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Abstract
Over the last two decades, the development of mathematical models to describe both
the individual and collective behavior of cells in different biological processes has been
an active area of study, as well as the focus of multidisciplinary research teams, often
composed of experimental and theoretical biologists, mathematicians, computer scientists
and physicists. In this work, we employ the phase field method to describe the dynamics
of cellular systems at different scales.

We start by modeling a single cell has we investigate how the dynamics of the keratin
intermediate filament network is affected by the K14R125P mutation, which can be found
in keratinocytes of patients suffering from Epidermolysis Bullosa Simplex (EBS). Based on
experimental results obtained for the distribution of keratin in the cytoskeleton, we are able
to create a mathematical model that reproduces those results. We show that, by assuming
that the K14R125P affects the assembly process of keratin filaments, we can predict the
spatial distribution of keratin filaments in wild-type cells, as well as the accumulation of
keratin particles in the cortex of the keratinocyte, in the case where there is mutant keratin
in the cell.

To further understand how the formation of keratin aggregates depends on the amount of
mutant keratin present in a cell’s cytoskeleton, we test different reaction networks that
take into account the coexistence of wild-type and mutant keratins. From experiments we
know that the maximum amount of keratin aggregates is obtained when around 25% of
a cell’s keratin content is mutant. By assuming that keratin aggregate formation occurs
as a result of the asymmetric binding of WT and mutant keratin, we are able to find a
region of parameter space where the model is able to correctly predict what is observed
experimentally.

Next, we go from models that describe a single cell, to a model that uses a multi-phase
field approach to simulate a multi cellular system. By simulating a vessel constituted by
endothelial cells organized in a tubular structure, we are able to study how cell-cell and
cell-matrix adhesion, coupled to blood flow induced endothelial cell polarization, leads to
cell rearrangement and cell shape heterogeneity. By simulating a tip cell sprouting from
the vessel, we are able to show that the velocity of the tip cell influences the formation
of the new sprout. We also explore the importance of stalk-cell proliferation in providing
structural integrity to the sprout.

Finally, we present a phase field model capable of describing a two-phase system and its
elastic behavior. Using this model we study how the rigidity of the extracellular matrix
affect the morphology of growing vessel networks. We show that for soft matrices, there is
little to no vessel formation and instead we see that tip cells detach from the main vessel,
migrating alone. As we increase the rigidity, we start observing the formation of elongated
sprouts. In accordance with experiments, we show that vessel length does not have a linear
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dependence with ECM rigidity, since there is a value of rigidity at which sprout length is
maximum, decreasing as the ECM becomes stiffer.
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Resumo
No decorrer das últimas duas décadas, o desenvolvimento de modelos matemáticos para
descrever o comportamento, individual e coletivo, de células em diferentes processos
biológicos, tem sido uma área de estudo ativa, assim como o foco de equipas de investigação
multidisciplinares, compostas por biólogos teóricos e experimentais, matemáticos, cientistas
de computação e físicos. Neste trabalho, utilizamos o método de interface difusa para
descrever a dinâmica de sistemas celulares, a diferentes escalas.

Começamos por modelar uma célula individual, de maneira a investigar de que maneira a
dinâmica da rede de filamentos intermédios de queratina é afetada pela mutação K14R125P,
que pode ser encontrada em queratinócitos de pacientes que sofrem de Epidermolysis Bullosa
Simplex (EBS). Tendo por base os resultados experimentais obtidos para a distribuição
de queratina no citoesqueleto, podemos criar um modelo matemático que reproduz esses
resultados. Mostramos também que, assumindo que a mutação R125P afeta o processo de
montagem de filamentos de queratina, podemos prever a distribuição espacial de filamentos
de queratina em células normais, assim como a acumulação de partículas de queratina junto
à membrana celular do queratinócito, no caso em que a célula possui queratina mutante.

De maneira a perceber como é que a formação de agregados de queratina depende da
quantidade de queratina mutante presente no citoesqueleto, testamos diferentes redes
de reações, tendo em conta a coexistência de queratina mutante e não-mutante. Dos
resultados experimentais, sabemos que a quantidade máxima de agregados de queratina
é obtida quando aproximadamente 25% do conteúdo de queratina da célula é mutante.
Assumindo que a formação de agregados ocorre devido à ligação entre queratina mutante e
não-mutante em proporções distintas, somos capazes de encontrar uma zona do espaço
dos parâmetros, onde o modelo é capaz de prever corretamente o que é observado nas
experiências.

De seguida, passamos de modelos que descrevem sistemas apenas com uma célula, para
um modelo que usa um modelo de múltiplas interfaces difusas para simular um sistema
multicelular. Ao simular um vaso sanguíneo cilíndrico constituído por células endoteliais,
podemos estudar como a adesão entre células endoteliais e entre uma célula e a matriz
extracelular, acopladas à polarização induzida pela corrente sanguínea em células endoteliais,
levando ao rearranjo celular e heterogeneidade de formas celulares. Ao simular uma célula
da ponta migrando para fora de um vaso, podemos mostrar que a velocidade da célula da
ponta influencia a formação do novo vaso, e realçando a importância da proliferação de
células endoteliais em garantir a integridade estrutural do vaso.

No último capítulo, apresentados um modelo de interface difusa capaz de descrever um
sistema de duas fases e o seu comportamento elástico. Usando este modelo, pretendemos
estudar como é que a rigidez da matriz extracelular pode levar à formação de redes
sanguíneas com morfologias diferentes. Neste trabalho mostramos que para matrizes com
rigidez baixa, a formação de novos vasos é muito reduzida, e no seu lugar verificamos
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que as células da ponta se separam do vaso inicial, passando a migrar individualmente.
Aumentando a rigidez da matriz, começamos a ver a formação de vasos alongados. Em
concordância com os resultados experimentais, mostramos que o comprimento de vasos
sanguíneos não varia linearmente com a rigidez da matriz, uma vez que existe um valor
ótimo de rigidez para qual o comprimento do vaso é máximo, diminuindo à medida que a
matriz extracelular se torna mais rígida.
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Chapter 1

Biological Context

1.1 Formation of Blood Vessels

1.1.1 Vasculogenesis

The existence of an efficient circulatory system is indispensable for the existence of healthy
mammals. During the first weeks of embryo development, oxygen and all the necessary
nutrients necessary to cells are obtained directly from the placenta by diffusion. As the
embryo reaches a certain size, direct diffusion is no longer a viable process due to the
very limited diffusion length of most nutrients, most importantly oxygen. As such, the
circulatory system is the first functional system to be established in a developing embryo.
Blood vessels that belong to this primordial circulatory system are formed by a process
called vasculogenesis. Vasculogenesis is the de novo formation of new blood vessels from the

Figure 1.1: Diagram illustrating the different stages involved in vasculogenesis: Mesodermal cells differ-
entiate (A), originating hemangioblasts that migrate and form a cluster (B). Blood island formation with
angioblasts at the periphery and hematopoietic cells at the core (C). Hematopoietic and endothelial cell
differentiation (D). Formation of the vascular lumen and vessel stabilization (E). Adapted from [1].

differentiation of endothelial precursor cells (EPC), also know as angioblasts. The first step
in vasculogenesis is the aggregation of several cells called hemoangioblasts leading to the
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formation of structures called blood islands. The majority of the cells located at the core of
the blood islands will undergo apoptosis creating a lumen i.e. empty space. The cells at the
cortex of blood islands will differentiate into endothelial precursor cells, while the cells that
remained in the lumen will be blood cell precursors, or, hemopoietic cells. Several of these
blood islands will coalesce with neighboring islands and form elongated structures called
vascular cords which form the primary capillary plexus. During embryonic development,
most of the main blood vessels in the circulatory system are formed by vasculogenesis and
its occurrence drops drastically after birth. However, post-natal vasculogenesis has been
shown to have an important role in both physio and pathological events such as tumor
growth and wound healing [2]. At this stage, another process of blood network formation
called angiogenesis takes a more important role in the development of the circulatory
system.

1.1.2 Angiogenesis

Angiogenesis is the process by which new blood vessels are formed from preexisting
ones. As such, in embryos, angiogenesis can only happen after vasculogenesis has already
occurred and the primary capillary network has already been formed. As is the case
with vasculogenesis, in angiogenesis new blood vessels are created in order to supply
nutrients to cells whose distance to the closest vessel is bigger than the maximum diffusion
length of most species. There are two types of angiogenesis: sprouting angiogenesis and
splitting angiogenesis (also know as intussusceptive angiogenesis). Sprouting angiogenesis

Figure 1.2: Differences between sprouting and non-sprouting (splitting) angiogenesis. Adapted from [3].

is characterized by the formation and elongation of sprout-like structures. These sprouts
are formed by endothelial cells with two different phenotypes. The cell located at the front
of the sprout is called a tip cell, while the cells located behind it are called stalk cells
and provide support to the new sprout. The tip cell will migrate following the gradient
of growth factors, while the stalk cells will proliferate extending the sprout towards the
hypoxic center and providing stability to the new vessel. When two sprouts meet in space,
they will connect with another one and form a loop where blood can flow, in a process
called anastomosis. In splitting angiogenesis, a preexisting vessel originates two new vessels.
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In this case, there is no cell proliferation or migration and instead the endothelial cells that
form the original vessel rearrange themselves and create a wall that bissects the lumen,
originating two new vessels.

1.1.3 Sprouting Angiogenesis

Sprouting angiogenesis is the most studied form of angiogenesis, not only because it was
the first process to be observed for the formation of blood vessels, but primarily due to
the intimate connection it had with the appearance and growth of solid tumors. In 1971,
the American physician Judah Folkman published a seminal paper where the connection
between tumor growth and angiogenesis was first reported [4]. In this work, Folkman also
suggested how targeting angiogenesis could provide new therapeutic approaches in treating
tumor progression. In the decades that followed, the study of sprouting angiogenesis has
been very active, and its importance in understanding both physiological and pathological
processes is now well established. It has been shown that sprouting angiogenesis plays a
critical role in processes such as embryo development [5], wound healing [6, 7] and in the
feminine reproductive cycle [8]. Its implication in diseases such as Type-II diabetes [9, 10],
tumor growth [4] and cancer metastatic spread [11], endometriosis [12] and cardiovascular
disease [13], further justifies the importance of understanding this complex process.

Figure 1.3: Illustration of the six main steps in the formation of a new vessel through sprouting angiogenesis:
Preexisting stable vessel (A); VEGF from an hypoxic center reaches the vessel, and consequent destabilization
and basement membrane degradation (B); Tip cell selection with filopodia formation (C); Tip cell migration
towards the hypoxic center, following the gradient of VEGF, and stalk cell proliferation (D); The new sprout
reaches the hypoxic center and VEGF production ceases (E); Stabilization of the new vessel and irrigation
of the tissue, delivering oxygen (F).

The process of sprouting angiogenesis can be divided in six main steps, as illustrated
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in Figure 1.3. At first, we have a preexisting vessel whose cells are in a quiescent state,
meaning the vessel is stable, as there is no significant cell movement or proliferation and
there is blood flowing in the lumen. In this phase, the vessel is surrounded by a basement
membrane that provides stability to its structure, aided by the presence of pericytes (Figure
1.3A). In the second stage, somewhere in the tissue where the vessel is located, there is
the appearance of an hypoxic center, which is a region where the concentration of oxygen
is very low, threatening the survival of cells in its vicinity. The lack of oxygen induces
the translation of hypoxia-inducible factors (HIFs) in the nucleus of the cells in the tissue.
These transcription factors will, in turn, promote the production and release of growth
factors, most importantly, vascular endothelial growth factor (VEGF), by the cells in
hypoxia. Once VEGF is present in the extracellular matrix, it will diffuse in every direction,
eventually reaching the capillary described in step one (Figure 1.3B). Endothelial cells
have three specific VEGF receptors located at the cell membrane (VEGFR-1,2 and 3)
and when these receptors are activated, the Delta-Notch pathway will also be activated,
and as a result, some endothelial cells will undergo a phenotype change, becoming tip
cells. Tip cells differ from quiescent cells through their proliferative rate but also through
the formation of filopodia, cell membrane protrusions associated to the cytoskeleton, that
allow cell migration through the ECM (Figure 1.3C). Before they start to migrate, tip cells
must first destabilize the vessel they are a part of. They accomplish this by degrading the
basement membrane that surrounds the vessel using matrix metalloproteinases (MMPs),
which are enzymes capable of degrading the basement membrane, as well as the fibers
that constitute the extracellular matrix. Once they are free to migrate through the ECM,
endothelial tip cells will adopt a chemotactic behavior, characterized by their movement in
the direction of the VEGF gradient that will lead them towards the hypoxic center. The
cells that did not become tip cells, as a result of the Delta-Notch mechanism, will adopt
the stalk cell phenotype. As opposed to tip cells, stalk cells do not alter their morphology
by growing filopodia, but instead they will provide the necessary structure to the new
sprout. As a result of cell-cell adhesion, stalk cells will follow the tip cell, while at the
same time proliferating via cell division, adding new endothelial cells to the sprout, thus
allowing for sprout elongation, as well as providing robustness to its structure (Figure
1.3D). As the initial sprout starts to become longer, some of the stalk cells may experience
an up-regulation of VEGF receptors, thus becoming tip cells, leading to the branching of
the sprout. At the same time, new lumen starts forming at the core region of the sprout,
allowing for blood to flow in the newly formed vascular structures. Sprouts do not grow
indefinitely, and when the new vessel network reaches the vicinity of the hypoxic center and
is able to irrigate the surrounding tissue, both tip cell migratory and stalk cell proliferative
behavior is down-regulated and the vessel network reaches the last phase of the angiogenic
process, vessel maturation (Figure 1.3E). The process of vessel re-stabilization starts with
the recruitment of pericytes that will attach themselves to the vessel, followed by the
formation of a new basement membrane. This new vessel network will make sure oxygen
and other nutrients are supplied to the surrounding tissue, as well as eliminating waste
byproducts of cell activity (Figure 1.3F).
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This simplified description of angiogenesis aims at providing a general overview of the
complex process, avoiding some important details, some of which will be discussed in the
following sections.

Vascular Endothelial Growth Factor

The VEGF protein family is a group of signaling proteins, produced by different kinds
of cells, that is very important in the formation of new blood vessels. VEGF was first
referenced in by Judah Folkman [14] who observed that tumors secreted a substance that
stimulated the formation of new blood vessels in the tumor’s vasculature. To this protein he
gave the name of tumor angiogenesis factor (TAF). In the following decade, other authors
identified the same protein in other settings and called it vascular permeability factor
(VPF) [15], before being purified and isolated and named vascular endothelial growth factor
[16].

VEGF plays a role in every step of sprouting angiogenesis and it is essential for endothelial
cell migration and stalk cell proliferation. Besides those two functions, it also stimulates
lumen formation in developing vessels and increases the permeability of blood vessels to
chemical stimuli from the outside. It has been shown that the chemotactic movement along
the gradient of VEGF is not exclusive to endothelial cells. Cells from the immune system
such as macrophages (a white blood cell) can also follow VEGF cues towards inflammation
spots, while also providing support to newly formed sprouts during angiogenesis [17]. It
has been even described that at the front of each tip cell, a macrophage releasing MMPs
and degrading cell and ECM debris is present [18].

Since its discovery, several VEGF proteins have been identified and studied, being divided
into five families: VEGF-A, VEGF-B, VEGF-C, VEGF-D and, placental growth factor
(PlGF). VEGF-C and VEGF-D have been identified as key modulators in lymphangiogenesis,
the lymphatic system’s equivalent to angiogenesis [19–21]. During embryogenesis, the
placenta releases PlGF, which is important during vasculogenesis. VEGF-A is, by far, the
most important growth factor family that is involved in angiogenesis, although VEGF-B
also plays a part in the process but in a more supporting role. Four different VEGF-A
isoforms, resulting from alternative splicing, have been identified and named after the
number of amino-acids in their structure characterization (VEGF121, VEGF165, VEGF189

and VEGF206). Depending on their affinity to heparin, the dynamics of each isoform in the
extracellular matrix can be very different, going from highly diffusive (VEGF121), when
there is no affinity, to being bound in the fibrous network (VEGF189 and VEGF206), when
the affinity is high. VEGF165 is know to have an intermediate affinity to heparin, being
able to diffuse through the matrix while a significant amount is bound to the ECM and
to the surface of cells. Matrix-bound VEGF can be released and become more diffusive
due to the action of ECM-degrading enzymes, such as MMPs. What makes an endothelial
cell sensitive to the existence of VEGF is the presence of specific receptors in its surface.
Generally, there are three main VEGF receptors that can be found in cells: VEGFR-1,
VEGFR-2 and VEGFR-3. Not all VEGF types bind to the same receptor and depending on
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Figure 1.4: VEGF receptors located at the surface of cells, the VEGF forms that bind to each one, and
the physiological processes they are involved in.

which receptor is activated, different cell responses can occur which can influence distinct
physiological and pathological processes, as can be ssen in Figure 1.4.

1.1.4 Angiogenesis and the Extracellular Matrix

The extracellular matrix is present in all tissues and organs and its function is to provide
a substrate and mechanical support for cellular activity, as well as mediate biochemical
communication between cells and tissues that are connected by it. It has been shown that
the interaction between cells and the ECM can also have effects on gene expression and
can trigger cell apoptosis [22]. The ECM is organized as a three-dimensional network of
fibers, minerals and proteins, although its composition can vary depending on where it is
located in the body. The existence of an ECM in the vicinity of blood vessels, all around
the circulatory system, makes it a subject of interest when studying angiogenesis. Most of
the physical processes that are associated with angiogenesis, from cell migration to growth
factor signaling and endothelial cell coordination, are largely dependent on the properties
of the ECM and of its constituents.

As stated, the composition of the ECM is not the same everywhere in the body, although
it is possible to identify a basic structure shared by the different matrices. The ECM can
be divided into two main structures: the interstitial matrix and the extracellular basement
membrane. The later is a layer that separates the matrix from the cells in the surroundings
and it is mostly composed of collagen IV, laminins and heparin-derived proteoglycans. The
interstitial matrix contains both fibrous and non-fibrous collagen, elastin and fibronectin.
The combination of different amount of these constituents can lead to the existence of
matrices with different mechanical properties, which in turn can influence their function and
the behavior of cells located in their vicinity. In angiogenesis, specifically, the concentration
of collagen and the distribution of fibrous components can highly influence cell migration,
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in both pathological and homeostatic conditions, leading to vessel networks with different
morphologies. How this occurs will be one of the main topics explored in this work.

Although the ECM is the substrate that allows endothelial cells to migrate during angio-
genesis, at the same time it also constitutes an obstacle for cell movement. The fact that
the matrix is a highly dynamic structure, subject to degradation and remodeling, is a key
concept in understanding how cells can migrate through its complex organization. Matrix
metalloproteinases, or MMPs, are enzymes capable of degrading both the extracellular
basement membrane, as well as remodeling the fibers of the interstitial matrix. There
are over twenty different types of MMPs, each specialized in degrading a specific type
of substrates. The activity of MMPs can be inhibited due to the existence of protease
activity regulators called tissue inhibitor of metalloproteinases, or TIMPs. MMP activation
is dependent on the existence of a zinc atom with high catalytic properties, which TIMPs
can bind to, thus inhibiting ECM degradation and remodeling.

In the context of angiogenesis, MMP production by endothelial cells is stimulated by
the presence of growth factors such as VEGF and FGF, allowing cells to degrade the
ECM, carving a path for sprout formation and neovascularization. Besides the role in
remodeling the ECM, MMPs can also free some heavier VEGF isoforms that are less mobile
and become trapped in the matrix due to their high heparin affinity. The VEGF that
is released from the ECM will then reinforce the chemotactic behavior of endothelial tip
cells, promoting cell migration. Similarly to what happens with VEGF, the role played
by MMPs on angiogenesis, especially when it is tumor-induced, makes MMP inhibition
a possible target for therapeutic strategies in cancer. Studies involving MMP knock-out
mice have shown to reduce neovascularization and cell migration, both in vitro and in vivo
[23, 24].

1.1.5 Tip/Stalk Cell Selection and the Notch Mechanism

In a stable, preexisting blood vessel in homeostatic conditions, the endothelial cells in its
structure are in a quiescent state. In this state, cells are not being stimulated by external
agents, and are characterized by very low motility and a non-proliferative behavior. This
equilibrium can be disrupted when the vessel is subject to stimuli such as the release
of growth factors by surrounding cells, specifically those in hypoxic or inflammatory
conditions derived from both pathological or physiological events. When VEGF reaches
the a vessel’s endothelium, the process of vascular destabilization begins, marking the start
of an angiogenic event, with cells abandoning their quiescent state and coordinating to
perform the necessary functions. For sprout formation to occur, some cells will adopt an
active migratory behavior and become endothelial tip cells, while the majority will provide
a supporting role, proliferating and providing structure to the new sprout by forming tight
junctions where cell-cell adhesion is strong. The mechanism through which endothelial cell
coordination is determined, is the Notch signaling pathway. The importance of the Notch
mechanism is underlined by the fact that it is a highly conserved system, meaning it is
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present in the majority of all animals, maintained across the process of natural selection
[25].

Notch is an inter-cellular communication pathway, and as such, it requires an interaction
between cell ligands. Suppose we have two cells A and B that will interact via the Notch
mechanism. Cell A is expressing Notch, a transmembranal protein that is composed of
a portion located inside the cell and an extracellular part. Cell B, on the other hand, is
expressing the Delta ligand located at the outside of the cell, anchored to its membrane.
When the two cells are in proximity of each other, the exterior head of the Notch protein
of cell A will bind to the Delta ligand (specifically, the Delta-like ligand 4, Dll4) in cell
B. When the binding is complete, ADAM, a protease, cleaves the Notch protein in cell
A, leaving its exterior head bound to the Delta ligand of cell B, while its intracellular
component is left hanging on the cell interface. Through specific enzymatic activity, the
intracellular portion of Notch, now called Notch intracellular cleaved domain (NICD)
will be released from the interface and internalized, traveling to the nucleus of cell A,
where it will trigger transcription mechanisms resulting in cell proliferation. Meanwhile,
the Delta-Notch complex, located on the outside of cell B, will also be internalized by
endocytosis.

When VEGF reaches the endothelial cells at the start of angiogenesis, some cells will
become tip cells. Tip cells will present a low level of Notch protein and a high concentration
of Delta ligands at their surface. When tip cells interact with other endothelial cells in
their vicinity, those cells will increase their levels of Notch, promoting transcription and
at the same time, increase their proliferative capacity and reduce the levels of VEGFR-2
in their surface, while downregulating the expresssion of Delta. The process by which tip
cells influence the phenotype of their neighboring cells is called lateral inhibition [26, 27].
Since the process of lateral inhibition was first introduced, it has been widely included in
computational models of angiogenesis, both in great detail or simply in the consequences it
has on endothelial cell phenotype [28–30]. Although, in this work, we will focus on the role
the Delta-Notch mechanism plays in angiogenesis, it is worth mentioning that the concept
of lateral inhibition has been identified in other biological systems, such as neurogenesis
(differentiation of neuroblasts into neurons).

1.1.6 EC-EC and EC-ECM Mechanical Interactions

Cell migration is one of the most important processes involved in angiogenesis. Sir Isaac
Newton postulated in his Second Law of Motion for a body to move, that there must
exist an external force that set the body in motion by acting on it [31]. Thus, for cell
movement to occur, there must be a set of forces that act on the cell that initiate and sustain
movement. Endogenous forces are the ones generated by the cells on their surroundings,
as a result of the dynamics of their cytoskeleton. The forces that are applied to the cell by
some external agent, such as gravity, are called exogenous forces. In the specific case of
angiogenesis, two of the most important forces that result in cell movement and sprout
formation are endothelial cell-cell adhesion and tip cell traction forces, exerted by the tip
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cell leading the sprout on the ECM that serves substrate for migration. In late stages of
vascular network formation and remodeling, blood flow shear stress is also an important
force to consider, specifically when studying vessel pruning and regression.

Endothelial cell-cell adhesion is a fundamental interaction that assures tissue connectivity,
stability and permeability. Similar to the Delta-Notch mechanism discussed in the previous
section, cell-cell adhesion is possible due to the existence of transmembrane proteins that
mediate the interaction between the cytoskeleton of one cell and the other. Cadherins is a
family of proteins that is one of the most important mediators of cell-cell adhesion. Besides
their importance in angiogenesis, these proteins are also involved in embryonic development,
tumor metastasis and morphogenesis. The cadherin protein family is extensive, however,
for cell-cell adhesion in angiogenesis, the most relevant member is cadherin-5, also know as
VE-cadherin (vascular endothelium-cadherin). Cadherins get their name since they depend
on the concentration of calcium ions to function, and they act through the interaction of
their intracellular domains with the actin cytoskeleton. The importance of VE-cadherin
in vascular development has been supported by experimental work with mouse models,
where it was observed that in VE-cadherin KO mouse embryons, the newly formed vessels
where not able to maintain their integrity and would collapse, resulting in embryonic death
[32]. Despite the importance of cell-cell adhesion, this interaction alone is not sufficient to

Figure 1.5: Endothelial cell traction forces measured using Traction Force Microscopy. Traction force
vector fields calculated for an endothelial cell spreading in a substrate (A). Force magnitude colormap
measured for a cell (B). Adapted from [33] (A) and [34] (B).

explain cell movement. Tip cell migration occurs mostly due to its mechanical interaction
with the ECM. The morphological changes an endothelial cell undergoes when the tip cell
phenotype is assigned to it, most importantly the formation of filopodia, along with its



10 Chapter 1. Biological Context

high concentration of VEGFR2 receptors, increase its sensitivity to growth factor gradients.
In order to move, tip cells must exert a force on the ECM. This force is the result of
internal forces generated by the cell’s cytoskeleton and the formation of focal adhesions
between the matrix and the tip cell’s filopodia. The tip cell extends its filopodia which
will form strong connections to the ECM. Meanwhile, in the rear of the cell, the action of
acto-myosin propels the cell forward. This type of crawling behavior is what allows cells to
migrate and create elongated sprouts. The traction force field created by endothelial cells
has been measured experimentally in the context of a cell spreading on a substrate [33,
34]. In Figure 1.5A we can see vector field representations of the traction force exerted by
an endothelial cell on a soft substrate. We can see that the arrows point, approximately,
to the center of the cell. Looking at the size of the arrows and at the colormap in Figure
1.5B, we see that forces are more intense closer to the cell interface, while near the cell
geometric center they have a lower magnitude.

1.2 Cell Cytoskeleton

Inside an animal cell there are a number of organelles, each performing one or more specific
tasks. In order for the cell not to collapse on itself, there must be some structure that
holds the cell together, providing stability. This task is performed by a set of protein
filaments, that together form what is called the cytoskeleton. As the word itself suggests,the
cytoskeleton is the skeleton of the cell, performing tasks much like the human skeleton,
as it is involved in providing structural support to the cell, as well as allowing the cell to
move, while also aiding the inter-organelle transport of materials inside the cell. Besides
these main functions, the cytoskeleton is also responsible for cells maintaining or changing
their shape, for example, during processes such as cell division, or in response to external
mechanical perturbations. The proteins that form the cytoskeleton can be divided into three
groups, depending on the size of the fibers they form, as well as their chemical structure
and function. These groups are microtubules, intermediate filaments and microfilaments.

Figure 1.6: Group of protein filaments that constitute the cytoskeleton, their filament structure and usual
distribution on the cytoplasm.
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1.2.1 Microtubules

Microtubules are cylindrical fibers (Figure 1.6 Left) of ≈ 20 nm in diameter, made up
of bundles of proto-filaments of α and β tubulin dimers. They are able to transport cell
organelles like mitochondria, as well as vesicles secreted by other cell components. They
are also the main protein found in cilia and flagella of cells, like spermatozoa, that allow
them to move using self-propulsion. In plant cells, they are also found in the cell wall.
Perhaps the most important function of microtubules is their role in cell division. The
mitotic spindle, the apparatus that forms during metaphase, and that is responsible for the
separation of chromosomes, is composed of microtubules that span from the centrosomes
and bind to the chromatids that will be divided between the two daughter cells. Neurons
also have microtubules in their structure, where they go by the name of neurotubules and
participate, for example, in the transport of neurotransmitters.

1.2.2 Microfilaments/Actin Filaments

The cytoskeleton’s microfilaments or, most commonly, actin filaments, are protein fibers
that have ≈ 7 nm in diameter and are made of two helical strands of actin subunits
that interlace. They participate in many cell processes like cell movement and force
generation, cell shape changes, cell contractility and mechanical resistance, as well as
playing a fundamental role in separating the two daughter cells resulting from mitosis.

The actin filament’s structure provides flexibility to the fiber, while also granting it with a
high resistance to filaments fracture. The subunits that make up an actin fiber, usually
refered as F-actin, are called globular actin (G-actin). Actin fiber assembly is an asymmetric
process characterized by the existence of a slow growing end, usually refered as the (-) or
pointed end, and a fast growing end, called the (+) or barbed end. This means that an
actin filament is naturally polarized since the addition of new actin subunits at the (+)
end is faster than at the (-) end. The first step in the formation of an actin fiber is the
nucleation step, where small actin monomers bind to each other forming a stable trimer
called the nucleus. Nucleation is the slowest step in the actin filament process but it can
be accelerated if there are fragments of preexisting actin filaments in the vicinity. Next,
the process of filament elongation begins, characterized by the addition of actin monomers
to both ends of the filament, until the steady state is reached. This state corresponds to a
dynamic equilibrium where the addition of monomers to the minus and plus ends occur at
the same rate.

The actin cytoskeleton formation and function is highly dependent on the existence of
accessory proteins that are involved in the steps of actin filament formation, as well as in
the organization of those filaments in bundles and/or networks. Some of these auxiliary
proteins, and the role they play in actin dynamics are:

• Formin: Nucleating site assembly;

• Arp2/3 complex: Nucleates assembly to form a branched network;
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• Profilin: Binds actin monomers, concentrating them on assembly sites;

• Tropomyosin: Stabilizes filaments and mediates the binding of other accessory
proteins;

• Fimbrin and α-actinin: Controls the spacing between actin fibers when bundling;

• Filamin: Cross-links actin fibers in networks;

• Spectrin: Binds the actin filament network to the plasma membrane.

1.2.3 Intermediate Filaments

Intermediate filaments (IFs) get their name from the fact that their average diameter is
in between that of actin filaments and microtubules, at ≈ 10 nm. The main function of
intermediate filaments is to provide mechanical integrity to the cell, specially when it is
subject to external stress. They are also know to mediate cell-cell and cell-ECM adhesion
by interacting, respectively, with desmosomes and hemidesmosomes. The biomechanical
properties of IFs are what allows them to maintain cell stability and resist stress. IFs are
easily deformable proteins, and can also stretch up to three times their natural length
without breaking, due to their alpha-helix structure.

Based on their amino-acid sequence, intermediate filaments have been grouped into five
categories. Type I and II IFs correspond, respectively, to acidic and basic keratins, that are
found in epithelial cells. Type III IFs include vimentin (endothelial cells, fibroblasts and
leukocytes) and desmin (muscle cells). The Type IV group contains the neurofilaments,
found in the axons of neurons. Finally, Type V IFs are the so called nuclear lamins. While
all other four kinds of intermediate filaments are generally found in the cytoplasm, lamins
have a structural function in the cell nucleus. In this work, our focus will be on the keratin
IF cytoskeleton and how mutations in genes that regulate its expression can lead to different
IF network configurations.

1.2.4 Keratin Cytoskeleton

Sequencing of the human genome revealed there are 54 different keratin genes, making it
the most diverse family of intermediate filaments. 28 of these genes code type I, acidic
keratins, while the other 26 correspond to type II, basic keratins [35]. Acidic keratins
are named so since they possess more acidic amino acids like aspartic acid, while basic
keratins contain a surplus of basic amino acids like lysine [36]. Keratin dimers are always
heterodimers, resulting from the pairing of an acidic and a basic keratin form. Keratins
can also be classified as hard or soft depending on their cysteine levels. Hard keratins
contain a higher amount of cysteine causing the resulting filaments to be able to sustain
higher forces without breaking up, and these are usually found in the constitution of hair,
nails and animal horns. Soft keratins are more flexible and have a more elastic behavior,
and are present in keratinocytes that make up the layers of the skin. These characteristics
are consistent with the role of the keratin cytoskeleton in guaranteeing epithelial cell
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mechanical stability and protection against mechanical stress. It has also been shown that
this intermediate filament network may also play a part in shielding the cell against stress
such as heat, as well as assuring organelle homeostasis [37].

The basic unit of a keratin filament is the heterodimer, as previously mentioned. Two
heterodimers are anti-parallel aligned to one another and form a tetramer. When two
tetramers bind laterally, they form an octamer, also know as a proto-fibril. Unit length
filaments (ULFs) are a result of the side-by-side association of four proto-fibrils, and the
end-to-end association of ULFs results in a basic keratin filament. After packing, a keratin
filament has a length of ≈ 10 nm.

The keratin network inside a cell is not static but highly dynamic, being in a continuous
cycle of assembly/disassembly. In 2011, a work was published that presented an hypothesis
for the several steps involved in the keratin cycle, shown in Figure 1.7 [38]. This process

Figure 1.7: Diagram of the keratin assembly and disassembly cycle, showing the different steps of the
process. Adapted from [38].

begins near the cell membrane, in regions where the cell is anchored to the ECM via focal
adhesions. There, soluble keratin oligomers group together to form small particles, in a
process called nucleation. Over time, these particles assemble into filaments that are being
transported along the actin cytoskeleton fibers in the direction of the nucleus. These new
fibers join the already formed network located in the periphery of the nucleus, where they
will bundle and mature, forming a dense keratin filament network. Concurrently, these
same fibers start disassembling back to soluble oligomers, which due to their small size
and high solubility in the cytoplasm water content, diffuse to the regions near to the cell
membrane, where the cycle restarts. This process of keratin disassembly is a result of the
action of proteosomes and it is a fundamental process, since high densities of intermediate
filaments could interfere with other cellular functions [39]. The hypothesis of a recycling
keratin process is further supported by the fact that it is a more efficient process than de
novo synthesis of new keratin, and considering that actin also undergoes an assembly and
disassembly cycle.
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1.2.5 Keratin Mutations and Disease

Mutations in keratin expressing genes have been linked to a number of pathologies,
commonly known as keratinopathies, such as: corneal dystrophy (K3/K12), white sponge
nevus (K4/K13) and liver disease and inflammatory bowel disease (K8/K18 and K19) [40].
The pathologies are often characterized by the dysfunctional assembly of keratin filaments,
resulting in the formation of aggregates, impairing the structure and function of epithelial
cells. In the basal layer of the skin, the innermost layer of the epidermis where cells
are constantly dividing, keratinocytes form K14/K5 heterodimers and mutations in one,
or both of these keratin forms causes epidermolysis bullosa simplex (EBS), a congenital
disorder. The disruption of keratin filament formation caused by this mutation leads to
the malfunction of basal keratinocytes, resulting in the formation of bulbous structures in
the epidermis which, combined with an increase in epithelial cell motility, leads to skin
fragility and blistering. Cells with a mutated K14 protein react differently to external
stress altering the constitutive structure of the skin.

In this work, we will focus on studying the K14-R125P keratin mutation, which is caused
by the replacement of an arginine (R) amino acid, located at position 125, by a proline (P).
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Chapter 2

Mathematical and Modeling
Concepts

2.1 Calculus of Variations

2.1.1 Functionals

A function f is a map that makes a correspondence between each element of a set X
(called the domain) and a unique element of another set Y (called the co-domain). Using
mathematical notation, this definition is written as

f : X → Y . (2.1)

In the fields of physics and applied mathematics, we regularly come across functions where
the domain and co-domain are both the set of all real numbers R.

A functional is also a map that corresponds an element from a set to the set of real numbers.
The difference being that, a functional, instead of mapping a number to another number,
makes a correspondence between a function and a number. Mathematically, the definition
of a functional F that takes a function f(x) and returns a number is written as

F : {f(x) | x ∈ R} → R .

When we want to write the expression of a functional the following notation is used:

F [f(x)] = · · · .

which defines a functional F that takes a function f(x) and returns a number.

Perhaps the most common type of functional we are accustomed to is the integral.

A[f(x)] =
∫ b

a
f(x) dx (2.2)
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is a functional that calculates the area beneath a curve described by y = f(x) between
the points x = a and x = b, or simply, the definite integral of f(x) between a and b. A
function can also be interpreted as a functional. The following integral

F [g(x)] =
∫ +∞

−∞
g(x)δ(x− x0) dx = g(x0) (2.3)

takes a function g(x) as input, integrates its product with the Dirac delta function, δ(x−x0),
and, using the properties of the delta function, returns g(x0).

Perhaps one of the most important functionals in physics is the action of a classical system,
which is the basis for the development of the Lagrangian formalism

S[L(qi(t), q̇i(t), t)] =
∫ t2

t1
L(qi(t), q̇i(t), t) dt (2.4)

where L(qi(t), q̇i(t), t) is the Lagrangian of the system as a function of the generalized
coordinates and velocities. In some cases, an explicit dependence on the time variable is
also present.

2.1.2 Extrema of a Functional

Often we want to find the minima and maxima of a certain function f . At these points, a
small change in the value of x produces no change in the value of f(x) i.e. the derivative
of f with respect to x is equal to zero. We can write this statement as

df = f(x+ dx)− f(x) = 0 , (2.5)

in the limit dx→ 0

The same idea can be applied to a functional. Suppose we want to find the function f(x)
that leads to a maximum or minimum value of a certain functional F [f(x)]. This means
that the variation in the value of F when f(x) suffers an infinitesimal deviation δf(x) is
zero, or

δF = F [f + δf ]− F [f ] = 0 . (2.6)

2.1.3 Euler-Lagrange Equations

The stationary action principle of a classical system states that the time evolution of the
generalized coordinates is such that

δS = 0 ,

where the action functional, S, is defined in 2.4. Calculating the value of the action when
the coordinates are slightly changed we write

S [qi + δqi, q̇i + δq̇i, t] =
∫ t2

t1
L(qi + δqi, q̇i + δq̇i, t) dt ,



2.2. Fourier Transforms and PDEs 17

which, in the case of very small δqi and δq̇i, can be expanded using the Taylor series as

S [qi + δqi, q̇i + δq̇i, t] =
∫ t2

t1

[
L(qi, q̇i, t) + ∂L

∂qi
δqi + ∂L

∂q̇i
δq̇i

]
dt .

Using the definition of δS and integrating the third term in the integral by parts we have

δS =
∫ t2

t1

(
∂L

∂qi
δqi −

d
dt

(
∂L

∂q̇i

)
δqi

)
dt+ ∂L

∂q̇i
δqi

∣∣∣∣t2
t1

.

Assuming that at both ends of the trajectory we have δqi(t1) = δqi(t2) = 0, we are left with

δS =
∫ t2

t1

(
∂L

∂qi
− d

dt
∂L

∂q̇i

)
δqi dt .

For the stationary action principle to be verified at every point of the trajectory, indepen-
dently of whatever deviation δqi we choose, the integrand in the previous equation must
be equal to zero. This last condition gives us the Euler-Lagrange equations for a classical
system

d
dt

(
∂L

∂q̇i

)
= ∂L

∂qi
. (2.7)

Although, here we showed how to minimize a functional using a concrete example from
classical physics, this procedure is still valid for other minimization/maximization problems.

2.2 Fourier Transforms and PDEs

The Fourier transform of a function f(r), denoted by f̂(k), is defined as

F(f) = f̂(k) =
∫ +∞

−∞
f(r)eik·r dr (2.8)

and it serves as a way to change between a function’s real space representation and its
representation in reciprocal space. This transform is useful as a result of several properties
that come from its definition. For instance, the Fourier transform of the derivative of a
function, f(x) is given by

F
(df

dx

)
=
∫ +∞

−∞

df
dxe

ikx dx

=
∫ +∞

−∞
ikf(x)eikx dx− f(x)eikx

∣∣∣∣+∞
−∞

Under the condition that lim
x→±∞

f(x) = 0, we have that

F
(df

dx

)
= ik

∫ +∞

−∞
f(x)eikx dx = ikf̂(k)
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which by repeating the process results in

F
{dnf

dxn
}

= (ik)nf̂(k) .

This property of the Fourier transform turns the derivative from a differential operator
into a simpler algebraic operation.

2.2.1 Poisson Equation - An example

The best way to show how Fourier transforms can simplify the solution of some problems
is to exemplify how we can solve, for example, the Poisson equation

∇2u = f(r)

when subject to periodic boundary conditions. This equation has a unique solution in a
domain with periodic boundary conditions provided we set its average value in the domain.
In three dimensions, the above equation in its more explicit form is

∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2 = f(x, y, z)

and after applying the Fourier transform to the left and right side of the equation we end
up with

(−k2
x − k2

y − k2
z) û(kx, ky, kz) = f̂(kx, ky, kz)

which is now a simple algebraic equation with a solution given by

û(k) = − f̂(k)
|k|2

.

We should note, however, that at this point the solution for the equation is still in its
reciprocal space representation, meaning we have to apply the inverse Fourier Transform
to get the solution in real space. Another question that arises when we look at the solution
is what happens when |k| = 0. The only way to make this solution valid at |k| = 0 is for
f̂(k = 0) to also be zero. According to the Fourier transform definition, û(k = 0) is equal
to the average of u(r) in the domain.

2.3 Theory of Linear Elasticity

When a force is applied to a certain body it tends to change its shape or volume and
we say that the body has suffered a deformation. Afterwards, when the applied force
ceases, the body tends to relax towards its initial configuration. A body that is able to
restore its exact previous configuration is called perfectly elastic. In this work we will only
deal with systems that have this characteristic. The way to mathematically describe the
deformations of continuous media is by using the classical theory of elasticity.
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2.3.1 Displacement

Suppose we choose a certain point P with coordinates r = x1êx + x2êy + x3êz that is part
of a certain elastic body that is at rest. After the body is deformed, the coordinates of
point P will change to r′ = x′1êx + x′2êy + x′3êz. The difference between the position of
point P before and after deformation is called the displacement ui (in Einstein notation)

ui = r′i − ri . (2.9)

In a first approximation we will consider that r′i is simply a function of ri i.e. r′i(ri) and,
consequently ui(ri).

2.3.2 Strain Tensor

Let us consider two points P1 and P2 that are very close together. Before the deformation,
the length of a vector x that starts at P1 and points towards P2 is given by dl =

√
dx2

i .

After the body is perturbed, the distance between the two points changes to dl′ =
√

dx′i
2.

Knowing that dx′i = dxi + dui we can write dl′2 = (dxi + dui)2 and applying the chain
rule we can write dui as dui = ∂ui

∂xj
dxj and consequently

dl′2 =
(

dxi + ∂ui
∂xj

dxj
)2

= dx2
i + 2∂ui

∂xj
dxi dxj + ∂ui

∂xj

∂ui
∂xk

dxj dxk .

When the external stress applied to the body leads to small deformations, we can neglect
terms of order higher than one on the displacement ui. This leads to the theory of linear
elasticity. Using this approximation in the above expression, and writing the second term
in a symmetric form, we get

dl′2 = dl2 +
(
∂ui
∂xj

+ ∂uj
∂xi

)
dxi dxj = dl2 + 2εij dxi dxj

where εij are the components of the strain tensor (in linear elasticity) defined as

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
. (2.10)

By construction the strain tensor is symmetric, meaning that εij = εji. Another interesting
property is the geometric interpretation of is trace, εii. Considering an infinitesimal vector
along the x coordinate axis, then dx′ = dx + ∂ux

∂x = (1 + εxx). A similar expression is
obtained for the y and z directions.

The volume of an infinitesimal portion of the body dV = dx dy dz, after the deformation
is given by

dV ′ = dx′ dy′ dz′ = (1 + εxx)(1 + εyy)(1 + εzz) dx dy dz
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and if we keep only the linear terms of εij we get

dV ′ = (εii + 1) dV

or
δV

V
= εii = tr(ε) (2.11)

2.3.3 Stress Tensor

When a body is at rest and is not being deformed, that body is in mechanical equilibrium.
If a force is applied to an elastic body, the internal arrangement of its constituents changes.
In linear elasticity, when the force stops, those constituents will move back to their original
positions. This is analogous to what happens when we have a spring-block system at rest
and we move the block from its resting place. In that case a restorative force tries to bring
the block back to its starting position and using Hooke’s law we can calculate that force.
Suppose we take a small piece of the body and we calculate the total force applied in that
volume

F total
i =

∫
V
fi dr ,

where fi is the force per unit of volume. If we assume that fi can be written as the divergence
of a tensor with rank 2, and use Gauss’s theorem of vector calculus, we transform the
integral over the volume V to an integral over the surface, S, that encloses that same
volume.

F total
i =

∫
V

∂σij
∂xj

dr =
∫
S
σij dSj

where σij is called the stress tensor. Each component of the stress tensor, σij , gives the
force in the ith direction on a surface element whose normal vector is given by dSj .

2.3.4 Mechanical Equilibrium

From Newtonian particle mechanics we know that for a particle to be in equilibrium two
conditions must be satisfied: the sum of all forces applied to the particle must be null, as
well as the sum of the moment of those same forces, i.e.

ΣiFi = 0

Σiτi = 0 .

In the study of continuous media, the equilibrium conditions are the same, but they must
be true in the whole extension of the body. From the previous section we learned that the
forces in an elastic body are given by

Fi =
∫
V

(
∂σij
∂xj

+ f ext
i

)
dr
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where f ext
i represents external forces applied to the body. For the total force to be zero

the equilibrium condition must be true for every infinitesimal element, so

∂jσij + f ext
i = 0 . (2.12)

The torque, τk,that is applied to the body is given by

τk =
∫
S
εijkxiσjl dSl +

∫
V
εijkxif

ext
j dr

where the first term is the moment of the internal forces of the elastic body and the second
one is the torque caused by external forces. Using Gauss’s Theorem the first integral can
be turned into a volume integral of a divergence

τk =
∫
V
∂l (εijkxiσjl) dr +

∫
V
εijkxif

ext
j dr

=
∫
V

(
εijkδilσjl + εijkxi∂lσjl + εijkxif

ext
j

)
dr

and making use of equation 2.12 we are left with only one term

τk =
∫
V
εijkσji dr

which is zero when the body is in mechanical equilibrium. This is only true everywhere in
the body if

εijkσji = 0

or
σij = σji (2.13)

i.e. the stress tensor must be symmetric. The physical interpretation of this symmetry is
that in the case of mechanical equilibrium, the angular momentum (Lk) of the body is
conserved. This comes from the fact that

τk = L̇k .

2.3.5 Elastic Energy

The work done by forces in an elastic system, W , is equal to the change of energy when
the displacement is incremented by a small factor δui and is equal to

W =
∫
S
σijδui dSj +

∫
V
f ext
i δui dr

=
∫
V

[
∂j (σijδui) + f ext

i δui
]

dr

=
∫
V

[(
∂jσij + f ext

i

)
δui + σij∂jδui

]
dr .

In the case where the displacement δui is quasi-static, meaning it is so small it does not
disturb the mechanical equilibrium, the first parcel in the integral is zero and we are left
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with

W =
∫
V
σij∂jδui dr = 1

2

∫
V

(σij∂jδui + σji∂iδuj) dr

=
∫
V
σijδεij dr

where the integrand represents the variation of elastic energy per volume, i.e.

δU = σijδεij (2.14)

Consequently, the density of elastic energy is given by

U =
∫
σij dεij (2.15)

In the elastic regime, we assume that the stress depends linearly on the displacements. We
can write without loss of generality that

σij = Cijklεkl (2.16)

where Cijkl is a fourth order tensor called the elasticity tensor.

δU = Cijklεklδεij

= 1
2Cijklδ (εijεkl)

and
U = 1

2Cijklεijεkl = 1
2σijεij (2.17)

2.3.6 Linear, Isotropic Materials

If we rotate an elastic material around any axis and we observe that its mechanical properties
remain unchanged then the elastic material is isotropic. To obey these symmetries, the
energy must be proportional to combinations of εij that are scalars. Therefore, we need
to find which terms of εijεkl produce a scalar. The only way to produce a scalar from a
product of this kind is by contracting indices. In this case, there are two ways to do it:

εijεklδijδkl = εiiεkk

and
εijεklδilδlj = εijεij .

Thus we can write the elastic energy as

U = 1
2 (λεiiεjj + 2µεijεij) . (2.18)

where λ and µ are called the Lamé coefficients and their value is dependent on the mechanical
properties of the material. Comparing 2.17 and 2.18 we can extract the expression of σij
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as a function of the strain
σij = λεkkδij + 2µεij . (2.19)

In Physics, these type of relations that describe the response of a system to an external
perturbation are called constitutive relations. In some situations it is useful to invert the
relation i.e. write εij as a function of σij and to do that we have to find a relation between
tr(ε) and tr(σ). From (2.19) we write the diagonal elements of the stress tensor

σii = λεkk + 2µεii ��Σi

where ��Σi means there is no summation in the i index. Summing over i we get

tr(σ) = (3λ+ 2µ) tr(ε) . (2.20)

Plugging in this result into (2.19) and solving for εij we arrive at

εij = 1
2µ

(
σij −

λ

3λ+ 2µδijσkk
)

= λ′δijσkk + 2µ′σij
(2.21)

where

λ′ = − λ

2µ (3λ+ 2µ)

µ′ = 1
4µ

are called the Lamé elasticity constants.

2.3.7 Infinite, Isotropic and Homogeneous body under an external force

Suppose we have an infinite, isotropic body where the Lamé coefficients are constant
everywhere in the body. An external force field fi is applied. We want to calculate
the displacement field when the system is in mechanical equilibrium. We start with the
constitutive relation for an isotropic body (2.19) and put it into equation 2.12 and we are
left to solve

(λ+ µ) ∂ijuj + µ∂jjui + fi = 0 .

If we apply a Fourier Transform to the previous equation we obtain

(λ+ µ)kikj ûj(k) + µ|k|2ûi(k) = f̂i(k) ,

which we can write as a set of linear equations at each point in wave space, such that

Gij(k)ûj(k) = f̂i(k) (2.22)
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where Gij(k) is called the Green tensor for an infinite, homogeneous and isotropic body,
and its components are given by

Gij(k) = µδij |k|2 + (λ+ µ)kikj .

This equation gives us the applied force as a function of the displacement. Since we want
the opposite, we need to invert the equation by calculating G−1

ij (k), which is a 3× 3 matrix.
Using the adjoint method, the inverse Green tensor is given by

G−1
ij (k) = 1

µ|k|2

[
δij −

kikj

|k|2

]
(2.23)

2.4 Phase Field Models

2.4.1 Description

Solving PDEs in regular grids has been a necessity in many areas of applied mathematics,
engineering, physics, among others. However, in many cases, we are faced with the need of
solving such equations in systems with very complex geometries and where the boundaries
can have complicated shapes that cannot be expressed using elementary mathematical
functions. This becomes even harder when the domain’s topology can change with time.

As an example, suppose we want to describe the dynamics of a binary mixture containing
two immiscible components A and B (Figure 2.1). Solving the governing equations of a
system such as this one requires us to keep track of the position of the boundary interface
between the domains of the two phases and applying the appropriate boundary conditions
at each time step. Phase field models were created to overcome these difficulties and

Figure 2.1: Example of the use of an order parameter field to describe a binary mixture (Model B).

introduce a way to solve the equations of interest without the need to worry about complex
geometries and complicated boundary conditions [41]. The main idea behind a phase field
model is to define an auxiliary scalar field, or set of fields, to describe the different phases
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of the system. These fields are usually called order parameters and they have very distinct
values depending on the phase present at each position in space. Afterwards, we define a
free energy functional using those new variables that contains as many terms as necessary
to describe the physical processes relevant to the system’s accurate description. This will
in turn determine the time evolution of the order parameter as well as the creation of an
interface of finite width between different phases (Figure 2.2). With the appearance of
this diffuse interface, we no longer have the necessity of imposing boundary conditions at
the separation layer between different domains and consequently, we do not have to track
the interface’s position in time. There are different types of phase field models depending

Figure 2.2: Difference between a diffuse (a) and sharp (b) interface model and the variation of the order
parameter [42].

on the physical aspects of the system we are studying, although the main idea behind
them does not differ much from what was described before. Due to their importance in
the development of the models described in this work, we will focus on three of the main
types of these models.

2.4.2 Model A

The first step when building a phase field model is to write down the free energy that will
drive the system’s evolution and that contains all of the terms that describe the relevant
physical processes in the system. One term that is always present determines the existence
of two stables phases (let us assume the system can be fully described using a single order
parameter field). This free energy has the following form

F [φ(r)] =
∫ [

f0(φ) + ε2

2 (∇φ)2
]

dr (2.24)

The choice of f0 is related to the values we choose to label the different phases of the
system. In this work we choose this energy so that those values coincide with φ ≈ +1 for
one phase and φ ≈ −1 for the other. In this case, f0 is given by

f0(φ) = −φ
2

2 + φ4

4 (2.25)
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If we try and find the minima of this function we have to solve

df0
dφ = 0⇔ −φ+ φ3 = 0

whose solutions are φ = ±1 just like we wanted (φ = 0 is a local maximum of this function).

The second term in the free energy is the one responsible for the creation of a diffuse
interface between the phases. The term proportional to the spatial derivatives of φ adds
an energetic penalty for fast variations of φ (which happens at the boundaries), leading to
the formation of a smooth interface of finite width on the order of ε.

So far, what we have done is valid both for model A and B phase field models. Where
they differ is in the choice of dynamical equation for the order parameter. In model A, the
time evolution is given by [43]:

∂φ

∂t
+∇ · (φv) = −M δF

δφ
(2.26)

where v is some velocity responsible for advection, M is a motility coefficient and the
current is given by the functional derivative of the free energy with respect to changes in
the order parameter.

2.4.3 Model B

The difference between Model A and B is that in this case we impose a conservation law
to order parameter [44]. We start from a conservation equation

∂φ

∂t
+∇ · J = 0 , (2.27)

which we easily recognize for example, from electrodynamics. Next, we use Fick’s law of
diffusion to write the current as

J = −M∇δF
δφ

forcing the system to evolve in the way that minimizes the free energy. Plugging J into
the conservation equation we obtain the Cahn–Hilliard equaton (Figure 2.1)

∂φ

∂t
=∇ ·

(
M∇δF

δφ

)
. (2.28)

Under this evolution law, the quantity

φtot =
∫
V
φ dr ,

where we integrate over the whole system, is constant in time.
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Steady state solution in 1D

The one-dimensional Cahn-Hilliard equation with a Ginzburg-Landau free energy functional
can be solved analytical to find the shape of the interface in a steady state. Using the free
energy functional in 2.24 the equation reads

−φ+ φ3 − ε2 d2φ

dx2 = 0 (2.29)

which is a non-linear, second order differential equation. Multiplying the terms by dφ
dx and

using the chain rule we get

d
dx

[
−φ

2

2 + φ4

4 −
ε2

2

(dφ
dx

)2]
= 0 (2.30)

We can integrate this expression between x′ = −∞ and x′ = x. Considering that, dφ
dx = 0

and φ = −1 when x→ −∞, we get

2ε2
(dφ

dx

)2
= −2φ2 + φ4 + 1 =

(
φ2 − 1

)2
(2.31)

Taking the square root of both sides and keeping the negative branch where dφ
dx < 0 as

x→ +∞, we are left with
dφ
dx = 1√

2ε

(
1− φ2

)
(2.32)

which is a separable ordinary differential equation. Solving the integral using an hyperbolic
substitution method we show that, at the steady state, the shape of the interface is given
by

φ(x) = tanh
(

x√
2ε

)
. (2.33)

Figure 2.3: Graphical representation of the solution to the Cahn-Hilliard equation in one dimension.
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2.4.4 Model H

Phase field model H has become popular in the last decade, especially in the modeling
of cells and other biological phenomena. This approach combines the dynamics of model
B but adds an advection term to the Cahn-Hilliard equation. This velocity is computed
using the Navier-Stokes equation where the physical processes of interest are modeled as
forces. For a system where inertial terms are ignored and incompressibility is assumed, the
set of equations that described a model H system can be given by

∂φ

∂t
+ v ·∇φ = ∇2 δF

δφ

∇ · v = 0

ν∇2v−∇p+ F = 0

F = −φ∇δF
δφ

,

where ν is the viscosity. The pressure function, p, can be calculated from the incompress-
ibility condition. F represents the force vector field.

2.5 Rodrigues Formula for 3D Rotations

Let v′ be the result of rotating a vector v around an axis k̂ by an angle θ. We wish to find
an operator R such that

v′ = Rv (2.34)

We can decompose v as the sum of a vector parallel to the axis of rotation, vp and a
component perpendicular to k̂, vn such that

v = vp + vn . (2.35)

The component of v along the axial direction is simply the projection of v on k̂:

vp = (k̂ · v)k̂ , (2.36)

and this component is unchanged during the rotation so that

v′p = vp . (2.37)

Transforming the normal component is essentially performing a 2D rotation on a plane
perpendicular to k̂ that contains vn and v′n. This component is given by

v′n = cos θ vn + sin θ k̂ × vn . (2.38)
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Assemblying the two components of v′ we have

v′ = v′p + v′m
= (k̂ · v)k̂ + cos θ vn + sin θ k̂ × vn
= (k̂ · v)k̂ + cos θ (v− vp) + sin θ k̂ × (v− vp)

(2.39)

Using the definition of vp and noting that k̂ × vp = 0 we arrive at the Rodrigues’ formula

v′ = cos θ v + (1− cos θ)(k̂ · v)k̂ + sin θ k̂ × v . (2.40)

In order to rewrite the Rodrigues’s formula in matrix form we need to use the following
vector identity

a × (b× c) = (a · c)b− (a · b)c (2.41)

In the case where a = b = k̂ and c = v we get

k̂ × (k̂ × v) = (k̂ · v)k̂ − v . (2.42)

Substituting this last expression rotation formula we have

v′ = cos θ v + (1− cos θ)[v + k̂ × (k̂ × v)] + sin θ k̂ × v

= v + (1− cos θ)k̂ × (k̂ × v) + sin θ k̂ × v
(2.43)

The last step in getting the matrix form of the Rodrigues’ formula is representing the cross
product between two vectors as a matrix-vector product. The cross product between two
vectors a and b is given by

a × b = (a2b3 − a3b2)ê1 + (a3b1 − a1b3)ê2 + (a1b2 − a2b1)ê3

=


0 −a3 a2

a3 0 −a1

−a2 a1 0



b1

b2

b3


= N(a)b

(2.44)

where N(a) is a skew-symmetric matrix that can be seen as an operator that multiplies
(on the left) any column vector x and the result is a × x. Using this operator we arrive at
the matrix formulation of Rodrigues’ formula

v′ =
[
I + sin θ N(k̂) + (1− cos θ)N2(k̂)

]
v = Rv (2.45)

where I is the identity matrix. If there is a need to undo a rotation, the operator R−1 can
be obtained simply by changing θ to −θ, yielding

R−1 = I − sin θ N(k̂) + (1− cos θ)N2(k̂) . (2.46)
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Chapter 3

Mathematical Model of Keratin
Dynamics inside a Cell

The work described in this section resulted in the paper, "Keratin Dynamics and Spatial
Distribution in Wild-Type and K14R125P Mutant Cells—A Computational Model", pub-
lished in April 2020 by the International Journal of Molecular Sciences [45]. The work
stems from a collaboration between the Soft and Biological Matter Group at CFisUC,
Portugal and Mirjana Liovic’s group Faculty of Medicine of the University of Ljubljana,
Slovenia.

3.1 Introduction

The epidermis is the multilayered outer layer of skin, which functions as a protective
barrier to all internal tissues and organs. It consists of very tightly packed epithelial
cells called keratinocytes.The cytoskeleton of epithelial cells includes keratin intermediate
filament (IF) proteins. These are essential to cells since they provide not only mechanical
resilience [46–49], but are also involved in many cell and tissue functions, such as cell
growth, proliferation, migration and in wound healing [50–60].

Altogether 54 keratin genes have been discovered so far [35]. Apart from the skin, keratins
are also abundant in skin appendages such as hair and nails [61, 62]. Epidermal keratins
are divided into type I and type II proteins. Their genes are clustered on chromosomes 17
(type I) and 12 (type II). Unlike other IF proteins, a type I keratin always pairs up with a
specific type II partner, complexifying, thus forming a keratin heterodimer [63, 64]. The
assembly process of heterodimers that lead to the formation of intermediate filaments is
very complex and has been analyzed in greater detail for another protein, vimentin, that
is present in the IF network of endothelial cells [65]. Nevertheless, the same sequence of
events has been observed also for other IF proteins, including keratins: first, the lateral
association of rod-like tetrameric complexes of IF heterodimers results in the so-called
“unit-length filaments” (ULFs, 60 nm long structures). ULFs then associate longitudinally
(end-to-end) to form short filaments, which can subsequently anneal longitudinally to build
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longer filaments [66]. The general structure of an IF protein consists of an extremely
conserved central alpha-helical domain, interrupted by two non-helical linkers, and the
head and tail end domains, which vary in length and are less conserved.

Mutations affecting keratin genes have been linked to a variety of hereditary cell fragility
disorders [67]. The most comprehensibly studied is epidermolysis bullosa simplex (EBS), a
predominantly autosomal dominant disease linked to either keratin 5 or keratin 14 (K5 and
K14) gene mutations [68, 69]. Their consequence is the inability of basal layer keratinocytes
to resist physical stresses, which manifests as (often severe) skin blistering and wounding.
Extensive experiments on EBS patient-derived cell lines have shown that cells retain some
of these phenotypic differences also in vitro [70–75]. The most typical difference is the
presence of highly dynamic keratin particles and aggregates at the cell’s periphery in some
keratin mutants [71, 72, 74, 76]. Interestingly, dynamic IF aggregates or even smaller
filament fragments have been frequently observed also in normal physiological processes,
such as during IF network reorganization [65, 70–72, 77–80]. In this respect p38 MAPK
has been found as the major regulator of keratin filament remodeling, as well as keratin
aggregate formation and disappearance. It has also been shown that keratin precursors
appear at the distal tips of actin stress fibers, then move alongside the stress fibers until they
integrate the peripheral keratin filament network [78]. Microtubule-dependent transport
and dynamics of IF proteins has also been demonstrated both for vimentin and keratin [79,
80]. The majority of mutations lie within the IF central rod domain, and, in particular, in
two highly conserved sequences at the filament ends (i.e., helix initiation and termination
peptide motifs), which have been recognized as important for the assembly of IF filaments
[81, 82]. The effect of mutations may vary, interfering at the structural level (at any stage
of the filament assembly process), in the interaction with associated proteins or influencing
protein post-translational modifications [71, 83].

Recently the understanding of keratin assembly kinetics, turnover and intracellular transport
[84] has advanced significantly. In particular, several parameters that determine keratin
dynamics in keratinocytes have been measured [85, 86], such as the diffusion constant
of keratin monomers and the advection velocity of keratin fibers towards the nucleus.
Furthermore, mathematical approaches have been used to estimate the spatial dependence
and numerical values of association and dissociation rates of keratin monomers [85].
However, none of these studies have addressed keratin dynamics in cells expressing mutant
keratin. In this chapter we extend a model of keratin turnover [85] by employing a 2D phase
field approach to explore the stationary distribution of keratin in the cell, which mirrors
already previously observed conditions in cells in vitro. In particular, our mathematical
model accounts for the appearance of keratin particles and aggregates at the cell periphery,
and may thus be applied also to the case of keratin turnover in mutant keratin expressing
cells.
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3.2 Experimental Work

Combining immunofluorescence techniques with light microscopy allows experimentalists to
observe the intermediate filament network that is a part of a cell cytoskeleton. Enhanced
green fluorescent proteins (EGFPs) are normally used to tag proteins due to their ability
to exhibit fluorescence when exposed to light of a certain frequency. This allows keratin to
be marked and observed under a microscope in order to see how the intermediate filament
network is organized in a cell and how its arrangement changes in time or in response to
mechanical stress. In Figure 3.1 Panel A we can see, on the left, a picture taken from live
imaging of wild-type (WT) keratinocytes’ EGFP-labeled keratin network, while on the
right we have the corresponding image for a group of cells with the K14R125P mutation,
containing an unknown amount of mutant keratin, both in unstressed conditions [74].
On the WT keratinocytes we can clearly see, in the perinuclear region, bundles of fibers
that are especially dense, extending to the cell membrane where the density diminishes.
Looking at the images taken of the mutant keratinocytes we see a completely different
arrangement of intermediate filaments. The amount of fibers surrounding the nucleus is
drastically lower and instead we see the appearance of small dot-like structures near the cell
membrane. These structures are called granular or particulate forms of keratin and their
presence in the cytoskeleton is an hallmark of the K14R125P mutation in keratinocytes,
known to be associated with EBS. The results of a quantitative measurement of the

Figure 3.1: Panel A: Immunofluorescent imaging of the keratin filament network in both wild-type
keratinocytes (left) and in K14R125P mutant cells (right). The presence of small granular structures in
the periphery of the mutant cells is indicated by blue arrows. Panel B: Mean keratin intensity measured
in both WT (purple) and mutant cells (blue) as a function of the distance from the nucleus to the cell
membrane. Adapted from [45].
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concentration of keratin in each cell type as a function of the distance from the nucleus to
cell membrane is shown in Figure 3.1 Panel B. The fluorescent signal of EGFP–labeled
keratin was measured for multiple cells of each construct (13 WT and 18 mutant cells) and
then averaged using image analysis software. For non-mutant cells the intensity profile
(purple) shows that the amount of keratin, measured in arbitrary units, is maximum in
the perinuclear region, peaking at around 2000 a.u. and decreasing as we get further away
from the nucleus, reaching its lowest concentration of around 500 a.u.. The blue curve
representing the corresponding profile for mutant cells shows the opposite trend. The
maximum in keratin concentration is reached in the peripheral region of the cell at around
2500 a.u. and decreases closer to the nucleus, where it reaches a minimum value of 1000 a.u.

The measurements shown in Panel B confirm the intuitive analysis of images in Panel
A, and both clearly show the effect of the K14R125P mutation on the organization of
keratinocyte cytoskeleton. In order to understand the effects of the K14R125P mutation
on the spatial organization of the keratin network on cells, a mathematical model was
developed to shed some light on the mechanisms behind the observed differences to pinpoint
at which stage of the keratin assembly/disassembly cycle the effect of the mutation is the
most disruptive.

3.3 State of the Art

The number of mathematical models developed to study the keratin cytoskeleton has been
small when compared to the effort put into the study of actin filament networks, the
organization of micro tubules, or the vimentin cytoskeleton. As such, the mathematical
models that have been developed with this topic in mind have resulted from the work of a
handful of collaborations between theoretical and experimental researchers.

The first model of keratin dynamics was presented by Portet et al. (2003) who described
the dynamics of cytokeratin concentration, using a set of partial differential equations
combined with a stochastic differential equation approach. The objective was to study
how mechanical factors could alter the keratin organization [87]. Other works followed,
some consisting of systems of ordinary differential equations, describing the temporal
evolution of the concentration of intermediate filament proteins in different states and,
solved analytically [88, 89]. Markov Chain models were also used to study intermediate
filament assembly, considering the stochastic nature of molecular events [90]. In Portet
and Madzvamuse et al. (2015) a mathematical model was developed to take into account
the spatial and temporal dynamics of the keratin cycle and the spatial dependence of the
turnover and transport processes that occur. Different hypotheses for modeling the said
processes were tested and parameter estimation was performed. These allowed the authors
to suggest values for some of the reaction rates of the keratin cycle by fitting the numerical
solution obtained to the profiles of keratin distributions measured experimentally [85].

The motivation of the work presented in this chapter is to build on the existing models
of keratin dynamics, particularly on Portet and Madzvamuse et al.(2015), by creating
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a mathematical model to describe a cell with an arbitrary shape and its nucleus in two
dimensions, and coupled to the PDEs governing the keratin dynamics in time and space,
both for wild type and mutant keratin.

In the next section, a description of the mathematical framework used to model a ker-
atinocyte, accounting for possible shape changes it may suffer in time, is given.

3.4 Phase Field Model for the Cell and Nucleus

Before developing a mathematical model for the dynamics of keratin in the cell cytoplasm,
we need to first create a model to simulate the cell itself. In this work a phase field model
is used to describe the cell and its nucleus, taking advantage of the formation of a smooth
interface and thus avoiding the complex task of setting boundary conditions for both the
phase field variables themselves as well for the value of concentration of each keratin form
used in the model. We define two order parameters φ(r) and ψ(r) to represent, respectively,

Figure 3.2: Diagram of the regions of interest for the model and the corresponding value of each order
parameter used in the phase field description. The cell’s cytoplasm (in pink) is identified by φ ≈ 1 and
ψ ≈ 0 while the nucleus corresponds to φ ≈ 1, ψ ≈ 1 (in purple). The outside of the cell is characterized by
values of φ and ψ close to zero. The equation chosen for the evolution of the order parameters as a function
of the prescribed free energy leads to the formation of a smooth interface.

the interface between the cell and the outside (cell membrane) and the interface between
the cell nucleus and the exterior. In Figure 3.2 we can see how to go from a sharp interface
model (on the left) of the domain of interest, to a continuous interface approach using the
order parameter fields to identify each region of the cell and its exterior.

The free energy functional associated with this description of the system using the phase
field formalism is given by

F [φ(r), ψ(r)] = F pf
cell + F pf

nuc + F area
cell + F area

nuc + F rep . (3.1)

The two terms in F pf correspond to the free energy associated with the formation of the
smooth interface and the appearance of two energetically stable phases, both for u = φ

(cell) and u = ψ (nucleus), given by

F pf [u] =
∫ [

f(u) + ε2

2 |∇u|
2
]

dV (3.2)
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where f(u) = 1
4u

2(1− u)2 is the double well potential with minima located at u = 0 and
u = 1. The second term serves as an energy penalty that raises the global energy if the
system tries to create a rapidly varying interface, such that the formation of a smooth
continuous interface is favored.

To ensure that the area of the cell and the nucleus are conserved, we include in the free
energy functional the term

F area[u] = 1
12αu

(
V T
u − V [u]

)2
. (3.3)

where αu is a penalization coefficient that controls the weight the soft constraint has during
the process of minimization, and V T

u is the target area set for the field. The functional
V [u] is the cell or the nucleus volume

V [u] =
∫
h(u) dV (3.4)

where h(u) = u2(3− 2u). In this way, by looking at the functional in 3.3 we see that the
overall energy of the system will increase with the deviation (both positive and negative)
of the value for the volume from the target value we set (usually the volume measured in
the initial conditions).

Finally, F rep is responsible for maintaining the nucleus confined inside the cell. This is
done by creating a repulsion force between the nucleus and the outside of the cell. This
energy term is given by

F rep [φ, ψ] = 1
6β
∫
h(1− φ)h(ψ) dV . (3.5)

which reaches its maximum value at points where φ = 0 and ψ = 1. As the system,
follows the energy minimization principle, it will evolve in a way that the nucleus and the
extracellular medium do not overlap and the nucleus will remain inside the cell.

The time evolution of both φ and ψ are given by two coupled Allen-Cahn equations

∂φ

∂t
= −δF

δφ

∂ψ

∂t
= −δF

δψ
,

(3.6)

where

δF

δφ
= −ε2∇2φ− φ(1− φ)

(
φ− 1

2 + αφ(V T
φ − V (φ)) + βh(ψ)

)
δF

δψ
= −ε2∇2ψ − ψ(1− ψ)

(
ψ − 1

2 + αψ(V T
ψ − V (ψ)) + β(1− h(φ))

)
.

(3.7)

In the next section, the description of how reaction-diffusion-advection dynamics can be
coupled to a phase field model is given.
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3.5 Reaction-Diffusion-Advection Equations in Complex Ge-
ometries

Suppose that we have a two dimensional-domain D and let Ω be a subdomain of D
representing the space inside the boundary SΩ. The scalar field C(r, t) is defined inside
Ω and the total value of C can vary either due to the flux of material across SΩ or via
transformations inside the subdomain. The variation of the total value of C via these two
processes can then be expressed as

d
dt

∫
Ω
C(r, t) dΩ +

∫
SΩ

J · dSΩ =
∫

Ω
R(C, r) dΩ , (3.8)

where J is a vector describing the flux across the boundary of Ω and R the function
describing the appearance or disappearance of material inside the domain. If R(C, r) > 0
the function represents a source while if R(C, r) < 0 it represents a sink.

Suppose we use a phase field model to describe the dynamics of the interface that separates
Ω from the rest of the domain D. We define an order parameter φ(r, t) that has a value
close to 1 inside Ω and 0 otherwise. In this case we can approximate dΩ using the order
parameter while integrating over the whole domain D

dΩ ≈ φ(r) dV , (3.9)

since the regions where φ = 0 do not contribute to the value of the integral. Introducing
this approximation into the continuity equation written above (the integral over the surface
SΩ can be transformed into a volume integral using Gauss’s Theorem) yields

d
dt

∫
V
C(r)φ(r) dV +

∫
V
φ(r)∇ · J dV =

∫
V
R(C, r)φ(r) dV . (3.10)

Since the product φ(r, t)C(r, t) is a smooth, continuous function, its time derivative can
go inside the integral sign transforming it into a partial derivative, while the second term
can be integrated by parts resulting in∫

V

[
∂(φC)
∂t

+∇ · (φJ)− J ·∇φ−Rφ
]

dV = 0 .

For this condition to be verified, the integrand must be zero everywhere in the domain, i.e.

∂(φC)
∂t

+∇ · (φJ)− J ·∇φ−Rφ = 0 . (3.11)

The flux J(r) can include several terms depending on the physical processes relevant for
the model, and the same is true for the function R(r). Supposing that C(r, t) represents
the concentration of some component and that its diffusion follows Fick’s Second Law,
meaning that the chemical tends to move from places of higher concentration to places
of lower concentration, i.e. JFick(r) = −D∇C, and that there is an advection field v(r)
dragging the chemical in its flow, we can write the flux as J(r) = −D∇C + Cv which
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turns equation 3.11 into

∂(φC)
∂t

=∇ · (φ∇C)−∇ · (φCv) + J ·∇φ+Rφ . (3.12)

Comparing equation 3.11 to an unconstrained diffusion-advection-reaction equation we see
that there is an extra term that arises, namely J ·∇φ. Using the definition for the current,
we see that this term is

J ·∇φ = −D∇C ·∇φ+ Cv ·∇φ

= (Cv−D∇C) ·∇φ .

A vector that points from the outside of the domain described by φ to the inside is given
by ∇φ and we can define a unit vector that is always perpendicular to the interface at
every point as n̂ = ∇φ

|∇φ| . Using these definitions the above equation can be rewritten as

J ·∇φ = |∇φ| (Cv−D∇C) · n̂ ,

which imposes a value for the current J at the interface, such that it can be seen as a von
Neumann boundary condition for the flux of C. In the model presented in the following
sections we assume zero flux boundary conditions i.e. J ·∇φ = 0.

3.5.1 Numerical Methods

The numerical solution of an equation of the form of 3.12, coupled with the phase field
equations that govern the evolution of the domain’s interface, can be accomplished using
different numerical methods like finite-volume or finite-elements methods. In this work we
opt for a finite difference approach with specific discretization schemes for the inhomoge-
neous diffusion and advection terms. For the discretization of the time derivative we use
forward differentiation formulas such that

∂ (φC)
∂t

≈ φt+1Ct+1 − φtCt

∆t .

To write both the diffusion and advection terms in a regular grid, we use a staggered grid
approach where the derivatives are calculated at midpoints by interpolating the value of
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the relevant functions. Using this scheme, the diffusion and advection terms are written as

∂

∂x

(
φ
∂C

∂x

)
≈ 1

∆x

(
φ
∂C

∂x

) ∣∣∣∣
i+1/2,j

− 1
∆x

(
φ
∂C

∂x

) ∣∣∣∣
i−1/2,j

≈ 1
∆x

[
φi+1,j + φi,j

2
Ci+1,j − Ci,j

∆x

−φi,j + φi−1,j
2

Ci,j − Ci−1,j
∆x

]
(3.13)

∂

∂x
(φCvx) ≈ 1

∆x (φCvx)
∣∣∣∣
i+1/2,j

− 1
∆x (φCvx)

∣∣∣∣
i−1/2,j

≈ 1
∆x

[
φi+1,j + φi,j

2
Ci+1,j + Ci,j

2
vxi+1,j + vxi,j

2

−φi,j + φi−1,j
2

Ci,j + Ci−1,j
2

vxi,j + vxi−1,j
2

]
In this derivation only the terms in the x direction are shown, the procedure being the

Figure 3.3: Example of a grid where the derivatives of a function are calculated using finite differences
with the interpolated values at the midpoints (red) based on the values of the function in the center points
(black).

same for the y direction, mutatis mutandis. Using this discretization scheme, the equation
becomes

φt+1
i,j C

t+1
i,j − φti,jCti,j

∆t = [∇ · (φ∇C)]ti,j − [∇ · (φv)]ti,j +R(φti,j , Cti,j)φti,j .
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which we want to solve for Ct+1
i,j . Manipulating the equation, we get

Ct+1
i,j = 1

φt+1
i,j

[
φti,jC

t
i,j + ∆t [∇ · (φ∇C)]ti,j

−∆t [∇ · (φv)]ti,j + ∆tR(φti,j , Cti,j)φti,j
]
.

(3.14)

Simply by looking at equation 3.14 we can foresee a numerical problem when φt+1 ≈ 0. To
overcome this difficulty we must define a new solution for when the denominator in 3.14 is
close to zero. The numerical scheme that fixes this problem is given by

Ct+1
i,j =


Ct+1
i,j = 1

φt+1
i,j

[
φti,jC

t
i,j + ∆t [∇ · (φ∇C)]ti,j

−∆t [∇ · (φv)]ti,j + ∆tR(φti,j , Cti,j)φti,j
] if

∣∣∣φt+1
i,j

∣∣∣ ≥ εC
φt+1
i,j C

t
i,j if

∣∣∣φt+1
i,j

∣∣∣ < εC

(3.15)

where εC is a value that serves as threshold for the minimum value of
∣∣φt+1∣∣ where the

numerical solution presented in 3.14 is considered valid.

3.6 Spatial Distribution of Keratin in Wild-Type and Mu-
tant Cells

The intermediate filament network of a cell is mostly located in the cytoplasm, although the
presence of K17 keratin inside the nucleus has been observed [91]. Since the work presented
in this chapter is focused on the K14 keratin form, the presence of keratin anywhere outside
the cytoplasm is neglected. Based on the description of the model for the cell and nucleus
described in Section 4.4, the cytoplasm can be represented by an auxiliary field η(r, t)
defined as

η(r, t) = φ(r, t) [1− ψ(r, t)] (3.16)

such that η ≈ 1 in the cytoplasm and η ≈ 0 everywhere else in the computational domain.

A 2D extension of the model described in [85] is used to describe the keratin cycle. In the
work of Portet et al. (2015), the authors consider that keratin can be found in two states,
the soluble keratin pool and the insoluble keratin filaments. Introducing an intermediary
keratin phase, we are able to account for the small keratin aggregates observed near the
cell membrane of mutant keratinocytes (Figure 3.1 Panel A on the right). These keratin
particles are highly dynamic and can both integrate into filaments, as well as disassemble
to the soluble keratin pool. The diagram in Figure 3.4 shows the three types of keratin
we consider in the model: soluble (S), particulate (P ) and filamentous keratin (F ). It
also shows the different processes by which keratin can change state and the rate at which
that change occurs. KSP corresponds to the rate at which soluble keratin can aggregate
forming small particles while KPS is associated with the inverse process. The keratin that
is found in filaments can disassemble and rejoin the soluble pool at a rate KFS . Finally, the
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formation of keratin filaments depends on the passage of keratin from the particulate state
to the insoluble phase and the reaction rate KPF sets the timescale for that transformation.

The concentration of soluble keratin inside the cytoplasm is given by CS = ηcS where cS is
an auxiliary field that can be non-zero outside the cytoplasm and has no physical meaning
in that region. The concentration of the other two forms is written in a similar manner
and the system of coupled PDEs that describes the dynamics of the keratin cycle is the
following

∂(ηcS)
∂t

= DS∇ · (η∇cS) +RS(cS , cP , cF , η)η

∂(ηcP )
∂t

= DP∇ · (η∇cP )−∇ · (cP ηva) +RP (cS , cP , cF , η)η

,
∂(ηcF )
∂t

= DF∇ · (η∇cF )−∇ · (cF ηva) +RF (cS , cP , cF , η)η

(3.17)

where DS , DP and DI are the diffusion constants of each keratin form, and va is the
advection velocity that models the transport of non-soluble keratin towards the nuclear
membrane by the actomyosin fibers. RS , RP and RF are functions that model the passage
of keratin from one state to another as a function of the concentrations of each species.
Since some of these reactions only occur in specific locations of the cell, these functions are
also space-dependent. The reaction functions in 3.17 are modeled using results obtained in

Figure 3.4: Proposed model for the assembly and disassembly of keratin and the reaction rates associated
with each process. We assume the coexistence of three keratin states: soluble (S), particulate (P ) and
insoluble/filamentous (F ).

[85] and are given by

RS = KFSγ(r) cF
kF + cF

+KPSγ(r)cP −KSP δ(r) cS
kS + cS

RP = −KPSγ(r)cP +KSP δ(r) cS
kS + cS

−KPF cP

, RF = KPF cP −KFSγ(r) cF
kF + cF

(3.18)

where kS and kF are constants that characterize the Michaelis-Menten kynetics and
correspond to the values of concentration at which the reaction rates reach half its
maximum value. δ(r) and γ(r) are space dependent functions that are needed to define in
which region each reaction occurs. δ(r) has a value close to one at the cell cortex i.e. near
the cell membrane, and zero everywhere else. Some of the reaction rates show a linear
dependence on the distance from the cell membrane, so the function γ(r) is defined such
that its value is zero near the cell membrane, rising linearly to its maximum value of one in
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the perinuclear region. A more detailed explanation of how these functions are calculated
will be given in the next section.

Combining equations 3.17 and 3.18 we have the explicit expression for the dynamics of the
keratin cycle:

∂(ηcS)
∂t = DS∇ · (η∇cS) +

[
KFSγ

cF
kF+cF +KPSγcP −KSP δ

cS
kS+cS

]
η

∂(ηcP )
∂t = DP∇ · (η∇cP )−∇ · (cP ηva) +

[
KSP δ

cS
kS+cS −KPSγcP −KPF cP

]
η

∂(ηcF )
∂t = DF∇ · (η∇cF )−∇ · (cF ηva) +

[
KPF cP −KFSγ

cF
kF+cF

]
η .

(3.19)

3.6.1 Localizing Functions γ(r) and δ(r)

Quantitative Experimental Studies of Keratin Assembly/Disassembly

As mentioned before, the assembly and disassembly processes that keratin undergoes do not
happen homogeneously throughout the cytoplasm. In Moch et al. (2013) fluorescent time-
lapse imaging of human vulva carcinoma derived cells was used to measure the regulation
of the keratin IF cytoskeleton [77]. Using mathematical modeling combined with image
analysis techniques, the authors were able to identify the regions of the cell where keratin
filament sources and sinks are located. Furthermore, the velocity field that transports
keratin towards the nucleus was also mapped. An abridged version of the results obtained
in this paper is presented in Figure 3.5. The average velocity of keratin has an almost
constant value of 165.0± 6.4 nm/min in the cytoplasm that drops drastically to zero as we
approach the nuclear membrane, as can be seen in panel A of Figure 3.5. When measured
after 54 hours (panel A on the right), the advection velocity drops to 108.0± 3.3 nm/min.
To estimate the orientation of the velocity, a vector field was calculated (panel B) based
on the images in panel A and it is clear that the direction of advection of keratin points
towards the periphery of the nucleus, moving inwards from the cell membrane. However,
since not all keratin accumulates near the nucleus, there must be keratin sinks causing its
disassembly during transport. In panel C, the location of keratin sources and sinks was
determined. Keratin assembly is seen to happen exclusively in a thin ring around the cell
membrane while the turnover process is seen in the region between the assembly zone and
the nuclear envelope.

Based on these results, the need to introduce a spatial dependence on the reaction rates
that regulate keratin assembly and disassembly is obvious as well as the demand for a
correct modeling of the keratin advection field va.

Mathematical Modeling

The definition of γ(r) and δ(r) is dependent on measuring the distance of a certain point
belonging to the cytoplasm to the nuclear membrane. The diffuse interface resulting from
using the phase field method to model the cell and nucleus interface, makes it hard to
calculate this distance since the points that belong to the interface are not rigorously
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Figure 3.5: The images are a result of statistical image analysis performed on n cells where the average
cell shape has been mapped to a circular shape to aid the analysis. The left column corresponds to images
taken after 27 hours into the keratin cycle and on the right are the same images after another 27 hours.
Panel A: Keratin speed heatmap. Panel B: Keratin advection velocity field obtained from the heatmaps
in Panel A. Panel C: Qualitative assessment of the amount of keratin that is assembled in sources (pink
zones) and disassembled in sinks (blue zones). Adapted from Moch et al (2013) [77].

defined. We can, however, approximate that distance by solving an ancillary problem.
Suppose we have a system with circular symmetry and we want to solve the Laplace
equation in an ring bounded by radius R1 and R2

∇2D = 0

that obeys the Dirichlet boundary conditions D(R1) = 1 and D(R2) = 0. The solution to
the Laplace equation in this case is given by

D(r) = C1 log(r) + C2 . (3.20)

Expanding the solution around r = R1, keeping only first order terms and applying the
boundary conditions on the approximate solution, we have

D(r) = 1− r −R1
R2 −R1

(3.21)
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Figure 3.6: In the top panel, we see density plots that show how the functions γ(r) and δ(r) vary in space.
In the bottom panel, we see the direction of the advection field calculated from the γ(r) function.

which is a linear function. Computationally, in order to estimate the distance of a certain
point in the cytoplasm to the nucleus, we solve the equation

∂D

∂τ
= ∇2D

with the following boundary conditions defined using the order parameters φ and ψ:
D(ψ = 1) = 1 and D(φ = 0) = 0.

The solution D(r) will act as our distance function from where we can define the localizing
function δ(r) as

δ(r) =

0 , D(r) > Dint

1 , D(r) ≤ Dint
(3.22)

which defines the cell cortex where keratin assembly happens. For γ(r) what we want is a
function that increases quasi-linearly with the distance to the cell membrane, so we simply
have that

γ(r) = D(r) . (3.23)

Finally, we use D(r) to define the direction of keratin transport by the actin fibers. At
each point, the velocity is given by

va = vmax
a

∇D
|∇D| (3.24)
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and the result can be seen in Figure 3.6.

3.6.2 Initial Conditions

Before solving the system of PDEs that simulates the cell shape and the keratin distribution,
we need to choose the initial conditions. For the cell we choose a non-symmetric, complex
shape that tries to mimic the shape of a real keratinocyte. To do that, a cell was drawn
using the vector graphics free software Inkscape, making use of the Bézier Curves tool.
After that the image was converted to a binary matrix so it could be used in the software
written to numerically solve the model’s equations. Due to the stability shown by the
shape of the nucleus in this particular unstressed system, it is modeled as a simple circle.

Since we are interested in finding the steady state distribution of keratin inside the cell
in a stress-free environment, we solve the Allen-Cahn equations for the cell and nuclear
membranes first and only afterwards we solve the reaction-advection-diffusion system for
the keratin. In practice, this means that the phase field and the keratin equations are
uncoupled, since during the temporal evolution of the keratin profile φ(r) and ψ(r) are
static fields. Solving equations 3.6 we obtain the fields represented in Figure 3.7.

Figure 3.7: φ(r) (left) and ψ(r) (right) obtained from the two Allen-Cahn equations in 3.6.

Table 3.1: Initial value of each keratin form concentration at every point inside the cytoplasm.

Keratin Form Value Source
CF 700 µM [85]
CS

0.05
0.95CF [85]

CP CF –

Besides the solutions to the phase field equations, we need to define the initial conditions for
the keratin distribution in the cytoplasm. In this case we use the same conditions as in [85]
for the soluble and filamentous keratin (Table 3.1). Since there is no information regarding
the amount of keratin in particulate form in the literature, we assume that the initial
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distribution of CP is the same as the one for CF . The concentration presented in Table 3.1
for each keratin form is the value of the concentration at every point in the cytoplasm i.e.
the keratin is initially uniformly distributed. The fact that keratin is uniformly distributed
in the beginning of the simulation does not affect the steady state distribution, however it
has an effect on the number of integration steps needed for the solution to converge to the
steady state.

3.6.3 Parameterization

The value of the model parameters used in the simulations are presented in Table 3.2. For
the study of the effects of the R125P mutation in the equations for keratin dynamics, the
only parameter that does not have a fixed value is the KPF reaction rate. In subsequent
sections, other parameters’ value will be varied in order to show how their changes modify
the solution but only in order to validate modeling choices. The value of parameters in

Table 3.2: Values used for the model parameters in the simulation. All parameters except the domain size,
∆x, ∆y, Dint and KPS were taken from [85]. The value for the cell radius is approximate since the cell does
not have a circular shape.

Parameter Value
Box Size 200× 200
∆x = ∆y 0.66 µm
Cell Radius 22.5 µm

Nucleus Radius 7.5 µm
Dint 0.15
DS 0.88 µm2 s−1

DF = DP 0.01DS

|va| 2.5 nm s−1

KSP 9.8 µM s−1

kS 570 µM
KFS 0.99 µM s−1

kF 970 µM
KPS 0.01KFS

Table 3.2 are presented with their respective units, even though in the simulation all the
parameters are defined relative to the values of ∆x and ∆y. This serves only to simplify
the formulas used in the finite difference discretization.

3.7 Results and Discussion

3.7.1 Wild Type and Mutant Keratin Distributions

Solving the equations of the keratin dynamics until a steady state is reached means following
the temporal evolution of the concentrations at every point until

∂CS
∂t

= ∂CP
∂t

= ∂CF
∂t

= 0 .
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Computationally, a criterion must be set to evaluate if the steady state has been reached.
In the results shown in this section, the criterion chosen was the difference between the
maximum value of each concentration from one timestep to the next being below a certain
threshold, i.e. max(

∣∣Ct+1 − Ct
∣∣) < ε.

In Figure 3.8 the results for the steady state distribution of all keratin forms are presented,
both for the wild type and mutant cells. The parameters used in the simulations are the
same as presented in Table 3.2. In the simulations for the wild type cells, the value was
set to be KWT

PF = 0.1 s−1 while for the mutant keratin the same rate is 1000× smaller,
KM
PF = 10−4 s−1. The biggest difference between the two cases can be seen when looking

at the result for the insoluble keratin distribution, defined as the sum of the particulate and
filamentous keratin. In the wild type case, the accumulation of insoluble keratin happens
in the periphery of the nucleus and the maximum value reached is ≈ 2700 µM. On the
other hand, in mutant cells, the non-soluble keratin is mainly located in the cell cortex,
near the membrane and its concentration peaks at ≈ 2500 µM.

Despite the biggest differences being seen in the distribution of the non-soluble keratin, the
distribution and amount of each keratin form also differs when comparing the WT cells
and the cells with the R125P mutation. The soluble keratin in non-mutant cells is, like
the insoluble keratin, more concentrated around the nuclear envelope. This accumulation
results from the disassembly of filamentous keratin back to the soluble pool and since there
is barely any granular keratin, there is less soluble keratin around the cell membrane. In
the mutant case, not only do we have a great amount of keratin on the cell cortex, but we
also have some filaments around the nucleus. This is due to the active transport of granules
towards the nucleus and the linear dependence of the disassembly rate on the distance
from the interface, which creates a more uniform distribution soluble pool throughout the
cytoplasm. In both cases, granular keratin accumulates near the interface of the cell, but
in mutant cells, the maximum value for its concentration is 200× greater than in wild
type cells. Finally, keratin in filament form accumulates near the nucleus in WT cells, as
expected, while in mutant cells there is still filament formation but they are not located in
a well defined region. In the latter case they can be found in the mid region between the
nucleus and the cell interface and they result from the small amount of aggregate keratin
that is transported by actin fibers and is able to convert to filaments. Parallel to this
process, filament disassembly happens faster than filament formation meaning they will be
disassembled before reaching the perinuclear region.

3.7.2 Influence of KPF on Insoluble Keratin Profiles

To understand further the dependence of insoluble keratin distribution on the filament
assembly rate KPF , in Figure 3.9 we plot the radial profile of this distribution for different
values of the parameter. In the top panel of the figure we see three curves that show the
radial average of the concentration of insoluble keratin as a function of the distance to
the nuclear membrane, for three different values of the filament assembly rate KPF . The
green curve corresponds to KPF = 10−2 s−1, meaning we are in the WT case. This fact is
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Figure 3.8: Steady state distributions of the concentration for different keratin forms. On the left column
we have the results for a cell containing WT keratin and, on the right, the same distributions for a mutant
cell. It shows, separately, the soluble keratin pool (first row), granular keratin (second), keratin filaments
(third row) and insoluble keratin i.e. granular keratin plus the filaments (fourth row).

confirmed by the accumulation of insoluble keratin near the nucleus and the fast decline in
concentration as we get closer to the cell membrane. In purple, for KPF = 10−3 s−1, we
observe an alteration in the profile since, although there is a considerable accumulation
of keratin near the nucleus, the concentration does not decay as fast as in the previous
case, and we see the formation of a concentration plateau where the amount of insoluble
keratin is constant before going to zero near the membrane, as expected. By decreasing
the value of KPF by another order of magnitude we can see the profile more common in
cells with mutant keratin. In this case, the blue curve shows there is very little keratin at
the periphery of the nucleus and instead the non-soluble keratin accumulates in a region
close to the cell membrane.

Besides the spatial distribution of keratin in wild-type and mutant cells, we have measured
the relative amounts of each keratin form in the steady state for different values of KPF

(Figure 3.9 bottom). While for KPF = 10−2 or 10−3 s−1 the filament state of keratin
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Figure 3.9: Radial average profiles of insoluble keratin concentrations (top) and the percentage of the total
amount of keratin in the cell that corresponds to each keratin form (bottom), for different values of KPF .

clearly dominates the composition of the intermediate filaments in the cytoskeleton, at 95%
and 80% respectively, for the lowest value of the reaction rate there is an inversion and the
particulate keratin reaches around 50%. Even in this case, a small amount of filaments can
still be observed in the network which is compatible with what is seen in the experiments.
This observation will be further explored in the next chapter.

3.7.3 Regarding Modeling Choices

The results presented in the previous section show that the mathematical model developed
for this biological system can replicate the effects of the K14R125P mutation on the
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distribution of keratin in the cytoskeleton. There are, however, some options made when
developing the model that, for the sake of robustness, should be tested.

Different Values for DP and DF

In the numerical experiments performed to determine the steady state distribution of
keratin in both WT and mutant cells, the value for the diffusion coefficients of the non-
soluble keratin forms was taken to be DP = DF = 10−2DS . These values were taken from
literature [85] although their value was not accurately determined. As such, the same
simulation of the keratin cycle was performed for different values of that same parameter.
The results obtained for the WT and mutant keratinocytes are presented in Figure 3.10.
A great part of the dynamics of insoluble keratin in this model can be interpreted as an

Figure 3.10: Radial average profiles of insoluble keratin concentrations for different values of DP and DF
for both wild type (upper panel) and mutant cells (bottom panel).

interplay between the diffusion of keratin forms and their active transport by the actin
cytoskeleton and myosin motors. In fluid dynamics, the ratio between the timescale of
diffusive processes and the timescale of advection or transport phenomena is given by the
Peclet number

Pe = L2/D

L/u
(3.25)
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where D is the diffusion rate, u is the advection velocity and L is the characteristic length
of the system. For this system, let us assume the characteristic length is the average cell
radius such that the lines presented in the graphs in Figure 3.10 correspond to Peclet
numbers of: 0.10 (purple), 1.2 (orange), 13 (blue) and 25 (red). When Pe� 1, diffusive
processes dominate the dynamics of the system while for Pe� 1 advection is the primary
driver of the system. In Figure 3.10, we see that for Peclet numbers below one, the radial
profile of the insoluble keratin distribution does not match what is seen in experiments,
since the distributions are almost uniform throughout the cytoplasm. Only for high Peclet
numbers (red and blue) lines does the insoluble keratin accumulate near the nuclear or cell
membrane, depending on whether we are simulating WT or mutant cells. These results
suggest that the choice made for the diffusion constant of the insoluble keratin, considering
that the keratin advection velocity measured is correct, reproduces the transport-dominated
dynamics of these keratin forms.

Space Independent Keratin Disassembly

In [85], it is shown that the disassembly of insoluble keratin back to the soluble pool follows
the Michaelis-Menten kinetic law and that the disassembly rate increases linearly as we go
from the cell membrane to the nucleus. To test how relevant the spatial dependency of
the disassembly reaction is, we compare the results shown in Figure 3.9 to the result of
simulations where we ignore the dependency of the reaction rate on the distance to the
cell membrane and assume γ(r) = 0.5 everywhere in the cytoplasm. In Figure 3.11 we

Figure 3.11: Radial profiles of insoluble keratin concentration for both WT (purple) and mutant cells
(green), when using a uniform disassembly rate (dashed line) or linear dependence on the distance to the
nucleus (filled lines).

can see how the concentration profile of insoluble keratin changes when we use a constant
disassembly rate as opposed to the linear function of the distance to the cell membrane.
For the wild-type case we see there is barely any difference in the profile in the two cases.
However, in the mutant cell, we see there is a decrease in accumulated keratin in the cell
cortex region. This can be explained by the fact that, in the WT case, where keratin
accumulates in the perinuclear zone, the value of the disassembly rate in the constant case
is lower than in the original model (γ ≈ 1 in the linear case and γ = 0.5 in the constant
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scenario). For the mutant cells, the exact opposite happens, and we see a decrease in
accumulated keratin since particulate keratin stays in the cell cortex where, in the linear
case the disassembly rate is very small. When we use a constant disassembly rate, there is
more keratin degradation than in the original model and the concentration of particulate
keratin is reduced.

Despite the differences of keratin concentrations in these two cases, qualitatively, the results
do not suffer a significant change since we still have accumulation of insoluble keratin near
the nucleus in the WT case and near the cell membrane in mutant cells.

Alternative Reaction Scheme

More complex models could have been constructed, more specifically by distinguishing
different types of particles, or different types of keratin filaments. A reasonable first
step in complexifying the model would be to divide the population of keratin particles
in two types: the particles that can merge into fibers (P1) and the particles that cannot
(P2). Therefore, distinguishing these two pools of keratin particles, the simulated pathway
would be the one described in Figure 3.12. Since there is no permanent increase of the

Figure 3.12: Alternative reaction diagram when considering two different states of particulate keratin.

concentration of keratin particles and since the particles can clearly disassemble back into
the soluble phase as they move towards the cell nucleus, in Figure 3.12 we need to include
reactions transforming both keratin particle types into soluble keratin. Importantly, this
system would have three more reactions than the one in Figure 3.4 and five more reactions
than the model introduced in [85]. In this more complex system, a reasonable choice to
regulate the cell mutation would be to increase the reaction rate from keratin particles
P1 to keratin particles P2 (by increasing KP1P2 , for example). This increase would lead
to the accumulation of keratins in the form P2. In the model of Figure 3.4 we consider
just one keratin particle phase with a concentration of particles that corresponds to the
sum of all types of keratin particles. Therefore, this concentration would be the sum of the
concentrations of the two pools of keratin of the more complex model, i.e., CP = CP1 +CP2 .
In this complex model, the particles can disassemble by two processes with rates KP1SCP1
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and KP2SCP2 . Therefore, if KP1S ≈ KP2S = KPS , the total rate of particle disassembly
rate would be

KP1SCP1 +KP2SCP2 = KPS(CP1 + CP2) = KPSCP

i.e., equal to the disassembly rate for the model in Figure 3.4, and independent of the
mutation.

Regarding keratin filament assembly, in the more complex model, the keratin particles can
assemble into filaments by a single process with rate KPFCP1 . Note that in the manuscript
we model filament assembly by the rate KPFCP = KPF (CP1 + CP2). For the complex
model, in the wild-type case, CP2 would be approximately zero (low KP1P2), and both
filament assembly rates (the one from the Figure 3.4 model and the one from the complex
model) are equal. Strikingly, in the mutated cells, CP2 would become much higher than
CP1 and so the simulated model is able to recover the same order of magnitude for the
reaction rate obtained in the complex model by decreasing KPF , which is exactly how we
model the mutation.

In conclusion, while the model simulated in this work does not distinguish different types
of the keratin particles (for which we would require more complex models, as the one
exemplified above), it is able to recover the same keratin particle distribution in the mutated
cells, since it can reproduce the reaction rates of more complex models between the keratin
particles and the other keratin phases.

3.8 Conclusions and Future Work

In this chapter, a mathematical model for the dynamics of the keratin intermediate filament
network was presented. The phase field formalism, used to describe the cell and its nucleus
as a way to solve partial differential equations in systems with a complex geometry, has
proven to be a valuable tool, mainly due to the way possible difficulties with boundary
conditions are circumvented by using a smooth interface. Also, the phase field model for
the interfaces allows for the solution of equations in cells that are moving or whose shape
is changing, even though in this work only static domains were used.

With the system of equations used for the dynamics of keratin in both wild-type and
K14R125P mutant cells, we were able to reproduce the spatial distribution of keratin
filaments and aggregates that is observed in experiments. Moreover, the hypotheses made
about how the mutation affects the assembly of keratin filaments from the intermediate
particulate state may help to provide insights about disorders associated with the R125P
mutation’s phenotype such as EBS. We showed that in WT cells, the fast conversion of
particulate keratin into filaments leads to the formation of a fibrous network across the
cytoplasm, with a denser concentration of fibers near the cell nucleus. In contrast, when
that assembly process is slowed down, there is an accumulation of particulate keratin in the
cell cortex and a disrupted keratin network. As shown in [92] these organizational changes
in the cytoskeleton lead to different mechanical properties of keratinocytes, emphasized
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by the slight increase in cortical stiffness measured in cells with the K14R125P mutation.
These differences in mechanical properties can explain the observed difference in response
to stress shown by mutant keratinocytes and that are once again linked to the skin fragility
shown in EBS patients.

Although the keratin-14 isoform was the focus of this study, other forms of keratin with
different structural and biochemical properties are present in the cytoskeleton and could
allow us to study the keratin cycle in the context of other physiological and pathological
phenomena.

The active transport of insoluble keratin by the actin fibers was shown to be the most
important process leading to the steady state distributions observed both for wild type
and mutant cells. In this model, this process is included by adding a velocity field that
directs insoluble keratin towards the nucleus, which is a simplified account of the dynamic
interactions that happen between the actin and the intermediate filament network. A
more complex model, including the actin assembly and disassembly cycle coupled to the
keratin cycle as modeled in this work, would allow us to study the importance of the
active transport in a more detailed manner. Moreover, this combined study of actin and
keratin could provide further insight on how keratin mutations can alter the cell mechanical
properties since actin filament network is the primary responsible in assuring the cell
integrity.

Lastly, solving the equations for the keratin cycle in non-static cells would allow us to
study how the keratin cytoskeleton rearranges when keratinocytes are perturbed [92]. This,
however, would require the refinement of the numerical methods used to solve the model
equations, since explicit finite differences in both time and space would not be able to
account for the different timescales at which the keratin cycle and the deformation process
happen both in vivo and in vitro.



55

Chapter 4

Keratin Aggregate Formation in
Mutant Keratinocytes

The work described in this section resulted in the paper "A mathematical model for the
dependence of keratin aggregate formation on the quantity of mutant keratin expressed in
EGFP-K14R125P keratinocytes", published in December 2021 by PLoS ONE [93]. The work
stems from a collaboration between the Soft and Biological Group at CFisUC, Portugal and
Mirjana Liovic’s group at the Faculty of Medicine of the University of Ljubljana, Slovenia

4.1 Motivation

In the previous chapter we have shown that the K14R125P mutation severely affects the
intermediate filament network of epithelial cells. The appearance of small aggregates
of keratin in the cell cortex and the disruption of the keratin fiber network leads to an
alteration on the cell’s ability to endure mechanical, osmotic and even heat-induced stress.
EBS is a disorder that is intimately linked to the K14R125P mutation and is characterized
by blistering of the skin and inefficient wound healing.

Surprisingly, further studies on the effects of mutated keratin on the IF network have
shown that, under certain conditions, cells with mutant keratin are able to form functional
filament networks, depending on the degree mutant keratin is combined with WT keratin-
5 monomers [66]. The authors of the study further speculate that the appearance of
keratin aggregates must have an origin other than the disruption of the filament network.
However, to date, no mechanistic explanation has been proposed that could explain the
counter-intuitive results (described below) presented in [66].

In the work presented in this chapter, we continue to explore the mechanisms behind
keratin aggregate formation, by observing the cytoskeletal arrangement of cultured cells
with a mixed content of WT and mutant keratin expressed at different ratios. This study
also aims at advancing the understanding of EBS, since the actual ratio of WT to mutant
keratin in patient derived cells is still unknown, as it is the effect that different mutant/WT
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keratin ratios can have on the patient’s disease severity. To this effect, cell clones were
engineered such that they express, as close as possible to, 25%, 50% and 100% mutant
keratin.

Coupled with the experimental work, we adopted a systems biology approach to model the
amount of keratin found in different states for both mutant and WT keratin. Although
other mathematical models of keratin dynamics have been developed (see Section 4.3 of
Chapter IV) none has considered the coexistence of mutant and WT keratin in the same
cell.

4.2 Experimental Results

Using cell engineering techniques, the experimental team was able to control the amount
of mutant keratin a cell expresses. In the work presented in the previous chapter, the ratio
between WT and mutant keratin expressed by the cells was not know. Using this technique,
they wished to obtain three cell lines, each with a different mutant keratin expression value:
25%, 50% and 100%. After culture, the amount of EGFP-K14R125P keratin was measured
and the values obtained for each line were: 18%, 45% and 99%. Although the measured
keratin amounts were not exactly the ones desired, in this work we will refer to each cell
line by their initially intended percentages.

The objective of engineering these cell lines containing both WT and mutated keratin,
was to quantify how the amount of mutant keratin in each cell correlates to the amount
of keratin found in aggregates. In Figure 4.1A, we can see the results for the number of
aggregates found for each cell line. It is clear that the cell line where the fraction of cells
with keratin aggregates was maximum was for the 25% construct. This result is surprising,
especially when we look at the cell line with 100% mutant keratin and see that it was the
one of the three showing the minimum value for the fraction of cells where aggregates were
present. However, these results are in accordance with what has been previously seen [66],
where it was shown that cells with 100% mutant keratin content could still form filament
networks. In Figures 4.1B,C and D, we can see images of cells from each culture: 100%
(B), 50% (C) and 25% (D). The red arrows in each frame points to regions where keratin
aggregates can be easily seen.

After these images were taken, each culture was subject to centrifugation. This process
produces two distinct phase: the supernatant phase, where the lighter components of the
cells are found, and the pellet, where the heavier components form a deposit. Afterwards,
these two phases were analyzed using a Western Blot, and the amount of WT and mutant
keratin present in each phase was measured. In Figure 4.1E we can see the result of the
Western Blot with appropriate annotation indicating what is being measured in each well.
By knowing the chemical and physical properties of keratin aggregates, we expect that,
after centrifugation, all the keratin aggregates will be found in the pellet phase. This
allows us to infer what type of keratin (mutated or WT) can be found in the aggregates.
The most important result we can extract from Figure 4.1E is that for the 25% mutant
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Figure 4.1: Table summarizing the results of aggregated keratin quantification for each construct (A).
Images of keratinocytes with labeled keratin from each cell line (100% (B), 50% (C) and 100% (D)). The
red arrows point to areas where keratin aggregates are visible. Results from a Western Blot, quantifying the
amount of keratin present in the supernatant (S) and pellet (P) after centrifugation. GAPDH was used as
internal loading control.

keratin construct, where the maximum number of keratin aggregates was measured, there
is a significantly higher content of WT keratin compared to the amount of mutant keratin
present in the pellet. For the 50 and 100% constructs, the amount of both mutant and
WT keratin present in the pellet is almost negligible when compared to what is seen in the
25% case.

The significant difference in WT keratin fraction found in the pellet, when compared to
the amount of mutant keratin that was measured, suggests that the formation of keratin
aggregates involves binding of both WT and mutant keratin at a ratio that is not 1:1. As
will be shown in a further section, a model where a 1:1 ratio is considered for the formation
of keratin aggregates is not able to replicate the experimental observations presented in
this section. Thus, in the model presented in the next section we introduce the concept of
asymmetric binding between WT and mutant keratin at a γ : 1 ratio as a requisite for the
formation of keratin aggregates.
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4.3 Model Description

4.3.1 Proposed Reaction Network

In light of what was found in the experimental work presented in the previous section, we
propose a new reaction network (Figure 4.2) that demonstrates how the coexistence of WT
and mutant keratin affects the intermediate filament network. Keratins can be found in

Figure 4.2: Diagram representing the proposed reaction network for the coupled dynamics of mutant and
WT keratin in a cell.

complex polymeric structures of different sizes. For the keratin polymerization dynamics to
be mathematically treatable, and analogously to other keratin models, we group the keratin
configurations in few different states depending if it forms very small oligomers (soluble
keratin), intermediate size oligomers (particulate keratin) or filaments. In the reaction
network presented here, we consider 8 different states: 4 for each keratin species (WT and
mutant). In the equations describing the reaction dynamics, SW and SM will represent the
concentration of keratin in the soluble phase (W for wild type and M for mutant), PW and
PM are the concentrations of keratin in the particulate phase, FW and FM the respective
concentration in the filamentous phase, and AW and AM the respective amount of WT and
mutant keratin that is present in the aggregates. We consider that all depolymerization
processes occur at the same rate k−. This assumption is valid if we consider that all the
assembled keratin forms are deconstructed one unit at a time. kSPW/M is the rate at which
WT or mutant keratin found in the soluble state forms particles, while kPFW/M is the rate at
which these same particles assemble to form filaments. We propose that when two particles
of different types, one WT and one mutant, assemble with reaction rate kagg, they will
integrate a keratin aggregate. We use the parameter γ to reflect the asymmetric formation
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of aggregates from WT and mutant particles, which does not necessarily occur in a 1:1
ratio. A possible asymmetric mechanism of aggregate formation is by binding WT and
mutant particles of different typical sizes. These aggregates are not static and they can
lose keratin back to the soluble phase.

4.3.2 Mathematical Model

The reaction network presented in Figure 4.2 is modeled mathematically by the following
system of ordinary differential equations (ODEs):

dSW
dt = −kSPW SW + k− (PW + FW +AW )

dSM
dt = −kSPM SM + k− (PM + FM +AM )

dPW
dt = kSPW SW − k−PW − kPFW PW − γkaggPWPM

dPM
dt = kSPM SM − k−PM − kPFM PM − kaggPWPM

dFW
dt = kPFW PW − k−FW

dFM
dt = kPFM PM − k−FM

dAW
dt = γkaggPWPM − k−AW

dAM
dt = kaggPWPM − k−AM

(4.1)

These equations describe the temporal evolution of the concentrations of the different
keratin phases. We assume all reactions can be modeled using first-order kinetics except
for the formation of aggregates which depends on the product PWPM . Since we are only
interested in the values of the concentrations when the keratin cycle reaches a dynamical
equilibrium, we solve the system of equations until the value of all concentrations are
stationary.

To simplify the analysis of the equations, we rewrite the ODEs in a non-dimensional form.
We redefine the time variable as τ = k−t and replace the concentrations by their respective
fractions (indicated in lowercase) of the total amount of keratin in the cell cytoplasm,
Ktotal, which is assumed constant. Thus, we are left with the following reformulated system
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of equations:

dsW
dt = −λSPW sW + pW + fW + aW

dsM
dt = −λSPM sM + pM + fM + aM

dpW
dt = λSPW sW − pW − λPFW pW − γλaggpW pM

dpM
dt = λSPM sM − pM − λPFM pM − λaggpW pM

dfW
dt = λPFW pW − fW

dfM
dt = λPFM pM − fM

daW
dt = γλaggpW pM − aW

daM
dt = λaggpW pM − aM .

(4.2)

In these ODEs, the non-dimensional form of the reaction rates are denoted by λSPW ,
λSPM , λPFW , λPFM , λagg, with λSP/PFW/M = k

SP/PF
W/M /k− and λagg = kaggKtotal/k

−, where Ktotal

is the concentration of all keratin types (WT and mutant) in the cell. Here, we set
Ktotal = 1 mM [85]. The total fraction of mutant keratin in the cell will be denoted by
χM = sM + pM + aM + fM .

4.3.3 Parameter Value

Since the aim of this work is studying the formation of keratin aggregates for cells with
different amounts of mutant and WT keratin, the parameters that will be varied in the
studies presented in the next section will be χM , λagg and γ. The reaction rates of the
other processes will be kept constant during the simulations and their value will be chosen
based on data found in the literature.

Table 4.1: Model parameters and their values, both adimensional and in SI units.

Parameter Adimensional Value (s−1) Reference

kSPW λSPW = 1 1× 10−3 [85]
kSPM λSPM = 1 1× 10−3 [45]
kPFW λPFW = 100 1× 10−1 [85]
kPFM λPFM = 0.5 5× 10−4 [45]
k− 1 1× 10−3 [85]

In Table 4.1 the values chosen for the model parameters that stay constant are presented
in both their adimensional (used in simulations) and dimensional forms (in SI units).
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The value for some of the parameters was taken from the model presented in the pre-
vious chapter of this work and in [45]. Since, in that study, the value of the assem-
bly/depolimerization rates was space dependent and in this model we deal only with the
temporal evolution of the concentrations, the parameters used had to be averaged in space.
Thus, for example, the value of kSPW in this model is calculated from kSPW (x, y), a parameter
from the previous model, via

kSPW = 1∫
η(x, y) dx dy

∫
η(x, y)kSPW (x, y) dx dy (4.3)

where η(x, y) is the order parameter whose value is ≈ 1 inside the cytoplasm and ≈ 0
everywhere else in the grid, as defined in the previous chapter.

4.3.4 Numerical Methods

To solve computationally the system (4.2) of ODEs, an appropriate method was chosen.
Traditionally, when presented with a system of ordinary differential equations subject to a
set of initial conditions, an high order, explicit time step algorithm is used, the most popular
one being the Runge-Kutta 4th order method. For this problem specifically, however, this
method would only guarantee an accurate solution for a very small time step. In fact, the
system of ODEs presented in 4.2, combined with the parameter values presented in Table
4.1 is classified as a stiff problem. Different rigorous definitions for what makes a problem
stiff have been presented by different experts in the field of numerical analysis [94, 95]. A
simplified definition of a stiff system of equations is a system where the parameters of the
model span several orders of magnitude. Another way of interpreting this definition is that
the system does not have a single characteristic time scale, but multiple. The fastest of
these characteristic time scales limits the value for the explicit timestep that guarantees
the integration of the system, imposing a very high computational cost of the explicit
algorithm.

For the purpose of solving stiff problems, numerical methods have been developed, that
circumvent the problems described above. The method used in this work was implemented
in the library ODEPACK [96], in a routine called LSODA. This method combines the
explicit Adams-Bashforth second-order multistep method with the implicit Backwards
Differentiation Formula method along with an adaptative time stepping algorithm. Since
the use of an implicit method implies the numerical solution of a system of non linear
equations, LSODA uses the iterative Newton-Raphson algorithm to approximate the
solution, being necessary to define the Jacobian matrix of the system of equations. In the
case of the system in 4.2, the Jacobian is an 8× 8 matrix that is explicitly defined in the
code.

Although the first implementation of the LSODA algorithm is in FORTRAN77, the routines
have been wrapped in more modern languages. In this work, the simulations were ran
using the implementation of LSODA in the Python programming language.
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To obtain the concentration of each keratin form in the steady state, the system 4.2 were
solved for a sufficiently long time interval, until the time derivative of each keratin form
fraction was smaller than ε = 10−10.

4.4 Results and Discussion

4.4.1 Keratin Aggregates as a function of γ and λagg

For a certain set of parameters (γ, λagg) we can solve the system of ODEs in equation
4.2 provided we define the initial conditions for the concentration of each keratin form.
Assuming that, initially, all keratin (WT and mutant) is found in the soluble state, we
define χM as the total fraction of mutant keratin in the cell such that the initial condition
is be given by sW (τ = 0) = 1− χM and sM (τ = 0) = χM , while the concentration in all
other states is set to zero.

Finding the steady state will give us the amount of each keratin form in equilibrium from
where we can calculate Q, a quantity defined as

Q = pW + pM + aW + aM
fW + fM

(4.4)

which measures the ratio between particular/aggregate keratin and the fraction of keratin
found in filament form.

When the cell has no mutant keratin i.e. when χM = 0, it follows that Q = pW /fW ≈ 0,
meaning there is barely any aggregate formation. In the opposite case, when χM = 1, the
amount of aggregates is also close to zero. In fact, observing that, for the set of parameters
used (Table 4.1), the system allows the formation of keratin filaments, in these conditions,
we also have Q = pM/fM ≈ 0. Q will peak when the fraction of keratin in the aggregate form
is larger, for intermediate values of χM . By repeating this process for different values of
χM , while setting constant the value of (γ, λagg), plot Q as a function of χM . A typical plot
is represented in Figure 4.3A. From this curve we can extract two important parameters:
Qmax measuring the maximum value keratin found in aggregate form and χmax

M the mutant
keratin fraction for which Q = Qmax.

Since the values of γ and λnuc have not been measured experimentally, we solve the model
equations for different values of both parameters and we draw phase diagrams showing the
different values obtained for both χmax

M and Qmax, as presented in Figure 4.3B and Figure
4.3C, respectively.

For low λagg, the maximum in the observed aggregate fraction is obtained when the mutant
keratin is above 50% of the total keratin in the cell, independently of the value of γ. When
the process of aggregate formation is slow, the amount of aggregates in the steady state
will directly depend on the size of the pools of particulate WT and mutant keratins in the
cell. And so, since the formation of mutant filaments is a slower process than the formation
of WT filaments, the fraction of mutant keratin in the particulate phase is higher than
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Figure 4.3: Example of a curve Q(χM ) and of how the values of χmax
M and Qmax are determined (A). χmax

M

(B) and Qmax (C) as a function of γ and λagg. The black lines in (A) and (B) delimit the region of parameter
space where the maximum value of keratin aggregates occurs for percentages of mutant keratin between 15
and 30%.

the fraction of WT keratin in the particulate phase. Therefore, the most effective way
to increase the fraction of keratin in the particulate phase in the cell is to increase the
fraction of mutant keratin. Consequently, aggregate formation will peak at keratin mutant
fraction above 50%. On the other hand, if the reaction rate of aggregate formation is high,
we obtain the maximum in the observed aggregate fraction for mutant keratin below 50%
of the total keratin in the cell, if γ ' 3. At high λagg, aggregate formation is faster than
filament formation. Therefore, if γ is large, adding WT keratin is a very efficient way to
increase the amount of aggregates in the cell, since it readily reacts with mutant keratin in
a ratio of γ to 1. However, we observe that if γ / 1, χmax

M is always above 50%.

The experimental results of Figure 4.1 discussed in Section 5.2 show that the maximum
value of keratin aggregates is measured for the around 25% WT/mutant keratin ratio
EGFP-K14R125P cells. We identify in Figure 4.3B the range of parameters where χmax

M

lays between 15 and 30%. We observe that for values of λagg in the order of ≈ 103 − 104

(corresponding to kagg on the order of 103 − 104 M−1s−1) and for γ > 8 (including the
order of magnitude of the ratio between WT and mutant prevalence in the pellet observed
in Figure 4.1), the maximum of aggregates is always obtained for a ratio of mutant keratin
close to the one that leads to the maximum number of aggregates in cell experiments. For
smaller values of γ between 3 and 8, we still observe that a higher value of λagg ≈ 104− 106

(corresponding to corresponding to kagg on the order of 104 − 106 M−1s−1) leads to a peak
in aggregate formation for 15− 30% ratio of mutant keratin.
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In Figure 4.3C we plot the value of the maximum observable aggregate function, Qmax,
as a function of γ and λagg. Expectably, we obtain a larger accumulation of aggregates
for larger λagg. Strikingly, we observe that in the region of parameters on the vicinity of
15-30% (bordered by the black lines in Figure 4.3C), and for γ > 10, the value Qmax is in
the ≈ 10− 50 range, depending on the value of λagg. This means that if we look at the
keratin distribution inside a 25% EGFP-K14R125P cell, the model predicts there will be
about one order of magnitude more keratin in aggregates than in filaments.

4.4.2 Aggregates vs Particles

In the model, we monitor the observed accumulation of granular keratin forms (particles
and aggregates) by calculating the ratio between these forms and keratin filaments,

Figure 4.4: Keratin forms at the WT-mutant keratin composition that maximises Q. Fraction of aggregates
is represented in red, keratin particles in blue and keratin filaments in green. The black lines in the figure
delimit the region of parameter space where the maximum value of keratin aggregates occurs for percentages
of mutant keratin between 15 and 30%.

Q = aW + aM + pW + pM
fW + fM

in the stationary state. In Figure 4.3A we observed that a relatively small fraction of
mutant is able to lead to the accumulation of these forms. In Figure 4.4 we explore the
fraction these different keratin forms at the composition that maximizes Q. Namely, for
the mutation fraction χmax

M (which depends on the values of λagg and γ), we calculate the
fraction of keratin in the particle (pW +pM ), aggregate (aW +aM ) and filaments (fW +fM )
forms. A color in RGB is assigned to each corresponding point in Figure 4.4, such that the
red represents the fraction of aggregates, blue represents the fraction of keratin particles
and green the fraction of keratin filaments (normalized by the sum of all non-soluble forms,
aw +aM +pW +pM +fW +fM ). In the graph in Figure 4.4 we can clearly see the existence
of two distinct regions with a third much smaller region dividing them. In the red region,
defined by λagg ' 103, almost all the keratin in the cell, in the state that maximizes Q, is
found in aggregate form. The blue region, when λagg / 102, the most dominant keratin
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form in the maximizing state is in the form of particles. In the transition between these
two dominant regions, we can see a thin predominantly green region where, for the state
that maximizes Q, we have a high concentration of keratin filaments. From the graph we
see that the region where Qmax is obtained for systems where the percentage of mutant
keratin is between 15 and 30% i.e. where the results from simulations reproduce the results
obtained in experiments, is located in the red portion of the diagram, suggesting that the
value obtained for Qmax is mainly due to the accumulation of keratin aggregates and the
process of asymmetric binding of WT and mutant particles.

4.4.3 Sensitivity Analysis

We have carried out a full sensitivity analysis of the model regarding variations of the
parameters λSPW , λSPM , λPFW , λPFM , λagg, γ and χM . With this objective, we carried out
positive and negative variations of 10% as well as doubling and halving each parameter,
and calculated the corresponding variation in Q. We started from the state with λagg = 104,
γ = 5 and χM = χmax

M = 0.13. For these parameters we have Qmax = 37. The percentual
changes in Q after varying each parameter are presented in Table 4.2 We observe that Q has

Table 4.2: Percentual Variation in Q

Parameter +10% −10% ×1
2 ×2

λSPW +1.29 −3.19 −34.13 −35.20
λSPM −0.7 −1.8 −73.5 −18.9
λPFW −4.7 +5.26 +33.9 −32.6
λPFM −4.8 +5.5 +40.7 −30.18
λagg +4.8 −5.23 −32.6 +33.9
γ +1.9 −8.8 −92.17 −14.9
χM −4.31 −7.6 −94.15 −59.05

a relatively large sensitivity regarding all parameters in the model, with a large percentual
variation on the same order of magnitude as the percentual variation of most parameters.
In fact, for the larger variations of the reaction rates tried (by doubling or halving the
value of each parameter), we observe typically a large variation in Q (by approximately
30%). The sensibility of Q is even larger with respect to variations in γ and χM .

4.4.4 Alternative Models

To further strengthen the argument that asymmetric binding of WT and mutant keratin
is essential for the formation of keratin aggregates, we present two alternative models
for reaction networks. By showing that the results coming from these two models are
not in accordance with what is seen in experiments we can recognize the importance the
asymmetric binding hypothesis.



66 Chapter 4. Keratin Aggregate Formation in Mutant Keratinocytes

Model I

The first alternative model considers the symmetrical aggregation of WT and mutant
keratin. In a non-dimensional formulation, it contains seven variables: sW , sM , pW , pM ,
fW and fM , describing the same quantities as in the main model, and a the concentration
of aggregates in the cytoplasm. As opposed to the main model, here, there is only one
variable describing keratin aggregates instead of two. These aggregates are formed, by
hypothesis, by adding WT and mutant soluble keratin in equal proportions with a rate
kaggSWSM . The conclusions reached with this model are independent of which keratin
form we use to form the aggregates i.e., the results are similar if we use kaggPWPM . In its
non-dimensional form, the system of ODEs that models the reaction network is

dsW
dτ = −λSPW sW + pW + fW + 1

2a− λaggsW sM

dsM
dτ = −λSPM sM + pM + fM + 1

2a− λaggsW sM

dpW
dτ = λSPW sW − pW − λPFW pW

dpM
dτ = λSPM sM − pM − λPFM pM

dfW
dτ = λPFW pW − fW

dfM
dτ = λPFM pM − fM
da
dτ = λaggsW sM − a .

This model has only one unknown parameter, kagg. We explored the stationary state of
this system of equation for different values of λagg and fractions of mutant keratin, χM . In

Figure 4.5: Reaction network diagram for Model I (left). Fraction of mutant keratin at which Q is
maximum as a function of logλagg (right). The dashed line represents χmax

M to which the curve converges as
logλagg increases.

Figure 4.5 right, we plot the fraction of mutant keratin where the value of Q is maximum
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as a function of λagg. For values of λagg in the range 10−2 < λagg < 1, the maximum value
of Q is located at χmax

M ,i.e. for cells that contain only mutant keratin. By increasing λagg,
the maximum starts shifting to lower values until it stagnates at χmax

M for large λagg.

Clearly this model is not able to reproduce what was observed in experiment as the
aggregates have by design equal amounts of WT and mutant keratin. Moreover, it is
important to notice that, contrary to the experimental observations, in this model χmax

M

is always above 50%, regardless of the value of λagg. To understand the reason for this,
consider a cell with 50% WT and 50% mutant keratin. As the formation of mutant
filaments is a slower and less efficient process, the fraction of mutant keratin in the soluble
and granular phases is larger than the fraction of WT keratin in those phases. Therefore,
the percentage of both soluble and granular keratin will increase faster by adding mutant
keratin to the system than by adding WT keratin. As the formation of aggregates will
depend on the amount of soluble keratin in the system, more aggregates will be formed in
this model when the amount mutant keratin is above 50% (and a similar conclusion would
be reached if the aggregates were formed by adding keratin granules instead).

We have further explored the symmetric 1:1 binding scenario between WT and mutant
keratins by considering different soluble to particle reaction rates. Also, in this scenario, we
did not identify a region of parameter space which reproduced the experimental observations.
Here, we explored the hypothesis that the process of transforming soluble WT keratin into
WT particles is slower than its mutant counterpart. With this assumption, we expect an
accumulation of WT keratin in the soluble phase that will allow the formation of more
aggregates for lower values of mutant keratin fraction. However, we observe experimentally
that though cells with 100% mutant keratin are able to form filament networks, they do
not have a higher density of keratin fibers than the cells that only express WT keratin.
Therefore, for the model to truly reproduce the results observed experimentally, we also
need to verify that the total amount of fibers, FW + FM , is either approximately equal or
higher in the WT cells (χM = 0) than in the mutant cells (χM = 1).

This model’s reaction network is the same as before (Figure 4.5) but instead of only varying
λagg, we will also explore how different values of βSP = λSPW /λSPM affects the formation of
keratin aggregates.

In Figure 4.6A we can observe that there is a region of values for the parameters βSP and
λagg where the maximum amount of aggregates is at 0.10 < χmax

M < 0.30. When βSP > 0.1
the system behaves very similarly to what was observed above: in that regime, as we
increase the value of λagg, the maximum of aggregates goes from being located at χmax

M ≈ 1
to χmax

M ≈ 0.5. In this region, the equilibrium fraction of keratin in the soluble phase is
still smaller in WT cells than in mutants, and therefore the formation of aggregates will
occur faster at high concentrations of mutant keratin. As λSPW gets smaller (for a fixed
value of λSPM ), we see that for a limited range of λagg, the maximum of aggregates happens
for χmax

M < 0.5. In this domain, there is a higher accumulation of WT keratin in the
soluble phase which means that the amount of soluble mutant keratin required to promote
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Figure 4.6: Value of χmax
M (A) and Qmax (B) as a function of λagg and βSP . In (C) we represent the ratio

between the fiber fraction of cells with 100% WT keratin and the fiber fraction in cells that are 100% mutant.
The black curves bound the region where 0.10 < χmax

M < 0.30.

aggregation will be smaller and, when βSP ≈ 10−4 we have aggregate formation with a
fraction of mutant keratin in the system below 50%.

In Figure 4.6B we see the value of Qmax as a function of the same parameters. Inside
the region delimited by black lines, we observe a large accumulation of aggregates for
λagg > 10, according to what is expected from experiments. However, when we look at
the ratio between the amount of fibers in cells expressing 100% WT keratin and in cells
expressing 100% K14R125P mutant (Figure 4.6C) we see that if λSPW < 0.1λSPM (i.e. in
the region where we observe χmax

M < 0.50) the model predicts that the fiber network of
mutant cells is one order of magnitude denser than the fiber networks of WT cells. Thus,
we conclude that a symmetric binding mechanism between WT and mutant soluble keratin
cannot explain the results observed in experiment, even if we consider that the reaction
where WT particles are formed is much slower than its mutant counterpart. In this case,
we see that by slowing down formation of WT particles we are creating a bottleneck and
limiting the formation of WT keratin fibers.
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Model II

To address the difficulties identified by Model I in replicating the results obtained in the
experiments, a new reaction network model was hypothesized (shown in Figure 2 left).
Analogously to Sun et al 2015, in this model we consider that aggregates are initially
nucleated by both mutant and WT keratin through a process with reaction rate knuc. These
aggregates can then grow by the addition of both WT and mutant keratin particles in the
soluble phase, with a rate kagg

W/MSW/M (AW +AM ), where kagg
W and kagg

M are not necessarily
identical. The equations that model this reaction network are given by (in non-dimensional
form):

dsW
dτ = −λSPW sW + pW + fW + aW − λnucsW sM − λagg

W sW (aW + aM )
dsM
dτ = −λSPM sM + pM + fM + aM − λnucsW sM − λagg

M sM (aW + aM )
dpW
dτ = λSPW sW − pW − λPFW pW

dpM
dτ = λSPM sM − pM − λPFM pM

dfW
dτ = λPFW pW − fW

dfM
dτ = λPFM pM − fM

daW
dτ = λnucsW sM + λagg

W sW (aW + aM )− aW
daM
dτ = λnucsW sM + λagg

M sM (aW + aM )− aM

This model introduces two additional reaction rates λagg
W and λagg

M for which there is no

Figure 4.7: Reaction network for Model II (left). Fraction of mutant keratin at which Q is maximum as a
function of λagg

W and λagg
M (right).

measured value available in literature. We solved the system of equations and explored
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their steady state for different values of λagg
W and λagg

M . The value of λnuc was fixed at 103,
a typical reaction rate for aggregation according to the results of the model in the main
text (though a similar behavior was observed for a wide range of λnuc values).

In Figure 2 right we represent the value of χmax
M as a function of the value of the two

aggregation rates. The diagram is essentially divided in 3 main regions with very sharp
transitions between them. The light green region corresponds to results where χmax

M ≈ 0.5,
in the red region χmax

M ≈ 1 and finally the purple region where χmax
M ≈ 0 . The green

region is defined by λagg
W < 100 and λagg

M < 100 and here the aggregation constants are
small and the aggregates grow by the nucleation process as in Model I. In the purple
region, the reaction rate for WT aggregation is larger than the reaction rate for mutant
aggregation. Therefore, once there is a small amount of keratin that permits the formation
of the aggregation nuclei, the WT keratin is able to attach to those nuclei and grow the
aggregate. In this situation the higher the concentration of WT keratin, the larger the
fraction of aggregates in the cell. As a consequence we obtain χmax

M at a concentration of
mutant keratin vanishingly small. In the red region the similar reasoning can be made,
and the maximum is reached with a very small quantity of WT keratin. For this model,
aggregates can therefore be asymmetric, but very small fractions of mutated keratins can
give rise to overwhelming aggregate formation, which is clearly not verified experimentally.

4.5 Conclusions and Future Work

The peek of aggregate concentration at low mutant keratin levels was reproduced in our
mathematical model if we hypothesized WT and mutant keratin bind asymmetrically to
form aggregates. The extensive exploration of minimal models where WT and mutant
keratins bind at a 1:1 ratio predicted, opposite to what was observed experimentally, a
maximum of agglomerate formation at mutant keratin fractions above 50%. We also
explored the hypothesis of a nucleating oligomer formed by both WT and mutant keratin
that could grow by the addition of WT keratin. This second hypothesis also did not
reproduce the experimental results. Interestingly two previous studies on vimentin, an
intermediate filament protein that builds homopolymeric filaments, bear similarities to our
mathematical model’s explanation of the findings we obtained on the K14R125P mutation.
Namely, about 25% of mutant vimentin is enough to cause disruption of the endogenous
filament network [36], while the influence of the same vimentin mutations on cataract
formation in the eye lens of mice [37] showed that animals expressing less than 30% of
mutant vimentin had in their tissues cytoplasmic vimentin inclusions that also contained
endogenous WT vimentin.

Therefore, our mathematical model predicts that aggregates are the result of the asymmetric
binding of WT and mutant keratins, with a ratio γ : 1, where γ > 1. This agrees with the
imbalance between the two types of keratin recovered from the pellets. Finally, when the
fraction of mutant keratin is such that the concentration of aggregates is maximum, the
model predicts that the concentration of keratin in the aggregates is at least one order of
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magnitude larger than the amount of keratin in the filaments in the cell. Therefore, in
these conditions, the keratin aggregates will be ubiquitous in the cell, just as observed. In
a future study we will address quantitatively the variability observed in keratin aggregation
at the cell level. Introducing variability in the reaction rates of the model will also permit
to better explore quantitatively these measured amounts of keratin.
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Chapter 5

Simulating Blood Vessel
Structures with a Multi-Phase
Field Model

5.1 Motivation

For many decades, de novo vascular network formation via vasculogenesis has been ex-
tensively studied, and the same is true for angiogenesis. These processes are responsible
for the formation of blood vessel networks, although the end product, in both cases, is
an immature network that must undergo reorganization and remodeling to evolve into
fully functional oxygen and nutrient distribution systems. Understanding vessel network
remodeling can shed light into processes such as embryogenesis, organ formation and the
appearance of vascular abnormalities associated with a wide range of disease.

Vascular pruning refers to the removal of a connection that existed between two vessels,
with cell apoptosis being one of the main mechanisms by which the vessel disappears. This
phenomenon has been identified in the mouse pupillary membrane and hyaloid canal [97, 98].
In the mouse retina, however, it has been shown that vessel regression can occur without
significant apoptotic activity [99]. In zebrafish models, endothelial cell reorganization was
recognized as the main driver of vascular remodeling in the brain [100].

In Franco et al. (2015), a four step process for vessel pruning was proposed, to explain
how vascular remodeling can occur without cell apoptosis [101]. In Figure 5.1, we can see
confocal images of the four steps proposed in that paper and a drawing showing a more
detailed look on the role of several agents in the process of vessel pruning. Endothelial
cell polarization can be measured in these vessels and observed to be induced by blood
flow and will point in the opposite direction of that flow. The polarization of endothelial
cells is closely related to the relative positioning of their Golgi apparatus with respect
to the nucleus, as depicted in Figure 5.1 i), ii) and iii). The first step begins with the
selection of which vessel will regress. At this stage, the vessel is lumenized and stable due
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Figure 5.1: Vessel regression observed in a mouse retina (upper panel) and a diagram depicting each step
of the process (bottom panel).

to the supporting role of perycites, strong adhesion at cell-cell junctions and the existence
of a basement membrane. Afterwards, the selected vessel will undergo stenosis, meaning
that the lumen will narrow and the blood flow in the selected segment will be restricted.
After the blood flow is completely cut off in the regressing vessel, the cells that were
previously organized to form its structure, will start migrating in the direction of their
polarization, towards the vessels closest to them, that present a high blood flow. In the end,
all that remains of the pruned vessel is its supporting structure of pericytes and basement
membrane, since the lumen has also regressed.

The fact that the process, described above, conserves the number of cells in the system,
highlights how important it is to understand how endothelial cells organize in a vessel
structure and how stimuli-driven cell reorganization can lead to morphological changes,
both in each individual cell and on the multi cellular system as a whole. With the model
described in this chapter, we will explore how cells can organize in a tubular structure
when subject to a polarization source, as well as how the migration of one cell can lead to
the rearrangement of its neighbors to form a sprout.

5.2 Model Description

The model described in this section is based on the ideas presented in [102] and [103].
We have developed a multi-phase field model, in three dimensions, to describe a group of
endothelial cells that form a tubular structure resembling a blood vessel. Besides modeling
each cell individually using a set of order parameters {φi}, we also describe the extracellular
matrix and the vascular lumen, each represented by their own order parameter, φecm and
φlumen, respectively. Figure 5.2 represents a depiction of the system that will be modeled.
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In this chapter, the value of all order parameters used will vary between φ = 0 and φ = +1.

Figure 5.2: Illustration of the system being modeled (2D slice). The location of the labels show the region
where the order parameter is equal to one.

5.2.1 Free Energy Functional

In the free energy functional of the system, besides the usual Ginzburg-Landau term
common to most phase field models, we include energy terms that describe the interactions
between endothelial cells, the ECM and the vascular lumen. The free energy functional
will be a sum of three terms, one for each tissue we wish to represent:

F [{φi}, φecm, φlumen] = F cells + F ecm + F lumen . (5.1)

In this model, we assume that the dynamics of the system is driven by two main interactions:
adhesion and repulsion. Besides these two, an extra term is added to ensure cell volume
conservation.

Adhesion Energy

The functional that gives the adhesion energy between cells described by the order param-
eters φi and φj is given by

F adh [φi, φj ] = ηij
12

∫
∇h(φi) ·∇h(φj) dr (5.2)

where h(φ) = φ2(3 − 2φ) and ηij is an adhesion parameter that measures the adhesion
energy density between φi and φj , and has units of J m−1. From equation 5.2 we see that
if the two cells are far from each other, the value of the functional is zero, since the dot
product between the gradient terms (that are non-zero only at the interfaces) is null. In
the case where the two cells are in contact, the adhesion term is no longer zero and it will
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have a negative value, lowering the energy. Notice that ∇h(φ) points from the outside
of the cell to the inside and so, when two cells overlap, the gradient terms will point to
the inside of each cell but in opposite directions such that the dot product is a negative
number. To avoid the existence of non-physical self-adhesion terms, the adhesion energy is
only calculated between distinct cells (with distinct order parameters).

The functional derivative of F adh [φi, φj ] with respect to one of the fields, φi in this case, is
given by

δF adh

δφ
= −ηij12 h

′(φi)∇2h(φj)

= −ηij2 φi(1− φi)∇2h(φj) .
(5.3)

Repulsion Energy

For the model to be realistic, making sure that two cells do not occupy the same volume is
of great importance. That is achieved by adding a repulsion term between cells that ensures
the excluded volume condition. The repulsion energy term between two cells described by
φi and φj is given by

F rep [φi, φj ] = βij
12

∫
h(φi)h(φj) dr (5.4)

where βij is the repulsion coefficient between cells represented by φi and φj , that has units
of J m−3. To the integral in 5.4 contribute points where the product h(φi)h(φj) is not
zero, which occurs only in regions where the two cells overlap. The more common points
they share, the higher the energy gets, such that the behavior of cells that minimizes the
overall energy is to not occupy the same space.

The functional derivative of F rep [φi, φj ] with respect to one of the fields, φi in this case, is
given by

δF rep

δφ
= βij

12 h
′(φi)h(φj)

= βij
2 φi(1− φi)h(φj) .

(5.5)

Volume Conservation

Another important term that must be added to the model is an energy functional that
maintains the cell volume approximately constant throughout the simulations. The
corresponding energy term is given by

F volume[φi] = 1
12αV

(
V T

cell − V [φi]
)2

. (5.6)
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where αV is a penalization parameter with units of J m−6, V T
cell is the target volume chosen

for the cell, and V [φi] is the current volume of the cell, given by

V [φi] =
∫
h(φ) dr . (5.7)

Calculating the functional derivative of 5.6 we obtain

δF volume

δφi
= −αV φi(1− φi)

(
V T

cell −
∫
h(φi) dr

)
. (5.8)

In Figure 5.3, we present a diagram that represents the different components of the system
(endothelial cells, vascular lumen and ECM) and the interactions between each of them,
that are included in the model. Besides the adhesion and repulsion forces that occur
between the distinct phases, there is also endothelial cell-cell adhesion and repulsion, as
well as the degradation of the ECM by matrix metallo-proteases (MMPs) produced by
tip cells. In the next sections we write the free energy functional for endothelial cells, the

Figure 5.3: Diagram representing the different interactions between every component of the system. Double
ended arrows represent interactions that are mutual.

lumen and the ECM, taking into account the interactions represented in Figure 5.3.
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Endothelial Cell Free Energy F cells

The contribution of endothelial cells to the system free energy can be written as

F cells =
Ncell∑
i=1

∫ [
ε2

2 |∇φi|
2 + 1

4φ
2
i (1− φi)2

]
dr + 1

12

Ncell∑
i=1

αV
(
V T

cell − V [φi]
)2

+ 1
12

Ncell∑
i=1

Ncell∑
j 6=i

∫ [
βcell

cellh(φi)h(φj) + ηcell
cell∇h(φi) ·∇h(φj)

]
dr

+ 1
12

Ncell∑
i=1

∫ [
βcell

ecmh(φi)h(φecm) + ηcell
ecm∇h(φi) ·∇h(φecm)

]
dr

+ 1
12

Ncell∑
i=1

∫
βcell

lumenh(φi)h(φlumen) dr

(5.9)

In Nonomura et al. (2012) [102], in order to simplify the expression for the Allen-Cahn
equation that gives the time evolution of each order parameter in the model, and to aid
the parallelization of the numerical methods used to solve it, introduced an auxiliary for
each type of cell in the model. In this model, we define

Φcell =
Ncell∑
i=1

h(φi)

Φecm = h(φecm)

Φlumen = h(φlumen)

(5.10)

a field that represents the sum of all cells of the same type. Rewriting 5.9 using these new
variables, we have that

F cells =
Ncell∑
i=1

∫ [
ε2

2 |∇φi|
2 + 1

4φ
2
i (1− φi)2

]
dr + 1

12

Ncell∑
i=1

αV
(
V T

cell − V [φi]
)2

+ 1
12

∫ [
βcell

cellΦ2
cell + ηcell

cell|∇Φcell|2
]

dr

− 1
12

Ncell∑
i=1

∫ [
βcell

cellh(φi)2 + ηcell
cell|∇h(φi)|2

]
dr

+ 1
12

∫ [
βcell

ecmΦcellΦecm + ηcell
ecm∇Φcell ·∇Φecm

]
dr

+ 1
12

∫
βcell

lumenΦcellΦlumen dr

(5.11)

where the fourth term in the sum appears to exclude self-interactions in cells.

ECM Free Energy F ecm

The ECM free energy has all the terms already present in (5.11) regarding the interactions
with the group of endothelial cells plus the excluded volume between the matrix and the
lumen. As opposed to endothelial cells, the volume of the ECM is not conserved during
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the simulation.

F ecm =
∫ [

ε2

2 |∇φecm|2 + 1
4φ

2
ecm(1− φecm)2

]
dr

+ 1
12

∫ [
βcell

ecmΦcellΦecm + ηcell
ecm∇Φcell ·∇Φecm

]
dr

+ 1
12

∫
βcell

lumenΦcellΦlumen dr .

(5.12)

Lumen Free Energy F lumen

Finally, the lumen free energy contains all the terms already presented in (5.11) and (5.12)
plus a term representing the radial pressure exerted by the lumen on the surrounding cells
and tissue. Just like the ECM, the volume of the lumen is also not conserved explicitly on
the free energy. The free energy term regarding the lumen order parameter is given by

F lumen =
∫ [

ε2

2 |∇φlumen|2 + 1
4φ

2
lumen(1− φlumen)2

]
dr

+ 1
12

∫ [
βcell

lumenΦcell + βecm
lumenΦecm

]
Φlumen dr

− 1
6

∫
pΦlumen dr

(5.13)

where p is the luminal pressure.

In the next section, we will derive the equations that give the time evolution of the order
parameters in the model, from the free energy functional presented above.

5.2.2 Model Equations

The dynamics of each order parameter, φi, used in the model to describe each distinct
phase, will be given by the Allen-Cahn equation corresponding to a phase field model A,

∂φi
∂t

= − δF
δφi

,

where the mobility constant M is equal to 1, by adjusting the time scale.

For each order parameter, φi, that describes an endothelial cell, the corresponding equation
for its time evolution is given by

∂φi
∂t

+∇ · (φiui) = ε2∇2φi + φi (1− φi)
[
φi −

1
2 + αV

(
V T

cell − V [φi]
)

+ f int
i

]
(5.14)

where ui is the advection velocity where endothelial cell polarization and tip cell velocity
will be included, as described later in the chapter. All the extra terms that represent the
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interaction between phases are included in f int
i , given by

f int
i =− βcell

cell [Φcell − h(φi)]− βcell
ecmΦecm − βcell

lumenΦlumen

+ ηcell
cell

[
∇2Φcell −∇2h(φi)

]
+ ηcell

ecm∇2Φecm .
(5.15)

For the extracellular matrix, described by φecm, the corresponding Allen-Cahn equation is
given by

∂φecm
∂t

= ε2∇2φecm + φecm (1− φecm)
[
φecm −

1
2 + f int

ecm

]
. (5.16)

where the interaction function, f int
ecm is

f int
ecm = −βcell

ecmΦcell − βecm
lumenΦlumen + ηcell

ecm∇2Φcell . (5.17)

Finally, the dynamics of the lumen order parameter, φlumen, follows the equation

∂φlumen
∂t

= ε2∇2φlumen + φlumen (1− φlumen)
[
φlumen −

1
2 + p+ f int

lumen

]
, (5.18)

where the interaction terms are included in f int
lumen,

f int
lumen = −βcell

lumenΦcell − βecm
lumenΦecm . (5.19)

Numerical Methods

To solve the equations presented above, we discretize the spacial and temporal derivatives
using the finite difference method. For the time derivative, we use a forward differentiation
scheme where

φt+1
i = φti + ∆t

(
∂φi
∂t

)t
,

while for spatial derivatives we employ centered differences formulas.

5.2.3 Cell Polarization

Blood flow induced endothelial cell polarization is an important phenomenon to study the
arrangement of cells in a vessel structure. In this work, we do not model the blood flow
explicitly, but we include the effects it has on endothelial cell elongation and movement. It
will be shown in the results section, considering the effects of blood flow is essential if we
want to obtain a vessel-like tubular structure where the cells have realistic shapes, when
comparing with experimental observations. In Figure 5.4 we show how blood induces an
anti-parallel polarization on endothelial cells, leading to cell elongation and shape change.
To model this phenomenon, we first find the two extreme points of the cell in the direction
of the flow (assumed to be alligned with the z-axis), (zmin, zmax), as well as the coordinates
of the cell center of mass, rcom. The center of mass is calculated using a weighted average,

rcom =
∫
h(φi)r dr∫
h(φi) dr = (xcom, ycom, zcom) . (5.20)
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Figure 5.4: Diagram representing the different interactions between every component of the system. Double
ended arrows represent interactions that are mutual.

We assume the blood flow induces a velocity field on each cell in the z-axis, that increases
linearly from the points where z = zmin to where z = zmax. The induced velocity is given
by

vz(z) = h(φi)
[
v + 2z − zmax − zmin

zmax − zmin
δv

]
. (5.21)

An illustration of the velocity field, which varies linearly between v − δv and v + δv, can
be seen in the bottom image of Figure 5.4.

5.2.4 ECM Degradation

When we want to simulate a sprouting event, one of the endothelial cells in the tubular
structures will start migrating in a perpendicular direction to the initial vessel. Since the
tubular structure is surrounded by the ECM, in order to move, the tip cell must produce
MMPs that will degrade the matrix and open space for the cell to migrate. To introduce
the effects of MMPs in the model, we introduce a diffusion equation that governs the
release of proteases by the tip cell. This dynamics is given by

∂CMMP
∂t

= DMMP∇2CMMP − kMMPCMMP + γφtip (5.22)
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where DMMP and kMMP are, respectively, the diffusion and decay rate of MMPs. The last
term in the above equation regulates the production of MMPs by the tip cell, described by
φtip, at a rate γ.

The effects of MMP on the order parameter that describes the ECM, φecm, is modeled
by adding an extra term to equation 5.16, given by −δMMPφecmCMMP. This term will
decrease the value of φecm at a rate controlled by δMMP, when the concentration of MMPs
at that point is greater than zero.

5.2.5 Cell Division

While tip cells have an increased sensibility to growth factor gradients, that will guide their
migration, stalk cells have few VEGF receptors and their main task is cell proliferation.
To model stalk cell proliferation, we must implement how we can turn one parent cell into
two daughter cells, which, in practice, means defining two new order parameter fields from
a preexisting one. To do that we will use the method presented in [102] and [103] where,
given two points p1 and p2, an order parameter field is divided in two, with the plane of
division being defined by a plane that contains both p1 and p2. Starting from a parent
cell, described by φparent, we define two new order parameters φA and φB, such that

φA(r) = φparent(r)ξ(r; p1,p2)

φB(r) = φparent(r) [1− ξ(r; p1,p2)] ,
(5.23)

where the function ξ(r; p1,p2) is a three dimensional step function that describes one
half of 3D space, when it is bissected by a plane defined by p1 and p2. The function
1− ξ(r; p1,p2) describes the other half. ξ(r; p1,p2) is defined as

ξ(r; p1,p2) = 1
2 [1 + tanhχ(r; p1,p2)] (5.24)

where χ(r; p1,p2) is defined by

χ(r; p1,p2) = p1 − p2
|p1 − p2|

·
(

r− p1 + p2
2

)
. (5.25)

To completely define how the division will occur, we must define which points p1 and p2

that we will use to define the bissection plane. To do this we determine the minimum
bounding box that encloses the whole parent cell and determine which dimension of the
box is largest. p1 and p2 will correspond to the two points where the cell intersects the
bounding box in the direction where it is the most stretched.

In the end, the two daughter cells will have the same properties of the parent cell with
their order parameter fields given by equation 5.23.
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5.3 Results and Discussion

5.3.1 Initial Conditions

Before running a simulation, we must first define the initial geometry of the system, by
initializing each order parameter field. The initial tubular structure is built by assembling
layers of endothelial cells. In the top two images of Figure 5.5 we plot the initial conditions
for the vessel where the cells form a cylinder with a hollow section in the middle, where
the lumen will be initialized. The initial configuration of φecm is not shown in the figure,

Figure 5.5: Initial configurations of the vessel structure (top) and the vascular lumen (bottom). These
images where taken after a few iterations to allow the system to create a smooth interface. The surfaces
show correspond to φcell

i = 0.5 and φlumen = 0.5. All the space outside the wall made up of endothelial cells
has φecm = 1. The lumen is enclosed by the endothelial cells.

but it surrounds the endothelial cell tubular structure and fills the remaining space in the
computational domain. Unless stated, the values of the parameters used in the simulations
presented in the next sections are: the repulsion between the components of the system
is the same for every interaction pair i.e. βcell

cell = βcell
ecm = βecm

lumen = βcell
lumen = 1; cell-matrix

adhesion is greater than cell-cell adhesion, with ηcell
cell = 0.05 and ηcell

ecm = 0.10.

5.3.2 Cell Arrangement in a Tubular Structure

Starting from the initial configuration presented shown in Figure 5.5 we evolve the order
parameters in time, until a steady state configuration is achieved. In Figure 5.6 we can
see the organization of the tubular endothelial cell structure and the shape of the lumen,
in a steady state. Analyzing Figures 5.6A, C and D, we see that the lumen grows until
it reaches a stable radius. The pressure it exerts on the endothelial cells, flattens these
against the extracellular matrix that surrounds the vessel, until a balance between the
lumen pressure and the ECM repulsion is achieved. In Figure 5.6A, it is noticeable the
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Figure 5.6: Equilibrium structure of the lumen (A) and the endothelial cell tube (B). Two dimensional slice
of the tube cells (blue) and lumen (orange) taken at z = 10, with contour lines corresponding to φcell

i = 0.5
(C). Mean lumen radius as a function of time (D).

deformation of the lumen caused by the endothelial cells, which can be further seen in
Figure 5.6C, where we show a 2D cross section of the tubular structure.

The problem with the results presented in Figure 5.6 is visible when we look at the shape
of the endothelial cells that line the vessel. All cells present, approximately, the same
shape, which is not compatible to what is normally seen in reality, where there is a greater
variability in cell shape. To try and achieve a more realistic endothelial cell distribution,
we introduce a polarization field that models the effect of blood flow inside the vessel,
inducing cell rearrangement.

5.3.3 Endothelial Cell Polarization

In this section we present the effects of blood flow induced polarization on endothelial cell
organization in a vessel. To take into account the cell movement that comes from this
polarization, we introduce a velocity field that is parallel to the tubular structure and in
the opposite direction of blood flow. There are two components to this velocity field: one
has a translational effect represented by the velocity applied to the center of mass of each
cell, v, which, in this section has a value between v = 0.25 − 0.35 µm/s. Each cell will
be assigned a random value of v in this range. The inhomogeneity in the velocity that
depends on the elongation of the cell in the direction of the flow is determined by the
parameter δv. In Figure 5.7 we show how endothelial cells organize in a vessel, when they
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Figure 5.7: Endothelial cell organization in a vessel as a function of δv: 0.0 (A), 0.125 (B) and 0.275 µm/s
(C). Average cell elongation as a function of time for different values of δv (D).

are polarized. In Figure 5.7A, δv = 0, meaning the velocity of the cell does not depend on
how stretched it is and has a value v everywhere. However, due to the distinct values of v
randomly assigned to each cell, we can see that there is a larger variety in cell shapes when
compared to the ones presented in Figure 5.6. The differences in v between cells creates a
sort of friction between the cells’ interfaces, leading to deformation that lead to cell shape
changes. As we increase δv, in Figure 5.7B and C, we notice that cells become increasingly
more elongated since the difference in velocity between the top and bottom portions of
the cell are larger, creating a net elongation in the z-direction. To study how the value of
δv leads to different cell elongation, we plot the average cell elongation as a function of
time, for different values of δv. As expected, larger values of lead to higher values of cell
elongation. This higher variability in cell shape due to cell polarization gives more realistic
results for the shape of cells in a tubular structure.

5.3.4 Tip Cell Sprouting

Sprouting angiogenesis starts when an endothelial cell that lines a blood vessel starts
migrating towards tissue that is in hypoxia and, as a result, produces vascular growth
factor to stimulate the formation of new blood vessels to deliver oxygen. In this section we
simulate a sprouting event starting from an initial tubular vessel. At a certain point, one
of the cells described in the model will start migrating perpendicularly to the longitudinal
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axis of the vessel and will start degrading the ECM by releasing MMPs. Depending on
the velocity of the tip cell, the resulting sprout can have different lengths, and in extreme
cases, where cell-cell adhesion is not able to keep the stalk cells connected to the tip cell,
the leading cell can break away from the sprout and migrate alone. Here, we will explore
how tip cell velocity and the existence of stalk cell proliferation lead to different sprout
morphologies and the effect they have on the distance the tip cell migrates. In Figure 5.8A,

Figure 5.8: Sprout formation for different values of tip cell velocity: 0.01 (A,D), 0.1 (B,E) and 0.2 µm/s
(C,F). The sprouts shown in the top panel (A,B,C) where obtained without stalk cell proliferation. Cell
proliferation is used in (D,E,F). Tip cell migration distance as a function of time (in arbitrary units), for
different values of tip cell velocity with (dashed) and without (continuous) stalk cell proliferation (G).

B and C, we show how, in the absence of stalk-cell proliferation, a sprout is formed from
the initial vessel, depending on the tip cell velocity. In Figure 5.8A, |vtip| = 0.01 µm/s,
and we see the formation of a small protrusion from the vessel. Since tip cell velocity is
low, cell-cell adhesion is able to secure the tip cell and it has difficulty migrating through
the ECM, almost stop moving at about ≈ 20 µm from its initial position (Figure 5.8G).
As we increase the velocity to |vtip| = 0.1 µm/s, the tip cell migrates a bit further, and
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it is visible, in Figure 5.8B that its connection to the neighboring stalk cells is weaker.
Increasing the velocity further, we see that the tip cell completely detaches itself from the
sprout, leaving behind the stalk cells. Since the cell is no longer interacting with other
cells, it takes a more spherical shape, which minimizes the free energy of the interface.

To study how stalk cell proliferation can provide more support to the migrating tip cell,
we use the cell division algorithm as described previously. At regular intervals during the
simulation one cell (that is not the tip cell) can divide giving rise to two new ones. The cell
that will be selected to undergo division will be the one that has the most surface contact
with the tip cell. To measure cell-cell contact, for each cell, we calculate

σi =
∫
V
∇h(φi) ·∇h(φtip) dr .

The cell with the lowest value of σi (the integrand is negative, since the gradient of the order
parameter for different cells will point in opposite directions) will be chosen to undergo
cell division. Comparing the results in Figure 5.8 (D-F), with its counterparts with no
proliferation, we can see that the sprouts are thicker and longer. In these simulation, the
number of cells grows from 20 to 27 and due to the criterium used to choose which cell
will divide, the structure behind the tip cell is more robust, which allows the vessel to
elongate more without the tip cell breaking away. In Figure 5.8G, we can see how stalk cell
proliferation increases the distance traveled by the tip cell, for all values of cell velocity.
Comparing the dashed lines (corresponding to simulations with proliferation) with the
continuous line of the same color, we see the distance traveled is always higher when there
is stalk cell proliferation. Also, when |vtip| = 0.2 µm/s, for the system where the number
of cells is constant, the tip cell breaks away from the sprout, which does not happen when
stalk cells divide.

5.4 Conclusions and Future Work

In this chapter we have presented a multi-phase field model to study the behavior of
endothelial cells in a vessel structure. We have shown that, in order to obtain a structure
where cells have a realistic shape, we must take into account the polarization induced
on them by the blood flow. Furthermore, we have shown that this model is capable
of simulating the early steps of sprouting angiogenesis, when combined with stalk cell
proliferation and the degradation of the extracellular matrix by MMPs. For a simple
tubular structure, we have also achieved the formation of a stable lumen, which is an
important step towards being able to study, for example, splitting angiogenesis, using
this model. In this work, we have taken several steps into being able to simulate vessel
regression, which was the motivation for this study. Some key aspects that are missing
from the model are: refinement of lumen dynamics, especially during sprouting events;
better capacity to simulate a larger number of cells in the system; optimization of the code
used for the simulations and the ability to run it using multi-core capabilities.
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One of the advantages of this multi-phase field model is its versatility, as it can be adapted
to model different biological scenarios such as tumor growth, endothelial to mesenchymal
transitions (EMTs) and the formation of metastasis. As such, the theoretical framework
used in this model can be translated into a software library that could allow users to apply
a multi-phase field approach to problems of their interest.
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Chapter 6

Mechanical Model of Sprouting
Angiogenesis

In this chapter a phase field model coupled with elasticity is used to study the process of
sprouting angiogenesis. Studying how the mechanical properties of the extracellular matrix
and the traction force exerted by the tip cells during migration lead to the formation of vessel
networks with different morphologies is the main focus of this work. The experimental work
presented in this chapter was performed at Coimbra Institute for Clinical and Biomedical
Research (iCBR), that is a part of the Faculty of Medicine of the University of Coimbra.

6.1 Motivation

One of the most important processes in the angiogenic process is cell migration. The
movement of the tip cell through the extracellular matrix is guided by the gradient of
growth factors released by cells in hypoxia. This is only possible due to the existence of
mechanical interactions, notably cell-cell adhesion and traction forces exerted by the tip
cells, and as such it is expected that changing the mechanical properties of the agents
involved in cell migration will lead to changes in the way vessel networks are formed.

The extracellular matrix is a fibrous three dimensional network of macromolecules and
proteins, such as collagen and elastin, its ridigity spanning different orders of magnitude,
vary for different types of tissue. Apart from physiological differences, certain pathologies
can also lead to changes in the ECM composition resulting in deficient tissue connectivity
and disrupting the dynamics of blood vessel networks that are established in that tissue.
Besides the effect it has on angiogenesis, the mechanical properties of the ECM have also
been shown to have an effect in gene expression and cell differentiation [104].

6.2 Background

The use of phase field models to describe sprouting angiogenesis were first introduced
in Milde et al. (2008) [105] and in Travasso et al. (2011) to study the effect of tip
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cell chemotaxis and stalk cell proliferation on the growth of vascular networks in two
dimensions [29]. The model of Travasso et al. (2011) was also used to study the delivery of
anti-angiogenic drugs to tumour vascular networks using nano particles [106]. Its extension
to three dimensions was developed to study the effects of blood flow on vessel network
morphology and on the formation of anastomoses [30, 107].

To understand how the mechanical properties of the extracellular matrix influence the
formation of vessel networks and the migration of tip cells, we developed a phase field
model that takes into account the elasticity of both the endothelial cells and the ECM.
The work presented in this chapter is based on the model described in Santos-Oliveira et al.
(2015) and on the dissertation written by myself for the conclusion of my master’s degree
[108, 109].

6.3 Experimental Work

Aortic ring assays have been one of the most popular experimental techniques to study
angiogenesis. Its versatility allows studying angiogenesis, as well as other physiological
processes associated with it, such as endothelial cell proliferation and migration, microvessel
branching, and the effect of pro and anti-angiogenic drugs on those same processes. The
collagen level of the substrate where the aortic ring is placed can also be varied to emulate
ECMs with different mechanical properties.

The first step in a standard aortic ring assay protocol is the dissection of the aorta of the
animal. For angiogenesis studies, aortas removed from mice are the most popular choice.
After undergoing a cleaning process, the aorta is cut into rings and the resulting samples
undergo an optional, but recommended, starvation process where they are deprived of
growth factors. This is done to reset the endothelial cells sensitivity to the presence of
growth factors, allowing an unbiased migratory response when placed in culture. After
starvation, the aortic ring is placed in a matrix that will serve as substrate for cell migration.
Usual choices for matrix composition are collagen, fibrin and Matrigel. Finally, a cocktail of
growth factors, such as VEGF, are introduced in the culture to promote formation of new
micro-vessels from the aorta. During and after, this process, the culture is observed using
imaging techniques and in the end, the resulting images are analyzed to measure several
observables such as sprout number and length, vessel area and endothelial cell migration
distance. In Figure 6.1A we can see, on the left, a microscopy image taken from the aortic
ring assay. On the right, we zoom into an area close to the exterior aorta wall where a
new micro vasculature is forming and the activity of many endothelial cells is noticeable.
The aorta slices in these experiments are very thin, with a thickness of approximately
0.5 mm, when compared to the radius of the Petri dish (35 mm). In Figure 6.1B the
migration distance of endothelial cells is measured for five different values of collagen
concentration between 0.5− 2.5 mg/ml. As the collagen concentration increases, we see
that endothelial cells are able to migrate further and vessels start getting longer. However,
when the collagen concentration reaches 1.5 mg/ml, the migration distance reaches its
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Figure 6.1: Image taken from the aortic ring assay using confocal microscopy. For better visualization, we
zoom in a region near the aortic wall (A). Endothelial cell migration distance (B) and sprout length (C) as
a function of the concentration of collagen used for the extracellular matrix, affecting the ECM rigidity.

maximum value, and for more rigid matrices, cells migrate less and vessels shorten. This
non-monotonic dependence of cell migration on the rigidity of the matrix, suggests that the
distance traveled by the tip cells depends on the interplay between two or more physical
processes. In this work, we explore if varying ECM rigidity and the forces exerted by cells
can replicate the experimental observations presented.

6.4 Model Description

In this model, a single order parameter φ(r) is used to describe the interface between
endothelial cells and the extracellular matrix. Since we will not be modeling each endothelial
cell individually, the value of φ(r) is an indicator as to whether a certain point in space is
being occupied by endothelial cells, corresponding to φ(r) ≈ 1, while in the absence of cells
we assume that point is a part of the extracellular matrix and in that case, φ(r) ≈ −1.
The choice of values that the order parameter takes in each phase can be different leading
to differences in the form of the free energy functional. The choice of φ = ±1 is used on
Santos-Oliveira et al.(2015) while in other models, φ = 0 and φ = 1 are used to identify
each phase [108] (see also Chapter 5). All the relevant properties of the system, mainly the
free energy that will drive the dynamics of the interface will be written as function of this
order parameter.
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6.4.1 Free Energy Functional

The free energy functional used in this phase field model is given by

F
[
φ,u,Fcell

]
= FPF[φ] + F ela[φ,u] + F cell[φ,u,Fcell]

=
∫
V

[
ρφ

(
f0(φ) + 1

2ε
2|∇φ|2

)
+ 1

2σijεij − F
cell
i ui

]
dV

(6.1)

where FPF is the Ginzburg-Landau free energy, F ela is the elastic energy of the system,
function of the displacement u, and F cell is the energy associated with the forces, Fcell,
exerted by the cells on the ECM (tip cell traction force) and the adhesion force that assures
there is cohesion of the endothelial tissue.

The first term
FPF [φ] = ρφ

∫
V

[
f0(φ) + 1

2ε
2|∇φ|2

]
dV . (6.2)

dictates the values of φ inside each domain. The parameter ρφ gives the scale of the
interface energy in the system. Since we want those values to be φ ≈ ±1 the natural choice
for f0 is

f0(φ) = −1
2aφ

2 + 1
4φ

4

where a is a parameter whose value will be set further on in the model. The term
proportional to |∇φ|2 serves as an energy penalty to avoid the formation of a sharp
interface, which means that rapid variations of φ will lead to an increase of the global
energy and as such, the formation of a smooth, continuous interface of width ε is favored.

The elastic free energy F ela [φ,u] is given by

F ela[φ,u] =
∫
V

1
2σijεij dV (6.3)

where σij and εij correspond to the components of the stress and strain tensors, respectively,
which in turn are functions of the displacement field u. The components of the stress tensor
are a function of the components of the strain tensor given by the constitutive relation
chosen for the material. As tissue and cells may have different elastic moduli, the elastic
free energy is, in general, a function of φ as well. An extended analysis of this topic is
given in the next section.

Finally, F cell is associated to the energy accumulated by the forces applied by endothelial
cells on each other and on the extracellular matrix, and is given by

F cell
[
φ, ui, F

cell
i

]
= −

∫
V
F cell
i ui dV . (6.4)

In this model we consider that endothelial cells exert two distinct forces: a traction force
applied by the tip cells that allows them to migrate, and a cell-cell adhesion force. Thus,
the total force exerted by cells is the sum of those two components, such that

Fcell = Fadh + Ftip . (6.5)
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where the adhesion force between endothelial cells is given by

Fadh = α∇φ . (6.6)

and points towards the interior of the clusters of endothelial cells, where φ ≈ +1, and
its strength is controlled by the parameter α. As will be shown in a further section, this
force is what couples the phase field model for the description of the interface between the
domains to the mechanical model used to describe the deformations in the elastic medium.
Ftip models the traction forces that endothelial cells with a tip cell phenotype exert on the
ECM. This force is calculated in an ellipse-shaped region centered at the tip cell position
whose major axis is aligned with the direction of the gradient of VEGF that is sensed by
the cell, and it is responsible for the migratory behavior of tip cells. Details about how
this force is calculated will be discussed in a dedicated section. The way these forces are
implemented in the model differs slightly from [108] since in this work we describe the
forces exerted by cells as a more general vector field Fcell while in [108], the force was
constrained to a curl-free vector i.e. Fcell = −∇χcell.

6.4.2 Calculating the displacement field

Our aim with this model is to study how the mechanical properties of the extracellular
matrix influence the sprouting of endothelial cells and as such it makes sense to describe
the system using elasticity theory. We start by assuming that our system can be described
using the linear approximation of elasticity theory and that the media is isotropic. In this
way, the components of the stress tensor, σij can be written in terms of the components of
the strain tensor as

σij = K(φ)δijεkk + 2µ(φ)
(
εij −

δij
D
εkk

)
(6.7)

where D represents the dimensionality of the system, while K and µ are, respectively, the
bulk modulus and rigidity of the system. K is related to the Lamé coefficient, λ, since

K = λ+ 2µ
D

(6.8)

The later are both functions of φ meaning they have distinct values on the ECM (φ ≈ −1)
and inside the endothelial tissue (φ ≈ +1) and so the system is generally elastically
inhomogeneous. Their values are given by

µ(φ) = µ0 − µ1h(φ)

K(φ) = K0 −K1h(φ)
(6.9)

where µ0, µ1, K0 and K1 are constants and the function h(φ) is an interpolation function
given by

h(φ) = 1
2φ(3− φ2) . (6.10)

and represented in Figure 6.2.
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Figure 6.2: Graphical representation of the interpolating functions h(φ) = 1
2φ(3−φ2) and h′(φ) = 3

2 (1−φ2)

From the definition of µ(φ) and K(φ) we can establish a relation between µ0, µ1, K0

and K1 and the bulk and shear modulus of both phases (assuming µecm = µ(−1) and
µec = µ(+1), and the same for the bulk modulus):

µ0 = µecm + µec
2

K0 = Kecm +Kec
2

µ1 = µecm − µec
2

K1 = Kecm −Kec
2 .

(6.11)

From the above relations we can see that the average shear and bulk modulus of the system
are given by µ0 and K0, respectively, while 2µ1 and 2K1 represent the difference in value
of those properties between the two media and are a measure of the inhomogeneity in the
mechanical properties of the system.

To calculate the displacement field as a function of the mechanical properties of the system
and the forces applied by the cells, we assume that at each timestep the system reaches
mechanical equilibrium implying that the effect of external forces are instantly propagated
to every point in the material. This assumption is valid for the case in study since the
relaxation time of the elastic medium is negligible compared to the time scale at which cell
movement occurs. In a continuous medium, mechanical equilibrium requires that at every
point in the domain, the following condition must hold

∂jσij + F cell
i = 0 .
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Using the constitutive relation 6.7 and the definition of the elastic parameters µ(φ) and
K(φ) the equilibrium equations are written as(

K0 −
2µ0
D

)
∂iεjj + 2µ0∂jεij + F cell

i +

−K1∂i(hεll)− µ1

[
2∂j(hεij)−

2
D
∂i(hεll)

]
= 0 .

which is a system of non-linear partial differential equations. It is, however, possible to
simplify these equations, under certain conditions, especially since they can be expressed
as the sum of a linear and a nonlinear term. In the linear elasticity regime, the strain
tensor components are calculated from the displacement field using

εij = 1
2 (∂iuj + ∂jui)

and plugging this definition into the linear part of the previous equation we get

(
K0 −

2µ0
D

+ µ0

)
∂ijuj + µ0∂jjui + F cell

i +

−K1∂i(hεll)− µ1

[
2∂j(hεij)−

2
D
∂i(hεll)

]
= 0 .

We can define L′0 = K0 − 2µ0
D + µ0 and in the case where both K1 � L′0 and µ1 � L′0 i.e.

if the inhomogeneity in K and µ between the two media is very small, we can neglect the
nonlinear terms and the condition for mechanical equilibrium becomes a linear PDE with
an analytical solution

L′0∂iju
0
j + µ0∂jju

0
i + F cell

i = 0 (6.12)

where u0
i are the components of the displacement field in the linear approximation. In

Fourier space we can write the previous equation using the Green tensor for linear, isotropic
materials, G−1(k), whose components are given by

G−1
ij (k) = 1

µ0|k|2

(
δij −

L0 − µ0
L0

kikj

|k|2

)
, (6.13)

as
û0
i (k) = G−1

ij (k)F̂ cell
j (k) , (6.14)

where L0 = L′0 +µ0 Since the use of the discrete Fourier representation of functions implies
that the function is periodic, this solution is valid for periodic systems. Looking at the
Green function we see it is not well defined when k = 0 so for the system to have a unique
solution we impose that û0

i (k = 0) = 0. If we look at the definition of the Fourier transform
of û0

i

û0
j (k) =

∫
u0
j (r)e−ik·r dV ,
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imposing û0
i (k = 0) = 0 means that

u0
i (k = 0) =

∫
u0
i (r) dV = 0

i.e. the average of u0
i in the domain is zero. Performing the inverse transform we get

the displacement field everywhere in the domain and we can calculate the strain tensor
components εij .

6.4.3 Functional Derivative of the Free Energy

The temporal evolution of the order parameter field φ(r, t) follows a minimization principle
of the free energy functional of the system. As such, calculating the functional derivative
of the free energy with respect to φ is necessary. Since the functional derivative of a sum
of functionals is the sum of the derivatives, we can calculate the functional derivative of
each term in F [φ, ui, F cell

i ] separately. Starting with FPF[φ],

FPF[φ+ δφ] =
∫
ρφ

[
−a(φ+ δφ)2

2 + (φ+ δφ)4

4 + ε2

2 (∇φ+∇δφ)2
]

dV

and making use of the binomial theorem expansion for (x+ y)n and keeping only terms up
to first order in δφ we get

FPF[φ+ δφ] =
∫
ρφ

[
−aφ

2 + 2φδφ
2 + (φ4 + 4φ3δφ)

4 +

+ ε2

2 (∇φ ·∇φ+ 2∇φ ·∇δφ)
]

dV ,

where we can recognize the terms of FPF[φ]. Considering that, by definition, δF =
F [g + δg]− F [g], we rewrite the previous expression as

δFPF =
∫
ρφ(−aφ+ φ3)δφdV + ρφε

2
∫
∂iφ∂iδφdV .

The first integral in δFPF is already in the form suitable for the calculation of the functional
derivative using the definition. The second integral can be rewritten by using integration
by parts i.e. using the product rule of differentiation∫

∂iφ∂iδφdV =
∫
∂i (∂iφδφ) dV −

∫
∂iiφδφ dV .

Using Gauss’s theorem we can turn the first integral over the volume into a surface integral
over its elements oriented with an Si normal vector∫

∂iφ∂iδφdV =
∫
S

(∂iφδφ) dSi −
∫
∂iiφδφ dV .

and since we are assuming our system has either periodic or zero flux boundary conditions
at the surface of the domain, all surface integrals will be zero since there will always be
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a zero net flux. Throughout the description of this model, this result will be used often.
Finally, the functional derivative of FPF when varying φ is

δFPF

δφ
= ρφ

(
−aφ+ φ3 − ε2∇2φ

)
. (6.15)

The elastic free energy density is given by

f ela(φ, ui) = 1
2σijεij (6.16)

and using zeroth order approximation for the displacement field, u0
i calculated in the

previous section, we can write the energy density as

f ela(φ, ui) = 1
2

[
K(φ)δijε0

ll + 2µ(φ)
(
ε0
ij −

1
D
δijε

0
ll

)]
ε0
ij

= 1
2

(
K(φ)− 2µ(φ)

D

)
ε0
iiε

0
jj + µ(φ)ε0

ijε
0
ij .

where ε0
ij are the components of the strain tensor calculated using u0

i as 2ε0
ij = ∂iu

0
j + ∂ju

0
i .

In order to calculate the variation of the elastic energy functional with respect to changes
in φ we have to calculate δε0

ij(δφ) as well as δF cell
i (δφ). This last term is very simple to

calculate since the only term in the force field that depends on the order parameter is the
adhesion force

δF cell
i = δF adh

i = α∂iδφ . (6.17)

To calculate δε0
ij we need to calculate δu0

i which can be done by using the results in
6.13-6.14. In the Fourier domain, δû0

i (k) is given by

δû0
i (k) = 1

µ0|k|2

(
δij −

L0 − µ0
L0

kikj

|k|2

)
δF̂ cell

i (k)

= 1
µ0|k|2

(
δij −

L0 − µ0
L0

kikj

|k|2

)
αikjδφ̂(k)

= iαki

µ0|k|2
δφ̂(k)

(
1− L0 − µ0

L0

)
= iαki

L0|k|2
δφ̂(k) ,

(6.18)

which in real space translates into

δu0
i = − α

L0
∆−1∂iδφ , (6.19)

where the inverse laplacian operator ∆−1 is defined as

∆−1(∇2f) = f . (6.20)
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Its definition in Fourier space is simply the product of a function of f(k) and −|k|−2.
Calculating the variation of the strain tensor components is now straightforward

δε0
ij = − α

L0
∆−1∂ijδφ . (6.21)

Another useful result is the variation of the trace of ε0

δε0
ii = − α

L0
∆−1∂iiδφ

= − α

L0
δφ .

(6.22)

Now that we have calculated the variation of the components of the strain tensor, εij , we
can calculate the variation of the elastic free energy

δF ela =
∫
δf ela dV

=
∫ [1

2

(
δK − 2δµ

D

)
ε0
iiε

0
jj + δµε0

ijε
0
ij

+
(
K − 2µ

D

)
ε0
iiδε

0
jj + 2µε0

ijδε
0
ij

]
dV .

(6.23)

The variations δµ and δK are given, respectively, by −µ1h
′(φ)δφ and −K1h

′(φ)δφ. Using
the quantities calculated above, in the previous expression we have

δF ela =
∫ [
−1

2

(
K1 −

2µ1
D

)
h′(φ)ε0

iiε
0
jj − µ1h

′(φ)ε0
ijε

0
ij

]
δφdV

−
∫ [

α

L0

(
K − 2µ

D

)
ε0
iiδφ+ 2µα

L0
∆−1

[
∂ij
(
µε0

ij

)
δφ
]]

dV .

(6.24)

By repetitively using integration by parts and considering that

∆−1∂ijε
0
ij = ∆−1∂ii

(
∂ju

0
j

)
= ε0

ii ,

then the functional derivative of the elastic free energy is given by

δF ela

δφ
=− 1

2

(
K1 −

2µ1
D

)
h′(φ)ε0

iiε
0
jj − µ1h

′(φ)ε0
ijε

0
ij

+ α

L0

(
K1 −

2µ1
D

)
h(φ)ε0

ii − αε0
ii

+ 2αµ1
D

∆−1∂ij
[
h(φ)ε0

ij

]
.

(6.25)

Finally, the functional derivative of F cell is given by

δF cell

δφ
= αε0

ii −
α2

L0
φ− α

L0
∆−1∂iF

tip
i , (6.26)
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allowing us to write the full expression for the functional derivative of the global free energy
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(6.27)

Redefining a such that

a+ α2

ρφL0
= 1 , (6.28)

the expression for the derivative is simplified and we are left with
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(6.29)

6.4.4 Cahn–Hilliard Equation

The temporal dynamics of the interface associated with the order parameter φ(r, t) used
in this model is a variation of the Cahn–Hilliard equation typical of a phase field model B.
In this case, the equation for the dynamics will be of the form

∂φ

∂t
=∇ ·

[
M(φ, r, t)∇δF

δφ

]
+ p(φ, ∂iui) , (6.30)

where p(φ, ∂iui) is a non-local function that models the proliferation of endothelial stalk
cells. The presence of this function in the CH equation does not allow us to write the
equation as a conservation law, meaning that the total value of φ in the domain will not
be constant and will increase with time, since by definition p(φ, ∂iui) > 0. In this work we
will consider the case where M(φ, r, t) is constant at every point and does not change in
time, so that equation 6.30 can be simplified to

∂φ

∂t
= M∇2 δF

δφ
+ p(φ, ∂iui) . (6.31)

Numerical Solution

To solve equation 6.31, our only solution is to resort to numerical methods since an
analytical solution for such a complex model does not exist. To obtain the finite difference
scheme used to obtain the numerical solution we split the terms in equation 6.31 in four
different terms:

∂φ

∂t
= −Mρφε

2∇4φ+M∇2fA +MfB + p . (6.32)
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The first term comes from applying the Laplacian operator to the interface energy that
already contained ∇2φ. Then we divide the rest of the free energy functional derivative
into fA where we include all the terms that are not under the inverse Laplacian, while
in fB we include those terms where the inverse Laplacian is canceled by the Laplacian
coming from the Model B equation. Lastly we keep the proliferation term as is. Applying
a Fourier Transform to the previous equation we are left with

∂φ̂(k)
∂t

= −Mρφε
2|k|4φ̂(k)− |k|2Mf̂A(k) +Mf̂B(k) + p̂(k) . (6.33)

The term containing ∇4φ is the most challenging to treat numerically. Since it leads to a
term, in reciprocal space, proportional to |k|4, it can amplify numerical errors especially
at high frequencies. To stabilize the behavior of this term during calculations, we use
a semi-implicit time discretization where that term is treated implicitly and the rest of
the terms are used in their explicit form. By using a Forward Time scheme for the time
derivative, we arrive at the discretization of equation 6.32:

φ̂t+1(k)− φ̂t(k)
∆t = −Mρφε

2|k|4φ̂t+1(k)−M |k|2f̂ tA(k) +Mf̂ tB(k) + p̂t(k)

⇔ φ̂t+1(k) = φ̂t(k)−∆tM |k|2f̂ tA(k) + ∆tMf̂ tB(k) + ∆tp̂t(k)
1 + ∆tMρφε2|k|4

(6.34)

In general, fA, fB and p are nonlinear functions, and as such we apply a semi-spectral
approach for their calculation. The terms containing derivatives of linear terms can be
calculated directly in Fourier space. For the nonlinear terms, we do the calculation in real
space using finite differences and then transform the result to k-space.

6.4.5 VEGF Dynamics

To consider the effect of chemotaxis on the movement of tip cells and, consequently, on the
formation of new vessels, we model the existence of a VEGF field in the system. In this
work, we consider only one type of diffusible VEGF, although in other works the existence
of different isoforms of VEGF (diffusible and non-diffusible) has been considered [29, 106].
The dynamics of endothelial growth factor is modeled using a diffusion equation

∂V

∂t
= DV∇2V −KV (φ)V , (6.35)

where DV is the diffusion rate of VEGF and KV (φ) is the rate of consumption of the
protein by endothelial cells, which depends on φ. As such, the consumption rate of VEGF
is given by

KV (φ) = kv
h(φ) + 1

2 H(φ) , (6.36)

where kv is the constant rate of consumption of VEGF by endothelial cells and H(h(φ)) is
the Heaviside step function, that guarantees that the VEGF sink term is only non-zero in
regions with endothelial cells.
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We can estimate the diffusion distance of VEGF as a function of the parameters DV and
kV by finding the stationary state of a one dimensional version of equation 6.35. This
equation is

DV
d2V

dx2 − kV V = 0 . (6.37)

The solution to this equation that has physical significance is

V (x) = V0 exp
(
− x

λV

)
, (6.38)

where

λV =
√
DV

kV
. (6.39)

Since the argument of the exponential function must be dimensionless, λV has units of
distance. Physically, λV represents the average diffusion distance of VEGF.

Equation 6.35 is solved numerically using a semi-implicit spectral method with periodic
boundary conditions. Applying a Fourier transform to the equation we get

∂V̂ (k)
∂t

= −DV |k|2V̂ (k)−F {KV (φ)V } (k) . (6.40)

Applying backward finite differences in time on the linear terms and explicit discretization
on the non linear consumption term, we get

V̂ t+1(k)− V̂ t(k)
∆t = −DV |k|2V̂ t+1(k)−F

{
KV (φ)V t

}
(k) (6.41)

Rearranging the terms we get

V̂ t+1(k) = V̂ t(k)−∆tF
{
KV (φ)V t

}
(k)

1 +DV ∆t|k|2
. (6.42)

By using a semi implicit discretization, we can use larger values for the timestep ∆t, which,
when using a fully explicit method like Forward Time Centered Space (FTCS) is limited by
the Courant-Friedrichs-Lewy constraint resulting from the discretization of the Laplacian
operator.

6.4.6 Tip Cell Force

The traction force field applied by an endothelial cell on a substrate has been studied
by several authors using techniques like Traction Force Microscopy. Lemmon and Romer
created a predictive model of this force based on experimental measurements where they
observed that the traction force exerted by a cell points towards its center and its intensity
increases linearly with the distance between the points where the force is calculated and
the cell center [110]. The Lemmon-Romer model for the traction force has been adopted by
other authors who have developed computational models of cell migration [111][104][112].
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Here we assume that each tip cell is represented by the portion of the computational
domain bounded by an ellipsoid centered at the interface between the endothelial tissue
and the ECM. The traction force Ftip at each point inside the ellipsoidal region Ωtip is
given by

Ftip =

F0
rtip−r
Rmax

, r ∈ Ωtip

0, r /∈ Ωtip ,
(6.43)

where rtip and r are, respectively, the position of the ellipsoid’s center and the position
of the point of the domain where the force is calculated. Rmax is the length of the major
semiaxis of the ellipsoid such that the magnitude of the traction force lies between 0 (when
r = rtip) and F0 (when ‖r − rtip‖ = Rmax). The expression for the tip cell force in 6.43
follows the Lemmon-Romer model for its magnitude increases linearly with the distance to
the center of the cell and points towards it. The domain Ωtip is defined by

(
xtip − x
Rx

)2
+
(
ytip − y
Ry

)2

+
(
ztip − z
Rz

)2
< 1 (6.44)

in the 3D model while in the 2D case we assume ztip = z.

Figure 6.3: Tip cell traction force vector field. The tip cell boundary is denoted by the black line and the
direction of the force is indicated by the arrows. The grayscale of the arrows indicates the intensity of the
force at that point.

Since we want to simulate the chemotactic response of the tip cells to the vascular growth
factor, the applied traction force must be aligned with the gradient of VEGF. This means
that we must redefine Ωtip to account for ellipsoids with a major axis that is not aligned
with the reference frame of the computational domain. This operation is trivial in the two
dimensional case: Let v̂ = vxêx + vy êy be the unit vector that points in the direction of
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the VEGF gradient. We can relate the components of v̂ with the rotation angle θ

vx = cos θ

vy = sin θ

and assemble the rotation matrix that transforms the vector coordinates from the domain’s
reference frame to the frame where the major axis of the ellipse is aligned with v̂

R =
(

cos θ sin θ
− sin θ cos θ

)
. (6.45)

Defining ∆x = xtip − x and ∆y = ytip − y, we can write the equation that defines the
rotated ellipse using (

∆x′

∆y′

)
= R

(
∆x
∆y

)
,

i.e. (∆x′
Rx

)2
+
(

∆y′
Ry

)2

< 1 . (6.46)

Using this expression we can check if a points is inside the rotated ellipse aligned with the
desired direction of migration.

In three dimensions, the process of finding the equation for the rotated ellipsoid is more
complex. To perform the rotation we make use of the Rodrigues formula for 3D rotations
(derived in Chapter 2). Like in the 2D case we wish to find the transformation that aligns
an ellipsoid’s major axis with the direction of increasing VEGF concentration. Suppose
p̂ represents the orientation of the ellipsoid’s major axis and v̂ is the unit vector in the
direction of the VEGF gradient. To define the rotation we need to provide an axis around
which the rotation will happen, as well as an angle. In this case the obvious choice for
rotation axis is a vector that is perpendicular to both p̂ and v̂ i.e.

ω = p̂× v̂ (6.47)

To get the angle of rotation we use the relation between the dot and cross product of two
vectors and, respectively, the cosine and sine of that angle

sin θ = |p̂× v̂| = |ω|

cos θ = |p̂ · v̂| ,
(6.48)

which can be used in the Rodrigues formula, along with the skew-symmetric matrix N(ω̂)
to obtain the rotation matrix

R = I + sin θ N(ω̂) + (1− cos θ)N2(ω̂) . (6.49)
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6.4.7 Stalk Cell Proliferation

Although in this model we use a conservative phase field model B dynamics, we wish to
model endothelial cell proliferation. To this end, we introduce the term p(φ,u, V ) as a
source term in the Cahn-Hilliard equation. In [108], the dependence of sprout elongation
on the model chosen for the function p(φ,u, V ) was studied in great detail. In that study,
it was shown that, in order to better replicate the results obtained from experiments,
proliferation must be a function of the concentration of VEGF but its occurence is limited
to regions where the endothelial tissue is being stretched. Since the focus of this work is
on the influence of mechanical properties of the tissue and not on how to model stalk cell
proliferation, we will model the proliferation term as in [108].

To calculate the proliferation term, we suppose that every point in space that belongs to
the endothelial tissue (φ ≈ +1) is the center of a round cell with a certain radius, rprol.
Inside that region we calculate

p(φ,u, V ) = 1∫
H(h(φ)) dr

∫
P(V )H(h(φ))H (L0∇ · u + α) dr . (6.50)

The calculation of p can be interpreted as the integral of P(V ) calculated inside the area
of the cell centered at a certain point, normalized to the number of points in that same
area where h(φ) > 0. The presence of the term H (L0∇ · u + α) serves to restrict the
contribution to the integral of points that are being stretched i.e., it only counts points
where ∇ · u = tr(ε) > −α/L0, where −α/L0 is the value of ∇ · u of the relaxed endothelial
tissue, where there is no traction force being applied. Typically this means that the only
zones that will be able to proliferate are the ones directly behind an active tip cell, where
the tissue is being deformed the most.

Figure 6.4: Graphical representation of P(V ). The point where the value of P saturates to a constant
value, 2Pmax is highlighted. For this representation, Vmax = Pmax = 0.5
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The dependence of the proliferative term on the amount of VEGF in the tissue is included
in the function P(V ). This function includes two conditions to the value of proliferation
at each point: first, the amount of proliferation depends linearly on the concentration
of VEGF at that point, until a certain level of concentration Vmax is reached, where the
proliferation reaches a maximum, constant value, Pmax. The expression for P(V ) is given
by

P(V ) =


2PmaxV
Vmax

V < Vmax

2Pmax V > Vmax
(6.51)

as represented in Figure 6.4.

6.4.8 Notch Mechanism

The role of the Delta-Notch signaling pathway is essential in the formation of vessel networks
and as such, to obtain a realistic computational model of angiogenesis, this mechanism
and its consequences must be considered.

As described in the previous sections, tip cells are modeled as traction force fields centered
at the interface, bounded by an ellipse (ellipsoid in 3D). Consequently, before adding a
new tip cell, the set of all points in the grid that are at the interface is determined. In
order to do that we first convert the order parameter from a continuous representation to
a discrete binary map, where

φbin(x, y, z) =

1 h(φ(x, y, z)) > 0

0 h(φ(x, y, z)) ≤ 0
. (6.52)

Afterwards, to determine if a point belongs to the boundary, we calculate the sum of φbin

over the neighborhood, N , of that same point, given by

s(x, y, z) =
∑
N
φbin(x, y, z)

where the neighborhood considered can include first and second neighbors called, respec-
tively, the Von Neumann or Moore neighborhood. In the case where the simpler Von
Neumann neighborhood is considered, a point is counted as a part of the boundary if
φbin(x, y, z) = 1 and if s(x, y, z) 6= n(N ), where n(N ) is the cardinality, or, number of
elements set N . In two dimensions, the cardinality of the set containing all points in the
Von Neumann neighborhood is equal to 4, while in three dimensional systems it is equal to
6.

Let B be the set of all points that are a part of the interface between the endothelial tissue
and the ECM. Also, let d(b1, b2) be a function that for any two elements of B, b1 and
b2 returns the Euclidean distance d between b1 and b2. At a certain point in time, a tip
cell can be added to the system at point tnew ∈ B if for each position ti of every tip cell
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Figure 6.5: Example of tip (red) and stalk (blue) patterns that are and are not allowed, considering the
Delta-Notch mechanism (A). Two tip cells can be close if they belong to different clusters , and can form
anastomosis (B). Graphical representation of the distance between two tip cells (green crosses) is calculated
along the vessel interface (C).

currently in the simulation, the condition

d(ti, tnew) > 4Rnotch (6.53)

is verified. Rnotch defines the minimum distance between two cells, that allows them to
both have a tip cell phenotype. The distance of 4Rnotch means that for two cells, aligned
on an axis, to be tip cells, there must be at least one other cell between them, as depicted
in Figure 6.5A.

The Delta-Notch pathway not only controls the appearance of new tip cells, but it is also
responsible for reversing the tip cell phenotype if two tip cells get too close to each other.
In this model, the method for removing a tip cell from the system is more complex than the
one for adding new tip cells, as described above. The difference stems from the fact that
Delta-Notch signaling is contact-dependent. This means that if two tip cells are very close
to each other, but they do not belong to the same endothelial cell cluster, they can both
maintain their phenotype. However, if two sprouts meet in space and form a connection
(Figure 6.5B) called an anastomosis, one of the tip cell leaders of those two sprouts must
be removed.

Determining the distance between two tip cells located at t1 and t2 (green crosses in Figure
6.5C, while at the same time checking if the two cells belong to the same cluster, means
finding a path between the two positions that only contains points that belong to B. If
lpath < 4Rnotch, where lpath is the length of the shortest path found, one of the tip cells
must revert its phenotype to stalk cell. To find the shortest path, we describe the interface
of the system as a graph, where each node corresponds to a point that belongs to B. An
edge connects two nodes if they are adjacent and its value is equal to one (considering a
Von Neumann neighborhood). We define a map δ(p) where to each node, p we assign the
distance to one of the tip cells, measured along the interface. Performing a Breadth First
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Search on the graph is an iterative process where we start from one of the tip cell nodes
and set δ(t1) = 0, while all other nodes have a value of δ(p) =∞ (in practice, a very large
number). Then, starting from t1 we process its neighbors and their value of δ in the next
iteration will be

δ(p)t+1 = min
(
δ(p)t, δ(t1)t + 1

)
. (6.54)

In the next step, all the nodes visited in the previous one will be analyzed, and after some
iterations, the value of δ(t2) will be the distance of tip cell t1 to tip cell at t2 i.e. lpath. If
lpath < 4Rnotch, either t1 or t2 must loose its tip cell phenotype. In this work, one of the
two is randomly selected for removal.

6.5 Results and Discussion

6.5.1 Single Tip Cell Migration

Before simulating very complex systems with many sprouting events, it is appropriate to
look at how the migration of a single tip cell is dependent on the mechanical properties
of the ECM and on the intensity of the traction force the cell exerts on the matrix. To
this end we simulate a single tip cell that sprouts from an initial and stable vessel, located
on the left side of the domain, and migrates in the direction of the VEGF gradient that,
in this case, points from left to right, perpendicularly to the vessel. The simulations are
ran for the same number of timesteps, Nt = 2× 104, in a rectangular box of dimensions
Lx × Ly = 64 × 512, where an initial vessel of width w = 30 µm. In this simulation
we assume there is no stalk cell proliferation, so that we can focus on the effects of the
different mechanical properties of the ECM on the result. The adhesion force parameter
is set to α = 470 Pa and the bulk modulus is set such that it is the same in both phases
(K1 = 0). The only tip cell in the system is placed in the middle of the main vessel at
(x, y) = (w, Ly/2). In Figure 6.6, we show the results of simulating a single sprouting event
and where the vessel structure and length can be seen when we vary the ECM rigidity and
the maximum value of the traction force exerted by the tip cell on the surrounding tissue.
The ECM rigidity varies column-wise, increasing from left to right, from 90 to 180 Pa while
the traction forces increases from 47 to 70 Pa, top to bottom, row-wise. From Figure 6.6
we can directly see that for different combinations of ECM rigidity and tip cell traction
force values, there are two things that can happen: either there is the formation of a sprout
that extends reaching a certain length or the tip cell, instead of forming a sprout, breaks
away from the main vessel and migrates alone in the direction of the VEGF gradient.

In the case where the ECM has low rigidity, even for low values of tip cell traction force,
the matrix is easily deformed, facilitating the movement of the tip cell in the direction
of the VEGF gradient. Depending on the value of cell-cell adhesion, this can lead to the
movement of stalk cells not being able to keep up with the tip cell. When this happens,
the tip cell will break free from the neighboring tissue and migrate individually. As we
increase µECM, the tip cell can still deform the matrix, but now the adhesion force is
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Figure 6.6: Dependence of vessel length and structure for different values of ECM rigidity, µecm, and
the maximum value of tip cell traction force, |Ftip|. The red zones correspond to regions where φ ≈ 1
(endothelial tissue) and in the white background we have φ ≈ −1 (ECM).

capable of maintaining the integrity of the sprout and there is a formation of longer vessel
that extends towards VEGF sources.

These simulations using a single tip cell also serve to explain how the dynamics of the order
parameter depends on the rigidity of the ECM and on the tip cell force. When a cell exerts
a traction force, there is a deformation of the surrounding tissue. In order to minimize
the free energy, the system’s overall driving force, J = −∇ δF

δφ , will direct the movement of
endothelial cells (φ ≈ +1) towards regions where the ECM has the highest strain. Since the
rigidity of the ECM is always higher than the rigidity of the vascular tissue i.e., µ1 > 0, this
will lead to the endothelial cells to occupy the surrounding tissue that is being stretched
due to the tip cell traction force. At the same time, this traction force is compressing
the endothelial cells located just behind the tip cell, raising its energy, also favouring the
movement of those cells to distended areas of the ECM. This compression generated on
the stalk cells leads to an accumulation of order parameter in that region, such that its
value in those zones can be slightly larger than one.

6.5.2 One Spheroid

In order to assess the model’s ability to reproduce the experimental observations from
the aortic ring assays, we simulate a system that starts from a two dimensional spheroid
represented by a circle with a radius of Rsph, where the order parameter has an initial
value of φ = 1 (and φ = −1 outside the circle). This system is more complex than the one
used on the single tip cell simulations. Here we consider there is stalk cell proliferation and
Delta-Notch derived rules are used for the appearance and removal of tip cells. In Figure
6.7, we can see networks of vessels, for different values of tip cell traction force and ECM
rigidity. The presence of isolated, migrating tip cells when the ECM rigidity is lower is
easily seen and expected, considering the results obtained for the same range of rigidity
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Figure 6.7: Dependence of vessel length and structure for different values of ECM rigidity, µecm, and
the maximum value of tip cell traction force, |Ftip|max. The red zones correspond to regions where φ ≈ 1
(endothelial tissue) and in the white background we have φ ≈ −1 (ECM).

used in the previous section. When µECM = 52 Pa, the sprout formations we see are very
short and there is an abundance of tip cells that break free from the spheroid cluster. As
we increase the value of the tip cell traction force, in the same time interval, those tip cells
migrate further, resulting in a more dispersed network. As we increase the stiffness of the
ECM, we see a drop in the number of loose tip cells and we start seeing more elongated
sprouts that maintain their connection to the spheroid although some cells are still able
to break away from the sprouts, mainly for higher values of tip cell traction force. The
length of the vessels starts increasing with rigidity and, at a µECM value dependent on the
value of the cells’ traction force, they reach their maximum length. For higher rigidities,
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the vessel network starts getting more compact, showing vessels of shorter length.

Figure 6.8: Vessel length measurement procedure. From each quadrant of the image, the distance of the tip
cell that migrated the most, while still attached to the spheroid, (surrounded by a black circle) is extracted,
yielding a set of 4 distances, {d1, d2, d3, d4} (A). Number of tip cells that break away from the spheroid (B)
and vessel length (C) as a function of ECM rigidity for different values of maximum tip cell traction force.

In order to provide a quantitative analysis of the results obtained from the simulations in
the images presented in Figure 6.7, image analysis was performed on the vessel networks.
The methods used to analyze the computational results were tailored to be as close as
possible to the ones used in analyzing the microscopy images obtained from the aortic
ring assay. In Figure 6.8A is illustrated how, from each image, we extract four values
for the vessel length, measured only for vessels that are connected to the main spheroid.
For each quadrant we determine which tip cell traveled the furthest and store the set of
measurements. The same system with the same parameters is simulated for Nseeds different
seeds of the random number generator, that determine the choice of the tip cell position,
in the end we perform an average of the 4Nseeds values of vessel lengths and calculate the
standard deviation of the mean.

In Figure 6.8B we see how the number of tip cells that break away from the main spheroid
varies for matrices of different rigidities. As expected, for very soft ECMs, the number of tip
cells migrating individually is high since the matrix is very compliant and easily deformed,
prompting the movement of the compressed tissue to move to those areas. For the value of
adhesion α, surface tension ρφ and stalk cell proliferation used in the simulations, it is very
likely for the tip cell to detach from the trailing cells. As expected, the higher the tip cell
traction force, the higher the number of detached cells. As we increase the rigidity of the
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matrix, the tip cells are not able to deform the surrounding matrix as much and we see the
formation of some sprouts, marked by the increase in vessel length represented in Figure
6.8C. As the number of isolated tip cells diminishes, the length of the sprouts increases as
we look into increasingly more rigid ECMs. The most striking result observed in Figure
6.8C is that for each traction force amplitude, there is a value of rigidity for which the
length of the sprouts reaches a maximum value. For lower values of |Ftip|max, the µECM

value that maximizes the sprout length is also lower. When |Ftip|max = 47 Pa, sprout
length is highest for an ECM rigidity of µECM ≈ 75 Pa while for |Ftip|max = 82 Pa, the
maximum is located at µECM = 150 Pa. This suggests that what determines the maximum
vessel length is a balance between the tip cell traction force and the ECM rigidity. When
cells exert small forces, they are not able to sufficiently deform the ECM in a way that
allows the vessel to elongate significantly. For higher traction forces, sprouts can elongate
further and for more rigid matrices, until a certain rigidity is reached, where the vessels
start getting shorter.

6.5.3 Aortic Ring

In this section we present the results for simulations where the initial condition resembles
an aortic ring as the ones used in the experimental work. The initial condition is a ring
with an inner radius of rin = 150 µm and an outer radius of rout = 225 µm. Although, in
experiments (Figure 6.1), we can see there is some sprouting activity on the inside part of
the aorta, those sprouts are not taken into consideration when measuring cell migration
and vessel length. As such, in the simulation, there is VEGF only on the outside of the
modeled aortic ring, so that there is no sprouting activity in the inner circle. In Figure 6.9A
can see the result of a simulation of the system described above for a very soft ECM with a
rigidity of µECM = 80 Pa. As seen in the results from the spheroid simulations, most of the
tip cells are detached from the aortic ring, migrating individually with only a few longer
sprouts seen very close to the aorta. For medium rigidity matrices where µECM = 172 Pa,
the network shows fewer cells migrating individually and there are longer sprouts, some
of them with ramifications. In Figure 6.9C and D we see the network for a stiffer matrix
(µECM = 265 Pa). For this rigidity, there are barely any cells migrating alone and more
complex vascular structures can be observed. Figure 6.9D shows the amplification of the
region marked in yellow in Figure 6.9C, where we can see some of these vascular structures
in more detail. One of the most important features of this model is the most apparent
when looking at the closed loops of vessels seen in that amplified region. These loops are
the result of anastomosis events between two or more sprouts that meet in space. This
phenomenon can be explained using only the principles that drive the dynamics of the
order parameter when tip cell traction forces and the resulting displacement field are taken
into account. As previously mentioned, tip cell forces create a deformation on the ECM,
lowering the energy of the tissue and in order to minimize the global energy, tip cells tend
to migrate to those regions. When two or more tip cells are close to one another, in a way
that does not lead to a phenotypic change due to the Delta-Notch mechanism, they all
deform the same neighboring tissue. This results in certain areas of the tissue to be highly
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Figure 6.9: Results obtained from simulations of sprouting angiogenesis in aorta rings, for matrices of
different rigidity (80 (A), 172 (B) and 265 Pa (C)). In (D) we can an amplification of the region delimited
by the yellow lines in (C) with arrows pointing to the regions where anastomoses were formed. Vessel length
as a function of ECM rigidity (E).

favorable for the tip cells to move there, leading to the fusion of between them, which is
also favored by the fact that it reduces the amount of interface in the system. When they
fuse, tip cells are now in contact, and the Notch mechanism will ensure only one tip cell
remains, thus these loop structures are formed. In Figure 6.9E we show the vessel length
as a function of ECM rigidity, µECM for a maximum tip cell force of 70 Pa. As seen in the
previous section, vessel length depends on ECM rigidity in a non-monotonic way which is
compatible with the same measurement made experimentally.
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6.5.4 Sprouting in Three Dimensions

In three dimensions, we can observe how endothelial cell sprouting depends on the rigidity
of the ECM for more complex initial structures. In the first row of Figure 6.10 we show

Figure 6.10: Sprout formation in three dimensions for different ECM rigidities and endothelial cell
distributions: spheroid (top) and for a tubular geometry (middle and bottom, top view). ECM rigidity
increases from left to right: 52 Pa (A), 145 Pa (B) and 240 Pa (C)

how sprouting occurs when it starts from a 3D spheroid, a natural extension of the results
shown in Figure 6.7. For low values of ECM rigidity (column A) we see that there is
little sprout formation, since most tip cells break away from the initial spheroid. The
same is observed for the system that starts from a tubular structure, which means that
the difficulty in forming elongated sprouts is independent of the initial geometry and is
related with the properties of the ECM. For higher rigidities (columns B and C) we see
some sprout elongation, and it is noticeable that sprout length is higher for intermediate
rigidities, starting to decrease for stiff ECMs. The differences in sprout length is clearer
when we look at the results for the tubular geometry from a top view. For soft matrices,
there is increased cell migration, but with no sprout formation, since all cells break away
from the initial vessel. As we increase µecm, there is sprout formation that become shorter
for more rigid ECMs.



114 Chapter 6. Mechanical Model of Sprouting Angiogenesis

6.6 Conclusions and Future Work

In this chapter we showed how the formation of neovascular through sprouting angiogenesis
is dependent on the forces generated by endothelial cells, but most importantly, on the
stiffness of the ECM that surrounds the active endothelial tissue. For a fixed value of tip
cell traction force, we can see that sprout length has a non linear dependence on the value
of ECM rigidity. Soft matrices are easily deformed, which creates a displacement field that
promotes tip cell movement. For a certain value of cell-cell adhesion, stalk cells are not
capable of following the tip cell, which looses the structure that connects it to the initial
vessel and breaks away, migrating alone. As we increase µecm, the matrix becomes more
rigid, less prone to deformation and tip cell migration slows down, now allowing for stalk
cells to follow, forming elongated sprouts. Strikingly, we observe that there is a certain
value for µecm that leads to a maximum value of sprout elongation. This result is validated
by experimental observations, where this non monotonic variation of vessel length with
ECM rigidity is also verified. For matrices that are very rigid, sprout length shortens, due
to the difficulty for the tip cell to deform the matrix.

When we simulate systems where there is increased sprouting activity, as in an aortic ring
assay, we see the formation of more complex vessel networks and the joining of two or
more branches which creates a loop. The observation of tip cell-tip cell anastomoses is a
result of considering the system as an elastic medium and the displacement field created
by the tip cells. As such, it arises naturally from modeling choices, instead of it being a
programmed behavior.

The model presented in this chapter can still be improved to simulate more realistic settings.
While in this work we have considered the tissue as a linear and isotropic material, real
matrices such as the ones used in experiments, present a non-linear behavior. To model this
type of materials, new constitutive relations could be used to describe their elasticity. Also,
in this model, when we calculate the displacement field, we do so under the assumption
that the material is homogeneous. Using a perturbative-iterative approach, it is possible
to calculate higher order terms in the approximation, which would take into account the
inhomogeneity of the tissue [113, 114]. While in this work we have considered that tip
cells exert the same traction force independently of ECM stiffness, it has been reported
that cells exert stronger forces on stiff ECMs than on softer substrates [115]. Simulating
sprouting angiogenesis in three dimensions, as presented in this work, requires a substantial
ammount of computational effort, and as such more efficient algorithms could be used
to solve the model equations. Furthermore, the parallelization of the software used to
solve these equations would decrease simulation time but would require the use of large
computing clusters, coupled with intensive testing and debugging of the software.
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