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Abstract

Nowadays, most organizations rely on data to extract valuable insights,

which can be obtained through simple statistical analysis or more complex

machine learning models. The produced outcomes of such tasks depend on

the quality of the data. An issue that highly impacts this quality is missing

data, which is described as the absence of values in the features of a dataset.

Missing values usually harm any procedure performed with the data since the

distributions of the features can potentially be shifted and misrepresented.

This is especially true when the missing data fall under the Missing Not

At Random (MNAR) mechanism, which states that the missing values are

related to themselves or other unobserved data.

Missing data is often handled with imputation strategies, which produce

estimates to replace the missing values. Such strategies work well for all

missing mechanisms, except for MNAR since they only rely on the observed

data and, therefore, provide biased results. Due to that, new strategies are

needed to improve the estimates for MNAR values, especially when consider-

ing that this mechanism has the highest prevalence in critical domains such

as healthcare.

This thesis is focused on exploring and proposing new imputation strategies

for the MNAR mechanism that can improve upon the current state-of-the-art

results. To achieve this goal, two main research lines were followed: lever-

age and extend deep learning models for imputation purposes, particularly

autoencoders since they are state-of-the-art for this task; and explore data

processing strategies based on multiple data sources and post-processing ad-

justments of the imputed values.

Regarding the use of deep learning models, three new imputation strategies

were proposed: the use of variational autoencoders for filtering data prior

to the estimation, the extension of variational autoencoders to include a

partial multiple imputation procedure, and a new siamese autoencoder-based

approach. Moreover, a comprehensive survey about technical trends and

applications of autoencoders for imputation was also introduced.

For the data processing research line, two strategies were proposed: the

combination of multiple data sources to mitigate the issues caused by the
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relation with unobserved data, and a method to automatically estimate the

delta-adjustment factor used to reduce bias in the estimates. Furthermore,

a set of artificial generation strategies for MNAR values was also introduced

and benchmarked.

All the developed work was validated with data from the healthcare domain

since this is a sensitive context highly impacted by MNAR. The used exper-

imental setup assessed the imputation quality by comparing the estimated

values with the original ones. In some works, the impact of the imputation

in classification tasks was also measured. In general terms, the proposed

strategies were able to achieve better imputation results when compared to

the current state-of-the-art methods. In the future, we will extend these new

strategies for non-tabular data (particularly images), and we will try to lever-

age other deep learning models for MNAR data (e.g., generative adversarial

networks).

Keywords

Missing Data, Missing Not At Random, Data Imputation, Healthcare Data
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Resumo

Atualmente, a maioria das organizações depende de dados para extrair in-

formação útil, que pode ser obtida por meio de análises estat́ısticas simples

ou modelos de aprendizagem computacional complexos. No entanto, os re-

sultados produzidos por estas estratégias dependem da qualidade dos dados.

Um problema que tem um grande impacto nessa qualidade é a falta de da-

dos, que é descrita como a ausência de valores nas variáveis de um dataset.

Os valores ausentes tendem a prejudicar qualquer procedimento realizado

com os dados, já que as distribuições das variáveis podem estar alteradas e

deturpadas. Estas alterações são particularmente viśıveis quando os dados

ausentes se enquadram no mecanismo Missing Not At Random (MNAR),

que define que os valores ausentes estão relacionados com eles próprios ou

com outros dados não observados.

Os dados ausentes são tipicamente tratados com estratégias de imputação,

que produzem estimativas para substituir os valores em falta. Estas es-

tratégias funcionam bem para todos os mecanismos exceto para o MNAR,

porque dependem apenas dos dados observados e, por isso, produzem resul-

tados enviesados. Nesse sentido, são necessárias novas estratégias para mel-

horar as estimativas dos valores em falta do tipo MNAR. Esta necessidade é

particularmente premente já que este mecanismo tem maior prevalência em

domı́nios cŕıticos como o da saúde.

O foco desta tese é explorar e propor novas estratégias de imputação para o

mecanismo MNAR que possam melhorar os resultados obtidos pelos métodos

estado-da-arte. Para atingir este objetivo, duas linhas principais de inves-

tigação foram seguidas: potenciar e estender modelos de aprendizagem pro-

funda para fins de imputação, particularmente autoencoders, uma vez que

são considerados estado da arte para esta tarefa; e explorar estratégias de

processamento de dados com base em várias fontes e em ajustes de pós-

processamento dos valores imputados.

Em relação ao uso de modelos de aprendizagem profunda, três novas es-

tratégias de imputação foram propostas: o uso de variational autoencoders

para filtrar dados antes da geração das estimativas, a junção de variational

autoencoders com um procedimento de imputação múltipla parcial, e uma

v



nova abordagem baseada em siamese autoencoders. Adicionalmente, foi

também desenvolvia uma pesquisa abrangente sobre tendências técnicas e

aplicações de autoencoders para fins de imputação.

No que toca à linha de investigação de processamento de dados, duas es-

tratégias foram propostas: a combinação de múltiplas fontes de dados para

mitigar os problemas causados pelo facto do MNAR estar relacionado com

dados não observados, e um método para estimar automaticamente o fator

de ajuste delta usado para reduzir o viés nas estimativas. Adicionalmente,

foi também proposto um conjunto de estratégias de geração artificial de val-

ores ausentes do tipo MNAR, tendo estas sido comparadas num estudo de

benchmark.

Todo o trabalho desenvolvido foi validado com dados do domı́nio da saúde

por se tratar de um contexto senśıvel e altamente impactado pelo MNAR.

A configuração experimental utilizada foi focada na avaliação da qualidade

da imputação, comparando os valores estimados com os originais. Em al-

guns trabalhos, também foi medido o impacto da imputação em tarefas de

classificação. Em termos gerais, as estratégias propostas foram capazes de

alcançar melhores resultados de imputação quando comparadas aos métodos

atualmente considerados estado da arte. No futuro, iremos aplicar estas no-

vas estratégias a dados não tabulares (particularmente imagens) e tentaremos

potenciar outros modelos de aprendizagem profunda para lidar com dados

em falta do tipo MNAR (por exemplo, generative adversarial networks).

Palavras-Chave

Dados em Falta, Mecanismo de Ausência Não Aleatória, Imputação de Da-

dos, Dados Médicos
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Chapter 1

Introduction

From simple statistical analyses to complex machine learning solutions, any task performed

with real-world data is highly influenced by its quality. One of the most common issues

that can be found in datasets is missing data. This issue can be described as the absence of

values in specific features and instances of the datasets, and it can impact negatively most

tasks performed with the data. For example, most machine learning methods cannot cope

with missing values, and the ones that can tend to suffer significant performance decreases.

Furthermore, a feature containing missing values may have its distribution changed, which

leads to incorrect assumptions about the original complete data. However, missing values

may present different characteristics according to their nature, and they can be categorized

into three mechanisms: Missing Completely At Random (MCAR), which describes missing

values that are the result of a purely random event; Missing At Random (MAR), which

accounts for missing values that are directly related to other data available in the dataset;

and Missing Not At Random (MNAR), which happens when the missing values are related

with themselves or with other unobserved data. Although there are several strategies

available to deal with the MCAR and MAR mechanisms, MNAR still lacks solutions that

are capable of properly tackling its nature. This is particularly problematic since MNAR

is the mechanism more commonly found in several critical contexts such as healthcare.

Therefore, it is imperative to propose and provide new strategies that are suitable to deal

with the MNAR assumptions.

1.1 Motivation and Research Questions

The missing data issue is often addressed in the preprocessing stage of the data mining

process. Most often the instances containing missing values are deleted, which is a very

limiting approach that may lead to a significant loss of information. A more suitable

strategy is imputation, which is the process of replacing the missing values with estimates

of the original data. A simple imputation strategy is to replace the missing values with
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the mean/mode of each feature. Nevertheless, this strategy is only valid when the miss-

ing values are under the MCAR mechanism. There are other more resilient imputation

strategies, such as the Multiple Imputation by Chained Equations (MICE) or more recent

deep learning-based methods, which can provide unbiased estimates for both the MCAR

and MAR mechanisms. The trade-off for these methods is that they usually have a higher

time complexity or require specific assumptions (e.g., several of them require complete

data to be trained). However, most of these approaches provide estimates based on the

observed data, which makes them unsuitable for the MNAR mechanism. Among the deep

learning methods, autoencoders (AE) have been highlighted in recent literature as models

that can provide great imputation results by learning highly complex patterns in the data

[8, 35, 70, 89, 93]. They also show some resilience to the MNAR characteristics, which

makes them ideal candidates to be further explored with this mechanism [8, 35, 36].

Considering that missing values under MNAR assumptions are related to unobserved

data, no imputation method can provide completely unbiased estimates. Most often the

estimates are generated assuming the MAR mechanism and they are post-processed to

reduce the uncertainty towards the MNAR characteristics. Common strategies used for

this purpose include sensitivity analysis [16], multiple imputation procedures [41], or the

delta-adjustment method [108]. However, most of these strategies require manual inputs

from domain experts, which makes them unfeasible when no prior knowledge of the data

and the domain exists. Furthermore, the dependency on human inputs drastically reduces

the applicability of such strategies. This is particularly problematic when we consider that

the MNAR mechanism is frequently found in highly relevant domains such as healthcare.

For example, in studies based on medical data that is routinely collected there is a high

chance that the patient is going to miss some of the visits and measurements due to

personal reasons that are not related to the study data, and neither are completely random

(e.g., the patient may decide to stop the treatment). These missing values, which meet

the MNAR characteristics, will highly influence any task performed with the study data,

so it is important to provide solutions for such scenarios.

Tackling the MNAR mechanism is still an understudied topic, with very limited and

human-based solutions. In this thesis, we aim to improve such solutions by leveraging

artificial intelligence-based strategies to overcome the existing limitations. To achieve this

goal, we focused our research on two specific directions: extend autoencoder models to

perform the imputation of missing data under MNAR assumptions and explore automatic

ways of improving and adjusting the MNAR imputed values. Both directions can some-

times overlap and complement each other. Furthermore, considering the impact of the

MNAR values in healthcare, we focused the validation of the proposed solutions in this

domain. Based on these goals, we aimed to answer the following two research questions:

• RQ-1: Can we extend and improve autoencoder-based models to impute

MNAR values?
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• RQ-2: Can we automate human-based strategies used to improve the

estimation of MNAR values?

We developed several works to answer each of these research questions. We present and

describe them in Parts I and II of this thesis, which respectively answer RQ-1 and RQ-

2. These works originated several publications, which are listed in Section 1.2. We also

provide a joint discussion of the answers obtained for these research questions in the thesis

conclusions.

1.2 Research Contributions

As part of the work developed in this thesis, the following articles were published in the

mentioned conferences and journals1:

• Ricardo Cardoso Pereira, Pedro Henriques Abreu, and Pedro Pereira Rodrigues.

Siamese Autoencoder-based Approach for Missing Data Imputation. In International

Conference on Computational Science 2023 (ICCS 2023), 2023 [CORE Rank A]

• Ricardo Cardoso Pereira, Pedro Pereira Rodrigues, Mário A. T. Figueiredo, and

Pedro Henriques Abreu. Automatic Delta-Adjustment Method applied to Missing

Not At Random Imputation. In International Conference on Computational Science

2023 (ICCS 2023), 2023 [CORE Rank A]

• Ricardo Cardoso Pereira, Pedro Henriques Abreu, and Pedro Pereira Rodrigues.

Partial Multiple Imputation with Variational Autoencoders: Tackling Not at Ran-

domness in Healthcare Data. IEEE Journal of Biomedical and Health Informatics,

26(8):4218–4227, 2022 [Computer Science (Q1), Information Systems (Q1),

Medical Informatics (Q1), Interdisciplinary Applications (Q1)]

• Ricardo Cardoso Pereira, Miriam Seoane Santos, Pedro Pereira Rodrigues, and Pe-

dro Henriques Abreu. Reviewing Autoencoders for Missing Data Imputation: Tech-

nical Trends, Applications and Outcomes. Journal of Artificial Intelligence Research,

69:1255–1285, 2020 [Computer Science (Q2), Artificial Intelligence (Q2)]

– This paper was also accepted and presented in the Journal Track of the 30th

International Joint Conference on Artificial Intelligence (IJCAI 2021) [CORE

Rank A*].

• Ricardo Cardoso Pereira, Pedro Henriques Abreu, and Pedro Pereira Rodrigues.

VAE-BRIDGE: Variational Autoencoder Filter for Bayesian Ridge Imputation of

1The conference ranks are from the Computing Research and Education Association of Australasia
(CORE) portal, and the journal quartiles are from Clarivate (previously Thomson Reuters). All ranks and
quartiles refer to the date of publication.
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Missing Data. In 2020 International Joint Conference on Neural Networks (IJCNN

2020), pages 1–7, 2020 [CORE Rank A]

• Ricardo Cardoso Pereira, Joana Cristo Santos, José Pereira Amorim, Pedro Pereira

Rodrigues, and Pedro Henriques Abreu. Missing Image Data Imputation using Vari-

ational Autoencoders with Weighted Loss. In 28th European Symposium on Artificial

Neural Networks, Computational Intelligence and Machine Learning (ESANN 2020),

pages 475–480, 2020 [CORE Rank B]

• Ricardo Cardoso Pereira, Miriam Seoane Santos, Pedro Pereira Rodrigues, and Pe-

dro Henriques Abreu. MNAR Imputation with Distributed Healthcare Data. In

19th EPIA Conference on Artificial Intelligence (EPIA 2019), pages 184–195, 2019

[CORE Rank Regional]

• Miriam Seoane Santos, Ricardo Cardoso Pereira, Adriana Fonseca Costa, Jastin Pom-

peu Soares, João Santos, and Pedro Henriques Abreu. Generating Synthetic Missing

Data: A Review by Missing Mechanism. IEEE Access, 7:11651–11667, 2019 [Com-

puter Science (Q1), Information Systems (Q1)]

Moreover, the following article has been submitted and is currently under revision:

• Ricardo Cardoso Pereira, Pedro Henriques Abreu, Pedro Pereira Rodrigues, and

Mário A. T. Figueiredo. Imputation of Data Missing Not At Random: Artificial

Generation and Benchmark Analysis. Expert Systems With Applications (submitted

on July 17th, 2022 )

Based on these publications, this thesis was divided in Parts I and II. Each chapter presents

a work with the necessary contextualization.

In conclusion, the work developed during the course of this thesis culminated in 2 papers

published in Q1 journals (plus an additional paper that is currently under revision),

1 paper published in a Q2 journal (which was also presented in a A*-ranked

conference), 3 papers published in A-ranked conferences, 1 paper published in

a B-ranked conference, and 1 paper published in a Portuguese conference.

1.3 Document Structure

The remainder of the document is organized in the following chapters:

• Chapter 2 introduces the missing data related concepts and a comprehensive litera-

ture review of works that address the Missing Not At Random (MNAR) mechanism;

• Chapter 3 presents a review of autoencoders used for missing data imputation;
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• Chapter 4 describes the Variational Autoencoder Filter for Bayesian Ridge Imputa-

tion approach;

• Chapter 5 introduces the Partial Multiple Imputation with Variational Autoencoders

method;

• Chapter 6 proposes the Siamese Autoencoder-based Approach for Imputation;

• Chapter 7 introduces an imputation strategy based on distributed data;

• Chapter 8 describes the Automatic Delta-Adjustment Method;

• Chapter 9 introduces novel artificial generation strategies for MNAR values;

• Chapter 10 draws the final conclusions of this thesis.
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Chapter 2

State of the Art

This chapter presents the background knowledge and state of the art for this thesis. In

particular, the missing data concepts are introduced (Section 2.1), followed by a description

of common approaches to address this issue (Section 2.2). Finally, a literature review

focused on the Missing Not At Random mechanism is also presented (Section 2.3).

2.1 Missing Data Concepts

Little and Rubin [54] defined the missing data concept as the unobserved values that

would be meaningful for analysis if existed (i.e., the missing values would add meaningful

information to the data). Considering a common tabular dataset, where observations are

usually represented by rows and features by columns, one may think the only difference

between the missing values is the type of data from each feature. However, an important

distinction between them is their likelihood of being missing. Rubin [87] introduced the

concept of missing mechanism to classify the missing values according to these probabili-

ties through three different types: Missing Completely At Random (MCAR), Missing At

Random (MAR) and Missing Not At Random (MNAR). Assuming R as the binary matrix

where the missing values of Y are represented, Y is composed by the observed values Yobs

and the missing values Ymis, and ψ as the parameters of the missing data model, these

missing mechanisms can be defined in the following way [115]:

• Missing Completely At Random (MCAR) - the missing values are said to be under

this mechanism when their probability of being missing is always equal, which allows

the assumption that their is not relation between the missingness causes and the

observed data. For this reason, MCAR is the easiest mechanism to deal with, where

solutions such as ignoring the missing values are valid (although not recommend for

reasons related with loss of information). From a formal perspective, the missing

data is said to be MCAR if Equation 2.1 holds, since the missing probability only
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depends on the ψ parameters and not on the data.

Pr(R = 0|Yobs, Ymis, ψ) = Pr(R = 0|ψ) (2.1)

• Missing At Random (MAR) - when the probability of missingness is only equal for

certain observed groups (e.g., specific observed values of a feature), the missing values

are said to be under this mechanism. In other words, the missing values are directly

related to some part of the observed values. This is a more realistic mechanism

than MCAR and, although it is not as easy to work with, there is a substantial

amount of methods that can be used to handle it by modeling the data correlations.

From a mathematical perspective, the probability behind this mechanism is stated

in Equation 2.2, since it is now related with ψ parameters and also with the observed

data.

Pr(R = 0|Yobs, Ymis, ψ) = Pr(R = 0|Yobs, ψ) (2.2)

• Missing Not At Random (MNAR) - in a scenario where the reasons behind the

missingness probability are unknown and, therefore, are related to unobserved data,

the missing values fall in this mechanism. In other words, both the MCAR and MAR

assumptions do not hold. Moreover, this mechanism is usually identified in two

different settings: the missing values are related to themselves or to other features

that are not available in the dataset. MNAR is the hardest mechanism to address

since it cannot be ignored or modeled by the available data. Therefore, the solutions

to handle it usually rely on studying the reasons behind the missingness or sensitivity

analysis, where multiple scenarios are considered to evaluate how resilient are the

results. Formally, the probability for MNAR is described by all components, as

Equation 2.3 shows.

Pr(R = 0|Yobs, Ymis, ψ) (2.3)

To exemplify the three mechanisms, lets consider the data from Table 2.1. This small

dataset has 15 observations for two features: the number of accidents that a person had

and the insurance price for that individual. The third feature (age of the person) is not

available on the dataset (i.e., it is an unobserved feature). Moreover, the missing values

from the insurance price feature are represented by the “?” symbol.

Analyzing the missing values from the Table 2.1 dataset, their classification to each mech-

anism can be described by the following motives:

• The MCAR values are not related with the number of accidents and neither with

the age of the person, making them completely random. This could mean that

people simply forgot to insert the value or that there was an error collecting that

information;

• The MAR values only occur for observations with a number of accidents greater
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Table 2.1: Example of the missing data mechanisms. The Age feature, signed with *, is
not part of the dataset (i.e., it is an unobserved feature). The symbol “?” represents the
missing values.

Nº of Accidents
Insurance Price

Age *
Complete MCAR MAR MNAR 1 MNAR 2

5 720 ? 720 720 ? 66

2 360 360 360 360 360 45

10 1320 ? ? ? 1320 28

5 720 ? 720 720 720 22

7 960 960 ? ? 960 42

3 480 ? 480 480 480 40

2 360 ? 360 360 ? 75

8 1080 1080 ? ? 1080 54

4 600 ? 600 600 600 32

7 960 ? ? ? ? 72

1 240 240 240 240 240 53

0 120 120 120 120 120 20

6 840 840 ? 840 840 37

9 1200 ? ? ? 1200 28

6 840 ? ? 840 ? 69

than or equal to five, which means they are related to this feature. This could mean

that people with an higher rate of accidents tend to not disclosed their insurance

price;

• The MNAR “1” values occur when the insurance price is greater than or equal to 900,

meaning that they are related with themselves. This probably means that people

paying higher insurance prices do not want to report them;

• The MNAR “2” values occur for observations of people with an age greater than or

equal to 60 (although this feature is not part of the dataset, being for that reason

unobserved). This could mean that older people, for cultural and trust reasons, may

not feel comfortable disclosing their insurance prices.

2.2 Handling Missing Data

The missing data problem cannot be neglected, otherwise it will have a major impact in

tasks that use the data. For example, if the dataset is used for a classification task, most

classifiers cannot be trained with missing values and the ones that can cope with this issue

tend to have a significant decrease in their accuracy. Garćıa-Laencina et al. [30] proposed

a taxonomy for the different approaches available to deal with missing data, and it is used
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and extended in this thesis. A representation of this taxonomy is presented in Figure 2.1,

and its methods are described in the following subsections.

Case Deletion Missing Data
Imputation Maximum Likelihood

Statistical
Imputation

Machine Learning
Imputation

Mean/Mode Imputation
Regression Imputation

Multiple Imputation

SVM Imputation
kNN Imputation
ANN Imputation
GA Imputation

EM Algorithm

Missing values are imputed

Mixture Models

Figure 2.1: Taxonomy of methods to handle missing data (adapted from [30]).

2.2.1 Case Deletion

A method often used to deal with missing data is simply removing it. This is called

case deletion, and the key idea is to delete the observations that contain missing values.

However, two different deletion approaches can be applied [54]:

• Listwise deletion, also called casewise deletion or Complete Case Analysis (CCA),

where all observations containing at least one missing value are eliminated, with

no regard for the target use of the dataset. It is a very simple procedure, but can

lead to the lost of a considerable amount of information, being for that reason only

recommended in big data scenarios or when the observations with missing values are

less than 5% of the data;

• Pairwise deletion, also known as Available Case Analysis (ACA), where only the

observations containing missing values for the features of interest are deleted. As an

example, a dataset may contain 40 features but for a specific analysis only 30 are

used. Observations that are complete for the 30 features of interest but have missing

values in the other 10 features should not be deleted, because they are considered

complete for this specific analysis. Although this approach suffers from the same

problems of listwise deletion, it reduces the loss of information.

To apply any of the deletion strategies, the missing mechanism must also be considered.

Deleting data may remove relations between observations and features, and for that reason

this approach should only be applied with missing values under MCAR [54].
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2.2.2 Statistical Imputation

When deleting observations is not a suitable option, imputation tends to be the preferred

strategy. The key idea is to generate plausible new values to replace the missing ones.

Among the existent methods, statistical ones are frequently used [30]. A common approach

is to use the mean or mode of the feature containing missing values for numerical and

categorical variables, respectively [54]. In both cases all the available values for that

feature are considered, but since the relations with other variables are neglected this

approach should only be applied for MCAR values. Another strategy is to use a regression

to model one or more dependent variables (the ones containing missing values) using as

independent variables the remaining features of the dataset [54]. The fitting process must

only consider the observations that are complete for the independent features, and the

type of regression (e.g., linear or non-linear) used must be chosen taking in consideration

the nature of data. The main advantage of this approach is that it considers the relation

between the features with missing values and the ones that are complete, being therefore

suitable for MAR scenarios [98].

Both approaches are said to be single imputation strategies, since only one value is used

for the imputation of each missing value. For this reason, the imputation results may be

biased because the uncertainty of the generated values is not accounted for. To address

this issue multiple imputation strategies can be applied. The key idea is to perform

the imputation M times, generating different but complete results each time (different

imputation methods may be used). The M complete datasets are then analyzed and

combined, being the result of this combination the final dataset [88]. The state-of-the-

art method that uses this approach is the Multiple Imputation by Chained Equations

(MICE) [15]. It creates a series of regressions where each one is modeled for each variable

with missing values, meaning that each feature is modeled conditionally upon the other

features. The method can be described by the following sequential steps [5]:

1. All missing values are pre-imputed with a single imputation strategy, usually the

mean/mode method;

2. Each feature that previously contained missing values is set back to its state before

the pre-imputation, in a sequential and alternated way;

3. Each feature from the previous step is modeled using a type of regression (linear or

not), using all the remaining features as the independent variables and considering

the complete observations for the fitting process;

4. The result is a complete dataset imputed by the multiple regressions. However, sim-

ple decisions like the order of the features imputed may create bias in this dataset. To

remove it the process is repeated throughout several iterations until the parameters

of the regressions converge to stable values.
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The characteristics of the MICE method make it suitable for missing data under MAR,

since it uses regressions and preserves the relationship between the features. However,

considering that it follows a multiple imputation strategy that deals with uncertainty, some

authors also use this and similar approaches for MNAR values [41]. The main reason is

that one can look at multiple imputation as a way to perform sensitivity analysis1, which

is the most common test applied to MNAR scenarios.

Other approaches based on statistical and algebra concepts are also used, although less

frequently. One is the Inverse Probability Weighting (IPW), which relies on a model

that states how probable are the observed values of a feature with missing data of being

observed, based on other feature that is correlated. This model is usually a logistic re-

gression. The imputation is then performed through another model, fitted with the same

data, but using a weighted least squares regression where the weights are the inverse of the

outcomes from the logistic regression for each value [117]. Matrix completion methods,

such as the Singular Value Decomposition (SVD) or the SoftImpute, are also found in

some works. The goal is to perform the imputation by finding a low-rank matrix that is

an approximation of the original one. The process usually relies on matrix factorization,

where a matrix with (m,n) dimensions is decomposed into two matrices with dimensions

(m, k) and (k, n), where k is the rank and must be smaller than m and n. The idea is

to find the latent features that better describe the available values. The low-rank ap-

proximation matrix can finally be obtained by simply multiplying the resulting matrices

from the decomposition process [113]. These methods are only valid for MAR and MCAR

scenarios, since they rely on the available data from the original matrix.

2.2.3 Machine Learning Imputation

Following the same imputation concepts from the statistical methods, this task can also

be achieved by using machine learning models. In theory, any algorithm that can be

trained to predict new values is suitable for imputation. Generating new plausible values

for numerical features may be seen as a regression problem and as a classification problem

for categorical features. The more common algorithms used for this purpose are Artifi-

cial Neural Networks2 and Support Vector Machines3. However, the typical pipeline for

1Sensitivity analysis is a test to evaluate how resilient is a model or system when confronted with
different but plausible input scenarios. The consistency is obtained when the results are similar for the
tested variations.

2Artificial Neural Network is a machine learning model based on the biological structure and function-
ality of the human brain. The network is composed by a set of nodes inspired by the human neurons that
are interconnected. This type of algorithm is considered to be a general approximator, since it is able to
map any function through a training process that uses available observations [40].

3Support Vector Machine is a machine learning model capable of performing binary classification by
defining the hyperplane that maximizes the distance between the labels. This algorithm performs linear
separation and it is able to find an optimal solution for data that meets this criteria. However, it also
works with data non-linearly separable by using a kernel function that maps it into a different space where
the labels can be separated through a linear hyperplane [4].

12



State of the Art

supervised algorithms must be adjusted for this imputation task, as Figure 2.2 shows [30]:

1. To prepare the dataset for the training process only the complete observations can

be considered;

2. The feature having missing values must be used as the target. When more than one

feature meets this criteria the process is usually repeated for each one;

3. The model is trained with the pre-processed dataset. As stated before, any super-

vised machine learning model may be used for this task. The decision of tackling

this as a regression or classification problem is based on the target feature;

4. The trained model is used to predict the missing values of the observations that

were removed from the dataset in the first step. Error metrics such as the mean

absolute error or root mean squared error may be used to assess the imputation

results, assuming that the ground truth is available.

i1
i2

j1 j2 j3

i3
i4
i5

i1

j2 j3

i3
i5

j1
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Missing Data Model Training Model PredictionData Processing

Figure 2.2: Machine learning pipeline for missing data imputation.

A specific algorithm that is widely used for imputation is the k-Nearest Neighbors (KNN)

[6, 31]. It tries to find the k most similar observations to the one that contains missing

values using only the features that are complete. To calculate this similarity a distance

function is used, and it must be chosen taking in consideration the data type: the euclidean

distance is suitable for numeric data but not for categorical. For this last case the data

can be converted (one-hot encoding transforms a categorical feature into several binary

ones, allowing the use of the euclidean distance) or a different distance function must be

used (e.g., hamming distance works with categorical data) [7]. When k > 1 the values of

the neighbors observations must be combined to produce the new value. For numerical

data a common approach used is the simple or weighted mean, and for categorical values

a vote of majority may be applied. The KNN method has a high computational cost but

produces very plausible and explainable results. Nevertheless, the k parameter is quite

sensitive, and different values may produced very different results.

Within deep learning, Denoising Autoencoders (DAE) [118] have been recently used for

imputation. They are a type of neural network that learns a representation of the data
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from the input layer and tries to reproduce it at the output layer. The Denoising variant

is the one used for missing data imputation because it is designed to recover noisy data,

which can exist due to data corruption via some additive mechanism or by the introduction

of missing values [17]. However, the Variational variant with generative capabilities can

also be used. While the basic Autoencoder simply learns a compressed representation of

the input data in a unsupervised way, the Variational Autoencoder ((VAE)) learns the

parameters of a probability distribution representing that data, namely the mean and

variance of a Gaussian curve. By sampling from these learned parameters, the model

is able to generate new data with the same characteristics [44]. For both variants, the

only necessary step to take before training is to pre-impute the missing values. Different

strategies can be used, but usually a simple replacement by zero or the mean/mode is done.

Moreover, for the Denoising variant, in some scenarios noise may be added to force the

generation of missing values. One of the possible corruption techniques consists in setting

to 0 a fixed amount of features for a set of observations, which can be seen as a dropout4

on the input layer. There are other possible corruption processes, such as adding Gaussian

or salt-and-pepper noise to the input data [120]. Apart from autoencoders, the well-known

Generative Adversarial Nets have also been used to perform imputation, particularly the

Generative Adversarial Imputation Nets (GAIN) [126].

Finally, in rare occasions genetic algorithms have also been used to address the imputation

task. These are heuristic algorithms inspired on the Darwin’s theory of evolution that

use operators such as reproduction, mutation, crossover and selection to generate new

solutions within a population [67]. They are used to solve optimization problems through

minimizing or maximizing a pre-established fitness function (i.e., objective function). The

imputation of missing values may be seen as an optimization problem since the goal is to

minimize the error between new solutions and a known ground truth, which requires the

fitness function to be a error metric [56].

2.2.4 Maximum Likelihood

The maximum likelihood method is a mathematical approach to estimate the parameters

of the distribution that better describes the observed data. This distribution will be the

one that maximizes the probability of the data being in fact observed. The likelihood can

be seen as the join probability of the variables under analysis, and in most scenarios, when

all these variables are available, it can be calculated explicitly. However, when at least one

of the variables is not fully observed (and therefore contains missing values), the likelihood

must be estimated because it can no longer be calculated. The algorithm most used for

this estimation task is the Expectation-Maximization (EM) [24]. It starts by assigning

random values to the parameters and by creating the respective probability distribution

4Dropout is a regularization technique that randomly drops units from an neural network to avoid
overfitting [106].
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(i.e., the expectation step). After that, new observed data is fed into the model and

the distribution is adjusted to account for its impact (i.e., the maximization step). The

process is repeated until the parameters converge (i.e., the probability distribution does

not change from the expectation to the maximization step). Although it is widely used,

this method offers a high computational cost, which is a consequence of a considerable

amount of iterations performing heavy calculations. Moreover, another limitation of this

algorithm is its dependency of the initial random values. In another words, the iteration

process may stop on a local optimal solution. Regarding the missing mechanism, EM

assumes the missing values are under MAR [66].

The complexity of the data may also have an impact on the EM performance. For example,

lets consider the data series plotted on Figure 2.3. When applying the algorithm to this

data, it would not be able to create a probability distribution that fitted properly the entire

series. However, it can be much better described by two Gaussian distributions with the

parameters (µ = 3, σ = 1.5) and (µ = 17, σ = 2.5). This attempt to describe a data series

with multiple sub-populations instead of an overall one is called a mixture model, and the

EM algorithm can be applied using this concept with k different probability distributions

[33]. A particularly type of mixture widely used to model numeric values is the one that

follows a normal distribution (Gaussian Mixture Model). On the other hand, categorical

values are usually modeled as a mixture of Bernoulli densities.
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Figure 2.3: The distribution plot of a data series.

2.3 Literature Review

This section presents the most recently published works about the MNAR mechanism and

how it is handled. Its contents are organized in the following way: Section 2.3.1 presents
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a summarized description of the key aspects from each work; and Section 2.3.2 draws final

conclusions and presents open challenges.

2.3.1 Missing Not At Random

Carreras et al. [16] conducted a sensitivity analysis study to understand the impact of

assuming and treating missing data as MAR or MNAR in end-of-life care studies. The

MICE method was used for both mechanisms, but for MNAR it was integrated with the

delta-adjustment method. Four different adjustment values were considered, which were

defined as the equispaced values between zero and half of the interquartile range of the fea-

tures. The experiments were conducted with data from the ACTION study, a randomized

controlled trial testing advance care planning in patients with advanced lung or colorec-

tal cancer. The authors concluded that the imputation assuming MAR reflected that

the missing values were related to poorer health conditions. These correlations changed

when the MNAR mechanism was assumed, which shows that the obtained conclusions are

sensible to the violation of the MAR assumptions.

Tan et al. [108] proposed a review study about the use of controlled multiple imputation

in randomized controlled trials where missing data exists. The analysis considered the

trials in phases II, III and IV published in The Lancet and New England Journal of

Medicine between January 2014 and December 2019, covering primary and sensitivity

analysis studies. The findings show that 56% of the controlled multiple imputation was

performed with the delta-adjustment method. Nevertheless, most of the works report the

used delta values but do not provide justifications to why the experts decided towards

those values.

Boquet et al. [12, 13] proposed a method that uses a VAE for imputation and connects its

output directly to a standard neural network for regression, aiming to solve the missing

data issue before performing traffic forecasting. The VAE is compared with a standard

Autoencoder ((AE)) and the Principal Component Analysis (PCA) method, but the im-

putation is not assessed directly. Instead, only the forecast error is evaluated through

the Root Mean Square Error (RMSE) metric and the Mean Absolute Percentage Error

(MAPE). The experiments used real traffic data from the freeway Performance Measure-

ment System of the California Department of Transportation, and missing values under

the MNAR and MCAR mechanisms were injected (the last one with rates of 10%, 20%

and 40%). The forecasting results when the VAE was used outperformed the remaining

methods, with improvements of at least 40% for MNAR and 17% for MCAR.

Qiu et al. [85] proposed the use of VAEs to perform the imputation of missing values

under MNAR assumptions in genomic data. The authors proposed an extension to the

vanilla VAE where a shift correction is applied to the decoder output in order to account

for the probable distribution bias caused by the MNAR mechanism. The experiment
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was conducted with two datasets, namely the pan-cancer RNA sequencing data from the

Cancer Genome Atlas and DNA methylation data, and different levels of missingness were

considered: 5%, 10%, 30% and 50% missing rates. The VAE and its extension were

compared with the kNN and SVD methods, with the results being reported through the

RMSE metric. While the VAE and the SVD presented similar results, the VAE with shift

correction outperformed the remaining imputation methods for all missingness rates.

Pham et al. [84] proposed a strategy to reduce the bias of multiple imputation approaches

under MNAR by obtaining the population marginal distribution of features with missing

values from external datasets and using that information to properly calibrate the impu-

tation model trough an offset adjustment. The key idea is to extract the distribution from

a feature in an external source and, during the multiple imputation process, the offset will

ensure the feature with missing values is adjusted to that distribution. The approach is

compared with the CCA method for a simulated dataset, and it is also compared with

a single imputation strategy and a standard multiple imputation for a real-world dataset

with electronic health records of an unspecified number of patients from London. The

results are first presented for the simulated dataset, with the error being very similar be-

tween the experimented strategies. Nevertheless, from the bias perspective, the results

are considerably better for the new approach when comparing to the CCA. The same

conclusions are obtained from the experiments with the real data, although the standard

multiple imputation surpassed in general the CCA.

Beaulieu-Jones et al. [9] presented a study where electronic health records data is injected

with missing values under the three mechanisms and also through real data modeling.

Different imputation approaches are used to fill in the missing data: random sample,

mean, median, KNN, SVD, SoftImpute and several MICE variants. The used dataset

contained records from 602366 patients with 146 variables (age, sex, body mass index

and 143 laboratory measures) from the Geisinger Health System in Pennsylvania, but

only the 100000 complete observations more representative of the overall population were

considered in the experiment. The results show that the best Root Mean Square Error

(RMSE) values were obtained with the MICE variant that uses predictive mean matching

with five nearest neighbors. However, these results are consistently worse for the MNAR

mechanism when comparing with MAR and MCAR – in some cases the RMSE values

are the double for MNAR. The authors also suggest that with this mechanism sensitivity

analysis is highly recommended to understand the bias of the imputation in the final

results.

White et al. [123] proposed a new imputation approach based on the mean score method,

which handles the missing data by considering the expectation over the distribution of the

missing values given the observed data. The proposed approach uses pattern-mixture

models for the values estimation, and performs sensitivity analysis when the missing

mechanism is not MAR. This analysis is conducted for all features, with the sensitiv-
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ity parameters being varied over a range of plausible numerical values (i.e., values that

are admissible and probable within the features domain). The approach is compared with

missing data deletion, CCA, multiple imputation and selection model with IPW. The ex-

periment considered four synthetic datasets generated by the authors to cover different

levels of departure from the MAR mechanism (bigger departures lead to stronger MNAR

assumptions). The results are discussed from a bias perspective, with the CCA and data

deletion methods presenting always biased results. The bias of the remaining methods is

minimal, but the proposed approach has the lowest Monte Carlo error.

Liu et al. [55] proposed a new imputation method specific for MNAR, called Informa-

tion Decomposition Imputation (IDIM), based on a fuzzy membership function and the

KNN algorithm. The approach starts by finding the 1-dimensional linear-information

distribution of the dataset through a trapezoidal fuzzy membership function, being this

information calculated to each feature of the data. In the case of all returned values be-

ing zero, the KNN algorithm is used to find and replace the missing values, otherwise

the mean value of the column is used (this also happens when the KNN cannot be ap-

plied). The process is repeated iteratively until the Normalized Root Mean Square Error

(NRMSE) is below a given value. The use of the membership function is the key to tackle

the MNAR nature, assuming that the missing values do not exceed the maximal values of

the attributes. The method is compared with the regularized expectation-maximization,

mixture of kernel imputation method, KNN imputation, local least squares implementa-

tion, Bayesian principal component analysis imputation and the mean impute method.

The experiment was conducted with five public datasets from the UCI Machine Learning

Repository and Standard and Poor 500 index historical stock data, with 7 to 14 attributes

and 500 to 4177 observations. The results show that the proposed approach surpassed the

remaining ones, presenting NRMSE values generally below 0.1.

Mason et al. [62] presented a new Bayesian framework for the cost-effectiveness analysis

of data from a health economics study with missing data. Firstly, the authors try to

minimize the missing values by adding information from previous studies and domain

experts (e.g., patients may have records from previous visits to the hospital or some

missing values may be estimated by domain experts based on the available information).

The statistical model is then formulated, using pattern-mixture models to address the

MNAR mechanism by performing sensitivity analysis. The sensitive parameters and their

ranges are defined with the help of domain experts. The approach was tested with data

from a study called IMPROVE, which compared an emergency endovascular strategy with

open repair for patients with ruptured abdominal aortic aneurysm. The dataset contained

information from 301 patients, but only 138 have complete records. These observations

encompassed features such as the age and the Hardman Index, since both are considered

strong predictors of an individual emotional and physical well-being. The results are

compared with the ones from the IMPROVE study by calculating the incremental net

benefits of both. The purpose was to see if the previous study results continued valid after
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the sensitivity analysis from the proposed approach. The probability of the incremental net

benefits being positive is still high for most sensitivity analysis scenarios under MNAR.

However, the probabilities vary between 76% and 97%, which shows a decrease in the

confidence of the study when comparing to the 98% result obtained from the CCA.

Lin and Chu [52] proposed a new approach to jointly model multiple factors from differ-

ent studies, called multivariate meta-analysis of multiple factors. Like any meta-analysis

approach, the key idea is to combine data from multiple studies to generate a final dataset

of results. By performing a multivariate approach over multiple factors, the final dataset

is more generalizable since the features follow a more representative population instead of

different sub-populations. To deal with scenarios where information is missing a Bayesian

method is used for imputation. The approach was compared with other multivariate

meta-analysis variants which ignore the missing values between studies. The results are

evaluated through the RMSE metric and the bias. A simulated scenario with 30 datasets

and 5 features was first considered, followed by a real scenario with a data from 30 stud-

ies and 8 factors related to the most common eye conditions. The results were similar

in both scenarios, with the RMSE values presenting small differences between the tested

models. However, the bias is considerably smaller for the proposed approach when the

missing values are under MNAR. Hubbard et al. [39] proposed a similar approach using

a Bayesian latent class model for electronic health records phenotyping that is able to

cope with missing values under MNAR. However, the model also considers rules that are

defined by domain experts. The approach is compared with a standard rule based strategy

and the results show improvements with the new method, both in sensitivity (95.9% vs

91.9%) and specificity (99.7% vs 90.8%).

Sun et al. [107] proposed the use of instrumental variables (i.e., a variable that is directly

correlated with the independent variable(s) and indirectly with the dependent one(s)) to

assist on the identification of the distribution from a feature with missing values under

MNAR, improving the imputation results as a consequence. Three methods were used

and compared for the imputation task: IPW, a regression estimator and a doubly robust

estimator based on the mean outcome. The experiment was conducted with a dataset

containing 4997 records (81% of them complete) from a household survey of Botswana

about HIV seroprevalence in adults. The results are discussed through the bias of the

methods and their estimation outcomes, considering a 95% confidence level. The use of

instrumental variables presents clear benefits in the results, with the confidence intervals

of the estimators becoming wider and, therefore, more representative of the uncertainty

inherent to MNAR. Moreover, all three methods had a similar performance, with the

regression presenting slightly worse results.

Leurent et al. [50] presented a framework and a set of guidelines on how to properly per-

form sensitivity analysis to assess how robust is the imputation for missing values under

MNAR assumptions. The authors identify the use of pattern-mixture models as the best
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approach since it provides more interpretable parameters (e.g., relies on metrics such as the

mean difference between missing and observed data), is the most used strategy in clinical

trials, and can be easily implemented through common missing data imputation methods.

The work also states that one of the strategies to perform this type of analysis is to apply

multiple imputation assuming the MAR mechanism and perform several changes in the im-

puted data that could stand as plausible MNAR scenarios (e.g., adding or multiplying the

values by a scalar). The resulting datasets can then be analyzed individually or combined

through the Rubin’s rules. This approach is experimented in a cost-effectiveness scenario

with data from the 10TT trial, which was a controlled trial of weight-loss for obese adults

in the United Kingdom. The dataset contained records from 537 participants, but only

31% were complete. Several MNAR scenarios were considered during the experiment by

multiplying the imputed values by a scalar. The results, compared through the probability

of the trial being cost-effective, showed inconsistency among six MNAR scenarios and one

MAR (used as baseline for comparison). The probabilities varied between 19% and 75%

over them, which shows that the imputed values are probably biased when assuming the

MNAR mechanism.

Rezvan et al. [86] conducted a sensitivity analysis study where the missing values imputed

under MAR with multiple imputation were shift to MNAR with the delta-adjustment

method. The data used in the experiments was from the Longitudinal Study of Aus-

tralian Children, and the goal was to estimate the association between exposure to ma-

ternal emotional distress at the age of four/five years and total difficulties at the age of

eight/nine years. The adjustment values were defined with the help of domain experts

through an elicitation process that allows for the formulation of the expert’s feedback into

a probability distribution. The authors concluded that there are significant increases in

the magnitude of the association between maternal distress and total difficulties when the

MNAR assumptions are assumed with a large departure from MAR.

Wei et al. [121] presented a study where different imputation methods are experimented

with metabolomic data based on mass spectrometry. This type of data frequently has

missing values because specific compounds often cannot be identified or quantified in

some samples, mainly for biological and technical reasons. Moreover, these missing values

can be from the three missing mechanisms, and for that reason all of them are considered

in the study. For MAR and MCAR five imputation methods were used: Random Forest

(RF), KNN, SVD, mean and median imputation. For MNAR six imputation approaches

were considered: Quantile Regression Imputation of Left-Censored Data (QRILC) (i.e.,

missing values are imputed through a truncated distribution estimated by a quantile re-

gression), half-minimum (i.e., the missing values are replaced with half of the minimum

of the respective feature), zero imputation, RF, KNN and SVD. The experiment was exe-

cuted with two real-world datasets, one with 997 subjects and 75 features, and the other

one with 198 records and 130 features. For both datasets the missing values where gener-

ated in proportions from 2.5% to 50%, with a step of 2.5%. The evaluation was performed
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through the NRMSE metric for the ignorable mechanisms, and NRMSE-based Sum of

Ranks (SOR) for the non-ignorable one (mainly to avoid biased results). For MAR and

MCAR the RF outperformed the remaining algorithms, achieving NRMSE values between

0.6 and 0.8, with the second-best method (SVD) achieving values between 0.75 and 0.9.

For MNAR the QRILC method outperformed the remaining, achieving SOR values below

100, immediately followed by the half-minimum. Nevertheless, in both scenarios the error

increases considerably when the missing rate also increases.

Malla et al. [60] presented a review study about the use of the propensity score method

in medical studies, taking in particular consideration how the missing data is addressed

in those studies. This approach describes the probability of a patient being assigned to a

treatment group when considering the observed covariates. From a collection of 167 studies

only 69 report how the issue is handled, where 53 used CCA and 16 multiple imputation

approaches. Nevertheless, several of the studies had missing values under MNAR but all

neglected to report it. Moreover, the authors claim sensitivity analysis should have been

performed in those works, although it was also neglected.

Galán et al. [29] proposed a new approach based on genetic algorithms to perform imputa-

tion of missing values in questionnaires. The proposed method uses the standard crossover

and mutation operators and also applies elitism, where some of the best genomes are kept

from the current generation to the next one. The fitness function considers both the

Akaike and Bayesian Information Criterion, two metrics that try to assess the likelihood

of a mathematical model being correct, where the first one is more focused on the model

error and the second one on its complexity and interpretability. The algorithm starts with

a random population and stops when the fitness function shows no improvements in 100

consecutive iterations. The experiment used a public dataset from the Law School Admis-

sion Test, considering responses from 1000 students to five questions, and another dataset

from the internal medical resident exam performed in Spain, with answers from 500 med-

ical students to five questions. For both cases the amount of missing values generated

varied over 10%, 15% and 20% of the observations. The approach was only compared to

the MICE algorithm, with the results showing averages of wrong imputations between 31%

and 35% for MCAR and between 32% and 53% for MNAR with this method. With the

proposed genetic algorithm, the results show averages between 20% and 25% for MCAR

and between 21% and 41% for MNAR, surpassing the other method.

Beaulieu-Jones and Moore [8] presented a study where electronic health records data

with missing values is imputed with Denoising Autoencoder ((DAE)), being the results

compared with the following methods: Iterative SVD, KNN imputation, SoftImpute and

mean/median imputation. The experiment was conducted with the public dataset ALS

Pooled Resource Open-Access Clinical Trials (PRO-ACT), containing 10723 observations

(although only 1824 are used) and 23 features. The results, evaluated through the RMSE

metric over missing rates between 10% and 50%, show that the DAE obtains the best
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imputation error under the MCAR mechanism, with a difference from the SoftImpute

between 0.005 and 0.1. For the MNAR mechanism, the work proved that the DAE also

achieves the best results, although very similar to the ones obtained by the remaining

methods: the DAE differs from KNN imputation by a minimum of 0.0045 and from

SoftImpute by a maximum of 0.0125.

Leacy et al. [47] performed a sensitivity analysis study to understand how the depar-

ture from MAR to MNAR influenced the tasks of estimating the prevalence of a partially

observed outcome and performing parametric causal mediation analyses with a partially

observed mediator. The study used data from a tuberculosis (TB) and human immunod-

eficiency virus (HIV) prevalence survey that was conducted as part of the Zambia–South

Africa TB and AIDS Reduction Study, between 2006 and 2010. The shift from MAR

to MNAR was once again performed with the delta-adjustment method integrated in a

multiple imputation procedure. Three adjustment values were manually chosen based on

the experts opinion and on data from 3 consecutive annual rounds of HIV counseling and

testing in the Karonga District of Malawi (2007 to 2010). Each of these values represented

different magnitudes of departure from the MAR assumptions. The authors concluded that

the estimation of the overall HIV prevalence was considerably different when assuming the

MAR or MNAR mechanisms, particularly for strong departures between them.

Gondara and Wang [35] compared the use of DAE for missing data imputation with the

MICE, using accuracy to evaluate binary imputation and RMSE to evaluate continuous

time imputation. The experiment considered ten simulated and four real-world datasets,

with these last ones being: a sample of 1000 acute coronary syndrome patients from the

Global Registry of Acute Coronary Events (GRACE); 2323 observations from the Euro-

pean Organization for Research and Treatment of Cancer (EORTC) cancer trial database;

a dataset with 861 observations of rehospitalization after surgery in patients with colorec-

tal cancer; and finally a database containing statistics of 52000 unique hard drives. The

number of features for these datasets varied between 25 to 50 for the simulated ones and

4 to 8 for the real-world ones. The results show that the DAE consistently outperforms

MICE in all datasets, for both metrics, sometimes achieving an improvement over 20%.

For the real-world datasets, the difference between both algorithms is between 2.4% and

64.9%. The work only considers the MCAR and MNAR mechanisms, and the imputation

error is consistently better for MNAR in the simulated datasets. However, in the real-word

ones, the results are mixed for both mechanisms. The authors extended the experiment

in a latter work [36], exploring the use of multiple imputation with DAEs and consider-

ing two different scenarios of missing data: all the features are subjected to have missing

values (uniform synthetic generation) and only half of the features are set to be missing

(random synthetic generation). The experiment considered 15 real-world datasets from

different contexts, with a number of observations between 101 to 58000 (the majority are

small-sized) and 5 to 180 features. The results show that the DAE approach outperforms

MICE for all the uniform scenarios and in 7 cases for the random scenario (this can be
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seen for 2 datasets under MCAR and for 5 datasets under MNAR). Once again, the results

are mixed for the MCAR and MNAR mechanisms.

Garciarena and Santana [32] introduced a statistical significance study focused on the in-

teractions between the missing mechanism, the imputation method and the classification

algorithms used with the imputed data. The following imputation methods were consid-

ered in the experiments: mean, median, most frequent value, last value carried forward,

interpolation, hot deck, expectation-maximization and MICE. The study considers 10

datasets from different contexts, including medical ones (e.g. a diabetic dataset), varying

from 326 to 2310 observations and 7 to 41 features. The results regarding the imputation

methods are presented by showing the number of times they were significantly better than

the others for each missing mechanism, and MNAR displayed the worst and more biased

results when compared to MCAR and MAR. Moreover, the expectation-maximization and

MICE methods presented the best general results.

Li and Zhou [51] proposed a new imputation strategy that uses the well-known maximum

likelihood method for the MCAR and MAR mechanisms, and an estimating equation-

based extension of the IPW method for missing data under MNAR. Moreover, for this

latter mechanism, sensitivity analysis is also conducted a-priori to evaluate the imputation

robustness. To properly validate the new approach a simulation study is presented with

1000 datasets containing a number of 200, 1000 or 3000 observations, and it is compared

with a multiple imputation method and CCA. The results are evaluated through the bias

and the Monte Carlo standard error. For the MAR mechanism, the error is very similar

to all imputation approaches, but the CCA is more biased comparing to the remaining

methods. For the MNAR mechanism, the proposed approach presents a higher error

comparing to the other methods, but a considerably lower bias. An experiment is also

conducted with real-world data, namely the CATIE-AD trial dataset, which contains

records from a placebo-controlled trial with 421 Alzheimer’s patients that either received

atypical antipsychotic drugs or a placebo. The results were similar to the ones from the

previous simulation study, and the MNAR imputed values were corroborated by sensitivity

analysis, which showed they are robust with a confidence level of 95%.

Jakobsen et al. [41] discussed the use of multiple imputation approaches to handle missing

values in randomized clinical trials, and a set of guidelines is presented for this purpose.

The authors first present four scenarios where multiple imputation should not be used:

when it is possible to ignore the missing values (i.e., perform complete case analysis),

when the missing rate is too high, when the analytical model is too complex and when

the missing mechanism is MNAR. Nevertheless, when analyzing this last reason, since no

proper solutions exist for MNAR, the authors claim multiple imputation can be used if

sensitivity analysis is performed. This type of analysis is used to understand the range of

uncertainty that can be accepted without creating biased results, and the authors suggest

the best-worst and worst-best approach, where at least two cases with assumptions for the
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best and worst scenarios of each feature are considered. Moreover, in the case of multiple

imputation approaches, regression analysis should also be conducted. The authors also

claim that the results under MNAR may always be questionable, but no other appropriate

solutions exist to handle it.

Tang and Ishwaran [109] presented a study were 13 variants of the RF algorithm were

applied and compared for missing data imputation. This algorithm is suitable for the

imputation task because it is capable of handling different types of missing data, scales well

to high-dimensions while avoiding overfitting, and takes into consideration the importance

of each feature in the data. The experiment considered 60 datasets from different contexts,

containing up to 5000 observations and 8500 features. Moreover, the KNN algorithm was

also considered in the study because of its speed and its close relationship to RFs. All the

three missing mechanisms were evaluated through the relative imputation error, and the

results stratified in three levels: low, medium and high correlation between the datasets.

In almost all scenarios the missForest variant was the one that presented the best results,

which performs the imputation by regressing each feature using the remaining ones as

independent variables and generating the missing values for the dependent variable using

the trained forest. The error differences between this variant and the remaining ones are

quite inconsistent, particularly for the datasets with high correlation, varying from 1% to

25%. Nevertheless, the results are considerable worse for MNAR mechanism, presenting

the increasing up to 70% when comparing to MCAR and MAR.

Belger et al. [10] compared the performance of two methods that deal with missing values,

namely the CCA and the Multiple Imputation Monte Carlo Markov Chain (MIMCMC),

when applied to the GERAS dataset. This database contains records from an 18-month

observational study of costs associated with the Alzheimer’s disease, and 1488 observations

were considered in the experiment. All missing mechanisms are simulated with a missing

rate between 10 and 40%, and the results are presented through the bias in mean costs.

For the MCAR mechanism the CCA was the best approach, with a maximum bias of 5%.

However, for the MAR mechanism, the results were inversed, with the multiple imputation

approach outperforming the CCA, with a maximum bias of 5% for missing rates below

40%. Both imputation approaches presented very poor results for MNAR data, with bias

values as high as 60%.

Van Kuijk et al. [116] presented an experimental study where a linear regression model

is fitted to data containing missing values. The work compares the MICE method with

the CCA approach for the imputation task, using a Monte Carlo simulation to determine

the impact of all regression parameters in the results. With this strategy, 315 different

datasets were considered (most of them having 1000 observations), and all of them were

injected with missing values under all the three mechanisms: the MCAR values were

chosen randomly; the MAR values where created by correlating two features (x1 and x2)

and by removing the values of x1 that are more correlated to the lower and higher values
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of x2; the MNAR values where created by deleting the lower values of a chosen variable.

The study considered scenarios with 25%, 50% and 75% of missing ratio. The results are

evaluated through the bias of the mean of the regression coefficient estimates and their

corresponding standard errors, and they show that the multiple imputation method is the

best under MAR and MCAR, but with MNAR the case deletion approach outperforms

it. Nevertheless, the authors claim the conclusions from MNAR may not hold for all

scenarios, which compromises the generalization of the study.

Valdiviezo and Van Aelst [114] presented a study where six variants of decision tree al-

gorithms are used to perform classification tasks, using incomplete datasets. The authors

compare the default behavior that most decision trees use to deal with missing values

(surrogate splits) with five imputation approaches: median/mode imputation, proxim-

ity matrix (i.e., the imputed values are update iteratively using the proximity matrix

calculated by a random forest), KNN, MICE and Multiple Imputation by Sequential Re-

gression Trees (MIST) (i.e., an approach very similar to MICE that uses a decision tree

instead of a linear regression to perform the internal estimations of the missing values).

The experiment was conducted with five datasets of different medical sub-contexts (breast

cancer survival, heart disease, etc.) with simulated missing values under all mechanisms.

The imputation evaluation was conducted through a custom metric based on the mean

squared prediction error. The results show that in general the multiple imputation ap-

proaches (MICE and MIST) are the best, although the worst results are always under the

MNAR mechanism, especially when the missing rate is higher than 20%, presenting in

some scenarios more than the double of the error.

2.3.2 Discussion

From the analyzed works there are some general conclusions that can be presented about

the state-of-the-art approaches for imputation under MNAR:

• MNAR is still the most neglected mechanism. A considerable amount of works re-

lated to missing data had to be discarded from this state-of-the-art analysis because

they only tackled MCAR and/or MAR. This is particularly worrying when consid-

ering that most real-world scenarios tend to have missing values under MNAR;

• From 29 works only 13 report how the missing values were generated. This should

be a standard guideline of the missing data works (for all mechanisms) because it is

essential to allow the reproducibility of the work and also to understand the validity

and context of the missing values (i.e., some authors use very limited approaches for

the generation of missing data, which compromises the generalization of the results);

• There are some clear patterns regarding the best methods to use for imputation under

MNAR assumptions, namely pattern-mixture models, specific multiple imputation
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approaches (e.g., MICE) or Bayesian methods. Nevertheless, the majority of these

methods are not valid under the MNAR assumptions, since this missing mechanism

can not be modeled from the observed data. Up to now, most authors simply neglect

this aspect, which leads to poor and biased results for this mechanism. However,

some authors perform sensitivity analysis to study the consistency of the results

across a set of different MNAR models. If the results are consistent, one can assume

that the imputation model is resilient (the estimated values are less or not biased

under MNAR). Nevertheless, this approach does not directly address the problem

since it neglects the MNAR nature, and more tailored solutions are clearly required;

• Most works use statistical approaches for the imputation task. With a few iso-

lated exceptions that use KNN, RF or genetic algorithms, the only machine learning

method that is more often found in the literature is the DAE, and it presents en-

couraging results;

• A new trend that was identified in four works with positive results was an attempt to

use external information to improve the results under MNAR. Since this mechanism

depends of non-observed data, this approach tries to add valuable information that

could be correlated to the missing values, and therefore reducing the departure from

the MAR mechanism. These works are still preliminary attempts, but the results

look quite promising;

• From 29 analyzed works, 16 were from healthcare data contexts. This conclusion

comes as no surprise since MNAR is present in multiple medical scenarios (e.g.,

clinical trials where the participants may be quitting the study for reasons related

to the outcome that is being measured [99]) and it has a considerable negative

impact in healthcare studies. Nevertheless, it is important to clarify that no context

restrictions were applied during the search process of the works under analysis.
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Chapter 3

Reviewing Autoencoders:

Technical Trends, Applications

and Outcomes

Deep learning has received much attention and has been applied to several artificial intel-

ligence problems over the past couple of years. However, its use for imputation purposes

remains an understudied topic. Among the deep learning approaches used for imputation,

the Autoencoder (AE) and its variants (e.g. Denoising and Variational) recently caught

the eye of the research community due to their properties in what concerns the ability

of learning from corrupted data, which is a natural extension to the field of missing data

[23, 36, 71, 93]. This type of neural network learns a representation of the data from

the input layer and tries to reproduce it at the output layer. By doing this, the model

is able to learn from incomplete data and generate new plausible values for imputation.

Considering the community interest in this method, a comprehensive review that covers

the application of AEs to the missing data field addresses a gap in the literature and cov-

ers a hot topic for missing data researchers nowadays: the performance of deep learning

techniques for data imputation.

This work addresses the use of AEs for missing data imputation by answering the following

questions:

• How good is the imputation performed by AEs when compared to other algorithms?

• How do authors tune the AEs’ hyperparameters to achieve a better performance?

• In which data contexts have the AEs presented good results?

To answer these questions, 26 works that use AEs for imputation of tabular data were

considered, published between 2014 and 2020 (the selection criteria is described below).
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The analysis is focused on how the AEs were used, considering aspects such as network

structure, hyperparameters tuning, training approaches, extensions of the algorithm, com-

parison with other methods and data context characterization. The analysis conducted

shows that AEs outperform several state-of-the-art methods, and therefore constitute a

better alternative to perform missing data imputation.

To select the research studies for the analysis, an extensive search was conducted through

the Web of Science platform. The articles were searched by title and content keywords,

where a combination of the sentence fragments “autoencoders” and “missing data” was

applied. Moreover, no time restrictions were set since the goal was to include as much

relevant papers as possible. Initially, 54 works were selected with the described search

criteria but 33 were discarded for being out of scope (e.g. some were only focused on

dimensionality reduction, others were related with generative approaches not applicable

for imputation purposes). At the end, 20 works were selected encompassing the period be-

tween 2014 and 2019. This search was later extended through the Google Scholar platform,

using the same criteria already described. To the 20 works already selected, 6 other articles

were added, extending the encompassed period to 2020. All these works are focused on

tabular data (i.e., structured data stored in table formats, such as relational databases or

comma-separated values files). However, 5 additional works that use unstructured data (in

this case, images) were also found during the search. Therefore, aiming to provide a more

correct and trustworthy analysis, the study is focused on the 26 works that use tabular

data, but to avoid ignoring the remaining 5 works an independent analysis is presented in

Section 3.4.

The remainder of the chapter is organized in the following way: Section 3.1 presents the

theoretical background and technical details related to the hyperparameters and training

of the AEs; Section 3.2 a characterization of the datasets used in the works; Section 3.3

the comparison with other methods regarding imputation and classification/regression;

Section 3.4 an analysis of the works that use non-tabular data; and Section 3.5 the conclu-

sions with a discussion of the results, recommendations and challenges found throughout

the survey.

3.1 Autoencoders

AEs are Artificial Neural Networks (ANNs) trained in an unsupervised way and used to

reproduce, as good as possible, the data supplied to the input layer in the output layer. To

better understand this type of ANN, its theoretical background is presented in this section.

Moreover, the works under analysis revealed tendencies regarding the architecture of the

AEs and their training approaches. Theses tendencies can be seen as a standard to be

followed, and are also presented in this section, along with extensions to AEs proposed by

some authors.
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3.1.1 Theoretical Background

AEs are ANNs composed by at least three layers (input, hidden and output layer) which

can be divided into two parts: encoder, which goes from the input layer to the output of

the hidden layer, and decoder, that goes from the hidden layer to the end of the output

layer (Figure 3.1).

Figure 3.1: Simplified structure of an Autoencoder. f represents the encoder and g′ the
decoder. x is the input of the network and z is the output. y represents the results of the
encoding process.

The encoder part of an AE maps an input vector x to a hidden representation y, through

a nonlinear transformation fθ(x) = s(xWT + b) where θ represents the weight matrix

W and bias vector b. The resulting y representation is then mapped back to a vector z

which has the same shape of x, where z is equal to g′θ(y) = s(W ′y + b′). The training

of an AE consists in optimizing the model parameters (W , W ′, b and b′) to minimize

the reconstruction error between x and z with a Stochastic Gradient Descent variant,

using a loss function such as the Mean Squared Error or the Binary Cross-Entropy for

binary scenarios [18]. Therefore, this type of network is trained in an unsupervised way

to reproduce its input at the output layer.

The AE has one variant often used for missing data imputation: the Denoising Autoen-

coder (DAE) [118]. This variant is designed to recover noisy data (x̃), which can exist due

to data corruption via some additive mechanism or by the introduction of missing data

[18] (Figure 3.2).

Data Corruption

Figure 3.2: Simplified structure of a Denoising Autoencoder. f represents the encoder
and g′ the decoder. x is the uncorrupted version of the data, x̃ is the corrupted input of
the network and z is the output. y represents the results of the encoding process.

The DAE is similar to a basic AE, but the main difference is the application of a stochastic

corruption to the inputs of the model during the training phase, meaning that z becomes

a deterministic function of x̃ rather than x. One of the possible corruption techniques

consists in setting to 0 a fixed amount of features for a set of observations, which can be

seen as a dropout on the input layer (dropout is a regularization technique that randomly
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drops units from an ANN to avoid overfitting [105]). There are other possible corruption

processes, such as adding Gaussian noise or salt-and-pepper noise to the input data [119].

Recently, another variant of the AE family with generative capabilities has been used for

missing data imputation: the Variational Autoencoder (VAE). While a vanilla AE learns

a compressed representation of the input data, the VAE learns a set of distribution param-

eters which describe the data, usually the mean and variance of a Gaussian probability

function. By sampling from these parameters, the VAE is capable of generating data in-

stances with the same characteristics [44]. The VAE loss function contains two terms: the

reconstruction error (as the vanilla AE) and a regularizer (see Equation 3.1, where q(z|X)

is the encoder output, p(X|z) is the decoder output, X is the input data and z represents

the generated instances). The regularizer used in the second term is the Kullback-Leibler

divergence applied to the encoder and decoder distributions. Such regularization is used to

ensure the latent space is well structured, leading to similar input data being represented

by similar latent spaces [44].

L(X) = −Ez∼Q(z|X)[logp(X|z)] +KL(q(z|X) ‖ p(z)) (3.1)

Another generative variant of the AE is the Adversarial Autoencoder, which also relies

on variational inference but has a different loss computation: it uses the same concept of

adversarial loss as in the well-known Generative Adversarial Networks [58].

AEs have two types of representations regarding the number of nodes of the hidden lay-

ers: overcomplete, when the hidden layers have more nodes than the input layer, and

undercomplete, when the hidden layers are smaller than the input layer. In a multilayer

scenario, undercomplete representations are more often found, in which the number of

nodes decreases through each encoding layer and increases again through each decoding

layer. Such strategy is important to force the network to learn a lower-dimensional rep-

resentation of the input data. For vanilla AEs, an overcomplete architecture only learns

the identity function by copying the input to the output, which creates an overfitting sce-

nario that requires additional handling. However, the DAEs can be overcomplete without

having this problem because they compare the original input to its corrupted version. An

undercomplete architecture never presents this type of problem since the AE is forced to

learn a more concise representation of the input data.

3.1.2 Network Structure

An important aspect of the ANNs structure is the number of hidden layers, since they

are directly related with the learning capabilities of the network. The works under study

present different values for this parameter, as Figure 3.3 shows (the latent space is con-

sidered as a hidden layer in the count). Among the 26 papers, only 5 use a single-layer

architecture while the remaining use between 2 and 13 layers. An interesting aspect is
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that, with the exception of the work from Zhao et al. [129], only DAEs and VAEs use

more than one layer. This parameter is defined in an empirical way for all works, with the

exception of the work from El Esawey et al. [27], where a hyperparameter optimization

was conducted using the Hyperopt1 library.
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Figure 3.3: Number of hidden layers used in each work. N/A stands for Not Available.

Regarding the number of nodes, only 15 of the 26 works under analysis describe their

type of representation, as Figure 3.4 shows. From this subset, 10 use undercomplete

representations and 5 use overcomplete, which means that most works force the network

to learn only the most relevant data. A more detailed analysis of how the nodes are

distributed is presented in Table 3.1. On the multi-layer networks, the overcomplete

representations always use a symmetric approach where the number of nodes is increased

by a fixed step through the first half of the layers, and decreased by the same step through

the second half, using as baseline the input layer. The undercomplete representations

often use the same strategy, but they decrease the nodes on the first half of the layers

and increase them on the second half. Other approaches are also used for this latter

representation, namely a constant number of nodes and different values defined in an

empirical way. A hyperparameter optimization approach is also used twice for unknown

representations.

The activation functions used by the nodes of the hidden and output layers are reported in

21 of the 26 works. For the standard AEs the Sigmoid function is always used [38, 43, 91],

but in the work of Sakurai et al. [91] a custom linear function is used on the output layer.

For multi-layer networks the Sigmoid is also used in some works [25, 26, 94, 125], but

ReLU is the one more often applied [12, 13, 28, 35, 65, 89, 90, 125], sometimes through

the Leaky ReLU variant [89, 90]. The Hyperbolic Tangent is used less often [20, 36], but

these works concluded it presents better results than ReLU when the datasets are small.

The Softsign function, which is very similar to the Tangent, is also used in the work of

Jaques et al. [42].

1Available at http://hyperopt.github.io/hyperopt.
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Figure 3.4: Representation used in each work. N/A stands for Not Available.

3.1.3 Training

The training phase of an AE depends on the same aspects of any other ANN: an optimiza-

tion algorithm, a loss function and the maximum number of epochs. From the 17 works

that describe the used optimization algorithm, 5 use the well-known Stochastic Gradient

Descent [38, 46, 92, 93, 125] and 6 use one of its variants called Adam [12, 13, 27, 28, 89, 90].

Other algorithms are used less often, namely the Nesterov’s Accelerated Gradient [36], the

Scaled Conjugate Gradient Algorithm [91] and the RMSProp [65].

Regarding the loss functions, the majority of the works use the standard Mean Squared

Error (MSE) [12, 27, 35, 36, 43, 90, 91] or the Squared Error [20, 38, 89, 93]. The exceptions

are a work that uses a custom loss function roughly based on the Squared Error [129], 3

works that use the Cross-Entropy [42, 48, 94], another one that uses the Binary Cross-

Entropy with a modification to handle the missing values [8], and finally 4 VAE-based

works which use the log-likelihood [28, 65, 70, 125]. Notice that all VAE-based works also

include the Kullback–Leibler divergence as a second term of the loss function.

With the exception of the modified Binary Cross-Entropy [8], the remaining functions are

not able to deal with the missing values as they require all features to be complete. To solve

this issue, pre-imputation of the missing values is often performed. Gondara and Wang

[36] used the mean/mode method; Sánchez-Morales et al. [92] used and compared the

methods zero imputation, kNN imputation (kNN) and Support Vector Machines (SVM)

imputation, concluding that the kNN and SVM methods presented the best results; Jia et

al. [43] compared constant and linear imputation, the latter performing better in general;

Jaques et al. [42] and Saeed et al. [90] imputed all missing values with -1; Ryu et al.

[89] replaced all missing values with 0; Sánchez-Morales et al. [94] used and compared

the zero imputation method with Multiple Imputation by Chained Equations (MICE),

with MICE presenting the overall best results; and finally Sánchez-Morales et al. [93]
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Table 3.1: Nodes used in each work, grouped by organizational approach (see Section 3.1.2
for more details). N/A stands for Not Available.

Approach Article Nodes Representation

Symmetric

[35] Step of 5 over 4 layers Overcomplete

[36] Step of 7 over 5 layers Overcomplete

[92] 25% to 75% growth over 3 layers Overcomplete

[93] 75% growth over 3 layers Overcomplete

[25] Step of 72 over 3 layers Undercomplete

[26] Step of 72 over 3 layers Undercomplete

[42] Step of 200 over 4 layers Undercomplete

[89] 50% growth; latent space of 90 Undercomplete

[94] 75% growth over 3 layers Overcomplete

Constant

[65] Constant 20; latent space of 10 Undercomplete

[12] Constant 512; latent space of 100 Undercomplete

[8] Constant 500 Undercomplete

[90] Constant 128 Undercomplete

Empirical

[125] Between 3 and 13 over 7 layers Undercomplete

[125] Between 3 and 10 over 5 layers Undercomplete

[20] Between 5 and 36 over 6 layers Undercomplete

[28] Variations over 4 and 6 layers Undercomplete

[91] Between 4 and 70 Single-layer

[38] Between 200 and 400 Single-layer

[48] Between 200 and 400 Single-layer

Optimization
[27] Between 240 and 370 over 5 layers N/A

[46] Between 5 and 30 over 1 or 2 layers N/A

applied and compared the methods Multi-layer Perceptron imputation (MLP), Singular

Value Decomposition (SVD) and MICE, being the results generally better when MICE

was used.

Some works also define a maximum number for the training epochs: less than 50 [28, 90],

100 [8], 300 [38], 500 [36], 1000 [35, 91], 2000 [70] and 10000 [46, 65]. Although early

stopping rules are common on ANNs training, they were only applied by Gondara and

Wang [36], stopping the training when the MSE achieves 1∗10−6 or no improvement exists

in an average of 5 epochs.

As previously stated, avoiding overfitting of AEs is mandatory, particularly with over-
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complete representations, otherwise the network will lose its generalization ability. To

avoid this behavior, the objective function can be modified to include a regularization

term. The one used more often is the L2 regularization, which is also known as Frobenius

norm regularization or “weight decay”, because it forces the weights to decay towards zero

without achieving it [100]. The L2 term consists of the sum of the squared values of the

weights that is multiplied by an attenuation coefficient, which results on a higher error for

larger weights, causing the training algorithm to favor smaller weights. Considering all

research works, 7 use this approach [12, 13, 36, 38, 42, 90, 129] with the coefficient values

varying between 0.01 and 0.001. Gondara and Wang [35] used batch normalization, where

the output of each node of the hidden layers is normalized using the mean and variance

of the batch, and 20% dropout in each hidden layer, meaning that 20% of the nodes are

randomly set to 0 (they are dropped, becoming inactive) in each layer. This latter ap-

proach is also used by Beaulieu-Jones and Moore [8] and Saeed et al. [90]. Nazabal et

al. [70] also applied batch normalization, but with a mean of 0 and a variance of 1. An

interesting observation is that, in theory, DAEs can be overcomplete without the need

for any regularization since they compare the original data with the corrupted version.

Nevertheless, several works that use this type of AE still apply it [35, 36, 42].

A common procedure applied before the training step is to normalize the input data [2].

This normalization is known to provide several improvements: the training is often faster,

which happens as a consequence of the faster convergence of the weights from the networks,

and it also reduces the chances of the training being stopped on a local minimum. Only 8

works describe how this question was addressed, being the normalization output between

[0, 1] [12, 13, 36, 42, 90, 94] and [−1, 1] with zero mean [20]. Xie et al. [125] also normalized

the data but the scale is unknown.

In the specific case of DAEs, an important aspect is the type of noise added to the input

data. Although such data already contains missing values, some works reinforce the data

corruption by adding additional noise. Among all works, 14 use DAEs and 7 report the

type of noise additionally generated, which is always dropout. As described, dropout is

used to avoid overfitting by selecting a random percentage of nodes in each hidden layer

and randomly setting them to 0 (i.e., making them inactive). However, this concept can

also be seen as a type of noise when it is applied to the input layer, since setting several

of the input features values to 0 is a corruption of the data, and forces the network to

learn with that level of incompleteness. Some works propose different percentages for this

random selection, such as 5% [42], 20% [8, 35], 30% [27] (although this work shows that

using values between 10% and 60% produces equally good results) and, finally, 50% [36].

The work from Sánchez-Morales et al. [94] also uses additive Gaussian noise with zero

mean and a dynamic variance that is a percentage of the variance for each feature. The

authors concluded that this percentage should be between 10% and 20% to achieve the

best results.
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A layer-wise unsupervised pre-training strategy is used by 7 of the works under analysis

[25, 26, 27, 72, 92, 94, 129]. In this approach, the representation of the kth layer is the

input for (k + 1)th layer, which is trained after the kth layer. When k is trained, it will

have as input the uncorrupted output from the previous layers. After some training, the

fine-tuning will be performed, as the current network parameters will be used to initialize

a new network that will be trained using a regular supervised training criterion. In theory,

this strategy improves the initial solution for the optimization problem solved during the

training procedure, since the weights are no longer randomly initialized. The approach

was proposed by Vincent et al. [119], and is called Stacked Autoencoder.

3.1.4 Extensions

Although AEs can be used without any modification for missing data imputation, several

extensions have been proposed on the reviewed works, introducing changes or including

them only in part of the process. In this section, such extensions are described individu-

ally. Considering the diversity of strategies followed by the authors, it is not possible to

aggregate the analysis in similar ways to the remaining parts of this study.

Gondara and Wang [36] used a multiple imputation approach, where several runs of the

model are executed with different initial weights of the network, defined randomly. The

approach results in several datasets with different imputed values, attenuating the vari-

ability of the model. The different datasets can be analyzed and combined through the

use of the mean value for numeric features or a voting mechanism for categorical ones.

Duan et al. [26] generated individual DAE models for different sources of data but trained

each model with all sources. However, the respective data source of each model must have

a bigger impact on the data imputation. To ensure this, a hierarchical training approach is

proposed where each model is trained a second time only with the data from that source,

being the network’s weights influenced twice by it.

El Esawey et al. [27] performed imputation on missing temporal information, which

requires strategies to ensure that the network is able to deal with the time-series data.

The proposed approach is to include recurrent connections on a DAE, transforming it

into a recurrent network instead of a feedforward one, because this type of network is

commonly used in scenarios where temporal relations exist in the data. As a consequence

of this change, the training algorithm had to be adjusted to the Backpropagation Through

Time algorithm. Sakurai et al. [91] also dealt with time-series data, but used a different

approach. A window of n days is defined and multiple input matrices are created from

the training data by shifting the window day by day. The resulting matrices are finally

combined in a single one through a composite transformation operation, which becomes

the network input for training. Jia et al. [43] dealt with spatio-temporal data through

the application of a standard AE for the spatial features and a Long Short-Term Memory
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(LSTM) autoencoder for the temporal ones. The latter is a direct adaptation of the well-

known LSTM model to incorporate the AE characteristics. Both AEs are treated as one,

where the output of the regular AE serves as input for the LSTM. Fortuin et al. [28]

used a VAE to map time-series data with missing values to a complete latent space, and

the time-series are then modeled with a gaussian process using this latent representation

instead of the original data. Comparing to existent approaches, this method is suitable for

multivariate scenarios because it accounts for the correlation between different channels.

Zhao et al. [129] applied an AE together with the Fast Clustering algorithm to enhance

the clustering accuracy, which increased almost the double. The imputation is made by

the Top k-Nearest Neighbor Hybrid Distance Weighted algorithm.

Jaques et al. [42] used a DAE to deal with the missing data issue but also as a classifier

by adding 2 new layers at the end of the network, which are used for prediction purposes.

Saeed et al. [90] proposed a similar approach for the same purpose.

Chen et al. [20] used Dynamic Movement Primitives (DMPs) to generate new humanoid

movements, although a dimensional reduction of the input data is required to handle the

context appropriately. A DAE is used for this purpose and some tests of imputation of

missing humanoid joints are conducted.

Sánchez-Morales et al. [93] used a DAE for imputation purposes but applied a deletion

strategy before the training that forces some new missing values on observations that

already have missing data. By doing this, the network should learn better how to recon-

struct incomplete data. However, the dataset becomes unbalanced after this deletion, and

for that reason a compensation strategy is also applied. This compensation is achieved

through a small change on the loss function that includes a balancing parameter that is

applied to the error of the complete and incomplete observations.

Lee and Lee [48] proposed a new collaborative filtering approach based on AEs that is

able to perform the recommendation of the top N items using feedback data from users.

The approach has 2 steps: a first one where a regular AE is trained to impute the missing

values with positive feedback and a second one where a DAE is trained with the previous

imputed data and used to perform the recommendation tasks. Hau et al. [38] introduced

a similar but simpler approach, where an AE is trained and used without changes for

recommendation purposes.

Nazabal et al. [70] proposed a VAE adaptation to handle heterogenous data by modeling

different data types with different likelihood models appropriate for the respective types.

To allow for different likelihoods, each feature has its own independent neural network. To

account for relations and dependencies between features, a hierarchical structure is used

to share network parameters among the different dimensions. Such approach addresses

the limitation of a vanilla VAE modeling all data through a Gaussian distribution, which

is not the most appropriate solution for non-real-valued data.
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Sánchez-Morales et al. [94] proposed a multitask learning approach where a DAE is

modified to perform the imputation of missing values while it simultaneously solves a

classification task. The target of the classification problem is supplied as an additional

feature to the DAE, and the loss function uses a double weighting approach between the

classification and the imputation errors (such weights must be empirically adjusted for

different datasets).

Lai et al. [46] introduced the concept of a tracking-removed AE (TRAE), which removes

the connection between each output neuron and its corresponding input neuron. Such

technique weakens the self-trackability of the network and helps it learn better the relations

between different features of the dataset. Moreover, the authors also proposed a training

scheme that includes the missing values in the training procedure. The approach uses

the missing values estimates of the k iteration in the input of the k + 1 iteration, which

allows the training to consider the entire dataset while the estimates improve over time.

Pre-imputation is still required, but since its impact is not significant the authors use a

random number within the features domain.

3.2 Datasets Characterization

All the 26 analyzed works describe the datasets used in the experiments, as Table 3.2

summarizes. This table presents a description of the datasets used in each work, containing

their number of instances and attributes, the missing rates applied and if they are public

or private.

Table 3.2: Datasets used in each work. N/A stands for Not Available.

Article(s) Public Dataset(s) # Instances # Features
Missing

Rates (%)

[35] Yes

10 synthetic (5 with single

outcome and 5 with

multiple outcome) and 4

real-world

17703 to 40382 for

the synthetic and

861 to 52000 for

the real-world

25 to 50 for

the synthetic

and 4 to 8

for the

real-world

60, 80

[36] Yes 15 real-world

101 to 58000 (the

majority are

small-sized)

5 to 180 20

[8] Yes

ALS Pooled Resource

Open-Access Clinical Trials

(PRO-ACT)

10723 (but only

1824 are used)
23

10, 20, 30,

40, 50

[25] Yes

Caltrans Performance

Measurement System

(PeMS)

250 288

1, 10, 20,

30, 40, 50,

60, 70, 80,

90
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Article(s) Public Dataset(s) # Instances # Features
Missing

Rates (%)

[26] Yes

Caltrans Performance

Measurement System

(PeMS)

104544 (data of

weekdays and

non-weekdays is

separated through

K-means

Clustering)

288

5, 10, 15,

20, 25, 30,

35, 40, 45,

50

[92] Yes

Cloud Dataset, Blood

Transfusion Service Center

and Boston Housing (all

from UCI)

1024, 683 and 506

(respectively)

10, 4 and 13

(respec-

tively)

10, 20, 30

[27] Yes

City of Vancouver data of

bicycle traffic, for 22

counter locations over 3

years

12986 2 N/A

[129] Yes

5 academic from UCI (Iris,

Wine, Pima, Yeast and

Housing) and air quality

monitoring from China

150 to 1484 4 to 14
3, 6, 9, 12,

15

[38] Yes
Real-world Web Service

QoS
1974675 2 N/A

[91] No
Real time series showcase

data of one month
N/A N/A N/A

[43] Yes
EEG data extracted from

UCI
600 16384 30

[42] No
Mood data from

SNAPSHOT project
6180 343 30

[20] Yes
CMU Graphics Lab Motion

Capture Database
5 50 N/A

[72] No

Quality inspection data

collected from social

networks and e-commerce

websites

N/A N/A
1, 5, 10, 15,

20, 25, 30

[93] Yes

Magic Gamma Telescope,

Pima Indians Diabetes,

Sensorless Drive Diagnosis,

Gas Sensor Array Drift,

Activity Recognition

system based on

Multisensor data fusion

(AReM) and Twonorm

768 to 58509 6 to 128 10, 20, 30

[48] Yes
MovieLens (ML-100K and

ML-1M)
100000 and 1M N/A N/A
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Article(s) Public Dataset(s) # Instances # Features
Missing

Rates (%)

[89] No

Real-world residential

customers from South

Korea, collected over 360

days (March 1, 2016, to

February 23, 2017)

520200 96
5, 10, 30,

50

[65] No Simulated Milling Circuit 104 96 20, 90

[12] Yes

Caltrans Performance

Measurement System

(PeMS)

210432 288 10, 20, 40

[13] Yes

Caltrans Performance

Measurement System

(PeMS)

210432 288 10, 20, 40

[125] No

Industrial data collected

from the Distributed

Control System of a

polyester plant in China

10000 15 10, 30, 50

[90] Yes ExtraSensory ≈ 300000 166 5

[70] Yes

6 academic from UCI

(Adult, Breast,

DefaultCredit, Letter,

Spam and Wine)

699 to 32561 10 to 58 10, 50

[28] Yes
2012 Physionet Challenge

real-world medical data
4000 37 60

[94] Yes

Activity Recognition

system based on

Multisensor data fusion

(AREM), Activity

Recognition from Single

Chest-Mounted

Accelerometer (CHEST),

Sensorless Drive Diagnosis

(DRIVE), Rectangles

(RECT), Skin

Segmentation (SKIN) and

Sloan Digital Sky Survey

RD14 (SKY)

10000 to 1926896 3 to 784 20, 50

[46] Yes

Iris, Leaf, Friedman,

Concrete Slump Test,

Stock portfolio

performance, Seeds, Cloud,

Glass, Yacht and Vertebral

Column

103 to 1200 4 to 16
5, 10, 15,

20, 25, 30
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The data contexts are diverse but some areas can be identified, namely medical and

human-related data [8, 20, 28, 42, 43, 90], quality of service [38, 72, 91, 129], traffic

data [12, 13, 25, 26, 27] and automation systems [65, 89, 125]. The remaining works use

synthetic and real-world datasets from miscellaneous contexts, the majority available at

public repositories such as the UCI Machine Learning.

The missing data mechanism is rarely a point explored by the authors. Among the 26

articles in analysis, only 9 identify the type of missing data that is being used. The articles

from Beaulieu-Jones and Moore, Boquet et al., and Gondara and Wang [8, 12, 13, 35, 36]

address the MCAR and MNAR mechanisms, while the papers from Duan et al., McCoy et

al., and Sánchez-Morales et al. [25, 65, 92, 93] address only MCAR. The MAR mechanism

is not stated by any of the works.

3.3 Comparison and Evaluation

To evaluate the imputation results of the AEs, the works under analysis frequently compare

them with other imputation algorithms. The evaluation metric most frequently used is

the Root Mean Square Error (RMSE), applied in about 50% of the articles, as Figure 3.5

shows. AEs are also compared with other methods in what concerns their impact on the

performance of classification and regression tasks. In this scenario, accuracy is the metric

more often used, as shown in Figure 3.6.

RMSE MSE MAE ACC MRE d2 MAPE NRMSE DE SSE NAE NAAE
Metric
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10

11

12

# 
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RMSE - Root Mean Square Error
MSE - Mean Square Error
MAE - Mean Absolute Error
ACC - Accuracy
MRE - Mean Relative Error
d2 - Index of Agreement
MAPE - Mean Absolute Percent Error
NRMSE - Normalized Root Mean Squared Error
DE - Displacement Error
SSE - Sum Squared Error
NAE - Normalized Absolute Error
NAAE - Normalized Accumulated Absolute Error

Figure 3.5: Metrics used for the evaluation of imputation tasks.

In both comparative scenarios, the data needs to be divided into training and test sets.

Considering the 26 works, only 11 report how this task is performed, and 8 use hold-out

validation while only 2 use cross-validation. The works that apply hold-out validation

use similar divisions, such as 65%-35% [42], 66.666%-33.333% [25], 70%-30% [27, 36, 94],

80%-20% [46, 92, 93, 125] and 90%-10% [91], for training and test partitions, respectively.

42



Reviewing Autoencoders: Technical Trends, Applications and Outcomes
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ACC - Accuracy
AUC-ROC - Area Under the ROC Curve
RMSE - Root Mean Square Error
MAPE - Mean Absolute Percent Error
BACC - Balanced Accuracy
MSE - Mean Square Error
MAE - Mean Absolute Error
R2 - Coefficient of Determination

Figure 3.6: Metrics used for the evaluation of classification and regression tasks.

The works from Jia et al. [43] and Saeed et al. [90] use k-fold cross validation with k = 5.

Some of these works also obtain average results over 10 experimental runs of the respective

validation strategy [43, 91].

3.3.1 Imputation

AEs were compared in several works with other methods for imputation, and presented

better results in most scenarios. In this section an analysis of these results is presented.

The discussion is individualized for the Denoising and Variational AE variants. Vanilla

AEs are left out since no works use them directly for imputation.

To summarize the results of the works described for each variant, a taxonomy was created

where the algorithms from the studies are grouped by their families. The comparison is

made through a scale between 1 and 4, where each value has the following meaning: 1

means the AE presents worse results; 2 means the AE presents equal results; 3 means the

AE presents marginally better results; and 4 means the AE presents better results.

3.3.1.1 Denoising Autoencoders

Gondara and Wang [35] compared the use of a DAE with the Multiple Imputation by

Chained Equations (MICE), using accuracy to evaluate binary imputation and RMSE to

evaluate continuous time imputation, and concluded that the DAE consistently outper-

forms MICE in all datasets, for both metrics, sometimes achieving an improvement over

20%. For example, the DAE outperforms MICE with a minimum and maximum difference

of 2.4% and 64.9%, respectively, for real-world datasets. The work of Gondara and Wang

[36] is very similar to the latter, yet considers two different scenarios of missing data: all
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the features are subjected to have missing values (uniform synthetic generation) and only

half of the features are set to be missing (random synthetic generation) [96]. The results

show that the DAE approach outperforms MICE for all the uniform scenarios and in 7

cases for the random scenario (this can be seen for 2 datasets under MCAR and for 5

datasets under MNAR).

Beaulieu-Jones and Moore [8] compared the DAE with the Iterative Singular Value De-

composition (SVD), the k-Nearest Neighbours (kNN) imputation, the SoftImpute and

the mean/mode imputation, using RMSE for evaluation. The work shows that the DAE

obtains the best results under the MCAR mechanism, with a minimum and maximum

difference from the second best method (SoftImpute) of 0.005 (for a missing rate of 50%)

and 0.1 (for a missing rate of 30%). For the MNAR mechanism, the work proved that

the DAE achieves the best results, although very similar to the ones obtained by kNN

imputation, Softimpute and SVD: the DAE differs from the second best method by a

minimum of 0.0045 (kNN imputation under a missing rate of 20%) and a maximum of

0.0125 (SoftImpute under a missing rate of 40%).

Duan et al. [25] compared the DAE with a vanilla ANN, and the RMSE values vary

between 16.9 and 20.3 for the DAE and between 17 and 21 for the ANN. The DAE also

proves to be a better imputation method than ANN regarding the MAE metric. The work

was later extended [26] to compare the same approach with ANNs, the History Model and

the Autoregressive Integrated Moving-Average (ARIMA). Again, the DAE outperforms

the remaining models: in terms of RMSE, the values range from 13.5 to 14.9, while for

ANNs the range is between 15.2 and 17.5.

Ning et al. [72] compared the DAE with variants of the kNN imputation, namely the

Weighted k-Nearest Neighbours data filling algorithm based on Grey correlation analysis

(GBWkNN) and the Mutual k-Nearest Neighbours Imputation (MkNNI). The DAE sur-

passes the remaining imputation strategies, followed by GBWkNN, and the RMSE metric

ranges from 13.4 to 14.5 and 15.2 to 17.5 for these two approaches, respectively. A time

complexity analysis study is also conducted and the DAE is once again the one with the

best results, presenting an average running time of 24.1 seconds against 30.7 for GBWkNN

and 35.7 for MkNNI.

Sánchez-Morales et al. [92] used the DAE to improve the final imputation estimates of

datasets pre-imputed with the algorithms zero, kNN and SVM imputation, achieving good

results as the quality of imputation increases from 17% to 96% in all studied datasets.

Jaques et al. [42] compared the DAE with Principal Component Analysis (PCA) for multi-

modal data imputation, and the results show lower RMSE values for DAEs in all scenarios,

which was expected considering that PCA works only in a linear space, performing worse

with more complex data.

Sánchez-Morales et al. [93] compared the DAE and its variant with deletion and compen-
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sation against the methods Multilayer Perceptron Imputation (MLP), SVD and MICE.

The results show that the DAE with deletion and compensation and the MICE algorithms

consistently outperform the remaining, presenting similar imputation squared errors for

all the datasets, being the maximum difference 0.09.

Ryu et al. [89] compared the DAE with Linear Interpolation and the Historical Average

(i.e., the average of highly correlated periods), while applying a binary mask vector to the

DAE loss in order to give more weight on the accuracy of the imputed missing values. The

Linear Interpolation method presents best results when the missing values are randomly

generated (presumably a MCAR scenario), but when averaging over all missing data gen-

eration mechanisms the DAE shows better RMSE by up to 28.9% for point-wise error and

by up to 56% for accumulated error.

A summary of the results obtained with DAEs in the reviewed works is presented in Table

3.3. The following families of algorithms were considered: Statistical, Matrix Completion,

Distance and Connectionist.

Table 3.3: Comparison of DAEs with other methods. Score is a value between 1 and 4: 1
means the DAE presents worse results; 2 means the DAE presents equal results; 3 means
the DAE presents marginally better results; and 4 means the DAE presents better results.

Algorithms’ Family Algorithm & Article Score

Multiple Imputation by Chained Equations [35] 4

Multiple Imputation by Chained Equations [36] 3

Multiple Imputation by Chained Equations [93] 2

Mean/Median imputation [8] 4

Autoregressive Integrated Moving-Average [26] 4

Principal Component Analysis [42] 4

Linear Interpolation [89] 3

Statistical

Historical Average [89] 4

Iterative Singular Value Decomposition [8] 3

Singular Value Decomposition [93] 3Matrix Completion

SoftImpute [8] 3

k-Nearest Neighbours [8] 3

History Model [26] 4Distance

Weighted kNNs based on Grey Correlation Analysis [72] 3

Artificial Neural Networks [25] 3

Multilayer Perceptron Imputation [93] 3Connectionist

Artificial Neural Networks [26] 4
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3.3.1.2 Variational Autoencoders

McCoy et al. [65] compared a VAE with the PCA method (applied in a multiple imputation

scenario) and the mean imputation. The VAE outperformed the remaining methods, with

average improvements of 45% over the PCA and 46% over the mean approach.

Saeed et al. [90] compared a (AAE) (which is not a VAE but is also based on variational

inference) with the PCA method (mean, median and constant imputation with -1 were

also considered, but the results were not reported). The AAE outperformed the PCA,

achieving a RMSE of 0.227 compared with 0.937 for the latter method.

Nazabal et al. [70] compared their VAE extension that is capable of handling different

data types with mean imputation, MICE, a general latent feature model for heterogeneous

data and a Generative Adversarial Network for imputation. The proposed approach is

outperformed in most scenarios with real-valued variables, but shows promising results

with categorical variables. In this latter case, it outperforms the remaining methods in 4

of the 6 datasets used, with an error decrease over 50% for some settings. Therefore, the

method appears to be more suitable for datasets that mostly contain categorical features.

A summary of the results obtained with VAEs in the reviewed works is presented in

Table 3.4. The families of algorithms considered for this variant were: Statistical and

Connectionist.

Table 3.4: Comparison of VAEs with other methods. Score is a value between 1 and 4: 1
means the VAE presents worse results; 2 means the VAE presents equal results; 3 means
the VAE presents marginally better results; and 4 means the VAE presents better results.

Algorithms’ Family Algorithm & Article Score

Principal Component Analysis [65] 4

Mean Imputation [65] 4

Principal Component Analysis [90] 4

Multiple Imputation by Chained Equations [70] 3

Mean Imputation [70] 4

Statistical

General Latent Feature Model [70] 2

Connectionist Generative Adversarial Network [70] 3
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3.3.2 Classification and Regression

When considering the impact on classification and regression tasks, 10 of the works under

analysis presented experimental studies that try to assess the impact of data imputed with

AEs in such tasks.

Gondara and Wang [36] showed that the accuracy of the Random Forest classifier is

higher when MNAR data is imputed with a DAE, rather than with MICE. The accuracy

improvement varies from less than 1% to 20%, depending on the dataset.

Jia et al. [43] used a spatio-temporal AE with an adapted LSTM to impute missing values

and learn a compact representation of the data, testing the impact of this pre-processing

step on SVMs, Decision Trees (DTs) and Convolutional Neural Networks (CNNs) classi-

fiers, using the AUC-ROC and accuracy metrics for evaluation. The experiments showed

that both metrics present better results when the AE is used, with accuracy improvements

between 4% and 13% for all classification algorithms.

Jaques et al. [42] connected additional classification layers to a DAE, which turns it into a

classifier after the encoding part, and compared its accuracy results with a SVM, a Logistic

Regression (LR) and a Feedforward ANN, using different imputation methods like PCA

or filling the missing values with -1. The experiments showed that this new approach

produces very similar results to the remaining algorithms, with varying accuracy results,

although always between 58% and 64%. Saeed et al. [90] followed the same approach with

an AAE, but only compared the method with different imputation approaches (mean,

median, constant imputation with -1 and PCA). The results showed that the AAE achieves

the best balanced accuracy, although the improvement is not significant (smaller than 5%

in most settings) when compared to the mean and median imputations.

Sánchez-Morales et al. [93] trained a linear classifier with the imputed data from the

DAE, MICE and SVD algorithms. The best results were obtained with the DAE, showing

accuracy values almost always above 90% and with 1 to 8% differences from the remaining

imputation methods.

Nazabal et al. [70] compared their VAE extension that is suitable for heterogeneous

data with a deep logistic regression model and a conditional VAE. The obtained results

showed similar accuracies between all imputation strategies, with the proposed method

outperforming the remaining only in 2 of 5 datasets, and by a very narrow difference

(smaller than 0.1).

Fortuin et al. [28] trained a logistic regression with data imputed through different meth-

ods: a VAE extension proposed in the work, forward and mean imputation, a simple

gaussian process, a vanilla VAE, the VAE method from Nazabal et al. [70], and two

recurrent neural network-based methods (GRUI-GAN and BRITS). The proposed VAE

approach provided the best AUC-ROC results, but the improvement is insignificant since
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the differences between the methods are minor (in general smaller than 0.05).

Boquet et al. [12] trained a 2-layer MLP with data imputed through a VAE, a vanilla

Autoencoder and the PCA method. The obtained results show the VAE outperformed

the remaining methods, providing improvements in the regression RMSE of at least 40%

for MNAR values and 17% for MCAR values. Boquet et al. [13] extended the latter study

and presented the same results and conclusions.

Xie et al. [125] proposed an approach which combines 2 VAEs to perform regression tasks,

and is able to automatically deal with missing values. The approach was compared with

deletion of the missing values, mean imputation and the PCA method, all combined with a

vanilla VAE for the regression. The proposed approach outperformed the remaining for all

settings, achieving MSE values below 0.05 for all missing rates. However, the differences

between the methods are small, considering that the worst MSE value obtained was under

0.2 with the PCA method.

3.4 Autoencoders for Non-Tabular Data

As previously stated, this study mostly focuses its analysis on 26 works that use tabular

data. Nevertheless, during the selection of the articles, 5 works that use non-tabular data

were also found (in this case, they all use 2D images). For the sake of a fair and proper

comparison between works, they were not considered in the remaining sections of this

work. However, to avoid neglecting them, they are discussed in this section.

From the 5 works, 4 address imputation of missing data modalities with a vanilla AE. The

key idea is that information about a feature can be obtained from different sources, and

by combining them the feature will have more information.

Shao et al. [103] proposed the use of an AE to deal with missing modalities on image

classification. Two approaches were introduced: the first mixes all the data into one AE

whereas the second uses a bagging strategy to combine n AEs (each trained with a part of

the data) and uses a Sparse Low-Rank Feature Fusion approach to refine the results from

the multiple AEs. The authors focus the evaluation on an image classification problem,

comparing the proposed approach to 4 methods: the Transfer Subspace Learning (TSL),

the Low-rank Transfer Subspace Learning (LTSL), the Robust Domain Adaptation with

Low-rank Reconstruction (RDALR) and the Geodesic Flow Kernel (GFK). The results

showed that the new approach is better in all scenarios, with an average accuracy between

73.47% and 89.83%, while the remaining algorithms never surpassed the 70% threshold.

Malek et al. [59] proposed two similar approaches for the recovery of missing parts of

multispectral images, which can be seen as different modalities of the same image. The

first approach uses a vanilla AE that receives as input the images’ pixels, referred to as

pixel-based reconstruction. The second approach defines a central pixel and creates n
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patches using a grid and changing the position of that pixel on the grid in each patch.

This latter approach uses n AEs, one for each patch, and their results are fused through

a weighted average. The method was compared to the Basis Pursuit, the Orthogonal

Matching Pursuit and Genetic Algorithms. The conclusions showed that the proposed

approach outperforms the remaining algorithms for all datasets, achieving Peak Signal-

to-Noise Ratio (PSNR) values between 28.47 and 43.94, greater than the remaining by an

average of 6.

Shang et al. [102] used a DAE, although only for the fusion of the modalities, whereas

the imputation is performed afterwards with Generative Adversarial Networks. The AEs

use fully connected layers for the imputation of numeric data and convolutional layers for

imputing images. The approach was compared with the a matrix completion method, a

vanilla AE, the pix2pix and the CycleGAN. The results showed that the proposed approach

outperforms the remaining algorithms for all datasets, presenting an average RMSE error

of 3.84 for the MNIST dataset and an average accuracy of 80.03% and 64.50% for each of

the remaining datasets.

Tran et al. [111] followed an approach similar to Shang et al. [102] regarding the types

of layers for numeric data and images, although Residual Autoencoders (RAEs) are used

instead. These are very similar to DAEs, with the difference of the output layer. DAEs

produce a replica of the input data without noise while RAEs produce the difference

between the input data with and without noise. By taking advantage of this difference, a

cascade architecture is proposed instead of the common stacked one. While the standard

approach adds layers to the AEs, the cascade model uses independent RAEs and stacks

the entire networks. Moreover, it uses a joint learning scheme where the minimization of

the loss function during the training stage is done with an overall strategy to all RAEs.

The approach was compared with the Singular Value Thresholding, the SoftImpute, the

OptSpace, Genetic Algorithms, DAEs and other AE variants. The results showed that

stacking RAEs to build a deep architecture improves the imputation, particularly when

convolutional layers are used, since the proposed approach outperforms the remaining

methods in all datasets, with the resulting PSNR values being between 26.12 and 31.04,

greater than the remaining by an average of 1.5. The DAE methods have close errors to

this new approach, but the authors claim it can recover more individual characteristics of

the data.

Ma et al. [57] is the only work from the 5 that does not address missing modalities in

images. Instead, the authors proposed a Partial VAE for imputation of images, which

is similar to a vanilla VAE but is trained only with the observable data (i.e., complete

data). The method was compared with two variants of a vanilla VAE pre-imputed with

zeros (one is standard and the other one uses a mask matrix indicating which variables

are complete), and the experiments used the MNIST dataset injected with missing pixels

randomly selected (rates vary between 1% and 70%) and removed from the upper 60%

49



Chapter 3

region of the images in the test set. The approach outperformed the remaining methods,

showing bigger improvements when an entire region of the image is missing (an average

improvement of approximately 10%).

A summary of the image datasets used in these 5 works, similar to the one presented before

for the tabular datasets, is available in Table 3.5. Moreover, a summary of the results

obtained from the 3 works that evaluate the imputation quality is presented in Table

3.6. This summary uses the same taxonomy introduced previously for the works using

tabular data. Note that the families marked with4 were compared with the Convolutional

Residual AE, the ones marked with � with vanilla AEs and the one marked with ‖ with

a VAE.

Table 3.5: Image datasets used in each work. N/A stands for Not Available.

Article(s) Public Dataset(s) # Instances # Features
Missing

Rates (%)

[103] Yes
BUAA and Oulu-CASIA

images databases

15 and 80

(respectively)

2 image

modalities

(NIR and

VIS)

N/A

[111] Yes

2013 GRSS Data Fusion

Contest, RGB-D Object,

Multi-PIE and the

Hyperspectral Face from

Hong Kong Polytechnic

University

200, 683, 2258 and

114 (respectively)

2 modalities

with 111 and

37, 2

modalities

with 2500, 5

modalities

with 1024

and 24

modalities

with 625 (re-

spectively)

40, 45, 50

[59] No

2 synthetic from the

Taiwanese FORMOSAT-2

and the French SPOT-5

satellites, and 1 real from

the European Sentinel-2

satellite

N/A

160000,

202500 and

560000 (re-

spectively)

N/A

[102] Yes

MNIST and 2 databases

with information about

patients of substance use

disorders

70000 and 12158

(respectively)

784 for the

MNIST and

N/A for the

remaining

N/A

[57] Yes MNIST 70000 784 1 to 70
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Table 3.6: Comparison of AEs with other methods for imputation in images. Score is a
value between 1 and 4: 1 means the AE presents worse results; 2 means the AE presents
equal results; 3 means the AE presents marginally better results; and 4 means the AE
presents better results.

Algorithms’ Family Algorithm & Article Score

Singular Value Thresholding [111] 4

SoftImpute [111] 4Matrix Completion4

OptSpace [111] 4

Genetic Algorithms (GA) [111] 4

Evolutionary4�

Genetic Algorithms [59] 4

Denoising Autoencoder [111] 4

Stacked Denoising Autoencoder [111] 4

Multi-modal Autoencoder [111] 4

Deep Canonically Correlated Autoencoders [111] 3

Connectionist4‖

Variational Autoencoder [57] 4

Orthogonal Matching Pursuit [59] 4

Other�

Basis Pursuit [59] 4

From these 5 works it is possible to draw some initial conclusions about the use of AEs

to impute missing parts of images: the results are encouraging, especially when AEs use

convolutional layers. Furthermore, the application of this method to multimodal data also

seems promising, particularly since the AEs can perform the necessary data fusion steps

in a direct way and with a small effort.

Driven by the encouraging results for non-tabular data, we decided to explore the use

of VAEs for missing image data imputation in a new work. In this work we propose

a variant of the VAE, called Variational Autoencoder with Weighted Loss (VAE-WL),

which has a custom loss function that prioritizes the reconstruction of the missing values.

Using this method we tackled the imputation of missing values under MCAR in images.

We compared our approach to other state-of-the-art generative methods and the results

show clear improvements in the imputation quality, achieving in several settings error

improvements above 40%.

Although a VAE can be used in its original form to perform missing data imputation tasks,

its loss function is not the most suitable for this purpose [65]. As Equation 3.2 shows, the
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default VAE loss function contains two terms: the first is the reconstruction error and the

second is a regularizer. Moreover, q(z|X) is the encoder output, p(X|z) is the decoder

output, X is the input data and z is the new sampled data from the learned distribution.

L(X) = −Ez∼Q(z|X)[logp(X|z)] +KL(q(z|X) ‖ p(z)) (3.2)

The reconstruction error is the basis (and often the only term) of every loss function

used with neural networks. Some of the most frequent used functions here are the Mean

Squared Error or the Binary Cross-Entropy for scenarios with only two possible outcomes.

This term is essential for the decoder to learn how to reconstruct the data. On the other

hand, the regularizer from the second term is the Kullback-Leibler divergence between

the encoder and decoder distributions. This term is needed to ensure that the latent

space is well structured, meaning that similar input data should be represented by similar

representations of the latent space [44]. When considering the use of a VAE for missing

data imputation, this loss function poses two problems. First the reconstruction error

gives the same importance to the available values and to the missing ones. Although

this error should consider all the data to ensure a complete learning of the network, for

imputation purposes the reconstruction of the missing values should have a heavier weight

on this process. Second, considering the importance of both terms from the loss function,

in imputation tasks it is admissible to lose some of the structure from the latent space to

ensure a better reconstruction of the missing values [14]. In other words, the Kullback-

Leibler divergence may have a smaller impact on the learning process, which will lead to

better reconstructions and, as consequence, better imputation results.

To address these issues we propose in this work the Variational Autoencoder with Weighted

Loss (VAE-WL), consisting in a VAE with an extension of the default loss function that is

presented in Equation 3.3. In this new function, the reconstruction error is split between

the data containing missing values (Xmv) and the data that is complete (Xav), assigning a

heavier weight to the first one through a coefficient γ > 1. Moreover, the Kullback-Leibler

divergence is penalized by using another coefficient β within the range [0, 1[.

PE(X) = Ez∼Q(z|X)[logp(X|z)]

L(X) = −(PE(Xav) ∗ γ PE(Xmv)) + βKL(q(z|X) ‖ p(z))
(3.3)

An example of the impact of the proposed changes in the VAE-WL loss function is pre-

sented in Figure 3.7. The first image is an original character from the MNIST2 dataset

and the second one is the same image with 50% of its pixels missing completely at ran-

2Available at http://yann.lecun.com/exdb/mnist/.
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dom. The last two images represent the imputation with a regular VAE and with the

VAE-WL (respectively). The use of the new loss function shows obvious improvements

in the image reconstruction. Notice that in both imputation scenarios the VAEs have the

same architecture and hyperparameters and were trained with the same data.

Figure 3.7: Example of image imputation. From left to right: the 1st image is the original
one, the 2nd image has 50% of its pixels missing completely at random, the 3rd image was
imputed with a regular VAE, and the 4th image was imputed with the VAE-WL.

In order to properly evaluate the impact of the proposed approach in an imputation task,

an experiment was conducted to compare the VAE-WL with a regular VAE. Also, the

Generative Adversarial Imputation Nets (GAIN) [126] method was also considered in the

study, being this another generative state-of-the-art model for missing data imputation.

Regarding the VAEs, the used architecture was obtained through experimentation and its

main aspects are presented in Figure 3.8: the encoder has two convolutional layers with

32 filters, a kernel size of three, ReLu as the activation function and a stride length of two

(which avoids the use of max pooling layers); the encoder also has two fully connected

layers with 392 and 196 units, which also use ReLu as the activation, while the layers for

the mean and variance have 32 units; the train used the optimization algorithm Adam

with a learning rate of 0.001, batches of 64 images and a maximum of 200 epochs; to avoid

overfitting each layer uses the L2 regularizer and is followed by a dropout layer with a

20% rate; and finally the decoder presents the inverse architecture of the encoder.

Encoder Input

Missing Data

Masks

Conv 2D Flatten FC Dropout

Variance

(FC)

Mean

(FC)

FC Dropout FC
Conv 2D

Transpose
Decoder Output

Sampling Encoder Output

Decoder Input Imputed Images

2x 2x

3x

Figure 3.8: Architecture of the VAEs used in the experiments. The top rectangle represents
the encoder and the bottom one the decoder.

Regarding the parameters for the VAE-WL loss function, after some experimentation with

stable results they were define as γ = 5 and β = 0.1. Both VAEs use Binary Cross-Entropy

for the reconstruction error of the function.
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The experiment considered three datasets: MNIST, CBIS-DDSM Mass and Calcification3.

The first is a well-known dataset for benchmarking in image related works, and it contains

70000 greyscale handwritten digits with a size of 28 by 28 pixels. The second and third

datasets contain greyscale scanned mammography studies with 1696 and 1872 images,

respectively, which where resized to 64 by 64 pixels. These two datasets were used because

they represent a domain of medical imaging where missing values are frequent. All datasets

where normalized within [0, 1] and split in train, validation and test sets with 60%-20%-

20% proportions. The experiment considered four missing rates (20%, 30%, 40% and 50%),

with the missing values being assigned randomly to each image (following therefore the

MCAR mechanism) and pre-imputed with zero. To mitigate bias and stochastic behaviors,

each method was executed 30 times (the average was used as the final result) with the

datasets being shuffled in each run. The imputation results were assessed through the

Mean Absolute Error (MAE) metric calculated with the original images and the imputed

ones.

The results obtained from the experiment are presented in Table 3.7. The VAE-WL

outperforms the standard VAE and the GAIN method in all experimented scenarios. This

allows for the conclusion that the imputation of missing values with the VAE-WL is in

fact better than the state-of-the-art generative models. Moreover, the VAE-WL presents

stable results across the different missing rates, with insignificant error increases in higher

rates (the same behavior is observed in the regular VAE). On the other hand, the GAIN

method presents in general worse results for smaller missing rates. An analysis of the

percentage results for the VAE-WL shows average improvements of 43%, 12% and 13%

for the MNIST, CBIS-DDSM Mass and Calcification datasets when comparing with a

standard VAE, and 47%, 34% and 23% when comparing with the GAIN method.

3.5 Conclusions, Recommendations and Open Challenges

This study presents a technical analysis of AEs used for imputation of missing data, and

compares their results with other algorithms used for the same purpose. This section

concludes the analysis with a discussion of the results found, focusing on why AEs are

a very powerful and promising method for missing data imputation, while also giving

recommendations about the network architecture and hyperparameters to be used.

3.5.1 Architecture and Training

Defining the architecture and the respective hyperparameters of ANNs is never an easy

task. Most decisions are usually based on empirical guesses or expensive grid search

approaches. The vast majority of the analyzed works do not present justifications for the

3Available at https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM.
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Table 3.7: Results from the experiment. The first three columns present the MAE values
for the used methods. The last two columns present the percentage improvement of the
VAE-WL compared with the VAE and the GAIN, respectively. The best results for each
combination of dataset with missing rate are bolded.

VAE-WL VAE GAIN ↑ % VAE ↑ % GAIN

M
N
IS

T

MR 20% 0.036 0.063 0.091 43% 61%

MR 30% 0.036 0.064 0.066 44% 45%

MR 40% 0.037 0.065 0.064 44% 43%

MR 50% 0.039 0.067 0.064 42% 39%

C
B
IS

-D
D
S
M M

a
ss

MR 20% 0.044 0.051 0.084 13% 47%

MR 30% 0.045 0.051 0.067 12% 32%

MR 40% 0.046 0.052 0.055 11% 17%

MR 50% 0.046 0.052 0.075 11% 39%

C
a
lc
.

MR 20% 0.046 0.054 0.078 16% 42%

MR 30% 0.047 0.054 0.066 12% 29%

MR 40% 0.048 0.054 0.055 10% 13%

MR 50% 0.047 0.054 0.051 12% 8%

decisions performed at this level. Instead, they tend to follow trends considered to be

state-of-the-art, while just a few exceptions use grid search. As stated before, this might

be due to the fact that grid search approaches are computationally expensive, and most

authors do not have the resources to do it. Considering that training AEs is already a

heavy process, further performing grid search could rapidly make the experimental setup

more complex, time-consuming, and impractical.

From the state-of-the-art trends considered by most authors, some recommendations can

be given. Regarding the number of hidden layers, although the spectrum goes from single-

layer architectures to 13 multi-layered networks, most works use small-sized networks,

with the most common amount of layers being 3. A possible explanation is that most

datasets have a level of complexity that can be easily mapped by a small amount of layers.

The benefits of using more layers in such scenarios may not compensate the increased time

performance costs. Within each layer, the number of nodes varies between works, but the

use of a regular step between layers is the approach most often applied, followed by the

use of empirical criteria. Choosing a fixed step is recommended, since it allows a certain

level of symmetry between the encoder and decoder, which appears to benefit the learning

process. For each of the nodes, the activation function more often used is the ReLU, with

the Sigmoid also appearing in a few works. This is an obvious state-of-the-art choice, since

ReLU and its variants have been presenting good results in deep learning domains.

Focusing on the training process, it is usually performed with the Stochastic Gradient

Descent or its Adam variant, with the most used loss function being the Mean Squared

Error (MSE). Regularization terms are often applied to avoid overfitting, especially the
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L2. Once again, such choices are the ones commonly found in state-of-the-art works

that use ANNs and deep learning, being therefore recommended. This training process

requires the data to be complete, otherwise the optimization of the network can not be

performed. Therefore, most of the time a pre-imputation strategy is required, since the

missing values cannot exist. Not many studies address this topic (and those who address

it do not often elaborate on the used strategy), but as expected more complex imputation

methods (e.g., kNN and MICE) tend to outperform simpler methods (e.g., mean and

constant imputation). The reasoning is quite simple: if such methods perform better,

they will generate better initial guesses for the network. Therefore, the use of these more

robust imputation approaches should be preferred to simpler methods. Finally, for the

specific case of DAEs, several works use dropout to add extra noise to the input data.

This appears to reduce overfitting and improve the network robustness to missing values.

Regarding the purpose of the AEs, some works extend the basic architecture for different

tasks. A purpose that stands out is using AEs for time-series imputation. Standard

approaches for this type of data are applied (e.g., recurrent connections, LSTM models

and a time window), but the aspects explored in this study are mostly shared with these

extensions.

3.5.2 Data Contexts

Being a type of ANN, AEs can be applied to any type of data that is, or can be transformed

to, numeric values. From the works under analysis, 3 predominant data contexts were

detected: medical and human-related data, quality of service and traffic data. However,

several works use datasets from miscellaneous contexts, most of them available in public

repositories such as the UCI. Therefore, there is not enough information to say that AEs

work better for those specific 3 contexts. Instead, the analysis shows that AEs are very

versatile, since they obtain similar and stable results when used across a large variety

of contexts. ANNs are, in general, applied to solve very different problems in the most

heterogenous scenarios, and that is why the versatility of AEs comes as no surprise.

The vast majority of datasets used are small and medium-sized, mostly below 100000

observations. This may be due, once again, to the computation resources and the time

complexity needed to trained AEs (and any deep learning model) in big data scenarios.

Therefore, the generalization of these conclusions is limited to small and medium-sized

datasets, while further work in big data contexts is required.

3.5.3 Comparative Analysis

The works under analysis report very promising results about the use of AEs for missing

data imputation, with both the DAE and VAE variants surpassing their competitors in
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the vast majority of works that report imputation results or its impact on classification

and regression tasks. In fact, when focusing on the imputation error, AEs outperform the

remaining families of algorithms in the following way:

• DAEs clearly outperform most statistical methods (the single exception is the work

from [93], which obtains similar results with MICE), and marginally outperform the

remaining families (matrix completion, distance and connectionist algorithms);

• VAEs outperform most methods considered (both statistical and connectionist), with

the single exception being the work from Nazabal et al. [70] (the proposed method

is more suitable for categorical features).

There are several aspects that may justify why AEs show such promising results and are

a good alternative to other imputation methods. By being a ANNs-based model, AEs can

model data patterns much more complex when compared to other simpler methods. For

example, the kNN method is based on simple distances that only detect global similarity

between instances, and the MICE method relies internally on simple regressions that may

not be able to map complex patterns. Therefore, all known benefits of ANNs are inherited

to AEs. Moreover, AEs natively support multivariate scenarios, meaning they perform the

imputation of all features with missing values while accounting for the relations between

them. This is something that most imputation methods are unable to do (the main

exception would be the MICE method), and is the main difference between using AEs

and vanilla ANNs to perform imputation. From a more practical perspective, although

training AEs may be time-consuming, using a trained AE is exceptionally fast, even for

the most time-restrained environments, while other methods need more time since they

are executed on-the-fly (e.g., kNN) or need multiple executions (e.g., MICE).

Addressing the reported results of both variants, although they both are AEs there is a

major difference between them: DAEs are discriminative models while VAEs are gener-

ative. In other words, DAEs try to reconstruct the exact input data while VAEs try to

generate new instances with the same characteristics of the input data. Both variants are

suitable for imputation of missing data, although VAEs may be more adequate for sce-

narios where the uncertainty surrounding the missing values is higher (e.g., missing data

under the MNAR assumptions) because the new instances are samples of a distribution

that describes the input data, and with an increased number of samples the uncertainty

will be reduced.

Focusing on the impact of imputation in classification and regression tasks, this is an

understudied topic with only 10 works touching upon this aspect. Nevertheless, the current

results are very encouraging for DAEs, since the classifiers/regressors present in general

better accuracy results. The same is not true for VAEs, which show in general very

slight improvements in such tasks. Since VAEs generate new instances, these may contain

differences that change the relation with the label, although such behavior would be highly
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influenced by the missing data mechanism. One conclusion that can be drawn from these

results is that the best method for imputation may not necessarily be the one that leads

to better classification/regression results. Therefore, it is important to evaluate both the

imputation error and the impact on predictive tasks when dealing with missing data.

Finally, a trend was also found in the evaluation metrics: RMSE is the one more often used

for imputation, and accuracy is usually used for classification tasks. While the accuracy

comes with no surprise since it is widely used for classification evaluation, the choice of

RMSE for imputation may be questionable. RMSE is the square root of the average

of squared errors, meaning that different values have a disproportional impact on final

aggregated result. In fact, higher errors will have more impact on the metric’s value. If

this behavior is not desired, another metric may be more suitable (e.g., MAE).

3.5.4 Open Challenges

The works under analysis in this study provide important information about using AEs

for imputation purposes, and show that they present good results when compared to other

state-of-the-art methods. Nevertheless, several open challenges have also been identified

that require further study.

An important but almost unaddressed topic by these works is the missing data mechanism.

Only 9 of the 26 works describe the missing mechanism associated with the datasets,

which does not allow conclusions to be drawn about how well AEs perform individually

for missing values under MCAR, MAR and MNAR assumptions. Future studies should

consider the missing mechanisms more often, and individual results should be presented

for them. Moreover, the 9 works that report the mechanism only address MCAR and

MNAR, leaving a gap for the MAR mechanism to be addressed. Furthermore, in order

to have a controlled experiment most works rely on missing values artificially generated.

But, the approach followed to perform this generation is rarely presented. Future works

should describe this aspect, in order to make the experiments reproducible and to allow a

more comprehensive discussion of the results.

The use of VAEs is also understudied, both for imputation quality and classification/re-

gression impact. This variant was only used recently to address missing data issues, which

may explain the smaller amount of works available. Nevertheless, future studies should

address more actively this AE variant, since it presents suitable characteristics for missing

data imputation [77] (e.g., it can generate new values following the same distribution as

the data used for training). Another understudied topic is the impact of AEs imputa-

tion in classification and regression tasks. This is probably the most urgent aspect to

be actively address by the community. Performing the imputation of missing values is

often an intermediate step for another goal, which usually is a classification or regression

problem. Therefore, it is important to assess the imputation quality, but evaluating the
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impact of such operation in the other goals is of equal importance. If applicable, further

studies should focus their evaluation in both components. Furthermore, the current works

compare AEs with very different imputation methods in the experiments, but some state-

of-the-art algorithms are neglected (e.g., SVM), and therefore they should be included in

the baseline of studies.

The pre-processing operations required for the data to be used with AEs are a limitation

that could also be mitigated in the future. The pre-imputation step and the approaches

applied to categorical features (e.g., one-hot encoding) can add bias to the results. New

strategies that could reduce the impact of such operations are desired.

Only a small set of works use AEs with data containing relevant structural information

(i.e., data where the position and order of the features have a meaning, such as images).

Although the study mostly provides an analysis over tabular data, the results presented in

Section 3.4 show this is a promising direction, with AEs outperforming all the remaining

methods. Therefore, such application of this type of ANN should also be further explored.

Finally, only 2 of the works under analysis report the execution time of the algorithms,

and both use small datasets. Considering that deep learning methods are usually very

computationally expensive, the existence of analysis focused on time complexity would

be important to understand the environments in which AEs can be applied or must be

discarded for being too heavy. Therefore, the resources required to train the network

should also be addressed in future studies, particularly in big data contexts.

59



This page is intentionally left blank.



Chapter 4

Variational Autoencoder Filter for

Bayesian Ridge Imputation

VAEs have been used to address missing data by performing the entire imputation. How-

ever, the results are limited and lack significance when comparing to other state-of-the-art

methods, with stronger evidence in structured data [12, 65].

In this work a new approach called Variational Autoencoder Filter for Bayesian Ridge

Imputation (VAE-BRIDGE) is introduced, and it comprises two main parts:

• A VAE is used in the initial steps of the imputation pipeline to filter the instances

that will be considered for the generation of new values (therefore performing a kind

of instance selection);

• The final imputation is performed by a Bayesian ridge regression fitted with the

filtered instances.

The approach is compared with other state-of-the-art methods in an experiment that

uses 10 public datasets from clinical trials that were injected with missing values under

the MNAR mechanism. This data context and mechanism were used because health-

care studies suffer frequently from missing values, and these ones are usually under the

MNAR assumptions. Moreover, four different missing rates were considered in the study

(10%, 20%, 30% and 40%). The results from the experiment show that the VAE-BRIDGE

approach outperformed all the remaining state-of-the-art methods with an overall improve-

ment of 26% and 67% comparing to the second best and worst methods of each dataset,

respectively. These results were proved to have a statistically significant of 5% through the

Three-Way ANOVA and post-hoc Tukey’s HSD tests. To the best of the authors’ knowl-

edge, the proposed approach is novel in the missing data field since VAEs were never used

for this purpose.

The remainder of the chapter is organized in the following way: Section 4.1 presents the
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background concepts of the Bayesian ridge regression; Section 4.2 describes the VAE-

BRIDGE approach here proposed; Section 4.3 describes the experiment and the obtained

results; and Section 4.4 shows the conclusions and future directions of this work.

4.1 Bayesian Ridge Regression

The frequentist approach to perform linear regression is based on assigning a weight/co-

efficient to each independent variable, reflecting therefore their effect on the dependent

variable. An error term is also considered to account for noise and other external factors.

The model is usually fitted through the Ordinary Least Squares (OLS) approach, which

minimizes the residual sum of squares (see Equation 4.1, were y is the dependent variable,

w the coefficients and xi one of the M instances) [69]. In other words, the goal is to

minimize the model error by adjusting the w coefficients.

min
M∑
i=1

(yi − wTxi) (4.1)

A problem found in this type of regression is overfitting, particularly when data displays

multicollinearity patterns. To mitigate this issue regularization is often used. A common

strategy is to penalize the size of the w coefficients with a L2 regularizer, creating the

so-called ridge regression [45, 69].

A limitation of the OLS method is the w coefficient values having single point estimates,

meaning these values are the ones most likely to be correct given the training data. How-

ever, the uncertainty surrounding the model results are not accounted at all.

The Bayesian approach addresses this issue by modeling the regression with probability

distributions instead of single value estimates. Assuming the use of a Gaussian distribu-

tion, the formulation of the Bayesian regression is presented in Equation 4.2 (using the

same definitions from Equation 4.1, with X being a matrix with all M instances) [45, 69].

y ∼ N (wTX,σ2) (4.2)

The outcome will therefore be the posterior distribution of the w coefficients, instead of

their exact values. This change allows the use of priors, which can be helpful if relevant

information about the model is already known. Moreover, the model uncertainty is ac-

counted for, since the posterior distribution gives a range of possible w coefficients based

on the data and the prior [69]. This last aspect is particularly relevant when the amount of

instances used to fit the model is reduced. In fact, when the number of instances increases

the w coefficients converge to the ones obtain from the OLS method, since the level of

uncertainty is decreasing. Moreover, when the prior also follows a Gaussian distribution,
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the L2 regularization is implicitly applied, creating the Bayesian ridge regression concept

[69, 110].

One of the most common ways to fit a Bayesian regression is drawing samples from the

posterior distribution to improve and approximate it, using, for example, Monte Carlo

methods. Another common approach is to use the Maximum A Posteriori (MAP) method

[69, 110].

4.2 Proposed Approach

The VAE-BRIDGE approach starts by training a VAE with all data instances that are com-

plete, but excluding the feature containing missing values (meaning that no pre-imputation

is required). The model will learn the multidimensional parameters of the Gaussian distri-

bution that represents the data, which will then be used for filtering purposes. Afterwards,

each instance having missing values is encoded with the previously trained VAE, and its

multidimensional Gaussian parameters are compared to the ones from each complete in-

stance. The goal is to obtain the k percent instances that are described by the most

similar Gaussian distributions, following the formula from Equation 4.3. This distance is

an adaptation of the euclidean metric to include both Gaussian parameters (mean and

variance).

dp,q =

√√√√ n∑
i=1

(µpi − µqi) +

√√√√ n∑
i=1

(σ2
pi − σ2

qi) (4.3)

The selected k percent instances are finally used to fit a Bayesian ridge regression. Any

imputation model could be used in this step, but the Bayesian ridge is known to provide

better long term predictions through regularization strategies that deal with overfitting

(see Section 4.1), being for that reason used by state-of-the-art methods such as MICE

[15]. An additional aspect of this regression model is the easiness to interpret its results,

something that is often important in sensitive contexts (e.g., healthcare). For datasets

with more than two features this regression will be multivariate, with all the features

without missing values being the independent variables.

For a proper generalization of this method the following aspects must also be considered:

• If the missing data scenario is multivariate (i.e., two or more features have miss-

ing values), the described process must be repeated individually for each of these

features;

• To avoid issues with the domain of the features and to speed up the VAE training

convergence, all features should be normalized within [0, 1]. Consequently, the VAE
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output layer should use sigmoid as the activation function;

• Categorical features must be transformed to binary ones through a one-hot encod-

ing process, otherwise the VAE training procedure and the distance formula from

Equation 4.3 will not be valid. The imputation of these features will be a real value

within [0, 1] (as the previous point states), which can be converted to a binary value

assuming a fixed threshold (e.g., 0.5).

The complete VAE-BRIDGE approach is summarized in Algorithm 1.

Algorithm 1 Pseudocode of the VAE-BRIDGE algorithm.

Input: complete rows, incomplete rows, k
Output: imputed rows

1: Normalize all data within [0, 1]
2: Apply one-hot encoding to the categorical features
3: for each feature having missing values (mdi) do
4: Train a VAE with complete rows \mdi
5: enc data ← Encode complete rows \mdi with VAE
6: for each instance z in incomplete rows do
7: enc z ← Encode z \mdi with VAE
8: sim z ← Find k similar rows to enc z from enc data using the distance formula

from Eq. 1
9: br ← Fit a Bayesian ridge regression with sim z

10: imputed rows ← Predict missing data in z with br
11: end for
12: end for
13: return imputed rows

The key aspect of this method is the filtering step based on the VAE encoding capabilities.

By choosing only the k percent instances that have similar distribution parameters to

the one that is being imputed, the method ensures that noisy data not relevant for the

imputation task is ignored by the Bayesian ridge regression during the final prediction step.

Therefore, for this reason, different k values will have a major impact on the approach

results. To properly understand this impact a sensitivity analysis study was conducted.

The experiment used the well-known Breast Cancer Wisconsin dataset, with missing values

under MNAR with different rates (10%, 20% and 30%). Only this dataset was used given

the number of variables to consider in the study, and the choice was based on its popularity

among the healthcare public datasets. The focus on the MNAR mechanism is justified by

the fact that most missing values in healthcare are usually under MNAR assumptions, as

previously stated. The results were evaluated through the Mean Absolute Error (MAE).

Figure 4.1 presents the conclusions of the study, where each bar shows the average number

of times each k value presented the best MAE results for the three missing rates. The

study considered 10 different percentages for k (10% to 100%, with 10% steps).

From the obtained results, the k values {20, 30, 40} clearly outperformed the remaining

ones, with k = 20 presenting the best overall score. Such results not only show the best k
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Figure 4.1: Sensitivity analysis of the k parameter. Each bar shows the average number
of times each k value presented the best MAE results for the three missing rates.

values to be used, but also prove the impact of using only relevant data for the imputation.

In general, when k increases over the 40% threshold, the results tend to be worse. This

can be explained by the fact that the Bayesian ridge regression is using more data that is

not relevant to the imputation, which creates additional noise in the fitting process. Using

k = 10 also presented bad results since the filter probably discarded more information

than it should, leading to the lost of data that was in fact relevant. Therefore, the used k

value must neither be too small or too big, with percentages between 20 and 40 showing

a good balance for this criteria. Nevertheless, to have accurate k values this study should

be conducted for the different datasets. However, given the computation complexity of

this task, only the best values obtained for the Wisconsin dataset (k = {20, 30, 40}) were

used for the remaining ones in the experiments.

4.3 Experimental Results

To evaluate the quality of the imputation performed by the VAE-BRIDGE method an

experiment was conducted, aiming to compare it to the following state-of-the-art methods:

• Standard VAE, which performed the entire imputation [65];
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• Denoising Autoencoder (DAE), which is a basic discriminative Autoencoder that

learns a compressed representation of the input data with noise (in this context the

missing values are the noise) [118];

• Multiple Imputation by Chained Equations (MICE), which uses a multiple imputa-

tion approach to fit regression models using the features with missing values as the

dependent variables [15];

• K-Nearest Neighbors (KNN) Imputation with K = 5, which finds the five nearest

neighbors of an instance through a distance metric (usually the Euclidean one) and

uses their average values to impute the missing data [95].

Regarding the Autoencoder-based methods (VAE-BRIDGE, VAE and DAE), they all used

a similar architecture:

• A single hidden layer with 100 units and the ReLU activation function for the DAE,

while the VAEs had two “parallel” layers (mean and variance) with 100 units and

linear activation;

• The optimization algorithm used was Adam with a learning rate of 0.001, batches

of 64 instances and 200 epochs;

• To avoid overfitting each layer applies the L2 regularizer with a factor of 0.01;

• The weights of the layers are initialized using the glorot normal approach, which

follows a truncated normal distribution centered on zero;

• The output layer always uses the sigmoid activation function, as explained in the

previous section.

Moreover, the VAE-BRIDGE approach used k = {20, 30, 40}%, since these were the best

overall values obtained from the sensitivity analysis study presented in the previous section.

However, the best results were once again obtained for k = 20, being therefore the ones

presented here.

The experiment considered 10 public datasets from the healthcare context, covering clinical

studies of different pathologies. The choice of this context lies in the fact that it often

suffers from missing data, which compromises severely the studies’ results [76]. All datasets

were obtained from the UCI1 repository, and they have different sizes and both continuous

and categorical features, as Table 4.1 shows.

All datasets were complete and were latter injected with missing values under the MNAR

mechanism, using the method from [112] (the lowest values are set to be missing). This

missing mechanism was used since it is the one more often found in healthcare contexts, and

1https://archive.ics.uci.edu/ml/datasets.php
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Table 4.1: Characteristics of the datasets used in the experiments.

Dataset # Instances
# Features

Continuous Categorical

wisconsin 569 31 0

ctg 2126 21 2

pima 768 9 0

liver 583 10 1

hcv-egy 1385 19 10

parkinsons 195 23 0

bc-coimbra 116 10 0

thoracic-surgery 470 14 3

spine 310 13 0

mammographic-masses 830 2 4

it is also the one that poses more challenges for the imputation task [76]. Each feature of

each dataset was iteratively injected with missing data and imputed, with the imputation

quality being assessed through the Mean Absolute Error (MAE) metric, calculated between

the ground truth and the imputed data. The final MAE of a dataset is the average MAE

of all its features.

The data was normalized within [0, 1] and split in train, validation and test sets (with 60%-

20%-20% proportions) for all methods except the KNN, since it does not require training.

Four missing rates were considered (10%, 20%, 30% and 40%), with the missing values

being pre-imputed with the mean for the DAE and standard VAE methods. Notice that

the missing values were injected independently for the train, validation and test sets, in

order to ensure the same missing rate and MNAR assumptions for each one. To mitigate

bias and stochastic behaviors, the experiment was executed five independent times, with

the datasets being shuffled in each run. Moreover, the average results from the runs were

considered for comparison. A graphical representation of the experimental setup here

described is presented in Figure 4.2.
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Figure 4.2: Graphical representation of the experimental setup used in this work.

The results from the experiment are presented in Table 4.2. The VAE-BRIDGE approach

outperformed all state-of-the-art methods for every dataset and missing rate. The overall

improvement from the second best and worst methods to VAE-BRIDGE was 26% and

67%, respectively. The second best method varied between VAE and MICE depending on

the dataset, while the DAE presented the overall worst results.
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Table 4.2: Results from the experiment. The first two columns identify the dataset and
the missing rate percentage. The next five columns present the MAE values (mean and
standard deviation) for the used methods. The last column shows the percentage im-
provement from the best method to the second best. The best results for each dataset
and missing rate are bolded.

Dataset MR (%) VAE-BRIDGE VAE DAE MICE KNN ↑ %

wisconsin

10 0.019 ± 0.019 0.078 ± 0.037 0.213 ± 0.049 0.03 ± 0.034 0.074 ± 0.037 37%

20 0.017 ± 0.018 0.062 ± 0.028 0.189 ± 0.045 0.028 ± 0.034 0.079 ± 0.037 39%

30 0.017 ± 0.017 0.055 ± 0.023 0.173 ± 0.044 0.029 ± 0.036 0.085 ± 0.038 41%

40 0.017 ± 0.017 0.052 ± 0.021 0.158 ± 0.045 0.032 ± 0.042 0.094 ± 0.037 47%

ctg

10 0.028 ± 0.048 0.051 ± 0.063 0.198 ± 0.149 0.043 ± 0.072 0.06 ± 0.092 35%

20 0.025 ± 0.043 0.042 ± 0.05 0.179 ± 0.133 0.043 ± 0.076 0.065 ± 0.086 40%

30 0.024 ± 0.041 0.037 ± 0.045 0.161 ± 0.106 0.066 ± 0.139 0.091 ± 0.142 35%

40 0.023 ± 0.038 0.035 ± 0.042 0.148 ± 0.09 0.065 ± 0.118 0.094 ± 0.125 34%

pima

10 0.161 ± 0.077 0.176 ± 0.075 0.237 ± 0.078 0.195 ± 0.093 0.177 ± 0.1 9%

20 0.136 ± 0.052 0.142 ± 0.043 0.208 ± 0.065 0.189 ± 0.067 0.174 ± 0.069 4%

30 0.124 ± 0.051 0.127 ± 0.032 0.191 ± 0.069 0.203 ± 0.073 0.188 ± 0.071 2%

40 0.112 ± 0.05 0.117 ± 0.024 0.173 ± 0.074 0.216 ± 0.082 0.199 ± 0.069 4%

liver

10 0.096 ± 0.19 0.158 ± 0.196 0.28 ± 0.223 0.117 ± 0.219 0.131 ± 0.201 18%

20 0.09 ± 0.187 0.139 ± 0.185 0.263 ± 0.225 0.127 ± 0.25 0.145 ± 0.235 29%

30 0.083 ± 0.178 0.123 ± 0.171 0.238 ± 0.203 0.198 ± 0.321 0.218 ± 0.31 33%

40 0.073 ± 0.153 0.108 ± 0.146 0.212 ± 0.171 0.167 ± 0.241 0.189 ± 0.234 32%

hcv-egy

10 0.141 ± 0.202 0.155 ± 0.181 0.347 ± 0.163 0.156 ± 0.224 0.303 ± 0.142 9%

20 0.127 ± 0.181 0.132 ± 0.159 0.333 ± 0.156 0.162 ± 0.229 0.331 ± 0.137 4%

30 0.113 ± 0.16 0.117 ± 0.142 0.319 ± 0.152 0.167 ± 0.234 0.372 ± 0.142 3%

40 0.098 ± 0.138 0.106 ± 0.126 0.303 ± 0.151 0.169 ± 0.237 0.441 ± 0.181 8%

parkinsons

10 0.066 ± 0.089 0.134 ± 0.131 0.284 ± 0.104 0.096 ± 0.145 0.108 ± 0.092 31%

20 0.059 ± 0.078 0.117 ± 0.112 0.254 ± 0.094 0.103 ± 0.162 0.132 ± 0.122 43%

30 0.053 ± 0.068 0.103 ± 0.089 0.231 ± 0.079 0.107 ± 0.156 0.15 ± 0.145 49%

40 0.049 ± 0.06 0.094 ± 0.074 0.21 ± 0.07 0.105 ± 0.133 0.159 ± 0.12 48%

bc-coimbra

10 0.142 ± 0.106 0.188 ± 0.109 0.269 ± 0.069 0.185 ± 0.132 0.172 ± 0.116 17%

20 0.131 ± 0.088 0.16 ± 0.085 0.243 ± 0.054 0.184 ± 0.125 0.183 ± 0.108 18%

30 0.122 ± 0.079 0.15 ± 0.079 0.229 ± 0.047 0.197 ± 0.129 0.197 ± 0.113 19%

40 0.11 ± 0.071 0.141 ± 0.07 0.208 ± 0.041 0.211 ± 0.133 0.212 ± 0.112 22%

thoracic-surgery

10 0.084 ± 0.166 0.114 ± 0.162 0.259 ± 0.211 0.096 ± 0.191 0.122 ± 0.194 13%

20 0.077 ± 0.148 0.099 ± 0.142 0.254 ± 0.208 0.1 ± 0.192 0.139 ± 0.217 22%

30 0.07 ± 0.127 0.087 ± 0.117 0.244 ± 0.191 0.135 ± 0.233 0.159 ± 0.237 20%

40 0.062 ± 0.108 0.079 ± 0.097 0.232 ± 0.171 0.158 ± 0.249 0.178 ± 0.248 22%

spine

10 0.274 ± 0.219 0.326 ± 0.154 0.363 ± 0.137 0.297 ± 0.231 0.359 ± 0.191 8%

20 0.25 ± 0.205 0.289 ± 0.157 0.326 ± 0.14 0.31 ± 0.251 0.362 ± 0.213 13%

30 0.219 ± 0.186 0.251 ± 0.136 0.285 ± 0.134 0.323 ± 0.277 0.368 ± 0.227 13%

40 0.191 ± 0.162 0.218 ± 0.117 0.249 ± 0.12 0.313 ± 0.252 0.36 ± 0.201 12%

mammographic-masses

10 0.025 ± 0.072 0.05 ± 0.064 0.242 ± 0.175 0.056 ± 0.161 0.072 ± 0.154 50%

20 0.022 ± 0.065 0.044 ± 0.058 0.229 ± 0.153 0.045 ± 0.116 0.062 ± 0.111 50%

30 0.02 ± 0.062 0.041 ± 0.059 0.223 ± 0.149 0.042 ± 0.108 0.059 ± 0.1 51%

40 0.02 ± 0.059 0.04 ± 0.059 0.219 ± 0.149 0.045 ± 0.119 0.071 ± 0.113 50%

To assess the statistical significance of the results, the Three-Way ANOVA test was applied

with a significance level of 5%. The factors considered were the dataset, the missing rate

and the algorithm, while the dependent variable was the MAE. This statistical test can

only be applied if the data follows a normal distribution, which was confirmed visually

through a Q-Q plot. Moreover, the same analysis was conducted on the data subgroups.
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The p-values from the test show the results are statistically significant for the datasets

and algorithms (p = 2e−16). However, no evidence of sensitivity to the missing rates was

found (p = 0.365).

To conclude if the VAE-BRIDGE approach outperformed the remaining algorithms with a

statistical significance of 5%, the post-hoc Tukey’s HSD test was applied for this particular

factor. The VAE-BRIDGE significantly outperformed VAE (p = 0.006732), DAE (p <

0.000001), MICE (p = 0.000001) and KNN (p < 0.000001).

4.4 Conclusions

In this work a new approach for missing data imputation called Variational Autoencoder

Filter for Bayesian Ridge Imputation (VAE-BRIDGE) is introduced. It uses a VAE to

filter the instances that are relevant for the imputation, while a Bayesian ridge regression is

fitted with them and predicts the new values. The method relies on the fact that instances

that are not relevant for the imputation may compromise its results by adding unnecessary

noise. The approach was compared with four state-of-the-art methods (standard VAE,

DAE, MICE and KNN) in an experiment with 10 datasets from clinical trials that were

injected with missing values under MNAR (including 10%, 20%, 30% and 40% missing

rates). The VAE-BRIDGE approach outperformed all the remaining methods, achieving

an overall improvement between 26% and 67%. The results were validated with a statistical

significance of 5%.

In the future new experiments will be conducted to test the VAE-BRIDGE approach with

datasets from other contexts (some containing pre-existent missing values) and with the

remaining missing data mechanisms (MCAR and MAR), considering in this last scenario

the impact of having different mechanisms in the train, validation and test sets. Moreover,

a study on the impact of the imputation in classification tasks will also be conducted.
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Chapter 5

Partial Multiple Imputation with

Variational Autoencoders

A recent trend in imputation that has been showing good results particularly for MNAR

is the use of generative models, namely Variational Autoencoders (VAE) [13, 65, 77,

78]. By generating samples that are based on the training data but diverge towards

new concepts, the VAE tends to meet the MNAR assumptions by reducing the bias.

However, this method still poses a limitation when dealing with MNAR: it only provides a

single imputation result, which may have random bias given the stochastic behavior of the

reparameterization trick. To tackle this limitation, we propose in this work an extension

to the vanilla (i.e., standard) VAE that uses a partial Multiple Imputation (MI) strategy,

which we call Partial Multiple Imputation with Variational Autoencoders (PMIVAE).

Several studies show the benefits of applying MI strategies in MNAR scenarios [9, 84], but

such strategies were never combined with VAEs. Moreover, considering that the VAE’s

latent space is a probability distribution, MI can be applied through sampling operations,

which would not be possible with other generative models (e.g., Generative Adversarial

Networks).

Our experimental setup considered 34 public datasets from the medical context, 8 state-

of-the-art imputation approaches that were compared with the PMIVAE, and 5 missing

rates from 10% to 80% achieved by artificially generating the missing values. With this

high number of datasets, we aim to cover data scenarios with different characteristics and

create an experimental setup that is representative of the missing data issue in clinical

research. The missing values were artificially generated under the MNAR assumptions

[97, 112], and the imputation results were evaluated through the Mean Absolute Error

(MAE) between the imputed data and the ground truth. These results were proved to

have a statistical significance of 5% through the Three-Way ANOVA on ranks and post-hoc

Tukey’s HSD tests. Moreover, an analysis of the imputation results on different probability

distributions is also presented, followed by an experiment in a multivariate setting with
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other deep learning-based models and a case study for a heart failure dataset, where the

impact of the imputation in a classification task is addressed.

The remainder of the chapter is organized in the following way: Section 5.1 describes

the PMIVAE method here proposed; Section 5.2 describes the experimental setup and

results; Section 5.3 extends the experimental setup to encompass a multivariate setting;

Section 5.4 presents a case study of the imputation impact on a classification task with

heart failure patients; and Section 5.5 presents the conclusions and future directions of

this work.

5.1 Proposed Approach

The VAE model has a loss function with two terms: the reconstruction error and a reg-

ularizer (see Equation 5.1, where q(z|X) is the encoder output, p(X|z) is the decoder

output, X is the input data and z represents the new samples). The regularizer is the

Kullback-Leibler divergence, which forces the disentanglement of the latent space, leading

to a well-structured space where similar input data generates similar latent representa-

tions. Moreover, it also helps mitigate overfitting [44].

L(X) = −Ez∼Q(z|X)[logp(X|z)] +KL(q(z|X) ‖ p(z)) (5.1)

In order for the loss function to be differentiable the sampling process must be stochastic.

Therefore, the reparameterization trick is applied. This process adds a random variable,

sampled from a normal distribution with µ = 0 and σ = 1, to the sampling process. This

ensures the distribution parameters remain as the learnable ones of the network [44].

Although the VAE has presented good results in several missing data imputation scenar-

ios, it still poses a major limitation: the imputed values are still the result of a single

imputation procedure. Given the stochastic nature of the model, caused by the reparam-

eterization trick, the new values being generated can have a random bias. To tackle this

issue we propose a partial MI approach, based on a Monte-Carlo sampling, that is applied

to the VAE generative phase. We call it Partial Multiple Imputation with Variational

Autoencoders (PMIVAE).

The main aspects of the proposed approach are described in Algorithm 2 through pseu-

docode. To generate a new instance, the VAE takes a sample from the Gaussian parame-

ters previously learned and decodes it. In our approach, the sampling process is repeated

N times, leading to N latent space representations of new instances. These samples are

aggregated into a single one by an averaging operation, and the resulting sample is then

decoded. We denote this procedure as a partial MI strategy since for it to be a standard

MI the N results from the sampling process need to be independently analyzed before the
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aggregation, which is not applicable in this context. The goal is to reduce bias and un-

certainty in the generative process by accounting for the stochastic behavior of the model

with this partial MI strategy. Furthermore, the integration of the MI with the VAE is

a key aspect to achieve better results. By applying this procedure directly to the latent

space of the VAE model, the multiple samples are generated only from the relevant infor-

mation learned by it. If the MI was performed in a pre-processing stage, the additional

noise in the input data would propagate to the MI results.

Algorithm 2 Pseudocode for the PMIVAE method.

Input: train rows, rows to impute, N
Output: imputed rows

1: pre train rows ← Pre-impute train rows with the features’ mean
2: pre rows to impute ← Pre-impute rows to impute with the features’ mean
3: vae model ← Train a VAE with pre train rows
4: enc rows to impute ← Encode pre rows to impute with vae model
5: µvae, σvae ← Extract Gaussian parameters from enc rows to impute
6: for each i in {1, ..., N} do
7: xi = µvae + yi ∗ σvae, yi ∼ N (0, 1)
8: Append xi to X
9: end for

10: Xmean ← Average of X
11: imputed rows ← Decode Xmean with vae model
12: return imputed rows

The PMIVAE method requires a number of iterations (N), as most MI procedures do. To

understand the impact of this parameter in the results, we conducted a sensitivity analysis

study that considered 5 values for N (10, 20, 50, 100 and 200), 5 datasets and a missing

rate of 40% (which represents a moderate amount of missing values). The remaining

settings of the experiment are the same used for the main experimental results of this

work (see Section 5.2). We only considered a subset of the datasets and missing rates

used in the main experiments because the time complexity, imposed by testing several

N values, was very high. Furthermore, we settled the maximum N value as 200 since it

is a reasonable limit when comparing to the iterations used by other works [122]. The

study results, evaluated through the Mean Absolute Error (MAE), are presented in Table

5.1. As expected, we see that the best results tend to be achieved with higher N values,

although some differences are small. This indicates that the results should be similar with

any of the N values. Nevertheless, N = 200 iterations still lead to the best results, and

therefore we decided to use it for the main experiments.

5.2 Experimental Results

To evaluate the imputation results of the PMIVAE method, an experiment was conducted

where this method was compared with its established state-of-the-art competitors, pre-
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Table 5.1: Sensitivity analysis for the number of iterations. The best MAE results are
bolded.

Dataset
Number of Iterations (N)

10 20 50 100 200

alzheimer-v1 0.1397 0.1402 0.1394 0.1395 0.1390

bupa 0.0868 0.0854 0.0855 0.0856 0.0854

ecoli 0.1127 0.1125 0.1126 0.1128 0.1126

pima 0.1072 0.1066 0.1069 0.1065 0.1064

wisconsin 0.0598 0.0585 0.0580 0.0578 0.0577

sented in Table 5.2 together with their respective configurations. All Autoencoder-based

methods (PMIVAE, VAE and DAE) used a similar neural-network architecture, which is

described in Table 5.3. This architecture and the configurations for the remaining methods

were defined through a grid search procedure. Furthermore, the Autoencoder-based meth-

ods were implemented with the Keras library, while the remaining methods were directly

used from the Scikit-learn library. The implementation of PMIVAE method is available

on GitHub1.

Table 5.2: Baseline of imputation methods used for comparison.

Method Description

Mean Imputation The imputed value is the mean of the available values for
each feature.

Multiple Imputation by
Chained Equations (MICE)

Applies a MI strategy in the fitting process of several
Bayesian ridge regressions using a round-robin approach
with 10 iterations, and assuming as the dependent vari-
ables the features containing missing values [15].

k-Nearest Neighbors (kNN)
Imputation with k = 5

Finds the k nearest neighbors of the instance being im-
puted using the Euclidean distance between the features
without missing data, and imputes using the average val-
ues from the k instances [95].

SoftImpute Performs matrix completion through an iterative approach
based on nuclear-norm regularization, where the missing
values are replaced by estimations from a soft-thresholded
SVD [64].

Denoising Autoencoder (DAE) Vanilla Autoencoder that learns from a noisy variant of the
input data. This variant is created through a corruption
process, which in this context is the amputation of values
[118].

Variational Autoencoder
(VAE)

Vanilla VAE (i.e., the basis for the PMIVAE), but used to
perform single-sample estimation [65].

The experiment was executed with 34 public datasets from the medical context, which

cover different pathologies and domains of clinical research based on routinely collected

1https://github.com/ricardodcpereira/PMIVAE
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Table 5.3: Network architecture of the Autoencoder-based methods.

Aspect Configuration

DAE Structure Single hidden layer with 100 units and the ReLU activation function.

VAE Structure
Three layers with 100 units: two “parallel” layers (mean and variance),
followed by the layer that samples points from the latent Gaussian distri-
bution. This is the basic configuration for any VAE.

Optimization
Algorithm

Adam, with the Mean Squared Error as the loss function and a learning
rate of 0.001.

Training Procedure

Batches of 64 instances, a maximum of 200 epochs, an early stopping
rule that stops training if the validation loss as no improvements over
100 epochs, and a reduction of the learning rate by 80% using again the
previous criteria.

Overfitting
Mitigation

Each layer uses L2 regularization with a 0.01 factor.

Network
Initialization

Network weights are randomly initialized by sampling from a truncated
normal distribution centered on zero.

Output
The output layers use the sigmoid activation function, since the data is
normalized between [0, 1].

healthcare data. All datasets are public (most of them can be downloaded from the UCI2

repository), and they are very heterogeneous in regard to the number of instances and

types of features, as Table 5.4 shows: they range from 68 to 2126 instances, from 1 to 19

categorial features, and from 1 to 22 continuous features.

Moreover, the 34 datasets include only complete data: to perform the experiment in a

controlled manner, these datasets were injected with missing values under the MNAR

mechanism, following the strategy proposed in [112], where the lowest values of the con-

tinuous features are removed upon a certain missing rate (see Figure 5.1 for a high-level

representation of this approach). Each feature was iteratively injected with missing values

and imputed, while the imputation results were assessed through the MAE metric applied

between the ground truth (i.e., complete dataset) and the imputed data. This strategy

was chosen to maximize the coverage of the experiments and to avoid bias by randomly

selecting features. Also, this metric was chosen so that all errors had the same weight in

the final results. The overall MAE for a dataset is the mean MAE of all its features.

tra
in

te
st

MNAR 
generation imputation

MR = {10, 20, 40, 60, 80} %

(mean of all features)

evaluation Mean Absolute Error

Figure 5.1: High-level representation of the experimental setup.

2https://archive.ics.uci.edu/ml/datasets.php
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Table 5.4: Characteristics of the public medical datasets.

Dataset # Instances
# Features

Categorical Continuous

acute-inflammations-nephritis 120 6 1

acute-inflammations-urinary 120 6 1

alzheimer-v1 317 3 7

autism-adolescent 98 19 1

autism-adult 701 16 1

autism-child 288 16 1

bc-coimbra 116 1 9

biomed 194 1 5

breast-tissue-2c 106 1 9

bupa 345 2 5

cleveland 0 vs 4 173 1 13

cmc 1473 8 2

cryotherapy 90 3 4

ctg-2c 2126 1 21

diabetic-retinopathy 1151 4 16

ecoli 336 1 7

fertility-diagnosis 100 8 2

haberman 306 1 3

heart-statlog 270 7 7

immunotherapy 90 3 5

kala-azar 68 2 5

lymphography-v1 142 16 3

new-thyroid-N-vs-HH 215 1 5

newthyroid-v1 185 1 5

parkinson 195 1 22

pima 768 1 8

postoperative-SvsA 86 8 1

relax 182 1 12

saheart 462 2 8

thoracic 470 14 3

thyroid 3 vs 2 703 1 21

transfusion 748 1 4

vertebral-2c 310 1 6

wisconsin 683 1 9

All data was normalized within [0, 1] and split in train and test sets following a 70%-30%

ratio. For the Autoencoder-based methods, 20% of the training set is used for validation

purposes. The categorical features were transformed with the one-hot encoding procedure

(i.e., dummy coding). The injection of missing values previously described was performed

independently for each of these sets, in order to ensure equal missing rates and MNAR

assumptions for all of them. The experiment considered 5 missing rates (10%, 20%,

40%, 60% and 80%), which cover different magnitudes of the missing data issue. For

the Autoencoder-based methods the missing values were pre-imputed with the mean of

the respective features. To mitigate bias and stochastic behaviors, the entire pipeline
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was executed in 30 independent runs, with the datasets being shuffled in each one. The

results considered for comparison are the mean of these runs. Each run was executed in a

computer running Windows 10, which had the following specifications: CPU AMD Ryzen

5600X, 16GB RAM, and GPU NVIDIA GeForce GTX 1060 6GB. The deep learning-based

methods took roughly the same time to train in all settings (around four minutes per

dataset), while the remaining methods took between one and five seconds to be executed.

The obtained results were analyzed from 3 different perspectives. The main analysis is a

global perception of the imputation error provided by all methods, achieved by comparing

the MAE results and validating their statistical significance. To complement this analysis,

the previous results were also grouped by the number of datasets where each method

outperformed the remaining. Finally, a study to identify the most suitable method for

different distributions was conducted. These 3 different analyses are presented in the

following sub-sections (5.2.1, 5.2.2 and 5.2.3).

5.2.1 Gross Imputation Error Comparison

Regarding the MAE produced by the imputation methods, the average results for all

datasets are presented in Table 5.5. Moreover, Figure 5.2 displays the density plots of

these results for each imputation method, considering the individual values obtained from

each of the 30 runs, which allows for a more comprehensive analysis of the variance among

all methods. In an overall analysis, the PMIVAE method surpassed the remaining ones,

achieving an average MAE of 0.142, being followed by the VAE and SoftImpute methods

with an average MAE of 0.161 and 0.175, respectively. When analyzing the results by

missing rate, the PMIVAE method shows the lowest MAE values for the 20%, 40%, 60%

and 80% missing rates. For the 10% rate it is surpassed by the SoftImpute and MICE

methods.

Table 5.5: MAE results obtained for each imputation method and grouped by missing
rate. The reported values are the averages and standard deviations of all datasets. The
best results for each missing rate are bolded.

Imputation
Method

Missing Rate

10% 20% 40% 60% 80%

DAE 0.280 ± 0.08 0.247 ± 0.07 0.203 ± 0.06 0.168 ± 0.05 0.155 ± 0.05

VAE 0.209 ± 0.10 0.181 ± 0.09 0.149 ± 0.07 0.133 ± 0.06 0.131 ± 0.06

kNN 0.195 ± 0.10 0.198 ± 0.11 0.224 ± 0.12 0.279 ± 0.14 0.342 ± 0.13

Mean 0.280 ± 0.10 0.275 ± 0.11 0.291 ± 0.12 0.321 ± 0.12 0.373 ± 0.12

MICE 0.192 ± 0.11 0.194 ± 0.12 0.217 ± 0.14 0.264 ± 0.15 0.319 ± 0.16

PMIVAE 0.195 ± 0.10 0.165 ± 0.09 0.129 ± 0.07 0.111 ± 0.06 0.110 ± 0.06

SoftImp 0.173 ± 0.09 0.167 ± 0.10 0.171 ± 0.11 0.180 ± 0.11 0.182 ± 0.10

To understand how these results change according to the size of the datasets, Table 5.6

presents the Pearson correlation coefficients calculated between the datasets’ size and
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the respective MAE values for the imputation methods. In this context, the size of the

dataset is its total number of values (size = #instances∗#features). All coefficients are

negative, which indicates that the imputation results tend to be worse when the size of the

dataset increases. However, the coefficients are all within [−0.5, 0], therefore representing

low correlation and similar consistence among the different imputation methods.

Table 5.6: Pearson correlation coefficients calculated between the size of the datasets and
the respective MAE values for the imputation methods. The coefficients are independently
presented for each missing rate.

Imputation
Method

Missing Rate

10% 20% 40% 60% 80%

DAE -0.39 -0.34 -0.32 -0.33 -0.31

VAE -0.45 -0.42 -0.43 -0.45 -0.46

kNN -0.31 -0.27 -0.26 -0.26 -0.26

Mean -0.30 -0.27 -0.25 -0.24 -0.25

MICE -0.32 -0.30 -0.28 -0.31 -0.30

PMIVAE -0.40 -0.38 -0.35 -0.34 -0.35

SoftImp -0.29 -0.25 -0.19 -0.15 -0.11

The benefits of using the PMIVAE method in MNAR scenarios with moderate and high

missing rates are related to two main factors: the generative capabilities of the VAE,

which lead to imputed values that have similar characteristics to the available data but are

diverging towards new concepts, and the reduced level of uncertainty achieved through the

partial MI procedure, which allows higher stability in the imputed values. Furthermore,

the PMIVAE is surpassed in the 10% missing rate because the amount of information

still available in the features is enough for a method more suitable for MAR scenarios

(such as the SoftImpute or MICE) to still produce good results. In other words, the

MNAR assumptions are weak in this low missing rate scenario, and therefore the level of

uncertainty surrounding the missing values is lower since the features probably contain

enough information to ease the imputation procedure.

An interesting aspect to highlight is that all Autoencoder-based methods reduce their MAE

values when the missing rate increases, while the remaining methods present the opposite

behavior. This a clear indicator that Autoencoders are suitable for MNAR scenarios,

particularly with high missing rates, since they deal well with corrupted data, mostly

because the additional noise leads to less overfitting and improved generalization [120].

To validate the statistical significance of the obtained results, the Three-Way ANOVA on

ranks test was applied with a significance level of 5%. The factors considered were the

dataset, the missing rate and the imputation method, while the dependent variable was

the MAE. The standard Three-Way ANOVA test can only be applied if the normality

assumptions are met. In this study such assumptions were violated, and therefore the

data was transformed into rankings using the Ordered Quantile normalization [83], which

always produces normally distributed transformed data. The same assumptions were
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MR = 10% MR = 20%

Avg. Avg.

DAE 0.280 0.247
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Figure 5.2: Density plots of the MAE results obtained for each imputation method. The
analysis is presented by missing rate, with the overall results being displayed in the last
plot. The average MAE for each setting is also displayed.

ensured for the data subgroups. From the obtained p-values we can conclude the results

are statistically significant for all factors: the dataset and imputation method factors show

p = 2e−16, while the missing rate shows p = 3.33e−06.

Finally, to conclude if the PMIVAE outperformed the remaining methods with a statistical

significance of 5%, the post-hoc Tukey’s HSD test was applied for the imputation method

factor. The PMIVAE significantly outperformed all the remaining methods, showing p <

0.001 for all settings.

79



Chapter 5

5.2.2 Best Imputation Method per Dataset

Table 5.7 presentes an alternative analysis where the results are grouped by the amount of

datasets where each imputation method obtained the lowest MAE. We can conclude that

PMIVAE was the overall best method in 71% of the datasets, followed by the SoftImpute

method in 15% of them. When analyzing the results by missing rate, we see that PMIVAE

also presents the best results, with an exception for the 10% missing rate where the

SoftImpute surpassed it (the reasons behind this behavior are the same already presented

for the MAE results analysis). Moreover, we see clear improvements in the PMIVAE

results when the missing rates increase: for a 20% missing rate it is better in 56% of the

datasets, for the 40% and 60% rates it is better in 88% of them, and finally for a 80% rate

PMIVAE is better in 97% of the datasets.

Table 5.7: Percentage of datasets where each imputation method was the best. The data
is grouped by missing rate, with the overall results being presented in the last column.
The best results for each missing rate are bolded.

Imputation
Method

Missing Rate Overall
Balanced10% 20% 40% 60% 80%

DAE 0% 3% 3% 6% 3% 3%

VAE 0% 0% 0% 0% 0% 0%

kNN 9% 6% 0% 0% 0% 3%

Mean 0% 0% 0% 0% 0% 0%

MICE 18% 15% 6% 3% 0% 8%

PMIVAE 26% 56% 88% 88% 97% 71%

SoftImp 47% 21% 3% 3% 0% 15%

5.2.3 Sensitivity to Different Data Probability Distributions

Considering that our experimental setup addressed iteratively each feature of the 34

datasets, we decided to perform an analysis focused on the most suitable imputation

methods for each Probability Density Function (PDF) available in the data. The goal was

to understand if some imputation methods were more suitable for specific distributions.

We developed an automated approach to find the PDF of each feature in each dataset,

where the most well-known PDFs3 were iteratively fitted to the data, and the resulting

fitting error was calculated through the residual sum of squares between the distribution

and the histogram of the original data. The PDF with the lowest error for each feature

was chosen as the one that better describes it. Finally, we crossed this information with

the best imputation method for each feature, leading to the results available in Figure 5.3.

This heat-map presents the best imputation method for each PDF identified in the process

previously described. To ensure the results were trustworthy, only distributions followed

by at least 4 features were considered. The analysis was performed individually for each

3See https://docs.scipy.org for the list of PDFs considered.
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missing rate, and each cell contains the percentage of features that lead each method to

be the best.
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Figure 5.3: Heat-map of the best imputation methods for each PDF followed by, at least,
4 features of the 34 datasets. The results are displayed independently for each missing
rate (x-axis), and the color legend is displayed in the top-right corner. When 2 methods
are tied for the same PDF, a color gradient of both is used. The percentage of features
that lead a method to be the best is displayed in each cell.

The obtained results showed a clear dominance of the PMIVAE method in all PDFs when

the missing rate is 40% or higher. For the smaller missing rates (10% and 20%) the

variance between the best methods is high, which can be explained by a smaller impact

of the imputation procedure: the amount of values generated is not enough to have an

impact on the distribution. Nevertheless, for moderate and high missing rates, PMIVAE

shows stable results for all PDFs, therefore being a versatile method that can be applied

on data with different characteristics.
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5.3 Multivariate Experimental Results

Based on the encouraging results from the main experimental setup, we decided to extend

these experiments to encompass a multivariate missing data setting. Furthermore, we also

decided to compare the best method from the main experiments (PMIVAE) with two other

state-of-the-art generative deep learning-based models: the Missing Data Importance-

Weighted Autoencoder (MIWAE) [63] and the GAIN [126] methods. Both models were

parametrized according to the best hyperparameters reported by their authors. In this

multivariate scenario, the missing data generation follows the same MNAR pattern from

the main experiments, but is now applied to the entire dataset. Therefore, the missing

rate is global for the dataset, and several features are injected with missing values simul-

taneously. Such multivariate setting usually leads to increased imputation errors, and to

understand if the models present large deviations from the ground truth in specific features

we also calculated the Root Mean Squared Error (RMSE) metric. For the remaining as-

pects, these experiments followed the same configurations of the main experimental setup.

The obtained results are presented in Table 5.8. The PMIVAE method surpassed the

remaining two deep learning models in both MAE and RMSE metrics. PMIVAE was the

best method in 75% of the settings combining the five levels of missingness and the 34

datasets. Such results show that the PMIVAE scales well for multivariate scenarios, while

keeping the best imputation quality.

Table 5.8: MAE and RMSE results obtained for each deep-learning imputation method
and grouped by missing rate. The reported values are the averages and standard deviations
of all datasets. The best results for each missing rate are bolded.

Metric
Imputation

Method
Missing Rate

10% 20% 40% 60% 80%

MAE
GAIN 0.317± 0.11 0.329± 0.11 0.389± 0.14 0.627± 0.34 0.800± 0.48

MIWAE 0.409± 0.17 0.424± 0.18 0.492± 0.21 0.748± 0.42 0.959± 0.61
PMIVAE 0.285± 0.10 0.293± 0.11 0.354± 0.15 0.599± 0.36 0.800± 0.55

RMSE
GAIN 0.453± 0.12 0.473± 0.13 0.558± 0.16 0.993± 0.62 1.273± 0.81

MIWAE 0.560± 0.15 0.580± 0.17 0.673± 0.22 1.124± 0.67 1.472± 1.00
PMIVAE 0.424± 0.11 0.437± 0.13 0.523± 0.18 0.970± 0.64 1.312± 0.98

5.4 A Case Study on Heart Failure

Encouraged by the positive results obtained from the experiments of Sections 5.2 and 5.3,

we aimed to assess the impact of the imputation performed by the PMIVAE method in a

classification problem. We focused this new experiment in a heart failure dataset available

for medical research on the PhysioNet repository since late 2020 [34, 128]. This dataset

was constructed with electronic health data collected from 2008 patients admitted with

heart failure to a hospital in Sichuan, China, between December 2016 and June 2019.

It contained 167 features (125 continuous and 42 categorical) covering regular clinical
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characteristics (e.g., body temperature, pulse, respiration rate, systolic blood pressure,

diastolic blood pressure, mean arterial blood pressure, weight, height, body mass index,

type of heart failure, New York Heart Association cardiac function, Killip Grade and

Glasgow Coma Scale) and several features extracted from echocardiograms performed on

patients (e.g., left ventricular ejection fraction, left ventricular end diastolic diameter,

mitral valve peak E and A wave velocities, tricuspid valve regurgitation velocity, and

tricuspid valve regurgitation pressure). In a pre-processing stage, 3 features containing

unique and constant values were dropped, since they were irrelevant for the classification

task. A procedure to remove outliers from the continuous features was also applied, where

the values below and above 3 standard deviations from the mean were removed.

The considered classification target was a binary label indicating if the patient would be

readmitted to the hospital within 6 months after discharge. Heart failure is a frequent

reason for hospitalization of elderly people that leads to a high mortality [128]. Therefore,

having a decision support system that can help physicians know in advance what patients

are more likely to be readmitted allows a better management of patients and discharges

by the hospital systems.

Initially all the dataset instances contained missing values, with the missing rate range

varying from 1% to 97.9% in different features. Although there is no clear way of iden-

tifying the missing mechanism behind missing data, we performed a few statistical and

exploratory steps to find the more likely mechanisms. We started by applying the Little’s

test [53], which gave us a clear indication that the missing values were not under MCAR

assumptions. We then performed exploratory data analysis, where we took into account

meta-data from the features containing missing data and correlations with other features.

After aggregating all the information, we concluded that most missing features are likely

to be under MNAR assumptions.

In order to train the Autoencoder-based methods, a complete set of instances is required.

Since all instances of the dataset had missing values, pre-imputation was needed. As in

the previous experiments, the features’ mean was used for this purpose.

To understand the impact on different types of classification algorithms, the 4 classifiers

presented in Table 5.9 were considered in the study [11].

The remaining parameters used for the 4 classifiers are the recommended defaults by the

Scikit-learn library. The dataset was divided into training and test sets in a stratified

manner (70%-30% ratio), ensuring a balanced split between the label values in the two

sets. Before training the classifiers, the SMOTE [19] over-sampling method was applied to

solve the imbalance between labels on the training set (the global imbalance ratio between

readmitted and other patients was 63%). To evaluate the classification results the F1 Score

metric was considered. The same imputation methods used in the general experiments

from Section 5.2 were used here, as well as the same parametrization, with a single excep-
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Table 5.9: Classifiers used in the study and their configurations.

Classifier Configuration

Artificial Neural Network
(ANN)

The network had 2 hidden layers (with 100 and 50 nodes,
respectively), ReLU as the activation function, Adam as
the optimizer, 2000 epochs and 20% of the training samples
for validation.

k-Nearest Neighbors (kNN) k = 5 neighbors were considered.

Random Forest (RF) 100 trees were used.

Support Vector Machine
(SVM)

RBF kernel and γ = 1
N∗σ2 were used, being N the number

of features.

tion: given the higher dimensionality of this heart failure dataset, the Autoencoder-based

methods used two hidden layers (with 90 and 60 units), and a latent space with 30 units.

The maximum number of epochs was also extended to 2000.

The experiment was executed 30 independent times, with the dataset being shuffled in each

one. The obtained results, which are the mean of these 30 runs, are available in Table

5.10. This classification problem is very complex, leading in general to modest F1 Scores

Table 5.10: F1 Score results obtained for each imputation method applied to each classifier.
The reported values are the averages and standard deviations of 30 runs. The best results
for each classifier are bolded.

Imputation
Method

Classifiers’ F1 Score

ANN kNN RF SVM

DAE 0.538 ± 0.02 0.476 ± 0.03 0.531 ± 0.02 0.538 ± 0.02

VAE 0.517 ± 0.03 0.471 ± 0.03 0.531 ± 0.02 0.523 ± 0.03

kNN 0.529 ± 0.02 0.481 ± 0.02 0.530 ± 0.02 0.534 ± 0.03

Mean/Mode 0.528 ± 0.02 0.480 ± 0.03 0.517 ± 0.02 0.530 ± 0.02

MICE 0.532 ± 0.03 0.478 ± 0.02 0.529 ± 0.02 0.531 ± 0.02

PMIVAE 0.539 ± 0.03 0.481 ± 0.02 0.534 ± 0.02 0.535 ± 0.03

SoftImp 0.523 ± 0.03 0.473 ± 0.03 0.532 ± 0.02 0.523 ± 0.02

(peaking at 0.539 for the ANN). Although the variance of results between the different

imputation methods is small for all classifiers, we see improvements in 50% of them when

PMIVAE is used (ANN and RF). For the kNN classifier, the best result is shared between

the kNN imputation and PMIVAE. Only the SVM presented the best results with another

imputation method (DAE). Therefore, in conclusion, we see general improvements when

PMIVAE is used for the imputation task previous to the classification.
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5.5 Conclusions

In this work a new method to perform missing data imputation, called Partial Multi-

ple Imputation with Variational Autoencoders (PMIVAE), is introduced. PMIVAE is an

extension to vanilla VAEs, and it applies a partial MI strategy to reduce bias and un-

certainty in the new values generated. The method was compared with 8 state-of-the-art

imputation approaches, in a very complete experimental setup that considered 34 public

datasets from the medical context, missing data generation under MNAR assumptions

and 5 missing rates between 10% and 80%. The results showed that the PMIVAE was the

best overall method in 71% of datasets. Moreover, PMIVAE tends to perform better for

moderate and high missing rates, being only surpassed in the 10% rate by the SoftImpute

method. These results were validated with a statistical significance of 5%. The PMIVAE

also surpassed the MIWAE and GAIN methods in a multivariate setting, achieving the

best results for most missing rates and datasets. Furthermore, a case study of a classifica-

tion task with a heart failure dataset was also performed. The PMIVAE method provided

improvements in 50% of the considered classifiers.

In the future we want to address the limitation of only considering a single amputation

procedure by testing the PMIVAE method with other strategies to generate missing values

under MNAR assumptions. Furthermore, we want to extend PMIVAE by incorporating

information from other datasets of the same context, which would allow adjustments to

the distribution parameters of the VAE that could reduce bias in MNAR settings.
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Chapter 6

Siamese Autoencoder-based

Approach for Imputation

Several deep learning architectures have been explored to perform imputation assuming

the different mechanisms. The state-of-the-art architectures in this scope are generative

adversarial networks (GAN) [126], denoising autoencoders (DAE) [17, 118] and variational

autoencoders (VAE) [65, 80]. In this work, we explore the use of siamese networks [21] to

perform missing data imputation. We propose a new model called Siamese Autoencoder-

based Approach for Imputation (SAEI), which extends and adapts the vanilla siamese

network for the imputation task by adding a deep autoencoder architecture, a custom loss

function and a custom triplet mining strategy. We compared our SAEI model with a base-

line of seven state-of-the-art imputation methods in a experimental setup encompassing

14 datasets of the healthcare domain injected with MNAR values at different missingness

levels (10% to 60% missing rates). The achieved results proved that our SAEI model

significantly outperformed the remaining baseline methods in all experimented settings,

achieving an average improvement of 35%.

The remainder of the chapter is organized in the following way: Section 6.1 describes

with detail the proposed SAEI model; Section 6.2 presents the experimental setup used to

validate the effectiveness of our SAEI model, and analyzes the results obtained from the

experiments; and Section 6.3 presents our conclusions and the future work.

6.1 Proposed Approach

The Siamese Autoencoder-based Approach for Imputation (SAEI) is an extension of a

vanilla siamese network, and it is tailored for missing data imputation by comprising

three adaptations:
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• A deep autoencoder architecture that allows the network to reproduce the input

data at the output layer in an unsupervised fashion;

• A custom loss function that includes both the distance-based triplet loss and the

reconstruction error of the autoencoder component of the network;

• A custom triplet mining strategy that was designed specifically for the missing data

issue by creating hard triplets based on the existing missing values.

These three adaptations are independently described in the next subsections.

6.1.1 Deep Autoencoder Architecture

The architecture of our SAEI model is roughly inspired in the well-know ZFNet [127],

although it presents several changes motivated by it being aimed at tabular data. Figure

6.1 and Figure 6.2 depict graphical descriptions of the encoder and decoder networks,

respectively. The encoder network is composed of two one-dimensional convolutional layers

with 16 filters, ReLU as the activation function, and kernel sizes of five and three. Such

layers are followed by max-pooling layers with two strides, which are then followed by

two regularization layers that perform batch normalization and dropout at a rate of 25%.

Moreover, a residual connection is also used to skip the second convolutional layer. Finally,

the output from the last pooling layer is flattened and passed through a hyperbolic tangent

activation function, and the latent output is obtained from a final dense layer with 128

units and the latter activation function. The decoder network is symmetric to the encoder,

presenting the same architecture but in reserve order (without the residual connection).

To perform the deconvolution operation, the one-dimensional convolutional and the max

pooling layers are replaced by one-dimensional transposed convolutional layers with two

strides. The output dense layer uses the sigmoid activation function so that the data can

be normalized within [0, 1].
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Figure 6.1: SAEI encoder architecture. Is represents the input shape. The encoder net-
work is composed of two one-dimensional convolutional layers with 16 filters followed by
max-pooling layers with two strides. Regularization is performed through batch normal-
ization and dropout at a rate of 25%. A residual connection is also used two skip the
second convolutional layer. The latent output is obtained from a dense layer with 128
units.
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Figure 6.2: SAEI decoder architecture. Os represents the output shape. The decoder
network is symmetric to the encoder. Therefore, it has the same layers and regularization
but in reserve order. The residual connection is not applied by the decoder.

Convolutional layers operate based on the spatial positioning of the data. In other words,

the position where each value is placed is relevant for the feature extraction process.

Tabular data does not present this behavior because the features’ positions are irrelevant.

To surpass this limitation, the SAEI model feeds the input data to a dense layer with 1024

units and without activation function. The purpose of this layer is to learn an abstract

representation of the input data where the spatial relation between the new abstract

features is meaningful. Therefore, our SAEI model delegates the task of learning the

spatial structure of the features to the network. The first convolutional layer is then fed

with the output of the mentioned dense layer.

6.1.2 Custom Loss Function

One of the original loss functions proposed to train a siamese network was the triplet

loss. It tries to minimize the distance between an anchor and a positive sample which

represent the same concept, while maximizing the distance between that same anchor and

a negative sample of a different concept. The formulation is presented in Eq. 6.1, where

f(x) is a function of the embedding representation, N is the number of triples composed

by an anchor (xai ), a positive sample (xpi ) and a negative one (xni ) [101]. Furthermore, α

is a margin used to ensure a minimum distance between positive and negative samples.

TLi =
N∑
i

[
‖f(xai )− f(xpi )‖

2
2 − ‖f(xai )− f(xni )‖22 + α

]
(6.1)

Using the triplet loss function is ideal for a vanilla siamese network since the goal is for the

model to distinguish between positive and negative concepts in comparison to the anchor,

while outputting embedding representations that incorporate such differences. However,

our SAEI model relies on an autoencoder architecture that outputs a reconstruction of

the input data based on the anchor latent representation. Therefore, this reconstruction

component must also be reflected in the loss function of the model. Eq. 6.2 presents our

custom loss function, where the triplet loss (TLi) from Eq. 6.1 is added to the mean
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squared error between the anchor and positive sample, similarly to what would happen

in a denoising autoencoder (i.e., the anchor is the corrupted version of the ground truth

represented by the positive sample).

TLi +

N∑
i

(x̂ai − x
p
i )

2 (6.2)

6.1.3 Custom Triplet Mining

The triplet selection is a key step for successfully training a siamese network. To ensure

that the network is able to learn how to distinguish between the positive and negative

concepts, it is imperative to select triplets that the network is unable to differentiate

before being trained. These triplets are composed by the so-called hard positives and

hard negatives, which are samples that violate the constraint of the triplet loss, presented

in Eq. 6.3 [101]. If the network is trained with easy triples where the triplet loss constraint

is already satisfied before training, it would not gain the capacity of distinguishing between

positive and negative concepts.

‖f(xai )− f(xpi )‖
2
2 + α < ‖f(xai )− f(xni )‖22 (6.3)

When extending this type of network and its respective training procedure to address

missing data imputation, the definitions of anchor, negative and positive samples must

be redefined within the missing data scope. Our SAEI model proposes the following

definitions:

• Anchors are the samples containing missing values, which are pre-imputed with the

mean of the available values in each feature (or the mode in categorical features).

This pre-imputation step is required since neural networks are unable to be trained

with data containing missing values;

• Positives are the original samples without containing missing values (i.e., the ground

truth of the anchor samples). This implies that we must have a portion of com-

plete data to train the SAEI model, but such assumption is common to all deep

learning-based imputation methods. Furthermore, the anchor samples are created

by artificially generating missing values in the positive samples, according to a pre-

established missing data mechanism;

• Negatives are the same as anchor samples but with the missing values being replaced

by Gaussian noise sampled according to Eq. 6.4, where D represents the entire

dataset and λ represents the variance of the noise domain.

N
(

max(D)−min(D)

2
, λ

)
(6.4)
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The rational behind the mean value is to use the midpoint within the domain of the

data, therefore keeping the Gaussian noise centered on that domain. Such strategy

works specially well when the data is normalized within a specific range (e.g., [0, 1]).

Moreover, the λ parameter acts as a control variable to define how hard or easy

should the triplets be: a low λ value leads to Gaussian noise mostly or completely

contained within the data domain, therefore leading to harder triplets since the

negative sample is likely to be partially overlapped with the positive one; on the

other hand, a high λ value increases the noise domain and creates a negative sample

that is more dissimilar to the positive, therefore creating easier triplets where the

negative and positive samples are immediately distinguishable by the model. As a

consequence, this parameter should be defined aiming to generate hard triplets while

considering for the data domain.

6.2 Experimental Results

The quality of the imputation results achieved by the SAEI model was assessed by com-

paring it with a baseline of seven state-of-the-art imputation methods: kNN with k = 5,

Mean/Mode, MICE with 100 iterations, SoftImpute with 100 iterations, DAE, VAE and

GAIN. The DAE and VAE were defined according to the following architecture and hyper-

parameters: a hidden layer with half of the input dimension and ReLU as the activation

function (although VAE has two additional layers for the Gaussian distribution param-

eters), Adam as the optimizer with a learning rate of 0.001, Sigmoid as the activation

function of the output layer (forcing the data to be normalized within [0, 1]), batches of

64 samples, 200 training epochs, a dropout rate of 10% for regularization, Mean Squared

Error as the reconstruction loss, and early stop and learning rate reduction by 80% if the

validation loss does not improve over 100 epochs. The VAE loss function also includes

the Kullback–Leibler divergence for regularization. Furthermore, both DAE and VAE re-

quire pre-imputation, which is performed with the mean/mode of the features. The GAIN

method was used with the hyperparameters proposed by its authors. Our SAEI model

follows the architecture described in Section 6.1.1 while all the remaining hyperparameters

are the same used by the DAE and VAE. Moreover, the Gaussian noise of the negative

instances was sampled from N (0.5, 0.050.5), and the margin of the triplet loss function

was set to α = 0.2 as the original authors proposed. With the exception of GAIN, the de-

scribed hyperparameters of all methods were defined through a grid search process. This is

a standard procedure that aims to achieve hyperparameters that conform to common use

cases. Moreover, the DAE and VAE were implemented with the Keras library, the GAIN

implementation was obtained from its original authors1, and the remaining methods were

obtained and used from the Scikit-learn library. Our SAEI model was also coded with the

1https://github.com/jsyoon0823/GAIN
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Keras library and is available on GitHub2.

The experiments were conducted over 14 datasets of the healthcare domain which cover

different types of clinical data that was collected for several pathologies. We chose to cover

this medical domain since it often suffers from the missing data issue, particularly missing

values under the MNAR mechanism, which creates deep challenges to any subsequent

analysis or task performed with the data [74]. In this health context, each instance usually

represents a group of values collected for a patient, and each value belongs to a feature

that could be a measurement, an exam result, or any other medical input. The missing

values may appear at any feature and/or instance. All the 14 datasets are public and

available at the UC Irvine Machine Learning3 and Kaggle4 repositories, and they present

heterogeneous characteristics as seen in Table 6.1.

Table 6.1: Datasets characteristics.

Dataset # Instances
# Features

Categorical Continuous

diabetic-retinopathy 1151 4 16

ecoli 336 1 7

ctg-2c 2126 1 21

new-thyroid-N-vs-HH 215 1 5

kala-azar 68 2 5

immunotherapy 90 3 5

saheart 462 2 8

bc-coimbra 116 1 9

cleveland-0-vs-4 173 1 13

newthyroid-v1 185 1 5

biomed 194 1 5

cryotherapy 90 3 4

thyroid-3-vs-2 703 1 21

pima 768 1 8

The datasets were normalized within [0, 1] and split into train and test sets with 70% and

30% of the instances, respectively. The scaler learns the minimum and maximum values

from the train set and transforms both sets. This strategy ensures the test data is not

biased with information from the training data. However, in the presence of high missing

rates (usually above 50%), the test set may contain values unseen by the scaler, which

leads to the normalization boundaries being slightly extended from the expected [0, 1]

domain. Also, the autoencoder-based methods use 20% of the train set as the validation

set. Furthermore, the categorical nominal features were transformed through the one-hot

2https://github.com/ricardodcpereira/SAEI
3https://archive.ics.uci.edu/ml
4https://www.kaggle.com/datasets
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encoding procedure so that they can be supported by all imputation methods. Finally,

in order to be able to calculate the imputation error of the experimented methods, the

datasets must be complete and the test set must be injected with artificially generated

missing values so that we can compare the estimated values with the original ones (i.e.,

ground truth). We choose to generate MNAR values since it is the hardest mechanism to

address and the one more often found in real-world contexts such as healthcare [74, 80].

Our generation strategy is based on removing the smaller values of several features at once

(upon a certain missing rate) in a multivariate procedure. Therefore, the missing rate is

defined for the entire dataset and the imputation is performed on all features simultane-

ously. The obtained results were evaluated with the Mean Absolute Error (MAE) between

the estimates and the ground truth values. Regarding the missing rate, we considered four

levels of missingness: 10%, 20%, 40% and 60%.

To avoid the impact of stochastic behaviors in the results, the experiment was executed

30 independent times, with the train/test split being randomly performed in every run.

The MAE results of the experiment are the average of the 30 runs. Moreover, each

run was executed in a computer with the following specifications: Windows 11, CPU

AMD Ryzen 5600X, 16GB RAM, and GPU NVIDIA GeForce GTX 1060 6GB. The time

complexity of each imputation method was not measured, but all methods were computed

in a feasible amount of time. The imputation results obtained from the experimental setup

are displayed with detail in Table 6.2. The MAE results (average and standard deviation

of the 30 independent runs) are individually displayed for each dataset and missing rate.

Furthermore, the overall results for each imputation method and per missing rate (i.e.,

considering all datasets) are displayed in Figure 6.3.

In an overall analysis, our SAEI model clearly outperforms all the remaining imputation

methods, achieving smaller MAE values for every dataset and missing rate considered, as

seen in Table 6.2. In fact, the average improvement of the SAEI model in comparison to the

remaining baseline methods is 35%, peaking at the 20% missing rate with an improvement

of 42%. For the lower missing rate (10%) the improvement is 36%. For the higher missing

rates (40% and 60%), the improvement rates are 39% and 24%, respectively. Such results

show the consistency of our SAEI model with different levels of missingness and with data

presenting different characteristics.
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Table 6.2: Experimental results per dataset and missing rate (average ± standard deviation
of MAE). The best results are bolded and highlighted.

Dataset MR (%) kNN Mean/Mode MICE SoftImpute DAE VAE GAIN SAEI

diabetic-retinopathy

10 0.133 ± 0.02 0.194 ± 0.01 0.119 ± 0.02 0.165 ± 0.02 0.152 ± 0.01 0.178 ± 0.01 0.192 ± 0.02 0.109 ± 0.01
20 0.157 ± 0.02 0.213 ± 0.02 0.128 ± 0.02 0.185 ± 0.03 0.164 ± 0.02 0.175 ± 0.01 0.216 ± 0.03 0.100 ± 0.01
40 0.207 ± 0.03 0.252 ± 0.03 0.179 ± 0.03 0.236 ± 0.03 0.199 ± 0.02 0.163 ± 0.01 0.264 ± 0.04 0.131 ± 0.01
60 0.324 ± 0.05 0.358 ± 0.05 0.292 ± 0.05 0.354 ± 0.04 0.298 ± 0.05 0.242 ± 0.04 0.367 ± 0.06 0.231 ± 0.04

ecoli

10 0.213 ± 0.03 0.304 ± 0.04 0.229 ± 0.03 0.286 ± 0.04 0.265 ± 0.03 0.328 ± 0.03 0.337 ± 0.06 0.173 ± 0.03
20 0.224 ± 0.04 0.309 ± 0.04 0.236 ± 0.04 0.297 ± 0.04 0.257 ± 0.03 0.306 ± 0.03 0.327 ± 0.06 0.151 ± 0.03
40 0.363 ± 0.08 0.413 ± 0.07 0.363 ± 0.08 0.367 ± 0.05 0.347 ± 0.07 0.352 ± 0.05 0.456 ± 0.08 0.229 ± 0.06
60 0.750 ± 0.21 0.759 ± 0.20 0.730 ± 0.20 0.703 ± 0.18 0.674 ± 0.21 0.672 ± 0.20 0.800 ± 0.22 0.589 ± 0.20

ctg-2c

10 0.151 ± 0.02 0.288 ± 0.03 0.137 ± 0.02 0.155 ± 0.02 0.188 ± 0.02 0.255 ± 0.02 0.261 ± 0.02 0.121 ± 0.02
20 0.191 ± 0.02 0.296 ± 0.02 0.161 ± 0.01 0.167 ± 0.01 0.201 ± 0.02 0.227 ± 0.01 0.271 ± 0.02 0.116 ± 0.01
40 0.318 ± 0.03 0.362 ± 0.03 0.286 ± 0.04 0.233 ± 0.02 0.293 ± 0.04 0.205 ± 0.02 0.347 ± 0.03 0.191 ± 0.03
60 0.498 ± 0.05 0.526 ± 0.05 0.488 ± 0.05 0.399 ± 0.05 0.508 ± 0.11 0.356 ± 0.06 0.511 ± 0.06 0.354 ± 0.06

new-thyroid-N-vs-HH

10 0.264 ± 0.07 0.270 ± 0.05 0.266 ± 0.08 0.258 ± 0.05 0.272 ± 0.06 0.413 ± 0.04 0.361 ± 0.08 0.124 ± 0.04
20 0.273 ± 0.04 0.264 ± 0.04 0.256 ± 0.05 0.227 ± 0.04 0.238 ± 0.04 0.408 ± 0.04 0.369 ± 0.08 0.143 ± 0.03
40 0.269 ± 0.04 0.296 ± 0.04 0.269 ± 0.04 0.204 ± 0.03 0.247 ± 0.04 0.427 ± 0.04 0.392 ± 0.09 0.156 ± 0.03
60 0.355 ± 0.10 0.432 ± 0.09 0.391 ± 0.09 0.257 ± 0.07 0.374 ± 0.11 0.502 ± 0.07 0.532 ± 0.11 0.239 ± 0.12

kala-azar

10 0.317 ± 0.07 0.358 ± 0.07 0.288 ± 0.06 0.300 ± 0.07 0.356 ± 0.06 0.488 ± 0.09 0.398 ± 0.08 0.217 ± 0.06
20 0.409 ± 0.05 0.401 ± 0.05 0.369 ± 0.04 0.357 ± 0.05 0.404 ± 0.07 0.508 ± 0.05 0.455 ± 0.07 0.232 ± 0.05
40 0.468 ± 0.07 0.472 ± 0.07 0.468 ± 0.08 0.408 ± 0.04 0.441 ± 0.09 0.589 ± 0.07 0.540 ± 0.12 0.277 ± 0.05
60 0.951 ± 0.35 0.952 ± 0.35 0.953 ± 0.35 0.805 ± 0.31 0.908 ± 0.35 1.025 ± 0.34 0.983 ± 0.35 0.796 ± 0.36

immunotherapy

10 0.346 ± 0.08 0.384 ± 0.08 0.341 ± 0.09 0.362 ± 0.08 0.348 ± 0.08 0.433 ± 0.09 0.388 ± 0.09 0.285 ± 0.08
20 0.370 ± 0.07 0.372 ± 0.07 0.349 ± 0.07 0.384 ± 0.06 0.337 ± 0.06 0.447 ± 0.06 0.386 ± 0.07 0.268 ± 0.06
40 0.463 ± 0.08 0.463 ± 0.08 0.460 ± 0.09 0.469 ± 0.07 0.396 ± 0.08 0.524 ± 0.07 0.498 ± 0.08 0.345 ± 0.08
60 1.026 ± 0.38 1.028 ± 0.38 1.015 ± 0.36 0.958 ± 0.36 0.929 ± 0.36 1.084 ± 0.36 1.027 ± 0.38 0.871 ± 0.36

saheart

10 0.289 ± 0.03 0.367 ± 0.03 0.295 ± 0.03 0.245 ± 0.03 0.315 ± 0.03 0.344 ± 0.03 0.387 ± 0.05 0.231 ± 0.03
20 0.335 ± 0.04 0.389 ± 0.04 0.336 ± 0.03 0.268 ± 0.03 0.336 ± 0.04 0.332 ± 0.02 0.410 ± 0.05 0.216 ± 0.03
40 0.464 ± 0.07 0.486 ± 0.06 0.464 ± 0.07 0.366 ± 0.05 0.442 ± 0.07 0.361 ± 0.04 0.531 ± 0.07 0.296 ± 0.06
60 0.876 ± 0.28 0.884 ± 0.28 0.869 ± 0.28 0.732 ± 0.27 0.854 ± 0.29 0.729 ± 0.29 0.934 ± 0.29 0.677 ± 0.26

bc-coimbra

10 0.232 ± 0.04 0.300 ± 0.05 0.232 ± 0.04 0.209 ± 0.03 0.328 ± 0.04 0.464 ± 0.04 0.326 ± 0.06 0.177 ± 0.05
20 0.277 ± 0.03 0.317 ± 0.03 0.269 ± 0.03 0.226 ± 0.02 0.319 ± 0.06 0.482 ± 0.02 0.357 ± 0.05 0.175 ± 0.03
40 0.391 ± 0.06 0.411 ± 0.06 0.390 ± 0.07 0.293 ± 0.05 0.363 ± 0.08 0.559 ± 0.05 0.427 ± 0.08 0.221 ± 0.05
60 0.661 ± 0.15 0.691 ± 0.16 0.656 ± 0.14 0.499 ± 0.13 0.675 ± 0.14 0.799 ± 0.14 0.697 ± 0.17 0.459 ± 0.15

cleveland-0-vs-4

10 0.340 ± 0.04 0.381 ± 0.04 0.346 ± 0.04 0.273 ± 0.04 0.332 ± 0.04 0.406 ± 0.04 0.347 ± 0.05 0.255 ± 0.05
20 0.358 ± 0.04 0.401 ± 0.04 0.364 ± 0.03 0.280 ± 0.03 0.305 ± 0.03 0.399 ± 0.02 0.383 ± 0.04 0.224 ± 0.03
40 0.526 ± 0.08 0.550 ± 0.08 0.526 ± 0.08 0.412 ± 0.08 0.434 ± 0.11 0.499 ± 0.09 0.524 ± 0.09 0.303 ± 0.09
60 0.917 ± 0.17 0.931 ± 0.16 0.919 ± 0.17 0.761 ± 0.17 0.884 ± 0.18 0.922 ± 0.19 0.920 ± 0.17 0.733 ± 0.22

newthyroid-v1

10 0.250 ± 0.05 0.303 ± 0.05 0.249 ± 0.06 0.271 ± 0.06 0.295 ± 0.06 0.408 ± 0.04 0.368 ± 0.09 0.157 ± 0.04
20 0.268 ± 0.05 0.300 ± 0.04 0.257 ± 0.05 0.302 ± 0.05 0.254 ± 0.05 0.409 ± 0.05 0.396 ± 0.11 0.155 ± 0.03
40 0.299 ± 0.05 0.327 ± 0.05 0.311 ± 0.05 0.335 ± 0.05 0.240 ± 0.04 0.434 ± 0.04 0.449 ± 0.13 0.161 ± 0.03
60 0.444 ± 0.15 0.494 ± 0.15 0.468 ± 0.15 0.437 ± 0.10 0.351 ± 0.12 0.554 ± 0.12 0.571 ± 0.19 0.290 ± 0.12

biomed

10 0.210 ± 0.05 0.288 ± 0.04 0.208 ± 0.05 0.277 ± 0.07 0.232 ± 0.04 0.409 ± 0.04 0.379 ± 0.10 0.159 ± 0.03
20 0.228 ± 0.04 0.299 ± 0.03 0.211 ± 0.04 0.255 ± 0.04 0.217 ± 0.04 0.418 ± 0.03 0.381 ± 0.10 0.149 ± 0.02
40 0.283 ± 0.04 0.343 ± 0.04 0.261 ± 0.04 0.274 ± 0.04 0.257 ± 0.05 0.448 ± 0.04 0.424 ± 0.08 0.179 ± 0.03
60 0.474 ± 0.11 0.513 ± 0.11 0.448 ± 0.11 0.383 ± 0.10 0.399 ± 0.14 0.573 ± 0.12 0.572 ± 0.14 0.335 ± 0.14

cryotherapy

10 0.302 ± 0.08 0.371 ± 0.10 0.317 ± 0.09 0.295 ± 0.09 0.354 ± 0.10 0.453 ± 0.08 0.412 ± 0.11 0.267 ± 0.09
20 0.347 ± 0.09 0.415 ± 0.07 0.339 ± 0.08 0.361 ± 0.07 0.401 ± 0.07 0.465 ± 0.08 0.425 ± 0.10 0.284 ± 0.06
40 0.497 ± 0.10 0.521 ± 0.10 0.477 ± 0.10 0.455 ± 0.09 0.464 ± 0.09 0.573 ± 0.10 0.547 ± 0.11 0.390 ± 0.10
60 1.373 ± 1.05 1.396 ± 1.05 1.371 ± 1.05 1.252 ± 1.02 1.352 ± 1.07 1.419 ± 1.06 1.392 ± 1.06 1.218 ± 1.03

thyroid-3-vs-2

10 0.094 ± 0.01 0.099 ± 0.01 0.085 ± 0.01 0.059 ± 0.01 0.068 ± 0.01 0.095 ± 0.01 0.111 ± 0.03 0.045 ± 0.01
20 0.106 ± 0.02 0.109 ± 0.02 0.099 ± 0.02 0.062 ± 0.01 0.072 ± 0.02 0.092 ± 0.01 0.119 ± 0.03 0.041 ± 0.01
40 0.137 ± 0.02 0.135 ± 0.02 0.138 ± 0.02 0.069 ± 0.01 0.093 ± 0.02 0.086 ± 0.01 0.145 ± 0.03 0.051 ± 0.01
60 0.226 ± 0.04 0.224 ± 0.04 0.222 ± 0.04 0.112 ± 0.04 0.170 ± 0.06 0.119 ± 0.04 0.234 ± 0.05 0.110 ± 0.04

pima

10 0.266 ± 0.03 0.338 ± 0.03 0.273 ± 0.02 0.239 ± 0.02 0.297 ± 0.03 0.306 ± 0.03 0.384 ± 0.07 0.207 ± 0.03
20 0.275 ± 0.02 0.336 ± 0.03 0.279 ± 0.02 0.234 ± 0.02 0.290 ± 0.03 0.269 ± 0.02 0.368 ± 0.06 0.168 ± 0.02
40 0.360 ± 0.03 0.391 ± 0.04 0.354 ± 0.04 0.281 ± 0.03 0.341 ± 0.04 0.261 ± 0.03 0.452 ± 0.08 0.199 ± 0.03
60 0.569 ± 0.12 0.575 ± 0.12 0.558 ± 0.12 0.435 ± 0.10 0.526 ± 0.13 0.406 ± 0.09 0.628 ± 0.14 0.392 ± 0.13

In order to validate if the obtained results were statistically significant, we applied the

Three-Way ANOVA on ranks test with a significance level of 5%. We considered as factors

the dataset, the missing rate and the imputation method, while the MAE was set as the

dependent variable. The normality assumptions were not met, so the data was transformed

into rankings using the Ordered Quantile normalization [83]. Such assumptions were

also ensured for the data subgroups. The obtained p-values show that the results are

statistically significant for all factors, with p < 0.001. Additionally, to validate if our
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SAEI model outperformed the remaining methods with a statistical significance of 5%,

the post-hoc Tukey’s HSD test was applied to this factor. The obtained p-values show

that the SAEI model significantly outperformed all the baseline of imputation methods,

with p < 0.001 in all scenarios.
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Figure 6.3: Overall Mean Absolute Error of all imputation methods per missing rate. Our
SAEI model significantly outperforms the remaining methods in all settings.

6.3 Conclusions

In this work we propose a new model for missing data imputation called Siamese Autoencoder-

based Approach for Imputation (SAEI), which is an extension of the vanilla siamese net-

works adapted for this imputation task. The model incorporates three main adaptations:

a deep autoencoder architecture that is tailored for missing data reconstruction, a custom

loss function that encompasses both the triplet and reconstruction losses, and a triplet

mining strategy tailored for the missing data issue that is capable of generating hard

triplets that are meaningful for the training procedure. To the best of our knowledge, this

is the first time a siamese architecture is being used and adapted for missing data imputa-

tion. We compared our SAEI model with seven state-of-the-art imputation methods from

both statistical and machine learning backgrounds, in an experimental setup that used 14

datasets of the healthcare domain injected with MNAR values in a multivariate fashion

at 10%, 20%, 40% and 60% missing rates. Our SAEI model significantly outperformed
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all the baseline methods used for comparison in all the datasets and missing rates, with a

statistical significance of 5%, achieving an average improvement of 35%.

In the future we want to extend this work to test other missing data mechanisms, and we

want to explore automatic approaches to evolve our deep autoencoder architecture so it

can be even further optimized.
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Chapter 7

Imputation with Distributed Data

To improve the imputation for the MNAR mechanism other sources of information of the

same context can be used to help complete the missing values, since these sources may

contain the related unobserved data. Having this idea in mind, the following research

questions can arise:

• Could the error of the imputation methods used to estimate missing values under the

MNAR mechanism decrease if they use more information of the same data context?

• Could the performance of the classifiers trained by this imputed data improve their

precision and recall?

This work presents an experimental design that aims to answer these research questions.

The data processing steps and the experimental pipeline are described with detail. The

simulation results show that using other sources of information from the same context

reduces the imputation error. Moreover, the classification performance is not biased by

this imputation, and in fact improves with a statistical significance of 5%.

The remainder of the chapter is organized in the following way: Section 7.1 describes the

design of the experiment, Section 7.2 presents the obtained results and their discussion,

and Section 7.3 the conclusions and future directions of this work.

7.1 Experimental Design

An experimental design was proposed to prove the impact of using different sources of

the same data context in the imputation quality and classification performance. The

imputation evaluation is assessed through the Root Mean Square Error (RMSE) metric

and the classification evaluation through the F1 score. In the experiment the following

variables were considered:
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• Features Similarity Rate (FSRate), which indicates the percentage of equal features

that the datasets must have to be properly combined, and has the values 40%, 50%,

60% and 70%;

• Number of datasets (NumDatasets), which indicates how many datasets are being

combined, and the values can vary between 1 and 5 (for the imputation evaluation

the value 1 is discarded since no missing values exist, which leads to a constant

RMSE value of 0);

• Imputation algorithms (Algorithm), which are the methods that generate the plausi-

ble values to replace the missing ones, and the algorithms used are the Mean Imputa-

tion, Multivariate Imputation by Chained Equations (MICE), K-Nearest Neighbors

(KNN) Imputation, SoftImpute (SI) and Support Vector Regression (SVR).

Based on the presented variables, an experimental setup with the following pipeline of

tasks was proposed (see Figure 7.1):

• A given database with F features and O observations is divided in N smaller

datasets:

– The observations are randomly divided in equal parts for all datasets, which

means that each one will contain O
N rows;

– A percentage of the features is kept equal for all datasets (FSRate). These

FSRate∗F features are chosen randomly from the total. The remaining features

will only exist in one of the smaller datasets and are assigned sequentially and

circularly.

• Each smaller dataset is combined gradually with the remaining ones by being con-

catenated with each one through N − 1 iterations (e.g., for N = 4 the combinations

for the first smaller dataset would be {D1, D2}, {D1, D2, D3} and {D1, D2, D3, D4}
over three iterations). This entire process is repeated N times, one for each of the

datasets, and the final results are an average of these repetitions;

• Since all datasets have a set of features that are unique, the combination of two

datasets generates missing values under MNAR for those features on the resulting

dataset. Therefore, for each of the combinations described in the previous item,

the missing values are predicted using 5 imputation algorithms, being the quality

evaluated through the RMSE:

– Mean Imputation, that uses the mean of the features to fill in the missing

values;

– Multivariate Imputation by Chained Equations (MICE) with 100 iterations,

which uses a multiple imputation approach to create several regression models

for the missing features based on the complete ones [5];
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– K-Nearest Neighbors (KNN) Imputation with K = 1, which finds the near-

est neighbor through the Euclidean distance and uses its value of the missing

feature to fill in the observation [95];

– SoftImpute (SI), which is a matrix completion method based on nuclear-norm

regularization [37];

– Support Vector Regression (SVR), which is an adaptation of the well-known

Support Vector Machines that can be applied for regression instead of classifi-

cation, and it was configured with a RBF kernel and γ = 1
#Features [104].

• The imputed datasets by each of the described algorithms are also used to train a

classifier with the purpose of evaluating the impact of the imputation in the learning

capabilities of the model. In this experiment a Decision Tree was used since it is

widely applied in healthcare contexts for interpretability and explainability reasons.

The quality of the classification is evaluated through the F1 score using hold-out

validation (75% of the data for training and 25% for testing).

- Mean Imp. 
- MICE Imp. 
- KNN Imp. 
- SoftImpute 
- SVR Imp. 

All combinations with each dataset fixed
FSR = 50%

 
 

Decision Tree 
Classifier 

?
?
?

Figure 7.1: Pipeline of tasks for the experiment.

As stated before, merging the small datasets generates MNAR values because these miss-

ingness of a specific dataset is related with the information of the remaining ones. In other

words, the missing values are related with the unobserved data that is being merged, and

therefore are MNAR. The fusion approach here proposed is an attempt to mitigate the

MNAR assumptions by transforming the MNAR mechanism into MAR, since the unob-

served data will become observed after the fusion process. For that reason, the state-of-

the-art imputation algorithms should now provide better and less biased results. Moreover,

since the small datasets are generated from a complete one, the ground truth is available

for error and accuracy calculations.

To reduce bias and mitigate stochastic behaviors the described pipeline was executed 100

times, being the average of the 100 results considered for analysis purposes. The pipeline

was implemented through several Python scripts using the Pandas1 framework to process

the data and the scikit-learn2 and fancyimpute3 frameworks to assist the implementation

of the imputation methods and the classifier. The experiment was conducted using 15

1Available at https://pandas.pydata.org/
2Available at https://scikit-learn.org/stable/
3Available at https://github.com/iskandr/fancyimpute

101

https://pandas.pydata.org/
https://scikit-learn.org/stable/
https://github.com/iskandr/fancyimpute


Chapter 7

public databases of the medical context, available on the UCI4 and Kaggle5 repositories,

that cover a variety of pathologies: ctg 2c, bc coimbra, breast tissue 2c, cleveland 0 vs 4,

dermatology 6, ecoli, parkinson, pima, relax, spectf, thyroid 3 vs 2, transfusion, verte-

bral 2c, wisconsin and wpbc. These databases have a number of observations between 106

and 2126, and a number of features between 4 and 44.

7.2 Experimental Results

Starting the analysis by the imputation quality, the RMSE results obtained from the

experiment are presented in Table 7.1. These results show that the imputation error

increases a small amount when the number of combined datasets also increases, with the

best results being obtained when 2 datasets are combined. However, it is import to consider

that for each combined dataset, the amount of missing values increases according to the

number of new unique features. This means that the error increase is not proportional

to the growth in the missing values. Therefore, to proper analyze this error, the ratio

of RMSE per missing value must be considered. Table 7.2 presents this ratio for the

best RMSE results of each database, along with the average number of missing values

that is presented in Table 7.3 for each combination of datasets. These results show that

the lowest RMSE ratio is obtained when 5 datasets are combined. Moreover, this ratio

decreases when the number of combined datasets increases, which is a clear indication of

the improvements in the imputation achieved by using external information. Therefore,

it is possible to conclude that the use of more information of the same medical context

improves the imputation of missing values under MNAR.

Regarding the classification performance, the F1 score results for the Decision Tree clas-

sifier are presented in Table 7.4. For all the 15 databases, the best F1 score is obtained

almost always when the number of datasets combined is 5 (the maximum). Moreover, the

results also show that the classification performance increases gradually when the number

of combinations of datasets also increases. To ensure that these results were statistically

significant, the Friedman test was applied with a significance level of 5%. The treatment

variable used was the number of datasets and the block variable was the imputation al-

gorithm. This means that, although the p-values exist only for the number of datasets,

the effect of the imputation algorithm is taken into account and is not being neglected.

The inference was performed individually for each value of the feature similarity rate, and

the results are presented in Table 7.5. The p-values show that the number of datasets

combined have an impact on the F1 scores in 13 of the 15 databases.

To understand when the differences between the F1 score results obtained using a single

dataset and a combination of 2, 3, 4, and 5 datasets were statistically significant, the

4Available at https://archive.ics.uci.edu/ml/datasets.html
5Available at https://www.kaggle.com/
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Table 7.1: RMSE results for each combination of the number of datasets and imputation
algorithms, applied to all the 15 databases and averaged over the 4 values of the features
similarity rate. For each cell, the top value is the RMSE average and the bottom value the
standard deviation. The yellow cells are the best results for each combination of variables
and the bolded results are the best for the 15 databases.
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Table 7.2: Best RMSE result for each combination of the number of datasets divided
by the average number of missing values and applied to all the 15 databases. Each cell
presents the ratio of the RMSE by missing value. The bolded results are the best for the
15 databases.

Num. Datasets
Database

2 3 4 5

ctg 2c 0.00452 0.00162 0.00086 0.00055

bc coimbra 1.25788 0.52737 0.30747 0.21074

breast tissue 2c 45.83089 20.84623 13.18806 9.82743

cleveland 0 vs 4 0.13310 0.05112 0.02895 0.01893

dermatology 6 0.00377 0.00143 0.00078 0.00052

ecoli 0.00119 0.00038 0.00020 0.00014

parkinson 0.08946 0.03461 0.01956 0.01295

pima 0.10580 0.03786 0.02077 0.01454

relax 0.00287 0.00097 0.00050 0.00032

spectf 0.01721 0.00627 0.00324 0.00200

thyroid 3 vs 2 0.00027 0.00009 0.00005 0.00003

transfusion 0.63757 0.27261 0.17781 0.13361

vertebral 2c 0.15313 0.05406 0.03164 0.02353

wisconsin 0.00660 0.00227 0.00119 0.00078

wpbc 0.11311 0.04561 0.02640 0.01766

Table 7.3: Average number of missing values for each combination of the number of
datasets and applied to all the 15 databases.

Num. Datasets
Database

2 3 4 5

ctg 2c 1892 5611 10775 17009

bc coimbra 49 143 273 418

breast tissue 2c 44 131 250 382

cleveland 0 vs 4 101 298 559 867

dermatology 6 485 1417 2764 4512

ecoli 117 369 694 1009

parkinson 176 519 1012 1599

pima 276 858 1677 2459

relax 94 278 536 838

spectf 455 1366 2661 4327

thyroid 3 vs 2 625 1851 3553 5626

transfusion 217 642 1007 1348

vertebral 2c 99 310 549 744

wisconsin 286 845 1614 2460

wpbc 242 717 1410 2337

post hoc Nemenyi test was applied. Table 7.6 presents the results and they show that

in general the statistical significance only exists when the number of datasets combined

is 4 or 5, which reinforces the results previously described6. Therefore, it is possible to

6Although the Nemenyi test p-values are two-tailed, it is possible to ensure that these results always
reflect improvement in the F1 scores by cross-analyzing them with the ones from Table 7.4.
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conclude that the use of more information of the same medical context for the imputation

of missing values under MNAR has a positive impact on the performance of the Decision

Tree classifier. The use of more information could also be in part responsible for the

improvements, but the main conclusion here is that the imputation was well performed,

otherwise it would have a negative impact in the classification results.

Finally, an analysis of the results obtained from the imputation algorithms was also con-

ducted, since they have an impact on the study (the Friedman test was also used here).

Table 7.7 shows how many times each algorithm was the best. The results show different

but consistent values for the classification and imputation evaluation. For the imputation

the MICE algorithm clearly outperformed the remaining methods, but for the classifi-

cation the KNN presented the best results. A possible explanation for this difference is

that MICE creates several regressions based on all complete data, and therefore is able

to generate values that better represent the overall population and that are more close to

real ones. On the other hand, the KNN obtains the observation more similar to the one

that is being imputed, which means that the generated value is a copy of the other value,

and this benefits the classification because the dispersion of the observations reduces and

the classifier is able to define the “boundaries” between the labels more easily.

7.3 Conclusions

Missing data is a problem often found in real-world datasets and, although several works

have been published in this field, the MNAR mechanism is still the one less addressed and

with worst results. Considering the nature of MNAR, this work tries to prove if using

multiple sources of information from the same data context helps improving the imputa-

tion of MNAR missing values, using only medical databases. The results show that when

the number of datasets increases the RMSE values increase just a small amount, which

is a considerable improvement when the ratio of RMSE by missing value is considered.

Moreover, the results also show that the precision and recall of the Decision Tree classi-

fier increase and are not negatively biased by the imputation when more information is

added, particularly when at least 4 datasets are combined, and the results are statistically

significant with a significance level of 5%. Moreover, the use of the MICE algorithm for

the imputation benefits its error, while the KNN algorithm is the best for the classifica-

tion performance. In the future the study should be extended to include more databases

from different data contexts and more classifiers of different natures, in order to allow a

generalization of the results for these scenarios.
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Table 7.4: F1 score results for each combination of the number of datasets and imputation
algorithms, applied to all the 15 databases and averaged over the 4 values of the features
similarity rate. For each cell, the top value is the F1 score average and the bottom value
the standard deviation. The yellow cells are the best results for each combination of
variables and the bolded results are the best for the 15 databases.
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Imputation with Distributed Data

Table 7.5: P -values of the Friedman test for the F1 score, using the number of datasets
as the treatment variable and the imputation algorithm as the block variable, and ob-
tained individually for each feature similarity rate. The bolded p-values are the statistical
significant ones, assuming a significance level of 5%.

FSRate
Database

40% 50% 60% 70%

ctg 2c 0.001 0.000 0.000 0.000

bc coimbra 0.001 0.001 0.001 0.001

breast tissue 2c 0.001 0.001 0.001 0.000

cleveland 0 vs 4 0.000 0.001 0.000 0.001

dermatology 6 0.001 0.000 0.001 0.000

ecoli 0.000 0.000 0.000 0.000

parkinson 0.000 0.000 0.000 0.000

pima 0.193 0.023 0.291 0.161

relax 0.364 0.218 0.142 0.051

spectf 0.000 0.000 0.000 0.000

thyroid 3 vs 2 0.205 0.015 0.001 0.001

transfusion 0.039 0.003 0.015 0.013

vertebral 2c 0.000 0.002 0.001 0.002

wisconsin 0.092 0.001 0.001 0.000

wpbc 0.218 0.010 0.001 0.001

Table 7.6: Number of times where the difference between the F1 score for Num. Datasets
= 1 vs Num. Datasets = 2, 3, 4, 5 was statistical significant, according to the p-values of
the post hoc Nemenyi test and assuming a significance level of 5%. The frequencies are
presented individually for each value of the features similarity rate.

FSRate

ND 40% 50% 60% 70%

2 0 0 0 0

3 0 1 0 0

4 9 10 10 12

5 9 13 13 13

Table 7.7: Number of times that each imputation algorithm presented the best results for
each number of datasets. The frequencies are presented individually for the F1 score (left)
and the RMSE (right).

F1 Score RMSE

ND AL1 AL2 AL3 AL4 AL5 AL1 AL2 AL3 AL4 AL5

1 5 18 15 11 11 – – – – –

2 6 5 25 12 12 12 34 1 4 9

3 13 6 20 7 14 13 34 3 2 8

4 14 7 20 6 13 14 34 3 0 9

5 21 5 14 6 14 14 34 3 0 9

Sum 59 41 94 42 64 53 136 10 6 35

Algorithms Legend - AL1: Mean, AL2: MICE, AL3: KNN, AL4: SI, AL5: SVR
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Chapter 8

Automatic Delta-Adjustment

Method

In general terms, the imputation approaches tend to only be suitable for the MCAR and

MAR mechanisms. Since the models base their estimations on the available data, the

imputation tends to be biased when performed under MNAR assumptions because the

existent data is not enough to properly model its missingness causes [50]. Nevertheless,

there are a few approaches to reduce this bias, one being the delta-adjustment method

[88]. Assuming that the imputation is performed with a model designed for the MAR

mechanism, the missing values are likely to be either underestimated or overestimated.

In other words, they are probably shifted towards a lower or higher domain. The delta-

adjustment method provides a simple and transparent solution to correct this shift: add or

multiply the imputed values by a correction factor. However, this factor must be manually

defined by domain experts, which makes the delta-adjustment method often unfeasible to

be applied considering the complexity and cost of consulting these experts. Moreover,

the lack of scientific rigor in this process may also compromise the generalization of the

results.

In this work we introduce an automatic procedure to estimate the approximate delta ad-

justment values for every feature of the dataset, which we call Automatic Delta-Adjustment

Method (ADAM). The procedure explores the distance between the biased imputation and

other estimations that are sampled from Gaussian distributions with extreme means that

stretch the range of considered values. We conducted an experimental setup with seven

state-of-the-art imputation methods, comprising 10 datasets of the healthcare domain that

were injected with missing values under MNAR. We compared the results of the impu-

tation with and without the adjustments provided by ADAM trough the Mean Absolute

Error (MAE), and validated the results trough the Wilcoxon signed-rank test with a sig-

nificance level of 5%. The use of ADAM’s adjustment provided significant improvements

for all imputation methods and missing rates.
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Chapter 8

The remainder of the chapter is organized in the following way: Section 8.1 describes in

detail the proposed ADAM method; Section 8.2 presents the design of the experimental

setup and displays the analysis of the obtained results; and Section 8.3 states the final

conclusions and future directions.

8.1 Proposed Approach

In this work an automatic procedure that is capable of estimating approximate delta

adjustment values is proposed. Considering the MNAR characteristics, it is impossible

to find an optimal delta value since it would depend on the missing values themselves.

Therefore, we rely on statistics to find an approximate value that will bring the estimates

made under MAR assumptions valid under MNAR. We called our approach Automatic

Delta-Adjustment Method (ADAM).

ADAM’s goal is to find a factor comprised within [0, 1] for each feature of the dataset. This

factor will be multiplied by the imputed values in order to adjust them. The proposed

procedure to estimate the factor for a specific feature Xi is presented in Algorithm 3. The

procedure assumes that the missing values correspond to the smaller values of the feature

(the opposite scenario is addressed later), and comprises these main steps:

1. The mean of the available values within the first quartile is calculated (µQ1). This

value is representative of the lower tail of the feature, and it is used instead of the

minimum because it better represents the group of smaller values and it is resilient

to extreme factors. Additionally, the standard deviation of all the available values

in the feature is also calculated (σall);

2. The missing values are imputed three independent times by sampling from a Gaus-

sian distribution where the standard deviation is one and the mean varies µQ1 minus

σall according to the empirical rule: µQ1 − σall, µQ1 − 2σall, and µQ1 − 3σall. Such

variation is used to define a reasonable range for the missing values, since the im-

puted values with MAR models are likely to be shifted towards a higher domain.

Moreover, when later calculating the adjustment factor, these three imputations

are weighted so that the more extreme values (i.e., further away from µQ1) have a

decreased impact on the calculation.

3. The Principal Component Analysis (PCA)1 method is used to condense the data

from the features into a single representative numeric value. This transformation is

applied individually to the dataset imputed with the MAR model and the datasets

imputed in the previous step, which leads to four different scalars by feature. To

achieve these results the datasets must be transposed before the transformation since

1PCA is a feature extraction technique often used for dimensionality reduction. It computes the prin-
cipal components of the data and returns the first n, which is a user-defined parameter [1].
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we are condensing the data from the features and not the features themselves. The

obtained values for each feature are then used to estimate how far away are the

imputations from the previous step when compared to the original imputation with

the MAR model. For this purpose, we calculate the euclidean distance between

the value representing the imputation with the MAR model and each one of the

remaining scalars;

4. To calculate the factor, the distances from the previous step are normalized so that

their sum is equal to one (which is necessary to achieve a factor within [0, 1]), and

a weighted mean is calculated so that the imputations performed according to the

empirical rule have an impact in the factor proportional to their means.

Algorithm 3 Pseudocode for the ADAM procedure. The missing values are on the lower
tail of the feature Xi. The algorithm receives as input the feature data containing missing
values (Xi missing) and already imputed (Xi imputed), and it returns the adjusted data
for the feature (Xi adjusted).

Input: Xi missing, Xi imputed
Output: Xi adjusted

1: µQ1 = mean(Q1 values from Xi missing)
2: σall = standard deviation(Xi missing)
3: for each j in {1, 2, 3} do
4: gaussian imputedj = missing data ∼ N (µQ1 − j ∗ σall, 1)
5: end for
6: scalar0 = PCA (1 comp.) applied to Xi imputed
7: for each j in {1, 2, 3} do
8: scalarj = PCA (1 comp.) applied to gaussian imputedj
9: distj = euclidean distance(scalar0, scalarj)

10: end for
11: Normalize distj , ∀j ∈ {1, 2, 3} so that

∑3
1 distj = 1

12: factori = ( 3dist3 + 2dist2 + dist1 ) / 6
13: Xi adjusted = Xi imputed− factori ∗Xi imputed
14: return Xi adjusted

After performing the previous step, we have an independent factor (factori) within [0, 1]

for each feature (Xi) of the dataset. To adjust the values imputed with the MAR model,

the following equation is applied to each of the D features:

Xi = Xi − factori ∗Xi,∀i ∈ {1, ..., D} (8.1)

As previously stated, the described procedure assumes that the missing values are the

smaller values of the feature. However, the opposite scenario where the missing data

corresponds to the larger values is also valid. To address this scenario, the procedure

suffers two specific changes:

• In step 1), the last quartile is instead calculated (µQ4) since it now represents the
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higher tail of the feature.

• In step 2), the mean is varied on the opposite direction (µQ4 + σall, µQ4 + 2σall, and

µQ4 + 3σall), since the imputed values with MAR models are now shifted towards a

lower domain.

Finally, the adjustment operation also changes since the imputed values are now being

shifted upwards:

Xi = Xi + factori ∗Xi, ∀i ∈ {1, ..., D} (8.2)

The identification of the feature’s missing tail (i.e., if the missing values correspond to the

smaller or larger values of the feature) should be made manually through exploratory data

analysis or even by using domain knowledge.

8.2 Experimental Results

To evaluate if ADAM is effective in adjusting the imputed values, an experiment was con-

ducted to compare the imputation results before and after applying it. The experimental

setup comprised the following seven state-of-the-art imputation methods:

• Mean imputation, where the mean of the available values of each feature are used

to impute;

• Multiple Imputation by Chained Equations (MICE), which is a multiple imputation-

based approach where several Bayesian ridge regressions are fitted in a round-robin

procedure with 100 iterations. Each regression defines as the dependent variable one

of the features containing missing values, and uses the remaining as the independent

variables [15];

• k-Nearest Neighbors (kNN) imputation with k = 5, which selects the k nearest neigh-

bors of the instance being imputed by calculating the Euclidean distance between

the available values, and uses the mean of these k neighbors to impute the features

with missing data [95];

• SoftImpute, which is a matrix completion iterative method based on nuclear-norm

regularization, that estimates the missing values through soft-threshold singular

value decomposition [64]. A maximum of 100 iterations was considered;

• Denoising Autoencoder (DAE), which is an autoencoder trained with data containing

additional noise, which in this context is the existence of missing values. Inciden-

tally, an autoencoder is a special type of neural network that tries to reproduce the

input data at the output layer, usually by learning a compressed representation of

112



Automatic Delta-Adjustment Method

that data [79, 118]. The architecture of the networks was defined with the follow-

ing hyperparameters: a single hidden layer with a number units equal to half of

the input dimension; ReLU as the activation function; batches of 64 instances; a

maximum of 200 epochs; Adam as the optimization algorithm; Mean Squared Error

as the loss function; a learning rate of 0.001; a dropout layer with a rate of 25%

for regularization; early stop if the validation loss has no improvements over 100

epochs; a reduction of the learning rate by 80% if there are no improvements over

100 epochs; and Sigmoid as the activation function for the output layer, so that the

data is normalized within [0, 1];

• Variational Autoencoder (VAE), which is a generative variant of the autoenconder

that learns the multidimensional parameters of a Gaussian distribution (i.e., mean

and standard deviation), and by sampling from these is able to generate new data

with similar characteristics [65, 79, 80]. The architecture of the networks was de-

fined with the same hyperparameters as the DAE, adding the two layers needed to

represent the Gaussian parameters.

• Generative Adversarial Imputation Nets (GAIN), which is a direct application of the

well-known generative adversarial networks to the problem of missing data [126].

The generator network performs the imputation, while the discriminator tries to

distinguish between original and imputed data. The networks were parametrized

with the hyperparameters reported by the authors of the method.

The architecture and hyperparameters used for the seven imputation methods were defined

through a grid search procedure. This is a common strategy that aims to obtain optimal

hyperparameters that conform to common use cases. Regarding the implementation of

these algorithms, the autoencoders were implemented with the Keras library, the SoftIm-

pute was coded from scratch, the GAIN code was obtained from the original authors2,

and the remaining methods were directly used from the Scikit-learn library. Furthermore,

the implementation of ADAM is available on GitHub3.

The experiment considered 10 public datasets from the healthcare domain, covering clinical

research based on routinely collected data for different pathologies. This domain was

chosen since it frequently suffers from missing data under the MNAR mechanism [74].

All datasets are available at the UC Irvine repository4, and they cover different ranges of

instances and features, as Table 8.1 shows.

In order to have a controlled experiment, the datasets were all complete (i.e., without

missing data) and the missing values were artificially generated according to the MNAR

mechanism. The used strategy removed the smaller values [112] or larger values [124]

2https://github.com/jsyoon0823/GAIN
3https://github.com/ricardodcpereira/ADAM
4https://archive.ics.uci.edu/ml
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Table 8.1: Datasets used in the experimental setup.

Dataset # Instances
# Features

Continuous Categorical

wisconsin 569 31 0

ctg 2126 21 2

pima 768 9 0

liver 583 10 1

diabetic-retinopathy 1151 16 4

parkinsons 195 23 0

bc-coimbra 116 10 0

thoracic-surgery 470 14 3

spine 310 13 0

mammographic-masses 830 2 4

of the orderable features upon a certain missing rate (which excludes nominal categorical

features since they are non-orderable). Such strategy was applied in a multivariate fashion

where the missing rate is defined for the entire dataset and several features are injected

with missing values simultaneously [97]. Consequently, each feature has a different number

of missing values, which grouped together sum up to the desired global missing rate. The

imputation is performed for all features at once, and the results are assessed through the

Mean Absolute Error (MAE) calculated between the ground truth (i.e., original data) and

the imputed values.

All datasets were normalized within [0, 1] and split into train and test sets with 70% and

30% of the instances, respectively. The normalizer uses the minimum and maximum val-

ues from the train set and it is then applied to both sets. This strategy keeps the test data

isolated from the training data, preventing bias in the test set. However, when dealing

with high missing rates (usually above 50%), it is possible for the test set to contain unseen

values, which makes its normalization boundaries go slightly beyond the aimed [0, 1] do-

main. For the neural network-based methods, 20% of the train set was used for validation.

The non-orderable features (e.g., categorical nominal) were transformed through one-hot

encoding (i.e., dummy coding). The missing values were injected independently in each of

the described sets in order to ensure that all of them had equal missing rates and MNAR

assumptions. Five different missing rates were considered (5%, 10%, 20%, 40%, and 60%)

in order to cover different levels of missingness. For the neural network-based methods

the missing values were pre-imputed with the mean imputation.

To mitigate bias and stochastic behaviors the experiment was executed 30 independent

times, with the data being randomly split into the train and test sets in each run. The

results here presented are the mean of these 30 runs. Each run was executed in a computer

with the following specifications: Windows 11, CPU AMD Ryzen 5600X, 16GB RAM, and
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GPU NVIDIA GeForce GTX 1060 6GB. The time complexity of applying ADAM for each

of the imputation methods was not directly measured, but the impact was not significant.

The obtained results for the adjustment of imputed values provided by ADAM are pre-

sented in Tables 8.2 and 8.3. For Table 8.2 the left tail was missing (i.e., smaller values

of the features), and for Table 8.3 the right tail was removed (i.e., larger values of the

features).

In an overall analysis, all methods achieved smaller imputation errors after the imputed

values were adjusted through ADAM. This behavior is consistent for all missing rates and

for both MNAR strategies with the smaller and larger values being removed, with the

global error improvement being 11%. The enhancement also appears to be stable among

the different levels of missingness, peaking at 18% for the 5% missing rate, which shows

ADAM’s resilience to variations on this factor.

To understand if the obtained results were statistically significant we applied the Wilcoxon

signed-rank test with a significance level of 5%. This test was chosen because the normality

assumptions were not met, and we have paired MAE values for each imputation method

(before and after applying ADAM). The test was applied independently for each missing

rate, and the one-sided alternative was used since we were only interested in evaluating

if the MAE values after applying ADAM are significantly lower. The obtained p-values

showed that the results are statistically significant with p < 0.001 for all settings, which

corroborates the good performance obtained by ADAM.

8.3 Conclusions

In this work we proposed a procedure called Automatic Delta-Adjustment Method (ADAM)

to automatically estimate the delta-adjustment values. We compared the results obtained

by seven state-of-the-art imputation methods with and without the adjustments provided

by ADAM. The experimental setup comprised 10 datasets from the healthcare context that

were injected with missing values under MNAR in a multivariate fashion. We concluded

that the adjustment performed by ADAM led to error improvements in all imputations

methods and missing rates, achieving a global enhancement of 11%.

Motivated by the results achieved with ADAM, future work will be focused on integrating

it with an auxiliary procedure to automatically identify the features’ missing tails. A

possible direction is to model this task as a binary classification problem and use machine

learning to solve it. Furthermore, we want to incorporate information from other datasets

in the adjustments calculations, so that external data can be used to help reduce bias in

MNAR settings. Finally, we also want to compare ADAM results to imputed data that

was manually adjusted by domain experts.
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Table 8.2: MAE results of the imputation methods with and without the adjustment
provided by ADAM. The left tail of the features was missing (i.e., smaller values).

Imp. ADAM
Missing Rate

5% 10% 20% 40% 60%

AE
No 0.236 ± 0.09 0.238 ± 0.09 0.256 ± 0.10 0.322 ± 0.15 0.515 ± 0.34

Yes 0.192 ± 0.07 0.195 ± 0.06 0.212 ± 0.07 0.274 ± 0.12 0.464 ± 0.31

GAIN
No 0.254 ± 0.08 0.252 ± 0.08 0.266 ± 0.10 0.324 ± 0.15 0.519 ± 0.34

Yes 0.206 ± 0.06 0.208 ± 0.06 0.220 ± 0.07 0.277 ± 0.12 0.469 ± 0.31

MICE
No 0.184 ± 0.09 0.186 ± 0.09 0.204 ± 0.10 0.280 ± 0.14 0.475 ± 0.34

Yes 0.154 ± 0.07 0.157 ± 0.07 0.174 ± 0.07 0.245 ± 0.12 0.436 ± 0.31

Mean
No 0.269 ± 0.08 0.264 ± 0.08 0.278 ± 0.09 0.334 ± 0.14 0.523 ± 0.33

Yes 0.217 ± 0.05 0.216 ± 0.06 0.229 ± 0.07 0.284 ± 0.11 0.472 ± 0.30

SoftImp
No 0.178 ± 0.07 0.184 ± 0.07 0.197 ± 0.08 0.255 ± 0.11 0.429 ± 0.29

Yes 0.152 ± 0.06 0.160 ± 0.06 0.174 ± 0.06 0.233 ± 0.10 0.412 ± 0.28

VAE
No 0.285 ± 0.11 0.279 ± 0.10 0.294 ± 0.12 0.348 ± 0.16 0.533 ± 0.35

Yes 0.227 ± 0.07 0.224 ± 0.07 0.238 ± 0.08 0.292 ± 0.12 0.477 ± 0.32

kNN
No 0.185 ± 0.09 0.194 ± 0.09 0.219 ± 0.10 0.292 ± 0.14 0.487 ± 0.34

Yes 0.153 ± 0.07 0.162 ± 0.07 0.184 ± 0.07 0.254 ± 0.11 0.446 ± 0.31

Table 8.3: MAE results of the imputation methods with and without the adjustment
provided by ADAM. The right tail of the features was missing (i.e., larger values).

Imp. ADAM
Missing Rate

5% 10% 20% 40% 60%

AE
No 0.710 ± 0.27 0.847 ± 0.52 1.417 ± 1.91 2.770 ± 3.37 4.011 ± 4.81

Yes 0.610 ± 0.26 0.744 ± 0.51 1.306 ± 1.91 2.655 ± 3.36 3.894 ± 4.80

GAIN
No 0.725 ± 0.27 0.849 ± 0.52 1.410 ± 1.91 2.769 ± 3.37 4.036 ± 4.81

Yes 0.628 ± 0.26 0.747 ± 0.51 1.301 ± 1.91 2.654 ± 3.36 3.924 ± 4.80

MICE
No 0.579 ± 0.23 0.716 ± 0.47 1.291 ± 1.87 2.678 ± 3.35 3.943 ± 4.80

Yes 0.496 ± 0.22 0.624 ± 0.46 1.183 ± 1.85 2.557 ± 3.34 3.813 ± 4.79

Mean
No 0.774 ± 0.28 0.896 ± 0.53 1.448 ± 1.92 2.784 ± 3.36 4.019 ± 4.81

Yes 0.689 ± 0.27 0.804 ± 0.52 1.346 ± 1.91 2.671 ± 3.35 3.902 ± 4.80

SoftImp
No 0.676 ± 0.27 0.826 ± 0.51 1.422 ± 1.90 2.834 ± 3.39 4.187 ± 4.84

Yes 0.579 ± 0.26 0.727 ± 0.50 1.319 ± 1.90 2.738 ± 3.38 4.119 ± 4.84

VAE
No 0.758 ± 0.29 0.884 ± 0.54 1.441 ± 1.92 2.781 ± 3.37 4.018 ± 4.81

Yes 0.671 ± 0.28 0.790 ± 0.53 1.338 ± 1.92 2.669 ± 3.36 3.903 ± 4.80

kNN
No 0.618 ± 0.24 0.761 ± 0.49 1.342 ± 1.89 2.722 ± 3.36 3.976 ± 4.81

Yes 0.509 ± 0.23 0.650 ± 0.48 1.224 ± 1.88 2.600 ± 3.35 3.852 ± 4.80
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Artificial Generation of Missing

Data

To achieve the best imputation results possible, it is vital to select the imputation method

more suitable for the data characteristics and domain. To make such decision an experi-

mental study is often required where several methods are used to generate the estimated

values that will replace the missing data. The selection is then performed through the

imputation error, which is calculated between the estimates and the ground truth (i.e.,

the original values) for each method [77]. However, to calculate this error the dataset

must be complete (i.e., it can not have missing values) since the ground truth values are

required. Therefore, the complete dataset must be injected with missing data under a

specific mechanism through a process of artificial generation of missing values. Such pro-

cess must accurately mimic the chosen mechanism, otherwise the obtained results will be

biased. This is easy to achieve with the MCAR and MAR mechanisms, but for MNAR the

existing approaches to generate the missing values are rather limited - they are mostly ap-

plicable to continuous features, mimicking scenarios where the missingness of values only

depends on themselves [97]. Such limitations become a major issue when considering that

MNAR is the mechanism more often found in several critical contexts, such as healthcare

[74]. In this work, we tackle and overcome these limitations by introducing four novel ar-

tificial generation strategies for MNAR, which mimic real-world scenarios that follow the

assumptions behind this type of mechanism. Overall, the proposed strategies can be used

with continuous and categorical features (including nominal ones), and are able to gener-

ate missing values related to themselves and to unavailable/unobserved data. This is the

first time that artificial generation strategies for MNAR with such realistic characteristics

have been proposed.

Furthermore, a benchmark study is also conducted to compare the imputation error ob-

tained by a comprehensive baseline of six state-of-the-art imputation methods. The main

goal is to evaluate how these methods perform when dealing with the different MNAR
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characteristics introduced by the proposed generation strategies. The conclusions ob-

tained from this benchmark study can also help to understand which imputation methods

may be more suitable for the different MNAR settings, leading to a set of guidelines that

can be used by other researches and practitioners.

The experimental setup uses 10 public datasets from the medical context, which was

chosen because it suffers frequently from missing data under MNAR assumptions, making

it an ideal test bed for a study such as this one [74]. Furthermore, since all datasets are

public, the study can be easily replicated. The setup considers five levels of missingness

(10%, 20%, 40%, 60%, and 80%) and the results are evaluated individually for continuous,

categorical, and mixed data types, using the mean absolute error (MAE) metric. A detailed

discussion is presented about the conclusions obtained with the experiment, containing a

set of guidelines as the take-home message.

The remainder of the chapter is organized in the following way: Section 9.1 introduces

the new artificial generation strategies to generate MNAR values; Section 9.2 describes

the experimental setup used in the benchmark study; Section 9.3 presents the obtained

experimental results; finally, Section 9.4 discusses the results and conclusions extracted

from them.

9.1 Proposed Strategies

Regarding the artificial generation of MNAR values, the existing approaches are rather

limited [97]. The most common approach is to remove the lowest values of a selected

feature up to a predefined missing rate [112]. Alternatively, the highest values of the

feature can be removed instead [124]. Since this approach is univariate (i.e., the missing

values are generated in a single feature), the feature most correlated with the class labels

is often chosen [112]. This strategy poses a major limitation: since it requires ordering

the feature to find its lowest or highest values, only continuous and ordinal data types

are supported, not nominal features. For multivariate scenarios, Garciarena et al. [32]

proposed an extension of the described univariate approach to work on several features,

called Missingness depending on its Value Itself (MIV). The strategy is essentially the

same: the lowest values are removed, but now for several previously selected features.

The missingness rate is global for all features, being therefore divided by the selected

ones. The same authors also proposed another mechanism called Missing depending on

unobserved Variables (MuOv), where the generated missing values are related to a feature

not included in the dataset. The approach randomly selects N patterns to be missing up

to a certain rate (since the causative features are unknown), and the values from these

patterns are removed. Twala et al. [112] used the same approach, but the features are

aggregated in pairs or triplets and only one feature from each set is injected with missing

values. Ali et al. [3] proposed a different multivariate strategy where each feature is split
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into two groups: one with all values no larger than the feature’s median, and another with

the remaining values. One of the groups is then randomly chosen to have values removed

in an amount equal to twice the missing rate, therefore respecting the quotas needed to

achieve the global missing rate defined for the dataset. Zhu et al. [130] and Pan et al. [73]

followed the same strategy for continuous and ordinal features, but extended it to nominal

data by dividing the categories into two equally-sized groups. Since these approaches work

only with half of the observations (considering the split in two groups), the global missing

rate is limited to 50%.

In conclusion, the existing artificial generation strategies for MNAR are rather limited

and do not cover realistic settings for this mechanism. Therefore, four new strategies are

introduced in this work: three are entirely novel (Sections 9.1.2, 9.1.3 and 9.1.4), and the

remaining one comprises several new variants of a common strategy (Section 9.1.1).

9.1.1 Missingness Based on Own Values

The Missingness Based on Own Values (MBOV) is the most common strategy to generate

missing values under the MNAR mechanism. It makes the assumption that the missingness

at a value depends on itself. Therefore, the lower values of a selected feature are removed

upon a certain missing rate [112]. Alternatively, the higher values can be chosen instead

[124]. For reasons previously stated, MBOV can not be applied to nominal features.

Besides considering the default behavior of this strategy, two variants are introduced in this

work to better mimic real-world scenarios. A first variant adds a stochastic component

to the generation, which is controlled by a scalar p that represents the fraction of the

missing values to be randomly chosen, therefore following the MCAR mechanism. The

remaining missing values are generated under MNAR assumptions, with the lower values

being removed. The key idea is to add a certain amount of randomness to an otherwise

deterministic MNAR mechanism. The scalar p controls the level of randomness: for

p = 1, the generation is entirely random, which means the missing values would all be

under the MCAR mechanism; on the other hand, for p = 0, the generation would follow

the default deterministic MNAR behavior. Therefore, to keep most of the missing values

under MNAR assumptions, this value should satisfy 0 < p < 0.5. The second variant is an

alternative to the default behavior where the values of a selected feature closest to middle

are removed instead of the lowest or highest values. The goal is to simulate a scenario

where extreme values are more often reported, while the more common values (i.e., closer

to the mean/median) are more easily kept out. As an example, in an healthcare context,

physicians tend to report values considered to be out of the expected domain, but often

disregard values within the normal range. An example of these variants is available in

Figure 9.1.
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𝑥1 𝑥2 ... 𝑥p 𝑥2' 𝑥2'' 𝑥2'''

Figure 9.1: Example of the MBOV variants with a 40% missing rate. Gray instances of
x2 are missing values based on lower-values removal with p = 0 (x′2) and p = 0.25 (x′′2)
values under MCAR, and middlemost-values removal (x′′′2 ). The magnitude of x2 values
is represented by a gradient of the blue color.

9.1.2 Missingness Based on Unobserved Values

The Missingness Based on Unobserved Values (MBUV) is based on a common MAR

generation strategy, where the missing values are related with an observed feature of the

dataset. To transpose this strategy for a MNAR context, this relation must be established

with an unobserved feature (i.e., a feature not available in the dataset). Therefore, a

new random continuous feature is generated, following a normal distribution, and its

extreme instances (i.e., those with the lowest and highest values) are set to have missing

values on a selected feature from the dataset. The approach is similar to the Missing

depending on unobserved Variables (MuOv) from [32], with two main differences: MuOv

provides multivariate generation by performing the described logic for several features,

while MBUV is univariate (although it can be extended for multivariate scenarios easily,

as seen in Section 9.1.4); and MuOv has a random process to choose the instances injected

with the missing values, while MBUV divides the desired missing rate in half and selects

the edge instances upon this threshold. This strategy is applicable to any data type

(including nominal features), since it only requires the unobserved feature to be ordered.

An example of this strategy is available in Figure 9.2.

9.1.3 Missingness Based on Intra-Relation

The Missingness Based on Intra-Relation (MBIR) is a novel strategy that tries to identify

a likely MAR relation and transform it to MNAR. The approach relies on two features

of the dataset: the one that will have the missing values (fmiss) and another one used

to establish the MAR relation (fobs). The fmiss feature is selected a priori and can

be of any type, but the fobs feature is selected in an iterative process. The instances

containing the lowest values of each continuous and ordinal feature in the dataset (with

the exception of fmiss) are set to be missing for the fmiss feature, upon a certain missing

rate. An auxiliary missing indicator feature (find) is created for fmiss, being set to 1
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𝑥1 𝑥2 𝑥3 ... 𝑥p 𝒩(0,1)

Figure 9.2: Example of the MBUV strategy with a 40% missing rate. Gray instances of
x3 are missing values, which are based on the edge values of the new random continuous
feature (rightmost one). The magnitude of its values is represented by a gradient of the
blue color.

for the instances where the values are missing, and set to 0 for the remaining ones. The

differences between the values of fobs for both groups (find = 1 and find = 0) are

then assessed through statistical tests, and if, the differences are found to be significant,

the generated missingness is likely to be MAR. From all the iterations which meet the

previous criteria, the one with the most significant differences is chosen and the respective

fobs feature is deleted. As stated before, the goal is to transform a likely MAR scenario

into MNAR, which is achieved by deleting fobs since the relation found with an existent

feature of the dataset becomes a relation with an unobserved feature. Pseudo code of the

described MBIR procedure is presented in Algorithm 4.

Algorithm 4 Pseudocode for the MBIR procedure.

Input: dataset, fmiss, mr
Output: amputed dataset

1: for each fobs in continuous and ordinal features of dataset \ {fmiss} do
2: Find the instances instmr with the lower mr% values of fobs
3: Set the fmiss values to be missing on the instmr instances
4: Create the missing indicator find for fmiss (find = 1 when missing, find = 0

otherwise)
5: Find if the differences between fobs values for find = 1 and find = 0 are statistically

significant
6: if differences are statistically significant then
7: Save fobs to MARfobs
8: end if
9: end for

10: Select the fobs from MARfobs
associated with the iteration that presented the most

statistically significant differences
11: Create amputed dataset by applying lines 2 and 3 to the dataset
12: Delete the selected fobs feature from amputed dataset
13: return amputed dataset

The MBIR strategy relies on statistical tests to identify scenarios that are likely to be

MAR. To make that identification more resilient, two different statistical approaches are
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proposed here: a classic method, based on frequentist statistics, and a method based on

Bayesian statistics. Both approaches are intended for two-sample scenarios, and evaluate if

both samples are significantly different. For the frequentist approach, the Mann-Whitney

rank test [61] is used to evaluate if the fobs values for find = 1 and find = 0 are different

with a statistical significance level of α = 0.05. This test is non-parametric and does not

require a normality assumption, which is an advantage when comparing to the well-known

t-test. For the Bayesian approach, a Bayes factor computed for a two-sample design [68]

is used to evaluate the same two groups of fobs values. Following the significance scale

proposed in [49], Bayes factors ≥ 10 show, at least, strong evidence of differences between

the samples.

9.1.4 Missingness Based on Own and Unobserved Values

The Missingness Based on Own and Unobserved Values (MBOUV) is a combination of

the MBOV and MBUV approaches to perform multivariate generation of missing values.

The desired missingness rate is considered global for the entire dataset and is randomly

distributed by all its features, leading to different levels of missingness in those features.

Afterwards, the generation follows two rules: the MBUV is applied to all nominal features

and to half of the continuous ones, while the MBOV (with lower values removal) is applied

to the remaining half of the features. Both approaches are applied in an iterative way,

and the split of continuous features is performed randomly.

9.2 Benchmark Setup

To properly conduct the benchmark study, a comprehensive baseline of state-of-the-art im-

putation methods was chosen. These methods are briefly described in Table 9.1. Further-

more, the autoencoder-based methods (DAE and VAE) require the hyper-parameterization

of their neural network architectures, which are described in Table 9.2.

The experiment was conducted with 10 public medical datasets, which address different

domains of clinical research based on routinely collected data. As previously stated, this

type of data is ideal since it often suffers from missing data under MNAR [74]. All

these datasets are public and available at the UCI1 Machine Learning Repository. Their

diverse characteristics, both in terms of the number of instances and types of features, are

presented in Table 9.3.

The used datasets are complete (i.e., do not have missing data) and, during the experiment,

they are injected with missing values under MNAR mechanisms using the approaches de-

scribed in Section 9.1 (a process often called amputation). This approach was applied

1https://archive.ics.uci.edu/ml/datasets.php
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Table 9.1: Baseline of imputation methods used for the benchmark.

Method Description

Denoising Autoencoder (DAE)

An autoencoder is a neural network that learns a com-
pressed representation of the input data, aiming to output
a reconstruction of that same data [18]. A DAE is trained
with a corrupted version of the input data, which is created
by adding noise. In the missing data context, the “noise”
is assumed to be the removal of values [22, 118].

Variational Autoencoder (VAE)
Autoencoder trained to learn a Gaussian multivariate la-
tent representation of the input data, generating new val-
ues by sampling from this Gaussian. [44, 65].

k-Nearest Neighbors (kNN)
Imputation with k = 5

Finds the k nearest neighbors of the record with missing
values (using the Euclidean distance) and imputes with the
average values (for continuous features) or the most com-
mon ones (for categorical features) from the k neighbors
[95].

Mean/Mode Imputation
The mean (for continuous features) or the mode (for cate-
gorical features) is used to impute.

Multiple Imputation by Chained
Equations (MICE)

Fits iteratively several regression models through a mul-
tiple imputation strategy, assuming as the dependent fea-
tures the ones containing missing data [15].

SoftImpute

Matrix completion process, achieved through a nuclear-
norm regularization iterative approach, where the missing
data is imputed with estimated values obtained with a soft-
thresholded SVD [64].

Table 9.2: Architecture details of the autoencoder-based methods.

Aspect Configuration

DAE Structure Two hidden layers with 10 units and ReLU activation function.

VAE Structure

Two hidden layers with 10 units, plus the three layers needed for the
generative process: two “parallel” layers (mean and variance) with
10 units, connected to another one that samples new points from the
latent Gaussian distribution.

Optimization
Algorithm

Adam, with the MSE loss and a learning rate of 0.001.

Training
Procedure

Batches of 64 instances, for a maximum of 2000 epochs, early stop-
ping, and learning rate reduction of 80% when the validation loss
shows no improvements in 100 consecutive epochs.

Overfitting
Mitigation

Each hidden layer under L2 regularization with 0.01 weight.

Network
Initialization

Network weights are randomly sampled from a truncated normal dis-
tribution centered at zero.

Output
Sigmoid activation function, since the data is normalized to the range
[0, 1].

iteratively to each feature, excepted for the MBOUV since it provides multivariate am-

putation. The imputation results were assessed through the mean absolute error (MAE)

between the complete dataset (i.e., ground truth) and the imputed one. For nominal
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Table 9.3: Details of the medical datasets used in the study.

Dataset # Instances
# Features

Categorical Continuous

bc-coimbra 116 1 9

cleveland 303 7 7

cmc 1473 8 2

ctg 2126 2 23

pima 768 1 8

saheart 462 2 8

thyroid 7200 16 6

transfusion 748 1 4

vertebral 310 1 5

wisconsin 569 1 30

features, this metric is applied to the one-hot encoded vectors, and the results are then

transformed into error rates that are in the same scale of the continuous and ordinal fea-

tures. For aggregation purposes, the overall MAE of a dataset is calculated by averaging

the MAE of all its features. A high-level representation of this procedure is shown in

Figure 9.3.

tra
in

va
l.

te
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MNAR 
generation

imputation

MR = {10, 20, 40, 60, 80} %

evaluation

(mean of all features)

Mean Absolute Error

Figure 9.3: High-level representation of the benchmark setup.

All datasets were normalized to the interval [0, 1] and split into train (50%), validation

(20%) and test (30%) sets, which are used by the methods that require a training pro-

cedure. The data split was performed in a stratified manner to ensure equal missingness

rates and MNAR assumptions for all sets. The one-hot encoding procedure was applied

to the categorical features after the missing data injection. The benchmark study covered

five missing rates (10%, 20%, 40%, 60% and 80%), which allows a complete analysis of the

imputation results with different levels of missingness. The autoencoder-based methods
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require a pre-imputation of the missing values, which was performed with the mean/mode

of the features.

The experiment was independently executed 30 times. The datasets were shuffled in

each execution, and the final results are the average of these 30 runs. Furthermore, the

results are provided with 95% confidence intervals for significance evaluation: if in a

given experiment, two imputation methods have MAE results with overlapping confidence

intervals, the difference between those results is not considered statistically significant.

9.3 Experimental Results

In this section, we present and analyze the experimental results. To properly understand

the imputation patterns in different types of data, the analysis is first performed sepa-

rately for continuous and categorical features (Sections 9.3.1 and 9.3.2, respectively) and,

afterwards, for all features together (Section 9.3.3). The results obtained for each appli-

cable MNAR generation strategy are discussed individually in each of the Subsections,

while the general conclusions are discussed in Section 9.4. The results are presented us-

ing charts where the MAE values for each missingness rate are plotted for all imputation

approaches. The 95% confidence intervals of the results are displayed as translucent grey

areas behind the plotted points and lines. When these intervals overlap for different impu-

tation methods, the grey areas become more opaque, which means the differences between

the results of those methods are not statistically significant. For a more detailed view of

the experimental results, the raw data is attached in Section 9.5.

9.3.1 Continuous Features

The following subsections present the results for the MBOV, MBUV, and MBIR strategies

applied to continuous features.

9.3.1.1 Missingness Based on Own Values (MBOV)

Figure 9.4 shows the results for the MBOV approach with the lowest values being re-

moved. While the SoftImpute, followed by MICE, present the best results for lower rates

(minimum MAEs of 0.084 and 0.1, respectively), AE-based imputation, particularly the

VAE, performs better at higher rates (minimum MAE of 0.075), with the inflection point

around the 40% rate.

Figure 9.5 shows the MBOV’s results but with the highest values being removed. The

main conclusions regarding the best and worst imputation approaches are essentially the

same obtained for MBOV with lowest-value removal. The exception is the SoftImpute
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Figure 9.4: Results for MBOV with lowest values being removed, applied to continuous
features.

method, which achieved significantly worse results in this setting (only the mean impu-

tation presented worst results). Therefore, the MICE method obtained the best MAE

(0.152) for lower missingness rates, while AE-based imputation achieved again the best

results for the higher rates (minimum MAE of 0.087 for the VAE). The inflection point

appears to be around the 30% rate in this setting. There is also an inversion of the MAE

trend when the missing rate increases. For the MBOV with lowest-value removal, the

MAE tends to increase gradually with the missing rate, except for the Autoencoder meth-

ods where the opposite happens. For the MBOV with higher-value removal, the MAE

tends to decrease with the missing rate in all imputation methods. Although this change

of behavior is probably related to the features’ distribution, it is important to notice that

the autoencoder methods are both consistent in terms of results and behavior. In both

MBOV settings, the worst results were obtained by the mean imputation (maximum MAE

of 0.332).

Figure 9.6 presents the results for the MBOV approach when a quarter of the missing values

are randomly chosen (p = 0.25), therefore being under MCAR assumptions. Here, the

SoftImpute method is consistently the best (minimum MAE of 0.08), being only slightly

surpassed by the VAE for the 80% rate (MAE of 0.088). The worst results were again

obtained by the mean imputation (maximum MAE of 0.201). The pattern of results is

similar to the MBOV with lowest-value removal, but the 25% MCAR values lead to a

significant improvement of the SoftImpute results.

Figure 9.7 shows the results for the MBOV approach with the middlemost values being

removed. This is the MBOV setting where the pattern at the results is more different.

Up to the 40% missingness rate, the results do not present significant differences between
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Figure 9.5: Results for MBOV with highest values being removed, applied to continuous
features.
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Figure 9.6: Results for MBOV with partial random missingness, applied to continuous
features.

most imputation methods. The exception is the kNN imputation, which is consistently

the worst for all rates (maximum MAE of 0.132). Nevertheless, for the 10% and 20%

rates, the mean imputation shows the best results (minimum MAE of 0.038). Since the

values being removed are the middlemost ones, there is a good chance they will be close

to the features’ mean, which can justify these results. However, above the 40% rate, the

different imputation methods tend to produce results with more significant differences.

For the 40%, 60%, and 80% rates, VAE outperforms the remaining methods (minimum

MAE of 0.052).
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DAE VAE kNN Mean/Mode MICE SoftImp
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Figure 9.7: Results for MBOV with middlemost values removal, applied to continuous
features.

9.3.1.2 Missingness Based on Unobserved Values (MBUV)

Figure 9.8 presents the results for the MBUV missingness mechanism. In this setting all

imputation approaches present consistent MAE values for all rates, except the SoftImpute,

which tends to perform worse with higher rates. The best imputation was achieved by

the MICE method (minimum MAE of 0.062) and the worst by the mean imputation

(maximum MAE of 0.119).
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Figure 9.8: Results for MBUV applied to continuous features.
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9.3.1.3 Missingness Based on Intra-Relation (MBIR)

Regarding the MBIR generation, Figures 9.9 and 9.10 show the results for the frequentist

and Bayesian tests (see Subsection 9.1.3), respectively. The results obtained using both

tests are essentially the same, with small MAE differences that can be accounted by

the stochastic nature of some methods. The best and worst methods were respectively

the MICE (minimum MAE of 0.065) and mean imputation (maximum MAE of 0.161),

consistently throughout all missing rates. There is a slight increase in the MAE values

when the missing rate grows, except for the AE-based methods, where the behavior is

the opposite. Furthermore, the differences between the MAE values of the kNN and

SoftImpute methods are not significant since their confidence intervals overlap often.

DAE VAE kNN Mean/Mode MICE SoftImp

Continuous Features - MBIR (Frequentist)
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Figure 9.9: Results for MBIR with the frequentist test, applied to continuous features.

9.3.2 Categorical Features

The following subsections present the results for the MBUV and MBIR mechanisms ap-

plied to categorical features.

9.3.2.1 Missingness Based on Unobserved Values (MBUV)

Figure 9.11 presents the results for the MBUV approach. An immediately noticeable

aspect is the large confidence intervals displayed by all imputation methods, which leads

to an absence of significantly best and worst methods when considering the amount of

overlap. The clearest differences are between the mode imputation and the SoftImpute

methods, both appearing to be significantly worse than the remaining ones. Nevertheless,

mode imputation shows the worst MAE up to the 60% rate, being surpassed by SoftImpute
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Figure 9.10: Results for MBIR with the Bayesian test, applied to continuous features.

after that rate (maximum MAEs of 0.188 and 0.205, respectively). The best MAE values

are obtained with the MICE method, which is only slightly surpassed by the VAE after

the 60% rate (minimum MAEs of 0.125 and 0.134, respectively).
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Figure 9.11: Results for MBUV applied to categorical features.

9.3.2.2 Missingness Based on Intra-Relation (MBIR)

Figures 9.12 and 9.13 present the MBIR results for the frequentist and Bayesian tests,

respectively. Once again there are no significant differences between the MAE values

obtained with both statistical tests. Moreover, the exact same patterns of results found

for the MBUV mechanism are visible here: large confidence intervals that often overlap,
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although this overlap tends to fade away above the 60% rate; the mode imputation and

the SoftImpute methods still provide the worst MAE values, although the mode achieved

worse results in this setting (maximum MAE of 0.221); MICE is generally the best method

(minimum MAE of 0.111), although now it is surpassed by both AE-based methods beyond

the 60% missingness rate (minimum MAE of 0.131 for the VAE).
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Figure 9.12: Results for MBIR with the frequentist test, applied to categorical features.
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Figure 9.13: Results for MBIR with the Bayesian test, applied to categorical features.

9.3.3 Mixed Features

The following subsections present the results for the MBUV, MBIR, and MBOUV mech-

anisms applied to all features.
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9.3.3.1 Missingness Based on Unobserved Values (MBUV)

Figure 9.14 shows the results for MBUV. The conclusions are the same obtained for this

generation approach when only continuous features were considered: the MAE values are

consistent for all missing rates, with the single exception of SoftImpute that performs worse

with rates above 60%. The best imputation results were achieved by the MICE method

(minimum MAE of 0.076) and the worst by the mean/mode imputation (maximum MAE

of 0.131). In fact, when comparing with continuous features only, the MAE values in this

mixed features setting are shifted towards higher errors. This is a clear indicator that

the categorical features have a negative impact on the results, suggesting that all these

methods tend to perform better with continuous features.
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Figure 9.14: Results for MBUV applied to all (mixed) features.

9.3.3.2 Missingness Based on Intra-Relation (MBIR)

The MBIR results for the frequentist and Bayesian tests are, respectively, available on

Figures 9.15 and 9.16. Following the pattern found with the continuous and categorical

cases, there are no significant differences between both statistical tests. In fact, similarly

to what happened with the MBUV results, the conclusions found here for MBIR are

the same found when only the continuous features were considered: the best and worst

methods continue to be the MICE (minimum MAE of 0.076) and mean/mode imputation

(maximum MAE of 0.17) for all missing rates, expect for the 80% rate where the VAE

surpasses MICE (minimum MAE of 0.101). The kNN and SoftImpute methods continue

to not show significantly different results. Moreover, as previously found for the MBUV

mechanism, the MAE results are shifted towards worse values in this mixed setting when

comparing to the continuous features setting.
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Figure 9.15: Results for MBIR with the frequentist test, applied to all (mixed) features.
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Figure 9.16: Results for MBIR with the Bayesian test, applied to all (mixed) features.

9.3.3.3 Missingness Based on Own and Unobserved Values (MBOUV)

Figure 9.17 presents the results for the MBOUV mechanism. Up to the 40% rate, there

are no significant differences among the MAE values of the imputation methods, with the

exception of mean/mode imputation, which clearly yields worse results (maximum MAE

of 0.212). The MICE and kNN methods appear to provide slightly better results for the

10% and 20% rates, but the improvements are not significant (minimum MAEs of 0.113

and 0.114, respectively). However, for rates above 40%, there is a disparity between the

imputation methods, with the AEs gradually showing significant improvements relatively

to the remaining approaches (minimum MAE of 0.139 for the DAE). An interesting aspect

133



Chapter 9

is that for higher rates, MICE presents the worst results by a considerable margin (the

MAE value for the 80% rate was clipped). This behavior differs from previous experiments

where MICE presented consistently good results and small confidence intervals for the

univariate scenarios.
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Figure 9.17: Results for MBOUV applied to all (mixed) features.

9.4 Discussion and Future Directions

After compiling all the results previously analyzed, there are several main conclusions that

can be argued. To help this discussion, Table 9.4 presents a summary of the results by

showing the best imputation method for each missingness rate, MNAR mechanism and

data type. The methods marked with * presented statistically significant improvements

compared to all the remaining ones.

When the rate is low or medium (up to 60%), the best imputation is very often achieved

by the MICE method. However, for half of the MBOV settings, the SoftImpute method

showed superior results, although MICE immediately follows with very close errors. The

single exception is for MBOV with the middlemost values being removed, where the mean

imputation surpassed these methods. Nevertheless, the superior consistency of the MICE

results is undeniable with the low and medium levels of missingness. However, for larger

rates (above 60%), MICE loses accuracy and is often surpassed by the AE-based methods

(VAE and DAE), which are the best ones for these high levels of missingness with the

MBOV, MBOUV, and all categorical features settings. A plausible justification is that,

with lower missing rates, the amount of information available is still enough for methods

usually applied in MAR contexts (such as MICE and SoftImpute) to still achieve the best

results. In such settings, the MNAR assumptions are weaker, which leads to a lower level of
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Table 9.4: Best imputation method for each missing rate, MNAR generation and data
type. The methods which presented statistically significant improvements are marked
with an asterisk.

Data Type MNAR Generation
Missing Rate

10% 20% 40% 60% 80%

Continuous

MBOV (Lower) SoftImp∗ SoftImp∗ SoftImp∗ VAE∗ VAE∗

MBOV (Higher) MICE∗ MICE∗ VAE∗ VAE∗ VAE∗

MBOV (Stochastic) SoftImp SoftImp∗ SoftImp∗ SoftImp∗ VAE∗

MBOV (Centered) Mean/Mode∗ Mean/Mode VAE VAE∗ VAE∗

MBUV MICE∗ MICE∗ MICE∗ MICE∗ MICE∗

MBIR (Frequentist) MICE∗ MICE∗ MICE∗ MICE∗ MICE∗

MBIR (Bayesian) MICE∗ MICE∗ MICE∗ MICE∗ MICE∗

Categorical

MBUV MICE MICE MICE VAE VAE

MBIR (Frequentist) MICE MICE MICE VAE VAE

MBIR (Bayesian) MICE MICE MICE VAE VAE

Mixed

MBUV MICE∗ MICE∗ MICE∗ MICE∗ MICE∗

MBIR (Frequentist) MICE∗ MICE∗ MICE∗ MICE∗ VAE

MBIR (Bayesian) MICE∗ MICE∗ MICE∗ MICE∗ VAE

MBOUV (Multivariate) MICE KNN DAE DAE DAE

uncertainty while performing the imputation, since this process is eased by the available

information. This is visible in the MBOV setting with a stochastic component, where

25% of the missing values are under MCAR (which weakens the MNAR assumptions)

and the results for SoftImpute and MICE improve in all missing rates. Furthermore, the

multiple imputation strategy followed by the MICE method helps to deal with the more

noticeable uncertainty in the medium levels of missingness, which is another justification

for its superiority.

For higher rates, the AE-based methods show higher resilience to noisy (i.e., corrupted)

data and more generalization capabilities, which leads to better results. For example, in

several MNAR scenarios applied to continuous data, their results tend to improve when

the missing rate increases. This is a clear indicator of how well AEs deal with corrupted

data, to the point where they improve their results with more noise mostly because it leads

to less overfitting and improved generalization [120]. Besides, AEs can also capture more

complex patterns since they rely on non-linear activation functions, while methods such

as MICE use linear models. This is particularly relevant with high missing rates since the

mechanism describing the missing values is expected to be more complex and uncertain.

Moreover, AEs do not assume that the data follow a specific distribution, which is also

helpful since the MNAR mechanism introduces deviations in the data distributions, and
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these deviations tend to increase when the missing rates are high. However, AEs also

present a major limitation: they need to be trained with complete data in order to be

applied to incomplete data. In a real-world scenario, this may be impossible to satisfy,

since the datasets may not contain enough complete data to properly train the network.

In this case, using AEs becomes unfeasible.

Analyzing the significance of the differences between imputation methods, while the re-

sults for the continuous features present low variance and are significantly different, the

opposite behavior is found for categorical features: the confidence intervals are large for

all imputation methods and consistently overlap. This pattern of results, associated with

higher MAE values, show that all the imputation methods are more suitable for continuous

features and most provide similar and lower imputation quality for the categorical ones.

Regarding the consistency of the results throughout different missingness rates, there is a

general tendency where the imputation methods gradually perform worse when the level

of missingness increases. This is an expected behavior since higher missing rates lead to

more uncertainty in the imputation process. However, as previously explained, the AE-

based methods show the opposite trend for most scenarios with continuous features, which

makes them a natural candidate for these high levels of missingness.

Finally, the approaches here proposed for artificial generation of MNAR provide an am-

ple experimental setup that mimics different characteristics of this mechanism. Although

there is some consistency among the best and worst imputation approaches within dif-

ferent generation approaches, the results tend to be different both in terms of trend and

error magnitude. The single exception would be the use of frequentist and Bayesian tests

in the MBIR approach, since both lead to similar results. Apart from this exception, the

experimental results show the importance of properly simulating the missing data sce-

narios, with real-world-based and diverse strategies, in order to obtain meaningful and

trustworthy results.

In conclusion, these benchmark results can be summarized in the following guidelines:

• For low and medium levels of missingness in univariate settings, the MICE and

SoftImpute methods should be the go-to solution. For multivariate scenarios, MICE

should be avoided;

• For higher missing rates, AE-based methods should be considered, particularly when

there is enough complete data to properly train the network. Otherwise, MICE and

SoftImpute continue to be good solutions;

• These three methods (MICE, SoftImpute, and AE) appear to deal well with depar-

tures from the MNAR assumptions, which makes them suitable for scenarios where

missing data mechanisms are mixed;

• The kNN and mean/mode imputation are still among the most widely used methods
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[32]. However, they should be avoided in MNAR settings. This conclusion comes

without surprise, since they are often referred to as methods for MAR and MCAR;

• All these methods can be applied to mixed data types, but they are more suitable for

continuous data. New approaches more tailored for categorical features are needed.

Although the imputation of categorical features can be transformed into a classifi-

cation problem, this solution does not provide a global imputation strategy for the

dataset;

• It is not possible to state that a specific generation strategy is better at mimicking

the MNAR nature since they all cover different characteristics of this mechanism.

Instead, a mix of these strategies should be used to obtain more representative and

reliable results.

In the future several directions can be tackled to further explore and improve the impu-

tation of MNAR values. The benchmark studies should be further extended to accom-

modate settings where the missing mechanism is a composition of MNAR with MCAR

and/or MAR, which is also a setting often found in real-world data. Furthermore, the

impact of post-processing approaches sometimes applied to the MNAR imputation can

also be studied and considered in the benchmark (e.g., sensitivity analysis and the ap-

plication of the delta-adjustment method). Regarding the artificial generation of MNAR,

there are specific settings of this mechanism that can be incorporated into new strategies.

For example, for data domains which contain sensitive attributes, it is reasonable that the

mechanism may only be applied to those types of attributes, while other mechanisms can

be used for the remaining features. This would create a concept of sensitive-aware MNAR

generation.

9.5 Supplementary Tables

For a more detailed view of the experimental results, the raw data is attached in Tables

9.5, 9.6 and 9.7 for the continuous, categorical, and mixed analysis, respectively. Each

table presents the mean absolute error (MAE) values and their 95% confidence intervals for

each imputation method, missing rate and Missing Not At Random (MNAR) generation

strategy.
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Chapter 10

Conclusions

In this chapter, we summarize the conclusions from all the developed works while answering

the two research questions that were the focus of this thesis. Furthermore, we also propose

some future directions for this field.

RQ-1: Can we extend and improve autoencoder-based models to impute

MNAR values?

From our comprehensive survey on the use of autoencoders for missing data imputation,

we could conclude that autoencoders are among the deep learning models most often used

for this task since they were able to provide, in general, better results than other statistical

and machine learning state-of-the-art models. Furthermore, two additional findings were

also important to understand the open challenges within these models: although not

being targeted for the MNAR values, most works that used autoencoders to address this

mechanism concluded that they provide better results than the competition; and the VAE

variant was still starting to be explored and used for this purpose, although the existing

works presented it as equally (or even more) promising for the imputation task.

We decided to use the VAE as a filter mechanism for the data used by other imputation

techniques. This approach proved to be a good use of the VAE for MNAR since it was

able to only retain the more relevant information for the imputation, which helped achieve

better results when compared to the other imputation techniques. We also decided to

extend VAEs to include a multiple imputation procedure, which is a technique that has

proven to provide good results for MNAR by mitigating the level of uncertainty in the

estimated values. This strategy proved to achieve great results for MNAR, outperforming

other statistical and deep learning-based techniques. It also had a positive impact on

the performance of the imputed data used in classification tasks. Finally, we decided to

explore a different variant, namely the Siamese autoencoders. This variant had never been

used for imputation purposes, and we extended it by adapting the triplet mining and loss
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function for this task. We were able to significantly outperform the existing state-of-the-

art strategies while targeting the MNAR nature since the model relies on a small amount

of complete data to be trained.

In sum, we were able to extend and improve autoencoder-based models that provide better

imputation quality for the MNAR mechanism. The proposed strategies can tackle directly

and indirectly the MNAR characteristics, achieving significantly better results than the

existing state-of-the-art statistical and machine learning methods.

RQ-2: Can we automate human-based strategies used to improve the estima-

tion of MNAR values?

Since the existing imputation solutions tend to produce biased results for MNAR values,

a common strategy to mitigate that bias is to pre-process or post-process the data with

techniques that can tackle such issues. These techniques are often manually executed

by humans, which can lead to them not being suitable for scenarios where the data is

considerably large or the access to domain experts is limited. When it comes to pre-

processing, a common strategy to overcome the MNAR limitations is to try to gather

the data from the original source. For example, if we have a dataset with information

from a medical study, we can try to contact the patients and redo the necessary steps

to obtain the missing MNAR data. However, this highly depends on human effort and

resources. We tried to automate this type of procedure by using for the imputation multiple

data sources that share a certain level of information. In the example given before, it

could be multiple datasets of different medical studies that share part of the observations.

The idea of basing the imputation on more sources than the one being imputed directly

targets the MNAR nature, namely its relationship with unobserved data. We were able to

improve the imputation quality with this strategy, while also improving the performance

of classification tasks.

For post-processing, a common technique applied is the delta-adjustment method. It con-

sists of imputing the values assuming the MAR mechanism, and then manually adjusting

the estimates to reduce the gap between the MAR assumptions and the real MNAR mech-

anism. Although the procedure is quite simple, it depends on domain experts that must

analyze the imputation results and propose the necessary adjustments. We tried to auto-

mate this procedure by generating approximate delta-adjustment factors for each feature.

We were able to improve the results of all the imputation methods tested, without needing

inputs from any domain experts.

The typical experimental setup for missing data requires generating the missing values

on complete datasets, in order to have a ground truth to compare the estimates. In that

regard, the existing strategies to perform the generation of MNAR missing values are quite

limited since they rely on removing the lower or higher values of continuous features. Since
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this procedure is crucial to have realistic experimental setups, we also proposed a set of

new artificial generation strategies for MNAR, which were then validated in a benchmark

study. Although these strategies do not solve the MNAR limitations from the imputation

perspective, they are trying to mimic human behaviors when it comes to how the MNAR

values are generated.

In sum, we were able to automate human-based strategies used to improve estimates of

MNAR values, both through pre-processing and post-processing procedures that provided

significant enhancements to the imputation quality. Furthermore, we also contributed to

new artificial generation strategies for MNAR, which are very relevant for the missing data

community.

Future Work

When it comes to future work, there are a considerable number of advancements needed

for MNAR. We believe that this thesis has promoted significant improvements in how

to better deal with this mechanism. However, it still is understudied and requires more

tailored solutions. Based on the work here described, we believe most of the strategies we

proposed can be extended and applied for non-tabular data, particularly images, which

is one of the future directions that we want to explore. Furthermore, we believe other

deep learning models can also be leveraged to handle MNAR (e.g., generative adversarial

networks), and that is another direction that we want to further investigate.
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