .T=s s  The SRP loci are normalized such that the plastic power is unitary for each  

p -  level, i.e., 
p: 1.=s d  This representation convention is adopted in order to better picture the duality 

property and avoid overlapping surfaces (the innermost SP locus is associated with the out-most SRP 

locus, and vice-versa). Figure 4.2a shows that model is able to capture with reasonable accuracy the 

 
13 The plane normal to the hydrostatic axis, 1 2 3(1/ 3) (1/ 3) (1/ 3) ,= + +n e e e where 1 2 3( , , )e e e  denote the Car-

tesian coordinate system associated with the orthotropy axes and 1 ,e  2e  and 3e  denote the rolling, transverse and 

normal directions, respectively. 
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experimental data in the principal stress space, both in tensile and compressive loadings. Note that for 

low strain levels the CP-Ti displays a mild asymmetric behaviour (deviates from the von Mises circle 

mainly due to anisotropy). In contrast, for larger plastic strain levels, the curvature of the locus tends 

towards a triangular shape as the tension-compression asymmetry effects became pronounced. Natu-

rally, the same observation could be drawn from the SRP loci, as these are exact duals. 

Table 4.2 Coefficients for the stress- and strain rate potentials for a CP titanium (after Baral et al., 2018). 

a  2.0        

p  k  11C  12C  13C  22C  23C  33C  66C  

0.013 -0.0298 1.0000 1.1512 1.2907 1.7085 1.3913 1.7290 0.4299 

0.026 -0.0347 1.0000 1.0343 1.3607 1.6453 1.3897 1.6886 0.4560 

0.048 -0.0324 1.0000 1.0283 1.3220 1.6078 1.3583 1.6621 0.4350 

0.088 -0.0691 1.0000 0.8224 0.8201 1.0612 0.8707 1.0491 0.2236 

0.13 -0.1328 1.0000 0.8041 0.8017 1.0152 0.8254 0.9987 0.2143 

0.20 -0.2534 1.0000 0.7922 0.7923 0.9938 0.7953 0.9784 0.2151 

 

 

 Stress potential (SP)  Strain rate potential (SRP)   

 

 

 

 

 

 

 
(a) 

 
 (b) 

  

Figure 4.2 π-plane representation of the dual potentials of the CP-Ti for several values of equivalent plastic 

strain: (a) stress potential (SP) loci, as predicted by the CPB06 criterion; (b) strain-rate potential (SRP) loci, as 

predicted by the proposed potential in Eq. (4.22). A polar-like plot is adopted where the radial grid lines repre-

sent the unitary von Mises stress and strain-rate potential loci in (a) and (b), respectively. 

 

 

 

 



Non-quadratic orthotropic strain-rate potential: definition and evaluation 

85 

4.5.3 AZ31B magnesium alloy 

Magnesium (Mg) and its alloys have received a lot of attention in recent years due to its exceptional 

low density (about 1.75g/cm3) when compared with more conventional structural materials (e.g., steel 

(7.8/cm3), aluminium alloys (2.7/cm3)). Moreover, magnesium materials display improved recycling 

potential. Despite these appealing properties, application in sheet metal forming lags far behind other 

lightweight design alternatives (viz. Al alloys). This is related to the poor ductility of Mg alloys at room 

temperature, in turn explained by its hcp crystal structure and, typically, strong basal texture, which lead 

to intricate forms of anisotropy and tension-compression asymmetry at the macroscale, (as briefly dis-

cussed above regarding the CP-Ti and in more detail in §2.1). For insights on the mechanical behaviour 

and constitutive modelling of magnesium alloys under quasi-static conditions at room temperature the 

reader is referred to dedicated works, for instance those of Abedini et al. (2017); Guo et al. (2013); 

Hama et al. (2016); Kondori and Benzerga (2017); Lou et al. (2007); Shi et al. (2017); Tari et al. (2014); 

Yoon et al. (2013). Let us now focus on the data reported in Tari et al. (2014) regarding a AZ31B-O 

(Mg+3%Al+1%Zn) sheet in annealed (O temper) condition. The experimental data consists of uniaxial 

tension and compression tests at several angles between the RD and TD and uniaxial compression in 

the ND. The Mg alloy was characterized using the non-quadratic form of the CPB06 potential for two 

ranges of equivalent plastic strain using one to four linear transformations (the same data was used for 

calibrating the model for all four cases). It was shown that the model with a single transformation 

(CPB06) was unable to capture the experimental yield loci; using two transformations (CPB06ex2) 

improved the fitting, yet with unsatisfactory accuracy; with three transformations (CPB06ex3) the data 

was fitted with reasonable accuracy; and the usage of four transformations (CPB06ex4) did not mean-

ingfully improve the previous fitting. Table 4.3 summarizes the parameters of the CPB06ex3 model for 

six equivalent plastic strain levels. No data is available for the out-of-plane parameters. Figure 4.3 rep-

resents the π-plane projection of the yield loci and the respective strain-rate potential loci (obtained by 

Eq. (4.22)), as well as the experimental yield data used to calibrate the potentials assuming plastic in-

compressibility. Both surfaces are normalized in the same fashion as in Figure 4.2 (see details in §4.5.2). 

Figure 4.3 shows that a remarkable shape change of the yield locus (and, necessarily, SRP locus) takes 

place with the accumulated plastic deformation. This is a consequence of twinning-detwinning activa-

tion and texture evolution and demonstrates the importance of adopting a constitutive model accounting 

for evolving orthotropy when describing hcp materials. 
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Table 4.3 Coefficients for the stress- and strain rate potentials for the AZ31B Mg alloy. Three linear transfor-

mations ( 1,2,3),n =  are considered (after Tari et al., 2014). 

a  6.0         

p  n ( )nk  
( )

11

nC  
( )

12

nC  
( )

13

nC  
( )

22

nC  
( )

23

nC  
( )

33

nC  
( )

66

nC  

0 

1 0.3230 1.0000 2.4710 3.5140 -0.0430 3.3763 0.4731 -2.6925 

2 0.3500 -0.1720 2.4086 1.1527 -0.1570 0.2129 -1.1634 -2.5011 

3 1.0000 -0.2172 1.6280 3.3118 -0.1054 3.3548 3.0409 -1.8000 

0.02 

1 0.0550 1.0000 2.5190 2.8260 0.2798 2.3902 1.0479 -2.1657 

2 0.3380 -0.1382 1.9415 0.7579 -0.1263 0.1685 -0.9345 -2.0114 

3 1.0000 0.0892 1.6116 2.8229 0.1766 2.6979 2.2805 -1.4476 

0.04 

1 -0.1774 1.0000 0.4562 -0.5860 0.3470 -0.7125 -0.7383 -0.6320 

2 0.3457 0.0408 1.4902 0.5287 0.0785 0.2802 2.0305 -1.4543 

3 0.5770 0.7173 1.9236 2.8231 0.8876 1.5836 3.4085 -1.2257 

0.06 

1 -0.1698 1.0000 1.0032 -0.8071 0.6919 -0.9020 -0.4525 -0.8719 

2 0.3627 0.0563 2.0530 0.7549 0.1142 0.4838 2.2563 -1.9831 

3 0.3659 1.6655 3.2411 4.3033 2.0108 2.6026 4.7192 -1.6884 

0.08 

1 -0.1639 1.0000 2.0851 -1.2937 1.4257 0.7289 -0.2619 -1.3997 

2 0.3798 0.0906 3.2907 1.2522 0.1917 0.9349 2.7644 -3.1459 

3 0.1549 3.7541 6.0765 7.5618 4.4816 5.7627 7.6025 -2.7061 

 

 Stress potential (SP)  Strain rate potential (SRP)   

 

 

 

 

 

 

 
(a) 

 
 (b) 

  

Figure 4.3 π-plane representation of the dual potentials of the AZ31B Mg alloy for several values of equivalent 

plastic strain: (a) stress potential (SP) loci, as predicted by the CPB06ex3 criterion; (b) strain-rate potential 

(SRP) loci, as predicted by the proposed potential in Eq. (4.22). A polar-like plot is adopted where the radial grid 

lines represent multiples of the unitary von Mises stress and strain-rate potential loci in (a) and (b), respectively.  
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4.5.4 2090-T3 aluminium alloy 

While twinning-detwinning mechanisms are the main source of tension-compression asymmetry in 

low-symmetry lattice structures such as hcp, the activation of twinning in cubic lattices is rare due to 

the considerable number of ‘easy’ slip systems available. As such, the deformation mechanisms in ten-

sion and compression are not fundamentally different in aluminium alloys, which are known to have 

the fcc crystal structure. Nevertheless, some mild forms of tension-compression asymmetry may arise 

in the initial stages of deformation of these materials due to directional slip mechanisms (non-Schmid 

effect) and other micro-plasticity effects resulting from prior thermo-mechanical processing. Barlat et 

al. (1991,2003) reported the results of an experimental investigation of the quasi-static room tempera-

ture behaviour of a cold rolled 2090-T3 aluminium alloy. The experimental data consists of uniaxial 

tension and compression tests along several angles between the RD and TD (increments of 15º), includ-

ing the tensile r-values, biaxial yield stress from the bulge test and the biaxial r-value from a disk com-

pression test. The results shown that the material exhibits some tension-compression asymmetry. Plun-

kett et al. (2008) applied this data to characterize the yielding response of the 2090-T3 Al alloy with the 

non-quadratic form of the CPB06 potential using one to four transformations. The same number of data 

points was used for calibrating the model for all four cases. It was shown that, although the yield loci 

were captured with similar accuracy by all models, only those with three (CPB06ex3) and four trans-

formations (CPB06ex4) were able to capture the trends of the experimental tensile r-values, the latter 

offering a considerable accuracy improvement over the former. The fitted parameters of the CPB06ex4 

formulation are presented in Table 4.4. As in the previous examples, no data is available for the out-of-

plane parameters. Figure 4.4 represents the biaxial projections of the plane-stress yield loci the and the 

respective strain-rate potential loci (obtained by Eq. (4.22)), as well as the experimental yield data used 

to calibrate the potentials. The axes of both figures coincide with the orthotropic axes. The yield loci 

are normalized by the tensile yield stress in the 1-direction, 1 ,T  and the SRP loci are normalized by its 

work-conjugate, 
T

1 ,  such that both potentials represent surfaces of unitary isovalue, ( ) ( ) 1.p = =d  

The contours represent 10% increments relative to the maximum value of the normalized shear compo-

nent of each potential. Note that due to tension-compression asymmetry the location of the maximum 

shear stress, 
max
12 ,  is not that of the pure shear loading 11 22( 0). = =  An analogous observation holds 

for the SRP loci. This phenomenon is thought to substantiate the occurrence of permanent axial defor-

mation during monotonic free-end torsion (known as the Swift effect) of materials exhibiting tension-

compression asymmetry (e.g. see Cazacu et al., 2013; Guo et al., 2013; Revil-Baudard et al., 2014). It 

is important to note that the contour increments of the potentials in Figure 4.4 are not work conjugated, 

as these represent different loading conditions (in other words, a 12 1/ T   isovalue contour in the stress 

biaxial plane does not generally imply a constant value of 
p

12 / ,d   by the normality rule, and vice versa). 
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Table 4.4 Coefficients for the stress- and strain rate potentials for the 2090-T3 aluminium alloy. Four linear 

transformations ( 1, 2,3, 4),n =  are considered (after Plunkett et al., 2008). 

a  12.0        

n ( )nk  
( )

11

nC  
( )

12

nC  
( )

13

nC  
( )

22

nC  
( )

23

nC  
( )

33

nC  
( )

66

nC  

1 0.331 1.0000 -1.7002 -1.4101 0.6643 -2.5252 -4.6739 3.0576 

2 -0.311 1.0000 -1.0600 -1.3165 -2.3381 -4.2998 -2.2158 -1.9664 

3 0.063 1.0000 0.5132 3.1055 -0.1367 0.1559 -1.4964 4.6139 

4 0.625 1.0000 -0.7122 2.0528 -1.3669 -0.3837 1.8585 2.2494 

 

Stress potential (SP) Strain rate potential (SRP) 

  

(a) (b) 

Figure 4.4 Biaxial representation of the dual potentials of 2090-T3 aluminium alloy for several increments of 

the in-plane shear component 33( 0) = : (a) stress potential (SP) locus, as predicted by the CPB06ex4 criterion; 

(b) strain-rate potential (SRP) locus, as predicted by the proposed potential in Eq. (4.22). 

Figure 4.5 represents the model predictions for uniaxial loading conditions in the plane of the sheet. 

There is a remarkable agreement with the experimental data (the error is virtually zero in these points). 

This is a consequence of the high flexibility of the model given the considered number of transfor-

mations. More crucially for the present work, Figure 4.5 demonstrates that the predictions when using 

the CPB06ex4 stress potential or the respective SRP formulation proposed in Eq. (4.22) are equal14. 

This is to be expected as the potentials are exact duals, contrasting with the results of (Kim et al., 2007) 

where the predictions where not identical due to the pseudo-conjugate nature of the latter. 

 

 
14 To determine the uniaxial yield stresses and r-values (or any other yield limit for that matter), one can solve the 

inverse problem described in Eq. (4.57) substituting s with the relevant deviatoric stress tensor. In this case the 

nonzero components are 
trial 2

,11 (cos 1/3),s = −   
trial 2

,22 (sin 1/3),s = −  
trial

,33 1/3,s = −  
trial

,12 (sin 2 )/2.s =  Let 
p( , ) d  

be the solution. Then, the normalized uniaxial stress is 
T

1/ (1/ )   =  and the r-values are determined using the 

classical expression, 
2 p p 2 p p p

,11 ,12 ,22 ,11 ,22(sin sin(2 ) cos )/( ).r d d d d d       = − − + +  
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(a) 

 

(b) 

Figure 4.5 Uniaxial stress response in the plane of the sheet as predicted by the CPB06ex4 criterion and its pro-

posed dual potential (Eq. (4.22)): (a) normalized tensile and compressive yield stresses; (b) tensile r-values. 

4.6 Concluding remarks 

In this chapter, the analytic expression for the orthotropic strain-rate potential conjugated with the 

non-quadratic stress potential of Plunkett et al. (2008) was derived. The strain-rate potential accounts 

for an arbitrary number of linear transformations and is an exact dual. Being the exact dual of a convex 

potential, it also enjoys convexity. Moreover, the material parameters are those of the stress potential, 

hence no specific parameter identification procedure is required. No constrains were imposed on the 

original form of the fourth order orthotropic tensors 
( ) ,n

 thus each transformation tensor holds nine 

independent anisotropic coefficients. If exn  denotes the total number of linear transformations adopted 

in the model, then, under 3-D conditions, the proposed strain-rate potential involves: a single homoge-

neity parameter, a; exn  parameters 
( )nk  quantifying the tension-compression asymmetry; and ex(9 1)n −  

independent anisotropy parameters associated with exn  orthotropy tensors 
( ) ,n

 (note that, due to the 

homogeneity of the potentials, the parameter 
(1)
11C  should be set to unity, or, equivalently, one should 

normalize all 
( )n

 by 
(1)
11 ,C  or any other non-zero reference anisotropic parameter, ( ) ,n

ijC  for that matter). 
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In contrast to the stress potential, the proposed potential does not lead to explicit expressions for the 

transformed strain-rate tensors (with the exception of a few particular cases, as discussed in §4.4.3). 

Therefore, an efficient numerical method was proposed in order to evaluate the potential and its gradient 

with respect to the deviatoric stress tensor. This method can be effortlessly included in a time integration 

algorithm for strain-rate-based elastic-plastic models within the finite element analysis. The presented 

application examples illustrated graphically the duality of the potentials and showed the exceptionally 

good description of the experimental data and its trends on cubic and hexagonal metals when a large 

number of linear transformations is employed. Naturally, the developed potential could also describe 

the anisotropic behaviour of materials whose tensile and compressive yield stresses are assumed equal, 

as is often the case with materials with cubic structure at large strains. The number of linear transfor-

mations in the model must account for the trade-in between model accuracy and accessibility: it must 

be simple enough to allow for efficient numerical handling and experimental characterization, while 

not disregarding the main trends of the observed mechanical behaviour.  

A key accomplishment of this chapter is that it paves the way for the development of enhanced stress 

and strain-rate potentials for porous media based on the kinematic homogenization theory, by improving 

the description of the anisotropy and tension-compression asymmetry of the matrix (dense material). 

This task in tackled in the following chapter.  
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Chapter 5. 

 

Three-dimensional potentials for porous 

solids containing spherical voids 

This chapter is devoted to the determination of approximate three-dimensional orthotropic plastic potentials for 

porous media containing randomly distributed spherical voids, as in the theory of Gurson (1977). The kinematic 

homogenization approach of Hill-Mandel (Hill, 1967; Mandel, 1971) and the limit-analysis theory (Drucker et 

al., 1952; Hill, 1951), upon which macroscopic potentials are based, are first recalled. The employed local velocity 

fields and respective strain-rate tensors are presented. Efficient cubature methods of the volume averaging over 

the spherical RVE are proposed. A method for evaluating the macroscopic stress potential, conjugate of the ob-

tained macroscopic strain-rate potential, is also provided. Lastly, the algorithmic aspects of the numerical homog-

enization scheme are summarized in pseudo-code format.  

5.1 Fundamentals of porous solids and homogenization 

In this subsection the mathematical framework regarding the variational characterization of porous 

ductile solids is reviewed. This includes results from the theories of homogenization, viz. Hill-Mandel 

lemma (Hill, 1967; Mandel, 1971) and the limit-analysis theory (Drucker et al., 1952; Hill, 1951). The 

objective is to provide a general idea of the theories and assumptions employed in the derivation of the 

macroscopic potentials. For a comprehensive review of these topics, the reader is referred to specialized 

monographs (e.g. Prager and Hodge (1968); Suquet (1982); Nemat-Nasser and Hori (2013); Benzerga 

and Leblond (2010); Besson (2010); and Leblond et al. (2018). 

5.1.1 Hill-Mandel homogenization 

Let us consider representative volume element (RVE) of an arbitrary porous solid consisting of voids 

with traction-free boundaries embedded in a homogeneous rigid-plastic matrix. Following §3.4.1, let Ω 

denote the total domain, ω the domain occupied by the voids and ∂Ω and ∂ω their respective boundaries. 

Assuming that ,  =  then the porosity, f, is given by Eq. (3.8), i.e., vol( )/vol( ).f =   A Eu-

lerian description is adopted to describe the problem. One defines   as the Cauchy stress tensor and 

pd d  as the Eulerian (plastic) strain-rate tensor, (the superscript ‘p’ is omitted for readability). These 

tensors are defined at the microscopic scale, i.e. that of the voids. In the voids, ω, the local stress field 

is taken to be zero, i.e., , x ( ) ,= 0x  consistent with the condition of traction-free boundaries, and 
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the local (alias microscopic) velocity field, ,v  associated with 
T(1/2)( ) +d v v  is extended in some 

arbitrary but C1 manner. 

Within the kinematic homogenization approach the boundary conditions are formulated in terms of 

a uniform strain-rate prescribed on the boundary of the RVE, i.e. 

 ( ) =v x Dx ,  x . (5.1) 

where v  denotes the local velocity vector, x  a position vector and D a specified second-rank symmetric 

tensor. From the application of the Green's theorem and the extension of v  in the voids postulated 

above is possible to demonstrate that D is equal to the volume average of the microscopic deformation 

rate, d, over the volume of the entire RVE (Benzerga and Leblond, 2010), i.e.: 

 


=D d , (5.2) 

where the notation 
V

  stands for volume averaging over V. Accordingly, D is the often referred to as 

the macroscopic strain-rate tensor. In the same spirit, one can define the macroscopic stress tensor, ,  

as the volume average of the microscopic stress, ,  i.e.: 

 ( )
\

1 f
 

= = −   , (5.3) 

where Ω\ω denotes the domain occupied by the dense phase of the RVE, i.e. the matrix, and the property  

 = 0  was applied. In contrast, note that  d  is generally not zero, as it is the sole responsible for 

the dilatational, alias hydrostatic, component of D. Based on the boundary conditions in Eq. (5.1), one 

can define the set of incompressible kinematically admissible microscopic strain-rate fields consistent 

with a homogeneous strain rate, ( ),d D  as: 

 ( )T1
| , ,  ,  and ,  , and 

( ) ,2
                                                               \ ,  tr( ) 0

 
    =  +   =

=  
   = 

d v x d v v x v Dx
D

x d

 (5.4) 

the latter condition enforcing the incompressibility of the solid phase of the RVE. Provided that: (i) the 

local velocity field, ( ),v x  imposing an arbitrary local strain-rate field, ( ),d x  is kinematically admissi-

ble with D, i.e. it obeys Eq. (5.1); and (ii) the microscopic stress field, ( ),x  is statically admissible 

with  , i.e. it obeys Eq. (5.4), as well as traction-free boundary conditions on the voids ( , x  

( ) ,= 0σ x n where n  is the unit normal), then the Hill-Mandel Lemma (Hill, 1967; Mandel, 1971) ap-

plies, hence: 

 : : :
  

=σ d σ d D , (5.5) 

Interestingly, the equalities in Eq. (5.2), (5.3) and (5.5) hold true in the case of the static homogenization 

approach, in which a uniform stress,  , (rather than uniform strain-rate) is prescribed on the boundary 

of the RVE. In the latter case, the statically admissible stress field is defined as ( ) =σ Σ { | ,   σ x

div( ( )) 0,=σ x , },=  σn Σn x  (rather than Eq. (5.3)), and the associated set of kinematically ad-

missible fields consist of those obeying Eq. (5.2) (rather than Eq. (5.1)). Nevertheless, the focus is solely 

on the kinematic approach, the reasons being discussed in the following paragraphs. 
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5.1.2 Limit analysis 

The limit analysis theory combined with the results from the Hill-Mandel homogenization is known 

to provide a suitable framework to formulate constitutive criteria for porous solids (e.g. Benzerga and 

Leblond (2010); Gurson (1977); and Leblond et al. (2018)). Indeed, these allow to conveniently perform 

the scale transition operation and conveying the signature of the microstructural information into the 

macroscopic constitutive behaviour. 

Classical limit analysis theory is restricted to ideal plastic materials within a linearized (small strain) 

framework. The matrix material is therefore considered incompressible, ideal-plastic and obeying some 

rate-independent constitutive law, described by a convex stress-based plastic potential, ( ), σ  homoge-

neous of degree one in stresses with respect to positive multipliers, as well as obeying the associated 

flow rule. Let ( , ) ( ( ) )f   −σ σ  denote the yield function associated with ( ), σ  where   is a posi-

tive scalar with the dimension of stress and ( ) σ  expresses the equivalent stress function. Hence, the 

constitutive relations described in §4.2.1 (Eqs. (4.7), (4.13), (4.14)) can be summarized as: 

 

( )
( ) ( )

,   0,   0,  0

( )

f
f f




   

 


=  

= =    =
   =

d

d d

d

 

 
, (5.6) 

where the meaning for the variables was given in the abovementioned subsection. For a given micro-

scopic strain-rate field, d, the associated microscopic (or local) plastic dissipation rate, ( ) d  is defined 

as (holds the same physical meaning as Eq. (4.11), yet renamed here to follow the literature practice): 

 ( )
*

*( ) sup :


=d d


 , (5.7) 

(cf. the principle of maximum plastic work, Hill, (1951), the supremum being taken over all microscopic 

stresses that fall within the microscopic convex domain of reversibility, ,  (closure of the elastic do-

main, 2{ | ( ) 0},f=     as defined in Eq. (4.3)). Note that d must be traceless, otherwise ( ) d  

would be infinite. If the velocity field, ( ),v x  is kinematically admissible and the microscopic stress 

field ( ),x  is both statically and plastically admissible, the latter meaning that ,  ( ), ,  x x  it 

follows from the application of the Hill-Mandel lemma (Eq. (5.5)), the definition of ( ) d  in Eq. (5.7) 

and the assumed extensions for the stress and strain-rate fields in the voids that: 

 2 , d  ( ): 


D d . (5.8) 

This inequality holds true for arbitrary strain-rate fields. A tighter upper bound is therefore associated 

with the set of kinematically admissible microscopic strain-rate fields, ( ),d D  (e.g. Eq. (5.4) for the 

kinematic approach) i.e.: 

 ( ) ( )
( )

: inf 


 
d D

D D d . (5.9) 

where one introduces the function ( ) D  as the macroscopic plastic dissipation associated with D. 

Based on the previous expression it is possible to define a macroscopic domain of elasticity, ,E  bounded 

by the set: 
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  | , : ( )=   D D D E . (5.10) 

D being the independent variable (i.e. the parameter). Of particular interest is the boundary of this set, 

,E  describing the envelope of the hyperplanes : ( )= D D  whose parametric equation is given as: 

 
( )

: ( ) 0− =



− = 

0

D D

D
D




. (5.11) 

Since ( ) D  is positively homogeneous of degree one, (i.e., ( ) ( ),  0),   =   D D  the theorem of 

Euler for homogeneous functions implies that the first expression in Eq. (5.10) is included in the second 

and, accordingly, the parametric equation of E  reduces to: 

 ( )


=


D
D

 , (5.12) 

which, according to the classical results of limit analysis, defines the macroscopic yield surface of the 

porous solid. Since ( )/ D D  is homogeneous of degree zero, elimination of D from the parametric 

form in Eq. (5.12) is, in theory, possible. Hence, E  can be written in a standard explicit fashion as: 

 ( , ) ( ) 0  − =  , (5.13) 

where ( )  denotes the macroscopic yield criterion, and ( )   plays the role of an equivalent stress 

function, coined in this work as macroscopic stress potential (yet not of the Legendre-type, recall dis-

cussion in §4.2.1). Moreover, according to the Hill-Mandel lemma it is possible to demonstrate that, if 

the microscopic plastic flow is assumed to obey Drucker's stability postulate (Drucker et al., 1952), (or, 

equivalently, the principle of maximum plastic work (Hill, 1951)), then the same principle holds at the 

macroscale. Accordingly, (i) the macroscopic elastic domain E  is necessarily convex; and (ii) given a 

limit load, Σ, (i.e. lying on ),E  the  corresponding macroscopic plastic strain rate, D, belongs to the 

local hypercone of normals to .E  If the boundary E  is smooth in the limit load Σ, then it admits a 

local tangent hyperplane, i.e. the macroscopic flow rule obeys the normality rule, hence the yield crite-

rion so derived indeed serves as a plastic potential and one can write (c.f. Eq. (5.6)): 

 ( ),    0


=   


D 


, (5.14) 

where the scalar   is the macroscopic plastic multiplier rate. In summary, if one assumes a microscopic 

flow rule obeying normality, such property is preserved at the macroscale, as shown in Hill (1967) and 

later in Gurson (1977) for the particular case of porous metals. From Eq. (5.9), it is clear that in order 

to derive the expression for ( ), D  one needs to evaluate the expression of the local plastic dissipation, 

( ). d  Following the reasoning of Eq. (4.12), one gets: 

 
( )

( ) : : ( ) ( )


    


= = = =


d d d


  


, \ , x  (5.15) 
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with ( ) 0, =d . x  The previous expression shows that the determination of the microscopic plastic 

dissipation rate, ( ), d  entails the evaluation of the strain-rate potential, ( ), d  associated with the yield 

criterion of the matrix. Given that the yield function in Eq. (5.13) is homogeneous of degree one with 

respect to positive multipliers, based on the application of the work-equivalence principle at the mac-

roscale, one can define a meaningful dual relationship as: 

 

( )

,

( )




=


 = 

D

D

D


  0,   0,  0    = , (5.16) 

where ( ) D  is the macroscopic strain-rate potential, dual of the macroscopic stress potential, ( ),   

and is also homogeneous of degree one with respect to positive multipliers. Note that Eq. (5.16) is the 

macroscopic counterpart of Eq. (5.6). Combining Eq. (5.11), Eq. (5.16), the macroscopic yield condi-

tion, ( ) , =  and the application of Euler theorem for homogeneous functions allows to write: 

 ( )
( )

: : ( ) ,  
 

 = =  =  
 

D
D D = D D

D
   0,   0,  0    = , (5.17) 

The previous expression, representing the macroscopic counterpart of Eq. (5.15), shows that, within the 

adopted kinematical homogenization approach, the macroscopic strain-rate potential ( ), D  is related 

with the macroscopic plastic dissipation function ( ) D  via the same scalar as in the microscale (see 

Eq. (5.15)), viz. the scalar which defines the yield condition of the rigid-plastic matrix, ( ) . =σ  

5.1.3 Principle of determination of the macroscopic criteria 

In truth, the variational problem presented above is still ill-posed. The reason is twofold: first, the 

geometry of the RVE is only known statistically for most porous solids; and second, the actual boundary 

conditions to which such RVE is subjected when macroscopically loaded are unknown (Besson et al., 

2009). In order to bypass the first problem, one can assume the ergodic hypothesis15, and thus a single 

realization of a RVE must be specified. Regarding the boundary conditions, as mentioned previously, 

one may choose to adopt a kinematic or a static homogenization approach16. Since the space of kine-

matically admissible velocity fields is smaller in the former, the resulting dissipation function, Π(D), is 

greater, hence the macroscopic domain, ,E  is larger, i.e., ,= =v Dx σn ΣnE E  where the notation is self-

explanatory. Although no formal proof is available, it is likely that the true yield locus of the porous 

solid ,E  lies between these, i.e. = = v Dx σn ΣnE E E  (Benzerga and Leblond, 2010). In theory, regardless 

of the adopted homogenization approach, the minimization problem in Eq. (5.9) ought to be performed 

over the complete set of local velocity fields, ,v  compatible with the adopted boundary conditions. In 

practice this problem can be solved numerically, e.g. by application of the FEM in combination with 

convex optimization tools (Pastor et al., 2013, 2009). However, given the computational cost of latter 

approach, analytical-based analyses are often preferred. In this context, the minimization procedure is 

 
15 According to ergodic hypothesis, all the statistical information is available in a single realization of the RVE. 
16 Other types of boundary conditions could be considered, viz. periodic and mixed boundary conditions, such as 

those used in the cell model studies, however these do not pertain to the Hill-Mandel homogenization theory. 
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relaxed and Π(D) is evaluated based on some partial minimization over a reduced set of trial velocity 

fields, i.e. a subset of ( ),D  which inherently results in an upper bound estimate for the macroscopic 

plastic dissipation function, ( ).+ D  As a result, one obtains an approximate macroscopic yield locus, 

( ) ,+ DE  exterior to the exact one, ,E  i.e. ( ) ,+ DE E  which holds true for both static and kinematic 

boundary conditions. Accordingly, the kinematic approach is often preferred to the static one for the 

following reasons: first, the space of velocity fields is smaller, the search for a ‘good’ approximation of 

the infimum in Eq. (5.9) ought to be easier; and second, and more crucially, the use of kinematic bound-

ary conditions ensures that 
( ) ,

+
= D

v DxE E  i.e. it preserves the upper bound character of the macroscopic 

yield locus (whereas, on the contrary, the original lower bound character of the static approach can no 

longer be guaranteed). In fact, the kinematic homogenization approach is widely used to model metallic 

materials (Benzerga and Leblond, 2014; Benzerga and Besson, 2001; Gurson, 1977; Keralavarma and 

Benzerga, 2008; Keralavarma and Chockalingam, 2016; Monchiet et al., 2008; Morin, Leblond and 

Kondo, 2015; Morin, Leblond, Benzerga, et al., 2016; Stewart and Cazacu, 2011; Thomason, 1985), 

whereas the static homogenization is more prevalent for modelling porous geologic materials and pol-

ymers (Dormieux et al., 2006; Hsu et al., 2009; Salençon, 1983; Thoré et al., 2011). In closing, is should 

be remarked that the fact that one aims to determine ( )+ D  instead of Π(D), i.e. disregarding the min-

imization procedure, does not imply that it is possible to derive an explicit expression for the approxi-

mate stress-based potential of the porous solid: a closed-form criterion may only be attainable in a 

parametric fashion (e.g. Alves et al., 2014; Cazacu et al., 2014); or it cannot be obtained at all. Issues 

related with the volume averaging of ( ) d  over the RVE (recall Eq. (5.9)) may preclude the analytical 

determination of ( ).+ D  In such cases, either new upper bounds, ,  ( ) ( )++ + D D  are postulated, 

(e.g. by means of the Cauchy-Schwarz inequality) such that the closed-form determination of a modified 

integral is possible; or else the integration must inevitably be performed numerically (e.g. Cazacu and 

Revil-Baudard, 2015; Leblond et al., 2018; Morin et al., 2017), which, naturally, does not allow for 

closed-form expressions for the macroscopic potentials. The present work falls into the latter case. 

5.2 Statement of the problem 

It follows from what precedes that the development of macroscopic plastic criteria for porous solids 

invariably requires the following to be defined: (i) the geometry of the RVE; (ii) a microscale plasticity 

model, necessary obeying an associated flow rule; and (iii) the kinematically admissible local velocity 

fields, ( ),v x \ , x  (and the corresponding microscopic strain-rate tensor, d) defining a subset of 

( )D  (c.f. Eq. (5.4)). In the following, each one of these basic elements is specified. 

5.2.1 RVE geometry 

In the spirit of Gurson’s (1977) analysis, the RVE consists of a hollow sphere with outer radius b, 

containing a concentric spherical void of radius a. Figure 5.1 illustrates the spherical RVE and defines 

the adopted Cartesian, 1 2 3( , , ),x x x  and spherical, ( , , )r    (with [0, ],  [0,2 ])   coordinate sys-

tems associated with the orthonormal bases 1 2 3( , , )e e e  and ( , , ),r  e e e  respectively. The geometry of 
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the RVE is fully determined by the porosity, 
3 3/ ,f a b=  which is the unique microstructural-based var-

iable of the analysis. The choice of this RVE is driven by the simplicity it affords both from the analyt-

ical (viz. the definition of boundary conditions within the Hill-Mandel homogenization framework and 

the local trial velocity fields); and the numerical (viz. integration scheme) standpoints. While the hollow 

sphere model in unable to represent true periodic microstructures (in the sense of space-filling config-

urations, as is the case with a cubic unit cell), it still offers a reasonable representation for the cases in 

which the voids are nearly spherical and uniformly distributed (Hsu et al., 2009). Within the framework 

of damage mechanics, the adopted RVE is consistent with the hypothesis of isotropic damage, in which 

a damaged medium is assumed to have a random distribution of microdefect orientations, and thus the 

damaged state can be completely characterized by a single scalar, (in this work, f). In most cases this 

assumption is indeed reasonable given the typical random shape and distribution of the microstructural 

particles triggering damage initiation (viz. void nucleation). 

 

  

(a) (b) 

Figure 5.1 Geometry of the spherical RVE: (a) definition of an arbitrary spherical surface of radius [ , ],r a b

( );S r  and the inner, ,  and outer, ,  RVE boundaries; (b) the adopted Cartesian, 1 2 3( , , ),e e e  and  

spherical, ( , , ),r  e e e  bases on one-eight of ( ).S r  

5.2.2 Microscale constitutive model 

The matrix material is assumed rigid-plastic and obeying the (generally) non-quadratic orthotropic 

yield criterion of Plunkett et al. (2008), based on an arbitrary number of orthotropic transformations, as 

showed in Eq. (4.19). The associated dual potential is of paramount importance for the present analysis 

and was developed in Chapter 4 (see Eqs. (4.22)-(4.27), p. 67). Moreover, the numerical scheme in Box 

4.1 to evaluate the SRP, ( ), d  and its first derivative, / , d  simultaneously, should also be kept in 

mind as it is the foundation of the numerical methods developed in the forthcoming subsection. 

5.2.3 Local velocity fields and boundary conditions 

As discussed in §5.1.3, the choice of relevant trial microscopic velocity fields is a crucial task in the 

development of approximate macroscopic criteria. Indeed, it is evident that the adoption of sophisticated 

velocity fields should favour the quality of the homogenization. Unfortunately, very few velocity fields 

compatible with uniform strain-rate boundary conditions are known. In the case of the hollow sphere 
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RVE considered here, to the best knowledge of the author, the only known velocity fields verifying the 

incompressibility property, compatible or not with such boundary conditions, are those proposed by: (i) 

Rice and Tracey (1969), Budiansky et al. (1982) and Huang (1991), (the last two being extensions of 

the first, based on the consideration of additional velocity field terms derived from a stream function 

those contribution ought to be determined by minimization of a functional); and by (ii) Monchiet et al. 

(2011), based on Eshelby’s inclusion theory. In this work both formulations are considered in order to 

compare the results of each one. Their expressions and admissibility conditions are now discussed. 

Rice and Tracey (1969) velocity fields 

In agreement with Gurson (1977), a truncated form of the classical Rice and Tracey (1969) velocity 

fields, who studied the growth of an isolated void in an infinite rigid perfectly plastic medium obeying 

the von Mises criterion, is adopted. The velocity field in the matrix consists of a linear combination of 

two fundamental fields: an isotropic radial/dilatational expansion 
A ,v  inspired from the solution of the 

problem of a hollow sphere loaded hydrostatically; and a uniform extension 
B ,v  as: 

 3 \ , x  
RT, A B( ) ,A B = +v x v v  with A

2

1
,r

r
=v e  and 

B =v x , (5.18) 

where   is a symmetric second order tensor defining a remote strain-rate field, and A and B are arbitrary 

parameters supposed to be determined by a minimization procedure in the determination of the infimum 

in Eq. (5.9). In practice however, no minimization is actually needed since uniform strain-rate boundary 

conditions of the type ( )rb= =v x e Dx  (Eq. (5.1)) and the incompressibility condition, div ( ) 0,=v x

\ , x  require that 
3

mA b D=  and ',B = D  where 'D  and mD  represent the deviatoric and the 

hydrostatic part of the imposed macroscopic strain rate tensor D, respectively, i.e., m' ,D= +D D I  with 

m tr( )/3D = D  and I is the second-order identity tensor. Hence, the Rice and Tracey microscopic veloc-

ity fields, 
RT ,v  in the (finite) RVE are given as: 

 \ , x  
3

RT
m 2

( ) ' r

b
D

r

 
= +  

 
v x D x e . (5.19) 

Accordingly, the associated microscopic strain rate tensor, 
RT ,d  is given as follows: 

 \ , x  ( )
3

RT
m( ) ' 2 r r

b
D

r
   

 
= + −  +  +  

 
d x D e e e e e e . (5.20) 

Note that both Cartesian and spherical coordinate system were used in Eqs. (5.19)-(5.20) for shortness. 

In practice, the determination of the plastic dissipation rate, ( ), d  in Eq. (5.15) requires 
RT

d  to be 

expressed in Cartesian coordinates alone (those defining the orthotropy axes). This can be achieved by 

application of the rotation matrix relating the Cartesian and spherical basis, as described in Appendix 

C. Moreover, it must be remarked that 
RT RT( ) ( ),= −d x d x  i.e. 

RT
d  in Eq. (5.20) is an even function. 

At this point one may question the hypothesis of the adoption of an ‘isotropic’ expansion field in 

order to represent the behaviour of solids assumed orthotropic. Indeed, for these materials, the isotropic 

expansion field (second term in Eq. (5.19)), obtained from the consideration of a plastically isotropic 
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medium, is no longer the exact for a hydrostatic loading. However, it is frequent practice in the literature 

to adopt this type of fields, even when considering orthotropic matrices (e.g., Benzerga and Besson, 

2001; Keralavarma and Benzerga, 2010; Morin et al., 2015; Stewart and Cazacu, 2011). Recent numer-

ical studies (Pastor et al., 2012; Morin et al., 2014), suggest that criteria obtained in this fashion are still 

in good agreement with the ‘exact’ solutions, (those based on finite element method numerical limit-

analyses), provided that the anisotropy is moderate (Morin, Leblond and Kondo, 2015). However, such 

numerical studies did not consider matrix materials displaying tension-compression asymmetry, and/or 

non-quadratic yield criteria. In Chapter 6, the latter case is considered, and it is shown that the adoption 

of such isotropic expansion fields still leads to reasonable estimates for the approximate yield loci of 

such porous solids. Nevertheless, it is interesting to assess if the analysis can benefit from adopting trial 

velocity fields which indeed admit ‘anisotropic’ expansion fields. An example of such field is presented 

in the following. 

Eshelby-based velocity fields 

Following Monchiet et al. (2014, 2011, 2007), the local velocity fields in the matrix can be postu-

lated based on the results of the Eshelby inclusion problem (Eshelby, 1957, 1959). Eshelby demon-

strated that the strain rate field of an ellipsoidal elastic inclusion subjected to a uniform arbitrary ei-

genstrain17 rate, ,*
d  embedded in an infinite linear medium is: (i) homogeneous inside the inclusion – 

the interior point solution; and (ii) heterogeneous outside the inclusion – the exterior point solution (e.g. 

see Mura, 2013). In the particular case of an inclusion occupying a finite subdomain   with a spherical 

shape of radius a, and assuming the medium as incompressible, the Eshelby velocity fields, 
E, ,

v  are 

in the form: 

 3 2
*

2 2

E,

3

( ) : ,                      

ˆ

           

( )
( ) : ,   \1 r rr

a

r
a a

d
r r







    
= 

   


 
− 

 
  +

*

*

d x x

v x
d x e x

. (5.21) 

where the component *ˆ
rrd  in the spherical basis is given by * : ( )ˆ

rr r rd = *
d e e  and  is a fourth order 

tensor containing the major symmetry ( )ijkl ijkl=  and both minor symmetries ( , )ijkl ijikl ijkl ijilk= =  

whose non-zero components in the Cartesian coordinate system are given as: 

 

3

1111 2222 3333 5

3
,

5

a

r
= = =  

3

1122 1133 2233 1212 1313 2323 5
,

5

a

r
= = = = = =  

(5.22) 

the remaining components being obtained by the abovementioned symmetries. Note that  depends 

exclusively on the radial coordinate. Moreover, the second term in Eq. (5.21) for 
3 \x  vanishes at 

,r a=  i.e. in the boundary of the spherical inclusion, which ensures the continuity of the velocity field. 

The strain rate tensor associated with the Eshelby velocity field in Eq. (5.21), 
E, ,

d  can be written as: 

 
17 Eigenstrain denotes a stress-free deformation strain, e.g. associated with thermal expansion, initial strain, phase 

transformation (e.g. see Ryu et al. (2019) and references therein). 
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E, ( ) : , = *

d x d  with ( ) 3

,                    

( ) ( )   \
r

r r





 
= 

  +

x

x
, (5.23) 

where  ( )r a =  is the well-known Eshelby tensor for a spherical inclusion in an infinite elastic 

incompressible medium, given in the Cartesian coordinate system by the isotropic fourth order tensor: 

 ( )
1

,
5

ijkl ij kl ik jl il jk     = + +  , , , 1,2,3,i j k l =  (5.24) 

where ij  denotes the Kronecker delta operator. Note that tensor  does not depend on the inclusion 

radius due to the absence of a characteristic length scale in Eshelby’s analysis. The fourth order tensor 

 in Eq. (5.23) is more readily written in the spherical coordinate system, ( , , )r  e e e  (see Figure 5.1), 

denoted ˆ ,  which has the minor symmetries and whose non-zero components are given as follows: 

 

5 2

5 2

2ˆ 1 ,rrrr

a r

r a

 
= − − 

   
5

5
ˆ ˆ ,rr rr

a

r
 = = −  

5 2

5 2
ˆ ˆ 1 ,rr rr

a r

r a
 

 
= = − − 

 
 

5 2

5 2
ˆ ˆ 1 .

2
r r r r

a r

r a
   

 
= = − − 

 
 

(5.25) 

In the same spirit, the relationship in Eq. (5.23) can be recast into the spherical coordinate system as: 

 ( )E,ˆ ˆ ˆ: , = *
d x d  (5.26) 

with 
E, E,ˆ T =d R d R  and ˆ ,T=* *

d R d R  where R is the rotation matrix relating the Cartesian unit vec-

tors to the spherical ones (see Appendix C). Noting that ˆ =  due to its isotropic nature and com-

bining Eqs. (5.22)-(5.23) and Eq. (5.25), the components of ˆ  result in:  

 

3 2

3 2

4ˆ ˆ ˆ2 2 2 1 ,
5

rrrr rr rr

a a

r r
 

 
= − = − = − − 

 
 

5

5

3ˆ ˆ ,
5

a

r
 = =  

5

5

4ˆ ˆ ,
5

rr rr

a

r
 = = −  

5

5

1ˆ ˆ ˆ ,
5

a

r
  = = =  

3 2

3 2

1 8ˆ ˆ 1 .
2 5

r r r r

a a

r r
   

 
= = − 

 
 

(5.27) 

ˆ  has minor symmetries but not the major one. Moreover, note that ˆ: = 0I  due to the incompress-

ibility condition, and 3 3ˆ : ( / )[ 2 ]r ra r    = −  +  + I e e e e e e  (c.f. Eq. (5.20)), which corresponds 

to an isotropic expansion. The components of  in the cartesian coordinate system (Eq. (5.23)) can be 

found in Ju and Sun, (1999); Li et al. (2007); Mura, (2013). These lead however to lengthy expressions 



Three-dimensional potentials for porous solids containing spherical voids 

101 

for 
E, ,

d  the spherical formulation being preferred here for practical reasons. Combining Eqs. (5.26)-

(5.27), the components of 
E,ˆ 

d  are thus given by: 

 

( )
3 5

* * * *

5

E,

3
ˆ ,

4ˆ ˆ ˆ ˆ2
5

2r rrr rr

a
d d

a
dd

r
d

r
 

 −− −= +  

( )3

5
* * * *

5

3
E,ˆ ,

1ˆ ˆ ˆ ˆ4 3
5

rr rr

a
d d d d

r

a
d

r
  
 + − + +=  

( )3

5
* * * *

5

3
E,ˆ ,

1ˆ ˆ ˆ ˆ4 3
5

rr rr

a
d d d d

r

a
d

r
  
 = + − + +  

, *
5

5

E ,ˆ ˆ2

5

a
d d

r
 
 =  

3 2
E *

3 2

8ˆ ˆ1 ,
5

r r

a a
d d

r r
 

 
= − 

 
 

3 2
E *

3 2

8ˆ ˆ1 .
5

r r

a a
d d

r r
 

 
= − 

 
 

(5.28) 

Let us return to the problem of the finite hollow sphere RVE. The RVE is concurrently subjected to 

a homogeneous strain rate and a heterogeneous expansion field due to the expansion of the cavity, such 

that, \ , x  ( ) ( ),= +v x x v x  where the term x  denotes the uniform extension field,   an 

arbitrary symmetric second order tensor and 


v  the dilatational expansion (not necessarily isotropic). 

The matrix incompressibility condition requires the tensor A to be traceless and div 0. =v  A particular 

case of ( )v x  was presented in Eq. (5.19), based on the Rice and Tracey fields, 
RT,

v  in (5.18). In the 

same fashion, one can formulate an alternative field, 
E ,v  based on Eshelby results as: 

 \ , x  
E E,( ) ( )+v x Ax v x . (5.29) 

where 
E,

v  was defined in Eq. (5.21). Therefore, the strain rate tensor associated with Eq. (5.29) is in 

the form: 

 \ , x  
E E,( ) ( )+d x = A d x , (5.30) 

where 
E,

d  was defined in Eq. (5.23). The determination 
E

d  in the Cartesian frame is readily achieved 

by successive application of the rotation matrix relating the Cartesian and spherical basis, as described 

in Appendix D. Likewise the Rice and Tracey case, it is possible of prove that the Eshelby-based field, 

E ,d  is an even function, 
E E( ) ( ).= −d x d x  Combining Eq. (5.21) with Eq. (5.29) and the uniform strain-

rate boundary condition on the sphere outer surface, ( ) ,rb= =v x e Dx  leads to the following equation: 

 ( ) ( )2/3 *ˆ: 1 rrrbf fb d +   −+
*

Dx = Ax d x e . (5.31) 

While the first two terms on the right hand of the previous equation are proportional to ,x  hence comply 

with uniform strain rate boundary conditions, it is possible to demonstrate that the same does not hold 

true for the last term in the general case. In fact, the solution of Eq. (5.31) is: '=A D  m( / ) ,D f=*
d I  

which corresponds to a purely hydrostatic eigenstrain, for which *
m .ˆ /rr Dd f=  Introducing the deviatoric-

hydrostatic decomposition of the eigenstrain rate tensor as m' ,d = +* *
d d I  where '*

d  and m tr( )/3d  = *
d  

represent its deviatoric and hydrostatic part, respectively, it follows that the Eshelby-based trial velocity 

fields, 
E ,v  in Eq. (5.29) are compatible with uniform strain rate boundary conditions (Eq. (5.1)) if and 

only if ' = 0
*

d   m m / .d D f =  Note that tensor '*
d  is related with the shape change of the inclusion 
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(independent from the overall shape change of the hollow sphere, the latter associated with ).A  Under 

this condition, the Eshelby-based velocity fields, 
E

v  (Eq. (5.29)) reduce to those of Rice and Tracey, 

RT ,v  (Eq. (5.18)), since the term 
E, ,

v  in Eq. (5.21) reduces to the expansion field considered by Rice 

and Tracey, 
3 2

m ( / ) rD b r e  (Eq. (5.19)). In other words, the Rice and Tracey velocity fields can be viewed 

as a particular case of the Eshelby-based fields for a spherical inclusion subjected to an isotropic dila-

tational eigenstrain rate. It follows that the remaining velocity fields, i.e., those associated with ' , 0
*

d  

cannot verify Eq. (5.31).  

Remark 5.1 In general, the Eshelby-based local velocity fields do not comply with uniform strain-rate 

boundary conditions on the spherical RVE (Eq. (5.1)). 

According to Monchiet et al. (2014, 2011), the use of the complete Eshelby-based velocity field (in the 

sense that ' ) 0
*

d  within a kinematic limit analysis theory can be justified in the context of uniform 

stress boundary conditions, i.e., , ,=  σn Σn x  (recall discussion in §5.1.3). Within the latter frame-

work, the set of kinematically admissible velocity fields, ( ),d D  is no longer based on the set in Eq. 

(5.4), and instead are defined based on the velocity fields that verify the strain-rate averaging rule, i.e.: 

 
( )

1

vol V

dV


= =





D d d . (5.32) 

Note that Eq. (5.32) and Eq. (5.2) hold the same mathematical operation, yet the former is adopted as a 

definition, whereas the latter is a theorem (result) from the kinematical homogenization approach. The 

opposite holds for the stress averaging rule, .=     In the author’s view, the usage of Eshelby-based 

velocity field in the context of the kinematic limit analysis theory (Eq. (5.9)) has a weak mathematical 

rational: first, in view of the fact that uniform strain-rate boundary conditions are not met, and thus the 

upper-bound nature of the analysis (which motivated the choice a kinematic limit analysis in the first 

place) is lost; second, the application of the Hill-Mandel lemma (Eq. (5.5)) is questionable since neither 

uniform strain rate conditions nor uniform stress boundary conditions are actually being fulfilled. This 

implies that the obtained macroscopic yield surface should be interior to the upper-bound solution, viz. 

that using the Rice and Tracey fields, and exterior to the lower-bound counterpart. Despite the above-

mentioned deficiencies, following the work of (Monchiet et al., 2007, 2011), the Eshelby-based velocity 

fields are still employed in the context of the Gurson-type proposed homogenization scheme. Substitu-

tion of Eq. (5.30) in Eq. (5.32) leads to: 

 m

2
: '

5
f f d  

= + = + + 
 

* *
D A d A d I . (5.33) 

The previous expression is of major importance as it provides the link between the macroscopic strain 

rate tensor D and the two unknown kinematical tensors, A  and 
*

d , entering the definition of the mi-

croscopic strain-rate tensor in Eq. (5.30). Note that Eq. (5.33) provides six scalar equations for eleven 

unknown parameters: five independent parameters ijA , (tr( ) 0);=A  and six parameters *.ijd  The devia-

toric-hydrostatic decomposition of Eq. (5.33) results in: 
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 m m ,D fd =  and 
2

' '
5

f
= + *

D A d . (5.34) 

One can readily conclude that the hydrostatic eigenstrain rate is known from the outset in terms of the 

macroscopic hydrostatic strain rate, as m m / .d D f =  This is to be expected as the expansion of the RVE 

results exclusively from the expansion of the void, due to matrix incompressibility. Conversely, the 

equation associated with the deviatoric part shows that five unknown parameters must be determined: 

either the parameters of A  or those of  '.*
d  In this work the latter formulation is adopted. In practice, 

these are determined by a minimization procedure on the macroscopic dissipation function (Eq. (5.9)), 

as discussed in more detail in the next chapter. One cannot emphasize enough that since, in general, the 

Eshelby-based velocity fields do not comply with uniform strain-rate boundary conditions, the upper-

bound character of the analysis can no longer be guaranteed (recall discussion in §5.1.3). Nevertheless, 

the truncated nature of the analysis (in the sense that minimization is done over a subset of ( ))D  will 

inherently result in an upper-bound estimate of the macroscopic yield criterion in the context of uniform 

stress boundary conditions, i.e. 
( ) ( )+ 

= =D D
σn Σn σn ΣnE E (following the notation of §5.1.3), for which the Hill-

Mandel lemma still applies. Unfortunately, one cannot a priori determine if  the approximate yield locus 

is interior or exterior with respect to the exact one, i.e. whether 
( )+

= D
σn ΣnE E or 

( ) .
+
= D

σn ΣnE E In any 

case, given the increased flexibility of the Eshelby-based fields, it is clear that the approximate macro-

scopic yield locus obtained from these, 
E

( ) ,+E D  should always be interior to that obtained with the 

Rice and Tracey velocity fields, 
RT

( ) ,+E D  i.e., 
RT E

( ) ( ) ,+ + E ED D  as the respective approximate macro-

scopic dissipation functions must verify the inequality 
E, RT,( ) ( ),+ + D D  given the additional mini-

mization procedure and the fact that the former is able to reduce to the latter. 

5.3 Approximate macroscopic potentials: definition 

This subsection is devoted to the determination of approximate strain-rate potentials and the associ-

ated stress potentials of porous solids containing randomly distributed spherical voids for general 3-D 

states using the kinematic homogenization approach presented in §5.1. The assumed RVE, microscale 

plasticity model, and trial velocity fields are those presented in §5.2. 

5.3.1 Approximate macroscopic plastic dissipation and strain-rate potential 

Following the discussion in §5.1.3, an approximation of the macroscopic plastic dissipation in Eq. 

(5.9), ( ),+ D  associated with a specific trial velocity field, 
tr ( ),v x  is defined as: 

 ( ) ( ) ( )( ) ( )( ) ( )( )tr tr tr

\

1 1
dV dV

V V 

  +

  

  = = =  
 

xD D d d x d x , (5.35) 

where the property ( ) 0, =d  x  was applied, 
tr tr tr T(1/2)[ ( ) ] + d v v  is the trial local strain-

rate field, 
3vol( ) (4/3)V b=  =  is the volume of the spherical RVE (Figure 5.1), with the differential 

volume element 
2 sin .dV r d d dr  =  For convenience, the above triple integral is rewritten in the 

form: 
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 ( ) ( ) ( )tr

( )

1 b

S ra

A r dr
V

+ = 


D d , (5.36) 

where 
3

2( ) { : || || }S r r=  =x x  denotes the spherical surface of radius r and area 
2( ) 4 ,A r r=  ( )S r  

denotes the averaging operation over ( ),S r  i.e.: 

 
2

( ) 0 0

1
( , )sin

4S r
g g d d

 

    


=   , (5.37) 

where g  denotes an arbitrary scalar field, continuous on ( ).S r  The case of tensorial fields is a trivial 

extension of the previous expression. In view of Eq. (5.15), Eq. (4.19), and the matrix rigid-perfectly 

plastic response, Eq. (5.35) can also be expressed as: 

 ( ) ( )( ) ( ) ( )( )T tr T tr
1 1

\
\

1
1dV f

V 


   +




 = = −




D d x d x , (5.38) 

where ( ) d  is the local (or microscopic) strain-rate potential, given in Eq. (4.22). Combining Eq. (5.38) 

and Eq. (5.17) allow us to determine the approximate macroscopic strain-rate potential, ( ),+ D  asso-

ciated with the trial velocity field, 
tr ( ),v x  as: 

 ( ) ( ) ( )( ) ( ) ( )( )tr tr

\ ( )

1
1

b

S r
a

f A r dr
V

 +


 = − =





D d x d x . (5.39) 

The previous expressions implicitly assume that the trial strain-rate fields, 
tr ,d  in the integrand of Eq. 

(5.35) can be explicitly defined based on D, i.e., ( )tr tr , .=d d x D  Conversely, if the determination of 

these local fields encompasses an additional set of kinematic quantities, say  , such that ( , ), = D   

then, in view of Eq. (5.9), a minimization procedure on these unknown parameters is required in order 

to eliminate their dependence on .  Accordingly, Eq. (5.35) and Eq. (5.39) are replaced with: 

 

( ) ( )inf ,+ = D D


 , with 

( ) ( )( ) ( ) ( )( )tr tr

( )

1
, , , , ,

b

S r
a

A r dr
V

 


 = =




D d x D d x D   , 
(5.40) 

and 

 

( ) ( )inf ,+ = D D


 , with 

( ) ( ) ( )( ) ( ) ( )( )tr tr

\ ( )

1
, 1 , , , ,

b

S r
a

f A r dr
V

 


 = − =




D d x D d x D   , 
(5.41) 

respectively. The specific forms of these expressions for the considered velocity fields is now presented. 

Hereafter, attention is set exclusively on the expressions of the approximate strain-rate potential. In the 

following, the particular cases of the Rice and Tracey and the Eshelby-based velocity fields are replaced 

in the above general expressions. 
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Rice and Tracey (1969) velocity fields 

The Rice and Tracey velocity fields, 
RT ,v  (see Eq. (5.19)) fall in the context of Eq. (5.39), hence 

the respective strain-rate potential, 
RT ( ), D  is in the form: 

 ( ) ( ) ( ) ( ) ( )RT RT RT

\ ( )

1
1

b

S r
a

f A r dr
V

 


 = − =




D d d , (5.42) 

where the respective local strain-rate field RT
d  was defined in Eq. (5.20), (see Appendix C for its deter-

mination on the Cartesian frame). 

Eshelby-based velocity fields 

The Eshelby-based velocity fields, 
E ,v  (see Eq. (5.29)) fall in the domain of Eq.(5.41), in which the 

deviatoric part of the eigenstrain rate tensor, ',*
d  plays the role of the additional kinematic tensor. Ac-

cordingly, the approximate strain-rate potential associated with the Eshelby-based approach, 
E ( ), D  

is given it terms of the following minimization scheme: 

 

( ) ( )E E

'
inf , ' = 

*

*

d
D D d , with 

( ) ( ) ( )( ) ( ) ( )( )E E E

\ ( )

1
, ' 1 , ' , '

b

S r
a

f A r dr
V

 


 = − =




* * *
D d d D d d D d , 

(5.43) 

where the respective local strain-rate field 
E

d  was defined in Eq. (5.30) (see Appendix D for its deter-

mination on the Cartesian frame). 

5.3.2 Approximate macroscopic yield criterion and macroscopic stresses 

Combining Eqs. (5.12), (5.17) and (5.39), the macroscopic yield stress of the porous solid associated 

with the upper-bound estimate, ,+  in turn related with a particular trial velocity field, can be expressed 

as: 

 ( )
T
1

+
=


D

D


, (5.44) 

which is the parametric representation of the macroscopic yield locus in terms of the approximate strain-

rate potential, ,+  where ( )/+ D D  homogeneous of degree zero. As discussed in §5.1, in order to 

obtain an expression for the associated yield function, D must be eliminated from Eq. (5.44), such that 

an expression of the type of Eq. (5.13) is attained, in this case rewritten as: 

 T T
1 1( , ) ( ) 0 + + − =  , (5.45) 

where ( )+   is the approximated macroscopic stress potential, conjugated (or dual) of ( ).+ D  If the 

abovementioned elimination is not possible, as is the case in this work, function ( )+   (and therefore 

T
1( , )+   in Eq. (5.45)) can still be evaluated in a numerical fashion based on the work-equivalence 

and normality principles applied to its dual potential, ( )+ D  (Eq. (5.39)). This entails solving a non-

linear equation system analogous to that in Eq. (4.57) regarding the case of dense, thus plastic isochoric, 
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materials. Let   denote an arbitrary macroscopic stress state and ( , ) 
D  the solution of the following 

system equation: 

 

ref

( )

( , )
0

( )




+ 


  

+ 

 
 −  

= =   
   − 

0
D

F D D

D


, (5.46) 

where ref 0   is an arbitrary reference value for the strain-rate potential. From Eq. (5.14), Eq. (5.17) 

and Eq. (5.44), it follows that: 

 

( ) ,+    and 

ref

( ) +
=

 

D
D




, with ( ) 1.+ =D  

(5.47) 

A natural choice for ref  is the unity, such that the solution of Eq. (5.46) is coincides with the macro-

scopic strain-rate tensor of unitary strain-rate potential value, alias the ‘normalized’ strain-rate tensor, 

i.e. , D D  which is of special interest in the context of elastoplastic modelling using the stress-based 

formulation (see Eq. (5.14)). Note that, in contrast with Eq. (4.57), the tensorial equation in Eq. (5.46) 

has six (as opposed to five) independent coefficients, since plasticity now depends on the installed hy-

drostatic component of the stress tensor. The scalar equation in Eq. (5.46) is crucial to bound the prob-

lem. In fact, ( )/+ D D  is homogeneous of degree zero, i.e., ( )/ ( ) +   D D ( )/ ( ),+  =  D D

0   and thus 
D  must be somehow constrained otherwise the system would be singular in .D  

Regarding the determination of ( )/+ D D  in Eq. (5.46) one takes advantage of the fact that the local 

SRP, ( ), d  and its derivative, ( )/ , d d  are obtained simultaneously in each quadrature point the 

RVE (see Remarks 4.4 in §4.4.4). In summary, Eq. (5.46) has seven independent equations. In line with 

Eq. (5.6) and Eq. (4.19), ( ) ( ( ))/=  s x d x d  is actually the unitary (or normalized) microscopic (or 

local) deviatoric stress tensor field, obeying the local yield condition, i.e. ( ( )) 0,f =s x  ( ( )) 1, =xs

\ . x  Accordingly, following Eq. (5.3) and Eq. (5.36), the deviatoric part of ( )/ ,+ D D  denoted 

( ( )/ ) ',+ D D  can be defined based on the unitary macroscopic deviatoric stress tensor, ',  as the 

volume average of its microscopic counterpart, ,s  i.e.: 

 ( ) 2

\ ( )

'( ) 1
'( ) 1 4 ( )

b

S r
a

f r dr
V


+

 

 
= = − = 

 





D
D s s s x

D
 .  (5.48) 

At this point, it remains to determine the hydrostatic part of function ( )/ .+ D D  Defining the devia-

toric-hydrostatic decomposition of the macroscopic stress tensor as m' ,= + I   where m tr( )/3 =   

the macroscopic hydrostatic stress, the macroscopic plastic dissipation function ( ),+ D  can be thought 

as a contribution of a deviatoric, dev ,+ and hydrostatic, hid ,+  parts as: 

 dev hid( ) :+ + + = = +D D , with 
dev

hid m m

' : : ' ': '

tr( )tr( )
tr( ) tr( )

3
D 

+

+

 =


 = = =

D = D = D

D
D

  




.  (5.49) 

Combining Eq. (5.17) and Eq. (5.57), it follows from the work-equivalence at the macroscale that: 
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( )hid

m

( ) ':
  if  tr( ) 0

tr( )
tr( )

0                          if  tr( ) 0





+
+   −

 
= = 

 =

D D
D D

D
D

D



, with ( ) + = .  (5.50) 

The term ( )/+ D D  is thus obtained with minimal computational effort. Of course, this tensor could 

be determined by numerical differentiation (e.g. via finite differences), yet this would entail conducting 

multiple homogenization tasks. The proposed method is therefore superior both from the computational 

efficiency and precision point of view.  

Remark 5.2 Likewise the local constitutive formulation, the approximate macroscopic SRP, ( ),+ D  

and its derivative, ( )/ ,+ D D  are determined simultaneously, i.e., in a single homogenization task. 

Conversely, the evaluation of the approximate macroscopic stress potential, ( ),+   (Eq. (5.45)) and 

its first derivative, ( )/ ,+    through the system in Eq. (5.46) requires the computation of a Jacobian 

tensor, ( , ),D  when using a Newton (or quasi-Newton) method. Since close-form expressions are 

not available, the determination of the Jacobian is restricted to numerical differentiation, which entails 

multiple homogenization tasks to be performed (in theory,  (8 )i  using a forward or backwards finite 

difference scheme and (14 )i  when using a central scheme, where i  is the number of iterations of the 

solution of Eq. (5.46)). It follows that the usage of a stress-based constitutive formulation (Eqs. (5.13)-

(5.14)) to describe the macroscopic plastic response of porous solids for which the stress potential is 

not known in closed-form is not recommended due to the massive computational overhead that such 

formulation entails. Given the adopted kinematic approach to the homogenization problem, one should 

instead use its dual relationship, i.e. the strain-rate-based formulation (Eq. (5.16)), for which the con-

stitutive behaviour of the porous solid is determined in a single homogenization task. However, one 

should keep in mind that such approach does not provide an explicit definition of the boundary between 

elastic and plastic macroscopic domains, ,  (see Eq. (5.13)) , and thus solving Eq. (5.46) (or any other 

equivalent problem) is still necessary in order to determine the plastic loading-unloading conditions in 

the context of elastic-plastic modelling. This subject is explored in more detail in Chapter 7. 

5.4 Computational homogenization 

Unfortunately, the volume integral in Eq. (5.39) (and its particular forms in Eqs. (5.42)-(5.43)) does 

not admit an explicit analytical expression for general 3-D states. This is due to the dependence of the 

trial velocity fields on the azimuthal, [0,2 ],   and polar, [0, ],   coordinates in the surface inte-

grals ( )) .( S r d  This issue holds even in the case there the expression for the local strain rate potential, 

( ), d  is known in closed form (e.g. von-Mises). In order to bypass this problem, it is common practice 

in the literature to restrict the analysis to macroscopic axisymmetric loading conditions in the principal 

basis (coincident with the orthotropic axes), and/or to define new upper bounds ,  ( ) ( )++ + D D  viz. 

using the Cauchy-Schwarz inequality, 2
(

1/2
) ( ) ] ,[S r S r      to simplify the integrands, as implicitly 

done in Gurson (1977), and later proposed in several works (Benzerga and Besson, 2001; Keralavarma 

and Benzerga, 2008, 2010; Morin, Leblond and Kondo, 2015; Stewart and Cazacu, 2011). Evidently, if 
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the integrand cannot be evaluated analytically, is not possible to provide an analytical expression for 

the respective integral. This work falls into the latter case. In fact, as discussed in Chapter 4, the con-

sidered local strain rate potential, ( ), d  (Eq. (4.22)) does not admit a closed-form expression in the 

general case. Accordingly, the homogenization procedure must be performed numerically. The merit of 

this approach is that there is no need for modifying the integrands or to restrict the analysis to axisym-

metry, which in theory should lead to more rigours results and tighter upper-bounds solutions, when 

compared with those based on the Cauchy-Schwarz inequality and/or other, (ideally, but not always 

upper-bound-preserving), approximations. On the other hand, the lack of closed-form expressions is 

disadvantageous from the computational point of view. 3-D numerical integration (alias cubature) nec-

essarily entails the discretization of the RVE, which adds ambiguity to the problem. Thus, robust and 

efficient cubature rules must be employed in order to reduce the additional computational effort asso-

ciated with such fully numerical homogenization framework. The objective is to minimize the number 

of function evaluations (and thus integration points) in Eq. (5.39), while guaranteeing a desired accuracy 

for the results. In the following this task is tackled. 

5.4.1 Determination of the integrals over the spherical surface: ( )S r  

In this subsection the focus is on evaluating the surface averaging integrals in the form of Eq. (5.37). 

Let us first consider the more standard problem of numerical integration over the unit sphere 
2 3 ,  

where 
2 3

2{ : || || 1}.=  =x x  The exact integral of an integrable function f defined on 
2 ,  ( ),I f can 

be approximated by a positive weight quadrature rule based on a finite sum, ( ),NQ f  in the form: 

 ( ) ( ) ( ) ( ) ( )
2

1

N

N i i

i

I f f dA Q f w f
=


 x x x , (5.51) 

where ( )dA x  denotes the differential surface area on 
2 ,  

2 ,i x 0 ,iw   1,..., .i N=  Of particular 

importance are the Gauss-type quadrature rules which integrate exactly all multivariate polynomials of 

maximal degree 0 ,t  i.e.: 

 ( ) ( ) ,NI p Q p=  ( )2
tp  , (5.52) 

where 
2( )t  is the space of all spherical polynomials with degree of at most t, (e.g. Müller, 2006). If, 

additionally, all quadrature weights are postulated to be equal, i.e. 1
1 ... ,N N

w w dA= = =   the quadrature 

rule is said to be of Chebyshev-type. Gauss- and Chebyshev-type quadrature rules are called optimal if 

the identity in Eq. (5.52) is attained for the minimal number of quadrature points, N, for a given poly-

nomial degree t  (Gräf, 2013). It is clear that the integration on the unit sphere can be formulated based 

on extensions of well-known one-dimensional quadrature rules. However, by doing so, one is not mak-

ing use of the symmetry of the integration domain. Indeed, more efficient methods can be achieved by 

applying schemes that consider the specificities of the spherical geometry domain a priori. The set of 

quadrature points N = 2
1{ ,..., }N x x  of a Chebyshev-type quadrature rule on 2  with polynomial 

degree of precision, t, is known as ‘spherical t-design’. A spherical t-design is therefore a particular 

form of Eq. (5.51) with equal weights 4 / ,iw N=  1,..., ,i N=  i.e.: 
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 ( ) ( ) ( )
2 1

4 N

i

i

p dA p
N



=

=




x x x , ( )2
tp  . (5.53) 

Spherical designs were introduced by Delsarte et al. (1977) in the context of algebraic combinatorics 

on spheres and its connection with different areas of mathematics, (viz. number theory, geometry, geo-

metric combinatorics). The link with numerical integration on the sphere was soon made (Bannai and 

Bannai, 2009; Brauchart and Grabner, 2015). The platonic solids can be seen as spherical designs. The 

existence of spherical designs for arbitrary degree t if N is sufficiently large was shown in Seymour and 

Zaslavsky (1984). However, the smallest number N needed to construct a spherical design of degree t, 

i.e. the optimal rule, is still an open subject. It is commonly conjectured that spherical t-designs with 

21
2N t  points do exist, yet there is no proof. In practice, spherical designs must be constructed based 

on numerical computation for large t values. The construction of efficient quadrature rules on 2  has 

been tackled by many authors after the seminal works of Sobolev (1962) and McLaren (1963). Here, 

the algebraic contribution due to Lebedev (1976) and the numerical constructions of Hardin and Sloane 

(2002, 1996), who derived spherical designs up to 21t =  are highlighted. Gräf (2013b, 2013a); Gräf et 

al. (2012) computed designs with high accuracy degree for values of t up to 1000 based on a fast Fourier 

transform (FFT) method. More recently, Womersley (2018, 2017) employed the Levenberg-Marquardt 

method to determine general spherical t-designs for 1,...,180t =  and symmetric (alias antipodal), i.e. 

,N N  − x x  t-designs for odd degrees up to 325. The latter designs are of special interest to 

the present work. The idea is to exploit the symmetry of the antipodal sets to reduce (ideally in half) the 

number of function evaluations in Eq. (5.39) of an even function, 
3: ,f → ( ) ( ),f f= −x x

2 x  

for a given polynomial degree of accuracy, t. The datasets containing the abovementioned numerical-

based designs, including those used in this work, are available on the Web (see the respective citations). 

In order to justify the attractiveness of spherical t-designs in terms of efficiency (in the sense of McLaren 

(1963)) and of the convergence rate the works of Beentjes (2015) and of An and Chen (2016) are men-

tioned. These authors compared the spherical designs with different quadrature rules, including: the 

Gaussian product quadrature, the Lebedev quadrature, and the Monte Carlo quadrature, the bivariate 

trapezoidal rule, and the equal partition area points rule, on a set of test functions with distinct levels of 

smoothness. These authors concluded that the spherical designs generally perform the best, displaying 

the best attenuation to absolute error and convergence rate with increasing number of points. Figure 5.2 

shows examples of spherical t-designs for three accuracy degrees. Note the uniformly spread nature of 

these (no point clustering near the poles, as is the case with Gaussian longitude-latitude grids). 
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Spherical 25-design (N = 328) Spherical 39-design (N = 782) Spherical 79-design (N = 3162) 

   

  (a) (b) (c) 

Figure 5.2 Womersley (2018) symmetric (antipodal) spherical t-designs on 
2

 for three polynomial degrees: 

 (a) 25;t =  (b) 39;t =  and (c) 79.t =  The total number of points, N, necessarily even, is 
21 1

2 2
(1).N t t= + +  

Returning to the problem at hand, following Eq. (5.39), the task is on determining the surface aver-

age tr
( )( ( ) ,S r d x  with   given in Eq. (4.22). Since function   is not a spherical polynomial, i.e. 

2( ),t   one arrives at an approximation of this surface integral when using spherical designs with 

a given degree t. Combining Eq. (5.39), Eq. (5.51) and Eq. (5.53) one obtains: 

 ( )( ) ( )( )tr tr

( )
1

1 N

i
S r

iN
 

=

 d x d x , ( )i S rx  and 
2i i Nx x . (5.54) 

In other words, the surface averaging integral tr
( )( ( ) S r d x  is simply determined by the average of the 

function values 
tr( ( )),i d x  1,..., ,i N=  at the points of a spherical design of radius 2|| || .ir = x  This ex-

pression is valid of all spherical t-design formulations. In view of the even symmetry of the fields con-

sidered in this work (see §5.2.3), i.e. 
tr tr( ) ( ),= −d x d x  working with symmetric (antipodal) point sets, 

sym ,N N  provides a key computational advantage. Assuming 
sym 2

1 /2{ ,..., ,..., }N N N= x x x  with 

/ 2 ,N j j+ = −x x for 1,..., /2,j N=  allows us to effectively half the number of function evaluations of Eq. 

(5.54), i.e.: 

 ( )( ) ( )( )
/ 2

tr tr

( )
1

1

/2

N

i
S r

iN
 

=

 d x d x , ( )i S rx  and sym

2i i Nx x . (5.55) 

It flows that the usage of antipodal spherical t-designs, such as those reported in Womersley (2018), is 

highly recommend. Figure 5.3 represents a proof of concept of the integration scheme proposed in Eq. 

(5.55). Note that the brightened points in Figure 5.3 (a) are not used in the cubature. For the considered 

spherical design formulation these correspond to the sym 21 1
4 4

(1)N t t= + +  points on a single hemi-

sphere (either northern or southern). An example of the local field ( ( )) d x  distribution on the outer 

surface, ,r b=  is represented in Figure 5.3 (b)-(c) in a Cartesian and spherical plot, respectively. These 

figures were obtained by 2-D interpolation of the reduced set of quadrature points ( /2)i   and ap-

plying the appropriate symmetry and periodicity properties. 
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(a) (b) (c) 

Figure 5.3 Principle of determination of the average surface integral over the spherical surface ( ) :S r  (a) antipo-

dal spherical 25-design with only half points considered, 
sym /2 164;N N= =  (b) and (c): integrand distribution 

on the outer RVE surface, ( ),S r b=  for a purely hydrostatic compression loading, ,= −D I  using the Rice and 

Tracey local fields for a CP-Ti matrix (constitutive data in §4.5.2). 

At this point, the question arises as to what is the minimum polynomial degree, t, (or, equivalently, 

the minimum number of points, N) of the design which guarantees a desired accuracy for the integrals 

tr
( )( ( ) .S r d x  Evidently, the answer depends on the integrand, more specifically, on the particular trial 

strain-rate field, 
tr ( )d x  and the complexity of the constitutive relations of the material. In order to 

tackle this problem, a convergence rate analysis is performed. The results are shown in Figure 5.4. For 

the matrix phase, the three orthotropic models presented in Chapter 4 in the context of dense materials 

are recalled. The respective (local) plastic potentials involve three different homogeneity degrees: 2a =  

for the CP titanium (§4.5.2); 6a =  for the AZ31B magnesium alloy (§4.5.3); and 12a =  for the 2090-

T3 aluminium alloy (§4.5.4). The analysis is carried out on a sample of 
410sn =  macroscopic strain-

rate states, D, with random deviatoric components ' [ 1,1]ijD  −  and superimposed macroscopic strain 

triaxiality18, 
8 1[10 ,10 ],DT −  considering the trial strain-rate fields of Rice and Tracey, 

RT ( , )d x D  (Eq. 

(5.20)), on porous solids with porosity 
610 .f −=  For each loading of the sample, a quadrature error, 

( )) / ( ),( ( ) Ne f fI Q I f= −  (c.f. Eq. (5.51)), ( ) ( ( ))f x d x  is determined. The approximations, NQ  

of RT
( )( ( ) S r d x  are determined using the antipodal spherical designs of Womersley (2018) with 

1,...,99,t =  for which [2,4952].N   The ‘exact’ integrals, ,I  are computed using a spherical design 

with 245t =  ( 30138).N =  Figure 5.4 shows the decrease of the average quadrature error with increas-

ing number of quadrature points, N, (or degree t), as well as the associated error bars depicting 2 cor-

rected sample standard deviations, 2 .s  The analysis was carried out for the inner, ( ),S r a=  (Figure 

5.4a) and outer, ( ),S r b=  (Figure 5.4b) surfaces of the RVE. It is concluded that the average quadrature 

error is greater at ( )S r a=  (the variance is however inferior in the latter). This is thought to be explained 

by the increased heterogeneity of the trial strain-rate fields, 
RT ( ),d x  (and therefore of RT

( ) ,( ( )) | )S r xd  

for the spherical surfaces approaching the inner RVE surface, due to the second term of Eq. (5.20). 

Moreover, the material homogeneity parameter, a, has major influence on the quadrature error of the 

surface integrals. This is attributed to the increasing number of local maxima and minima of the 

 
18 The macroscopic strain triaxiality is defined as m vM/ ,DT D D=  where vMD  is the macroscopic von Mises equiv-

alent strain-rate associated with D, 2 2
vM vM3 3

|| || ' : '.D = =D D D   
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integrand, RT
( ) ,( ( )) |S r xd  (as in Figure 5.3b-c), with increasing homogeneity parameter, in particular, 

near the inner surface, ( ).S r a=  For a given accuracy level, one must then select a spherical design 

based on the guidelines of Figure 5.4a, since the average quadrature error on any other surface ( )S r  is 

lower (from the statistic standpoint). For example, in order to fulfil a relative error 
610 ,e −=  in the 

worst-case scenario, i.e. at ( )S r a=  and for porous media with vanishing porosity, viz. 
6(10 ),f −=  a 

minimum number of points 328N = ( 25),t = 782N = ( 39),t =  and 3162N =  ( 79)t =  are required 

for the matrices with 2,a =  6,a =  12,a =  respectively. These designs correspond to those represented 

in Figure 5.4. If one is satisfied with a relative error 510e −=  then the number of points reduces to 

156N = ( 17),t =  380N = ( 27),t =  and 1130N =  ( 47),t =  respectively, which corresponds to about 

half of the computational effort. Regarding computational aspects, it is worth mentioning that the CPU 

time of the surface averaging operations scales quasi-linearly with the number of quadrature points, N, 

(as expected given the sum in Eq. (5.55)). Lastly, it should be noted that the surface average ( )( ) S r s x  

in Eq. (5.48) regarding the local deviatoric stress field is determined using spherical t-designs similarly 

to Eq. (5.54) (or its particular form Eq. (5.55), using Womersley (2018) antipodal sets). Adopting the 

latter, one arrives at a straightforward cubature expression in the form: 

 ( )
/ 2

( )
1

1
( )

/2

N

iS r
iN =

 s x s x , ( )i S rx  and sym

2i i Nx x . (5.56) 

 

 

 

(a)  (b) 

Figure 5.4 Average and two standard deviations of the relative quadrature error of 
RT

( )( ) S r d using spherical 

t-designs with N points for a sample with 
4

s 10n =  random loading states, D, on the boundary surfaces of an 

RVE with 
610 :f −=  (a) ( );S r a=  (b) ( );S r b=  for three orthotropic matrices with tension-compression asym-

metry and varying homogeneity degree, a (see §4.5) and adopting the Rice and Tracey fields. The lower error 

bar is omitted due to the limitations of the logarithmic scale. 

5.4.2 Determination of the 1-D integral over the radial coordinate 

The focus of this subsection is on the determination of the one-dimensional definite integral in Eq. 

(5.39). Given that the integrand, tr
( ) ,( ) ( ( ) S rA r  d x is obtained in a numerical fashion (Eq. (5.55)), this 

integral is restricted to numerical evaluation. The goal here is to optimize the 1-D quadrature, both in 

number of points and location, in order to comply with a given accuracy for the radial integrals while 

minimizing the number of function evaluations (hence surface averaging operations). It is proposed the 
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usage of piecewise polynomial-based integration methods built on a non-uniform partition of the inte-

gration domain, [ , ].r a b  In fact, the hydrostatic expansion fields of the considered local strain-rate 

fields (recall Eq. (5.20) and Eq. (5.30), for the Rice and Tracey and Eshelby-based fields, respectively), 

depend on the radial coordinate, its contribution being proportional to 
3( / )r b r 3( / ) / .a r f=  This is in 

contrast with the uniform extension field, which, by definition, does not depend on any spherical coor-

dinate. Accordingly, for loadings with m 0,D   the gradient of function tr
( )( ( ) S r xd  increases as 

,r a→  since 1/ ,r f →  (in the limit, 0,f →  it becomes an asymptote). Depending on the porosity 

level, f, and the contribution of the hydrostatic part, m ,D  to the overall macroscopic loading, D, a finer 

discretization in this zone may be required. The latter can be quantified by an unitless scalar m /|| || ,D D  

where || ||  denotes any matrix norm, (e.g. the p-norm, 1,2, ).p =   Defining the von Mises norm as 

vM 2|| || 3 ( ),J =   with 1
2 2( ) ' : ',J =D D D  one can adopt the macroscopic strain triaxiality, m vM/ ,DT D D=  

(see Footnote 18) to quantify the abovementioned contribution. Figure 5.5 depicts the typical shape of 

the functions tr
( )( ( ) S r d x  and tr

( )( ) ( ( ) S rA r  d x  for porosities,  f, of different orders of magnitude 

and macroscopic loadings with varying hydrostatic contribution, viz. vanishing, 0,DT →  intermediate, 

2(10 ),DT −=  and dominant, (1).DT =  Note that, in fact, an asymptotic behaviour of  tr
( )( ( ) S r d x  

is found with decreasing porosity and increasing hydrostatic contribution, viz. macroscopic strain tri-

axiality.  

In order to capture the zones of high gradients of the 1-D integrals in Eq. (5.39) and/or Eq. (5.48) a 

three-step discretization method is employed. Firstly, the integration domain [ , ]a b  is uniformly parti-

tioned in 
u
rn  intervals and the functions tr

( )( ( ) S r d x  and tr
( )( ) ( ( ) S rA r  d x  concerning the local SRP 

field are evaluated at the 
u
r( 1)n +  equidistant points. The integer 

u
rn  is given by 

u 1/3
r r( ) ((1 ) ),n f f n= −  

where rn   is a used-defined reference radial discretization parameter. This way, a regular distance 

between points is maintained regardless of the span of the radial domain [ , ]r a b  (otherwise, note that 

the usage of a fixed number of partitions 
u
rn  would result in the decrease of the average distance be-

tween points with decreasing ( ),b a−  i.e. increasing f, and vice-versa). Secondly, each (uniform) parti-

tion is subdivided in 
arc
r ( ),n i  

u
r1,...,i n=  intervals such that the arc length distribution of each curve is 

quasi-uniform, i.e., 
arc max
r 0( ) ( / ) ,i in i l l=   where il  is the arc length between adjacent points, 

max
il

r( / )L n=  is its threshold value and iL l=   the arc-length of the entire curve. In practice, the arc lengths 

are simply approximated using Euclidean norms of a normalized set of points, hence there is no need 

to parametrize the curve. Note that 
arc
r ( )n i  can be less than or equal to unity in which case no points are 

actually added to the original uniformly partitioned discretization. The integrand is then evaluated for 

the new set of radial points, resulting from the arc length distribution method of tr
( )( ( ) S r d x  and/or 

tr
( ) .( ) ( ( ) S rA r  d x  Finally, the above-mentioned arc length-based reparameterization is repeated for 

each component of the local deviatoric stress field counterparts: ( )( ) S r s x  and ( ) .( ) ( ) S rA r  s x  This step 

is motived by anecdotal evidence: while abrupt curvature changes near r a→  are often predicted con-

currently in both the local- SRP and deviatoric stress integrands, these are found at slightly different 

radii, (viz., that of tr
( )( ( ) S r xd  tends to precede that of ( ) ,( ) S r s x  see e.g. the last plot in Figure 5.5b). 

If one intends to determine the macroscopic SRP, ( ),+ D  (Eq. (5.39)) alone, then the abovementioned 
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third radial discretization step (the second arc-length-based reparameterization) is actually redundant 

and can be disregarded. However, if one is also interested in the determination of its first derivative, 

( )/ ,+ = D D (Eq. (5.44)) then the full three-step procedure is highly recommended. Indeed, in view 

of Eq. (5.50), the determination of the stress field integral in Eq. (5.48) with appropriate accuracy is as 

important as the SRP field integral in Eq. (5.39), especially for loadings with vanishing macroscopic 

triaxiality (tr( ) 0).→D  Figure 5.5 represents the sample radial points obtained using the proposed ad-

aptative discretization method. The unique user-defined parameter is the reference radial discretization 

parameter, here taken as r 10.n =  Note that the actual number of points ranges between r [6,17].n   The 

function RT
( )( ( ) S r xd  (right ordinate in Figure 5.5) displays an asymptotic nature near the inner sur-

face of the RVE, hence the arc-length method adds quadrature points in this zone. The point clustering 

near the inner RVE surface, ,r a=  increases with decreasing porosity due to the increasing severity of 

curvature changes. Nevertheless, the radial increments near the outer surface, ,r b=  are similar, being 

controlled solely by rn  (i.e. radial increments of the order r(( / )).b n  This is due to the fact that both 

tr
( )( ( ) S r xd  and ( ) ,( ) S r s x  tend to stabilize as .r b→  An important remark is that, for a given mac-

roscopic loading, D, function RT
( )( ( ) ,S r xd  (and thus RT

( ) ,( (( )) )S rA r  xd  is the same for all poros-

ity values, the difference being its domain, 
1/3[ ,1] .r f b  Moreover, the curves RT

( )( ( ) S r xd  in Figure 

5.5, (i.e. with increasing hydrostatic contribution), have essentially the same shape, for a given  porosity 

value, f, only varying in magnitude. The magnitude of RT
( )( ( ) ,S r xd  largely controlled by the second 

term in Eq. (5.20), ultimately defines the overall shape of the integrand, RT
( )( ) :( ( ) S rA r  xd  for van-

ishing triaxialities ((a)), the integrand was a parabolic shape, i.e., ( )
2( ) ;( S rA r r  d whereas for pre-

dominantly hydrostatic states (Figure 5.5c), the integrand approximates a rectangular hyperbola, i.e., 

( )( ) 1 / .( S rA r r  d  For intermediates triaxialities (Figure 5.5b), an hybrid behaviour is found: hyper-

bolic as ,r a→  and parabolic as .r b→  Indeed, the latter loading type appears to be the most compu-

tational demanding, not only due to the shape change of ( )(( ) S rA r  d  but also due to the presence of 

gradients of the components of the local deviatoric stress tensor ( )( ) S r s x  (not shown here, yet note 

the extra circle markers in Figure 5.5b). In summary, the proposed discretization scheme has a variable 

number of sample points, rn = r r( , )n f n u arc
r r,( 1).in n= +  +  For a given reference discretization param-

eter, r ,n  the total number of points, r ,n  increases with decreasing porosity (no analogous connection 

can be drawn regarding the triaxiality). In fact, the more computational demanding case is that of ex-

tremely low porosity values, viz. 
6(10 ),f −=  characteristic of undamaged metallic materials. Given 

its adaptative nature, such discretization scheme circumvents the need for ad hoc discretization rules 

based on the RVE geometry and loading state. 
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(c) 

Figure 5.5 Principle of determination of the 1-D integrals over the radial direction (Eq. (5.39)): adaptative dis-

cretization based on the porosity and loading with varying macroscopic strain-rate triaxiality (a) 
610 ;DT −=  (b) 

210 ;DT −=  (c) 1.DT =  The point markers denote the reference uniform discretization r( 10).n =  The square and 

circle markers indicate the points added based on the quasi-uniform arc-length criterion on the local SRP and 

deviatoric stress tensor fields, respectively. Rice and Tracey fields are adopted and along with a CP-Ti matrix 

(constitutive data in §4.5.2). The right ordinate labels of the first four plots of (a) were omitted (the relative vari-

ations of 
RT

( )( ( ) S r xd  are in the order 
10 8 6 4(10 ,10 ,10 ,10 ),− − − −

 respectively, i.e. virtually straight lines). 

Given the set of rn  data points ( , ),i ir y  where 2 tr
( ) ,4 ( ( )

iS ri iy r  =  d x  and 
r0 1 1... ,na r r r b−=    =  

a spline 
2( ) [ , ]r C a b   is constructed based on piecewise polynomials of degree 3, i.e., for each interval 

1[ , ],i ir r−  one has: 
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r r r

1 0 1

1

1 2 1

( ),              

...

( ) ( ),       

...

( ),   

i i i

n n n

P r r r r

r P r r r r

P r r r r

 −

− − −

 



=  

  

, with 
2 3( ) ,i i i i iP r a b r c r d r= + + +  r1,..., 1.i n= −  (5.57) 

The r4( 1)n −  polynomial coefficients ( , , , )i i i ia b c d  are determined solving a tridiagonal linear equation 

system based on r4( 1)n −  boundary conditions: (i) 1 1( )i i iP r y− −=  and ( ) ,i i iP r y=  r1,..., 1;i n= −  (ii) 

' ( )i iP r = '
1( )i iP r+  and  

'' ''
1( ) ( ),i i i iP r P r+= r1,..., 2;i n= −  (iii) the not-a-knot endpoint condition (i.e. the third 

derivative of the cubic spline is continuous at 1r  and 2 :
rnr −  

''' '''
1 1 2 1( ) ( )P r P r= , ''' '''

2 2 1 2( ) ( )
r r r rn n n nP r P r− − − −=  (De 

Boor, 1978). Once the interpolation spline is defined, one can compute an approximation of the 1-D 

integral in Eq. (5.39) as: 

 ( ) ( ) ( )2 tr

( )

1 1
4 ( )

bb

S r
a a

r dr r dr
V V

  + = 


 
 

D d x , (5.58) 

where the exact integration of the piecewise cubic polynomials is trivial and can be performed either 

analytically using the integration expressions for polynomials or via a Gauss-type quadrature rule (cf. 

Eq. (5.51) and Eq. (5.52)). In practice, the spline construction is performed using build-in optimized 

libraries routines, e.g., the spline (or interp1) function within MATLAB® platform, and the data 

fitting family of routines in Intel® Math Kernel Library (MKL) for Fortran (e.g. dfdinterpolate1d 

and dfdintegrate1d). Analogously to Eq. (5.58), an approximation of the 1-D integral in Eq. (5.48) 

is determined based on the integration of cubic splines of the (non-symmetric) components of the inte-

grand 2
( ) .4 ( ) S rr  s x   

A convergence rate analysis is now performed regarding the reference discretization parameter, r ,n  

implicitly entering the quadrature rule in Eq. (5.58). A quadrature error, ( )) / ( ),( ( ) Ne f fI Q I f= −  (c.f. 

Eq. (5.51)), tr
( ) ,( ) ( ) ( ( ) S rf A r  x d x  is determined for each approximation by varying the discreti-

zation parameter, r [4,50].n   The ‘exact’ integrals, ,I  are determined setting r 200.n =  The 1-D inte-

grands are evaluated using a very refined surface discretization, viz. spherical 201-design ( 20304),N =  

in order to minimize error propagation an ensure that the obtained quadrature errors depend on the radial 

discretization alone. The analysis is carried out for the same matrix materials, pseudo-random macro-

scopic loading sample and local velocity fields type as in the equivalent analysis in subsection §5.4.1 

(recall Figure 5.4 and its concerning text). Figure 5.6 shows the obtained results for porous solids with 

porosity, 
610f −=  (Figure 5.6a), and 

210f −=  (Figure 5.6b). It is concluded that the average quadrature 

is practically independent of the porosity degree. This highlights the robustness of the developed adap-

tative discretization scheme. In contrast with the findings in Figure 5.4 regarding the quadrature error 

of the surface integrals, the matrix constitutive model, namely the material homogeneity parameter, a 

as a minor influence on the convergence rate of the radial integrals. Depending on the desired degree 

of accuracy, the radial discretization parameter, r ,n  should be chosen based on the guidelines of Figure 

5.6. For example, in order to satisfy a relative error 
610 ,e −=  a discretization with at least r 16n =  must 

be selected, whereas for an relative error 
510 ,e −=  it suffices r 10.n =  It should be emphasised that rn  

https://www.mathworks.com/help/matlab/ref/spline.html
https://www.mathworks.com/help/matlab/ref/interp1.html
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/data-fitting-functions/data-fitting-computational-routines/df-interpolate1d-df-interpolateex1d.html#df-interpolate1d-df-interpolateex1d
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/data-fitting-functions/data-fitting-computational-routines/df-integrate1d-df-integrateex1d.html#df-integrate1d-df-integrateex1d
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is not actually the number of quadrature points. As previously mentioned, the total number of points, 

r ,n  depends on the span of the radial domain and, possibly, on the arc-length-based adaptative refine-

ment method. Figure 5.7 illustrates this observation. The results revealed that the total number of quad-

rature points is virtually independent of the material, thus only one curve, (that of the CP-Ti) is shown 

in Figure 5.7. Regarding computational aspects, it is concluded that the CPU time of the radial averaging 

operation scales quasi-linearly with the total number of quadrature points, r ,n  since the determination 

of the spline coefficients (see Eq. (5.57)) and the polynomial integration tasks have a negligible CPU 

time when compared with that expended in the computation of the local fields. 

 

 

 

 

(a)  (b) 

Figure 5.6 Average and two standard deviations of the relative error of ( )+ D  (Eq. (5.39)) using a radial dis-

cretization parameter ,rn  for a sample with 
4

s 10n =  random loading states, D, and porosity values: (a) 
610 ;f −=  (b) 

210 .f −=  The analysis is carried out for three orthotropic matrices with tension-compression 

asymmetry and varying homogeneity degree, a (see §4.5) and adopting the Rice and Tracey fields. The lower 

error bar is omitted due to the limitations of the logarithmic scale. 

 

 

Figure 5.7 Averaged and two standard deviations of the total number of points, r r r( , , ),n n n f= D  employed in 

the radial quadrature of ( )+ D  (Eq. (5.39)) for a sample with 
4

s 10n =  random loading states on a CP-Ti ma-

trix (constitutive data in §4.5.2). The dashed line has unitary slope r r( ).n n=  
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5.5 Numerical implementation 

The focus of this subsection is on the algorithmic aspects of the computational homogenization task 

described in §5.4. In the following, Voigt pseudo-vectorial and matrix notations are adopted on second 

order and forth order tensors, respectively, as well as the pentadimensional representation of symmetric 

deviatoric tensors (see Appendix B). As elucidated previously, one can distinguish two types of prob-

lems: (i) given a macroscopic strain-rate tensor, D, determine its respective potential value, ( ), D  and 

its first derivative, ( )/ ; D D  and (ii) given a macroscopic stress tensor ,  determine its respective 

potential value, ( ),   and its first derivative, ( )/ .    Henceforth one refers to the ‘direct problem’ 

to denote the former and to ‘inverse problem’ to denote the latter. Naturally, these are duals. The naming 

convention is explained by the kinematic, rather than static, homogenization approach adopted in this 

work (it would be the opposite otherwise). The algorithms for the implementation of both problems are 

represented in pseudo-code format in: Box 5.1 and Box 5.2 for the direct problem; and Box 5.3 and Box 

5.4 for the inverse problem. These apply for both the Rice and Tracey (Eq. (5.20)) and the Eshelby-type 

trial velocity fields (Eq. (5.30)). Note that for the latter an additional computational task is in order due 

the infimum in Eq. (5.30), viz. the determination of the deviatoric part of the eigenstrain-rate tensor, 

'.*
d  For details on the determination of this kinematical tensor refer to Appendix E. As mentioned in 

§5.3.2, solving the inverse problem (Box 4.3) implies determining a Jacobian matrix, which renders it 

more computationally demanding (a comparison of the relative computational cost is later presented in 

subsection §6.3). A similar problem holds regarding the determination of the eigenstrain-rate tensor for 

the Eshelby-type fields (see Appendix E). In practice, the associated computational overhead of these 

can be alleviated by adopting computational strategies, e.g.: (i) updating the Jacobian matrix in explicit 

fashion, rather than fully computing it in every iteration; and (ii) using a cruder RVE discretization to 

get an approximate solution, only then to be corrected by the actual (more refined) one. Fortran 90 code 

for the algorithms described here is provided in Appendix F. 
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Box 5.1 Computational homogenization scheme: the direct problem. 

0. Inputs: 
(5){ , },D d

*
{ , },f b  

( ) ( ){ , , }n nk aL   

1. Define the RVE discretization parameters 

▪ Load the spherical t-design with N points: 
2

1{ ,..., }N NX = x x  

▪ Set the radial discretization parameter, rn  

2. Reference solution  

▪ Uniform partition of the radial coordinate, u
rref 0{ ,..., } [ , ]nr r r a b=   

▪ Compute local fields in the surfaces of refr : CALL Box 5.2 

▪ Compute reference surface averages: ( ) 1( ) ( ) / ,
i

N
S r j j N =  =x x  

u

r1,..., ni =  % (Eq. (5.54)) 

▪ Compute reference 1-D radial integrand:  
2

( )4 ,( )
iSi rr   x  

u

r1,..., ni =   

3. Arc-length based reparameterization 

▪ Determine approximate arc-lengths of the set: ( )i

2{ , ( ) },4
ii S rrr   x  

u

r1,..., ni =  

▪ Determine number of new partitions for each 1[ , ] :i ir r +  
arc

r ( )n i   

if 
arc

rsum( ( )) 0n i   

    ▪ Define new points, arc
rarc 0{ ,..., } ] , [nr r r a b=   

    ▪ Compute local fields in the surfaces of arcr : CALL Box 5.2 

    ▪ Update surface averages: ( ) 1( ) ( ) / ,
i

N
S r j j N =  =x x  

u arc

r r1,..., ( 1)n ni = + +  % (Eq. (5.54)) 

    ▪ Update 1-D radial integrand: 
2

( )4 ,( )
iSi rr   x  

u arc

r r1,..., ( 1)n ni = + +  

end if  

4. Deviatoric stress integrand 

▪ Compute surface averages: ( ) 1( ) ( ) / ,
i

N
S r j j N=  =x xs s  

u arc

r r1,..., ( 1)n ni = + +  

▪ Compute 1-D radial integrand: 
u arc

r r(
2

)4 )( ) 1,..., (,  1
iSi r

n nir  = + +xs   

▪ Repeat Step 3 based on the arc-lengths of the set: ( )i

2{ , ( ) },4
ii S rr r  xs  

u arc

r r1,..., ( 1)n ni = + +  

5. Spline construction and integration 

▪ Construct spline for the SRP: ( ) )
2

(( )4
ii S rr r    x  % (Eq. (5.57)) 

▪ Construct spline for the stress components: ( ) ( )
2 ( )4

iri Sr r   xs s   

▪ Integrate splines:  (1/ ) ( )
b

a
V r dr

+ =   and  ' ( / ) ' (1/ ) ( )
b

a
V r dr+=   = D s  % (Eq. (5.48)) 

6. First derivative 

▪ mtr( ) 3 sum( (1: 3))D= = DD  

▪ Hydrostatic part: m ( ' )/(3 )mD +=  − D  % (Eq. (5.50)) 

▪ Normalized macroscopic Cauchy stress tensor:  
T

m/ ' 1 1 1 0 0 0+=   = +D   

7. Output: 

  if (Rice and Tracey)  

       { ( ), ( )/ }+ +  D D D  % (Eq.(5.39))  

  elseif (Eshelby)  

       
(5) (5){ ( , ), ( , )/ }  D d D d D

* *
 % (Eq. (5.41)) 

  end  
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Box 5.2 Determination of the local fields in the RVE. 

0. Inputs: 
(5){ , },D d

*
{ , },f b  

( ) ( ){ , , }n nk aL  r{ , , }N in r  

▪ Transform the spherical t-design NX  into spherical coordinates ( , ),j j   1:j N=  

1. Determine microscopic/local fields in the cubature points 

for r1:i n=   % (loop over the radial set [ , ],ir a b r1,..., )ni =  

    ▪ Spherical surface ( )iS r      

    for 1:j N=   % (loop over the spherical design points: 
2

1{ ,..., } )N N= x x  

         ▪ Compute local strain-rate fields:  

              if (Rice and Tracey)  

                     CALL Box C.1: 
tr ( , , , )i j jr  d Dd  % (Eq. (5.20)) 

              elseif (Eshelby)  

                    CALL Box D.1: 
tr (5)( , , , , )i j jr  d D d

*
d  % (Eq. (5.30)) 

              end  

         ▪ Compute local SRP and its first derivative 

               CALL Box 4.1:  
( ) ( )( , , , )n nk a d L  and / d  

              
( ) ( )( , ) ( , , , )n ni j k a = d L   % (Eq. (4.22))              

                    ( , ,:) /s i j =  d  

    end 

end  

2. Output:  { , },ij ijks  r1,..., ,i n=  1,..., ,j N=  1,..., 6k =  
 

 

Box 5.3 Determination of the macroscopic stress potential and its first derivative: the inverse problem 

0. Inputs: , { , },f b  
( ) ( ){ , , }n nk aL  

1. Solve the system of equations 

▪ Set initial guess 0 0( , ), 
D  and relative convergence tolerances for the system: 

fun x

tol tol{ , }  
 

▪ Solve the system in Box 5.4 for ( , ), 
D  with a quasi-Newton method, such that: 

 
(1:6) 1 1 fun2

tol

1

( , )
,

k k

k

F 






+ +



+

 
 
 
 

D
  and ( )fun

(7) 1 1 tol( , )k kF  

+ + D   and  
1 x2

tol

2

k k

k


+ 

 −
 
 
 

D D

D
,  

  where k is the number of the iteration and ( : )I JF  denotes the I to J components of vector F  

with 1 6.I J     

2. Output: 1( ) k


+  , 1( )/ k+   D   
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Box 5.4 Error function vector of the inverse homogenization problem. 

0. Inputs: { , , }, 
D { , },f b  

( ) ( ){ , , }n nk aL  

1. Perform the direct homogenization problem 

▪ Determine ( )+ D  and ( )/+ D D  

if (Rice and Tracey)  

        CALL Box 5.1 % (Eq.(5.39)) 

elseif (Eshelby)  

        CALL Box E.1 % (Eq. (5.41)) 

end  

2. Construct the error pseudo-vector function  

▪ 
( )( )/

( ) 1

  +

+

 −   
  

 −  

D D
F

D


 

3. Output: F  
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Chapter 6. 

 

Assessment of the proposed numerical 

potentials 

The objective of this chapter is to compare the numerical-based potentials developed in Chapter 5 with existing 

analytical criteria and to assess their accuracy through numerical limit analyses using FE unit cell computations. 

An application example is initially presented in order to discuss some general trends of the developed macroscopic 

potentials when describing the behaviour of porous solids whose matrices display both tension-compression asym-

metry and anisotropy. Next, the predictions using the Rice and Tracey and the Eshelby-type trial fields are com-

pared considering isotropic matrices whose microscale plastic behaviour is described by quadratic and non-quad-

ratic yield functions accounting for different tension-compression yield strength ratios. To close, remarks on the 

computational performance of the numerical homogenization are provided.  

6.1 Application example: AZ31B magnesium alloy matrix 

In order to discuss some features of the developed model, macroscopic potentials for porous solids 

are now evaluated considering the initial yield response of an AZ31B-O (Mg+3%Al+1%Zn) Mg alloy 

for the matrix. The matrix plastic behaviour is adopted following the experimental and constitutive data 

reported in Tari et al. (2014), presented in Figure 4.3 and Table 4.3 (§4.5.3), respectively, in the context 

of dense materials. The plastic behaviour of the matrix is thus described by the non-quadratic form of 

the Plunkett et al. (2008) orthotropic yield criterion (Eqs. (4.19)-(4.21)) using three transformations and 

a homogeneity parameter 6.a =  Figure 6.1 represents the unitary isovalue loci of the respective mac-

roscopic stress potential (SP), 
RT ( , ),f   (coincident with the macroscopic yield surface, Eq. (5.45)), 

and the macroscopic strain-rate potential (SRP), 
RT ( , ),f D  based on the Rice and Tracey formulation 

(Eq. (5.42)), for porous solids with varying porosity, viz. 
3 2 1{10 ,10 ,10 }.f − − −=  The surfaces are repre-

sented in a cylindrical coordinate system coaxial with the hydrostatic axis (recall Footnote 13, p.83). 

Figure 6.1 shows that the SP isosurface contracts along the hydrostatic axis as porosity increases, evolv-

ing from a capsule-like shape to an ellipsoidal one. Conversely, the conjugated SRP locus expands along 

the hydrostatic axis and develops an oblate ellipsoidal shape departing from a penny-shape one. More-

over, note that the macroscopic potentials exhibit asymmetric hydrostatic limits (more easily perceived 

in the SP loci). This is a result of the tension-compression asymmetry at the local (i.e. matrix), level, as 

shown in Stewart (2009) and Cazacu and Stewart (2009) in the context of isotropic matrices.  
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 Macroscopic stress potential (SP), 
RT ( , )f    

 
310f −=  

210f −=  
110f −=   

    

 

     

 Macroscopic strain-rate potential (SRP), 
RT ( , )f D   

 
310f −=  

210f −=  
110f −=   

               

 

 
(a) (b) (c) 

 

Figure 6.1 3-D representation of the macroscopic stress potential (Eq. (5.45)) and strain-rate potential (Eq. 

(5.29)) unitary isovalue surfaces in their respective principal space for porous solids with porosity: (a) 
310 ;f −=

(b) 
210 ;f −=  (c) 

110 ,f −=  with a AZ31B Mg alloy matrix (constitutive data after Tari et al. (2014)). Rice and 

Tracey local fields are considered. A cylindrical coordinate system coaxial with the hydrostatic axis is adopted. 

For illustrative purposes, the height coordinate (hydrostatic part) is not at scale with the radial (deviatoric part) 

one (2.5:1 ratio for the SP loci and 1:2.5 ratio for the SRP loci). 

With the aim of better analysing the features of the developed potentials, Figure 6.2 represents π-

plane (alias deviatoric plane) projections of the isovalue surfaces in Figure 6.1. Cross-sections of con-

stant hydrostatic value are plotted based on the fractions {0,0.25,0.5,0.75,0.985}if =  of the maximum 

and minimum hydrostatic values. Figure 6.2 shows that, as the porosity increases, the SP locus also 

contracts on the deviatoric plane. As expected from the duality property, the opposite holds for the SRP 

locus. More crucially, the shape of the π-plane projections changes drastically along the hydrostatic 

axis, departing from a shape reminiscent to that of the dense phase and resolving to a smoother, rounder 

one (i.e., approaching isotropy) near the poles. Note that existing closed-form criteria for porous solids 

cannot capture this shape changing behaviour as the underlying shape (but not size) in the purely devi-

atoric plane is maintained throughout the hydrostatic axis. Moreover, one can observe in Figure 6.2 that 

the shape of the cross-sections near the extreme hydrostatic values is about the same, irrespective of the 
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porosity. In contrast, porosity plays a key role on the rate of the shape change along the hydrostatic axis: 

the greater the porosity, the sooner, hence smoother, the shape change takes place, and vice versa. Sim-

ilar trends were documented in the literature regarding isotropic matrix behaviours, viz. Revil-Baudard 

and Cazacu (2014) who performed a numerical homogenization study considering the Tresca and von 

Mises matrix behaviours; and Dæhli et al. (2019) who conducted FE limit analyses on non-quadratic 

isotropic matrices based on the Hershey-Hosford yield criterion. However, in contrast to the previous 

numerical studies, a novel result is that: 

Remark 6.1 If the matrix is orthotropic, the loci of the extreme hydrostatic values (minima and maxima) 

of the respective macroscopic potentials is not on the hydrostatic axis. 

 

Macroscopic stress potential (SP), 
RT ( , )f   

 

  
310f −=     

210f −=    
110f −=  

   
   

Macroscopic strain-rate potential (SRP), 
RT ( , )f D  

 

  
310f −=     

210f −=     
110f −=  

   

(a) (b)  (c) 

Figure 6.2 π-plane representation of the macroscopic stress potential (Eq. (5.45)) and strain-rate potential (Eq. 

(5.29)) unitary isovalue surfaces in their respective principal space for porous solids with porosity: (a) 
310 ;f −=

(b) 
210 ;f −=  (c) 

110 ,f −=  with a AZ31B Mg alloy matrix (constitutive data after Tari et al., 2014). Rice and 

Tracey local fields are considered. Cross sections with varying hydrostatic fraction are plotted, with increments 

of 25% with respect to the tensile and compressive hydrostatic extreme values. The location of the latter is rep-

resented with markers. A polar-like plot is adopted, where the radial grid lines represent multiples of the respec-

tive unitary von Mises potential. 
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Figure 6.2 depicts this result with the marker points. This means that, for an orthotropic matrix, a purely 

hydrostatic macroscopic stress on the porous solid does not lead to a purely hydrostatic macroscopic 

strain-rate, and vice versa. Such behaviour cannot be replicated with existing closed-form orthotropic 

porous criteria, e.g., Benzerga and Besson (2001); Stewart and Cazacu (2011), which further motivates 

the usage of a numerical homogenization scheme. 

6.2 Evaluation and validation 

In the following, the developed approximate macroscopic potentials are evaluated for isotropic ma-

trices whose microscale plastic behaviour is described by quadratic and non-quadratic yield functions 

accounting for different tension-compression yield strength ratios: no tension-compression asymmetry 

T C
1 1( / 1),  =  yield strength in tension greater than in compression 

T C
1 1( / 1),    and yield strength in 

tension lower than in compression 
T C
1 1( / 1),    where 

T
1  and 

C
1  are the uniaxial tensile and com-

pressive yield stresses, respectively. The choice of restricting this subsection to isotropic conditions is 

justified by the large number of anisotropy coefficients (recall Eq. (4.20)) regarding general orthotropy, 

which would render the analysis untraceable. Nonetheless, the key observations of this subsection hold 

for the orthotropic case. 

6.2.1 Approximate plastic potentials: evaluation and discussion 

Nine matrix materials are considered based on the isotropic form of the microscale criterion (Eqs. 

(4.19)-(4.21) with a single transformation , ( )),= =  by the combination of three homogeneity 

degrees: {2,8,12}a =  and three strength-differential (SD) ratios: 
T C
1 1/  = {1,  1.21, 0.83}.  These ratios 

are adopted following Hosford and Allen (1973) who showed that for a fully-dense body-centred cubic 

(bcc) polycrystal whose constituent grains deform exclusively by {112} 111   twinning19 the macro-

scopic yield stress in uniaxial tension is greater than in compression with a SD ratio 
T C
1 1/ 1.21;  =  

and, conversely, for a fully-dense face-centred cubic (fcc) polycrystal deforming at the single-crystal 

level solely by {111} 112   twinning, the reciprocal ratio holds, i.e., 
T C
1 1/ 0.83  =  (see also Lebensohn 

and Cazacu (2012) on an assessment of these values). In the isotropic case, the (single) tension-com-

pression parameter, k, entering the microscale criterion has a clear physical meaning and can be explic-

itly determined based on the SD ratio and homogeneity degree, i.e., 
T C
1 1( / , )k k a   (see Cazacu et 

al. (2006) for its expression). 

Figure 6.3 and Figure 6.4 represent π-plane projections of the unitary macroscopic stress potential 

isosurfaces for porous media with porosity 
210f −=  whose matrix behaviour is defined by each of the 

nine materials described above, as predicted by: the Rice and Tracey (Eq. (5.42)) and the Eshelby-type 

(Eq. (5.43)) formulations, respectively. The results are organized in a two-input table format, varying 

the homogeneity degree, a, row-wise and the SD ratio, 
T C
1 1/ ,   column-wise. Cross-sections of con-

stant hydrostatic value are plotted based on the fractions {0,0.75,0.90,0.985}if =  of the hydrostatic 

tensile and compressive extreme values. As expected, the presence of a void phase induces dependence 

 
19 The notation { }  and     denotes the twinning plane and direction type, respectively. 
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on all invariants of the macroscopic stress state20: 1 2 3( , , ).I J J 
 This holds true even for the limit case of 

a 2 -j plasticity21 model at the microscale, viz., the von Mises criterion (see Figure 6.3 (a)), corroborating 

with the results of Cazacu and Revil-Baudard (2015); Revil-Baudard and Cazacu (2014). Naturally, if 

the microscale constitutive model is 3 -j dependent, then such dependence automatically conveys into 

the macroscale, even for purely deviatoric states (e.g. Figure 6.3 (b-c)). More crucially, it must be em-

phasized that, for both trial field formulations, such 3 -J 
dependence is not static. Indeed, it is shown 

that both predict a strong shape changing behaviour along the hydrostatic axis. Moreover, this shape 

change follows similar trends in both formulations (cf. Figure 6.3 and Figure 6.4): with increasing hy-

drostatic fraction, the macroscopic yield loci evolve from a shape that is identical to that of the yield 

locus of the respective dense phase to a nearly circular shape regarding predominant hydrostatic states, 

i.e. near the poles of the isosurface. Moreover, both formulations predict that the extreme hydrostatic 

values are along the hydrostatic axis. This is in clear contrast to the case of an orthotropic matrix (cf. 

Figure 6.2), and shows that, if the matrix is isotropic, a purely hydrostatic stress on the porous solid 

results in a purely hydrostatic strain-rate, and vice-versa, irrespective of the homogeneity degree, a, and 

tension-compression asymmetry effects, 
T C
1 1/ ,   active at the microscale. Note however that the hy-

drostatic macroscopic stress (and strain-rate) limit values on the hydrostatic axis actually depend on the 

latter. This statement will be substantiated in ensuing figures, yet, in advance, it is disclosed that all 

porous solids in Figure 6.3 and Figure 6.4 have the same hydrostatic compressive limit, but not the same 

hydrostatic tensile limit, which, in fact, depends on (and only on) the matrix SD ratio. A close compar-

ison of Figure 6.3 and Figure 6.4 shows that the isosurfaces of the Eshelby type tend to magnify void-

induced 3J 
 effects (i.e., angular dependence) of the porous aggregates when compared to those of Rice 

and Tracey (e.g., compare the isosurfaces in Figure 6.3a and Figure 6.4a, regarding the von Mises ma-

trix). This is explained by the additional degrees of freedom available in the former homogenization 

approach. It should be remarked however that the fact that 3J 
 effects are amplified does not entail that 

the respective approximate potential is an improved estimate of the exact potential (Eq. (5.9)). Indeed, 

in a following subsection, the opposite effect is encountered, since the Eshelby-type fields do not guar-

antee the rigorous upper-bound nature of the homogenization analysis (recall Remark 5.1, p.102). In 

any case, while hardly perceptible, the cross sections of the yield loci for the Eshelby-type formulation 

(Figure 6.4) are, in fact, interior to those of the Rice and Tracey counterpart (Figure 6.3), the lone ex-

ception being for purely hydrostatic loadings, for which the surfaces intercept (as later shown in Figure 

6.7). 

In the following, the FE limit analysis scheme employed to assess the accuracy of the macroscopic 

potentials of Figure 6.3 and Figure 6.4 is briefly described. 

 

 
20 Recall that in π-plane projections, the radial coordinate is related to 2 ,J 

 whereas the angular azimuthal coordi-

nate is related with 3 .J 
 The dependence on 3J 

 is also referred in the literature as “Lode angle dependence”. 
21 Majuscule invariants refer to the macroscale model, whereas minuscule invariants to the microscale counterpart. 



 

 

130 

 Rice and Tracey-based macroscopic stress potential, 
RT ( , )f    

 
 

 

 
2a =  8a =  12a =   

T

1

C

1

1



=  

   

 

 
(a) (b) (c) 

 

T

1

C

1

1.21



=  

   

 

 (d) (e) (f)  

T

1

C

1

0.83



=  

   

 

 (g) (h) (i)  

Figure 6.3 π-plane representation of the macroscopic stress potential (Eq. (5.45)) unitary isovalue surfaces using 

the Rice and Tracey trial velocity fields (Eq. (5.20)) for porous media with porosity 
210f −=  and an isotropic 

matrix with a homogeneity degree {2,8,12}a =  and SD ratio: (a)-(c) 
T C

1 1/ 1;  = (d)-(f) 
T C

1 1/ 1.21;  =  (g)-(i) 
T C

1 1/ 0.83.  = Cross sections of varying hydrostatic fraction, {0,0.75,0.90,0.985}if = of the purely tensile and 

compressive hydrostatic values are represented. The items are organized in a two-input data table format. 
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 Eshelby-based macroscopic stress potential, 
E ( , )f    

 
 

 

 
2a =  8a =  12a =   

T

1
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1

1



=  
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1
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
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 (d) (e) (f)  
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


=  

   

 

 (g) (h) (i)  

Figure 6.4 π-plane representation of the macroscopic stress potential (Eq. (5.45)) unitary isovalue surfaces using 

the Eshelby-type trial velocity fields (Eq. (5.30)) for porous media with porosity 
210f −=  and an isotropic ma-

trix with a homogeneity degree {2,8,12}a =  and SD ratio: (a)-(c) 
T C

1 1/ 1;  = (d)-(f) 
T C

1 1/ 1.21;  =  (g)-(i) 
T C

1 1/ 0.83.  = Cross sections of varying hydrostatic fraction, {0,0.75,0.90,0.985}if = of the purely tensile and 

compressive hydrostatic values are represented. The items are organized in a two-input data table format. 
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6.2.2 Overview of the unit cell finite element model 

The criteria in Eqs. (5.42)-(5.43) are based on a particular trial velocity field. It is crucial to assess 

to what extent these fields represent the actual kinematics of the porous solid. In FE-based unit cell 

computations of porous media the actual microstructural features (viz., void boundaries, )  are dis-

cretized and boundary conditions are imposed in order to represent the full material (e.g., periodic). The 

matrix material is assumed (elastic)-plastic with the plastic response governed by a given stress (or 

strain-rate) potential. The main idea is that, since the minimization of the macroscopic plastic dissipa-

tion (Eq. (5.9)) is performed over a larger set of kinematically admissible velocity fields (those com-

plying with local equilibrium conditions, i.e. div( ( )) 0,=σ x \ ), x  the FE solution is a better es-

timate for the minimization problem, and thus can be used to assess the accuracy of analytical criteria 

established on some postulated trial velocity fields (Stewart, 2009). 

In this work, the unit cell is taken as a hollow sphere, identical to the RVE adopted in the envisioned 

homogenization problem (§5.2.1). While such unit cell cannot represent a true periodic material struc-

ture (in the sense of space-filling), the main goal here is to compare the postulated trial fields with those 

predicted by the FE analysis for the same RVE geometry, rather than studying the underlying microme-

chanical features of porous media of at the mesoscale, which, indeed, ought to benefit from taking into 

account a more realistic periodic microstructure (e.g., the cubic unit cell). Recently, Dæhli et al. (2019), 

conducted a numerical study assessing the effect of the unit cell geometry, viz. cubic and spherical, on 

the FE limit analyses results, and showed that the obtained yield loci are qualitatively similar, yet the 

cubic unit cell model always provides lower plastic limit loads than the spherical counterpart, i.e., the 

hollow sphere model is an upper-bound of true periodic microstructures. In any case, the hollow sphere 

unit cell adopted in the following can be thought as an approximation of a periodic assemblage of cubic 

unit cells. 

Full three-dimensional FE computations are conducted. The cell is subjected to homogeneous strain 

boundary conditions, i.e.: 

 ( ) =u X EX ,  X  (6.1) 

where u  is the displacement vector with respect to the undeformed configuration, rb=X e  is the initial 

position vector on the outer surface, E  the imposed macroscopic strain tensor and   the outer bound-

ary of the spherical cell domain, ,  while the void surface is traction-free. If one restricts the analysis 

to: (i) macroscopic strain tensors, ,E  having the principal directions coincident with those of the spher-

ical cell, i.e. 11 1 1( )E= e e 22 2 2( )E+ e e 33 3 3( ),E+ e e  and (ii) to isotropic matrices; then symmetry 

conditions in the three mutually orthogonal planes apply and therefore one-eighth of the unit cell can 

be considered to represent the entire model, as illustrated in Figure 6.5. The mesh generation is auto-

mated and depends on the prescribed porosity value, as described in the following. Recall from §5.4.2 

that an asymptotic dissipation near the void is predicted with decreasing porosity. Accordingly, a radial 

discretization based on an exponential decay expression is employed: ,n
nr ae −=  

FE0,..., ,rn n=  where 

  is the decay constant and 
FE
rn  the total number of radial partitions to be considered. The boundary 
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condition 
FE( )n rr n b= , allows one to determine the decay constant as ( ) e1

r3
log / ,f n =  and, in the line 

with the discretization scheme in §5.4.2, 
FE ( )rn f = 1/3 FE((1 ) ) ,rf n−   where 

FE
rn   is user defined. 

The spherical unit surface, 
2 ,  is partitioned in sN  four-node elements of quasi-equal area, 2 ,jT 

s1,..., ,j N=  s 2
1 ,N

j jT=   and extruded to each of the 
FE( 1)rn +  radii ,nr  

FE0,..., ,rn n=  in order to gen-

erate a 3-D mesh with 8-node hexahedral (tri-linear) elements with a total of 
FE

s( )rn N  elements. A mesh 

refinement study was conducted beforehand to ensure converged results. The details of the mesh con-

vergence study are omitted here. The discretization parameter pair 
FE

s( , ) (30,432)rn N =  is satisfactory 

for envisioned numerical computations. Figure 6.6 shows the generated FE meshes of the one-eighth 

spherical cell for the porosity values {0.01,0.05,0.1},f =  and contains 10368, 8208, 6912 elements and 

11725, 9380, 7973 nodes, respectively. The computations are performed using an academic FE code 

(DD3IMP,  Menezes and Teodosiu, 2000; Oliveira et al., 2008) in a quasi-static elastoplastic framework, 

using an updated Lagrangian and a fully-implicit time integration scheme. A selective reduced integra-

tion (SRI) technique is employed, with eight and one integration points for the deviatoric and hydro-

static parts of the velocity field gradient, respectively. Notice that such updated Lagrangian elastoplastic 

FE framework is, in theory, incompatible with the upper-bound limit analysis framework, which, as 

shown in §5.1, is based on the small strain theory and concerns rigid-plastic materials. In order to bypass 

these limitations, two assumptions are made: (i) the macroscopic homogeneous strain tensor, ,E  is 

scaled by a factor 
6 4min(10 ,10 ),f − −=  thus the reference and the current configurations are virtually 

the same, given the extremely small magnitude of the prescribed displacements (Eq. (6.1)); and (ii) the 

rigid behaviour is replicated within a hypoelastic formulation of the generalized isotropic Hooke’s by 

employing a huge Young’s isotropic elastic modulus to tensile yield strength ratio, viz. 
T 10
1/ 10 ,E  =  

(with a Poisson ratio 1/3), =  such that the elastic strains are negligible, and the perfect-plastic behav-

iour is replicated considering an isotropic hardening power-law of the Swift-type, 
p p

0( ) ( ) ,nY K  = +  

with an inconsequential hardening exponent, viz. 
410n −=  with 0 1.K = =  The plastic behaviour is 

governed by the Plunkett et al. (2008) criterion (§4.3.1), adopting the associative flow rule (Eq. (4.7)). 

Test computations showed that this set of parameters leads in fact to a quasi-rigid-plastic response of 

the unit cell model without encountering numerical instability problems. 

 

 

 

    

   Imposed homogeneous strain, E (Eq. (6.1))  

   Symmetry conditions  

   Traction-free void  

     

Figure 6.5 Geometry and boundary conditions of the FE unit cell model of the one-eighth hollow sphere. Sym-

metry conditions in the three orthogonal planes are imposed. The outer surface is subjected to homogeneous 

strain boundary conditions and the void is traction-free (adapted from Dæhli et al., 2019). 
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 0.01f =  0.05f =  0.10f =   

    

 

 (a) (b) (c)  

Figure 6.6 FE meshes employed in the unit cell computations of porous media with: (a) 0.01;f = (b) 0.05;f =  

(c) 0.10.f =  Observe the concentration of elements near the void with decreasing porosity. 

Given the rate-independent nature of the matrix material, the numerical values of the components of 

the macroscopic strain tensor E (Eq. (6.1)) defining the boundary conditions of the time-discretized FE 

problem correspond those of the macroscopic strain-rate tensor D (Eq. (4.1)) employed in the linearized 

analytical limit-analysis problem (see also Morin et al. (2014) for a proof of this equivalence). Within 

the FE analysis, the volume averaged quantities are determined using standard FE quadrature rules, e.g., 

letting   denote a kinematic or internal variable determined in the integration points for the FE model, 

its macroscopic (homogenized) quantity is readily given by: 

 
gp

1

1
n

i i

i

V
V

 


=

=  , (6.2) 

where gpn  is the total number of integration points, i  denotes the value of   at the integration point 

,i  iV  is the volume associated with the integration point ,i  and V  denotes the volume of the unit cell 

(including the void), which can be determined by the sum of volumes of the tetrahedra defined by the 

3-D Delaunay triangulation of the unit cell outer boundary points including the centre point (in this case 

the origin). The elastic-plastic evolution problem is solved until the normalized measure of the macro-

scopic plastic equivalent strain, p p

0
,

t
ijij d dt =   p p/ij       becomes constant, where p  is the equiva-

lent plastic strain entering the hardening law and t  is the pseudo-time variable (note that p ,ij ijtE   

since elasticity is negligible and the unit cell geometry is quasi-spherical; and that 
p   is the FE coun-

terpart to macroscopic SRP value ( ),t D  regarding the analytical limit-analysis problem in Eq. (5.39)). 

At this instant, limt , the limit-load is considered to be reached and is normalized value is determined as 

1/ .T
ij       In practice, the limit load is reached in the very beginning of the FE simulation.  

In summary, the above FE analysis determines a tensor pair p p
1 ,{ / , / }T

ij ij               which 

allows the construction of unitary macroscopic potentials in the strain and stress spaces. In the particular 

case of macroscopic loadings in the principal frame, one can take advantage of the dual nature of this 

pair, (i.e., one is the gradient of the other) and interpolate the discrete point cloud of the 3-D macroscopic 

isovalue potentials using a Nagata patch interpolation scheme (Nagata, 2005). This allows to accurately 

obtain the FE solution for any other loading ‘direction’, both in the stress and strain space. This tech-

nique is employed in the next paragraphs to represent the FE-based macroscopic yield loci. 
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6.2.3 Comparison with FE results and existing analytical criteria 

The developed numerical criteria are now assessed under the particular case of macroscopic axisym-

metric stress loadings, as usually performed in the literature. Let 1 2 3( , , )e e e  denote the orthogonal frame 

associated with the material axes. An macroscopic axisymmetric stress loading about 3e  is defined as 

11 1 1 2 2( )=   +  +e e e e  33 3 3( ), e e  for which the macroscopic von Mises equivalent stress re-

duces to eq 33 11| |, =  −   and 32
3 33 1127

( ) .J  =  −  In a similar way as the macroscopic strain triaxiality, 

m vM/ ,DT D D=  (see Footnote 18, p.111), one can define the macroscopic stress triaxiality, m vM/ ,T =    

(with 3
vM 2vM || || ' : ',= =     the macroscopic von Mises equivalent stress), to be employed in the 

following paragraphs. 

In a first analysis, let us consider the isotropic matrices with no tension-compression asymmetry, i.e. 

T C
1 1/ 1,  =  and homogeneity degree {2,8,12},a =  i.e., those employed in Figure 6.3 and Figure 6.4. 

Figure 6.7 represents the projection of the macroscopic stress potential unitary isosurfaces (i.e., yield 

locus) in the axisymmetric plane for porous solids with the above three matrices and for porosity values 

{0.01,0.05,0.1,0.2},f =  as predicted by the Rice and Tracey (Eq. (5.42)) and the Eshelby-type (Eq. 

(5.43)) formulations, as well as the results of the FE kinematic limit analysis scheme described in sub-

section §6.2.2, under axisymmetric loadings with {0,2/3,1,2,3,5, }.T =    The data in Figure 6.7 was 

obtained by the intersection of the 3-D potentials in the principal space with the plane 11 22 . =   Note 

that the ordinate in Figure 6.7 is actually a measure of the macroscopic von Mises equivalent stress 

under axisymmetric conditions, viz., 
T T

33 11 1 3 vM 1( )/ sgn( )( / ),J  − =   hence 3 0J    for the first and 

second quadrants, and 3 0J    for the third and fourth ones. Let us start by pointing out the overall 

trends regarding the effect of the homogeneity degree of the matrix, a, on the macroscopic behaviour 

of the porous solid. Figure 6.7a-c shows that with increasing parameter a, the isosurfaces tend to square 

along the hydrostatic axis and, in turn, to flatten their poles. This indicates that the contraction of the 

macroscopic yield loci along the hydrostatic axis is delayed, yet more abrupt near the hydrostatic limits 

for these materials. A comparison of the predictions of the developed potentials demonstrates that the 

isosurfaces of the Eshelby-type approach are interior to those of Rice and Tracey. This is to be expected 

given that the former must be less dissipative than the latter, i.e., 
E RT( ) ( ), D D  due to the additional 

minimization scheme carried out in the Eshelby-type approach (recall discussion in §5.2.3). The lone 

exception occurs for purely hydrostatic loadings for which these formulations coincide. In other words, 

the Eshelby fields reduce to those of Rice and Tracey, as the deviatoric part of the inclusion eigenstrain 

rate tensor vanishes, i.e., ' = 0
*

d  is the solution of the minimization problem. The isosurfaces in Figure 

6.7 are symmetric with respect to origin, i.e., 
RT RT( , ) ( , ),f f = −   and 

E ( , )f = E ( , ).f −  

The centrosymmetric nature is to be expected since one assumes the porous aggregate to have randomly 

distributed spherical voids and the matrix criteria to be isotropic and given by an even function (see e.g. 

Alves et al. (2014); Cazacu et al. (2013) a proof). Moreover, note that the hydrostatic limits do not 

depend on the homogeneity degree, a, (thus on the 3j  microscale behaviour). In fact, the predicted 

hydrostatic limits are unique for the considered 2 3( , )j j  isotropic matrices, and coincide with the exact 

solution of the limit-analysis problem of an hollow sphere loaded hydrostatically: 
T

m 1/ (2/3) ln .f =   
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This independence is also in agreement with theorical results (see, for instance, Cazacu et al., 2019). 

The maxima of the macroscopic von Mises equivalent stress, 
T

vM 1/ =  
T

33 11 1| |/ , −  occur for purely 

macroscopic deviatoric loadings m( 0), =  however the Rice and Tracey, 
RT ( , ),f   and the Eshelby-

type, 
E ( , ),f   formulations predict different values for these quantities. In the former, the local strain-

rate field is uniform in the RVE (as later illustrated in Figure 6.10), hence it is straightforward to verify 

that yielding for purely deviatoric axisymmetric loadings occurs for T
eq 1/ (1 ),f = −  regardless of the 

homogeneity degree, a; conversely, for the Eshelby-type approach, it is verified that the deviatoric limit 

actually depends on the 2 3( , )j j matrix behaviour, yet, to the best of the author’s knowledge, there is no 

close-form expression for its value. Regarding the macroscopic 3 -J 
dependence, it is observed that the 

3 -J 
effects are more pronounced for the Eshelby-type criterion (as previously observed in §6.2.1). More 

crucially, Figure 6.7 shows that the 3 -J 
effects increase with increasing homogeneity degree of the 

matrix, a, (especially observed for the Eshelby-type criterion). In other words, the macroscopic 3 -J 
 

effects appear to be more prominent for porous aggregates whose matrix materials are 3 -j dependent at 

the microscale. An important remark is that the differences between the Rice and Tracey (Eq. (5.42)) 

and the Eshelby-type (Eq. (5.43))  predictions vanish with decreasing porosity. Indeed, only for ex-

tremely high porosity values, say, (0.1),f =  these clearly depart. This results from the fact that the 

porosity acts as a weighting factor on the role of the deviatoric eigenstrain rate tensor, ',*
d  on the uni-

form strain-rate field in the matrix, ',A D  (recall Eqs. (5.30) and (5.34)). Accordingly, in practice, for 

vanishing porosities, 0,f →  the Eshelby-type fields lead to virtually equal results to those of Rice and 

Tracey. Regarding the unit cell computations, Figure 6.7 shows that the Rice and Tracey formulation is 

in overall good agreement with the FE results for all matrix materials and porosity values considered. 

More importantly, the isosurfaces are indeed exterior to those of the FE limit analysis, given the upper-

bound nature of this formulation. In contrast, it is shown that the Eshelby-type isosurfaces exhibit an 

excessively low dissipation for high porosity values under predominantly deviatoric loadings, when 

compared with the respective FE results. Moreover, the amplified 3 -J 
effects predicted by this formu-

lation along the hydrostatic axis aggravate the discrepancy between the (pseudo)-analytical and the FE 

results (viz., see Figure 6.7b-c). This confirms that the upper-bound character of homogenization cannot 

be guaranteed when using the Eshelby-type fields, since these do not comply with uniform strain-rate 

boundary conditions in the general case. 

In order to better picture and compare the 3 -J 
dependence predicted by each formulation, Figure 

6.7a is rearranged by applying the absolute operation to the ordinate and rescaling the isosurfaces along 

this axis. Figure 6.8 and Figure 6.9 represent the obtained isosurfaces for the Rice and Tracey criterion 

and the Eshelby-type criterion, respectively. It is concluded that both formulations predict the trends of 

the FE results regarding the effect of 3J 
 on macroscopic yielding, viz., for axisymmetric loadings with 

m 0   the response is softer for 3 0J    than for 3 0,J    while the opposite holds true for loadings 

with m 0.   The exceptions are the purely deviatoric and hydrostatic points, for which the results are 

independent of 3 ,J 
 as in agreement with the FE results. Note however that for the Eshelby-type crite-

rion (Figure 6.9) the 3 -J 
effects clearly increase with the increase of the porosity, which contrasts with 
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the predictions regarding the Rice and Tracey fields (Figure 6.8). In any case, both formulations appear 

to underestimate the 3 -J 
dependence revealed by the FE results. Nevertheless, it is important to high-

light that, while the predicted 3 -J 
dependence on yielding (in the sense of 1 2( , ))I J 

 is limited, the nor-

mals to the macroscopic yield surfaces also depend on 3 .J 
 Therefore, in agreement with the macro-

scopic flow rule (Eq. (5.14)), a 3 -J 
dependent plastic flow is predicted, which, in the context of evolv-

ing porosity, mass conservation ( (1 )tr( ))f f= − D  implies that the porosity is, in fact, 3 -J 
dependent 

(e.g. see Alves et al. (2014) on the effects of 3J 
 on void evolution with a von Mises matrix). 
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 (b)  

 

 

 (c)  

Figure 6.7 Axisymmetric projection of the macroscopic stress potential (Eq. (5.45)) unitary isovalue surfaces as 

obtained by the Rice and Tracey formulation (Eq. (5.42)), 
RT ( , ),f   the Eshelby-type formulation (Eq. 

(5.43)), 
E ( , ),f   and the FE limit analysis, for porous media with varying porosity and an isotropic matrix 

with a homogeneity degree: (a) 2a = (von Mises); (b) 8;a =  (c) 12;a =  and no SD effects 
T C

1 1( / 1).  =  The 

FE results are plotted for the stress triaxiality values: {0, 2/3,1, 2,3,5, }.T =    The axes are at scale. 
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Figure 6.8 Axisymmetric projection of the macroscopic stress potential (Eq. (5.45)) unitary isovalue surfaces as 

obtained by the Rice and Tracey formulation (Eq. (5.42)), 
RT ( , ),f   the Gurson (1977) criterion, and the FE 

limit analysis, for porous media with a von Mises matrix and varying porosity. The FE results are plotted for the 

stress triaxiality values: {0, 2/3,1, 2,3,5, }.T =    The axes are not at scale. 

 

 
 

 

 

 

 

 

 

Figure 6.9 Axisymmetric projection of the macroscopic stress potential (Eq. (5.45)) unitary isovalue surfaces as 

obtained by the Eshelby-type formulation (Eq. (5.43)), 
E ( , ),f   the Monchiet et al. (2011) criterion, and the 

FE limit analysis, for porous media with a von Mises matrix and varying porosity. The FE results are plotted for 

the stress triaxiality values: {0, 2/3,1, 2,3,5, }.T =    The axes are not at scale. 

 

At this point, it is also interesting to determine how the developed criteria compare with those in the 

literature. As far as the author is aware, no closed-form criteria (excluding those heuristic-based) exist 

for describing the behaviour of porous solids whose matrix phase obeys non-quadratic yield criteria, 

hence, the analysis is restricted to porous solids with a von Mises matrix ( 2).a =  Figure 6.8 and Figure 

6.9 compare the yield loci in Figure 6.7a with the well-known Gurson (1977) criterion (Eq. (3.9)) and 

with the Monchiet et al. (2011) criterion (Eq. (3.25)), respectively. Recall that the former concerns the 
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Rice and Tracey fields, whereas the latter is grounded on the Eshelby-type fields. One can conclude that 

the Gurson (1977) criterion is, in fact, an upper-bound of the developed “exact” macroscopic yield 

potentials, i.e., 
G RT .  ( ) ( ) D D  This is a result of the application of the Cauchy-Schwarz inequality 

(recall discussion in §5.1.3), which is known to preserve the upper bound nature of the homogenization. 

Unfortunately, application of the Cauchy-Schwarz inequality implicitly erases any dependence of the 

local strain-rate potential on the polar and azimuthal spherical coordinates of the RVE, i.e., ( ),r =  

which eliminates the couplings between m eq( , )   and, ultimately, precludes 3 -J 
effects to be cap-

tured22. This implies that the Gurson (1977) criterion is unable to predict the different void growth (and 

collapse) behaviour depending on the sign of 3 ,J 
 as observed in unit cell studies (e.g., see Alves et al., 

2014). The same holds true for the Monchiet et al. (2011) criterion (Figure 6.9) which is shown to be 

independent of 3 ,J 
 also due to the application of the Cauchy-Schwarz inequality. More crucially, note 

that that the Monchiet et al. (2011) criterion is not actually an upper bound with respect to its associated 

‘exact’ potential, 
E ( , ),f   (Eq. (5.43)). This theorical weakness, in advance recognised by Monchiet 

et al. (2011), is a consequence of the usage of “uncontrolled” (i.e. not upper-bound preserving) approx-

imations in the homogenization analysis with the aim of simplifying the expressions. 

In order to understand the differences of the predictions observed at the macroscale, (viz. Figure 6.8 

and Figure 6.9), let us shift the attention to the microscale. Figure 6.10 and Figure 6.11 represent the 

distribution of the local strain-rate potential, ( ( , , )),  r  d  in the adopted RVE as predicted by the Rice 

and Tracey fields (Eq. (5.20)), the Eshelby-type fields (Eq. (5.30)), and the FE limit analysis (§6.2.2) 

for porous solids with porosity   0.01f =  and   0.1,f =  respectively, under imposed macroscopic axisym-

metric strain-rates with 3 0J    and for various levels of strain-rate triaxiality: (a)-(c) a purely deviatoric 

state, i.e., 0;DT =  (d)-(f) an intermediate state, viz., 1/200,DT =  (for which (2/3));T =  and (g)-(i) a 

purely hydrostatic state, i.e., .DT =   For simplicity, the matrix is assumed to obey the von Mises crite-

rion (Figure 6.7a). It is concluded that the distributions of the Eshelby-type are more heterogeneous 

than those of Rice and Tracey. In the particular case of purely deviatoric loadings, the Rice and Tracey 

criterion predicts an uniform dissipation field (see Figure 6.10a and Figure 6.11a), whereas the Eshelby-

type one predicts an heterogeneous distribution. Moreover, observe that the latter criterion predicts a 

higher dissipation near the void (Eshelby’s inclusion phase), which is counteracted with zones of lower 

dissipation (with respect to Rice and Tracey) farther from the void. Indeed, by definition, the overall, 

(i.e., volume averaged) local strain-rate potential of the Eshelby-type must be lower than that of Rice 

and Tracey, i.e., 
E RT  .( ) ( )     d d  The differences between the fields of these formulations decrease 

with increasing (stress or strain-rate) triaxiality. In the limit, under purely hydrostatic loadings, these 

coincide. Indeed, for this case, both analytical distributions coincide with those of the FE computations 

since the analytical solution is the exact solution of the problem, thus, in addition to obeying the uniform 

strain-rate conditions, the trial local fields verify the equilibrium condition: div( ( )) 0,=σ x \ , x  

 
22 Cazacu et al. (2013) later revisited Gurson’s (1977) analysis and showed that the macroscopic plastic dissipation 

associated with a von Mises matrix can actually be obtained analytically (yet in parametric form) without applying 

the Cauchy-Schwarz inequality, i.e., an analytical solution of the surfaces 
RT ( , ),f   in Figure 6.8. 
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which holds exclusively for this loading type. For the remaining loadings, the trends of the distributions 

regarding the FE computations are remarkably well reproduced by the Eshelby-type criterion, yet the 

latter appears to overestimate the dissipation near the void, regardless of the porosity. In contrast, with 

increasing porosity, the latter criterion tends to underestimate the local dissipation near the outer bound-

ary when compared to the FE results (see Figure 6.11). This is thought to stem from the violation of the 

uniform strain-rate conditions, which is more severe for high porosity values and ultimately leads to the 

deterioration of the quality of the predictions for these porous solids, as shown in Figure 6.9. In closing, 

note that the FE results are able to predict regions of zero dissipation. Such behaviour cannot be captured 

by either analytical homogenization schemes since plasticity is enforced throughout the matrix domain 

from the outset (see §5.1.2). 

 

 

Rice and Tracey, RT ( )d x  Eshelby-type, E ( )d x  FEM  

                                       ( )/ ( ) d D  

0DT =  

      

 (a) (b) (c)  

                                        ( )/ ( ) d D  
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DT =  

      

 (d) (e) (f)  

                                        ( )/ ( ) d D  

DT =   

      

 (g) (h) (i)  

Figure 6.10 Distribution of the local strain-rate potential for porous media with porosity 0.01f =  and the von 

Mises matrix as predicted by the Rice and Tracey fields (Eq. (5.20)), the Eshelby-type fields (Eq. (5.30)), and 

the FE limit analysis under imposed macroscopic axisymmetric strain-rate state with 3 0J    and varying triaxi-

ality: (a)-(c) 0;DT =  (d)-(f) 1/200;DT =  (g)-(i) .DT =   The figures represent sections on the (1-3) plane of one 

eighth of the RVE. The items are organized in a two-input table format. 
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Rice and Tracey, RT ( )d x  Eshelby-type, E ( )d x  FEM  
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Figure 6.11 Distribution of the local strain-rate potential for porous media with porosity 0.1f =  and the von 

Mises matrix as predicted by the Rice and Tracey fields (Eq. (5.20)), the Eshelby-type fields (Eq. (5.30)), and 

the FE limit analysis under imposed macroscopic axisymmetric strain-rate state with 3 0J    and varying triaxi-

ality: (a)-(c) 0;DT =  (d)-(f) 1/200;DT =  (g)-(i) .DT =   The figures represent sections on the (1-3) plane of one 

eighth of the RVE. The items are organized in a two-input table format. 

 

In the following, the focus is on the isotropic matrices exhibiting tension-compression asymmetry, 

i.e., 
T C
1 1/ 1.    Figure 6.12 and Figure 6.13 represent projections of the macroscopic stress potential 

unitary isosurfaces in the axisymmetric plane as predicted by the Rice and Tracey (Eq. (5.42)) and the 

Eshelby-type (Eq. (5.43)) formulations, respectively, for porous solids with porosity {0.01,0.1},f =  

whose matrices exhibit different types of tension-compression asymmetry, viz., 
T C
1 1/ {1,1.21,0.83}.  =  

For conciseness, the present analysis is restricted to matrices whose microscale potentials are quadratic 

( 2),a =  i.e., those employed in Figure 6.3 and Figure 6.4 (a),(d),(g). The corresponding results of the 

FE limit analysis scheme (§6.2.2) are also plotted in these figures. It is verified that that the macroscopic 

loci are no longer symmetric with respect to the origin for matrix materials displaying SD effects. The 

asymmetry at the microscale, deviatoric in nature due to the matrix incompressibility, conveys into the 
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macroscale in the form of asymmetry of the hydrostatic response. Moreover, the predicted hydrostatic 

limits coincide with the exact solution for a hydrostatically loaded isotropic hollow sphere exhibiting 

SD effects (see Stewart (2009) and Cazacu and Stewart (2009)): for tensile hydrostatic loadings yielding 

occurs for 
T C T

m 1 1 1/ (2/3)( / ) ln ,f   = −  whereas for compressive hydrostatic loadings yielding takes 

place for 
T

m 1/ (2/3) ln .f =  Note the curious result that yielding of the porous solid depends on the 

matrix SD ratio for tensile hydrostatic loadings but not for compressive loadings. The former analytical 

solutions were obtained considering the matrix to have a quadratic yield function. However, inspection 

of the 3-D isovalues surfaces in Figure 6.3 and Figure 6.4 showed that these still hold true for porous 

solids whose matrix obey non-quadratic criteria. In other words, in the same fashion as Figure 6.7, the 

hydrostatic limits for matrices displaying SD effects do not depend on the homogeneity degree, a, of 

the matrix. Comparison of the predictions of the developed potentials with the FE computations leads 

to similar observations to those outlined regarding the case of the von Mises matrix (in Figure 6.7): the 

predictions using the Rice and Tracey formulation (Figure 6.12) are in very good agreement with the 

FE results for both porosities, whereas the predictions regarding the Eshelby-type formulation tend to 

underestimate the overall plastic dissipation for high porosity values (see Figure 6.13 (b)).  

 

 

 

 (a)  

 

 

 (b)  

Figure 6.12 Axisymmetric projection of the macroscopic stress potential (Eq. (5.45)) unitary isovalue surfaces 

as obtained by the Rice and Tracey formulation (Eq. (5.42)) ,
RT ( , ),f   the criterion of Cazacu and Stewart 

(2009), and the FE limit analysis, for porous media with porosity: (a) 0.01;f =  (b) 0.1;f =  and an isotropic 

matrix with SD ratio: 
T C

1 1/ {1,1.21,0.83}  = and homogeneity degree 2.a =  The FE results are plotted for the 

stress triaxiality values: {0, 2/3,1, 2,3,5, }.T =    The axes are at scale. 
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 (a)  

 

 

 (b)  

Figure 6.13 Axisymmetric projection of the macroscopic stress potential (Eq. (5.45)) unitary isovalue surfaces 

as obtained by the Eshelby-type formulation (Eq. (5.30)), 
E ( , ),f   the criterion of Cazacu and Stewart 

(2009), and the FE limit analysis, for porous media with porosity: (a) 0.01;f =  (b) 0.1;f =  and an isotropic 

matrix with SD ratio: 
T C

1 1/ {1,1.21,0.83}  = and homogeneity degree 2.a =  The FE results are plotted for the 

stress triaxiality values: {0, 2/3,1, 2,3,5, }.T =    The axes are at scale. 

 

In the following, the predictions of the development criteria are compared with those of closed-form 

criteria in the literature. As mentioned in the introductory chapter, Cazacu and Stewart (2009) proposed 

a closed-form plastic potential for porous materials with randomly distributed spherical voids assuming 

the matrix to obey the quadratic and isotropic form of the Cazacu et al. (2006) (CPB06) yield criterion, 

(see Eq. (3.21) and concerning text). Figure 6.12 and Figure 6.13 also represent the analytical criterion 

of Cazacu and Stewart (2009), which, as described in §3.4.2, is grounded on the Rice and Tracey fields. 

Figure 6.12 (a) shows that the former analytical criterion is not actually an upper-bound of the “exact” 

macroscopic potential, 
RT ( , ),f  (Eq. (5.42)). This is a consequence of the truncation of the general 

form of the local strain-rate potential in terms of the applied macroscopic strain-rate, D, to the particular 

case of purely deviatoric and purely hydrostatic loadings, m e( ) ( , ),D D D  with the intention of sim-

plifying the integrand expression. In addition, the authors applied the Cauchy-Schwartz inequality to 

evaluate the integrals in closed-form. Accordingly, the Cazacu and Stewart (2009) criterion is, in fact, 

unable to predict void-induced 3 -J 
effects. The 3 -J 

dependency observed at the macroscale is solely 
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a result of the 3 -j dependency at the microscale due to the SD effects. This leads to a weak coupling 

between 3 -j  (micro) and 3 -J 
 (macro) effects on the overall response of the porous solid. For example, 

consider the second quadrant of the axisymmetric projections in Figure 6.12. The criterion of Cazacu 

and Stewart (2009) predicts that the response of the three porous solids is identical (the same as Gurson, 

1977), irrespective of the SD ratio of the matrix. This is in contrast to the behaviour predicted by the 

developed potential, 
RT ,  ( , )f   which accurately replicates the FE results. Moreover, the yield loci in 

the fourth quadrant as predicted by the Cazacu and Stewart (2009) criterion are homothetic transfor-

mations of each other, scaled by the factor 
C T
1 1/   (see Brito (2018) for more details). By the normality 

principle, this implies that the direction of the macroscopic plastic strain increment, / ,   and thus, 

the porosity evolution, are insensitive of the SD ratio of the matrix. This is in clear contrast with the 

findings of micromechanical studies on the dilatational response of porous media (e.g. Alves and Ca-

zacu, 2015), where void growth is indeed 3 -J 
dependent and is strongly influenced by the SD effects 

of the matrix. Conversely, the numerically obtained criterion, 
RT ,  ( , )f   (Eq. (5.42)) clearly displays 

different normals to the yield loci regarding the nature of the SD effects of the matrix, which would 

necessarily lead to different void growth (and collapse) rates. The main conclusion of this paragraph is 

that the limitations of the studied close-form criterion are not imputable to the quality of the employed 

trial velocity fields (viz., those of Rice and Tracey), but rather to the simplification hypotheses, whether 

or not upper-bound preserving, employed in the respective homogenization. This further advocates the 

importance of adopting a numerical homogenization framework, as accomplished in this work.  

6.3 Remarks on computational performance 

In the context of constitutive modelling, exact closed-formed expressions are always preferable. This 

holds both from the computational standpoint, given their minor computational cost; and for mathemat-

ical accessibility, e.g., the definition of the derivatives to employ in parameter identification formula-

tions and/or FE analyses. However, unfortunately, it is not always possible to derive exact solutions, in 

particular, for the problem of the limit-analysis of a hollow sphere addressed in this thesis (recall §5.1.3). 

The previous subsection demonstrated that although approximate analytical solutions do exist for some 

matrix materials, given their simplified character, these often fail to capture intricate micro-macro plas-

ticity couplings associated with the originally sound homogenization problem. In this work, a numerical 

homogenization approach was proposed in Chapter 5 as an alternative of the standard Gurson-like fully-

analytical one. In the following, the computational performance of such numerical scheme is evaluated 

using the code provided in Appendix F (in turn based on the algorithms described in subsection §5.5). 

Given that the proposed homogenization scheme is grounded on numerical integration methods, it 

is evident that its computational cost depends on the accuracy degree intended for the analysis, in turn 

controlled by the RVE discretization. Figure 6.14 represents the average relative CPU time required to 

compute the macroscopic strain-rate potential using the Rice and Tracey trial fields, 
RT ( , ),f D  (Eq. 

(5.42)) and its derivative, / , D  with a prescribed tolerance, normalized by the CPU time associated 

with the computation of the Gurson (1977) analytical counterpart. The RVE discretization parameter 
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pair, r( , )N n  (recall §5.4.1 and §5.4.2), employed in the computations of Figure 6.14 are selected based 

on the convergence study in Figure 5.4 and Figure 5.6, respectively, regarding the case of a quadratic 

yield function for the dense phase, viz, r( , ) {(48,6),(94,8),(156,10),N n = (328,16)}, for the considered 

tolerances, i.e., 
3 4{10 ,10 ,e − −=

510 ,− 610 },−
 respectively. Recall that the radial integration is adaptative, 

hence a different number of integration points is employed depending on the loading state and the po-

rosity. Accordingly, similarly to the convergence studies in §5.4.1 and §5.4.2, the computational perfor-

mance statistics reported in the present subsection refer to the average of a sample of 
4

s 10n =  macro-

scopic loadings with a random deviatoric and hydrostatic contribution. Figure 6.14 shows that the pro-

posed homogenization scheme is 
2(10 )  to 

3(10 )  times more costly than evaluation a (single) Gur-

son-type expression. Of course, the computational cost is proportional to the number of quadrature 

points, hence increases with decreasing tolerance and decreasing porosity. Moreover, for a given toler-

ance, the computational cost associated with the numerical homogenization roughly halves when the 

porosity increases from 
610f −=  to 

110 ,f −=  (whereas the CPU time for the analytical case is virtually 

independent of the porosity and loading). Since surface averaging of local quantities on the RVE is more 

challenging for non-quadratic microscale potentials (see Figure 5.4), more points are needed to guaran-

tee a given cubature tolerance, when compared with the quadratic case. One can thus anticipate more 

severe numerical-to-analytical time ratios when dealing with non-quadratic functions. However, a quan-

titative analysis (as in Figure 6.14) concerning non-quadratic microscale potentials, is impossible given 

the inexistence of analytical porous criteria for non-quadratic matrix models. 

At first glance, the CPU time ratios in Figure 6.14 may appear overwhelming, however, the proposed 

computational homogenization scheme is actually 
5(10 )  to 

6(10 )  times faster than solving the cor-

responding elastoplastic FE-based limit analysis problem (similar to that in §6.2.2) with the same accu-

racy degree. In other words, the computational cost of the developed homogenization scheme is much 

closer to that of closed-form analytical criteria than to that multiscale FE-based constitutive formula-

tions. 

  

 

 

 

Figure 6.14 Comparison of the average computational cost for the evaluation of the macroscopic strain-rate po-

tential, 
RT ( , )f D  (Eq. (5.42)), and its first derivative relative to the associated analytical expressions of Gur-

son (1977), assuming an average cubature error 
3 4 5 6{10 ,10 ,10 ,10 },e − − − −=  and a sample of 

4

s 10n =  random 

loading states, D, on porous media with a von Mises matrix and varying porosity. 
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Throughout this chapter, the predictions of the computational homogenization using two alternative 

trial fields, those of Rice and Tracey (Eq. (5.20)) and of the Eshelby-type (Eq. (5.30)), have been com-

pared. As remarked in §5.2.3, the latter formulation entails the determination of an additional kinemat-

ical tensor in the deviatoric space (see also Appendix E). Figure 6.15 presents the average absolute and 

relative single-core CPU time of both formulations when evaluating the respective macroscopic strain-

rate potentials. It is concluded that the Eshelby-type formulation is (50)  times more expensive than 

the Rice and Tracey counterpart. Recalling that these formulations virtually coincide for vanishing po-

rosity values (§6.2.3), the usage of the Eshelby-type fields within a numerical homogenization analysis 

is therefore not recommended to model porous solids with such porosity degree (e.g. undamaged sheet 

or bulk metals and alloys). Conversely, for high porosities, found in metal additive manufacturing (AM), 

(e.g., powder bed fusion (PBF) manufactured parts), differences between formulations are evident and 

the usage of the Eshelby-type fields is reasonable. 

In the context of elasto-plastic modelling, a macroscopic yield function value, ,  (Eq. (5.45)), as-

sociated with a given macroscopic Cauchy stress tensor, ,  must be evaluated in order to determine if 

the loading is elastic or elastoplastic. As mentioned in §5.5, in view of the fact that a kinematic homog-

enization approach was adopted, the determination of an equivalent strain-rate quantity was coined the 

‘direct problem’ (Box 5.1), whereas the determination of an equivalent stress quantity was coined the 

‘inverse problem’ (Box 5.3). Figure 6.16 presents the average single-core CPU time and the ratio the 

cost between the inverse (I) and the direct (D) problems. One can conclude that the inverse problem is 

(25)  times more expensive than the direct one. This clearly justifies the pertinence of a SRP-based 

formulation (Eq. (5.16)), (in place of the more usual stress-based counterpart, Eqs. (5.13)-(5.14)), when 

employing constitutive criteria based on a kinematic computational homogenization scheme within a 

FE analysis. In fact, the implementation of such strain-rate-based constitutive formulation using the 

criteria presented in Chapter 5 is undertook in the following chapter.  

 

   

Figure 6.15 Comparison of the computational cost using the Rice and Tracey (RT), 
RT ( , )f D  (Eq. (5.42)), and 

the Eshelby-type (Esh), 
E ( , )f D  (Eq. (5.30)), fields. The plots represent the average single-core CPU time 

(Intel® Core™ i7-8700K) for the evaluation of the macroscopic strain-rate potentials with a relative cubature 

error 
510e −=  on a sample of 

4

s 10n =  random loading states, D, of porous media with varying porosity and 

with a CP-Ti matrix (constitutive data in §4.5.2).  
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Figure 6.16 Comparison of the computational cost of the direct (D) and the inverse (I) homogenization schemes 

using the Rice and Tracey (RT), 
RT ( , )f D  (Eq. (5.42)) fields. The plots represent the average single-core CPU 

time (Intel® Core™ i7-8700K) for the evaluation of the macroscopic strain-rate potentials with a relative cuba-

ture error 510e −=  on a sample of 
4

s 10n =  random loading states, D, of porous media with varying porosity and 

with a CP-Ti matrix (constitutive data in §4.5.2). 
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Chapter 7. 

 

Implementation in the FEM framework 

This chapter deals with the integration of the numerical-based porous criteria developed in Chapter 5 into large-

strain rate-independent elastoplastic problems compatible with engineering applications. The proposed constitu-

tive flamework is grounded on an orthotropic hyperelastic-based multiplicative plasticity formulation coupled a 

strain-rate potential for describing plastic dissipation. The outline of the chapter is as follows. First, the governing 

equations of the constitutive initial value problem are presented. Then, the respective incremental (i.e., time-dis-

cretized) problem, compatible with computational implementation, is developed based on fully-implicit time in-

tegration algorithms in the context of the finite-element method. Lastly, as a proof-of-concept, a numerical exam-

ple is provided employing the developed constitutive formulation.  

7.1 Constitutive theory: definition of the initial value problem 

As discussed in §3.2, in the scope of engineering applications, the assumption of the existence of a 

RVE allows the description of the behaviour of a solid in terms of the continuum theory. The constitutive 

framework developed in this subsection is grounded on the mechanics and thermodynamics of contin-

uous media. The general concepts of these theories are omitted when possible, and the focus is set solely 

on the kinematic and kinetic expressions actually employed in the envisioned analysis. For a more de-

tailed description of the axioms and modelling hypothesis employed in the following, refer, for instance, 

to the books of Besson (2010); Bonet and Wood (1997); De Borst et al. (2012); Germain (1973); Hill 

(1998); Jirásek and Bazant (2002); Lubarda (2002); Lubliner (2008); Mandel (1966); Simo and Hughes 

(2006); de Souza Neto et al. (2011); Zienkiewicz and Taylor (2005). 

7.1.1 Kinematics of deformation: preliminaries 

This subsection sets out the basic kinematic quantities of material simple continua (micro-polar and 

micromorphic continua do not concern the present work) entering the proposed finite strain elastoplas-

ticity constitutive framework. The notation and arrangement of the present subsection primarily follow 

that of Bonet and Wood (1997) and de Souza Neto et al. (2011). 

Configurations and motion of a continuum body 

Let 
3

0   denote a body embedded in the three-dimensional Euclidean space in its reference 

configuration, here assumed coincident with the initial configuration. A one-to-one (and thus invertible) 

deformation map: 
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3

0( , ) :t  →X , with ( , )t=x X , (7.1) 

is introduced, which maps points 0X  of the reference configuration, 0 ,  with respect to a Cartesian 

basis ,iE  onto points 
3

t x  of the current configuration, ,t  with respect to a Cartesian basis 

,ie  at time [0, ].t T =  This mapping is illustrated in Figure 7.1. For a fixed time, t, Eq. (7.1) repre-

sents a mapping between the undeformed (initial) and deformed (current) bodies, whereas for a fixed 

particle ,X  Eq. (7.1) describes the motion (or trajectory) of this particle as a function of time. The 

displacement field u  at the instant t of a particle X  is the difference of the position of the particle 

between the current and reference configurations, i.e.: 

 ( , ) ( , )t t= −u X X X . (7.2) 

In finite deformation analysis a careful distinction has to be made between the coordinate systems 

adopted to describe the behaviour of the body whose motion is under consideration. Depending on the 

considered Euclidean space, one may distinguish: the material (alias Lagrangian) description; and the 

spatial (alias Eulerian) description. Let   denote an arbitrary tensorial (or scalar) field. In the material 

description, ( , ),t= X   whereas in the spatial description, ( , ).t= x   An analogous nomenclature 

holds for other mathematical operations (e.g. material and spatial gradients). It turns out that, even if 

the deformation process is assumed rate independent it is nevertheless convenient to establish the equi-

librium equations in terms of virtual velocities and associated virtual time-dependant quantities (Bonet 

and Wood, 1997). According, based on the time derivative of the deformation map (Eq. (7.1)) one ar-

rives at the velocity of a particle in terms of the material coordinates of a particle :X  

 
( , )

( , )
t

t
t


=



X
v X . (7.3) 

The velocity vector can be more consistently expressed in terms of the spatial position, ,x  as: 

 
1( , ) ( ( , ), )t t t −=v x v x . (7.4) 

The deformation gradient 

Based on Eq. (7.1), one defines the deformation gradient tensor, F, as: 

 

3

0

, 1

( , )
( , )  iI i i

i I

t
t F




=


= = = 




X
F X e E

X
, with ,i

iI

I

x
F

X


=


 , 1,2,3i I = , (7.5) 

where 0 ( )   denotes the gradient operation with respect to the material configuration (alias material 

derivative or gradient). In view of Eq. (7.2), the previous expression can be rewritten as: 

 0 ( , )t= F I + u X . (7.6) 

Note that F transforms vectors in the initial or reference configuration into vectors in the current con-

figuration, i.e., ,d d=x F X  and is thus said to be a two-point tensor (it is neither material nor spatial). 

The inverse operation can also be defined: 
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 Reference configuration  Current configuration  

 

Figure 7.1 Reference, 0 ,  and current, ,t  configurations of a deformable body as defined by the deformation 

map, ,  and its inverse, 
1 −
 at instant [0, ].t T =  Note that d d=x F X  and det( ) ,dv dV= F  where F is the 

deformation gradient associated with .  Adapted from de Souza Neto et al. (2011). 

 

 

1 3
1 1

, 1

( , )
( , )  Ii i i

i I

t
t F




−
− −

=


= = = 




x
F x E e

x
, with ,i

Ii

I

X
F

x


=


 , 1,2,3i I = , (7.7) 

where ( )   denotes the gradient operation with respect to the spatial configuration (alias spatial deriv-

ative or gradient), and 
1 −
 is the inverse mapping of that in Eq. (7.1), i.e., 

1 3( , ) : ,t −  →x  with 

1( , ).t −=X x  Of special importance is the determinant of F, which quantifies the volume change as: 

 det( )
dv

J
dV

= = F , (7.8) 

where dv  and dV  are the infinitesimal volume elements in the current and reference configurations, 

respectively, arising from the application of a deformation gradient F  at a material particle X  and time 

t (see Figure 7.1). Any physically sound deformed configuration must satisfy 0.J   Note that an iso-

choric deformation implies 1.J =  

The velocity gradient, strain-rate and spin tensors 

The velocity gradient tensor, l, is defined based on the spatial derivative of the velocity, ( , ),tv x  in 

Eq. (7.4) as: 

 
( , ),t

=  =


v x
l v

x
. (7.9) 

Combining Eqs. (7.3), (7.5) and (7.15), the time derivative of the deformation gradient tensor, F, is 

given as: 

 0

( , ) ( , )d t t

dt d t

     
= = = =   

   

X X
F v lF

X X
, (7.10) 

which, in turn, allows Eq. (7.9) to be rewritten in the form: 

 1−=l FF . (7.11) 
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The split of the velocity gradient tensor, l, into its symmetric and skew (antisymmetric) parts leads to 

two important kinematical quantities: 

 = +l d w , with T=d d , and T = −w w , (7.12) 

where 

 sym( )=d l , (7.13) 

is known as the rate of deformation tensor, (or, simply, Eulerian strain-rate tensor, as identified through-

out this work), and  

 skew( )=w l , (7.14) 

is the spin tensor (alias vorticity tensor). In the previous equations, the following notation has employed: 

T1
2

sym( ) [( ) ( ) ], =  +   and T1
2

skew( ) [( ) ( ) ]. =  −   

Polar decomposition, stretches and rotation 

It is often useful to decompose the deformation gradient in two components, one accounting for the 

stretch of the solid and another for its rotation. According to the polar decomposition theorem, the de-

formation gradient can be expressed as: 

 = =F RU VR , (7.15) 

where U and V are the so-called right and left stretch tensors, respectively, by definition, symmetric 

positive definite; and R is a (orthogonal) rotation tensor. Note that U is a material tensor, whereas V is 

a spatial tensor. For convenience, one defines the right, C, and left, b, Cauchy-Green tensors are their 

respective spectral decomposition as: 

 

3
T 2 2

1

   




=

= = = C F F U N N , and 

 
3

T 2 2

1

   




=

= = = b FF V n n , 

(7.16) 

respectively, where N  and ,n 1,2,3, =  denote the (orthogonal) eigenvector triads of C and b, re-

spectively, and 
2
  and 

2 ,  1,2,3, =  their corresponding eigenvalues. It is possible to demonstrate 

that the expressions in Eq. (7.16) are related via 
2 2
  =  and that  , =n RN  1,2,3 =  (e.g. see Bonet 

and Wood, 1997). Hence, from Eq. (7.16) and the aforementioned identities, is follows that the right, 

U, and left, V, stretch tensors are given by: 

 

3

1

   




=

= = U C N N , and 

3 3

1 1

  ( ) ( )     

 

 
= =

= =  =  V b n n Rn Rn . 

(7.17) 

respectively, where the (unique) ,  1,2,3, =  are known as the principal stretches, and N  and ,n

1,2,3, =  are coined the Lagrangian and Eulerian triads and define the Lagrangian and Eulerian prin-

cipal strain directions, respectively. The previous equation implies any local stretching from a material 
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particle can be expressed as a superposition of stretches along three mutually orthogonal directions. 

Once the stretch tensors are known, the (unique) rotation tensor, R, can be readily evaluated inverting 

Eq. (7.15) as follows: 

 

1−=R FU , with 
3

1

1

1
  

 

−

=

= U N N  , or 

1−=R V F , with 
3

1

1

1
  

 

−

=

= V n n , 

(7.18) 

where the spectral decomposition of U and V was employed in order to compute the tensor inverse. 

Generalized strain tensors 

The stretch tensors defined above characterize the distance between material particles between the 

reference and the current configuration. In order to quantify straining, i.e., to evaluate how much U (or 

V) departs from I (a rigid deformation), some strain measure must be defined. The definition of a strain 

measure is therefore somewhat arbitrary, and a specific choice is usually dictated by mathematical and 

physical convenience. It is common to distinguish two families of strain tensors: the generalized La-

grangian strain tensors, and the generalized Eulerian strain tensors. As the name suggests, the former is 

based on Lagrangian triad, whereas the latter is based on the Eulerian triad, ,n  1,2,3. =  The gener-

alized Lagrangian strain tensors, ( ) ,nE  are defined in terms of the right stretch tensor, U, in the form: 

 ( )

1
( )   0

ln( )           0

n

n

n
n

n


− 

= 
 =

U I
E

U

, (7.19) 

where n is a real number and ln( )  denotes the tensor logarithm operator. The previous expression is 

more conveniently written terms of its spectral decomposition using the Lagrangian triad, ,N  as: 

 

3

( )

1

( , ) ,n f n  




=

= E N N   (7.20) 

with  

 

1
( 1)   0

( , ) ,

ln( )        0

n n
f n n

n












− 

= 
 =

 1,2,3. =  (7.21) 

 

Some particular cases are worth mentioning: the Green-Lagrange ( 2),n =  Biot ( 1),n =  Hencky ( 0)n =  

and Almansi ( 2)n = −  strain tensors. Note that, regardless of n, the associated strain tensor vanishes if 

(and only if) the deformation gradient represents a rigid deformation, i.e.: ( ) .n =  =  =E 0 F R U I  

Analogously, it is possible to define the Eulerian counterpart to Eqs. (7.19)-(7.20), coined generalized 

Eulerian strain tensors, ( ) ,ne  is this case defined in terms of the right stretch tensor, V, in the form: 
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 ( )

1
( )   0

ln( )           0

n

n

n
n

n


− 

= 
 =

V I
e

V

, (7.22) 

or, equivalently, written in the Eulerian principal strain space using the triad ,n 1,2,3: =  

 

3

( )

1

( , ) ,n f n  




=

= e n n   (7.23) 

where ( , )f n  was defined in Eq. (7.21). Note moreover that the Lagrangian and Eulerian strain differ 

by the rotation of the polar decomposition in Eq. (7.15): T
( ) ( )n n=e RE R 

T
( ) ( ) .n n=E R e R  

7.1.2 Multiplicative decomposition 

This subsection is concerned with the fundamental hypothesis underlying the proposed finite strain 

elastoplasticity constitutive framework: the multiplicative split of the deformation gradient (Eq. (7.5)) 

into elastic and plastic parts. Motivated by micromechanical observations regarding the slip theory of 

crystals (Asaro, 1983; Rice, 1971), the multiplicative decomposition hypothesis was introduced by Lee 

and Liu (1967) and Lee (1969), and later developed by many authors (Dafalias, 1985, 1998; Kroner and 

Teodosiu, 1974; Lubarda and Lee, 1981; Mandel, 1972, 1973). According to this theory the deformation 

gradient is decomposed as: 

 
e p ,=F F F   (7.24) 

where e
F  and p

F  are coined the elastic and plastic deformation gradients, respectively. The previous 

expression implicitly assumes the existence of an unstressed intermediate configuration, where p
F  

defines the deformation map from the reference to the intermediate configuration. It must be observed 

that, the unstressed (unloaded) intermediate configuration concept is only valid in the local (pointwise) 

sense. In fact, in general, locally unloaded regions of a body cannot be reassembled to give an overall 

stress-free configuration since these are not necessarily geometrically compatible with each (Bonet and 

Wood, 1997). The non-uniqueness of the decomposition in Eq. (7.24) is a well-known weakness of this 

theory. Indeed, as it stands, tensors e
F  and p

F  cannot be uniquely defined since arbitrary rotations 

can be superposed to the intermediate configuration, preserving it unstressed, and thus not unique. It 

follows that an additional assumption to the form of e
F  or p

F  (or any other kinematic quantity related 

with these) must be made so that Eq. (7.24) is uniquely defined. A more detailed discussion on the issue 

of uniqueness and the choice of the intermediate configuration can be found e.g. in Casey and Naghdi 

(1980); Dafalias (1985, 1998); Naghdi (1990). 

Based on the considered multiplicative decomposition of F, the determinant, J, in Eq. (7.8) is split 

into an elastic, 
e ,J   and plastic, 

p ,J  contribution as follows: 

 
e p e pdet( )J J J= =F F , with 

e e

p p

det( ),

det( ).

J

J

 =


=

F

F
 (7.25) 
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In the literature it is often assumed that p 1J =  (and thus 
e )J J= due to the constrain of plastic incom-

pressibility. However, in the context of porous solids which this work concerns, plasticity is not iso-

choric, and, therefore, the plastic- and elastic-based determinants must actually be distinguished. 

Elastic and plastic stretch and rotation tensors 

In the spirit of the polar decomposition of the (total) deformation gradient, F, (see Eq. (7.15)), the 

stretches and rotations associated with its elastic and plastic part are as follows: 

 e e e e e= =F R U V R  , and 
p p p p p= =F R U V R , (7.26) 

where e
U

p( ),U  e
V

p( ),V  
e

R p( ),R  denote the elastic (plastic) right stretch tensor, the elastic (plastic) 

left stretch tensor and the elastic (plastic) rotation tensor, respectively. The physical meaning of these 

tensors is equivalent to the respective counterparts regarding the total deformation gradient, as described 

following Eq. (7.15). However, care should be taken regarding the different basis of these: note that e
U  

refers to the intermediate configuration, whereas p
U  refers to the reference configuration. Analogously,  

e
V  refers to the current configuration and p

V  to the intermediate configuration. 

Additive split of the velocity gradient 

In agreement with the assumed multiplicative split of F, application of the differentiation product 

rule to Eq. (7.11) with definition Eq. (7.26), results in the following additive decomposed for the spatial 

velocity gradient (Eqs. (7.9)), into an elastic and a plastic part as: 

 e p= +l l l  , (7.27) 

where the tensors 
e

l  and 
p

l  are the spatial elastic and plastic velocity gradient, respectively, given by: 

 
e e e 1( )−=l F F  , and 

p e p e 1( )−=l F L F , (7.28) 

with 

 
p p p 1( )−=L F F . (7.29) 

p
L  is also a plastic velocity gradient, yet it operates in the intermediate configuration23. The split of Eq. 

(7.27) into its symmetric and skew (antisymmetric) parts leads to the decomposition of the spatial strain-

rate tensor into elastic and plastic parts as follows: 

 
e p= +d d d , with 

e esym( )=d l  and 
p psym( )=d l , (7.30) 

and the spatial spin tensor as: 

 
e p= +w w w , with 

e eskew( )=w l  and 
p pskew( )=w l . (7.31) 

Moreover, in the scope of the envisioned analysis, it is also relevant to decompose 
p

L  in Eq. (7.29) in 

its symmetric, 
p ,D  and skew, 

p ,W  parts as: 

 
23 Henceforward a convention is adopted regarding kinematical and kinetic tensorial quantities: majuscule letters 

refer to Lagrangian tensors defined in the intermediate (unstressed) configuration; whereas minuscule letters refer 

to Eulerian tensors defined in the current configuration. 
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p p p= +L D W , with 

p psym( )=D L  and 
p psym( )=W L , (7.32) 

where 
p

D  and 
p

W  are the plastic strain-rate tensor and the plastic spin tensor in the intermediate con-

figuration, respectively24.  

Definition of the intermediate configuration 

In this work, the plastic spin tensor in Eq. (7.32), representing the instantaneous rate of rigid spinning 

of the intermediate configuration, is postulated to be null, i.e.: 

 p
W 0 . (7.33) 

This implies that the principal orthotropic directions do not change during plastic deformation. This is 

in opposition with the discussion in §2.1.2, where it was started that texture evolution and/or twinning-

detwinning activation actually led to an evolving anisotropic behaviour. However, in order to consider 

plastic spin effects one must provide a suitable constitutive equation (dissipation potential) for its evo-

lution, which not in scope of the present work (Dafalias, 1985, 1998; Kaiser et al., 2020; Montáns et 

al., 2012; Montáns and Bathe, 2007). Moreover, the relevance of plastic spin effects is controversial, 

particularly when compared with other elements of a constitutive formulation as the representation of 

the initial anisotropy and hardening aspects (Dafalias, 1998). Nevertheless, texture evolution effects 

can still be reproduced in a heuristic fashion by prescribing an evolution law for the anisotropy coeffi-

cients entering a given orthotropic plastic potential (e.g., see Abedini et al., 2017; Plunkett et al., 2006; 

Revil-Baudard et al., 2014, 2016; Yoon et al., 2013). It follows from the definition in Eq. (7.32) and the 

hypothesis of Eq. (7.33) and that the plastic velocity gradient in the intermediate configuration, 
p ,L  is 

symmetric and reduces to: 

 p pL D . (7.34) 

If Eq. (7.33), (or, equivalently, Eq. (7.34)) is supplied with a constitutive equation for 
p ,D  the evolution 

of 
p

F  is completely defined, and thus the intermediate configuration is unique.  

7.1.3 Hyperelastic-based elastoplastic constitutive model 

Introduction hyperelastic-based large strain elastoplasticity 

Ealy works on large-strain elastoplasticity (e.g. Hill (1958) and Green and Naghdi (1965)) relied on 

hypoelastic-based approaches in which existing infinitesimal elastoplasticity models are extended to 

the finite strain range by an additive decomposition of a strain-rate tensor into elastic and plastic parts 

and recasting the original evolution equations in terms of ad hoc objective (or frame-invariant) stress 

rates. Despite their apparent simplicity, hypoelastic-based formulations have been the subject of intense 

 
24 The distinction of majuscule and minuscule variables was employed in Chapter 3 to Chapter 6 to distinguish 

the micro- and the macro- scalar and tensorial quantities in the context of homogenization of porous media (e.g., 
p

2 3( , , , )j jd   vs.
p

2 3( , , , )).J JD   In the present chapter this convention is dropped and replaced with the conven-

tion in Footnote 23. 
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debate related with issues including (de Souza Neto et al., 2011): (i) the arbitrariness of the objective 

stress rates to employ in the constitutive equations; (ii) objectivity issues of the incremental (algorith-

mic) constitutive laws; (iii) numerical errors in the time integration of the rate quantities, (even if algo-

rithmic objectivity is preserved), which require a large number of integration steps; (iv) the oscillatory 

stress response under monotonic loadings; and (v) the non-conservative response in purely elastic cyclic 

motions (viz. in the form of non-physical residual stresses). While the latter two points may be consid-

ered negligible when both the elastic strains and strain-rates are small, these are clearly undesirable 

phenomena.  

Owing to the issues described above, hyperelastic-based elastoplasticity models emerged. Initial de-

velopments in this field are attributed to Simo (1985) and Simo and Ortiz (1985). These rely on a more 

physically motivated multiplicative elastoplastic split of the deformation gradient into elastic and plastic 

parts (Eq. (7.24)) and a hyperelastic constitutive equation for describing the reversible behaviour. Such 

theory presents clear advantages over the hypoelastic-based counterpart, both from a conceptual view-

point, since a dissipative response becomes impossible within the elastic range given the characteristic 

path-independence; and from the algorithmic viewpoint since incremental objectivity is trivially satis-

fied, and lager time (or pseudo-time) integration steps can be employed since it is a total (rather than 

rate-type) constitutive approach. This justifies the widespread acceptance of the hyperelastic-based mul-

tiplicative approach in the past two decades, which this work is concerned.  

In closing, it should be noted that the abovementioned non-physical dissipative and oscillatory be-

haviour associated with the hypoelastic theory is usually negligible in metal plasticity, where the con-

tribution of the elastic strains is small. Indeed, a recent numerical study in Brepols et al. (2014) showed 

that even if the hypo- and hype-elastic formulations lead to remarkably different results in an academic 

shear-dominated deformation test, the simulations of engineering forming processes (viz. deep drawing, 

draw bending and thermoforming) delivered very similar results of both global measurement and local 

fields, which suggests that both formulations are well-suited for dealing with elastoplastic modelling of 

common engineering metals and alloys. Note however that this may not hold in situations where elastic 

deformations become considerable. A comprehensive presentation of the theoretical aspects of and dif-

ferences between the hypoelastic and hyperelastic formulations can be found in Xiao et al. (2006) and 

Simo and Hughes (2006), the latter also concerns algorithmic aspects. 

Hyperelastic-based finite strain elastoplastic constitutive models are grounded on the formalism of 

thermodynamics with internal variable approach (recall §3.2). In essence, for the isothermal case, these 

are built by postulating (de Souza Neto et al., 2011): (i) a free-energy potential, from which the hyper-

elastic constitutive law is derived; (ii) a yield function defining the onset of plastic yielding; and (iii) a 

dissipation potential from which the plastic flow rule and the evolution laws for the internal variables 

are derived. The mathematical details and intermediate steps of this approach (e.g. thermodynamic de-

terminism, the Clausius-Duhem inequality, material objectivity, principle of maximum dissipation) are 

omitted here, and the focus is solely on the final results of the analysis. The elastoplastic constitutive 

framework presented in this subsection is based on the works Eterovic and Bathe (1990), Montáns and 
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Bathe (2007) and Caminero et al. (2011). The reared is referred to these for more details regarding the 

presented hyperelastic-based constitutive relationships. The output of each of the three points listed 

above are described in the following. 

Orthotropic hyperelasticity based on logarithmic strains 

When modelling small-strain elasticity, there is no theoretical reason to prefer one strain tensor over 

another one, and the same holds true for the stress tensors (Neff et al., 2016). However, in the context 

of large-strain elastoplasticity, formulations based on elastic logarithmic (alias natural or Hencky) strain 

tensors provide a number of unique, favourable properties, both conceptually and computationally: the 

former is related with their intuitive and meaningful physical interpretation (Malvern, 1969; de Souza 

Neto et al., 2011), viz., under uniaxial loadings; the latter is due to the fact that incremental schemes 

formulated in terms of logarithmic strains and exponential integration preserve the desired structure of 

the standard return mapping algorithms of classical elastoplastic models, thus providing a simple com-

putational framework suitable for nonlinear FE analysis (Simo, 1992). Moreover, it has been shown 

that hyperelastic relations in terms of logarithmic strains with constant coefficients yield a simple and 

accurate description of the elastic behaviour of metals for moderate elastic strains (Anand, 1979, 1985; 

Weber and Anand, 1990). For these reasons, elastoplastic models based on logarithmic strains and their 

work-conjugate stresses have been used extensively (Anand, 1979; Caminero et al., 2011; Eterovic and 

Bathe, 1990; Hill, 1950, 1979b; Hoger, 1987; Lehmann, 1991; Montáns et al., 2012; Montáns and 

Bathe, 2007; Perić et al., 1992; Raniecki and Nguyen, 1984; Simo, 1992; Xiao et al., 1997) and suc-

cessfully extended to soil mechanics in Borja and Tamagnini (1998). 

As discussed in §2.1, engineering polycrystals often display texture, i.e. a non-uniform orientation 

distribution of crystal orientations. The consideration of the effects of texture in the plastic deformation 

of these materials (in the form of plastic anisotropy) is well recognized in the literature. However, tex-

ture can cause the alteration of other macroscopic properties, both mechanical, viz. elasticity, and phys-

ical (e.g. thermal, elastic, magnetic) (Bunge, 1969; Kocks et al., 2000). Elastoplastic models of metallic 

materials generally account for orthotropic plasticity; however, the elastic properties are frequently con-

sidered isotropic. The reasons are two-fold: (i) the contribution of elastic strains is relatively small in 

large-strain deformations; and (ii) the hypothesis of elastic isotropy simplifies the material models since 

stress-and elastic strain- tensors commute. However, the influence of elastic anisotropy of textured pol-

ycrystals can be of interest. Examples include modelling of elastic recovery processes, viz., the spring-

back analysis for metal forming processes and modelling wave propagation is solids (Böhlke and Ber-

tram, 2001). Elastic anisotropy has been reported in metallic materials with cubic (Alekseyenko and 

Liu, 1966; Böhlke and Bertram, 2001; Bunge et al., 1969, 2000; Deng and Korkolis, 2018; Huang and 

Man, 2003; Ledbetter and Austin, 1985; Zeng and Ericsson, 1996) and hcp (e.g. the uniaxial tensile 

results of Nixon et al. (2010) on a textured high-purity α-titanium) structures. Consideration of elastic 

anisotropy when modelling the large-strain deformation behaviour of hcp metals can be particularly 

relevant since these can display a lower stiffness-to-strength 
T
1( / )E   ratio when compared with steels, 

hence the contribution of elastic strains to the total strain is greater. In this work, the hypothesis of 
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elastic isotropy is relaxed, and orthotropic elasticity is considered. As shown in Sumikawa et al. (2016), 

such approach should improve the accuracy of spring-back analyses. 

Following the definition of the generalized Lagrangian strain tensors (Eq. (7.19)) and the polar de-

composition of the elastic part of the deformation gradient, 
e e e ,=F R U  (Eq. (7.26)), the Lagrangian 

elastic logarithmic (or Hencky) strain tensor, e
(0) ,E  is given by: 

 

3
e e e
(0)

1

1
ln ln ln( ) ,

2

e
  




=

= = = E U C N N  (7.35) 

 where 
e
  are the principal elastic stretches (eigenvalues), ,N  1,2,3, =  are the Lagrangian principal 

strain directions (eigenvectors), and 

 
e e T e( )=C F F , (7.36) 

is the elastic right Cauchy-Green tensor (cf. (7.16)). Motivated by the work of Caminero et al. (2011). 

the following quadratic stored strain energy function, (alias elastic potential), 
e ,  is considered: 

 
e e e e

(0) (0) (0)

1
( ) : :

2
 =E E E , (7.37) 

where  is a (constant) fourth-order orthotropic elasticity tensor, with the same physical interpretation 

as in the small strain framework. Let  1 2 3{ , , }e e e  denote three mutually orthogonal directions defining 

the orthotropy (alias material) axes. Tensor  is more conveniently written in terms of is inverse, the 

compliance tensor, 
1,−

 whose Voigt 6x6-matrix notation, 1 1− −A  is given as (Jones, 1998): 

 

11 12 11 13 11

21 22 22 23 22

31 33 32 33 331

23

13

12

1/ / / 0 0 0

/ 1/ / 0 0 0

/ / 1/ 0 0 0
,

0 0 0 1/ 0 0

0 0 0 0 1/ 0

0 0 0 0 0 1/

E E E

E E E

E E E

G

G

G

 

 

 
−

− − 
 
− −
 
 − −

=  
 
 
 
  

A  (7.38) 

where 11,E 22 ,E 33E  are the Young’s moduli in the 1-, 2-, and 3-directions, respectively, ,ij  , 1,2,3,i j =

,i j  are the Poisson’s ratios25, and 23 ,G 31,G 12G  are the shear moduli in the 2-3, 1-3 and 1-2 planes, 

respectively. These elasticity parameters are not arbitrary. Indeed, thermodynamic consistency implies 

that the compliance matrix in Eq. (7.38), (and its inverse, the elastic stiffness matrix, )A  must be 

symmetric:  

 / / ,ij ii ji jjE E =  , 1,2,3,  ,i j i j=   (7.39) 

and positive-definite, which, in turn, requires that (see e.g. Jones (1998) for a proof): 

 11 22 33 23 13 12, , , , , 0,E E E G G G    (7.40) 

 
25 /ij jj iid d  = − , i.e. the negative of the transverse elastic strain in the j-direction over the axial elastic strain in 

the i-direction when a uniaxial stress state is applied in the i-direction. 
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23 32 13 31 12 21 32 13 21(1 2 ) 0,        − − − −   and 

23 32(1 ) 0, −  13 31(1 ) 0, −  12 21(1 ) 0. −   

In the general case, tensor  (and therefore 
1),−

 has nine independent coefficients. With the com-

pliance matrix in Eq. (7.38) defined, the Voigt matrix form of the orthotropic elasticity tensor, ,  is 

determined by matrix inversion. Analytical expressions for its the nonzero components of  can be 

found, for instance, in the book of Jones (1998). Under isotropic conditions, i.e., iiE E  (no sum), 

,ij   and ,ijG G  , 1,2,3,  ,i j i j=   the number of independent coefficients reduces to two; e.g., 

in terms of the first, ,  and second, ,G   Lamé coefficients, the isotropic form, iso ,  of the (gener-

ally) orthotropic tensor  is given by: 

 iso 2 = + I I , (7.41) 

where   and I  are the fourth- and second-order identity tensors, respectively.  

An appropriate invariant stress tensor can be defined by imposing elastic work-rate conjugacy with 

the elastic logarithmic strain tensor, in the intermediate configuration (Eterovic and Bathe, 1990), i.e.: 

 e e
(0) (0): :=T E d , (7.42) 

where 
e

d  is the elastic part of the spatial strain-rate tensor, defined in Eq. (7.30),  and   is the Kirchhoff 

stress tensor with respect to the intermediate configuration, i.e.: 

 eJ=  , (7.43) 

where   is the Cauchy stress tensor and 
eJ  the determinant of the elastic deformation gradient, quan-

tifying the volume change of associated with the elastic deformation (see Eq. (7.25)). In Eq. (7.42), (0)T  

is the stress conjugate of the logarithmic strain tensor e
(0) ,E  thus is coined the logarithmic stress tensor 

or the generalized Kirchhoff stress tensor. The latter term is due by the equivalence between (0)T  and 

the rotated Kirchhoff stress tensor, 
e T e( ) ,= R R   in the isotropic elasticity case (Eq. (7.41)), as shown 

in Caminero et al. (2011). 

Hyperelastic-based constitutive models are grounded on an underlying free energy potential. Based 

on the principle of material objectivity, the Helmholtz free energy per unit undeformed volume in the 

intermediate configuration, H ,  is assumed to have the form: 

 
e e e p

H H (0) (0) iso( , ) ( ) ( )     = = +E E , with p 21
iso 2

H =  (7.44) 

where 
e  is the elastic strain-energy function in Eq. (7.37), 

p
iso  is the plastic contribution related with 

the stored energy due to isotropic hardening of the material and   is some strain-like thermodynamic 

scalar internal variable representing the accumulated plastic strain. Its conjugated thermodynamic force, 

,  (often referred to as overstress scalar) is defined as (Montáns and Bathe, 2007; de Souza Neto et al., 

2011)): 
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p
iso ( )

( )
 

  






, and H =  (7.45) 

where   and   are the rates of   and ,  respectively, and 

 ( )H H  =  (7.46) 

is the isotropic hardening modulus. Refer to Rice (1971) for a micromechanical motivation of the addi-

tive split of the Helmholtz free energy in Eq. (7.44). By employing the isothermal version of the Clau-

sius-Duhem inequality and the axiom of thermodynamic determinism, it is possible to demonstrate that 

a hyperelastic-type constitutive relationship of the type: 

 

e e
(0)

(0) e
(0)

( )
=



E
T

E
, (7.47) 

is arrived. In view of Eq. (7.37), the previous expression leads to a standard linear constitutive law: 

 e
(0) (0):=T E . (7.48) 

The previous equation is the Lagrangian counterpart of the logarithmic Hencky (1933) model, extended 

to orthotropy. 

In the context of the finite element method, the determination of the element internal force vectors 

is often performed based on the current configuration (recall Figure 7.1). Accordingly, the state-update 

procedure of a material model encompasses the determination of a Cauchy stress tensor, .  One must 

therefore map the logarithmic stress tensor, (0)T  into the Cauchy stress tensor, .  This is achieved based 

on work-rate-conjugacy considerations, as demonstrated in Latorre and Montans (2016). Let (0)E  de-

note a Lagrangian logarithmic strain rate tensor, projected from the (reference) orthotropy frame, ,e

1,2,3, =  into the Lagrangian principal strain directions, ,N  with principal stretches, , 1,2,3, =  

(cf. last term of Eq. (7.35)) and 
T=d R dR  a rotated Eulerian strain rate tensor, also projected into the 

abovementioned Lagrangian principal strain frame. Latorre and Montans (2016) demonstrated that there 

is a one-to-one relation between these kinematic quantities which can be described with a mapping of 

the type: 

 
(0 )

(0) := d

E
E d , (7.49) 

where 
(0 )

d

E  is a fourth-order full-symmetric tensor given as follows: 

 

( )(0)

2 23 3

1 1 2 ln ln

j i

i i ij ij

i i j i i j j i

 

   = = 

−
=  + 

−
 d

E
M M M M , with 

( )

  (no sum),

1
,

2

i i i

ij i j j i

= 



=  + 

M N N

M N N N N
 

(7.50) 

whose Voigt 6x6-matrix notation is actually a diagonal matrix. An important result is that the respective 

conjugated stress tensors are related via the same mapping, i.e.: 
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 ( )
(0) (0)

1

(0) (0):   :
−

=  =d d

E E
T T  . (7.51) 

Projecting (0)T  in the Lagrangian principal strain directions, ,N  1,2,3, =  i.e.: 

 
3 3

(0)

1 1

 ,ij i j

i j

T
= =

= T N N  (7.52) 

(note that (0)T  is not necessarily diagonal in the orthotropic case since the principal strain and principal 

stress directions do not coincide), the components of the rotated Kirchhoff stress tensor, ,  in the prin-

cipal strain frame, i.e.: 

 
3 3

1 1

 ij i j

i j


= =

=  N N , (7.53) 

are given as follows: 

 ( )
2 2

                                 if ,

2 ln ln
  if .

ij

i j j iij

ij

j i

T i j

T i j
   

 

=


−= 
 −

 (7.54) 

The previous expression advocates the term ‘generalized’ Kirchhoff stress tensor to describe (0)T  since 

the diagonal components of (0)T  and   coincide when these are represented in the Lagrangian principal 

strain frame. Moreover, in the limit case of two principal stretches being equal: 

 
( )

2 2

2 ln ln
lim 1
j j

i j j i

j i
 

   

 →

−
=

−
, (7.55) 

hence (0) ,=T   even in the orthotropic case. Under isotropic conditions, (0)T  in Eq. (7.52) is diagonal 

hence the mapping in Eq. (7.54) leads trivially to (0) .=T   Once   is known, it is rotated back from  

the principal strain space, ,N  1,2,3, =  to the reference orthotropic (or material) frame, 1 2 3{ , , }e e e : 

 
3 3

1 1

 ij i j

i j


= =

=  e e . (7.56) 

Finally, the Cauchy stress tensor is determined rotating   to the current configuration, and applying the 

appropriate relationship between the Cauchy and the Kirchhoff stress measures as follows: 

 (1 / ) ,J=   with 
T= R R  , (7.57a) 

or, equivalently,  

 T ,= R R   with (1 / )J=  . (7.57b) 

The notation adopted in this paragraph holds for an arbitrary deformation gradient, F. However, in the 

scope of the envisioned constitutive formulation, grounded on the multiplicative split in Eq. (7.24) and 

the hypothesis in Eq. (7.33), the material frame 1 2 3{ , , }e e e  coincides with the intermediate configuration 

(since 
p p ,=F U  i.e., 

p ),= 0R  hence the kinematic quantities in Eqs. (7.49)-(7.50) and Eq. (7.57a) are 
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actually their elastic parts, i.e. e
(0) (0) ,E E  

e ,d d  
e ,   1,2,3, =  

e ,R R  and 
e ,J J  re-

spectively. For more details on the mapping between generalized stress and strain measures (in the sense 

of Eq. (7.19)), refer to Latorre and Montans (2016). 

As noted in §3.4.2 (p. 42), the original framework of Gurson (1977) on porous media disregards the 

influence of the damage variable, the porosity, on the elastic behaviour of the aggregate, since only the 

plastic response depends on the current damaged state. In the spirit of Lemaitre’s phenomenologically 

CDM theory (Lemaitre, 1985a; Lemaitre and Chaboche, 1994), where internal degradation of the mat-

ter, (in turn associated with the reduction of the resisting cross-section area due to void growth and/or 

microcracking), is reproduced by the degradation of the (macroscopic) elastic modulus, a correction to 

the orthotropic elasticity tensor, ,  in Eq. (7.37) is proposed as follows: 

 ( ) ,f=   (7.58) 

where  denotes the respective effective elasticity tensor, and   is a dimensionless heuristically-

motivated function, here coined the weakening factor, given by: 

 ( ) 1f f 
 = −  ,   , 1  . (7.59) 

 is therefore used in lieu of  in the constitutive law in Eq. (7.48). Figure 7.2 plots the shape of the 

weakening factor for several user-defined parameters .  For a finite parameter ,  in the absence of 

damage, ( 0),f =  ;=  whereas for a completely damaged state ( 1),f =  ,=   corresponding to 

a total loss of the overall stiffness. If a weakening factor with 1 =  is chosen, 1( ) (1 ),f f = −  thus the 

particular case of the Lemaitre’s softening of the elastic modulus is attained, i.e.: 

 (1 )f= − . (7.60) 

In the limit, , →  1, =  and the effective elasticity modulus of the porous aggregate equals that of 

the virgin (matrix) material, ,=  i.e., elastic softening is neglected. In closing, it must be empha-

sized that while the adopted naming and notation for  are reminiscent of the concept of  Lemaitre’s 

‘effective’ stress tensor (see Eq. (3.6)), the proposed modification for the elasticity tensor in Eq. (7.58) 

provides a weak elasticity-damage coupling since the evolution of the variable f will not be governed 

by thermodynamical considerations (viz., the definition of a damage energy release rate, / ,HY f  

as in Lemaitre’s framework), and, instead, follows from the principle of mass conservation, as later 

discussed in the present subsection. In other words, porosity, f, enters Eq. (7.58) (and therefore Eq. 

(7.48)) as a parameter and not as a thermodynamical internal variable.  
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Figure 7.2 Weakening factor function, ( ),f  for the elastic modulus for several parameters .   

 

The yield function 

Considering the objectives set for this work, the yield function is probably the most important feature 

of the developed elastoplastic model. In the context of porous solids, it follows from Eq. (5.10), Eq. 

(5.13) (particularly, its approximated-form, Eq. (5.45)) and Eq. (7.44)  that the elastic domain is defined 

as the set of Cauchy stress states: 

  T
2 1| ( , , , ) 0f  =   E , (7.61) 

with the yield function, , given as (henceforth the superscript ‘+’ related with the approximated nature 

of the potentials is omitted for readability): 

 
T
1 Y( , , , ) ( , )f f  =  −  ,  (7.62) 

with  

 
T

Y 1( ) ( )    = +  (7.63) 

where   denotes the Cauchy stress tensor in the material (orthotropy) frame, 
e T e( ) ,= R R   with   

in the current configuration given in Eq. (5.55) from the hyperelastic-law,   is the stress potential (an 

equivalent stress function) determined via Eqs. (5.46)-(5.47),  is the overstress scalar in Eq. (7.44); 

T
1  is the initial tensile uniaxial yield stress of the virgin material along the 1-direction of orthotropy, 

hence 
T

Y 1( )  = +  denotes the current uniaxial yield stress of the matrix material. Note that, in line 

with the convention introduced in Footnote 24 (p. 156), the Cauchy stress tensor in Eq. (7.61) refers to 

the macroscopic behaviour of the porous solid, i.e. .   The boundary of ,E  E  defines the yield 

(hyper-)surface, which given the condition: 

 
T
1( , , , ) 0f   = , (7.64) 

As discussed in §5.3.2 and then corroborated in §6.3, evaluation of the yield function is not efficient 

since the expression of its associated stress potential is unknown in the general case (recall Figure 6.16). 

Conversely, the determination of its dual, the SRP, is a straightforward task given the considered kine-

matic homogenization formulation. Accordingly, the goal is to follow a SRP-based constitutive formula-
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tion for characterizing the plastic behaviour of the porous solid. Since the SRP cannot explicitly define 

the elastic domain (as in Eq. (7.61)), an alternative condition must need to be considered. Based on the 

principle of maximum work Bacroix and Gilormini (1995) proposed a SRP-based yield condition using 

the following function: 

 ( )Y Y( , , ) inf ( , ) :g f f =  −
d

d d  , 2d , 
2

|| || 1=d , (7.65) 

where d  is a kinematic tensor with the physical interpretation of a rotated Eulerian plastic strain-rate, 

to be eliminated from the previous expression following the minimization of the argument of the infi-

mum, and ( , )f d  is the strain-rate potential in Eq. (5.39). Three cases can be distinguished based on 

the sign of function :g  

 Y

0         if  is outside the yield surface,

( , , ) 0  if  is on the yield surface,

0        if  is inside the yield surface.

g f 



=




 



 (7.66) 

Inherently, the minimization of g  is associated with the solution of the tensorial equation: 

 
Y( , , )g f 

=


0
d


, (7.67) 

More details on this method can be found in Rabahallah et al. (2009). The merit of this approach is that 

the minimization can be stopped as soon as the argument of the infimum in Eq. (7.65) becomes negative, 

which is a sufficient condition for the increment to be elastoplastic, hence there is no need to determine 

the exact value of the unknown .d  By applying the gradient in Eq. (7.67) to Eq. (7.65) and the Euler 

theorem for homogeneous functions one can easily verify that the minimization problem in Eq. (7.65) 

is equivalent to solving the equation system in Eq. (5.46) for the unknown d , rewritten here adopting 

the notational conventions of the present chapter as: 

 

( , )

( , )
0

( ) 1

f




 
−   

= =   
   − 

0
d

F d d

d


, 2d  (7.68) 

where the scalar of the solution vector is no more than the equivalent stress, i.e. ( , )f     (cf. Eq. 

(5.47)), entering the standard yield function in Eq. (7.62). It turns out that solving Eq. (7.68) in lieu of 

Eq. (7.65) appears to be more robust when the SRP is not known in closed-form, as is the case of this 

work. This is thought to be due to the distinct regularization criterion of the unknown, d  of adopted in 

each system: ( ) 1 =d  in Eq. (7.68) and 2
|| || 1=d  in Eq. (7.62). The algorithmic aspects of the solution 

of Eq. (7.68) were provided in Box 5.3 and Box 5.4. 

Evolution equation for the plastic deformation gradient, 
p

F  

Inverting Eq. (7.29), the evolution of the plastic deformation gradient tensor, 
p ,F  is given by: 

 p p p=F L F . (7.69) 

Given the hypothesis in Eq. (7.34), in turn due to 
p ,=W 0  the previous expression reduces to: 
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 p p p=F D F  (7.70) 

where it should be stressed that 
p

D  is a Lagrangian quantity in the intermediate configuration (see Eq. 

(7.32)). The Clausius-Duhem entropy inequality for isothermal processes can be written as: 

 H 0= −  , (7.71) 

where H  is the rate of the Helmholtz free energy in Eq. (7.44), 
e p

H iso ,  = +  and  is the (total) 

stress power per unit of volume in the intermediate configuration, i.e.: 

 (0) (0): : : :e eJ J= = = =T E d d d   . (7.72) 

where (0)E is the rate form of (0)E in Eq. (7.35). Combining Eq. (7.44) and Eqs. (7.71)-(7.72) the reduced 

(plastic) dissipation, 
p ,  inequality is then (refer to Montáns and Bathe (2007) for more details): 

 p p: 0= + d , (7.73) 

now expressed per unit of current volume (see Figure 7.1). Let ( , ) 0   denote the plastically ad-

missible stress states. In view of the principle of maximum plastic dissipation, (e.g., Lubliner (1984, 

1986), for a fixed p( , )d  the actual stress state, ,  maximizes the dissipation 
p
 in Eq. (7.73), subject 

to the constraint 0.  The constrained dissipation function can be written as the Lagrangian: 

 
p( , ) = −  , (7.74) 

where   is the Lagrange multiplier, alias consistency parameter or plastic multiplier rate. The condition 

of extremum is thus given by: 

 

p

( , )

0




 

 
=  =   =  

 
 =  = − = 
 

0

0

d
  , (7.75) 

and the complementary Kuhn-Tucker conditions: 

 0  , 0 , 0 = , (7.76) 

and the consistency condition: 

 0 = . (7.77) 

Equations (7.75)1 and (7.75)2 provide, respectively, the flow rule and hardening rule consistent with the 

principle of maximum dissipation, and, accordingly, are coined the associated (or associative) plastic 

flow and the associated hardening rule for general large-strain elasto-plasticity Caminero et al. (2011). 

Based on the results of §5.1.2, the plastic flow rule in Eq. (7.75)1 can be rewritten as follows: 

 
Y p

p( , )f




=


 = 

d

d


, (7.78) 

where p( , ),f d  defined in Eq. (5.39), is the dual (polar reciprocate) of ( , )f   in Eq. (7.62). More-

over, in view of Eq. (5.17), the plastic power is given by: 
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  p p p
Y: ( , ) ( , )f f = =   = d d  , (7.79) 

under the conditions Eq. (7.76). Note that two constitutive laws are available for determining the rotated 

Cauchy stress tensor, :  (i) the hyperelastic relationship in Eq. (7.48) (along its mathematical manip-

ulation to arrive at Eq. (7.57)); and (ii) the plastic flow rule in Eq. (7.78)1. Of course, these must be 

equal, which provides the basic tensorial equation of the state-update algorithm, as shown in ensuing 

subsection. 

 The crucial evolution equation of the plastic deformation gradient tensor in Eq. (7.70) is written in 

terms of the Lagrangian kinematic variable, 
p ,D  whereas Eq. (7.78) is written in terms of its Eulerian 

counterpart, 
p .d  However, it turns out that formulating the constitutive problem in terms of the variable 

p
D  (in place of p )d  is advantageous when deriving the respective incremental equations. Accordingly, 

a kinematical relationship between p
D  and 

p
d  must be provided. Combining Eqs. (7.26), (7.28) and 

(7.30) results in a mapping 
p p→D d  given as follows: 

 p e T p e e T e p e 1 e e p e 1( ) ( ) sym( ( ) ) sym( ( ) )− −= = =d R d R R F D F R U D U . (7.80) 

Closed-form expression for the inverse mapping is challenging if not impossible, yet it is not needed in 

the present analysis.  

Evolution equations for the hardening variables 

In view of Eq. (7.45) and the associated hardening rule (Eq. (7.75)2), the equation for the evolution 

of the isotropic hardening should follow: ( ) .H =    However, in the in the context of porous solids, 

hardening is typically not governed via thermodynamical considerations (viz. Eq. (7.75)2) and, instead, 

results from the phenomenological-based hypothesis of the equality of the plastic dissipation rate in the 

micro- and macro-scale, as proposed by Gurson (1977) (recall Eq. (3.11), p. 42 and concerning text). In 

this spirit, the definition of Y  in terms of the thermodynamic conjugates ( , )   (Eq. (7.63)) is aban-

doned (it was used at the outset just for motivation purposes), and a new state variable, 
p ,  is introduced 

to describe isotropic hardening as: 

 
T

Y 1
p p( ) ( )Y  = + , with ( ) 00Y = , (7.81a) 

where ( )Y   has the physical interpretation of the overstress scalar, ,Y    yet with no thermodynamic 

basis, or, equivalently, in a ‘total’ fashion as: 

 
p

Y
p( ) ( ),Y =  with 

T
1( .0)Y =  (7.81b) 

Close-form expressions for the isotropic hardening functions ( )Y   (and ( ))Y   are available in the liter-

ature. These can be of the linear-type, power-type (e.g. Swift (1952))), saturation-type (Voce (1948), or 

any linear or non-linear combination of these. Applying the phenomenological-based micro-macro plas-

tic power balance (Eq. (3.11)), the yield condition, Y ,( , )f  =  (Eq. (7.62)), and the Euler theorem 

for homogeneous functions, one arrives at the evolution equation of 
p

 as: 

 
p

(1 )f


=

−
, (7.82) 
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with   given in Eq. (7.78)2. It follows that:  

 Y
p ,YH =  

p p

p p

( ) ( )
Y

Y Y
H  

= =
 

 (7.83) 

where 
p

 and Y  are the rates of 
p

 and Y ,  respectively, and 
p( )Y YH H=  is the hardening mod-

ulus associated with ( )Y   (or ( )).Y   

Evolution equation for the porosity 

Similarly to the isotropic hardening variables, 
p

Y( , ,)  the evolution of the (unique) microstructural 

inspired variable – the porosity, f, is not directly associated with a dissipative mechanism, (hence with 

a thermodynamic dissipation potential), and, instead, follows from the axiom of mass conservation. In 

the following, two cases are considered for the evolution equation for f: (i) the neglect of void nucleation 

effects; and (ii) the consideration of void nucleation. Let us start with the former case. 

Let   denote the density of a porous aggregate with a void volume fraction, f, (see Eq. (3.8), p. 38) 

and m  the density of the matrix phase, both referred to the current configuration. These related as: 

 m mv = , with m (1 )v f= − , (7.84) 

where mv  is the volume fraction of the matrix. Time differentiation of this formula results in: 

 m m(1 )f f  = − − . (7.85) 

If the elastic hydrostatic strains in the matrix are neglected, in view of the plastic incompressibility: 

 m 0 = , (7.86) 

hence, combination of the last three equations leads to: 

 
m

(1 )f f
 

 
= − = − − . (7.87) 

The axiom of mass conservation, div( ( )) 0, + =u x  where div( )  denotes the divergence in the spatial 

configuration and ( )u x  is the displacement field in spatial coordinates (cf. Eq. (7.2)) requires that (de 

Souza Neto et al., 2011): 

 tr( ) tr( )
v

v




= = = −d d , (7.88) 

where vol( )v =   is the current volume of the porous aggregate (notation consistent with Eq. (3.8)) and 

v  its time derivative. Combination of the last two equations results in: 

 (1 )tr( )f f= − d . (7.89) 

Again, if the neglect of the elastic hydrostatic strains is invoked, in this case regarding the overall be-

haviour of the porous solid, the previous equation reduces to the well-known Gurson (1977) form: 

 
p(1 )tr( )f f= − d . (7.90) 
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The attractiveness of Eq. (7.90) is that it allows to explicitly describe the evolution of porosity in terms 

of the kinematical variable 
p

d  alone. As described in the following, if void nucleation is included in 

the formulation, this mathematical advantage is lost.  

In light of Eqs. (3.26)-(3.29) (pp. 52-53), the consideration of a (continuum) void nucleation model 

implies an additional term for f  as :  

  p
m

p(1 )tr( ) ( )f f = − + +d , (7.91) 

where  and  are the normal distributions functions of Chu and Needleman (1980) regarding strain- 

and stress-controlled void nucleation, respectively; 
p

 is given in Eq. (7.79) and m  is the rate of the 

hydrostatic part of the Cauchy stress tensor, m tr( )/3. =   Note that the added void nucleation terms in 

Eq. (7.91) preclude the incremental form of the state variable f, 
0

,t
tf fdt =   to determined explicitly in 

terms of the variables ( , )d  entering the constitutive rule in Eq. (7.78). Ultimately, this requires that 

an additional equation for the state-update of the porosity must be provided. Conversely, if void nucle-

ation is neglected, i.e., 0,= =  then Eq. (7.91) reduces to Eq. (7.90) and an explicit incremental form 

for the evolution equation of f can be written, which is advantageous from the computational viewpoint. 

These issues are more clearly elucidated in the next subsection, regarding the computational implemen-

tation of these evolution laws in an incremental fashion.  

7.1.4 Summary of the constitutive initial value problem 

The quasi-static finite-strain elastoplastic constitutive initial value problem based on the multiplica-

tive decomposition of the deformation gradient (§7.1.2) and hyperelastic-based elastoplasticity (§7.1.3) 

developed in the previous subsections to describe the behaviour of orthotropic porous solids is summa-

rized in Box 7.1. Note that the choice of the primary kinematical unknow is not unique when formula-

tion a differential equation system to solve the problem in Box 7.1. For example, one may choose any 

of the following: 
e ,F  

p ,F
p ,D p

d  as the primary kinematical unknow. In principle, these must lead to 

equivalent problems, hence, to the same solution. In the next subsection (§7.2) the incremental form of 

the problem in Box 7.1 will be derived assuming p
D  (or, more precisely, an incremental form of it) as 

the primary unknown, since this kinematical tensor leads to a straightforward integration scheme when 

using the exponential map operator along with an elastic predictor/return-mapping algorithm. 
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Box 7.1. Definition of the finite-strain constitutive elastoplastic initial value problem. 

 Given the initial values of 
e

0( )tF  (or, equivalently, 
p

0( ))tF  and of the internal state variables, 

0( )t = 0

p

0{ ( ), ( )},f t t  and the history of the deformation gradient, ( ),tF  0[ , ],t t T  find the 

functions 
e ( ),tF  (or equivalently, 

p ( )),tF  ( )t =
p{ ( ), ( )},f t t  and ( )t  that satisfy: 

 

 p( ( ), ( )) ( )t f t t = d , 

(7.92)  p

Y p
( ) ( ) ( ( ), ( ))

( )
t t t f t

t



=


d

d
 , 

 subjected to the constrains:  

 ( ) 0t  , Y( ( ), ( ), ( )) 0t f t t  , Y( ( ), ( ), ( )) ( ) 0t f t t t  = , (7.93) 

 for each instant 0[ , ],t t T  with  

 
e

(0) (0)( ) ( ( )) : ( )t f t t=T E , 

( ( )) (1 ( ) )f t f t = − , 
(7.94) 

 and  

 pT

Y 1( ) ( ( ))t Y t  = + , (7.95) 

 and the evolution equations:   

 p

Y

p

m

p( ) (1 ( ))tr( ( )) ( ( )) ( ) ( ( ), ( )) ( )f t f t t t t t t t = − +  + d  , 

(7.96)  p ( )
( )

((1 ))

t

f
t

t


=

−
; 

 as well as the kinematic relations:  

 p e 1( ) ( ( )) ( )t t t−=F F F  (or, equivalently,  
e p 1( ) ( )( ( )) )t t t −=F F F , (7.97) 

 e e e T e( ) ( ) ( ( )) ( ( ))t t t t= =U C F F , 

(7.98) 

 
e e

(0) ( ) ln ( )t t=E U , 

 e e e 1( ) ( )( ( ))t t t −=R F U , 

 e e( ) det ( )J t t= F , 

 p p p( ) ( ) ( )t t t=F D F , 
(7.99) 

 p e p e 1( ) sym( ( ) ( )( ( )) )t t t t −=d U D U ; 

 and the kinetic relations:  

 ( )
(0)

1

(0)( ) ( ) : ( )t t t
−

= d

E
T , 

(7.100) 
 

e

1
( ) ( )

( )
t t

J t
=  . 
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7.2 Computational implementation: the incremental problem 

In this subsection an incremental version of the quasi-static finite-strain initial value problem pre-

sented in §7.1, compatible with an updated Lagrangian finite element scheme, is developed. Some basic 

considerations regarding the considered finite element formulation are initially provided. The interested 

reader is referred to the seminal books of Zienkiewicz and Taylor (2005), Belytschko et al. (2014), de 

Souza Neto et al. (2011) and Simo and Hughes (2006) for details regarding the finite element method 

and its spatial and time integration schemes. 

7.2.1 Introductory remarks and the Updated Lagrangian formulation 

The finite element method (FEM) is the most popular numerical technique to solve boundary value 

problems in the field of solid mechanics. The FEM is grounded on temporal and spatial discretization 

methods. The former defines time (or pseudo-time) increments of the (possibly) path-dependent defor-

mation process, along with some hypothesis on the deformation path between time increments, ulti-

mately providing an incremental (or time-discrete) version of the originally time-continuum initial value 

problem. The latter divides the domain in a finite number of elements and, after appropriate interpola-

tion of the field variables, allows to establish a weak equilibrium equation on the nodal points. The 

problem then reduces to a root finding process for the discretized (generally non-linear) weak equilib-

rium equations for each (pseudo-)time increment of the initial value problem. This subsection is con-

cerned exclusively with the time discretization scheme. 

Let   denote a stress tensor and 1 2{ , ,... }k=     the set of (scalar and/or tensorial) internal vari-

ables of a given model. Considering the (pseudo)-time interval 1[ , ],n nt t +  1 ,n nt t t+ = −  where n denotes 

the number of the increment, the axiom of thermodynamic determinism implies that: 

 
1 1

1 1

ˆ ( , )

ˆ( , )

n n n

n n n

+ +

+ +

=


=

F

F

  

  
, (7.101) 

where ( )n  and 1( )n+  denote the value of the tensorial quantity at  nt  and 1,nt +  respectively, ̂  and ̂  

are some (generally nonlinear) incremental functions of   and ,  respectively, defined by means of a 

particular numerical integration algorithm of the constitutive equations of the model; and 1n+F  is the 

deformation gradient prescribed at the end of the time interval, 1.nt +   

In this work an updated Lagrangian scheme is considered. Within this formulation, given a (pseudo)-

time interval 1[ , ],n nt t +  the last admissible configuration satisfying equilibrium is known at instant ,nt  is 

regarded as the reference configuration of the body, whereas the configuration at  1nt +  is interpreted as 

the current configuration. As the solution is determined at successive time intervals, the new reference 

configuration is taken as the last (equilibrated) current configuration. Accordingly, 0  in Eq. (7.1) now 

describes the initial configuration (defined at 0 ),t  and n  (defined at )nt  is the new reference configu-

ration. An incremental deformation map, 1,n +  associated with the configuration at 1nt +  is then defined 

by: 

 
3

1( ) :n n n + →X , with 1 ( )n n+ =x X , (7.102) 
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which maps points n nX  with respect to a Cartesian basis ,iE  onto points 1 1n n+ +x  of the current 

configuration, 1,n+  with respect to a Cartesian basis ,ie  at time 1.nt +  The associated displacement field 

1n+u  at 1nt +  of a particle nX  is therefore given by: 

 1 1( ) ( )n n n n n+ += −u X X X . (7.103) 

Based on the incremental deformation map, 1,n +  in Eq. (7.102) the ‘total’ deformation gradient tensor, 

1,n+F  at 1nt +  can be defined as: 

 
1

1 0 1 0 1

( )
( ) ( )n n

n n n n n

n


 +

+ + +


= = = 



X
F X I + u X

X
,  (7.104) 

where 0 ( )   denotes the gradient operation with respect to the initial 0( )t configuration, 0 .  However, 

in the context of the updated Lagrangian scheme, it is more interesting to define the deformation map 

using the incremental deformation gradient, ,F  associated with the time increment 1 ,n nt t t+ = −  as: 

 
1

1 0( )n n
−

 += = +F F F I G ,  (7.105a) 

where  

 

1
0 1 1 1( ) ( )

n n n
−

+= = −XG u X I G G  , with 

1

1 1
1 1 1 1 0 0( ( )) ( )

n n n n
+

− −
+ + += = −xG u x I G G  

(7.105b) 

where 0G  and 1G  denote the gradient of the incremental displacements with respect to the reference, 

n nX  and the current, 1 1n n+ +x  configurations, respectively. It follows that 1n+F  in Eq. (7.104) can 

rewritten as: 

 1n n+ =F F F . (7.106) 

7.2.2 Time integration algorithms 

In this subsection defines the numerical methods used for the integration of the differential equations 

(Eq. (7.92)), constrains (Eq. (7.93)) and evolution equations for the state variables (Eq. (7.96)). In view 

of the previous discussion (§7.2.1), the notation ( )n  and 1( )n+  is used to denote the value of a tensorial 

quantity in the reference, ( )nt  and current, 1( ),nt +  configurations, respectively. Additionally, the opera-

tion ( )   is defined as the difference (or increment) between configuration, i.e.: 

 1( ) ( ) ( )n n+  =  −  . (7.107) 

Fully-implicit (alias backwards) numerical integration schemes are considered in the following. Given 

a (pseudo)-time interval 1[ , ],n nt t +  within a fully implicit scheme the arguments of the rate quantities of 

a given differential equation are replaced by their corresponding incremental values at the end of the 

interval, 1( ) .n+  Fully-implicit schemes are known to be first-order accurate and unconditionally stable26 

(Ortiz and Popov, 1985; Simo and Govindjee, 1991; Simo and Taylor, 1985), which are necessary and 

 
26 Refer e.g. to de Souza Neto et al. (2011) and references therein for an insight on the concepts of accuracy order, 

finite step accuracy and stability. 
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sufficient conditions for the numerical (approximate) solution to converge to the exact solution as the 

increment size, 1 ,n nt t t+ = −  tends to zero. Naturally, other mixed-schemes can be employed (e.g. the 

generalised trapezoidal rule and/or midpoint rules), the goal here is just to provide an example.  

Integration of the plastic deformation gradient, p
F  

The form of the differential equation for the evolution of the plastic deformation gradient, 
p ,F  (see 

Eq. (7.70)), renders the algorithms based on exponential mapping ideal for numerical integration. The 

notion of exponential map is review in Appendix G (note the similarly between Eq. (7.70), or, equiva-

lently, Eq. (7.99)1, and the general differential equation in Eq. (G.12)). In agreement with the previous 

discussion, a fully-implicit (alias backward) exponential integrator is used (setting 1 =  in Eq. (G.14)). 

Accordingly, the time discretisation of Eq. (7.70) by means of the resulting scheme leads to the follow-

ing update formula for the plastic deformation gradient: 

 
p p p

1 1exp( )n n nt+ += F D F . (7.108) 

It is emphasized that this operator satisfies the consistency conditions and is first-order accurate in ,t  

i.e. (Eterovic and Bathe, 1990): 

 
p p

1
0

lim n n
t

+
 →

=F F , (7.109) 

and  

 
p p p p

1
0

lim ( )n n n n
t

d

d t
+

 →
= =


F F D F . (7.110) 

The exponential map integrator has been shown to perform exceptionally well, both in terms of accuracy 

and robustness. For example, Vladimirov et al. (2008) performed a numerical study in order to compare 

the performance of the backward Euler-type scheme with the backward exponential map and concluded 

that the latter provided the best accuracy, even when large time increments were considered, for which 

the Euler integration scheme was underperforming. The (possibly unique) drawback of the exponential 

map is the need for solving an addition eigenvalue problem in each local iteration (see Eq. (G.5)), (note 

however, that this has a negligible effect when compared with the computational cost of the numerical 

homogenization considered in this work, therefore the possibility of using larger steps is very welcome).  

In agreement with the update scheme adopted for the plastic deformation gradient, the corresponding 

update equation for the elastic deformation gradient is in the form: 

 
e p 1 p

1 1 1( ) exp( )n n n nt−
+ + += −F F F D , (7.111) 

or, in view of the adopted updated Lagrangian scheme, more conveniently written as: 

 
e e p

1 1exp( )n n nt+  += −F F F D , (7.112) 

where the following relationships were used: the incremental deformation gradient: 1 ,n n+ =F F F  (Eq. 

(7.106)); the multiplicative elastoplastic split in the reference, 
e p ,n n n=F F F  and current, 

e p
1 1 1,n n n+ + +=F F F  

configurations; and the property of the exponential map in Eq. (G.8). 
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Integration of the constitutive relations and loading-unloading conditions 

In the following, the elastoplastic constitutive laws and the associated loading-unloading constraints 

(Eqs. (7.92)-(7.94)) are discretized. Henceforth, the conventional backward (fully-implicit) Euler inte-

gration scheme is employed. In line with the exponential integrator in Eq. (7.108), the Lagrangian plas-

tic strain-rate tensor, 
p ,D  is assumed constant over (pseudo)-time increment 1[ , ],n nt t +  and equal to its 

value at 1,nt +  i.e.: 

 
p p

1( ) nt +D D , 1[ , ]n nt t t + . (7.113) 

For convenience, an Lagrangian plastic strain tensor increment, 
p ,  is defined as27: 

 
1

p p ( ) ,
n

n

t

t

t dt
+

 =


D  (7.114) 

where, similarly to 
p ,D

p  denotes a material tensor referred to the intermediate (unstressed) config-

uration, (in turn defined with respect to the reference, ,n  and the current, 1,n+  configurations of the 

increment 1[ , ]).n nt t +  Given the hypothesis Eq. (7.113), it follows that: 

 
p p

1nt +   D  (7.115) 

is the estimate of the integral in Eq. (7.114) using the backward Euler scheme. In view of the kinematical 

relationship in Eq. (7.99)2, one has: 

 
p e p e 1

1 1 1 1sym( ( ) )n n n n
−

+ + + +=d U D U . (7.116) 

Defining an Eulerian plastic strain tensor increment, 
p ,  as: 

 
1

p p( ) ,
n

n

t

t

t dt
+

 =


d  (7.117) 

where, similarly to p,d  
p  denotes a spatial (referred to the current configuration, 1)n+  tensor rotated 

to the material axes, it follows from Eq. (7.113) and the last three expressions that: 

 
p e p e 1 e p e 1 p

1 1 1 1 1 1sym[ ( )( ) ] sym[ ( )( ) ]n n n n n nt t− −
+ + + + + +   =  =  U D U U E U d  (7.118) 

defines an estimate of the integral in Eq. (7.117) using the backward Euler scheme, where, in the same 

spirit as Eq. (7.113), it was considered that: 

 
e e

1( ) nt +U U , 1[ , ]n nt t t + . (7.119) 

It is straightforward to verify that with hypotheses Eq. (7.113) and Eq. (7.119), one implicitly assumes: 

 
p p

1( ) nt +d d , 1[ , ]n nt t t + . (7.120) 

Given that the strain-rate potential, p( , ),f d  is first-order homogeneous with respect to positive scalar 

multipliers, one can write the incremental form of Eq. (7.92)1 in any of the following equivalent forms: 

 p p p
1 1 1 1 1( , ) ( , ) ( , )n n n n nt f t f f+ + + + + =   =    =  d d  . (7.121) 

 
27 Tensor 

p  should not be confused with the logarithmic-type strain tensors denoted with subscript (0): (0) .  
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Conversely, the first derivative of  is homogeneous of degree zero, therefore: 

 

p p
1 1 1

1 pp
1

( , ) ( , )n n n
n

n

f f+ + +
+

+

  
= =



d

d





. (7.122) 

where p p
1 1 1 1 1 1( , ) /n n n n n nf+ + + + + += =  d d   denotes the (unique) normal to the strain-rate potential con-

vex hypersurface at 1,nt +  with p
1 1 1( , ).n n nf+ + + =  d  Note that 1n+  is actually the normalized (or unit) 

stress tensor, i.e., it has an unitary equivalent stress value, 1 1( , ) 1.n nf+ + =  Following Eq. (7.92)2, the 

updated rotated Cauchy stress tensor, 1n+  is given by: 

 1 Y 1 1n n n+ + +=   . (7.123) 

Analogously, the time-discretized version of the hyperelastic constitutive law in Eq. (7.94) is given by: 
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1
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n

J
−

−
+ + +

+

= d

E
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e e
1 1detn nJ + += F , and 

e
e1

(0) (0)1 1 1e
(0) 1
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n n n

n

f
 +

+ + +

+


= =


T E
E

, 

(7.124) 

where e e e
(0)1 1 1 1( , )n n n nf + + + += E  is the quadratic stored elastic strain energy function in Eq. (7.37), with 

the heuristic modification in Eq. (7.58). Note that no stress increments, 1,n+  appear in the incremen-

tal constitutive formulation presented above, as all stress tensors are ‘total’ quantities.  

The discrete version of the (Kuhn-Tucker) constrains in Eq. (7.93) is straightforwardly obtained as: 

 0  ,  1 1 Y 1( , , ) 0n n nf + + +  ,  1 1 Y 1( , , ) 0n n nf + + +  = . (7.125) 

Integration of the state variables and the loading-unloading conditions 

The time continuous evolution equations of the state variables in Eq. (7.96) are discretised using the 

conventional backward Euler scheme. The incremental version of the evolution of the hardening inter-

nal variable (Eq. (7.96)1), is thus in the form: 

 
p p p

1

1 1(1 ) (1 )n

n n

nf f
+

+ +

 
= 

−


−
= + , (7.126) 

with   given in Eq. (7.121). The current uniaxial yield stress of the matrix material (identical to the 

overall equivalent stress under elastoplastic loading), is therefore given by: 

 
T

Y 1
p

1 1( )n nY +  += + . (7.127) 

The porosity evolution equation (Eq. (7.96)2) is transformed into the following incremental counterpart: 

 1n nf f f+ = +  , with growth nucf f f =  +  ,  (7.128) 

where 

 

p p
growth 1 1 1(1 )tr( ) (1 )tr( )n n nf f t f+ + + = −   = − d  ,  

p
nuc Y 1 1 m

p
1( ) ( , )n n nf  + ++ = +    

(7.129) 

and 
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 m 1tr( )/3 tr( )/3n n + = −  , (7.130) 

denotes the increment of the hydrostatic stress in the increment (pseudo)-time increment 1[ , ].n nt t +  Note 

that Eq. (7.130) implies that equilibrated stress of the previous increment, n  must be saved in memory 

for the update of the current state. m  is the unique stress increment quantity entering the envisioned 

elastoplastic model. Note moreover that this quantity arises directly from the form of the heuristic stress-

controlled void nucleation function and is in total contradiction to the adopted ‘total’ (hence inherently 

objective) stress formulation, in turn arising from the adopted hyperelastic (in lieu of hypoelastic) for-

mulation. It is possible to show that the term Y 1 1 m( , )n n + +    renders the elastoplastic moduli non-

symmetric. More critically, the presence of void nucleation in Eq. (7.129)2 precludes the explicit update 

of 1nf +   in Eq. (7.128) in terms of 
p  alone (note the interdependency between p

1 1 1( , ),n n nf f+ + + d   

p
1

p p ( , )nf +     and p
1 1 1( , ),n n nf+ + + d   entering the strain- and stress- controlled terms, respec-

tively). If void nucleation is neglected, i.e. nuc0 0,f= =   =  combining Eqs. (7.128)-(7.129), one 

arrives at: 

 

p

1 p

tr( )
,

1 tr( )

n
n

f
f +

+ 
=

+ 




 if 0= = , (7.131) 

which is now provides an explicit update of the porosity state variable in terms of tensor 
p .  

7.2.3 Summary of the incremental boundary value problem 

Based on the above defined time discretised constitutive laws, evolution equations and kinematical 

and kinetic relations, the incremental counterpart of the initial value problem in Box 7.1 is summarized 

in Box 7.2. Note that Box 7.1 sets out a system of differential equations which, by means of time inte-

gration considerations, reduce to a system of algebraic equations of Box 7.2.  

Once the problem in Box 7.2 is solved for 
p  (or 

e
1),n+F  the updated plastic deformation gradients 

can be determined promptly from the multiplicative elastoplastic split as: 

 
p e 1

1 1( )n n n
−

+ + =F F F F  , (7.132) 

(or Eq. (7.108) if 
p

nF  in lieu of ).nF  Note however that the determination of this quantity is not actually 

needed within the proposed update Lagrangian scheme, since the elastic-plastic state is fully-defined 

knowing F  and 
e

1n+F  alone. The evaluation of 
p

1n+F  is thus only used for post-processing purposes.  
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Box 7.2. Definition of the incremental version of the finite-strain constitutive elastoplastic initial value problem.  

 Given 
e

nF  (or, equivalently, 
p )nF  and the set of internal state variables, n =

p{ , },nnf  at the 

beginning at a (pseudo)-time increment 1[ , ],n nt t t + and given the prescribed incremental de-

formation gradient, ,F  of this increment, solve the following system of algebraic equations 

for the unknowns 
p p

1( ),nt +   D  (or 
e

1n+F , or 
p

1),n+F  1n+ = 11

p{ , },nnf ++  and :  

 

 p

1( , )nf +  =  , 

(7.133)  
p
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1 Y 1 1 Y 1 p
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n n n n

f
  +

+ + + +

 
=  =




 


, 

 subjected to the constrains  

 0  , 1 1 Y 1( , , ) 0n n nf + + +  , 1 1 Y 1( , , ) 0n n nf + + +  = , (7.134) 

 with  

 
e

(0) (0)1 1 1( ) : n n nf+ + +=T E , 

1 1( ) [1 ( ) ]n nf f 
+ += − , 

(7.135) 

 and  

 T

Y 1

p

1 1( )n nY +  += + , (7.136) 

 and the incremental evolution equations:   

 p

1 1 Y 1 1 m

p p

1(1 )tr( ) ( ) ( , )nn n n n nf f f  + + ++ += + −  +  +    , 

(7.137)  
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nf +

+
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−
= + ; 

 as well as the kinematic relations:  

 e e e T e

1 1 1 1( )n n n n+ + + += =U C F F , 

(7.138) 

 
e e
(0) 1 1lnn n+ +=E U , 

 e e e 1

1 1 1( )n n n

−

+ + +=R F U , 

 e e

1 1detn nJ + += F , 

 e e p

1 exp( )n n+ = −F F F   (or, equivalently, 
p p p

1 exp( ) )n n+ = F F , 
(7.139) 

 p e p e 1

1 1sym( ( ) )n n

−

+ + = U U  , 

 and the kinetic relations:  
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1

(0)1 1
1

:n n
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= d

E
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(7.140) 
 e 1

1 1 1( )n n nJ −

+ + +=  . 

   

 

 



 

178 

7.2.4 Elastic predictor/return-mapping scheme 

This subsection is devoted to the development of an computational algorithm for solving the finite-

strain incremental problem postulated in Box 7.2. Motivated by the complementarity condition 0, 

in Eq. (7.134)1, a two-step algorithm is considered. Indeed, note that condition 0   allows for two 

mutually exclusive possibilities: (i) a null incremental plastic multiplier, 0; =  and (ii) a strictly pos-

itive plastic multiplier, 0.   In the former, the increment is purely elastic, therefore the dissipation 

(internal) state variables do not evolve and the constrain Eq. (7.134)3 is automatically verified, thus only 

Eq. (7.134)2, i.e., 1 1( , ) 0,n n+ +    must be tested. In the latter, Eq. (7.134)2 combined with Eq. (7.134)3 

result in the constraint 1 1( , ) 0,n n+ + =   which ultimately defines the magnitude of the  plastic incre-

ment, .  The well-known elastic predictor/plastic corrector algorithm is a conceptually simple two-

step algorithm grounded on the above reasoning (Simo and Hughes, 2006; de Souza Neto et al., 2011). 

This strategy is adopted in this work and is described in the following. The proposed state-update com-

putational procedure is developed in a rotated spatial configuration. The final quantities are then trans-

formed to the current or intermediate configurations as needed. 

Trial state: elastic predictor 

The first step in the algorithm is the evaluation of the elastic trial state where, by definition, the time 

increment 1[ , ]n nt t +  is assumed purely elastic, and thus the internal variables are ‘frozen’ at instant .nt  

Henceforward, scalar or tensorial quantities concerning the trial state are represented with the notation 

tr( ) .  The elastic trial state is obtained by solving Eq. (7.139)1 for 0. =  Given F  and the set of state 

variables 
p{ , },n nn f=  at ,nt  the trial (elastic) deformation gradient tensor is given by: 

 
e e

tr n=F F F  . (7.141) 

Moreover, condition 0 =  implies that the trial state variables are those of the previous increment,  

tr( ) ( ) .n    For the present constitutive equations one has:  

 
t

pr p

r

t

tr

n

n

n

f f=
=  

=
   . (7.142) 

Once 
e

trF  and tr  are known, their associated kinematical quantities (cf. (7.138)): 

 

e e e T e
tr tr tr tr( )= =U C F F , 

e e
(0) tr trln=E U , 

e e e 1
tr tr tr( )−=R F U , 

e e
tr trdetJ = F . 

(7.143) 

and hyperelastic constitutive quantities (cf. Eq. (7.135) and Eq. (7.140)):  

 

e
(0) (0)tr tr tr( ) : f=T E , 

(0)

e 1 1
(0)tr tr tr tr( ) ( ) :J − −= d

E
T , 

(7.144) 
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are determined, where tr  is the trial (elastic) rotated Cauchy stress tensor. The next step of the algo-

rithm is to check the trial state in plastically admissible, i.e., if  

 tr tr Y tr tr tr Y tr( , , ) ( , ) 0f f =  −   , (7.145) 

where t
pT

Y tr 1 r( )Y  = +  is the trial yield stress. If tr tr Y tr( , , ) 0f    the elastic trial state is plas-

tically admissible and the process is indeed elastic within the (pseudo)-time increment 1[ , ].n nt t +  The 

trial state is therefore accepted as the actual state, i.e.: 1 tr( ) ( ) .n+    In such case, one sets: 

 

e e
1 trn+ =F F , 

1 trn+ =    
p

1 tr
p

n+ = , 1 trnf f+ = , Y 1 Y trn + = , 

1 trn+ =  . 

(7.146) 

Otherwise, the process is in truth elastoplastic, hence it is necessary to apply a plastic correction (alias 

return mapping) whose procedure is described in the following. 

Plastic correction (return-mapping algorithm) 

As the name suggests, the plastic correction phase modifies the elastic trial state definition above in 

order to finding a solution 1,n+ 1 1
p{ , },n nf + +  ,  that satisfies 1 1 Y 1( , , ) 0n n nf + + + =  and 0.   In 

view of the definition of the trial state (Eq. (7.141)) and the update formula Eq. (7.139), 
e

1n+F  is updated 

as follows: 

 
e e p

1 tr exp( )n+ = −F F  , (7.147) 

Once 
e

1n+F  is corrected, its associated kinematical quantities are determined by Eq. (7.138). Applying 

the exponential map integrator and developing the Taylor expansion series on the resulting expression 

for the logarithmic elastic strain tensor (Eq. (7.138)2), it is possible to show that the previous equation 

leads to the approximation: 

 
e e p
(0) (0)1 trn+  − E E  , (7.148) 

which holds for moderately small elastic strains and incremental steps, i.e., e
(0) tr 2|| || 1.E  Note that Eq. 

(7.148) is the large strain incremental counterpart of the small strain additive decomposition of the strain 

rates: 
e p .= −d d d  This is a direct result of using logarithmic strains and the exponential mapping. This 

expression involves logarithmic and non-logarithmic strain tensors, yet, under the above condition, the 

approximation is reasonable. In this work the general correction expression Eq. (7.147) is considered, 

(the particular case in Eq. (7.148) was presented just for discussion purposes).  

A valuable advantage of considering a SRP-based plasticity constitutive formulation is that its asso-

ciated flow rule (Eq. (7.133)2): 1 Y 1 1n n n+ + +=    automatically verifies plastic admissibility, i.e., veri-

fies  1 0.n+ =  Indeed, given that 1 1( , ) 1,n nf+ +   1 1 Y 1( , )n n nf + + + =  and is therefore trivial to check 

that 1n+ = 1 1 Y 1( , ) 0.n n nf + + + − =   

In Eq. (7.147) 
e

trF  is a constant, and 
p  is the (unique) parameter. The plastic correction scheme 

presented in the following assumes 
p  as the primary unknown of the problem. Note that 

p  fully 

defines the elastoplastic multiplicative split via Eq. (7.147). Given the adopted hyperelastic formulation, 
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the elastic behaviour is fully-defined by 
e

1n+F  which allows the definition of an ‘elastic’ Cauchy stress 

tensor (i.e. due to elasticity), 
e

1,n+  as (combining Eq. (7.135) and Eq. (7.140)): 

 
(0)

e e 1 1 e
(0)1 1 1 1 1( ) ( ) :[ ( ) : ]n n n n nJ f− −

+ + + + += d

E
E . (7.149) 

Moreover, from the SRP-based flow rule in Eq. (7.133)2, one can define a ‘plastic’ Cauchy stress tensor, 

(i.e. due to plasticity), 
p

1,n+  as: 
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
, (7.150) 

where 
p  is given in terms of 

p  via Eq. (7.139). Naturally, Eq. (7.149) and Eq. (7.150) must be 

equal, which leads to the following non-linear tensorial equation in terms of the unknown 
p :  

 
(0)

p p e
1 1

p
e 1 1 e1

(0)Y 1 1 1 1
p

1 1p

( ) ( )

( , )
              ( ) ( ) ( ) :[ ( ) : ],

n n

n
n n n n nn

f
J f





+ +

− −+
++ + + + +

 = −

 
=  −



d

E
E

   




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where the residual function, 
p( )    has the dimension of a (spatial) Cauchy stress tensor rotated to 

the intermediate configuration (material axes). Note that all entities entering the previous expression 

depend on the unknown, p .  The plastic correction procedure consists of solving this system for the 

primary unknown, i.e., 
p( ) .  = 0   Due to symmetry, system 

p( )    has six independent non-

linear equations for the six independent coefficients of 
p .  

Remark 7.1 The evaluation of 
p( )    requires the computation of the SRP value,

p
1( , )nf +   and 

its first derivative, p p
1 1( , ) / .n nf+ + =       

Recall that, within the present work on numerical-based plastic potentials for porous media, these quan-

tities are actually determined simultaneously (see Remark 5.2, p. 107 and adjacent text). 

Remark 7.2 The system 
p( )  = 0   fully defines the plastic correction problem if and only if all the 

state variables entering the expression, in this case, 1
p

11 { , },nn nf ++ +=  can be written explicitly in terms 

of the unknown p  (or explicit operations thereof, viz. 
p , p( )).   

Unfortunately, the condition in Remark 7.2 does not hold in the general case. While the isotropic hard-

ening internal variable, 
p

1,n+  can be explicitly updated in terms of 
p

1( , )nf + =    (Eq. (7.137)2), in 

general, the equation for the current porosity, 1,nf +  (Eq. (7.137)1), cannot be explicitly defined in terms 

of the incremental plastic strain tensor alone, as discussed in the text following Eq. (7.128). The excep-

tion of the latter is in the case of void nucleation being neglected: Y
p

11 1( )= ( , ) 0.n nn  + ++ =  In this 

case, 1nf +  can be explicitly defined (see Eq. (7.131)), and the solution of system 
p( )    in Eq. (7.151) 

is solution of the plastic correction problem. Otherwise, an additional equation for 1nf + , p
1( , ),f nf +  

must be added to Eq. (7.151) to describe the incremental porosity evolution. In view of Eqs. (7.128)-

(7.130), the residual scalar function for the correction of the porosity, p
1( , ),f nf +  is in the form: 
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p

1 1 growth nuc

p
1 1 1

p p
Y m1 1

( , ) ( ) ( )

                      ( ) ((1 )tr( ) ( ) ( , ) ).

f n n n

n n n nn n

f f f f f

f f f



 

+ +

+ + +++

 = − 



− + 

= − − −  +  + 



 
 (7.152) 

From the above, it is convenient to distinguish two types of problems regarding the modelling of the 

elastoplastic behaviour of porous media: (i) void nucleation effects neglected; (ii) the general case, i.e. 

including void nucleation effects. These are associated with the solution of the problems: 

 p p( ) ( ) =  = 0F    , (7.153) 

for the former, and 

 

p
1p

1 p
1

( , )
( , )

0( , )

n

n

f n

f
f

f




+

+

+

   
 = =   

   

0
F

 



, (7.154) 

for the latter. The solution of the non-linear system in Eq. (7.153) (or, more generally, in Eq. (7.154)) is 

solved using a quasi-Newton procedure with a numerical finite-difference differentiation scheme. Note 

that usage of the actual Newton-Raphson procedure is precluded since, in general, no analytical expres-

sion exists for 
p

1( , ),nf +   (hence p p
1 1( , ) / ).n nf+ + =       

Let us consider the general problem in Eq. (7.154). Given an initial value for the solution ‘vector’ 

p (0) (0)
1{ , },nf +  the corresponding value at iteration ( 1),k +  

p ( 1) ( 1)
1{ , },k k

nf
+ +

+  is determined correcting 

the current solution, 
p ( ) ( )

1{ , },k k
nf +  via:  

 
p ( 1) p ( ) p ( 1)

( 1) ( ) ( 1)
1 1 1

( )k k k

k k k
n n nf f f





+ +

+ +
+ + +

       
= +     

     

  
, (7.155) 

where 
p ( 1) ( 1)

1{ , }k k
nf + +
+ is correction term of iteration ( 1),k +  given as: 
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p
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( ) ( )

p ( ) ( )p ( 1)
// 1

p ( ) ( )( 1) ( ) ( )
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:

( , )
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++   
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where 
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(7.157) 

are the Jacobian tensors of the system 
p

1( , )nf +F   in Eq. (7.154), to be estimated by finite differences 

at each iteration, ( ).k  Note that p
( )

/
k

    is a fourth-order tensor,  
( )

/
k

f J   and p
( )

/f

k
 J  are second-order 

tensors, and 
( )

/f

k
fJ    is a scalar. In practice, Voigt pseudo-vectorial notation is adopted to write the 
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residual function 
p

1( , )nf +   (Eq. (7.151)), i.e., 
p p

1 1( , ) ( , ),n nf f + +      as a six-element 

vector hence Eq. (7.156) simplifies to a more computationally convenient matrix form as:  
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where p p
( ) ( )

/ /

k k

    J     is a 6 6  invertible matrix, 
( ) ( )

//
k k

ff     J J   and pp
( ) ( )

// ff

k k
    J J   are 6-

element vectors, and thus 
( )k

J  is a 7 7  invertible matrix. The above solution scheme allows for supra-

linear convergence rates, (quadratic if analytical expressions for the Jacobian tensors are provided).  

The solution of the problem in Eq. (7.153), i.e. disregarding void nucleation, is no more than a par-

ticular case of the above procedure. In this case, one provides an initial value for 
p ,  

p (0) ,  to be 

iteratively corrected, 
p ( 1) p ( ) p ( 1)( ),k k k+ + =  +     with p

p ( 1) ( ) 1 p ( )
/( ) ( ) : ( )k k k

  + −
  =      (cf. 

Eq. (7.156)) where, as in Eq. (7.157), p
( ) p ( ) p ( )

/ ( )/ ( )k k k

   =          is the Jacobian of the system 

p( ) ,  = 0   whose Voigt representation is in form: 

    
1

p ( 1) ( ) p ( )( ) ( )k k k


−
+   =  J   , with p

( ) ( )

/

k k

 
=J J

 
, (7.159) 

where the overall Jacobian, 
( ) ,k

J is now a 6 6  invertible matrix.  

The iterative correction scheme is conducted until a given tolerance is met. Regarding the (general) 

problem in Eq. (7.154) the iterative process stops as soon as: 
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where 
( 1)

Y 1
k

n +
+ is the current yield stress regarding iteration ( 1),k +  and 

fun
tol  and 

x
tol 

 are the prescribed 

relative tolerances for the residual norm and increment norm, respectively. Regarding the reduced prob-

lem in Eq. (7.153), only the first inequality in each parenthesis of the previous expressions needs to be 

satisfied. The Jacobian matrix p
( 1) p ( 1) ( 1)

1/ ( , ),k k k
nf

+ + +
+  J     associated with the solution 

p ( 1) ( 1)
1( , ),k k

nf
+ +

+  

of the problem Eq. (7.154), (or, similarly, p
( 1) p ( 1)

/ ( ),k k



+ +

  J     associated with the solution 
p ( 1)( )k+  of 

Eq. (7.153)) is stored in memory for determining an estimate of the consistent/algorithmic elastoplastic 

modulus, as later shown in §7.2.6. 

Once the plastic correction problem has been solved, i.e. Eq. (7.160) is satisfied: 
p p ( 1)k+     

in the case of problem Eq. (7.153) and 
p p ( 1) ( 1)

1 1{ , } { , },k k
n nf f+ +
+ +     in the case of Eq. (7.154); the 

kinematical and kinetic tensors of the current (elastoplastic) increment are updated in a post-processing 

step following the definitions in Box 7.2. In addition to these, some auxiliary quantities are also com-

puted, viz.: (i) the (non-rotated) updated Cauchy stress tensor: 

 e e T
1 1 1 1= ( )n n n n+ + + +R R  , (7.161) 
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required to assemble the internal finite element force vector: (ii) the rotated plastic strain-rate ‘direction’ 

(alias unitary plastic strain-rate tensor), 
p

1,n+n  by definition, coincident with the gradient of the plastic 

stress potential, 
p

1 1 1 1( , )/ :n n n nf+ + + + n    

 
p p p

p 1
1 p p

1 1 1( , ) ( , )

n
n

n n nf f

+
+

+ + +

 
= = 
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d
n

d

 


; (7.162) 

where the last equality results from the homogeneity property of the SRP, ,  and the adopted fully-

implicit integration scheme p p
1( ).nt + =  d  Note that 

p
1n+n  is a spatial quantity rotated to the interme-

diate configuration; (iii) an estimate of the hardening modulus scalar, H, obtained from the elastoplastic 

( 0)   consistency condition p0 : 0.H=  − =n  Integration of this expression in the context 

of the adopted fully-implicit incremental scheme results in the estimate 1 :nH H +   

 
p

p 1
1 1 1

:
: 0 n

n n nH H +
+ + +


 −  =  =



n
n


 , (7.163) 

where 1( )n n+ = −    is the rotated Cauchy stress increment and 
p

1n+n  was defined in Eq. (7.162). 

Sufficient conditions for determining the incremental loading-unloading conditions 

The lack of an explicit expression defining the boundary between the elastic and plastic domains is 

the major drawback of SRP-based plasticity formulations. In Eq. (7.145) the plastic admissibility of the 

trial state was verified by determining the respective stress potential value, tr tr( , ),f   a priori. Recall 

that this can be achieved by performing the ‘inverse’ homogenization problem, as summarized in Box 

4.3. However, this process is computationally extremely expensive and, if possible, should be avoided. 

Note that, in fact, the adopted SRP-based return mapping scheme does not require the computation of 

any equivalent stress quantity, ( , ).f =    Indeed, the final equivalent stress, 1 Y 1n n + +  is a mere 

output of the plastic correction scheme and is set in the post-processing phase. Following the work of 

(Hughes, 1984) on the numerical aspects of rate-independent associative flow rules, a sufficient condi-

tion to guarantee that the current increment is elastoplastic based on a deformation history is: 

 p
tr( ) : 0n n− n  , if ( , ) 0,n nf =  (7.164) 

(thus 
p ),n  0n  i.e. the previous increment was elastoplastic, where tr  is the (current) trial elastic stress, 

and n  and 
p
nn  are the rotated Cauchy stress tensor and the rotated unitary plastic strain-rate tensor, 

respectively, of the previous increment. The usage of Eq. (7.164) renders the evaluation of the yield 

condition Eq. (7.145) unnecessary in most cases (Rabahallah et al., 2009), thus providing a major com-

putational improvement. Indeed the computational cost of Eq. (7.164) is insignificant and simply re-

quires storing n  and 
p
nn  in memory for usage in the next increment.  

If the previous increment (associated with ),n  is not elastoplastic then Eq. (7.164) does not apply. 

In this case, ad hoc criteria can still be used to bypass the computationally expensive determination of 

the yield function. For example: (i) if a p-norm of the current trial stress tensor normalized by the last 

known yield stress is smaller than a user-defined threshold fraction, 
Y

e ,f  (say, 
Y

e 0.1),f =   
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n

f
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


; (7.165) 

then the increment is clearly elastic; and/or, (ii) if a p-norm (or the von Misis norm) of the deviatoric 

part of the current trial stress tensor normalized by the last known yield stress is greater than a user-

defined threshold fraction, 
Y

p ,f  (say, 
Y

p 10),f =   

 
Y

ptr 2

Y

|| '||

n

f





, (7.166) 

then the increment is clearly elastoplastic; among others. Of course, these being based on heurist rules, 

such criteria should be used with discretion since ill-judged threshold fractions may lead to an incorrect 

conclusion (particularly in the context of porous solids given the dependence on all invariants of the 

stress tensor). Nevertheless, if conservative conditions are employed, these provide a reliable tool for 

reducing the computational cost associated with the determination of the loading-unloading conditions 

of the incremental problem.  

7.2.5 Summary of the computational procedure 

The complete computational procedure of the developed fully-implicit elastic predictor/return-map-

ping scheme for integration of the large-strain elastoplastic constitutive equations is summarized in Box 

7.3-Box 7.7 in pseudo-code format. In line with the previous discussion, two cases are distinguished: 

(i) the general case; and (ii) a particular case due to the neglect of void nucleation, which was shown to 

considerably simply the governing equation system of the plastic correction phase.  
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Box 7.3 Elastic predictor/return mapping algorithm for the incremental finite-strain elastoplastic porous model. 

0. Inputs: 1,G
e ,nF  

p{ , },n nn f=  nσ , 
p

nn  

▪ Compute the incremental displacement gradient: 
1

1 1( )− = + −F I I G G   % (Eq. (7.105)) 

1. Elastic trial state 

▪ Compute the trial elastic deformation gradient 
e e

tr n=F F F  % (Eq. (7.141)) 

▪ Compute the trial elastic right Cauchy-Green deformation tensor its spectral decomposition: 

           
e e T e 3 e

tr tr tr 1 tr tr tr( ) ( ) ( ) ( )i i i i== =  C F F N N  

▪ Compute the trial logarithmic strain tensor: 

           
e e e 3 e1
(0) tr tr tr 1 tr tr tr2

ln ln ln( ) ( ) ( )i i i i== = =  E U C N N  

▪ Compute the trial logarithmic strain tensor and trial elastic determinant: 

           
e e 3 e

tr tr 1 trdet ( )i iJ == = F  

▪ Set trial state variables: tr trn nf f=  =  , 
p

tr

p

n= ; Y tr Y n =  

▪ Transform to pseudo-vector Voigt notation: 
e e
(0) tr (0)tr→ EE  % (Appendix A) 

▪ Compute the trial logarithmic stress tensor and the trial rotated trial Cauchy stress tensor: 

           e
(0) (0)tr tr tr( )f=T A E , and 

(0)

e 1 1
(0)tr tr tr tr( ) ( )J − −=σ M T

d

E
 

2. Check plastic admissibility of the trial state 

▪ Check sufficient condition % (cf. Eq. (7.164)) 

if  
p p ) 0n n (n n  then 

if 
p

tr( ) 0n n−  σ σ n  

▪ The process is elastoplastic: GOTO 3. 

end 

end 

▪ Determine the equivalent stress (i.e. the plastic stress potential): 

CALL Box 5.3 (the ‘inverse’ homogenization problem): tr tr tr( , )f  σ  

▪ Determine tr tr Y tr tr Y tr( , , )f  =  −  

if  tr tr Y tr( , , ) 0f    then 

▪ The process is elastic. Set 1 tr( ) ( ) ,n+    
p , =ε 0  

p , = 0  and GOTO 4. 

else 

▪ The process is elastoplastic: GOTO 3. 

end 

3. Return mapping 

▪ Solve the plastic correction problem: 

if (general problem) then % (void nucleation considered: 7-element system) 

CALL Box 7.4 to solve 
p T

1( , ) [ 0]nf + =F Ε 0  % (Eq. (7.154)) 

else % (void nucleation neglected: 6-element system) 

CALL Box 7.5 to solve 
p( ) =F Ε 0  % (Eq. (7.153)) 

end 

4. Update auxiliary variables and the Cauchy stress tensor  

▪ Unitary rotated plastic strain-rate tensor: 
p p

1 /n+ =  n    % Eq. (7.162) 

▪ Hardening scalar estimate: 
p

1 1 1( ) /n n n nH + + += −  σ σ n ;  % Eq. (7.163)  

▪ Voigt notation to matrix notation: 1 1n n+ + σ ;  and 
e e T

1 1 1 1= ( )n n n n+ + + +R R   % Eq. (7.161)) 

5. Output:  
e

1,n+F  1

p

11 { , },nn nf ++ +=  1n+σ , ( 1n+σ ,
p

1n+n , 1nH + ), p
/ J    
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Box 7.4 The plastic correction problem (the general case). 

0. Inputs: 1,G
e ,nF  

p{ , },n nn f=  nσ  

1. Solve the system of equations 

▪ Set initial guess 
p (0) (0)

1{ , },nf +Ε  and the relative convergence tolerances for the system: 
fun x

tol tol{ , }  
 

▪ Solve the system in Box 7.6 for 
p

1{ , }nf +Ε  with a quasi-Newton method, such that: 

 

p ( 1) ( 1) p ( 1) ( 1)
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+ +
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 
 

 
  and  
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tol tol( 1)p ( 1)
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k

n

kk
n

f

f

 
 

+
+

 +

++
+

 
   
 
 




,  

  where k is the number of the iteration and ( : )I JF  denotes the I to J components of vector F  

with 1 7.I J     

2. Output: 
p p ( 1) ,k+    ( 1) ,k+  

( 1) ( 1)

1 1

p p{ , } { , },n

k k

n n nf f + +

+ +   

p( 1)

1 1

k

n n

+

+ +σ σ , p p
( 1)

/ /
k

 

+
   J J    

 

 

Box 7.5 The plastic correction problem for the particular case of the neglect of void nucleation effects. 

0. Inputs: 1,G
e ,nF  

p{ , }n n nf=  

1. Solve the system of equations 

▪ Set initial guess 
p (0)Ε  and the relative convergence tolerances for the system: 

fun x

tol tol{ , }  
 

▪ Solve the system in Box 7.7 for 
pΕ  with a quasi-Newton method, such that: 

 

p ( 1)

fun2
tol( 1)

Y 1

( )k

k

n




+

+

+

 
 
 
 

F 
  and  

p ( 1)

x2
tolp ( 1)

2

( )k

k




+



+

 
 
 
 




,  

  where k is the number of the iteration. 

2. Output: 
p p ( 1) ,k+     

( 1) ,k+    
( 1) ( 1)

1 1

p p{ , } { , },n

k k

n n nf f + +

+ +  

 
p( 1)

1 1

k

n n

+

+ +σ σ , p p
( 1)

/ /
k

 

+
   J J    
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Box 7.6 Error function vector of the plastic correction problem (general case). 

0. Inputs: 1,G
e ,nF  

p{ , },n nn f=  nσ , 
p

1{ , }nf +Ε  

▪ Compute the incremental displacement gradient: 
1

1 1( )− = + −F I I G G   % (Eq. (7.105)) 

1. Correction of the elastic tensors  

▪ Transform to matrix notation from Voigt notation: 
e e

(0)(0) 1 1n n+ +→E E  % (Appendix A) 

▪ Correction of the elastic deformation gradient 
e e p

1 tr exp( )n+ = −F F   % (Eq. (7.139)1) 

▪ Compute the elastic right Cauchy-Green deformation tensor its spectral decomposition: 

           
e e T e 3 e

1 1 1 1 1 1 1( ) ( ) ( ) ( )n n n i i n i n i n+ + + = + + += =  C F F N N  

▪ Compute the logarithmic strain tensor: 

           
e e e 3 e1
(0) 1 1 1 1 1 1 12

ln ln ln( ) ( ) ( )n n n i i n i n i n+ + + = + + += = =  E U C N N  

▪ Compute the logarithmic strain tensor and trial elastic determinant: 

           
e e 3 e

1 1 1 1det ( )n n i i nJ + + = += = F  

2. Rotated Cauchy stress tensor from elasticity 

▪ Compute the logarithmic stress tensor and the rotated trial Cauchy stress tensor from elasticity: 

           e
(0) (0)1 1 1( )n n nf+ + +=T A E , and 

(0)

e e 1 1
(0)1 1 1 1( ) ( )n n n nJ − −

+ + + +=σ M T
d

E
 % (Eq. (7.140)) 

3. Spatial rotated plastic strain increment  

▪ Compute 
p e p e 1

1 1sym( ( ) )n n

−

+ + = U U   % (Eq. (7.139)2) 

▪ Transform to pseudo-vector Voigt notation: 
p p → ε  % (Appendix A) 

4. Strain rate potential and plastic flow rule 

 ▪ Compute the SRP and its first derivative: 

CALL Box 5.1 (the ‘direct’ homogenization problem) to obtain:   
p

1( , )nf +  ε  and 
p p

1 1( , ) /n nf+ +=   ξ ε ε  % (Eq. (7.133)) 

5. Update the explicit-type state variables 

▪ 
p

1

p

1 / (1 )n nn f ++  −= +  % (Eq. (7.137)2) 

▪ Determine the current yield stress: Y Y 1

p

1 1( )n nn  + ++ =   % (Eq. (7.127)) 

6. Rotated Cauchy stress tensor from plasticity 

▪ Compute 
p

1 Y 1 1n n n+ + += σ ξ  % (Eq. (7.150)) 

7. Construct the (pseudo-) vector error function  

▪ Compute the stress residual vector: 
p e

1 1( )n n + += −ρ σ σ  % (Eq. (7.151)) 

▪ Auxiliary scalars:  
p

1/ (1 )nf + −=  ,  
p p

m sum( (1: 3)) = ε   
p

m 1sum( (1: 3) (1: 3))/3n n + = −σ σ  

▪ Compute the porosity residual scalar:  
pp p

1 1 m Y 1

p

1 1 m( ) ((1 ) ( ) ( , ) ).nf n n n n nf f f   + + + ++= − − −  +   + σ  % (Eq. (7.152)) 

▪ Assemble the error vector: 
f





  
  

  

ρ
F  

8. Output: F , ,  1

p

11 { , },nn nf ++ +=  
p

1n+σ  
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Box 7.7 Error function vector of the plastic correction problem for the particular case of the neglect of void nu-

cleation effects. 

0. Inputs: 1,G
e ,nF  

p{ , },n nn f=  
pΕ  

▪ Compute the incremental displacement gradient: 
1

1 1( )− = + −F I I G G   % (Eq. (7.105)) 

1. Correction of the elastic tensors  

▪ Transform to matrix notation from Voigt notation: 
e e

(0)(0) 1 1n n+ +→E E  % (Appendix A) 

▪ Correction of the elastic deformation gradient 
e e p

1 tr exp( )n+ = −F F  % (Eq. (7.139)1) 

▪ Compute the elastic right Cauchy-Green deformation tensor its spectral decomposition: 

           
e e T e 3 e

1 1 1 1 1 1 1( ) ( ) ( ) ( )n n n i i n i n i n+ + + = + + += =  C F F N N  

▪ Compute the logarithmic strain tensor: 

           
e e e 3 e1
(0) 1 1 1 1 1 1 12

ln ln ln( ) ( ) ( )n n n i i n i n i n+ + + = + + += = =  E U C N N  

▪ Compute the logarithmic strain tensor and trial elastic determinant: 

           
e e 3 e

1 1 1 1det ( )n n i i nJ + + = += = F  

2. Spatial rotated plastic strain increment  

▪ Compute 
p e p e 1

1 1sym( ( ) )n n

−

+ + = U U   % (Eq. (7.139)2) 

▪ Transform to pseudo-vector Voigt notation: 
p p → ε  % (Appendix A) 

3. Explicit update of the porosity variable 

▪ 
p p

m sum( (1: 3)) = ε   

▪ 
p

m
1 p

m1

n
n

f
f




+

+ 
=

+ 
   % (Eq. (7.131)) 

4. Rotated Cauchy stress tensor from elasticity 

▪ Compute the logarithmic stress tensor and the rotated trial Cauchy stress tensor from elasticity: 

           e
(0) (0)1 1 1( )n n nf+ + +=T A E , and 

(0)

e e 1 1
(0)1 1 1 1( ) ( )n n n nJ − −

+ + + +=σ M T
d

E
 % (Eq. (7.140)) 

5. Strain rate potential and plastic flow rule 

 ▪ Compute the SRP and its first derivative: 

CALL Box 5.1 (the ‘direct’ homogenization problem) to obtain:   
p

1( , )nf +  ε  and 
p p

1 1( , ) /n nf+ +=   ξ ε ε  % (Eq. (7.133)) 

6. Update the remaining state variables 

▪ 
p

1

p

1 / (1 )n nn f ++  −= +  % (Eq. (7.137)2) 

▪ Determine the current yield stress: Y Y 1

p

1 1( )n nn  + ++ =   % (Eq. (7.127)) 

7. Rotated Cauchy stress tensor from plasticity 

▪ Compute 
p

1 Y 1 1n n n+ + += σ ξ  % (Eq. (7.150)) 

8. Construct the (pseudo-) vector error function  

▪ Compute the stress residual vector: 
p e

1 1( )n n + += −ρ σ σ  % (Eq. (7.151)) 

▪ Assign the error vector: F ρ  

9. Output: F , ,  1

p

11 { , },nn nf ++ +=  
p

1n+σ  
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7.2.6 Elastoplastic moduli estimates 

In the context of the finite element method, the state-update procedure must also provide appropriate 

elastoplastic moduli estimates defining the tangent relationship between the (infinitesimal- or finite-) 

stress increments and strain increments, which are used in the assemblage of the finite element stiffness 

matrix. The goal of this subsection is to present estimates for the so-called (linear) tangent elastoplastic 

modulus and the algorithmic (or consistent) elastoplastic modulus. Here, the focus is solely on obtaining 

approximations for these fourth-order tensors. Indeed, in view of the adopted modelling approach, the 

definition of exact elastoplastic moduli a challenging task, if not impossible. The reasons are twofold: 

(i) one lacks the definition of the analytical expressions of the plastic potentials (hence of their deriva-

tives); and (ii) defining the elastoplastic moduli in the spatial configuration (or any other configuration) 

is conceptually complex: the elastic constitutive rule is defined in the intermediate configuration based 

on Lagrangian logarithmic tensors, whereas the plastic behaviour is written in the current (rotated) con-

figuration in terms of Eulerian tensors. Relating these tensors implies the use of mapping tensors similar 

to that in Eq. (7.50) (e.g. see Caminero et al. (2011)). In order to facilitate the analysis, the elastoplastic 

moduli present in this subsection are based on three simplifying conditions: (i) small strain framework, 

( ) ( )n n E e , where ( )nE  and ( )ne  denote any Lagrangian- and Eulerian- strain tensors (see  Eq. (7.20)-

(7.22)); (ii) the postulate of elastoplastic additive decomposition of the strain rate tensor, 
e p ,= +d d d  

where ( )  denotes that the tensor is written in the material/orthotropy axes; (iii) hypoelastic formulation 

of the type 
e e: ,= d  where   is the rotated Cauchy stress rate. Under these conditions the finite-

strain hyperelastic law Eq. (7.94) can be rewritten in rate form as: 
e e

(0) (0)( ) : ( ) : ,f f=  =T E d  

where it was implicitly assumed that:  

 

(0) T  , 

e e
(0)d E , 

e 1J  , 

(7.167) 

and the convention for the (orthotropic) fourth-order elasticity tensor: 

 e ( )f . (7.168) 

Additionally, the associative plastic flow is described by the standard rate-independent dual constitutive 

laws: p p= d n  with 
p ( , )/=  n    ; and Y=   with p p( , ) / ,=  d d  where p( , ) = d   

and Y( , ) , =   (thus p( , ) ( , ) 1), = =n    with an yield function Y Y( , , ) ( , ) , =  −     

where   is set of internal variables (viz. 
p{ ,, })f  assumed to evolve in the general form ( ).= h   

Note that plastic compressibility is considered. The small-strain moduli presented in the following are 

therefore estimates of their large-strain counterparts.  

Approximate spatial linear/tangent elastoplastic modulus 

Under elastoplastic loading ( 0,   0)=  it is possible to demonstrate that the consistency condi-

tion, 0, =  leads to: 
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p : 0H= −  =n  , with p ( , )

=
 

=
 

n
 

 
 and :H


= −


h


, (7.169) 

where H is the (small-strain) hardening modulus. Combining the previous expression with the hypo-

plastic law, 
e e: ,= d  and the small-strain addictive decomposition 

e p ,= +d d d  leads to: 

 
p e

p e p

: :

: : H
 =

+

n d

n n
, (7.170) 

and, consequently, the plastic loading condition 0,   becomes p : : 0,e n d  which is valid both in 

the hardening regime 0H   as well as in softening 0,H   provided that no “snap-back” behaviour 

takes place, i.e. the denominator of Eq. (7.170) must remain positive (Besson et al., 2004). Replacing 

Eq. (7.170) in the hypoplastic law, p: ( ),e= − d n  results in the following tangent relation between 

the stress rate tensor and the (total) strain rate tensor: 

 ep
tan := d , (7.171) 

where ep
tan  is the linear/tangent elastoplastic modulus, given as follows: 

 

e p

ep e p p e
tan e p

p e p

                                      if 0 { 0  : : 0},  

( : ) ( : )
  if { 0  : : 0}.  

: :

e

e

H

   =  


= 
− =   +

n d

n n
n d

n n

 (7.172) 

This expression holds for both stress- and strain-rate-based elastoplastic models. Eq. (7.172) is associ-

ated with the recently introduced small-strain framework. In view of the approximations in Eqs. (7.167)-

(7.168), one can define an estimate for the spatial elastoplastic tangent modulus of the large-strain in-

cremental constitutive problem in Box 7.2, to be evaluated after the solution of the state-update problem 

(Box 7.3), as: 

 
p p

ep 1 1 1 1
tan 1 p p

1 1 1 1

( ( ) : ) ( : ( ))
( )

: ( ) :

n n n n
n

n n n n

f f
f

f H
 + + + +

+

+ + + +


 −

+

n n

n n
, with 

1   if 0,  

0  if 0.


 
= 

 =
 (7.173) 

where 
p

1n+n  and 1nH +  are determined via Eq. (7.162) and Eq. (7.163), respectively, based on the solution 

of the return mapping scheme (Box 7.4). 

Estimate of the spatial consistent elastoplastic modulus 

In order to achieve (quasi-)quadratic rates of asymptotic convergence in the iterative solution of the 

displacement-based finite element equilibrium equations, a tangent operator consistent with the under-

lining incremental (time-discretized) constitutive problem must be defined. The consistent (alias algo-

rithmic) elastoplastic tangent modulus, 
ep

alg ,  defines the tangent relation between the increments of the 

updated stress, 1,nD +  (defined by a given return mapping procedure), and the increment of the (total) 

strain increment, ( ),D   between FE equilibrium iterations, i.e.: 

 
ep 1

alg

( )

( ( ))

nD

D

+

 




, (7.174) 
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where 

 ( 1) ( )
1 1( ),j j

n nD +
+ += −    and 

( 1) ( )( ) ( ),j jD + =  −     (7.175) 

 and j is iteration number of the equilibrium iterations regarding the (pseudo)-time increment 1[ , ].n nt t +  

The derivation of the consistent elastoplastic modulus requires the definition of an incremental version 

of the small strain hypoelastic-based (with non-isochoric plasticity) constitutive problem postulated in 

the introductory paragraph of the present subsection. Using the backward Euler scheme, the small-strain 

state-update is in the form: 

 

e p e p
1 1 1( )n n nt t+ + +   =   + =  + d d d   , 

e e
1 :n n+ = +    , 

p
1( , )n+  =   , 

p
1

1 Y 1 1 Y 1 p

( , )

( )

n
n n n n  +
+ + + +

 
= =

 

 
 


, 

1 1n n n+ += + h  . 

(7.176) 

The solution of the return mapping (plastic correction) scheme of the above problem is associated with 

the solution of the residual function system (cf. Eq. (7.151)): 

 
p

p e e1
Y 1 p

( , )
( ) ( : )

( )

n
n n  +
+

 
 = −  + =

 
0

 
   


, (7.177) 

where it was implicitly assumed that the set of state variables can be explicitly written in terms of 
p  

alone. Differentiation of the previous expression leads to: 

 
p

eY 1 1
1 1 Y 1p p

1

( )

( ) ( )

n n
n n n

n

 
+ +

+ + +

+

    
=  + + 

     

  
 

 
, (7.178) 

where 
p

1 1( , ),n n+ + =     p p
1 1( , )/ ( )n n+ +=         and  

p
Y 1 Y 1 1( , ).n n n + + +=    Based on the 

three previous expressions, it is possible to demonstrate that (Rabahallah et al., 2009): 

 p e: ( ) : ( )D D =   , (7.179) 

which, can be inverted resulting in: 

 p 1 e( ) : : ( )D D− =   . (7.180) 

In view of the definition of the consistent elastoplastic tangent modulus, 
ep

alg ,  (Eq. (7.174)) one obtains: 

 ep
1 alg : ( )nD D+ =   . (7.181) 

Finally, combining the previous expression with Eq. (7.180) and the incremental form of the hypoplastic 

law with the addictive elastoplastic split, i.e., e p
1 : ( ( ) ( )),nD D D+ =  −     the elastoplastic con-

sistent modulus associated with the small-strain incremental problem in Eq. (7.176) is given as follows: 

 ep e e 1 e
alg : :−= − , (7.182) 
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which holds for elastoplastic loadings. In view of the approximations in Eqs. (7.167)-(7.168), one can 

define an estimate for the spatial elastoplastic consistent modulus of the large-strain incremental con-

stitutive problem in Box 7.2, to be evaluated after the solution of the state-update scheme (Box 7.3), as: 

 p

ep 1
alg 1 1 1/

( ) ( ) : ( ) : ( )n n nf f f


 −
+ + + 

 −
 

, with 
1   if 0,  

0  if 0,


 
= 

 =
 (7.183) 

where the Jacobian p
/    is that of Eq. (7.157) and is really available from the solution of the return-

mapping procedure in Box 7.4 (or Box 7.5). Note that the fourth-order tensor in Eq. (7.183) is concep-

tually remarkably simple and computationally efficient since it does not require any kinematic or kinetic 

tensor to be evaluated. Of course, being a straightforward extension of a small-strain hypoelastic con-

stitutive law, one should expect supra-linear rates of asymptotic convergence. Nevertheless, preliminary 

results have shown excellent convergence rates when employing Eq. (7.183). 

 The spatial elastoplastic moduli presented above are defied in the material (orthotropy) axes. In the 

context of the finite element method, these must be rotated back to current configuration axes to define 

the element stiffness matrices. This operation is given by the rotation operation as follows: 

 ep e e ep e e
1 1 1 1( ) ( ) ( ) ( )ijkl n im n jn mnrs n kr n lsR R R R+ + + += , , , , , , 1,2,3i j k l m n =  (7.184) 

where 
e

1n+R  denotes the updated elastic rotation matrix (Eq. (7.138)3) and ep  a fourth-order elasto-

plastic modulus (either tangent or the consistent), and 
ep

 the respective tensor represented in the cur-

rent configuration.  

7.2.7 Predict-Correct procedure 

As shown in the computational performance study (§6.3), the adoption of a numerical homogeniza-

tion approach entails to a much higher computational cost compared to analytical counterparts. In this 

subsection an algorithmic procedure is proposed in order to reduce and, ideally, minimize, the effective 

computational overhead associated with the adoption of such approach in the context of the FEM frame-

work. The fundamental idea is to approximate the actual macroscopic plastic potentials with heuristi-

cally-formulated mixed analytical-numerical functions of the Gurson-type, to be employed in the initial 

FE equilibrium iterations of a given a (pseudo)-time increment, 1[ , ],n nt t +  in in lieu of the fully-numerical 

homogenization procedure. Therefore, each time increment involves two stages, in turn associated with 

two different material models, henceforward coined the Predict-Correct procedure. Given a time incre-

ment, 1[ , ],n nt t +  and the reference configuration, ,n  the strategy is summarized as follows: 

i. The Predict (P) phase solves the FE equilibrium problem in order to determine an estimate of 

the current configuration, 
(P)

1,n+  using a Gurson-type expression as an estimate of the ‘actual’ 

plastic behaviour of the porous solid;  

ii. The Correct (C) phase solves (i.e., corrects) the FE equilibrium problem departing from the 

approximate configuration 
(P)

1,n+  in order to obtain the current configuration, 
(C)

1 1,n n+ +  us-

ing the numerical-based homogenization model. 
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The total number of iterations of the increment is therefore the sum of the iterations of the two phases. 

In practice, only two Correction (C) iterations are typically needed. Based on the work of Benzerga and 

Besson (2001) and Stewart and Cazacu (2011) on approximate analytical criteria for orthotropic porous 

solids (Table 3.1), an hybrid analytical-numerical strain-rate potential, to be employed in the Predict 

phase, 
(P) ,  is heuristically formulated as follows28: 

 
2 2 2 2 2

(P)
m

2

1 1
( , ) 2 ln

1

f f
f h D

f

   

  

  + − + + +
   = +

  + +  

D ,  with 
m

e

h D

D
 =  (7.185) 

where e ( )D = D  is an equivalent strain-rate quantity,   is the dual of the Plunkett et al. (2008) crite-

rion (Eq. (4.22)), and h  is an upper-bound anisotropy factor estimate, given by: 

 
m

m

  if 0

  if 0

h
h

h

−

+

  
= 

 
, (7.186) 

where h−
 and h+

 are material parameters evaluated from the purely hydrostatic strain-rate states as: 

 
+

0

0

( , )

ln( )

f
h

f

−  −
= −

I
, 

+
0

0

( , )

ln( )

f
h

f

+ 
= −

I
, (7.187) 

and 
+ ( )   is the macroscopic strain-rate potential associated with a given trial field (e.g. Eq. (5.42)) to 

be determined numerically by computational homogenization (i.e. the direct problem, Box 5.1), 0f  is 

an arbitrary porosity value, e.g. the initial porosity, and I  is the second order identity tensor. It must be 

emphasised that h  depends solely on the plastic behaviour of the matrix, (viz. via 
( ) ( ){ , }n nk  concern-

ing the Plunkett et al. (2008) criterion, Eq. (4.19)), and not on the porosity of the porous solid. The exact 

dual of the heuristic strain-rate potential in Eq. (7.185) is the Gurson-type potential given by: 

 

2

(P) 2e m

T T
1 1

3
( , ) 2 cosh 1f f f

h 

    
 = + − −   

  
 , (7.188) 

where (P)  is the hybrid analytical-numerical macroscopic stress potential and e ( ) =   is an equiv-

alent stress obtained from the Plunkett et al. (2008) stress potential function,   (Eq. (4.19)). Since (P)  

is known in closed-form, the determination of the macroscopic equivalent stress is trivial and thus there 

is no need to solve an inverse problem based on (P)  (see Box 5.3) in order to determine if the current 

stress state is elastic or elastoplastic. Nevertheless, in view of the adopted return-mapping scheme (e.g. 

Eq. (7.151)), the plastic correction problem of the Predict phase is grounded on (P)  (rather than 
(P) ).  

If the matrix plastic behaviour is considered constant (e.g. no texture or SD effects evolution), then 

h  must be evaluated only once, at the beginning of simulation, and saved as a material constant. If, on 

the contrary, the constitutive parameters evolve during the simulation, e.g., as a function of an accumu-

lated plastic work or strain quantity, ,  
( ) ( ){ ( , ( },) )n nk  then ( )h h=  can be readily determined by 

fitting piecewise polynomials, (or any other fitting function for that matter), to the discrete number of 

 
28 Exceptionally, the notation of Chapter 5 is again recovered in the following in order to distinguish micro- and 

macroscopic quantities in the context of porous media. 



 

194 

points ),(i ih 1,..., ,i N=  determined a priori by simply performing 2N  homogenizations (Eq. (7.187)) 

at the beginning of the simulation. The proposed Predict-Correct procedure is especially advantageous 

(but not limited to) FE analyses with frictional contact (mixed system of equations) where the majority 

of equilibrium iterations are due to the equilibrium of the bodies in contact. In this case, the usage of a 

simplified, much less computationally demanding, material model in the initial equilibrium iterations 

is recommended. In the following, two application examples show that this strategy greatly speeds up 

FE analyses grounded on numerical homogenization of porous media. 

7.3 Numerical examples 

In this subsection the applicability of the proposed strain-rate-based computational homogenization 

formulation to model the damage process of ductile porous solids is demonstrated. The robustness and 

performance of the algorithms developed in §7.2 is assessed. It should be emphasized that the goal here 

is not to predict fracture accurately29, but to demonstrate the pertinence and the merits of the numerical 

approach followed in this work. Two application examples of distinct complexity are analysed. The first 

example, of introductory character, consists of a quasi-static uniaxial tensile test. The second example, 

of more industrial interest, deals with a cylindrical cup-drawing test. To that end, the hyperelastic-based 

orthotropic elastoplastic model presented in the previous subsection (§7.2) has been implemented into 

an academic FE research code (DD3IMP, University of Coimbra). A selective reduced integration tech-

nique, alias B -method, is used (e.g. de Souza Neto et al., 2011). In this subsection the focus is solely 

on the homogenization formulation based on the Rice and Tracey (1969) fields (Eq. (5.42)). All numer-

ical simulations are executed on a computer equipped with an Intel® Core™ i7-8700K (6C/12T) CPU 

on a 64-bit Windows 10 Pro for Workstations operating system. 

7.3.1 Uniaxial tensile test 

The uniaxial tensile test simulations are performed based on the sub-sized ASTM E8 specimen. Due 

to geometrical symmetry conditions and the assumption of orthotropy, only one eighth of the specimen 

is modelled. The geometry, coordinate system and relevant dimensions of the employed dogbone spec-

imen are depicted in Figure 7.3. The length of the grip section of the actual ASTM E8 specimen was 

truncated for computational efficiency. Symmetry boundary conditions in the three mutually orthogonal 

planes are applied. A quasi-static axial displacement 1.5 mmxu =  is prescribed to the nodes of the grip 

section free surface and the displacement of these is constrained along the transverse directions ( yu =

0).zu =  This ensures that the stress and strain fields are homogeneous in the gauge section until the 

initiation of localized neck. The specimen gauge area is discretized with a structured regular mesh (see 

Figure 7.3). Conversely, the adjacent area is discretized with a coarse unstructured mesh given the small 

plastic deformation in this region. The structured zone is discretized with 50×12 (length × width) parti-

tions in the plane of the sheet. Two through-thickness layers are considered. The FE mesh consists of a 

total of 1388 eight-node hexahedral SRI finite elements and a total of 2313 nodes. 

 
29 Indeed, this would imply the usage of some void coalescence criterion and a regularization method. This topic 

is discussed in more detail in the concluding remarks of the present chapter (§7.4).  



Implementation in the FEM framework 

195 

 

 Structured mesh 

 Unstructured mesh 

   
Gauge lenght 0l  25.0 

Gauge width 0w  6.0 

Sheet thickness 0t  0.6 

Figure 7.3 FE mesh of the tension test specimen in the reference configuration, 0 .    

 

The Ti-6Al-4V titanium alloy is selected in the present example. This is the most prevalent Ti alloy, 

applied in many industrial fields (viz., aerospace, military/defence and biomedical, see also §4.5.2). The 

elastic and plastic constitutive data is adapted from Tuninetti et al. (2015). These authors performed a 

thorough characterization of the quasi-static room temperature mechanical behaviour of a weakly-tex-

tured Ti-6Al-4V alloy ingot. Both tension and compression uniaxial tests were performed in the three 

material orthotropy directions. Tuninetti et al. (2015) applied the experimental data to characterize plas-

tic yielding according to the quadratic form of the CPB06 criterion (a single linear transformation) for 

five of plastic work levels in order to capture texture evolution and twinning-detwinning effects. Here, 

the focus is on the initial yielding behaviour of the alloy. In addition to plastic anisotropy, these authors 

also reported anisotropic elastic properties (recall discussion in §7.1.3 on the occurrence of anisotropic 

elasticity in hcp structure metals). No experimental data is available for the orthotropic Poisson ratios, 

,ij  and shear moduli, ,ijG , 1,2,3,i j = .i j  Estimates for these are therefore estimated as follows: the 

former are determined such that the non-diagonal terms of the orthotropic compliance tensor ( / ,ij iiE−

, 1,2,3,i j =  Eq. (7.38)) are equal to a pseudo-isotropic term: / ,E−  where 11 22 33( + )/3E E E E= +  is an 

averaged Young modulus and   is a prescribed pseudo-isotropic Poisson ratio. In the same vein, an 

averaged shear modulus, /2(1+ )G E =  is defined and assigned to the shear moduli ,ijG , 1,2,3.i j =

The degradation of the elastic proprieties is modelled with a linear weakening factor, 1( ),f  (see Eq. 

(7.59)). The isotropic hardening of the matrix is described by a combined Swift-Voce law as follows: 

 p p p
M Swift M Voce M( ) ( ) (1 ) ( )Y Y Y = + − , (7.189) 

with  

 p p
Swift M 0 M( ) ( ) ,nY K = +  

p
Y Mp

Voce M 0 sat 0( ) ( )(1 )
C

Y Y Y Y e
−

= + − − , and 
T
1( ,0)Y =  (7.190) 

where   is the linear weighting factor of the mixture rule, 0{ , , }K n  are the Swift law parameters, and 

0 sat Y{ , , }Y Y C  are the Voce law parameters. The initial porosity and nucleation parameters are based on 

those typically found in the literature (Aravas, 1987; Benseddiq and Imad, 2008; Tvergaard and Needle-

man, 1984). Stress-controlled nucleation is neglected. Table 7.1 summarizes the employed material pa-

rameters. Following the guidelines of Figure 5.4 and Figure 5.6, the spherical RVE is discretized with 

r( , ) (328,16)N n =  in order to verify a cubature error in the order of 
610 .e −=  
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Table 7.1 Material coefficients for the Ti-6Al-4V alloy (partially after Tuninetti et al., 2015). 

Elasticity (orthotropic)      

 

Young moduli [GPa]  Shear moduli [GPa]  Poisson ratios [-]  

11E  22E  33E   23 13 12G G G= =   23  13  12    

108 111 113  41.3  0.341 0.332 0.332 (0.34) 

Plasticity: matrix behaviour   

 

CPB06 parameters ( 2)a =     

k   11C  12C  13C  22C  23C  33C  44 55 66C C C= =    

-0.136  1.0 -2.495 -2.928 -2.283 1.284 -2.446 4.015   

 Isotropic hardening  

 Weighting factor  Swift type law  Voce type law  

  [-]  K [MPa] 0 [-] n [-]  0Y  [MPa] satY  [MPa] YC [-] ( )0Y  [MPa] 

 0.6154  1174.4 0.0154 0.038  806.7 1084.8 12.045 927 

Porosity        

 

Initial porosity  Critical porosity  Strain-controlled nucleation    

0f   Cf   Nf  
N  Ns     

0.0001  0.1  0.01 0.3 0.1    

 

Figure 7.4 depicts several cross sections of the macroscopic yield surface in the principal stress space 

with varying hydrostatic level as predicted by the mixed numerical-analytical heuristic model (HM) 

and the computational homogenization model (CHM). Due to the weak texture and tention-compression 

assymetry of the studied Ti-6Al-4V alloy, the yield surface exhibits only mild asymmetry with respect 

to the origin. Furthermore, the shape change along the hydrostatic axis of the latter criterion is small. 

 

   

 

 

 

 

 
 

 

 

 

 

 (a)  (b)  

Figure 7.4 π-plane representation of the macroscopic stress potential (Eq. (5.45)) unitary isovalue surface in the 

principal stress space of the Ti-6Al-4V porous alloy with 0 0.01f =  according to: (a) HM; (b) CHM. Cross sec-

tions with varying hydrostatic fraction are plotted with a fraction 
m

{0.5,0.75,0.9,0.95,0.985}f =  with respect 

to the tensile and compressive hydrostatic extreme values. The location of the latter is represented with markers.  
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Uniaxial tensile test simulations are carried out along the three orthotropic directions (RD, TD, ND) 

considering four plasticity formulations: (i) the dense model (Eq. (4.22)), for which plastic incompress-

ibility holds and thus the macroscopic behaviour is that of the matrix phase (i.e., the particular case of 

no porosity); (ii) the Gurson (1977) spherical-void-based model (Eq. (3.9)); (iii) the mixed numerical-

analytical heuristic model (HM) (Eq. (7.185)); and (iv) the computational homogenization (CH) model 

(CHM) developed in Chapter 5, using the Predict-Correct strategy described in §7.2.7. The hyperelastic 

strain-rate-based state-update formulation described in the previous subsection (§7.2) is used in all four 

models. The Gurson model was purposely implemented as a particular case of the HM, viz., using the 

quadratic form of the Cazacu et al. (2006) criterion to compute the von Mises equivalent stress measure. 

Table 7.2 compares the computational performance of the simulations for each material model. It is 

concluded that the simulation using the CH model is about 85 times more expensive than that using the 

mixed numerical-analytical model (HM). This is actually a reasonable ratio since the underlying state-

update scheme of the former model is (1000)  times more costly than that of latter (recall the study in 

§6.3, viz., Figure 6.14). Note moreover that the computational time using the (orthotropic) HM is vir-

tually the same than that using the (isotropic) Gurson model. This is due to the fact that the matrix phase 

behaviour is modelled via the quadratic form of the Cazacu et al. (2006) criterion, using a single ortho-

tropic transformation. It is shown that under these conditions orthotropy and tension-compression asym-

metry of the matrix have a negligible impact on the convergence rate, and thus the computational time 

of the simulation30. 

Table 7.2 Computational performance measurements of the uniaxial tensile test simulations along the RD for 

the four plasticity models: dense (CPB06) (Eq. (4.22)); Gurson (1977) (Eq. (3.9)); heuristic model (HM) (Eq. 

(7.185)); and the computational homogenization model (CHM) (Chapter 5). 

   Dense Gurson HM CHM 

No. of increments   52 53 53 53 

Computational time 
Absolute [s]  22 47 47 4030 

Relative  0.47 1.0 1.0 85.74 

 

Figure 7.5 represents the pre-necking true stress-strain curves of the monotonic uniaxial tensile tests 

in the three orthotropy directions (RD, TD, ND) as predicted by the CHM. The onset of necking (final 

value of the curve) was estimated applying the Considère criterion. The results of the CHM are in good 

agreement with the experimental data. It should be noted that the experimental curve was obtained on 

axisymmetric specimens which are less prone to localization and thus are able to achieve a higher axial 

strain before the occurrence of a localized neck. While the anisotropy of the elastic moduli is mild, the 

elastic strains reached in the Ti-6Al-4V alloy are actually significant given the relatively low stiffness-

to-strength ratio of these materials. Therefore, it may be appropriate to account for elastic anisotropy if 

one intends to model elastic recovery processes, e.g. springback analyses. 

 
30 A completely opposite finding will be encountered in the second example of this subsection which concerns a 

non-quadratic plasticity model with multiple linear transformations. 
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Figure 7.5 FE results of the true stress-strain curves for the uniaxial tensile response of the Ti-6Al-4V alloy in 

the three orthogonal material directions (RD, TD, ND) using the CHM. Experimental data on axisymmetric 

specimens at room temperature with a constant 3 110  s− −  strain rate (after Tuninetti et al., 2015).  

Figure 7.6 represents engineering stress-strain curves of the monotonic uniaxial tensile tests along 

the RD as predicted by each plasticity model. It is shown that the models predict a similar evolution. 

This is due to the small initial porosity of the alloy. Only in the post-necking regime the porous criteria 

predict a more severe softening due to the increase of the void growth and nucleation rates in the local-

ization band, in turn resulting from the development of a triaxial stress state in this zone. 

In order to further assess the predictions of the considered plasticity models, the distribution of some 

important fields is analysed Figure 7.7 represents the distribution of the porosity in the gauge section 

of the uniaxial specimen at a displacement 1.4 mmxu =  (with respect to 0 /2)l  as predicted by the Gur-

son (1977) model, the HM and the CHM. It is shown that these formulations lead to remarkably similar 

results regarding the distribution of the porosity. In fact, consistent with the results in Figure 7.6, the 

Gurson (1977) model predicts the greatest porosity in the centre of the specimen, which suggests that 

the (weak) anisotropy and/or tension-compression asymmetry of the Ti alloy is actually hindering dam-

age accumulation at this stage. Of all models, the HM predicts the lowest porosity in the centre of the 

specimen, which is also in agreement with the trends of Figure 7.6. 

 
Figure 7.6 FE results of the engineering stress-strain curves (normalized force-displacement curves) for the uni-

axial tensile tests along RD (1-2 plane) using: the dense model (CPB06); the Gurson (1977) model; the heuristic 

model (HM); and the computational homogenization model (CHM).  



Implementation in the FEM framework 

199 

 Gurson (1977)  CHM  HM  CHM  
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 (a)  (b)  
 

Figure 7.7 Comparison of the porosity isocontours at the gauge section of the specimen ( 0),z = at instant 

1.4 mm,xu = as predicted by: (a) the Gurson (1977) model; and (b) the heuristic model (HM), with the results 

using the computational homogenization model (CHM). 

 

The distribution of the normalized hydrostatic stress (normalized by the initial yield stress, 
T
1 =

,(0))Y  is represented in Figure 7.8, as predicted by the dense model (dual of the CPB06 criterion), the 

HM and the CHM. It is concluded that while the HM and the CHM display identical results, the dense 

model predicts a much higher hydrostatic stress (thus strain-rate) state within the localization band. This 

is related with the plastic incompressibility condition in the dense model, as the total hydrostatic/volu-

metric deformation must be accommodated exclusively by elasticity. In contrast, porous solids are plas-

tic compressible, thus the volumetric component of the deformation gradient tensor can be distributed 

into elastic (reversible) and plastic (dissipated) parts, ultimately reducing the stored elastic energy.  

 Dense  CHM  HM  CHM  
 

 

 

 

 

 

 

 

 

 
m / (0)Y  

         

               

0.937 

0.855 

0.773 

0.692 

0.610 

0.528 

0.446 

0.364 

0.282 

0.201 
 

 (a)  (b)  
 

Figure 7.8 Comparison of the normalized hydrostatic stress isocontours at the gauge section of the specimen 

( 0),z = at instant 1.4 mm,xu = as predicted by: (a) the Gurson (1977) model; and (b) the heuristic model (HM), 

with the results using the computational homogenization model (CHM). 
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This behaviour is illustrated in Figure 7.9 and Figure 7.10, which represent isovalue distributions of the 

determinants of the elastic, 
e ,J  plastic, 

p ,J  and the total deformation gradient, 
p e ,J J J=  (Eq. (7.25)) 

for the dense model and the CHM, respectively, Note that the predicted eJ  of the dense model is indeed 

larger than that of the CHM in the centre of the specimen. Nevertheless, the total volume deformation, 

quantified by 
p e ,J J J=  is much larger for the CHM, due to the volumetric plastic deformation. 
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 (a)   (b)   (c)   

Figure 7.9 Isocontours of the determinant of the elastic, plastic, and total deformation gradients, 
e ,J p ,J  and 

p e ,J J J=  respectively, at the gauge section of the specimen ( 0),z =  at instant 1.4 mm,xu = as predicted by the  

dense model (CPB06). 
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Figure 7.10 Isocontours of the determinant of the elastic, plastic, and total deformation gradients, 
e ,J p ,J  and 

p e ,J J J=  respectively, at the gauge section of the specimen ( 0),z =  at instant 1.4 mm,xu =  as predicted by 

the computational homogenization model (CHM). 
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The present application example showed that the HM in Eq. (7.185) led to quite similar results when 

compared to those of the full homogenization solution obtained with the CHM (Chapter 5), while being 

much less demanding from the computational viewpoint. It must be point out however that this example 

dealt with a weakly textured material for which the HM shown a good fit to the actual behaviour of the 

porous alloy (see Figure 7.4). Moreover, the considered monotonic uniaxial stress states are not repre-

sentative of most loading paths found in engineering applications. The next application example deals 

with more complex material behaviour and loading conditions in order to better assess the accuracy of 

the HM with respect to the CHM. 

7.3.2 Cylindrical cup drawing test 

The second example considers the simulation of the cylindrical cup drawing process in order to study 

the earing profile and damage distribution of a strongly textured sheet. Deep drawing refers to a class 

of sheet metal forming operation in which a flat metal sheet (the blank) is radially drawn into a die by 

the action of a punch resulting in a three-dimensional shape. This near-net-shape technology is widely 

used in industries such as automotive, naval, beverage can, as well as in domestic and decorative appli-

cations. Due to its industrial relevance and geometrical simplicity, the cylindrical cup drawing process 

is one of the most frequently used benchmarks of assess the performance of constitutive models. Mate-

rial anisotropy often leads to earing phenomena, i.e., the undulation of the top-edge of the fully drawn 

cup. Depending on the texture degree, four, six or more ears may result from the drawing process. A 

schematic view of a typical cylindrical cup drawing setup is shown in Figure 7.11. 

In this subsection, the cup drawing test of a strongly textured AA5042-H2 aluminium sheet reported 

in Yoon et al. (2010) is considered. The process parameters and the dimensions of the tools are given 

in Table 7.3. Due to geometric and material symmetry conditions of the cup drawing process, only one 

quarter of the model is analysed. For computational efficiency, the blank (one-quarter) is divided in two 

zones: a central zone which contacts with the flat region of the punch (and therefore experiences virtu-

ally no plastic deformation); and an outer zone where large deformations occur. Accordingly, the former 

is discretized with a relatively coarse unstructured mesh, and the latter is discretized with a fine struc-

tured mesh as shown in Figure 7.12. The structured zone is discretized with a 30×28 (radial × circum-

ferential) partition in the plane of the sheet. Two layers along the thickness direction (ND) are used. The 

FE mesh consists of a total of 1896 eight-node hexahedral SRI finite elements and a total of 3012 nodes. 

The tools are modelled as analytical rigid bodies with their surface modelled by Nagata patches (Neto 

et al., 2014). The friction between the sheet and the tools is assumed constant, described by the classical 

Coulomb’s law with a friction coefficient 0.008 =  (after Yoon et al., 2010). The contact problem is 

regularized through the augmented Lagrangian method (Alart and Curnier, 1991). 
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Figure 7.11 Schematic view of the cylindrical cup drawing process (adapted from Yoon et al., 2004). 

Table 7.3 Process parameters and the dimensions of the tools (after Yoon et al., 2010). 

Parameter  Value  

Blank diameter bD  76.07 [mm] 

Die opening diameter dD  46.74 [mm] 

Punch diameter pD  45.72 [mm] 

Die profile radius dr  2.28 [mm] 

Punch profile radius pr  2.28 [mm] 

Initial blank thickness 0t  0.274 [mm] 

Punch stroke pu  22.75 [mm] 

Blank-holder force (total) 
bhf  10.0 [kN] 

 

Both the experimental and constitutive identification of the yielding behaviour of the AA5042-H2 

alloy are extracted from Yoon et al. (2010). These authors used the non-quadratic form of the Plunkett 

et al. (2008) yield criterion using two transformations (alias CPB06ex2) to characterize the anisotropic 

behaviour of the sheet for three levels of plastic work. Similarly to the previous example (§7.3.1), only 

the initial yielding behaviour of the alloy is considered. Figure 7.13 shows the evolution of the normal-

ized uniaxial tensile yield stress and r-values in the plane of the sheet as captured by the CPB06ex2 

criterion as well as the respective experimental data. Note that while the anisotropy of the yield stresses 

is mild, the evolution of r-value is extremely anisotropy: the r-value along the TD is about five times 

that of along the RD. The elastic behaviour is assumed isotropic and constant, i.e., the degradation of 

the elastic modulus is neglected (unitary weakening factor, 1, =  Eq. (7.59)). The isotropic hardening 

of the matrix material is described by the Voce-type law (Eq. (7.190)). Strain-controlled nucleation is 

considered, yet stress-controlled nucleation is neglected. Table 7.4 summarizes the parameters of the 

material model. The RVE cubature parameters are set to r( , ) (706,14)N n =  in order to verify a maxi-

mum cubature error 
410 .e −=   
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 Structured mesh 

 Unstructured mesh 

  

Figure 7.12 FE mesh of the blank in the reference configuration, 0 .  Two through-thickness layers are used. 

 

Figure 7.14 represents cross sections of the macroscopic yield surface in the principal stress space 

with varying hydrostatic level as predicted by the HM and the CHM. The yield surface of the latter 

model exhibits a remarkable asymmetry with respect to the purely deviatoric plane (it is however sym-

metric with respect to the origin). Note that this is a result of the matrix anisotropy alone (indeed, ten-

sion-compression asymmetry is assumed null for this Al alloy). Moreover, the shape change along the 

hydrostatic axis of the is very pronounced. 

Table 7.4 Material coefficients for the AA5042-H2 alloy (partially after Yoon et al., 2010). 

Elasticity (isotropic)      

 

Young moduli [GPa]  Poisson ratio [-]    

E          

68.9  0.33      

Plasticity: matrix behaviour    

 

CPB06ex2 parameters ( 10)a =      

(1)k   
(1)

11C  
(1)

12C  
(1)

13C  
(1)

22C  
(1)

23C  
(1)

33C  
(1)

44C  
(1)

55C  
(1)

66C   

0.0  1.0 -0.0272 -0.6011 1.2870 0.6864 -0.2736 1.0 1.0 1.1514  

 

(2)k   
(2)

11C  
(2)

12C  
(2)

13C  
(2)

22C  
(2)

23C  
(2)

33C  
(2)

44C  
(2)

55C  
(2)

66C   

0.0  1.0 -0.0897 0.0112 1.1322 -0.1092 -1.2009 1.0 1.0 1.3093  

 Isotropic hardening  

 

 

Voce law    

 0Y  [MPa] satY  [MPa] YC [-]      

 267.80 375.08 17.859      

Porosity        

 

Initial porosity  Critical porosity  Strain-controlled nucleation    

0f   Cf   Nf  N  Ns     

0.001  0.1  0.01 0.3 0.1    
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(a) 

 

(b) 

Figure 7.13 Uniaxial tensile behaviour of the AA5042-H2 matrix (dense phase) in the plane of the sheet as pre-

dicted by the CPB06ex2 criterion (and its dual, Eq. (4.22)): (a) normalized yield stresses; (b) r-values. Compari-

son with experimental data (after Yoon et al., 2010). Note the extreme variation of the r-values. 

 

   

 

 

 

 

 
 

 

 

 

 

 (a)  (b)  

Figure 7.14 π-plane representation of the macroscopic stress potential (Eq. (5.45)) unitary isovalue surface in 

the principal stress space for a AA5042 porous alloy with 0 0.01f =  according to: (a) HM; (b) CHM. Cross sec-

tions with varying hydrostatic fraction are plotted with a fraction 
m

{0.5,0.75,0.9,0.95,0.985}f =  with respect 

to the tensile and compressive hydrostatic extreme values. The location of the latter is represented with markers. 
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Likewise the previous numerical example, the simulation of the cup drawing test is carried out using 

four plasticity formulations: (i) the dense model (dual of the CPB06ex2 criterion, Eq. (4.22)); (ii) the 

Gurson (1977) spherical-void-based model (Eq. (3.9)); (iii) the mixed numerical-analytical heuristic 

model (HM) (Eq. (7.185)); (iv) the computational homogenization model (CHM) proposed in Chapter 

5, using the Predict-Correct strategy described in §7.2.7. 

Table 7.5 compares the computational performance of the simulations for each material model. It is 

concluded that the simulation using the CHM is (30)  times more costly than that using the numerical-

analytical model (HM) for the considered cubature tolerance. This ratio greatly beats that of the previous 

example. This is explained by: (i) the small number of Correction (C) FE equilibrium iterations in each 

time increment compared to those of the Predict (P) stage (§7.2.7), since the contact problem is mostly 

solved in the P-stage; and (ii) the relaxed cubature tolerance. In contrast to the first application example, 

the computational effort using the (orthotropic) HM is now much larger than that using the (isotropic) 

Gurson model. The reasons are as follows: (i) the evaluation of the strain-rate potential at the microscale 

(Box 4.1) is much more challenging for non-quadratic criteria ( 2),a   since the Jacobian of the system 

of equations in Box 4.2 needs to be regularly updated in order to achieve convergence; (ii) two trans-

formations entail nearly twice as many operations in Box 4.2 (e.g. eigendecomposition, matrix multi-

plication), since the computational effort for evaluating the local strain-rate potential increases quasi-

linearly with the number of orthotropic transformations. 

Figure 7.15 shows the deformed configurations of the FE model at intermediate punch displacements 

up to the completely drawn cup after elastic recovery (springback) as predicted by the CHM. Note that 

eight ears of varying height are predicted. This is in agreement with the experimental data as discussed 

in the following. 

 

Table 7.5 Computational performance measurements of the cup drawing test simulations for the four plasticity 

models: dense (CPB06) (Eq. (4.22)); Gurson (1977) (Eq. (3.9)); heuristic model (HM) (Eq. (7.185)); and the 

computational homogenization model (CHM) (Chapter 5). 

   Dense Gurson HM CHM 

No. of increments   129 121 133 124 

Computational time 
Absolute [h]  2.73 0.18 2.04 46.97 

Relative  1.34 0.087 1.0 31.85 
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Figure 7.15 Drawing process of the AA5042-H2 cup at a punch displacement: (a) p 5 mm;u =  (b) p 15 mm;u =  

(c) p 22.75 mmu = (completely drawn cup). Isocontours of the accumulated equivalent plastic strain, .dt =    

The punch force-displacement evolutions obtained in each FE simulation are depicted in Figure 7.16. 

Negligible differences are observed between the criteria accounting for the matrix orthotropy. The curve 

corresponding to the Gurson model is a lower bound throughout the drawing process. Unfortunately, 

no experimental data is available to quantitatively assess the force-displacement predictions. Figure 

7.17 compares the experimental and the theorical earing profiles according to each model. In agreement 

with the experimental procedure of Yoon et al. (2010), the earing profile was measured from the bottom 

to the edge of the completely drawn-cup after springback. The experimental earing profile of the cylin-

drical cup shows eight ears. This behaviour is indeed captured by the formulations accounting for the 

matrix orthotropy. Conversely, the Gurson model does not predict earing, as expected. While the dense 

model predicts the correct number of ears, their height is overestimated. The HM and the CHM present 

remarkably similar predictions of the earing profile and are in overall better agreement with the exper-

imental curve. 
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Figure 7.16 FE results of the punch force-displacement curves using: the dense model (CPB06ex2); the Gurson 

(1977) model; the heuristic model (HM); and the computational homogenization model (CHM). 

 

 

Figure 7.17 FE results of the earing profile of the AA5042-H2 cup using: the dense model (CPB06ex2); the 

Gurson (1977) model; the heuristic model (HM); and the computational homogenization model (CHM). Com-

parison with the experimental data (after Yoon et al., 2010). 

 

In the following, the distribution of some fields is analysed in order to further compare the predic-

tions of the considered models. Figure 7.18 and Figure 7.19 represent the distribution of the accumu-

lated equivalent plastic strain, ,dt =  (Eq. (7.133)) and the von Mises equivalent stress, vM|| || ,  re-

spectively, as predicted by each orthotropic criterion: the dense model, the HM and the CHM. It is 

shown that these models predict nearly equal results. This observation is somewhat surprising given the 

outstandingly different material characterization displayed in Figure 7.14 regarding the HM and CHM. 

This is thought to be explained by the considered low initial porosity of the AA5042-H2 alloy and the 

moderate stress (and thus strain-rate) triaxiality states during the drawing process. The predicted poros-

ity distribution of the fully drawn cup is represented in Figure 7.20 for each porous criterion. Again, the 

HM and the CHM present identical results: porosity concentrates along RD at the about mid-height of 

the cylindrical wall. The Gurson model predicts a lower porosity in this zone. 
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 (a)  (b)   

Figure 7.18 Comparison of the accumulated equivalent plastic strain, ,dt =    isocontours of the completely 

drawn cup as predicted by: (a) the dense model (CPB06ex2); and (b) the heuristic model (HM); with the FE 

 results using the computational homogenization model (CHM). 
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 (a)  (b)   

Figure 7.19 Comparison of the von Mises equivalent stress [MPa] isocontours of the completely drawn cup as 

predicted by: (a) the dense model (CPB06ex2); and (b) the heuristic model (HM); with the FE results using the 

computational homogenization model (CHM). 

 

 Gurson (1977)   CHM     HM   CHM    3 ( 10 )f −  

 
  

 

 

 

 

 

 

 

 

   

               

6.48 
5.82 
5.16 
4.50 
3.84 
3.18 
2.52 
1.87 
1.21 
0.55 

 

 (a)  (b)   

Figure 7.20 Comparison of the porosity isocontours of the completely drawn cup as predicted by:  

(a) the Gurson (1977) model; and (b) the heuristic model (HM); with the FE results using the computational  

homogenization model (CHM). 
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7.4 Concluding remarks 

It is important to highlight that the constitutive framework proposed in this chapter (summarized in 

Box 7.1 and Box 7.2 regarding the rate form and its incremental form, respectively) for describing the 

elastoplastic behaviour of porous solids is no more than a starting point for the formulation of ductile 

fracture models. In fact, the goal here was mainly on providing the key mathematical tools upon which 

ductile failure criteria grounded on the framework of porous media can be built. Actual ductile failure 

predictions, either damage-controlled and plastic localization-controlled (recall Figure 2.5), must con-

sider three important topics that this chapter has not done justice: (i) void coalescence models and post-

coalescence criteria to describe the initiation and propagation of macrocracks; (ii) regularization meth-

ods; and (iii) the macrocrack advance in the context of fracture mechanics (see Figure 3.1). These topics 

are beyond the scope of the present work, nevertheless, a brief discussion on each one of these issues is 

provided in the following paragraphs. 

As discussed in §3.4.4 (p. 54), void coalescence can be described phenomenologically in the context 

of the 
*-f approach of Tvergaard and Needleman (1984) (Eq. (3.30)), or adopting more sound, physi-

cally-motivated, approach to formulate coalescence conditions, as in Thomason’s (1985) limit-load cri-

terion and extensions thereof (Benzerga and Leblond, 2014; Gallican and Hure, 2017; Hure and Barrioz, 

2016; Keralavarma, 2017; Keralavarma and Chockalingam, 2016; Morin, Leblond and Benzerga, 2015; 

Morin, Leblond, Benzerga, et al., 2016; Scheyvaerts et al., 2010; Torki et al., 2015, 2017). 

If the equations describing the boundary value problem (BVP) lose ellipticity at some point in the 

continuum (interpreted as a discontinuous bifurcation mode31), the BVP becomes ill-posed. Fundamen-

tally, loss of ellipticity results from the fact that the porous criteria developed in this work are obtained 

from a homogenization scheme in such way that no length scale is present in the analysis. Being based 

on the concept of the RVE (in line with the local continuum framework, in which material behaviour is 

assumed to be independent of neighbouring points), this ultimately weakens the relevance of such mod-

els at the smaller scales, over which strain is bound to concentrate (Benzerga et al., 2016). Note that the 

problem is exactly the same for other ‘softening’ criteria such as phenomenological CDM models. In 

turn, in the absence of a characteristic length scale for the continuum, the size of the localization zone 

is left unspecified, and thus, arbitrary (Nguyen, 1993). The numerical solution of an ill-posed problem 

in a spatially discretized domain (e.g. using the FEM) is strongly dependent on the discretization32. In 

particular, for damage-induced softening models, strain and damage tends to concentrate within a band 

of equal width to the size of the finite elements, with the propagation path of the bands being set by the 

mesh orientation (Besson et al., 2004). This is, obviously, in opposition with the notion of mesh refine-

ment within the FEM. In short, after strain localization takes place, no reliable solution of an ill-posed 

BVP can be obtained as both the dissipated energy and fracture path become pathologically mesh-

 
31 A bifurcation is said to take place when an initially stable, unique, homogeneous, continuous everywhere, strain-

rate field undergoes a perturbation, leading to an inhomogeneous alternative one, possibly discontinuous (Bigoni, 

2012). 
32 The FEM sorts out a single (non-unique) solution of the BVP. In addition to the discretization, the solution may 

also depend on other numerical aspects (e.g. integration methods), number precision, residual tolerance, etc. 
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dependent. In order to retrieve, or ideally, preserve, the well-posedness of the problem, length-scale 

effects must be included in the continuum theories. Any enhancement of a top-down model (§3.2) able 

to remove spurious mesh-dependency at the macroscale is known as regularization method. Several 

regularization alternatives have been proposed in the literature. These can classified into three groups: 

(i) higher order continua (micropolar continuum), where additional degrees of freedom (viz. microro-

tation) introduce an internal scale, (de Borst, 1991; Enakoutsa and Leblond, 2009); (ii) higher gradient 

theories, which introduce higher spatial derivatives to the displacement fields other than the usual de-

formation gradient, F, (de Borst and Mühlhaus, 1992; Gologanu et al., 1997); and (iii) nonlocal theories 

which consist on ad hoc methods to mimic length scale effects on existing materially simple continua, 

based on the substitution of the ‘local’ state variables (or conjugated forces) by their smoothed counter-

parts in the governing equations. In turn, the smoothed, non-local, field can be formulated either in a 

gradient- (Aifantis, 1987) or an integral-fashion (Pijaudier-Cabot and Bažant, 1987). Regularization 

may also be achieved by deliberately including rate effects into the constitutive formulation (Needle-

man, 1988), however, this is less pragmatic and uncommon approach. For further in-sights on nonlocal 

regularization methods, refer, e.g. to Al-Rub and Voyiadjis (2003); Andrade (2011); Andrade et al. 

(2011); Arriaga et al. (2015); César de Sá et al. (2010); Huespe et al. (2009, 2012); Jirásek and Bazant 

(2002); Al Kotob et al. (2019); Leblond, Perrin and Devaux (1994); Mediavilla et al. (2006); Peerlings 

et al. (1996); de Sa et al. (2010); and Tvergaard and Needleman (1995). In summary, the analysis of the 

post-localization response of an elastoplastic rate-independent material is only viable if the resulting ill-

posed problem is regularized. One cannot emphasise enough the need for such enhancements to the 

development of accurate and reproducible analyses of the final stages of the ductile fracture. 

Regarding the numerical simulation of the final stages of the ductile fracture process using the FEM, 

macrocrack advance and surface decohesion may be considered by means of several strategies. These 

include: (i) element deletion methods; (ii) remeshing with nodal splitting and relaxation (Mediavilla, 

2005); (iii) embedded discontinuities (Areias et al., 2004; Huespe et al., 2012); (iv) interelement crack 

methods, viz. cohesive-zone models (Leclerc et al., 2018); (v) enrichment methods, e.g. the XFEM (Zi 

and Belytschko, 2003); (see also Song et al. (2008) on a review of some of these models). One simpler 

approach is to define the crack by completely damaged elements with no stiffness (zero stress condition 

at the integration points), which allows one to remain on a continuous medium, in view of the standard 

continuum mechanics. 
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Chapter 8. 

 

Conclusions and Future Perspectives 

This chapter presents an overview of the research issues addressed in this thesis and summarizes its key findings 

and conclusions. The advantages and limitations of the present contribution are highlighted, and its encouraging 

prospects are emphasised. Finally, some recommendations for future work are listed. 

8.1 Summary and general conclusions 

In this work, numerical-based plastic potentials for ductile porous materials whose matrix behaviour 

is governed by advanced orthotropic criteria have been developed and implemented. The pursued mi-

cromechanically-based modelling scheme was inspired by the work of Gurson (1977) (Chapter 3), using 

the kinematical-type Hill-Mandel homogenization formulation. The novelty of this contribution is that 

the developed potentials are no longer evaluated analytically, but by numerical integration of the rele-

vant local fields. While numerical integration has been used in the past in the framework of homogeni-

zation, its purpose was limited to the assessment of the corresponding close-form (often approximate) 

analytical criteria and/or in standalone micromechanical studies regarding the dilatational response of 

porous media. In contrast, the proposed numerical-based plastic potentials can be used in place of their 

classical analytical counterparts since these are, by their own nature, suitable for numerical implemen-

tation in the context of the finite element method. 

It is clear that the adoption of a numerical-based approach paves the way the consideration of more 

complex material behaviours (and, for that matter, trial fields and RVE geometries) since the analytical 

evaluation of the volume integrals is no longer an issue. The adoption of such approach in this work is, 

however, not an option but a requirement since, in general, analytical expressions are not available for 

the considered microscopic strain-rate potential, here taken as the conjugate of the non-quadratic Plun-

kett et al. (2008) orthotropic stress potential.  

The exact dual of the stress potential of Plunkett et al. (2008) was first derived (Chapter 4). In line 

with the underlying stress potential, the developed strain-rate potential accounts for an arbitrary number 

of orthotropic transformations and for tension-compression asymmetry effects. Given the exact duality 

property, the material parameters are the same for the stress and strain-rate potentials. Unfortunately, It 

has been shown that, in general, the transformed strain-rate tensors entering the strain-rate potential 

closed-form expression cannot be determined in explicit fashion. Accordingly, an efficient numerical 
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algorithm was proposed in order to evaluate the strain-rate potential and its first derivative concurrently. 

The presented application examples illustrated the (exact) duality of the potentials and demonstrated 

their exceptional flexibility and overall accuracy to describe the initial yielding behaviour of textured 

cubic and hexagonal structure metals and alloys.  

With the expression of the local strain-rate potential in hand, the corresponding macroscopic plastic 

potentials for porous solids containing randomly distributed spherical voids were defined based on rig-

orous upscaling methods (Chapter 5). Two types of trial velocity fields were considered in the kinematic 

homogenization problem: (i) the standard Rice and Tracey (1969) ones; and (ii) the so-called Eshelby-

type fields, based on the exterior point solution of the well-known Eshelby (1957, 1959) inclusion prob-

lem for the particular case of a spherical inclusion. As previously mentioned, since the integrand of the 

governing volume integrals is not readily available in analytical form, the homogenization analysis must 

be tackled numerically. Hence, an efficient cubature method for the volume averaging operations over 

the hollow spherical RVE was developed. The proposed method is grounded on the split of the volume 

(triple) integrals into surface (double) integrals and one-dimensional integrals over the radial direction. 

The former are evaluated based on the theory of spherical designs and the latter are determined using a 

tailor-made adaptative integration scheme based on cubic splines. A convergence study was conducted 

in order to provide reference values for the two RVE discretization parameters in terms of the specified 

integration tolerance and the complexity of the matrix behaviour, viz. its homogeneity degree parameter. 

The results showed that the surface integrals of non-quadratic potentials is more challenging than that 

of quadratic ones, with the typical number of quadrature points increasing with increasing homogeneity 

parameter. Conversely, the convergence behaviour of the one-dimensional radial integrals turned out to 

be practically independent of the matrix behaviour. An algorithm for evaluating the macroscopic stress 

potential, dual of a given numerical-based macroscopic strain-rate potential, was also proposed. Finally, 

a detailed description of the computational aspects of the implementation of the proposed numerical-

based homogenization scheme was presented.  

The predictions of the porous criteria obtained from the Rice and Tracey and the Eshelby-type fields 

were compared (Chapter 6): (i) with each other; (ii) with the results of finite element limit analyses on 

spherical unit cells; and (iii) with existing analytical criteria inspired on these fields, viz. the criteria of 

Gurson (1977) and Cazacu and Stewart (2009) concerning the former and the criterion of Monchiet et 

al. (2011) concerning the latter. Regarding the first point, it was confirmed that the presence of a void 

phase induces dependence on all invariants of the macroscopic stress state and that considerable shape 

changing behaviour of the yield locus is predicted with increasing hydrostatic contribution. The shape 

change has been shown to follow similar trends in both formulations. More crucially, the differences 

between the formulations vanish with decreasing porosity, viz. the predictions using the Eshelby-type 

formulation reduce to those of Rice and Tracey. Regarding the second point, it was concluded that the 

Rice and Tracey formulation is in overall good agreement with the FE results for all matrix behaviours 

and porosity degrees considered. More importantly, the respective yield loci are indeed exterior to those 

of the FE limit analysis, given the upper-bound nature of the latter formulation. On the other hand, the 
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Eshelby-type formulation was shown to predict an excessively low dissipation for high porosities under 

predominantly deviatoric loadings. This behaviour stems from the violation of the uniform strain-rate 

boundary conditions in the kinematical homogenization problem. It should be noted that both formula-

tions appear to underestimate the dependence on the macroscopic third deviatoric stress invariant, 3 ,J 
 

(alias Lode-angle dependence), however the general trends and couplings with the other stress invari-

ants are in fact captured. This is in contrast to the predictions of the analytical criteria described above 

since all of these are incapable of representing void-induced 3J 
 effects and the intricate 1 3( , )-I J 

cou-

plings that give rise to the shape change of the yield loci. The key conclusion is that these limitations 

are not attributable to the quality of the employed velocity fields, but to the simplification hypotheses, 

whether or not upper-bound preserving, employed in the respective analytical analysis which, ulti-

mately, erased the intrinsic modelling capability of the homogenization problem. Of course, analytical 

solutions are preferable both from a conceptual and computational point of view, but if these are ob-

tained at the cost of the oversimplification of the underlying problem, then their relevance is question-

able. This clearly emphasizes the value of pursuing a numerical-based homogenization approach. 

The computational performance of the proposed algorithms was assessed in Chapter 6. It was shown 

that that the computational cost of evaluating the macroscopic SRP (and its first derivative) associated 

with the Rice and Tracey trial fields with a tolerance compatible with that usually involved in nonlinear 

computational continuum mechanics is not prohibitively high. Indeed, the developed numerical scheme 

should be several orders of magnitude faster than multi-scale FE-based computational homogenisation 

formulations. The evaluation of the SRP associated with the Eshelby-type fields was shown to be 

(50)  times more expressive than the Rice and Tracey counterpart. Since these formulations virtually 

coincide for low porosities, the usage of the Eshelby-type fields within a numerical homogenization 

analysis is thus not recommended for modelling porous solids with vanishing porosity. The recent trend 

in microprocessor development has been towards increasing the number of cores. The number of cores 

of new chips is expected to accelerate in next few years driven by the demand of emerging technologies 

such as artificial intelligence and virtual reality. High-end professional desktop-grade architectures with 

hundreds of threads are now available and are likely to become the standard in the future, even for the 

non-professional/mainstream sector. In summary, the increased computational effort associated with the 

proposed numerical homogenization scheme should be offset by the technologic advances in micropro-

cessor performance and parallelism in a short timeframe. 

The numerical-based criteria proposed in this work have been formulated with the intention of being 

easily integrated in large-scale engineering simulations. In order to demonstrate this procedure, the de-

veloped potentials were implemented in a large-strain elastic-plastic constitutive framework grounded 

on an hyperelastic-based multiplicative split formulation coupled with a strain-rate potential flow rule 

for describing the plastic dissipation (Chapter 7). It has been shown that the adoption of a numerical-

based SRP does not actually add complexity to the constitutive formulation since: (i) the plastic correc-

tion problem can be solved using a quasi-Newton method based on finite differences; and (ii) the elas-

toplastic moduli can be readily estimated based on their small-strain theory counterparts.  
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The application examples demonstrated that the proposed mixed numerical-analytical criterion, orig-

inally developed as an estimate of the full homogenization solution, actually leads to remarkably similar 

results to those of the latter approach, even when dealing with complex matrix behaviours and loading 

conditions. As such, the proposed Gurson-type heuristic model is a cost-effective approach that can be 

employed in early development stages in lieu of the actual homogenization solution. Nevertheless, it 

should be emphasized that this may not hold for anisotropic porous media with high porosity (e.g. tex-

tured sheet metals in the coalescence regime; metal additive manufacturing parts) for which the ‘exact’ 

homogenization solution may actually be required, given the limitations of the Gurson-type expression. 

8.2 Strengths and limitations of the proposal 

The main advantages and limitations of this contribution are summarized as follows:  

Strengths 

▪ Exactness of the analysis: the plastic potentials are determined based on a sound upscaling 

theory without the need for adopting any simplification hypothesis (excluding, of course, the 

adoption the trial local field), viz., restrict the loading type, restricting the type of orthotropy, 

defining new upper-bounds, ad hoc truncation and/or averaging of the integrands, among oth-

ers. The micro- and macro- plasticity couplings are therefore as accurate as permitted by the 

scale transition operation; 

▪ No need for heuristics: given the rigor of the analysis, there is no need for heuristic modifica-

tions in order to improve its global accuracy, (e.g., Tvergaard’s (1981) iq - fitting parameters, 

Table 3.1) in order to mimic micromechanical FE unit cell studies; 

▪ Modularity: the consideration of other trial velocity fields and/or microscale plasticity criteria 

is trivial. Additionally, the theory of spherical designs, employed in this work to compute the 

surface integrals, can be effortlessly adapted to integrate over ellipsoidal surface (e.g., An and 

Chen, 2016). Therefore, the proposed numerical integration scheme can be easily extended to 

account for non-spherical, viz., spheroidal or ellipsoidal, void shapes; 

Limitations 

▪ The spherical void: similarly to the work of Gurson (1977), the presented porous framework 

can only handle the growth of spherical voids remaining spherical throughout the deformation 

process, consistent with the concept of isotropic damage. However, void shape effects are 

known to be important under vanishing (including negative) stress triaxialities, for which the 

voids tend to become elongated and to rotate under shear-dominated loadings (recall §2.2.3). 

Hence, as it stands, the proposed model is not adequate to predict the microstructural evolution 

features of porous solids under shear dominated loadings. 

▪ Hardening and rate-independence: the criteria developed in this work are restricted to mod-

elling the behaviour of anisotropic porous solids under proportional, quasi-static and mono-

tonic loadings. In order to deal with cyclic and/or nonproportional plastic loadings, porous 



Conclusions and Future Perspectives 

215 

criteria should, ideally, account for kinematic hardening effects, in practice, manifest as a spe-

cific type of matrix anisotropy at the macroscale. Moreover, for high strain-rate loading con-

ditions, these must also include temperature and strain-rate dependence.  

▪ Frozen orthotropy: this work enforced that the principal orthotropic directions do not change 

during plastic deformation (recall Eq. (7.33)), thus, the orthotropy is considered static during 

the deformation process. However, texture evolution and/or twinning-detwinning activation 

are known to lead to an evolving anisotropic behaviour. Therefore, the proposed yield criteria 

should only be used to describe the initial yielding response of porous media.  

8.3 Suggestions for future research 

This work has opened up many opportunities, both from a modelling point of view and in terms of 

numerical implementation. In particular, the proposed numerical homogenization scheme is well posi-

tioned to facilitate future developments, not only on the void-growth stage of the ductile failure, which 

has been the primary focus here, but also on the development of improved void nucleation- and coales-

cence criteria. Some aspects concerning the continuity of this work and general topics regarding future 

research are briefly discussed in the following. These are mainly aimed at addressing the current limi-

tations this proposal, listed above. 

▪ Extend the criteria developed here in a similar fashion as the extensions of the model of Gurson 

(1977) (as in Table 3.1), including, but not limited to: (i) void shape extensions, e.g. by consid-

ering an ellipsoidal void embedded in a ellipsoidal RVE; (ii) high strain-rates by including tem-

perature sensitivity and strain-rate dependence; (iii) kinematical hardening; and (iv) evolving 

plastic anisotropy. 

▪ Apply the proposed numerical-integration scheme to derive improved coalescence criteria, (e.g. 

accounting for more complex matrix behaviours) within the framework of the Thomason (1985) 

model, for instance, using the recent “unified” velocity fields approach of Morin et al. (2016), 

based on a seamless transition from the void growth to the void coalescence stage; 

▪ In order to provide a ‘complete’ model for ductile damage assessments, the proposed finite-

strain elastoplastic constitutive framework (Chapter 7) must be supplemented with: (i) a regu-

larization method, e.g., with a non-local (either integral -type or gradient-enhanced) approach; 

and (ii) a model to predict the onset of void coalesce model, e.g., Thomason-like models. 
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Appendices 

 

Appendix A. Voigt notation of the product of symmetric second order tensors 

Let A and B denote second order symmetric tensors in 3  whose product =C AB  is also symmet-

ric, (thus A and B commute), and B  and C  Voigt’s pseudo-vectorial notation of B and C, respectively, 

i.e.: 

 

T
11 22 33 23 13 12[ ] ,B B B B B B=B   

T
11 22 33 23 13 12[ ] ,C C C C C C=C  

(A.1) 

It is possible to define an operation 
66
33voigt ( )  which transforms a symmetric second order tensor into a 

6x6-Voigt matrix format such that: 

 C A B ,ij ji ik kj I IJ JC C A B= =  =  , , 1,2,3,i j k =  and  , 1,...,6,I J =  (A.2) 

where  
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 
 
 

= =  
+ 

 +
 

+  

A A  (A.3) 

The operation 6x6voigt ( )=A A  can be viewed as the Voigt notation of a fourth-order tensor ,ijkl  

, , , 1,2,3,i j k l =  which verifies ,ij ijkl klC B= , , , 1,2,3.i j k l =  If C describes a flux tensor (e.g. strain-like) 

and B its thermodynamic conjugated tensor (e.g. stress-like), (as in Eq.(4.36)), then, by convention, it 

is common to rewrite the Voigt form in Eq. (A.1) as: 

 

T
11 22 33 23 13 12[ ] ,B B B B B B=B   

T
11 22 33 23 13 12[ 2 2 2 ] ,C C C C C C=C  

(A.4) 

such that B C ,ij ij I IB C =  , 1,2,3,i j =  , 1,...,6.I J =  In this case, the operation 
66
33voigt ( )=A A  must be 

likewise corrected by a factor of 2, i.e.  A 2A ,IJ IJ 4,5,6I =  and 1,...,6,J =  rendering A  symmetric. 
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Appendix B. Pentadimensional deviatoric space 

Let A denote a second order tensor in 3.  If A is symmetric and deviatoric, i.e. T=A A  and tr( )=0,A  

respectively, then A has only 5 independent components. Accordingly, one can map A into a pentadi-

mensional deviatoric space to obtain a pseudo-vector 
(5)

A  containing the information of these compo-

nents. The mapping 
(5) ,→ AA  or, equivalently, (5) ,ij IA A→  , 1,2,3i j =  and 1,...,5I =  is defined as: 

 
( )(5)

1 11 22

1
,

2
A A A= −  ( )(5)

2 11 22 33

1 2
,

6 6
A A A A= + −   

(5)
3 232 ,A A=   (5)

4 132 ,A A=   (5)
5 122 .A A=  

(B.1) 

If Voigt notation is adopted, the mapping 
(5)→ AA can be written in matrix form as: 

 (5) 5
6 ,=A P A  with 5

6

1/ 2 1/ 2 0 0 0 0

1/ 6 1/ 6 2/ 6 0 0 0

.0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

 −
 

− 
 

=  
 
 
 
 

P  (B.2) 

where 
T

11 22 33 23 13 12[ ]A A A A A A=A  is the pseudo-vectorial representation of tensor A. The inverse 

mapping, 
(5) →A A , essentially describing a ‘pull-back’ operation to the reference orthonormal basis, 

is defined as: 

 

(5) (5)
11 1 2

1 1
,

2 6
A A A= +   (5) (5)

22 1 2

1 1
,

2 6
A A A= − + (5)

33 2

2
,

3
A A= −  

(5)
23 3

1
,

2
A A=   

(5)
13 4

1
,

2
A A=   

(5)
12 5

1
.

2
A A=  

(B.3) 

which can also be written in matrix form as: 

 6 (5)
5 ,=A P A  with 6

5

1/ 2 1/ 6 0 0 0

1/ 2 1/ 6 0 0 0

0 2/ 6 0 0 0
.

0 0 1/ 2 0 0

0 0 0 1/ 2 0

0 0 0 0 1/ 2

 
 
− 
 

− 
=
 
 
 
 
  

P  (B.4) 

Let  denote a fourth order tensor in 3  containing the major symmetry, ,ijkl klij=  , , , 1,2,3,i j k l =  

and both minor symmetries, ,ijkl jikl ijlk= =  , , , 1,2,3.i j k l =  If  is deviatoric, i.e., : ,=  where 

1/2( ) 1/3( ),ijkl ik jl il jk ij kl     = + −  , , , 1,2,3i j k l =  is the deviatoric fourth order unit tensor, then the 

Voigt notation of , represented by the symmetric 6x6-matrix C , (satisfying ,CK = C  where K is  the 
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Voigt notation of )  can also be mapped into the pentadimensional deviatoric space, 
(5) ,→C C  by the 

matrix products: 

 (5) 5 6
6 5 ,=C P CP  (B.5) 

and the inverse mapping, 
(5) ,→C C  using: 

 6 (5) 5
5 6 ,=C P C P  (B.6) 

where the transformation matrices 
5
6P  and 

6
5P  are those in Eq. (B.2) and Eq. (B.4), respectively. Note 

that 
5 6 T
6 5( )P P  and, in general, (5)

C  is not symmetric. Moreover, 
5 6 (5)
6 5 =P P I  and 

6 5
5 6 .=P P K  

Appendix C. Rice and Tracey (1969) strain-rate field in Cartesian coordinates 

In order to determine the local strain-rate tensor associated with the Rice and Tracey velocity fields 

in Cartesian coordinates, let us start by defining the spherical-to-Cartesian rotation matrix, R, as 

 cart sph

sin cos cos cos sin

sin sin cos sin cos ,

cos sin 0

i j
ij

    

    

 

− 
  =  =   
 − 

R e e [0, ],  [0,2 ]     , (C.1) 

where ,T T= =R R RR I such that the following transformations on an arbitrary symmetric second order 

tensor A in 3  hold: 

 T
(1,2,3) ( , , )

ˆ ,r  A = RA R  and ( , , ) (1,2,3)
ˆ T

r  A = R A R , (C.2) 

where the notation is self-explanatory. Let exd̂  denote the ‘direction’ of the isotropic expansion field of 

the Rice and Tracey local strain-rate tensor (the second term of the right-hand side of Eq. (5.20)), given 

in spherical coordinates as: 

 ( )ex

( , , )

2 0 0

ˆ 2 0 1 0

0 0 1

r r

r

   

 

 
 

= −  +  +  = − −
 
 − 

d e e e e e e , (C.3) 

Application of the transformation in Eq. (C.2) with Eq. (C.1) to the definition in Eq. (C.3) leads to: 

 

2 2 2

T 2 2
ex ex

2

(1,2,3)

1 3sin cos 3sin sin cos 3sin cos cos

ˆ 1 3sin sin 3sin cos sin .

sym. 1 3cos

       

    



 − − −
 

= = − − 
 − 

d Rd R  (C.4) 

Accordingly, Eq. (5.20) can be written in the Cartesian frame (with respect to the spherical coordinates 

( , , )),r    as: 

 \ , x  ( )
3

RT
m ex'

b
D

r

 
= +  

 
d x D d . (C.5) 

Box C.1 resumes the above scheme in a pseudo-code format. Voigt pseudo-vectorial notation is adopted 

(see Appendix A). 
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Box C.1 Determination of the Rice and Tracey local strain-rate tensor in Cartesian coordinates. 

0. Inputs: ,D  ,b  ( , , )r    

1. Compute deviatoric and hydrostatic part of macroscopic strain-rate tensor 

▪ m sum( (1: 3))/3D = D  

▪  
T

m' 1 1 1 0 0 0D= −D D  

2. Compute isotropic expansion term 

▪ Define exd̂  % (Eq. (C.3)) 

▪ Compute rotation matrix: ( , , )r  R R  % (Eq. (C.1)) 

▪ Compute 
T

ex ex
ˆ=d Rd R  % (Eq. (C.4))  

▪ Convert to Voigt pseudo-vector: ex exd d  % (Appendix A) 

3. Output: 

▪ 

3

RT

m ex'
b

D
r

 
 +  

 
d D d  

 

Appendix D. Eshelby-based strain-rate field in Cartesian coordinates 

For practical reasons, the expansion field in the Eshelby-based strain-rate tensor, 
E, ,

d  entering Eq. 

(5.30) is determined in the spherical frame using Eq. (5.28) and then rotated to the Cartesian frame. As 

such, the eigenstrain-rate tensor, ,*
d  must also be transformed into the spherical basis. Since the mac-

roscopic strain-rate potential entails minimization on the deviatoric part of '*
d  (Eq. (5.43)), (which has 

only five independent components), for computational convenience this tensor is mapped into a pseudo-

vector notation in the pentadimensional space, as described in Appendix B. The determination of the 

Eshelby-based local fields is summarized in Box D.1 in a pseudo-code format. 
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Box D.1 Determination of the Eshelby-based local strain-rate tensor in Cartesian coordinates. 

0. Inputs: 
(5)( , ),D d

*
 ,f ,b  ( , , )r    

1. Compute deviatoric and hydrostatic part of macroscopic strain-rate tensor 

▪ m sum( (1: 3))/3D = D  

▪  
T

m' 1 1 1 0 0 0D= −D D  

2. Compute the eigenstrain rate tensor in the Cartesian frame 

▪ Pull-back to reference space: 
* (5)'d d

*
 % (Appendix B) 

▪ Compute hydrostatic component of :*
d m m /d D f=*

 

▪ Compute the total:  
T*

m' 1 1 1 0 0 0d= +d d
* *  

3. Compute the eigenstrain rate tensor in the spherical frame 

▪ Voigt vector to matrix notation: →d
* *

d  % (Appendix A) 

▪ Compute rotation matrix: ( , , )r  R R  % (Eq. (C.1)) 

▪ Compute 
Tˆ =* *

d R d R  % (cf. Eq. (C.4)) 

4. Compute the uniform deviatoric strain-rate component 

▪ *2
' '

5
f
 

= −  
 

A D d  % (Eq. (5.34)) 

5. Compute the Eshelby external-solution field in the spherical frame 

▪ Compute inner radius:  
1/3a bf=  

▪ Compute 
E, E,ˆ ˆ ˆ( , , )a r = *

d d d  % (Eq. (5.34)) 

5. Transform the Eshelby external-solution field into the Cartesian frame 

▪ Compute 
E, E, Tˆ =d Rd R   

▪ Transform to pseudo-vector Voigt notation: 
E, E, → dd  % (Appendix A) 

6. Output: 

▪ 
E E, +d A d  

 

 

Appendix E. Determination of the eigenstrain-rate tensor of the Eshelby-based fields 

The infimum in Eq. (5.41) is determined by solving the following equation system: 

 ( )E

E

'

, '

'


  = =


0*

*

*d

D d

d
, (E.1) 

where ( )   denotes the gradient operation. Since '*
d  is symmetric and deviatoric, the previous equation 

can be rewritten in the pentadimensional space (see Appendix B) as: 

 ( )E

(5)

(5)

, '
=


0

d

*

*

D d
, (E.2) 



 

 

222 

where 
(5) 'd

* *
d  is the pseudo-vector in the pentadimensional space. Since the analytical expression 

for 
E ( , ') *

D d  is unknown, Eq. (E.2) is replaced by numerical differentiation using a forward difference 

scheme: 

 
E

(5)

( , ')
=


0

d

*

*

D d
, (E.3) 

with a sufficiently small relative step increment 
(5) (5)

2 2|| || || || , = d d
* *

 (e.g.,  
610 ). −=  Once Eq. (E.3) 

is solved the solution is ‘pulled-back’ to the reference orthonormal basis, i.e. 
(5) ',→d

* *
d  and the 

Eshelby-based macroscopic SRP based is determined: 
E E( ) ( , ').  *

D D d  Box E.1-Box E.2 resume 

this algorithm in pseudo-code format. Voigt Notation is adopted. Note that updating the error function, 

,F  in Box E.2, implies carrying out 6n =  (using a forward or backwards scheme) up to 10n =  (using 

a central scheme) homogenization tasks. Moreover, when using a quasi-Newton method, a Jacobian 

matrix, of the type 
(5)/=  J F d

*
 must be defined. Since the analysis is restricted to numerical differ-

entiation, this implies evaluating the error function, ,F   6m =  (using a forward or backwards scheme) 

up to 10m =  (using a central scheme) times. Accordingly, each iteration of the equation system in Box 

E.1, implies mn  homogenizations. From what precedes, minimizing the potential 
E ( , ') *

D d  is excep-

tionally costly from the computational viewpoint. The computation can be reliably speed-up by adopt-

ing strategies such as those described in the last paragraph of §5.5, hence, in practice, the computational 

impart is actually much lower that the theoretical one described above (see e.g. Figure 6.15).   

 

Box E.1 Determination of the eigenstrain-rate tensor concerning the Eshelby-based local fields. 

0. Inputs: ,D { , },f b  
( ) ( ){ , , }n nk aL   

1. Solve the system of equations 

▪ Set initial guess 
(5)

0


d  and relative convergence tolerances for the optimization: 

fun x

tol tol{ , }  
 

▪ Solve the system in Box E.2 for 
(5)

d  with a quasi-Newton method, such that: 

 

(5)

1 fun2
tol(5)

1

( )

( , )

k

k





+



+

 
 
 
 

F d

D d
  and   

(5) (5)

1 x2
tol(5)

1
2

k k

k



 

+ 



+

 −
 
 
 

d d

d
,  

           where k is the number of the iteration. 

2. Output: 
(5) (5)

1 ,k

 

+d d
(5)

1( ) ( , ),k



+  D D d  
(5)( )/ ( , )/    D D D d D

*
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Box E.2 Determination of the eigenstrain-rate tensor concerning the Eshelby-based local fields. 

0. Inputs: 
(5){ , },D d

*
{ , },f b  

( ) ( ){ , , }n nk aL   

1. Construct the error vector function 

▪ Determine 
(5)( , ) : D d

*
 CALL Box 5.1 % Eq. (5.41) 

▪ Set relative step size:   

▪ Determine the gradient of  
(5)( , ) D d

*
  

       % Numerical differentiation with a forward difference scheme: 

      
(5)

2|| ||d  = d
*

  

      for 1:5i =    

             
(5) =d 0

*
 

             
(5) ( )i d  = d

*
 

             ▪ Determine 
(5) (5)( , ) : + D d d

* *
 CALL Box 5.1 % Eq. (5.41) 

             
(5) (5) (5)( , ) ( , )i =  +  − D d d D d

* * *
 

             end 

        ▪ Finite differences scheme: 
(5)

(5)

( , )
,i

d 

 


 

D d

d

*

*
 1,...,5i =   

▪ Error vector: 

(5)

(5)

( , )




D d
F

d

*

*
 

    

2. Output: F   

 

Appendix F. Fortran90 code: computational homogenization 

Fortran 90 code for the algorithms described in Box 5.1 to Box 5.4 and their dependencies is freely 

available for personal use at: https://github.com/joaobrito95/CH.git. 

Appendix G. The exponential map 

This appendix presents a review on the exponential map operation, alias tensor exponential function, 

of symmetric and non-symmetric second-order tensors (after de Souza Neto et al., 2011). 

G.1 Definition  

Consider the initial value problem defined by the tensor-valued ordinary differential equation: 

 ( ) ( )t t=Y AY , (G.1) 

with the initial condition: 

 
0 0( )t =Y Y , (G.2) 

where the superimposed dot denotes differentiation with respect to time, t, and A  and 0Y  are known 

symmetric constant tensors. The tensor exponential function (or exponential map), exp( ) is the (unique) 

solution to the problem in Eq. (G.1), i.e.: 

https://github.com/joaobrito95/CH.git
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0 0( ) exp[( ) ]t t t= −Y A Y . (G.3) 

The tensor exponential function of a (generally non-symmetric) tensor X, can be expressed by means of 

its series representation, i.e. (Hirsch et al., 2012): 

 

0

1
exp[ ] .

!

n

n n



=

=X X  (G.4) 

The above series is absolutely convergent for any argument X. For computational applications, the ten-

sor exponential function is evaluated by truncating the above infinite series with maxn  terms, such that 

a given accuracy degree if arrived, i.e.,  max

2 max tol|| || / ! ,n n X  where tol  is a prescribed tolerance, typi-

cally of the order of the machine precision33. If the argument tensor is symmetric, then the exponential 

map is more conveniently written in terms of its eigendecomposition in a close-form fashion as: 

 
3

1

exp[ ] exp( ) ,  




=

= X E E  (G.5) 

where ,  and ,E  1,2,3 =  are the eigenvalues and eigenvectors of X. In this work, the previous 

expression is used in lieu of Eq. (G.4). 

G.2 Some mathematical properties  

The exponential map enjoys the following proprieties: 

(i) Given any invertible tensor D, 

 1 1exp[ ] exp[ ]− −=DXD D X D , (G.6) 

and thus, for the particular case of an orthogonal tensor Q: 

 T Texp[ ] exp[ ]=QXQ Q X Q , (G.7) 

i.e., the tensor exponential is an isotropic function; 

(ii)  Given generic tensor X, 

 1exp[ ] (exp[ ])−− =X X , (G.8) 

and 

 exp[ ] (exp[ ])nn =X X ; (G.9) 

(iii) The determinant of the exponential of an arbitrary tensor X satisfies:  

 det(exp[ ]) exp[ ( )]tr=X X , (G.10) 

therefore, the exponential tensor function maps traceless tensors onto unimodular tensors, i.e.: 

 
33 In practice, given the typical tolerances involved in nonlinear computational continuum mechanics, only a few 

terms of the series (about six or seven) must be considered for guarantee a truncation error compatible with the 

underlying model (de Souza Neto et al. 2011). 
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 tr[ ] 0 det(exp[ ]) 1,=  =X X , (G.11) 

which is a valuable property when dealing with isochoric plasticity. 

G.3 Generalized exponential map midpoint rule 

Consider the initial value problem defined by the tensor differential equation with a general format: 

 ( ) ( ) ( )t t t=Y A Y , (G.12) 

with the initial condition: 

 
0 0( )t =Y Y . (G.13) 

The problem in Eq. (G.12) differs from that in Eq. (G.1), since tensor A  is now also a function of time, 

i.e., ( ).t=A A  Unfortunately, Eq. (G.3) is no longer the exact solution of Eq. (G.12). However, the latter 

can be used to generate approximate solutions of the problem in Eq. (G.12). Analogously to the gener-

alised midpoint scheme based on the standard Euler approximation, one defines the generalised expo-

nential map midpoint rule as follows. Consider a time interval 1[ , ].n nt t + Then an approximation of the 

solution of Eq. (G.12) is given by: 

 
1 exp[ ( )] ,n n nt t + += Y A Y  (G.14) 

where  

 
1 ,n nt t t+ = −  and ,n nt t t + = +   (G.15) 

with [0,1].   Essentially, the algorithm in Eq. (G.14) estimates 1n+Y  as the exact solution that would 

be obtained at 1nt +  if ( )tA  was constant over 1[ , ].n nt t +  The choices 0, =  1
2
, =  and 1 =  result in 

the so-called explicit, midpoint, and backward (or fully-implicit) exponential map integrators, respec-

tively. The algorithm is first-order accurate for 1. =  
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