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Abstract

Convolutional Neural Networks (CNNs) have demonstrated remarkable performance in tasks such

as image classification and action recognition, outperforming other methods. However, Capsule

Networks (CNs) o↵er promising new architectures for the community. While the e↵ectiveness of

CNs has been demonstrated on datasets such as MNIST and smallNORB, they face challenges when

dealing with images containing distinct contexts.

In this thesis, we propose an improved design for CNs (Vector version) by incorporating additional

Pooling layers to filter out image backgrounds and increasing the number of Reconstruction layers to

enhance image restoration. Moreover, we perform experiments to compare the accuracy and speed

of CNs with Deep Learning (DL) models such as Inception V3, DenseNet V201, NASNet, MobileNet

V1, and MobileNet V2, tailored for powerful computers and small/embedded devices. To evaluate

our models, we utilize a fingerspelling alphabet dataset from American Sign Language (ASL). Our

results demonstrate that CNs perform comparably to DL models while significantly reducing the

training time. Additionally, we provide a demonstration and a link to illustrate our approach.

Capsule Networks are exciting and promising in computer vision, but they face a critical chal-

lenge when dealing with image backgrounds, which can significantly impact their performance. To

address this issue, we propose an improved Capsule Networks architecture that replaces the Stan-

dard Convolution with a Depthwise Separable Convolution. This new design significantly reduces

the total number of parameters in the model while enhancing its stability and providing competitive

accuracy. Furthermore, our proposed model performs exceptionally well on 64⇥64 pixel images and

outperforms standard models on both 32⇥ 32 and 64⇥ 64 pixel images. To evaluate our models, we

conduct empirical experiments using state-of-the-art Transfer Learning networks such as Inception

V3 and MobileNet V1. The results show that Capsule Networks can perform comparably against

Deep Learning models. Notably, our work is the first to integrate Depthwise Separable Convolution

into Capsule Networks, and we believe that this approach holds significant potential for improving

the performance of Capsule Networks.

In addition to exploring Capsule Networks, in this thesis we investigate the potential of recur-

rent neural networks (RNNs) for image recognition tasks. Although RNNs are commonly used for
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sequential data and time series with 1-D information, we propose integrating an RNN as an ad-

ditional layer in the design of image recognition models. We also develop end-to-end multi-model

ensembles that combine several models to produce expert predictions. To achieve state-of-the-art

performance, we extend the training strategy of our model, resulting in comparable or even supe-

rior results compared to leading models on challenging datasets such as SVHN (0.99), Cifar-100

(0.9027), and Cifar-10 (0.9852). Our model also sets a new record on the Surrey dataset with an

accuracy of 0.949. This research highlights the potential of integrating RNNs into image recognition

models and the e↵ectiveness of multi-model ensembles for improving performance. Our proposed

approach achieves highly competitive results and contributes to advancing the state-of-the-art in

image recognition tasks.

While Convolutional Neural Networks have been widely used in image classification, action recog-

nition, and other fields, the challenges and dynamics of training these neural networks are still not

fully understood, and training them can be computationally expensive. To address this challenge,

numerous architectures and training strategies have been proposed for improving the performance of

CNNs in image processing tasks, such as speech, image and action recognition, and object detection.

In this work, we propose a novel approach for training CNNs using Particle Swarm Optimization

(PSO). Our PSO-based training framework allows for the collaborative dynamics of the PSO algo-

rithm to interplay with Stochastic Gradient Descent (SGD) to improve training performance and

generalization. Specifically, we first train each CNN independently via SGD in a regular phase. In a

collaborative phase, the CNNs share their current vector of weights (or particle-position) along with

their gradient estimates of the loss function. We use distinct step sizes for each CNN and blend CNNs

with large (possibly random) step-sizes along with more conservative ones. Our approach achieves

competitive performance compared to other PSO-based approaches on the challenging Cifar-10 and

Cifar-100 datasets, achieving an accuracy of 98.31% and 87.48%, respectively, using only four collab-

orative CNNs. We expect these results to scale with the number of collaborative CNNs. By using

PSO-based training for CNNs, we provide a novel and e↵ective approach to improve their train-

ing performance, especially in complex image processing tasks. This work contributes to a deeper

understanding of the dynamics of training ConvNets and demonstrates the potential of PSO-based

training for improving their performance in challenging image recognition tasks.

The work presented introduces the concept of collaborative learning and we further propose to

apply it to the challenging task of recognizing human actions in videos, known as Human Action

Recognition (HAR). While CNNs have shown remarkable success in image recognition, they are

not always directly applicable to HAR, as temporal features are critical for accurate classification.

In this thesis, we propose a novel dynamic PSO-ConvNet model that leverages the collaborative

learning framework where the weight vector of each neural network represents the position of a

particle in phase space. Through this framework, particles share their current weight vectors and

gradient estimates of the Loss function. To extend our approach to video, we integrate CNNs
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with state-of-the-art temporal methods such as Transformer and Recurrent Neural Networks. Our

experimental results on the challenging UCF-101 dataset demonstrate substantial improvements of

up to 9% in accuracy, which confirms the e↵ectiveness of our proposed method. Overall, our dynamic

PSO-ConvNet model provides a promising direction for improving HAR by better capturing the

spatio-temporal dynamics of human actions in videos.

Keywords: image classification, action recognition, pattern recognition, deep learning, com-

puter vision, convolution neural networks, recurrent neural networks, capsule networks, transformer,

particle swarm optimization, collaborative learning
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Resumo

As Redes Neuronais Convolucionais (CNNs) demonstraram um desempenho notável em tarefas como

classificação de imagem e reconhecimento de ações, superando outros métodos. No entanto, as Redes

de Cápsulas (CNs) oferecem novas arquiteturas promissoras para a comunidade cient́ıfica. Embora

a eficiência das CNs tenha sido demonstrada em conjuntos de dados como MNIST e smallNORB,

enfrentam ainda assim desafios com imagens contendo contextos distintos.

Nesta tese, propomos uma versão aperfeiçoada das CNs (versão Vetorial) incorporando camadas

adicionais de Pooling para filtrar os planos de fundo das imagens e aumentar o número de camadas

de Reconstrução para melhorar a restauração de imagens. Além disso, realizamos experiências para

comparar a precisão e velocidade das CNs com modelos de Aprendizagem Profunda (DL) como In-

ception V3, DenseNet V201, NASNet, MobileNet V1 e MobileNet V2, adaptados para computadores

poderosos e dispositivos pequenos/embutidos. Para avaliar os modelos, utilizamos um conjunto de

dados de alfabeto manual do American Sign Language (ASL). Os resultados obtidos demonstram

que as CNs têm um desempenho comparável aos modelos DL, enquanto reduzem significativamente

o tempo de treino. Para efeitos de demonstração, disponibilizamos um link para ilustrar esta abor-

dagem.

As Redes de Cápsulas são muito promissoras na visão computacional, mas enfrentam um desafio

cŕıtico ao lidar com fundos de imagens, o que pode afetar significativamente o seu desempenho. Para

lidar com esta questão, propomos uma arquitetura de Redes de Cápsulas aperfeiçoada que substitui

a Convolução Padrão por uma Convolução Separável em Profundidade. Este novo design reduz

significativamente o número total de parâmetros no modelo, enquanto permite melhorar não só a

sua estabilidade, mas também apresentar uma precisão competitiva. Além disso, o modelo proposto

funciona excepcionalmente bem em imagens de 64⇥64 pixels e supera os modelos padrão em imagens

de 32 ⇥ 32 e 64 ⇥ 64 pixels. Para avaliar estes modelos, realizámos experiências usando redes de

Transfer Learning de ponta, como Inception V3 e MobileNet V1. Os resultados mostram que as

Redes de Cápsulas podem ter desempenho comparável aos modelos de Aprendizagem Profunda.

Destaca-se que o trabalho desenvolvido nesta tese é o primeiro a integrar a Convolução Separável

em Profundidade nas Redes de Cápsulas, e tudo leva a crer que esta abordagem tenha um potencial

significativo para melhorar o desempenho das Redes de Cápsulas.
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Para além de explorar as Redes de Cápsulas, investigamos o potencial das redes neuronais recor-

rentes (RNNs) para tarefas de reconhecimento de imagem. Embora as RNNs sejam comumente

usadas para dados sequenciais e séries temporais com informação 1-D, propomos integrar uma RNN

como camada adicional no design de modelos de reconhecimento de imagem. Também desenvolvemos

conjuntos de modelos multimodelos de ponta a ponta que combinam vários modelos para produzir

previsões especializadas. Para alcançar um desempenho de última geração, estendemos a estratégia

de treino do nosso modelo, resultando em resultados comparáveis ou até superiores em comparação

com os principais modelos em conjuntos de dados mais complexos, como SVHN (0,99), Cifar-100

(0,9027) e Cifar-10 (0,9852). O nosso modelo também atinge um novo recorde no conjunto de da-

dos Surrey, com uma precisão de 0,949. Este estudo destaca o potencial de integração de RNNs

em modelos de reconhecimento de imagem e a eficiência de conjuntos de modelos multimodelos

para melhorar o desempenho. A abordagem proposta alcança resultados altamente competitivos e

contribui para avançar o estado-da-arte em tarefas de reconhecimento de imagem.

Embora as Redes Neuronais Convolucionais tenham sido amplamente utilizadas na classificação

de imagens, reconhecimento de ações e outras áreas, os desafios e dinâmicas de treino dessas redes

neuronais ainda não são completamente compreendidos, e o treino pode ser computacionalmente

elevado. Para responder a este desafio, inúmeras arquiteturas e estratégias de treino têm sido

propostas para melhorar o desempenho de CNNs em tarefas de reconhecimento de fala, imagem e

ação, e detecção de objetos.

Nesta tese, propomos uma abordagem inovadora para treinar CNNs usando a Otimização por

Enxame de Part́ıculas (PSO). A nossa framework de treino baseada em PSO permite que a dinâmica

colaborativa do algoritmo PSO interaja com o Gradiente Estocástico Descendente (SGD) para mel-

horar o desempenho e a generalização do treino. Especificamente, primeiro treinamos cada CNN

independentemente via SGD numa fase dita regular. Numa fase colaborativa, as CNNs compartil-

ham seu vetor atual de pesos (ou posição de part́ıcula) juntamente com as estimativas do gradiente

da função de perda. Usamos tamanhos de passo distintos para cada CNN e combinamos CNNs

com tamanhos de passo grandes (possivelmente aleatórios) juntamente com tamanhos de passo mais

conservadores. Esta abordagem alcança um desempenho competitivo em comparação com outras

abordagens baseadas em PSO nos conjuntos de dados Cifar-10 e Cifar-100, alcançando uma precisão

de 98,31% e 87,48%, respectivamente, usando apenas quatro CNNs colaborativos. Estamos em crer,

que estes resultados possam vir a melhorar substancialmente com o aumento do número de CNNs

colaborativos.

Ao adotarmos o treino baseado em PSO para as CNNs, propomos uma abordagem inovadora

e eficaz que contribui para melhorar significativamente o desempenho destas redes, especialmente

em tarefas complexas de processamento de imagem. Além disso, este trabalho também contribui

para uma compreensão mais profunda da dinâmica de treino das CNNs e evidencia o potencial

do treino baseado em PSO para aprimorar o desempenho dessas redes em tarefas desafiadoras de
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reconhecimento de imagem.

O trabalho realizado apresenta o conceito de aprendizagem colaborativa e aplica-o à desafiadora

tarefa de reconhecimento de ações humanas em v́ıdeos, conhecida como Reconhecimento de Ações

Humanas (HAR). Embora as CNNs tenham demonstrado um sucesso notável no reconhecimento

de imagens, nem sempre são diretamente aplicáveis no reconhecimento de ações humanas uma vez

que as caracteŕısticas temporais são cŕıticas para uma classificação precisa. Nesta tese, propomos

um novo modelo dinâmico PSO-ConvNet que utiliza a framework de aprendizagem colaborativa

onde o vetor de pesos de cada rede neuronal representa a posição de uma part́ıcula no espaço de

fases. Através desta framework, as part́ıculas partilham os seus vetores de pesos correntes bem

como as estimativas de gradientes da função de perda. Para estender a nossa abordagem a v́ıdeos,

integramos as CNNs com métodos temporais de ponta, como o Transformer e as Redes Neuronais

Recorrentes. Os resultados experimentais em conjunto de dados complexos e desafiante como o

UCF-101 demonstram melhorias substanciais de até 9% em precisão, o que confirma a eficácia do

nosso método proposto. Em geral, o nosso modelo dinâmico PSO-ConvNet aponta uma direção

promissora para contribuir na área de HAR, capturando melhor as dinâmicas espaço-temporais das

ações humanas em v́ıdeos.

Palavras Chave: classificação de imagem, reconhecimento de ações, reconhecimento de padrão,

aprendizagem profunda, visão computacional, redes neuronais convolucionais, redes neuronais recor-

rentes, redes de cápsulas, transformer, otimização por enxame de part́ıculas, aprendizagem colabo-

rativa
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Chapter 1

Introduction

1.1 Motivation

Hinton, who is the godfather of Neural Networks, explained the idea in a video lecture that “If we

want to tell a computer to do a thing, we program steps exactly the way we would do by ourselves.

But if we like a computer to describe an image, how could we program? Can the computer learn

from just seeing the images?”. It was the reason for the foundation of Neural Networks.

Though, after decades of active development, the field was slowed down to the point where

articles from top researchers could get rejected as the topics were not in the interests of journals.

However, recent years have seen a re-appearance of Neural Networks (as well as Deep Learning,

generally) thanks to the availability of Graphics Processing Unit (GPU) and BigData [101].

In academy, the technique has achieved significant higher classification accuracy on competitions

such as image recognition [79] and speech recognition [124]. In business, Google self-driving cars

have been tested in large cities and accumulated hundred years of human driving experience [51].

Uber also made a breakthrough in public service as the first company to o↵er self-driving cars [16].

Before the arrival of Deep Learning (DL) in image classification, the field has evolved through

several stages from Linear Classifier to Support Vector Machine and Neural Networks. These meth-

ods commonly require selection of features that eventually needs involvement of experts in particular

fields. DL on the other hand can choose the best feature automatically [101].

1.2 Problem Statement

Inspired by the above motivation, we formulate these five research questions:

1. Can Capsule Networks perform better than the current best method in image

recognition? Convolution Neural Networks (ConvNets) have shown superiority in the field of image

recognition. Capsule Network (CN) is introduced and expected to refresh ideas in the area. However,

1
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the networks can show improvements only for 1-D images in MNIST and smallnorb datasets, there

are still rooms for improvement in 3-D images, e.g., Cifar-10, Cifar-100 and Street View House

Numbers (SVHN) datasets, etc.

2. How can Capsule Network be improved? Capsule Networks face a critical problem in

computer vision in the sense that the image background can challenge its performance, although they

learn very well on training data. To solve this problem, we argue that primary filters to eliminate

such backgrounds should be as important as other parts of CNs’ architecture. Just, improvements

on speed and accuracy of these convolution layers can be bonus points for the network.

3. Can we apply Recurrent Neural Networks for image recognition and how about

other techniques? Over the long history of machine learning, which dates back several decades,

Recurrent Neural Networks (RNNs) have been used mainly for sequential data and time series and

generally with 1-D information. Even in some rare studies on 2-D images, these networks are used

merely to learn and generate data sequentially rather than for image recognition tasks. In this study,

we try to integrate an RNN as an additional layer for image recognition models and other relevant

techniques to leverage the accuracy.

4. How does collaborative learning enhance image classification? ConvNets have been

candidly deployed in the scope of computer vision and related fields. Nevertheless, the dynamics

of training of these Neural Networks lie still elusive: it is hard and computationally expensive to

train them. A myriad of architectures and training strategies have been proposed to overcome

this challenge and address several problems in image processing such as speech, image and action

recognition as well as object detection. In this sense, Particle Swarm Optimization (PSO) is a better

choice as the algorithm requires much less computation. In contrast to Evolutionary Computation

(EC) methods which evolve via competition, in PSO, particles cooperate to share information, e.g.,

best position, current location and direction.

5. Can collaborative learning apply to other fields? Recognizing human actions in video

sequences, known as Human Action Recognition (HAR), is a challenging task in pattern recognition.

While ConvNets have shown remarkable success in image recognition, they are not always directly

applicable to HAR, as temporal features are critical for accurate classification. Therefore, we propose

a novel dynamic PSO-ConvNet model for learning actions in videos, building on our recent work

in image recognition. Our approach leverages a framework where the weight vector of each neural

network represents the position of a particle in phase space, and particles share their current weight

vectors and gradient estimates of the Loss function.

1.3 Contributions

The aim of this thesis is to classify images and recognize actions with the latest emerging Deep

Learning techniques. The first two parts of our work investigated the use of Capsule Networks,
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which was first proposed for 1-D images, for 3-D images instead. A comparison study was performed

to analyze the performance of the CNs versus ConvNets on image recognition. An extension of CNs

with integration of Depthwise Separable Convolution (DW) was also performed.

Most studies utilize RNNs for sequential data and time series. Except for rare cases, RNNs are

used largely to generate sequences of image pixels. In the third part, we propose integrating RNNs

as an essential layer of ConvNets. In addition, we present our core idea for designing a ConvNet in

which the model is able to learn multiple decisions from expert models. Another main contribution

involves a training strategy that allows our models to perform competitively, matching previous

approaches on several datasets and outperforming state-of-the-art models.

Extensive experiments and an extended study were carried in the fourth part of this work in-

troduces a new dynamic collaborative learning using hybrid of PSO-ConvNet and we utilized this

proposed model for image classification. We investigated the e↵ect of distinct parameters (M and

�), number of nearest neighbors, additional strategies for improvement.

The fifth part of this thesis attempts to extend the framework proposed in the fourth part to

recognize human actions in video. Then, we proposed the integration of dynamics in the hybrid of

ConvNet with recent advanced methods for temporal data, e.g., Transformer and Recurrent Neural

Network. The results demonstrate a round improvement of 2% � 9% in accuracy over baseline

methods, such as an 8.72% increase in accuracy for the DenseNet-201 Transformer using Dynamics

2 and a 7.26% increase in accuracy for the ResNet-152 Transformer using Dynamics 1. Our approach

outperforms the current state-of-the-art methods, o↵ering significant improvements in video action

recognition. To sum up, the following contributions can be identified from this thesis:

• We improve the design of the Vector Capsule Networks and perform empirical comparisons

versus Deep Learning models on accuracy and speed using an American Sign Language (ASL)

finger spelling alphabet. First, we propose to modify the Vector CN’s architecture to find the

most e�cient designs. Namely, we extended convolution layers to better filter input images

and varied Fully Connecteds (FCs) layers in the Reconstruction to leverage image restoration.

Second, we explore distinct DL models for demanding devices (Inception V3 and DenseNet

V201) and small devices (NasNet and MobileNets) when integrated with Multilayer Perceptron

(MLP) and Long Short Term Memory (LSTM). We use the former setting as a baseline to

compare with the latter. Third, Vector CNs are analyzed against DL models. We find out that

CNs perform comparatively on both accuracy and speed. In addition, CNs have an advantage

as pre-training is not required. Capsules can be trained within an hour compare to days or

more for pre-trained TL models. Finally, we make a demonstration to compare CNs and

DLs on videos for teaching ASL alphabets. The results are very promising as our models can

recognize almost of all signs without previously seen.

• We propose to replace Standard Convolution (SC) with Depthwise Separable Convolution

in Capsule Networks’ architecture and performed empirical evaluations of the proposed CNs
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against DLs models. Regarding the design of CNs, we found that the integration of DW

can significantly reduce the model size, increase stability and yield higher accuracy than its

counterpart. With respect to experimental evaluations of CNs versus DL models, the Capsule

models perform competitively both on model size and accuracy.

• We attempt to integrate RNNs into ConvNets even though RNNs are mainly optimized for

1-D sequential data rather than 2-D images. Our results on the Fashion-MNIST dataset show

that ConvNets with RNN, GRU and BiLSTM modules can outperform standard ConvNets.

Second, we designed E2E-3M ConvNets that learn predictions from several models. Our E2E-

3M model outperforms a standard single model by a large margin. The advantage of using an

End-To-End (E2E) design is that the model can run immediately in real time and it is suitable

for system-on-a-chip platforms. Third, we propose a training strategy and pruning for the

softmax layer that yields comparable accuracies on the Cifar-10 and Fashion-MNIST datasets.

By using the ensemble technique, our models perform competitively, matching previous state-

of-the-art methods (accuracies of 0.99, 0.9027 and 0.9852 on SVHN, Cifar-100 and Cifar-10,

respectively) even with limited resources. Moreover, our method outperforms other approaches

on the Surrey dataset, achieving an accuracy of 0.949.

• Novel formulations (Dynamics 1 and Dynamics 2) have been successfully created by incor-

porating distilled Cucker-Smale elements into the PSO algorithm using K-Nearest Neighbors

(KNN) and intertwining the training with Stochastic Gradient Descent (SGD). In addition,

a new type of particle, i.e., wilder PSO with random learning rate is introduced which has

capability of attracting conservative PSOs to stronger minima; Moreover, a distributed en-

vironment is developed for parallel collaboration that significantly accelerates the training.

The proposed algorithms are evaluated on Cifar-10 and Cifar-100 benchmark datasets and

compared to state-of-the-art algorithms to verify the superior e↵ectiveness.

• We incorporate Dynamics 1 and Dynamics 2 into a hybrid model that combines ConvNet

with two popular sequence modeling techniques - RNN and Transformer. Next, we extend the

distributed collaborative learning framework to address the task of human action recognition.

Extensive experiments on the challenging UCF-101 dataset were performed and compared

against state-of-the-art methods to validate its e↵ectiveness.

• We make our software available as open sources according to GNU General Public License v3.0

at GitHub.com for each respective paper as follows: “Rethinking recurrent neural networks

and other improvements for image classification” https://github.com/leonlha/e2e-3m,

“Pso convolutional neural networks with heterogeneous learning rate” https://github.com

/leonlha/PSO-ConvNet-Dynamics and “Video action recognition collaborative learning with

dynamics via pso-convnet transformer” https://github.com/leonlha/Video-Action-Rec

ognition-Collaborative-Learning-with-Dynamics-via-PSO-ConvNet-Transformer
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The contributions mentioned above are resulted in the following list of publications including three

international journal (two of them are peer-reviewed Q1 journals) and four international and national

conferences. The blanket indicate the chapter(s) or section(s) where the content are referred.

• Nguyen Huu Phong, Augusto Santos, and Bernardete Ribeiro. Pso-convolutional neural net-

works with heterogeneous learning rate. IEEE Access, 10:89970–89988, 2022. (Chapter 6,

Section 2.1.1, Section 2.1.2 Section 2.2.1, and Section 2.2.2)

• Nguyen Huu Phong and Bernardete Ribeiro. Video action recognition collaborative learning

with dynamics via pso-convnet transformer. arXiv preprint arXiv:2302.09187, 2023. (Chap-

ter 7, Section 2.1.3 and Section 2.2.3) (Under review at Scientific Reports Journal)

• Nguyen Huu Phong and Bernardete Ribeiro. Rethinking recurrent neural networks and other

improvements for image classification. arXiv preprint arXiv:2007.15161, 2020. (Chapter 5)

• Nguyen Huu Phong and Bernardete Ribeiro. Advanced capsule networks via context aware-

ness. In Artificial Neural Networks and Machine Learning–ICANN 2019: Theoretical Neural

Computation: 28th International Conference on Artificial Neural Networks, Munich, Germany,

September 17–19, 2019, Proceedings, Part I 28, pages 166–177. Springer, 2019. (Chapter 3)

• Nguyen Huu Phong and Bernardete Ribeiro. An improvement for capsule networks using

depthwise separable convolution. In Pattern Recognition and Image Analysis: 9th Iberian

Conference, IbPRIA 2019, Madrid, Spain, July 1–4, 2019, Proceedings, Part I, pages 521–530.

Springer, 2019. (Chapter 4)

• Nguyen Huu Phong and Bernardete Ribeiro. O✏ine and online deep learning for image recog-

nition. In 2017 4th Experiment@ International Conference (exp. at’17), pages 171–175. IEEE,

2017. (Appendix A)

• Nguyen Huu Phong and Bernardete Ribeiro. Action recognition for american sign language.

In 24th Portuguese Conference on Pattern Recognition (RECPAD). RECPAD, 2018. (Ap-

pendix B)

1.4 Outline of the dissertation

The other chapters in this dissertation are structured as follows:

• Chapter 2 provides comprehensive background concepts for this thesis and introduces a review

for the current state of the art of image classification, particle swarm optimization and human

action recognition fields. In addition, the development of the researches in the past decades

is presented to provide a general introduction to traditional and modern approaches for the
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fields, including various ConvNets models, PSO techniques and action recognition techniques

that have been proposed by other researchers.

• Chapter 3 we propose to improve the design of Capsule Network by expanding more pooling

layers to filter image backgrounds and increase Reconstruction layers to make better image

restoration. Additionally, we perform comparative studies to compare accuracy and speed of

CNs versus DLs models.

• Chapter 4 follows the proposed idea in Chapter 3, and presents a solution to enhance the

performance of Capsule Networks by utilizing Depthwise Separable Convolution instead of

a Standard Convolution. The new design significantly reduces the model’s total parameters

while increases stability and o↵ers competitive accuracy. Moreover, we empirically evaluate

these models with Deep Learning architectures using state-of-the-art TL networks such as

Inception V3 and MobileNet V1. The results show that CNs can perform comparably against

DL models.

• Chapter 5 focuses on various RNN formulations, including a typical RNN and more advanced

RNNs. In addition, our core idea for designing ConvNet models that gain experience from

expert models is highlighted. We also discuss our learning rate strategy and the softmax

pruning technology. Furthermore, we extend our experiments to include more challenging

datasets (i.e., SVHN, Cifar-100, and Cifar-10). We show that our approach outperforms the

state-of-the-art methods on Surrey dataset by a large margin.

• Chapter 6 presents a novel model for the image classification, which uses collaborative learning

to optimize training process. In this framework, the vector of weights of each ConvNet presents

the position of a particle in phase space whereby PSO collaborative dynamics intertwines

with SGD in order to boost training performance and generalization. By properly blending

ConvNets with large step-sizes along with more conservative ones, we propose an algorithm

with competitive performance with respect to other PSO-based approaches on Cifar-10 and

Cifar-100 (accuracy of 98.31% and 87.48%).

• Chapter 7 aims to explore the potential of the proposed collaborative learning with dynamics

further. The dynamics were extended from image classification to video action recognition by

addressing temporal feature property. In order to determine the most e�cient features for the

hybrid ConvNet with RNN and Transformer models, we explored the performance of di↵erent

combinations of hyper-parameters extensively on the UCF-101 dataset.

• Chapter 8 summarizes and concludes this thesis, emphasizes the contributions, points out the

limitations and highlights directions for the future research.

• Appendices A and B discuss initial works on image classification and action recognition ex-

periments.



Chapter 2

Literature Review

The aim of this thesis is to address image classification and video action recognition problems by using

powerful Convolution Neural Network, Recurrent Neural Network, Particle Swarm Optimization and

related techniques. In this Chapter, we will review and discuss essential background of ConvNet,

PSO and HAR (Section 2.1.1, 2.1.2 and 2.1.3, respectively). We also deal with related works of

hybrid PSO-ConvNet, Learning Rate Tuning and Video Action Recognition in Section 2.2.1, 2.2.2

and 2.2.3. For in-depth techniques, e.g., Transfer Learning, Re-training, Test Time Augmentation

(TTA), Ensemble Learning, Pruning, etc., we will explain in more detail later in this thesis (see

Chapter 5).

2.1 Background

2.1.1 Convolutional Neural Networks

Convolution Neural Networks have demonstrated superior performance when compared to other

methods in image classification and related tasks. The technique was originally proposed by LeCun

et al. [103] in 1989, though, only after 2012 when AlexNet [97] outperformed contemporary state-of-

the-art, ConvNets became the most representative Neural Networks in the area. This breakthrough

in popularity has been motivated largely by: (i) availability of high-performance computing hard-

ware—particularly, modern Graphics Processing Units and (ii) promotions of large-scale datasets

such as the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC). The early designs of Con-

vNets were shallow and included only a few layers; however, the field has been evolving to cope with

the rampant scaling in computer power and image/data resolution. For example, GoogLeNet [170] –

which was a winner of ILSVRC 2014, introduced Inception model which helps to reduce the computa-

tional cost as it reduces significantly the number of parameters involved in a network. VGGNet [160]

in 2014 showed that deeper layers improve the performance of ConvNets. ResNet [65] which was the

7
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best of ILSVRC in 2015, introduced the idea of residual learning. The later developments involved a

delicate trade-o↵ among network depth, width and image resolution as E�cientNet [172] or adapta-

tion for small size devices (MobileNet [72]). In addition, SqueezeNet [77], SENet [73], DenseNet [76],

ResNeXt [196], Xception [22] and other families of Neural Networks thereof, have been proposed

and demonstrated to e�ciently perform in many applications.

As discussed above, ConvNets di↵er from one to another in their architectures, though, a typical

design is illustrated in Figure 2.1 which stacks multiple trainable layers. The feature extraction

module is comprised of several convolution operations for filtering and pooling operations for sub-

sampling (reducing the network size). Within this module, the input and output of each layer are

given by arrays and referred to as feature maps. The classification module contains Fully Connected

layers.

Figure 2.1: Illustration of a traditional ConvNet design [105].

For the sake of clarity regarding the operations comprised by a ConvNet, the mathematical

formulations can be summarized as follows:

8
>>><

>>>:

Oi = X if i = 1

Yi = fi(Oi�1,Wi) if i > 1

Oi = gi(Yi)

(2.1)

8
>>><

>>>:

Yi = Wi ~Oi�1 ith layer is a convolution

Yi = �n,mOi�1 ith layer is a pool

Yi = Wi ⇤Oi�1 ith layer is a FC

(2.2)

where X represents the input image; Oi is the output for layer ith; Wi indicates the weights of

the layer; fi(·) denotes weight operation for convolution, pooling or FC layers; gi(·) is an activation

function, for example, sigmoid, tanh and Rectified Linear (ReLU) or more recently Leaky ReLU [121];

The symbol (~) acts as a convolution operation which uses shared weights to reduce expensive matrix

computation [105]; Window (�n,m) shows an average or a max pooling operation which compute

average or max values over neighbor region of size n⇥m in each feature map. Matrix multiplication
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of weights between layer ith and the layer (i� 1)th in FC is represented as (⇤).

2.1.2 Particle Swarm Optimization

Particle Swarm Optimization is a population based stochastic optimization algorithm originally

introduced by Kennedy and Eberhart in 1995 [87] and modified in [157]. The attractive feature

of PSO is attributed to the ability of particles to learn from others (social behavior) and from

their individual experience (cognitive behavior). In PSO, the position of each particle represents a

potential solution to a problem and is obtained via random search. At first, each particle (among

N independent particles in a D-dimensional phase space) is randomly pre-assigned to a position x

in a search space ⌦D, and during the evolution process, continues to update its position according

to the following dynamics:

vid(t+ 1) = wvid(t) + c1r1(Pid(t)� xid(t))

+c2r2(Pgd(t)� xid(t)),

xid(t+ 1) = xid(t) + vid(t+ 1). (2.3)

where, vid(t) and xid(t) represent the d component of the velocity and position of particle i at the

iteration (or time) t; r1 and r2 are independent random variables uniformly distributed over the

interval [0, 1]; Pid and Pgd serve as the particle’s own best position and swarm’s best position; The

t denotes the iteration; The parameter w is called “inertia weight” and it was introduced in the

modified version besides c1 (social coe�cient accelerator) and c2 (cognitive coe�cient accelerator)

for controlling the behavior of the particles and balancing the interplay between exploration and

exploitation.

PSO is drawn from a simple nature inspired concept with a↵ordable implementation and com-

putational e�ciency, even though, the algorithm tends to be trapped into local minima after few

iterations. Thus, a great amount of research has been attempting to tackle the problem. For exam-

ple, authors proposed a PSO algorithm with an adaptive learning strategy (PSO-ALS) that groups a

swarm into several sub-swarms to maintain population diversity [218]. Other authors attempted to

tune the inertia-related parameters of the PSO dynamics in order to hinder early convergence to local

minima [60]. The inertia related weights were also the primary focus of the works [108, 9, 131, 113].

2.1.3 Human Action Recognition

Human Action Recognition plays a vital role for distinguishing a particular behavior of interest

in the video. It has critical applications including visual surveillance for detection of suspicious

human activities to prevent the fatal accidents [167, 107], automation-based driving to sense and
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predict human behavior for safe navigation [144, 201]. In addition, there are large amount of non-

trivial applications such as human-machine interaction [141, 140], video retrieval [222], crowd scene

analysis [32] and identity recognition [134].

In the early days, the majority of research in HAR conducted using hand-crafted methods [189,

190, 52]. However, as deep learning technology evolved and gained increasing recognition in the

research community, a multitude of new techniques have been proposed, achieving remarkable results.

Action recognition preserves a similar property of image recognition since both of the fields handle

visual contents. In addition, action recognition classifies not only still images but also dynamics

temporal information from the sequence of images. Built on these intrinsic characteristics, action

recognition’s methods can be grouped into two main approaches namely recurrent neural networks

(RNN) based approach and 3-D ConvNet based approach. Besides of the main ones, there are other

methods that utilize the content from both spatial and temporal and coined the name two-stream

2-D ConvNet based approach [159].

Initially, action recognition was viewed as a natural extension of image recognition, and spatial

features from still frames could be extracted using ConvNet, which is one of the most e�cient tech-

niques in the image recognition field. However, traditional ConvNets are only capable of processing

a single 2-D image at a time. To expand to multiple 2-D images, the neural network architecture

needs to be re-designed, including adding an extra dimension to operations such as convolution and

pooling to accommodate 3-D images. Examples of such techniques include C3D [177], I3D [15],

R3D [62], S3D [197], T3D [37], LTC [182], among others

Similarly, since a video primarily consists of a temporal sequence, techniques for sequential data,

such as Recurrent Neural Networks and specifically Long Short Term Memory, can be utilized to

analyze the temporal information. Despite the larger size of images, feature extraction is often em-

ployed. Long-term Recurrent Convolutional Networks (LRCN)[38] and Beyond-Short-Snippets[208]

were among the first attempts to extract feature maps from 2-D ConvNets and integrate them with

LSTMs to make video predictions. Other works have adopted bi-directional LSTMs [179, 64], which

are composed of two separate LSTMs, to explore both forward and backward temporal information.

To further improve performance, other researchers argue that videos usually contain repetitive

frames or even hard-to-classify ones which makes the computation expensive. By selecting relevant

frames, it can help to improve action recognition performance both in terms of e�ciency and accu-

racy [54]. A similar concept based on attention mechanisms is the main focus in recent researches

to boost overall performance of the ConvNet-LSTM frameworks [47, 194].

While RNNs are superior in the field, they process data sequentially, meaning that information

flows from one state to the next, hindering the ability to speed up training in parallel and causing the

architectures to become larger in size. These issues limit the application of RNNs to longer sequences.

In light of these challenges, a new approach, the Transformer, emerged [184, 176, 41, 7, 118].
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2.2 Related Works

2.2.1 Hybrid PSO-ConvNets

At present, several research studies have been applied to optimizing hyper-parameters of ConvNets.

Some works aim at a narrower sense where the hyper-parameters are manually set based on trial-

and-error experiments. Others follow a broader sense in which the learning rate and the structure

of the layers can be automatically generated. For example, in [146], starting from a simple neural

network of one layer, the model evolves into full architectures that are competitive with the state-of-

the-art counterparts. Further examples are: i) Evolving Deep CNN where the layers are optimized

via a genetic algorithm [168]; ii) genetic programming to optimize the architecture of the ConvNet

for image recognition [166]. Therefore, instead of an arbitrary manual design, EC algorithms have

shown their potential in drawing optimal architectures with global optimization search capability.

However, training a ConvNet is computationally expensive, for instance, models in [146, 145]

critically resort to a cluster of hundreds or even thousands of GPUs which are hardly a↵ordable for

most of research centres. In this sense, PSO is a better choice as the algorithm requires much less

computation. In contrast to EC methods which evolve via competition, in PSO, particles cooperate

to share information, e.g., best position, current location and direction. As demonstrated in [178],

the fusion of Modified Particle Swarm Optimization (ModPSO) together with Back-propagation

(BP) and ConvNet was proposed. The method o↵ers strategies to adjust inertia weight, accelerator

parameters, update velocity. The involvement of ModPSO and BP improves training ConvNet by

avoiding early convergence and local minima. In addition, the dynamic and adaptive parameters

strike a trade-o↵ between the global and local search ability, and the diversity of the swarm.

Other works [193, 33] utilize PSOs to search for hyper-parameters of ConvNets. For example,

a novel variant of the PSO algorithm (cPSO-CNN) was proposed in [193] to optimize the kernel

size, filter number, stride and padding. The method improved the PSO’s exploration ability by

applying confidence function defined by a normal compound distribution and reformulated PSO’s

scalar acceleration coe�cients as vectors for better adapting to the variant ranges of the hyper-

parameters. In addition, a linear prediction model predicted the ranking of the PSO particles for

fast fitness evaluation.

2.2.2 Learning Rate Tuning

When training ConvNets, learning rate might be the most essential hyperparameter as emphasized

by Yoshua Bengio in the practical book “Neural networks: Tricks of the trade” [11]. Take into

account the kernel size, for example, a subtle image may be convoluted better with a small kernel

size, but a larger kernel size would scan just a little worse than its counterpart [175]. The larger

the number of filters, the better the emergent patterns, though, fewer filters should not cause a

significant lost in ConvNet’s performance. Setting a learning rate is totally di↵erent as a small/large
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learning rate could compromise convergence in training.

The main objective of learning rate is tuning to find global minima, local minima, or generally

an area where loss function obtains adequately low values (ideally the cost reaches zero L(z,✓) ! 0).

Tremendous e↵orts have been made to reduce execution time to yield better performance.

The goal of learning rate schedules is to regulate the learning rate following a prefixed schedule,

e.g., time-based decay, step decay and exponential decay. Likewise, adaptive learning rate meth-

ods ease this burden by providing automated tuning. AdaGrad [43], for example, is one of the

pioneer adaptive schemes which performs learning rate estimation from the gradients. Other meth-

ods are derived from AdaGrad such as AdaDelta [210], AdaSecant [59], RMSprop [174] and Adam

optimizers [91].

Cyclical Learning Rate (CLR) addresses an issue in training neural networks, i.e., the need to

search for the optimal initial rate and subsequent scheduling. The method allows the learning rate

to repeatedly swing between boundary limits according to triangle policy that o↵ers more choices in

selection of the learning rate. In addition, CLR enhances classification accuracy in a shorter training

[161].

Warmup technique was proposed in early works like [184], where training utilizes a scheme of

starting with a small learning rate and gradually ramping up to a larger value during the number

of iterations is much less than the whole length of training (warmup iterations ⌧ epochs). The

method is built on a theory where the ratio of the learning rate and the batch size a↵ects the

dynamics of training. Remark that when training large datasets, we can increase the batch size in

order to reduce the training time. However, increasing batch size causes more loss and the benefit

of shorter training gained is not proportional to the drawback of increasing loss. For this reason,

warmup techniques are relevant in training ConvNets [184, 55, 53, 114].

2.2.3 Video Action Recognition

In recent years, Deep Learning has greatly succeed in computer vision fields, e.g., object detec-

tion, image classification and action recognition [78, 54, 7]. One consequence of this success has

been a sharp increase in the number of investments in searching for good neural network architec-

tures. An emerging promising approach is changing from the manual design to automatic Neural

Architecture Search (NAS). As an essential part of automated machine learning, NAS automatically

generates neural networks which have led to state-of-the-art results [146, 127, 132]. Among vari-

ous approaches for NAS already present in the literature, evolutionary search stands out as one of

the most remarkable methods. For example, beginning with just one layer of neural network, the

model develops into a competitive architecture that outperforms contemporary counterparts [146].

As a result, the e�cacy of the their proposed classification system for HAR on UCF-50 dataset was

demonstrated [78] by initializing the weights of a ConvNet classifier based on solutions generated

from Genetic Algorithms (GAs).
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In addition to GAs, PSO - a population-based stochastic search method influenced by the social

behavior of flocking birds and schooling fish - has proven to be an e�cient technique for feature

selection [87, 157]. A novel approach that combines a ModPSO with BP was put forth for image

recognition, by adjusting the inertia weight, acceleration parameters, and velocity [178]. This fusion

allows for dynamic and adaptive tuning of the parameters between global and local search capability,

and promotes diversity within the swarm. In catfish particle swarm optimization, the particle with

the worst fitness is introduced into the search space when the fitness of the global best particle has

not improved after a number of consecutive iterations [24]. Moreover, a PSO based multi-objective

for discriminative feature selection was introduced to enhance classification problems [198].

There have been several e↵orts to apply swarm intelligence to action recognition from video.

One such approach employs a combination of binary histogram, Harris corner points, and wavelet

coe�cients as features extracted from the spatiotemporal volume of the video sequence [216]. To

minimize computational complexity, the feature space is reduced through the use of PSO with a

multi-objective fitness function.

Furthermore, another approach combining DL and swarm intelligence-based metaheuristics for

HAR was proposed [10]. Here, four di↵erent types of features extracted from skeletal data - Distance,

Distance Velocity, Angle, and Angle Velocity - are optimized using the nature-inspired Ant Lion

Optimizer metaheuristic to eliminate non-informative or misleading features and decrease the size of

the feature set. Despite these advances, the field remains largely uncharted, especially with respect

to recent and emerging techniques.

2.3 Conclusions

General concepts and a review of the current state of image classification and action recognition were

presented in this chapter. We grouped essential theories of Convolution Neural Network, Particle

Swarm Optimization and Human Action Recognition in the background Sections since ConvNet is

the most e�cient and e↵ective method for image classification as the technique outperforms other

shadow methods recently and PSO will be used to leverage training of ConvNet. As ConvNet and

PSO will be trained in an intertwined manner, we discussed relevant works regarding hybrid PSO-

ConvNet. In addition, we also examined methods for Learning Rate Turning because it is one of

essential parts of our method. Moreover, recent works in Video Action Recognition are critically

analyzed.



Chapter 3

Advanced Capsule Networks

3.1 Introduction

Capsule Networks arrive in the field of Deep Learning at the time when many issues are considered

solved e.g. in image and object recognition, very deep networks with hundreds of layers are able

to outperform human. One reason behind the success of DL is the Max Pooling (MP) layer which

not only reduces dimension of images but also selects most critical pixels for routing from one layer

to another. Though MP works very well, Hinton argues that MP causes loss of useful information.

As a consequence, this layer is replaced with a routing algorithm and a new architecture namely

Capsule Networks is designed [150]. The CN can also be referred as Vector CN since the approach

is based on agreements between vectors. The design achieved 0.25% test error on Modified National

Institute of Standards and Technology (MNIST) dataset in comparison with the state of the art

using DropConnect 0.39% without data augmentation [187]. The other CN applying Expectation

Maximization (Matrix CN) reduces the best error rate by 45% on SmallNORB dataset [68]. However,

the networks still face challenges on other datasets e.g. Cifar-10, SVHN and ImageNet.

In this research, we choose to build our CNs based on the Vector CN architecture since there are

few implementations in literature for Matrix CNs and our preliminary results show that the latter

takes longer convergence time in the ASL alphabet dataset.

For DL architecture, we choose several prestige Transfer Learning models including Inception V3

[171], DenseNet V201 [74], NASNet [224], MobileNet V1 [72] and MobileNet V2 [153] to generate

feature maps and compare these models to explore which model is the best in our setting. As

TL is a very fast growing field, the models are trained on a wide variety of platforms such as

Tensorflow, Ca↵e, Torch and Theano. In addition, just a year ago, Keras which was one of the

biggest independent platforms had been integrated into Tensorflow. As Keras includes pre-trained

models for most of leading TLs, we prefer to use this platform to set a unified environment for

comparison of all TL models. We also classify models in two groups one that is mainly used for

14
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demanding computers (Inception V3, DenseNet V201) and the other for smaller devices (NASNet,

MobileNet V1 and V2) since mobiles have become a crucial tool in our daily life.

We perform experiments on static signs of American Sign Language dataset. In ASL, there are

two distinct signs namely dynamic signs and static signs. Our aim is to build an action recognition

framework to recognize signs in continuous frames (e.g. transcription generators for ASL songs or

conversations). In this work, we focus on ASL alphabet signs. For this problem, models are usually

based on ConvNets [4, 12], other Machine Learning (ML) techniques like Multilayer Random Forest

[98] or TL models such as GoogLeNet and AlexNet [84, 46].

The rest of this article is structured as follows. We highlight our main contributions in Section 3.2.

Next, we describe an ASL dataset for this research in Section 3.3.1. Then we discuss about Vector

CNs and TL models’ architectures in Section 3.3.2 and Section 3.3.3, accordingly. Experiments and

respective results are analyzed and discussed in Section 3.4. We conclude this work in Section 3.5.

3.2 Contributions

In our research, we improve the design of the Vector CNs and perform empirical comparisons versus

DL models on accuracy and speed using an ASL fingerspelling alphabet.

First, we propose to modify the Vector CN’s architecture to find the most e�cient designs.

Namely, we extended convolution layers to better filter Input images and varied FC layers in the

Reconstruction to leverage image restoration.

Second, we explore distinct DL models for demanding devices (Inception V3 and DenseNet

V201) and small devices (NasNet and MobileNets) when integrated with MLP and LSTM. We use

the former setting as a baseline to compare with the latter.

Third, Vector CNs are analyzed against DL models. We find out that CNs perform comparatively

on both accuracy and speed. In addition, CNs have an advantage as pre-training is not required.

Capsules can be trained within an hour compare to days or more for pre-trained DL models.

Finally, we make a demonstration to compare CNs and DLs on videos for teaching ASL alphabets.

The results are very promising as our models can recognize almost of all signs without previously

seen.

3.3 Proposed Methods

In this section, we first discuss about an ASL dataset that will be used in our experiments. Then

we deal with architectures of Vector CNs and DL models.
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Figure 3.1: Random Samples from ASL Dataset

3.3.1 ASL Dataset

One of our ultimate goals is to build an ASL translator that is capable of classifying alphabet signs

from language training videos. In these videos, professional trainers illustrate hand shapes for signs

from A to Z. As they perform demonstrations, the hand is moving around the screen from left to

right, up to down and vice versa. To train our models, we search for a dataset that captures similar

movements with a large sample size. We expect that each sign should have thousands of instances

since a standard MNIST has 60000 samples for 10 classes. With these constraints and since ASL

datasets are relatively fewer than for English alphabet, we found only one dataset from Kaggle

website1 that meets our requirements. This set of data includes all 26 signs including dynamic signs

“J” and “Z” with 3 additional signs. Each sign includes 3000 samples (200 ⇥ 200 pixels), totally

87000 for all signs. In these images, hands are placed in distinct positions on the screen, distance

and lightning are varied.

Figure 3.1 shows 10 random samples from the dataset. We notice that signs “N” and “P” have

di↵erent shapes compared to the target video. In stead of replacing them, these signs are retained

for the reason mentioned above.

The data are selected randomly and split into training and testing sets with the ratio of 70/30.

In addition, the value range is re-scaled from [0, 255] to [0, 1]. For data augmentation, the rotation,

shear, width shift and height shift are set in the ranges of 20, 0.2, 0.2 and 0.2 respectively. Moreover,

images’ brightness and contrast are spanned using random uniform within distances of 0.6 and 1.5.
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Figure 3.2: Vector Capsule Networks Architecture for ASL

3.3.2 Capsule Networks

Hinton describes a CNs as a group of neurons that represent distinct properties of the same entity.

In Vector CN, a capsule in one layer sends its activity to the capsule in above layer and the method

checks which one agrees the most. The essential structure of CNs is shown in the Figure 3.2.

The initial step of Vector CNs is similar to ConvNets where Input images are filtered to detect

features such as edge and curve. Then, in PrimaryCaps, the generated features are grouped to create

multi-dimension vectors. Illustrated in the Figure, 256 feature maps of size 14⇥ 14 are transformed

into 16 capsules each contains 14⇥ 14 vectors of 16 dimensions. Routing from this layer to the ASL

Capsule (ASLCap) layer is computed as follows.

vj =
||sj ||2

1 + ||sj ||2
sj

||sj ||
, sj =

X

i

cij ûj|i (3.1)

cij =
exp(bij)P
k exp(bik)

, ûj|i = Wijui (3.2)

bij  � bij + ûj|ivj (3.3)

where vj represents the vector output of capsule j in ASLCap and sj is its total input produced by

a weighted sum of all predictions from layer below. Next, the signal is passed through a squash non-

linearity so that the value is in the range of [0, 1]. The length of this vector suggests the probability

an entity (represented by the capsule) being detected. For example, if the vector vj is set to represent

1
https://www.kaggle.com/grassknoted/asl-alphabet
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Figure 3.3: Transfer Learning Architecture for ASL

the sign “L” then the length of this vector indicates if the sign is actually presented. The output of

vector ui is transformed to the vector ûj|i by multiplying with a weight matrix Wij . The routing

coe�cient bij will be increased or decreased based on whether the output vj has a similar direction

with its prediction ûj|i.

3.3.3 Deep Learning Models

This section deals with the integration of TL models in DL architecture for ASL recognition to

classify alphabet signs in continuous frames. ConvNets were introduced 20 years ago with the

notable architecture from LeNet [104]. Throughout the time, ConvNets tended to go deeper e.g.

VGG (19 layers). With recent advances in computer hardware, very deep architectures such as

Highway Networks [165] and Residual Networks [65] have exceeded 100 layers. Training these models

can take days or even months; this gives rise to TL where models are pre-trained on a dataset and

re-used on others. In Computer Vision, earlier convolution layers are considered to behave similarly

to edge and curve filters. Thus, these frozen weights can be used on our ASL dataset. A modification

in the last layer is necessary as the number of signs is 29 compared to 1000 categories in ImageNet.

In our research, we include Inception V3, DenseNet V201, NASNet, MobileNet V1 and MobileNet

V2 models in DL Architectures. Inception V1 (or often called GoogLeNet to honor LeCun’s Net-

works) was a winner for image classification challenge in ILSVRC 2014 and achieved top-5 error of

6.67% [170]. The results for Inception V3 [171] and DenseNet V201 [74] were 5.6% and 6.34%/5.54%

(on single-crop/10-crop) respectively.
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NASNet was recently introduced and obtained state-of-the-art results on several datasets in-

cluding Cifar-10, ImageNet and COCO [224]. NASNet comes with two versions one for comput-

ers (NASNetLarge) and the other for small devices (NASNetMobile). Since the computation for

NASNetLarge takes twice the required time for the slowest models DenseNet V201, we select only

NASNetMobile in our experiments. Despite of being made for small devices, the model accomplishes

8.4% top-5 error on ImageNet. Additionally, we choose MobileNets[72, 153] for comparisons within

mobile platform.

As shown in Figure 3.3, ASL’s signs are illustrated in a video and extracted as a sequence of

frames (Please see our demonstration for more information). At the runtime, an active model with

trained weights is loaded. Based on each TLs model, the extracted features have length variations

i.e. 2048, 1920, 1056, 1024 and 1280 for Inception V3, DenseNet V201, NASNetMobile, MobileNet

V1 and V2.

After this step, the flow goes through either MLP Layer or LSTM Layers. The former comprises

two FCs whereas the latter contains one LSTM and one FC. The LSTM has 2048 units with history’s

lookback of one for classifying one frame per time. Besides, all FCs are composed by 512 neurons.

We use MLP in our DL models as a baseline for comparison with Vector CNs. This is also interesting

to see performance of DL built on other techniques like LSTM.

3.4 Experiments and Results

In this section, we first discuss the performances of Vector CNs and DL models on variations of

Input image size and number of samples. Later, we take two models in DL and compare with two

models in Capsule.

3.4.1 Experiment 1: E↵ective of Dataset Size and Image Size on Capsule

Accuracy

To perform this experiment, we scale the Input images to 64⇥64, 32⇥32 and 16⇥16 pixels and use

datasets of 1
16 ,

1
8 ,

1
4 ,

1
2 , and a full size. We vary the size of the dataset so that we can observe the

e↵ects when the number of samples is small. We exclude dataset of 1
32 since this yields fewer than

100 samples per class which may not be enough for recognition. The dataset is split into train and

test with the ratio of 70/30. We also use two FCs for Reconstruction, one FC has a half of Input

image size and the other has an equal size e.g. when the Input image is 64⇥ 64, the two FCs have

sizes of 1024 (32⇥ 32) and 4096 (64⇥ 64), accordingly.

Figure 3.4a shows a result of this experiment using 1
16 dataset. We notice that the accuracy for

64⇥ 64 resolution images are lower than for 32⇥ 32 and 16⇥ 16. This contradicts our expectation

since with a larger resolution, the image is clearer and should be recognized better. From Figure
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(a)
1
16 Dataset (b) All Dataset

Figure 3.4: Comparisons of Capsule Networks on Image Sizes

3.4b, we see a di↵erent approach where 64 ⇥ 64 resolution images perform better than the others.

We exclude results for remaining sets to save space.

In summary, these experiments show that a larger image’s resolution does not always yield a

better accuracy because a small number of samples may a↵ect this performance. With a larger

dataset, a higher resolution generally results in a better accuracy. In addition, we can observe that

both 64⇥64 and 32⇥32 image resolutions achieve an accuracy of approximately 0.99 after 10 epochs

using full dataset.

3.4.2 Experiment 2: Comparisons of Deep Learning Models

In this experiment, we use the same variations of dataset size as in Vector CN models and compare

all DL models on MLP and LSTM. Figure 3.5a shows accuracy of all models with MLP and results

from a typical ConvNet using full dataset. We can observe that, despite of being simple, the accuracy

approaches 100% on training set. However, this yields only near 60% on test.

Much to our surprise, two versions of MobileNets both outperform Inception V3 and DenseNet

201. This maybe caused by the e�ciency of Depthwise Separable Convolution layers. It also can be

seen that DenseNet V201 performs better than Inception V3. Perhaps, the model’s blocks in which

one layer is connected to all other layers helps to reserve more important information. Additionally,

a similar trend can be seen using 1
16 dataset with accuracy be o↵set approximately 10% � 20%.

Moreover, we can observe analogous results using LSTM in Figure 3.6. Overall, DL models classified

with LSTM show faster convergences.
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(a) All Dataset (b)
1
16 Dataset

Figure 3.5: Comparisons of Deep Learning Models on MLP. The Figure on the left hand side also
includes a result of training and testing on a typical ConvNet (two Convolution layers each with 32
filters, one FC of 128 neurons, Adam optimizer and 50 epochs)

3.4.3 Experiment 3: Comparisons of Vector Capsule Networks and Deep

Learning Models on Speed

In this experiment, we perform speed tests of Vector CNs and DL models on running times for

Feature Extraction and Prediction. Regarding the first metric, all models are executed on GPUs of

Tesla K80 and P100. Capsules are excluded since extraction of features is not essential.

We observed that with only one ConvNet, the model performed very well on images 64⇥ 64 but

poorly on the target video. This maybe caused by the model learns very well on the training data

(a) All Dataset (b) 1/16 Dataset

Figure 3.6: Comparisons of Deep Learning Models on LSTM
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but distinct backgrounds between the two hamper its performance. For this reason, we add one more

convolution layer without pooling after Input image to filter better the backgrounds. We did not

add more ConvNets since we experienced the vanishing gradient problem with accuracy becoming

zeros even after a long training.

The structure of Vector CNs are changed as follows. For Capsule with Input image size 32⇥ 32

(aka Capsule 32 V1), we use one convolution layer after the input layer and four FCs in Reconstruc-

tion with sizes of 4⇥ 4, 8⇥ 8, 16⇥ 16 and 32⇥ 32. For Capsule with Input image sizes of 64⇥ 64,

we add two convolution layers where the first layer is followed by a pooling with size 2⇥ 2 and the

second convolution layer is without a pooling. We call this is Capsule 32 V2. In Reconstruction, we

design four FCs with sizes 8⇥ 8, 16⇥ 16, 32⇥ 32 and 64⇥ 64.

Table 3.1: Comparisons of Vector CNs and DL Models on Speed

Metrics

Models
Feature

Extraction
(Tesla K80)

Feature
Extraction

(Tesla P100)

Prediction
(CPU 2.7GHz)

T
im

e
(s
)

Inception V3 3453 1910 0.248
DenseNet V201 6250 3199 -
NASNet 3018 2592 -
MobileNet V1 870 507 0.070
MobileNet V2 1175 758 -
Capsule 32 V1 - - 0.069
Capsule 32 V2 - - 0.086

It can be gleaned from Table 3.1 that MobileNet V1 runs faster than any other models on

both GPUs whereas DenseNet V201 is the slowest. This clearly shows the advantage of Depthwise

Separable Convolution in reducing computation. As we expected, all models for mobiles perform

faster than models for computers with an exception that NASNet is slower than Inception V3 on

Tesla P100.

On prediction speed comparison, we pickup two models from DL. We select MobileNet V1 because

of its best accuracy and fastest speed. Besides, Inception V3 is chosen instead of DenseNet V201

based on a faster speed. We perform this experiment on a computer with 4-CPUs of 2.7GHz. It is

unexpected that Capsule 32 V1 is only slightly faster than MobileNet V1 since the model has only

2 CN layers (and 3 ConvNets) compared to 28 ConvNets of its counterpart. It is also noticed that

Capsule V2 runs three times faster than Inception 32 V3 but quite slower than MobileNet V1.

3.4.4 Experiment 4: Comparison of Vector Capsule Networks and Deep

Learning Models on Accuracy

This experiment is designed to compare accuracy of Capsules and DL architectures. We select

MobileNet V1, Inception V3, Capsule 32 V1 and Capsule 32 V2 as discussed in the previous section.
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Figure 3.7: Capsule Networks vs Deep Learning Models on Accuracy

As we can see from Figure 3.7, MobileNet V1 and Inception V3 perform better than Capsules in

first few epochs. However, as number of epochs increases, Capsule 32 V1 achieves a similar accuracy

of Inception V3 and Capsule 32 V2 approaches the accuracy of MobileNet V1.

3.5 Conclusions

In this research, we propose to improve the design of Vector CN by extending ConvNet layers after

Input image and vary the number of FCs in Reconstruction to accomplish better accuracy. Having

a larger image size is critical in our approach since certain signs are similar. A small change in

the position of fingers can yield distinct signs. In addition, variation of background contexts may

hamper Capsules’ performance. Using our approach we attain the goals as follows. First, our results

show that Capsule 32 V2 performs comparatively to DL MobileNet V1 on accuracy and Capsule 32

V1 runs a slightly faster than its counterpart. Second, Vector CNs are greater than DL models in the

sense that the latter requires pre-trained weights which can take days or even months for training

whereas the former can be trained on-the-fly within an hour. Third, as a result of our exploration,

we found that MobileNet V1 even though was mainly built for small devices but is superior to all

other DL models both on accuracy and speed in this dataset.
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Furthermore, we made a demonstration to illustrate our approach where we compare Vector

CN V1 with DL MobileNet V1 in an ASL video. The recorded file can be accessed via the link2.

Although, Vector CN can recognize most of all signs (excluding signs that we mentioned earlier),

the model is more sensitive to changes than the DL model. This suggests pooling in the DL may

better than just rescaling as in the Vector CN. In addition, the DL performs better although the

accuracy (when testing on the ASL dataset) is similar to that of Vector CN. This can indicate that

the DL model is more generative. For this reason, additional samples are needed to improve the

overall performance.

Although we demonstrate this approach in the context of ASL alphabet signs, the approach has

broader applications to any video recognition tasks where each individual frame’s information are

crucial.

In the future, we plan to redesign CN’ structure to perform on larger images. We also plan to

build Vector CNs and DL MobileNet V1 on mobile devices as the accuracy and speed allow these

networks to run in realtime.

2
http://bit.ly/2O4sJSU



Chapter 4

Depthwise Separable Convolution

Capsule Networks

4.1 Introduction

In our previous research [130], we performed experiments to compare accuracy and speed of Capsule

Networks versus Deep Learning models. We found that even though CNs have a fewer number of

layers than the best DL model using MobileNet V1 [72], the network performs just slightly faster

than its counterpart.

We first explored details of MobileNet V1’s architecture and observed that the model utilizes

Depthwise Separable Convolution for the speed improvement. The layer comprises of a Depthwise

Convolution (DC) and Pointwise Convolution (PC) which su�ciently reduces the model size and

computation. Since CNs also integrate a convolution layer in its architecture, we propose to replace

this layer with the faster convolution.

At the time this article is being written, there are 439 articles citing the original CNs paper

[150]. Among these articles, a couple of works attempt to improve speed and accuracy of CNs.

For example, the authors [8] propose Spectral Capsule Networks which is composed by a voting

mechanism based on the alignment of extracted features into a one-dimensional vector space. In

addition, other authors claim that by using a Convolutional Decoder in the Reconstruction layer

could decrease the restoration error and increase the classification accuracy [125].

CNs illustrated its e↵ectiveness on MNIST dataset, though much variations of background to

models e.g. in CIFAR-10 probably causes the poorer performance [150]. To solve this problem, we

argue that primary filters to eliminate such backgrounds should be as important as other parts of

CNs’ architecture. Just, improvements on speed and accuracy of these Convolution layers can be

bonus points for the network.

25
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After a thorough search of relevant literature, we believe that this is the first work on the

integration of DW into CNs.

The rest of this article is organized as follows. In Section 4.2, we highlight our main contributions.

Next, we analyse the proposed design in Section 4.3.1. Following, the design of DL models for the

purpose of comparison is illustrated in Section 4.3.2. Experiments and results are discussed in

Section 4.4 accordingly. Finally, we conclude this work in Section 4.5.

4.2 Contributions

Our main contributions are twofold: first, on the replacement of Standard Convolution with Depth-

wise Separable Convolution in CNs’ architecture and, second, on the empirical evaluations of the

proposed Capsule Network against Deep Learning models.

Regarding the design of CNs, we found that the integration of DW can significantly reduce the

model size, increase stability and yield higher accuracy than its counterpart.

With respect to experimental evaluations of CNs versus DL models, the Capsule models perform

competitively both on model size and accuracy.

4.3 Proposed Methods

4.3.1 Integration of Depthwise Separable Convolution and Capsule Net-

works

As mentioned in the previous Section, we propose to substitute a SC of CNs with a DW. Figure 4.1

illustrates the architecture of the proposed model. Additionally, we apply this architecture for an

ASL dataset with 29 signs. We discuss about this dataset more details in Section 4.4.1.

We divide this architecture into three main layers including Initial Filter, Depthwise Separable

Convolution Layer and Capsules Layer. In principle, we can change the first SC with a DW. However,

the Input images have only three depth channels which require fewer computations than in the second

layer so that we keep the first Convolution intact. The reduction of computation cost using DW is

formulated as follows.

An SC takes an input DF ⇥DF ⇥M feature map F and generates DG ⇥DG ⇥N feature map

G where DF is the width and height of the input, M is the number of input channels, DG is the

width and height of the output, and N is the number of output channels.

The SC is equipped with a kernel of size DK⇥DK⇥M⇥N where DK is assumed to be a spacial

square. M and N are the number of input and output channels as mentioned above.

The output of the feature map G using an SC with kernel stride is 1 and same padding (or
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Figure 4.1: Depthwise Separable Convolution Capsule Architecture.

padding in short):

Gk,l,n =
X

i,j,m

Ki,j,m,n · Fk+i�1,l+j�1,m (4.1)

The computation cost of the SC can be written as:

DK ·DK ·M ·N ·DF ·DF (4.2)
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For one channel, the output of feature map Ĝ after Depthwise Convolution:

Ĝk,l,m =
X

i,j,m

K̂i,j,m · Fk+i�1,l+j�1,m (4.3)

where K̂ is the denotation of a Depthwise Convolution with kernel size DK ⇥ DK ⇥M and this

Convolution applies mth filter to mth channel of F yields the mth channel in the output.

The computation cost of the Depthwise Convolution is written as:

DK ·DK ·M ·DF ·DF (4.4)

Pointwise Convolution uses 1⇥ 1 Convolution, therefore, the total cost after Pointwise Convolu-

tion:

DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF (4.5)

The computation cost of Depthwise Separable Convolution after two convolutions is reduced as:

DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF

DK ·DK ·M ·N ·DF ·DF

=
1

N
+

1

D2
K

(4.6)

For more details of these computations, please refer to the MobileNet V1 article [150].

In Figure 4.1, we show a sample where colour images have a size of 32 ⇥ 32 ⇥ 3 and filtered by

a ConvNet which is equipped with a 3⇥ 3 kernel and 512 filters. If the DW is applied in this layer,

then the cost of computation can be reduced between 8 and 9 times. Though the input image has

a depth of only 3, the reduction of computation cost in this layer is unmatched with hundreds of

channels in the second layer.

4.3.2 Deep Learning Models

For the purpose of comparison, we also briefly discuss the DL’s architecture as shown in Figure 4.2.

As we can see from the Figure, this architecture comprises of several crucial layers including TL,

MLP and LSTM layers. In TL layer, we utilize one of the models including Inception V3 [171],

DenseNet V201 [74], NASNetMobile [224], MobileNet V1 [72] and MobileNet V2 [153] to extract

features from input ASL signs. We then use MLP Layer as a baseline to compare with LSTM Layer.

The MLP Layer includes two FCs each with 512 neurons whereas the LSTM Layer contains one

LSTM with 2048 units and one FC. More detail of the architecture can be referred to our earlier

work.
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Figure 4.2: Deep Learning Architecture

4.4 Experiments and Results

In this section, we first discuss an ASL Dataset that will be used as our testbed. Then we setup

experiments to compare our proposed Capsule’s architecture using DW against typical ConvNets.

Next, we analyse performances of TL models including Inception V3, DenseNet V201, NASNet,

MobileNet V1 and MobileNet V2 using MLP and LSTM. Finally, we pickup the best of CNs and

challenge the best of DL models.

4.4.1 ASL Dataset

For the purpose of comparison with our previous work, we use the same ASL dataset for finger-

spelling. The dataset was obtained from Kaggle website and includes 26 signs for letters A to Z

with 3 additional signs using in other cases. Each sign contains 3000 samples (200 ⇥ 200 pixels),

totally 87000 samples for all signs. Figure 4.3 shows 10 random samples from this dataset. In these

experiments, we use half of the number of samples since the accuracy are similar to that of using all

dataset and this also reduces the training time by half. We divide the data into a train set and a

test set with the ratio 70 and 30.

4.4.2 Experiment 1: DW Capsules vs SC Capsules

In this experiment, we perform experimental evaluations of DW Capsules against SC Capsules.

First, we vary the size of Convolution’s kernel including 9⇥ 9, 7⇥ 7, 5⇥ 5 and 3⇥ 3 using the Input

image’s size of 32⇥32. Then we add one more ConvNet in the first layer in the CNs’s architecture as
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Figure 4.3: Random Samples from the ASL Dataset

shown in Figure 4.1. We also provide two variations of CNs, one for scaling down the total number of

model parameters by adding a Max Pooling after the second ConvNet (Mini version) and, another,

which increases Input image sizes to 64⇥ 64 (Max version).

Figure 4.4b and 4.4d show that DW Capsules perform equivalently or even better on accuracy

than SC Capsules. Additionally, SC Capsules seems to be unstable and fluctuating based on kernel’s

size. Figure 4.4a shows a similar trend when SC Capsules are more likely to volatile when a half

of SC Capsules are outperformed by DW Capsules. Only in Figure 4.4c, all SC Capsules achieve

higher accuracy than that of DW Capsules. Though this can be a trade of between training epoch

and training speed.

4.4.3 Experiment 2: Deep Learning Models using MLP and LSTM

In this section, we perform experiments of DL models using MLP and LSTM on variations of the

ASL dataset including 1
16 ,

1
8 ,

1
4 ,

1
2 and the whole dataset.

Due to the limited number of pages allowed, we excerpt results from most of all DL models and

preserve only one model for mobile devices and one model for powerful computers i.e. MobileNet

V1 and Inception V3. We select MobileNet V1 because of its best accuracy and Inception V3 since

the model is faster than DenseNet V201.

The Figure 4.5a shows that Inception V3 TL model when integrated with LSTM outperforms

its version on MLP in all sets of data. Similarly, MobileNet V1 LSTM achieves a higher accuracy

than MobileNet V1 MLP. Remarkably, MobileNet V1 performs better than Inception V3 on both

MLP and LSTM versions even though the model is mainly built for much smaller devices.



CHAPTER 4. DEPTHWISE SEPARABLE CONVOLUTION CAPSULE NETWORKS 31

(a) DW vs SC V1 (b) DW vs SC V2

(c) DW vs SC Mini (d) DW vs SC Max

Figure 4.4: DW Capsules (blue) vs SC Capsules (cyan). The numbers 32 and 64 denote Input
image sizes 32⇥ 32 and 64⇥ 64, respectively; v1 stands for DW Capsule whereas v2 stands for SC
Capsule. The next number expresses the amount of ConvNets. The last number denotes whether
the ConvNet is followed by a Max Pooling (1 if not, 2 if followed). All ConvNets in the primary
layer have the kernel sizes vary from 9⇥ 9, 7⇥ 7, 5⇥ 5 to 3⇥ 3.
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4.4.4 Capsule Networks vs Deep Learning Models on Model Size and

Accuracy

In this Section, we analyse CNs and DL models with respect to the total size of these models as

well as accuracy. We select the best DW Capsules and SC Capsules including: 1. Input image size

32 ⇥ 32 pixel followed by two ConvNets and a MP (Figure 4.4c) 2. Input image size 32 ⇥ 32 pixel

one for the best accuracy SC (Figure 4.4a) and one for the best accuracy DW (Figure 4.4b) 3. Input

image size 64 ⇥ 64 pixel integrated with two ConvNets and one MP (Figure 4.4d). These CNs are

denoted as DW Mini, SC Mini, DW, SC, DW Max and SC Max, respectively.

Generally, we can see from Figure 4.6 that DW Capsules drastically decrease the models’ size.

More specifically, Capsule 32 DW Mini reduces the model size by 21% while Capsule 64 DW Max

shrinks 25% of the total parameters. It can be noted that Capsule 32 DW reduces the number of

parameters by 40% which is more than Capsule 32 DW Mini and Max due to one more convolution.

In comparison between CNs and DL models, we can observe that MobileNet V1 MLP has a

smallest model size followed by Inception V3 MLP. Additionally, Capsule 32 DW and Capsule 64

DW Max have smaller sizes than MobileNet LSTM and Inception V3 LSTM.

In terms of accuracy, MobileNet V1 LSTM outperforms all other models. In spite of that,

Capsule 64 DW Max reaches the second position and performs better than MobileNet V1 MLP

after 10 epochs. In addition, Capsule 64 DW Max outperforms both versions of Inception V3 LSTM

and MLP by a large extent. Though Capsule 64 DW has 40 times larger model size than MobileNet

V1 MLP and 20% more than MobileNet V1 LSTM, its total parameter is less than that of Inception

V3 LSTM.

It can be noticed that Capsule 32 DW Mini though having the smallest size among all CNs

but is outperformed by MobileNet V1 MLP with regards to accuracy. However, when we perform

these experiments with more epochs, this gap can be eliminated as Capsule 32 DW Mini yields the

accuracy of MobileNet V1 MLP (0.9928) after 17 epochs. A similar trend also occurs to Capsule 32

SC Mini as it reaches the accuracy of MobileNet V1 LSTM (0.9986) after 18 epochs (approximately

1h training on Tesla K80).

4.5 Conclusions

In this research, we first propose to replace Standard Convolution in Capsule Networks’ architecture

with Depthwise Separable Convolution. Then we perform empirical comparisons of the best CNs

with the best DL models.

The results show that our proposed DW Capsules remarkably decrease the size of models. Among

the chosen CNs, the total parameters had shrunk roughly by an amount between 21% – 25%.

In terms of accuracy, Capsule 64 DW Max performs better than other Capsule models. Though

Capsule 32 SC Mini can be a trade-o↵ between the accuracy and the number of parameters.
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In comparison with DL models, Capsule 32 DW Mini has a larger number of parameters, yet

it achieves the accuracy of MobileNet V1 after a few more epochs. Meanwhile, Capsule 32 SC

Mini can attain that of MobileNet V1 LSTM’s accuracy with 3 to 4 times smaller in the number of

parameters.

Capsule 32 DW Mini and 64 DW Max outperform Inception V3 MLP and LSTM on accuracy.

Moreover, Capsule 64 DW Max occupies 5% less the number of parameters than Inception V3 LSTM

though Capsule 32 DW Mini has 4 times larger size than Inception V3 MLP.

After a thorough literature search, we believe that this is the first work that proposes the integra-

tion of Depthwise Separable Convolution into Capsule Networks. Additionally, we provide empirical

evaluations of the proposed CNs versus the best DL models.

In future work, we will apply the proposed CNs on di↵erent datasets and will develop these

networks for mobile platforms.
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(a) MLP vs LSTM on Inception V3 (b) MLP vs LSTM on MobileNet V1

Figure 4.5: Comparisons of MLP and LSTM on Deep Learning Models.

Figure 4.6: Total Parameters of Capsule Networks and Deep Learning Models. The numbers 32 and
64 denote Input image sizes 32 ⇥ 32 and 64 ⇥ 64, respectively; v1 stands for DW Capsule whereas
v2 stands for SC Capsule. The next number expresses the amount of ConvNets. The last number
denotes whether the ConvNet is followed by a Max Pooling (1 if not, 2 if followed). All ConvNets
in the primary layer have the kernel sizes vary from 9⇥ 9, 7⇥ 7, 5⇥ 5 to 3⇥ 3.
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Figure 4.7: Capsule Networks vs Deep Learning Models



Chapter 5

Rethinking Recurrent Neural

Networks and others

5.1 Introduction

Recently, the image recognition task has been transformed by the availability of high-performance

computing hardware—particularly modern GPUs and large-scale datasets. The early designs of

ConvNets in the 1990s were shallow and included only a few layers; however, as the ever-increasing

volume of image data with higher resolutions required a concomitant increase in computing power,

the field has evolved; modern ConvNets have deeper and wider layers with improved e�ciency

and accuracy [160, 171, 169, 65, 196, 22, 73]. The later developments involved a balancing act

among network depth, width and image resolution [172] and determining appropriate augmentation

policies [29].

During this same period, RNNs have proven successful at various applications, including natural

language processing [116, 205], machine translation [23], speech recognition [20, 17], weather fore-

casting [143], human action recognition [215, 162, 115], drug discovery [155], and so on. However, in

the image recognition field, RNNs are largely used merely to generate image pixel sequences [58, 133]

rather than being applied for whole-image recognition purposes.

As the architecture of RNNs has evolved through several forms and become optimized, it could be

interesting to study whether these spectacular advances have a direct e↵ect on image classification.

In this study, we take a distinct approach by integrating an RNN and considering it as an essential

layer when designing an image recognition model.

In addition, we propose End-To-End multiple-model ensembles that learn expertise through the

various models. This approach was the result of a critical observation: when training models for

specific datasets, we often select the most accurate models or group some models into an ensemble.

36
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We argue that merged predictions can provide a better solution than can a single model. Moreover,

the ensembling process essentially breaks the complete operation (from obtaining input data to

final prediction) into separate stages and each step may be performed on di↵erent platforms. This

approach can cause serious issues that may even make it impossible to integrate the operation into

a single location (e.g., on real-time systems) [192, 156] or to a future platform such as a System on

a Chip (SoC) [50, 223].

Additionally, we explore other key techniques, such as the learning rate strategy and Test Time

Augmentation, to obtain overall improvements. The remainder of this article is organized as follows.

Our main contributions are discussed in Section 5.2. Various RNN formulations, including a typical

RNN and more advanced RNNs, are the focus of subsection 5.3.1. In addition, our core idea for

designing ConvNet models that gain experience from expert models is highlighted in subsection 5.3.2.

In subsection 5.4.1, we evaluate our design on the iNaturalist dataset, and in subsection 5.4.2, the

performances of various image recognition models integrated with RNNs are thoroughly analyzed.

In subsection 5.4.3, we evaluate our design on the iCassava dataset. In subsections 5.4.4 and 5.4.5,

we discuss our learning rate strategy and the softmax pruning technology. Additionally, we extend

our experiments in subsection 5.4.6 to include more challenging datasets (i.e., SVHN, Cifar-100, and

Cifar-10) and show that our model’s performance can match the state-of-the-art models even under

limited resources. In subsection 5.4.7, we show that our approach outperforms the state-of-the-art

methods by a large margin. Finally, we conclude our research in Section 5.5.

5.2 Contributions

Our research di↵ers from previous works in several ways. First, most studies utilize RNNs for

sequential data and time series. Except for rare cases, RNNs are used largely to generate sequences

of image pixels. Instead, we propose integrating RNNs as an essential layer of ConvNets.

Second, we present our core idea for designing a ConvNet in which the model is able to learn

decisions from expert models. Typically, we choose predictions from a single model or an ensemble

of models.

Another main contribution of this work involves a training strategy that allows our models to

perform competitively, matching previous approaches on several datasets and outperforming some

state-of-the-art models.

We make our source code so other researchers can replicate this work. The program is written

in the Jupyter Notebook environment using a web-based interface with a few extra libraries.
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5.3 Proposed Methods

Our key idea is to integrate an RNN layer into ConvNet models. We propose several RNNs and

present the computational formulas. The concept of training a model to learn predictions from

multiple individual models and the design of such a model is also discussed.

5.3.1 Recurrent Neural Networks

For the purpose of performance analysis and comparison, we adopt both a typical RNN and some

more advanced RNNs i.e., LSTM and GRU as well as a Bidirectional RNN (BiRNN). The formula-

tions of the selected RNNs are presented as follows.

Considering a standard RNN with a given input sequence x1, x2, ..., xT , the hidden cell state is

updated at a time step t as follows:

ht = �(Whht�1 +Wxxt + b), (5.1)

where Wh and Wx denote weight matrices, b represents the bias, and � is a sigmoid function that

outputs values between 0 and 1.

The output of a cell, for ease of notation, is defined as

yt = ht, (5.2)

but can also be shown using the softmax function, in which ŷt is the output and yt is the target:

ŷt = softmax(Wyht + by). (5.3)

A more sophisticated RNN or LSTM that includes the concept of a forget gate can be expressed as

shown in the following equations:

ft = �(Wfhht�1 +Wfxxt + bf ), (5.4)

it = �(Wihht�1 +Wixxt + bi), (5.5)

c0t = tanh(Wc0hht�1 +Wc0xxt + b0c), (5.6)

ct = ft � ct�1 + it � c0t, (5.7)

ot = �(Wohht�1 +Woxxt + bo), (5.8)

ht = ot � tanh(ct), (5.9)

where the � operation represents an elementwise vector product, and f , i, o and c are the forget

gate, input gate, output gate and cell state, respectively. Information is retained when the forget

gate ft becomes 1 and eliminated when ft is set to 0.
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Because LSTMs require powerful computing resources, we use a variation, (i.e., a GRU) for

optimization purposes. The GRU combines the input gate and forget gate into a single gate—

namely, the update gate. The mathematical formulas are expressed as follows:

rt = �(Wrhht�1 +Wrxxt + br), (5.10)

zt = �(Wzhht�1 +Wzxxt + bz), (5.11)

h0
t = tanh(Wh0h(rt � ht�1) +Wh0xxt + bz), (5.12)

ht = (1� zt)� ht�1 + zt � h0
t. (5.13)

Finally, while a typical RNN essentially takes only previous information, BiRNNs integrate both

past and future information:

ht = �(Whxxt +Whhht�1 + bh), (5.14)

zt = �(WZXxt +WHXht+1 + bz), (5.15)

ŷt = softmax(Wyhht +Wyzzt + by), (5.16)

where ht�1 and ht+1 indicate hidden cell states at the previous time step (t�1) and the future time

step (t+ 1).

For more details on the RNN, LSTM, GRU and BiRNN models, please refer to the following

articles [82, 152, 207], [57, 48], [21, 82] and [112, 154] respectively.

5.3.2 End-to-end Ensembles of Multiple Models

Our main idea for this design is that when several models are trained on a certain dataset, we would

typically choose the model that yields the best accuracy. However, we could also construct a model

that combines expertise from all the individual models. We illustrate this idea in Figure 5.1.

As shown in the upper part, each actor represents a trained single model. For each presented sam-

ple, each actor predicts the probability that the sample belongs to each category. These probabilities

are then combined and utilized to train our model.

The bottom part of the figure represents our ConvNet design for this idea. We essentially select

three models to make predictions instead of two. Using only two models may result in a situation

where one model dominates the other. In other words, we would use the predictions primarily from

only one model. Adding one additional model provides a balance that o↵sets this weakness of a

two-model architecture. Note that we limit our designs to just three models because of resource

limitations (i.e., GPU memory). We name this model E2E-3M, where “E2E“ is an abbreviation of

the “end-to-end“ learning process [66, 14, 13], in which a model performs all phases from training

until final prediction. The “ 3M“ simply documents the combination of three models.

Each individual model (named Net 1, Net 2, and Net 3) is a fine-tuned model in which the last
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Figure 5.1: End-to-end Ensembles of Multiple Models: Concept and Design. The upper part of this
image illustrates our key idea, in which several actors make predictions for a sample and output the
probability of the sample belonging to each category. The lower part presents a ConvNet design in
which three distinct and recent models are aggregated and trained using advanced neural networks.
This design also illustrates our proposal of integrating an RNN into an image recognition model.
(Best viewed in color)

layer is removed and replaced by more additional layers, e.g., global pooling to reduce the network

size and an RNN module (including a reshape layer and an RNN layer). The models also employ

Gaussian noise to prevent overfitting, include a fully connected layer and each model has its own

softmax layer. The outputs from these three models are concatenated and utilized to train the

subsequent neural network module, which consists of a fully connected layer, a LeakyReLU[121]

layer, a dropout[164] layer and a softmax layer for classification.

Ensemble learning (EL) is a key aspect of this design. An ensemble refers to an aggregation

of weaker models (base learners) combined to construct a model that performs more e�ciently (a

strong learner) [151]. The ensembling technique is more prevalent in ML than in DL, especially in

the image recognition field, because convolution requires considerable computational power. Most
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of the recent related studies focus on a simple averaging or voting mechanism [136, 6, 42, 183, 191],

and few have investigated integrating trainable neural networks [5, 45]. Our research di↵ers from

prior studies, because we study the design on a much larger scale using a larger number of up-to-date

ConvNets.

Suppose that our ConvNet design has n fine-tuned models or classifiers and that the dataset

contains c classes. The output of each classifier can be represented as a distribution vector:

�j = [�1j �2j . . . �cj ], (5.17)

where

1  j  n,

0  �ij  1 81  i  c,
cX

i=1

�ij = 1.

After concatenating the outputs of the n classifiers, the distribution vector becomes

� = [�1 �2 . . . �n]. (5.18)

For formulaic convenience, we assume that the neural network has only one layer and that the

number of neurons is equal to the number of classes. As usual, the networks’ weights, ⇥, are

initialized randomly. The distribution vector is computed as follows:

�
0
= ⇥ · � = [�

0

1 �
0

2 . . . �
0

c], (5.19)

where

1  j  c,

�
0

j =
ncX

i=1

�iwij .

Finally, after the softmax activation, the output is

⌘
0

j =
e�

0
j

cP
i=1

e�
0
j

. (5.20)
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5.4 Experiments and Results

In this section, we will present the experiments used to evaluate our initial design (without an

RNN) and then analyze the performance when RNNs are integrated. We also describe our E2E

ensemble multiple models, the developed training strategy, and the extension of the softmax layer.

These experiments were performed on the iNaturalist’19 [181] and iCassava’19 Challenges [126],

and on the Cifar-10 [95] and Fashion-MNIST [195] datasets. We also extend our experiments on

Cifar-100 [95], SVHN [128] and Surrey [142].

5.4.1 Experiment 1: iNaturalist’19

DL [102] and ConvNet have achieved notable successes in the image recognition field. From the early

LeNet model [103], first proposed several decades ago, to the recent AlexNet [97], Inception [170,

171, 169], ResNet [65], SENet [73] and E�cientNet [172] models, these ConvNets have leveraged

automated classification to exceed human performance in several applications. This e�ciency is due

to the high availability of powerful computer hardware, specifically GPUs and big data.

In this subsection, we examine the significance of our design, which utilizes several ConvNets

constructed based on leading architectures such as InceptionV3, ResNet50, Inception-ResNetV2,

Xception, MobileNetV1 and SEResNeXt101. We adopt InceptionV3 as a baseline model since the

popularity of ConvNets among deep learning researchers means they can often be used as standard

testbeds. In addition, InceptionV3 is known for employing sliding kernels, e.g., 1⇥1, 3⇥3 or 5⇥5,
in parallel, which essentially reduces the computation and increases the accuracy. We also use

the simplest version of residual networks, i.e., . ResNet50 (ResNet has several versions, including

ResNet50, ResNet101 and ResNet152, named according to the number of depth layers), which

introduces short circuits through each network layer that greatly reduce the training time. In

addition, we explore other ConvNets to facilitate the comparisons and evaluations.

Our initial design is depicted in Figure 5.2. The core of this process implements one of the

abovementioned ConvNet models. While the architectures of these ConvNets di↵er, usually their

top layers function as classifiers and can be replaced to adapt the models to di↵erent datasets. For

example, Xception and ResNet50 use a Global Pooling and a FC layer as the top layers, while

VGG19 [211] uses a flatten layer and two FCs layers (the original article used MP, but for some

reason the Keras implementation uses a flatten layer).

Our design adds Global Pooling or Global Average Pooling (GAP) to decrease the output size of

the networks (this is in line with most ConvNets but contrasts with VGGs, in which flatten layers are

utilized extensively). Notably, we also insert an RNN module to evaluate of our proposed approach.

The module comprises a reshape layer and an RNN layer as described in subsection 5.3.1. Moreover,

we add a Gaussian noise layer to increase sample variation and prevent overfitting. In the FC layer,

the number of neurons varies , (e.g., 256, 512, 1024 or 2048); the actual value is based on the specific
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Figure 5.2: Single E2E-3M Model. The fine-tuned model is a pretrained ConvNet (e.g., InceptionV3)
with the top layers excluded and the weights retrained. The base model comes preloaded with
ImageNet weights. The original images are rescaled as needed to match the required input size
of the fine-tuned model or for image resolution analysis. The global pooling layer reduces the
networks’ size, and the reshaping layer converts the data to a standard input form for the RNN
layer. The Gaussian noise layer improves the variation among samples to prevent overfitting. The
fully connected layer aims to improve classification. The softmax layer is another fully connected
layer that has the same number of neurons as the number of dataset categories, and it utilizes
softmax activation.

experiment. The softmax layer uses the same number of outputs as the number of iNaturalist’19

categories.

All the networks’ layers from the ConvNets are unfrozen; we reuse only the models’ architectures

and pretrained weights (these ConvNets are pretrained on the ImageNet dataset [34, 149]). Reusing

the trained weights o↵ers several advantages because retraining from scratch takes days, weeks or

even months on a large dataset such as ImageNet. Typically, TL can be used for most applications

based on the concept that the early layers act like edge and curve filters; once trained, ConvNets can

be reused on other, similar datasets [211]. However, when the target dataset di↵ers substantially

from the pretrained dataset, retraining or fine-tuning can increase the accuracy. To distinguish these

ConvNets from the original ones, we refer to each model as a fine-tuned model.

We conduct our experiments on the iNaturalist’19 dataset, which was originally compiled for the

iNaturalist Challenge, conducted at the 6th Fine-grained Visual Categorization (FGVC) workshop

at CVPR 2019. In the computer vision area, FGVC has been a focus of researchers since approxi-

mately 2011 [185, 203, 90], although research on similar topics appeared long before [28, 49]. FGVC

or subordinate categorization aims to classify visual objects at a more subtle level of detail than

basic level categories [67], for example, bird species rather than just birds [185], dog types [90],

car brands [94], and aircraft models [122]. The iNaturalist dataset was created in line with the

development of FGVC [181], and the dataset is comparable with ImageNet regarding size and cat-

egory variation. The specific dataset used in this research (iNaturalist’19) focuses on more similar

categories than previous versions and is composed of 1,010 species collected from approximately two



CHAPTER 5. RETHINKING RECURRENT NEURAL NETWORKS AND OTHERS 44

hundred thousand real plants and animals. Figure 5.3 shows some random images from this dataset

and indicates the species shown as well as their respective classes and subcategories.

Figure 5.3: Random Samples from iNaturalist’19 dataset. Each image is labeled with the species
name and its subcategory

The dataset is randomly split into training and test sets at a ratio of 80 : 20. In addition, the

images are resized to appropriate resolutions, e.g., for the InceptionV3 standard, the rescaled images

have a size of 299 ⇥ 299. The resolution is also increased to 401 ⇥ 401 or even 421 ⇥ 421. In the

Gaussian noise layer, we set the amount of noise to 0.1, and in the FC layer, we chose 1, 024 neurons

based on experience, because it is impractical to evaluate all the layers with every setting.

We configured a Jupyter Notebook server running on a Linux operating system using 4 GPUs

(GeForce® GTX 1080 Ti) each with 12 GB of RAM. For coding, we used Keras with a TensorFlow

backend [2] as our platform. Keras is written in the Python programming language and has been

developed as an independent wrapper that runs on top of several backend platforms, including

TensorFlow. The project was recently acquired by Google Inc. and has become a part of TensorFlow.

Figure 5.4 shows the results of this experiment in which the top-1 accuracy is plotted against
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the Floating-point Operations per Second (FLOPS). The size of each model or the total number

of parameters is also displayed. The top-1 accuracy was obtained by submitting predictions to the

challenge website, obtaining the top-1 error level from the private leaderboard and subtracting the

result from 1. During a tournament, the public leaderboard is computed based on 51% of the o�cial

test data. After the tournament, the private leaderboard contains a summary of all the data.

Figure 5.4: iNaturalist’19 Model Accuracy. Here, “Benchmark“ denotes the InceptionV3 result using
the default input setting (an image resolution of 299 ⇥ 299). The sizes of the input images for the
other models are indicated along with their respective names. For example, Xception-421 indicates
that the input images for that model have been rescaled to 421⇥ 421.

As expected, a higher image resolution yields greater accuracy but also uses more computing

power for the same model (InceptionV3). As a side note, our benchmark achieved an accuracy of

0.7097, which is a marginal gap from the benchmark model on the Challenge website (0.7139). Be-

cause we have no knowledge of the organizers’ ConvNet designs, settings and working environments,

we cannot delve further into the reasons for this di↵erence. Later, we increased the image resolutions

from 299⇥299 to 401⇥401 and 421⇥421 and switched the fine-tuned models. Using Xception-421,

our model obtained an accuracy of approximately 0.7347.

Because our server is shared, training takes approximately one week each time. This is the

reason why we could increase the image size to only 421 ⇥ 421. In addition, we did not obtain the

results for SEResNeXt101-421, Inception-ResNetV2-421 and ResNet50-299in this experiment, but

projected their approximated accuracies; we will use these models in later experiments. Additionally,

because adding an RNN module would substantially increase the training time, the RNN module is

not analyzed on the iNaturalist’19 dataset.
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5.4.2 Experiment 2: Fashion-MNIST

As mentioned in the previous section, most of the research regarding RNNs has focused on sequential

data or time series. Despite the little attention paid to using RNNs with images, the main goal is to

generate sequences of pixels rather than direct image recognition. Our approach di↵ers significantly

from typical image recognition models, in which all the image pixels are presented simultaneously

rather than in several time steps.

We systematically evaluated the proposed design that utilizes distinct recurrent neural networks.

These models include a typical RNN, an advanced GRU and a bidirectional RNN–BiLSTM—and we

compared them against a standard (STD) model without an RNN module. In addition, we selected

representative fine-tuned models, namely, InceptionV3, Xception, ResNet50, Inception-ResNetV2,

MobileNetV1, VGG19 and SEResNeXt101, for comparison and analysis.

Figure 5.5: Some Samples from the Fashion-MNIST dataset
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In this experiment, we employ the Fashion-MNIST dataset, which was recently created by Za-

lando SE and intended to serve as a direct replacement for the MNIST dataset as a machine learn-

ing benchmark because some models have achieved an almost perfect result of 100% accuracy on

MNIST. The Fashion-MNIST dataset contains the same amount of data as MNIST–50, 000 training

and 10, 000 testing samples–and includes 10 categories. Figure 5.5 visualizes how this dataset looks;

each sample is a 28⇥ 28 grayscale image.

Our initial design (as discussed previously) is reused with a highlighted note that the RNN

module has been incorporated. The number of units for each RNN is set to 2,048 (in the BiLSTM,

the number of units is 1,024); the time step number is simply one, which shows the entire image

each time. In addition, because the image size in the Fashion-MNIST dataset is smaller than the

desired resolutions (e.g., 244⇥ 244 or 299⇥ 299 for MobileNetV1 and InceptionV3), all the images

are upsampled.

We performed these experiments on Google Colab1, even though our server runs faster. The main

reason is that Jupyter Notebook occupies all the GPUs for the first login section. In other words,

only one program executes with full capability. In contrast, Colab can run multiple environments

in parallel. A secondary reason is that the virtual environment allows rapid development (i.e., it

supports the installation of additional libraries and can run programs instantly). All the experiments

are set to run for 12 hours; some take less time before overfitting, but others take more than the

maximum time allotted. We repeated each experiment 3 times. Moreover, in this study, we often

submit the results to challenge websites and record only the highest accuracy rather than employing

other metrics. The accuracy metric is defined as follows:

Accuracy =
Number of correct predictions

Total numbers of predictions made
. (5.21)

Table 5.1 shows comparisons of the various models using di↵erent RNN modules built on Incep-

tionV3 and MobileNetV1. The former is often chosen as a baseline model, whereas the latter is the

lightest model used here in terms of parameters and computation. The results in Figure 5.6 show

that the models with the additional RNN modules achieve substantially higher accuracy than do

the STD models.

Table 5.1: Accuracy comparison of models using distinct recurrent neural networks built on Incep-
tionV3 and MobileNetV1

Recurrent Neural Networks
Fine-tuned Models STD RNN GRU BiLSTM
InceptionV3 0.9434 0.9453 0.9430 0.9445
MobileNetV1 0.9404 0.9438 0.9439 0.9410

1
https://colab.research.google.com/, which began as an internal project built based on Jupyter Notebook but was

opened for public use in 2018. At the time of this writing, the virtual environment supports only a single 12 GB

NVIDIA Tesla K80 GPU.
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Figure 5.6: Accuracy comparison of models integrated with recurrent neural networks vs. the
standard model (STD). The integrated models significantly outperform the STD models.

Table 5.2: Comparison of BiLSTM and STD on di↵erent fine-tuned models, including InceptionV3,
Xception, ResNet50, Inception-ResNetV2, MobileNetV1, VGG19 and SEResNeXt101.

Fine-tuned Models
Inception

V3
Xception

ResNet
50

InceptionResNet
V2

STD 0.9434 0.9374 0.9375 0.9364
BiLSTM 0.9445 0.9383 0.9377 0.9360

MobileNet
V1

VGG19
SEResNeXt

101
STD 0.9404 0.9075 N/A
BiLSTM 0.9410 N/A N/A

We also extended this experiment to include more models, including Xception, ResNet50, Inception-

ResNetV2, VGG19 and SEResNeXt101. Table 5.2 shows the comparisons of models integrated with

the BiLSTM module versus the standard models. Most of the models integrated with BiLSTMs

significantly outperform the STDs, except for Inception-ResNetV2. Please note that training the

VGG19 model required excessive training time; the model did not reach the same accuracy level as

the other models even after 12 hours of training. Similarly, we were unable to obtain results for

the VGG19-BiLSTM or SEResNeXt101 models. Therefore, Figure 5.7 shows only the results for

InceptionV3, Xception, ResNet50, Inception-ResNetV2 and MobileNetV1.

5.4.3 Experiment 3: iCassava

Often, when training a model, we randomly split a dataset into training and testing sets with a

desired ratio. Then, we repeat our evaluation several times, and finally, obtain the results from one
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Figure 5.7: Comparison of the accuracy of BiLSTM and STD models using InceptionV3, Xception,
ResNet50, Inception-ResNetV2 and MobileNetV1. The BiLSTM models substantially outperform
the STD models in several instances.

of the measurement methods, e.g., accuracy mean and standard deviation. However, in competitions

such as those on Kaggle, a test set is completely separated from a training set. If we naively divide

the training set into a training set and a validation set, we face a dilemma in which all the samples of

the original training set cannot be used for training because a portion of the dataset is always needed

for validation. To solve this problem, we apply k-fold validation to the training set by dividing the

dataset into k subsets, of which one is reserved for validation. We expand this process and make

predictions on the o�cial test set. This method allows our models (one model for each set) to learn

from all the images in the o�cial training set.

We also attempted to increase model robustness via data augmentation techniques. The goal

of such techniques is to transform an original training dataset into an expanded dataset whose

true labels are known[80, 221, 119]. Importantly, this teaches the model to be invariant to and

uninfluenced by input variations [100]. For example, flipping an image of a car horizontally does

not change its corresponding category. We applied the augmentation approach from [97] on the

test set. In this approach a sample is cropped multiple times and the model makes predictions

for each instance. The procedure has recently become standard practice in image recognition tasks

and is referred to as “Test Time Augmentation (TTA)“. In this study, we cropped the images at

random locations instead of at only the four corners and the center. In addition, we utilized the

most prevalent augmentation techniques for geometric and texture transformations, such as rotation,

width/height shifts, shear and zoom, horizontal and vertical flips and channel shift.



CHAPTER 5. RETHINKING RECURRENT NEURAL NETWORKS AND OTHERS 50

Figure 5.8: Random Samples from the iCassava dataset. CMD, CGM, CBB and CBSD denote
cassava mosaic disease, cassava green mite disease, cassava bacterial blight, and cassava brown
streak disease, respectively.

We also applied state-of-the-art EL because the technique is generally more accurate than is

prediction from a single model. We use a simple averaging approach to aggregate all the models

(a.k.a AVG-3M). Additionally, it is important to ensure a variety of the fine-tuned models to increase

the classifier diversity because combining multiple redundant classifiers would be meaningless. We

finally chose the SERestNeXt101, Xception and Inception-ResNetV2 fine-tuned models, as these

ConvNets yield higher results than do others. Please note that the RNN module (including the

reshape and BiLSTM layers) is excluded.

One last crucial technique is our training strategy, which helps to reduce loss and increase accu-

racy by searching for a better global minimum (more details will be presented in the next section).

We evaluated our approach using the iCassava Challenge dataset, which was also compiled for the

FGVC6 workshop at CVPR19. In the iCassava dataset, the leaf images of cassava plants are divided

into 4 disease categories: cassava mosaic disease, cassava green mite disease, cassava bacterial blight,

and cassava brown streak disease, and 1 category of healthy plants, comprising 9,436 labeled images.

The challenge was organized on the Kaggle website 2, ran from the 26th of April to the 2nd of June

2019, and attracted nearly 100 teams from around the world. The proposed models were evaluated

on 3,774 o�cial test samples, and the results were submitted to the website. The public leaderboard

is computed from 40% of the test data, whereas the private leaderboard is computed from all the

test data. Figure 5.8 shows some random samples from this dataset.

2
https://www.kaggle.com/c/cassava-disease
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Table 5.3: iCassava Result. The dataset is divided into 5 subsets. Four of the subsets are combined
to form a training set and the other subset is used as for validation. Each of these combinations
(including training and validation sets) composes a dataset, named Sets 1–5. A “Valid“ label
denotes results obtained using valid data, while “Private“ and “Public“ represent results obtained
from corresponding categories on the challenge website. Test–0 Crop indicates test results obtained
without cropping, whereas Test–3 Crop indicates test results obtained using the 3 cropping methods.
The best results for each subset are summarized in the table at the bottom left, including both the
private and public results. The table on the bottom right represents the results obtained using
AVG-3M for each individual set and when each result is combined with all the others

Models Set 1 Set 2 Set 3 Set 4 Set 5
Valid 0.9043 0.9105 0.8963 0.9025 0.9061

Private Public Private Public Private Public Private Public Private Public
Test–0 Crop 0.9019 0.8874 0.9129 0.8947 0.9041 0.8854 0.905 0.8814 0.9041 0.8874

SEResNeXt
101

Test–3 Crop 0.9023 0.8887 0.9143 0.9026 0.9015 0.888 0.9032 0.89 0.9121 0.896
Valid - - 0.9025 0.914 0.9158

Private Public Private Public Private Public Private Public Private Public
Test–0 Crop - - - - 0.901 0.89 0.9059 0.8986 0.9081 0.9

Xception

Test–3 Crop - - - - 0.9045 0.8907 0.909 0.8966 0.9045 0.8986
Valid - - 0.9043 0.9078 0.9114

Private Public Private Public Private Public Private Public Private Public
Test–0 Crop - - - - 0.9081 0.8993 0.9098 0.894 0.9156 0.9026

InceptionResNet
V2

Test–3 Crop - - - - 0.8869 0.8854 0.9094 0.8962 0.9151 0.9026
Private Public Private Public

Set 5 0.9121 0.896
AVG-3M
SET 5

0.9240 0.9125

Set 4 0.905 0.8814 All 0.9324 0.9165

Set 3 0.9041 0.8854
AVG-3M
SET 4

0.9235 0.9099

Set 2 0.9143 0.9026 All 0.9368 0.9198

Set 1 0.9023 0.8887
AVG-3M
SET 3

0.9121 0.9079

All 0.928 0.9139 All 0.9341 0.9258

The iCassava o�cial training set is split into 5 subsets for k-fold cross validation, in which one

subset is reserved for testing and the others are used for training in turn. We performed these

experiments on a server using a GeForce® GTX 1080 Ti graphics card with 4 GPUs, each with 12

GB of RAM.

When evaluating the test set, we upsampled the images to a higher resolution (540 ⇥ 540) and

then randomly cropped them to the input size (501⇥ 501). We varied the numbers of crops among

1, 3, 5, 7 and 9, and finally selected just 3 crops, as this option yielded higher accuracy than did

the other cropping choices in most subsets. We collected the results for two methods, one without

cropping and the other with 3 crops, and selected the one with the higher accuracy for each set.

Then, we averaged the results for all the sets to provide a result for the entire dataset. The overall

result achieved an accuracy of 0.928.

Furthermore, we applied the AVG-3M design to sets number 3, 4 and 5 and averaged each of

these results with all other sets. Table 5.3 shows the results for this experiment. As the table shows,

employing our AVG-3M model for these sets improves the accuracy. The combination of AVG-3M

on Set 4 with the remaining sets yields the highest result (0.9368). It is critical to note that even

though the public leaderboard result for all sets with the AVG-3M of Set 3 yields a higher result

than that of Set 4, eventually, the latter achieved a better result. Therefore, choosing the submission
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Figure 5.9: Comparison of our AVG-3M result on the iCassava challenge dataset with those of the
top-10 teams

for the final evaluation is e�cient and essential. Figure 5.9 shows our results in comparison with

those of other top-10 teams.

5.4.4 Experiment 4: Training Strategy

Figure 5.10: Training Strategy. We start with a moderate learning rate so that training does not
become stuck in a local minimum. Then, we reduce the learning rate for the 2nd and 3rd iterations.
If the learning rate is too large, the global minimum might be ignored; however, if it is too small,
the training time becomes excessive.

In this subsection, we address the overall improvement of our model using a learning rate strategy.
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We apply the Adam optimizer [91], which is an advanced optimizer in the deep learning area. The

computations are as follows:

wt = wt�1 � ⌘t ·
mt

(
p
vt + ✏̂)

, (5.22)

⌘t = ⌘ ·
p
1� �t

2

1� �t
1

, (5.23)

mt = �1 ·mt�1 + (1� �1) · gt, (5.24)

vt = �2 · vt�1 + (1� �2) · g2t , (5.25)

where w and ⌘ are the weight and the learning rate of the neural networks, respectively; m, v and g

are the moving averages and gradient of the current mini-batch; and the betas (�1, �2) and epsilon

✏ are set to 0.9, 0.999 and 10�8, respectively.

We used Keras to implement the models; on that platform, the formula for computing the learning

rate with decay is

⌘ = ⌘ · 1

1 + decay · iterations . (5.26)

Figure 5.11: Model Accuracy on the Fashion-MNIST dataset Using Our Training Strategy. The
models are trained with a learning rate starting at 1e�4 for 40 epochs. The RNN modules (STD,
RNN, LSTM and GRU) are compared. The best module is selected for each model, e.g., the BiLSTM
for Xception. The models are reloaded with the highest check points and trained two more times
for 15 epochs each at learning rates of 1e�5 and 1e�6, respectively.

Choosing an appropriate learning rate is both essential and critical, because the training time

is often dramatically reduced with an appropriate learning rate. However, selecting an appropriate

learning rate is di�cult. When the step size is too large, the global minimum might be ignored,
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whereas a too-small step size can result in an excessive training time. In these experiments, we started

with a moderate learning rate and trained the model until the accuracy stopped improving. Then,

we reduced the learning rate, reloaded the ConvNet weights that achieved the highest accuracy and

repeated this process for two more times. Figure 5.10 illustrates our proposed training procedure.

We evaluated these experiments on the Cifar-10 and Fashion-MNIST datasets. Initially, the

learning rate was set to 1e�4 and then sequentially changed to 1e�5 and 1e�6. The decay was

derived by dividing the learning rate by the number of epochs.

Figure 5.11 shows the performances of the top 3 models on Fashion-MNIST using SEResNeXt101

STD, Xception LSTM and Inception-ResNetV2 STD and the figure excludes the results of other

ConvNets discussed in the previous sections. The three RNN variations were also analyzed against

the STD models, and only the model with the highest accuracy is shown in the figure. The accuracies

are e↵ectively increased after the transition. SEResNeXt101 achieved a result of 0.9541 under the

STD setting.

This result was further improved to 0.9585 when using the E2E-3M model The design is shown

in Figure 5.1, and the steps are detailed in Algorithm 1. The settings were as follows: the fully

connected layer (after the concatenation layer) had 4,096 neurons; the LeakyReLU had a slope of

0.2 and dropout was set at 0.5. Please note that when reloading weights, we sometimes need to

convert the weights to Pickle format rather than Keras’ standard HDF5 format because the networks’

weights are too large.

Figure 5.12: Model Accuracies on Cifar-10 Using Our Training Strategy. The models are trained
with a learning rate starting at 1e�4 for 40 epochs. Then the RNN modules (including STD, RNN,
LSTM and GRU) are compared. The best module is selected for each model, (e.g., STD in the case
of E�cientNetB5). The models are then reloaded with the highest checkpoints and trained twice
more for 15 epochs each at learning rates of 1e�5 and 1e�6, respectively.

We conducted experiments in the same manner on the Cifar-10 dataset. The results are shown



CHAPTER 5. RETHINKING RECURRENT NEURAL NETWORKS AND OTHERS 55

Algorithm 1 E2E-3M

Input: A training set with c categories D := (a1, b1), (a2, b2) . . . (an, bn)
Output: Class Predictions
1: Step 1: Train the Level-1 classifiers

Number of L1 learners = m
2: Step 2: Train m fine-tuned models
3: Step 3: Select top-3 models
4: Step 4: Reload the weights of the three models
5: Step 5: Construct a new dataset of predictions
6: for i = 1 to n do

Mi = (a
0

i, bi)

where:

a
0

i = [�1(ai) �2(ai) �3(ai)]
T

�j = [�1 �2 . . . �c]

7: end for
8: Step 6: Train � neurons in the fully connected neural networks (M)

µj =
3c�1X

i=0

�iwij , 1  j  �

9: Step 7: Apply LeakyReLU activation (slope = k)

⌘j =

(
µj , if µj � 0

kµj , otherwise

10: Step 8: Regularize using dropout (rate = p)

�j = �⌘j

where � is a gating variable 0-1 that follows a Bernoulli distribution with P (� = 1) = p
11: Step 9: Train the Final Fully Connected Neural Networks
12: Step 10: Apply Softmax

in Figure 5.12. Please note that we also added E�cientNetB5, as this ConvNet is one of the latest

models in the field. Using E�cientNetB5, we achieved an accuracy of 0.9788 under the STD setting.

In summary, our learning rate strategy di↵ers from conventional methods, where the learning

rates are predefined based on experiments. Applying an adaptive learning rates o↵ers more flexibility

to adjust the learning rates automatically during training. Our approach applies the Adam optimizer

but in an intuitive way. After training for some epochs with the optimizer, the models begin

overfitting. Thus, in our method, we reduce the learning rate and reload the best model, which

leverages the accuracy to a higher point.
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5.4.5 Experiment 5: Pruning

In this subsection, our setup includes a variation of the softmax layer in which only the outputs of the

most active neurons are used for prediction. We observe that in multicategory prediction, often, only

a few or even just one confidence value on a category is large enough to be meaningful, while others

are very small, i.e., a confidence level of nearly zero percent. For this reason, we propose eliminating

meaningless confidence levels by zeroing them before use in ensembling. We compared this approach

(namely, EXT-Softmax) with a typical method where multiple predictions are averaged to obtain a

final prediction (AVG-Softmax). The essential steps are illustrated in Algorithm 2.

Algorithm 2 Pruning

Input: Prediction Confidence A
Output: Pruned A

1: function Prune(A)
2: N  length(A)
3: M  length(A[0])
4: for i 0 to N � 1 do
5: indexMax  findIndexOfMaxV alue(A)
6: for j  0 to M � 1 do
7: if A[i] 6= indexMax then
8: A[i] 0
9: end if

10: end for
11: end for
12: return A
13: end function

The results on Fashion-MNIST are 0.9592 and 0.9591 without improvement using the proposed

approach. However, on Cifar-10, the accuracy is higher, ranging from 0.9833 to 0.9836. Tables

5.4 and 5.5 show the latest achievements on these datasets. Please note that the Fashion-MNIST

results were voluntarily submitted and were not o�cially verified. However, we analyzed each profile

and selected only results that are supported by publications. Importantly, the dataset was changed

recently to eliminate duplicates ; our results might have been even higher if the previous version had

been used.

5.4.6 Experiment 6: Ensemble learning on Cifars and SVHN

In this subsection, we extend our experiments from an ensemble with only the three most accurate

ConvNet models to a broader number of ConvNet models because a greater variety of predictions

may yield better results. We also evaluated our models to the following more challenge datasets,

i.e., SVHN [128] and Cifar-100 [95] datasets, in addition to Cifar-10. SVHN o↵ers two versions:

an original version with roughly similar number of samples as Cifar-10 and an extra version that
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Table 5.4: List of latest achievements on Fashion-MNIST. The results were submitted to the o�cial
website for the Fashion-MNIST dataset. “Classifier“ indicates the main method that was used to
achieve the result.

Classifier Accuracy Submitter
WRN-28-10 + Random Erasing 0.963 @zhunzhong07
WRN-28-10 0.959 @zhunzhong07
Dual path network with WRN-28-10 0.957 @Queequeg
DENSER 0.953 @fillassuncao
MobileNet 0.950 @Bojone
CNN with optional shortcuts 0.947 @kennivich
Google AutoML 0.939 @Sebastian Heinz
Capsule Network 0.936 @XifengGuo
VGG16 0.935 @QuantumLiu
LeNet 0.934 @cmasch
AVG-Softmax 0.9592 N/A
EXT-Softmax 0.9591 N/A
E2E-3M 0.9585 N/A
SeResNeXt101-STD 0.9541 N/A

Table 5.5: List of recent achievements on Cifar-10 along with the results of our models. The proposed
approach performs comparably to the top models.

Authors Accuracy (%)
Huang et al. [75] 99.00
Cubuk et al. [29] 98.52
Nayman et al. [127] 98.40
EXT-Softmax 98.36
AVG-Softmax 98.33
E�cientNetB5-STD 97.88
Yamada et al. [199] 97.69
DeVries et al. [35] 97.44
SEResNeXt101-GRU 97.31
Inception-ResNetV2-GRU 97.02
Zhong et al. [220] 96.92
Liang et al. [110] 96.55
Huang et al. [74] 96.54
Graham [56] 96.53
Zhang et al. [214] 96.23

increases the number of samples by an order of magnitude. Cifar-100, as the name suggests, expands

the number of categories from ten to one hundred.

We use the same settings for Cifar-10 and Cifar-100 and slightly adjusted these configurations

for SVHN. In addition to eliminating the flipping augmentations (since the numbers are changed

even become another number e.g. number 2 looks similar to number 5 after flipping), we started

the learning rate at 1e�3 instead of 1e4. Moreover, because the required training time is 10 times
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longer, we repeated the process only once rather than twice. For the specific settings, please refer

to the provided source code.

Table 5.6 compares the performances of our models with those of other approaches on Cifar-10,

Cifar-100 and SVHN. For Cifar-10, our ensemble outperforms the previous state-of-the-art architec-

ture [127] by a large margin. Across all the datasets, the neural architecture search seems to work

well on small datasets but appears to struggle on larger datasets as search space grows exponentially.

For Cifar-100, our method is much better than Autoaugment [29], which requires approximately 5000

hours of training for image augmentation (we trained each model for few days to one week that de-

pends on the model size). In addition, we attempted to evaluate our model on SVHN. To match

recent works, we utilized the extra dataset. The results of our first attempt were as good as the

population-based augmentation method[69]. For our second attempt, we upgraded our server to the

latest libraries, which improved the accuracy to match that of Randaugment [30]. Additionally, our

method outperforms the abovementioned methods on Cifar-10.

5.4.7 Experiment 7: Surrey

In this subsection, we compared our method with state-of-the-art approaches on the Surrey dataset

[142] using leave-one-out cross validation. The dataset contains more than 120, 000 color and depth

images, each allocated into five subsets. The highest result of 0.9353 accuracy was achieved by the

recent approach in [202]. Our model outperforms the state-of-the-art model by 1.4% when using only

color images. Figure 5.13 shows our results on the InceptionV3 and MobileNet fine-tuned ConvNets.

In Table 5.7, we compare the performance of our ensemble with those of other models.

Generally, these results demonstrate that our approach outperforms the state-of-the-art by large

margins and is suitable for use in a variety of circumstances.

Figure 5.13: Performances of MobileNet and InceptionV3 on leave-one-out cross validation using
the five sets from Surrey
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Table 5.6: Results on Cifar-10, Cifar-100 and SVHN

Datasets
Cifar-10 Cifar-100 SVHN

Method Accuracy Method Accuracy Method Accuracy
Randaugment [30] 0.9850 [30] - [30] 0.9900
Ho et al. [69] - [69] - [69] 0.9899
Autoaugment [29] 0.9852 [29] 0.8933 [29] 0.9898
GPipe [75] 0.9900 [75] 0.913 [75] -
Big Transfer (BiT) [92] - [92] 0.9351 [92] -
E�cientNet [172] - [172] 0.917 [172] -
DeVries et al. [36] 0.9744 [36] 0.844 [36] 0.9870
Zagoruyko et al. [209] - [209] 0.817 [209] 0.9846
Zhang et al. [214] - [214] - [214] 0.9841
Huang et al. [74] 0.9654 [74] 0.8282 [74] 0.9841
Lee et al. [106] - [106] - [106] 0.9831
XNAS [127] 0.9840 [127] 0.8640 [127] 0.9828
Liao et al. [111] - [111] - [111] 0.9828
Yamada et al. [200] 0.9769 [200] 0.8781 [200] -
Zhong et al. [221] 0.9692 [221] 0.8235 [221] -
SEResNeXt101 0.9731 E�cientNetB0 0.8487 E�cientNetB0 0.9867 0.9873*
InceptionResNetV2 0.9702 E�cientNetB1 0.8657 E�cientNetB1 0.9872* 0.9871
E�cientNetB5-345 0.9788 EfiicientNetB2 0.8664 EfiicientNetB2 0.9871 0.9875
E�cientNetB7-299 0.9779 E�cientNetB3 0.8700 E�cientNetB3 0.9866* 0.9867
E�cientNetB4-299 0.9785 E�cientNetB4 0.8663 E�cientNetB4 0.9871 0.9878*
Ensemble 0.9852 E�cientNetB5 0.8721 E�cientNetB5 0.9870 0.9874

E�cientNetB6 0.8804 E�cientNetB6 0.9877* 0.988
E�cientNetB7 0.8721 E�cientNetB7 0.9860* 0.9863
SEResNeXt101 0.8541 InceptionResNetV2 0.9851 0.986*
InceptionResNetV2 0.8609 SEResNeXt101 0.9858 0.9861
Xception 0.8430 Xception 0.9843 0.9853
InceptionV3 0.8365 Ensemble* 0.9899
Ensemble (Exclude InceptionV3) 0.9027 E�cientNetB0 0.9864 0.9874

E�cientNetB1 0.9873 0.9874*
EfiicientNetB2 0.9865 0.9875
E�cientNetB3 0.9867 0.9869
E�cientNetB4 0.9870 0.9877
E�cientNetB5 0.9875* 0.9873
E�cientNetB6 0.9869 0.9864
E�cientNetB7 0.9876 0.9872
InceptionResNetV2 0.9849* 0.9862
Ensemble* 0.9900

5.5 Conclusions

In this work, we presented our core ideas for improving ConvNets by integrating RNNs as essential

layers in ConvNets when designing E2E multiple-model ensembles that gain expertise from each

individual E2E, an improved training strategy, and a softmax layer extension.

First, we propose integrating RNNs into ConvNets even though RNNs are mainly optimized for

1D sequential data rather than 2-D images. Our results on the Fashion-MNIST dataset show that

ConvNets with RNN, GRU and BiLSTM modules can outperform standard ConvNets. We employed

a variety of fine-tuned models in a virtual environment, including InceptionV3, Xception, ResNet50,

Inception-ResNetV2 and MobileNetV1. Similar results can be obtained using a dedicated server

for the SEResNeXt101 and E�cientNetB5 models on the Cifar-10 and Fashion-MNIST datasets.

Although adding RNNmodules requires more computing power, there is a potential trade-o↵ between
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Table 5.7: Comparison of our method with previous state of the art approaches on Surrey dataset.

Method F1 Recall Precision Accuracy
[142] - - 0.4900 -
[88] - - - 0.8430
[98] - - - 0.5700
[39] - - - 0.7330
[213] - - - 0.5600
[135] - 0.7700 0.7900 -
[188] - - - 0.7000
[4] - - - 0.7580
[147] - - - 0.8380
[173] 0.792 - - 0.8034
[212] - 0.9240 0.9350 0.9270
[202] 0.9326 0.9348 0.941 0.9353
Our - - - 0.949

accuracy and running time.

Second, we designed E2E-3M ConvNets that learn predictions from several models. We initially

tested this model on the iNaturalist’19 dataset using only a single E2E-3M model. Then, we eval-

uated various models and image resolutions and compared them with the Inception benchmark.

Then, we added RNNs to the model and analyzed the performances on the Fashion-MNIST dataset.

Our E2E-3M model outperforms a standard single model by a large margin. The advantage of using

an end-to-end design is that the model can run immediately in real time and it is suitable for SoC

platforms.

Third, we proposed a training strategy and pruning for the softmax layer that yields comparable

accuracies on the Cifar-10 and Fashion-MNIST datasets.

Fourth, using the ensemble technique, our models perform competitively, matching previous

state-of-the-art methods (accuracies of 0.99, 0.9027 and 0.9852 on SVHN, Cifar-100 and Cifar-10,

respectively) even with limited resources.

Finally, our method outperforms other approaches on the Surrey dataset, achieving an accuracy

of 0.949.

In the future, we plan to extend our models to include a greater variety of settings. For example,

we will evaluate bidirectional RNN and bidirectional GRU modules. In addition, we are eager to

test our models on other datasets e.g. ImageNet.



Chapter 6

PSO-Convolutional Neural

Networks

6.1 Introduction

Image classification lies at the core of many computer vision related tasks: extracting relevant

information from telescope images in astronomy, navigation in robotics, cancer classification in

medical image, security, to cite a few examples. It is currently almost an ontological commitment that

Convolution Neural Networks are particularly tailored to Image Processing. However, training these

(large-scale) neural networks for generalization is still a big part of the puzzle since the performance

is sensitive to the architecture, the training set, the sample size (a.k.a. sample complexity) among

other attributes.

More concretely, in the classification problem, ConvNets – or, more broadly, Deep Neural Net-

works – are trained to learn a target function f? : RN �! {0, 1, 2, . . . ,M} traditionally via SGD

✓(t+ 1) = ✓(t)� ⌘

K

KX

i=1

r✓
bL (xi, f

?(xi), ✓(t)) , (6.1)

where bL is an estimate of the loss function; ✓(t) is the vector collecting all the weights of the neural

network at the iterate t; ⌘ is the step size; K < T is the batch size and {xi, f?(xi)}Ti=1 is the training

set. The landscape being high-dimensional, nonconvex and with a geometry1 that is sensitive to the

architecture render the problem quite unstable to tuning. Generalization and consistency may be

technically studied in certain ideal cases, e.g., under certain thermodynamic limit regimes on the

number of neurons [123]. But for practical purposes, ascertaining a proper structure for the network

1
The term geometry hereby subsumes a collection of attributes of the Loss function, e.g., regularity (how smooth

it is), how deep and wide are the minima, etc., that impacts quite critically the SGD dynamics (6.1).

61
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– i.e., a parsimonious structure yielding a Loss function that is amenable to generalization – is still

quite challenging.

Recently, distributed approaches have been leveraged to overcome the geometry sensitivity of

the landscape and yield a more robust approach to generalization. At the limelight lies nature

inspired approaches: PSO [71, 87, 157], Ant Colony Optimization (ACO) [148, 40], Artificial Bee

Colony Optimization (ABCO) [81, 85], etc. The core idea is that each particle treads the landscape

exchanging information with neighboring particles about its current estimate of the geometry (e.g.,

the gradient of the Loss function) and its position. The overall goal in this framework is to devise

a distributed collaborative algorithm that boosts the optimization performance by leading (at least

some of the) particles up to the best minimum.

In this work, we propose a modified PSO-ConvNet training by incorporating some elements of

Cucker-Smale dynamics [31] into the PSO algorithm. In addition, a novel alternative dynamics is

introduced based on our observation of positions of particles. Further, we set one of the particles

with a large random step-size. The idea in its core is simple: i) this wilder particle can scan the

land in a faster time-scale; ii) it can only be trapped by deeper minima; iii) by properly tuning the

weights, we enable this particle to attract the more conservative ones to the stronger minimum. A

more detailed description of the algorithm will be provided in Section 6.2.

The main contributions of this work are:

1. It is the first work to integrate a modified Cucker-Smale dynamics into PSO algorithm on

image classification to enhance particle’s exploration capability.

2. A novel dynamics is proposed that achieves state-of-the-art results.

3. Special characteristics of hybrid ConvNet-PSO is taken into consideration by introducing wilder

particles incorporated by a restricted random learning rate.

4. Extensive experiments are performed on large-scale Cifar-10 and Cifar-100 benchmark datasets

to verify the e↵ectiveness of the proposed methods.

The rest of the chapter is organized as follows: In Section 6.2, we describe our approach in

detail from its dynamics formulas to proposed methods for improvement. Experiments and result

discussions are presented in Section 6.3 and 6.4, respectively. In Section 6.5, we compare our

approach with recent state-of-the-art to claim its superiority. Ultimately, we conclude our work in

Section 6.6.
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6.2 Proposed Methods

6.2.1 Collaborative Neural Networks

Define N (n, t) as the set of k nearest neighbor particles of particle n at time t, where k 2 N is some

predefined number. In particular, N (n, t) =
�
x(n)(t), x(i1)(t), x(i2)(t), . . . , x(ik)(t)

 
, where i1, i2,...

ik are the k closest particles to n and x(ik)(t) 2 RD represents the position of particle ik at time t.

Figure 6.1 depicts this idea. Given a (continuous) function L : RD �! R and a (compact) subset

Figure 6.1: Illustration of the three closest particles to particle n. The neighborhood N (n, t) com-
prises the positions of these particles plus the position of particle n itself.

S ⇢ RD, define

Y = argmin {L(y) : y 2 S} (6.2)

as the subset of points that minimize L in S, i.e., L(z)  L(w) for any z 2 Y ⇢ S and w 2 S.

We consider a collection of neural networks collaborating in a distributed manner to minimize

a Loss function L. The neural networks are trained in two phases: i) [regular phase] each neural

network is trained via (stochastic) gradient descent; ii)[PSO phase] the algorithm executes an

intermediate step of SGD followed by a step of PSO-based cooperation: the vector of weights of

each neural network can be cast as the position of a particle in RD, where D is the number of weights

(and dimension of the phase space), and the dynamics of the particles (or neural networks) follow

equation (6.4). Figure 6.2 illustrates the general idea. More concretely, the update rule is given by
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Figure 6.2: Illustration of the PSO phase. At each time instant t, particles share information with
their current nearest neighbors. In particular, each particle knows at time t, the positions and
velocities of its neighbors. The position of each particle at time t represents the weights of the
underlying neural network.

the following dynamics

 (n)(t+ 1) = �⌘rL
�
x(n)(t)

�

�(n)(t+ 1) = x(n)(t) +  (n)(t+ 1)

v(n)(t+ 1) =
P

`2N (n,t)

wn` (`)(t+ 1)

+c1r(t)
�
P (n)(t)� �(n)(t+ 1)

�

+c2r(t)
⇣
P (n)
g (t)� �(n)(t+ 1)

⌘

x(n)(t+ 1) = x(n)(t) + v(n)(t)

(6.3)

where v(n)(t) 2 RD is the velocity vector of particle n at time t;  (n)(t) is an intermediate velocity

computed from the gradient of the Loss function at x(n)(t); �(n)(t) is the intermediate position

computed from the intermediate velocity  (n)(t); r(t)
i.i.d.⇠ Uniform ([0, 1]) is randomly drawn from

the interval [0, 1] and we assume that the sequence r(0), r(1), r(2), . . . is i.i.d.; P (n)(t) 2 RD

represents the best position visited up until time t by particle n, i.e., the position with the minimum

value of the Loss function over all previous positions x(n)(0), x(n)(1), . . . , x(n)(t); P (n)
g (t) represents

its nearest-neighbors’ counterpart, i.e., the best position across all previous positions of the particle
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n jointly with its corresponding nearest-neighbors
S

st N (n, s) up until time t:

P (n)(t+ 1) 2 argmin
�
L(y) : y = P (n)(t), x(n)(t)

 

P (n)
g (t+ 1) 2 argmin

n
L(y) : y = P (n)

g (t), x(k)(t);

k 2 N (n, t)}

. (6.4)

The weights wn` are defined as

wn` = f
⇣���
���x(n)(t)� x(`)(t)

���
���
⌘
, (6.5)

with ||·|| being the Euclidean norm and f : R ! R being a decreasing (or at least non-increasing)

function. We start by assuming that

f(z) =
M

(1 + z)�
, (6.6)

for some constants M,� > 0.

6.2.2 Alternative Dynamics

One alternative to the equation (6.3) is to pull back a particle rather than push the particle in the

same direction of gradient.

Figure 6.3 illustrates the conceptions of the dynamics. In the previous section, particles are

assumed to locate in the same side of a valley of the loss function. However, when at least one of

the particles lies in an “antipode” side of the valley relative to the cluster of remaining particles, the

particle is actually pulled away from the minimum by using the first dynamics (Dynamics 1). This

is the reason why we introduce the second dynamics (Dynamics 2) to pull the particle back instead.

Thus, the formula is as follows:

x(i)(t+ 1) = x(i)(t)

+
PN

j=1
Mij

(1+||xi(t)�xj(t)||2)�
(xj(t)

�rL(xj(t)))

+cr
�
Pnbest(i)(t)� xi(t)

�

(6.7)

where x(i)(t) 2 RD is the position of particle i at time t; M , � and c are constants decided by

experiments with ||·|| being the Euclidean norm; r(t)
i.i.d.⇠ Uniform ([0, 1]) is randomly drawn from

the interval [0, 1] and we assume that the sequence r(0), r(1), r(2), . . . is i.i.d.; Pnbest(i)(t) 2 RD
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represents nearest-neighbors’ best , i.e., the best position across all previous positions of the particle

n jointly with its corresponding nearest-neighbors
S

st N (n, s) up until time t.

Figure 6.3: Illustration of the Dynamics. The top part of the figure demonstrates the concept of
equation (6.3) whereas the bottom part of the figure shows the concept of equation (6.7). The solid
line arrows indicate the directions of the particles. The dash line arrows are vector components.

6.2.3 Further improvements

As referred before, the vector of weights of each ConvNet plays the role of the position of a particle

in phase space. In our framework, we have a swarm of ConvNets designed to collaborate in order to

attain the best minimum. We discuss further improvements including wider PSO-ConvNet strategy,

warmup training and cluster warmup learning rate as follows.
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Wilder PSO-ConvNet Strategy

In this section, we propose to improve the dynamics by distinguishing particles based on an essential

inner characteristic. Previously, particles are influenced by only distances from their neighbors.

However, we argue that some particles might have more e↵ect than the other particles because

ConvNet are distinct with intrinsic hyper-parameters (e.g. learning rate, kernel size and number of

filters, just to name a few).

Specially, since training ConvNet is an essential phase (intertwining between ConvNet and PSO

phases) but has a tendency of getting stuck in local optima, we enable ConvNets to escape the local-

minima i.e. a particle accompanied by a learning rate that can freely change (in regular phase). We

choose a random learning rate over other algorithms as the movement is wildest and much stronger

than adaptive learning rates and simpler than the cyclic learning rate. As a result, two types of

particles are introduced: i) [fast particle] endowed with a large learning rate; ii) [slow particle]

abiding by a small learning rate. A larger learning rate o↵ers a faster training (easier to move out

of local minima), but compromises the generalization performance as it incurs greater error. On the

other hand, a small learning rate fosters generalization (can be trapped by deeper minima) while

requiring a large training time.

Thus, in PSO phase (collaborative phase), a mechanism for conservative particles to be attracted

by the wilder particle is proposed. The main idea is simple, by tuning proper weight, the wilder

particle would guide other conservative particles to the better minimum.

We restrict the learning rate hyper-parameter to a fixed interval of admissible values. This is

motivated by: (i) with a small learning rate, the training would take significant longer time; (ii)

with a large learning rate, the training dynamics becomes unstable compromising convergence to the

minima [61, 70]. Therefore, in our formula (equation (6.8)), we set the minimum and the maximum

values of the learning rate range. Because the learning rate is in an exponential range, e.g., from

10�6 to 10�1, we re-scale this range into a linear range and generate learning rates using uniform

distribution function so that the small learning rates get an equally likely number of samples as

large learning rates. The min and max boundary can be determined via running a learning rate

scan between low to high values [161].

f(lrmin, lrmax) = 10U(lrmin,lrmax) (6.8)

where U denotes uniform distribution function; lrmin = log10(min) and lrmax = log10(max).

Warmup Training

Inspired by warmup concept that recently emerged in training deep neural networks [184, 55, 53, 114],

we propose warump training. Our idea di↵ers in terms of proportion of warmup time and full training

time. In the former, the time required is typically very short, whereas in our technique, warump



CHAPTER 6. PSO-CONVOLUTIONAL NEURAL NETWORKS 68

time often takes a large proportion for ConvNets to train until a desired performance is achieved.

The main reason why we propose warmup training lies in the principle of ConvNets – training

ConvNets takes time. Training on big datasets, e.g., Cifar-10, Cifar-100, SVHN or ImageNet re-

quires from several hours to weeks or months. In addition, we have a few number of ConvNets, so

collaboration at an earlier time may reduce opportunity for individual ConvNets to explore more

freely. In other words, early collaboration maybe premature. Therefore, we propose to split the

warmup training into two steps including (1) a training without intertwining between ConvNet and

PSO; (2) and a training with the intertwining. In the second step, training a ConvNets is still needed

since the size of ConvNet is huge with millions of weights, thus, a few PSO-ConvNets is certainly

not enough for optimization.

Cluster Warmup Learning Rate

We attempt to improve the performance of our hybrid PSO-ConvNet by proposing cluster warmup

learning rate. Motivated by a conventional training method where we first train a neural network

with a large learning rate and gradually reduce the learning rate, in a similar manner, we train all

neural networks at a high speed learning rate and then decrease to a slower learning rate. Though,

in our approach, the learning rates are obtained from ranges which are generated randomly rather

than deterministic.

6.3 Experiments

In this section, we will discuss in detail our experiments including chosen benchmark dataset, im-

plementation, how we estimate the learning rate range and evaluation metric.

6.3.1 Benchmark Datasets

The Cifar-10 and Cifar-100 [95] are popular and challenging datasets for training deep learning.

The two datasets contain 50000 training images and 10000 testing images with the size of 32 ⇥ 32

pixels. As the name suggests, Cifar-10 has exactly 10 categories, i.e., airplane, automobile, bird, cat,

deer, dog, frog, horse, ship and truck whereas Cifar-100 extends the number of categories from 10

to 100. Having the same total number of training images while increasing the number of categories

causes Cifar-100 harder to train since there is less images to see in each category than in Cifar-10.

Figure 6.4 depicts a snapshot of random images from the Cifar-10 dataset.

6.3.2 Implementation

In this work, we propose a collaborative training of ConvNets where they share relevant geometric

information such as their current gradient and position. In the following subsections, we discuss our
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Figure 6.4: A snapshot of samples from Cifar-10 dataset [96].

proposed Parallel PSO ConvNet approach.

Parallel PSO ConvNets

A crucial aspect of the implementation is to create a distributed environment where particles (Con-

vNets) cooperate with each other. Figure 6.5 illustrates the design. Typically, ConvNets are often

trained using just one local computer or using a remote server. With multiple GPUs, several Con-

vNets can be trained simultaneously, though, training is performed independently.

We build our PSO-ConvNet design around a web client-server architecture a collaborative train-

ing. At the center of the design lies dedicated server which hosts entirely the ecosystem including

software stack, modern GPUs (GeForce® GTX 1080 Ti), network and application layers. Each

client connects to one virtual machine in the server via a specific port, and runs a set of procedures

so to yield collaborative training of the ConvNets which rests primarily on sharing their informa-

tion: current location, previous location, estimate of the gradient of the loss function, among other
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elements. As illustrated in the Figure 6.5, information from each particle are stored in a database,

namely “Score Board”. After each epoch, the latest data will be inserted into the database for each

particle.

More concretely, as entailed in the dynamics of equation (6.3), particles will share their current

personal best position, the best positions of neighbors as well as their estimate of the gradient. We

will further compare our approach with a baseline classical PSO (Section 6.4.6) where particles only

share their current positions. This will highlight more transparently the importance of sharing the

geometric attributes entailed in the dynamics.

ConvNets

We consider topologically distinct ConvNets, namely, shallow and deep ConvNets in the mix (Fig-

ure 6.6 shows architecture of Inception-v3 with 42 layers for illustration purposes). When training

ConvNets, TL is often utilized in typical approaches. Though, usually faster, the disadvantage of

using TL is that the training stage most likely appears to become stuck in the local minima of the

loss function and over-fit the models quickly. Therefore, the optimal procedure here is re-training

rather than TL.

Accordingly, all layers of the ConvNets are unfrozen so that the models’ architecture and the

pre-trained weights (from ImageNet dataset [97, 149]) can be reused. Following practices from

ResNet, Xception and many others, the top layers are replaced and a global pooling is added to

reduce the network size. In addition, for enhancing sample variation and also avoiding over-fitting,

a small amount of noise is introduced into the networks.

The re-trained ConvNets architecture is illustrated in Figure 6.7. The re-trained model is a

pre-trained ConvNet (e.g.: Inception-v3, VGG and ResNet) with the top layers removed and the

weights re-trained. The base model is a pre-loaded one with ImageNet weights. The original images

are re-scaled to match the required input size of the re-trained model. The global pooling layer

reduces the network size while the Gaussian noise layer prevents over-fitting. The fully connected

layer and softmax layer will improve the classification.

6.3.3 Estimate learning rates

For training deep neural networks, the learning rate is one of the most important hyper-parameter

as the learning rate decides the amount of gradient to be back propagated or how fast the network

moves towards minima. A smaller learning rate requires more training time since only a small change

of weights is updated after each epoch whereas a larger learning rate makes training more rapid but

also causes more instability. Usually, a shallow method would try out some learning rates and check

which one yields a better performance. In contrast, an advanced method would scan from a low to

a high value stopping once the Loss increases above a certain threshold (a.k.a learning rate range

test) [161].
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Figure 6.5: Proposed PSO-ConvNets system. PSOs share information with other particles via a file
sharing. The information include current location, previous location among the others.

Figure 6.6: Detail of Inception-v3 architecture [169] which contains initial layers and several modules
A, B and C. Each module comprises factorized convolutions to reduce the computational cost as it
decreases the number of parameters.
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Figure 6.7: Design of re-trained ConvNets architecture. The re-trained model is a pre-trained
ConvNet (e.g.: Inception-v3, VGG and ResNet) with the top layers excluded and the weights re-
trained. The base model comes pre-loaded with ImageNet weights. The original images are re-scaled
as needed to match the required input size of the re-trained model. The global pooling layer reduces
the networks size. The Gaussian noise layer improves the variation among samples to prevent over-
fitting. The fully connected layer aims to improve classification. The softmax layer is another fully
connected layer that has the same number of neurons as the number of dataset categories, and it
utilizes softmax activation function.

Figure 6.8 shows results of this learning range test using three di↵erent ConvNets namely

Inception-v3, E�cientNet-B0 and MobileNet-v1 on Cifar-10 dataset. Though slightly di↵erent, we

Figure 6.8: Learning rate range scan for Inception-v3, E�cientNet-B0 and MobileNet-v1 on Cifar-10
dataset.

can glean that accuracy drastically increases and decreases at around [10�5, 10�4] and [10�2, 10�1],

respectively. Therefore, we set 10�5 and 10�1 as the minimum and the maximum boundaries for
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PSOs with random learning rates.

6.3.4 Evaluation Metric

In this work, we evaluate the visual classification performance of di↵erent algorithms using overall

accuracy. The metric is popular for the comparison and analysis of results in computer vision tasks.

The metric is defined as follows:

Accuracy =
Number of correct predictions

Total numbers of predictions made
. (6.9)

6.4 Classification Results

In this section, we discuss the results of our proposed hybrid PSO-ConvNet according to equa-

tion (6.3) which we call Dynamics 1 and also the approach with the interplay of SGD and PSO

according to equation (6.7) which we call Dynamics 2. We refer to as the terms “Dynamics” to

emphasize an essential property of the formulas where a particle adjusts its direction towards the

average of its neighbors’ directions. It means that the particle weighs more nearer particles than

those farther away.

6.4.1 Dynamics 1

In this subsection, we discuss the results of our proposed hybrid PSO-ConvNet according to equa-

tion (6.3). For easiness of reference to each element in that equation, we identify the first element as

Gradient since the element mainly relates to vectors of particles; the second element as Personal

best (pBest) and the last element as Nearest Neighbor best (KNN), just because the elements

describe the best locations obtained by individual particles and group of nearby neighbor particles.

We first see the results with the influence from the nearest neighbors, then from the gradients

and at last the combination of the two. Further, we will enable the pBest term to see the e↵ects.

In the experiments with KNN, we keep the accelerator c2 as a constant 0.5 and vary the number of

nearest neighbors from 1 to 3. In case we have only one nearest neighbor it means that a particle

shares information with 1 neighbor (k = 1). The same also applies for other numbers of neighbors.

In the experiments with Gradient, we select M as 0.1, 1 and 10 while � is set to 1. The results

with the above settings are summarized in Table 6.1. Interestingly, it is easy to observe that a

combination of KNN and Gradient generates a higher accuracy (approximately 0.9800) than using

either KNN or Gradient alone (0.9780).

In Figure 6.9, we graphically show the proposed PSO-ConvNets with Dynamics 1. Similarly,

as referred above, the results show higher accuracy with the combination of KNN and Gradient.

However, with the inclusion of pBest, it is observed that the accuracy overall decreased. Since

adding more elements would cause our experiments to grow exponentially, we decided to discard
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Table 6.1: Accuracy on Cifar-10 for the Dynamics 1. E↵ects of KNN and Gradient are evaluated
separately besides combination of the two. Results with pBest are also included. In all experiments,
c2 is kept at 0.5

Method Accuracy Index
PSO-1 PSO-2 PSO-3 PSO-4

KNN (k = 1) 0.9783 0.9717 0.9717 0.9785 Ex17 01
KNN (k = 2) 0.9715 0.9759 0.9760 0.9769 Ex17 02
KNN (k = 3) 0.9713 0.9773 0.9769 0.9765 Ex17 03
Gradient (M = 10) 0.9750 0.9777 0.9708 0.9752 Ex18 01
Gradient (M = 1) 0.9762 0.9730 0.9419 0.9699 Ex18 02
Gradient (M = 0.1) 0.9744 0.9738 0.9343 0.9747 Ex18 03
KNN (k = 1), Gradient (M = 10) 0.9720 0.9755 0.9729 0.9754 Ex19 01
KNN (k = 1), Gradient (M = 1) 0.9796 0.9707 0.9712 0.9797 Ex19 02
KNN (k = 3), Gradient (M = 1) 0.9738 0.9790 0.9790 0.9787 Ex19 03
KNN (k = 3), Gradient (M = 2), pBest (c1 = 0.5) 0.9734 0.9783 0.9781 0.9774 Ex13 01
KNN (k = 3), Gradient (M = 2), pBest (c1 = 0.2) 0.9733 0.9785 0.9784 0.9777 Ex13 02

the pBest element. Thus, from here onwards, the Dynamics 1 will include only Gradient and KNN

elements and exclude pBest unless stated otherwise.

Figure 6.9: Proposed PSO-ConvNets Dynamics 1 (equation (6.3)). Comparison when KNN and
Gradient are tested separated and combined, and also with the inclusion of pBest. Each column
summaries the best accuracy of all PSOs (PSO-1, PSO-2, etc.). The red column highlights the best
result for each group (KNN, Gradient, etc.).

In Figure 6.10, we demonstrates the advantage of random learning rate as at several times the

PSO achieves higher accuracy than the nearest neighbor (see the indicated arrows’ location). For

example, in case of PSO-1 and PSO-4 couple in the upper part of the figure, the PSO-1 appears to

be stuck at a local minimum between epoch 5th and 10th, then PSO-4 finds a better accuracy.This

occurrence repeats several times during the training even though PSO-4 goes to worse accuracy

areas.
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Table 6.2: Accuracy of PSOs on variety of M , c2 and warmup parameters

Parameters
Accuracy

KNN warmup Gradient
k c2 PSO-1 PSO-2 PSO-3 PSO-4 PSO-1 PSO-2 PSO-3 PSO-4

M12 M13 M14 M21 M23 M24 M31 M32 M34 M41 M42 M43
3 1.7 0 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.9740 0.9797 0.9798 0.9801
3 1.7 10 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.9756 0.9803 0.9798 0.9802
3 1.7 20 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.9743 0.9798 0.9801 0.9796
3 1.7 30 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.9741 0.9778 0.9772 0.9773
3 1.2 0 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.9779 0.9713 0.9783 0.9782
3 1.2 10 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.9758 0.9789 0.9789 0.9792
3 1.2 20 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.9719 0.9781 0.9778 0.9780
3 1.2 30 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.9759 0.9791 0.9793 0.9781
3 0.2 0 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.9764 0.9798 0.9798 0.9788
3 0.2 10 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.9746 0.9777 0.9781 0.9788
3 0.2 20 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.9761 0.9786 0.9795 0.9774
3 0.2 30 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.9768 0.9770 0.9771 0.9760
3 0.5 0 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.9773 0.9802 0.9800 0.9797
3 0.5 10 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.9744 0.9789 0.9792 0.9788
3 0.5 20 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.9716 0.9786 0.9787 0.9782
3 0.5 30 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.9758 0.9783 0.9788 0.9777
3 0.5 0 0.2 0.2 10 1.7 0.2 10 1.7 1.7 10 1.7 0.2 0.2 0.9774 0.9814 0.9814 0.9816
3 0.5 10 0.2 0.2 10 1.7 0.2 10 1.7 1.7 10 1.7 0.2 0.2 0.9764 0.9806 0.9811 0.9805
3 0.5 20 0.2 0.2 10 1.7 0.2 10 1.7 1.7 10 1.7 0.2 0.2 0.9770 0.9782 0.9782 0.9775

6.4.2 Optimization of parameter M

We evaluate the performance of the hybrid PSO-ConNets based on the variation of parameter M .

In our experiment, rather than fixing a value M for every particle as in [31], the exchanged gradients

are properly weighted. Thus, we further sharpen the capability of the algorithm which is not only

distinguishing particles based on distance but also taking into account other intrinsic attributes

of the particles. In this sense, a particle can be incorporated with a large random learning rate or

sometimes called wilder particle since the particle can scan the landscape faster and also goes deeper

in local minima. For the capability, this particle should be attracted more by other conservative

particles. Or in other words, particles would be pulled faster toward the gradient directions of the

wilder PSOs than to other particles.

Initially, we set the weight M between conservative particles being small numbers (e.g.: 0 and

0.2); in the case of conservative and wilder (with more liberty) particles or among wilder particles

we set larger values for M (e.g.: 1.2 and 1.7).

Figure 6.11 shows the results when c2 and warmup are fixed at 0.5 and 0. We recall that

accelerator c2 controls the e↵ect of KNN element in the equation (6.3), i.e., the faster c2 the more

significant the element is. In the meantime, warmup indicates at which epoch all particles begin

to collaborate. For each experiment, we summary the highest accuracy among PSOs as ”Best

PSO”. Further, we notice that on average the accuracy settles at approximately 0.9790 and the best

accuracy rises up to 0.9800.

We then increase the weight towards wilder particles to a much higher value (M = 10). The

results for variety of c2 and warmup are shown in Table 6.2 and also plotted on Figure 6.12 to
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Table 6.3: Settings weight M

Gradient Weights
Settings M12 M13 M14 M21 M23 M24 M31 M32 M34 M42 M43

S1 0.2 0.2 10 1.7 0.2 10 1.7 1.7 10 1.7 0.2
S2 0.2 0.2 1.7 1.7 0.2 1.7 1.7 1.7 1.7 1.7 0.2

facilitate the analysis. On the left-hand side, among variations, c2 equals to 1.7 and 0.5 accomplish

better accuracy than that of 1.2 and 0.2. In addition, pulling particles with distinct weights favors

those warmups that start at the beginning of training (at c2 = 0.2 and c2 = 0.5). Remarkably, on

the right-hand side where M is greatly increased, we achieve a milestone result with accuracy of

0.9816.

Next, we look at the dynamics of change in distances between PSOs for the best result above

as shown in Figure 6.13. We can see that PSO-2, PSO-3 and PSO-4 gradually approach each other

(the distances to PSO-1 have similar values). In addition, PSO-1, though also approaches the group,

keeps a further distance. It indicates that possessing a larger learning rate (10�2 vs. 10�3 and 10�4)

prevents the PSO from going into steeper minima. Additionally, PSO-4 (random PSO) scans the

solution space more broadly as the distances fluctuate wilder, even sometimes move out of the group.

6.4.3 Optimization of parameter �

In this experiment, we attempt to improve the performance of our proposed PSO-ConvNets by

changing the parameter � in Dynamics 1. The parameter regulates the rate of decay (in the gradient)

which is a distinct feature in comparison with kinetics gradients. In addition, � amplifies the e↵ect

of the distance, i.e., setting a smaller value will have a similar e↵ect as when the particles stick

together whereas a bigger value will separate the particles.

Figure 6.14 shows results using di↵erent � values (0.5, 0.9, 1.1 and 2). As an aside remark, two

experimental settings, S1 and S2, are described in Table 6.3. Though, the accuracy is not better

than the one found in the previous section, we notice an important qualitative behavior when we

look in more detail which is illustrated by inspecting both graphs in Figure 6.15. In fact, we select

particle PSO-3 for illustration since its dynamics changes more than the others. In the left graph

(� = 0.5), it appears to have more disturbances than on the right one when � = 2. At points where

PSO-3’s loss increases, the particle moves away from the group as the distances from the particle

to all the others increase. The behavior does not appear on the right graph. It seems that when

particles move closer, a particle is pushed away in the opposite direction. This is the reason why we

propose the second dynamics (equation (6.7)) whose results will be discussed in Section 6.4.8.
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6.4.4 Number of nearest neighbors

To study the performance of PSO-ConvNets with respect to the number k of nearest neighbors,

k = 1 and k = 3 are applied (we exclude k = 2 because in this case, the random PSO will be kept

far from the group of the other three and we need the PSO to attract other PSOs). When k = 1,

a particle obtains information from only one nearest neighbor while when k = 3, all the particles

cooperate with each other (we recall that we assume a total of four particles in this work). The

classification accuracy is illustrated in Figure 6.16. We see that the accuracy is overall higher when

k = 3, i.e., when all particles exchange information among all the other particles. However, we

assume that if the number of PSOs could be scaled up to a much larger number, obtaining data

from all neighbors would be more expensive than from just some nearest neighbors. Therefore, in

the large-scale setting, meeting a trade o↵ between the number of neighbors and e�ciency would be

a better strategy.

6.4.5 Neural Networks’ baseline

Our proposed PSO-ConvNet approach is comprised of two phases in which the first phase refers to

the training of each ConvNet independently and the second phase refers to the collective training

of the ConvNets wherein each ConvNet integrates information exchanged by neighboring ConvNets

following a PSO inspired approach. In this experiment, we focus on analysis of training ConvNets

and leave out PSO phase. As we described in Section 6.3.2, a ConvNet is built on a re-trained model

instead of TL model because the training is faced with over-fitting after a short time. In addition,

we unfrozen the layers of ConvNets so that we can re-use the model’s architecture and weights.

Retraining a model from scratch would take more time than re-using weights. In this sense, we

compare the performance of a re-trained model (model with unfrozen layers) to a TL model (model

with frozen layers). We also call the TL model as a baseline. Furthermore, to enable augmentation

for image input, we train the baseline in only one step. This means that an input after feature

extraction is continuously becoming the input for the next layers (usually comprises of GAP and

FC layers). In TL, training usually is separated into two separated steps which includes feature

extraction and fine-tuning. The parameters for this experiment are described in Table 6.4 and

can be categorized into two groups, namely, ConvNets and Augmentation. The first one concerns

internal settings for ConvNets including the lengths of training, Gaussian noise level and size of FC

layer as well as batch size. We set the number of iterations at 40 since the training appears to start

over-fitting by that iteration. We also add Gaussian noise as well as carefully choosing the number

of neurons in FC layer to reduce over-fitting. The batch size is set at 32 to take full capability

of GPUs’ memory. The second group controls the augmentation for ConvNets including standard

techniques such as rotation range, width shift range, height shift range, shear range and zoom range.

Besides, channel shift range, fill mode and preprocessing also makes ConvNets more robust.

Since a standard for Cifar-10 architecture and hyper-parameter settings are not available in Keras
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Table 6.4: ConvNets Hyper-parameters

ConvNets
# of iterations full training 40
Gaussian noise standard deviation 0.1
Fully connected number of neurons 1024
Batch size 32

Augmentation
Rotation range 30
Width shift range 0.3
Height shift range 0.3
Shear range 0.3
Zoom range 0.3
Channel shift range 10
Fill mode nearest
Preprocessing [-1 1]

ecosystem (a famous API to develop deep learning applications) to the best of our knowledge, we

decide to build our models based on popular Inception-v3 structure and compare our results with

recent state-of-the-art using the same architecture.

First, as we can glean from Figure 6.17, the results of TL models using frozen layers are approx-

imately 0.89. In comparison with recent works, the authors in [3] and [83] reported accuracy of 0.86

and 0.92, respectively. Thus, the di↵erences are in a decent range and we will use the model as a

baseline to improve our work. Second, we see that results of unfrozen neural networks (re-trained

model) outperform those with frozen layers by a large margin increasing by roughly 8% in settings

with and without augmentations.

6.4.6 PSO gBest

We next test a PSOs using global best approach (namely, PSO gBest) similar to Dynamics 1. While

the training is still intertwined between PSO and SGD but the di↵erences are that (i) the gradient

element is excluded and (ii) instead of updating particle’s location toward a nearest best neighbor’s

location, particles in gBest will be updated toward the global best as in the following formula.

v(n)(t+ 1) = v(n)(t) + cr(t)
⇣
P (n)
gBest(t)� �

(n)(t+ 1)
⌘

(6.10)

where v(n)(t) 2 RD is the velocity vector of particle n at time t; r(t)
i.i.d.⇠ Uniform ([0, 1]) is randomly

drawn from the interval [0, 1] and we assume that the sequence r(0), r(1), r(2), . . . is i.i.d.; P (n)
gBest(t)

represents its global best, i.e., the best position across all previous positions of all particles up until

time t.
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In these experiments, we set c as a constant with a value of 0.5. Besides, ConvNets cooperate

from the beginning and at iterations 10th, 20th and 30th. We also utilize two distinct ConvNets’

architectures, i.e., Inception-v3 and E�cientNet-B0 for comparison. The results are shown in Figure

6.18. Overall, Inception-v3 performs slightly better than its counterpart, e.g., particle PSO-4 in

Inception-v3 structure achieves an accuracy of approximately 0.9799 when warmup = 30 while the

latter obtains a smaller value (0.9789). It is also interesting to notice that delaying cooperation at

a later time mostly brings accuracy to a higher value. This di↵ers from the results in Section 6.4.2

where collaborating earlier is generally better. One explanation is that, in Dynamics 1, a particle is

attracted due to more causal e↵ects, e.g., direction to the best location, directions of other particles

so the particle spans more landscape in finding solutions, thus, training earlier is essential.

6.4.7 Accelerator coe�cient

We try to find a connection between accelerators c among PSOs and report accuracy of PSO gBest

method in Figure 6.19. Due to exponential growth in number of experiments, we evaluate only two

PSOs rather than using all four PSOs. We choose PSO-1 and PSO-3 since these PSOs are set at

fastest and slowest learning rates (PSO-4 is excluded because of instability). We also select the

ConvNets’ architecture E�cientNet-B0 because its network size is smaller, i.e., each neural network

has about five million total number of parameters in comparison with twenty four millions that of

Inception-v3. According to the learning rate range scan in Figure 6.8, the speed needs to be faster.

Thus, we change PSO-1, PSO-2 and PSO-3’s learning rates to 10�1, 10�2 and 10�3, respectively.

In the same manner, the range for PSO-4 is also moved to between 10�1 and 10�5. We can observe

that, for certain settings, e.g., when PSO-1’s accelerator equals to 1.7, the overall accuracy seems to

be reduced and when the value is 0.5, the accuracy appears to be increased.

6.4.8 Additional strategies for improvement

Multi-wilder particles

Now, we consider particles with larger random learning rate (wilder particles) and particles with

fixed learning rates (conservative particles). In this experiment, the number of wilder particles

expands to more than just one. Thus, we expect that more wilder particles would scan more the

solution space, consequently find better minima and to improve overall performance.

As we can see from Figure 6.20, in the case of two wilder particles, a combination of two conser-

vative PSO-1 and PSO-2 with larger learning rates (10�2, 10�3) obtains a higher accuracy than the

other options.

Regarding three wilder particles and one conservative particle, when PSO-2 is conservative (blue

column), the group accomplishes a better performance than all the others in both settings. The

rationale is that the conservative one provides an essential direction for all the other three. In
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case the learning rate is small (10�4), the particle slowly explores the solution space that a↵ects

the performance of the whole group. On the other hand, when the learning rate is higher (10�2),

the particle explores faster but may skip deeper minima, just discarding opportunities to improve

accuracy. In other words, a conservative needs neither training slow nor fast to provide safer solutions

at the times when other particles scan the landscape wildly. Therefore, conservative particle also

plays an important role to the swarm even wilder particles are the key for improvement.

In general, experiments with three random learning rate outperform the experiments with two

random learning rate (0.9816 versus 0.9811).

Cluster Warmup Learning Rate

The results for these experiments are shown on Figure 6.21. Analogous to the typical training

where the learning rate for a ConvNet is gradually reduced, we also setup a cluster of particles

where learning rate range is reduced from the range [10�3, 10�1] to the range [10�5, 10�1] at distinct

iterations, i.e., three PSOs have the random learning rate range changing and PSO-2 is fixed at 10�3

(the best setting obtained in the previous Section). Among choices, reducing learning rate after 30

iterations of a total of 40 yields a better accuracy (0.9815) despite slightly lower than the best result

obtained before (see Section 6.4.2).

Dynamics 2

In Section 6.4.3, we have learnt that for some instances when a particle is coming closer to others,

the particle tends to be pulled away. Theoretically, we would expect that, because of the e↵ect of

PSO algorithm, after a while particles will eventually stick together. Thus, these results seem to

contradict our initial assumption (see equation (6.3), and therefore, we propose a modification to

the algorithm so that the particle will be pulled back instead. As such the new formulation is stated

in equation (6.7) which we call Dynamics 2.

We test the proposed algorithm in conjunction with strategies from previous sections and compare

the performance of Dynamics 2 versus Dynamics 1. Figure 6.22 shows results of this comparison. We

can see that, in most cases, Dynamics 2 not only outperforms the former, but, remarkably, achieved

state-of-the-art result when the accuracy is improved to 0.9831. This proves that the notion of

pulling back particle is a critical mechanism for improvement.

6.4.9 Performance on Cifar-100 benchmark dataset

For a better evaluation of our proposed methods, apart from Cifar-10, we also performed experiments

on the Cifar-100 benchmark dataset. In fact, as an example, we illustrated in Table 6.5 the accuracy

is increased by 2.78% with Cifar-100 for Dynamics 2 with MobileNet confirming our work claim.

These experiments were performed by running learning rate scans on Inception-v3 and MobileNet
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and the results indicate similar parameter ranges as in Cifar-10. For other settings, we reuse the best

hyper-parameters which were found in the previous experiments. Even though, di↵erent datasets

might require distinct settings but this strategy saves time using a rational guess. The results are

illustrated in Figure 6.23 using the retrained architectures. The experiments confirm the e↵ectiveness

of our methods.

Table 6.5: Performance on Cifar-100. The methods ConvNet TL (Transfer Learning), ConvNet+Aug
(Augmentation), PSO gBest, Dynamics 1 and Dynamics 2 are evaluated on retrained architectures
Inception-v3 and MobileNet. The ConvNet+Aug method is utilized as a baseline. The most accuracy
among PSOs is selected to compute the percentage increase.

Architecture Method
Accuracy

Increase (%)
PSO-1 PSO-2 PSO-3 PSO-4

Inception-v3

ConvNet TL 0.7014 0.6714 0.5309 0.7016 -14.54
ConvNet+Aug 0.8454 0.847 0.6725 0.8428 0
PSO gBest 0.8471 0.8719 0.865 0.8676 +2.49
Dynamics 1 0.8729 0.8736 0.8744 0.8748 +2.78
Dynamics 2 0.8742 0.8709 0.8724 0.8734 +2.72

MobileNet

ConvNet TL 0.7076 0.6951 0.6786 0.6988 -8.93
ConvNet+Aug 0.7791 0.7969 0.7693 0.7951 0
PSO gBest 0.7699 0.8119 0.8106 0.8123 +1.54
Dynamics 1 0.8216 0.813 0.8222 0.8215 +2.53
Dynamics 2 0.8243 0.8158 0.8246 0.8247 +2.78

6.5 Comparison with state-of-the-art methods

The comparison results between the proposed method and other state-of-the-art counterpart algo-

rithms are displayed in Table 6.6. A set of distinct methods were collected for a fair comparison.

The results clearly show our algorithm outperforms other benchmark methods. We can see that

ConvNets+Aug (fourth row counting from the bottom) performs 2.5% and 0.75% better than CLR

and AmoebaNet in terms of accuracy on Cifar-10 dataset. In addition, this baseline method is

much better than K-means and GA-CNN. Moreover, Tiled CNN method was achieved a lowest

classification accuracy (73.1%). Though, PyramidNet AMP outperforms our PSO gBest (97.99%),

the architecture is outweighed by Dynamics 1. Similarly, ResNet52-SAM performs better than Dy-

namics 1 but is surpassed by Dynamics 2 which yields 98.31% accuracy. In the same manner, our

proposed methods achieve the highest accuracy on Cifar-100 benchmark dataset, thus, confirming

its superiority.
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Table 6.6: Classification accuracy (%) on the Cifar-10 and Cifar-100 benchmark datasets.

Method
Accuracy (%)

Cifar-10 Cifar-100
Tiled CNN [129] 73.10 -
K-means [27] 79.64 -
GA-CNN [206] 74.59 -
cPSO-CNN [193] 91.35 -
CLR [161] 94.90 75.90
AmoebaNet-A (N=6, F=36) [145] 96.66 -
ENAS [137] 97.11 -
SENet [73] 97.88 84.59
PyramidNet AMP [219] 98.02 86.64
ViT-B/16 [41] 98.13 87.13
ResNet152-SAM [19] 98.20 87.08

ConvNet+Aug 97.41 84.7
PSO gBest 97.99 87.19
Dynamics 1 98.16 87.48
Dynamics 2 98.31 87.42

The bold letter indicates that the proposed algorithm achieved best e�ciency amongst the compared algo-
rithms

6.6 Conclusions and Contributions

Image recognition has been a gold standard approach for many computer vision related tasks: ex-

tracting relevant information from telescope images in astronomy, navigation in robotics, cancer

classification in medical image etc. However, training these large-scale neural networks for general-

ization is still a non-trivial task since the performance is sensitive to the architecture, the training

set, the sample size among other attributes that renders the problem quite unstable to tuning.

In this article, we have proposed a novel distributed collaborative PSO-ConvNet algorithm for

the optimization performance which is capable of leading particles up to a better minimum. The

key contributions of this article are: (1) novel formulations (Dynamics 1 and Dynamics 2) have

been successfully created by incorporating distilled Cucker-Smale elements into the PSO algorithm

using KNN and intertwining the training with SGD; (2) a new type of particle, i.e., wilder PSO

with random learning rate is introduced which has capability of attracting conservative PSOs to

stronger minima; (3) a distributed environment is developed for parallel collaboration that signifi-

cantly accelerates the training; (4) the proposed algorithms are evaluated on Cifar-10 and Cifar-100

benchmark datasets and compared to state-of-the-art algorithms to verify the superior e↵ectiveness.

In the future, we will explore our algorithms on more datasets, e.g., ImageNet. In addition, we

intend to incorporate our approach for action recognition.
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Figure 6.10: Accuracy during training of Hybrid PSO-ConvNets. Examples when M = 1 and
M = 10, warmup = 0 and on variation of k (k = 1 and k = 3). Learning rates of PSO-1, PSO-2 and
PSO-3 are set at 10�2, 10�3 and 10�4 while PSO-4’s learning rate is random in the range [10�5,
10�1]. The arrows indicate where PSO-4 finds better locations. The zoom in figure displays the
accuracy in full scale whereas the others show a narrower scale for better view in detail.
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Figure 6.11: Results when c2 and warmup are fixed at 0.5 and 0, respectively.

Figure 6.12: Results on variation of c2 and warmup. The weight M from all particles toward wilder
particles is set at a higher value. The best accuracy is recorded for all PSOs in each experiment.
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Figure 6.13: Distances between PSOs. Dij denotes the distance between particle i and particle j.
Learning rates of PSO-1, PSO-2 and PSO-3 are set at 10�2, 10�3 and 10�4 while PSO-4’s learning
rate is random in the range [10�5, 10�1].

Figure 6.14: Analysis of �. The best accuracy for all PSOs are recorded for each experiment.
Besides, k, c2 and warmup are set at 3, 0.5 and 0, respectively.
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Figure 6.15: E↵ects of � to distances between PSOs for � = 0.5 and � = 2.

Figure 6.16: Comparison accuracy performance when number of nearest neighbors k = 3 and k = 1.
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Figure 6.17: Results of ConvNets when the main layers of networks are frozen and unfrozen along
with augmentation. Learning rates of PSO-1, PSO-2 and PSO-3 are set at 10�2, 10�3 and 10�4

while PSO-4’s learning rate is random in the range [10�5, 10�1]. ConvNets are not collaborated in
this experiment.

Figure 6.18: PSO gBest. Performance of Inception-v3 and E�cientNet-B0 on several values of
warmup.
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Figure 6.19: Evaluation of PSO’s accelerator. The results are obtained from a re-trained E�cientNet-
B0 model using gBest approach. The accelerators of PSO-2 and PSO-4 are fixed at 0.5 while PSO-1
and PSO-3 vary.

Figure 6.20: Multi-random learning rates. The accuracy for experiments with two and three random
particles. The latter is tested in two di↵erent settings. In each experiment, the columns from left
to right hand side indicate PSO-1, PSO-2, PSO-3 and PSO-4 in order. When PSO-1, PSO-2 and
PSO-3 are conservative the learning rates are set at 10�2, 10�3 and 10�4, respectively. The PSO-
4’s learning rate is always in a random range. Green columns denote random PSOs whereas blue
columns represent conservative ones.



CHAPTER 6. PSO-CONVOLUTIONAL NEURAL NETWORKS 89

Figure 6.21: Results for cluster warmup learning rates.

Figure 6.22: Comparison of accuracy performance between Dynamics 1 and Dynamics 2. The latter
outperforms the former and the best accuracy is further improved.
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Figure 6.23: Percentage increase of the proposed methods on Cifar-100.



Chapter 7

PSO-ConvNet Transformer

7.1 Introduction

Human Action Recognition plays a vital role for distinguishing a particular behavior of interest

in the video. It has critical applications including visual surveillance for detection of suspicious

human activities to prevent the fatal accidents [167, 107], automation-based driving to sense and

predict human behavior for safe navigation [144, 201]. In addition, there are large amount of non-

trivial applications such as human-machine interaction [141, 140], video retrieval [222], crowd scene

analysis [32] and identity recognition [134].

In the early days, the majority of research in Human Activity Recognition was conducted using

hand-crafted methods [189, 190, 52]. However, as deep learning technology evolved and gained

increasing recognition in the research community, a multitude of new techniques have been proposed,

achieving remarkable results.

Action recognition preserves a similar property of image recognition since both of the fields handle

visual contents. In addition, action recognition classifies not only still images but also dynamics

temporal information from the sequence of images. Built on these intrinsic characteristics, action

recognition’s methods can be grouped into two main approaches namely RNN based approach and

3-D ConvNet based approach. Besides of the main ones, there are other methods that utilize

the content from both spatial and temporal and coined the name two-stream 2-D ConvNet based

approach [159].

Initially, action recognition was viewed as a natural extension of image recognition, and spatial

features from still frames could be extracted using ConvNet, which is one of the most e�cient tech-

niques in the image recognition field. However, traditional ConvNets are only capable of processing

a single 2-D image at a time. To expand to multiple 2-D images, the neural network architecture

needs to be re-designed, including adding an extra dimension to operations such as convolution and

pooling to accommodate 3-D images. Examples of such techniques include C3D [177], I3D [15],

91
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R3D [62], S3D [197], T3D [37], LTC [182], among others

Similarly, since a video primarily consists of a temporal sequence, techniques for sequential data,

such as RNNs and specifically LSTM, can be utilized to analyze the temporal information. Despite

the larger size of images, feature extraction is often employed. Long-term Recurrent Convolutional

Networks (LRCN)[38] and Beyond-Short-Snippets[208] were among the first attempts to extract

feature maps from 2-D ConvNets and integrate them with LSTMs to make video predictions. Other

works have adopted bi-directional LSTMs [179, 64], which are composed of two separate LSTMs, to

explore both forward and backward temporal information.

To further improve performance, other researchers argue that videos usually contain repetitive

frames or even hard-to-classify ones which makes the computation expensive. By selecting relevant

frames, it can help to improve action recognition performance both in terms of e�ciency and accu-

racy [54]. A similar concept based on attention mechanisms is the main focus in recent researches

to boost overall performance of the ConvNet-LSTM frameworks [47, 194].

While RNNs are superior in the field, they process data sequentially, meaning that information

flows from one state to the next, hindering the ability to speed up training in parallel and causing the

architectures to become larger in size. These issues limit the application of RNNs to longer sequences.

In light of these challenges, a new approach, the Transformer, emerged [184, 176, 41, 7, 118].

There has been a rapid advancement in action recognition in recent years, from 3-D ConvNets

to 2-D ConvNets-LSTM, two-stream ConvNets, and more recently, Transformers. While these ad-

vancements have brought many benefits, they have also created a critical issue as previous techniques

are unable to keep up with the rapidly changing pace. Although techniques such as evolutionary

computation o↵er a crucial mechanism for architecture search in image recognition, and swarm intel-

ligence provides a straightforward method to improve performance, they remain largely unexplored

in the realm of action recognition.

In our recent research [139], we developed a dynamic PSO framework for image classification.

In this framework, each particle navigates the landscape, exchanging information with neighboring

particles about its current estimate of the geometry (such as the gradient of the Loss function) and its

position. The overall goal of this framework is to create a distributed, collaborative algorithm that

improves the optimization performance by guiding some of the particles up to the best minimum of

the loss function. We extend this framework to action recognition by incorporating state-of-the-art

methods for temporal data (Transformer and RNN) with the ConvNet module in an end-to-end

training setup.
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7.2 Proposed Methods

7.2.1 Collaborative Dynamic Neural Networks

Define N (n, t) as the set of k nearest neighbor particles of particle n at time t, where k 2 N is some

predefined number. In particular,

N (n, t) = {(x(n)(t), v(n)(t)), (x(i1)(t), v(i1)(t)), (x(i2), v(i2))(t), . . . , (x(ik)(t), v(ik)(t))} (7.1)

where i1, i2,... ik are the k closest particles to n and x(ik)(t) and v(ik)(t) 2 RD represent the position

and velocity of particle ik at time t. Figure 7.1 illustrates this concept for k = 4 particles.

Figure 7.1: A demonstration of the N (n, t) neighborhood, consisting of the positions of four closest
particles and particle n itself, is shown. The velocities of the particles are depicted by arrows.

Given a (continuous) function L : RD �! R and a (compact) subset S ⇢ RD, define

Y = argmin {L(y) : y 2 S} (7.2)

as the subset of points that minimize L in S, i.e., L(z)  L(w) for any z 2 Y ⇢ S and w 2 S.

Dynamics 1: We investigate a set of neural networks that work together in a decentralized manner

to minimize a Loss function L. The training process is comprised of two phases: i) individual training

of each neural network using (stochastic) gradient descent, and ii) a combined phase of SGD and

PSO-based cooperation. The weight vector of each neural network is represented as the position of

a particle in a D-dimensional phase space, where D is the number of weights. The evolution of the

particles (or neural networks) is governed by equation (7.3), with the update rule specified by the
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following dynamics:

 (n)(t+ 1) = �⌘rL
�
x(n)(t)

�

�(n)(t+ 1) = x(n)(t) +  (n)(t+ 1)

v(n)(t+ 1) =
P

`2N (n,t)

wn` (`)(t+ 1) + c1r(t)
�
P (n)(t)� �(n)(t+ 1)

�
+ c2r(t)

⇣
P (n)
g (t)� �(n)(t+ 1)

⌘

x(n)(t+ 1) = x(n)(t) + v(n)(t)
(7.3)

where v(n)(t) 2 RD is the velocity vector of particle n at time t;  (n)(t) is an intermediate velocity

computed from the gradient of the Loss function at x(n)(t); �(n)(t) is the intermediate position

computed from the intermediate velocity  (n)(t); r(t)
i.i.d.⇠ Uniform ([0, 1]) is randomly drawn from

the interval [0, 1] and we assume that the sequence r(0), r(1), r(2), . . . is i.i.d.; P (n)(t) 2 RD

represents the best position visited up until time t by particle n, i.e., the position with the minimum

value of the Loss function over all previous positions x(n)(0), x(n)(1), . . . , x(n)(t); P (n)
g (t) represents

its nearest-neighbors’ counterpart, i.e., the best position across all previous positions of the particle

n jointly with its corresponding nearest-neighbors
S

st N (n, s) up until time t:

P (n)(t+ 1) 2 argmin
�
L(y) : y = P (n)(t), x(n)(t)

 

P (n)
g (t+ 1) 2 argmin

n
L(y) : y = P (n)

g (t), x(k)(t);

k 2 N (n, t)}

. (7.4)

The weights wn` are defined as

wn` = f
⇣���
���x(n)(t)� x(`)(t)

���
���
⌘
, (7.5)

with ||·|| being the Euclidean norm and f : R ! R being a decreasing (or at least non-increasing)

function. In Dynamic 1, we assume that

f(z) =
M

(1 + z)�
, (7.6)

for some constants M,� > 0. This strengthens the collaboration learning between any of two

particles by pushing each particle against each other.

Dynamics 2: An alternative to equation (7.3) is to pull back a particle instead of pushing it

in the direction of the gradient. In the previous section, the assumption was that all particles were

located on the same side of a valley in the loss function. However, if one particle is on the opposite
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side of the valley relative to the rest of the particles, it will be pulled further away from the minimum

using the first dynamic. To address this issue, we introduce a second dynamic (Dynamics 2) that

pulls the particle back. The formula for this dynamics is as follows:

x(i)(t+ 1) = x(i)(t) +
PN

j=1
Mij

(1+||xi(t)�xj(t)||2)�
(xj(t)�rL(xj(t))) + cr

�
Pnbest(i)(t)� xi(t)

�

(7.7)

where x(i)(t) 2 RD is the position of particle i at time t; M , � and c are constants set up by

experiments with ||·|| being the Euclidean norm; r(t)
i.i.d.⇠ Uniform ([0, 1]) randomly drawn from

the interval [0, 1] and we assume that the sequence r(0), r(1), r(2), . . . is i.i.d.; Pnbest(i)(t) 2 RD

represents nearest-neighbors’ best , i.e., the best position across all previous positions of the particle

n jointly with its corresponding nearest-neighbors
S

st N (n, s) up until time t.

7.2.2 ConvNet Transformer Architecture for Action Recognition

In this section, we discuss a hybrid ConvNet-Transformer architecture that replaces the traditional

ConvNet-RNN block for temporal input to classify human action in videos.

The architecture is composed of several components, including a feature extraction module using

ConvNet, a position embedding layer, multiple transformer encoder blocks, and classification and

aggregation modules. The overall diagram of the architecture can be seen in Figure 7.2. The goal

of the architecture is to e↵ectively capture the temporal information present in the video sequences,

in order to perform accurate human action recognition. The hybrid ConvNet-Transformer design

leverages the strengths of both ConvNets and Transformers, o↵ering a powerful solution for this

challenging task.

Features Extraction via ConvNet and Position Embedding

In the early days of using Transformer for visual classification, especially for images, the frames were

typically divided into smaller patches and used as the primary input [118, 117, 217]. However, these

features were often quite large, leading to high computational requirements for the Transformer. To

balance e�ciency and accuracy, ConvNet can be utilized to extract crucial features from images,

reducing the size of the input without sacrificing performance.

We assume that, for each frame, the extracted features from ConNet have a size of (w, h, c)

where w and h are the width and height of a 2D feature and c is the number of filters. To further

reduce the size of the features, global average pooling is applied, reducing the size from w⇥h⇥ c to

c.

The position encoding mechanism in Transformer is used to encode the position of each frame

in the sequence. The position encoding vector, which has the same size as the feature, is summed

with the feature and its values are computed using the following formulas. This di↵ers from the
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sequential processing of data in the RNN block, allowing for parallel handling of all entities in the

sequence.

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(7.8)

where pos, i and PE are the time step index of the input vector, the dimension and the positional

encoding matrix; dmodel refers to the length of the position encoding vector.

Figure 7.2: Rendering End-to-end ConvNet-Transformer Architecture.

Transformer Encoder

The Transformer Encoder is a key component of the hybrid ConvNet-Transformer architecture. It

consists of a stack of N identical layers, each comprising multi-head self-attention and position-wise

fully connected feed-forward network sub-layers. To ensure the retention of important input infor-

mation, residual connections are employed before each operation, followed by layer normalization.

The core of the module is the multi-head self-attention mechanism, which is composed of several

self-attention blocks. This mechanism is similar to RNN, as it encodes sequential data by determining

the relevance between each element in the sequence. It leverages the inherent relationships between

frames in a video to provide a more accurate representation. Furthermore, the self-attention operates

on the entire sequence at once, resulting in significant improvements in runtime, as the computation

can be parallelized using modern GPUs.

Our architecture employs only the encoder component of a full transformer, as the goal is to

obtain a classification label for the video action rather than a sequence. The full transformer
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consists of both encoder and decoder modules, however, in our case, the use of only the encoder

module su�ces to achieve the desired result.

Assuming the input sequence (X = x1, x2, ..., xn) is first projected onto these weight matricesQ =

XWQ, K = XWK , V = XWV with WQ,WK and WV are three trainable weights, the query (Q =

q1, q2, ..., qn), key (K = k1, k2, ..., kn) of dimension dk, and value (V = v1, v2, ..., vn) of dimension dv,

the output of self-attention is computed as follows:

Attention(Q,K, V ) = softmax(QKT
p
dk

)V. (7.9)

As the name suggested, multi-head attention is composed of several heads and all are concatenated

and fed into another linear projection to produce the final outputs as follows:

MultiHead(Q,K, V ) = Concat(head1, head2, ..., headh)W
O. (7.10)

where headi = Attention(QWQ
i ,KWK

i , V WV
i ) (7.11)

where parameter matrices WQ
i 2 Rdmodel⇥dk , WK

i 2 Rdmodel⇥dk , WV
i 2 Rdmodel⇥dv and WO 2

Rhdv⇥dmodel , i = 1, 2, ..., h with h denotes the number of heads.

Frame Selection and Data Pre-processing

Input videos with varying number of frames can pose a challenge for the model which requires a

fixed number of inputs. Put simply, to process a video sequence, we incorporated a time distributed

layer that requires a predetermined number of frames. To address this issue, we employ several

strategies for selecting a smaller subset of frames.

One approach is the ”shadow method,” where a maximum sequence length is established for

each video. While this method is straightforward, it can result in the cutting of longer videos and

the loss of information, particularly when the desired length is not reached. In the second method,

we utilize a step size to skip some frames, allowing us to achieve the full length of the video while

reducing the number of frames used. Additionally, the images are center-cropped to create square

images. The e�cacy of each method will be evaluated in our experiments.

Layers for Classification

Assuming, we have a set of videos S(S1, S2, ..., Sm) with corresponding labels y(y1, y2, ..., ym) where

m is the number of samples. We select l frames from the videos and obtain g features from the

global average pooling 2-D layer. Each transformer encoder generates a set of representations by

consuming the output from the previous block. After N transformer encoder blocks, we can obtain

the multi-level representation HN (hN
1 , hN

2 , ..., hN
l ) where each representation is 1-D vector with the

length of g (see Figure 7.2 block (A) ! (D)).
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The classification module incorporates traditional layers, such as fully connected and softmax,

and also employs global max pooling to reduce network size. To prevent overfitting, we include

Gaussian noise and dropout layers in the design. The ConvNet-Transformer model is trained using

stochastic gradient descent and the categorical cross entropy loss is used as the optimization criterion.

7.2.3 ConvNet-RNN

Recent studies have explored the combination of ConvNets and RNNs, particularly LSTMs, to take

into account temporal data of frame features for action recognition in videos [38, 208, 179, 64, 180, 18].

To provide a clear understanding of the mathematical operations performed by ConvNets, the

following is a summary of the relevant formulations:

8
>>><

>>>:

Oi = X if i = 1

Yi = fi(Oi�1,Wi) if i > 1

Oi = gi(Yi)

(7.12)

8
>>><

>>>:

Yi = Wi ~Oi�1 ith layer is a convolution

Yi = �n,mOi�1 ith layer is a pool

Yi = Wi ⇤Oi�1 ith layer is a FC

(7.13)

where X represents the input image; Oi is the output for layer ith; Wi indicates the weights of

the layer; fi(·) denotes weight operation for convolution, pooling or FC layers; gi(·) is an activation

function, for example, sigmoid, tanh and rectified linear (ReLU) or more recently Leaky ReLU [121];

The symbol (~) acts as a convolution operation which uses shared weights to reduce expensive matrix

computation [105]; Window (�n,m) shows an average or a max pooling operation which computes

average or max values over neighbor region of size n⇥m in each feature map. Matrix multiplication

of weights between layer ith and the layer (i� 1)th in FC is represented as (⇤).
The last layer in the ConvNet (FC layer) acts as a classifier and is usually discarded for the

purpose of using transfer learning. Thereafter, the outputs of the ConvNet from frames in the video

sequences are fed as inputs to the RNN layer.

Considering a standard RNN with a given input sequence x1, x2, ..., xT , the hidden cell state is

updated at a time step t as follows:

ht = �(Whht�1 +Wxxt + b), (7.14)

where Wh and Wx denote weight matrices, b represents the bias, and � is a sigmoid function that

outputs values between 0 and 1.
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The output of a cell, for ease of notation, is defined as

yt = ht, (7.15)

but can also be shown using the softmax function, in which ŷt is the output and yt is the target:

ŷt = softmax(Wyht + by). (7.16)

A more sophisticated RNN or LSTM that includes the concept of a forget gate can be expressed as

shown in the following equations:

ft = �(Wfhht�1 +Wfxxt + bf ), (7.17)

it = �(Wihht�1 +Wixxt + bi), (7.18)

c0t = tanh(Wc0hht�1 +Wc0xxt + b0c), (7.19)

ct = ft � ct�1 + it � c0t, (7.20)

ot = �(Wohht�1 +Woxxt + bo), (7.21)

ht = ot � tanh(ct), (7.22)

where the � operation represents an elementwise vector product, and f , i, o and c are the forget

gate, input gate, output gate and cell state, respectively. Information is retained when the forget

gate ft becomes 1 and eliminated when ft is set to 0.

For optimization purposes, an alternative to LSTMs, the GRU, can be utilized due to its lower

computational demands. The GRU merges the input gate and forget gate into a single update gate,

and the mathematical representation is given by the following equations:

rt = �(Wrhht�1 +Wrxxt + br), (7.23)

zt = �(Wzhht�1 +Wzxxt + bz), (7.24)

h0
t = tanh(Wh0h(rt � ht�1) +Wh0xxt + bz), (7.25)

ht = (1� zt)� ht�1 + zt � h0
t. (7.26)

Finally, it’s worth noting that while traditional RNNs only consider previous information, bidi-

rectional RNNs incorporate both past and future information in their computations:

ht = �(Whxxt +Whhht�1 + bh), (7.27)

zt = �(WZXxt +WHXht+1 + bz), (7.28)

ŷt = softmax(Wyhht +Wyzzt + by), (7.29)
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where ht�1 and ht+1 indicate hidden cell states at the previous time step (t�1) and the future time

step (t+ 1).

7.3 Classification Results

7.3.1 Benchmark Datasets

The UCF-101 dataset, introduced in 2012, is one of the largest annotated video datasets available,

and an expansion of the UCF-50 dataset. It comprises 13320 realistic video clips collected from

YouTube and covers 101 categories of human actions, such as punching, boxing, and walking. The

dataset has three distinct o�cial splits (rather than a pre-divided training set and testing set), and

the final accuracy in our experiments is calculated as the arithmetic average of the results across all

three splits. Our experiments were conducted using Tensorflow-2.8.2 [1], Keras-2.6.0, and a powerful

4-GPU system (GeForce® GTX 1080 Ti). We used Hiplot [63] for data visualization. Figure 7.3

provides snapshot of samples from each of the action categories.

7.3.2 Evaluation Metric

For evaluating our results, we employ the standard classification accuracy metric, which is defined

as follows:

Accuracy =
Number of correct predictions

Total numbers of predictions made
. (7.30)

7.3.3 Implementation

Training our collaborative models for action recognition involves building a new, dedicated system,

as these models require real-time information exchange. To the best of our knowledge, this is the

first such system ever built for this purpose. To accommodate the large hardware resources required,

each model is trained in a separate environment. After one training epoch, each model updates its

current location, previous location, estimate of the gradient of the loss function, and other relevant

information, which is then broadcast to neighboring models. To clarify the concept, we provide a

diagram of the collaborative system and provide a brief description in this subsection.

Our system for distributed PSO-ConvNets is designed based on a web client-server architecture,

as depicted in Figure 7.4. The system consists of two main components: the client side, which is any

computer with a web browser interface, and the server side, which comprises three essential services:

cloud services, app services, and data services.

The cloud services host the models in virtual machines, while the app services run the ConvNet

RNN or ConvNet Transformer models. The information generated by each model is managed by the

data services and stored in a data storage. In order to calculate the next positions of particles, each
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Figure 7.3: A snapshot of samples of all actions from UCF-101 dataset [163].

particle must wait for all other particles to finish the training cycle in order to obtain the current

information.

The system is designed to be operated through a web-based interface, which facilitates the

advanced development process and allows for easy interactions between users and the system.

7.3.4 E↵ectiveness of The Proposed Method

Table 7.1 presents the results of Dynamics 1 and Dynamics 2 on action recognition models. The

experiment settings are consistent with our previous research for a fair comparison. As shown in Fig-

ure 7.2, we consider two di↵erent ConvNet architectures, namely DenseNet-201 and ResNet-152, and

select eight models from the Inception [171], E�cientNet [172], DenseNet [74], and ResNet [65] fam-

ilies. In the baseline action recognition methods (DenseNet-201 RNN, ResNet-152 RNN, DenseNet-

201 Transformer, and ResNet-152 Transformer), features are first extracted from ConvNets using

transfer learning and then fine-tuned. However, in our proposed method, the models are retrained in
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Figure 7.4: Dynamic PSO-ConvNets System Design. The system is divided into two main compo-
nents, client and server. The client side is accessed through web browser interface while the server
side comprises of cloud, app, and data services. The cloud stores virtual machine environments
where the models reside. The app service is where the ConvNet-RNN or ConvNet-Transformer
runs, and the information generated by each model is managed and saved by the data service. The
particles in the system update their positions based on shared information, including current and
previous locations, after completing a training cycle.

an end-to-end fashion. Pretrained weights from the ImageNet dataset [97] are utilized to enhance the

training speed. Our results show an improvement in accuracy between 1.58% and 8.72%. Notably,

the Dynamics 2 for DenseNet-201 Transformer achieves the best result. We also report the time

taken to run each method. Fine-tuning takes less time, but the technique can lead to overfitting

after a few epochs.

7.3.5 Comparison with state-of-the-art methods

The comparison between our method (Dynamics 2 for ConvNet Transformer) and state-of-the-art

(SOTA) approaches is shown in Table 7.2. The second method (which is similar to ours) trains the

models on a Sports-1M Youtube dataset and uses the features for UCF-101 recognition. However,

the transfer learning procedure is slightly di↵erent as their ConvNet architectures were designed

specifically for action recognition. While it may have been better to use a pretrained weight for

action recognition datasets, such weights are not readily available as the models di↵er. Also, training

the video dataset with millions of samples within a reasonable time is a real challenge for most

research centers. Despite these limitations, the use of Transformer and RNN seem to provide a

better understanding of temporal characteristics compared to fusion methods. The third method,
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Table 7.1: Three-fold classification accuracy (%) on the UCF-101 benchmark dataset. The results of
Dynamics 1 and Dynamics 2 using DenseNet-201 Transformer and Resnet-152 Transformer models
and compared to baseline models, e.g., Dynamics 1 for DenseNet-201 Transformer versus DenseNet-
201 Transformer. The N/A is the abbreviation for the phrase not applicable, for instance, the
transfer learning is not applicable in the Dynamics 2 for DenseNet-201 Transformer as the method
uses the end-to-end training instead.

Time per fold (h)
Dynamics Method Model Accuracy Improve (%) Transfer Learning Fine-tune/Retrain

-
DenseNet-201 Transformer 0.7741 N/A 26

0.5
ResNet-152 Transformer 0.7679 N/A 24

-
DenseNet-201 RNN 0.8195 N/A 26

0.1
ResNet-152 RNN 0.8118 N/A 24

Dynamics 1

DenseNet-201 Transformer 0.8579 8.38 N/A

5.5

ResNet-152 Transformer 0.8405 7.26 N/A
DenseNet-201 RNN 0.8462 2.67 N/A

ResNet-152 RNN 0.8276 1.58 N/A

Dynamics 2
DenseNet-201 Transformer 0.8613 8.72 N/A

ResNet-152 Transformer 0.8399 7.20 N/A

Table 7.2: Comparisons of the proposed method and the state-of-the-art methods on the UCF-101
benchmark dataset

Method Accuracy (%)
Bag of words [163] 44.50
Transfer Learning and Fusions [86] 65.40
P-ODN [158] 78.64
Our model (Dynamics 2 for ConvNet Transformer) 86.13

Prototype Open Deep Network (P-ODN), introduces prototype learning into open set recognition.

The method learns the unknown classes by applying a multi-class triplet thresholding method based

on the distance metric between features and prototypes. Our Dynamics 2 method outperformed

P-ODN by roughly 9%. The bag of words method was originally used as a baseline for the dataset

and achieved the lowest recognition accuracy (44.5%).

7.3.6 Hyperparameter Optimization

In these experiments, we aimed to find the optimal settings for each model. Table 7.3 presents the

results of the DenseNet-201 Transformer and ResNet-152 Transformer using transfer learning, where

we varied the maximum sequence length, number of frames, number of attention heads, and dense

size. The number of frames represents the amount of frames extracted from the sequence, calcu-

lated by step = (maximum sequence length)/(number of frames). The results indicate that longer

sequences of frames lead to better accuracy, but having a large number of frames is not necessarily

the best strategy; a balanced approach yields higher accuracy. Furthermore, we discovered that

models performed best with 6 attention heads and a dense size of either 32 or 64 neurons.

Figures 7.5 and 7.6 show the results for ConvNet RNN models using transfer learning. In
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the experiments, we first evaluated the performance of eight ConvNets (Inception-v3, ResNet-101,

ResNet-152, DenseNet-121, DenseNet-201, E�cientNet-B0, E�cientNet-B4, and E�cientNet-B7).

The two best performers, DenseNet-121 and ResNet-152 ConvNet architectures, were selected for

further experimentation. The results of varying the number of frames showed a preference for longer

maximum sequence lengths.

Figure 7.5: Hyperparameter Optimization Results for ConvNet RNNModels with Transfer Learning.
The models are numbered as follows: 1.Inception-v3, 2.ResNet-101, 3.ResNet-152, 4.DenseNet-121,
5.DenseNet-201, 6.E�cientNet-B0, 7.E�cientNet-B4, 8.E�cientNet-B7. The abbreviations acc, gn,
and lr stand for accuracy, Gaussian noise, and learning rate, respectively.

Figure 7.6: Impact of Varying the Number of Frames on the Three-Fold Accuracy of DenseNet-201
RNN and ResNet-152 RNN Using Transfer Learning on the UCF-101 Benchmark Dataset.

7.4 Discussion

The performance of action recognition methods such as ConvNet Transformer and ConvNet RNN

is largely dependent on various factors, including the number of attention heads, the number of
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Table 7.3: Three-Fold Classification Accuracy Results (%) on the UCF-101 Benchmark Dataset for
DenseNet-201 Transformer and ResNet-152 Transformer with Transfer Learning Training.

Accuracy (%)
Model Maximum sequence length Number of frames Number of Attention Heads Dense Size Set 1 Set 2 Set 3 Avg

D
en
se
N
et
-2
01

T
ra
n
sf
or
m
er

100

2

1
4 69.94 69.42 69.21 69.52
128 69.57 69.68 68.51 69.25

4
64 74.36 75.39 75.43 75.06
128 76 75.15 74.81 75.32

8
128 74.57 74.75 74.65 74.66
256 74.94 74.75 75.05 74.91

4 1

4 70.92 69.47 71.67 70.69
8 70.02 69.63 70.32 69.99
16 69.87 68.53 68.29 68.90
32 70.37 71 69.1 70.16
64 70.08 69.52 67.99 69.20
128 69.26 69.42 70.54 69.74

10

4
64 76.71 76 75.3 76.00
128 77.43 75.33 76.46 76.41

6

8 77.08 76.57 76.95 76.87
16 77.64 76.62 76.06 76.77
32 77.4 76.73 77.08 77.07
64 76.87 77.16 78.19 77.41
1024 74.94 73.57 72.48 73.66

20 6

8 76 77.34 77.25 76.86
32 76.71 75.99 75.3 76.00
64 77.16 76 76.46 76.54
128 77.4 75.87 77.03 76.77

40

2

4

32 74.65 74.53 74.3 74.49
64 74.94 74.26 73.54 74.25
128 74.46 74.29 74.46 74.40
1024 71.03 70.73 70.45 70.74

6

16 73.38 74.48 73.97 73.94
32 74.39 73.43 73.97 73.93
64 75.34 74.37 73.57 74.43
128 73.96 74.21 74.03 74.07

10 6
32 76.37 74.64 74.35 75.12
64 75.73 75.55 74.81 75.36
128 76.08 76 75.08 75.72

R
es
N
et
-1
54

T
ra
n
sf
or
m
er

100

2

1
4 71.08 70.65 68.59 70.11
128 70.05 71.51 68.89 70.15

4
128 75.02 76.03 74.73 75.26
256 74.76 75.66 75.19 75.20

6
64 75.39 75.52 74.65 75.19
128 75.57 75.6 75.78 75.65

10 6

4 76.55 76.78 75.65 76.33
8 77.08 76.35 76.14 76.52
16 76.55 76.25 76.33 76.38
32 77.24 76.49 76.65 76.79
64 75.84 77.53 76.54 76.64
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dense neurons, the number of units in RNN, and the learning rate, among others. Collaborative

learning is an e↵ective approach to improve the training of neural networks, where multiple models

are trained simultaneously and both their positions and directions, as determined by the gradients of

the loss function, are shared. In our previous research, we applied dynamics to ConvNets for image

classification and in this study, we extend the concept to hybrid ConvNet Transformer and ConvNet

RNN models for human action recognition in sequences of images. We first aim to identify the

optimal settings that lead to the highest accuracy for the baseline models. As seen in Table 7.1, the

ConvNet Transformer models did not perform as well as the ConvNet RNN models with transfer

learning, which could be due to the limited data available for training, as transformers typically

require more data than RNN-based models. However, our proposed method, incorporating dynamics

and end-to-end training, not only outperforms the baseline models, but also results in the ConvNet

Transformer models outperforming their ConvNet RNN counterparts. This can be attributed to

the additional data provided to the transformer models through data augmentation and additional

noise.

7.5 Conclusions and Contributions

Recognizing human actions in videos is a fascinating problem in the art of recognition, and while

ConvNets provide a powerful method for image classification, their application to HAR can be

complex, as temporal features play a critical role.

In this study, we present a novel video action recognition framework that leverages collaborative

learning with dynamics. Our approach explores the hybridization of ConvNet RNN and the recent

advanced method Transformer, which has been adapted from Natural Language Processing for

video sequences. The experiments include the exploration of two dynamics models, Dynamics 1 and

Dynamics 2. The results demonstrate a round improvement of 2% � 9% in accuracy over baseline

methods, such as an 8.72% increase in accuracy for the DenseNet-201 Transformer using Dynamics 2

and a 7.26% increase in accuracy for the ResNet-152 Transformer using Dynamics 1. Our approach

outperforms the current state-of-the-art methods, o↵ering significant improvements in video action

recognition.

In summary, our work makes three key contributions: (1) We incorporate Dynamics 1 and

Dynamics 2 into a hybrid model that combines ConvNet with two popular sequence modeling tech-

niques - RNN and Transformer. (2) We extend the distributed collaborative learning framework to

address the task of human action recognition. (3) We conduct extensive experiments on the challeng-

ing UCF-101 dataset, over a period of 60 days, and compare our approach against state-of-the-art

methods to validate its e↵ectiveness.



Chapter 8

Conclusions and Future Work

The goal of this thesis is to classify images with the latest emerging deep learning techniques and

extend the proposed methods to recognize human actions in videos. We identified the following

research statements:

RS1. Can capsule networks perform better than the current best method in image recognition

(Convolution Neural Networks)?

RS2. How can capsule network be improved?

RS3. Can we apply Recurrent Neural Networks for image recognition and how about other

techniques?

RS4. How does collaborative learning enhance image classification?

RS5. Can collaborative learning apply to other fields?

To answer RS1, we propose to improve the design of Vector CN by extending ConvNet layers

after Input image and vary the number of FCs in Reconstruction to accomplish better accuracy.

Having a larger image size is critical in our approach since certain signs are similar. A small change

in the position of fingers can yield distinct signs. In addition, variation of background contexts may

hamper Capsules’ performance. Using our approach we attain the goals as follows. First, our results

show that Capsule 32 V2 performs comparatively to DL MobileNet V1 on accuracy and Capsule

32 V1 runs a slightly faster than its counterpart. Second, Vector CNs are greater than DL models

in the sense that the latter requires pre-trained weights which can take days or even months for

training whereas the former can be trained on-the-fly within an hour. Third, as a result of our

exploration, we found that MobileNet V1 even though was mainly built for small devices but is

superior to all other DL models both on accuracy and speed in this dataset. Furthermore, we made

a demonstration to illustrate our approach where we compare Vector CN V1 with DL MobileNet

V1 in an ASL video. Although, Vector CN can recognize most of all signs (excluding signs that

we mentioned earlier), the model is more sensitive to changes than the DL model. This suggests

pooling in the DL may better than just rescaling as in the Vector CN. In addition, the DL performs
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better although the accuracy (when testing on the ASL dataset) is similar to that of Vector CN.

This can indicate that the DL model is more generative. For this reason, additional samples are

needed to improve the overall performance. Although we demonstrate this approach in the context

of ASL alphabet signs, the approach has broader applications to any video recognition tasks where

each individual frame’s information are crucial.

For RS2, we first propose to replace Standard Convolution in Capsule Networks’ Architecture

with Depthwise Separable Convolution. Then we perform empirical comparisons of the best Capsule

Networks with the best Deep Learning models. The results show that our proposed DW Capsules

remarkably decrease the size of models. Among the chosen Capsule Networks, the total parameters

had shrunk roughly by an amount between 21% – 25%. In terms of accuracy, Capsule 64 DW Max

performs better than other Capsule models. Though Capsule 32 SC Mini can be a trade-o↵ between

the accuracy and the number of parameters. In comparison with Deep Learning models, Capsule

32 DW Mini has a larger number of parameters, yet it achieves the accuracy of MobileNet V1 after

a few more epochs. Meanwhile, Capsule 32 SC Mini can attain that of MobileNet V1 LSTM’s

accuracy with 3 to 4 times smaller in the number of parameters. Capsule 32 DW Mini and 64

DW Max outperform Inception V3 MLP and LSTM on accuracy. Moreover, Capsule 64 DW Max

occupies 5% less the number of parameters than Inception V3 LSTM though Capsule 32 DW Mini

has 4 times larger size than Inception V3 MLP. After a thorough literature search, we believe that

this is the first work that proposes the integration of Depthwise Separable Convolution into Capsule

Networks. Additionally, we provide empirical evaluations of the proposed Capsule Networks versus

the best Deep Learning models.

Regarding RS3, we presented our core ideas for improving ConvNets by integrating RNNs as

essential layers in ConvNets when designing end-to-end multiple-model ensembles that gain exper-

tise from each individual ConvNet, an improved training strategy, and a softmax layer extension.

First, we propose integrating RNNs into ConvNets even though RNNs are mainly optimized for 1D

sequential data rather than 2D images. Our results on the Fashion-MNIST dataset show that Con-

vNets with RNN, GRU and BiLSTM modules can outperform standard ConvNets. We employed a

variety of fine-tuned models in a virtual environment, including InceptionV3, Xception, ResNet50,

Inception-ResNetV2 and MobileNetV1. Similar results can be obtained using a dedicated server

for the SEResNeXt101 and E�cientNetB5 models on the Cifar-10 and Fashion-MNIST datasets.

Although adding RNN modules requires more computing power, there is a potential trade-o↵ be-

tween accuracy and running time. Second, we designed E2E-3M ConvNets that learn predictions

from several models. We initially tested this model on the iNaturalist’19 dataset using only a single

E2E-3M model. Then, we evaluated various models and image resolutions and compared them with

the Inception benchmark. Then, we added RNNs to the model and analyzed the performances on

the Fashion-MNIST dataset. Our E2E-3M model outperforms a standard single model by a large

margin. The advantage of using an end-to-end design is that the model can run immediately in real
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time and it is suitable for system-on-a-chip platforms. Third, we proposed a training strategy and

pruning for the softmax layer that yields comparable accuracies on the Cifar-10 and Fashion-MNIST

datasets. Fourth, using the ensemble technique, our models perform competitively, matching previ-

ous state-of-the-art methods (accuracies of 0.99, 0.9027 and 0.9852 on SVHN, Cifar-100 and Cifar-10,

respectively) even with limited resources. Finally, our method outperforms other approaches on the

Surrey dataset, achieving an accuracy of 0.949.

About RS4, we have proposed a novel distributed collaborative PSO-ConvNet algorithm for the

optimization performance which is capable of leading particles up to a better minimum. The key

contributions of this article are: (1) novel formulations (Dynamics 1 and Dynamics 2) have been

successfully created by incorporating distilled Cucker-Smale elements into the PSO algorithm using

KNN and intertwining the training with SGD; (2) a new type of particle, i.e., wilder PSO with

random learning rate is introduced which has capability of attracting conservative PSOs to stronger

minima; (3) a distributed environment is developed for parallel collaboration that significantly accel-

erates the training; (4) the proposed algorithms are evaluated on Cifar-10 and Cifar-100 benchmark

datasets and compared to state-of-the-art algorithms to verify the superior e↵ectiveness.

For RS5, we present a novel video action recognition framework that leverages collaborative

learning with dynamics. Our approach explores the hybridization of ConvNet RNN and the recent

advanced method Transformer, which has been adapted from Natural Language Processing for

video sequences. The experiments include the exploration of two dynamics models, Dynamics 1 and

Dynamics 2. The results demonstrate a round improvement of 2% � 9% in accuracy over baseline

methods, such as an 8.72% increase in accuracy for the DenseNet-201 Transformer using Dynamics 2

and a 7.26% increase in accuracy for the ResNet-152 Transformer using Dynamics 1. Our approach

outperforms the current state-of-the-art methods, o↵ering significant improvements in video action

recognition.

During the course of this study, some of our initial plans were full-filled in later works. For

example, we extended our collaborative learning from image recognition to video action recognition.

However, there are still ideas to develop. In the future, we plan to redesign CNs’ structure to perform

on larger images. We also plan to build Vector CNs and DL MobileNet V1 on mobile devices as

the accuracy and speed allow these networks to run in realtime. We will try to extend our e2e-3m

models to include a greater variety of settings. Finally, we will explore our proposed collaborative

learning on more and larger datasets.



Appendix A

O✏ine and Online Deep Learning

for Image Recognition

A.1 Introduction

Recent years have seen a re-appearance of Deep Learning from academy to business area. In academy,

the technique has achieved significant higher classification accuracy on competitions such as image

recognition [79] and speech recognition [124]. These results inspired by the previous works of LeCun,

Bengio and Hilton on DL were catapulted with the availability of GPU and BigData [101]. In

business, Google self-driving cars have been tested in large cities and accumulated hundred years of

human driving experience [51]. Uber also made a breakthrough in public service as the first company

to o↵er self-driving cars [16]. DL is being seen in Natural Language Processing (NLP) e.g. Apple

Siri, Google Now and Amazon Alexa which o↵er voice recognition services to assist customers in

searching information. We believe that one of the next steps is Natural Language Understanding

(NLU) for which much achievement is expected soon.

Before the arrival of DL in image classification, the field has evolved through several stages

from Linear Classifier to Support Vector Machine and Neural Networks. These methods commonly

require selection of features that eventually needs involvement of experts in particular fields. DL on

the other hand can choose the best feature automatically [101].

In this article, we employ MNIST and Cifar 10 – standards for digit recognition and image

recognition as testbeds for our classifiers. Table A.1 shows a summary of performances of MNIST

based on several classifiers. The earliest one made by LeCun (also a main contributor of MNIST) with

one layer neural network produced 12% in terms of error rate [99]. Since then, several researches have

been done to improve the performance. For example, authors in [44] applied a concept of Support

Vector Machine (SVM) that reduces error rate to 2.75%. In addition, authors in [89] decreased
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the error rate by 5 times. With the recent popularization of the ConvNet, researchers were able to

archive lower error rates with deeper layers of convolution as seen in references [109, 26, 25, 186].

At the time of this writing, the best error is 0.21. For Cifar 10, the best error rate is 3.74 [56].

The rest of this work is organized as follows. In Section A.2 we highlight our main contribution.

In Section A.3, we deal with o✏ine implementation and setups for comparisons of the shallow and

deep classifiers in MNIST dataset. We discuss the results in Section A.4. We also setup other online

deep learning experiments with Cifar 10 in Section A.5. Finally, we summarise our findings and

approaches toward future work in Section A.6.

Table A.1: Classifiers’ Performance on MNIST.

# Ref Classifier Error Rate (%)
[99] 1 Layer NN 12
[44] SVM 2.75
[89] KNN with IDM 0.54
[109] Deep CNN 0.47± 0.05
[26] 7 CNN 0.27± 0.02
[25] 35 CNN 0.23
[186] DropConnect NN 0.21

A.2 Contribution

In this research, we present our findings for a better performance in image recognition in o✏ine and

online settings. We have setup a development framework for performing o✏ine image recognition.

We also looked for the best setting in MLP and compare with ConvNet. Moreover, in online setting,

we also tried to find the most e�cient architecture. Even though still preliminary, these results are

very promising and provide approaches toward future exploration.

A.3 O✏ine Implementation

In this section, we discuss the benchmark dataset, the development framework as well as the setups

of Multilayer Perceptron and Convolution Neural Networks.

A.3.1 MNIST

We obtain dataset from MNIST which is a Modified version of United States’ National Institute

of Standards and Technology. The data has a training set of 60000 samples and a testing set of

10000 samples. The training and testing sets each include scanned handwritten images and desired

outputs. These images were rescaled into 20⇥ 20 pixel box and then centered in 28⇥ 28 pixel field.

Each digit in an image represents gray level ranging from 0 to 255 where 0 means white color and
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255 means black color [99]. The visual figure of the first ten digits in the training set is shown in

Fig. A.1.

Figure A.1: Visualization of first ten digits MNIST.

A.3.2 Development Framework

In order to perform image recognition with DL, we setup a development framework which includes

three layers, namely, OS Layer, Programming Layer, and Toolkit Layer as depicted in Fig. A.2. In

the first layer, we perform our experiments on a Macbook Pro (Intel 2.7 GHz). In the programming

layer, we choose Python since this language is one of the most popular programming languages in

scientific community and the other reason is that Python operates very fast in runtime. In the

toolkit layer, we build our image recognition surrounding Tensorflow library which is a DL library

and has been supported by Google Inc since 2015. Besides of Tensorflow, there are also several DL

libraries e.g. Theano, Torch and Deeplearning4j. For convenience of dealing with di↵erent libraries,

we decided to use Keras on top of Tensorflow.

Figure A.2: Development Framework
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A.3.3 Setup for MLP

This section deals with how we perform training and testing of the datasets on MLP. Fig. A.3 shows

the process of these steps. First of all, as mentioned in the previous section, each image encoded

in an array of 28 rows and 28 columns is permuted into a vector of 784 columns. Then the vector

will be used as input of our Neural Networks. After that, the data is processed in a fully connected

MLP. In the output layer, we set 10 neurons for decoding 10 digits from 0 to 9. For example, the

binary 0000000001 would represent digit 0. The binary 0000000010 would represent digit 1 so on

and so forth.

Figure A.3: Process of classifying a sample digit 5 using an MLP

The essential of an MLP is computing weights via Equation A.1 where wi is the weight of the

neuron i, ⌘ is the learning rate, t,o and x are target, output and input respectively.

wi  wi + ⌘(t� o)x (A.1)

A.3.4 Setup for CNN

The structure of the Convolutional Neural Network (CNN) is shown in Fig. A.4. As we can see,

this structure includes a convolutional layer in addition to MLP layers. The convolutional layer may

include one or more combinations of convolution, pooling and ReLU stages. A unit employing the

rectifier activation function is called a rectified linear unit (ReLU). While convolution performs as

feature extraction, pooling and ReLU reduce the dimension of the convolution map but still keep

essential information [1].

Fig. A.5 depicts an illustration regarding digit 5 when using di↵erent feature extractions (filter

e↵ects), namely, Origin (where there is no filter applied), Pencil, Scribble and Escher [120]. As we
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Figure A.4: Process of classifying a sample digit 5 using an CNN (Adapted from [101])

can see, these filters remove background noise in the image and make the digit more or less easier

to recognize.

Figure A.5: Feature extraction with di↵erent filters for digit 5

A.4 Results

In this section, we discuss results of three experiments including finding the best learning rates for

MLP, comparison of MLPs and CNN and performance of detection on each digit.

A.4.1 Experiment 1: Finding the Best Learning Rates

Since Keras sets default learning rate at 0.5, we modified this value to find the best learning rate for

our dataset. We varied the values as 1, 0.5, 0.1 and 0.01 and performed iterations from 1 to 10 with

1 increment. From Table A.2, we found that when the learning rate is 0.1, the error rate is lowest

(0.05 versus 5.1, 1.03, 2.67 for learning rates of 1, 0.5 and 0.01).

A.4.2 Experiment 2: CNN vs MLPs comparison

In this experiment, we compared MLPs (with default learning rate and our best learning rate) and

CNN. We varied the number of neurons in the input layer from 196 (¼ the size of the input vector)

to 12544 (16 times the size of the input vector). Table A.3 shows the results regarding the error

rates. We also plot these results in Fig. A.6 for convenient comparison.
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Table A.2: Error Rates for Di↵erent Learning Rates of MLP.

#Iteration
Error Rates (%)

lr=1 lr=0.5 lr=0.1 lr=0.01
1 10.74 3.46 3.31 8.38
2 7.45 2.16 2.08 6.73
3 7.66 2.21 1.31 5.71
4 6.84 2.29 1.19 4.86
5 8.80 1.69 0.64 4.44
6 6.61 0.97 0.42 3.91
7 4.82 0.80 0.37 3.56
8 4.82 0.73 0.14 3.16
9 6.36 0.67 0.08 2.88

10 5.10 1.03 0.05 2.67

As it can be observed from Fig. A.6, CNN outperforms both MLPs with the default learning

rate and the best learning rate. We also see that when MLPs start getting overfit (error rates begin

to increase), CNN is still stable.

Table A.3: Percentage of error rates for di↵erent numbers of input neurons for MLP and CNN.

#Number of input neurons
Error (%)

MLP (lr=0.5) MLP (lr=0) CNN
196 6.36 4.25 2.42
392 5 4.24 2.14
784 4.09 3.91 2.04
1568 3.52 3.52 1.94
3136 3.32 3.19 1.91
6272 3.3 2.99 2.11
9408 5.13 4.14 1.99

12544 13.53 10.33 2.02

Figure A.6: Comparison of CNN and MLPs
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A.4.3 Experiment 3: Performance of Recognition on individual Digits

This experiment is designed to determine if our CNN can recognize a certain digit better than

others. Table A.4 shows Precision, Recall and F1-Score of these digits. From this table, digit 0

can be recognized better than the others in terms of Precision. However, in terms of Recall and

F1-Score, digit 1 performs better than other digits.

Notice that, these results are varied each time we change the weights of CNN (we initiate the

CNN with di↵erent seeds). For example, if the seed is 7, the best F1-Score is on digit 1, but if seed

is 17, the best F1-Score is on digit 4. So we may conclude that the performance of CNN on each

digit depends on the initial weights of CNN.

Table A.4: Precision, Recall and F1-Score on Digits.

Digit Precision Recall F1-Score
0 99.78 98.88 98.83
1 98.86 99.30 99.08
2 98.34 97.67 98.01
3 97.54 98.22 97.88
4 97.87 98.37 98.12
5 98.20 97.87 98.03
6 98.13 98.75 98.44
7 98.53 97.67 98.09
8 97.95 98.25 98.10
9 98.00 97.22 97.61

A.5 Online Implementation

O✏ine implementation has shown a promising approach in DL. However, it su↵ers from a drawback

in terms of usability because the training process occurs inside local computers that makes accessing

from outsiders di�cult. Thus, the o✏ine approach limits the number of users cooperating in DL

projects. Recently, there is several attempts to bring DL for online production via web for example

ConvNetJS and NeuroJS. ConvNetJS is written entirely in Javascript and supports ConvNets and

other Neural Networks. In the following, we present our experiments based on this ConvNetJS

library.

A.5.1 Cifar-10 Dataset

We performed these experiments based on Cifar-10 which o↵ers 60000 colour images with the size

of 32⇥ 32 pixels. There are 10 categories including airplane, automobile, bird, cat, deer, dog, frog,

horse, ship and truck with 6000 images in each category. All images are bundled into a training of

50000 images and testing set of 10000 images. These training images are grouped into 5 batches of
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1000 images beside of 1 batch for testing images. The testing batch contains exactly 1000 images of

each class where as a training batch may contains more or less than 1000 images of each class [95].

Fig. A.7 shows 10 random images because of limitation in the number of pages.

Figure A.7: Visualization of random images Cifar-10

A.5.2 Experiment 4: Optimizers

This experiment is designed to compare performances of a CNN with regard to several optimizers.

The network mainly consists of two convolutional layers and a FC network. The first convolutional

layer involves 16 filters have the size of 5 ⇥ 5 and followed by a pool with the size of 2 ⇥ 2. The

second convolutional layer comprises of 20 filters and a pool with the same settings as the first layer.

ReLU activation is used in both layers. The output layer is set to classify the 10 di↵erent

categories. We perform comparisons of two SGD optimizers with the default learning rate and two

variations of momentum 0.0 and 0.9. We named these optimizers as SGD and SGD+, respectively.

Results of the loss function, training and testing accuracies on number of samples are shown in

Fig. A.8. As it can be depicted from the figure, the performances of default SGD are sometimes

greater than the performances of SGD+, but at other times are less than those of SGD+. When the

number of samples is small (approximately 400000 samples), SGD+ performs better across Loss,

Training accuracy and Testing accuracy domains. However, SGD performs generally better with

more samples. In addition, accuracies in training and testing are increasing steadily despite slow

rates (accuracy achieves roundly 0.5 after 2000k samples).

A.5.3 Experiment 5: Further Improvement

In this experiment, we tried to improve the accuracy of the CNN by varying di↵erent architectures.

We added a dropout in second convolutional layer and also an Adadelta optimizer. Results of this

experiment are plotted in the Fig. A.9. We can observe that performances are improved significantly.

In training set, SGD+ can accomplish the accuracy of 0.6 after about 70k samples (versus 2000k in

previous setting). In the same time, Adadelta performs a slightly better than SGD+. We also see

similar trends for testing set.
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Figure A.8: Comparisons of SGDs in Cifar-10

A.6 Conclusion and Future Work

In this research, we present our findings for o✏ine and online DL in image recognition. In o✏ine

recognition, we setup a DL development environment built around TensorFlow and Keras. We also

performed comparisons of di↵erent optimizers. Results showed that CNN achieves more accuracy

and is more stable than typical FC networks. In addition, performances are varied across digits. In
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Figure A.9: Comparison of di↵erent optimizers in Cifar-10

online image recognition, we setup a web-based approach surrounding a Javascript library for DL.

Several optimizers were tested and Adadelta slightly outperforms the best SGD in our setting.

We argue that though using ConvNet does not require expert’s knowledge, handcraft filters may

result in a better performance since classifying certain objects may indeed require a more concrete

understanding of a typical field. Besides of handcraft filters, we also plan to further improve the

performance of the optimizers.



Appendix B

Action Recognition for American

Sign Language

B.1 Introduction

The use of Deep Learning for action recognition in video has been an active research in recent years.

However, they often fall into recognition of actions as the whole picture e.g. an actor is running,

jogging or walking or activities of a group playing football, tennis so on and so forth. Recognizing

a more subtle action can be seen in emotion or a more relevant to our research as hand gesture.

Though hand gesture is often be limited by number of actions e.g. moving left and right, pointing or

twisting etc. On the contrary, sign language o↵ers a more standard and abundance of vocabularies

for actions. Just only in America, there are approximately a half of million people using American

Sign Language.

Research in sign languages mostly focus on static images e.g. numbers or alphabets. For example

in ASL alphabets, letters J and Z which are dynamic signs are excluded [98, 4]. Some works explore

continuous signs – shown as continuous frames – but vocabularies are just static signs [93]. In our

research, we analyze dynamic ASL signs where a sign requires at least two or more shapes.

The structure of this work is as follows. In the next section, we discuss about datasets gathered

for this research and present our framework in Section 3. In Section 4, experiments are demonstrated

and results analyzed. Conclusions and future works are addressed in Section 5.

B.2 Dataset

We collected our dataset via ASL dictionaries and resources on Internet for 10 di↵erent signs,

particularly, referring to animals. These include bear, bird, cat, elephant, fish, gira↵e, horse, lion,

120
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monkey and mouse. However, we exclude signs having more than one expression e.g. dog (this sign

requires tapping on one’s hip and optionally twisting thump and index fingers). Overall, we obtain

15 videos for each sign: 10 for training and 5 for testing. Our dataset presents a diversity of signers

including 23 females, 10 males and 7 children. Each of them performs maximum 10 signs, minimum

1 sign (18 signers) and 3.75 signs on average. In each video, we cut frames from starting of an action

until it ends, within 1-2 seconds long approximately. Figure B.1 shows 2 signs sequences for lion

and cat. We later extend the dataset to include 15 signs in Section 4.

Figure B.1: ASL sequences of lion and cat signs

B.3 Proposed Methods

We show our architecture for ASL Action Recognition in Figure B.2. In this architecture, videos

are extracted into frames at di↵erent rates e.g. 2 frames/s, 3 frames/s etc. Since visual contents

usually share similar elements and training a descent deep net can take several weeks to months,

for these reasons, we reuse trained deep networks to filter frames in our architecture and retrain

the last layer for our dataset. At this step, we employ di↵erent transfer learning models naming

InceptionV3, InceptionRestNetV2, Resnet50, DenseNet201 and VGG16/VGG19 to explore which

model is the most suitable. Then these frames are extracted to a fixed set of features accordingly.

In classifying features from ASL signs, our approach is innovative compared to others in a similar

problem endowing classification of only one-shape signs even when signs are in continuous frames.

Please note that an one-shape sign can be recognized using only one frame but a dynamic sign
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requires at least 2 or more frames. We apply MLP as a baseline on each set of features since the

neural network could perform comparable with other more advanced models [138]. Then we perform

comparisons of MLP with LSTM. Performances of these structures are analyzed in next section.

Figure B.2: Framework for Action Recognition

B.4 Experiments and Results

In this section, we fist perform our experiments on ASL raw data for training phase and a pre-

processing stage for the testing phase. We vary the length of sequence including 2, 4, 12 and 24

frames per video.

Table B.1 shows results for only InceptionResNetV2, InceptionV3 and DenseNet201. The results

of ResNes50 and VGG16/VGG19 are excluded from this table since the accuracy is not much better

than randomly guess. Performances of MLP and LSTM are also compared. We can observe that

MLP usually outperforms LSTM despite of being a simpler structure. This is also interesting to

notice that the accuracy of DenseNet201 is better than other models while it is not the finest model

on ImageNet dataset. Regarding the choice of sequence length, a sign can be recognized with the

highest accuracy using a sequence of just 12 frames. On the other hand, with only the first frame

and the middle frame of an ASL sign, an accuracy of approximated 0.8 can be observed.

In Experiment 2, we compare performances of MLP and LSTM on testing data using transfer

learning model DenseNet201. From results for raw ASL data, we can observe that the architecture
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is not performing well and accuracy are just around 0.3. For this reason, we pre-proceed background

subtraction for videos and we also cut the first frame to remove backgrounds left by the subtraction

process as we set history window to 1. In addition, the threshold is optimized to 50 since it gives

the best accuracy. Beside, we use a median blur filter to remove noise in the frames. We can see

from the result that the accuracy is much better with an improved accuracy of 0.58 using LSTM on

12 frames per gesture.

Table B.1: ASL data classification on training DL models

InceptionResNetV2 InceptionV3 DenseNet201

#Seq Length MLP LSTM MLP LSTM MLP LSTM
2 - - 0.86 0.80 0.86 0.88
4 - - 0.97 0.89 0.98 0.89
12 - - 0.96 0.92 1.00 0.91
24 0.86 0.75 0.93 0.92 0.98 0.94

We find out that the accuracy of 0.58 may not be helpful for many applications and this could

not getting better with the current setting. Further investigations point out that actors perform

signs di↵erently e.g. actors may repeat a gesture more often than others. For this reason, we strictly

reinforce rules for these signs. Likewise, initial signs were replaced for those we could not find enough

videos according to the defined rules. After testing several times, we found that the combination

of DenseNet201 and LSTM performs the best. Figure B.3 and Figure B.4 show the accuracy and

normalized confusion matrix for the training and testing. We observe the highest accuracy of 0.86

yielded in test. However, in the confusion matrix, we notice that the model misclassifies between a

mouse and a cat since their hand positions and shapes are somewhat similar.

In Experiment 4, we extend our dataset from 10 signs to 15 signs including more general conver-

sation terms as finish, hello, love, please and thank you. Confusion matrix is shown in Figure B.5.

We can see that while several classes e.g. elephant, lion, monkey and tiger are still being recognized

correctly, other classes e.g. bear and love are mixed because of their similarity.

B.5 Conclusions and Future works

In our main contribution, we explore the use of several transfer learning models in combination with

deep neural networks to classify dynamic ASL signs. We found that an integration of DenseNet201

and LSTM performs the best. In addition, we collected our own database of 150 videos represent

10 signs and an extension of 225 videos that represent 15 signs for verification. We also vary the

number of frames per sign to find the best setting.

Our results show that when we vary number of frames per sign, the use of 12 frames gives the

highest accuracy. With two frames for one sign, the sign can also be recognized with accuracy of
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Figure B.3: Model Accuracy on DenseNet201 after Preprocessing

around 0.8. On testing data, to obtain a higher accuracy, we subtract video backgrounds and strictly

follow rules for signs. As a consequence, a highest accuracy of 0.86 can be obtained. Our approach

di↵erent from most of other researches which focus only on static ASL signs and another recent

research [204] needs more than one input channel to obtain an accuracy of 0.69.

Future work will address extending the dataset and improving our framework to better recognize

signs and perform in realtime.
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Figure B.4: Normalized Confusion Matrix with Accuracy of 0.86 for 10 Signs
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Figure B.5: Normalized Confusion Matrix for Extended Signs
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