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Abstract

Monitoring, modeling, estimation, and control are important issues in nowadays

electrical grids. However, because of the introduction of more recent concepts like

smart grids, the existence of a large number of nonlinear and time-varying compo-

nents, and the noticeable rising number of intermittent resources (like wind turbines

and solar panels) and electric vehicles, addressing these issues is getting each time

more challenging and difficult.

This is because, in smart grids, standards and phenomena may be created that

have not existed and/or are not understood in conventional grids. For example in

a conventional grid one house is always considered as a potential load even if it has

some installed devices like solar panels that produce energy, but in a smart grid such

a house could play a role as a source and feed its surplus electrical energy to the

grid. Additionally, increasing the number of intermittent resources and electric cars

makes electric networks’ behavior more complex and unpredictable, particularly in

terms of energy consumption and production. Further, there are a large number of

nonlinear time-varying devices in electrical grids. Given the above facts, providing

more accurate and reliable state variables to control and monitor electrical grids

is a real challenge. In this context, three main research objectives and research

directions are considered in this thesis.

The first objective is to design a distributed estimation approach, where simulta-

neous estimation of state variables and unknown inputs for large-scale discrete-time

linear systems can be done. This method can function in the form of agent-based es-

timation in which each agent estimates the whole system states and unknown inputs

associated with the whole system, by having access to only a subset of all measure-

ments available locally for each agent. All agents try to reach consensus by exchang-

ing their computed state variables with those of their neighboring agents. Sufficient

conditions for stability and convergence of this distributed estimation method are
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also discussed and provided using Lyapunov stability theory. It is worth mentioning

that though this method is suitable for linear systems, it can be utilized for nonlin-

ear systems if the linearized model of those nonlinear systems has the capability of

being computed quite accurately.

The second objective is to develop a data-driven method to determine a global

model of a real synchronous generator, a highly nonlinear and important component

of power systems. In this approach, under several different planned conditions, the

measurements obtained from the sensors and transducers installed at the inputs

and outputs of a synchronous generator are stored and form several datasets. These

datasets are used by fuzzy clustering, subspace identification, Takagi Sugeno (T-S)

fuzzy modeling, and Particle swarm optimization (PSO) to create a global T-S fuzzy

model. The resultant model of the proposed approach can provide accurate outputs

under a wide range of mechanical power input values, even with noisy measurements.

The third and final objective is to design a robust and adaptive estimator that can

do its main task, the estimation of system state variables, when model mismatches

occur. Developing such a robust and reliable estimator is crucial for electrical net-

works because such networks are subject to a wide range of operating states, due

to a variety of events such as loads, line switching, and source commitment, which

can lead to some model mismatches. Towards this goal, an engineering approach is

proposed that incorporates not only the estimation strategy but also the designer’s

knowledge and experience about the system’s behavior.

The performance and effectiveness of the proposed methodologies are validated

and demonstrated using available benchmarks like IEEE 5-generator 14-bus sys-

tem, known models like 2nd-order and 4th-order nonlinear models of synchronous

generators as well as real setup of a motor-generator set.
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Resumo

Monitorização, modelação, estimação e controlo são questões importantes nas redes

elétricas atuais. No entanto, devido à introdução de conceitos mais recentes como

redes inteligentes, a existência de um grande número de componentes não lineares e

variantes no tempo e o notável aumento do número de recursos intermitentes (como

turbinas eólicas e painéis solares) e veículos elétricos, a abordagem destas questões

está ficando cada vez mais desafiadora e difícil.

Isso porque, nas redes inteligentes, podem ser criados padrões e fenómenos que

não existiam e/ou não são compreendidos nas redes convencionais. Por exemplo,

numa rede convencional, uma casa é sempre considerada como uma carga potencial,

mesmo que tenha alguns dispositivos instalados, como painéis solares que produzem

energia, mas numa rede inteligente, essa casa pode desempenhar o papel de fonte

e alimentar o seu excedente de energia elétrica à rede eléctrica. Adicionalmente, o

aumento do número de recursos intermitentes e de carros elétricos torna o compor-

tamento das redes elétricas mais complexo e imprevisível, nomeadamente ao nível do

consumo e produção de energia. Além disso, há um grande número de dispositivos

variantes no tempo e não lineares nas redes elétricas. Portanto, considerando os

factos acima, fornecer métodos de estimativa e modelação para sistemas de controlo

e monitorização, trabalhando em redes elétricas, com variáveis de estado mais preci-

sas e confiáveis em redes elétricas é um verdadeiro desafio. Diante dos fatos acima,

fornecer variáveis de estado mais precisas e confiáveis para controlar e monitorizar

redes elétricas é um verdadeiro desafio. Neste contexto, três principais objetivos de

pesquisa e direções de pesquisa são considerados nesta tese.

O primeiro objetivo é projectar uma abordagem de estimação distribuída, onde a

estimativa simultânea de variáveis de estado e entradas desconhecidas para sistemas

lineares de tempo discreto de grande escala podem ser feitas. Este método pode

funcionar na forma de estimativa baseada em agente, na qual cada agente estima

vii



viii

todos os estados do sistema e as entradas desconhecidas associadas a todo o sistema,

tendo acesso a apenas um subconjunto de todas as medições disponíveis localmente

para cada agente. Todos os agentes tentam chegar a um consenso trocando as suas

variáveis de estado computadas com aquelas dos seus agentes vizinhos. Condições

suficientes para estabilidade e convergência deste método de estimação distribuído

também são discutidas e fornecidas usando a teoria de estabilidade de Lyapunov.

Vale ressaltar que embora este método seja adequado para sistemas lineares, ele

pode ser utilizado para sistemas não lineares se o modelo linearizado desses sistemas

não lineares tiver a capacidade de ser computado com bastante precisão.

O segundo objetivo é desenvolver um método baseado em dados para determinar

um modelo global de um gerador síncrono real, um componente altamente não linear

e importante dos sistemas de potência. Nesta abordagem, sob diversas condições

planeadas, as medições obtidas dos sensores e transdutores instalados nas entradas

e saídas de um gerador síncrono são armazenadas e formam diversos conjuntos de

dados. Esses conjuntos de dados são usados por agrupamento difuso, identificação

de sub-espaço, modelação difusa de Takagi-Sugeno (T-S) e optimização por enxame

de partículas (PSO) para criar um modelo difuso T-S global. O modelo resultante da

abordagem proposta pode fornecer saídas precisas sob uma ampla gama de valores

de entrada de potência mecânica, mesmo com medições ruidosas.

O terceiro e último objetivo é projetar um estimador robusto e adaptativo que

possa fazer a sua tarefa principal, a estimativa de variáveis de estado do sistema,

quando ocorrem incompatibilidades de modelos. Desenvolver um estimador robusto

e confiável é crucial para redes elétricas porque tais redes estão sujeitas a uma am-

pla gama de estados operacionais, devido a uma variedade de eventos, como cargas,

comutação de linha e comprometimento de fonte, o que pode levar a algumas in-

compatibilidades de modelo. Para atingir esse objetivo, é proposta uma abordagem

de engenharia que incorpora não apenas a estratégia de estimativa, mas também o

conhecimento e a experiência do projetista sobre o comportamento do sistema.

O desempenho e a eficácia das metodologias propostas são validados e demons-

trados usando benchmarks disponíveis como o sistema IEEE de 5 geradores e 14

barramentos, modelos conhecidos como modelos não lineares de 2.a ordem e 4.a

ordem de geradores síncronos, bem como configuração real de um conjunto motor-

gerador.
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Chapter 1

Introduction

Contents

1.1 Main Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State Estimation in Power System Motivation . . . . . . 2
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1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . 3

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Main Motivation

Globally, power systems have long been important in providing energy sustainably

and at large scales. Therefore, issues like their stability, control, and monitoring

have been extensively investigated through many studies. This is because on one

hand, a power system usually comprises a large number of nonlinear and time-

varying elements, and on the other hand, the advent of various distributed energy

resources (DERs) particularly ones producing energy intermittently, e.g. wind tur-

bines, photovoltaic solar panels, and so on, requires smarter and more intelligent

approaches and algorithms to guarantee one power system including a number of

grids and microgrids can keep on working efficiently, stably and reliably. As a mat-

ter of fact, power system stability depends directly on the monitoring and control

systems applied to power systems, and these systems depend directly on models’

accuracy, and the availability and accuracy of state values.

1
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Taking into account the above points, as well as the growing number of pha-

sor measurement units (PMUs) that offer a higher rate and more accurate mea-

surements, it is justified that developing on-line modeling, identification, as well

as robust and/or distributed estimation methods would be very advantageous and

promising for future electrical grids and microgrids.

Nevertheless, there are some challenges and issues to consider in this direction:

1. Power systems are often huge systems with many nonlinear time-varying com-

ponents like motors, generators, etc, and because of this, they can be consid-

ered as a system of systems (SoSs).

2. Trying to combat climate change and strive for zero-emission carbon dioxide

has led countries to use more sustainable energy resources (SERs) such as wind

turbines and solar cells, but their intermittent nature makes power system

design and behavior even more complex and variable.

3. Power systems are subject to a wide range of operating states due to a wide

variety of events such as load changes, line switching, and source commitment.

4. As a result of some recent concepts like smart grids and microgrids as well as

the possibility of components having varying roles, i.e., being sources or loads,

rather than fixed roles, power systems are becoming even more complex.

5. Identifying and modeling the components that comprise power systems can

enhance power system control and monitoring.

In light of the above points, this PhD thesis seeks to develop robust and/or dis-

tributed estimation approaches as well as on-line modeling and identification method-

ologies which can be applied to power systems (electrical networks).

1.2 State Estimation in Power System Motivation

Taking into account the points 1-5 mentioned in Section 1.1, achieving effective

monitoring and control objectives is not a trivial task and is strongly dependent on

having accurate instant state values. State estimation approaches can be considered

as an effective way to attain precise state values, and as stated in point 1, power
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systems can be considered as SoSs. Therefore, developing distributed methodolo-

gies for state estimation can significantly increase reliability and availability of state

values in comparison with centralized methods, as distributed approaches are less

prone to being limited when central processing is interrupted or when several mea-

surements are missing [Cattivelli and Sayed, 2011]. In addition, the points 2, 3 and

4 suggest that power systems models are prone to experience more model changes

during operation because of intermittent SERs, sudden load changes, line switch-

ing, etc. Therefore, developing robust estimation approaches, which are resilient

and robust to these model variations and mismatches, can be a very efficient and

promising solution.

1.3 Model Identification Motivation

In regard to point 5, one of the most promising approaches to improving the monitor-

ing and control systems of a power system, and consequently improving its stability,

is to obtain more accurate models of its components. In particular, synchronous

generators have a significant effect on power system stability due to their nonlin-

ear behavior and time-varying characteristics. As a result, studying and developing

data-driven methodologies that can find their models when they are connected to

the grid, without additional hardware other than some basic measurement devices

and sensors, can be extremely useful and promising. By developing more accu-

rate models of synchronous generators, it will be possible to achieve more reliable

monitoring and control systems, estimators, as well as stability analysis, which are

necessary for a power system to function sustainably. It is obvious that reaching

more powerful methods for model identification of synchronous generators, which

are considered as dynamic elements in power systems, can pave the way for improv-

ing the existing methodologies for other components of power systems such as power

electronic based resources (PERs).

1.4 Thesis Contributions

Taking into account the above comments, this thesis makes a number of contribu-

tions. The main contributions of this thesis are:
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1. [Chapter 4], [Emami et al., 2020]: Design of a novel recursive distributed

filter for linear discrete-time large-scale stochastic systems. The main con-

tributions are: (1.1) its unbiasedness and minimum variance are examined;

(1.2) the necessary and sufficient conditions for the stability and convergence

of the proposed distributed filter are investigated and defined. Furthermore,

the presented filter’s performance is examined and verified using a numerical

example;

2. [Chapter 5], [Emami et al., 2024]: Design of a new method to find a global

model for a synchronous generator from input and output measurement data

using state-of-the-art methods in artificial intelligence (AI) such as fuzzy clus-

tering, subspace identification, and Takagi Sugeno (T-S) fuzzy modeling. The

main contributions are: (2.1) All steps, such as dataset construction, clustering,

sub-model identification, and the training of a T-S fuzzy model to achieve the

global model of a synchronous generator (SG), are chronologically explained;

(2.2) Due to the choice of generator terminal voltage as an input, a connection

to an infinite bus is not necessary, which is considered a benefit in comparison

with the methods proposed e.g. in [Karrari and Malik, 2004; Ghahremani et al.,

2008; Dehghani and Nikravesh, 2008; Dehghani et al., 2010; Grillo et al., 2021];

(2.3) Micev et al. [2022] highlighted that most existing on-grid identification

methods require additional equipment to inject extra signals for identification

purposes, increasing the setup costs, while in this work, there is no need to do

so; (2.4) The effectiveness of the proposed approach is illustrated by simula-

tions on a known fourth-order SG nonlinear model as well as with real-world

experimental results;

3. [Chapter 6], [Emami et al., -] (under-review): Design of a novel approach to

design a robust estimator that is able to keep its consistency in system state

estimation when system process model mismatch occurs. The main contri-

butions are: (3.1) A new adaptive methodology based on ensemble Kalman

Filter (EKF) is proposed to tackle the model mismatch problem for nonlin-

ear dynamic systems without imposing any linear constraints (refer to Section

6.3); (3.2) Providing a practical mechanism to incorporate and utilize the de-

signer’s knowledge and experience from the system’s behavior in designing its

corresponding filter; (3.3) Proposing an adaptive mechanism for adjusting the
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coefficient of compensation input that seeks to improve the accuracy of results

more effectively. (3.4) To assess the performance of the resulting estimator,

which is obtained from the new proposed approach, its performance is com-

pared with that of three well-known estimators, i.e., the unscented Kalman

filter (UKF), the cubature Kalman filter (CKF), and the extended Kalman fil-

ter (EKF) on the IEEE 5-generator 14-bus system. The results indicate that

the proposed method has led to an estimator outperforming its rivals under

the presence of model errors.

1.5 Thesis Organization

The thesis is organized as follows:

• Chapter 2 provides an overview of a simple approach to modeling a classic

power system. In addition, for one of the very key elements of many power

systems, namely SGs, two well-known models, namely 2nd-order and fourth-

order are illustrated;

• Chapter 3 provides an overview of estimation methods applied to dynamic

state estimation (DSE) in power systems. The review focuses on methods,

which are more robust to model mismatches or the inaccurate model of noise.

Finally, the three well-known KF-based filters which are used for nonlinear

systems, namely EKF, UKF and CKF are described in more procedural details.

• Chapter 4 describes the proposed methodology for distributed filter develop-

ment. A list of the most recent, and state-of-the-art, distributed approaches

to linear Kalman filters is presented. Furthermore, some main features of the

resultant filter such as unbiasedness, minimum variance and stability condi-

tions are discussed. Finally, an illustrative example is defined to evaluate the

performance of the resulting distributed filter.

• Chapter 5 describes a novel approach to finding a global model for a syn-

chronous generator from input and output measurement data using state-of-

the-art methods in artificial intelligence (AI) such as fuzzy clustering, subspace

identification, and Takagi Sugeno (T-S) fuzzy modeling. Results of simulation

as well as experimental case studies are reported to evaluate, and demonstrate
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the performance and effectiveness of the proposed data-driven approach over

state-of-the-art approaches.

• Chapter 6 describes a novel approach to designing a robust adaptive estimator

that is able to keep its consistency in system state estimation when system

process model mismatch occurs. The performance of the resultant estimator is

compared with that of three well-known estimators, i.e., the unscented Kalman

filter (UKF), the cubature Kalman filter (CKF), and the extended Kalman

filter (EKF) on the IEEE 5-generator 14-bus system.

• Chapter 7 presents concluding remarks. Future research suggestions are also

outlined.



Chapter 2

Power System Modeling for

Dynamic Studies

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Power System Modeling . . . . . . . . . . . . . . . . . . . 8

2.3 Synchronous Generator Models . . . . . . . . . . . . . . . 11

2.3.1 Second-Order Swing Model . . . . . . . . . . . . . . . . . 12

2.3.2 Fourth-Order Model . . . . . . . . . . . . . . . . . . . . . 12

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Introduction

This Chapter introduces the main components of an electric grid, their mathemati-

cal models, and how they can be taken together to create a complete mathematical

model. Simulation software such as Simulink, DigSilent, and some others are avail-

able for effective electrical grid simulation, but many fundamental concepts and

operations may be covered under the hood of these programs. For this reason, in

this work, it was decided to use a mathematical-based approach rather than the

intricate and mostly not free software, which has the potential of facilitating a bet-

ter understanding of the underlying functions in an electric grid and microgrids.

7
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M loadsN generators

Electric

Grid

Figure 2.1: Electric network diagram.

Throughout this chapter, and throughout the thesis, the focus is more, but not ex-

clusively, on synchronous generator models, since synchronous generators play such

an important and crucial role in many power systems, and their dynamic behavior

greatly affects the stability and reliability of power systems.

Section 2.2 describes the main components of a classical power system and how

it is possible to model these components. Section 2.3 introduces two well-known

and widely used models for synchronous generators. Finally, Section 2.4 gives brief

conclusion remarks.

2.2 Power System Modeling

The classic schematic of a power system is illustrated in Figure 2.1, where three

distinct parts can be observed. The first part, designated by the number 1, is the

generating part. This is where the energy of the entire network is produced by N

generators, which are linked through impedances (xdi) to the electric network. The

second part, designated by the number 2, describes the topology of the electric grid

and transmission lines, including their parameters. The third section, designated
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by the number 3, describes the loads, including their parameters. Now that all the

three main parts in Figure 2.1 are introduced, it is time to combine these three parts

and make the whole model of the system. According to Figure 2.1, each generator

is represented by a voltage source |Ei|∠δi in series with impedance j xdi, and for

the sake of simplicity, it is assumed that each voltage source behind j xdi has a

constant amplitude between two consecutive simulation steps. There are two widely

used models of synchronous generators that will be presented in Section 2.3. Based

on these facts, the process to achieve the final model of a power system can be

accomplished using the three steps below.

Step 1. In each electrical network, using Ohm’s law along with some other

crucial information, for instance knowing the topology of networks (how the buses

and lines are arranged and connected), line impedances, etc, it is possible to obtain

an admittance matrix which herein is named YSS. The interested reader for further

information could refer to e.g., [Grigsby, 2012].

Step 2. To integrate all loads on different buses into the electrical network, it

is possible to convert the apparent power of each load into its equivalent shunt

admittance and then update the YSS with these shunt admittances. With this

regard, for example assuming that a load bus has a voltage VL i (it can be determined,

e.g., from the power flow analysis [Grigsby, 2012]) and a complex power demand

SL i = PL i + j QL i then using SL i = VL i I∗
L i, one load can be converted into its

equivalent shunt admittance at bus i as (2.1) [Wang, 2021]:

yLi =
IL i

VL i

=
S∗

L i

|VL i|2
=

PL i − j QL i

|VL i| 2
. (2.1)

Similarly, such an action can be repeated for all loads in one electric network to

integrate them into the admittance matrix YSS.

Step 3. The last step is to develop the model to include the N generators as

well. Again according to Ohm’s law, the relationship between the injected currents

and bus voltages can be written in general form as (2.2) [Wang, 2021]:

I = Ybus V, (2.2)

where the current vector I is obtained from the injected currents at each bus. As

can be seen in Figure 2.1 , the injected currents just exist at buses connecting to
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generators. Therefore, the injected current vector can be represented as (2.3):

I =











IN

. . .

0











, (2.3)

where IN represents a vector consisting of the generators’ currents. Also, matrix

Ybus and vector V in (2.2) can be defined as (2.4) [Wang, 2021]:

Ybus =











YNN

... YNS

. . . . . . . . .

YSN

... YSS











, V =











EN

. . .

VS











, (2.4)

where EN is a vector comprising the generators’ internal voltages behind the corre-

sponding jxdi (i ∈ {1, . . . , N}) and VS is a vector consisting of the voltages of the

buses. The subscript S represents the number of all nodes (buses), while the sub-

script N is used to represent the whole number of nodes (buses) connected directly

to generators, and for the sake of simplicity, it is assumed that the first N buses of all

buses are buses connected to given generators. YNN = diag([jxd1, jxd2, . . . , jxdN ])−1

is a diagonal matrix and YNS = YT
SN is denoted as

YNS[i][p] =























−1
jxd i

, if gi is connected to bus p,

i ∈ {1, . . . , N}, p ∈ {1, . . . , S},

0, otherwise,

(2.5)

where gi represents the i-th generator and S is the total number of the buses.

Considering (2.2), (2.3), and (2.4), it is possible to calculate the injected currents

vector of N generators, i.e. IN , as

IN = (YNN −YNS Y−1
SSYSN) EN = ȲEN , (2.6)
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where Ȳ ∈ R
N×N is called the reduced admittance matrix [Wang, 2021]. Lastly, the

active and reactive power of the generator i can be calculated by (2.7) and (2.8)

P g
(i, t) = Re(V(i, t) I∗

(i, t)), (2.7)

Qg
(i, t) = Imag(V(i, t) I∗

(i, t)), (2.8)

where I(i, t) is the i-th element of vector IN and V(i, t) represents the voltage of the

bus which is connected to the i-th generator and can be computed as (2.9):

V(i, t) = E(i, t) − jxd i I(i, t), (2.9)

where E(i, t) is the i-th element of vector EN , which can be defined more specifically

as (2.10)-(2.11),

E(i, t) = |E(i, t)| exp(j δ(i, t)) (2.10)

δ(i, t) =
∫ t

0
ω0 ∆ω̄(i, τ) dτ + δ(i, 0), ∆ω̄(i, t) =

ω(i, t) − ω0

ω0

, ω0 = 2πf0, (2.11)

where ω(i,t), δ(i, 0), f0 and t are the angular frequency (in [rad/s]), the initial phase an-

gle of the generator i-th (in [radians]), the nominal frequency of the grid in [Hz] and

the time instant (in [seconds]), respectively. The process of modeling the electric

network comprising its major elements such as loads and generators is now com-

pleted. However, synchronous generators are electromechanical devices and because

of this, it is still required to define how they may exchange energy with the electric

network. Thus, in the next section some popular dynamic models of generators is

described in more detail.

2.3 Synchronous Generator Models

One of the key components of any power system is the energy resources that provide

the required energy for the electrical network. Synchronous generators work by

converting mechanical energy from different sources (such as fossil fuels, wind, etc.)

into electrical energy and, as a result, their dynamics can have a significant impact

on the reliability and stability of power systems. Therefore, in the following sections

several models which are widely used for these key components will be reviewed in
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more detail.

2.3.1 Second-Order Swing Model

In this Section a second-order model namely swing equations is utilized to describe

the dynamics of each generator gi in power system as (2.12) [Xu et al., 2019; Wang,

2021]:

d∆ω̄(i, t)

dt
=

1
Mi

(

P m
(i, t) − P g

(i, t) −Kd
i ∆ω̄(i, t)

)

, Mi = 2Hi,

dδ(i, t)

dt
= ω0 ∆ω̄(i, t), (2.12)

where δ(i, t) is the rotor angle in radians, ω0 = 2πf0 is the nominal synchronous

angular speed in [rad/s], ∆ω̄(i, t) is the rotor speed deviation in per unit [p.u.]); P m
(i, t)

is the mechanical power in p.u.; P g
(i, t) is the electric power in [p.u.]; Hi is the inertia

constant in seconds, and Kd
i is the damping factor in [p.u.], respectively. This model

will be used specifically in Chapter 6.

2.3.2 Fourth-Order Model

One of the models which is widely exploited for synchronous generator is the follow-

ing fourth-order nonlinear state space model:

x = [δ ∆ω̄ é q éd]T = [x1 x2 x3 x4]T ,

ẋ1 = ω0 x2,

ẋ2 =
1

2H
(P m − P g −Kd x2),

ẋ3 =
1

T d́o

(Efd − x3 − (xd − x d́) id),

ẋ4 =
1

T q́o

(−x4 − (xq − x q́) iq), (2.13)

where, x1 (i.e. δ) is the rotor angle in [rad], ω0 = 2πf0 is the nominal synchronous

angular speed in [rad/s], x2 (i.e. ∆ω̄) is the rotor speed deviation from the nominal

speed in [p.u.], P m is the mechanical input power in [p.u.], P g is the approximate

electrical output power in [p.u.], Efd is the field voltage as seen from the armature
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in [p.u.] and it is considered as the second input of the SG model, Kd is the damping

factor in [p.u.], H is inertia constant in [s], xd (resp. x́d) and xq (resp. x́q) are the

direct axis (resp. direct axis transient) and quadratic axis (resp. quadratic transient

axis) reactances, T d́o (resp. T q́o) is the direct (resp. quadratic) transient open-circuit

time constant (resp. d-axis transient open-circuit time constant), and x3 (i.e. éq) and

x4 (i.e. éd) are the quadratic transient axis voltage and direct axis transient voltage

behind the corresponding reactances, x́q and x́d, respectively. Lastly, id and iq are

defined as (2.14) and (2.15) [Machowski et al., 2020]:

id =
é q − VB cos(x1)

xtd

, xtd = x́d + xe, (2.14)

iq =
VB sin(x1)

xtq

, xtq = xq + xe, (2.15)

where VB is the bus voltage in [p.u.], and xe is the line reactance in [p.u.]. The

outputs of the generator are the active and reactive powers, defined respectively as:

P =
VBx3 sin(x1)

xtd

+
V 2

B

2

(

1
xtq

−
1

xtd

)

sin(2x1), (2.16)

Q = −
V 2

B

xtq

sin2(x1)−
V 2

B

xtd

cos2(x1)

+
VBx3

xtd

cos(x1) + xe

(

i2
d + i2

q

)

. (2.17)

2.4 Conclusion

This Chapter reviewed a simple methodology for mathematically modeling a power

system. The main components of the power system were described, and how to

model each and combine them to obtain the whole model for the dynamic study

was illustrated. In this direction, for synchronous generators, two popular models

which are widely used in the scientific literature were explained. The information

and concepts explained in this Chapter will be used principally later in Chapters 5

and 6.
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and in this chapter it will be examined the current state of the art of DSE methods
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in power systems, and then it will be examined three potent approaches, including

EKF, UKF, and CKF, which have all been widely used.

This chapter is organized as follows. Section 3.1 discusses the existing works on

realizing DSE in power systems. Section 3.2 describes the continuous state space

model including the process model and measurement model for a nonlinear dynamic

system. In Section 3.3, the steps through which a continuous model is converted

into a discrete model are illustrated. Lastly, Section 3.4 describes the procedures

associated with three well-known KF based filters, namely EKF, UKF, and CKF.

3.1 Introduction

Applying state estimation techniques to power systems dates back to [Schweppe

and Wildes, 1970], which introduced the Weighted Least Square (WLS) to estimate

power system static states (SEs). Any fluctuations in power generation and cus-

tomers’ loads in power systems with a high percentage of renewable energy sources

and electric vehicles may seriously distort WLS estimation results [Valverde and

Terzija, 2011]. For this reason, Kalman filtering techniques are proposed in order to

address and estimate the dynamic states of power systems [Alhalali and El-Shatshat,

2019]. Estimation in power systems could be implemented in two major frameworks,

static and dynamic estimation [Zhao et al., 2019]. In static estimation quantities like

voltage magnitudes and voltage phase angles are of interest, while in its dynamic

counterparts states such as generator rotor angles and generator speeds are in the

center of attention [Huang et al., 2007].

A growing number of PMUs, which provide high sampling resolution synchronous

measurements, makes DSE implementation more promising [Rostami and Lotfifard,

2018]. Considering what the researchers have accomplished until now in the context

of DSE, it can be concluded that in the majority of the researches, Kalman filter

methods have been playing the main role. EKF filter was used in [Huang et al.,

2007], along with PMU, to estimate the state of generators in a multi-machine elec-

trical network. Although the estimation is accomplished under some noise assump-

tions, the dynamical model itself must be fully known. Ghahremani and Kamwa

[2011] proposed extended Kalman filter with unknown input (EKF-UI) for dynamic

state estimation of a synchronous generator connected to an infinite bus. Based on

this approach, the authors managed to bypass measuring some necessary input sig-
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nals, e.g. exciter output voltage, etc. Later on, in [Ghahremani and Kamwa, 2016],

the authors extended the EKF-UI method of their previous work in [Ghahremani

and Kamwa, 2011] to be functional in the case of multi-machines as well. It is ob-

served that in both studies in [Ghahremani and Kamwa, 2011] and [Ghahremani and

Kamwa, 2016], complete information about the dynamic model of each generator

was required.

Huang et al. [2014] have exploited an EKF to implement a DSE for a multi-

machine system. Some sensitivity analysis was also performed to examine the per-

formance of this estimation method. Despite some errors in the parameters of the

employed model, the EKF has demonstrated some good resilience to these errors.

Aminifar et al. [2014] addressed DSE by using a mixed-integer programming ap-

proach to avoid predicted values whenever a drastic change comes up in the system

state. In [Zhang et al., 2014b], both static and dynamic state estimation were ad-

dressed, with an adaptive Kalman filter with inflatable noise variances proposed to

overcome the impact of inaccurate system modeling and bad measurement data,

thereby improving the robustness and reliability of the estimator. In [Tebianian and

Jeyasurya, 2015], a fourth order model of the generator was considered, where EKF

was used to estimate the dynamic state.

In [Zhou et al., 2015], using Monte Carlo methods, four Bayesian-based filtering

methodologies namely EKF, ensemble Kalman filter, UKF, and particle filter (PF)

were reviewed, and their performances were examined on a two-area four-machine

test system. The performance of these estimators was investigated in particular

in relation to the PMU sampling rate, measurement interpolation methods, and

outliers. Cui and Kavasseri [2015] implemented DSE using PF and compare its

performance with UKF for a multi-machine power system, where the model of each

generator is of 12-th order. However, as also stressed in this work, for PF two issues

that must be carefully considered are the number of particles and measurement

sampling. Increasing the number of particles will improve the accuracy of results

at the expense of computation requirements. On the other hand, the probability of

divergence in PF would increase when the sample time associated with measurement

is lower than the filter’s iteration computation time.

In Netto et al. [2016]’s work, a robust estimator based on EKF, which is called

GM-EKF, was proposed that can function reasonably under gross errors in measure-

ments if model’s nonlinearity is not very severe and noise is Gaussian. Zhao et al.
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[2017b] also proposed a robust filter based on EKF, named IEKF, which benefits

from features such as fast computations and acceptable robustness to observation

and innovation outliers, but it suffers from several weaknesses such as vulnerabil-

ity to system parameter and topology errors, and unreliable state estimates under

strong nonlinearities of the power system model. The work in [Zhao et al., 2017b]

was extended in Zhao et al. [2017a] to develop a robust estimator named GM-IEKF

that was capable of tracking power system dynamic state variables under a few pa-

rameters with errors and/or a variety of cyber attacks, although it was vulnerable

to a large number of inaccurate parameters in the model of the power system.

Additionally, Akhlaghi and Zhou [2017] demonstrated an adaptive EKF where

the prediction step could be repeated several times in case of high nonlinearity

to improve the estimation of dynamic states. Lavenius and Vanfretti [2018] pro-

posed a new methodology, i.e., the nonlinear extended recursive three-step smoother

(NERTSS), and a new alternative estimation model to tackle the problem of simul-

taneously estimating the states and unknown inputs of synchronous machines. In

[Joseph et al., 2018], based on the method in [Kitanidis, 1987], the authors attempted

to solve the DSE problem in power systems. The authors claimed their method-

ology has better transient response comparing with the work in [Ghahremani and

Kamwa, 2016]. Using S-estimator and EKF, Chakhchoukh et al. [2020] converted

the EKF estimator to a robust one that can function effectively and precisely under

phenomena like the presence of outliers, increased nonlinearities and measurement

noise. Under bad data, PMU failures, external disturbances, extraneous noise, and

bounded observer-gain perturbation conditions, Wang [2021] proposed a second-

order fault-tolerant extended Kalman filter (SOFTEKF) framework for dynamic

state estimation in power systems.

The UKF method, which has been utilized in estimators and filters for nonlinear

systems, was proposed by [Julier et al., 2000], and this method gained more attrac-

tion to be used in comparison with its EKF counterpart method owing to an easier

implementation and more accuracy since no model linearization or Jacobian matrix

computation is needed [Wang et al., 2012; Valverde and Terzija, 2011]. A numerical

stable UKF was proposed in [Qi et al., 2018] to estimate the dynamic states of power

systems. Zhao [2018] have proposed H∞-EKF (HEKF) to overcome the problem of

uncertainties in the system model but this method may suffer from some difficulties

in terms of tuning its parameters as well as requiring a certain level of mathematics
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to be understandable by users. Wang et al. [2012] solved the problem of DSE in

multi-machine power systems by using UKF, but it required an exhaustive model

of the system, and measurements are influenced by Gaussian noise. According to

[Netto and Mili, 2018], a robust operator-based Kalman filter (KF) named the gener-

alized maximum-likelihood Koopman operator-based Kalman filter (GM-KKF) has

been proposed, which is a data-driven estimator, and was used to implement DSE

in power systems. It appears that the results from this work are more accurate than

the results from [Netto et al., 2016]. A robust generalized maximum-likelihood-type

unscented Kalman filter (GM-UKF) was developed by Zhao and Mili [2018b] for

suppressing observation and innovation outliers and filtering non-Gaussian process

and measurement noise. In [Zhao and Mili, 2018a], they report the development

of a fast and robust unscented Kalman filter-based dynamic state estimator (DSE)

capable of identifying and suppressing three types of outliers, including observation,

innovation, and structural outliers. According to [Zhao and Mili, 2018a], observation

outliers refer to the received PMU measurements providing unreliable metered val-

ues as a result of gross errors or cyber attacks; innovation outliers tend to be caused

by impulsive system process noise, while structural outliers are caused by incorrect

parameters of generators or the controllers that control them, such as exciters and

speed governors.

Zhao and Mili [2019] have developed a methodology to estimate the dynamic

state of power system by combining UKF and H∞ namely HUKF to deal with

the system nonlinearity as well as to suppress outliers which can not be done well

with their earlier method in [Zhao, 2018]. Dang et al. [2022] introduced SRUKf-

MM, a square root unscented Kalman filter with modified measurement, which

is capable of directly adjusting measurement to weight error covariance and noise

variance, which leads to more accurate estimation when the measurement noise is

non-Gaussian or large. Yu et al. [2019] utilized the methods of the H∞ filter and the

extended particle filter (EPF), and by integrating static estimation into dynamic

estimation, managed to improve overall dynamic state estimation (DSE). In [Wang

et al., 2020b], researchers proposed a robust mixed p-norm square root Kalman filter

that functions properly in spite of non-Gaussian noise and outliers. In [Anagnostou

and Pal, 2018], DSE of a power system performed in a decentralized derivative-

free manner. The authors also consider an unknown input case for their proposed

estimation methodology. Wang et al. [2020a] tested their novel method on the IEEE
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68-bus system, and their results showed that their approach can effectively handle

model errors of the power system caused by changing loads. In fact, the authors

proposed a self-adaptive DSE method able to correct model errors and produce

accurate estimates.

Based on the great work of Arasaratnam and Haykin [2009], Sharma et al. [2017]

have developed a CKF filter to get through the problem of DSE in power system.

However, their filter still required to have both an accurate model of the system

and Gaussian noise. In contrast to such a conventional CKF estimator, in Li et al.

[2019]’s work, a robust CKF filter has been presented that can work well even in the

presence of noise with unknown statistics features like non-Gaussian measurement

noise and/or outliers. For estimating the dynamic state of power systems against

innovation outliers and observation outliers, Wang et al. [2019] proposed an adaptive

robust cubature Kalman filter (RCKF), which included redundancy in observation

data and an adaptive strategy for adjusting the state estimation error covariance

matrix. In [Lee et al., 2020], DSE with unknown inputs is implemented using both

UKF and PF. It has been claimed that this method is appropriate to be deployed

in estimating highly-nonlinear systems but since it is a three-stage algorithm with

two different types of Kalman filters, its complexity and computational time might

be problematic as the size of estimation problem is growing.

Despite the fact that UKFs and CKFs are generally known as sigma-point or

derivative-free filters, and that they have been reported to have superior performance

compared to EKFs, particularly when nonlinearities are severe, they still have some

shortcomings that may affect their performance [Basetti et al., 2022].

For instance, as stated in [Arasaratnam and Haykin, 2009; Sharma et al., 2015],

UKF performance is degraded due to growing the number of system states, which

is likely to occur in systems like power systems. In contrast, CKF can offer some

advantages over UKF in terms of accuracy, computational cost, and stability [Liu

et al., 2014] but because the CKF approach relies on square root and matrix inver-

sion operations of the state covariance matrix, the positive definiteness of matrices

could be disturbed during the operation of the CKF owing to some unpredictable

variations in a system model or noise model, which would lead to instability and

consequently inaccurate and erroneous results [Zhao et al., 2015; Basetti et al., 2022].

As a consequence, it cannot be recognized that one approach is better than

another for one specific estimation problem, and because real-world systems are ex-
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posed to a variety of changes, for example in their model or the model of noise,

robust approaches may be more promising for use in real-world applications. There-

fore, in Chapter 6, a robust solution will be provided to tackle the problem of system

state estimation in the presence of some model mismatches.

3.2 Continuous Nonlinear System

In this section, the general state-space form including both the process and mea-

surement equations for a continuous-time nonlinear system can be given as (3.1):











dx
dt

= f(x, u, t) + wc,

z = h(x, t) + vc,
(3.1)

where, t indicates time, z = [z1, t, . . . , zq, t]
T ∈ R

q is the measurement vector and

consists of the measured values of the available quantities. wc ∈ R
n and vc ∈ R

q

are Gaussian white noises for the process and measurement equations respectively,

and have properties like E

[

wcw
T
c

]

= Q, E

[

vcv
T
c

]

= R, and E

[

wcv
T
c

]

= 0; x =

[x1, t, . . . , xn, t]
T ∈ R

n is the state vector, u = [u1, t, . . . , um, t]
T ∈ R

m is the known input

vector of the system. The scalars n, m and q are the number of states, the known

inputs and the available quantities to be measured, respectively. E represents the

expected value.

3.3 Discrete Form for Nonlinear System

A detailed explanation of two methods used to discretize the continuous model of a

nonlinear system, namely Euler and Runge Kutta, is provided in this section.

3.3.1 Euler Method

Assuming a sample interval of ∆t, using the Euler method, the discrete-time form

of (3.1) is given by:

dx

dt
=

xk+1 − xk

∆t
⇒ xk+1 = xk + ∆t f(xk, uk, k) + wk, (3.2)



22 CHAPTER 3. DYNAMIC STATE ESTIMATION

where, k+1 and k represent indeed t = (k+1)∆t and t = k∆t, respectively. Assume

that the value of ∆t is small enough, and that, as explained in [Catlin, 1989], the

discrete-time process noise wk−1 can be approximated by (3.3),

wk−1 ≈
∫ k∆t

(k−1)∆t
wc(τ)dτ. (3.3)

Considering (3.3) and the continuous covariance of the process noise, Q, the discrete-

time equivalent for this covariance can be given by:

Qd
(k)

∆= E

(

wk−1 wT
k−1

)

=
∫ k∆t

(k−1)∆t

∫ k∆t

(k−1)∆t
E

[

wc(τ1)wT
c (τ2)

]

dτ1dτ2

=
∫ k∆t

(k−1)∆t

∫ k∆t

(k−1)∆t
Q δ∆(τ1 − τ2) dτ1dτ2 = Q∆t, (3.4)

where δ∆() represents the Dirac delta function. Having obtained the state vector as

its discrete form xk, the measurement equation can be simply written in a discretized

form as follows:

zk =h(xk) + vk, (3.5)

where vk is the discrete-time output noise, and assuming its mean value is equal to

zero, its covariance can be described by:

Rd
(k)

∆=E

(

vkvT
k

)

= R/∆t. (3.6)

3.3.2 Fourth-Order Runge-Kutta Method

Assuming a sample interval of ∆t is small enough, the discrete-time form of (3.1) is

given by:

∫ x(k+1)

x(k)

dx =
∫ (k+1)∆t

k∆t
f(x(τ), u(τ), τ) dτ +

∫ (k+1)∆t

k∆
wc(τ) dτ,

x(k+1) = x(k) +
∫ (k+1)∆t

k∆t
f(x(τ), u(τ), τ) dτ +

∫ (k+1)∆t

k∆t
wc(τ) dτ, (3.7)
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where k indicates the time at k∆t and since f(x(t), u(t), t) is nonlinear and it is

assumed that the inputs in this work do not change during sampling interval, the

second term of (3.7) can be solved by numerical methods, e.g., 4th-order Runge-

Kutta [Butcher, 2008] as (3.8):

∫ (k+1)∆t

k∆t
f(x(τ), u(τ), τ) dτ ≈

∆t

6
(k1 + 2k2 + 2k3 + k4), (3.8)

where

k1 = f(x(k), u(t), t = k∆t),

k2 = f(x(k) + 0.5k1, u(t), t = (k + 0.5), ∆t)

k3 = f(x(k) + 0.5k2, u(t), t = (k + 0.5), ∆t)

k4 = f(x(k) + k3, u(t), t = (k + 1)∆t).

Additionally, from (3.7) the discrete-time process noise w(k) can be defined as follows:

w(k) =
∫ (k+1)∆t

k∆t
wc(τ)dτ. (3.9)

Considering (3.9) and the continuous covariance of the process noise, Q, the discrete-

time equivalent for this covariance can be given by Simon [2006]:

Qd ∆=E

(

w(k) wT
(k)

)

=
∫ (k+1)∆t

k∆t

∫ (k+1)∆t

k∆t
E

[

wc(τ1)wT
c (τ2)

]

dτ1dτ2

=
∫ (k+1)∆t

k∆t

∫ (k+1)∆t

k∆t
Q δ∆(τ1 − τ2) dτ1dτ2 = Q∆t, (3.10)

where δ∆() represents the Dirac delta function. Using (3.8) and (3.9), equation (3.7)

can be rewritten as:

x(k+1) =x(k) +
∆t

6
(k1 + 2k2 + 2k3 + k4) + w(k)

≡g(x(k), θ(k)) + w(k), (3.11)

where

g(x(k), θ(k)) = [g1(x(k), θ(k)), . . . , gn(x(k), θ(k))]T ,

θ(k) = (u(k), u(k+0.5), u(k+1)). (3.12)
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In the current work, θ(k) is a tuple consisting of several parameters, but, as the

inputs are assumed to be unchanged on each interval between the two consecutive

samples k and k + 1, θ(k) reduces to only one term, i.e., θ(k) = u(k). Therefore, for

the sake of simplicity, since then, θk will be replaced with u(k). Having obtained

the state vector as its discrete form x(k), the measurement equation can be simply

written in a discretized form as follows:

z(k) =h(x(k)) + v(k), (3.13)

where v(k) is the discrete-time output noise, and assuming its mean value is equal

to zero, its covariance can be described by Simon [2006]:

Rd
(k)

∆=E

(

v(k)v
T
(k)

)

= R/∆t. (3.14)

3.4 Nonlinear Kalman Filter Based Approaches

In Section 3.1, it is stated that EKF, UKF and CKF are three well-known filters

which have been widely utilized for implementing dynamic state estimation (DSE) in

power systems, and for this reason, in this section the procedures that are taken for

each of these three methods are given in more detail. In Chapter 6, these estimators

are applied to an IEEE benchmark electrical network to analyze their performances

with some model mismatches.

3.4.1 EKF

In Algorithm 3.1, the procedures for implementing the EKF approach are described.

3.4.2 UKF

In Algorithm 3.2, the procedures for implementing the UKF approach are described.
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Algorithm 3.1 Implementation algorithm for EKF filter.
Input: an initial state vector x0 ∈ R

n; a measurement series {zk}
Tmax

k=1 ; and the maximum
number of samples Tmax;

1. Initialize the filter at k = 0:

x̂0 = E [x0] (3.15)

P̂0 = E

[

(x̂0 − x0) (x̂0 − x0)T
]

(3.16)

2. for k = 0, . . . , Tmax

(a) Compute the Jacobian of f :

Ak ,
∂f

∂x

∣

∣

∣

∣

x=x̂k

=















∂f1(x̂k, uk)

∂x1
· · ·

∂f1(x̂k, uk)

∂xn
...

. . .
...

∂fn(x̂k, uk)

∂x1
· · ·

∂fn(x̂k, uk)

∂xn















; (3.17)

(b) Prediction update step:
x̂−

k+1 = f(x̂k, uk), (3.18)

P−
k+1 = AkPkAT

k + Qd; (3.19)

(c) Calculate the Jacobian of h:

Ck ,
∂h

∂x

∣

∣

∣

∣

x=x̂−

k+1

=

















∂h1(x̂−
k+1)

∂x1
· · ·

∂h1(x̂−
k+1)

∂xn
...

. . .
...

∂hn(x̂−
k+1)

∂x1
· · ·

∂hn(x̂−
k+1)

∂xn

















; (3.20)

(d) Measurement update step:
Kk = P−

k+1CT

k (CkP−
k+1CT

k + Rd)−1 (3.21)

x̂k+1 = x̂−
k+1 + Kk

(

zk − h(x̂−
k+1)

)

(3.22)

Pk+1 = (I−Kk Ck)P−
k+1 (3.23)

(e) Update x̂k and Pk:
x̂k ← x̂k+1;

Pk ← Pk+1;

(f) Store x̂k, and Pk.

3. end for

Output: State estimate series {x̂k}
Tmax

k=1 ;

3.4.3 CKF

In Algorithm 3.3, the procedures for implementing the CKF approach are described.
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Algorithm 3.2 Implementation algorithm for UKF filter.

Input: An initial state vector x0 ∈ R
n; a measurement series {zk}

Tmax

k=1 ; and the
maximum number of samples Tmax;

1: Initialize the filter at k = 0:
x̂0 = E [x0] , (3.24)

P̂0 = E

[

(x̂0 − x0) (x̂0 − x0)
T
]

(3.25)

2: Calculate the scaling parameter λ:
λ = α2(n + κ)− n, (3.26)

where n is the dimension of state vector x, 0 ≤ α ≤ 1 is an appropriate choice
for α, and a larger value for α will spread the sigma points farther away from the
mean value. α is often set to a small positive real value (e.g., 1e−3). κ = 3− n
is a good choice for κ and if n is greater than 3 then it is enough to set κ zero;

3: for k = 0, . . . , Tmax do
4: Compute sigma points:

[X]1 = x̂k, [X]1+i =











x̂k +
[√

(n + λ)Pk

]

i
, for i = 1, . . . , n,

x̂k −
[√

(n + λ)Pk

]

i−n
, for i = (n + 1), . . . , 2n,

(3.27)

where the notation [X]k denotes the k-th column of matrix X;
5: Calculate weights corresponding to [X]1:

wm
1 =

λ

n + λ
, (3.28)

wc
1 =

λ

n + λ
+ 1− α2 + β, (3.29)

where β = 2 could be a good choice for Gaussian problems like the problem
where it will be used in this thesis (Chapter 6);

6: Calculate weights corresponding to [X]2, . . ., [X]2n+1:

wm
i = wc

i =
1

2n
, for i = 2, . . . , 2n + 1. (3.30)

3.5 Conclusions

This chapter presented an overview of KF-based works corresponding to DSE in

power systems. Also, the continuous and discrete form of a state space model for

a nonlinear system was expressed. Three famous KF-based filters that have been

widely used for nonlinear system state estimation were described explicitly, and their
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7: Prediction update step:

1. Find the sigma points transformed by the nonlinear function f :
Y = f(X, uk); (3.31)

2. Calculate x̂−
k+1 and P−

k+1:

x̂−
k+1 =

2n+1
∑

i=1

wm
i [Y]i , (3.32)

P−
k+1 =

2n+1
∑

i=1

wc
i ([Y]i − x̂−

k+1)([Y]i − x̂−
k+1)

T + Qd; (3.33)

8: Measurement update step:

1. Find the projected sigma points through the nonlinear function h (measure-
ment function):

Z = h(Y); (3.34)

2. Calculate µz and Pz:

µz =
2n+1
∑

i=1

wm
i [Z]i , (3.35)

Pz =
2n+1
∑

i=1

wc
i ([Z]i − µz)([Z]i − µz)T + Rd; (3.36)

3. Calculate Kk, x̂k+1, and Pk+1:

Kk =

[

2n+1
∑

i=1

wc
i ([Y]i − x̂−

k+1)([Z]i − µz)T

]

P−1
z , (3.37)

x̂k+1 = x̂−
k+1 + Kk (zk − µz) , (3.38)

Pk+1 = P−
k+1 −KkPzKT

k ; (3.39)
9: Update x̂k and Pk:

x̂k ← x̂k+1,

Pk ← Pk+1;

10: Store x̂k, and Pk.
11: end for
Output: State estimate series {x̂k}

Tmax

k=1 ;
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Algorithm 3.3 Implementation algorithm for CKF filter.

Input: An initial state vector x0 ∈ R
n; a measurement series {zk}

Tmax

k=1 ; and the
maximum number of samples Tmax;

1: Initialize the filter at k = 0:
x̂0 = E [x0] , (3.40)

P̂0 = E

[

(x̂0 − x0) (x̂0 − x0)
T
]

; (3.41)

2: for k = 0, . . . , Tmax do
3: Compute sigma points:

[X]i =







√

(n) [In]i , for i = 1, . . . , n,

−
√

(n) [In]i−n , for i = (n + 1), . . . , 2n,
(3.42)

where n is the dimension of state vector x, and the notation [X]k denotes the
k-th column of matrix X;.

4: Calculate weights corresponding to [X]1, . . ., [X]2n:

wm
i = wc

i =
1

2n
, for i = 1, . . . , 2n; (3.43)

5: Prediction update step:

1. Find the sigma points transformed by the nonlinear function f of the state
transition equation:

Y = f(X, uk); (3.44)

2. Calculate x̂−
k+1 and P−

k+1:

x̂−
k+1 =

2n+1
∑

i=1

wm
i [Y]i , (3.45)

P−
k+1 =

2n+1
∑

i=1

wc
i ([Y]i − x̂−

k+1)([Y]i − x̂−
k+1)

T + Qd; (3.46)

benefits and shortcomings were briefly discussed. It is concluded that one promising

trend for future research in the context of DSE is to develop robust methods that

are resistant to more model mismatches. This will be discussed and addressed in

Chapter 6.
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6: Measurement update step:

1. Find the projected sigma points through the nonlinear measurement function
h:

Z = h(Y); (3.47)

2. Calculate µz and Pz:

µz =
2n+1
∑

i=1

wm
i [Z]i , (3.48)

Pz =
2n+1
∑

i=1

wc
i ([Z]i − µz)([Z]i − µz)T + Rd; (3.49)

3. Calculate Kk, x̂k+1 and Pk+1:

Kk =

[

2n+1
∑

i=1

wc
i ([Y]i − x̂−

k+1)([Z]i − µz)T

]

P−1
z , (3.50)

x̂k+1 = x̂−
k+1 + Kk (zk − µz) , (3.51)

Pk+1 = P−
k+1 −KkPzKT

k ; (3.52)

7: Update x̂k and Pk:
x̂k ← x̂k+1,

Pk ← Pk+1;

8: Store x̂k, and Pk.
9: end for
Output: State estimate series {x̂k}

Tmax

k=1 ;
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4.1 Introduction

State estimation is a fundamental problem in industrial systems. Kalman filter (KF)

is an effective method and has been widely used for the state estimation of linear

systems since its introduction. In KF-based estimation usually it is assumed that

the model of system and measurement are known, which is not always a valid as-

sumption. In fact and in practice, uncertainties in the system model and systematic

measurement errors are inevitable. In particular, it might be even necessary to esti-

mate the states of a system using only a subset of states and/or unknown inputs in

the system. Exemplar applications of such cases are: fault detection and diagnosis

[Patton et al., 1989], missile-target interception [Pan et al., 2010], synchronous gen-

erator state estimation [Ghahremani and Kamwa, 2016], and autonomous vehicle

navigation [Yong et al., 2016]. Therefore, a question can be posed: how to opti-

mally obtain an estimation of states and unknown inputs of a system? And with

the increasingly application of large-scale and multi-agent systems, another ques-

tion that may arise is how to configure such an estimation system to function more

effectively. In this regard, this Chapter will address a simultaneous estimation of

system’s states and unknown inputs in a distributed manner.

Estimating systems can be categorized into central or distributed configurations.

In the central configuration, it is assumed that measurements are made and trans-

mitted to the processing center with no errors. Such assumptions are not likely to

hold in practice. For example, if the normal functioning of central processing gets

disrupted, the estimation system is not able to perform its function until the fault is

cleared. On the other hand, distributed systems are more robust against accidental

faults that enable them to perform reliably despite missing several measurements

[Cattivelli and Sayed, 2011].

A summary of some of the most relevant distributed state estimation approaches

is provided in Table 4.1. A key concept in distributed computations is the Consensus

theory. The consensus rule makes the estimators reach to the same state estimation,

although utilizing only the local measurements and information exchange with the

neighborhood agents [Olfati-Saber, 2007b]. In [Olfati-Saber, 2005], an algorithm

based on Kalman Filter was introduced for distributed consensus filter, called the

Information Kalman Filter (IKF). It has the limitation that the process must be

observable by the sensors and the observation matrices have to be identical. Then
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Table 4.1: Some of the recent state estimation methods in the distributed configu-
ration.

Reference Estimated Variables Approach/ Limitation
Feature

[Olfati-Saber, 2005] NA Information Kalman Filter (IKF)
The process must be

observable by all sensors
[Riverso et al., 2013] States Plug and Play (PnP) Limited to distributed systems
[Lu, 2013] States/unknown inputs Consensus gains of local filters No proof of the filter formula
[Millan et al., 2017] Obs./unobservable states Local decomposition of states Limited to state estimation
[Liu et al., 2018] States/unknown inputs Cooperative distributed filters NA

Olfati-Saber [2007a] further improved the algorithm for sensor networks application

with different observation matrices. In [Riverso et al., 2013] the Plug and Play (PnP)

capability was introduced which makes the addition and removal of subsystems in

a large-scale distributed system more efficient. In [Millan et al., 2017] approach, a

method to decompose the observable and unobservable states at every local esti-

mation point was proposed which allows the designer to adjust independently the

dynamics of the local observable states and unobservable states. In [Lu, 2013] an

approach for consensus gain computation of local filters is proposed. However the

paper did not discuss about the proof and features of the proposed filter (like un-

biasedness or stability). Liu et al. [2018] utilized cooperative distributed filters to

solve the simultaneous estimation of states and unknown inputs. In comparison

with [Lu, 2013] which applied the estimation solution for a networked system, [Liu

et al., 2018], incorporating the results in [Gillijns and Moor, 2007a], adapted the

estimation solution for a multi-agent system.

This chapter addresses the problem of simultaneous state estimation and un-

known inputs estimation for linear systems with Gaussian noise. The special con-

ditions under which some fundamental features of the proposed filter, such as un-

biasedness, minimum variance, stability, and convergence, can be achieved will be

discussed in more detail, and using a numerical example, the performance of the

designed estimator will be assessed. This chapter indeed discusses the results of

a study published in [Emami et al., 2020]. This Chapter is organized as follows.

Section 4.2 reviews some useful notations and definitions. Problem formulation is

presented in Section 4.3. Sections 4.4, 4.5, and 4.6 describe the proposed methodol-

ogy. The results from an illustrative example are detailed and analyzed in Section

4.7. Section 4.8 contains concluding remarks.
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4.2 Preliminary Definitions

In this section some useful notations and definitions which are used throughout this

section are reviewed. Considering a random vector, v, E[v] is the expectation value

of v. Also, assuming that M ∈ R
q×q, its Moore-Penrose inverse is defined as follows:

M† =
(

MT M
)−1

MT . (4.1)

A. Estimation Theory: In estimation theory θ̂ is defined as an estimation of

variable θ, and θ̂ is Minimum-variance unbiased (MVU), if E[θ̂] = θ and the variance

of θ̂ is not higher than any other unbiased estimates.

B. Graph Theory: In this chapter the main objective is to design a distributed

estimator whose stability and convergence must be guaranteed. Imagine having a

network of sensors or agents, where each sensor or agent only has access to local

measurements of the system, but needs to estimate the overall state vector of the

system. Under this condition, a distributed estimator is a computational algorithm

that allows sensors or agents to exchange information with each other and perform

calculations based on their local measurements, in order to collectively estimate the

overall state vector of the system. The design of a distributed estimator involves

enabling its agents to share information and collaborate effectively, while minimizing

communication and computational overhead. A powerful tool for modeling the

interactions between these agents is the Laplacian matrix in graph theory. In order

to obtain the Laplacian matrix, it is needed to represent the network of agents in

the form of a graph. The nodes of the graph represent agents, while the links of the

graph indicate whether between any two nodes a communicational link exists or not.

Taking into account these points, the communication graph among N = |a| agents

is defined by W (a, Ew, B) where a represents the set of estimators, Ew comprises the

set of links existing among the agents of the network, and B is the corresponding

adjacency matrix of graph W . If eij ∈ Ew, then eji ∈ Ew, and the corresponding

array of elements in the adjacent matrix B are equal to bij = bji = 1; Otherwise

they are zero, meaning that there is no link between agents i and j. The data flow

between two linked agents is assumed to be bi-directional, making B a symmetrical

matrix with nonnegative-elements. If bij = 1 then agents i and j are neighbors,

and Ni represents the set of agents which are the neighbors of agent i. The graph
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W is connected if between any two distinct nodes (agents), there is at least one

path. The degree matrix D is defined as a diagonal matrix showing the number of

links connected to each node, and the Laplacian matrix is defined as L = D − B

and L ∈ R
|a|×|a|. If it is assumed that the graph of the communication network

of agents is connected and undirected, which is always respected throughout this

Chapter, the Laplacian matrix L for this graph would become positive semidefinite

[Godsil and Royle, 2001]. Prior to expressing the corresponding equations when

the system state is a vector, first, for the sake of understanding, it is assumed that

each agent i (i ∈ {1, ..., |a|}) would estimate the system state, which is assumed

to be a scalar. Thus, x̂i ∈ R, which represents the state estimated by agent i

(i ∈ {1, ..., |a|}), and by having a positive semidefinite Laplacian matrix L due to

having a connected undirected graph, the following quadratic property holds for all

the agents inside the network, and more specifically their corresponding estimated

state values represented by x̂i (i ∈ {1, ..., |a|}) [Sun, 2015; Olfati-Saber, 2007a; Godsil

and Royle, 2001]

|a|
∑

i=1

∑

j∈Ni

x̂i(x̂j − x̂i) = −
1
2

∑

(i,j)∈Ew

‖x̂j − x̂i‖2

= −x̂T L x̂, (4.2)

where |a| is the cardinality of the set a and x̂ ∈ R
|a| is defined as x̂ =

[

x̂1, ..., x̂|a|
]T

.

Equation (4.2) is valid when the system state is scalar. However, in practice, the

system state that is due to be estimated is a vector with more than one element

(i.e. x̂i = [xi
1, . . . , xi

n]T ∈ R
n), where n > 1 is an integer number representing the

total number of system states. Therefore, it is essential to extend (4.2) in order to

include the more general form of vector state with n ≥ 2. Thus, the matrix X̂ is

defined to aggregate the state vector of the existing estimators as (4.3):

X̂ = [x̂1, . . . , x̂i, . . . , x̂|a|]. (4.3)

If the state to be estimated is a vector rather than a scalar, then a more general
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form of (4.2) can be defined as (4.4):

n
∑

l=1

|a|
∑

i=1

∑

j∈Ni

x̂i
l(x̂

j
l − x̂i

l) = −
1
2

n
∑

l=1

|a|
∑

i=1

∑

j∈Ni

‖x̂j
l − x̂i

l‖
2

= −
1
2

|a|
∑

i=1

∑

j∈Ni

(x̂j − x̂i)T (x̂j − x̂i)

=
|a|
∑

i=1

∑

j∈Ni

(x̂i)T (x̂j − x̂i)

= −
n
∑

l=1

δl X̂ L
(

δl X̂
)T

, (4.4)

where δl ∈ R
1×n, and its entries are defined as (4.5):

δl = [δl
1 · · · δ

l
n],

δl
j =











1 if j = l,

0 if j 6= l.
(4.5)

Equation (4.4) is used in Section 4.6.4 to verify the stability proof of the proposed

estimator. During this Chapter, since the function of each agent is to estimate the

vector state of the system, instead of using the word “agent”, the word “estima-

tor” is sometimes used, and both terms are equivalent and can therefore be used

interchangeably.

4.3 Problem Description

The studied system is defined by the linear discrete-time state equation (4.6), and

the available output measurement at estimator i ∈ a is given by (4.7)

x(k+1) = A(k) x(k) + G(k) d(k) + ω(k), (4.6)

yi
(k) = Ci

(k) x(k) + vi
(k), (4.7)

where x(k) ∈ R
n is the state vector, d(k) ∈ R

m is an unknown input vector, yi
(k) ∈ R

q

is the measurement vector at the i-th estimator. A(k), G(k), and Ci
(k) are determin-

istic known matrices with appropriate dimensions. The process noise ω(k) ∈ R
n,
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and the measurement noise vi
(k) ∈ R

q are considered mutually uncorrelated, zero-

mean, white noises with known covariance matrices, Q(k) = E[ω(k) ωT
(k)] ≥ 0, and

Ri
(k) = E[vi

(k) (vi
(k))

T ] > 0, respectively. Throughout this Chapter the notation of

time ‘k’ may be dropped for the sake of simplicity.

The aim is to estimate the states and unknown inputs of the system from the

available series of outputs up to time K, {yi
(k)}

K
k=1,∀i ∈ a in a distributed manner.

No specific conditions were considered for the unknown input d(k).

4.4 Estimation Development

In this section the recursive filter equations are defined for the distributed estimation

of a system’s states and unknown inputs as follows:

x̂i−
(k) = A(k−1) x̂i

(k−1), (4.8)

d̂
i

(k−1) = −Mi
d(k)

(

Ci
(k)x̂

i−
(k) − yi

(k)

)

, (4.9)

x̂i ∗
(k) = x̂i−

(k) + G(k−1) d̂
i

(k−1), (4.10)

x̂i
(k) = x̂i ∗

(k) −Mi
x(k)

(

Ci
(k)x̂

i ∗
(k) − yi

(k)

)

+ Ni
x(k)

∑

j∈Ni

(

x̂j−
(k) − x̂i−

(k)

)

, (4.11)

where gain matrices Mi
d(k) ∈ R

m×q, Mi
x(k) ∈ R

n×q, and Ni
x(k) ∈ R

n×n are still to be

determined. The required conditions for calculating Mi
d(k) are given in Section 4.5.

Ni
x(k) is a consensus gain and a poor choice of it may lead to either the lack of stability

of error dynamics in the distributed estimator (4.11) or absence of consensus among

the local estimators. Therefore, it should be carefully considered in the design of

the estimator. The calculation of gains Mi
x(k) and Ni

x(k) are given in Section 4.6.

The variables x̂i
(k) and d̂

i

(k) are the estimations of x(k) and d̂
i

(k) obtained by the i-th

estimator, respectively.

4.5 Unknown Input Estimation

In this section the calculation of d̂
i

(k) are investigated in more detail. It is inspired

by the method discussed in [Gillijns and Moor, 2007a]. First, in Section 4.5.1 the
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condition which is required for the gain matrix Mi
d(k) to make d̂

i

(k) unbiased, i.e.

E

[

d̂
i

(k)

]

= d(k), is demonstrated.

Assumption 1. rank
(

Ci
(k)G(k−1)

)

= rank
(

G(k−1)

)

= m, for all k [Gillijns and

Moor, 2007a; Ding and Fang, 2017].

From Assumption 1, it can be deduced that n ≥ m and q ≥ m.

4.5.1 Unbiased Unknown Input Estimation

First, the innovation ỹi(k) is defined as [Gillijns and Moor, 2007a]:

ỹi
(k) , Ci

(k)x̂
i−
(k) − yi

(k). (4.12)

From (4.6), (4.7), and (4.8),

ỹi
(k) = Ci

(k)A(k−1) x̂i
(k−1|k−1) −Ci

(k)

(

A(k−1) x(k−1) + G(k−1) d(k−1) + ω(k−1)

)

− vi
(k)

= Ci
(k)A(k−1) x̃i

(k−1) −Ci
(k) G(k−1) d(k−1) −Ci

(k) ω(k−1) − vi
(k)

= −Ci
(k)G(k−1)d(k−1) + ei

(k), (4.13)

where

ei
(k) = Ci

(k)

(

A(k−1)x̃
i
(k−1) − ω(k−1)

)

− vi
(k), (4.14)

and x̃i
(k) , x̂i

(k)−x(k). Assuming that x̂i
(k−1) is unbiased, then it follows from (4.14)

that E

[

ei
(k)

]

= 0. Therefore, from (4.13)

E

[

ỹi
(k)

]

= −Ci
(k)G(k−1)d(k−1). (4.15)

Substituting (4.13) into (4.9), d̂
i

(k−1) is written as

d̂
i

(k−1) = Mi
d(k)C

i
(k)G(k−1)d(k−1) −Mi

d(k)e
i
(k). (4.16)

Now assume that

Mi
d(k)C

i
(k)G(k−1) = Im. (4.17)
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From (4.17) and (4.16) it is seen that d̂
i

(k−1) is unbiased.

Estimators of d(k) can be implemented using Least-squares (LS) solutions of

equation (4.13) for every agent (estimator). However, because ei
(k) does not have

unit variance, and thus (4.13) does not meet the assumptions of the Guass-Markov

theorem [Kailath et al., 2000], then such estimators of d(k) are still not MVU. To

achieve MVU estimators of d(k), a weighted LS (WLS) estimation method with

weighting matrix
(

E[ei
(k) ei

(k)
T ]
)−1

is utilized in Section 4.5.2.

4.5.2 Minimum-Variance Unbiased Input Estimation

As mentioned in Section 4.5.1, if Mi
d(k) satisfies condition (4.17), then the estimators

of d(k) obtained by LS solutions of (4.13) for every agent are unbiased. The variance

of ei
(k) defined as

R̃
i

(k) = E

[

ei
(k)(e

i
(k))

T
]

= Ci
(k)

[

A(k)P
i
(k−1)A

T
(k) + Q(k−1)

] (

Ci
(k)

)T
+ Ri

(k), (4.18)

where Pi
(k) , E

[

x̃i
(k)

(

x̃i
(k)

)T
]

.

Defining Pi−
(k) , E[x̃i−

(k)(x̃
i−
(k))

T ], then

Pi−
(k) = A(k−1)P

i
(k−1)A

T
(k−1) + Q(k−1), (4.19)

R̃
i

(k) = Ci
(k)P

i−
(k)

(

Ci
(k)

)T
+ Ri

(k). (4.20)

An MVU unknown input estimate is then attained as described in Theorem 4.5.1.

Theorem 4.5.1. Consider that Assumption 1, the unbiasedness of x̂(k−1), and the

positive definiteness of R̃
i

(k) are satisfied, then Mi
d(k) is as

Mi
d(k) = −((Fi

(k))
T (R̃

i

(k))
−1Fi

(k))
−1(Fi

(k))
T (R̃

i

(k))
−1, (4.21)

where Fi
(k) = Ci

(k)G(k−1). Then, (4.9) gives the MVU estimates of d(k−1), and

the variance of the corresponding unknown input estimate d̂
i

(k−1) is obtained by

((Fi
(k))

T (R̃
i

(k))
−1Fi

(k))
−1.

Proof. If the positive definiteness of R̃
i

(k) is satisfied, then an invertible matrix
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Z̃
i

(k) ∈ R
q×q exists satisfying Z̃

i

(k)(Z̃
i

(k))
T = R̃

i

(k). As one solution this matrix can be

the Cholesky factorization of R̃
i

(k). Therefore, from (4.13)

(Z̃
i

(k))
−1ỹi

(k) = −(Z̃
i

(k))
−1Ci

(k)G(k−1)d(k−1) + (Z̃
i

(k))
−1ei

(k). (4.22)

Since Z̃
i

(k) is invertible, then from Assumption 1, (Z̃
i

(k))
−1Ci

(k)G(k−1) has full

column rank, and therefore the LS solution of (4.22) is obtained by

d̂
i

(k−1) = ((Fi
(k))

T (R̃
i

(k))
−1Fi

(k))
−1(Fi

(k))
T (R̃

i

(k))
−1ỹi

(k), (4.23)

where Fi
(k) = Ci

(k)G(k−1), and (Z̃
i

(k))
−1ei

(k) has unit variance. Therefore, equation

(4.22) meets the assumption of the Gauss-Markov theorem and thus, it is concluded

that the estimate of d(k−1) is MVU [Kailath et al., 2000]. The proof is complete.

4.6 State Estimation

Taking into consideration the models of the system and the corresponding mea-

surements (4.6) and (4.7), and the recursive distributed filter defined by equations

(4.8)-(4.11); Then the goal is to obtain the conditions on the gains Mi
x(k) and Ni

x(k)

required for the estimator x̂i
(k) (4.8)-(4.11) of x(k) to be unbiased and with minimum

variance.

4.6.1 Unbiased State Estimation

The conditions for unbiasedness of the state estimator introduced by (4.8)-(4.11) is

investigated in Theorem 4.6.1.

Theorem 4.6.1. Assuming that x̂i
(k−1) and d̂

i

(k−1) are unbiased estimators of x(k−1)

and d(k−1), respectively, i.e. E [x̃ i
(k−1)] , E [x̂i

(k−1) − x(k−1)] = 0 and E [d̃
i

(k−1)] ,

E [d̂
i

(k−1) − d(k−1)] = 0, then (4.10) and (4.11) are unbiased estimators of x(k) for

any M i
x(k) and N i

x(k).

Proof. By substituting (4.8), and (4.10) into (4.11) it can be obtained:

E [x̃i] = E

[

A(k−1)x̃
i
(k−1) + G(k−1)d̃

i

(k−1) − ω(k−1) −M i
x(k)C

i
(k)A(k−1)x̃

i
(k−1)



4.6. STATE ESTIMATION 41

−Mi
x(k)C

i
(k)G(k−1)d̃

i

(k−1) + M i
x(k)C

i
(k)ω(k−1) + M i

x(k)

+N i
x(k)A(k−1)

∑

j∈Ni

(

x̃
j

(k−1) − x̃i
(k−1)

)





=
(

In −M i
x(k)C

i
(k)

)(

A(k−1) E[x̃i
(k−1)]− E[ω(k−1)] + G(k−1) E[d̃

i

(k−1)]
)

+ M i
x(k) E[vi

(k)] + N i
x(k)A(k−1)





∑

j∈Ni

E[x̃j

(k−1)]−
∑

j∈Ni

E[x̃i
(k−1)]



 = 0 (4.24)

Since E [ω(k−1)] = E [vi
(k)] = 0, then the value of (4.24) for any value of M i

x and N i
x

equals to zero and the proof is complete.

4.6.2 Minimum Variance Unbiased State Estimation

By defining x̃i
(k) , x̂i

(k) − x(k) and substitution of (4.11) and (4.6) for x̂i
(k) and x(k)

respectively, the covariance matrix Pij
(k) can be obtained as (4.25):

Pij

(k)
, E

[

x̃i
(k)(x̃j

(k)
)T

]

= {In − M i
x(k)Ci

k} A(k−1) E

[

x̃i
(k−1)(x̃j

(k−1)
)T

]

AT
(k−1) {In − Mj

x(k)Cj

k
}T

− {In − M i
x(k)Ci

k} A(k−1) E

[

x̃i
(k−1)(x̃j

(k−1)
)T

]

AT
(k−1)(Cj

(k−1)
)T (Mj

d(k)
)T GT

(k−1) {In − Mj
x(k)Cj

k
}T

+ {In − M i
x(k)Ci

k} A(k−1)

∑

s∈Nj

(

E

[

x̃i
(k−1)(x̃s

(k−1))T
]

− E

[

x̃i
(k−1)(x̃j

(k−1)
)T

])

AT
(k−1)(Nj

x(k))T

− {In − M i
x(k)Ci

k} G(k−1) Mi
d(k)Ci

(k−1)A(k−1)E

[

x̃i
(k−1)(x̃j

(k−1)
)T

]

AT
(k−1) {In − Mj

x(k)Cj

k
}T

+ {In − M i
x(k)Ci

k} G(k−1) Mi
d(k)Ci

(k−1)A(k−1)E

[

x̃i
(k−1)x̃j

(k−1)
)T

]

AT
(k−1)(Cj

(k−1)
)T (Mj

d(k)
)T GT

(k−1)

× {In − Mj
x(k)Cj

k
}T + {In − M i

x(k)Ci
k} G(k−1) Mi

d(k)Ci
kQ(Cj

k
)T (Mj

d(k)
)T GT

(k−1) {In − Mj
x(k)Cj

k
}T

+ {In − M i
x(k)Ci

k} G(k−1) Mi
d(k)E

[

vi
(k)(vj

(k)
)T

]

(Mj

d(k)
)T GT

(k−1) {In − Mj
x(k)Cj

k
}T

− {In − M i
x(k)Ci

k} G(k−1) Mi
d(k)Ci

k Q {In − Mj
x(k)Cj

k
}T

+ {In − M i
x(k)Ci

k} G(k−1) Mi
d(k)E

[

vi
(k)(vj

(k)
)T

]

(M j
x (k))T

− {In − M i
x(k)Ci

k} G(k−1) Mi
d(k)Ci

kA(k−1)

∑

s∈Nj

(

E

[

x̃i
(k−1)(x̃s

(k−1))T
]

−E

[

x̃i
(k−1)(x̃j

(k−1)
)T

])

× AT
(k−1)(Nj

x(k))T − {In − M i
x(k)Ci

k} Q (Cj

k
)T (Mj

d(k)
)T GT

(k−1) {In − Mj
x(k)Cj

k
}T

+ {In − M i
x(k)Ci

k} Q {In − Mj
x(k)Cj

k
}T

+ M i
x(k) E

[

vi
(k)(vj

(k)
)T

]

(Mj

d(k)
)T GT

(k−1) {In − Mj
x(k)Cj

k
}T + M i

x(k) E

[

vi
(k)(vj

(k)
)T

]

(M j
x (k))T

+ N i
x(k) A(k−1)

∑

r∈Ni

(

E

[

x̃r
(k−1)(x̃j

(k−1)
)T

]

− E

[

x̃i
(k−1)(x̃j

(k−1)
)T

])

AT
(k−1) {In − Mj

x(k)Cj

k
}T
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− N i
x(k) A(k−1)

∑

r∈Ni

(

E

[

x̃r
(k−1)(x̃j

(k−1)
)T

]

− E

[

x̃i
(k−1)(x̃j

(k−1)
)T

])

AT
(k−1)(Cj

(k−1)
)T

× (Mj

d(k)
)T GT

(k−1) {In − Mj
x(k)Cj

k
}T + N i

x(k) A(k−1)

∑

r∈Ni

∑

s∈Nj

(

E

[

x̃r
(k−1)(x̃s

(k−1))T
]

− E

[

x̃r
(k−1)(x̃j

(k−1)
)T

]

− E

[

x̃i
(k−1)(x̃s

(k−1))T
]

+E

[

x̃i
(k−1)(x̃j

(k−1)
)T

])

AT
(k−1)(Nj

x(k))T . (4.25)

By setting i = j in (4.25) the error covariance matrix Pi
(k) , Pii

(k) at estimator i can
be calculated by (4.26) as follows:

Pi
(k) , E

[

x̃i
(k)(x̃

i
(k))

T
]

= Pi−
(k) −Pi−

(k)(C
i
(k))

T (Mi
x(k))

T

− (Mi
x(k)C

i
(k)) Pi−

(k) + Mi
x(k)R̃

i

(k)(M
i
x(k))

T

−Pi−
(k)(C

i
(k))

T (Mi
d(k))

T GT
(k−1)

+ Pi−
(k)(C

i
(k))

T (Mi
d(k))

T GT
(k−1) (Ci

(k))
T (Mi

x(k))
T

+ Mi
x(k) R̃

i

(k) (Mi
d(k))

T GT
(k−1)

−Mi
x(k) R̃

i

(k) (Mi
d(k))

T GT
(k−1) (Ci

(k))
T (Mi

x(k))
T

+ A(k−1)

∑

s∈Ni

(

Pis
(k−1) −Pi

(k−1)

)

AT
(k−1)(N

i
x(k))

T

+ Ni
x(k) A(k−1)

∑

r∈Ni

(

Pri
(k−1) −Pi

(k−1)

)

AT
(k−1)

− (Mi
x(k)C

i
(k)) A(k−1)

∑

s∈Ni

(

Pis
(k−1) −Pi

(k−1)

)

AT
(k−1)(N

i
x(k))

T

−Ni
x(k) A(k−1)

∑

r∈Ni

(

Pri
(k−1) −Pi

(k−1)

)

AT
(k−1) (Ci

(k))
T (Mi

x(k))
T

−G(k−1)M
i
d(k)C

i
(k) Pi−

(k)

+ G(k−1)M
i
d(k) R̃

i

(k) (Mi
x(k))

T

+ (Mi
x(k)C

i
(k))G(k−1)M

i
d(k) Ci

(k)P
i−
(k)

− (Mi
x(k)C

i
(k))G(k−1)M

i
d(k) R̃

i

(k) (Mi
x(k))

T

+ G(k−1)M
i
d(k) R̃

i

(k) (Mi
d(k))

T GT
(k−1)

−G(k−1)M
i
d(k) R̃

i

(k) (Mi
d(k))

T GT
(k−1) (Ci

(k))
T (Mi

x(k))
T

− (Mi
x(k)C

i
(k))G(k−1)M

i
d(k) R̃

i

(k) (Mi
d(k))

T GT
(k−1)

+ (Mi
x(k)C

i
(k))G(k−1)M

i
d(k) R̃

i

(k) (Mi
d(k))

T GT
(k−1) (Ci

(k))
T (Mi

x(k))
T

−G(k−1) Mi
d(k)C

i
(k)A(k−1)

∑

s∈Ni

(

Pis
(k−1) −Pi

(k−1)

)

AT
(k−1)(N

i
x(k))

T
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−Ni
x(k) A(k−1)

∑

r∈Ni

(

Pri
(k−1) −Pi

(k−1)

)

AT
(k−1)(C

i
(k))

T (Mi
d(k))

T GT
(k−1)

+ (Mi
x(k)C

i
(k))G(k−1) Mi

d(k)C
i
(k)A(k−1)

∑

s∈Ni

(

Pis
(k−1) −Pi

(k−1)

)

AT
(k−1)(N

i
x(k))

T

+ Ni
x(k) A(k−1)

∑

r∈Ni

(

Pri
(k−1) −Pi

(k−1)

)

AT
(k−1)(C

i
(k))

T (Mi
d(k))

T GT
(k−1) (Ci

(k))
T (Mi

x(k))
T

+ Ni
x(k) A(k−1)

∑

r∈Ni

∑

s∈Ni

(

P rs
(k−1|k−1) −Pri

(k−1) −Pis
(k−1) + Pi

(k−1)

)

AT
(k−1)(N

i
x(k))

T . (4.26)

where Pis = (Psi)T = E[x̃i(x̃s )T ], Prs = E[x̃r(x̃s )T ], Pri = E[x̃r(x̃i )T ] and Pii =

Pi = E[x̃i(x̃i )T ]. To find the optimal gain for Mi
x to minimize the variance of the

error states, the partial derivative of tr[Pi
(k)] to Mi

x is computed:

∂{tr[Pi
(k)]}

∂Mi
x(k)

= Mi
x(k) R̃

i

(k)

−Mi
x(k) R̃

i

(k) (Mi
d(k))

T GT
(k−1) (Ci

(k))
T

−Mi
x(k) Ci

(k) G(k−1) Mi
d(k) R̃

i

(k)

+ Mi
x(k)C

i
(k)G(k−1)M

i
d(k) R̃

i

(k) (Mi
d(k))

T GT
(k−1) (Ci

(k))
T

+ Pi−
(k) (Ci

(k))
T (Mi

d(k))
T GT

(k−1) (Ci
(k))

T

−Pi−
(k)(C

i
(k))

T + G(k−1)M
i
d(k) R̃

i

(k)

−Ni
x(k) A(k−1)

∑

r∈Ni

(

Pri
(k−1) −Pi

(k−1)

)

AT
(k−1) (Ci

(k))
T

−G(k−1)(M
i
d(k)) R̃

i

(k) (Mi
d(k))

T GT
(k−1)(C

i
(k))

T

+ Ni
x(k) A(k−1)

∑

r∈Ni

(

Pri
(k−1) −Pi

(k−1)

)

AT
(k−1)(C

i
(k))

T (Mi
d(k))

T GT
(k−1) (Ci

(k))
T .

(4.27)

By setting ∂{tr[Pi(k)]}

∂Mi
x(k)

= 0, the optimal Mi
x is:

Mi
x(k)R̃

i ∗

(k) =
[

Pi−
(k)(C

i
(k))

T −G(k−1)M
i
d(k) R̃

i

(k) −Ni
x(k) A(k−1)

∑

r∈Ni

(

Pri
(k−1) −Pi

(k−1)

)

×AT
(k−1)(C

i
(k))

T
] (

I− (Mi
d(k))

T GT
(k−1) (Ci

(k))
T
)

, (4.28)
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where

R̃
i∗

= [Iq −Ci
(k)G(k−1)M

i
d(k)] R̃

i
[Iq −Ci

(k)G(k−1)M
i
d(k)]

T , (4.29)

and Iq is the identity matrix of dimension q. From (4.28) it can be inferred that

there is a unique solution for Mi
x if R̃

i∗
is invertible (full rank or non singular).

Furthermore, from (4.28) it can be seen that the value of Mi
x depends on the con-

sensus gain Ni
x and on the aggregated difference of error covariance of node i with

its neighbor nodes (
∑

r∈Ni
{Pri

(k) −Pi
(k)}).

Now R̃
i∗

will be examined because its rank can affect the uniqueness of the

solution for Mi
x (4.28).

Lemma 1. Assuming condition (4.17) is satisfied then the term [Iq−Ci
(k)G(k−1)M

i
d(k)]

has rank q −m, where Iq is the identity matrix of dimension q.

Proof. From (4.17) Mi
d(k)C

i
(k)G(k−1) = Im, it can be deduced that Mi

d(k) is a left

inverse of Ci
(k)G(k−1). Therefore, both [Ci

(k)G(k−1)M
i
d(k)] and [Iq−Ci

(k)G(k−1)M
i
d(k)]

are idempotent. Thus, the rank of [Iq − Ci
(k)G(k−1)M

i
d(k)] is equal to rank(Iq) −

rank(Ci
(k)G(k−1)M

i
d(k)) = q −m = r.

It is inferred from Lemma 1 that Mi
x(k) is not unique since R̃

i∗
is not full rank

(it is singular). In Section 4.6.3, the generalized inverse of R̃
i∗

is explored.

4.6.3 Generalized Inverse Calculation

Using singular value decomposition (SVD) [Klema and Laub, 1980], R̃
i∗
∈ R

q×q is

R̃
i∗

= Ui∗





Di∗
r×r 0r×(q−r)

0(q−r)×r 0(q−r)×(q−r)



 (Vi∗)T , (4.30)

where matrices Ui∗ ∈ R
q×q and Vi∗ ∈ R

q×q are orthogonal, Di∗ , diag[σi∗
1 , . . . , σi∗

r ]
and σi∗

1 > σi∗
2 > . . . > σi∗

r > 0 are the positive singular values of R̃
i∗

. Thus, the
generalized inverse of R̃

i∗
is

(R̃
i∗

)
†

= (Vi∗)





(Di∗)−1
r×r 0r×(q−r)

0(q−r)×r 0(q−r)×(q−r)



 (Ui∗)T . (4.31)
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Having obtained (R̃
i∗

)
†

in (4.31), then similar to (4.28), Mi
x(k) can be written as:

Mi
x(k) =



Pi−
(k)(C

i
(k))

T −G(k−1)M
i
d(k)R̃

i
(k) −Ni

x(k) A(k−1)

∑

r∈Ni

(

Pri
(k−1) −Pi

(k−1)

)

×AT
(k−1)(C

i
(k))

T
] (

I− (Mi
d(k))

T GT
(k−1) (Ci

(k))
T
)

(R̃
i∗

)† (4.32)

From (4.32) it has been seen that Mi
x depends on the consensus gain Ni

x. Later in

Section 4.6.4, it will be discussed that the proposed distributed estimator can be

stable and will converge under certain conditions. As a result, assuming the con-

vergence of the filter, the term
∑

r∈Ni

(

Pri
(k−1) −Pi

(k−1)

)

in (4.32) can be considered

approximately zero. Therefore, this approximation leads to have a suboptimal but

still good approximate solution for Mi
x(k) as (4.33):

Mi
x(k) =

[

Pi−
(k)(C

i
(k))

T −G(k−1)M
i
d(k)R̃

i

(k)

]

×
(

I− (Mi
d(k))

T GT
(k−1) (Ci

(k))
T
)

(R̃
i∗

)†.

(4.33)

This assumption and consequently, the suboptimal solution for Mi
x(k) clearly have

two advantages. First, it makes the performance of estimator more robust and

reliable since the calculation of local gain Mi
x(k) is only dependent on the available

data of local estimator and not its neighbor’s data. Second, it contributes to be

able to consider this proposed estimator as a distributed method based on what is

defined in [Liu et al., 2018]. Yet, Ni
x(k) is unknown, and is required to be determined.

This will be addressed in Section 4.6.4 where the stability of the studied distributed

estimator is assessed.

4.6.4 Stability and Convergence of Estimator

The equation for the error dynamics of the distributed filter is written as (4.34).

To obtain (4.34) the noises are assumed to be zero, and condition (4.17) is assumed

to be met, implying that the unknown input does not have any effect on the error

dynamics of the estimator.

x̃i
(k) = x̂i

(k) − x(k)

= Hi
(k)A(k−1)x̃

i
(k−1) + Ni

x(k)u
i
(k−1). (4.34)
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Hi
(k) and ui

(k) are defined in (4.35) and (4.36) respectively.

Hi
(k) =In −Mi

x(k)C
i
(k) −G(k−1) Mi

d(k)C
i
(k) + Mi

x(k)C
i
(k)G(k−1) Mi

d(k)C
i
(k), (4.35)

ui
(k) = A(k)

∑

r∈Ni

(

x̃r
(k) − x̃i

(k)

)

. (4.36)

Before investigating the stability of the distributed estimator (4.8)-(4.11) in Theorem

4.6.2 below, Lemma 2 is given:

Lemma 2. Assuming that A−1
(k)G(k) 6= 0, and that condition (4.17) is met and

Ni
x(k) = 0, then the error dynamics (4.34) of each estimator, i, will be globally

asymptotically stable.

Proof. The proof is made as follows: the discrete-time Lyapunov function [Haddad

and Chellaboina, 2008] V i = (x̃i
(k))

T x̃i
(k) is defined. Then, it is shown that ∆V i =

V i
(k+1) − V i

(k) < 0. From (4.34), since it is assumed that Ni
x(k) = 0, then ∆V i is

written as:

∆V i = V i
(k+1) − V i

(k)

= (x̃i
(k+1))

T x̃i
(k+1) − (x̃i

(k))
T x̃i

(k)

= (x̃i
(k))

T
(

AT
(k)(H

i
(k+1))

T Hi
(k+1)A(k) − In

)

x̃i
(k)

= (x̃i
(k))

T Ωi (x̃i
(k)), (4.37)

where

Ωi = AT
(k)(H

i
(k+1))

T Hi
(k+1)A(k) − In. (4.38)

In order to show that (4.37) is negative, it is sufficient to show that Ωi is negative

definite for all k ≥ 0. From (4.38), since it is assumed that A−1
(k)G(k) 6= 0 it can be

written that

Ωi A−1
(k) G(k) =

(

AT
(k)(H

i
(k+1))

T Hi
(k+1)A(k) − In

)

A−1
(k)G(k),

(Ωi + In)A−1
(k)G(k) = 0⇒ Ωi = −In. (4.39)

The result in (4.39) is obtained because Hi
(k)G(k−1) = 0. Using (4.17), namely

Mi
d(k)C

i
(k)G(k−1) = Im, then from (4.35) the term Hi

(k)G(k−1) = 0. Since Ωi
(k) for all
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i is constant and equal to −In, Ωi
(k) can be denoted by Ω.

∆V i = V i
(k+1) − V i

(k) = −(x̃i
(k))

T (x̃i
(k)) < 0,∀x̃i 6= 0.

Therefore, the proof is complete.

Theorem 4.6.2. Suppose that the error dynamics of estimator i is defined as (4.34),

and let

Ni
x(k) = β Hi

(k) (4.40)

Then, the error dynamics of the distributed estimator (4.11) is globally asymptoti-

cally stable for 0 ≤ β ≤ 1/2.

Proof. The proof is made as follows: the discrete-time Lyapunov function [Haddad

and Chellaboina, 2008] is defined

V(k) =
|a|
∑

i=1

(

(x̃i
(k))

T x̃i
(k)

)

. (4.41)

Then, it is shown that ∆V , V(k+1) − V(k) < 0.

From the error dynamics of the filter (4.34), (4.35), (4.36), Lemma 2 and Lya-

punov function (4.41):

∆V , V(k+1) − V(k)

=
|a|
∑

i=1

[

(x̃i
(k+1))

T x̃i
(k+1) − (x̃i

(k))
T x̃i

(k)

]

=
|a|
∑

i=1

(x̃i
(k))

T
[

AT
(k) (Hi

(k+1))
T Hi

(k+1)A(k) − In

]

x̃i
(k)

+
|a|
∑

i=1

(x̃i
(k))

T AT
(k)(H

i
(k+1))

T Ni
x(k+1)u

i
(k)

+
|a|
∑

i=1

(ui
(k))

T (Ni
x(k+1))

T Ni
x(k+1)u

i
(k)

=
|a|
∑

i=1

(x̃i
(k))

T Ωix̃i
(k) +

|a|
∑

i=1

(x̃i
(k))

T AT
(k)(H

i
(k+1))

T Ni
x(k+1)u

i
(k)



48 CHAPTER 4. ESTIMATION OF STATES AND UNKNOWN INPUTS

+
|a|
∑

i=1

(ui
(k))

T (Ni
x(k+1))

T Ni
x(k+1)u

i
(k). (4.42)

Equation in (4.42) comprises the sum of three terms. The first term in (4.42) is

negative definite according to Lemma 2, and if Ni
x(k) is chosen as (4.40), with the aid

of property (4.4) of undirected graphs, the second and third terms can be converted

into forms by which verifying the stability proof become much more straightforward.

Before continuing the above hypothesis, it is required to define matrix X̃(k), similar

to (4.3), as:

X̃(k) = [x̃1
(k), . . . , x̃i

(k), . . . , x̃
|a|
(k)] (4.43)

where x̃i
(k) ∈ R

n represents the error of state vector corresponding to the ith esti-

mator. For the second term of (4.42), by replacing Ni
x(k) with (4.40) and ui

(k) with

(4.36) as:

|a|
∑

i=1

(x̃i
(k))

T AT
(k)(H

i
(k+1))

T Ni
x(k+1)u

i
(k) =

β
|a|
∑

i=1

∑

r∈Ni

(Hi
(k+1)A(k)x̃

i
(k))

T
(

Hi
(k+1) A(k)x̃

r
(k) −Hi

(k+1) A(k)x̃
i
(k)

)

. (4.44)

Comparing the result obtained in (4.44) with (4.4), and by replacing in (4.4) x̂ with

Hi
(k+1) A(k)x̃

i, it is possible to rewrite (4.44) as (4.46):

|a|
∑

i=1

(x̃i
(k))

T AT
(k)(H

i
(k+1))

T Ni
x(k+1)u

i
(k) = (4.45)

− β
n
∑

l=1

(

δl
)T (

Hi
(k+1)A(k)

)T
Hi

(k+1)A(k) X̃(k) L X̃
T

(k)δ
l (4.46)

so the second term of (4.42) is obtained in the form of a quadratic form. Considering

(4.36) and (4.40), the third term in (4.42) can be rewritten in a compact form as

(4.47):

|a|
∑

i=1

(

ui
(k)

)T (

Ni
x(k+1)

)T
Ni

x(k+1)u
i
(k) =
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=β2
|a|
∑

i=1

∑

r∈Ni

(

x̃r
(k) − x̃i

(k)

)T
AT

(k)

(

Hi
(k+1)

)T
Hi

(k+1)A(k)

(

x̃r
(k) − x̃i

(k)

)

=− 2β2
|a|
∑

i=1

∑

r∈Ni

(Hi
(k+1)A(k) x̃i

(k))
T
(

Hi
(k+1) A(k)x̃

r
(k) −Hi

(k+1) A(k)x̃
i
(k)

)

= 2β2
n
∑

l=1

(

δl
)T (

Hi
(k+1)A(k)

)T
Hi

(k+1)A(k) X̃(k) L X̃
T

(k)δ
l. (4.47)

The final result in (4.47) has been got from the state of the art of graph theory

in (4.4) with similar operation that has been done for the second term in (4.46).

Considering (4.46) and (4.47), ∆V in (4.42) can be rewritten as:

∆V =
n
∑

l=1

(

δl
)T

X̃(k) Ω X̃
T

(k)δ
l

+ (2β2 − β)
n
∑

l=1

(

δl
)T (

Hi
(k+1)A(k)

)T
Hi

(k+1)A(k) X̃(k) L X̃
T

(k)δ
l. (4.48)

In order to have X̃(k) = 0, as time is passing and, as a result dis-

tributed estimator is asymptotically stable, the second term in (4.48) (i.e.

+ (2β2 − β)
∑n

l=1

(

δl
)T (

Hi
(k+1)A(k)

)T
Hi

(k+1)A(k) X̃(k) L X̃
T

(k)δ
l) is enough to be neg-

ative or zero. (2β2 − β) has two root (0 and 1
2
) and it is negative for (0 ≤ β ≤ 1

2
)

and for other values outside the aforementioned range is positive, so by tuning β,

the stability of the proposed distributed estimator can be guaranteed. Definitely

one assured answer for β can be β = 0.5. However, depending on the value of

(
∑n

l=1

(

δl
)T (

Hi
(k+1)A(k)

)T
Hi

(k+1)A(k) X̃(k) L X̃
T

(k)δ
l), surely, there are other values

for β (with possibly (2β2 − β) of time-varying signal) which would guarantee the

stability, too. Therefore, with having ∆V < 0 for any X̃(k) 6= 0, it can be stated

that X̃(k) will converge to 0 and the studied distributed estimator is globally asymp-

tomatically stable. Therefore, the stability proof is complete.

4.7 Illustrative example

In this section, the method for distributed estimation (described previously) will be

applied to a sample system which is very similar to the system expressed in [Cheng

et al., 2009] with the known parameters n = 5 state variables, q = 3 measurement

variables, and m = 2 unknown inputs. The number of estimators is 4 and the
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Figure 4.1: Connection diagram of four-estimator distributed system.

diagram of their communicational connections is illustrated in Figure 4.1. As can

be seen from the connection diagram in Figure 4.1 for instance “Estimator 1” is

connected to “Estimator 2” and “Estimator 4” but it is not neighbor of “Estimator

3” since there is no direct connection link between them. Similarly, one can interpret

this diagram for any other estimators as well. The process and measurements noise

covariances are diagonal and their values are defined as Q = 10−4 × I5 and Ri =

0.01× I3 for i = 1, . . . , 4. The matrices of system (4.6) and measurement (4.7) are

given as follows:

A =





















0.5 2 0 0 0

0 0.2 1 0 1

0 0 0.3 0 1

0 0 0 0.7 1

0 0 0 0 0.1





















, (4.49)

G =





1 1 0 0 0

−0.3 0 0 0 0





T

, (4.50)

C1 =











1 0 0 0 0

0 1 0 0 0

0 0 1 0 0











, C2 =











1 1 0 0 0

0 1 1 0 0

0 0 0 1 1











, (4.51)

C3 =











0 0 1 0 0

1 1 0 1 0

0 1 0 0 1











, C4 =











0 1 0 0 0

0 0 1 0 0

1 0 0 0 1











. (4.52)

Furthermore, β = 0.5 is considered equally for the four estimators. The unknown

inputs of the system are depicted in Figure 4.2. The initial values of the estimators
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Figure 4.2: Unknown inputs of the given system.

are defined as follows:

Pi
(0) = 103,

x̂i
(0) =

[

1 1 1 1 1
]T

, i = 1, . . . , 4. (4.53)

In order to analyze the performance of the mentioned distributed estimator (DE)

method, its root-mean-square error (RMSE) of unknown and states estimations are

compared with the corresponding results in its counterpart centralized estimator

(CE) presented in [Gillijns and Moor, 2007a]. For the CE, the centralized measure-

ment matrix is defined as C = [(C1)T , (C2)T , (C3)T , (C4)T ]T . The RMSE for the

states and unknown inputs of the DE and CE are specified and compared in Table

4.2. According to the results, the RMSE of the inputs in the DE is considerably

higher than the one in the CE. As a result, these higher errors in estimation of input

could degrade the estimation of the first two states, which are directly affected by

the unknown inputs, in comparison with the results of its counterpart CE. However,

the state errors of the DE are not very different from the CE’s error which shows

the effectiveness of presented distributed estimator.

In Figures 4.3 and 4.4 the actual first and second elements of the state vector

together with their corresponding estimates are demonstrated, respectively.
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Figure 4.3: The actual and corresponding state estimation of the first component of
state vector.

Table 4.2: Comparison of distributed estimation and centralized estimation in term
of RMSE.

Est. 1 Est. 2 Est. 3 Est. 4 Est. CE
States
x1 0.0712 0.1348 0.0846 0.1004 0.0530
x2 0.0718 0.0970 0.0703 0.0999 0.0442
x3 0.0151 0.0151 0.0153 0.0155 0.0148
x4 0.0213 0.0199 0.0215 0.0213 0.0186
x5 0.0101 0.0100 0.0101 0.0101 0.0099
Inputs
d1 0.1017 0.1014 0.1005 0.1055 0.0517
d2 0.6449 0.8625 0.8332 0.7908 0.3676
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Figure 4.4: The actual and corresponding state estimation of the second component
of state vector.
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4.8 Conclusion

In this Chapter we developed a distributed method for the simultaneous estimation

of states and unknown inputs for linear discrete-time systems. The unbiasedness

and minimum variance of the state and unknown input estimation were investigated

and verified. The condition making the estimator stable was stated, from which

the sufficient distributed gain was extracted. Finally, the proposed method was

applied to a system and its results were compared to the results of the centralized

estimator. Due to the proposed distributed approach, all individual estimators can

estimate state variables and unknown input variables precisely, as evidenced by the

example results.
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5.1 Introduction

Synchronous generators (SGs) are key components in power system stability, energy

delivery, and energy efficiency. SGs have been the object of research in a variety of

applications and problems involving control, monitoring, and estimation. To address

these problems, the SG model is a fundamental issue. A SG is a highly nonlinear

and long-term time-varying device, and phenomena such as load and temperature

variations, aging, or even a critical event like a three-phase short-circuit at the SG’s

terminals can lead to noticeable changes in its model [Zaker et al., 2016; Micev et al.,

2021; Mitra et al., 2021].

In order to obtain synchronous generator models, a variety of identification meth-

ods have been proposed, and these methods can be divided into two main categories

[Micev et al., 2022]. In the first category [Hasni et al., 2021; Mouni et al., 2008;

Hasni et al., 2010; Lidenholm and Lundin, 2010; Vandoorn et al., 2010; IEEE, 2010;

Wamkeue et al., 2011; Arjona et al., 2011; Belqorchi et al., 2019; Faria et al., 2020;

Ma et al., 2020; Micev et al., 2021; Arastou et al., 2021a; Micev et al., 2022], the

generator must be disconnected from the grid before the identification process can

be performed (off-grid mode), whereas in the second category [Shamsollahi and Ma-

lik, 1996; Fard et al., 2005; Ganjefar and Alizadeh, 2011; Karrari and Malik, 2004;

Karrari et al., 2006; Dehghani and Nikravesh, 2008; Ghahremani et al., 2008; De-

hghani et al., 2010; Khodadadi et al., 2018; Huang et al., 2020; Mitra et al., 2021;

Grillo et al., 2021; Bendaoud et al., 2021; Arastou et al., 2021b; Shariati et al., 2021],

the generator can remain in service without having to be disconnected from the grid

(on-grid mode).

IEEE standards cover some off-grid methods, known as traditional methods

[IEEE, 2010]. However, there are some others, such as open-circuit frequency re-

sponse (OCFR) [Mouni et al., 2008], stand-still frequency response (SSFR) [Belqorchi

et al., 2019], and DC excitation-based [Hasni et al., 2010], that can also be consid-

ered as off-grid methods. The downsides of these methods include, but are not

limited to, being time-consuming, costly, and difficult to implement, and above all

unable to maintain accuracy as the SG status changes due to, for instance, aging or
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saturation effects [Mitra et al., 2021].

In order to overcome these drawbacks, on-grid methods have been proposed.

These methods can be categorized into two groups, gray-box and black-box [Zaker

et al., 2016]. For the former, a model structure derived from physical-mathematical

principles is assumed, and its parameters are determined from the defined input and

output (I/O) data measured from the system (i.e. SG) [Brus et al., 2008]. There are

two aspects to be determined for all these methods, namely their model structure

and order (3rd-, 4th-, 5th-, or 7th-order, etc) and the quantities to be measured as

inputs and outputs.

While gray-box methods are widely used, as can be seen in many works that

have incorporated these approaches [Shamsollahi and Malik, 1996; Fard et al., 2005;

Ganjefar and Alizadeh, 2011; Karrari and Malik, 2004; Karrari et al., 2006; Dehghani

and Nikravesh, 2008; Ghahremani et al., 2008; Dehghani et al., 2010; Khodadadi

et al., 2018; Huang et al., 2020; Mitra et al., 2021; Grillo et al., 2021; Bendaoud

et al., 2021; Arastou et al., 2021b; Shariati et al., 2021], assuming a model that is

required for these methods can limit the identification process in two ways. First,

they may not utilize all the capacity provided by the measured data to calculate

a model of higher rank and, consequently, higher accuracy. Secondly, to use these

methods, one must have some basic knowledge of the generator model.

Also, these methods may have some other limitations. For example, in [Shariati

et al., 2021] the authors proposed a method based on Artificial Neural Network

(ANN) to determine the dynamic parameters of salient-pole generators, but this

method requires the application of disturbances to the generator under test, and

the obtained parameters may suffer from some inaccuracies depending on the dis-

turbance and/or the machine operating point. In a recent work [Grillo et al., 2021],

an online method was proposed to determine a subset of the synchronous generator

parameters from online measurements while the generator is in normal operation

and experiencing small disturbances. However, the successful application of this

method depends on the estimation of load angle.

On the other hand, with black-box methods there is no need to assume any

special physical-mathematical-based model structure since these methods simply

use the measured I/O data obtained from the system (i.e. SG) [Liu et al., 2020]

under study, and then attempt to attain a model with the ability to precisely map a

set of inputs to a set of outputs. Forward Neural Network (FNN) [Shamsollahi and
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Malik, 1996], Volterra series [Fard et al., 2005], and Self-Recurrent Wavelet Neural

Networks (SRWNNs) [Ganjefar and Alizadeh, 2011] are some techniques that have

been employed to implement a black-box method. However, these studies were all

conducted under the infinite-bus condition.

Besides the discussed limitations associated with existing off-grid and on-grid

methods, it is inspiring that fuzzy logic has shown big successes in a variety of

applications, including control systems engineering [Mendes et al., 2020], electric

machines [Chang et al., 2016], clustering [Pehlivan and Turksen, 2021], inventory

planning models [Ketsarapong et al., 2012], identification and modeling [Rastegar

et al., 2017; Precup et al., 2021] as well as fuzzy inference system modeling [Pozna

et al., 2012]. Furthermore, the Takagi Sugeno (T-S) fuzzy system, which is a type

of fuzzy inference system, has shown a noticeable ability to model nonlinear sys-

tems using linear sub-models [Mani et al., 2021], and its successful application in

areas such as electric machines [Kuppusamy and Joo, 2021], and identification and

modeling [Rastegar et al., 2017; Precup et al., 2021] also confirms its capabilities.

Motivated by these facts, in this chapter, a Takagi-Sugeno (T-S) fuzzy system has

been chosen for achieving an accurate global model for a real synchronous generator,

where the obtained model is expected to be suitable for deploying into controllers

such as model predictive controllers (MPCs) [Hadla and Cruz, 2017; Gonçalves et al.,

2019; Mendes et al., 2013].

The process of fuzzy modeling consists of two main tasks, namely structure and

parameter determination are needed to be planned and accomplished [Wiktorowicz

and Krzeszowski, 2019]. Structure determination is concerned with determining the

number of rules and the linear state space models, which involves computing the

parameters of the state space models, in the consequent part of the T-S fuzzy model,

whereas parameter determination is concerned with finding fuzzy set parameters

in the antecedent part of T-S fuzzy model. The initial number of rules can be

determined arbitrarily based mainly on the available number of datasets and their

corresponding sizes (refer to Section 5.5), and as the number of rules increases,

the accuracy of the overall model could improve, but at the cost of more required

computational resources.

To calculate the parameters of the state space model, for each existing T-S

fuzzy rule, a subspace identification method (SIM) has been applied that involves a

combination of observer/Kalman filter identification (ORKID) [Aitken and Clarke,
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2012] and eigensystem realization algorithm (ERA) [Aitken and Clarke, 2012; Tsai

et al., 2007] called ORKID/ERA [Aitken and Clarke, 2012; Tsai et al., 2007]. The

choice has been made because, on the one hand, the identification method has been

validated in a variety of applications, as reported for example in [Aitken and Clarke,

2012; Kim and Lynch, 2012; Zhang et al., 2014a; Everett and Dubay, 2017; Fan and

Miao, 2021; Mejia-Ruiz et al., 2021], and on the other hand, owing to its simplicity,

stability [Zhou et al., 2017], and ability to handle bias issues [Qin, 2006]. Since the

successful implementation of SIM is crucial to the success of the final model, two

important steps in this method, namely calculating Markov parameters (MPs) and

implementing ERA, are discussed in more detail in Section 5.4.

As a main contribution, this work contributes to the methods for developing

more accurate models for highly nonlinear systems like SG, which are essential, e.g.

to techniques such as model predictive controllers (MPCs). This chapter presents a

new data-driven approach based on T-S fuzzy and SIM for finding a global model for

a synchronous generator. Unlike the methods in [Karrari and Malik, 2004; Ghahre-

mani et al., 2008; Dehghani and Nikravesh, 2008; Dehghani et al., 2010; Grillo et al.,

2021], where connection to an infinite bus is necessary, such a condition is not re-

quired for the proposed approach, due to taking generator terminal voltage into

account as an input. Micev et al. [2022] highlighted that most existing on-grid

identification methods like [Dehghani et al., 2010; Khodadadi et al., 2018; Huang

et al., 2020; Mitra et al., 2021; Grillo et al., 2021; Bendaoud et al., 2021] require

additional equipment to inject extra signals for identification purposes, increasing

the setup costs, while in this work, there is no need to inject extra signals. The

proposed method leads to a hybrid model (a model possessing the main features of

models obtained from either gray-box or black-box methods) that can be utilized

by any user, regardless of their knowledge of the system (here SGs). However, a

professional user can even gain more insight into the generator structure and con-

dition since the sub-models computed from I/O data are in the form of state space

equations, as discussed in Section 5.4.2. Indeed, the state space representations al-

low the determination of, for example, the order of sub-models or even comparisons

between corresponding current and earlier sub-models, which can be used to detect

faults and/or monitor the condition of the synchronous generator, as in [Gopinath

et al., 2016]. Furthermore, the presence of noise in some works, such as [Dehghani

and Nikravesh, 2008], and saturation effects in some other works, such as [Kar-
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Figure 5.1: The studied system diagram.

rari and Malik, 2004; Dehghani and Nikravesh, 2008; Ghahremani et al., 2008], can

negatively affect the performance of the models proposed therein, but the model

obtained from the method proposed in this chapter does not have such problems

and can accurately approximate the active and reactive powers of the generator for

a wide range of operating inputs.

The results of the simulation and experimental case studies, which serve as val-

idations of the proposed methodology, confirm its effectiveness.

This Chapter is organized as follows. In Section 5.2 the main problem is ex-

plained. In Section 5.3 the Fuzzy model strategies are given in more detail. Sub-

space state-space identification is discussed in more detail in Section 5.4. In Section

5.5, both a simulation and a experimental case studies are employed to validate the

proposed approach. Finally, concluding remarks are presented in Section 5.6.

5.2 Problem Description

The main objective of this Chapter is to propose a method to identify and model

a real synchronous generator in a more systematic and flexible way. For this pur-

pose, the generator is arranged in a circuit, as illustrated in Figure 5.1, where it is

connected to a local bus via the transmission line xe. The new methodology is not

only applied to a real-world generator, but also to a nonlinear fourth-order model,

which is widely used in simulation frameworks to represent synchronous generators

due to the following reasons. First, most researchers are familiar with this model,

and they can access it easily if they want to replicate the results, or it could serve

as a benchmark for any future similar research. Secondly, since a linearized ap-

proximation model of this nonlinear model can be obtained analytically with some

computational efforts, the local sub-models’ results of the proposed method can also

be compared with those of the linear model. Thirdly, in some situations, simulation

can be more useful than an experimental test to demonstrate the capability of a pro-
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posed methodology. This is especially true when the devices used in the real testing

setup may have some technical limitations, like ranges or input rates. In Section

5.5.1, two examples of such situations will be presented. The nonlinear fourth-order

model of the generator and its linearized model will be described next.

5.2.1 Synchronous Generator Model

In order to generate the needed data samples for testing the proposed approach in

simulation studies, a synchronous generator model, which is based on the model

described in Section 2.3.2 is utilized. The linearized equations corresponding to

the nonlinear model of a synchronous generator, which is defined in (2.13), will be

computed in Section 5.2.2.

5.2.2 Linearized Synchronous Generator Model

A linearized model of (2.13) can be computed and is given by:

∆ẋ1 = ω0∆x2, (5.1)

∆ẋ2 = −
1

2H

[

VB

xtd

x0
3 cos(x0

1)

+ (VB)2

(

1
xtq

−
1

xtd

)

cos(2x0
1)

]

∆x1

−
Kd

2H
∆x2 −

VB

2H xtd

sin(x0
1) ∆x3 +

1
2H

∆P m,

∆ẋ3 =
−VB

T d́o xtd

(xd − x́d) sin(x0
1) ∆x1

−
1

T d́o

(

1 +
xd − x́d

xtd

)

∆x3 +
1

T d́o

∆Efd,

∆ẋ4 =
−1

T q́o xtq

(xq − x′
q)VB cos(x0

1) ∆x1 −
1

T q́o

∆x4.

The linearized model of active and reactive powers can be found as (5.2) and
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(5.3):

∆P =

[

VB

xtd
x0

3 cos(x0
1) + V 2

B

(

1

xtq
−

1

xtd

)

cos(2x0
1)

]

∆x1

+
VB sin(x0

1)

xtd
∆x3, (5.2)

∆Q =

[(

−1

xtq
+

1

xtd

)

V 2
Bsin(2x0

1) +

(

−xe

x2
td

+
xe

x2
tq

)

V 2
B sin(2x0

1)

+

(

2xe

x2
td

−
1

xtd

)

VBx0
3 sin(x0

1)

]

∆x1

+

[(

−2xe

x2
td

+
1

xtd

)

VB cos(x0
1) + 2

xe x0
3

x2
td

]

∆x3, (5.3)

where x0
i , i = 1, . . . , 4 define the operating point of the nonlinear system. From

(5.1), (5.2), and (5.3), it is possible to write the linearized equations in a compact

state-space form as follows:

∆ẋ = A ∆x + B ∆u,

∆y = C∆x, (5.4)

where ∆u = [∆Pm ∆Efd]T , ∆x = [∆x1 ∆x2 ∆x3 ∆x4]T , ∆y = [∆P ∆Q]T , and the

entries of matrices A, B and C, which are indeed the coefficients corresponding to

∆x, ∆u, and ∆y, respectively, can be obtained easily from (5.1), (5.2), and (5.3).

5.3 Fuzzy Modeling

In this chapter, a synchronous generator is represented by the following fuzzy struc-

ture:

Ri : IF z(1,k) is F i
1 and . . . and z(p,k) is F i

p

THEN







xi
(k+1) = Aixi

(k) + Biu(k),

yi
(k) = Cixi

(k) + Diu(k),
(5.5)

where Ri represents the i-th fuzzy inference rule (i = 1, 2, . . . , R), z(k) =

[z(1,k), z(2,k), . . . , z(p,k)]T is the vector of antecedent variables on the k-th instant of

time, F i
j is the i-th fuzzy set of the j-th antecedent variable (j = 1, 2, . . . , p). In
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the consequent part, Ai ∈ R
n×n, Bi ∈ R

n×m, Ci ∈ R
q×n and Di ∈ R

q×m, are the

parameters of the i-th submodel of the n-th order system with m inputs, and q

outputs. xi
(k) = [xi

(1,k), xi
(2,k), . . . , xi

(n,k)]
T ∈ R

n is the state vector of the i-th sub-

model, yi
(k) = [yi

(1,k), yi
(2,k), . . . , yi

(q,k)]
T ∈ R

q is the output vector of the i-th submodel

and u(k) = [u(1,k), u(2,k), . . . , u(m,k)]T ∈ R
m is the input vector of the system. In or-

der to identify the model of the system defined by (2.13), the measured quantities

which are available as inputs are P m (mechanical power), Efd (field voltage), and

Vt (terminal voltage), while as outputs, P (electrical active power) and Q (electrical

reactive power) are measured (thus, m = 3 and q = 2).

Let µi
F i

j
(z(j,k)) : R → [0, 1] (j = 1, . . . , p) be the membership function of the

antecedent fuzzy set F i
j at the k-th sample of the linguistic variable, z(j,k) , in a

universe of discourse Uzj
partitioned by fuzzy sets, or linguistic terms, F i

j , then the

activation degree of the i-th fuzzy rule is given by:

hi
(k) = µi

F i
1
(z(1,k)) ◦ µi

F i
2
(z(2,k)) ◦ · · · ◦ µi

F i
p
(z(p,k)), (5.6)

where the symbol ◦ represents a t-norm operator [Jin, 2017].

The normalized activation degree of the i-th rule is given by [Szedlak-Stinean

et al., 2022]:

γi(z(k)) =
hi

(k)
∑R

i=1 hi
(k)

. (5.7)

The output of the fuzzy TS model is given by:











x̃(k+1) =
∑R

i=1 γi(z(k))xi
(k+1),

ỹ(k) =
∑R

i=1 γi(z(k))yi
(k).

(5.8)

Substituting (5.5) into (5.8) results in:











x̃(k+1) =
∑R

i=1 Aiγi(z(k))xi
(k) +

∑R
i=1 Biγi(z(k))u(k),

ỹi
(k) =

∑R
i=1 Ciγi(z(k))xi

(k) +
∑R

i=1 Diγi(z(k))u(k).
(5.9)
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5.3.1 Batch Fuzzy Clustering Algorithm

Fuzzy clustering algorithms can be used to determine the antecedent fuzzy sets F i
j

in (5.5) by using experimental datasets of the system. Among the most well known

algorithms are the Fuzzy C-Means (FCM); and the Fuzzy Maximum Likelihood

Estimates (FMLE). In this work, the FCM algorithm is selected for clustering. The

objective of the FCM is to find a membership matrix U = [µ1; µ2; · · · ; µc] ∈ R
N×c,

and a centers matrix V = [v1; v2; · · · ; vc] with vi ∈ R
p, where c is the number of

clusters, N is the number of data points, and p is the dimensionality of a dataset

z(k) such that the following objective function Jm is minimized [Mendes et al., 2013]:

Jm =
N
∑

k=1

c
∑

i=1

(µi(z(k)))η(di
(k))

2, (5.10)

where µi(z(k)) is the membership function of the k-th data point in the i-th cluster,

η ∈ (1,∞) is a weighting constant that controls the degree of fuzzy overlap, and

di
(k) = ||z(k) − vi|| is the Euclidean distance between z(k) and cluster center vi.

Assuming that ||z(k) − vi|| 6= 0, ∀ k = 1, . . . , N , ∀ i = 1, . . . , c, then U and V is a

local minimum for Jm if:

µi(z(k)) =

(

∑c
i=1 ||z(k) − vi||

||z(k) − vi||

)
2

η−1

, (5.11)

where

vi =

∑N
k=1

(

µi(z(k))
)η

z(k)

∑N
k=1

(

µi(z(k))
) . (5.12)

The FCM algorithm performs several iterations in order to reduce as much as pos-

sible the objective function defined in (5.10) until either (5.13) or (5.14) are met:

||U(l+1) −Ul|| < ǫ, (5.13)

||J (l+1)
m − J l

m|| < ǫ, (5.14)

where l is the current iteration number and ǫ is a specified minimum threshold or

tolerance. The fuzzy C-Means algorithm is implemented as specified in Algorithm
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Algorithm 5.1 Fuzzy C-Means Clustering Algorithm

Receives a dataset {z(k)} with k = 1, 2, . . . , N data points;
Fixes c ∈ {2, 3, . . . , N − 1} and η ∈ (1,∞);
Initialize U(0), i.e. randomly initialize the cluster membership values, µi;
repeat

Compute the c mean vectors or centers using (5.12);
Update U(l) to U(l+1) according to (5.11);
Calculate the objective function Jm with (5.10);

until ||U(l+1) −U(l)|| < ǫ or ||J (l+1)
m − J (l)

m || < ǫ.

5.1. In the current work, despite the fact that each dataset sample can be assigned

to more than one cluster at the same time using FCM, for simplicity each sample

will be assigned to only one cluster in which it has the highest degree of membership.

The FCM method identifies the number of fuzzy rules (clusters) as well as the centers

vi of the Gaussian membership functions [Boulkaibet et al., 2017]

µF i
j
(z(j,k)) = exp



−
1
2

(

z(j,k) − vi

σi
j

)2


, (5.15)

associated to each fuzzy set F i
j . To determine the optimal width (σi

j) of each mem-

bership function, one can use Particle Swarm Optimization (PSO), as shown, for

example, in [Shihabudheen et al., 2018]. A function that is to be minimized can for

example be the mean square error (MSE) defined as follows:

min
σi

j

MSE(ŷk) , MSE (ŷk) ∆=
1
L

L
∑

k=1

||ŷk − yk||
2,

s.t. σi
j > 0 (5.16)

where, yk ∈ R is the true value of each available output getting from the real

(nonlinear) system at the sample time k, ŷk is the value of the corresponding output

obtained from the identified model at the sample time k, and L is the total number

of data samples. Indeed, the PSO stage is the final stage of training. To realize

this step, a different dataset from the one which has been utilized for sub-models

identification (refer to Section 5.4), will be used. This will be illustrated more

explicitly in Section 5.5, where proposed approach is validated by using simulation

and experimental case studies. Another issue that is important to be taken into
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consideration, is the number of rules. The number of clusters is determined by the

user, which would depend on the size of dataset (the number of available sampled

inputs and outputs). Using the FCM method, the dataset is partitioned into clusters.

Using each cluster, the parameters of the state-space sub-model, corresponding to

the cluster, can be calculated. Therefore, the number of clusters at the beginning

represents the number of rules as well. Nevertheless, in practice, only a subset of

the initial rules are maintained, and other rules are eliminated during the process

of testing sub-models (comparing the outputs of computed state space models with

true values). Keeping or removing such rules can be based on a variety of general

objectives. For instance, in this work, one can keep rules whose state space sub-

models result in more precise active power, reactive power or both. It is obvious

that by taking such an action, the effective number of rules is reduced. As a result,

PSO has less computational operations, due to decreasing the number of parameters

that need to be optimized. Moreover, the problem of overfitting in data-driven

modeling is always of concern, this issue will be discussed in Section 5.5, where

it is explained with examples how stages like training and testing are conducted.

Section 5.4 outlines the steps to calculate the parameters of each sub-model (state

space model parameters) corresponding to the consequent part of each existing T-S

fuzzy rule.

5.4 Subspace State-Space Identification Method

In this section, the identification of each sub-model from the clustered (I/O) data,

and more specifically, computing the state-space parameters of each submodel in

(5.5) (i.e. Ai, Bi, Ci, and Di) is presented in more detail. Thus, for the sake of

convenience, the i-th local model of the system defined in the consequent part of

equation (5.5), with a slight change in its input term u(k), is represented by (5.17)-

(5.18), where the input is given by ui
(k):

xi
(k+1) = Ai xi

(k) + Bi ui
(k), (5.17)

yi
(k) = Ci xi

(k) + Di ui
(k). (5.18)

This change in the input term is due to the fact that, for the purpose of identi-

fication, only the values of the inputs corresponding to the cluster i are utilized,
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and not all values for the inputs corresponding the dataset. To identify each model

i, first the system Markov parameters are obtained by using the observer/Kalman

filter identification (OKID) approach [Aitken and Clarke, 2012]. Then, using the

ERA algorithm [Aitken and Clarke, 2012] the order of each submodel i and the

corresponding state space matrices (i.e. Ai, Bi, Ci, Di), will be calculated.

5.4.1 Markov Parameters Calculation

In this section, the concept of the system Markov parameters is explained and then

it is presented how these parameters for each local submodel i are extracted from

the clustered data. Before continuing with the definition and calculation of the

Markov parameters, some preliminary notations will be defined. The dataset S :=

{(uT
(k), yT

(k))| k = 0, 1, 2, . . . , l − 1} consists of all the manipulated inputs u(k) ∈ R
m

and the corresponding measured outputs y(k) ∈ R
q at the time steps k = 0, . . . , l−1,

where l := |S | indicates the whole number of available data samples. Additionally,

for the purpose of identification, using the clustering method given in Section 5.3.1,

the dataset S is partitioned into c smaller datasets Si, i ∈ {1, 2, . . . , c}, and similarly

for each dataset Si, the total number of samples is represented by li := |Si|.

The clustered samples Si are used to determine the Markov parameters of the

local subsystem, i, for i = 1, . . . , c. In this way, assuming xi
(0) = 0, then from (5.18)

for the li samples:

yi = Yi Ui, (5.19)
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where

yi =
[

yi
(0), yi

(1), . . . , yi
(li−1)

]

∈ R
q×li ,

Yi =
[

Di Ci Bi Ci Ai Bi · · · Ci
(

Ai
)li−2

Bi

]

∈ R
q×(m li),

Ui =























ui
(0) ui

(1) ui
(2) · · · ui

(li−1)

0 ui
(0) ui

(1) · · · ui
(li−2)

0 0 ui
(0) · · · ui

(li−3)

0 0 0
. . .

...

0 0 0 0 ui
(0)























∈ R
(m li)×li . (5.20)

Matrix Yi consists of all the Markov parameters

Di, Ci Bi, Ci Ai Bi, · · · , Ci
(

Ai
)li−2

Bi, which need to be computed. q and

m are the numbers of outputs and inputs, respectively and taking into account

equations (5.19) and (5.20), it is deduced that if m > 1, which is also the case

of the current work, then the number of unknown parameters in the matrix Yi

exceeds the number of known equations which is determined by the dimension of yi

in (5.20), since obviously (q × li) < (q ×m li). This implies that matrix Yi cannot

be determined uniquely, and it is necessary to take this issue into consideration.

For example, if each submodel i defined by (5.17)-(5.18) is asymptotically stable,

then the eigenvalues of matrix Ai are inside the unit circle centered at the origin,

and as a result,
(

Ai
)k

, and eventually the corresponding parameters inside matrix

Yi that have the term
(

Ai
)k

will decay to zero for k > p, for some sufficiently large

integer p. Therefore, it is sufficient to calculate only the Markov parameters such

as Di, Ci Bi, Ci Ai Bi, · · · , Ci
(

Ai
)p−1

Bi as the other parameters inside Yi can be

assumed to be approximately zero. Thus, the truncated form of (5.19) can be given

by

yi = Ỹ
i
Ũ

i
, (5.21)
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where

yi =
[

yi
(0), yi

(1), yi
(2), . . . , yi

(p), . . . , yi
(li−1)

]

∈ R
q×li ,

Ỹ
i

=
[

Di Ci Bi · · · Ci
(

Ai
)p−1

Bi

]

∈ R
q×m (p+1),

Ũ
i

=























ui
(0) ui

(1) ui
(2) · · · ui

(p) · · · ui
(li−1)

0 ui
(0) ui

(1) · · · ui
(p−1) · · · ui

(li−2)

0 0 ui
(0) · · · ui

(p−2) · · · ui
(li−3)

0 0 · · ·
. . . · · ·

...

0 0 · · · ui
(0) · · · ui

(li−p−1)























. (5.22)

As can be seen, (5.22) can be addressed as a least-squares problem, and conse-

quently can be solved using a variety of approaches, e.g. singular-value decomposi-

tion [Emami et al., 2020], [Govindarajan et al., 2020]. Considering the fact that both

yi and Ũ
i
∈ R

m (p+1)×li are known and available from the dataset, if m(p + 1) ≤ li,

then the number of equations will be equal to, or greater than, the number of un-

known parameters, and if the rows of Ũ
i

are linearly independent, then by calculat-

ing (Ũ
i
)†, which is the pseudo-inverse of Ũ

i
, Ỹ

i
can be computed as Ỹ

i
= yi(Ũ

i
)†.

Clearly, the more independent the rows are, the more accuracy would be achieved

in this computation.

If the system is lightly damped, then for the state matrix Ai,
(

Ai
)k

could be

considered approximately zero, only for k ≥ p and for a very large value of p. In

this condition, it is still possible to decrease the value of p and consequently, the

computational operation needed for obtaining the Markov parameters by means of

approach here called observer approach, where using the feedback concepts, e.g. by

adding and subtracting the term Miyi
(k) to the right-hand side of the state equation

(5.17) of the i-th local model of the system defined in (5.17)-(5.18), and getting the

observer system model for submodel i as follows:

xi
(k+1) = Ai xi

(k) + Bi ui
(k) + Miyi

(k) −Miyi
(k)

=
(

Ai + MiCi
)

xi
(k) +

(

Bi + MiDi
)

ui
(k) −Miyi

(k)

= Ā
i
xi

(k) + B̄
i
vi

(k), (5.23)

yi
(k) = Ci xi

(k) + Di ui
(k), (5.24)



72 CHAPTER 5. MODELING SYNCHRONOUS GENERATOR

where

Ā
i

= Ai + MiCi,

B̄
i

=
[

Bi + MiDi, −Mi
]

,

vi
(k) =

[

(

ui
(k)

)T (

yi
(k)

)T
]T

, (5.25)

and Mi is an n × q arbitrary gain matrix to adjust the eigenvalues of matrix Ā
i

in order to make it as stable as desired, and/or to make the system response char-

acteristics as wished, e.g. by attempting to place the eigenvalues of Ā
i

as close as

possible to the origin to increase the damping of the observer system. Using observer

techniques can decrease the computational effort by reducing the number of dataset

samples required for calculating the aforementioned Markov parameters. Therefore,

instead of calculating the Markov parameters of the main local system i defined by

(5.17)-(5.18), it is more convenient and faster to find those of the observer local

system i defined by (5.23)-(5.24). In the end, having the Markov parameters of the

observer local system i defined by (5.23)-(5.24), the Markov parameters of (5.17)-

(5.18) and Mi can be obtained by performing some mathematical manipulations as

will be described in the following paragraphs.

Likewise the procedures given to calculate the Markov parameters of the main

submodel i, it is possible to obtain the Markov parameters of the observer submodel

i. Assuming that xi
(0) = 0, and replacing (5.23) into (5.24), then the output yi

(k)

can be rewritten into its batch matrix form as follows:

yi = Ȳ
i
V̄

i
, (5.26)
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where

yi =
[

yi
(0), yi

(1), . . . , yi
(p), . . . , yi

(li−1)

]

∈ R
q×li ,

Ȳi =
[

Di, Ci B̄
i
, Ci Ā

i
B̄

i
, · · · ,

Ci
(

Ā
i
)p−1

B̄
i
, · · · , Ci

(

Ā
i
)li−2

B̄
i
]

∈ R
q×[m+(q+m)(li−1)],

V̄
i

=



































ui
(0) ui

(1) ui
(2) · · · ui

(p) · · · ui
(li−1)

0 vi
(0) vi

(1) · · · vi
(p−1) · · · vi

(li−2)

0 0 vi
(0) · · · vi

(p−2) · · · vi
(li−3)

0 0 . . .
. . .

... · · ·
...

0 0 . . . 0 vi
(0) · · · vi

(li−p−1)

0 0 . . . . . . 0
. . .

...

0 0 . . . . . . . . . 0 vi
(0)



































, (5.27)

where V̄
i
∈ R

[m+(q+m)(li−1)]×li and matrix Ȳ
i

contains all the Markov parameters

Di, Ci B̄
i
, Ci Ā

i
B̄

i
, · · · , Ci

(

Ā
i
)li−2

B̄
i

of the invented observer submodel i (5.23)-

(5.24). Thanks to utilizing the observer gain Mi, the observer submodel i defined

by (5.23)-(5.24) can be asymptotically stable and damped enough, so that (Ā
i
)k,

and eventually, the corresponding parameters within the matrix Ỹ
i

that have the

term
(

Ā
i
)k

B̄
i

will decay to nearly zero, for all k > p, where p is a sufficiently large

integer. Therefore, again, it is sufficient to calculate only the Markov parameters

of the observer submodel i, Di, Ci B̄
i
, Ci Ā

i
B̄

i
, · · · , Ci

(

Ā
i
)p−1

B̄
i
, as the other

parameters inside Ȳ
i

can be assumed to be approximately zero. Thus, to achieve

this goal, the truncated form of (5.26) and (5.27) can be given as follows:

yi = ˜̄Yi ˜̄Vi,
( ˜̄Yi ∈ R

q×[m+(m+q)p], ˜̄V ∈ R
[m+(m+q)p]×li

)

, (5.28)
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where

yi =
[

yi
(0), yi

(1), . . . , yi
(p), . . . , yi

(li−1)

]

∈ R
q×li ,

˜̄Y =
[

Di Ci B̄
i

Ci Ā
i
B̄

i
· · · Ci

(

Ā
i
)p−1

B̄
i
]

,

˜̄Vi =























ui
(0) ui

(1) ui
(2) · · · ui

(p) · · · ui
(li−1)

0 vi
(0) vi

(1) · · · vi
(p−1) · · · vi

(li−2)

0 0 vi
(0) · · · vi

(p−2) · · · vi
(li−3)

0 0 0
. . .

... · · ·
...

0 0 0 0 vi
(0) · · · vi

(li−p−1)























. (5.29)

Considering the fact that both yi and ˜̄Vi are known and available from the dataset,

if li ≥ m(p + 1) + qp, then the number of equations will be equal or greater than the

number of unknown parameters and if also the rows of ˜̄Vi are linearly independent,

then by calculating ( ˜̄Vi)†, which is the pseudo-inverse of ˜̄Vi, ˜̄Yi can be computed as
˜̄Yi = yi( ˜̄Vi)†. In fact, again the more independent the rows are, the more accuracy

would be achieved in this computation. Furthermore, it is important to notice that

the value of p can increase to the extent which the independence of the rows in ˜̄Vi

would not be disturbed and this fact can determine the maximum of the parameter

p for the observer representation. Furthermore, the solution matrix ˜̄Yi gives the

Markov parameters of the observer submodel i defined by (5.23)-(5.24), while the

objective is to achieve the Markov parameters of the main submodel i defined by

(5.17)-(5.18). In this regard, matrix ˜̄Yi defined in (5.29) can be written as

˜̄Yi =
[

˜̄Yi
−1

˜̄Yi
0

˜̄Yi
1 . . . ˜̄Yi

p−1

]

, (5.30)
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where

˜̄Yi
−1 = Di,

˜̄Yi
k = Ci

(

Ā
i
)k

B̄
i

=









(

Ci
(

Ai + MiCi
)k (

Bi + MiDi
)

)T

(

−Ci
(

Ai + MiCi
)k

Mi

)T









T

≡
[

˜̄Yi
k

(1) ˜̄Yi
k

(2)
]

, k = 0, 1, 2, . . . , p− 1. (5.31)

Using (5.31) and (5.28), the general relationship between the observer Markov pa-

rameters and the i-th submodel’s system Markov parameters can be written as

[Aitken and Clarke, 2012]:

Yi
k = ˜̄Yi

k
(1) +

k−1
∑

s=0

˜̄Yi
s
(2) ˜̄Yi

k−s−1 + ˜̄Yi
k

(2)Di, (5.32)

k = 0, 1, . . . , p− 1,

and clearly Yi
−1 = ˜̄Yi

−1 = Di based on the restructured form of Yi in (5.20) which

is defined as

Yi =
[

Yi
−1 Yi

0 Yi
1 . . . Yi

li−2

]

. (5.33)

For example, considering (5.20) and (5.32), then Yi
0 = Ci Bi can be easily written

in accordance with (5.32) as (5.34):

Yi
0 =Ci Bi = Ci

(

Bi + Mi Di
)

−
(

Ci Mi
)

Di

= ˜̄Yi
0

(1) + ˜̄Yi
0

(2) Di. (5.34)

Here, it seems that (5.32) can only give a portion of the Markov parameters of the

main submodel system i such as Yi
0, Yi

1, . . . , Yi
p, while it is due to be calculated

all the Markov parameters of the main submodel system i i.e. Yi
0, Yi

1, . . . , Yi
li−1.

To address this issue, considering the definitions of ˜̄Yi
k

(1) and ˜̄Yi
k

(2) in (5.31), the

assumption that
(

Ā
i
)k

≈ 0 for all time steps k if k > p as well as assuming that

p ≪ li remains valid, both ˜̄Yi
k

(1) and ˜̄Yi
k

(2) can be assumed to be zero for all k,
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k > p and it is possible to have approximated values for the Markov parameters

Yi
p+1, Yi

p+2, . . . , Yi
li−1 using (5.32). Having the Markov parameters of each main

submodel i ready, then in Section 5.4.2, the procedures to calculate the state-space

matrices of the submodel i, as well as the observer gain Mi are defined.

Before finishing this section, it is worth mentioning two more points. First, in

general, using the observer approach could decrease the value of p. Hence, this could

reduce the computational operation due to the reduction in the size of the matrices.

Secondly, in case that the observer approach is not necessary to be used (e.g. when

the system is damped and enough samples exist), the problem can be solved by using

(5.21) and (5.22), where it is still possible to calculate more than p parameters by

just replacing p with p + I, where I is an arbitrary integer number and p + I < li.

However, it is highly recommended to use the observer approach, as it can reduce

the computational operation, irrespective of the given system being damped enough

or weakly-damped. For the current work also the Markov parameters are calculated

based on the observer approach.

5.4.2 Eigensystem Realization Algorithm

In Section 5.4.1, the Markov parameters of each submodel i for each fuzzy rule i

defined in Section 5.3, have been computed. Having these parameters from (5.33),
the following generalized Hankel matrix can be defined [Aitken and Clarke, 2012]:

Hi
γ ,















Yi
γ Yi

γ+1 · · · Yi
γ+N−1

Yi
γ+1 Yi

γ+2 · · · Yi
γ+N

...
...

. . .
...

Yi
γ+p−1 Yi

γ+p · · · Yi
γ+p+N−2















∈ R
qp×Nm, (5.35)
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or its decomposed form:

Hi
γ =



















Ci
(

Ai
)γ

Bi · · · Ci
(

Ai
)N+γ−1

Bi

Ci
(

Ai
)1+γ

Bi · · · Ci
(

Ai
)N+γ

Bi

...
. . .

...

Ci
(

Ai
)p+γ−1

Bi · · · Ci
(

Ai
)p+N+γ−2

Bi



















=

















Ci

Ci Ai

...

Ci
(

Ai
)p−1

















(

Ai
)γ
[

Bi Ai Bi · · ·
(

Ai
)N−1

Bi

]

= Pi
(

Ai
)γ

Qi, (5.36)

where γ = 0, 1; N should be a sufficiently large integer; Pi and Qi are defined as

the observability and controllability matrices of the identified local linear system i,

respectively [Aitken and Clarke, 2012], and each entry of Hi
γ is determined based

on the analysis given in Section 5.4.1, and more specifically, the result in (5.33). For

example, by replacing γ = 0, then the first entry of Hi
γ

∣

∣

∣

γ=0
≡ Hi

0 is Yi
0 = Ci Bi,

based on the definition of Yi in (5.33), and considering (5.35) as well as (5.36), H i
0

can be written as

Hi
0 =

















Yi
0 Yi

1 · · · Yi
N−1

Yi
1 Yi

2 · · · Yi
N

...
...

. . .
...

Yi
p−1 Yi

p · · · Yi
p+N−2

















=



















Ci Bi Ci Ai Bi · · · Ci
(

Ai
)N−1

Bi

Ci Ai Bi Ci
(

Ai
)2

Bi · · · Ci
(

Ai
)N

Bi

...
...

. . .
...

Ci
(

Ai
)p−1

Bi Ci
(

Ai
)p

Bi · · · Ci
(

Ai
)p+N−2

Bi



















= Pi Qi. (5.37)

It is assumed that each subsystem i is observable and controllable, and has order

n. This means that the minimum dimension of the state matrix Ai would be n× n
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(i.e. Ai ∈ R
n×n), and the observability matrix (Pi) and controllability matrix (Qi)

are of rank n, too. Therefore, assuming qp < mN , then if Hi
0 defined by (5.37)

is sufficiently large, i.e. qp ≥ n, then its rank is also n, since it is the product of

two matrices of rank n [Aitken and Clarke, 2012]. In fact, the condition qp ≥ n

defines the lower bound for the value of the parameter p that must be considered

throughout the design process. The matrix Hi
0 defined in (5.37), can be decomposed

by Singular Value Decomposition (SVD) [Govindarajan et al., 2020] as follows:

Hi
0 = RiΣi(Si)T =

[

Ri
n R̄

i

n

]

Σi
[

Si
n S̄

i

n

]T
,

Σi =





Σi
n 0

0 0



 , (5.38)

where Σi is a rectangular matrix whose zero-value entries represent zero matrices

with appropriate dimensions. Ri, Ri
n, Si, and Si

n, are all orthogonal matrices with

appropriate dimensions. R̄
i

n and S̄
i

n are zero matrices with proper dimensions. Σi
n

is defined as

Σi
n = diag

[

σi
1, σi

2, . . . , σi
n

]

, (5.39)

where σi
j, j = 1, 2, . . . , n are n nonzero singular values of the matrix Hi

0, i.e., σi
1 >

σi
2 > . . . > σi

n > 0. The reduced matrix Hi
0r can be written as

Hi
0r = Ri

nΣi
n(Si

n)T , where Ri
n(Ri

n)T = Si
n(Si

n)T = In. (5.40)

By comparing and examining (5.36) (replacing γ = 0) and (5.40), the following

outcome can be inferred:

Hi
0r = Ri

n(Σi
n)

1
2 (Σi

n)
1
2 (Si

n)T ≈ PiQi. (5.41)

The reason for this approximation is that the reduced form of the Hankel matrix

(i.e., Hi
0r) only contains information about the dominant modes of the system, while

the controllability and observability matrices contain information about all modes of

the system. Therefore, the reduced form of the Hankel matrix may not accurately

capture the behavior of the system for all frequencies or time scales. However,

in practice, the reduced form of the Hankel matrix obtained using SVD is often
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a good approximation of the controllability and observability matrices, especially

for systems with dominant modes that decay quickly. This approximation can be

improved by increasing the number of singular values included in the reduced form

of the Hankel matrix. Considering (5.41), one possible choice can be Pi = Ri
n

√

Σi
n

and Qi =
√

Σi
n(Si

n)T . Thus, if γ = 0, then based on (5.36) and knowing m and q,

which are the numbers of inputs and outputs, respectively, the matrices Bi, and Ci

of the i-th local model can be determined as follows:

Bi = the first m columns of (Σi
n)

1
2 (Si

n)T ,

Ci = the first q rows of Ri
n (Σi

n)
1
2 . (5.42)

Next, to calculate Ai, by replacing γ = 1 in (5.35), the Hankel matrix Hi
1 can be

written as

Hi
1 =















Yi
1 Yi

2 · · · Yi
N

Yi
2 Yi

3 · · · Yi
N+1

...
...

. . .
...

Yi
p Yi

p+1 · · · Yi
p+N−1















. (5.43)

By replacing γ = 1 in (5.36) and having Pi = Ri
n

√

Σi
n, Qi =

√

Σi
n(Si

n)T , and Hi
1 in

(5.43), the state matrix Ai can be calculated as:

Ai = (Σi
n)− 1

2 (Ri
n)T Hi

1 Si
n (Σi

n)− 1
2 . (5.44)

Matrix Di can be directly extracted from the obtained matrix Yi in (5.33) as follows:

Di = Yi
−1 (the first element of Yi). (5.45)

The last remaining parameter required to be calculated is the observer gain Mi. In

this regard, the sequence of parameters Zi
k is defined as (5.46),

Zi
k = Ci

(

Ā
i
)k

Mi, k = 0, 1, 2, . . . , (5.46)

and based on [Juang et al., 1993] each parameter Zi
k can be obtained from the
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observer Markov parameters of the submodel i, using the general formula as (5.47):

Zi
k = − ˜̄Yi

k
(2) +

k−1
∑

s=0

˜̄Yi
s
(2) Zi

k−s−1, (5.47)

where ˜̄Yi
k

(2) can be calculated, using (5.31). For example, by replacing k = 0 in

(5.31) and considering (5.46), then Zi
0 = Ci Mi = − ˜̄Yi

0
(2). Having calculated the

values of sequence Zi
k using (5.47), and based on the definition in (5.46), Zi can be

represented as

Zi =











Zi
0

...

Zi
k











=











Ci Mi

...

Ci
(

Ai
)k

Mi











, (5.48)

and, Fi can be defined as

Fi =











Ci

...

Ci
(

Ai
)k











. (5.49)

Thus, from (5.48) and (5.49), the observer gain Mi can be computed using the

pseudo-inverse of Fi as

Mi =
(

(

Fi
)T

Fi

)−1 (

Fi
)T

Zi. (5.50)

Having computed all the state-space parameters associated with sub-models, it is

time to summarize the main steps defined in this work for the proposed approach,

as illustrated in Section 5.4.3.

5.4.3 Approach Summary

This subsection summarizes the main steps of the proposed new approach, which

are also illustrated in Figure 5.2, as follows: 1) Assign the input and output signals

which are to be used to construct the dataset; 2) Construct the required datasets

from the measured input and output data; 3) Partition the dataset into a defined
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Figure 5.2: Flowchart for the proposed modeling approach.

number of clusters based on the desired characteristics (e.g. active power, reactive

power, etc) using the approach described in Section 5.3.1; 4) Find the parameters

of the state space models for the clusters obtained from Step 3, using the approach

described in Section 5.4; 5) Utilize T-S fuzzy modeling, as explained in Section 5.3,

to form a global model for the given synchronous generator, which includes deter-

mining the degree of activation of each rule defined by (5.6). To this end, it suffices

to use PSO to determine the width (σi
j) of each Gaussian membership function de-

fined by (5.15) using a dataset different from the one already used for calculating

the parameters of each state-space sub-model that is inside the consequent part of

each fuzzy rule. Once the PSO task is complete, for testing and validating the final

T-S fuzzy model another dataset different from the first two ones is deployed. These

steps alongside the required datasets will be explained more explicitly in Section

5.5.
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5.5 Approach Evaluation

In this section, the proposed approach will be validated both in a simulation case

study and in an experimental case study. Three types of datasets are planned and

constructed for the new proposed method, in order to avoid over-fitting issues and

guarantee the accuracy of the final model. The first dataset, termed state-space

dataset, is partitioned into several clusters (rules) by the FCM method given in

Algorithm 5.1, and each cluster is used to extract state-space model parameters of

the consequent part of the corresponding rule.

It is important to note that the initial number of rules is calculated by multiplying

the number of outputs by the number of clusters. The values of the computed sub-

model are compared with the true values of the system under study for each output,

and if these values are approximately close, the rule including the computed sub-

model is retained, otherwise it would be removed. Therefore, it is very likely that

the final number of rules will be less than the initial number. The metric that can

be used for this purpose is the MSE defined as:

MSE (ŷk) ∆=
1
L

L
∑

k=1

||ŷk − yk||
2, (5.51)

where, yk ∈ R is the true (measured) value of each available output getting from

the nonlinear system simulations, or the real-world system at the sample time k, ŷk

is the value of the corresponding output obtained from the computed sub-model at

the sample time k, and L is the total number of data samples corresponding to the

utilized cluster.

Once the rules and the parameters of the state-space sub-models corresponding to

the rules’ consequent parts are determined, PSO can be used to optimize (minimize)

the objective function defined by (5.16) using a dataset known as the PSO dataset,

which is entirely different from the state-space dataset. During the optimization

process, the parameters for each antecedent part of a rule (more precisely the width

(σi
j) of each membership function) are determined, followed by the activation degree

of each sub-model in the consequent part of the corresponding rule. Indeed, by

finishing the PSO operation, the model’s training phase is completed.

Regarding making the datasets, the first dataset, namely the state-space dataset,

is constructed by applying a wide range of values to the generator voltage field input,
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while the generator mechanical power input is kept relatively constant. To construct

the second dataset, namely, the PSO dataset, the generator mechanical power input

is fed with a wide range of power values, whereas the generator voltage field input

is maintained at a constant nominal value. Thus, by using these two datasets in

which either a wide range of mechanical power values or a wide range of field voltage

values is utilized, the training phase can be accomplished more effectively due to

sweeping a wide area of generator dynamics by applying a wide range of values to

the generator inputs.

Similar to the second dataset, the third dataset is constructed by varying the

generator mechanical power input while maintaining the generator voltage field input

at a constant nominal value. The main function of synchronous generators in power

systems is to convert mechanical power into electrical power, supplying power to

electrical networks. Therefore, this choice of test dataset makes sense. The third

dataset is used to validate and test the final tuned T-S model. The MSE defined in

(5.51) is the metric used to assess the accuracy of the final T-S fuzzy model.

Simulation and experimental case studies are presented in Sections 5.5.1 and 5.5.2

to describe how the proposed modeling approach, which includes the construction

of the three aforementioned datasets, can be implemented in practice.

5.5.1 Simulation Case Study

In this section, the nonlinear synchronous generator model mentioned in Section

5.2.1 and defined by (2.13) is simulated under a variety of rated values of its inputs,

and the corresponding output signal waveforms of this nonlinear model alongside

the input signal waveforms are collected and stored, as can be seen in Figure 5.3.

These waveforms form the data of the first dataset, i.e., the state space dataset. As

can be seen in Figure 5.3 three different cases are simulated, where in each case,

the mechanical power can possess one specific value (Figure 5.3a), while terminal

voltages (Figure 5.3a) and particularly, field voltage input (Figure 5.3b) can take

on various values. Therefore, it can be stated that the state space dataset consists

of three smaller datasets corresponding to each case. Using FCM, each dataset is

partitioned into several clusters (here the number of clusters for each case is set to 2),

and subsequently using the approach given in Section 5.4, the sub-models in the form

of state space models are obtained. Assuming to have two clusters for each case and
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Figure 5.3: Three inputs (a)-(b) and two corresponding outputs (c)-(d) which are
used to form the state-space dataset (simulation case).

two outputs, namely active and reactive powers, the initial number of rules becomes

12, as explained in Section 5.5. However, upon comparison of the output values of the

computed sub-models with the output values of the model under several simulations,

only the case with the lowest mechanical power is represented by 4 rules, while each

of the two other cases are represent by only 2 rules. Thus, the total number of rules is

reduced to 8. In Figure 5.4, the active and reactive power outputs obtained from the

dataset as well as those obtained from a sub-model calculated from a chosen cluster

of the dataset, are illustrated. Approximately 7500 samples are used to compute

the sub-model, while the utilized dataset contains around 17000 samples, and the

sub-model is tested on all the 17000 samples. Having all the sub-models associated

with the consequent parts of the T-S fuzzy rules ready, the next step is to apply

PSO for optimizing the rule antecedent parammeters. The waveforms associated

with the applied inputs and the corresponding waveforms of the outputs obtained
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Figure 5.4: Comparison of active and reactive power outputs: true vs. computed
state space model values for an arbitrary cluster of dataset. (simulation case study).
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Figure 5.5: Three inputs (a)-(b) and two corresponding outputs (c)-(d) used to form
the PSO dataset (simulation case).

from simulation, are illustrated in Figure 5.5. Moreover, the maximum number of

iterations given to PSO for attaining a reasonable result (MSE < 0.0005) for each
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Figure 5.6: Input membership functions corresponding to the active power output
(a)-(c), and reactive power output (a)-(c) obtained from training the T-S fuzzy
model (simulation case).

output is set to 150. Figure 5.6 shows the optimized membership functions as a

result of PSO for the three inputs of the T-S fuzzy model, namely Pm (mechanical

power), Efd (field voltage), and Vt (terminal voltage) in this case study. Finally,

for testing and evaluating the optimized T-S fuzzy model, the waveforms shown in

Figure 5.7 are applied to the inputs of the T-S fuzzy model and linear model, and
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Figure 5.7: Signals applied to the inputs of the trained T-S fuzzy model to evaluate
the model performance (simulation case).
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Figure 5.8: Comparison of the response of the true, the identified, and the linearized
models to the large-signal mechanical input (simulation case).

their outputs, namely the active power and the reactive power, are compared with

those of the simulated nonlinear model, which is indeed considered as true model, as

illustrated in Figure 5.8. By observing the linear model outputs in Figure 5.8, it can

be concluded that a linear model with specific parameters is only valid for a very

narrow band of the synchronous generator’s operating points around that specific

operating-point, and it is always required to update the parameters of the model

as the synchronous generator’s operating points diverge from that particular point.

Therefore, for nonlinear systems such as the one studied here, methods leading to

models with a wider valid operational range are necessary, especially in power system

applications where such operating point variations may occur more frequently.

In addition to pictorial comparison, it is useful to express the accuracy of the T-S
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Table 5.1: The MSE metric for the identified.

Active power (P) Reactive power (Q)

Obtained model 0.000185 0.000070
Linearized model 0.026244 0.023409

Table 5.2: Parameters of the synchronous generator.

Parameter Value Parameter Value

Ssg
b 6.5 [kVA] Kd 0.05 [p.u.]

VB 1.02 [p.u.] ω0 314.16 [rad/s]
T ′

do 0.13 [s] T ′
qo 0.013 [s]

xd 2.06 [p.u.] xq 1.21 [p.u.]
x

′

d 0.37 [p.u.] x
′

q 0.37 [p.u.]
H 5 [s] xe 0.193 [p.u.]

Table 5.3: Operating data for synchronous generator.

Parameters O.p.1

δ 0 [rad] 0.72
VB [p.u.] 1.02
Efd [p.u.] 2.29
P m [p.u.] 0.75

fuzzy model and the linearized model results using MSE defined in (5.51). Table 5.1

shows the MSE metric associated with the outputs of the T-S fuzzy model obtained

using the proposed approach for the simulation case study, as well as the MSE results

obtained for the linearized model. According to the results in Table 5.1, for the T-S

fuzzy model, the MSE remains low for both active power (P ) and reactive power

(Q), even though the mechanical power input is changing widely.

The parameters characterizing the given synchronous generator are presented in

Table 5.2. Additionally, the data necessary for the linear model defined in (5.1)

can be found in Table 5.3, where the parameters and their corresponding values are

given at one specific operating point, namely O.p.1.

This research work is primarily concerned with developing methods to apply to

real-world synchronous generators, as will be verified in Section 5.5.2, however, the

simulation case study is also included for two main reasons. Firstly, to demonstrate

how the new obtained model behaves when the mechanical power experiences drastic

changes. In practice, such a drastic change in a short period would be unusual and
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Table 5.4: Parameters used for the simulation case study.

Parameter Value

Number of MPs 1000
Sampling rate [Samples/s] 1000
Number of Fuzzy rules (per output) 4
Obtained order for the state space model 4

Figure 5.9: Experimental setup for testing at the laboratory.

abnormal because it might cause extraordinary and abnormal tensions and damages

to the generator. The second reason is to illustrate the high performance of this

approach even when the voltage bus at which the generator is connected is not very

stable and may experience some fluctuations.

The important parameters which are used for this case study are summarized in

Table 5.4.

5.5.2 Experimental Case Study

The physical testing setup and its corresponding diagram are illustrated in Figure

5.9 and Figure 5.10, respectively. As can be seen from the diagram, the prime mover

for rotating the synchronous generator is a DC motor, of 3 [kW]. The mechanical
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Figure 5.10: Schematic overview of the laboratory setup.

Table 5.5: Synchronous generator parameters.

Parameter Value Parameter Value

Rated power 3.8 [kVA] Rated voltage 380 [v]
Rated current 5.8 [A] Pole number 4
Rated speed 1500 [rpm] Active power 3 [kW]

torque in [Nm] and mechanical speed in [rad/s] are measured by the torque trans-

ducer RWT310 [Test and Measurement, 2021]. The nameplate rating data of the

synchronous generator is given in Table 5.5. The field winding of the generator rotor

is excited by a variable three-phase full-wave diode rectifier. The measured voltages

and currents are from the phases or from the exciting system, and are measured by

precise hall-effect sensors. All the measured data are sampled and acquired by the

data acquisition system (DAQ) including analogue input module NI 9215 [Instru-

ments, 2021b] and Embedded controller cRIO-9066 [Instruments, 2021a]. The rate

for the data sampling is fixed to 1 [kHz] for each channel of the DAQ. The generator

is connected to the local grid through a proper transformer. Figure 5.11 shows the

wave shapes applied to the generator inputs and the resulting output wave shapes

that are used to construct the dataset, i.e., state space dataset. As can be seen,

three different cases are considered, where in each case, the mechanical power can

possess one specific value (Figure 5.11a), terminal voltages (Figure 5.11a) are almost

constant since the electrical network voltage is stable and constant, and only field
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Figure 5.11: Three inputs (a)-(b) and two corresponding outputs (c)-(d) which are
used for the identification process (experimental case).

voltage input (Figure 5.11b) can take on a variety of values. Therefore, it can be

stated that the state space dataset consists of three smaller datasets corresponding

to each case.

Using FCM, each dataset is partitioned into several clusters (here the number

of clusters for each case is set to 2), and subsequently using the approach given in

Section 5.4, the sub-models in the form of state space models are obtained. Assuming

to have two clusters for each case and two outputs, namely active and reactive

powers, the initial number of rules becomes 12, as explained in Section 5.5. Since

all the computed sub-models generate fairly accurate outputs, none of them will be

removed, and as a result the final number of rules is kept at 12.

In Figure 5.12, the active and reactive power outputs obtained from the dataset

as well as those obtained from a sub-model calculated from a chosen cluster of the

dataset, are illustrated. Approximately 3000 samples are used to compute the sub-

model, while the utilized dataset contains 6000 samples, and the sub-model is tested



92 CHAPTER 5. MODELING SYNCHRONOUS GENERATOR

0 1000 2000 3000 4000 5000

Samples

0.2

0.4

0.6

P
[p

.u
.]

True

Calculated
4850 4900

0.5

0.6

(a) Active power.

0 1000 2000 3000 4000 5000

Samples

0.0
0.5
1.0

Q
[p

.u
.]

True

Calculated
3850 3900

0.1

0.2

0.3

(b) Reactive power.

Figure 5.12: Comparison of active and reactive power outputs: true vs. computed
state space model values for an arbitrary cluster of dataset. (experimental case
study).

Table 5.6: The MSE metric for the identified model (experimental case study).

Active power (P) Reactive power (Q)

Obtained model 0.00127 0.00138

on all the 6000 samples.

Having all the sub-models associated with the consequent parts of the T-S fuzzy

rules ready, the next step is to apply PSO for optimizing purpose. The waveforms

associated with the applied inputs and the corresponding waveforms of the outputs

obtained from the experimental setup, are illustrated in Figure 5.13. Moreover,

the maximum number of iterations given to PSO for attaining a reasonable result

(MSE < 0.0005) for each output is set to 150. Figure 5.14 shows the optimized

membership functions as a result of PSO for the three inputs of the T-S fuzzy model,

namely Pm (mechanical power), Efd (field voltage), and Vt (terminal voltage) in this

case study.

Finally, for testing and evaluating the optimized T-S fuzzy model, the waveforms

shown in Figure 5.15 are applied to the inputs of the T-S fuzzy model, and its

outputs, namely active power and reactive power, are compared with those of the

real-system setup, as illustrated in Figure 5.16. Additionally, to better evaluate the

accuracy of the T-S fuzzy model, the MSE metric is calculated and presented in

Table 5.6 for both the active power and the reactive power.

The important parameters which are used to configure the proposed identification

algorithms are given in Table 5.7.
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Figure 5.13: Three inputs (a)-(b) and two corresponding outputs (c)-(d) used to
form the PSO dataset (experimental case study).

Table 5.7: Values of the parameters used for identification purposes (experimental
setup).

Parameter Value

Number of MPs 1000
sampling rate [Samples/s] 1000
Number of Fuzzy rules (per output) 6
Obtained order for the state space model 4

5.6 Conclusion

A novel approach for developing a global model for a real synchronous generator

is presented in this Chapter. The approach combines the subspace identification

method with T-S fuzzy modeling. In particular, all the developed procedures like

dataset construction, clustering, local model identification, and T-S fuzzy modeling

are thoroughly illustrated with simulation and experiential case studies. The results
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Figure 5.14: Input membership functions corresponding to the active power output
(a)-(c), and to the reactive power output (a)-(c) obtained from training the T-S
fuzzy model (experimental case).

from these case studies demonstrate that even under some unfavorable conditions

such as noise, saturation issues, or variable terminal voltages, etc, which may occur

during SG operations, the proposed novel approach can still lead to a precise global

model. Therefore, the new approach is efficient, flexible, and robust enough to be

used in a variety of scenarios and/or environments. Also, the model is composed

of several linear sub-models in the form of state space representation, so it can be
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Figure 5.15: Signals applied to inputs of the trained T-S fuzzy model to evaluate
the model performance (experimental case).
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Figure 5.16: Comparison of the real outputs with the identified model outputs as
the mechanical input varies as shown in Figure 5.15a (experimental case).

easily applied in control and estimation applications as well. As a future work, it

would be interesting to examine the performance of the identified model in control

and estimation methodologies like model predictive control (MPC) and Kalman-

based filters, where an accurate model is usually required. As another future work,

establishing an adaptive mechanism for the obtained model would improve its ac-

curacy and reduce the necessity to repeat the whole proposed modeling procedure

over time.
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6.1 Introduction

Modeling a real-world system can often be a big challenge for scientists and re-

searchers owing to various issues such as nonlinearities, unknown parameters, tem-

perature and environmental variations and so on. Therefore, although estimators

might use models somehow different from the real models, they still must be able

to estimate states precisely.

97
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Due to their ability to work in real-time and with Gaussian noises, Kalman fil-

ter (KF)-based methods such as the extended Kalman filter (EKF) [Simon, 2006],

the unscented Kalman filter (UKF) [Julier and Uhlmann, 2004], and the cubature

Kalman filter (CKF) [Arasaratnam and Haykin, 2009] have been widely used to esti-

mate states of nonlinear systems in applications such as power systems [Ghahremani

and Kamwa, 2011; Zhou et al., 2015; Anagnostou and Pal, 2018], robotics [Chang

et al., 2011; Li and Yang, 2021], navigation [Eckenhoff et al., 2021], etc. Never-

theless, these methods can be less effective when the system model is not accurate

and/or the noise is not Gaussian. Thus, a considerable number of robust approaches

have been proposed in an attempt to mitigate issues caused by noises [Li et al., 2019]

or outliers [Li et al., 2019; Zhao and Mili, 2019; Gandhi and Mili, 2010]. Yet, the

number of works addressing the model mismatch for nonlinear system is still limited

[Abdallah et al., 2022].

Hrustic et al. [2021] combined EKF and the linear constraints (LC) method of

[Vilà-Valls et al., 2020] to solve the problem of mismatch modeling for a nonlin-

ear system, but a lack of precision in linearization might disrupt the consistency of

the method, as discussed in [Chauchat et al., 2022]. Accordingly, Abdallah et al.

[2022] attempted to replace the EKF of [Hrustic et al., 2021] with a type of sigma-

point Gaussian filter which is a square-root CKF (SCKF) previously proposed in

ZEMAMI, but since, as shown, e.g., in [Dang et al., 2020], the computational time

of SCKF may exceed the EKF computational time, especially as the state dimen-

sionality of a system grows, then the use of this method might be problematic.

Considering the limited number of works as well as the aforementioned issues

that may arise when using estimators such as those in [Hrustic et al., 2021] or

[Abdallah et al., 2022], this study proposes a new methodology to guarantee the

continuation of the estimation process even if there is a mismatch in the process

model for a class of nonlinear system exposed to Gaussian noises. Specifically, the

main contributions of the present work are fourfold: (i) A new adaptive methodology

based on EKF is proposed to tackle the model mismatch problem for nonlinear

dynamic systems without imposing any linear constraints (refer to Section 6.3). (ii)

Providing a practical mechanism to incorporate and utilize the designer’s knowledge

and experience from the system’s behavior in designing its corresponding filter. In

other words, it will be shown that by choosing a proper estimation strategy along

with having a true comprehension of the system behaviours, it is still possible to
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develop an estimator that can operate precisely under model errors and inaccuracies

(refer to Section 6.3). (iii) Considering power systems to be some of the most

important nonlinear and dynamic systems in human life, this work will explicate

the proposed method by applying it to an IEEE power system benchmark (IEEE

14-bus 5-generator). Since one of the features of this approach is to incorporate the

designer’s knowledge into the design of the estimator, some concepts about power

system modeling are also described in a very basic manner to help readers who are

not familiar with power systems (refer to Chapter 2). (iv) Results of the resultant

estimator are compared to those of EKF, UKF, and CKF.

It is worth noting that even though the proposed approach is explained and

validated for a dynamical power system, it can be applied to any real-system once

the designer knowledge would provide the necessary information to construct the

corresponding unknown input matrix as it will be discussed in Section 6.3. Moreover,

in order to enhance the characterization of the results, Monte Carlo (MC) methods

are applied to the results obtained by comparing the statistical performance of each

estimation method.

In Chapter 2, it is illustrated how to model a power system, while in Chapter 3

several well-known Kalman Filter-based filters are given. Based on the information

in these Chapters, this Chapter proposes an engineering approach to develop a state

estimator for the purpose of implementing Dynamic State Estimation (DSE) to be

applied in nonlinear systems. In this chapter the application case-study is in power

systems. In fact, many researches have been accomplished concerning the DSE in

electric grids and the majority of them have attempted to implement/improve esti-

mators based on having thorough knowledge of the system model. However, in this

work, it will show that it is still possible to achieve quite precise and reasonable re-

sults by designing a systematic approach, despite of not having thorough knowledge

about the electric network. Indeed, here, it is tried to follow some general intuitive

rules, concepts, and forehand knowledge and design an estimator which although

its model is not so accurate, it still manages to fulfill the objective of dynamic state

estimation efficiently. All the design procedures are explained step by step and to

show the effectiveness of this proposed approach, its performance results are com-

pared with those of three well-known estimators i.e. unscented kalman filter (UKF),

cubature kalman filter (CKF), EKF, on the IEEE 5-generator 14-bus benchmark.

This Chapter is organized as follows. In Section 6.2 the problem is formulated
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and described. Section 6.3 deals with the proposed estimator model.Next, the results

obtained from examining the proposed estimator on the IEEE 14-bus power system

are illustrated in Section 6.4. Finally, the conclusion and future work are provided

in Section 6.5.

6.2 System Modeling and Description

As mentioned in Section 6.1, one feature of the proposed approach is that it incor-

porates the designer’s knowledge of system behavior into the problem of robust filter

design. In this context, in order to evaluate and implement the proposed estima-

tion methodology, a power system is chosen. Climate change and air pollution have

pushed power operating companies (POCs) to use more renewable energy sources

(RES), electric vehicle charging stations, distributed energy resources (DERs), and

power electronic devices (PEDs), which makes power system dynamics and models

more complex, stochastic, and sporadic. As a result, power system state estima-

tion may become more difficult and challenging, and consequently, power system

monitoring, control, and protection might be at risk, since monitoring, control, and

protection systems in electric grids are dependent upon accurate state information.

Taking into account the above issues, for power systems of today, developing es-

timation methodologies that work accurately under model inaccuracies is crucial

and essential. This section discusses a power system whose model is obtained as

explained in Chapter 2. This modeling exercise will produce a power system model

that mimics a real-world system. While a real power system can be much more

complex than what is described in this Chapter, since the purpose of this work is

to explain the robust approach tackle model mismatch in a more general sense, so

a more complex model is not useful and beneficial.

Considering Figure 2.1 and equation (2.12), if there are N generators in the power
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system, it is worth rewriting (2.12) into the form (6.1) to include all N generators:

d

dt
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

























∆ω̄(1, t)

...

∆ω̄(N, t)

δ(1, t)

...

δ(N, t)





























=































1
M1

(

P m
(1, t) − P g

(1, t) −K d
1 ∆ω̄(1, t)

)

...
1

MN

(

P m
(N, t) − P g

(N, t) −K d
N ∆ω̄(N, t)

)

ω0∆ω̄(1, t)

...

ω0∆ω̄(N, t)































. (6.1)

To compact and generalize model (6.1), the notations are generalized to a general

state-space model form as follows:











dx
dt = f

(

x(t), u(t), t
)

+ wc,

z(t) = h
(

x(t), t
)

+ vc,
(6.2)

where, the first and second equations are the state and measurement equations,

respectively. z ∈ R
q is the measurement vector and consists of the measured values of

the available quantities. wc ∈ R
n and vc ∈ R

q are Gaussian white noises with known

covariance matrices E

[

wcw
T
c

]

= Q and E

[

vcv
T
c

]

= R. Considering the physics of

the problem, wc can be interpreted as white acceleration and velocity signals, while

vc represents the noise signals on the measurements. x(t) = [x(1, t), . . . , x(n, t)]T ∈ R
n

is the state vector, u(t) = [u(1, t), . . . , u(m, t)]T ∈ R
m is the known input vector of the

system. The scalars n, m and q are the number of states, the number of known

inputs, and the number of variables available to be measured, respectively.

In case the system is given by (6.1) then x(t) =
[

∆ω̄(1, t), . . . , ∆ω̄(N, t), δ(1, t) . . . , δ(N, t)

]T
; u(t) = [P m

(1, t), . . . , P m
(N, t)]

T is the

known input vector including the mechanical powers, and depending on

the available measurements, one possible measurement vector, e.g., can be

z(t) =
[

P g
(1, t), . . . , P g

(N, t), Qg
(1, t), . . . , Qg

(N, t), V(1, t), . . . , V(S, t), θ(1, t), . . . , θ(S, t)

]T
, where,

P g
(i, t), Qg

(i, t), which are given by (2.7) and (2.8), are the active and reactive powers

of the generator i ∈ {1, . . . N}, and Vj and θj are the voltage amplitude and phase

angle of bus j ∈ {1, . . . , S}. It is worth mentioning that the estimation method

presented here is in fact a centralized method, so for the estimation to be successful,

all measurements must be sampled and transmitted to the center at a reasonable
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rate (for example 50 samples per second).

6.3 Proposed Estimator

As mentioned in Section 3.3.2, the model of the system can be considered as (3.11),

but the main goal of this work is to design an estimator to ensure that the estimation

of the state vector is as precise as possible even when there may be unknown incidents

in the electric network, such as switching off/on loads or switching out a line, which

might cause model mismatches. Thus, to achieve this goal, it is suggested to use

a slightly different model for the process model of the system, as illustrated in the

discrete-time model (6.3):

x(k+1) = g(x(k), u(k)) + G d(k) + w(k),

z(k) = h(x(k)) + v(k), (6.3)

where term G d(k) is added to compensate for the model mismatch, and due to its

role in compensating, G ∈ R
n×m and d ∈ R

m are named compensation matrix and

compensation input vector, respectively. Matrix G here is not known, unlike its

counterpart in, for example, [Liu et al., 2022], and must be designed based on the

designer’s understanding of the system’s behavior. Prior to determining matrix G,

it would be useful to examine the input vector d more closely. If it is considered a

power system such as the one described in Section 6.2, intuitively, it is hypothesized

that any changes in the network may lead to some power changes in this power

system. As a result, vector d is unknown, but each element of vector d can be

viewed as a power change variable associated with each generator in the electric

grid. Due to this assumption for d, finding a reasonable value for matrix G can be

more straightforward and will be explained in the following paragraphs.

In the first step, it is required to obtain the discrete form of (6.1) with the aid
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of the Runge-Kutta method explained in Section 3.3.2, yielding:


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δ(1,k)
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




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
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































∆t
M1

P m
(1,k) −

∫ (k+1)∆t

k∆t

(

P g
(1,τ) + Kd

1 ∆ω̄(1,τ)

)

dτ
...

∆t
MN

P m
(N,k) −

∫ (k+1)∆t

k∆t

(

P g
(N,τ) + Kd

N ∆ω̄(N,τ)

)

dτ

ω0

∫ (k+1)∆t

k∆t ∆ω̄(1,τ)dτ = c ∆t ∆ω̄(1,k)

...

ω0

∫ (k+1)∆t

k∆t ∆ω̄(N,τ)dτ = c ∆t ∆ω̄(N,k)






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























,

(6.4)

where c is a constant brought into existence due to applying the operation given

in (3.7), and inputs (P m
(1,k) to P m

(N,k)), which are in fact mechanical power values

associating with the each generator, are known and are assumed to be unchanged

in the interval between the two consecutive samples. Taking into account (6.4), it

can be observed that the values of these mechanical inputs, which are represented

by P m
(i,k), where i ∈ {1, 2, . . . , N}, can affect the frequency of the network by a

coefficient equal to the inverse of parameter Mi (i.e. the inertia constant) multiplied

by the sample time ∆ t, i.e. ∆ t/Mi for each generator. Moreover, considering the

second equation in (2.12), since the derivative of angle δi is proportional to the

generator frequency deviation (∆ω̄(i,k)), it is inferred that each given mechanical

power value can also affect the corresponding term associating with rotor angle (δi)

of the corresponding generator in (6.4) by a coefficient equal to the inverse of the

parameter Mi multiplied by the square of sample time ∆ t, i.e. ∆ t2/Mi. Eventually,

these coefficients are proposed to be used for making the compensation matrix G.

Also, it is assumed that the size of the compensation vector d is identical to the

number of known inputs in (6.4), which is equal to N , and it is assumed that each

element of d can impact only one generator and hence they are independent. Thus,
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the proposed G is written as (6.5):

G =








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


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1
M1

0 . . . 0
...

...
. . .

...

0 0 . . . 1
Mn

ω0 ∆t
M1

0 . . . 0
...

...
. . .

...

0 0 . . . ω0 ∆t
MN
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







. (6.5)

As can be seen in (6.5), ∆t is factored out and it is assumed to be inside the

unknown input vector d instead. This mathematical operation will make matrix G

less sensitive, more constant and robust to the sample time, ∆t. Having matrix G

ready and in order to apply the centralized estimation approach, which is described

in [Gillijns and Moor, 2007b] or [Emami et al., 2020], to the system defined by (6.3),

it is necessary to provide some extra calculations such as linearized models for the

process and measurement models in (6.3) using the procedures provided in [Lavenius

and Vanfretti, 2018]. In this direction, recursive filter equations are defined for the

estimation of the system states as follows [Lavenius and Vanfretti, 2018]:

x̂−
(k) =g(x̂ (k−1), u(k−1)), (6.6)

d(k−1) =−Md
(k)

(

h(x̂−
(k))− z(k)

)

, (6.7)

x̂⋆
(k) =x̂−

(k) + G d(k−1), (6.8)

x̂(k) =x̂ ⋆
(k) −Mx

(k)

(

h(x̂⋆
(k))− z(k)

)

, (6.9)

where x̂−
(k) and x̂(k) are a prior and a posterior estimates, respectively. The vari-

able x̂(k) represents the estimator’s estimation of x(k), and d(k) represents the com-

pensation vector that is multiplied by matrix G to mitigate the impacts of model

mismatch and consequently improve the estimated states. Also, the gain matri-

ces Md
(k) ∈ R

m×q, and Mx
(k) ∈ R

n×q are still to be determined. The formula for

calculating Md
(k) is given by (6.10) as [Emami et al., 2020] (refer to Chapter 4)

Md
(k) = −

(

FT
(k)(R̃(k))−1F(k)

)−1
FT

(k)R̃
−1

(k), (6.10)

where F(k) = C(k) G, and for Md
(k) in (6.10) to be computable, it is enough to
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have the condition that rank(F(k))=rank(G) for all k [Emami et al., 2020] (refer to

Chapter 4). Let C(k) be defined as follows [Lavenius and Vanfretti, 2018]:

C(k) =



















∂h1(x̂(k))
∂x(1,k)

· · ·
∂h1(x̂(k))

∂x(n,k)
...

. . .
...

∂hq(x̂(k))
∂x(1,k)

· · ·
∂hq(x̂(k))

∂x(n,k)



















. (6.11)

Similarly to (4.20), R̃(k) is given by

R̃(k) = C(k)P
−
(k)

(

C(k)

)T
+ Rd

(k). (6.12)

Also, considering x̃−
(k) , x̂−

(k) − x(k), then P−
(k) , E[x̃−

(k)(x̃
−
(k))

T ] is defined as

P−
(k) = A(k−1)P(k−1)A

T
(k−1) + Qd

(k−1), (6.13)

where Ak is given by [Lavenius and Vanfretti, 2018]:

A(k) =


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∂g1(x̂(k), u(k))
∂x(1,k)

· · ·
∂g1(x̂(k), u(k))

∂x(n,k)
...

. . .
...

∂gn(x̂(k), u(k))
∂x(1,k)
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∂x(n,k)
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

. (6.14)

Rd
(k) and Qd

(k−1) are given in (3.14), and (3.10), respectively. Since in this case there

is a single centralized estimator, then by setting the consensus coefficient Ni
x(k) = 0

in (4.28), matrix Mx
(k) can be calculated from

Mx
(k) R̃

⋆

(k) =
[

P−
(k)(C(k))

T −G Md
(k) R̃(k)

] (

I− (Md
(k))

T GT (C(k))
T
)

, (6.15)

where R̃
⋆

(k)

R̃
⋆

(k) = [Iq −C(k)G Md
(k)] R̃(k) [Iq −C(k)G Md

(k)]
T , (6.16)

and considering x̃(k) , x̂(k)−x(k), P(k) can be defined and obtained as [Gillijns and
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Moor, 2007b]

P(k) , E

[

x̃(k) x̃T
(k)

]

= Mx
(k) R̃

⋆

(k) (Mx
(k))

T −V⋆
(k)(M

x
(k))

T −Mx
(k) (V⋆

(k))
T + P⋆

(k), (6.17)

where P⋆
(k) and V⋆

(k) are denoted by (6.18) and (6.19), respectively:

P∗
(k) =

(

In −G Md
(k) C(k)

)

P−
(k)

(

In −G Md
(k) C(k)

)T
, (6.18)

V⋆
(k) = P⋆

(k) CT
(k) −G Md

k Rd. (6.19)

Now it seems that the main goal to design an estimator which is able to perform

well and efficiently even when the available model is not complete and precise is

realized. However, the compensation matrix G in (6.5) is not so precise since it

was not analytically calculated from a known model. Indeed, G is designed based

on some basic and limited knowledge of the studied system and its corresponding

states. As a result, it is essential in an engineering approach to find a safe and

secure solution to release some conditions at the price of achieving more accurate

results. The fact behind this statement is that generally the available model of any

system is not the exact model existing in the real world. Later, in Section 6.4, it can

be observed that the conventional EKF filter with unknown input (EKF-UI), which

is defined by equations (6.6)-(6.9) suffers noticeably from more fluctuations in its

outputs which can degrade its effective performance. Thus, as another contribution,

in this work, to mitigate this problem a new version for the computation of d is

proposed in (6.20) which is an attenuated adaptive version of the d defined in (6.7):

d(k) =−αT
(k)M

d
(k)

(

h(x̂−
(k))− z(k)

)

(6.20)

α(k) = 0.15 tanh



σ
||h(x̂−

(k))− z(k)||2

d(k−1)



 , (6.21)

where α(k) ∈ R
m is the attenuated adaptive coefficient, σ is the standard deviation

of the measurement white noise, and || · ||2 denotes the Euclidean norm. In Section
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6.4, using the attenuated d as a result of the proposed adaptive coefficient vector

(α(k)) defined in (6.21), it will be shown that the fluctuation problem existing in the

outputs of the EKF-UI will be noticeably mitigated. In the following sections, the

proposed estimator is termed as the Attenuated EKF-UI, or more briefly AEKF-UI.

This completes the definition of the proposed AEKF-UI estimator. In Section

3.4, the estimators whose performances are to be compared with this estimator, were

briefly reviewed.

To sum up, the procedures which are accomplished here to realize the engineering

approach for the proposed estimator, are summarized as follows:

1. Using the available information about the model of the system, a simple EKF

estimator is designed based on (3.11), (3.13), (6.14), and (6.11).

2. Inspecting the known input matrix in (6.22),

B(k) =




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∂u(1,k)

· · ·
∂g1(x̂(k), u(k))

∂u(m,k)
...

. . .
...

∂gn(x̂(k), u(k))
∂u(1,k)

· · ·
∂gn(x̂(k), u(k))

∂u(m,k)


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





, (6.22)

the objective is to identify how these inputs can affect the different states

of the system and more specifically to determine all the coefficients of these

inputs.

3. Considering the results obtained in Step 2, as an intuitive assumption, the

number of the compensation inputs (the dimensionality of d) is considered to

be equal to that of the known inputs (the dimensionality of u), and subse-

quently the initial value of matrix G will be equal to the known input matrix

in (6.22).

4. Before the last step, a kind of clean-up can be done, where the goal is to make

G more constant, robust, and less sensitive to parameters. This step can be

tricky, and the designer’s knowledge of the system can be fundamental and

determining.

5. Finally, the estimation of the states can be obtained using equations (6.6),

(6.8), (6.9), and (6.20).
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Table 6.1: Generators data.[Pai and Chatterjee, 2014]
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤❤

Generator No.
Parameter

xd H Kd

g1 0.2995 [p.u.] 5.148 [s] 2.0 [p.u.]
g2 0.1850 [p.u.] 6.540 [s] 2.0 [p.u.]
g3 0.1850 [p.u.] 6.540 [s] 2.0 [p.u.]
g4 0.2320 [p.u.] 5.060 [s] 2.0 [p.u.]
g5 0.2320 [p.u.] 5.060 [s] 2.0 [p.u.]

6.4 Numerical Experiments

In this section, an IEEE 14-bus benchmark is selected as the test system for estima-

tion studies. The generators’ data is given in Table 6.1. The other required data

relating to this IEEE electric network such as transmission lines data and the result

of the load flow analysis can be found, e.g. in either [Pai and Chatterjee, 2014],

[Milano, 2002], or [Milano, 2005].

In order to evaluate the performance of the understudied estimators (refer to

Section 6.3 for more information) under different model mismatch conditions, three

main test cases are planned, wherein four different scenarios are taken into account

for each test case. In this work, the defined scenarios are based on two very prob-

able incidents that may take place very often during any power system operation.

These two types of incidents, which lead to sudden changes in any electrical grid,

include switching out a line, in which the line between two buses in a grid may

be switched off as a result of a fault or maintenance objectives, and a noticeable

sudden load change, an incident which is very common and usual in power systems.

Furthermore, the Monte Carlo (MC) method is used to repeat the simulations using

various random noise instances to mitigate the drawbacks of analytical solutions

and get more reliable and deterministic estimations of the states. Therefore, by av-

eraging these results samples, the approximation of the probabilistic distribution of

estimated states under different circumstances could be significantly more reliable.

To evaluate and compare the performance of all the considered Kalman filter
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based estimators, the root mean squared error (RMSE) is quantified as:

RMSE
(

x̂(k)

)

∆=

√

√

√

√

1
KM

K
∑

k=1

M
∑

m=1

||x̂m
(k) − x(k)||22, (6.23)

where x(k) ∈ R
n is the true state vector, x̂m

k is the estimated state vector at the

m-th Monte Carlo (MC) iteration, ||·||2 denotes the Euclidean norm, K is the total

number of samples considered for x(k) and M is the total number of MC simulations.

The value of M depends on the problem that is to be solved and should be large

enough to guarantee the convergence of the estimated RMSE. On the other hand,

it is always reasonable to define a maximum value for M to avoid unnecessary

computational burden. For example, in the current work, it is found that the RMSE

of the estimated state vector does not change significantly for the values larger than

M = 35, hence the maximum value of M is determined to be M = 60 to have a

good margin of safety.

IEEE 14-bus power system. Figure 6.1 illustrates the network topology, the bus

locations where the phasor measurement units (PMUs) are installed similar to the

results presented in [Müller and Castro, 2016] or [Roy et al., 2012], and the quantities

being measured, such as voltage (V), active power (P), and reactive power (Q). This

study assumes that the PMUs are accurate and without noticeable transmission

delays, and their time-resolution is around 50 samples per second. Moreover, as it

was stated in Section 6.3 , the response of EKF-UI is very fluctuating and noisy as

can be observed, for example in Figure 6.2. Thus, thereafter, in order to keep the

following figures clearer and more understandable, it will be avoided to display the

responses of the conventional EKF-UI. As the first test case, it is assumed that the

dynamical model of the generators within the understudied case study is entirely

known by all the estimators’ model and that the buses within the electrical network

that are connected to the generator are monitored by a PMU through measuring

quantities such as voltage (V), active power (P), and reactive power (Q), as shown in

Figure 6.1. Under such a situation, four scenarios are planned to be carried out, and

the obtained results are given in Figures 6.3–6.6. Figure 6.3 illustrates the results

of the estimators for the first scenario, where the correct electrical network model

(calculation procedure is available in Section 6.2) is available both pre- and post-
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Figure 6.1: The single-line diagram of the IEEE 5-generator 14-bus electric network.

incident of line outage. Figure 6.4 demonstrates the estimation results in the second

scenario, in which, unlike in the first scenario, the network model for the under

examined estimators is not updated after a line outage occurs. Figure 6.5 illustrates

the results of the third scenario, where a considerable load increase at bus B5 occurs

while the correct electrical network model is available for both the pre- and post-

incident of the load increase. Figure 6.6 shows the fourth scenario in which the

electrical network model is fixed and not updated after a load increase occurs on

bus B5. The assessment of these figures for the described four scenarios suggests

that the estimator derived from the proposed approach is able to follow closely and

accurately the dynamic states, namely speed deviation and angular position, while
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(a) EKF-UI output.
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(b) AEKF-UI output.

Figure 6.2: Comparing one of the estimated state of EKF-UI (∆ωg
1 of the generator

g1) with that of AEKF-UI.

other estimators, such as EKF, UKF, and CKF, especially when considerable model

mismatch exists, are unable to track the speed deviation accurately.

For the second test case, the inertia parameters of existing generators in the

considered case study system are assumed with 50 percent error, i.e., the inertia

parameters in the model utilized for the estimators are about 50 percent less than

their true values in the studied system model. Having such errors in the inertia pa-

rameters (Mi) of generators (refer to equation (2.12)), four scenarios are considered

and the results for these four scenarios are shown in Figures 6.7–6.10. Figure 6.7

illustrates the results of the estimators for the first scenario, where the correct elec-

trical network model (calculation procedure is available in Section 6.2) is available

both pre- and post-incident of line outage. Figure 6.8 demonstrates the estimation

results in the second scenario, in which, unlike in the first scenario, the network

model for the under examined estimators is not updated after a line outage occurs.

Figure 6.9 illustrates the results of the third scenario, where a considerable load

increase at bus B5 occurs while the correct electrical network model is available for

both the pre- and post- incident of the load increase. Figure 6.10 shows the fourth

scenario in which the electrical network model is fixed and not updated after a load

increase occurs on bus B5. The assessment of these figures for the described four

scenarios suggests that the estimator derived from the proposed approach is able

to follow closely and accurately the dynamic states, namely speed deviation and

angular position, while other estimators, such as EKF, UKF, and CKF, especially

when considerable model mismatch exists, are unable to track the speed deviation
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Figure 6.3: The estimated ∆ω and δ of all generators in case of switching off line
between buses 4 and 5, under the condition that the correct model of the electric
network is always available.

accurately.

Finally, for the third designated test case, it is assumed that the measurements

taken by the PMU installed at bus B1 would not be available to the estimators.

In such a situation, four different scenarios are carried out. The results for these

four scenarios are shown in Figures 6.11–6.14. Figure 6.11 illustrates the results of

the estimators for the first scenario, where the correct electrical network model is

available both pre- and post-incident of line outage. Figure 6.12 demonstrates the

estimation results in the second scenario, in which, unlike in the first scenario, the

network model for the under examined estimators is not updated after a line outage
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Figure 6.4: The estimated ∆ω and δ of all generators in case of switching off the line
between buses 4 and 5, under the condition that the correct model of the electric
network is not available after the incident.

occurs. Figure 6.13 illustrates the results of the third scenario, where a considerable

load increase at bus B5 occurs while the correct electrical network model is available

for both the pre- and post- incident of the load increase. Figure 6.14 shows the fourth

scenario in which the electrical network model is fixed and not updated after a load

increase occurs on bus B5. The assessment of these figures for the described four

scenarios suggests that the estimator derived from the proposed approach is able

to follow closely and accurately the dynamic states, namely speed deviation and

angular position, while other estimators, such as EKF, UKF, and CKF, especially

when considerable model mismatches exists, are unable to track the speed deviation



114 CHAPTER 6. ROBUST FILTER FOR MODEL MISMATCHES

−0.5

0.0

∆
ω

g 1
[P

.U
.]

4 5

−0.3

−0.2

True

UKF

CKF

EKF

AEKF-UI

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

δ
g 1

[r
a
d

]

4 5

0.2

0.4

True

UKF

CKF

EKF

AEKF-UI

−0.5

0.0

∆
ω

g 2
[P

.U
.]

4 5

−0.3

−0.2

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

δ
g 2

[r
a
d

]

4 5

−0.4

−0.2

−0.5

0.0

∆
ω

g 3
[P

.U
.]

4 5
−0.3

−0.2

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

δ
g 3

[r
a
d

]

4 5

−0.6

−0.4

−0.5

0.0

∆
ω

g 4
[P

.U
.]

4 5

−0.3

−0.2

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

δ
g 4

[r
a
d

]

4 5

−0.6
−0.5

0 1 2 3 4 5 6

Time, kT [s]

−0.5

0.0

∆
ω

g 5
[P

.U
.]

4 5

−0.3
−0.2

0 1 2 3 4 5 6

Time, kT [s]

−2.5

−2.0

−1.5

−1.0

−0.5

δ
g 5

[r
a
d

]

4 5

−0.6
−0.5

Figure 6.5: The estimated ∆ω and δ of all generators in case of switching on the
load at the bus 9 under the condition that the correct model of the electric network
is always available.

accurately. Particularly, comparing that part of the results from the third test case

that can be seen in Figure 6.12 and Figure 6.14, with their counterpart results in

the first test case, i.e., Figure 6.4 and Figure 6.6, or their counterpart results in the

second test case, i.e., Figure 6.8 and Figure 6.10, shows that missing measurements

may adversely affect the accuracy of results in conventional estimators like EKF,

UKF and CKF, but the estimator resulting from the proposed approach, AEKF,

can track the states of the generators especially the generators’ speed deviation.

Although the illustrated figures have shown the performance of each estimator

under the different circumstances quite well, the RMSE index that was defined in
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Figure 6.6: The estimated ∆ω and δ of all generators in case of switching on the
load at the bus 9 under the condition that the correct model of the electric network
is not available after the incident.

(6.23) can also be a useful metric in evaluating how much successful an estimator

is in performing its estimation task. RMSE values for all estimators under the

aforementioned three test cases are presented in Table 6.2 , Table 6.3 and Table 6.4

, and as can be observed, the proposed estimator, AEKF-UI, results in smaller RMSE

values than its rivals in cases where noticeable model mismatches have occurred.

To realize the simulations, it is assumed that measurement white noise has σ =

0.01, i.e., Rd = (0.01)2I. Moreover, the process noise is also set to 0.01 p.u, i.e.,

Qd = (0.01)2I. In addition, the sampling rate used for generating the measurement

data is assumed to be 50 samples per second, and such a sample time is utilized
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Figure 6.7: The estimated ∆ω and δ of all generators in case of switching off line
between buses 4 and 5, under the condition that the correct model of the electric
network is always available (with inertia error).

for the estimation processes, as well. All the programming codes and simulations

have been implemented in Python programming language and performed on an Intel

Core i5 CPU with 8-GB RAM.

6.5 Conclusion

Due to the numerous and often unexpected factors such as aging, temperature,

nonlinearity, faults, etc. that can affect a real-world system’s model, this work ad-

dresses the issue of model mismatching for KF-based estimators. To achieve the goal
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Figure 6.8: The estimated ∆ω and δ of all generators in case of switching off the line
between buses 4 and 5, under the condition that the correct model of the electric
network is not available after the incident (with inertia error).

of developing a robust estimator working under model inaccuracies, an engineering

approach was presented, wherein not only the concept of the estimation strategy but

also the designer’s understanding of the behavior of the system is considered and uti-

lized. An implementation of the proposed approach resulting in a robust estimator

is explained explicitly using the IEEE 14-bus 5-generator benchmark. The resulting

estimator is observed to be robust to the noticeable model mismatches occurring

during the system operation. Also, during this implementation, it was found that

even if the Jacobian matrix of the resulting estimator is not updated and is kept its

initial value, the estimator functions properly. This results in a significant reduc-
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Figure 6.9: The estimated ∆ω and δ of all generators in case of switching on the
load at the bus 9 under the condition that the correct model of the electric network
is always available (with inertia error).

tion in computational time. Comparing the performance of the estimator resulting

from the proposed methodology with that of standard estimators like EKF, UKF,

and CKF, demonstrates that the suggested approach yields a robust estimator for a

nonlinear system even when model errors are present and Gaussian noise exists. As

a future work, this methodology will be adapted to be implemented in a distributed

framework rather than a centralized one, which could be beneficial for huge systems

such as a power system with many components and sensors.
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Figure 6.10: The estimated ∆ω and δ of all generators in case of switching on the
load at the bus 9 under the condition that the correct model of the electric network
is not available after the incident (with inertia error).

Table 6.2: The comparison of the RMSE for UKF, CKF, EKF, EKF-UI, and AEKF-
UI.

Estimator
Line Switching Load Increasing

Accurate
grid Mdl

Inaccurate
grid Mdl

Accurate
grid Mdl

Inaccurate
grid Mdl

UKF 0.01625 0.10905 0.014119 0.07262
CKF 0.01765 0.12307 0.015413 0.07354
EKF 0.01697 0.09205 0.015093 0.07228
EKF-UI 0.15362 0.15802 0.165746 0.15213
AEKF-UI 0.02674 0.04240 0.021258 0.02210
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Figure 6.11: The estimated ∆ω and δ of all generators in case of switching off the line
between buses 4 and 5, under the conditions that the correct model of the electric
network is always available and no measurements available from PMU at B1.

Table 6.3: The comparison of the RMSE for UKF, CKF, EKF, EKF-UI, and AEKF-
UI (inertia errors).

Estimator
Line Switching Load Increasing

Accurate
grid Mdl

Inaccurate
grid Mdl

Accurate
grid Mdl

Inaccurate
grid Mdl

UKF 0.03477 0.11223 0.022773 0.05809
CKF 0.03567 0.12582 0.023305 0.05906
EKF 0.03455 0.08606 0.023158 0.05756
EKF-UI 0.16981 0.16610 0.159836 0.16077
AEKF-UI 0.03783 0.03893 0.024418 0.02732
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Figure 6.12: The estimated ∆ω and δ of all generators in case of switching off the
line between buses 4 and 5, under the conditions that the correct model of the
electric network is not available after the incident and no measurements available
from PMU at B1.
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Figure 6.13: The estimated ∆ω and δ of all generators in case of switching on the
load at the bus 9 under the conditions that the correct model of the electric network
is always available and no measurements available from PMU at B1.

Table 6.4: The comparison of the RMSE for UKF, CKF, EKF, EKF-UI, and AEKF-
UI (missing measurements from PMU at B1).

Estimator
Line Switching Load Increasing

Accurate
grid Mdl

Inaccurate
grid Mdl

Accurate
grid Mdl

Inaccurate
grid Mdl

UKF 0.02088 0.24686 0.01860 0.07456
CKF 0.02257 0.27386 0.01980 0.07929
EKF 0.02090 0.24090 0.01856 0.08221
EKF-UI 0.20288 0.20372 0.20694 0.20777
AEKF-UI 0.02625 0.04693 0.02365 0.03220
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Figure 6.14: The estimated ∆ω and δ of all generators in case of switching on the
load at the bus 9 under the conditions that the correct model of the electric network
is not available after the incident and no measurements available from PMU at B1.





Chapter 7

Conclusion

Nowadays power systems including electrical grids and/or microgrids play a funda-

mental and crucial role in providing electric energy to consumers across the globe.

Since humans are highly dependent on electricity, their lives can be seriously jeopar-

dized without electrical grids. Therefore, the more precise the estimates of the state

variables are, the better the chance of controlling and monitoring systems regardless

of the methodologies that are considered and planned for these systems. Undoubt-

edly, two areas that can definitely contribute to having more accurate state variables

of a system are state estimation and system modeling and identification. Chapter 2

of the thesis explained a set of procedures to mathematically model a power system.

The main benefit of such a mathematical modeling approach is that it allows re-

searchers to discover more deeply the concepts and events hidden beneath technical

software. Therefore, all research works in this PhD thesis are based on the concepts

and the models described in this chapter. Furthermore, Chapter 3, reviewed most

recent works as well as the state of the art in dynamic state estimation and in this

direction, several well-known KF-based filters like EKF, UKF, and CKF, which are

generally suitable for nonlinear system applications, are explored in more detail.

Motivated by the current problems and challenges exist in electrical grids from

the perspective of modeling and estimation, this thesis explores and develops several

approaches that can be used for estimating and model identification in power sys-

tems. The main contributions of the thesis is the proposal of several methodologies

for improving state estimation as well as modeling in power system applications. The

simulations results obtained using several benchmark models as well as experimental
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results obtained using real-world systems verify the effectiveness and reliability of

the new proposed methods. Specially, the proposed data-driven approach for mod-

eling a real synchronous generator can be considered as a great and promising work

in the direction of using AI methods and measured I/O data to find an accurate

model of real-world systems like a synchronous generator.

In Chapter 4, a novel method was developed for the distributed simultaneous

estimation of states and unknown inputs for linear discrete-time systems. The main

contribution of this work was the Lyapunov stability proof provided for guaranteeing

the stability and convergence of the proposed distributed filter. Additionally, the

unbiasedness and minimum variance of state and unknown input estimation were

investigated and verified. The condition making the estimator stable was stated,

from which a sufficient distributed gain was extracted. Finally, the proposed method

was applied to a system and its results were compared to the results of the centralized

estimator. Based on the test results, the distributed estimators performed as well as

the centralized estimator in terms of estimating states and unknown inputs, which is

a great accomplishment, since besides keeping the estimation of states and unknown

inputs accurate, the decentralization process of estimation brings more reliability

and robustness to estimation results because central processing failures are no longer

a problem.

Chapter 5 presents a novel approach for creating a global model for a real syn-

chronous generator by combining subspace identification method with T-S fuzzy

modeling. The main contribution of this work is the proposal a data-driven based

approach for finding a global model for a real synchronous generator. All the devel-

oped procedures, such as dataset construction, clustering, local model identification,

and T-S fuzzy modeling, are thoroughly illustrated with simulations and experien-

tial case studies. The results from these case studies demonstrate that even under

some unfavorable conditions such as noise, saturation issues, or variable terminal

voltages, etc, which may occur during SG operations, the proposed novel approach

can still lead to a precise global model. Therefore, the newly developed approach

is efficient, flexible, and robust enough to be used in a variety of scenarios and/or

environments. Also, the model is composed of several linear submodels in the form

of state space representation, so it can be easily applied in control and estimation

applications as well.

In Chapter 6, an engineering approach to develop a robust estimator in the
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presence of some model mismatches is presented. In the proposed approach, not

only the concept of estimation strategy but also the designer’s understanding of

the behavior of the system is considered and utilized. An implementation of the

proposed approach which leads to a robust estimator is explained explicitly using the

IEEE 14-bus 5-generator benchmark and it is observed that the resultant estimator

is resistant to the noticeable model mismatches occurring during the operation of

the power system. Comparing the performance of the resultant estimator with that

of standard estimators like EKF, UKF, and CKF, demonstrates that the suggested

approach yields a robust estimator for a nonlinear system even when model errors

are present and Gaussian noise exists.

In this thesis, state estimation and modeling problems related to electrical grids

were addressed; and several methodologies were proposed and developed to over-

come such issues. The suggested approaches were compared with state-of-the-art

approaches: a distributed estimator for linear systems to simultaneously estimate

system state variables and its unknown inputs, was developed and necessary con-

ditions for its stability and convergence were investigated (Chapter 4); T-S fuzzy

modeling and SIM were utilized to create a data-driven approach to find a global

model for a real synchronous generator (Chapter 5); A new adaptive approach based

on EKF was proposed to tackle the model mismatch problem for nonlinear systems

estimation, where the designer’s knowledge and experience from the system’s behav-

ior were considered and utilized as well (Chapter 6). As a result, all the proposed

approaches can be applied to problems relating to state estimation and modeling of

nonlinear systems in power systems. However, there are still some issues that need

future work, which could improve the performance of the proposed methodologies,

such as:

• The distributed approach to simultaneously estimating state variables of the

system as well as unknown inputs has shown to be stable and convergent under

special conditions. However, if some conditions like unbiasedness or Gaussian

noise can be relaxed, the proposed approach can be applied to a wider class

of linear systems (Chapter 4).

• A data-driven approach was proposed for modeling a real synchronous gener-

ator but it would be interesting to examine the performance of the identified

model in control and estimation methodologies like model predictive control
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(MPC) and Kalman-based filters, where an accurate model is usually required.

As another future work, establishing an adaptive mechanism for the obtained

model would improve its accuracy and reduce the necessity to repeat the whole

explained modeling procedure over time. (Chapter 5).

• The adaptive engineering approach for nonlinear systems estimation was an

implemented framework. However, converting this work in a decentralized and

distributed manner would be promising for huge systems like power systems,

where it is possible to partition the power system into several regions and treat

each region as an independent agent (Chapter 6).
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