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Abstract

This thesis is an exposition of the author’s contribution on effective descent morphisms in various
categories of generalized categorical structures. It consists of: Chapter 1, where an elementary
description of descent theory and the content of each remaining chapter is provided, supplemented
with references; Chapter 2, consisting of various descent theoretical definitions and results employed
in the remainder of this work; four chapters, each corresponding to an article written by the author
during the period of his PhD studies.

In Chapter 3, we describe conditions for which a V -functor is an effective descent morphism
in the category V -Cat of V -categories, where V is a cartesian monoidal category with finite limits.
Since these conditions rely on understanding (effective) descent morphisms in the free coproduct
completion Fam(V ) of the category V , we also carried out a study of such morphisms. We show
how these results may be applied to describe the effective descent V -functors for the categories
V = CHaus of compact Hausdorff spaces and V = Stn of Stone spaces. The main reference of this
chapter is the single-authored article On effective descent V -functors and familial descent morphisms,
published in the Journal of Pure and Applied Algebra, vol. 228, n. 5, 2024.

We study effective descent morphisms for generalized multicategories internal to a category
V with finite limits in Chapter 4, proposing two approaches to obtain their description. The first
approach relies on depicting the category Cat(T,V ) of T -categories internal to V as a 2-dimensional
limit, which provides a method of studying their effective descent morphisms. The second approach
extends Ivan Le Creurer’s techniques on internal categories to the setting of generalized internal
multicategories. As a consequence of this work, we provide conditions for functors between internal
multicategories to be of effective descent, as well as for functors between internal graded categories
(by an internal monoid), internal operadic multicategories and “enhanced” multicategories. The main
reference for this chapter is the article Descent for internal multicategory functors, published in
Applied Categorical Structures, vol. 31, n. 11, 2023, with Fernando Lucatelli Nunes.

Furnished with the results for effective descent morphisms in internal generalized multicategories,
Chapter 5 aims to extend these results to the setting of enriched generalized multicategories – the
so-called (T,V )-categories. This is accomplished by extending the embedding of “enriched →
internal” categories to the setting of generalized multicategories, via a broad notion of change-
of-base for generalized categorical structures, which we specialize to our setting. We discuss the
conditions under which the embedding (T ,V )-Cat→Cat(T,V ) exists and whether it reflects effective
descent morphisms. Finally, we show these results can be applied to the enriched counterparts of
the multicategories considered in Chapter 4. More precisely, we obtain descriptions of the effective
descent functors between enriched multicategories, enriched graded categories, enriched operadic
multicategories, and the discrete counterparts to the “enhanced” multicategories. The main reference
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for this chapter is the article Generalized multicategories: change-of-base, embedding and descent,
arXiv:2309.08084, DMUC preprints 23-29, under review, with Fernando Lucatelli Nunes.

Chapter 6 considers the techniques used by Sobral to study effective descent functors with respect
to the fibration of discrete opfibrations under a new perspective. More specifically, we first highlight
the relationship between the Cauchy completion of V -enriched categories and the V -fully faithful lax
epimorphisms: the latter are precisely those V -functors that induce an equivalence on the Cauchy
completions. Second, we show that the study of effective descent functors with respect to a suitable
pseudofunctor Catop → CAT can be simplified via formal methods. Combining these two ideas, we
confirm that Sobral’s characterization can be extended, showing the same conditions also characterize
the effective descent morphisms with respect to the fibration of split opfibrations. The main reference
for this chapter is the article Cauchy completeness, lax epimorphisms and effective descent for split
fibrations, published in Bulletin of the Belgian Mathematical Society – Simon Stevin, vol. 30, n. 1,
2023, with Fernando Lucatelli Nunes and Lurdes Sousa.



Resumo

Esta tese é uma exposição das contribuições do autor sobre morfismos de descida efetiva em várias
categorias de estruturas categoriais generalizadas. É consistido por: Capítulo 1, onde é fornecida uma
descrição elementar sobre a teoria de descida e o conteúdo dos demais capítulos, complementado com
referências bibliográficas; Capítulo 2, composto por várias definições e vários resultados da teoria de
descida empregues na restante obra; quatro Capítulos, correspondendo a cada artigo escrito pelo autor
durante o período dos seus estudos doutorais.

No Capítulo 3, descrevemos condições para que um V -functor seja de um morfismo de descida
efetiva na categoria V -Cat de V -categorias, onde V é uma categoria monoidal cartesiana com limites
finitos. Como estas condições dependem do conhecimento dos morfismos de descida (efetiva) no
completamento livre Fam(V ) da categoria V para coprodutos, também se desempenhou um estudo
de tais morfismos. Demostramos como estes resultados podem ser aplicados para descrever os
V -functores de descida efetiva para as categorias V = CHaus de espaços de Hausdorff compactos
e V = Stn de espaços de Stone. A referência principal deste capítulo é o artigo de autoria única
On effective descent V -functors and familial descent morphisms, publicado no Journal of Pure and
Applied Algebra, vol. 228, n. 5, 2024.

Estudamos morfismos de descida efetiva para multicategorias generalizadas internas a uma cat-
egoria V com limites finitos no Capítulo 4, propondo duas abordagens para obter a sua descrição.
A primeira abordagem recorre a uma descrição da categoria Cat(T,V ) de T -categorias internas a
V como um limite de dimensão 2, que proporciona um método para o estudo dos seus morfismos
de descida efetiva. A segunda abordagem extende as técnicas de Ivan Le Creurer para a descrição
de morfismos de descida efetiva em categorias internas para o contexto das multicategorias internas
generalizadas. Como consequência destas descrições, fornecemos condições para que functores entre
multicategorias internas sejam de descida efetiva, tal como functores entre categorias graduadas inter-
nas (por um monóide interno), multicategorias operádicas internas, e multicategorias “aprimoradas”. A
referência principal para este capítulo é o artigo Descent for internal multicategory functors, publicado
em Applied Categorical Structures, vol. 31, nº 11, 2023, com Fernando Lucatelli Nunes.

Munido com os resultados sobre morfismos de descida efetiva em multicategorias generalizadas
internas, o Capítulo 5 pretende extender estes resultados para o contexto das multicategorias general-
izadas enriquecidas – as ditas (T,V )-categorias. Isto foi concretizado através de uma extensão da
imersão de categorias “enriquecidas → internas” para o ambiente das multicategorias generalizadas,
através de uma noção abrangente de mudança de base para estruturas categoriais generalizadas, que
especializamos para o nosso contexto. São também discutidas as condições sob as quais é possível
levar a cabo uma tal extensão, e quando é, se (T ,V )-Cat→ Cat(T,V ) reflete morfismos de descida
efetiva. Finalmente, demostra-se que estes resultados podem ser aplicados às multicategorias en-
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riquecidas associadas às consideradas no Capítulo 4. Mais precisamente, obtemos descrições para os
morfismos de descida efetiva entre multicategorias enriquecidas, categorias graduadas enriquecidas,
multicategorias operádicas enriquecidas, e os análogos discretos das multicategorias “aprimoradas”.
A referência principal para este capítulo é o artigo Generalized multicategories: change-of-base,
embedding and descent, arXiv:2309.08084, pré-publicações DMUC 23-29, sob revisão, com Fernando
Lucatelli Nunes.

O Capítulo 6 considera as técnicas utilizadas por Sobral no estudo de morfismos de descida
efetiva em relação ao fibrado dos opfibrados discretos sob uma nova perspetiva. Mais especificamente,
realçamos, em primeiro lugar, a relação entre o completamento de Cauchy para categorias enriquecidas
em V e os epimorfismos lassos V -plenamente fiéis: estes últimos são precisamente os V -functores
que induzem uma equivalência nos completamentos de Cauchy. Em segundo lugar, mostramos que
o estudo de morfismos de descida efetiva em relação a um pseudofunctor Catop → CAT pode ser
simplificado através de métodos formais. Combinando estas duas ideias, confirmamos que a carac-
terização de Sobral pode ser extendida, mostrando que as mesmas condições também caracterizam
os morfismos de descida efetiva em relação ao pseudofunctor de opfibrados cindidos. A referência
principal para este capítulo é o artigo Cauchy completeness, lax epimorphisms and effective descent
for split fibrations, publicado em Bulletin of the Belgian Mathematical Society – Simon Stevin, vol. 30,
nº 1, 2023, com Fernando Lucatelli Nunes e Lurdes Sousa.
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Chapter 1

Introduction

Descent theory was first established in [23, 20, 18, 22] in the context of algebraic geometry, aiming
to generalize the solution of the following problem: describe the commutative ring homomorphisms
R → S for which the extension-of-scalars functor R-Mod→ S-Mod is well-behaved. A more recent
account of this problem, studied in a broader context, can be found in [32].

Descent theory has since found various applications and connections with other areas of mathe-
matics, namely:

– the theory of monads [4], [42], [46],
– two-dimensional limits and coherence, [36], [43], [45],
– algebraic topology [8], [11],
– Janelidze-Galois theory [27], [7],
– topology [54], [14].

It is often useful to depict descent theory as a higher dimensional analogue of sheaf theory, as in [30,
Introduction]. The gluing condition, described in terms of an equalizer of a parallel pair of functions
on sets (sheaf condition), is replaced by descent data, described in terms of a descent object of a
suitable diagram of categories (descent condition).

1.1 Descent theory with respect to the basic bifibration

The fundamental setting begins with a category C with pullbacks, a morphism p : e→ b, and considers
the following change-of-base adjunction

C ↓ b C ↓ e,

p∗

p!

⊣

where C ↓ x is the comma category whose objects are the morphisms in C with codomain x, also
called bundles over x. The descent problem, in this setting, can be stated as follows: describe the
morphisms p : e → b where bundles over b admit a presentation as bundles over e plus some structure,
specified by p∗, satisfying coherence conditions – this structure is the so-called descent data.

1
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The category Desc(p) of descent data of p may be presented as the category T p-Alg of T p-algebras,
where T p is the monad induced by the change-of-base adjunction, by the Bénabou-Roubaud theo-
rem [4]. Hence, we may consider the Eilenberg-Moore factorization of the pullback functor p∗ as
follows:

C ↓ b C ↓ e

Desc(p)
K p

p∗

Therefore, the descent problem is reduced to the question of whether the comparison functor
K p : C ↓ b → Desc(p) is an equivalence. When this is the case, we say that p is an effective descent
morphism: these morphisms, the main object of study of this work, are precisely the solutions to the
descent problem. Therefore it is informative to obtain descriptions of such morphisms. In a pursuit of
such descriptions, it is useful to consider the notions of descent and almost descent morphism. We say
that p is

– p is a descent morphism if K p is fully faithful,
– p is an almost descent morphism in K p is faithful.

These refinements will be useful in our description of effective descent morphisms in categorical
structures.

If C has all finite limits, then

– the descent morphisms are precisely the pullback-stable regular epimorphisms, and
– the almost descent morphisms are precisely the pullback-stable epimorphisms,

but, in general1, the effective descent morphisms seldom have an elementary description. In fact, our
story begins with the classical example of this phenomenon: the characterization of effective descent
morphisms in the category Top of topological spaces, first given in [54], shows how involved such a
description can get.

In [40], we find another example of the prominently challenging problem of studying effective
descent morphisms. This work studies these morphisms in categories of essentially algebraic theories
internal to a category B with finite limits. In particular, given a functor p : x → y of categories internal
to B, Le Creurer shows that p is effective for descent if2.

(I) p1 : x1 → y1 is an effective descent morphism in B,
(II) p2 : x2 → y2 is a descent morphism in B,

(III) p3 : x3 → y3 is an almost descent morphism in B,

where pn : xn → yn is the component of p on the object of the n-tuples of composable morphisms (or
n-chains). Moreover, when B is lextensive and has a (regular epi, mono)-factorization system, it was
also verified that these criteria are necessary.

1If C is either Barr-exact [2] or locally cartesian closed, the effective descent morphisms are precisely the regular
epimorphisms.

2Le Creurer required the component of p on objects, p0 : x0 → y0 to be effective for descent, but this was shown to be
redundant in [52, Lemma A.3].
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The effective descent morphisms in the category of finite ordered sets (equivalent to the category
of finite topological spaces) were studied in [28], proving that a morphism p : x → y between finite
ordered sets is effective for descent if and only if for all a,b,c∈ y with a⩽ b⩽ c there exist a′,b′,c′ ∈ x
with a′ ⩽ b′ ⩽ c′ such that a = pa′, b = pb′ and c = pc′. We point out the similarity of this condition
with (II), as any ordered set is a category. This insight of “chain-surjectivity” led [14] to show that
a suitable restatement of these conditions provided a neat perspective on the characterization of the
effective descent morphisms in Top, which arise naturally once topological spaces are incarnated as a
generalized categorical structure. Inspired by this perspective, [11, 13, 12, 15] studied the description
problem of effective descent morphisms in various notions of spaces; when V is a suitable quantale,
these are the so-called (T,V )-categories, which were introduced in a more general setting in [16].
These categories of (T,V )-categories are a notion of enriched generalized categorical structure, of
which the category Top of topological spaces is an example. This corroborates the perspective of
Lawvere, given in [39], that fundamental structures, such as topological spaces, are categorical in
nature.

The insight of [40, 28, 14] supports the intuition that effective descent morphisms of categorical
structures have a natural description in terms of the “chain-surjectivity” conditions (I), (II) and (III).
As an example, via his study on the commutativity of bilimits, Lucatelli Nunes obtained [45, Theorem
9.10], where it was shown that the embedding of the category V -Cat of V -categories into the category
Cat(V ) of categories internal to V

V -Cat→ Cat(V ) (1.1)

reflects effective descent functors, when V is a suitable lextensive, cartesian monoidal category.
Together with the “chain-surjectivity” criteria of Le Creurer, we recover a list of criteria for such
enriched V -functors to be effective for descent.

This is where the work of the author comes in. It was shown in [51] that

V -Cat→ Fam(V )-Cat

reflects effective descent morphisms, when V is a category with finite limits ([51, Lemma 3.1]), where
Fam(V ) is the category of families of objects of V , also known as the free coproduct completion
of V . The category Fam(V ) is a suitable lextensive category, so that [45, Theorem 9.10] can be
applied to the embedding Fam(V )-Cat→ Cat(Fam(V )), confirming that it reflects effective descent
morphisms. Thus, by reflecting along the composite

V -Cat Fam(V )-Cat Cat(Fam(V )),

the “chain–surjectivity” criteria of [40] allow us to describe the effective descent morphisms in V -Cat
in terms of morphisms in Fam(V ) ([51, Theorem 3.3]), extending [45, Theorem 9.10] to all categories
V with finite limits.

The conditions stated in [51, Theorem 3.3] for effective descent morphisms in V -Cat are stated in
terms of conditions on morphisms in Fam(V ). This naturally prompts the study of effective descent
morphisms in free coproduct completions, which was also carried out in [51]. Via these results,
we can show that, when V is a frame, we obtain one implication of the main results of [12] ([51,
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Theorem 4.7]), effectively confirming that the criterion set forth by [28] are implied by the criteria
of [40], confirming that both approaches to seemingly unrelated descent problems have the same
underlying ideas.

The work of [14, 11, 13, 15] regards effective descent morphisms of (T,V )-categories, when V

is a quantale. The conditions described therein can also be described via similar “chain-surjectivity”
conditions, evidencing that this perspective on effective descent morphisms goes beyond plain
categorical structures.

Multicategories are the most fundamental example of a generalized categorical structure. An
illustrative example of which is the multicategory Vect of vector spaces and multilinear maps, that
is, functions f : V1 × . . .×Vn →W from a finite list of vector spaces V1, . . . ,Vn to a vector space W ,
which are linear in each component:

f (v1, . . . ,vi +λwi, . . . ,vn) = f (v1, . . . ,vi, . . . ,vn)+λ f (v1, . . . ,wi, . . . ,vn),

where v j is a vector in Vj for each j = 1, . . . ,n, wi is a vector in Vi, and λ is a scalar. This definition
includes n = 0; in which case f consists of a vector in W .

Thus, multicategories generalize categories in the sense that the domain of a morphism consists of
a finite string of objects, with an adequate notion of composition of morphisms, as well as identity
morphisms, satisfying suitable associativity and unity laws. A more thorough introduction to these
objects can be found in Chapter 4, along with references for further study.

More general notions of “multicategory” can be obtained by varying the “shape” of the domain of
a morphism. In the case of categories, the “shape” is just an object, while in the multicategory case,
the “shape” is a finite string of objects. As we have mentioned, topological spaces are generalized
categorical structures. In this case, for a topological space X , the domains of the morphisms are
ultrafilters on its underlying set of objects (points), and a morphism x→ x is the assertion that the
ultrafilter x converges to the point x.3 This perspective on topological spaces can be traced back to [3].

As in the case of plain categories, we have a notion of internal generalized multicategories, first
considered in [9], and more recently in [24], as well as a notion of enriched generalized multicategories,
which are the (T,V )-categories of [16]. Our goal is to obtain an uniform description of the effective
descent morphisms on both accounts of generalized categorical structure.

Towards such a description, the work carried out in [52] is our first step, where we studied the
effective descent morphisms of T -categories4 internal to V . Therein, we showed that, if V is a
category with finite limits, then any functor of T -categories internal to V satisfying a suitable notion
of “chain-surjectivity” conditions is an effective descent morphism ([52, Theorem 5.3]), extending
the result of [40] to the setting of internal generalized categorical structures. In particular, our results
provide insight into the effective descent functors of (ordinary) multicategories internal to any category
with finite limits, such as Set or Top.

Based on [52], and inspired by the techniques of [45], the work developed in [53] considers the
problem of reflecting effective descent morphisms along a suitable embedding “enriched → internal”
in the setting of generalized multicategories, analogous to (1.1). Therein, a notion of change-of-base

3This is analogous to the notion that a ordered set X can be viewed as a category, whose morphisms x → y are the
assertions that “x is related to y”.

4Here, T is a suitable monad on a V with finite limits which models the shape of the domains of the morphisms.
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for generalized multicategories was developed [53, Theorem 5.2], and it was shown that, under
suitable conditions (for instance, when V is lextensive), the natural generalization of (1.1) to the
setting of generalized multicategories

(T ,V )-Cat→ Cat(T,V ) (1.2)

is an embedding (Theorem 9.2) and reflects effective descent morphisms. Thus, by applying the
results of [52], we obtain a description of effective descent morphisms for enriched generalized
multicategories in terms of “chain-surjectivity” conditions (Theorem 10.5).

The topic of obtaining the relationship between the work of [14, 11, 13, 15] and [53] regarding
effective descent morphisms of enriched generalized multicategories is still the subject of on-going
work.

1.2 Descent theory with respect to a pseudofunctor

The descent problem in [23] was stated in a more general setting. For each object x in C , we
replace the category of bundles C ↓ x by a category Fx of “structures” over x, and for each morphism
p : e → b, we have a change-of-base functor p∗ : Fb → Fe, replacing the pullback functor. Together
with coherent isomorphisms id∗x ∼= idFx and (r ◦ p)∗ ∼= p∗ ◦ r∗ for a morphism r : b → c, F defines a
pseudofunctor C op → CAT.

As was the case for the basic bifibration, we can also define a category DescF(p) of F-descent data
for p for any pseudofunctor F , for which we obtain a factorization of p∗ – the F-descent factorization:

Fb Fe

DescF(p)
K p

F

p∗

(1.3)

We say that p is an effective F-descent (F-descent) morphism if K p
F is an equivalence (fully faithful).

The main objects of study of [56] are the (effective) descent morphisms with respect to the
pseudofunctor

F = CAT(−,Set) : Catop → CAT

of discrete opfibrations. Therein, Sobral has shown that any functor p : e → b between small categories
has a factorization

b e

kp

p

φ
(1.4)

whose image via CAT(−,Set) is equivalent to the F-descent factorization (1.3) with F =CAT(−,Set).
Consequently, we have an equivalence θ : DescF(p)≃CAT(kp,Set) such that K p

F =CAT(φ ,Set)◦θ .
In this way, the relevance of the notion of lax epimorphism becomes transparent. We say that a

functor f : c → d between small categories is a lax epimorphism [1] if CAT( f ,Set) is fully faithful.
Thus, it follows that p is a CAT(−,Set)-descent morphism if and only if φ is a lax epimorphism [56,
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Theorem 1]. Moreover p is an effective CAT(−,Set)-descent morphism if and only if CAT(φ ,Set) is
an equivalence. It was shown in [56, Theorem 2] that this is the case if and only if φ is a fully faithful
lax epimorphism.

The work developed in [47] aims to give a systematic view on the observations of [56], aiming to
apply them in other contexts. More specifically, we confirm that the characterization given in [56]
can be plainly extended to further characterize the (effective) descent morphisms with respect to the
pseudofunctor CAT(−,Cat) : Catop → CAT of split opfibrations, see [47, Theorem 3.2].

We begin by considering a factorization as in (1.4) where kp is the lax codescent category for the
kernel pair of p. When a pseudofunctor F : Catop → CAT preserves lax descent categories, it follows
that K F

p is equivalent to Fφ , reducing the study of whether p is an (effective) F-descent morphism
to the study of φ .

The relationship of (fully faithful) lax epimorphisms with copresheaf categories influenced the
study of their relationship with the Cauchy completion of a category. This work was carried out in the
V -enriched context, as it is suitable for future considerations, and to do so, we consider the notion
of V -fully faithful functors, and V -lax epimorphisms, as studied in [48]. We have shown that the
following are equivalent, for a V -functor p : e → b between small V -categories:

– p is a V -fully faithful lax epimorphism,
– the functor p∗ : Cb → Cb on the Cauchy completions induced by p is an equivalence,
– the change-of-base functor p∗ : V -CAT(b,V )→ V -CAT(e,V ) is an equivalence,

provided V is a suitable monoidal category.
We obtain the main result of [47], Theorem 3.2, by applying our characterization of V -fully faithful

lax epimorphisms when V = Set,Cat to the formal considerations pertaining to the factorization
(1.4).

Outline

In Chapter 2 we provide a concise introduction to descent theory. We begin by recalling the 2-
dimensional limit known as lax descent category [42], and stating its 2-dimensional universal property
in Section 2.1. Afterwards, we proceed to establish the fundamental notion of this thesis: that of
effective descent morphism with respect to a pseudofunctor C op → CAT, in Section 2.2, where we
also give some remarks about the Beck-Chevalley condition. In Section 2.3, we focus on the basic
bifibration, fixing several pieces of notation and describing the fundamental descent-theoretical results
present in [52], [51] and [53].

Chapter 3, which covers the work done in [51], aims to study effective descent morphisms in
V -Cat for a cartesian monoidal category V with finite limits. Our first goal is to establish that

Theorem 1.1. V -Cat→ Fam(V )-Cat reflects effective descent morphisms.

Theorem 1.1 is obtained via a series of observations on pseudopullbacks and the fact that the
enrichment 2-functor preserves these 2-dimensional limits. Moreover, since Fam(V ) is a suitable
lextensive category, we conclude, by [45, Theorem 9.11], that Fam(V )-Cat→ Cat(Fam(V )) reflects
effective descent morphisms. Thus, if F is a V -functor, we can verify whether it is effective for descent
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in terms of (effective, almost) descent morphisms in Fam(V ) (Theorem 3.10). In turn, this motivated
us to study the (effective) descent morphisms in the free coproduct completions of categories with
finite limits. We apply these results when V is

– a (co)complete Heyting lattice, establishing the connection between the “chain-surjectivity”
ideas from [40] and [28],

– a regular category, such as the categories CHaus of compact Hausdorff spaces and Stn of Stone
spaces,

This aforementioned connection between [40] and [28] helps solidify our intuition and general
understanding of the problem of effective descent in categorical structures. More precisely, we recover
one implication of [12, Theorem 2.5] for Heyting lattices V , which, when taking V = 2, also recovers
the “chain surjectivity” of [28], confirming the link with the approach of [40].

In Chapter 4, covering the work done in [52], we begin with an overview of the notion of
generalized internal multicategories, studied in [9] and [24]. After illustrating the approach carried out
in Section 4.2 for the simpler setting of reflexive T -graphs, we provide a description of the category
Cat(T,V ) of internal T -categories via a 2-dimensional limit, via which we describe the effective
descent morphisms, Theorem 4.10. This is one of the approaches; we give a second approach to the
study of effective descent morphisms in Cat(T,V ) via direct calculation, closely following the ideas
of [40, Chapter 3], Theorem 4.13. We finish the chapter by applying our results to various sorts of
generalized multicategory, among them are the graded, operadic and enhanced multicategories.

In Chapter 5, covering the relevant definitions and the descent theoretical results of [53], we revisit
(a slight generalization of) the notion of (T,V )-categories defined in [16], under the terminology
enriched (T,V )-categories. Afterwards, we give a few concise remarks regarding the change-of-base
functor “enriched → internal” in the context of generalized multicategories, mentioning only the
most fundamental definitions to fix the notation, and ideas for the results. Having established the
embedding under suitable conditions, we then study the problem of reflection of effective descent
morphisms, and, via Theorem 4.13, we obtain our main result, Theorem 5.6, providing a description
of the effective descent morphisms in the enriched generalized multicategory setting. The chapter
ends with some brief comments on the scope of our results, and we list some examples.

In Chapter 6, covering the work of [47], the goal is to study the effective descent morphisms
with respect to the bifibration of split opfibrations. The main observation is that the results of [56]
on effective descent morphisms for the bifibration of discrete opfibrations carry over exactly to our
setting (Theorem 6.11). Indeed, we verify that a functor is of effective CAT(−,Cat)-descent if and
only if it is of effective CAT(−,Set)-descent. These results are obtained via a study of the relationship
between the Cauchy completion of a category and the fully faithful, lax epimorphisms; this study was
carried out in the enriched setting, alluding to future work.

List of publications

The present thesis is based on the work of the following four papers:
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Chapter 2

A primer on descent theory

This chapter aims to give a concise introduction to classical descent theory, under a categorical point
of view, as well as to uniformize the notation and gather the preliminary results from [52], [47], [51]
and [53] pertaining to descent theory.

We begin by reviewing the 2-dimensional limit known as lax descent category [57, p. 177], [44,
42, 46] in Section 2.1, which is the fundamental notion encompassing the idea of coherence, and
we state its universal property. Part of the work developed in Chapter 3 is done directly under the
perspective of the lax descent category, particularly in Section 3.3.

The fundamental notion to our work, that of effective descent morphism with respect to a pseud-
ofunctor F : C op → CAT, is presented in Section 2.2. We also provide a few remarks on the Beck-
Chevalley condition (introduced in [4]), and its importance in the relationship between monadicity
and descent theory, as evidenced by the Bénabou-Roubaud theorem.

In Section 2.3, we begin our study of descent theory with respect to the basic bifibration

C ↓ − : C op → CAT

associated to a category C with pullbacks. We establish the preliminary descent theoretical tools
which are employed in Chapters 4 and 5, as well as most of Chapter 3, namely, classical results
regarding the reflection of effective descent morphisms along an embedding C → D (Propositions 2.4
and Corollary 2.5), descent-theoretical results via bilimits (Propositions 2.6 and 2.7), as well as an
original result, [51, Lemma 2.5], regarding preservation of descent morphisms (Lemma 2.8). We also
recall results from [40] and [45] regarding effective descent morphisms of categorical structures as
our starting point (Theorems 2.10 and 2.12).

We finish this preliminary chapter with Section 2.4, where we give some remarks about the
descent theory with respect to the bifibration of split opfibrations CAT(−,Cat) : Catop → CAT.
Chapter 6 studies descent theory with respect to this pseudofunctor, which is an important example of
a bifibration that does not satisfy the Beck-Chevalley condition.

9
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2.1 Lax descent category

Throughout this work, we let CAT be the 2-category of (large) categories, functors and natural
transformations, and we let i : Cat→ CAT be the full sub-2-category of small categories.

The present definition of lax descent category follows the approach of [42, Section 1] of consider-
ing the 2-dimensional limit of a pseudofunctor ∆3 → CAT, as opposed to the approach via a 2-functor
∆str → CAT carried out in [46], where ∆str is a strict replacement of ∆3.

To fix the notation, we briefly recall the definition of the truncated cosimplicial diagram ∆3 and of
a pseudofunctor. We define the category ∆3 to be generated by the following diagram

1 2 3
d1

d0

d2

d1s0

d0

with relations

s0 ◦d1 = id1, d2 ◦d1 = d1 ◦d1,

s0 ◦d0 = id1, d0 ◦d0 = d1 ◦d0,

d2 ◦d0 = d0 ◦d1.

Let C be a category. A pseudofunctor F : C → CAT consists of

– a function obF : obC → obCAT,
– a function Fx,y : C (x,y)→ CAT(Fx,Fy), for each pair of objects x,y in C ,
– a natural isomorphism eF

x : idFx → F(idx) for each object x in C ,
– a natural isomorphism mF

f ,g : Fg◦F f →F(g◦ f ) for each pair of morphisms f : x→ y, g : y→ z
in C ,

such that the following diagrams commute

F f F(idy)◦F f

F f

eF
y ·F f

mF
f ,idy

F f F f ◦F(idx)

F f

F f ·eF
x

mF
idx , f

Fh◦Fg◦F f F(h◦g)◦F f

Fh◦F(g◦ f ) F(h◦g◦ f )

mF
g,h ·F f

Fh·mF
f ,g mF

f ,h◦g

mF
g◦ f ,h

for all morphisms f : x → y, g : y → z and h : z → w.

For a pseudofunctor F : ∆3 → CAT, we write the underlying diagram as

F1 F2 F3
dF

1

dF
0

dF
2

dF
1sF

0

dF
0
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and we define the following natural isomorphisms:

υ
F
1 =mF

d1,s0

−1 ◦ eF
1 : id→ sF

0 dF
1 , θ

F
01 =mF

d1,d1

−1 ◦mF
d1,d2

: dF
2 dF

1 → dF
1 dF

1 ,

υ
F
0 =mF

d0,s0

−1 ◦ eF
1 : id→ sF

0 dF
0 , θ

F
02 =mF

d0,d2

−1 ◦mF
d1,d0

: dF
2 dF

0 → dF
0 dF

1 ,

θ
F
12 =mF

d0,d1

−1 ◦mF
d0,d0

: dF
1 dF

0 → dF
0 dF

0 .

The lax descent category of a pseudofunctor F : ∆3 → CAT is a category Desc(F) whose objects,
called lax F-descent data, are pairs (x,φ) where x is an object in F1 and φ : dF

1 (x) → dF
0 (x) is a

morphism in F2 satisfying the following reflexivity condition

x

sF
0 dF

1 (x) sF
0 dF

0 (x)

υF
1 υF

0

sF
0 (φ)

(2.1)

and transitivity condition

dF
1 dF

1 (x) dF
1 dF

0 (x)

dF
2 dF

1 (x) dF
0 dF

0 (x)

dF
2 dF

0 (x) dF
0 dF

1 (x)

dF
1 (φ)

θ F
12θ F

01

dF
2 (φ)

θ F
02

dF
0 (φ)

(2.2)

Given lax F-descent data (x,φ), (y,ψ), a morphism ω : (x,φ) → (y,ψ) in Desc(F) of lax F-
descent data consists of a morphism ω : x → y such that the following diagram commutes:

dF
1 (x) dF

0 (x)

dF
1 (y) dF

0 (y)

dF
1 (ω)

φ

dF
0 (ω)

ψ

2.1.1 Universal property

Associated to the lax descent category, we have a forgetful functor X : Desc(F)→ F1 given on objects
by (x,φ) 7→ x, and a natural transformation Φ : dF

1 X → dF
0 X given by Φ(x,φ) = φ . This pair (X ,Φ)

makes the following diagrams commute

X

sF
0 dF

1 X sF
0 dF

0 X

υF
1 ·X υF

0 ·X

sF
0 ·Φ
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dF
1 dF

1 X dF
1 dF

0 X

dF
2 dF

1 X dF
0 dF

0 X

dF
2 dF

0 X dF
0 dF

1 X

dF
1 ·Φ

θ F
12·Xθ F

01·X

dF
2 ·Φ

θ F
02·X

dF
0 ·Φ

which is just a restatement of the conditions (2.1) and (2.2).

If (Y,Ψ) is a pair where Y : A → F1 is a functor and Ψ : dF
1 Y → dF

0 Y is a natural transformation
satisfying

Y

sF
0 dF

1 Y sF
0 dF

0 Y

υF
1 ·Y υF

0 ·Y

sF
0 ·Y

(2.3)

dF
1 dF

1 Y dF
1 dF

0 Y

dF
2 dF

1 Y dF
0 dF

0 Y

dF
2 dF

0 Y dF
0 dF

1 Y

dF
1 ·Ψ

θ F
12·Yθ F

01·Y

dF
2 ·Ψ

θ F
02·Y

dF
0 ·Ψ

(2.4)

then there is a unique G : A → Desc(F) such that

A F1

Desc(F)

Y

G X
(2.5)

commutes, and Ψ = Φ ·G.

Let (Z,Ξ) be another pair where Z : A → F1 is a functor and Ξ : dF
1 Z → dF

0 Z is a natural
transformation satisfying (2.3) and (2.4), and let H : A → Desc(F) be the unique functor such that
Z = XH and Ξ = Φ ·H. For any natural transformation Γ : Y → Z such that

dF
1 Y dF

0 Y

dF
1 Z dF

0 Z

dF
1 ·Γ

Ψ

dF
0 ·Γ

Ξ

commutes, there is a unique Γ̂ : G → H such that X · Γ̂ = Γ.
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2.2 Effective descent morphisms

Let C be a category with pullbacks, and p : e → b be a morphism in C . The kernel pair of p, given
by the pullback

p×b p e

e b

d1

d0
⌜ p

p

(2.6)

induces an equivalence relation internal to C , given by the following diagram

p×b p×b p p×b p e,
d1

d0

(2.7)

which we denote by Ker(p) : ∆
op
3 → C .

For any pseudofunctor F : C op → CAT, we let f ∗ = F f for every morphism f in C , and F p =

F ◦Ker(p)op. We write
DescF(p) = Desc(F p) (2.8)

for the category of lax descent data of F p. Moreover, we observe that the kernel pair (2.6) induces a
pair (p∗ : Fb → Fe, Ω : d∗

1 p∗ → d∗
0 p∗) satisfying (2.3) and (2.4), where Ω =mF

p,d0

−1 ◦mF
p,d1

. Thus, by
the universal property (2.5), we obtain a unique functor K p

F : Fb →DescF(p) such that the following
diagram commutes

Fb Fe

DescF(p)

p∗

K p
F U p

F

(2.9)

and Ω = Φ · p∗, where (U p
F ,Φ) is the pair associated to the lax descent category of F p. We call (2.9)

the F-descent factorization of p.

We now reach the most important definition in this work. A morphism p in a category C with
pullbacks is said to be

– an almost F-descent morphism if K p
F is faithful,

– an F-descent morphism if K p
F is fully faithful,

– an effective F-descent morphism if K p
F is an equivalence.

2.2.1 Beck-Chevalley condition

The Beck-Chevalley condition, introduced in [4], underlies the relationship between monadicity
and descent theory. We will give a brief remark on this topic; we recall that a pseudofunctor
F : C op → CAT is said to be a bifibration if, for every morphism f in C , the functor f ∗ has a left
adjoint, which we denote by f! ⊣ f ∗, and whose unit and counit are denoted by η f and ε f .
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In this context, a bifibration is said to satisfy the Beck-Chevalley condition if, for all pullback
squares in C

w x

y z

h

k
⌜

f

g

the following natural transformation

h!k∗ h!k∗g∗g! h!h∗ f ∗g! f ∗g!
h!k∗ηg h!θg! εh f ∗g!

is a natural isomorphism, where θ : k∗g∗ → h∗ f ∗ is the induced isomorphism by the commutative
square (2.2.1).

Theorem 2.1 (Bénabou-Roubaud [4]). Let F : C op → CAT be a bifibration satisfying the Beck-
Chevalley condition. For a morphism p : e → b in C , we write T p for the monad induced by the
adjunction p! ⊣ p∗.

The F-descent factorization (2.9) of p is equivalent to the Eilenberg-Moore factorization of p∗:

Fb Fe

T p-Alg

p∗

K p U p
(2.10)

so, in particular, we have an equivalence of categories

DescF(p)≃ T p-Alg,

and the following are equivalent:

(i) p is an effective F-descent morphism (resp. F-descent morphism).
(ii) p∗ is monadic (resp. premonadic).

This result was generalized in [45, Theorem 7.4], via the study of commutativity of bilimits, and
the main result of [42] (Theorem 4.7) confirms that (i) =⇒ (ii), for all bifibrations (that is, not
necessarily satisfying the Beck-Chevalley condition).

2.3 Basic bifibration

Let C be a category with pullbacks. For each morphism f : x→ y, we have a functor f! : C ↓ x→C ↓ y
given on objects by g 7→ f ◦ g. For each morphism h : z → y, we consider the following pullback
diagram:

f ∗(z) z

x y

ε
f

h

f ∗(h)
⌜

h

f
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We observe that ε
f

h : f ◦ f ∗(h)→ h is a morphism in C ↓ y, whose universal property borne out of the
pullback diagram guarantees that the assignment f ∗ : C ↓ y → C ↓ x defines a functor right adjoint to
f!.

Together with the canonical isomorphisms id∗x ∼= idC ↓x and f ∗g∗ ∼= (g◦ f )∗, we obtain the basic
bifibration

C ↓ − : C op → CAT

x 7→ C ↓ x

f : x → y 7→ f ∗ : C ↓ y → C ↓ x

which provides the context for our study of descent theory in Chapters 3, 4, and 5. In this set-
ting, we write Desc(p) instead of DescC ↓−(p) for the category of lax descent data, and we say
“(effective/almost) descent morphism” instead of “(effective/almost) (C ↓ −)-descent morphism”.

When C is a category with finite limits, it can be shown (see [30, 2.4], [40, Corollary 0.3.5], [29,
Theorem 3.4], [52, Proposition 2.1]) via Beck’s monadicity theorem that

– p is an almost descent morphism ⇐⇒ p is a pullback-stable epimorphism,
– p is a descent morphism ⇐⇒ p is a pullback-stable regular epimorphism.

While it is true that descent morphisms are effective for descent when C is Barr-exact [2] or locally
cartesian closed, in general, effective descent morphisms are challenging to describe. For instance, we
note the characterization of [54] for C = Top, or the characterization of [40] for C = Cat(V ), for
suitable categories V .

Nevertheless, the study of effective descent morphisms can be approached directly, by studying
the (essential) image of (fully faithful) comparison functors K p for descent morphisms p. Thus, the
following elementary observation regarding the (essential) image of K p is of particular interest for
our work.

Proposition 2.2 ([52, Corollary 2.3]). The comparison functor K p is essentially surjective if and
only if, for all descent data (a,γ), there exists a morphism f : w → b such that p∗ f ∼= a in C ↓ x, and

ε
p
f ◦ γ = ε

p
f ◦ ε

p
p◦a. (2.11)

Proof. We begin by noting that K p f = (p∗ f , p∗
ε

p
f
) is a lax descent datum satisfying (2.11), by

naturality.
Conversely, if (p∗ f ,γ) satisfies (2.11), then

γ = p∗ε
p
f ◦η

p
p∗ f ◦ γ = p∗ε

p
f ◦ p∗γ ◦η

p
p∗(p◦p∗ f ) = p∗ε

p
f ◦ p∗ε

p
p◦a ◦η

p
p∗(p◦p∗ f ) = p∗ε

p
f ,

hence (p∗ f ,γ) = K p f .

Remark 2.3. We should point out that Proposition 2.2 is often implicitly used in the study of effective
descent morphisms (for instance, [40, Proposition 3.2.4]). Moreover, it can be shown that this result
also holds in the general context for a pseudofunctor F : C op → CAT, so its applicability in descent
arguments does not rely on the Beck-Chevalley condition.
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Another fruitful strategy, undertaken by both [54] and [40], and justified by the following Proposi-
tion 2.4, is to suitably embed the category whose effective descent morphisms we wish to study in a
larger one in which those are well-understood.

Proposition 2.4 ([30, 2.7]). Let U : C → D be a fully faithful, pullback-preserving functor between
categories with pullbacks, and let p : x → y be a morphism such that U p is an effective descent
morphism. Then p is an effective descent morphism if and only if, for all pullback diagrams of the
form

Uv w

Ux Uy

⌜

U p

(2.12)

we have w ∼=Uz for some object z of C .

Throughout our study of effective descent morphisms in categorical structures, we have found the
following particular instance of Proposition 2.4 to be particularly useful:

Corollary 2.5 ([52, Corollary 2.5]). Let U : C → D be a fully faithful, pullback-preserving functor
between categories with pullbacks. If for every effective descent morphism g : Ux → z there exists an
isomorphism z ∼=Uy, then U reflects effective descent morphisms.

Proof. We recall that effective descent morphisms are stable under pullback. Thus, if (2.12) is a
pullback square, and U p is an effective descent morphism, then so is Uv → w by pullback-stability. By
hypothesis, there exists an isomorphism w ∼=Uy, whence we conclude that p is effective for descent
by Proposition 2.4.

As one of the byproducts of the study of commutativity of bilimits carried out in [45], Lucatelli
Nunes provides a description of the effective descent morphisms for the bilimit of a diagram of cate-
gories with pullbacks and pullback-preserving functors, in terms of the (effective) descent morphisms
of the categories in the underlying diagram. A particularly important consequence is that this provides
a second, widely applicable approach to the study of effective descent morphisms, as exhibited by the
following Propositions:

Proposition 2.6 ([45, Theorem 1.6, Corollary 9.6]). If we have a pseudopullback diagram of categories
with pullbacks and pullback-preserving functors

A B

C D

F

G ∼= H

K

and a morphism f in A such that

– F f and G f are effective descent morphisms, and
– KG f ∼= HF f is a descent morphism,

then f is an effective descent morphism.
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Proposition 2.7 ([45, Theorem 9.2]). If we have a pseudoequalizer diagram of categories with
pullback and pullback-preserving functors

A B CF G

H

and a morphism f in A such that

– F f is an effective descent morphism, and
– GF f ∼= HF f is a descent morphism,

then f is an effective descent morphism.

To apply Proposition 2.6, the following result is useful:

Lemma 2.8 ([51, Lemma 2.5]). Let H : B → D be a functor between categories with finite limits. If
H preserves coequalizers, reflects pullbacks, and has a fully faithful left adjoint L : D → B, then H
preserves descent morphisms.

Proof. Let h : x → y be a descent morphism in B, and we consider the following pullback diagram:

(Hh)∗z z

Hx Hy

εφ

(Hh)∗φ
⌜

φ

Hh

Since the unit id→ HL is an isomorphism, the following is a pullback diagram as well:

HL(Hh)∗z HLz

Hx Hy

HLεφ

Hψ♯ ⌜
Hφ ♯

Hh

where φ ♯ : Lz → y is obtained from φ via the hom-isomorphism D(z,Hy)∼= B(Lz,y), and, likewise,
ψ♯ : L(Hh)∗z → x is obtained from ψ = (Hh)∗φ .

Since H reflects pullbacks, we conclude Lεφ is a regular epimorphism. This property is preserved
by H, as it preserves coequalizers. Thus, we conclude that Hh is a pullback-stable regular epimorphism,
as desired.

Remark 2.9. The applications of Lemma 2.8 we have in mind are

– the underlying object-of-objects functor (−)0 : Cat(V )→ V ,
– the canonical fibration Fam(V )→ Set,
– and the underlying object-of-objects functor (−)0 : Cat(T,V )→ V .

Each functor has fully faithful left and right adjoints, and therefore satisfies the hypotheses of
Lemma 2.8. Hence, we conclude that each functor preserves descent morphisms.
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Thanks to the first functor, we can obtain the conclusion of [45, Theorem 9.11] for V a lextensive
category such that the functor −·1: Set→ V 1, is fully faithful, without assuming V has a (regular
epi, mono)-factorization system, using precisely the same proof.

The second functor plays an important role in Chapter 3 in obtaining effective descent morphisms
in V -Cat, in the more general setting of a cartesian monoidal category V with finite limits; this is
Theorem 3.10.

The third functor plays a similar role in Chapter 5, to obtain effective descent morphisms in a
suitable category of generalized enriched multicategories. The statement of this result is given by
Theorem 5.6.

2.3.1 Descent theory in categorical structures

In the context of effective descent morphisms in categorical structures, the results of Le Creurer [40]
are the cornerstone upon which we obtain our own. Indeed, since enriched categorical structures can
be embedded into an internal setting, under suitable conditions, the general strategy is to first study
the effective descent morphisms for internal categorical structures directly (such results are given by
Theorems 2.10 and 4.13), and then apply Propositions 2.4 and 2.6 to study whether the embedding
reflects the effective descent morphisms back to the enriched setting.

Theorem 2.10 ([40, Corollary 3.3.1]). Let V be a category with finite limits, and p : C → D be a
functor of categories internal to V . If

– p0 : C0 → D0 is an effective descent morphism,
– p1 : C1 → D1 is an effective descent morphism,
– p2 : C2 → D2 is a descent morphism, and
– p3 : C3 → D3 is an almost descent morphism,

then p is an effective descent morphism in Cat(V ).

Remark 2.11. Let C be a category internal to V . Since Theorem 2.10 is stated in terms of various
epimorphic conditions on the objects on composable tuples of morphisms, it is convenient for Cn to
denote the object of n-chains of C , therefore allowing “n-chain” to be synonymous with “composable
n-tuple of morphisms”.

In this vein, let W be a monoidal category, and let D be an enriched W -category. For objects xi

on D for i = 0, 1, 2, 3, we let

D(x0,x1,x2) = D(x1,x2)⊗D(x0,x1), and D(x0,x1,x2,x3) = D(x1,x2,x3)⊗D(x0,x1).

Likewise, if F : W → X is a lax monoidal functor, we write

mF : (F!D)(x0,x1,x2)→ F(D(x0,x1,x2))

for the “shortened” version of the comparison morphism for the tensor product.

1This is the left adjoint to V (1,−) : V → Set
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As an example of a reflection result, we have the following consequence of [45, Theorem 9.11]
and Theorem 2.10 (see also Remark 2.9):

Theorem 2.12 ([45, Theorem 9.11]). Let V be a lextensive category, and assume that −·1: Set→ V

is fully faithful. An enriched V -functor F : C → D such that

– F0 is surjective,
– F1 ·1: ∑xi C (x0,x1)→ ∑yi D(y0,y1) is an effective descent morphism,
– F2 ·1: ∑xi C (x0,x1,x2)→ ∑yi D(y0,y1,y2) is a descent morphism,
– F3 ·1: ∑xi C (x0,x1,x2,x3)→ ∑yi D(y0,y1,y2,y3) is an almost descent morphism,

is an effective descent morphism in V -Cat.

2.4 Bifibration of split opfibrations

Let A be a 2-category with 2-pullbacks and lax codescent objects2. Just like in Section 2.3, we
consider the kernel pair Ker(p) (2.7) of a morphism p : e → b in A. Since A has lax codescent objects,
there is a unique KKer(p) : CoDesc(Ker(p))→ b making the triangle in Diagram (2.13) commute:

p×b p×b p p×b p e b

CoDesc(Ker(p))

d1

d0

p

KKer(p)
(2.13)

Lemma 2.13 ([47, Lemma 1.1]). If a 2-functor F : Aop → CAT preserves lax descent objects, then a
morphism p : e → b is of effective F-descent (F-descent) if and only if F(KKer(p)) is an equivalence
(fully faithful).

Proof. When such a 2-functor F is composed with Diagram (2.13), we obtain

Fb Fe F(p×b p) F(p×b p×b p)

F(CoDesc(Ker(p))),

F p

F(KKer(p))

Fd1

Fd0 (2.14)

and we observe that F(CoDesc(Ker(p)))≃ Desc(F(Ker(p))), from which our result follows.

Naturally, the representable 2-functors A(−,a) : Aop → CAT for each object a preserve lax
descent objects. The bifibrations F , FD of split, respectively discrete, opfibrations are obtained by
composing CAT(−,Cat), respectively CAT(−,Set), with the inclusion Cat→ CAT.

We remark that these bifibrations do not satisfy the Beck-Chevalley condition, as the conclusion
of the Bénabou-Roubaud theorem [4] does not hold for F nor FD. Indeed, [56, Remark 7] gives an
example of a functor p such that FD p is monadic, but p is not an effective FD-descent morphism.

2This is the notion dual to lax descent object, which can be described in any 2-category, via the universal property in
Subsection 2.1.1.
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We provide another example, given in [47, Remark 3.3]: let p : 1 → b be a functor, where 1 is
the terminal category. The functor F p = CAT(p,Cat) is monadic if and only if p is (essentially)
surjective, but, as a consequence of Theorem 6.11, p is an effective F-descent morphism if and only if
p is an equivalence.



Chapter 3

Enriched V -functors

Effective descent morphisms for the category V -Cat of V -categories were studied in [12, Section 5]
when V is a (co)complete symmetric monoidal closed thin category, and in [45, Theorem 9.11], when
V is a lextensive, cartesian monoidal category such that the copower functor −·1: Set→ V is fully
faithful. Despite the different approaches to the problem, in both works, the conditions for a V -functor
F to be an effective descent morphism in V -Cat are expressed in terms of surjectivity of F in chains
of hom-objects.

The goal of this chapter is to prove that the same conditions remain sufficient for a V -functor to
be effective for descent when V is a cartesian monoidal category with finite limits, placing the results
of [12, Section 5] (when V is cartesian monoidal) and [45] on common ground. We shall prove that if
a V -functor F is

– an effective descent morphism on hom-objects,
– a descent morphism on 2-chains of hom-objects,
– an almost descent morphism on 3-chains of hom-objects,

in a suitable sense, then F is an effective descent morphism in V -Cat (Theorem 3.10).
There are two key ideas for this result: if V is a category with finite limits, then

– Fam(V ) is a lextensive category, and −·1: Set→ Fam(V ) is fully faithful (Proposition 3.1),
so that we may apply Theorem 2.12 to obtain a description of the effective descent morphisms
in Fam(V )-Cat, and

– the direct image η! : V -Cat → Fam(V )-Cat of η : V → Fam(V ) reflects effective descent
morphisms.

Thus, we conclude that the composite functor reflects effective descent morphisms as well. We go over
the first idea in Section 3.1, where we review the central properties of the free coproduct completion
of a category. The second idea is obtained via Proposition 2.6, so, in Section 3.2 we study the relevant
pseudopullbacks and their preservation by the enrichment 2-functor V 7→ V -Cat.

Via the description of the effective descent morphisms in Fam(V )-Cat given by Lucatelli Nunes’s
result (Theorem 2.12), we can state the conditions for a V -functor F to be an effective descent
morphism in V -Cat in terms of (effective, almost) descent conditions on the underlying morphisms of
F on chains of hom-objects. Since these refer to morphisms in the category Fam(V ), this motivates

21
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the study of (effective) descent morphisms in the free coproduct completion of a category, which is
carried out in Section 3.3.

We highlight the relationship between the results of [12] and [45] in Section 3.4, where we
apply our results on (effective) descent morphisms in Fam(V ) to study effective descent morphisms
in V -Cat for special families of categories V . Among such categories, we draw our attention to
the category CHaus of compact Hausdorff spaces and the category Stn of Stone spaces, giving a
description of effective descent CHaus-functors and effective descent Stn-functors.

3.1 Properties of the free coproduct completion

Let V be a category. The free coproduct cocompletion of V , denoted Fam(V ), consists of

– objects which given by set-indexed families (X j) j∈J of objects X j in V ,
– morphisms (X j) j∈J → (Yk)k∈K which are given by a function f : J → K, and a set-indexed

family of morphisms (φ j : X j → Yf j) j∈J , with φ j in V ,

with suitable identities and composition law. It may also be obtained via the Grothendieck construc-
tion [22] of the pseudofunctor Setop → CAT given by X 7→ V X on objects and f 7→ f ∗ on morphisms,
whose fibration we denote by P : Fam(V )→ Set.

We recall the following properties:

Proposition 3.1 ([51, Lemma 3.2]). Let V be a category.

(a) Fam(V ) is extensive.
(b) If V has a terminal object, −·1: Set→ Fam(V ) is fully faithful.
(c) If V has finite limits, so does Fam(V ).

Proof. Property (a) is well-known, and is present in [10, Proposition 2.4], for instance. Moreover, it
was verified that (b) holds in [7, Proposition 6.2.1]. Property (c) is also well-known; see [21, 25, 7].
Nevertheless, to illustrate the mechanics of Fam(V ), we will revisit the arguments. Recall that

– Set has all (finite) limits,
– V X has all finite limits, given componentwise in V ,
– the change-of-base functor f ∗ : V Y → V X preserves finite limits, for every function f : X → Y ,

so, if A : J → Fam(V ) is a finite diagram, with A j = (PA j,x j), we consider the limit cone
λ j : lim(PA )→ PA j, and we define a diagram

Φ : J → V lim(PA )

j 7→ λ
∗
j (x j)

and since V lim(PA ) has finite limits, limΦ exists. To verify that limA ∼= (limPA , limΦ), given a cone
(γ j : b → PA j,ζ j : w → γ∗j x j), we let ω : b → limPA be the unique function such that γ j = λ j ◦ω ,
and we observe that ω∗(limΦ) ∼= limω∗Φ, since ω∗ preserves limits. Then, there exists a unique
ξ : w → ω∗(limΦ) such that ζ j =mV −

λ j,ω
◦ω∗φ j ◦ξ , where φ j : limΦ → x j is the limit cone of Φ, and

mV −

λ j,ω
: ω∗λ ∗

j
∼= (λ j ◦ω)∗ is the natural comparison isomorphism of the pseudofunctor.
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Indeed, we have (γ j,ζ j) = (λ j,φ j) ◦ (ω,ξ ), and if (γ j,ζ j) = (λ j,φ j) ◦ (θ ,χ), then γ j = λ j ◦ θ

which confirms θ = ω , and ζ j =mV −

λ j,ω
◦ω∗φ j ◦χ , confirming χ = ξ .

In particular, it follows that

Corollary 3.2 ([51, p. 10]). The functor Fam(V )-Cat → Cat(Fam(V )) reflects effective descent
morphisms.

Proof. Since Fam(V ) is lextensive and −·1: Set→ Fam(V ) is fully faithful by Proposition 3.1, we
may apply Theorem 2.12.

This result was the original motivation to study the problem of whether V -Cat→ Fam(V )-Cat
reflects effective descent morphisms as well. In this direction, we recall from [60] that the inclusion
V → Fam(V ) is a 2-cartesian natural transformation:

Proposition 3.3 ([60, 5.15 Proposition]). For any functor F : V → W , the following diagram

V Fam(V )

W Fam(W )

F

η

⌜
Fam(F)

η

(3.1)

is a 2-pullback.

In particular, we note there is a unique functor ! : V → 1, and Fam(!) : Fam(V )→ Fam(1)≃ Set

is the fibration associated to Fam(V ). Thus, by [58], (3.1) is a pseudopullback when W ≃ 1.
The last preliminary result we shall need is the following reformulation of [7, Proposition 6.1.5]:

Proposition 3.4. Let A be a category with coproducts. If C is a full subcategory of A such that

(i) for all objects a of A , there exists a set J and objects c j of C for each j ∈ J such that a∼=∑ j∈J c j,
(ii) for all objects x, dk of C for each k ∈ K, any morphism x → ∑k∈K dk factors uniquely via

ιk : dk → ∑k∈K dk for some k ∈ K,

then we have an equivalence Fam(C )≃ A .

Under the above hypotheses, we conclude that A is an extensive category, and that C (essentially)
consists of the connected objects of A – that is, those objects a ∈ A such that A (a,−) preserves
coproducts.

Proof. We have a coproduct functor

∑ : Fam(C )→ A (3.2)

defined on objects by (c j) j∈J 7→ ∑ j∈J c j. We observe that (3.2) is essentially surjective if and only
if (i) holds.
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On morphisms, (3.2) is given by the composite

Fam(C )((c j) j∈J,(dk)k∈K)∼= ∏
j∈J

∑
k∈K

C (c j,dk)

∼= ∏
j∈J

∑
k∈K

A (c j,dk)

→ ∏
j∈J

A
(
c j, ∑

k∈K
dk
)

∼= A
(
∑
j∈J

c j, ∑
k∈K

dk
)

where A (c j,dk)→ A
(
c j,∑k∈K dk

)
is given by A (c j, ιk). We observe that (ii) holds if and only if

∑
k∈K

A (x,dk)→ A
(
x, ∑

k∈K
dk
)

is an isomorphism, so we conclude that (3.2) is fully faithful if and only if (ii) holds.

One consequential application of Proposition 3.4 is that it allows us to reduce the study of (effective,
almost) descent morphisms in Fam(V ) to the study of covers, that is, morphisms in Fam(V ) of the
form φ : (X j) j∈J → Y .

Lemma 3.5. Let E be a pullback-stable class of morphisms in Fam(V ) that is closed under coproducts
(as a full subcategory of [2,V ]). We have an equivalence of categories E ≃ Fam(Econn), where
Econn ⊆ E is the subclass of covers in E ; that is, those morphisms of the form φ : (Xi) j∈J → Y .

Proof. If ( f ,ψ) : (X j) j∈J → (Yk)k∈K is in E , we consider the following pullback

(X j) j∈ f ∗k Yk

(X j) j∈J (Yk)k∈K

ψ|k

⌜

( f ,ψ)

for each k ∈ K. By pullback stability, we find that ψ|k ∈ Econn for all k ∈ K, and ψ ∼= ∑k∈K ψ|k.
If φ : (Vi)i∈I →W is in Econn, and we have a commutative square

(Vi) (X j) j∈J

W (Yk)k∈K

φ

(g,χ)

( f ,ψ)

(k,ω)

(3.3)

then f (g(i)) = k, so that g(i) ∈ f ∗k for all i ∈ I, and hence (3.3) factors uniquely as

(Vi) (X j) j∈ f ∗k (X j) j∈J

W Yk (Yk)k∈K

φ

(g,χ) ιk

ψ|k ( f ,ψ)

ω ιk
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so we may apply Proposition 3.4.

3.2 Embedding V -Cat→ Fam(V )-Cat

In [19, Corollary 3.8], the authors have shown that the enrichment 2-functor (−)-Cat : Bicat →
2-CAT preserves all weighted, connected 2-limits, where Bicat is the 2-category of bicategories,
pseudofunctors and icons. Denoting by SymCat the 2-category of symmetric monoidal categories,
monoidal functors and monoidal natural transformations, we obtain the following corollary:

Proposition 3.6 ([19, Corollary 3.8]). The enrichment 2-functor SymCat→ CAT preserves pseudop-
ullbacks.

Proof. Pseudopullbacks are Cat-connected limits.

It is known that a morphism p : a → b in a 2-category is fully faithful if and only if p ↓ p ≃ 2 ⋔ a1.
However, it was shown in [19] that powers and comma objects are not Cat-connected limits. Despite
this, we can still obtain the following result:

Lemma 3.7 ([51, Lemma 2.2]). The enrichment 2-functor SymCat→ CAT preserves fully faithful
functors.

Proof. Let F : V → W be a fully faithful monoidal functor, and let C , D be V -categories. A
W -functor Ψ : F!C → F!D consists of

– A function obΨ : obC → obD on objects,
– A morphism Ψx,y : FC (x,y)→ FD(Ψx,Ψy) in W for each pair x,y ∈ obC .

We claim that we have a V -functor Φ : C → D given obΦ = obΨ and Φx,y is the unique morphism
C (x,y)→ D(Ψx,Ψy) such that FΦx,y = Ψx,y for all x,y ∈ obC , by full faithfulness of F .

Recalling that eF!X = F eX ◦eF and cF!X = F cX ◦mF for any V -category X , we note that the
following diagrams commute

I

FI

FC (x,y) FD(Φx,Φy)

eF

F eDF eC

FΦx,y

(F!C )(x,y,z) (F!D)(Φx,Φy,Φz)

F(C (x,y,z)) F(D(Φx,Φy,Φz))

FC (x,z) FD(Φx,Φz)

(FΦ)x,y,z

mF mF

F(Φx,y,z)

F cC F cD

FΦx,z

since Ψ is a W -functor. Since eF and mF are invertible, and F is fully faithful, we deduce that Φ must
be a V -functor, as desired.

1 f ↓ g is the comma object of two morphisms f ,g in a 2-category A. C ⋔ x is the power object of an object x in A by a
category C .
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Lemma 3.8 ([51, p. 9]). Let V be a category with finite limits. We have a pseudopullback diagram

V -Cat Fam(V )-Cat

Set Set-Cat

η!

∼= (3.4)

of categories with pullbacks and pullback-preserving functors.

Proof. We observe that (3.4) is the composite of the enrichment 2-functor with the diagram

V Fam(V )

1 Set

η

⌜

which is a 2-pullback by [60, Proposition 5.15], and since Fam(V )→ Set is an (iso)fibration, it is in
fact a pseudopullback by [58]. Now the result follows by Proposition 3.6.

Theorem 3.9 ([51, Lemma 3.1]). If V has finite limits, η! : V -Cat→ Fam(V )-Cat reflects effective
descent morphisms.

Proof. Let F : C → D be a V -functor such that η!F is an effective descent Fam(V )-functor. Since
Fam(V )→ Set has fully faithful left and right adjoints, the same holds for Fam(V )-Cat→ Set-Cat,
since enrichment is a 2-functor which preserves fully faithful functors by Lemma 3.7.

Thus, Fam(V )-Cat→ Set-Cat maps η!F to a descent functor, which, in turn, is reflected along
Set→ Set-Cat to its underlying function on objects, which must be surjective. Since surjections are
effective descent morphisms in Set, we may apply Proposition 2.6 to conclude that F is an effective
descent functor.

Now, by applying Lucatelli Nunes’s criteria for the effective descent morphisms (Theorem 2.12)
to Theorem 3.9, we obtain (see also Lemma 3.5):

Theorem 3.10 ([51, Theorem 3.3]). If V is a category with finite limits, and F : C →D is a V -functor
such that

(I) F : (C (x0,x1))xi∈F∗yi → D(y0,y1) is an effective descent morphism,
(II) F ×F : (C (x0,x1,x2))xi∈F∗yi → D(y0,y1,y2) is a descent morphism, and

(III) F ×F ×F : (C (x0,x1,x2,x3))xi∈F∗yi → D(y0,y1,y2,y3) is an almost descent morphism

in the category Fam(V ) for all y0, y1, y2, y3 ∈ V , then F is an effective descent morphism in V -Cat.

Unlike Le Creurer’s and Lucatelli Nunes’s results, which describe the effective descent morphisms
in Cat(V ) and V -Cat in terms of morphisms in V , the description we provide for the effective descent
morphisms of V -Cat (Theorem 3.10) relies on understanding (effective, almost) descent morphisms
in Fam(V ), prompting their study.
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3.3 Familial descent and effective descent morphisms

By Lemma 3.5, we learn that when studying (effective, almost) descent morphisms in Fam(V ), it is
enough to the consider covers φ : (X j) j∈J → Y .

There is not much to say about (pullback-stable) epimorphisms in this generality; they are,
tautologically, the jointly epimorphic covers (preserved by pullbacks).

Regarding (effective) descent morphisms, it is useful to compute the kernel pair of a cover
φ : (X j) j∈J → Y ; we use the construction described in Proposition 3.1. For each j,k ∈ J, we have a
pullback diagram

φ j ×Y φk X j

Xk Y

δ1, j,k

δ0, j,k
⌜

φ j

φk

(3.5)

so the kernel pair of φ is given by

(φ j ×Y φk) j,k∈J×J (X j) j∈J
(d1,δ1)

(d0,δ0)

where di : J× J → J discards the ith component, for i = 0, 1.
We also define a category DJ with set of objects J + J2, and for each j,k ∈ J, two different

morphisms ( j,k)→ j and ( j,k)→ k.
For each cover φ : (X j) j∈J → Y , we define a diagram Kφ : DJ → V , mapping

– ( j,k)→ j to δ1, j,k : φ j ×Y φk → X j

– ( j,k)→ k to δ0, j,k : φ j ×Y φk → Xk,

We recall that in a category with finite limits, regular epimorphisms are the coequalizers of their
kernel pairs. With that in mind, we may obtain the following result:

Lemma 3.11 ([51, Lemma 4.1]). A cover φ is a (pullback-stable) regular epimorphism if and only if
colimKφ

∼= Y (and the colimit is stable).

Proof. We shall assume J is non-empty throughout. We have a natural isomorphism

[⇒,Fam(V )](kerφ ,∆(Zk)k∈K
)∼= ∑

k∈K
[DJ,V ](Kφ ,∆Zk),

and to verify this, note that the composite of kerφ with Fam(V )→ Set is given by

J× J J,
d1

d0

whose coequalizer is terminal. Since the data for a natural transformation kerφ → ∆(Zk)k∈K
consists of

a morphism ( f ,ψ) : (X j) j∈J → (Zk)k∈K such that

( f ,χ)◦ (d1,δ1) = ( f ,ψ)◦ (d0,δ0),
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there exists a unique k ∈ K such that f j = k for all j ∈ J, and χ j ◦δ1,i, j = χi ◦δ0,i, j for all i, j ∈ J. This
data corresponds to a unique natural transformation Kφ → ∆Zk .

So, if Kφ has a colimit, then

Fam(V )(colimKφ ,(Zk)k∈K)∼= ∑
k∈K

V (colimKφ ,Zk)

∼= ∑
k∈K

[DJ,V ](Kφ ,∆Zk)

∼= [⇒,Fam(V )](kerφ ,∆(Zk)k∈K
),

hence kerφ has a colimit and colimkerφ ∼= colimKφ . Conversely, if kerφ has a colimit, then its
underlying set is the coequalizer of

J× J J,
d1

d0

which is the terminal object, hence kerφ is connected and can be identified with an object of V . Thus,

V (colim(kerφ),Z)∼= Fam(V )(colim(kerφ),Z)
∼= [⇒,Fam(V )](kerφ ,∆Z)

∼= [DJ,V ](Kφ ,∆Z),

so we conclude that colimkerφ ∼= colimKφ .

If the colimit of Kφ is stable under pullback, for each j ∈ J we write

Vj Z

X j Y

φ∗
j (ω)

ψ j

⌜
ω

φ j

for the pullback of φ j and a morphism ω : Z → Y for each j ∈ J, so that Z ∼= colimKψ , hence
Z ∼= colimkerψ . So, if we have a morphism ξ : (Wl)l∈L →Y , we can do this procedure for ξl for each
l ∈ L, and then take the coproduct of the results, confirming the pullback stability of the colimit of
kerφ .

Conversely, if the colimit of kerφ is stable under pullback, for any morphism ω : Z → Y , we may
consider the pullback

(Vj) Z

X j Y

φ∗
j (ω)

ψ

⌜
ω

φ j

and since Y ∼= colimkerψ ∼= colimKψ , we immediately conclude that the colimit of Kφ is stable under
pullback.

To understand effective descent morphisms in Fam(V ), we recall that lax descent data for a cover
φ : (X j) j∈J → Y consists of
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– a morphism (p,π) : (Wk)k∈K → (X j) j∈J in Fam(V ),
– and a morphism (γ,Γ) : D∗

1(p,π)→ D∗
0(p,π) in Fam(V ) ↓ (φi ×Y φ j)i, j∈J×J

satisfying reflexivity (2.1) and transitivity (2.2) conditions, namely,

– ν0 = S∗0(γ,Γ)◦ν1,
– θ01 ◦D∗

1(γ,Γ)◦θ12 = D∗
0(γ,Γ)◦θ02 ◦D∗

2(γ,Γ),

Since Fam(V )→ Set preserves pullbacks, we recover descent data (p,π) for the unique morphism
J → 1, implying that K ∼= I×J for some set I, and, under this isomorphism, we have p∼= d0 : I×J → J.
Moreover, we note that the underlying Set-pullbacks of Di : (φ j ×Y φk) j,k∈J×J → (X j) j∈J for i = 0,1
are given by

K × J K

J× J J

p×id

d1

⌜ p

d1

J×K K

J× J J

id×p

d0

⌜ p

d0

and since (id× p)◦ γ = p× id, we deduce that γ is isomorphic to the function

I × J× J → J× I × J

(i, j,k) 7→ ( j, i,k),

and the reflexivity and transitivity conditions are given in components by

Wi j

σ∗
0, jδ

∗
1, j, j(πi, j) σ∗

0, j(δ
∗
0, j, j(πi, j)

ν1, j ν0, j

σ∗
0, j(Γi, j, j)

δ ∗
1, j,k,l(δ

∗
1, j,l(πi, j)) δ ∗

1, j,k,l(δ
∗
0, j,l(πi,l))

δ ∗
2, j,k,l(δ

∗
1, j,l(πi, j)) δ ∗

0, j,k,l(δ
∗
0, j,l(πi,l))

δ ∗
2, j,k,l(δ

∗
0, j,l(πi,k)) δ ∗

0, j,k,l(δ
∗
1, j,l(πi,k))

δ ∗
1, j,k,l(Γi, j,l)

θ01, j,k,l(πi,l)θ12, j,k,l(πi, j)

δ ∗
2, j,k,l(Γi, j,k)

θ02, j,k,l(πi,k)

δ ∗
0, j,k,l(Γi,k,l)

(3.6)

for each i ∈ I, j,k, l ∈ J. This observation allows us to prove the following result:

Lemma 3.12 ([51, Lemma 4.2]). Let φ : (X j) j∈J →Y be a cover in Fam(V ). We have an equivalence

Desc(φ)≃ Fam(Descconn(φ)), (3.7)

where Descconn(φ) is the full subcategory of Desc(φ) consisting of the connected objects.

Proof. If (p,π) : (Wi, j)i, j∈I×J → (X j) j∈J and (γ,Γ) is a lax descent datum for φ as given above, then
for each i ∈ I, we define Wi,− = (Wi, j) j∈J , as well as a morphism (ιi, id) : Wi,− → (Wi, j)i, j∈I×J , where
ιi( j) = (i, j).
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We note that the composites (p,π)◦(ιi, id)= (id,πi,−), and (id,Γi,−.−) : D∗
1(id,πi,−)→D∗

0(id,πi,−)

constitute a lax descent datum for φ , for each i ∈ I. Indeed, Diagrams (3.3) and (3.6) commute for
each fixed i ∈ I, confirming reflexivity and transitivity for each component.

Thus, the lax descent datum (p,π), (γ,Γ) is the coproduct of the lax descent data (id,πi,−),
(id,Γi,−) for each i ∈ I.

Now, we let

(id,ξ ) : (Vj) j∈J → (X j) j∈J, (id,Ξ) : (id,δ ∗
1 ◦ξ )→ (id,δ ∗

0 ◦ξ )

be a connected lax descent datum, and let (g,χ) : (Vj) j∈J → (Wi, j)i, j∈I×J be a morphism such that
(d0,π)◦ (g,χ) = (id,ξ ) and the following diagram

D∗
1(id,ξ ) D∗

0(id,ξ )

D∗
1(d0,π) D∗

0(d0,π)

D∗
1(g,χ)

(id,Ξ)

D∗
0(g,χ)

(γ,Γ)

commutes. Since p ◦ g = id, we conclude that g( j) = (h( j), j) for a function h : J → I, and since
γ(h( j), j,k) = ( j,h(k),k) for all j,k ∈ J, we conclude that h is constant; let i ∈ I be its value, so that
g = ιi. We obtain a factorization

(Vj) j∈J (Wi, j) j∈J (Wi, j)i, j∈I×J,
(id,χi,−) (ιi,id)

so, we may apply Proposition 3.4 to conclude our proof.

In fact, by noticing that the underlying objects, morphisms and properties for each connected
descent datum lie in a slice category of a fiber of Fam(V )→ Set, we deduce that:

Corollary 3.13. The category Descconn(φ) is the lax descent category of the following diagram:

V J ↓ (X j) j∈J V J×J ↓ (φi ×φ j)i, j∈J×J V J×J×J ↓ (φi ×Y φ j ×Y φk)i, j,k∈J×J×J.

D∗
1

D∗
0

D∗
2

S∗0 D∗
1

D∗
0

(3.8)

Remark 3.14. This corollary provides us with another point of view; let D+
J be the category whose set

of objects is given by J+ J2 + J3, containing DJ as a subcategory, such that for each triple i, j,k ∈ J,
we have three distinct morphisms (i, j,k)→ ( j,k), (i, j,k)→ (i,k) and (i, j,k)→ (i, j), such that the
following diagrams commute:

(i, j,k) (i, j)

(i,k) i

(i, j,k) ( j,k)

(i, j) j

(i, j,k) (i,k)

( j,k) k
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and for each j ∈ J, a morphism j → ( j, j) such that both of the composites below are the identity:

j ( j, j) j

We define a diagram K+
φ

: D+
J → V , extending Kφ , where (i, j,k) 7→ φi ×Y φ j ×Y φk, and the

morphisms from objects in J3 to J2 are mapped to the respective projections, while the morphisms
from J to J2 are mapped to the respective diagonals σ0,i : Xi → φi ×Y φi. It can be shown that the
2-limit of the composite

(D+
J )op V op Cat

(K+
φ
)op V ↓−

is equivalent to Descconn(φ); by taking products of categories, we recover Diagram (3.8).

Theorem 3.15 ([51, Theorem 4.3]). Let φ : (X j) j∈J → Y be a cover in Fam(V ). The following are
equivalent:

(i) φ is an effective descent morphism.
(ii) We have an equivalence V ↓ Y ≃ Descconn(φ).

Proof. First, we observe that Fam(V ↓ Y )≃ Fam(V ) ↓ Y , since for any morphism φ : (Wj)i∈J → Y ,
we have φ = ∏ j∈J φ j as objects in Fam(V ) ↓ Y , and if we have a commutative triangle

W (X j) j∈J

Y

( f ,ω)

ψ
φ

then there exists a unique j ∈ J (given by f ) factoring ( f ,ω) = (ι j, id)◦ω uniquely, so we may apply
Theorem 3.4.

Since the comparison functor K Ker(φ) : Fam(V ) ↓ Y → Desc(φ) preserves connected objects,
we obtain an equivalence

K Ker(φ) ≃ Fam(K
Ker(φ)
conn ), (3.9)

where K
Ker(φ)
conn : V ↓ Y → Descconn(φ) is the restriction of K Ker(φ) to the connected objects.

We have (i) =⇒ (ii), since we have (3.9), and Fam reflects equivalences, as the unit is 2-cartesian.
Conversely, (ii) =⇒ (i) follows immediately by (3.9).

3.4 Examples

The study of descent morphisms in Fam(V ) for certain categories V with finite limits inspired us to
highlight the following specialization of Lemma 3.11:

Lemma 3.16. Let φ : (X j) j∈J →Y be a cover in Fam(V ) such that for all j ∈ J, φ j is a monomorphism;
that is, (X j) j∈J is a family of subobjects of Y . If the kernel pair of φ has a coequalizer, then
colimKφ

∼=
∨

j∈J X j as a subobject of Y , where Kφ is given as in Lemma 3.11.

Proof. Let ξ : colimKφ → Y be the unique morphism such that φ j = ξ ◦ q j for all j ∈ J, where
q : (X j) j∈J → colimKφ is the coequalizer, which is pullback-stable by hypothesis.
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It is enough to prove that ξ is a monomorphism. We consider the following diagram in Fam(V )

(X j ∧Xk) j,k∈J×J (π∗
0 (X j)) j∈J (X j) j∈J

(π∗
1 (X j)) j∈J ξ ×Y ξ colimKφ

(X j) j∈J colimKφ Y

⌜

π0| j

⌜ q

π1| j
⌜

π0

π1
⌜

ξ

q ξ

whose squares are pullbacks. Since q is pullback-stable, it follows that (X j ∧Xk) j,k∈J×J → (π∗
i (X j)) j∈J

is a regular epimorphism for i = 0,1. Its kernel pair is the kernel pair of (X j ∧Xk) j,k∈J×J → (X j) j∈J ,
hence πi| j : π∗

i (X j)∼=X j is an isomorphism for all j ∈ J and i= 0,1. We observe that q∗ is conservative,
so πi is an isomorphism for i = 0,1. But π0,π1 is the kernel pair of ξ , so it must be a monomorphism.

If W is a subobject of Y such that X j ⩽W for all j, then the above observation (with W replacing
Y ) also confirms that colimKφ ⩽W . Thus, colimKφ

∼=
∨

j X j in the (thin) category of subobjects of
Y .

Thus, if a cover φ : (X j) j∈J → Y of monomorphisms is a descent morphism in Fam(V ), we
conclude that Y ∼=

∨
j∈J X j, a perspective that is helpful when V is thin or regular.

3.4.1 Meet semilattices

Let V be a thin category. A morphism φ : (X j) j∈J → Y in Fam(V ) is the assertion that “for all j ∈ J,
we have X j ⩽ Y ”. Therefore, we simply write (X j) j∈J ⩽ Y in this setting.

A thin category V is said to be a meet semilattice with a top element if V is a thin category with
finite limits, which are called (finite) meets in this context.

Lemma 3.17 ([51, Lemma 4.4]). Let V be a meet semilattice with a top element, and let (X j) j∈J ⩽ Y
be a cover.

(a) It is an epimorphism if and only if J is non-empty.
(b) If it is an epimorphism, then it is pullback-stable.
(c) It is a regular epimorphism if and only if

∨
j∈J X j ∼= Y .

(d) If it is a regular epimorphism, it is pullback-stable if and only if we have

Z ∼=
∨
j∈J

Z ∧X j. (3.10)

for all Z ⩽ Y .
(e) If it is a descent morphism, and V ↓ Y is (co)complete, then it is effective for descent.

Proof. If (X j) j∈J ⩽Y , then for all j ∈ J, X j ⩽Y is an epimorphism. Thus, we conclude that (X j) j∈J ⩽

Y is an epimorphism if and only if the underlying function J → 1 is an epimorphism, which is the
case if and only if J is non-empty, confirming (a).

If (X j) j∈J is an epimorphism, then for all Z ⩽ Y , we have (X j ∧ Z) j∈J ⩽ Z, which is still an
epimorphism, as J is non-empty, proving (b).
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We also have (c) as a consequence of Lemma 3.11, and the condition for pullback-stability is
precisely (3.10), giving (d).

Let φ : (X j) j∈J ⩽ Y be a pullback-stable regular epimorphism. A connected descent datum for
φ is given by subobjects Wj ⩽ X j for each j ∈ J such that Wj ∧Xi ∼= X j ∧Wi for all i, j ∈ J; the
reflexivity and transitivity conditions are automatically satisfied, as V is thin. If V ↓ Y has joins, we
let Z ∼=

∨
j∈J Wj. We have

X j ∧Z ⩽
∨
i∈J

X j ∧Wi ∼=
∨
i∈J

Wj ∧Xi ∼=Wj,

and since Wj ⩽ X j ∧Z by definition, we conclude that K
Ker(φ)
conn : V ↓ Y → Descconn(φ) is essentially

surjective, and therefore φ is an effective descent morphism.

A bounded meet semilattice V is said to be a Heyting lattice2 if V is cartesian closed; that is, the
functor A∧− has a right adjoint functor for all objects A. As a corollary, we obtain:

Corollary 3.18 ([51, Corollary 4.5]). If V is a Heyting semilattice, regular epimorphisms in Fam(V )

are pullback-stable.

Proof. Since Z ∧− preserves joins, (3.10) is always satisfied.

Corollary 3.19. If V is a (co)complete lattice, pullback-stable regular epimorphisms in Fam(V ) are
effective for descent.

Proof. For all Y , V ↓ Y is cocomplete.

Combining both of the previous results yields:

Corollary 3.20 ([51, Corollary 4.6]). If V is a (co)complete Heyting (semi)lattice, regular epimor-
phisms in Fam(V ) are effective for descent.

So, we recover one implication of [12, Theorem 5.4]:

Theorem 3.21 ([51, Theorem 4.7]). Let V be a (co)complete Heyting lattice, and let F : C → D be a
V -functor. If ∨

xi∈F∗yi

C (x0,x1,x2)∼= D(y0,y1,y2) (3.11)

for all y0,y1,y2 ∈ D , then F is an effective descent V -functor.

Proof. By hypothesis, (II) is satisfied, and since F is surjective on objects (consider (3.11) with
y0 = y1 = y2), it follows by Lemma 3.17 that condition (III) holds. Moreover, if we consider (3.11)
with y1 = y2, so that D(y1,y2)∼= 1, we have

D(y0,y1)∼=
∨

xi∈F∗yi

C (x0,x1,x2)⩽
∨

xi∈F∗yi

C (x0,x1),

and since C (x0,x1)⩽ D(y0,y1) for all xi ∈ F∗yi, we conclude that (C (x0,x1))xi∈F∗yi ⩽ D(y0,y1) is a
regular epimorphism in Fam(V ), which is effective for descent by Corollary 3.20, guaranteeing (I).
Thus, Theorem 3.10 can be applied to conclude that F is effective for descent.

2Also known as implicative semilattices [50] and Brouwerian semilattices [35].
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Remark 3.22. As alluded to in the Introduction, Theorem 3.10 confirms the link between the
idea of “chain-surjectivity” conditions of [40] and the “chain-surjectivity” of [28], as evidenced by
Theorem 3.21.

3.4.2 Regular categories

The same ideas work here, if we employ the (regular epi, mono)-factorization system of a regular
category.

Lemma 3.23 ([51, Lemma 4.8]). Let V be a regular category, and let φ : (X j) j∈J → Y be a cover.
For each j ∈ J, we consider the (regular epi,mono)-factorization of φ j, given by

X j M j Y,
π j ι j

(3.12)

where π j is a descent morphism, and ι j is a monomorphism for all j ∈ J. Thus, we consider the cover
ι : (M j) j∈J → Y .

(a) φ is a (pullback-stable) epimorphism if and only if ι is a (pullback-stable) epimorphism.
(b) φ is a (pullback-stable) regular epimorphism if and only if ι is a (pullback-stable) regular

epimorphism.
(c) If π j is an effective descent morphism for all j ∈ J, then φ is effective for descent if and only if ι

is effective for descent.

Proof. The factorization (3.12) gives a factorization φ = ι ◦ (id,π) in Fam(V ), and since π j is a
descent morphism for all j, (id,π) is a coproduct of descent morphisms, therefore it is a descent
morphism in Fam(V ). Thus, we obtain (a) and (b) by composition and cancellation [29, Propositions
1.3 and 1.5].

Moreover, if π j is effective for descent for all j ∈ J, then so is (id,π), and (c) follows by [31,
Theorem 4.5], as the basic bifibration respects the BED (see [31, 4.4, 4.6]).

Thus, the study of (effective) descent covers in Fam(V ) can be reduced to the study of (effective)
descent covers of monomorphisms (and effective descent morphisms in V ). When applied to the
study of effective descent morphisms in V -Cat, we obtain:

Theorem 3.24 ([51, Theorem 4.9]). Let V be a regular category, let F : C → D be a V -functor, and
consider the hom-covers

F = (Fx0,x1)xi∈F∗yi : (C (x0,x1))xi∈F∗yi → D(y0,y1)

F ×F = (Fx0,x1,x2)xi∈F∗yi : (C (x0,x1,x2))xi∈F∗yi → D(y0,y1,y2)

F ×F ×F = (Fx0,x1,x2,x3)xi∈F∗yi : (C (x0,x1,x2,x3))xi∈F∗yi → D(y0,y1,y2,y3)
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and their respective (regular epi, mono)-factorizations

Fx0,x1 = Ix0,x1 ◦Px0,x1 ,

Fx0,x1,x2 = Ix0,x1,x2 ◦Px0,x1,x2 ,

Fx0,x1,x2,x3 = Ix0,x1,x2,x3 ◦Px0,x1,x2,x3 .

If

(a) Px0,x1 is an effective descent morphism for all x0,x1,
(b) (Ix0,x1)xi∈F∗yi is an effective descent morphism,
(c) (Ix0,x1,x2)xi∈F∗yi is a descent morphism, and
(d) (Ix0,x1,x2,x3)xi∈F∗yi is an almost descent morphism,

then F is an effective descent morphism in V -Cat.

Proof. By Lemma 3.23,

– conditions (a) and (b) together guarantee (I),
– conditions (c) and (d) respectively guarantee (II) and (III),

so that Theorem 3.10 can be applied.

The above list of conditions can be further reduced if V satisfies extra properties. For instance, if
V is Barr-exact, or locally cartesian closed, then descent morphisms are effective descent morphisms,
so condition (a) is redundant.

More specifically, a CHaus-functor F : C → D satisfying (b), (c) and (d) is an effective descent
morphism in CHaus-Cat, as CHaus is an Barr-exact category [49]. Moreover, it is shown therein that
Stn is a regular category, thus if a Stn-functor satisfies all of the hypotheses of Theorem 3.24, then it
is an effective descent Stn-functor.





Chapter 4

Generalized internal multicategory
functors

A multicategory is a categorical structure which models the notion of “multimorphisms”: morphisms
which map from a (possibly empty) finite string of inputs to a single output. The quintessential example
of such a structure is the multicategory Vect of vector spaces over some field F, and multilinear maps.
A multilinear map f : (V1, . . . ,Vn)→W has a finite string V1, . . . ,Vn of vector spaces as the domain,
and a vector space W as codomain. It consists of a function

f : V1 × . . .×Vn →W

which is linear in each component:

f (v1, . . . ,vi +λw, . . . ,vn) = f (v1, . . . ,vi, . . . ,vn)+λ f (v1, . . . ,w, . . . ,vn),

where v j ∈ Vj for all j ∈ {1, . . . ,n}, w ∈ Vi for each i ∈ {1, . . . ,n}, and λ ∈ F. In case n = 0, a
multilinear map f : ()→ W is simply a vector f ∈W , or equivalently, a linear map f : F→ W . In
case n = 1, a multilinear map f : (V1)→W is an ordinary linear map.

As is the case with categories, multicategories also have an adequate composition operation. In
the case of Vect, if we have a finite string of multilinear maps g1, . . . ,gn given by

g j : (U j1, . . . ,U jk j)→Vj,

then we have the composite multilinear map

f ◦ (g1, . . . ,gn) : (U11, . . . ,U1k1 , . . . ,Un1, . . . ,Unkn)→W

whose underlying function is given by f ◦ (g1 × . . .× gn). Of course, the identity linear map
idW : (W )→W is a (multi)linear map, and these satisfy suitable associativity and unit laws. Naturally,
if we consider the multilinear maps whose domain is a string of length 1, we precisely recover the
ordinary category of vector spaces and linear maps.

37
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The notion of multicategory can be traced back to [38, p. 103], where it was developed for
the purpose of studying deductive systems in logic, and it has since found applications in algebraic
topology and higher category theory. A comprehensive introduction to these categorical structures is
given in [41].

The composition operation of Vect carries an underlying structure on the domains, given by
concatenation of strings, as does the identity multilinear map, casting each vector space as a string of
vector spaces of length 1. These operations are well modeled by the multiplication and unit natural
transformations for the free monoid monad (−)∗ on Set. Indeed, the multicategory of vector spaces
may be described by a span of functions

{set of vector spaces}∗ {multilinear maps} {set of vector spaces}domain codomain

and the identity and composition operation, as well as the associativity and unit laws, can be described
diagrammatically as well, via the monad structure of (−)∗, and its properties. Let Vect0 be the set of
vector spaces, and Vect1 be the set of multilinear maps. We obtain the set Vect2 of “multicomposable”
pairs of multilinear maps via the pullback

Vect2 Vect1

Vect∗1 Vect∗0

⌜
domain

codomain∗

so that the composition operation is given by

Vect2

Vect∗1 Vect1

Vect∗∗0 Vect∗0 Vect0

Vect1

Vect∗0 Vect0

composition

domain∗ codomain∗ domain codomain

concatenation

domain codomain

and the identity maps are given by

Vect0 Vect0 Vect0

Vect∗0 Vect1 Vect0

cast identity

domain codomain



4.1 Reflexive T -graphs 39

This diagrammatic description lends itself to the “internalization” of the notion of multicategory
to any category V with pullbacks, provided we also replace the free monoid monad on Set by an
arbitrary monad T = (T,m,e) on V . Incidentally, this also allows for the “shape” of the domain to be
more general than “finite strings”. Indeed, these ideas gave rise to T -catégories, first defined in [9],
and later studied by [24] when T is a cartesian monad. In these works, generalized multicategories
are defined to be monads in the bicategory SpanT (V ).

The main theme of this thesis is to obtain a unified perspective on the effective descent morphisms
in generalized categorical structures, and the purpose of this chapter, covering the work done in [52],
is to provide an understanding of these morphisms in the category Cat(T,V ) of T-categories internal
to V . We will undertake two approaches.

Our first approach to the study of effective descent morphisms in Cat(T,V ) can be summed up in
four steps:

– we construct Cat(T,V ) as a 2-equalizer of a diagram of categories of essentially algebraic
theories internal to V ,

– we recall from [40, Proposition 3.2.4] that effective descent morphisms in essentially algebraic
theories internal to V can be described via descent conditions on the underlying data,

– we recall the description of effective descent morphisms of a pseudoequalizer (isoinserter) via
Proposition 2.7,

– we confirm that the embedding of Cat(T,V ) into the associated pseudoequalizer reflects
effective descent morphisms.

Section 4.1 illustrates the tools and techniques used for the construction of Cat(T,V ) in a simpler
T -structure, that of reflexive T -graphs, and the full construction is carried out in Section 4.2. After-
wards, Section 4.3 is devoted to confirming that effective descent morphisms are reflected along the
embedding of Cat(T,V ) into the associated pseudoequalizer.

In Section 4.4, we provide a second method to obtain a description of the effective descent functors
of T -categories. Here, we employ the ideas of [40] to extend his results to our setting, by directly
studying the “sketch” of these generalized multicategories.

4.1 Reflexive T -graphs

Let T = (T,m,e) be a monad on a category V with pullbacks. For the purpose of studying effective
descent functors of T -categories, we obtain sharper results by describing Cat(T,V ) as a 2 - equalizer
of a suitable diagram of categories. Before providing such a description, we will first consider a
simpler T -structure as a guiding example.

For a pointed endofunctor T = (T,e) on V , a reflexive T -graph x consists of

– an object x0 of objects,
– an object x1 of arrows,
– a domain morphism d1 : x1 → T x0,
– a codomain morphism d0 : x1 → x0,
– a loop morphism s0 : x0 → x1,
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which must satisfy d0 ◦ s0 = id and d1 ◦ s0 = e. We note that this data can be organized in the following
diagram:

x0 x1

T x0

s0

e

d0
d1 (4.1)

Moreover, a morphism of reflexive T -graphs f : x → y consists of

– an object morphism f0 : x0 → y0,
– an arrow morphism f1 : x1 → y1,

satisfying d0◦ f1 = f0◦d0, d1◦ f1 = T f0◦d1 and f1◦s0 = s0◦ f0. These form a category RGrph(T,V ),
with componentwise composition and identities. We observe that these are the T-graphes pointés
of [9].

We take this opportunity to remark that reflexive T -graphs allow us to draw conclusions about the
descent theory of categorical structures:

Lemma 4.1 ([52, Lemma A.3]). Let E be a class of epimorphisms in RGrph(T,V ) such that

– E contains all split epimorphisms,
– E is closed under composition,
– if g◦ f , f ∈ E , then g ∈ E (right cancellation),

and let f : x → y be a morphism of reflexive T -graphs. If f1 ∈ E , then f0 ∈ E .

Proof. In any reflexive T -graph x, the codomain morphism d0 : x1 → x0 is a split epimorphism since
d0 ◦s0 = id, so that d0 ∈ E . If f1 ∈ E , then we have d0 ◦ f1 = f0 ◦d0 ∈ E by closure under composition,
and f0 ∈ E by right cancellation.

Of particular interest are the classes E given by the (effective, almost) descent morphisms, which
satisfy each of the properties. Taking T = id, we observe that the condition that p0 is an effective
descent morphism is redundant in Theorem 2.10, and can be omitted.

Returning to our main point, we observe that the category RGrph(T,V ) can be described by a
(2-)equalizer of diagram categories as well: we consider the graph

G =

x0 x1

x′0

s0

e0

d0
d1

with relations d1 ◦ s0 = e0 and d0 ◦ s0 = id, and we consider the diagram category [G ,V ], together
with functors

V [G ,V ] [2,V ]
x∗0 e∗0

induced by the inclusions x0 → G and (x0
e0−→ y0)→ G , where 2 = (· → ·).
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We recall that any natural transformation φ : F → G of functors C → D is precisely determined
by a functor φ ♯ : C → [2,D ], which satisfies ev0 ◦φ ♯ = F and ev1 ◦φ ♯ = G, where ev j : [J ,D ]→ D

is the evaluation functor.
For example, if we take the point e : id→ T of the endofunctor T , e♯ : V → [2,V ] is a functor

which satisfies ev0 ◦ e♯ = id and ev1 ◦ e♯ = T . With this notation, we obtain the following statement:

Lemma 4.2. We have a 2-equalizer diagram

RGrph(T,V ) [G ,V ] [2,V ]
e∗0

e♯◦x∗0

(4.2)

Proof. From the condition imposed by the 2-equalizer in CAT we obtain the full subcategory of
[G ,V ] whose diagrams are of the form (4.1).

4.2 Internal T -categories

Let T = (T,m,e) be a monad on a category V with finite limits. Recall that T is said to be cartesian
if T preserves pullbacks and

x T x

y Ty

f

ex

⌜
T f

ey

T T x T x

T Ty Ty

mx

T T f
⌜

T f

my

are pullback squares for all f : x → y.
The category Cat(T,V ) of T-categories was defined diagrammatically in [9, I.1] for general

monads T , and this is the definition we will use throughout this chapter. However, Burroni also
observed that the category of T -categories can equivalently be defined as the category of monads for
the (proarrow) equipment SpanT (V ) of T -spans, for T a cartesian monad; indeed, this is precisely
how T -categories were defined in [24].

Here, we shall verify that Cat(T,V ) can be given via a 2-equalizer involving the category of
V -models for a finite limit sketch S . Its underlying graph is given by

x0 x1 x2 x3

x′0 x′1 x′2

x′′0 x′′1

s0

e0

s0

s1

d0

d1 e1

d0

d1

d2

d2

d1

d0

d3

s′0

d′
1

d′
0

d′
0

d′
1

d′
2m0

s′′0

m1

d′′
0

(4.3)

with the following relations1

1We point out the resemblance of these relations with the cosimplicial identities.
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– s1 ◦ s0 = s0 ◦ s0 : x0 → x2,
– d1+i ◦ si = ei : xi → x′i,
– di ◦ s j = id : xi → xi,
– d2 ◦ s0 = s′0 ◦d1 : x1 → x′1,
– d0 ◦ s1 = s0 ◦d0 : x1 → x1,
– d′

0 ◦ s′0 = id : x′0 → x′0,
– d1+i ◦d1+i = mi ◦d′

1+i ◦d2+i : x2+i → x′i,
– d1+i ◦d0 = d′

0 ◦d2+i : x2+i → xi,
– d′

j ◦d2+i = d1+i ◦d j : x2+i → x′i,
– d0 ◦d1 = d0 ◦d0 : x2 → x0,
– d j ◦d1+i = di ◦d j : x3 → x1,
– d′

1 ◦d′
0 = d′′

0 ◦d′
2 : x′2 → x′′0 ,

– d′
0 ◦d′

1 = d′
0 ◦d′

0 : x′2 → x′0,

and limit cones

x2 x1

x′1 x′0

d0

d2
⌜

d1

d′
0

x3 x2

x′2 x′1

d0

d3
⌜

d2

d′
0

x′2 x′1

x′′1 x′′0

d′
0

d′
2

⌜
d′

1

d′′
0

(4.4)

with i = 0,1 and j ⩽ i. We let Mod(S ,V ) be the category of V -models for the sketch S . Moreover,
abusing notation, we will also denote by S the category freely generated by the underlying graph of
S modulo the given relations.

Remark 4.3 (Objects of n-chains). As in Remark 2.11, it is convenient to denote x2 and x3 to be the
objects of 2-chains and 3-chains of morphisms respectively, for an internal (T -)category x.

Lemma 4.4 ([52, Lemma 3.1]). If T preserves pullbacks, then we have a 2-equalizer diagram

Cat(T,V ) Mod(S ,V ) [ST ,V ]× [2,V ]
d1

d0
(4.5)

where the functors d1, d0 are respectively given by

Mod(S ,V ) [S ,V ] [ST ,V ]× [2,V ]

Mod(S ,V ) [S ,V ] [Ss0,d0 ,V ]× [2,V ] [ST ,V ]× [2,V ]

(I∗T , I
∗
d′1
)

(I∗s0 ,d0
,I∗d1

) (T,m,e)!×T!

and IT : ST → S , Id′
1
: 2 → S , Is0,d0 : Ss0,d0 → S and Id1 : 2 → S are the subcategories of S

respectively determined by the subgraphs

x0 x′0 x′′0

x1 x′1 x′′1

s0

e0

s′0 s′′0

m0

d′
0

e1

d′
0 d′′

0

m1

, x′1 x′′0
d′

1 , x0 x1
s0

d′
0

, x1 x′0
d1 ,
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the functor T! : [2,V ]→ [2,V ] is given by the direct image of T , and (T,m,e)! : [Ss0,d0 ,V ]→ [ST ,V ]

is given by
a

b

fg 7→
a Ta T Ta

b T b T T b

f

ea

T f T T f

ma

g

eb

T g T T g

mb

.

Moreover, if T is cartesian, then Cat(T,V ) has pullbacks, and the inclusion Cat(T,V ) →
Mod(S ,V ) preserves them.

Proof. The objects of the 2-equalizer are precisely those diagrams of the form

x0 x1 x2 x3

T x0 T x1 x′2

T T x0 T T x1

s0

ex0

s0

s1

d0

d1
ex1

d0

d1

d2

d2

d1

d0

d3

T s0

T d1

T d0

d′
0

d′
1

d′
2mx0

mx1

T T d0

(4.6)

satisfying the relations imposed by S , such that the following squares

x2 x1

T x1 T x0

d0

d2
⌜

d1

T d0

x3 x2

T x2 T x1

d0

d3
⌜

d2

T d0

x′2 T x1

T T x1 T T x0

d′
0

d′
2

⌜
T d1

T T d0

(4.7)

are pullback diagrams; compare (4.6) with [9, Figure 1]. Since T preserves pullbacks, the rightmost
pullback diagram in (4.7) can be replaced by

T x2 T x1

T T x1 T T x0

T d0

T d2
⌜

T d1

T T d0

When T is cartesian, both d1 and d0 preserve pullbacks, hence (4.5) can be seen as a 2-equalizer
in the category of categories with pullbacks and pullback-preserving functors.

4.3 Effective descent morphisms via bilimits

Let T = (T,m,e) be a cartesian monad on a category V with pullbacks. We begin by observing that:

Lemma 4.5 ([52, Lemma A.1]). Let P be a pullback-stable class of morphisms of V . T creates such
morphisms in its essential image.
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Proof. Let f be a morphism such that T f ∈ P . Since the naturality squares for m and e at f are
pullbacks, we conclude that T T f , f ∈ P .

We now consider the sketch S constructed in Section 4.2.

Lemma 4.6 ([52, Proposition 4.2]). Let p : x → y be a morphism in Mod(S ,V ). If

– p0, p′0, p′′0, p1, p′1, p′′1 are effective descent morphisms,
– p2, p′2 are descent morphisms, and
– p3 is an almost descent morphism,

then p is an effective descent morphism.

Proof. The proof rests in describing Mod(S ,V ) as the category of V -models for a suitable essentially
algebraic theory; then the result is an immediate consequence of [40, Proposition 3.2.4].

Indeed, we obtain a sketch S , Morita equivalent to S , from the essentially algebraic theory A

defined by

– sorts x0, x1, x′0, x′1, x′′0 , x′′1 ,
– total operations given by the arrows of the full subgraph of the underlying graph of S consisting

of the aforementioned sorts,
– partial operations given by d1 : x1 × x′1 → x1, d′

1 : x′1 × x′′1 → x′1, and the limit cones of S , with
x2 and x′2 respectively replaced by x1 × x′1 and x′1 × x′′1 , give the equations for these partial
operations,

– the remaining equations are given by the underlying relations of S , with x2, x3 and x′2 replaced
by x1 × x′1, x1 × x′1 × x′′1 and x′1 × x′′1 , respectively.

The sketch S constructed from A via the procedure described in [40, 3.2.1] contains S as a
“subsketch”, containing extra limit cones for the formal products x1 × x′1, x′1 × x′′1 and x1 × x′1 × x′′1 ,
which are used to construct the limit cones of x2, x′2 and x3, as well as the (derived) partial operations
and equations.

Denoting by PsEq(F,G) the pseudoequalizer of a pair of functors F,G : A → B, we obtain:

Lemma 4.7 ([52, Lemma 3.3]). The induced inclusion Cat(T,V )→PsEq(d1,d0) is full and preserves
pullbacks.

Proof. We recall that a morphism f : (x,ζ ) → (y,ξ ) of PsEq(d1,d0) is a morphism f : x → y in
Mod(S ,V ) satisfying ξ ◦d0 f = d1 f ◦ζ . Thus, when ζ and ξ are identities, we precisely obtain a
T -category functor.

Since d1 and d0 are pullback-preserving functors between categories with pullbacks, it follows
that PsEq(d1,d0) has pullbacks, and PsEq(d1,d0)→Mod(S ,V ) creates them. We also note that
Cat(T,V )→Mod(S ,V ) preserves pullbacks as well, concluding the proof.

Lemma 4.8 ([52, Theorem 3.5]). If a morphism p : (x, id)→ (y,θ) in PsEq(d1,d0) is a componentwise
epimorphism, then (y,θ)∼= (z, id) for a T -category z.
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Proof. By hypothesis, we have d0 p = θ ◦d1 p. Writing θ = (θT ,θd), we obtain equations

pi = θT,i ◦ pi T p1 = θd,1 ◦ p′1
T pi = θ

′
T,i ◦ p′i T p′0 = θd,0 ◦ p′′0

T T pi = θ
′′
T,i ◦ p′′i ,

for i = 0,1 from which we deduce

θT,i = id, θ
′′
T,0 = T θ

′
T,0 ◦θd,0, θ

′
T,1 = θd,1,

since p is a componentwise epimorphism.

We claim (y,θ) is isomorphic to a T -category. The construction of the T -category presented below
is similar to [52, Lemma 3.4]. This T -category has underlying reflexive T -graph

Ty0 y′0 y1 y0,
θ ′

T,0 d1
d0

s0

and we observe that

y2 y′1 Ty1

y1 y′0 Ty0

d2

d′
0

θ ′
T,1

d′
0 T d0

d1 θ ′
T,0

y3 y′2 y′2

y2 y′1 Ty1

d3

d′
0

d′
0 θ ′

T,1◦d′
0

d2 θ ′
T,1

are pullback diagrams; the left squares are a pullback, and the right squares commute, and their
parallel sides are isomorphisms, as θ is an isomorphism.

Likewise,

y′2 y′′1 T Ty1

y′1 y′′0 T Ty0

Ty1 Ty′0 T Ty0

d′′
2

d′
0

θ ′′
T,1

d′
0 T T d0

d′
1

θd,1

θ ′′
T,0

θd,0

T d′
1 T θ ′

T,0

is a pullback diagram, since the top left square is a pullback, and the remaining squares, whose parallel
sides are isomorphisms, are commutative, and therefore pullback diagrams.

Now, we are left with verifying that the relations hold. It is enough to verify relations of morphisms
with (co)domain Ty0,Ty1,T Ty0,T Ty1, as the remaining hold by definition. We have

(θ ′
T,i ◦d1+i)◦ si = θ

′
T,i ◦ ei = exi ◦θT,i = exi ,

(θ ′
T,1 ◦d2)◦ s0 = θ

′
T,1 ◦ s′0 ◦d1 = T s0 ◦ (θ ′

T,0 ◦d1),

T d0 ◦T s0 = T (d0 ◦ s0) = id,
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θ
′
T,0 ◦d1 ◦d1 = θ

′
T,0 ◦m0 ◦d′

1 ◦d2

= mx0 ◦θ
′′
T,0 ◦d′

1 ◦d2

= mx0 ◦T θ
′
T,0 ◦θd,0 ◦d′

1 ◦d2

= mx0 ◦T θ
′
T,0 ◦T d1 ◦θd,1 ◦d2

= mx0 ◦T (θ ′
T,0 ◦d1)◦ (θ ′

T,1 ◦d2),

θ
′
T,1 ◦d2 ◦d2 = θ

′
T,1 ◦m1 ◦d′

2 ◦d3 = mx1 ◦ (θ ′′
T,1 ◦d′

2)◦d3,

θ
′
T,i ◦d1+i ◦d j = θ

′
T,i ◦d′

j ◦d2+i =

(θ ′
T,1 ◦d′

1)◦d3 i = j = 1

T d0 ◦ (θ ′
T,i ◦d2+i) j = 0

i, j = 0,1, j ⩽ i

T (θ ′
T,0 ◦d1)◦θ

′
T,1 ◦d′

0 = T θ
′
T,0 ◦θd,0 ◦d′

1 ◦d′
0 = θ

′′
T,0 ◦d′′

0 ◦d′
2 = T T d0 ◦ (θ ′′

T,1 ◦d′
2),

T d0 ◦θ
′
T,1 ◦d′

1 = θ
′
T,0 ◦d′

0 ◦d′
1 = θ

′
T,0 ◦d′

0 ◦d′
0 = T d0 ◦θ

′
T,1 ◦d′

0,

and this concludes the proof.

Corollary 4.9 ([52, Lemma 4.4]). The embedding Cat(T,V )→PsEq(d1,d0) reflects effective descent
morphisms.

Proof. Since any effective descent morphism is an epimorphism, this result is an immediate conse-
quence of Lemma 4.8 and Corollary 2.5.

Theorem 4.10 ([52, Theorem 4.5]). A functor p : x → y of T -categories is an effective descent
morphism in Cat(T,V ), provided that

– T p1 is an effective descent morphism,
– T p2 is a descent morphism, and
– p3 is an almost descent morphism.

Proof. By Lemma 4.5, if T p2 is a descent morphism, then so is p2, and if T p1 is an effective descent
morphism, then so are p1 and T T p1. Moreover, by Lemma 4.1, we may also deduce that p0,T p0 and
T T p0 are effective descent morphisms.

These conditions, and the fact that p3 is an almost descent morphism, guarantee that p is an
effective descent morphism in Mod(S ,V ), and the morphism d1 p = d0 p is a descent morphism, as
these are determined componentwise.

Thus, we conclude that (p, id) is an effective descent morphism in PsEq(d1,d0) by Proposition 2.7,
and, by Corollary 4.9, so is p.

4.4 A direct description of effective descent morphisms

We return to the setting of Burroni’s T -catégories, where V is any category with finite limits, and T is
a monad on V , not necessarily cartesian. We confirm that the arguments of Le Creurer for effective
descent morphisms of essentially algebraic theories can be applied just as well to T -catégories.
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Throughout, we assume that p : x → y is a functor of T -categories. We recall that since p is
a reflexive T -graph morphism, if E is the class of (effective/almost) descent morphisms in V and
p1 ∈ E , then p0 ∈ E as well by Lemma 4.1.

Lemma 4.11 ([52, Lemma 5.1]). If p1 is a (pullback-stable) epimorphism in V , then so is p in
Cat(T,V ).

Proof. If q,r : y → z are functors such that q◦ p = r ◦ p, then qi ◦ pi = ri ◦ pi for i = 0,1, so qi = ri,
implying q = r. We conclude that p is an epimorphism.

Since pullbacks in Cat(T,V ) are calculated componentwise, our claim is verified.

Lemma 4.12 ([52, Lemma 5.2]). If p1 is a (pullback-stable) regular epimorphism, and p2 is a
(pullback-stable) epimorphism in V , then p is a (pullback-stable) regular epimorphism in Cat(T,V ).

Proof. We consider the kernel pair of p:

k x

x y

r

s
⌜

p

p

(4.8)

If q : x → z is a functor such that r ◦ q = s ◦ q, then, when pi is a regular epimorphism for i = 0,1,
there exists a unique ti : yi → zi making the triangle of Diagram (4.9) commute

ki xi yi

zi

ri

s1

pi

qi
ti (4.9)

for i = 0,1. The morphisms t0, t1 define a functor t : y → z of T -categories; indeed, we note that, by
the universal property, t2 ◦ (g, f ) = (t1 ◦ g,Tt1 ◦ f ), from which we deduce q2 = t2 ◦ p2. Then, the
following calculations

t1 ◦d1 ◦ p2 = t1 ◦ p1 ◦d1 = q1 ◦d1 = d1 ◦q2 = d1 ◦ t2 ◦ p2,

di ◦ t1 ◦ p1 = di ◦q1 = T iq0 ◦di = T it0 ◦T i p0 ◦di = T it0 ◦di ◦ p1

plus the fact that p1, p2 are epimorphisms confirm our claim. Naturally, t : y → z is the unique functor
making the triangle below commute

k x y

z,

r

s

p

q t

for if l : y → z were another such functor, we would deduce that li = ti by uniqueness given at (4.9)
for i = 0,1, so l = t.

Again, by componentwise calculation of pullbacks of Cat(T,V ), we conclude that if p1 and p2

are pullback-stable, then so is p.
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Theorem 4.13 ([52, Theorem 5.3]). If T preserves pullbacks, and

– p1 : x1 → y1 is an effective descent morphism,
– p2 : x2 → y2 is a descent morphism, and
– p3 : x3 → y3 is an almost descent morphism

in V , then p is an effective descent morphism in Cat(T,V ).

Proof. By Lemma 4.12, our hypotheses guarantee that K p : Cat(T,V ) ↓ y→Desc(p) is fully faithful.
Hence, our goal is to confirm K p is essentially surjective, and we shall do so via Proposition 2.2.

We consider the kernel pair (4.8) of p, and we let (a : v → x,γ : r×x a → v) be a discrete fibration
(internal to Cat(T,V )) over Ker(p).

If pi is an effective descent morphism for i = 0,1, we obtain an equivalence K pi : V ↓ yi →
Desc(pi) for i = 0,1. Thus, by Proposition 2.2 there exist bi : wi → yi and hi : vi → wi such that

vi wi

xi yi

ai

hi

⌜
bi

pi

(4.10)

is a pullback diagram, satisfying
hi ◦ γi = hi ◦ εpi◦ai (4.11)

for i = 0,1.
We claim that w is a T -category, h0,h1 define a functor h : v → w, and b0,b1 define a functor

b : w → y. To do so, we consider the kernel pairs of h0 and h1; given that p0 and p1 are descent
morphisms, h0 and h1 are the coequalizers of their kernel pairs. Moreover, since T preserves kernel
pairs, we obtain

u1 v1 wi

T iu0 T iv0 T iw0

di

h1

di di

h0

which provides the T -graph structure of w. With this, we obtain the following cospan of cospans

Tw1 Tw0 w1

Ty1 Ty0 y1

T x1 T x0 x1

T d0

T b1 b0

d1

b1

T d0 d1

T d0

T p1 p0

d1

p1

(4.12)

and since T preserves pullbacks, the horizontal and vertical pullbacks of (4.12) are, respectively

w2 y2 x2

T v1 T v0 v1

b2 p2

T d0 d1

(4.13)
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so, by commutativity of limits, the cospans (4.13) have isomorphic pullbacks. Since the pullback of
the last span defines v2, we obtain the following pullback diagram:

v2 w2

x2 y2

a2

h2

⌜
b2

p2

(4.14)

Analogously, we deduce that

v3 w3

x3 y3

a3

h3

⌜
b3

p3

(4.15)

is a pullback diagram as well.
If p2 is also a descent morphism, we conclude via (4.14) that h2 is a regular epimorphism as well.

So, we may consider its kernel pair as well, to obtain

u0 v0 w0

u1 v1 w1

u2 v2 w2

s0

h0

s0 s0

h1

d1
h2

d1 d1

which give the identity and composition structure morphisms for w. Indeed, under the hypothesis w is
a T -category, we can already conclude that h : v → w is a functor.

To prove this hypothesis, note that if p3 is also an almost descent morphism, then so is h3 by (4.15).
Now, we note that we have

d1 ◦ s0 ◦h0 = T h0 ◦d1 ◦ s0 = T h0 ◦ e = e◦h0

d0 ◦ s0 ◦h0 = h0 ◦d0 ◦ s0 = h0

d1 ◦d1 ◦h2 = T h0 ◦d1 ◦d1 = T h0 ◦m◦T d1 ◦d2 = m◦T d1 ◦d2 ◦h2

d0 ◦d1 ◦h2 = h0 ◦d0 ◦d1 = h0 ◦d0 ◦d0 = d0 ◦d0 ◦h2

d1 ◦ si ◦h1 = h1 ◦d1 ◦ si = h1 ◦ s0 ◦d0 = s0 ◦d0 ◦h1

d1 ◦d2 ◦h3 = h1 ◦d1 ◦d2 = h1 ◦d1 ◦d1 = d1 ◦d1 ◦h3

so, by cancellation, we conclude that w is a T -category.
Finally, we must confirm b0,b1 define a functor b : w → y. We recall that h0,h1,h2 are epimor-

phisms, and we observe that

b1 ◦d1 ◦h2 = b1 ◦h1 ◦d1 = p1 ◦a1 ◦d1 = d1 ◦ p2 ◦a2 = d1 ◦b2 ◦h2

di ◦b1 ◦h1 = di ◦ p1 ◦a1 = T i p0 ◦T ia0 ◦di = T ib0 ◦T ih0 ◦di = T ib0 ◦di ◦h1,

confirming that the properties for a functor are satisfied, via cancellation.
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Since (4.10) is a pullback diagram for i = 0,1, we obtain a pullback diagram

v w

x y

a

h

⌜
b

p

and we have
h◦ γ = h◦ εp◦a (4.16)

as a consequence of (4.11) for i = 0,1. This concludes our proof, by Proposition 2.2.

4.5 Application to graded, operadic and enhanced multicategories

Let V be a category with finite limits, and T a cartesian monad on V . We recall that we have an
equivalence

Cat(T,V ) ↓ x ≃ Cat(Tx,V ↓ x0) (4.17)

for any internal (T,V )-category x, where Tx is a cartesian monad on V ↓ x0 induced by x; see [41,
Section 6.2]. Since C ↓ x → C creates (effective, almost) descent morphisms, we can obtain results
about effective descent morphisms in Cat(Tx,V ↓ x0) by studying those of Cat(T,V ).

To illustrate this, let V be a category with finite limits. For an internal category C in V , the monad
on V ↓ C0 induced by the identity monad on V is denoted C ×C0 −. Via the equivalence (4.17), the
category of C -graded categories internal to V is the category of internal functors over C :

Cat(C ×C0 −,V ↓ C0)≃ Cat(V ) ↓ C .

Hence, the study of effective descent functors of graded internal categories reduces to the study of
effective descent functor of internal categories. Of particular importance is the case C0 ∼= 1; that is,
when C is an internal V -monoid.

Now, let V be a lextensive category. The free monoid monad M on V , given on objects by

X 7→ ∑
n∈N

Xn,

is a cartesian monad, hence we may consider the category of multicategories internal to V , given by
MultiCat(V ) = Cat(M,V ). By Theorem 4.13, a multicategory functor p : x → y internal to V is an
effective descent morphism in MultiCat(V ), provided that

– p1 : x1 → y1 is an effective descent morphism in V ,
– p2 : x2 → y2 is a descent morphism in V ,
– p3 : x3 → y3 is an almost descent morphism in V .

If we have an internal V -operad O (an internal V -multicategory with terminal object-of-objects), the
monad TO induced by the free monoid monad is given by

X 7→ ∑
n∈N

On ×Xn,
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and is cartesian as well. We define the objects of Cat(TO,V ) to be the operadic multicategories
internal to V . Via (4.17), we obtain

Cat(TO,V )≃MultiCat(V ) ↓O,

so a morphism of operadic multicategories is effective for descent if it is so as a morphism on the
underlying internal multicategories, which we have described above.

Finally, we consider the 2-monad Famfin on Cat, the free finite coproduct completion 2-monad.
This is one of the central objects of study in [60], where it was shown to be a cartesian (2-)monad.
Hence, we may consider Famfin-categories internal to Cat, and we can obtain a description of the
effective descent morphisms of Cat(Famfin,Cat) via Theorem 4.13.

Moreover, we have a cartesian 2-natural transformation S → Famfin (see [60, Example 7.5]),
where S is the free symmetric strict monoidal category 2-monad, and the objects of Cat(S,Cat) were
called enhanced symmetric multicategories in [41, p. 212], whose study of effective descent functors
reduces to the previous case.

By analogy, we may take the objects of Cat(Famfin,Cat) to be the enhanced cocartesian multicat-
egories, and analogously, we have the free finite product completion 2-monad Fam∗

fin on Cat, defined
on objects by A 7→ Famfin(A

op)op, which is also cartesian, and the objects of Cat(Fam∗
fin,Cat) may

be called enhanced cartesian multicategories2.
For an ordinary functor F : C → D of categories, we have that

– F is an almost descent functor if F is surjective on morphisms,
– F is a descent functor if F is surjective on 2-chains,
– F is an effective descent functor if F is surjective on 3-chains,

so, for T a cartesian monad on Cat (such as one of Famfin,Fam
∗
fin,S), a functor P : X → Y of

T -categories is effective for descent if

– P1 : X1 → Y1 is surjective on 3-chains,
– P2 : X2 → Y2 is surjective on 2-chains,
– P3 : X3 → Y3 is surjective on morphisms.

2These are related to the multi-sorted Lawvere theories – see [17], or Subsection 5.4.2





Chapter 5

Generalized enriched multicategory
functors

Equipped with the description of effective descent morphisms in Cat(T,V ) given in Theorem 4.13,
our goal is to study effective descent morphisms in a category of enriched generalized multicategories,
by suitably embedding it into a category of internal generalized multicategories, and studying whether
the effective descent morphisms are reflected by this embedding. In short, we aim to generalize the
approach of [45, Theorem 9.11] for the embedding V -Cat→ Cat(V ) to the setting of generalized
multicategorical structures.

Such an embedding is constructed via a suitable notion of change-of-base for generalized multicat-
egories. This work was carried out in [53] from a general point-of-view; here, we recount the details
that are relevant in the study of effective descent functors for enriched generalized multicategories.

The notion of enriched (T,V )-categories was introduced in [16], under the terminology (T,V )-
categories, as a suitable notion of lax algebras. In Section 5.1, we will provide the definition in a
slightly more general setting, as done in [55] and [26] (when V is a suitable quantale), as well as [17].
We consider a monad T = (T,m,e) on V -Mat in Equiplax – the 2-category of equipments, lax functors
and icons, and the enriched (T,V )-categories are defined as a suitable notion of lax algebra. The
original setting of [16] is recovered when T is a normal lax monad.

Working in the 2-category Equiplax, in Section 5.2, we review the lifting of the functor −·1: Set→
V to a functor −·1: V -Mat→ Span(V ) in Proposition 5.1, and we describe the monad T on V -Mat,
given by reflecting the monad T on Span(V ) along −·1. The results of [53] on change-of-base for
generalized categorical structures then confirm that we obtain an embedding

−·1: (T ,V )-Cat→ Cat(T,V ), (5.1)

under a suitable condition (Theorem 5.2).

In Section 5.3, we study the problem of reflecting effective descent morphisms along the embed-
ding (5.1). We confirm that, under a second suitable condition, every effective descent morphism is
reflected (Lemma 5.5). Then, via our description of the effective descent morphisms in Cat(T,V ), we
obtain Theorem 5.6, the main result of this chapter.

53
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We finish this chapter with Section 5.4, where we provide our applications in the study of effective
descent morphisms in categorical structures, after briefly discussing whether the two extra conditions
introduced in Sections 5.2 and 5.3 affect the scope of the available examples.

5.1 (T,V )-categories

Throughout this chapter, V is assumed to be a lextensive, cartesian monoidal category. We recall that
V is necessarily distributive; see [10, Proposition 4.5].

The equipment of V -matrices, denoted V -Mat, is defined in [5]; we simply recall that a V -matrix
r is a family (r(x,y))x,y∈X×Y of objects in V indexed by X ×Y . Such a V -matrix shall be denoted as
r : X → Y . If s : Y → Z is another V -matrix, the composite s · r : X → Z is given at x,z by

(s · r)(x,z) = ∑
y∈Y

s(y,z)× r(x,y),

and for every set X , the unit V -matrix 1X : X → X is given at x,y by the terminal object if x = y, and
the initial object if x ̸= y.

We let Equiplax be the 2-category of equipments, lax functors, and icons [37], and we let T =

(T,m,e) be a monad on V -Mat in the 2-category Equiplax. We remark that T has an underlying monad
on Set, and it can be shown that T is its lax extension, under the terminology of [16, p. 18], provided
we relax the condition T 1r = 1Tr for V -matrices r. This was observed in [26, Subsection 1.13] when
V is a quantale, and in [17, Appendix B].

The data for such a lax monad T consists of

– a set T X for each set X ,
– a V -matrix Tr : T X → TY for each V -matrix r : X → Y ,
– for each set X , a family of comparison morphisms

eT
X : 1 → (T 1X)(x,x)

indexed by x ∈ T X ,
– for each pair of V -matrices r : X → Y , s : Y → Z, a family of comparison morphisms

mT
r,s : (T s ·Tr)(x,z)→ (T (s · r))(x,z)

indexed by x ∈ T X , z ∈ T Z,
– for each V -matrix r : X → Y , a family of morphisms

er,x,y : r(x,y)→ (Tr)(e(x),e(y))

indexed by x ∈ X , y ∈ Y ,
– for each V -matrix r : X → Y , a family of morphisms

mr,x,y : (T Tr)(x,y)→ (Tr)(m(x),m(y))
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indexed by x ∈ T T X , y ∈ T TY .

satisfying the following coherence conditions, where we omit the indexing elements, as well as the
associator and unitor isomorphisms for convenience:

Tt ·T s ·Tr T (t · s) ·Tr

Tt ·T (s · r) T (t · s · r)

id·mT

mT ·id

mT

mT

Tr Tr ·T 1

Tr

id·eT

mT

Tr T 1 ·Tr

Tr

eT ·id

mT

T T s ·T Tr T s ·Tr

T (T s ·Tr) T T (s · r)

ms·mr

mT

T mT

ms·r

1T T x T 1T x T T 1x

1T x T 1x

1mx

eT

T eT

m1x

eT

s · r T s ·Tr

T (s · r)

es·er

es·r mT

1x 1T x

T 1x

1ex

e1x
eT

for each 3-chain of V -matrices r, s, t, as well as the following associativity and identity conditions:

Tr T Tr

Tr

Ter

mr

Tr T Tr

Tr

eTr

mr

T T Tr T Tr

T Tr Tr

mTr

T mr mr

mr

where we have also omitted the indexing elements.

An enriched (T,V )-category is a quadruple (X ,a,υ ,µ), where X is a set, a : T X → X is a
V -matrix, υ is a family of morphisms υx : 1 → a(e(x),x) indexed by x ∈ X , and µ is a family of
morphisms

µx0,x1,x2 : a(x2,x1,x0)→ a(m(x2),x0)

indexed by xi ∈ T iX , where we define

a(x2,x1,x0) = a(x1,x0)× (Ta)(x2,x1) and a(x3,x2,x1,x0) = a(x2,x1,x0)× (T Ta)(x3,x2)

for xi ∈ T iX . These families satisfy the following identity and associativity laws:

a(x1,x0) a(eT (x1),x1,x0)

a(x1,x0)

id×((T υ)x1◦e
T )

µ

a(x1,x0) a(eT (x1),e(x0),x0)

a(x1,x0)

υx0×ea

µ



56 Generalized enriched multicategory functors

a(x3,x2,x1,x0) a((T m)(x3),x1,x0)

a((mT )(x3),m(x2),x0) a((m◦mT )(x3),x0)

id×(T µ◦mT )

µ×ma µ

µ

5.2 Change-of-base and embedding

Let V be a lextensive category. The following diagram depicts the adjunction fundamental to our
study of viewing enriched generalized multicategories as internal generalized multicategories:

Set V

−·1

V (1,−)

⊣ (5.2)

We shall denote the counit of this adjunction by ε̂ . As was done in [45, Theorem 9.11], we will assume
for the remainder of this chapter that −· 1 is fully faithful, so that Set may be the seen as the full
subcategory of V consisting of the discrete objects. As observed in [59, Lemma 2.2.1] (when V is a
presheaf category), we have:

Proposition 5.1 ([53, Remark 7.4, Lemma 7.6]). We have an adjunction

V -Mat Span(V )

−·1

V (1,−)

⊣ (5.3)

in the 2-category Equiplax. Moreover, −·1: V -Mat→ Span(V ) is fully faithful, and the underlying
adjunction on the categories of objects is precisely (5.2).

Spans a : X → Y in a category V are denoted by a diagram such as:

Ma

X Y

la ra

So, if a : X → Y is a span, the V -matrix V (1,a) is given at x ∈ V (1,X), y ∈ V (1,Y ) by the pullback

V (1,a)(x,y) 1

Ma X ×Y

⌜ x,y

la,ra
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while if r : S → T is a V -matrix, the span r ·1 is given by the coproduct of

r(x,y)

1 1

indexed by
S×T

S T

d1 d0

Now, we let T = (T,m,e) be a cartesian monad on V . By [24, Proposition A.2], T induces a
pseudomonad on Span(V ), which may be seen as a monad in Equiplax, which we also denote by T ;
see [17, Example A.6].

Via (5.3), the monad T on Span(V ) induces a monad T = (T ,m,e) on V -Mat (see [53, Proposi-
tion 8.1]), where

– T a = V (1,T (a ·1)),
– ma = V (1,ma·1 ◦T ε̂T (a·1))

– ea = V (1,ea·1)◦ η̂a,

for each V -matrix a. This monad is the lax extension of the monad (also denoted T ) induced by T on
Set via (5.2). Under suitable conditions, the category of enriched (T ,V )-categories is embedded in
the category of internal (T,V )-categories, which are our objects of interest in this Chapter.

Theorem 5.2 ([53, Lemma 9.1, Theorem 9.2]). If ε̂T (−·1) is a cartesian natural transformation, we
have an adjunction

(T ,V )-Cat Cat(T,V )

−·1

V (1,−)

⊣ (5.4)

and the functor −·1: (T ,V )-Cat→ Cat(T,V ) is fully faithful.

The embedding functor −·1: (T ,V )-Cat→ Cat(T,V ) is given on an enriched (T ,V )-category
(X ,a,υ ,µ) by the span

Ma·1

T X ·1 X ·1

T (X ·1)

la·1 ra·1

ε̂T (X ·1)

with unit υ̂ given by

1 a(e(x),x) ·1

X ·1 Ma·1

η̂x

υx·1

ιe(x),x

υ̂
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via the universal property of the coproduct, and the composition µ̂ is given by

a(x2,x1,x0) ·1 a(m(x2),x0) ·1

∑
xi∈T iX

a(x2,x1,x0) ·1 Ma·1

µx2 ,x1 ,x0 ·1

µ̂

via the universal property of the coproduct. The hypothesis that ε̂T (−·1) is a cartesian natural transfor-
mation ensures that the following diagram

∑
xi∈T iX

T a(x2,x1) ·1 T X ·1

T Ma·1 T (X ·1)

ε̂T (a·1)
⌜ ε̂T (X ·1)

Tra·1

is a pullback square, by [53, Lemma 8.3], thereby guaranteeing that

∑
xi∈T iX

a(x2,x1,x0)

is the object of 2-chains of (X ,a,υ ,µ) ·1.

If ( f ,φ) : (X ,a,υ ,µ)→ (Y,b,υ ,µ) is an enriched (T ,V )-functor, ( f ,φ) ·1 is given on objects
by f ·1: X ·1 → Y ·1, and φ ·1: Ma·1 → Mb·1 on morphisms.

5.3 Reflection of effective descent morphisms

Having established all the necessary notation, we can now proceed to study the effective descent mor-
phisms in (T ,V )-Cat, by studying whether the embedding −·1: (T ,V )-Cat→ Cat(T,V ) reflects
effective descent morphisms. The key idea, developed by the next result, is that we must guarantee
that the full inclusion (T ,V )-Cat→ Cat(T,V ) consists precisely of those internal (T,V )-categories
with a discrete object of objects, which could not be guaranteed in general.

Lemma 5.3 ([53, Lemma 10.2]). Let X be an internal (T,V )-category whose object-of-objects is
discrete; that is, X0 ∼= S ·1 for a set S.

If we let a be the span in V given by the underlying T -graph of X, as depicted in (5.5),

X1

T X0 X0

d1 d0 (5.5)

then ε̂a is a split epimorphism. Moreover, if ε̂T 1 : T 1 · 1 → T 1 is a monomorphism, then ε̂a is an
isomorphism.
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Proof. We may assume that X0 = S · 1. Our first step is to notice that d1 : X1 → T (S · 1) factors
uniquely through ε̂T (S·1); we have e1 = ε̂T 1 ◦ (e1 ·1) (by definition of e), so there exists a unique d̂1,
depicted by dashed morphism in (5.6)

X1

1 T S ·1 T (S ·1)

T 1 ·1 T 1

d̂1

d1

!

e1·1

ε̂T (S·1)

T !·1
⌜

T (!·1)

ε̂T 1

(5.6)

making the adjacent diagrams commute.
We may conclude that there is a unique morphism ω : X1 → MV (1,a)·1 such that ε̂a ◦ω = id

(confirming that ε̂a is a split epimorphism) and (d̂1,d0) = (d1,d0)◦ω , as depicted in (5.7)1

X1

MV (1,a)·1 T S ·1×S ·1

X1 T (X ·1)×S ·1

d̂1,d0

ω

ε̂a

lV (1,a)·1,rV (1,a)·1

⌜
ε̂T (S·1)×id

d1,d0

(5.7)

Moreover, if ε̂T 1 is a monomorphism, then, by the pullback square in (5.6), so is ε̂T (S·1), and by the
pullback square in (5.7), we conclude ε̂a is a monomorphism. Therefore, ε̂a must be invertible.

As a corollary, we conclude that the enriched (T ,V )-categories are precisely the internal T -
categories whose object of objects is discrete. More precisely, we have:

Lemma 5.4 ([53, Theorem 10.3]). If ε̂T 1 is a monomorphism, we have a pseudopullback diagram

(T ,V )-Cat Cat(T,V )

Set V

−·1

∼=

−·1

of categories with pullbacks and pullback-preserving functors.

Proof. The objects of the pseudopullback are triples (S,X ,φ) where S is a set, X is an internal (T,V )-
category, and φ is an isomorphism φ : S ·1 → X . By Lemma 5.3, it follows that ε̂a is invertible, where
a is the span given by the underlying T -graph of X , as in (5.5).

By general remarks about change-of-base adjunctions between horizontal lax algebras given
in [53, Section 6], this implies that X is isomorphic to an enriched (T ,V )-category.

Everything is set up to apply the results about effective descent morphisms in bilimits from
Chapter 2, which gives the following reflection result:

1It should be noted that ε̂a is defined by this pullback square, see [53, (2.5)], noting that V is lextensive.
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Lemma 5.5 ([53, Lemma 10.4]). If ε̂T 1 is a monomorphism, then −· 1: (T ,V )-Cat→ Cat(T,V )

reflects effective descent morphisms.

Proof. We follow the same approach as Theorem 3.9. As stated in Remark 2.9, the functor Cat(T,V )→
V preserves descent morphisms, which are reflected by −·1: Set→ V .

Since descent morphisms in Set are effective for descent, we may apply Proposition 2.6 and
Lemma 5.4 to conclude our result.

Now, we can apply our knowledge of effective descent morphisms in Cat(T,V ) to obtain the
main result of this chapter:

Theorem 5.6 ([53, Theorem 10.5]). Let ( f ,φ) : (X ,a,υ ,µ)→ (Y,b,υ ,µ) be a functor of enriched
(T ,V )-categories. If ε̂T 1 is a monomorphism, and if

– (( f ,φ) ·1)1 is an effective descent morphism,
– (( f ,φ) ·1)2 is a descent morphism,
– (( f ,φ) ·1)3 is an almost descent morphism,

then ( f ,φ) is an effective descent morphism in (T ,V )-Cat.

Proof. By Theorem 4.13, the above conditions guarantee that ( f ,φ) ·1 is an effective descent mor-
phism in Cat(T,V ). Since ε̂T 1 is a monomorphism, we may apply Lemma 5.5 to conclude that ( f ,φ)
is an effective descent morphism in (T ,V )-Cat.

5.4 Scope of the findings

Our main result holds in the context of a lextensive category V such that −· 1: Set→ V is fully
faithful. These properties are enjoyed by the categories Cat, Top, any connected Grothendieck topos,
and any free coproduct completion Fam(B) of a category B with finite limits. Moreover, we have
required two more hypotheses:

(a) ε̂T (−·1) is a cartesian natural transformation.
(b) ε̂T 1 is a monomorphism.

We can verify that (b) holds when

• the terminal object is a separator, that is, when V (1,−) is faithful, so that ε̂ is a componentwise
monomorphism. This is the case for Cat, Top, any hyperconnected Grothendieck topos (by
definition), but not the case for Grph nor Fam(Set)2,

• T is discrete, that is ε̂T 1 is an isomorphism. This is the case when T is the free monoid monad
on any category V under the above conditions, but not when T is the free category monad on
Grph.

Further discussion may be found in [53, Section 10].
On the other hand, we have found no examples of cartesian monads T on V that do not satisfy (a).

This is discussed at length in [53, Section 8]; here we merely recall the results required to discuss our
examples.

2These are Grothendieck toposes which are not hyperconnected.
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5.4.1 Classical multicategories

The free monoid monad M on V satisfies (a) and (b) [53, Lemma 8.7 and Subsection 10.2]. In this
case, we let V -MultiCat= (M,V )-Cat be the category of enriched V -multicategories.

If ( f ,φ) : (X ,a,υ ,µ)→ (Y,b,υ ,µ) is a functor of enriched V -multicategories such that

φ : ∑
xi∈(Mi f )∗(yi)

a(x1,x0)→ b(y1,y0)

is an effective descent morphism,

φ ×Mφ : ∑
xi∈(Mi f )∗(yi)

a(x2,x1,x0)→ b(y2,y1,y0)

is a descent morphism, and

φ ×Mφ ×M2
φ : ∑

xi∈(Mi f )∗(yi)

a(x3,x2,x1,x0)→ b(y3,y2,y1,y0)

is an almost descent morphism, for all yi ∈MiY with i = 0,1,2,3, then ( f ,φ) is an effective descent
morphism in V -MultiCat, by Theorem 5.6.

5.4.2 Cartesian and cocartesian multicategories

The free finite coproduct completion Famfin on Cat satisfies (a) [53, Subsection 8.5]. Since the terminal
category is a separator in Cat, we conclude that (b) holds. Thus, by Lemma 5.4, (Famfin,Cat)-Cat is
the category of enhanced cocartesian multicategories with a discrete object-of-objects. For this reason,
we refer to its objects as cocartesian multicategories. Likewise, (Fam

∗
fin,Cat)-Cat is the category of

cartesian multicategories3.
Via the description of effective descent morphisms for functors of enhanced multicategories, given

in Section 4.5 we obtain a description of the effective descent functors for cartesian and cocartesian
multicategories.

5.4.3 Graded, operadic and symmetric multicategories

Let S,T be endofunctors on V , and let α : S → T be a cartesian natural transformation. If T satisfies
(a), so does S. Thus, it follows that (a) is satisfied by V -operadic monads, as well as the free symmetric
strict monoidal category monad S, when V = Cat.

However, we do not guarantee that every V -operadic monad satisfies (b) in general. It certainly is
true if the terminal object of V is a separator, and if O is a V -operad such that On is discrete for all
n ∈ N, then the V -operadic monad MO induced by O is discrete, so the property is also satisfied in
this setting. We call such V -operads discrete.

If the V -operad O is discrete, we let (MO,V )-Cat be the category of enriched O-categories.
Via the results of 4.5, and Theorem 5.6, we obtain a description for the effective descent functors of

3These are a wide subcategory of the category of multi-sorted Lawvere theories – the morphisms between cartesian
multicategories are precisely the “degree one” morphisms between Lawvere theories. See also [17, Example 4.17].
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enriched O-categories. In particular, we also obtain the enriched graded multicategories by a discrete
V -monoid M, and a description of the respective effective descent functors.

Since the terminal category is a separator in Cat, it follows that (b) is satisfied for S. Arguing as
we did in the case of (co)cartesian multicategories, we let (S,Cat)-Cat be the category of symmetric
multicategories, for which we also obtain a description of the respective effective descent functors.



Chapter 6

Fibration of split opfibrations

The bifibration FD = CAT(−,Set) : Catop → CAT of discrete opfibrations is the main object of study
in [56]. Therein, the functors p : E → B of (effective) FD-descent were characterized. Indeed, p is
a FD-descent morphism if and only if p is a lax epimorphism, while p is an effective FD-descent
morphism if and only if p is a fully faithful lax epimorphism.

Our goal for this chapter, covering the work done in [47], is to show that the results of [56]
for discrete opfibrations can be applied just as well to other settings. Among them, we are able to
characterize the effective F-descent morphisms for the bifibration F = CAT(−,Cat) : Catop → CAT

of split opfibrations. We confirm that a functor p is of (effective) F-descent if and only if it is of
(effective) FD-descent (Theorem 6.11).

We begin Section 6.1 by recalling the notions of fully faithful morphism and lax epimorphism in
a 2-category A, as well as a couple of relevant results. Then we restrict our attention to the setting
of enriched categories, recalling from [48] the notions of V -fully faithful and V -lax epimorphic
V -functors, for V a complete and cocomplete symmetric monoidal closed category, and comparing
them with the notions of fully faithful morphism and lax epimorphism in the 2-category V -Cat of
small V -categories.

6.1 Fully faithful morphisms and lax epimorphisms

Let A be a 2-category. A morphism f : x → y is said to be

– fully faithful if A(w, f ) : A(w,x)→ A(w,y) is fully faithful for all w,
– lax epimorphic if A( f ,z) : A(y,z)→ A(x,z) is fully faithful for all z.

A comprehensive study of lax epimorphisms in a 2-category is carried out in [48]. We shall recall
some fundamental aspects.

If we have an adjunction f ⊣ g in A, the following are equivalent:

– the unit of f ⊣ g is invertible,
– g is fully faithful,
– f is a lax epimorphism.

Codually, it follows that the following are equivalent:
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– the counit of f ⊣ g is invertible,
– g is a lax epimorphism,
– f is fully faithful.

From this, we may conclude that:

Proposition 6.1 ([47, p. 134]). If a morphism f has a left or right adjoint, and is a fully faithful lax
epimorphism, then f is an equivalence.

For the remainder of this chapter, we assume that V is a complete and cocomplete, symmetric
monoidal closed category. We now restrict our scope to the 2-category A = V -Cat of small V -
categories, V -functors and V -natural transformations; this setting was studied in [48, Section 5]. We
will recall the pertinent definitions and results therein.

A V -functor p : E → B between small V -categories is said to be

– V -fully faithful if p : E(a,b)→ B(pa, pb) is an isomorphism for all objects a,b,
– a V -lax epimorphism if the V -functor

V -Cat[p,C] : V -Cat[B,C]→ V -Cat[E,C]

is V -fully faithful for all small V -categories C [48, Definition 5.4].

Proposition 6.2 ([48, Lemma 5.1]). If p : E → B is a V -fully faithful V -functor, then p is a fully
faithful morphism in V -Cat. The converse holds if p has a left or right adjoint.

Proposition 6.3 ([48, Theorem 5.6]). Let p : E → B be a V -functor. The following are equivalent:

– p is a lax epimorphism in V -Cat,
– p is a V -lax epimorphism,
– the functor V -CAT(p,V ) : V -CAT(B,V )→ V -CAT(E,V ) is fully faithful.

The result analogous to Proposition 6.3 for V -fully faithful V -functors, despite not being a
consequence of duality, can be shown to hold as well:

Lemma 6.4 ([47, Proposition 2.4]). A V -functor p : E → B is V -fully faithful if and only if the functor
V -CAT(p,V ) is a lax epimorphism.

Proof. We have an adjunction Lanp ⊣ V -CAT(p,V ). From previous remarks, V -CAT(p,V ) is a lax
epimorphism if and only if Lanp is fully faithful.

By the enriched Yoneda lemma, p is V -fully faithful if and only if Lanp is fully faithful (see [34,
Proposition 4.23]).

6.2 Enriched Cauchy completion

Let C be a (possibly large) V -category. An object x on C is said to be tiny (also called absolutely
presentable in [6] and small-projective in [34]) if the representable V -functor C (x,−) : C → V

preserves colimits.
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The Cauchy completion of a small V -category X is the full sub-V -category of tiny objects of
V -CAT[Xop,V ], and is denoted by CX . We observe that, in general, CX is not a small V -category;
for instance, let V be the category of complete lattices. In [34, Section 5.5], it was shown that C I is
not small, where I is the unit V -category. Hence, we will assume for the remainder of this chapter
that:

CX is a small V -category for all small V -categories X . (6.1)

This property holds for many base categories V of our interest, such as Cat, Set, and any small
quantale. More generally, it was shown in [33] that if the underlying category of V is locally
presentable, then (6.1) holds.

The following result confirms that V -equivalences preserve tiny objects:

Lemma 6.5 ([47, Lemma 2.1]). Let F ⊣ G : D → C be a V -adjunction of (possibly large) V -
categories. If G preserves colimits, then F preserves tiny objects.

Proof. If a is tiny, then D(Fa,−) ∼= C (a,G(−)) is a composite of functors that preserve colimits,
hence Fa is tiny.

A consequence of Lemma 6.5 is that for any V -functor p : X →Y , we may define C p : CX → CY
by restricting the enriched left Kan extension Lanp : V -CAT[X ,V ]→V -CAT[Y,V ] to the tiny objects.
Indeed, we have a chain of V -adjunctions

Lanp ⊣ V -CAT[p,V ] ⊣ Ranp

which confirms that V -CAT[p,V ] preserves colimits, so Lanp preserves tiny objects.

By the enriched Yoneda lemma, we readily confirm that any representable V -presheaf is tiny,

V -CAT[Xop,V ](X(−,x),colim(W,F))∼= colim(W,F)x
∼= colim(W,F(−,x))
∼= colim(W,V -CAT[Xop,V ](X(−,x),F)),

so that the Yoneda V -embedding y : X → V -CAT[Xop,V ] restricts to a V -functor ηX : X → CX . It
also follows that for any V -functor p : X →Y , we have a V -natural isomorphism η ◦ p ∼= C p◦η , and
that V -CAT(η ,V ) is an equivalence.

This allows us to highlight the relationship between Cauchy completion and fully faithful mor-
phisms/lax epimorphisms:

Lemma 6.6 ([47, Lemma 2.2]). If p : X → Y is a V -functor, then the induced functor

V -CAT(p,V ) : V -CAT(Y,V )→ V -CAT(X ,V )

is fully faithful (respectively, a lax epimorphism) if and only if V -CAT(C p,V ) is fully faithful
(respectively, a lax epimorphism).
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Proof. We observe that the following diagram commutes up to isomorphism:

V -CAT(CY,V ) V -CAT(Y,V )

V -CAT(CX ,V ) V -CAT(X ,V )

V -CAT(ηY ,V )

V -CAT(C p,V ) ∼= V -CAT(p,V )

V -CAT(ηX ,V )

Since the rows are equivalences, the result follows.

We immediately conclude that:

Corollary 6.7 ([47, Proposition 2.3]). The following are equivalent for a V -functor p : X → Y :

(i) p is a lax epimorphism,
(ii) C p is a lax epimorphism,

(iii) V -CAT(p,V ) is fully faithful.
(iv) V -CAT(C p,V ) is fully faithful.

Proof. The equivalences (i) ⇐⇒ (iii) and (ii) ⇐⇒ (iv) were obtained in Proposition 6.3, and the
equivalence (iii) ⇐⇒ (iv) follows by Lemma 6.6.

Corollary 6.8 ([47, Proposition 2.4]). The following are equivalent for a V -functor p : X → Y :

(i) p is V -fully faithful,
(ii) C p is V -fully faithful,

(iii) V -CAT(p,V ) is a lax epimorphism.
(iv) V -CAT(C p,V ) is a lax epimorphism.

Proof. The equivalences (i) ⇐⇒ (iii) and (ii) ⇐⇒ (iv) were obtained in Proposition 6.4, and we
obtain the equivalence (iii) ⇐⇒ (iv) via Lemma 6.6.

Combining Corollaries 6.7 and 6.8, we obtain

Theorem 6.9 ([47, Theorem 2.5]). The following are equivalent for a V -functor p : X → Y :

(i) p is a V -fully faithful lax epimorphism,
(ii) C p is a V -fully faithful lax epimorphism,

(iii) V -CAT(p,V ) is a fully faithful lax epimorphism,
(iv) C p is an equivalence,
(v) V -CAT(p,V ) is an equivalence.

Proof. Corollaries 6.7 and 6.8 guarantee that (i) ⇐⇒ (ii) ⇐⇒ (iii).
As any equivalence is a fully faithful lax epimorphism, we have (iv) =⇒ (ii), and since equiva-

lences fix tiny objects, we conclude (v) =⇒ (iv).
Finally, we note that we have an adjunction Lanp ⊣ V -CAT(p,V ), so we obtain (iii) =⇒ (v) by

Proposition 6.1.
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6.3 Descent for the bifibration of split fibrations

Lemma 6.10 ([47, Proposition 3.1]). A functor p : E → B between small categories is fully faithful
(respectively, a lax epimorphism) if and only if CAT(p,Cat) is a lax epimorphism (respectively, fully
faithful).

Proof. We consider the fully faithful functor J : Set→ Cat, which has left and right adjoint functors.
Hence, its direct image J! : Set-CAT→ Cat-CAT is a fully faithful 2-functor, and has left and right
2-adjoints. By [48, Remark 2.8 and Lemma 2.10], we conclude that J! creates fully faithful morphisms
and lax epimorphisms.

Hence, we conclude from Corollary 6.8 (respectively, Corollary 6.7) that J! p is fully faithful
(a lax epimorphism) if and only if Cat-CAT(J! p,Cat) ∼= CAT(p,Cat) is a lax epimorphism (fully
faithful).

Theorem 6.11 ([47, Theorem 3.2]). For a functor p : E → B between small categories, we consider
the lax codescent factorization:

E B

CoDesc(Ker(p))

p

K Ker(p)

The following are equivalent:

(i) p is an effective F-descent morphism (respectively, F-descent morphism),
(ii) CAT(K Ker(p),Cat) is an equivalence (respectively, fully faithful),

(iii) p is an effective FD-descent morphism (respectively, FD-descent morphism),
(iv) CAT(K Ker(p),Set) is an equivalence (respectively, fully faithful),
(v) K Ker(p) is a fully faithful lax epimorphism (respectively, a lax epimorphism),

(vi) CK Ker(p) is an equivalence (respectively, a lax epimorphism),

Proof. By Theorem 6.9 (respectively, Corollary 6.7), we deduce that (v) ⇐⇒ (vi) ⇐⇒ (iv).
Since both F and FD preserve lax descent objects, we conclude by Lemma 2.13 that (i) ⇐⇒ (ii)

and (iii) ⇐⇒ (iv).
Finally, by Lemma 6.10 we obtain (ii) ⇐⇒ (v).





References

[1] J. Adámek, R. el Bashir, M. Sobral, and J. Velebil. On functors which are lax epimorphisms.
Theory Appl. Categ., 8(20):509–521, 2001.

[2] M. Barr. Exact categories. In Exact Categories and Categories of Sheaves, volume 236 of
Lecture Notes in Mathematics, pp. 1–120. Springer, 1971.

[3] M. Barr. Relational algebras. In Lecture Notes in Mathematics. Volume 137. Springer, Berlin,
1970, pp. 39–55.

[4] J. Bénabou and J. Roubaud. Monades et descente. C. R. Acad. Sci. A, (270):96–98, 1970.

[5] R. Betti, A. Carboni, R. Street, and R. Walters. Variation through enrichment. J. Pure Appl.
Algebra, 29:109–127, 1983.

[6] F. Borceux and D. Dejean. Cauchy completion in category theory. Cah. Topol. Géom. Différ.
Catég., 15(4):133–146, 1986.

[7] F. Borceux and G. Janelidze. Galois Theories, number 72 in Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2001.

[8] R. Brown and G. Janelidze. Van Kampen theorems for categories of covering morphisms in
lextensive categories. J. Pure Appl. Algebra, 119:255–263, 1997.

[9] A. Burroni. T –catégories (catégories dans un triple). Cah. Topol. Géom. Différ. Catég., 3(12):215–
321, 1971.

[10] A. Carboni, S. Lack, and R. F. C. Walters. Introduction to extensive and distributive categories.
J. Pure Appl. Algebra, 94:145–158, 1993.

[11] M. M. Clementino and D. Hofmann. Descent morphisms and a van Kampen theorem in
categories of lax algebras. Topology Appl., 159:2310–2319, 2012.

[12] M. M. Clementino and D. Hofmann. Effective descent morphisms in categories of lax algebras.
Appl. Categ. Structures, 12(5):413–425, 2004.

[13] M. M. Clementino and D. Hofmann. The rise and fall of V -functors. Fuzzy Sets and Systems,
321:29–49, 2017.

[14] M. M. Clementino and D. Hofmann. Triquotient maps via ultrafilter convergence. Proc. Amer.
Math. Soc., 130(11):3423–3431, 2002.

[15] M. M. Clementino and G. Janelidze. A note on effective descent morphisms of topological
spaces and relational algebras. Topology Appl., 158:2431–2436, 2011.

[16] M. M. Clementino and W. Tholen. Metric, topology and multicategory – a common approach.
J. Pure Appl. Algebra, (179):13–47, 2003.

[17] G. S. H. Cruttwell and M. Shulman. A unified framework for generalized multicategories.
Theory Appl. Categ., 24(21):580–655, 2010.

[18] M. Demazure. Topologies et faisceaux, Exposé IV. In Schemas en Groupes I (SGA3). Vol-
ume 151. Lecture Notes in Mathematics. Springer, Berlin, 1970, pp. 159–250.

[19] S. Fujii and S. Lack. The oplax limit of an enriched category. Theory Appl. Categ., 2024. To
appear.

69



70 References

[20] J. Giraud. Méthode de la descente, volume 2 of Mémoires de la Société Mathématique de
France. Société Mathématique de France, 1964.

[21] J. W. Gray. Fibred and cofibred categories. In S. Eilenberg, D. K. Harrison, H. Rörhl, and S.
Mac Lane, editors, Proceedings of the Conference on Categorical Algebra, pp. 21–83. Springer,
1966.

[22] A. Grothendieck. Catégories fibrées et descente. In Revêtements Étales et Groupe Fondamental
(SGA1). Volume 224. Lecture Notes in Mathematics. Springer, Berlin, 1971, pp. 145–194.

[23] A. Grothendieck. Technique de descente et théorèmes d’existence en géometrie algébrique. i.
généralités. descente par morphismes fidèlement plats. In Séminaire N. Bourbaki, number 5,
pp. 299–327. Société Mathématique de France, 1960.

[24] C. Hermida. Representable multicategories. Adv. Math., 151:164–225, 2000.

[25] C. Hermida. Some properties of Fib as a fibred 2-category. J. Pure Appl. Algebra, 134:83–109,
1999.

[26] D. Hofmann, G. Seal, and W. Tholen. Lax algebras. In Monoidal topology. D. Hofmann, G.
Seal, and W. Tholen, editors. Volume 153. Encyclopedia of Mathematics and Its Applications.
Cambridge University Press, 2014, pp. 145–283.

[27] G. Janelidze. Pure Galois theory in categories. J. Algebra, 132:270–286, 1990.

[28] G. Janelidze and M. Sobral. Finite preorders and topological descent I. J. Pure Appl. Algebra,
175:187–205, 2002.

[29] G. Janelidze, M. Sobral, and W. Tholen. Beyond Barr exactness: effective descent morphisms.
In Categorical Foundations: Special Topics in Order, Topology, Algebra and Sheaf Theory.
Maria Cristina Pedicchio and Walter Tholen, editors. Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 2004, pp. 359–406.

[30] G. Janelidze and W. Tholen. Facets of descent, I. Appl. Categ. Structures, 2(3):245–281, 1994.

[31] G. Janelidze and W. Tholen. Facets of descent, II. Appl. Categ. Structures, 5(3):229–248, 1997.

[32] G. Janelidze and W. Tholen. Facets of descent, III. Monadic descent for rings and algebras.
Appl. Categ. Structures, 12(5–6):461–477, 2004.

[33] S. Johnson. Small Cauchy completions. J. Pure Appl. Algebra, 62(1):35–45, 1989.

[34] G. M. Kelly. Basic Concepts of Enriched Category Theory, number 10 in Repr. Theory Appl.
Categ. Cambridge University Press, 2005.

[35] P. Köhler. Brouwerian semilattices. Trans. Amer. Math. Soc., 268:103–126, 1981.

[36] S. Lack. Codescent objects and coherence. J. Pure Appl. Algebra, 175(1–3):223–241, 2002.
Special volume celebrating the 70th birthday of Professor Max Kelly.

[37] S. Lack. Icons. Appl. Categ. Structures, 18(3):289–307, 2010.

[38] J. Lambék. Deductive systems and categories II. Standard constructions and closed categories.
In Category Theory, Homology Theory and their Applications I. P.J. Hilton, editor. Volume 86.
Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, 1969.

[39] F. W. Lawvere. Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis.
Milano, (43):135–166, 1973.

[40] I. Le Creurer. Descent of Internal Categories. PhD thesis, Université Catholique de Louvain,
1999.

[41] T. Leinster. Higher Operads, Higher Categories, volume 298 of London Mathematical Society
Lecture Note Series. Cambridge University Press, 2004.

[42] F. Lucatelli Nunes. Descent data and absolute Kan extensions. Theory Appl. Categ., 37(18):530–
561, 2021.

[43] F. Lucatelli Nunes. On biadjoint triangles. Theory Appl. Categ., 31(9):217–256, 2016.



References 71

[44] F. Lucatelli Nunes. On lifting of biadjoints and lax algebras. Categ. Gen. Algebr. Struct. Appl.,
9(1):29–58, 2018.

[45] F. Lucatelli Nunes. Pseudo-Kan extensions and descent theory. Theory Appl. Categ., 33(15):390–
448, 2018.

[46] F. Lucatelli Nunes. Semantic factorization and descent. Appl. Categ. Structures, 30:1393–1433,
2022.

[47] F. Lucatelli Nunes, R. Prezado, and L. Sousa. Cauchy completeness, lax epimorphisms and
effective descent for split fibrations. Bull. Belg. Math. Soc. Simon Stevin, 30(1):130–139, 2023.

[48] F. Lucatelli Nunes and L. Sousa. On lax epimorphisms and the associated factorization. J. Pure
Appl. Algebra, 226(12):107–126, 2022.

[49] V. Marra and L. Reggio. A characterization of the category of compact Hausdorff spaces.
Theory Appl. Categ., 35(51):1871–1906, 2020.

[50] W. C. Nemitz. Implicative semi-lattices. Trans. Amer. Math. Soc., 117:128–142, 1965.

[51] R. Prezado. On effective descent V -functors and familial descent morphisms. J. Pure Appl.
Algebra, 228(5), 2024.

[52] R. Prezado and F. Lucatelli Nunes. Descent for internal multicategory functors. Appl. Categ.
Structures, 31(11), 2023.

[53] R. Prezado and F. Lucatelli Nunes. Generalized multicategories: change-of-base, embedding
and descent. arXiv:2309:08084, 2023.

[54] J. Reiterman and W. Tholen. Effective descent maps of topological spaces. Topology Appl.,
57:53–69, 1994.

[55] G. J. Seal. Canonical and op-canonical lax algebras. Theory Appl. Categ., 14:221–243, 2005.

[56] M. Sobral. Descent for discrete (co)fibrations. Appl. Categ. Structures, 12:527–535, 2004.

[57] R. Street. Limits indexed by category-valued 2-functors. J. Pure Appl. Algebra, 8(2):149–181,
1976.

[58] R. Street and A. Joyal. Pullbacks equivalent to pseudopullbacks. Cah. Topol. Géom. Différ.
Catég., 34(2):153–156, 1993.

[59] D. Verity. Enriched Categories, Internal Categories and Change of Base. PhD thesis, Cam-
bridge University, 1992.

[60] M. Weber. Familial 2-functors and parametric right adjoints. Theory Appl. Categ., 18(22):665–
732, 2007.




	Table of contents
	1 Introduction
	1.1 Descent theory with respect to the basic bifibration
	1.2 Descent theory with respect to a pseudofunctor

	2 A primer on descent theory
	2.1 Lax descent category
	2.1.1 Universal property

	2.2 Effective descent morphisms
	2.2.1 Beck-Chevalley condition

	2.3 Basic bifibration
	2.3.1 Descent theory in categorical structures

	2.4 Bifibration of split opfibrations

	3 Enriched V-functors
	3.1 Properties of the free coproduct completion
	3.2 Embedding  V-Cat`3́9`42`"̇613A``45`47`"603AFam(V)-Cat
	3.3 Familial descent and effective descent morphisms
	3.4 Examples
	3.4.1 Meet semilattices
	3.4.2 Regular categories


	4 Generalized internal multicategory functors
	4.1 Reflexive T-graphs
	4.2 Internal T-categories
	4.3 Effective descent morphisms via bilimits
	4.4 A direct description of effective descent morphisms
	4.5 Application to graded, operadic and enhanced multicategories

	5 Generalized enriched multicategory functors
	5.1 (T,V)-categories
	5.2 Change-of-base and embedding
	5.3 Reflection of effective descent morphisms
	5.4 Scope of the findings
	5.4.1 Classical multicategories
	5.4.2 Cartesian and cocartesian multicategories
	5.4.3 Graded, operadic and symmetric multicategories


	6 Fibration of split opfibrations
	6.1 Fully faithful morphisms and lax epimorphisms
	6.2 Enriched Cauchy completion
	6.3 Descent for the bifibration of split fibrations

	References

