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Abstract 

 
Diagnosis and fault prediction processes based on real data are important tools in the 

Condition Based Maintenance (CBM) approach for diesel vehicle fleets. Companies are equipping their 

vehicle fleets with a large number of sensors, which allows the collection of large amounts of data about 

the current condition of each asset. This allows companies to invest efforts in the development of 

methods to accurately identify the state of wear and tear of a piece of equipment or system, making 

CBM more effective and reliable. 

For this type of equipment condition analysis there are several techniques currently available, 

depending on the type of data to be collected, cost, and the need or not to use external diagnostic 

interfaces to analyze the condition of the vehicle. Intelligent lubricant oil analysis is one of the possible 

techniques for determining the condition of equipment and is therefore an important tool for fleet 

managers to determine the condition of heavy diesel vehicles. Because it is a relatively low-cost 

technique that allows the manager a clear view of the equipment's condition from real-time data 

collection, in this work we will present an intelligent analysis of lubricant data from 5 different vehicles, 

evaluating whether the variables collected make it possible to determine the condition of the lubricants 

and the vehicles they are used on. To this end, we initially present a study on the issues that guide the 

development of this work, through a literature review that presents not only pertinent information about 

lubricants, but also the necessary information about real-time data capture interfaces and systems based 

on machine learning. After analyzing the literature, presenting the hardware for real-time data 

collection, we confirm the importance of the study of lubricants through the analysis of common faults 

of heavy diesel vehicles. 

From the knowledge acquired by reading and analyzing the literature, we begin the analysis 

and organization of the collected data. We start by analyzing the missing values of the variables, the 

need for data balancing, Principal Component Analysis (PCA) and correlation analysis on top of the 

collected data. This step, is called exploratory data analysis, is important for the development of the 

automatic condition determination system, as well as for evaluating the need for the inclusion of new 

variables designed from raw data for a better determination of this operating condition. 

Using a solid and organized database, we developed the first supervised machine learning 

model based on the Random Forest (RF) classifier to determine the operating condition of lubricating 

oil in diesel engines. The presented results show that the selected variables have the potential to 

determine the running state, and that they are strongly related to the condition of the lubricant. One of 

the variables designed is kinematic viscosity, which is shown to play a relevant role in characterizing 

the condition of the vehicle. This model presented Recall results of 95.90%, an Accuracy of 97.50%, 

and an F1 score of 96.70%. 

Finally, despite having results worthy of recognition for the initial model created from the RF 

algorithm, we still performed an in depth study using a diverse range of algorithms and different sets of 



features as input data. This analysis was conducted using cross-validation, and considered the following 

algorithms: Logistic Regression, Perceptron, Decision Tree Classifier, Random Forest Classifier, 

Gradient Boosting Classifier. With this validation it is possible to demonstrate that the proposed 

approach is able to successfully identify the operating conditions of lubricating oil, with the predictive 

model Gradient Boosting Classifier with 7 variables, obtaining a Recall result of 97.90%, an Accuracy 

of 98.80% and an F1 score of 97.90%, even better than the model initially chosen. The cross validation 

also allows to identify the best combination of variables for the model. 

 
Keywords: lubricating oil data, diesel-powered vehicle fleets, Condition Based Maintenance (CBM), 

machine learning algorithms 



Resumo 

 
Os processos de diagnóstico e previsão de falhas baseados em dados reais são ferramentas 

importantes na abordagem de Manutenção Baseada na Condição (CBM) para frotas de veículos a diesel. 

As empresas estão a equipar as suas frotas de veículos com um grande número de sensores, o que 

permite a recolha de grandes quantidades de dados sobre o estado actual de cada activo. Isto permite às 

empresas investir esforços no desenvolvimento de métodos para identificar com precisão o estado de 

desgaste de um equipamento ou sistema, tornando a CBM mais eficaz e fiável. 

Para este tipo de análise do estado do equipamento existem várias técnicas actualmente 

disponíveis, dependendo do tipo de dados a recolher, do custo e da necessidade ou não de utilizar 

interfaces externas de diagnóstico para analisar o estado do veículo. A análise inteligente do óleo 

lubrificante é uma das técnicas possíveis para determinar o estado do equipamento e é, portanto, uma 

ferramenta importante para os gestores de frotas para determinar o estado dos veículos pesados a diesel. 

Como se trata de uma técnica de custo relativamente baixo que permite ao gestor uma visão clara do 

estado do equipamento a partir da recolha de dados em tempo real, neste trabalho apresentaremos uma 

análise inteligente dos dados de lubrificantes de 5 veículos diferentes, avaliando se as variáveis 

recolhidas permitem determinar o estado dos lubrificantes e dos veículos em que são utilizados. Para 

tal, apresentamos inicialmente um estudo sobre as questões que orientam o desenvolvimento deste 

trabalho, através de uma revisão bibliográfica que apresenta não só a informação pertinente sobre 

lubrificantes, mas também a informação necessária sobre interfaces e sistemas de recolha de dados em 

tempo real baseados na aprendizagem de máquinas. Após análise da literatura, apresentamos o hardware 

para recolha de dados em tempo real e confirmamos a importância do estudo de lubrificantes através da 

análise de falhas comuns de veículos pesados a diesel. 

A partir dos conhecimentos adquiridos através da leitura e análise da literatura, iniciamos a 

análise e organização dos dados recolhidos. Começamos por analisar os valores em falta das variáveis, 

a necessidade de equilíbrio dos dados, a Análise de Componentes Principais (PCA) e a análise de 

correlação, para além dos dados recolhidos. Esta etapa, denominada análise exploratória de dados, é 

importante para o desenvolvimento do sistema de determinação automática da condição, bem como 

para avaliar a necessidade de inclusão de novas variáveis concebidas a partir de dados em bruto para 

uma melhor determinação desta condição operacional. 

Utilizando uma base de dados sólida e organizada, desenvolvemos o primeiro modelo de 

aprendizagem supervisionada de máquinas baseado no classificador Random Forest (RF) para 

determinar o estado de funcionamento do óleo lubrificante em motores diesel. Os resultados 

apresentados mostram que as variáveis seleccionadas têm o potencial de determinar o estado de 

funcionamento e que estão fortemente relacionadas com o estado do lubrificante. Uma das variáveis 

concebidas é a viscosidade cinemática, que se mostra ter um papel relevante na caracterização do estado 



do veículo. Este modelo apresentou resultados de Recall de 95.90%, uma Precisão de 97.50%, e uma 

pontuação de F1 de 96.70%. 

Finalmente, apesar de termos resultados dignos de reconhecimento para o modelo inicial 

criado a partir do algoritmo RF, ainda realizámos um estudo aprofundado utilizando uma gama 

diversificada de algoritmos e diferentes conjuntos de variáveis como dados de entrada. Esta análise foi 

conduzida utilizando a validação cruzada, e considerou os seguintes algoritmos: Regressão Logística, 

Perceptron, Decision Tree Classifier, Random Forest Classifier, Gradient Boosting Classifier. Com esta 

validação é possível demonstrar que a abordagem proposta é capaz de identificar com sucesso as 

condições de funcionamento do óleo lubrificante, com o modelo preditivo Gradient Boosting Classifier 

com 7 variáveis, obtendo um resultado Recall de 97.90%, uma Precisão de 98.80% e uma pontuação 

F1 de 97.90%, ainda melhor do que o modelo inicialmente escolhido. A validação cruzada permite 

também identificar a melhor combinação de variáveis para o modelo. 

 
Palavras Chave: Dados de Óleo Lubrificante, Frotas de Veículos a Diesel, Manutenção Baseada na 

Condição (CBM), Algoritmos de Aprendizagem de Máquinas 
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Chapter 1 - Introduction 

 
Nowadays the transport sector, whether for passengers or goods, is of vital importance for 

society, customers safety, quality of service and level of emissions of pollutants. According to European 

Union (2021) the European Union (EU) transport policies are contributing to the dynamism of the 

sector's economy, through the development of a modern infrastructure network that makes travel faster 

and safer, while promoting digital and sustainable solutions. Thus, as society becomes increasingly 

mobile, EU policies must support the transport sector to address the major challenges it faces: 

 Congestion which affects road and air traffic; 

 Sustainability: transport still relies on oil for most of its energy and lubrication needs, 

which is environmentally and economically unsustainable; 

 Air quality: the EU must reduce transport emissions by 60% below 1990 levels by 2050 

and further reduce vehicle pollution; 

 Infrastructure: the quality of infrastructure is not uniform throughout the EU; 

 Competition: the European transport sector faces increasing competition from rapidly 

developing transport markets in other regions of the world. 

According to data from BPstat (2021) the land transport sector in Portugal is composed by 

20.898 companies, employing more than 108.200 people in 2020, representing a business volume of 

7.168M€. Even though this financial volume was affected by the COVID-19 Pandemic, the data shows 

that this sector is extremely important for the Portuguese economy, and it is essential that Portugal 

aligns with the agenda presented by the EU for a sustainable and innovative transport sector. According 

to Nunes et al. (2019) it is necessary to increase transport efficiency in the use of resources and energy, 

contributing to the reduction of the environmental footprint of society, thus resulting in benefits to 

ecosystems and biodiversity, decarbonization of the economy and minimization of waste and pollution. 

Following this line of development and following the agenda for decarbonization of the 

transport sector determined by the EU, it is necessary for companies to invest not only in the acquisition 

of new vehicles with renewable energy sources considered green, but also in technologies to maintain 

and help the current Portuguese fleet to improve its operating conditions and reduce the level of 

pollutant emissions. According to ACAP (2021), in the end of 2020, the heavy duty vehicle fleet in 

Portugal was composed of 149300 vehicles, with an average age for heavy passenger vehicles of 15.1 

years and for heavy goods vehicles of 14.9 years. Taking into account these numbers regarding the 

vehicles age, a more reliable and sustainable maintenance is necessary to avoid failures in this old fleet 

and reduce the emission of pollutants and waste. 

The identification and modelling of vehicle failure signatures to predict them before they 

occur has been subject of great interest for the engineers involved in the maintenance area, mainly due 

to the incomparable advantages, such as reduced downtime of the vehicle, lower maintenance cost and 
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increased security, when comparing with corrective maintenance. Vehicles in a fleet are critical for the 

production and billing of companies in the transport segment, whether for goods or people, requiring 

constant monitoring of their performance, since an unplanned interruption can have high-cost 

implications for the company. There are several maintenance techniques and concepts that can be 

applied to predict the occurrence of an equipment failure. In recent years, monitoring of health 

conditions and prognosis for lubricating oil has become a significant topic for people and groups in 

academia and industry. More and more efforts have been put into the development and research of fault 

diagnosis and prognosis systems based on lubricant tests. The purpose of most research is, by 

monitoring the oil degradation process, to provide early warning of machine failure and also to extend 

the operating life of the oil to increase machine availability, avoid unnecessary oil change costs, waste 

or environmental pollution (A. Kumar & Ghosh, 2016). 

 

1.1 Problem Statement and Objectives 

 
As maintenance solutions in the transportation field become more complex, with the insertion 

of new systems and increasing amounts of information, this sector needs new methodologies to become 

more efficient and reduce costs. According to Prytz (2014), new fleet management and maintenance 

decision support systems are gradually expanded with new features to improve reliability and planning. 

For the development of predictive diagnosis tools and new intelligent vehicle maintenance methods, 

extensive experimentation and lengthy modelling are required during the development of decision 

support systems (Keartland & Van Zyl, 2020). Thus, the use of Artificial Intelligence (AI) mechanisms, 

which can be adapted according to the needs of the organizations and the equipment present in the fleet, 

are fundamental. In this way, the main objective of this work is to develop a system based on data from 

lubricating oils of diesel engines of a fleet of passenger transportation vehicles, capable of helping the 

manager in the decision-making process of asset maintenance, avoiding high costs with the serious 

failure of vital organs of the equipment. 

To achieve the general objective of this study, it is necessary to divide it into several 

development stages and to elaborate specific objectives: 

1. Contextualize the digital transformation in maintenance and the categories of 

technologies needed to develop a fault prediction system; 

2. Delve into the study of Machine Learning (ML) to build a model and its 

operationalization in organizations; 

3. Understand the scenario and the failures with the highest number of occurrences, as a 

cut-out of the passenger transportation vehicles maintenance sector, besides the main 

applications of ML in this segment; 

4.  Conduct case studies with the goal of developing applications of ML to improve failure 

prediction in automotive lubrication systems in heavy-duty passenger vehicles; 
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5. Develop a data-driven failure prediction system capable of being implemented in a real 

environment; 

6. Identify the context and the construction of the case study models to propose a failure 

prediction system that will be implemented in a case study environment; 

1.1.1 Originality and Research Contribution 
 

By using the model developed in this work fleet managers will be able to apply new 

maintenance techniques based on actual data and not just estimates. On the other hand, and not less 

important, the academic contribution of this decision making model is based on the detailed study of 

the parameters that indicate and determine recurrent failures in automotive systems, as well as on the 

elaboration of technical procedures for solving potential failures, which can be used for the theoretical 

enrichment of professionals in the maintenance field of organizations. In terms of originality, this 

research stands out in aspects related to the development of a computational model based on ML 

techniques, applied to fleet maintenance, capable of being operated by the entire organization and 

containing data and information relevant to the total operation of the assets that generate profits for the 

company. Another fundamental point of originality of this specific study is the determination of 

performance indicators that, in combination with practice and theory, generate a competitive differential 

in the strategic management of the organization's business where the developed model is inserted. The 

work presented in this document incorporates solutions and methods developed in an academic 

environment, through the development of intelligent decision-making models and results obtained in 

the real world business environment with the collection of data from lubricants used in the operation of 

fleets. The link between the academic and business environment gives this system a high degree of 

relevance, since many studies developed within this scope only focus on theoretical analysis without 

any real practical application. The prototype described and developed in this project is focused on 

automotive vehicle fleet companies, which provide services in the most diverse areas such as: long and 

short distance collective passenger transportation; long and short distance freight transportation and 

may eventually be suitable for other similar service companies. In summary, the transport sector, 

whether freight or passenger transport, is a network classified with a high degree of uncertain failures 

and needs to provide a service with high reliability. Thus, with the creation of a model capable of 

determining the operating condition of lubricants, which is a crucial vehicle system, and furthermore 

determining the general condition of the asset itself, transportation companies will have a key tool for 

improving maintenance management and reduce unnecessary costs. 

 

1.2 Methodology 

 
Scientific Methodology addresses the main rules of scientific production, providing the 

techniques, instruments and objectives for better performance and quality of scientific work. According 
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to Muchiri et al. (2018), in the last decade, several works on lubricant analysis have been developed, in 

many different business segments. It is important to mention that many of these studies are purely 

theoretical, focusing on the development of academic models based on the analysis of operational data 

from a wide variety of organizational sources, with the common goal of increasing equipment reliability 

and availability. 

Since this project as a substantial component of research, planning is necessary and the 

researcher needs to be very clear about his research goal, how it is posed, how it is problematized, what 

are the hypotheses he is raising to solve the problem, what theoretical elements he can count on, what 

instrumental resources he has to carry out the research and what stages he intends to go through. Thus, 

it is important to begin this project by formulating the Research Questions (RQ), as identified in Figure 

1: 

 RQ1: Is it possible to improve the performance and determination of the degradation 

index of lubricating oils in diesel engines? 

 RQ2: Is it possible to use real-time data to predict failures in automotive lubrication 

systems using ML methods and algorithms? 

 RQ3: If we apply supervised learning models how will we acquire the labels of the 

lubrication system? 

 RQ4: Will the system be able to be implemented in an enterprise environment with 

real data? 

According to Dogan & Birant (2021), a research question is the statement of a specific inquiry 

that the researcher wishes to answer to address the research problem. The research question or questions 

guide the types of data to be collected and the type of study to be conducted. After determining the 

RQ’s, we can determine the steps for the development of this project until its implementation and 

through the analysis of Figure 1, we can identify the following steps: 

1. Bibliographic review of books and scientific papers that make up the state of the art in 

ML focused on the automotive sector and based on lubricant oil data; 

2. Study of the main scientific papers that describe Maintenance, Diesel Engines, 

Lubricants, Big Data and ML techniques; 

3. Documentation and archiving of all the tools used, all data generated and results obtained 

for future use. 
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Figure 1 - Work Methodology Structure 

 

According to Mitchell (1997), formulating hypotheses without having carefully reviewed the 

literature can lead to errors such as suggesting hypotheses about something that has been very well 

proven or something that has no theoretical or practical value. In short, the quality of hypotheses is 

positively related to a thorough literature review, in order to avoid wasting time on fruitless research 

without a viable contribution to either the academic framework or a practical approach. Therefore, based 

on the detailed reading and analysis of the available materials related to the determination of the 

condition of lubricants and diesel engines, we can elaborate our hypothesis: 

 Machine Learning models allow automated prediction of lubricant and equipment 

condition, thus reducing the downtime and maintenance costs associated with diesel 

vehicles. 

In this way the hypothesis fulfils the objectives and definitions of the hypothesis as a guideline 

for the execution of the research. Therefore, the terms used in the hypothesis must clarify, as precisely 

as possible, what they mean in the context of the research to be carried out. In this way we can proceed 

to the second block determined in Figure 1 and following the steps below. 

1. Writing and publishing scientific articles in conferences and journals related to the theme 

of this project; 

2. Dissemination and presentation to the local and international academic community of all 

the results obtained at the end of each stage developed in this work. 

With a clear vision of the path to be taken, to further analyze the materials and documents 

collected as the theoretical basis of this development, a bibliographic mapping analysis, was performed 

in order to determine patterns in the use of the main lubricant analysis tools, in the use of equipment 

maintenance data, in reliability engineering concepts, in ML and data mining techniques used, in 
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addition to the authors' study trends. As for the database needed for the experiments, it was provided 

by Stratio Automotive (Automotive, 2021). 

 

1.3 Contributions and Publications 

 
As result of the work presented in this dissertation, the following contributions can be 

highlighted: 

 Wear and Tear: A Data Driven Analysis of the Operating Condition of Lubricant 

Oils - (Appendix A): In this paper we present an intelligent data analysis from 5 different 

vehicles to evaluate whether the variables collected make it possible to determine the 

operating condition of lubricants. The results presented show that the selected variables 

have the potential to determine the operating condition, and that they are highly related 

with the lubricant condition. We also evaluate the inclusion of new variables engineered 

from raw data for a better determination of the operating condition. One of such variables 

is the kinematic viscosity which we show to have a relevant role in characterizing the 

lubricant condition. Moreover, 3 of the 4 variables that explaining 90% of the variance 

in the original data resulted from our feature engineering.

This document was presented in APMS 2021 - Advances in Production Management 

Systems. Artificial Intelligence for Sustainable and Resilient Production Systems 

(Malaguti et al., 2021b) 

 A Well Lubricated Machine: A Data Driven Model for Lubricant Oil Conditions - 

(Appendix B): In this paper we present a supervised ML framework based on the 

Random Forest Classifier (RFC) to determine the operating condition of lubricant oil in 

diesel engines based on data from 5 different vehicles. We describe the how practitioners 

should collect and process data, and which features can be engineered to help describe 

the state of the lubrication system. This data will then be used by a RF model to determine 

the operational condition of the lubricating oil. The results presented show that the 

proposed approach is able to successfully identify the oil operating conditions, with the 

predictive model obtaining a Recall of 97.9%, a Precision of 99.5% and a F1-score of 

98.7%. In addition, we evaluate the importance is the inclusion of new engineered 

features projected from raw data for better determination of the operating condition. 

This document was presented in EPIA 2021 - Conference on Artificial Intelligence 

(Malaguti et al., 2021a). 

 Um modelo de aprendizagem supervisionado para a determinação das condições de 

operação de óleos lubrificantes - (Appendix C): In this document we present a 

summary of the two previous documents presented at EPIA and APMS with a less 

technical structure in the area of artificial intelligence and ML algorithms, submitted in
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the Portuguese language and targeted at operators and maintenance managers in Portugal. 

With this document we prioritized that the collaborators of the maintenance segment of 

transport companies could be aware of the new technologies used in the sector as a way 

to assist in the decision-making process when repairing an asset. 

This document was presented in 16.º Congresso Nacional de Manutenção e 8.º Encontro de 

Manutenção dos Países de Língua Oficial Portuguesa. 

 A Supervised Machine Learning Model for Determining Lubricant Oil Operating 

Conditions – (Appendix D): This paper presents an intelligent system for assessing the 

condition of lubricating oil in automotive diesel engines. To this end we analyze the use 

of raw data obtained from the sensors installed in the car and evaluate in conjunction with 

the insertion of engineered features designed the best way to determine the operating state 

of the oils. The results presented in this analysis show that to explain 90% of the variation 

in the original data only the variables Kinematic Viscosity, Dynamic Viscosity, Engine 

Oil Temperature and OSF_v3 are needed. After evaluating the quality of the variables, 

we conducted an experimental study to analyze the performance of various ML 

algorithms, taking into account the number of features as input data. The results show that 

the proposed system has the ability to identify the operating conditions of lubricating oil 

using 7 variables as input to a model based on Gradient Boosting, obtaining a Recall 

result of 93%, Precision of 96% and F1-score of 94%. We conducted a set of additional 

studies to understand how different subsets of variables affected the performance of the 

models, and the results show that the best combination includes information regarding 

the engine speed, coolant and oil temperature, oil pressure, the oil stress factor (OSF_v3), 

kinematic viscosity, and the dynamic viscosity).

This document was published in Expert Systems, Online ISSN: 1468-0394, Clarivate 

Analytics Impact Factor JCR 2020 2.587 (Malaguti et al., 2022). 

 

1.4 Thesis Framework and Structure 

 
In terms of practical relevance, this study will enable entrepreneurs in the transportation sector 

conditions for their organizations to have a system capable of identifying the operating condition of 

lubricants and the equipment itself, thus assisting in vehicle fleet maintenance, minimizing the 

economic impacts caused by the catastrophic failure of important vehicle element. According to 

Carvalho et al. (2019), most problems occur when critical factors are neglected and the development of 

a ML model, can minimize the high costs generated in this area. The academic contribution of this work 

lies in the fact that this study reviews the parameters that indicate asset failures based on real lubricant 

data. Although this system was developed for implementation in a company in the passenger 

transportation sector based on real data, it is still part of the doctoral thesis of the author of this 
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document. In this way it is necessary to indicate the development structure of this project as a whole, 

culminating in the presentation of the final thesis document and the results achieved. 

According to Figure 2, the project is divided into 3 segments: Initial Development/Planning, 

Practical Development and PhD Thesis, with each segment having its specific tasks and milestones 

that support and validate the final document. 

 

 
Figure 2 - Thesis Framework 

 

As mentioned, to achieve the objective of this project, the structure shown in Figure 2 was 

elaborated. This work was subdivided into five main tasks, described hereafter. 

1. Initial Development/Planning 
 

1.1. Development Schedule - Development of the work schedule with delivery schedules; 
 

1.2. Research of Theoretical Material - Research of practical theoretical reference material 

for the basis of the project; 

1.3. State of the art analysis - The need to introduce some pertinent issues for the 

development of this project makes the state of the art an important and crucial piece 

for its proper development of the model based on real data for implementation in a 

business environment; 

1.4. Milestone 1 - Submitting the doctoral project for evaluation - 1st year; 
 

After the first stage of this project was developed the remaining tasks were segmented into 

stages and development areas, this type of structuring gave rise to the model needed to answer the 

project's general problem, the stages will be described below: 

2. Pratical Development – Automotive Field 
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2.1. Study of the variable’s behaviour - All variables measured in a vehicle, have limits 

and working areas determined by the manufacturer. This step consists of collecting 

system variables and analyzing their operational behaviour. (i.e., Engine System - Oil 

temperature, coolant temperature, engine speed, torque, etc.); 

2.2. System modelling - Creation of a tool for analysis and comparison between variables 

- The first tool will be elaborated with the objective of determining comparison 

weights between variables of the same system; 

2.3. Simulation of the system - Elaboration of the correspondence analysis of each 

variable, in this step several statistical and probabilistic methods were used, and the 

method with the lowest associated error was used to determine the capacity of the 

variables to answer the identified problem; 

2.4. Milestone 2 - Article “Wear and Tear: A Data Driven Analysis of the Operating 

Condition of Lubricant Oils”; 

3. Pratical Development – Machine Learning 

 

3.1. Study of programming software and function search - This subtask will focus on the 

research of software, intelligent methods and programs developed in the field of 

predictive maintenance; 

3.2. Data cleaning and management platform development - In this subtask all databases 

will be collected and will be prepared in a standard format, which will start the 

extraction of knowledge and information from the data; 

3.3. Development of testing and simulation algorithms - In this step a simulation code will 

be developed, based on the evolution of the behaviour of each variable, its 

combinations, its levels of influence on the systems (weights in the system) and the 

forecasts established. The tool will allow the user to analyze the reduction, increase 

and/or change in the behaviour of a variable or a group of variables and verify what 

level of influence they have on the vehicle's behaviour; 

3.4. Testing and tuning - The development of the case study will be carried out from a 

passenger transportation company and the data will be collected from the various 

sources of information available in the organization. In this scenario, the application 

of the computational model for the analysis and evaluation of the several variables 

contained in the maintenance management, such as: failure, failure by nature, time, 

number of occurrences, among others, can be used in this study and system tuning; 

3.5. Milestone 3 – Article “A Well Lubricated Machine: A Data Driven Model for 

Lubricant Oil Conditions”; 
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4. Pratical Development – Documentary development 
 

4.1. Organization and elaboration of the theoretical descriptive material of the project; 
 

5. Final Writing and Conclusions 
 

5.1. Milestone 4 – Article “Um modelo supervisionado de aprendizagem de máquinas para 

determinar as condições de funcionamento do óleo lubrificante”; 

5.2. Milestone 5 – Article “A Supervised Machine Learning Model for Determining 

Lubricant Oil Operating Conditions”; 

5.3. Write the PhD thesis; 
 

5.4. Milestone 6 - Delivery and defence of a descriptive document of the project to obtain 

the title of Doctor in Mechanical Engineering with specialization in propulsion 

systems by the University of Coimbra -FCTUC 

Following this design structure developed by the author, this document is structured as 

follows: 

 Chapter 2, presents the related work and the literature review: In view of this continuation 

of the growing research in the field of maintenance, with a focus on diesel engine 

lubricating oils, the author of this document initially evaluated a documental database, 

from the year 2000 to the year 2020, which followed the same assumptions of the present 

study. This research and evaluation determined a consolidated theoretical basis, with the 

evolution of maintenance methodologies and techniques based on determining the 

condition of equipment through lubricant analysis. 

 Chapter 3, describes the overview of the approach and the system by developing the 

interconnection of the concepts mentioned in the literature review chapter. The company 

involved in the development of this project, the selected fleet, and a brief summary of the 

author's work environment are also covered in this chapter; 

 Chapter 4, details the process of data acquisition and the labels needed to confirm the 

results: After this documentary analysis, it was possible to develop a suitable predictive 

model for determining the condition of lubricants and equipment with a focus on 

implementing it in a real business environment. However, before mentioning the 

development of the model, it was necessary to develop several analyses according to the 

selected variables in order to determine their potential for the model's implementation; 

 Chapter 5, describes the experimental scenarios used in our study, explaining the procedure 

carried out to discover patterns, detect anomalies and test the hypothesis, which allows a 

better understanding of the variables and the relationships between them through the use 
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of statistical techniques. In other words, it details the investigation of the data set, 

summarizing its main characteristics; 

 Chapter 6, Finally, after confirming the ability of the selected variables to identify the 

operating conditions of the lubricant and/or the equipment, the general objective of this 

study, which is the Determination of the degradation index of lubricating oils in diesel 

engines, can be achieved by performing a sequence of tests to determine the best predictive 

model for implementation in a fleet; 

 Chapter 7, brings together the main conclusions and possible future works. 
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Chapter 2 - Background and Related Work 

 
The aim of this Chapter is to introduce the background of our work. Figure 3 presents a 

roadmap for the structure of the Chapter. We start by presenting concepts related to the field of 

maintenance. Then, we introduce the concepts related to Diesel engines, which is the equipment 

analyzed in this work, followed by a discussion of the importance of lubricants. Finally, and since we 

are interested in developing an intelligent system to the prediction of lubricant condition, we introduce 

some concepts regarding Data Analysis and Machine Learning. 
 

 
Figure 3 - Related Work Flowchart 

 

2.1 Maintenance – Concepts and Definitions 

 
According to Cabral (2013) maintenance tasks are done to keep equipment in proper working 

condition. To achieve this goal several approaches can be followed: planned and unplanned corrective 

maintenance; preventive maintenance; predictive maintenance; detective maintenance; and 

maintenance engineering (Figure 4). 

 
 

Figure 4 - Maintenance Types 
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Planned corrective maintenance refers to repair actions that are needed but can be deferred to 

a later date, which can be due to a limited budget, time, or staff. The unplanned corrective maintenance 

is performed at the time that the equipment does not perform its functions as expected. Preventive 

maintenance is based on performing its tasks according to a certain schedule, which aims at reducing 

failures, reducing costs and improving the equipment's performance. Predictive maintenance is 

performed when the equipment needs it. It implies identifying potential failures, allowing a better 

intervention planning to the manager. According to Dunn (2015), there are different concepts about the 

definition of preventive maintenance and predictive maintenance. Some experts in the field, as well as 

organizations that provide specialized services, define predictive maintenance as a specific subset of 

preventive maintenance techniques, with the goal of avoiding failures and downtime in the service of 

critical equipment. According to the general objective of this work, the concepts of predictive 

maintenance and preventive maintenance will be determined from Reliability Centred Maintenance 

(RCM) methodology (Whitaker et al., 2018). Thus, preventive maintenance is determined as a set of 

routine activities that aim for a particular component of equipment to be replaced or overhauled at a 

specific, predefined interval, regardless of its condition and predictive maintenance, is a set of 

inspection or testing activities aimed at determining the presence of failure warning conditions in a 

gradual process of condition points of the overall component or equipment. From the determination of 

this degradation index, a corrective maintenance action is then scheduled for replacement, repair or 

overhaul of the item before it suffers a breakdown in service. 

For example, we can consider the replacement of oil in an engine every 10000 km as a 

preventive maintenance activity. On the other hand, the determination of the oil degradation index 

according to the type of use or oil viscosity index, among other factors, that determine the exact moment 

of failure, can be classified as predictive maintenance. 

 

2.2 Reliability Engineering 

 
According to Ndustries (2012), the goal of reliability engineering is based on the identification 

of failures in modules of certain systems that are critical to the operation of the organization, preventing 

these failures from occurring at the operational level. Based on reliability engineering, systems 

considered critical must take into consideration the functional safety approach that concerns the 

operation in a safe way for the operators and the informational safety that deals with the protection and 

integrity of the generated data. Ndustries (2012) also states that for the design process of a system, the 

relationship between safety and failure determination must take into consideration the need for 

implementation of automatic control mechanisms. According to this statement, a transportation 

maintenance management system, given the high risk in traffic, should adopt safety mechanisms with 

automatic control to avoid accidents. 
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2.2.1 Reliability Centered Maintenance (RCM) 
 

According to Cabral (2013), the maintenance process and structure in an organization must 

include and ensure that all technical and organizational tasks operate within the degrees of reliability 

acceptable to the company. In this way it can be stated that maintenance services and repairs that follow 

specific technical premises reduce the chances of breakdowns and consequently unexpected expenses. 

On the other hand, one must take into consideration that the equipment in an organization, depending 

on their functions, have different needs and importance. As such, one needs to specify distinct 

maintenance policies and guidelines for distinct groups of equipment. According to Afefy (2010), RCM, 

defines a methodology that ensures components, systems or processes, maintain their tasks with risk 

control and environmental integrity. According to Cabral (2013), the RCM methodology is the 

preservation of the functions of a given system, identifying failures, with the help of the Failure Mode 

and Effect Analysis (FMEA), classifying and prioritizing the failures according to their respective 

consequences. In this sense Butdee & Kullawong (2015) states that RCM describes the types of failures 

according to their consequences, process safety and environmental impacts, focusing on the hidden 

failures that are unnoticeable to the operator or maintenance professional. Another important point of 

RCM is the use of probabilistic and statistical models referring to the failure modes and effects tools. 

Previously, the organizations adopted practices that did not prioritize the operational context in the 

elaboration of the maintenance plan, but through the application of RCM, the tasks performed in the 

equipment became the focus in the maintenance analysis. This change in the modus operandi context 

provided the creation of a proper format of maintenance analysis focused on the insertion of equipment 

and its components in the organizational context. According to Afefy (2010), RCM provides a 

structured method of selecting maintenance tasks in any process and organization and one of the main 

goals in this maintenance methodology is cost minimization, focusing on the main functions of the 

system and avoiding unnecessary maintenance actions. Thus, if an organization already has a structured 

maintenance program, the insertion of the RCM methodology will eliminate inefficient preventive 

maintenance activities. 

2.2.1.1 Attributes of RCM 
 

RCM can be seen as an organizational maintenance strategy that is implemented to optimize 

the maintenance program of a company, matching individual assets with the techniques most likely to 

deliver cost-effective outcomes. This results in a greater availability, reliability and reduction of 

operational costs. Additionally, it guarantees an adequate inventory planning for the minimization of 

industrial maintenance costs. Some attributes that define RCM are: 

 Preservation of system function; 

 Identification of failure modes and effects that enable the loss of priority functions; 

 Prioritization of applicable and effective maintenance tasks. 
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This type of tool has been applied in the industry with a focus on ensuring that the equipment 

performed its functions properly, with the standards for which it was designed, in addition to guiding a 

policy of improvement in the maintenance adopted under a technical and economical point of view. 

Ndustries (2012) states that the need for a group of experienced professionals and the availability of a 

volume of reliable data that indicates the equipment failures, is of fundamental importance for the 

elaboration and implementation of this maintenance methodology. When implementing this 

methodology, the working groups are focused on increasing equipment reliability rates, concentrating 

their focus on equipment that is critical to the organization as a whole. RCM was built with the intention 

of maintaining the balance between cost and best preventive maintenance plan. According to Bloom 

(2005), RCM treats maintenance through a detailed and rigorous study of each equipment's reliability. 

In this process, the identification of each equipment's reliability rates and its relation to the process as a 

whole requires a maintenance team with a high degree of technical and theoretical capabilities for the 

elaboration of reliability studies. One way of characterizing RCM is the great interaction between the 

maintenance departments and other specialties of the organization, which together are the main 

developers of improvements in the company's equipment. We can enumerate several positive points of 

RCM: 

1. Environmental protection and increased safety, which are determined from the 

information generated by identifying the possible risks of equipment failure; 

2. Optimization of Operational Performance based on the collection of information, which 

are necessary techniques to determine the best maintenance practices, focusing on the 

guarantee of greater equipment availability. This greater availability of equipment can 

also be seen as a shorter downtime or reduction of repair time; 

3. Greater Maintenance efficiency, that through all the volume of information collected, 

managers can develop better maintenance techniques guaranteeing the return on all 

investments in the maintenance sector. According to Bloom (2005), the RCM applied in 

a correct way can reduce 40 to 70% of the number of routine jobs, and 10 to 30% of 

emergency jobs; 

4. Increase useful life of the equipment, which in fact is a result of the adoption of the best 

maintenance techniques that guarantee, to each component of the equipment, the 

necessary maintenance to fulfill its functions adequately to the organization; 

5. Improved data storage, which is provided through the records generated by RCM, which 

can be used by both maintenance and operation, inspection and projects. These databases 

provide fundamental information for: the identification of the skills required to the 

maintenance operators and in the decision of which is the best stock policy; 

6. Optimization of the Work Team, that through the analysis of solutions to daily problems 

becomes more motivated with routine tasks. The promotion of the integration of 
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multifunctional teams for the analysis of solutions to problems increases the level of 

commitment of employees; 

7. Social Impact, which, according to the correct implementation of RCM that aims at 

minimizing the probability of failures through adequate procedures of control of the 

effects and consequences of failures, makes the organization use the natural resources 

necessary for activities in a rational way, without waste or possible accidents with an 

impact on the environment. 

Thus according to Afefy (2010), RCM's basic principle is that the inherent reliability of 

equipment lies in the quality of design and construction, and although maintenance ensures this 

reliability, it does not increase it. In this sense, this increase becomes possible through equipment 

redesign or modification. 

2.2.1.2 Condition Based Maintenance 
 

A study conducted in 2008 show that 30% of maintenance operations in Europe were not 

planned, that is, the interventions were merely corrective, carried out after the equipment failure 

(Salgueiro et al., 2015). Scheduled maintenance, on the other hand, is more effective and is the most 

common maintenance strategy adopted by large companies. However, this type of maintenance is based 

on information regarding the expected lifetime of a component or machine, which means that the active- 

target can be discarded while it still is in good condition or suffer from premature breakage due to flaws 

in the initial construction project. Scheduled maintenance does not determine a way to measure wear 

during the use of a given vehicle, for example. It is estimated that 18% to 30% of all maintenance costs 

could be avoided by implementing a more reliable maintenance methodology or by determining vehicle 

wear during normal operation (Salgueiro et al., 2015). Condition based preventive maintenance, also 

known as Predictive Maintenance or Condition Based Monitoring Maintenance, commonly known in 

English as Condition Based Maintenance (CBM), Predictive Maintenance (PdM) or Predictive Testing 

and Inspection (PT&I), had its main development in the last 30 years, due to the progress in research, 

software and devices for collecting, processing and interpreting data, as well as the introduction of 

computers in the day-to-day of maintenance. It is important to mention that RCM is a process used to 

determine the maintenance requirements of any physical asset in its operating context and a subset of 

this process is CBM. CBM is a maintenance methodology based on evidence of need, and RCM 

provides the rules of evidence. Unlike periodic preventive maintenance, which performs active services 

even though there are no apparent defects, condition-based preventive maintenance management only 

performs interventions on equipment after real defects are found and the evolution of their deterioration 

is assessed. This type of maintenance consists of the inspection and monitoring of physical parameters 

such as vibrations, temperatures, pressure, lubricant conditions and machinery operation, to determine 

which combination of these offers the best indication of the wear and tear of the equipment. Since all 

assets deteriorate with use, monitoring the evolution of a component of equipment over time, assessing 
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its tendency to deteriorate and choosing the best time to apply corrective actions before failure is 

extremely important for failure prevention. This can avoid the high costs of unscheduled maintenance, 

not only in terms of materials and labor, but also in lost profits due to downtime.  

In this way, CBM is a more reliable maintenance methodology and can be exemplified 

through the Potential Failure (PF) curve (Figure 5), which is an essential analytical tool for a 

maintenance plan that is based on reliability. Even with a wide variety of analysis methods, the main 

information that a developer of a predictive maintenance system needs to send to the manager, to avoid 

the possible consequences of the failure, is the proportion of a malfunction in relation to the PF interval. 

 

 

 
Figure 5 – Potential Failure (PF) Curve with the x-axis representing the time in service of an asset and the y-axis 

representing the performance of the asset in this time period – Adapted from (Prajapati & Bechtel, 2012) 
 

According to Figure 5, it is possible to determine that the PF interval or period illustrates the 

failure behavior of a component or equipment, measured in hours, Km, cycles or manoeuvres. This 

interval is considered from the point P, which is the point at which the first sign of the existence of a 

potential break is detected and the point F at which the equipment has suffered a real functional failure. 

In CBM most of the inspection technologies follow the same steps for data acquisition. Since 

the general object of this study are failures in lubrication systems in diesel engines, we will focus only 

on this segment. The main steps one has to follow for data acquisition are the following (Bousdekis et 

al., 2021): 

1. The collected data are recorded and compared with historical data, reference data 

provided by standards and experience of technical personnel, drawings and manuals of 

manufacturers, among others, in order to check for the existence of defects and the 

respective evolution trend; 

2. If a defect is found with a high rate of degradation, a service order is issued and the repair 

carried out before the failure occurs; 
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3. If the parameter is in normal conditions, or with a low or stable rate of degradation, in a 

next inspection it undergoes a new measurement for the purpose of checking its state of 

deterioration. 

The results found also lead to a reassessment of the inspection program. As deterioration 

trends are assessed, the frequency of inspections may be subject to change, and may increase or 

decrease. 

 

2.3 Diesel Engines 

 
According to Pucher (2010), on February 27, 1892, the engineer Rudolf Diesel filed a patent 

with the Imperial Patent Office in Berlin for a ‘‘new rational heat engine’’. On February 23, 1893, he 

was granted the patent DRP 67207 for the ‘‘Working Method and Design for Combustion Engines’’ 

dated February 28, 1892. Diesel engine, is a type of internal combustion engine in which air is 

compressed to a high enough temperature to ignite diesel fuel injected into the cylinder, where 

combustion and expansion drives a piston. It converts the chemical energy stored in the fuel into 

mechanical energy, which can be used to power a wide range of small vehicles, cargo trucks, buses, 

large tractors, locomotives, and marine vessels (HUGHES RV, 1969). 

2.3.1 Engine Characteristics 
 

All the information needed to keep the vehicle running smoothly for as long as possible is 

described in the maintenance manual, including information regarding the ideal lubricating oil, which 

ensures the best engine performance. To develop a new vehicle model, designers and engineers work 

together on the project, discussing its design, mechanics, and aerodynamics. In addition to the visible 

aspects, the mechanical parts of the engine are also designed and tested, including specifying the 

lubricating oil. Thus, it is necessary to present the characteristics of the engine to which the lubricating 

oil is being applied: 

 Engine Description: Most engine manufacturers use the name of the engine to determine 

some important information about it. Thus, from this name we can, in some cases, 

identify the technology used in it, the series and structure, among other data. However, 

even though we have direct access to this information, if it is necessary to have more 

details about the engine, the name (Ex: OM906hLA) and the brand (Mercedes Benz) are 

precise indicators for researching its technical file. 

 Engine Cylinder Number: The cylinder of an engine is the place where a piston moves. 

Its name comes from its cylindrical shape. In internal combustion engines, it is in the 

cylinder that the fuel deflagration takes place, which is the origin of the mechanical force 

that enables the vehicle to move. The number of cylinders can vary from a single one to 

12 or 16, depending on the project's specifications. 
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 Piston Diameter and Stroke: The piston in an engine is a cylindrical part usually made of 

aluminum or aluminum alloy, which moves inside the cylinder of internal combustion 

engines. To calculate the engine displacement, it is necessary to use the maximum useful 

volume inside the cylinder. For this volume calculation, the distance travelled inside the 

cylinder by the piston, called Stroke, and the cylinder diameter are taken into account.  

 Engine Displacement: In the specific case of internal combustion engines, the 

displacement is the volume swept by a piston inside a cylinder between the Top Dead 

Center (TDC) and the Bottom Dead Center (BDC), for one round trip. For example, car 

engine with a displacement of 2 liters draws in and expels two liters of fuel for each 

crankshaft revolution. When the crankshaft makes one revolution, all the pistons have 

made one round trip. In two turns, two liters of fuel are drawn in and another two liters 

of exhaust gas are exhaled, or four liters in total. We can calculate the displacement in 

liters by the equation 1: 

 

(0.785 𝑥 (𝐶𝐷)2 𝑥 𝑆𝐿 𝑥 𝐶𝑁 ) 
Displ(liter) = 

1000 

 

(1) 

 

Where: CD is a cylinder diameter, SL is a stroke length and CN is a number of cylinders. 
 

 Engine Power: The power of an engine can be defined as the useful energy generated per 

unit of time. If torque is the energy generated in an explosion, then power is proportional 

to torque multiplied by speed. The units of power are energy/unit of time, i.e. Joule/s = 

Watt. In cars the standard unit is kW but in our market it is more usual to use Horse 

Power (HP) where 1 kW equals 1.36 HP. So an engine that delivers 100 kW at 6000 

RPM is equivalent to saying that it has a power of 136 HP at 6000 rpm. 

 Maximum Engine Speed: The unit Revolutions Per Minute (RPM), is widely used to 

characterize various types of engines and refers to the rotational speed of the crankshaft. 

In general, for rotating machines of any kind (electrical, hydraulic, mechanical or 

thermal), generator or motor, the term RPM is used to refer to the angular speed of the 

main axis of the machine (input, if it is a generator; output, if it is a motor). In this case, 

we have angular frequency and angular speed, each with its own conceptual basis, 

depending on the type of physical-mathematical analysis to be made. The speed range at 

which the motor will operate is determined during the motor design phase, and the 

maximum speed determines the speed limit to which the motor is dimensioned. 

 Crankcase storage capacity: The crankcase surrounds the lower part of the engine, 

housing the crankshaft and protecting the moving parts of the engine from foreign 

objects, in addition to other different functions depending on the type of engine in which 

it is applied. On its bottom surface it has a screw lid through which the entire contents 
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can be emptied. The oil stored here is circulated by the oil pump, which spreads it in the 

moving parts of the engine. After lubricating the cylinders and crankshaft bearings, the 

oil returns to the crankcase and is dispersed again in a successive cycle. 

2.3.2 Spark Ignition Engine VS Diesel Engine 
 

One of the main differences between a diesel engine and a spark-ignition engine is the way 

ignition is accomplished. In diesel engines the ignition system does not exist and the explosion is 

dependent on the temperature of the air in the cylinder, that needs to be high enough to spontaneously 

ignite the fuel, which is added at the end of the compression stroke. This process is different from the 

spark ignition engine, which in the cylinder already contains an air-fuel mixture and a spark determines 

the ignition, not necessarily the pressure and temperature (Viskup, 2019). 

 

Characteristcs/Engines Diesel Spark Ignition 

Typical size range 1 kW to 80 MW 1 kW to 6.5 MW 

Efficiency 30% to 48% 28% to 42% 

Compression ratio 14:1 to 25:1 8:1 to 12:1 

Table 1- Diesel Vs Spark Ignition Engine 
 

By analyzing Table 1, it is possible to see that the compression ratios in diesel engines (14:1 

to 25:1) are higher than in spark ignition engines (8:1 to 12:1). This is to achieve ignition, the air in the 

cylinder is compressed much more than in a spark-ignition engine and it is this compression that raises 

the temperature. To withstand the higher pressure, diesel engine components must be stronger than in a 

spark-ignition engine, thus making them heavier and more expensive. However, the technologies 

employed in diesel engines translate into higher efficiency, which can reach 50% energy conversion 

efficiency, significantly higher than in spark ignition engines. It is important to mention that with the 

high compression ratio diesel engines have a higher combustion temperature and therefore need a highly 

efficient cooling system. 

To get a clear idea of the differences between diesel and spark ignition engines, as well as the 

reason why heavy vehicle fleets mainly use this type of engine, we can summarize the advantages and 

disadvantages of diesel engines in a few important points (Viskup, 2019): 

1. Consumption: It is one of the biggest advantages of diesel engine vehicles. They can get 

up to 25 kilometers per liter in small vehicles, a number that is unthinkable in spark 

ignition vehicles of the same size; 

2. Engine Price: in this aspect we have the first disadvantage of the diesel engine in 

comparison with spark ignition. Since its manufacture involves more advanced 

technologies, its costs are higher; 

3. Maintenance: Although it appeared before the spark ignition engine, today the diesel 

engine has a more advanced technology. For this reason, its maintenance also has a higher 

cost; 
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4. Durability: another reason that makes the diesel engine more expensive is its robustness. 

With a well-designed maintenance plan and the proper care, these engines have a longer 

operating time than spark ignition engines; 

5. High speed: for a high-performance vehicle at high speeds, the gasoline engine is ideal, 

since diesel engines are dimensioned for strength, not speed. 

 

2.4 Lubricants 

 
In this section we describe some important points about lubricants, detailing some concepts 

of condition-based maintenance with a focus on lubricants and present their physical properties and 

possible source of contamination. Lubricant Condition Monitoring (LCM) is considered an important 

condition monitoring technique, due to the extensive information derived from lubricant testing. 

According to J. M. Wakiru et al. (2019), LCM is not only used as an early warning system on machines, 

but also for the diagnosis and prognosis of CBM failures, increasing lubricant replacement intervals and 

consequently increasing equipment availability and causing a reduction in maintenance costs (Raposo 

et al., 2019). Many studies present the needs for an approach based on real data for the development of 

a condition-based maintenance policy. J. M. Wakiru et al. (2019) presents a detailed approach to recent 

research trends and the development of LCM based approaches applied to support maintenance 

decisions and applications in equipment diagnosis and prognosis. This study reviews and classifies 

LCM tests and parameters into several categories, which include physicochemical, elemental, 

contamination, and additive analyses. J. M. Wakiru et al. (2019) also reports approaches to analyze 

LCM derived data to support maintenance decisions, classifying them into four categories: statistical, 

model-based, artificial intelligence, and hybrid approaches. It can be concluded that this strategy of 

modelling or building intelligent models based on real data can accurately identify a state of wear and 

tear in a piece of equipment or system, making condition-based maintenance methodology more 

effective and reliable, and it is better to track the evolving health of a machine system than to just detect 

failures. 

Another important point is that the study of oils can determine the rate of equipment 

degradation. Thus, lubricant analysis is an important tool for the development of a predictive 

maintenance methodology based on real data or CBM. Up to this point in the document, it can be seen 

that the use of lubricant analysis to determine vehicle condition is considered a CBM strategy and has 

been applied in several cases over the years and has shown reliable results for better maintenance 

management. As such, it is necessary to review concepts about lubricants, their properties, their 

classification and their contaminants to create an intelligent model to predict failures in diesel engines. 

Lubricants are fundamental compounds for the perfect functioning of engines and equipment, 

reducing the friction of moving components, reducing wear and tear, and helping to cool the equipment 
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so that it can work and maintain the perfect temperature for its operation. The knowledge about them, 

their characteristics, applications and analysis, allows: 

 General notion of the state of conservation of the equipment and the lubricant itself; 
 

 Contributes to the creation of a reliable failure history of the equipment; 
 

 Decrease in corrective maintenance costs and, therefore, increase in the company's 

profits; 

 Implementation of a CBM methodology. 
 

The automotive industries are intensely passionate about increasing engine efficiency to meet 

fuel economy, emissions and performance standards. In this way, many studies have been carried out 

to develop reliable approaches and models to understand the lubrication mechanisms and calculate 

energy losses (Delprete & Razavykia, 2018). So it is necessary to understand the central object that will 

be studied in this document which is the development of a system capable of determining the 

degradation index of lubricants and assist fleet managers in the predictive maintenance of vehicles.  

2.4.1 Physical Properties of Lubricants 
 

Lubricants are selected according to their ability to form a sliding film that protects moving 

parts, resisting constant attempts by heat and oxygen to change their properties, resisting shocks and 

mechanical loads without changing their characteristics, in addition to removing heat from components 

equipment. The main characteristics of lubricants are Density, Viscosity, Total Base Number (TBN), 

Total Acid Number (TAN), Dielectric Constant, Density and Flash Point (Diaby et al., 2013). 

 Density is the ratio between mass and volume of oil at a given temperature. It is important 

to mention that this characteristic of the lubricant varies with temperature in an inverse 

manner, i.e. the higher the temperature, the lower the density. The density value of a fluid 

is used in viscosity calculations. This is therefore the main reason for performing oil 

density analysis, as without this information, it is not possible to determine the viscosity; 

 Viscosity is the property of fluids corresponding to the microscopic transport of the 

amount of motion by molecular diffusion. That is, the higher the viscosity, the lower the 

speed at which the fluid moves. It is defined by Newton's law of viscosity (equation 2): 

 

𝑑𝑢 
𝜏 = 𝜇 (

𝑑𝑦
) 

 

(2) 

 
Where: µ= Dynamic Viscosity, 𝜏 = Shear stress and 𝑑𝑢 = Rate of shear deformation. 

𝑑𝑦 
 

Viscosity is one of the main physical characteristics of lubricating oil and it is important to 

explain its variation in relation to temperature. In recent years, there has been a demand for lubricants 

for high performance engines, especially in the aerospace and automotive industries, which has led to 
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the development of different types of synthetic lubricants, with modifiers and additives, which change 

properties and make lubricants capable of operating at high temperatures without decomposition and 

with a low risk of combustion. Several studies show that during its normal operation in internal 

combustion engines, the oil viscosity decreases with increasing temperature and over time it loses its 

viscous properties. In this way, it can be determined that this reduction in viscosity depends mainly on 

the technical condition of the engine, the amount of oil in the lubricating oil system, the ignition mode, 

its operation and the operating time of the oil in the system. The engine is more likely to fail if there is 

inefficient lubrication or the lubricant viscosity is inadequate for the system to operate (Młynarczyk & 

Sikora, 2014). 

 
 

Figure 6 - Temperature Vs Kinematic Viscosity [Tauzia et al, 2012] 

 

 

Looking a Figure 6 (Tauzia et al., 2019), the oil viscosity generally increases when the oil 

temperature is lower than the nominal one, which in turn increases friction. This effect is known to have 

some important disadvantages, but the detailed description of these effects is rarely presented in the 

literature. One can also cite the work developed by Sejkorová et al. (2017), having the objective of 

presenting a comparison between analyses of two samples of motor oils worn in an IVECO CITY bus. 

Sejkorová et al. (2017) refers that the lubricants should serve integrally in various operating conditions, 

which are extreme and/or in adverse climatic conditions, maintaining their capacity without determining 

risks to the engine; 

 TBN and TAN: TBN determines the effectiveness and control of acids that arise during 

the combustion process. The higher the TBN, the greater the effectiveness in eliminating 

the contaminants that cause wear and tear and reducing the corrosive effects of acids over 
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a prolonged period. The TAN represents the mass necessary to neutralize one gram of 

oil, being the measure of all substances contained in the oil that react with potassium 

hydroxide. The most common constituents of such acid products are organic acids, metal 

soaps, oxidation products, nitrites and other compounds, which can be present as 

additives and which react with potassium hydroxide (Zadorozhnaya et al., 2016). The 

study by Zadorozhnaya et al. (2016) informs that any oil whose pH is between 4.0 and 

11.0 will have a TBN, equivalent to the amount of acid needed to bring the pH up to 4.0 

and a TAN needed to bring the pH to the upper limit of 11.0; 

 Dielectric Constant: We live surrounded by a multitude of materials and some of them 

have properties that favor or hinder the passage of electricity. Thus, it is necessary to 

determine a constant that classifies the material according to the ease with which electric 

charges move through its structure. Pawashe et al. (2017) presents an analysis carried out 

in MATLAB with reference to the variation of the lubricating oil dielectric constant 

during the period of use, comparing the measurements obtained from this constant in oils 

of the same type and brand. The authors conclude that this variation of values in the 

dielectric constant allows to determine the degree of change in the oil condition. The 

dielectric change is directly related to oil degradation and contamination level and allows 

the user to obtain optimized intervals between oil changes and to detect greater 

mechanical wear as well as the loss of lubricating properties of the oil. In summary, the 

variation in the rate of iron, water or other compound content in lubricants causes a 

variation in the value of the lubricants dielectric constant. According to Pawashe et al. 

(2017), choosing the right time for oil change can avoid the risk of damage to the engine 

and also reduce the cost of using oil during the period of operation. The study presents 

the range of various parameters according to the dielectric constant analysis. 

1. The TAN must be between 0.8 and 1.76 mg KOH / g. 
 

2. The maximum iron content in the oil can be up to 69 μg / g of oil. 
 

3. The minimum oil density can reach 780 kg / m3. 
 

Also according to Pawashe et al. (2017), if the measured values violate any of the 3 conditions 

above, the lubricant does not present the ideal working conditions and must be changed; 

 Flash point is the lowest temperature (ºC) at which a liquid gives off vapor or gas in an 

amount sufficient to form a flammable mixture. That is, an oil sample develops enough 

vapors under specified conditions for the air-vapor mixture above the sample to ignite 

for the first time without burning further afterwards. Flash point alone is not a sufficient 

quality characteristic of oil, nor does it allow conclusions about the suitability of the oil, 

but by evaluating the data from this characteristic with others such as viscosity, working 
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pressure and temperature, we can determine the optimum working conditions of the 

system (Zadorozhnaya et al., 2016); 

2.4.2 Lubricant Classification 
 

To compare the degradation indexes of different lubricants it is important to classify them 

according to their properties. The best-known classification of engine oils is the one proposed by the 

Society of Automotive Engineers (SAE). This classification is based on the viscosity of lubricants, not 

considering factors of quality or performance. The first standard of lubricants, J300, was developed in 

1911, and although this standard has been revised and updated many times, it is still used worldwide 

today for engine oil applications (Dv- & Dv-, 2014). Table 2, presents the classification of lubricants 

according to their viscosity. 

 

SAE 

Viscosity 

Grade 

Viscosity (cP) at Temp., 

(°C) Maximum 

Viscosity (cSt) 

at 100 °C 

Viscosity 

after shear 

(cP) at 150 

°C Start Pumping Min Max 

0W 3250 at -30 60000 at -40 3.80 - - 

5W 3500 at -25 60000 at -35 3.80 - - 

10W 3500 at -20 60000 at -30 4.10 - - 

15W 3500 at -15 60000 at -25 5.60 - - 

20W 4500 at -10 60000 at -20 5.60 - - 

25W 6000 at -5 60000 at -15 9.30 - - 

20   5.60 < 9.30 2.60 

30   9.30 < 12.50 2.90 

40   12.50 < 16.30 2.90 

40   12.50 < 16.30 3.70 

50   16.30 < 21.90 3.70 

60   21.90 < 26.10 3.70 

Table 2 - Society of Automotive Engineers (SAE) Classification According to Viscosity 
 

Through the SAE classification and the analysis of Table 2, it is possible to identify that the 

thinner the lubricant is, the lower its grade number. In the SAE viscosity grade, the number refers to the 

viscosity at a given temperature, and the letter "W" following the SAE grade comes from the word 

"Winter" and indicates that the oil is suitable for use in cold weather locations, but within the limits of 

one of the grades for high temperature locations. Oils that carry the W designation must have an 

adequate viscosity value when measured at the low temperatures established by SAE. The grades that 

do not include the "W" define oil grades for use in higher temperature locations, i.e., warm climates. 

Although SAE is the most widely used classification for lubricants, there are other important lubrication 

service classifications that are based on characteristics other than viscosity. Developed by the American 

Petroleum Institute (API), this classification is based on the service characteristics, i.e., it is based on 
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how severely the oil can work. It is the classification of the technology used in the development of the 

oil and is formed by two letters, being category 'A' the oldest and 'N' the one that offers the most recent 

technological resources (SA = oil developed in 1920 and SN = oil developed in 2011) (Dv- & Dv-, 

2014); 

2.4.3 Operational Properties of Lubricants 
 

Diesel engine oils licensed and classify by the SAE and API are formulated to provide the 

best engine protection properties and to provide the longest life possible. However, even the highest 

quality oil can be challenged by a number of factors that exacerbate its own degradation. Not only are 

the physical characteristics of the engine oil critical, but also whether the right grade of engine oil 

performance is selected to counteract the stresses and exposures that can shorten an oil's life. It is 

therefore necessary to present two lubricant characteristics that are generally determined by the 

manufacturers and that are not directly related to the physical and chemical characteristics, but are rather 

related to the oil's operating condition and to tests performed by the lubricant manufacturers. 

 Oil Drain Interval (ODI): Vehicle manufacturers generally set two oil change intervals, 

one being measured in kilometers (km interval), while the other is measured in months 

(time interval). Both are important, and the reason why vehicle and lubricant 

manufacturers choose to use these two measurements simultaneously is simple: 

1. Per mileage achieved, the more you drive, the more you use the engine and the oil. 

The more the oil is used, the more its reserves of additives are depleted and the 

faster the long-chain hydrocarbon molecules separate; 

2. Per time achieved, it is important to mention that lubricants work on the basis of 

additives and these additives lose their shelf life and sometimes it happens that the 

vehicle is left idle for a long time, allowing harmful sediments to accumulate. In 

other words, even when not in operation, some properties of the oil can change, 

deposits form, oxidation occurs, its viscosity changes, even its pH value changes. 

Because they are caused by the accumulation of contaminants, the process 

continues even when the engine is turned off. 

 Oil Stress Factor (OSF): The OSF is a method for quantifying the stress under which 

engine oil is placed and allows some prediction of oil degradation as a function of engine 

conditions. There are a few ways to calculate this factor and depending on the type of 

solution one wants to develop, certain factors can be substituted or suppressed. For our 

work, 2 different ways will be used to determine the OSF: 

1. 𝑶𝒊𝒍𝒛 (𝒌𝑾. 𝒉⁄𝒍𝒊𝒕𝒆𝒓𝟐): Oil stress factor determined by method 1 described in equation 3 

(Prasad & Lakshminarayanan, 2012): 
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1 𝑁𝑉𝑚𝑎𝑥 𝑃𝑒 𝑂𝐷𝐼 
𝑂𝑖𝑙𝑧 = (

𝑉 
) 𝑥 (

𝑁 
) 𝑥 (

𝑉 
) 𝑥 (

𝑂 
) 

𝑚𝑎𝑥 𝑃𝑒𝑚𝑎𝑥 ℎ 𝑣𝑜𝑙 

 

(3) 

 

Where: Vmax = Vehicle top speed (km⁄h); NVmax = Engine top speed (rpm); NPemax = Engine 

speed at maximum engine power (rpm); Pe = Maximum engine power (kW); Vh = Engine displacement 

(Litres); ODI = Oil drain interval (km); Ovol = Oil volume including top ups (Litres). 

2. OSF_v3 (𝑾⁄𝒍𝒊𝒕𝒆𝒓𝟐 𝒙 𝟏𝟎𝟒): Oil stress factor determined by method 2 described in 

equation 4 (Lee et al., 2005): 

 
𝑃 𝐶𝑒 

𝑂𝑆𝐹_𝑣3 = (
𝑉 

) 𝑥 (
𝑉 

) 
𝑑 𝑠 

 

(4) 

 

Where: P = Power output (W); 𝑉𝑑 = Volume displaced by cylinder (𝑚3); 𝐶𝑒 = Number of 

engine combustion cycles; 𝑉𝑠 = Volume of oil in sump (𝑚3). 

2.4.4 Lubricant Contamination 
 

According to Felipe Lima Bronté et al. (2015), vehicles engines are more powerful nowadays 

and more technologically advanced, making then more sensitive to contaminants in their lubrication 

systems. This implies the use of modern techniques to monitor machine and vehicle components. W. 

Wang (2007) refer that Shell in its advisory report, cited a series of failure statistics in which, for diesel 

engines, approximately 70% of service failures are due to lubricant contamination and 30% are due to 

wear-related problems. With such a relevant percentage of failures related to contaminants, it becomes 

necessary to identify which are the most common ones, in order to integrate their effects into an 

intelligent forecasting model. We can consider the following contaminants: 

 Metallic Compounds: In internal combustion engines, some mechanical components 

that participate in the movement process, such as cylinder liner, piston, injectors and 

valves, are usually worn due to friction. One of the lubricant functions consists in 

removing harmful substances, such as metal chips and other hard materials, which are 

produced by incomplete combustion, abrasion and wear, on the surface of the mentioned 

mechanical parts, thus aiming to ensure a smooth, stable and reliable work process for 

the engines (Hoang & Pham, 2019). When talking about metallic compounds, we must 

first make a brief introduction of lubricant additives, which have the purpose of adding 

important improvements such as anti-wear, antioxidant, anti-corrosion, defoamer, 

modify viscosity, emulsify, lower the pour point, among others. To formulate these 

additives, various chemical substances and metallic compounds are added to the base 

lubricant so that it performance is improved. Table 3 presents the metallic compounds 
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that are identified as contaminants in the lubricants in relation to the type of wear 

(Aucélio et al., 2007). 

 

Metallic Compound Presence in additives Possible wear 

 

 
Iron 

The iron element is not 

added to lubricants as an 

additive 

It occurs due to the wear of 

cylinders, pistons, gears, rings, 

axles, oil pump, crankshaft and 

support points. 

 
Copper 

The copper element is not 

added to lubricants as an 

additive 

It occurs due to the wear of valve 

guides, piston rings and support 

points. 

 

 

 
Nickel 

Nickel-containing 

organometallic additives 

are added in small 

amounts to the lubricating 

oil as an anti-wear 

additive 

 
Occurs due to block wear with 

included cylinders, connecting 

rods, camshaft and intake and 

discharge valves. 

 

 
Lead 

Organic lead complexes 

are usually added to 

lubricating oil as an 

extreme pressure additive 

 
It occurs due to possible wear of 

the support points and bearings. 

 

 

 

 
 

Zinc 

The zinc metal is added to 

the lubricating oil as a 

multifunctional additive, 

performing the functions 

of antioxidant, corrosion 

inhibitor, anti-wear, 

detergent and extreme 

pressure. 

 

 

 

 
It occurs due to the wear of 

galvanized systems. 

Table 3 - Contaminants in the Lubricants 

 

From Table 3, is possible to understand that some metallic compounds are present in some 

additives. If the presence of these metallic compounds is above a certain concentration it means that the 

lubricant is contaminated. On the other hand, there are metallic compounds that are not present in 

additives and their presence, independently of their concentration, indicates wear of the mechanical 

components; 
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 Fuel: Contamination can happen when the fuel is not completely burned in the 

combustion chamber, so it flows into the piston skirt sump and mix with the engine oil. 

According to this type of anomaly, one can have several effects. The washing of the liner 

walls, the piston skirt and the segments, which implies that the fuel removes the oil, 

leaving the area without lubrication and the liner walls polished, meaning that the 

metallic surfaces are in direct contact with each other, causing premature wear of the 

mechanical parts. When polished, it is more difficult for the coating to keep the lubricant 

in the area, which can lead to failures, such as blocking the piston and the coating itself. 

Dilution of the oil, which causes the lubricant to lose its viscosity and other properties, 

meaning that the films formed are weaker and less able to withstand high loads that can 

occur at certain points, such as the areas of the rod and crankshaft bearings. A third effect 

of the fuel that passes through the crankcase is related to biofuel. Currently, both diesel 

and gasoline include biofuels in their formula (biodiesel in the first case and bioethanol in 

the second). As the fuel is subject to high temperatures in the sump, part of it evaporates, 

which means that, in the case of diesel, the portion of the biofuel becomes concentrated. 

This makes biodiesel less fluid and more viscous than diesel, which causes the lubricant 

to thicken and create greater resistance for the contact of the metal parts of the engine. 

Given the exposed effects, it can be determined that contamination through fuel dilution 

can result in the degradation of the engine oil in several different ways, either by having 

a lower viscosity and causing greater friction between the metal parts of the engine, or 

by increasing viscosity (in the case of biofuels), causing greater resistance to movement 

in the metal parts of the engine, which can lead to increased engine wear and / or 

unexpected failure (J. Wakiru et al., 2017); 

 Soot: During the combustion process of the diesel engine, soot particles are produced 

that can be absorbed by the engine lubricant during the combustion cycles. This 

percentage of soot particles that contaminate the lubricant is directly linked to significant 

changes in lubricant performance and, consequently, greater engine wear. The main wear 

mechanism related to soot is abrasion, but at higher levels of soot content in the lubricant, 

contact deprivation can occur, which can further increase wear and corrosion of metal 

parts. High concentrations of soot can increase the local acid level around the piston, 

where high temperatures and volatile gases can coexist (Green & Lewis, 2008). Studies 

identify that the valve train is an area of the engine where wear is generally more likely 

to occur through soot lubricant contamination, because it components require a 

continuous supply of oil during operation. Being located close to the top of the engine, 

the valve train tends to operate with inadequate lubrication, particularly during a cold 
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start, when the oil pressure will initially be insufficient to pump the oil to the top of the 

engine and with increasing opening of the EGR (Exhaust Gas Recirculation) valve, which 

implies an increase in soot inside the engine (Green & Lewis, 2008). Motamen Salehi et 

al. (2017) studies the effect of oil contamination and its degradation in relation to the 

friction and wear of the engine oil pump, verifying that the consumption of additives by 

soot in the engine oil during the aging process has a significant effect on component wear. 

Ibrahim et al. (2013) presents in his study a review of soot measurement techniques in 

lubricants in terms of principle and measurement process and soot characteristics, thus 

informing specific advantages and disadvantages of each method. According to Ibrahim 

et al. (2013) it is necessary to develop methods that are capable of facing more 

complicated measurement challenges today, with a faster response time to generate 

results with comparatively high levels of accuracy and repeatability. 

 Water or Coolant: This type of contamination causes the lubricant to thicken, 

decreasing its viscosity and not allowing it to have a proper flow. This can lead to 

boundary conditions in parts of the engine that require a certain fluidity for adequate 

protection. According to J. Zhu et al. (2013), contamination from coolant, also creates an 

acidic environment within the oil, resulting in corrosion in the system, especially on 

copper surfaces. It is also important to mention that with coolant contaminating the 

lubricant, the filters become clogged sooner, which can cause reduced flow and 

eventually, once the bypass pressure is reached, a condition where the oil is no longer 

performing its filtering role. Thus, particles are formed that would normally have been 

filtered out might clogs the system, disrupting the lubricating film and resulting in surface 

damage to components. According to Bordatchev et al. (2014), antifreeze also mixes with 

the oil to form small globules called oil balls. Although very small, typically 5 to 40 

microns in size, they can cause major problems. These bubbles are abrasive and create 

surface erosion, which can produce all kinds of fatigue and lead to lubrication failures in 

areas with a reduced tolerance such as engine cylinders. 

Some of the main functions of lubricating oils are to provide low bearing friction, transfer 

heat, and protect components from corrosion. However as mentioned earlier, contaminants affect the 

oil's ability to meet these requirements, and the most common forms of oil contamination include: Water 

or coolant contamination, fuel, soot deposits, and debris such as wear particles from engine components. 

It is important to mention that each of these types of contamination can cause a different type of problem 

leading to engine lubricant degradation. 
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2.5 Vehicle Maintenance and Lubricant Analysis 

 
To setup a reliable database, with a group of documents to support this study, several searches 

of articles and academic documents were carried out, in the main online databases: B-on - Online 

Knowledge Library2, Web of Science3, ScienceDirect4 and Google Scholar5. This research has allow us 

to determine important issues for the development of a system for determining the degradation index of 

lubricating oils in diesel vehicles. Thus, the following is a presentation of some of the issues: The tests 

of lubricants, data acquisition in vehicles and intelligent systems. 

2.5.1 Lubricant Oil Testing 
 

From the analysis of the selected documents, it is possible to understand that oil analysis can 

be performed using various laboratory tests by means of a sample or through mathematical analysis of 

real-time data of the lubricants. In these various tests, it is possible to detect whether the lubricant is 

contaminated with water, fuel, and to check the wear of components by analysing metal particles. This 

information allows us to take actions aimed at correcting the origin of the contaminations and anticipate 

failures arising from wear and tear. According to Taylor et al. (2005), it is important to mention that 

tests for lubricant oil analysis can vary based on the source component and environmental conditions, 

but should almost always include tests for viscosity, elemental analysis (spectrometry), moisture levels, 

particle counts, Fourier Transform Infrared Spectroscopy (FTIR) and acid number. Other tests that rely 

on source equipment include analytical ferrography, ferrous density, demulsibility, and base number 

testing. Table 4, summarises how tests are commonly used in each of the three main categories of oil 

analysis. 

 

Oil Analysis Category Tests 

Fluid Properties Viscosity, Acid/Base Number, FTIR 

Contamination Particle Counting, Stain Test 

Wear Debris Ferrography, FTIR, Spectrometry, Stain test 

Table 4 - Oil Analysis and Tests 
 

Looking at Table 4, we can see that the tests are normally divided into 3 categories. Each 

category determines which results are obtained from the performed test. The first category is "Fluid 

Properties" and the tests that are presented measure physical and chemical properties of the lubricant, 

such as: Viscosity; TAN; TBN; coloration; particle shape and size. The second category measures the 

level of contaminants in the lubricant, which can be coolant, water, fuel, soot and ash. Finally, the last 

category represents the wear of the components that the lubricant has interaction with and is it collected 

 

 
 

2 https://www.b-on.pt/en/ 
3 https://clarivate.com/webofsciencegroup/solutions/web-of-science/ 
4 https://www.sciencedirect.com/ 
5 https://scholar.google.com.br/ 

http://www.b-on.pt/en/
http://www.b-on.pt/en/
http://www.sciencedirect.com/
http://www.sciencedirect.com/
http://www.sciencedirect.com/
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from the measurement of metal debris/particles present in the lubricant. The referred tests are briefly 

described below: 

1. Several methods are used to measure viscosity, which is reported in terms of kinematic 

or absolute viscosity. While most industrial lubricants classify viscosity in terms of 

International Organization for Standardization (ISO) standardized viscosity grades (ISO 

3448), this does not imply that all lubricants with an ISO VG 320, for example, are 

exactly 320 centistokes (cSt). According to the ISO standard, each lubricant is considered 

to have a particular viscosity grade as long as it falls within 10 percent of the viscosity 

midpoint (typically that of the ISO VG number) (Lee et al., 2005), (Kumbár & 

Sabaliauskas, 2013); 

2. Acid number and base number tests are similar but are used to interpret different lubricant 

and contaminant-related questions. In an oil analysis test, the acid number is the 

concentration of acid in the oil, while the base number is the reserve of alkalinity in the 

oil. Results are expressed in terms of the volume of potassium hydroxide in milligrams 

required to neutralize the acids in one gram of oil. Acid number testing is performed on 

non-crankcase oils, while base number testing is for over-based crankcase oils (Idros et 

al., 2012), (Guan et al., 2011); 

3. FTIR is a quick and sophisticated method for determining several oil parameters 

including contamination from fuel, water, glycol and soot oil degradation products like 

oxides, nitrates and sulfates, as well as the presence of additives such as Zinc 

Dialkyldithiophosphate (ZDDP) and phenols. The FTIR instrument recognizes each of 

these characteristics by monitoring the shift in infrared absorbance at specific or a range 

of wavenumbers. Many of the observed parameters may not be conclusive, so, often these 

results are coupled with other tests and used more as supporting evidence (Sejkorová et 

al., 2017), (Z. Wang et al., 2018); 

4. Particle counting measures the size and quantity of particles in the oil. Many techniques 

can be used to assess this data, which are reported on the ISO 4406:99. This standard 

designates three numbers separated by a forward slash providing a range number that 

correlates to the particle counts of particles greater than 4, 6 and 14 microns (Felipe 

Lima Bronté et al., 2015); 

5. Stain test is one of the oldest techniques used to identify excessive engine soot, evaluate 

the dispersion of a lubricant, and detect the presence of glycol, diesel fuel, and other 

contaminants in diesel engine crankcase lubricants. To do this, it is necessary to stop the 

warm engine, remove the dipstick and drip 2 drops onto a filter paper and place the paper 

with the drop on a flat surface, so that the oil drop can spread horizontally, for 5-10 

minutes. After this period, the diameters of three areas of the stain are measured to 
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identify the colorations and uniformity of oil spreading (Raadnui, 2005), (Wei et al., 

2021); 

6. Ferrography was developed in the 1970s as a response to the limitations of particle size 

detection existing in spectrographic methods. The technique measures concentration of 

both large and small ferrous wear debris in an oil sample, performed by passing the 

sample through a treated glass tube that is positioned over a high gradient magnetic field 

(S. Wang et al., 2017), (A. Kumar & Ghosh, 2016). 

7. Spectrometry is a technique for detecting and quantifying the presence of elements in a 

material based on the fact that each element has a unique atomic structure. When 

subjected to the addition of energy, each element emits light of specific wavelengths, or 

colors. Since no two elements have the same pattern of spectral lines, the elements can 

be differentiated according to the intensity of the light emitted in proportion to the amount 

of it presence in the material studied (Guan et al., 2011), (Silveira et al., 2010). 

It is important to mention that some tests may obtain results in different categories, but all 

must follow standardized methods such as those provided by the American Society for Testing and 

Materials (ASTM). According to Mujahid & Dickert (2012), in 1994, a concise technical report on the 

analysis of oxidized motor oil was published, explaining the classic ASTM methods. In this work, 

different analytical tools were described to measure engine oil contaminants, such as, insoluble pentane 

and toluene, soot, fuel, water, ethylene glycol, and metal ions from engine wear. The condition of the 

engine oil was examined by measuring the viscosity, acid and base numbers, pentane and toluene 

insolubles, fuel dilution, water, and ethylene glycol in the oil. All the methods mentioned have 

advantages and disadvantages as can be seen in Table 5. 

 

Test Strengths Weaknesses 

 

 

 
Viscosity 

Viscosity is the single most 
important property of a 

lubricant. The lubricant’s 

viscosity is what allows it to 

form the protective layer 
required for separation of 

moving surfaces 

Measure Viscosity alone 
cannot be used to determine 

the health of a lubricant, 

as different parameters can 

cause changes in viscosity 

outside of the normal aging 

process. 

 

 

 

 

FTIR 

This test method is relatively 
quick to perform and is capable 

of simultaneously detecting 

multiple parameters, including 

antioxidants, water, soot, fuel, 
glycol, oil oxidation, and certain 

additives. Adding to the power 

of this qualitative measurement, 
it is possible to indicate the 

amount of the specific material 

found in the sample. 

 
 

The IR spectrum is very 

complicated and 
interpretation depends on a 

lot of experience. This is why 

the equipment that performs 
this type of test is complex 

and costly. 
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Acid number and base 

number tests 

 

 

 
This test has a high accuracy 

following the standards required 

in the industry and has a high 

tolerance for contaminated 

samples. 

 

 
To perform the tests requires 

expensive equipment making 
the cost per test relatively 

high. To perform the tests 

requires the use of solvents 

and a qualified operator. 

Therefore, this test is usually 
performed in a laboratory. 

 

 

 

 
Particle Counting 

In clean systems a change in 
particle count can be a sensitive 

early warning sign of an active 

wear pattern. Used as a 

screening tool for ferrous 
density or complete analytical 

ferrography, particle counting is 

an effective test, which can be 
run onsite with minimal cost per 

sample. 

 
 

Particle counting is not 

limited to wear debris and 
cannot differentiate between 

wear debris and non-metallic 

particles, including ingested 

contaminants 

 

 

 

 

 

 

 
Ferrography 

 
 

In the hands of a skilled analyst, 

ferrography is able to detect and 

analyze active machine wear 
and can often provide a 

definitive "root cause analysis" 

based on the morphology of the 
wear particles Used in 

conjunction with forensic-type 

tests such as heat treatment and 
chemical microscopy, 

ferrography can often pinpoint 

the root cause of a specific wear 

problem 

Due to the method of sample 
preparation, ferrography is 

biased, though not limited to 

ferrous particles. This can be 
circumvented to some degree 

by preparing a filtergram 

instead of a ferrogram. The 

test is non-quantitative and 
its effectiveness depends 

critically on the knowledge 

and experience of the 
analyst. Because of the skills 

required of this analyst and 

the time the analysis usually 
takes, the test can be quite 

expensive compared to other 

test methods 

 

 

 

 

Spectrometry 

 

 

 

 

Inexpensive. No additional 

testing is required. No 

interferences from soot or water. 

Spectroscopy is perhaps the 

most important and useful 

test in used-oil analysis, but 
is does have limitations. A 

key drawback is the size 

limit of the particles it can 
vaporize. It does not detect 

particles beyond the five- to 

eight-micron range. While 

this limit does not affect the 
detection of most wear 

situations, there are times 

when it could be a problem 

https://www.machinerylubrication.com/Read/29598/oil-analysis-report
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Stain Test 

 

 

 
The spot test has the advantages 

of speed, simplicity of 

equipment, and a high degree of 
sensitivity. 

 
This test is performed by 

comparing the intensity of 

the coloration of the dots 

obtained on the filter paper 

with the color of a standard. 
Therefore, a skilled technical 

operator is required to 

interpret the obtained results 

Table 5 - Strengths and Weaknesses of Lubricant Tests 
 

By looking at Table 5, one can see that a variety of methods are available, from rapid field 

tests to expensive laboratory methods. In a laboratory environment, methods are selected based on the 

highest repeatability and accuracy that can be obtained with adequate throughput. In the field, a reliable 

result must be obtained quickly so that corrective or preventive maintenance action can be taken before 

any major equipment failure. The best method is the one that meets the application requirements with a 

reliable result. 

2.5.2 Degradation Analysis Methods 

 

In J. M. Wakiru et al. (2019), the condition of motor oil was examined by appearance and 

smell, measuring viscosity, water, and fuel content in oxidized oil. Samples of aged motor oil were 

taken from automobiles and then subjected to classical laboratory analysis using the tests described in 

Table 5. According to Mujahid & Dickert (2012), a detailed, technical analysis of motor oil was 

published in 1968, focusing on the selection and use of lubricants. The complete profile of engine oil in 

terms of its appearance and smell, water presence due to oxidation, kinematic viscosity, fuel dilution, 

insoluble matter, and ash content followed by some spectroscopic analyses were discussed. Since engine 

oil degradation depends mainly on contamination and oxidative stress, the analysis of the above- 

mentioned parameters is important for accessing the condition of the lubricant. But according to X. Zhu 

et al. (2017) a detailed analysis following all regulations and using large laboratory equipment, takes 

time and can be costly. Thus, with the advancement of miniaturization of components, which enabled 

the creation of sensors with better capabilities (see Table 6) and with the technological advances in the 

areas of ML and Data Analysis (see Table 7) the analysis of lubricant oils may have its response time 

and costs reduced. 

 

Reference Summary 

 

(Clark & Fajardo, 

2012) 

The physical properties of diesel engine oil were 

quantified through direct, real-time measurements using 

an onboard sensor. The sensor measures the lubricant 

temperature, density, dynamic viscosity, and dielectric 
constant. 
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(C. Zhang, 2003) 

A micro-acoustic wave sensor based on the thickness 
shear mode (TSM) quartz resonator has been investigated 

for engine oil quality monitoring through the viscosity 

measurement. 

 
(Agoston et al., 2005) 

The investigated parameter is the viscosity of the 

lubricating oil, which can be efficiently measured using 

microacoustic sensors. 

(Raadnui & 

Kleesuwan, 

2005)(Raadnui & 

Kleesuwan, 
2005)(Raadnui & 

Kleesuwan, 2005) 

 

The development of a low cost condition monitoring 

sensor for used oil is described. of the principle of the 

system consist in measuring the relative variation of the 

dielectric constant of lubricant caused by contaminants 
such as water, fuel dilution, water, wear debris. 

Table 6 - Example of “Sensor” Articles for Lubricant Analysis 
 

In Table 6 we just present a few examples of sensors used to analyse lubricant oils. Other 

examples could be presented, since there are many sensors, either for the determination of the 

degradation index or for the determination of contaminants, described in the literature and available in 

the market. Most of them use the principles of the tests mentioned in Table 5. 

Some sensors measure the oil’s dielectric constant, which changes as the oil degrades or 

becomes contaminated. A substance’s dielectric constant reflects its ability to keep an electric field from 

forming in it. Others measure optical characteristics and compare them to model conditions to assess 

the oil’s quality (a technique called Fourier transform infrared spectroscopy). There also are sensors 

that use magnetic fields to detect and classify metallic particles in the oil (a sign of wear). Finally some 

o them use x-ray emissions to detect the presence of foreign elements. 

Oil sensors need to be placed on or near the asset that is being monitored. For this reason, oil 

analysis sensors are not suited to monitoring assets that are: 

 Inaccessible (such as underground pumps); 
 

 Remote or widely spaced (such as offshore wind turbines); 
 

 Located in hard-to-reach places; 
 

 Located in hazardous environments, such as areas referred to by the European standard 

for Equipment for Potentially Explosive Atmospheres (ATEX), concerning the danger of 

explosive atmospheres; 

 Located in harsh conditions, such as hot strip steel mills where extreme temperatures can 

damage the sensors and the resultant flow of data. 

Another method of determining the degradation of lubricating oils that has been made possible 

by technological advances, are methods that use ML tools to analyze large amounts of data and quickly 

and effectively determine the degradation rate. According to Keartland & Van Zyl (2020), data- 
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driven prognostic models require large amounts of data to provide adequate solutions. Furthermore, the 

use of this type of method for determining the degradation index of lubricants is only becoming possible 

due to the increasing availability of real-time information about the condition of machines, due to low- 

cost sensors and Internet connections. Just as the development of sensors becomes a trend in selected 

articles in Table 6, we can see a new branch forming strongly on the development of ML systems to 

determine the condition or degradation of lubricating oils, as can be seen in Table 7. 

 

References Summary 

(W. Wang & Zhang, 
2005)(W. Wang & 

Zhang, 2005)(W. Wang 

& Zhang, 2005) 

This paper reports on a study using the available 
oil monitoring information, such as the data 

obtained using the Spectrometric Oil Analysis 

Programme (SOAP), to predict the residual life of 
a set of aircraft engines. 

 

 

(Rodrigues et al., 2020) 

This paper describes a model to automatically 

classify the oil condition, using Artificial Neural 
Networks and Principal Component Analysis. The 

study was done using data obtained from two 

passenger bus companies in a country of Southern 

Europe. 

 

 
(Raposo et al., 2019) 

This paper presents a case study and a model to 

predict maintenance interventions based on 

condition monitoring of diesel engine oil in urban 
buses by accompanying the evolution of its 

degradation 

 

(J. M. Wakiru et al., 
2019) 

This paper systematically reviews recent research 

trends and development of LCM based approaches 

applied for maintenance decision support, and 

specifically, applications in equipment diagnosis 

and prognosis. 

Table 7 - Example of "ML" articles for lubricant analysis 
 

According to the analysis of Table 7, this ramification can be confirmed with the work of 

Felipe Lima Bronté et al. (2015), which mentions that lubricating oil analysis, which estimates the life 

cycle of components and increases machine availability, brings immense benefits for efficient vehicle 

fleet maintenance planning. Moreover, this type of analysis consists of taking oil samples at certain 

periods of engine operation, as well as after operation, and evaluating them to determine both the 

condition of the engine and the condition of the lubricant and whether it maintains its properties. Felipe 

Lima Bronté et al. (2015) states that oil analysis can be done in the laboratory or online (during 

operation). In the tests sent to the laboratory, the evaluation occurs by analyzing the number of particles 

found in its volume, the size of these particles, their shape and composition. 
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2.5.3 Discussion of the Literature Review 
 

Through the document analysis performed, it can be concluded that in addition to anticipating 

risks, oil analysis reduces maintenance costs, avoids unnecessary downtime, controls wear and tear, and 

increases the useful life of equipment. Additionally, it eliminates the need for intrusive inspections of 

the equipment, which is often unnecessary and costly compared to taking a lubricating oil sample. This 

is because oil analysis performs a diagnostic of the physical and chemical condition of the lubricants 

and the equipment itself. If the company does not perform predictive maintenance with oil analysis, it 

is more prone to failures, and when these occur, corrective maintenance will be required, which is much 

more costly and affects productivity that could be easily avoided with predictive maintenance. In other 

words, despite the initial investment with predictive maintenance, it ends up generating a greater cost- 

benefit by making surgical corrections to avoid larger problems. 

Therefore, lubricant analysis is one of the tools that allows the anticipation of catastrophic 

equipment failures as such over the years we have seen advances in the determination of the lubricant 

degradation index and flow. These advances may be related to the use of classical techniques and tools 

as presented in Table 4 and Table 5, but they are directed towards using new maintenance 

methodologies based on real-time data analysis, either using online sensors or through the development 

of mathematical models and/or intelligent ML systems. 

It can be concluded from this analysis, that lubricant analysis, is currently divided into various 

techniques and methods for determining the state or rate of lubricant degradation. However, it should 

be noted that the selection of a procedure appropriate to the user's needs as a means of effective 

maintenance planning, should not only take into consideration the choice of a technique, be it the most 

reliable or the most reactive, but it should take into account the costs associated with each technique, 

the response time and the ability of the maintenance team to interpret the results. Therefore, to proceed 

with a technique or method to determine the lubricant degradation index and use this information as 

equipment condition, some factors should be considered namely: The point of oil sample collection; 

The cost associated with the analysis; The types of parameters to be evaluated; The interpretation of the 

results. Taking into account these factors for an oil analysis test to be reliable it should cover three 

categories of analysis: Fluid Properties, Contaminants, and Wear Residues. Therefore, it is important to 

mention the work of J. Zhu et al. (2012), which provides a comprehensive review of existing solutions for 

monitoring lubricating oil conditions and characteristics, along with the classification and evaluation of 

each technique. In this review, the techniques are analyzed and classified into four categories: electrical 

(magnetic), physical, chemical, and optical. The characteristic of each solution and its detection 

technique is evaluated with a set of properties crucial for oil health monitoring, diagnosis and prognosis. 

It is still important to mention that the techniques can be combined to add value to the lubricant 

analysis by utilizing the strengths of each technique and reducing their weaknesses. This link between 
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techniques and methods generates more reliable information about the condition of the equipment, but 

an expert is always needed to interpret the results of each test. With this information, we can mention 

the study conducted by A. Kumar & Ghosh (2016), which makes a combination of analysis techniques, 

performing particle separation by means of ferrography with Ferrogram (Model: T2FM), image analysis 

by bichromatic microscope (Model: ) MET-233) and Field Scanning Electron Microscopy (FESEM) 

(Model: ZEISS SUPRA 55 FESEM), and finally the study of the variation of properties in relation to 

the time of use were analyzed with Viscometer (Model: SVM 3000) and FTIR spectroscopy (Model: 

Perkin Elmer spectrum 2000). Sheng et al. (2012) develops his study based on the union of ferrographic 

analysis and spectrum analysis, thus demonstrating that ferrographic analysis can effectively monitor 

the wear condition of the engine, while spectrum analysis can provide additional information about the 

sources of abnormal wear. 

The combination of several techniques, allows for a proper characterization of the degradation 

index. However, when combining techniques it is necessary to take into account the associated costs, 

with each technique influencing an increase in costs in analyzing each sample without an expected 

return of information. In this way, some companies are opting for simpler tests with reduced costs as 

can be seen through the analysis of the items in Table 7, such as of the use of ML techniques and 

intelligent models, among others that maintain a strong relationship with the use of data to determine 

the degradation index. 

Finally, based on the literature review and, considering that this is an academic project with 

business connections, we decided to use a combination of techniques at a lower cost and with potential 

for advancement and generalization to other fleets and vehicles. In this way, we have chosen to use stain 

tests to acquire comparison information in conjunction with data analysis and ML techniques. 

 

2.6 Vehicle Information Acquisition Methods 

 
To reduce the problems associated with vehicle fleets, it is important to develop a predictive 

maintenance system based on data acquired in real time to determine the degradation index of lubricants. 

To this end, it is necessary to capture a wide range of variables, either from the behavior of the vehicles 

in operation or the lubricant itself and to perform a detailed analysis of the operation of the lubrication 

system and the behavior of the variables. In this section we describe the platform we will use for this 

purpose, presenting some concepts pertinent to this type of information acquisition.  
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Figure 7 - Sending Data in Real Time on Stratio's Platform – Source: (Automotive, 2021) 
 

Figure 7, presents an example of a dashboard of a platform, which can acquire real-time 

information from all systems of the vehicle, present information of potential failures and if necessary, 

the user can have access to more details of the behavior of the variables of each system. However even 

with the use of this type of platform it is necessary for the user to be an expert to determine the 

importance of this information and analyze it reliably, or to have someone to process the results that 

can be passed on to management. This type of platform often does not directly present results in an 

automated way that is easy for management to interpret. Thus, before starting the development of a 

system capable of providing results that are easy to interpret and in a dynamic way to determine the 

lubricant operating condition based on the information collected from the vehicles, it is necessary to 

present fundamental concepts for this type of acquisition and how these data relate to this project. These 

concepts are: Vehicle Communication Protocol, interface On Board Diagnostic (OBD), Parameter 

IDentification (PID), Diagnostic Trouble Code (DTC). 

2.6.1 Vehicle Communication Protocol 
 

According to Neumann et al. (2017) the increasing regulatory requirements and different 

technological advances determined the continuous development of automotive electronic systems. 

Improvements in the areas of safety, comfort, compatibility with environmental laws, legal 

requirements, and stricter guidelines have driven the integration of electronic systems with sensors 

connected to processing units, enabling connection to computers and communication by radio frequency 

signal. Based on these requirements, the individual systems of the vehicles had to be grouped in an 

integrated system, with the information being exchanged through the Controller Area Network (CAN) 

protocol between the Electronic Control Units (ECU). The standardization of the systems and 
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subsystems are an essential condition for the tuning between the modules. Because of this regulatory 

process, there was a reduction in development time, an increase in system reliability, and a reduction in 

redundant components, which were successively integrated to improve the applicability of information 

from other systems. The implementation of the integrated systems requires that all ECU's have a 

standard communication interface. This way the interaction with the subsystems will be defined 

according to standards, and all the variables involved will be efficiently controlled and analyzed, 

regardless of the manufacturer. According to Bozdal et al. (2020) large technological advances have 

also influenced the creation of devices that follow a trend of decentralization of applications, where 

smaller modules of a system such as sensing, processing and actuation modules can work separately. 

The technologies incorporated in vehicles have increased, with the electronic control modules available 

no longer being items of luxury automobiles, thus leading the industry to develop more efficient and 

versatile communication protocols. 

SAE describes a classification of network communication in relation to application 

requirements: 

 A: This is used for non-critical applications such as lamp and stereo control in a vehicle; 

 B: Network used for important applications, but not essential to the proper functioning 

and safety of the vehicle. The A and B ratings are applied to the electronic body; 

 C: Used in applications of maximum security, for distributed systems with information 

display in real time. 

Taking into account this classification it is possible to see that the choice for a distributed 

solution presents a number of benefits compared to a centralized solution, such as: fewer wires in the 

system, making wiring simpler and cheaper; a flexible system; easy system maintenance; and the fact 

that each unit can be developed and tested individually without affecting the operation of the system as 

a whole. Currently, there are many industrial solutions available for data communication between 

devices. However, when choosing one, we need to pay attention to the transmission rate of each 

protocol, so that there is no data loss between units. 

 

Protocol Transmission Rate 

SAE J1708/J1587 9600 bps 

SAE J1939 33.3 kbps / 83.33 kbps 

CAN 2.0/ISO 11898 10 kbps - 1 Mbps 

k-line/ISO 14230 10.4 kbps 

Table 8 – Example of Automotive Communication Protocols 
 

Table 8, presents the differences in the transmission rate of each protocol and this directly 

influences the type of application and the amount of information made available (Neumann et al., 2017). 

Furthermore, companies usually use several communication protocols at the same time in the vehicle 

structure depending on the need of each system. According to Neumann et al. (2017) we can exemplify 

the network architecture of a truck and bus body that uses the SAE J1939 standard, with a transmission 
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rate of 250kbps for priority systems, and the ISO14230 for diagnostic functions. According to Axelsson 

et al. (2004), we can present another example of this kind of use of communication protocols from the 

architecture of a Volvo FH truck, which is composed of three functional groups: powertrain, passive 

safety and entertainment. The first group contains the main control and diagnostic modules. The second 

group, performs the functions of controlling the active safety systems (airbags and immobilizer) and 

climate control. Finally, the third group concentrates the connectivity functions.  

 

 
Figure 8 – Volvo Truck Network Architecture (Source: (Axelsson et al., 2004)) 

 

Looking at Figure 8, we can see that there are three J1939 communication lines (J1939-1, 

J1939-2, J1939-3), one J1708/J1587 communication line and one PW communication line. This 

distribution of the ECUs, categorizes as a priority the basic vehicle operation and safety systems in 

networks with higher capacity and data transmission speed (250 kbps), leaving the systems of lesser 

importance to the J1708 network, with transmission rate of 9.6 kbps. This distribution makes it possible 

to: expand the network to structures outside the chassis; a lower volume of data traffic on the network; 

greater security in case of failure for the main systems and thus ensure a higher quality of transmission. 

2.6.2 On Board Diagnostic (OBD) 
 

According to T. Wang et al. (2021) during the 1970s and early 1980s, automobile 

manufacturers began to use electronic means to control vehicle functions. Following the advancement 

in these types of control devices and technologies soon manufacturers realized the potential of these 

devices to perform diagnostics, but they struggled with development of a tool that had such capabilities. 

Manufacturers started the developments of these diagnostic tools to meet mainly the standards for 

emissions of pollutants gases, by creating an electronic system which is incorporated into passenger 

cars, commercial and heavy vehicles with internal combustion engines to control and diagnose faults 

and failures, called On Board Diagnostic (OBD). T. Wang et al. (2021) states that with the evolution of 

technology and of the OBD system itself, associated with the dissemination and acceptance of the 
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interface by users and maintenance operators, the system has become more sophisticated and robust, 

able to offer greater control of the vehicle's operating variables, not only focused on emissions 

regulations, as it had been initially conceived, but also started to incorporate the control of all vehicle 

systems and diagnose potential failures. T. Wang et al. (2021) also indicates that in 1996 an evolution 

of the OBD was presented in the automotive field, called OBDII, based on a solid structure of standards 

developed by the SAE in accordance with the ISO. The evolution of the OBD system into OBDII was 

characterized by a new approach to detecting failures or poor performance of a particular vehicle 

component or system. Another objective covered by the OBDII technology is the minimization of the 

time between the occurrence of the malfunction in the operating variables of the vehicle, detection of 

the root problem of this malfunction and its final repair. With this, this system has become a fundamental 

part in the identification of anomalies, failures and errors in the components and subsystems of the 

vehicle, all of which are connected to the ECU. According to Pranjoto et al. (2018) the OBDII interface 

specifies the basis in data communication between vehicles and their control unit, as well as determines 

the pattern of the electrical signals and furthermore the physical pattern of the connector and location 

of the signals in it. The interface is determined as a 16-pin connector located inside the vehicle and 

should by standard be located within 2 meters of the steering wheel and have direct access without the 

need to use tools. 

 

 
Figure 9 - On Board Diagnostic (OBDII) Pinout – Adapted from (Abbott-mccune & Shay, 2016) 

 

Pranjoto et al. (2018) reports the physical specifications of the OBD-II connector (see Figure 

9), its mechanical characteristics and its pins according to the standardization of SAEJ1962 standard. 

There are ten different operating modes of OBD-II, dependent on the SAEJ1962 that is used. The OBDII 

data engine can be visualized according to Table 9. 

 

Mode 

(Hexadecimal) 
Description 

01 Requests current data from a given PID 

02 
Shows vehicle sensor data at the time of a diagnosed malfunction (Freeze 

frame data) 

 
 



67  

03 Requests diagnostic error codes 

04 Clear error codes stored in the ECU 

05 Request oxygen sensor test results 

06 Request on-board test results from monitored systems 

07 
Request error codes detected in the current or previous drive cycle 

(impacting emissions) 

08 Request on-board system, test or component control 

09 Request vehicle information 

0A Request error codes impacting emissions 

Table 9 - On Board Diagnostic (OBDII) Modes 
 

It is important to mention that vehicle manufacturers are not obligated to support all the service 

modes expressed in Table 9. Each manufacturer can define additional services, for example: service 22 

as defined by SAE J2190 for Ford/GM, service 21 for Toyota. 

2.6.3 Parameter IDentification (PID) 
 

According to Pranjoto et al. (2018), when it comes to PID's, the SAE J1979 standard defines 

a large amount of possible parameters, however not all vehicles will support all of the given ones and 

there may be custom parameters by manufacturers that are not defined by SAE. These parameters allow 

access to data such as vehicle speed, engine speed, fluid temperature, among other variables of the 

vehicle. 

 

PID 
(Hexa) 

Bytes Description Min Value Max Value Unit 

5 1 Coolant Temp. -40 215 °C 

0C 2 Engine speed 0 16383.75 Rpm 

0D 1 Vehicle speed 0 255 Km/h 

11 1 throttle position 0 100 % 
Table 10 - Example of Parameter Identification (PID's) According to SAE J1979 

 

Table 10 shows examples of the PID's in the OBD-II standard as defined by SAE J1979. 

Pranjoto et al. (2018) states that the expected response for each PID is provided, along with information 

on how to translate the response into meaningful data. 

2.6.4 Diagnostic Trouble Code (DTC) 
 

According to Vigneswaran et al. (2021), early versions of OBD would simply illuminate a 

malfunction indicator light on the instrument panel called Malfunction Indicator Lamp (MIL) if a 

problem was detected, but would not provide any information about the nature of the problem. Modern 

OBD implementations use a standardized digital communication port to provide real-time data, in 

addition to a standardized series of diagnostic trouble codes, or DTC's, that allow the user to quickly 

identify and correct malfunctions within the vehicle. A fault in a component or subsystem that has a 

direct impact on the perfect operation of the vehicle causes a DTC fault code to be written to the ECU, 

which contains the description and location of the problem that was identified. This can be seen in 

Figure 10. 
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Figure 10 - Standard Diagnostic Trouble Code (DTC) Reading – Adapted from (Vrachkov & Todorov, 2018) 
 

In this way, analyzing Figure 10 and according to Vigneswaran et al. (2021) the DTC's are 

composed of a letter, which indicates the system where the fault was diagnosed, followed by four 

numerical values according to the SAE J2012 standard, which indicate the type of code, the subsystem 

affected, the section and the type of malfunction or fault. In this way a car that has a DTC recorded in 

the ECU, according to Figure 10, "P0202", represents the diagnosis of a failure of the "Engine or 

transmission" system, which has a PID defined by ISO/SAE (Generic), in the subsystem or component 

determined by the manufacturer as being 2 and failure number 02 of this subsystem. 

 

2.7 Intelligent Systems 

 
Intelligent systems can be considered as implementations of the branch of science that study 

the set of paradigms that intend to justify how intelligent behavior can emerge from artificial 

implementations, in computers. An intelligent system incorporates intelligence into applications being 

handled by machines to support complex activities. Complex systems should not be confused with 

intelligent systems. For example, a manipulator robot that applies weld spots on a vehicle bodywork, 

despite performing a complex sequence of movements, having acute real-time operation and safety 

requirements, is not considered intelligent. This robot merely repeats a previously stored sequence of 

movements. This system lacks the ability to adapt to its environment. One of the characteristics of 

intelligent systems is precisely the ability to learn and to adapt itself to an unfamiliar environment or a 

new situation. According to Charissis et al. (2021), intelligent systems can be considered to be 

technological platforms that perform several functions that approximate the rational capacity of the 

human being to solve problems. The use of these systems is on the rise because large companies need 

to automate their processes. It aims to meet specific demands of the industry, promoting improved 
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performance, greater competitiveness, new business and thickening of the value chain from the 

introduction of new products and processes. 

Since the main goal of this work is to research and develop a system capable of identifying 

the operating conditions of lubricating oils in diesel engines, we will introduce topics related to 

intelligent systems using Big Data and Data Mining concepts, as tools for analyzing large volumes of 

data, in addition to Machine Learning (ML) techniques and expert systems. 

2.7.1 Big Data 
 

When we talk about extracting knowledge from data it is necessary to specify how this 

information will be stored, since it should be available in a timely manner for further analysis for the 

acquisition of knowledge whenever necessary. The term Big Data (Mell & Grance, 2011) refers to a 

large volume of data that is stored in an unstructured way and needs to be analyzed in real time, which 

briefly represents the inability of traditional architectures to store, handle and analyze large amounts of 

information. The characteristics of the big data concept imply a new architecture known as the "Vs" of 

Big Data as presented in Figure 11. 

 

 
Figure 11 - "V´s" of Big Data – Source: (Ricardo, 2014) 

 

According to Figure 11, the "Vs" of Big Data are: Volume (size of the data set); Variety (data 

from multiple repositories, domains or types); Velocity (rate of data flow); Variability (Consistency in 

the data set) and Value (Data in itself is of no use, they need to be converted in something valuable to 

extract knowledge). According to Alvine et al. (2018), industries have recently shown great interest in 

the potential of Big Data, with many organizations announcing major plans and investments in research 

and applications. A key point in Big Data is in its relationship with the Internet of Things (IoT), in 

which its data sources come from sensors, which capture various types of information on various 
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devices/machines, such as vehicles in a fleet. According to M. Chen et al. (2014), by 2030 sensors will 

reach the one trillion mark and will be a fundamental part of the big data concept.  

A large number of researches indicate that for the success of big data a strong connection with 

IoT and its effective integration with cloud computing is required (M. Chen et al., 2014). Another term 

widely used is analytics, which is related to the discovery, interpretation and communication of 

significant patterns in data. This analysis has added value in a wide range of areas, because that can be 

applied to the study of organizational data with the ability to forecast, improve, aid in decision making, 

risk analysis, among other applications (Chiang et al., 2018). According to Chiaburu (2016), in the 

organizational sphere of maintenance the implementation of this concept with the aid of mathematical 

models can demonstrate predictive task planning. Chiaburu (2016) further states, that scholars in the 

realm of smart data have experienced two eras of the use of analytics, these eras are referred to as: 

Before Big Data (BBD) and After Big Data (ABD). According to H. Chen et al. (2018), there is a 

timeline according to smart data, called: BI&A 1.0, the era of Business Intelligence (BI), which deals 

with understanding business phenomena by analyzing production processes, sales, and customer 

interactions, granting the manager greater decision-making power H. Chen et al. (2018). BI&A 2.0, the 

web era, is driven by companies such as Google, Yahoo, Amazon and eBay, which from the analysis 

of customer purchase profile collect a large volume of data to design or redesign products (H. Chen et 

al., 2018). BI&A 3.0, the mobile and sensor era, is based on the large volume of data generated by a 

large set of sensors and is driven by technologies such as Radio Frequency IDentification (RFID) and 

IoT (H. Chen et al., 2018). Considering this timeline, it is possible to indicate the direction of new 

technologies that drive the use of smart concepts, such as: smart cities, smart cars, among others (H. 

Chen et al., 2018). Already according to Dunn (2015), "big data" is the determination for a large volume 

of data that are arranged in diverse systems, with complex formats and modes of corelations. Dunn, 

(2015) states that the importance of a large volume of data for maintenance management comes from 

their storage and analysis to allow greater information gathering. With advances in IoT and other 

information technology systems, industry and maintenance services have the ability to store and analyze 

a more complete picture of asset integrity based on a more complete set of data drawn from a variety of 

sources. 

2.7.2 Data Mining 
 

The rapid increase in volume and diversity of data creates challenges in the long term storage 

and analysis. According to Shafi et al. (2018), Data Mining (DM), allows the user or developer to 

explore data to extract real value from it. According to Dogan & Birant (2021), the growth of data 

generates the need for the development and implementation of new tools and techniques capable of 

extracting knowledge in an automatic and intelligent way. All the knowledge extracted is of great value 

for managers in making critical decisions for the organization. However, the extraction of knowledge 
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from this large volume of data coming from various devices is not a task easily performed using 

conventional database management systems. 

 

 
Figure 12 - Data Mining Flow proposed for two class problem divided by processes and milestones for knowledge 

extraction – Adapted from (Shadroo & Rahmani, 2018) 
 

Figure 12 presents the proper flow for knowledge extraction. Shafi et al. (2018) identify the 

important technologies and tools for the data mining process. Shafi et al. (2018) states that cloud 

databases, artificial intelligence engines, statistics, pattern recognition, knowledge-based systems, 

information retrieval, high performance computing and data visualization are some of the tools needed 

for the procedure of knowledge extraction from data. Konar et al. (2015) explains that DM is a 

methodology that was born from the interaction and exchange of information from three major areas: 

classical statistics, artificial intelligence and ML. Still according to Konar et al. (2015) Data Mining can 

be considered part of a larger process called Knowledge Discovery in Databases (KDD), which allows 

the retrieval of initially unknown and potentially useful knowledge from a database. Dogan & Birant 

(2021) emphasizes that data mining is the non-trivial process of identifying valid patterns in data until 

then unknown, but potentially useful. According to Systems et al. (2021), in DM, the information from 

a database is processed in order to ensure the identification of factors and trends that are important in 

recognizing patterns in business activities. This type of procedure is used by managers to help them 

make decisions about strategic operational and business changes to obtain competitive advantages in 

the market. According to Dogan & Birant (2021), DM technology is structured from a set of tools, 

which through the use of ML algorithms or statistical models, are able to process a large volume of data, 

to extract knowledge in the form of hypotheses and rules. Thus, DM can be seen as a method that seeks 

a logical or mathematical description of the data, which can sometimes be complex in nature. Shadroo 

& Rahmani (2018) reports that hypothesis formulation is the basis for traditional data analysis, and that 

this is accomplished through DM techniques. Another important point is that relationships between data 

are not assumed to be known a priori, and so a variety of techniques are used to explore 
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and bring to light complex relationships in a large data set by exploring interrelationships. According 

to Shadroo & Rahmani (2018) and Mikut & Reischl (2011), Table 11 contains information about 

commercial data mining software, as well as some of their features: 
 

 
Table 11 - Example of Commercial Data Mining Software 

 

Mikut & Reischl (2011), refers that data mining technology is based on several techniques 

from different areas, like: 

 ML algorithms, which are used to extract knowledge from a database, these algorithms 

are able to find examples of high-level rules, which are understandable to humans (Mikut 

& Reischl, 2011); 

 Data Warehousing, a structure for managing data repositories from various sources, with 

the objective of having detail of part or all of a business. The final product obtained from 

a Data Warehousing project is the grouping of data from various sources of an 

organization for it efficient management (Mikut & Reischl, 2011); 

 Statistical Methods, used to study the collection, organization and interpretation of 

numerical data, especially for the analysis of population characteristics, through 

inferences from sample groups. The statistical techniques have fundamental importance 

in the Data Mining process, because most of the methods used had their origin within the 

Statistics area (Mikut & Reischl, 2011); 

 Data Visualization techniques and tools, which are indispensable tools in the Data 

Mining process. These techniques improve the understanding of the results obtained and 

the communication between users during the execution of the knowledge extraction 

steps. Data Visualization stimulates human perception and intelligence, aiming to 

increase the capacity of understanding and association of new patterns related to data 

(Mikut & Reischl, 2011). 

When analysing these two studies, Shadroo & Rahmani (2018) and Mikut & Reischl (2011), 

it is perceptible that commercial software adapts well with the techniques needed for the development 

of DM. Thus, the techniques used in DM go beyond a simple analysis, generating new information that 
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in the future may be part of the common knowledge of an organization and be applied in Information 

Systems to support decision making. For example, the use of visualization tools (trees, rules, graphs), 

combined with other techniques can greatly improve the process of understanding and recognizing 

patterns in DM. Dogan & Birant (2021) states that the basic function of DM is to find knowledge from 

the large volumes of information stored in the databases of organizations, to allow agility in decision 

making. In this way, DM is an indispensable technology in current organizations, capable of selecting 

relevant data, learning from it, extracting deductions, generating information with hypothesis, 

correlating apparently unrelated facts, making predictions, revealing the important attributes, generating 

scenarios, reporting and discovering interesting knowledge to the company's managers, and assisting in 

a fast and automatic way in decision making. DM can create correlations, for example, between people 

and products or services, and thus predict costumers’ habits or behaviours. DM can be used for 

prediction, identification, classification and optimization, allowing the analysis of association rules; 

classification and prediction; analysis of sequential patterns; cluster analysis or analysis of exceptions. 

According to Konar et al. (2015), it is necessary to highlight that each data mining technique adapts 

better to certain problems than to others, which determines the inexistence of a standard technique or a 

universal method. Each problem has its own characteristics and the success of a task is directly linked 

to the developer's experience and intuition. Furthermore, despite being a powerful and profitable tool, 

it poses challenges with respect to privacy protection. 

2.7.3 Machine Learning 
 

According to Jayabharathi & Ilango (2021), in 1959, Arthur Samuel defined the term ML, as 

being the field of study that allows computers to have a certain level of learning without necessarily 

having to have prior programming. For Mitchell (1997), the term ML is defined as a set of techniques 

that allow improvement in the performance of a given complex task, using previous experiences and 

information. ML can be divided into 3 fundamental areas, depending on the way we use the data to 

learn: supervised, unsupervised and reinforcement learning (see Figure 13). In supervised learning we 

have the data organized in a structured way, where for each input we have the desired output. In 

unsupervised learning, we have no prior information and the goal is to establish the best data structure 

autonomously, based on a dynamic interaction. Reinforcement learning, is used when the objective is 

that systems learn from acquired experiences. In these cases, when humans program the algorithm, they 

define which result is expected without indicating the best way to achieve it. Thus, the machine is 

responsible for figuring out how to achieve its goal. The algorithm runs a series of experiments in which 

it gets errors and successes, being rewarded for what went right and being penalised for the actions that 

led to failure. 
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Figure 13 - Machine Learning Algorithm Models – Adapted from (Mitchell, 1997) 
 

It is important to mention that all groups of algorithms, whether supervised or unsupervised 

or reinforcement, must have an ultimate goal, which is proposed by the developer at the beginning of 

the intelligent system development. We can exemplify this goal as being the prediction of a failure in a 

vehicle or the operating condition of a certain vehicular system. Figure 13 shows that supervised 

learning can be subdivided into two types: classification and regression. Mitchell (1997) refers that there 

are algorithms that are able to perform time series analysis, with the goal of learning a function, mapping 

initial facts for determination and/or extrapolation to a real value. Several algorithms exist for this type 

of problem: linear regression, regression trees and artificial neural networks are given as some examples. 

Mitchell (1997) finally informs about algorithms that have the goal of learning a function based on the 

description of an initial input: Bayesian networks, logistic regression and K-Nearest Neighbors (K-NN), 

are some given examples. 

According to Prytz (2014), ML can be broadly defined as computational methods using 

experience to improve performance or to make accurate predictions. In this case experience refers to 

information previously available to the learning system, which usually takes the form of electronic data 

collected and made available for analysis. This data can be in the form of digitized human training sets 

or other types of information obtained via interaction with the environment. Thus, it is important to 

mention Expert Systems developed to simplify and automate the work of the technician responsible for 

a given equipment, allowing to analyze and report its operation to track a robust and diverse amount of 

information. 

2.7.3.1 Expert Systems 

 

According to N. Kumar & Parrek (2013), Expert Systems (ES) were proposed in the late 1980s 

and early 1990s, stemming from systems that were based on a knowledge structure determined by an 

individual, who was considered as the expert. The knowledge extracted from the experts according to 

N. Kumar & Parrek (2013), was used by inference mechanisms or rules, answering questions without 
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any interaction with other systems. Over the years the concept of expert systems has evolved. For 

example: 

 According to Feigenbaum (1979), ES are computer programs that used knowledge and a 

rules model to solve complex problems that required human expertise and judgment; 

 According to Beynon-Davies (1991), ES are computer systems that made use of human 

knowledge in a particular scope to perform tasks with characteristics similar to a human 

expert. 

Taking into account these two definitions, one can see that they share some similarities. They 

both agree that ES are systems programmed with computational tools and that are developed from the 

knowledge of one or more Human Experts (HE) to develop tasks or answer complex problems. With 

the dissemination of distributed platforms and administrative management models, N. Kumar & Parrek 

(2013) affirms that the ES's have evolved for complex problem solving with the ability to learn by not 

being restricted only to small-scale applications and consequently incorporated into the so-called 

Knowledge Based Systems (KBS) that are based on the implementation of standardized processes of an 

organization with the help of the incorporated knowledge of a human specialist. In this way, KBS have 

their concept defined as being systems with problem solving capabilities using specific knowledge 

according to the scope of the application, generally inserted in the management and decision making 

process of a system or organization. These systems collect data and manipulate various aspects of 

knowledge, with the fundamental requirement being information about the skill, experience and 

heuristics used by the expert in problem solving. With a high degree of complexity, the development of 

these systems requires a deep interaction between the Knowledge Engineer (KE) that will model and/or 

develop the system (N. Kumar & Parrek, 2013). According to Rezende (2003), KBS can be identified 

as ES at the time they are developed, whose functioning is determined in an isolated manner from other 

systems, with the objective of being implemented in applications in which the knowledge to be 

manipulated focuses on a specific scope and is supported by a high degree of specialization and heuristic 

knowledge. 

 

 
Figure 14 - Expert System Structure - Adapted from (Rezende, 2003) 
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Figure 14 summarizes the characteristics of ES in the context of Intelligent Systems (IS). ES 

must have their knowledge stored and organized in a way that makes it easy for a non-expert user to 

query solutions. This type of system is extremely useful for training and teaching, since a large part of 

an expert's knowledge is stored and organized to solve problems as efficiently as possible. The database 

of all this knowledge according to Charissis et al. (2021) is formed by a set of rules and procedures that 

the HE uses to solve problems, which are modelled in the system by the Coding Expert (CE), who 

implements it in a practical way according to the chosen representation, and the knowledge base 

provides the functional characteristics of the system. According to Alvine et al. (2018), the operational 

memory, which functions as a short-term or volatile memory, has the function of storing facts 

determining the problem during solution processing. The data regarding the facts can be obtained from 

sensors, keyboard responses, databases, or other programs. The inference machine or rule engine, 

according to Alvine et al. (2018), works by comparing the data stored in operational memory with the 

knowledge stored in the knowledge base. The inference machine is the component of ES’s that 

processes reasoning and logical planning. Its processing works as follows Charissis et al. (2021): At the 

point where the knowledge base is structured from rules, the inference machine determines which 

conditional of the rule satisfies the facts held in operational memory and adds the conclusion of this rule 

to operational memory. There are two ways of implementing inference: Forward Chaining, which 

begins with evidence to reach a conclusion; and Backward Chaining, which begins with a conclusion 

and searches for evidence to prove it. The knowledge acquisition subsystem has the function of 

introducing or removing knowledge from the knowledge base (Charissis et al., 2021). The explanation 

subsystem is used to explain to the user the line of reasoning that the SE used to determine the resolution 

of the problem. This characteristic is of great importance because it allows the user to access additional 

information in the system, besides enabling the system for educational purposes (Charissis et al., 2021). 

The user interface establishes a means of communication between the user and the system (Charissis et 

al., 2021). 

KBS's possess the ability to: Question the user, using an easy language with the focus on 

obtaining the information he needs; Develop a line of reasoning from the information obtained and the 

knowledge extracted to determine appropriate solutions; and finally, explain logical reasoning at the 

moment of questioning the user on how he reached his conclusions. For this explanation the system 

must be able to memorize the rules performed in the processing and present them in an understandable 

way to the user. According to Rezende (2003), the fundamental differences between a conventional 

system and a KBS can be highlighted considering seven points (see Figure 15): 1: Organization, 2: How 

it incorporates Knowledge, 3: Execution Techniques, 4: Form of Control, 5: Modification process, 6: 

Processed Information, 7: Outputs. 
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Figure 15 - Conventional Systems VS Knowledge Based Systems KBS´s – Adapted from (Beynon-Davies, 1991) 
 

Figure 15, allows to conclude that the most notorious difference between a conventional 

systems and a KBSs is in the aggregate power of knowledge and in the system's capacity to learn and 

to be modified as it is being used. 

2.7.3.2 Model Evaluation Metrics 
 

After explaining some important concepts in the area of intelligent model development for 

solving real problems, it is necessary to specify how we can evaluate the results of these models and 

systems. According to Keartland & Van Zyl (2020), in classification and failure prediction problems, it 

is possible to find numerous metrics to evaluate the model, however, it is of utmost importance to know 

which ones and when to use them. Before mentioning the evaluation metrics commonly used for the 

type of problem we are proposing to solve (prediction of the operating condition of diesel engine 

lubricating oils), it is necessary to explain a basic concept for the calculation of each metric. This 

concept is based on the confusion matrix, which shows the classification frequencies for each class of 

the system, allowing the extraction of metrics that help in it evaluation. This matrix is exemplified in 

Table 12: 

 

 Predicted 

Positive Negative 

 

R
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l 

 

Positive 
True 

Positive (TP) 

False Negative 

(FN) 

 

Negative 
False 

Positive (FP) 
True Negative 

(TN) 
Table 12 - Confusion Matrix shows the classification frequencies for each class 

 

According to Hanafy & Ming (2021), a confusion matrix is a table that indicates the errors 

and hits of a given model, compared to the expected result (or labels/labels). Table 12, presents 

important concepts: 

 True Positive (TP) - correct classification of the class Positive; 
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 False Negative (FN) - error in which the model predicted Negative class when the actual 

value was Positive class; 

 False Positive (FP) - error where the model predicted class Positive when the actual value 

was class Negative; 

 True Negative (TN) - correct classification of the Negative class. 
 

It is important to mention that Negative class does not necessarly means failure and Positive 

class no failure. The determination of these classes depends on how the problem was structured. That 

is, in our problem we are looking for a prediction of the lubricant's operating condition, and in this case 

Positive class means that it is a failure and Negative class means that there is no failure and the lubricant 

is in operating condition. With the values obtained in this matrix it is possible calculate three evaluation 

metrics commonly used to evaluate intelligent systems. 

 

𝑇𝑃 
𝑅𝑒𝑐𝑎𝑙𝑙 = (

𝑇𝑃 + 𝐹𝑁
) 

(4) 

 
Where Recall score is the number of correct positive results divided by the number of all 

relevant samples (all samples that should have been identified as positive). 

 

𝑇𝑃 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (

𝑇𝑃 + 𝐹𝑃
) 

(5) 

 
Where Precision score is the number of correct positive results divided by the number of 

positive results predicted by the classifier. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙 
𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 (

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) 

(6) 

 

Where F1-score is the Harmonic Mean between precision and recall. This evaluation metric 

indicates how precise the classifier is (how many instances it classifies correctly), as well as how robust 

it is (it does not miss a significant number of instances). High precision but low recall, means that the 

model is extremely accurate, but it misses a large number of instances that are difficult to classify. The 

greater the F1 Score, the better is the performance of the model 

By analyzing equations 4, 5 and 6, we can determine that precision can be used in a situation 

where FP are considered more detrimental than FN. For example, when classifying an action as an 

optimal time to change the lubricant in a given equipment, the model must be correct, even if it ends up 

classifying good times as bad times (a FN situation) in the process. In other words, the model must be 

precise in its classifications, because if we consider a good moment when in fact it is not, this leads to 

loss of operating time and potentially profits for the company. Recall can be used in a situation where 

FN are considered more damaging than FP. For example, the model should find all situations where the 
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lubricant is not in operating condition anyway, even if it classifies some situations that determine the 

operating condition as not being a condition (FP situation) in the process. In other words, the model 

must have high recall, because classifying the non-operating condition as being healthy for the 

equipment to operate with the lubricant oil can lead to catastrophic losses. F1-Score is a way to look at 

only 1 metric instead of two (precision and recall) in some situation. In other words, when you have a 

low F1-Score, it is an indication that either the precision or the recall is low. 

Finally, and not less important we can use Receiver Operating Characteristic (ROC) curve, 

which is one of the popular metrics used in the industry to binary classification problems. This curve is 

exemplified in Figure 16. 

 

 
Figure 16 - Receiver Operating Characteristic (ROC) curve, is a chart that show the ability of a binary classifier 

system 
 

ROC curves typically feature True Positive (TP) Rate on the Y axis, and False Positive (FP) 

Rate on the X axis. This means that the top left corner of the plot is the “ideal” point indicating a FP 

rate of zero, and a TP rate of one. The “steepness” of ROC curves is also important, since it is ideal to 

maximize the TP rate while minimizing the FP rate. Using this curve we can compute the Area Under 

Curve (AUC), that show the probability of the classifier to rank a randomly chosen positive example 

higher than a randomly chosen negative example. This value of the AUC varies between 0 and 1, it does 

mean that a larger area under the curve is usually better and is close to the value 1. 
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Chapter 3 - Fleet Maintenance Case Study 

 
After discussing the background and concepts for the development of this work we will 

present an overview of the approach, and the interconnection of the concepts mentioned in the previous 

chapter. At this point, it is important to refer that the author of this work is part of a company (Stratio) 

team responsible for the development of a device to collect real-time information from vehicles to 

predict failures and reduce maintenance costs by creating predictive models on a proprietary platform. 

It can be said that by collecting repair data, DTC's stored in the vehicle control unit and real-time data 

on the fleet's operational profile, one can realize that a catastrophic failure does not occur immediately, 

but rather it occurs over a certain period of time with anomalous indications in variables and data that 

can be analysed to pre-emptively determine a potential minor failure that can be addressed early at a 

reduced cost. For example, an engine failure that may have a high maintenance cost for a fleet manager 

can be detected by analyzing lubricant variables and data, and consequently can be tackled by changing 

the lubricant and/or reducing oil change intervals. This type of minor intervention has a reduced cost 

and is less damaging to the vehicle than a catastrophic engine failure occurring due to lack of inefficient 

lubrication. 

 

3.1 Stratio 

 
Stratio specializes in Artificial Intelligence and Automotive Engineering, with a mission to 

advance ML in automotive (Automotive, 2021). Stratio envisions creating a company that pushed the 

boundaries of predictive intelligence transportation and mobility going beyond existing methodologies, 

and help automotive manufacturers to accelerate towards a zero-downtime future, enabling early fault 

detection and insights into vehicles health, systems condition and performance. 
 

Figure 17 - Stratio Data Acquisition Hardware – Source (Automotive, 2021) 
 

According to technological developments in the maintenance sector, one can highlight the 

author's presence in this scope of development, since he currently develops activities as an automotive 

engineer in the research department of Stratio Automotive. As can be seen in Figure 17, Stratio 
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developed a heavy-duty vehicle data acquisition device that connects to the vehicle's OBD port, to 

acquire real-time data on various aspects of the vehicles and operators using PID's and DTC's as a source 

of information. The information is sent wirelessly, via mobile network and is stored in a database. Then, 

it is processed analyzed, and presented to customers on a proprietary online platform. It is important to 

mention that the author's insertion in this company not only allows access to real-time information from 

the vehicles, through the use of the acquisition device, but also opens the opportunity to access the 

information that is not stored in the vehicle's control unit memory, stored in physical format at the clients 

Stratio servers. Even though this information is not used directly in the development of the prediction 

system, it serves as guide for the development of many of the fault prediction functionalities. 

The Artificial Intelligence algorithms developed by Stratio analyze thousands of pieces of data 

extracted from sensors in real time, which help engineers identify important variables for the 

development of methods to predict vehicle failures and performance issues. The technology enables the 

empowerment and acceleration of root cause failure analysis with critical insight, saving time and 

resources; it allows manufacturers to add value to their cars by retrieving intelligence from the data, 

preventing recurring failures, reducing warranty costs, and benefit by proactively selling maintenance 

and repair services. Stratio technology works in three main stages, Acquisition, Analysis and Alerts: 

 Acquisition - After Stratio Databox, i-e., the acquisition device is installed in the vehicle, 

fault codes and data from engine systems, batteries, transmission, among others, are 

collected and transmitted in real time to the server. The Stratio platform is also 

compatible with pre-existing data acquisition systems as long as these have the same 

density and granularity of the required parameters and the transmission of this data is 

performed in real time; 

 Analysis - The received data is continuously analyzed by proprietary Machine Learning 

algorithms according to rules developed by automotive engineers. The information 

system constantly "learns" from the newly acquired data, adapting and refining the results 

obtained for each new malfunction detected. The malfunctions found during real-time 

diagnostics are also processed the moment they become active; 

 Alerts - Notifications are configured as fault and anomaly alerts, displayed on the 

website, without the need for an external application. Additionally, the alerts are 

configured to be sent, by email and Short Message Service (SMS), according to the 

client's needs. The alerts are associated with the values registered in the sensors and 

systems associated with the presented failure, for a more precise analysis of the root cause 

of the problem. 
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3.2 Common Vehicle Failures 

 
There are many types of failures in automotive systems. To create an intelligent vehicle 

maintenance model with high relevance for a fleet manager and with a reliable failure prediction 

response, it is first necessary to divide the vehicle structure into several systems and subsystems, to 

reduce the level of complexity. To catalogue the common failures of an automotive system and to 

proactively tackle the problems with the highest number of occurrences, which determine high 

maintenance costs for fleet managers, some authors such as Nahim et al. (2016) present a literature 

review on failures occurring more frequently in diesel engine vehicles. The characterization of these 

common failures is determined through the collection of repair data from various fleets, with the 

objective of preparing a database on diesel engine failures to help researchers develop accurate 

diagnostic and forecasting strategies. Another important point in determining and using this failure 

database is to assist in the development of simulators of the behaviour of the vehicles in the presence of 

failures. With this information and through the study of common faults determined by Nahim et al. 

(2016), we started an investigation about the most common failures in the fleet that will serve as a 

source of data for the system that will be developed. The results are summarised in Table 13 

 

Occurrences of faults in diesel engine vehicles 

Class of defect 
Mean Occurrence 

(%) 
System 

Fuel-injection equipment and fuel supply - (Collacott, 

1977) and (Diesel, 1993) 
26.05 Engine 

Water leakages - (Collacott, 1977) and (Diesel, 1993) 15.20 Engine 

Valves and seating - (Collacott, 1977) and (Diesel, 
1993) 

14.65 Body 

Bearings - (Collacott, 1977) 3.50 Suspension and Steering 

Piston assemblies - (Collacott, 1977) 3.30 Engine 

Oil leakages and lubrication systems - (Collacott, 

1977) and (Diesel, 1993) 
5.75 Engine 

Turbochargers - (Collacott, 1977) and (Diesel, 1993) 3.75 Engine 

Gearing and drives - (Collacott, 1977) 1.95 Gearbox 

Governor gear - (Collacott, 1977) 1.95 Gearbox 

Fuel leakages - (Collacott, 1977) 1.75 Engine 

Gas leakages - (Collacott, 1977) and (Diesel, 1993) 3.75 Engine 

Breakages and fractures, other than mentioned - 

(Collacott, 1977) 
1.25 Body 

Miscellaneous - (Collacott, 1977) and (Diesel, 1993) 13.15 Body 

Foundations - (Collacott, 1977) 0.45 Body 

Crankshafts - (Collacott, 1977) 0.10 Engine 

Electrical - (Diesel, 1993) 3.45 Electrical 

Table 13 – Percentage of Common Breakdowns on Diesel Engine Vehicles 
 

In concrete we present the average percentage of the most common faults in a vehicle from 

two references presented in Nahim et al. (2016) and add a column (System) that determines the group 

or system in which these faults appear. It is important to mention that this division into systems was 
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performed taking into account our domain expertise, as well as through document analysis of repair 

data obtained from Stratio customers. This type of screening is important to give engineers an idea about 

the systems and components that should be prioritized when creating intelligent predictive models.  

Through the analysis of Table 13 it is possible to see in parentheses in the column "Class of defect" the 

types of faults that are present in Collacott (1977) and Diesel (1993). They show us the commonalities 

and disagreements between the references collected by Nahim et al. (2016). 82.3% of referred faults are 

common to both references. 54.5% of these faults occurs in the system called "Engine". It is important 

to mention that the other system that has common faults in both references is the "Body" system and 

represents 24.7% of the faults. In spite of representing a significant amount of the total faults, the 

“Body” system will be excluded from our analysis because it does not have a great detail of information 

that can be collected in real time through sensors, since it is directly related to non- predictable situations 

such as traffic accidents, rear-view mirror breakage, and automotive aesthetics. To complement the 

analysis of the data presented in Nahim et al. (2016), we analysed Stratio database to identify the failures 

occurred on the fleet of one of its clients. We only looked for failures occurred in the engine system. 

The failure analysed were classified and their rate of occurrence determined. The results of this analysis 

are presented in Figure 18. 

 

Figure 18 – Faults Histogram 
 

By analyzing Figure 18, it is possible to determine the most common faults found in the repair 

data collected from the customer's engine system. Another important piece of information extracted 

from the analysis of Figure 18 is that there are several problems that are correlated among themselves 

and have a common element, which is the lubricant. In fact, it can be seen that lubrication-related 

problems have a high percentage of occurrence (25.53%): 

1. Engine oil pressure – 21.42%; 

2. Differential oil quantity to correct oil level – 2.78%; 

3. Engine oil temperature – 0.63%; 

4. Working oil viscosity – 0.37%; 

5. Insufficient oil pressure – 0.33%. 
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All this data supports the choice made for this work, which consist in concentrating the 

analysis to the engine system and the lubrication problem. 

To build the model intended for failure prediction, it is important to understand which 

variables will be available. To do so, we analyze the vehicle systems considering the parameters that 

can be acquired in real time. The parameters chosen for the model must be transversal to the fleet 

(independently of the individual age and technology used in each vehicle of the fleet), to have a failure 

prediction model relevant to the maintenance manager. The results of this analysis is presented in in 

Figure 19. 

 

Figure 19 - Parameters Available by System 
 

Figure 19 presents the parameters that can be collected from the communication bus of the 

fleet considered in this project, grouped by vehicle system. The most important conclusion we can draw 

from Figure 19, is that there is a considerable number of available parameters, related to the engine, the 

system we intend to study. 

Finally, to confirm the importance of considering the engine system and, particularly, 

problems related to lubrication problems, we analyze the DTC’s and alerts originated in real time, by 

the vehicle fleet to be considered in this project. The results of this analyzis are presented in Figure 20. 

 

Figure 20 - DTC's and Alerts - Frequency Histogram 
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Figure 20 confirms that the engine is a critical system of the vehicle, presenting the largest 

number of alerts and having the second higher number of DTC’s. 

Considering all the information presented in Table 12 and Figure 18, Figure 19 and Figure 20 

we can conclude that the decision to develop an intelligent system to predict faults in the engine system 

due to lubrication problems is adequate. In fact, it is not possible to identify an isolated engine problem 

to cope with the intended intelligent system. Nevertheless, it is possible to conclude that a large number 

of engine problems are related to lubrication anomalies. 

With all the previous information in mind and considering the author practical experience, it 

was decided to study the problems involved with the lubrication system, since its structure is of 

fundamental importance to all vehicle systems, and we can have easy access to real-time testing and 

data with better quality and lower cost when compared to turbo failures. In other words, we can develop 

an intelligent model to predict failures in the lubrication system, which is relevant, considering it impact 

in the failures as a whole and from which we have a large number of parameters needed to create the 

intended tool to determine the operational condition of the asset. Furthermore, this option has a reduced 

cost in confirmation tests when compared to other identified problems. 

 

3.3 Interconnection of Subjects 

 
After analyzing common failures and having a clear vision of the system and the problem that 

we will tackle, we can establish a connection between the subjects presented in the literature review. 

We start with the CBM concept, which states that maintenance should only be performed when certain 

indicators show signs of decreasing performance or future failure. It is important to mention that 

checking these indicators on a vehicle can include non-invasive measurements, such as: 

 Vibration analysis: Rotating equipment such as compressors, pumps, and motors all 

exhibit some degree of vibration. As they degrade or become misaligned, the amount of 

vibration increases. Vibration sensors can be used to detect when they becomes 

excessive; 

 Infrared: Infrared cameras can be used to detect high temperature conditions in 

energized equipment; 

 Ultrasonic: Can be used to detect deep subsurface defects, such as hull corrosion; 

 Acoustic: Used to detect gas, liquid or vacuum leaks; 

 Lubricant Analysis: measures the number, size, shape and/or presence of particles in a 

sample to determine equipment wear; 

 Electrical: Motor current readings using clamp meters; 

 Operational Performance: Sensors throughout the system allow to measure pressure, 

temperature, flow, among other parameters. 
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By checking these non-intrusive methods, we can see the presence of lubricant analysis which 

is present as a common element of several problems highlighted in our failure analysis. Recent 

developments in computer and transducer technologies, signal processing and real-time data acquisition 

have made it possible to implement CBM more effectively. We can cite the work developed by Cabral 

(2013), which states that information and monitoring technologies are still widely used in transport fleet 

management only to monitor driver behavior and whether the route is being executed according to plan. 

But through these monitoring and data collection techniques from the vehicle's built-in sensors in real 

time, it is possible to determine the driving condition safely and reliably, i.e., maximum speed, hard 

braking, engine speed, consumption as well as the operation and maintenance condition (failure 

prediction) (He et al., 2014). This condition of driving can be performed using Global Positioning 

System (GPS) transmitters and an on-board computer, which records the vehicle's route as well as the 

data necessary for efficient management of this type of service. Going beyond just monitoring 

operational information, the use of new IoT technologies, cloud data storage, big data, allows the 

manager the ability to manage maintenance, stock control, breakdown forecasting, determining 

equipment degradation rates, among other organizational capabilities. Another important point that can 

be determined from the author's insertion in the scope of maintenance and innovation of management 

methods is determined according to Oliveira et al. (2013), which states that the knowledge acquired 

through the literature deals with the management of maintenance in vehicle fleets concentrated in the 

survey of maintenance costs, repair estimates supported only by the monitoring of occurrences. Prytz 

(2014), states that, although there is the formation of a database of failures, maintenance occurrences 

and costs involved, there are cases in which scholars establish few standards that support the decision 

making of the manager. Thus, we can highlight some studies that present maintenance decision 

guidelines to improve CBM, using detailed analysis of used oil data as a source of information to 

determine whether the system fluid is healthy and suitable for other services or ready for a change, in 

addition to observing the condition of the equipment through these analyses (Muchiri et al., 2018). 

However, it should be considered that mechanical triboparts wear is a dynamic and gradual process that 

goes through different phases from normal to failure. Even with all the technological advances it is 

necessary to pay attention to the concepts already used in maintenance, such as the use of the PF curve, 

which shows how a typical wear process (S. Wang et al, 2017). Thus, it is apparent that predictive 

maintenance represents the best form of maintenance to be adopted by companies in the automotive 

segment and that the projections of the useful life of some vehicle systems, such as the lubrication 

system, can be better defined with the support of new data analysis tools. Oliveira et al (2013) reports 

that a good integrated maintenance system should have features and functionalities that ensure that 

vehicles are kept running as long as possible, avoid failures and reduce the use of trailers. Beauvir 

(2017), reports that analysis of the lubricating oil used for wear metals, contaminants and additive 

elements is a valuable diagnostic tool for scheduling preventive maintenance of engines and equipment 

in a vehicle fleet and fits into the CBM methodology. Following this path, the main objective of the 
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integrated maintenance systems is based on the decision support of the manager in several areas of the 

organization, such as: quality, environment, safety, stock and financial, which is totally related to the 

premises of the realization of the model proposed in this thesis, which aims to determine the working 

condition of lubricants and assets, in order to reduce unnecessary costs and increase safety in the 

provision of services of automotive companies, using the theoretical and practical foundations. 

 

3.4 Fleet Characterization 

 
Public transport in general and especially the urban buses for transporting passengers, 

represent, in addition to its indispensable role for a significant part of the population, an important 

alternative to individual transport. For this reason, in today's globalized economy, the survival of these 

companies depends on their ability to innovate and develop more reliable maintenance methods. In 

addition to providing a good service, companies must also develop methods for energy saving, 

environmental conservation, equipment renewal or replacement, reliability, maintainability, efficiency, 

and optimization of industrial processes in order to be prepared for the adversities that may arise. 

Since the urban passenger transport sector is of extreme importance to society, we selected a 

fleet with a diverse set of vehicles from a transport company that has a diverse and enough set of data 

to allow the determination of the operating conditions of lubricating oils. We decide to collect data in a 

sample of the fleet, instead of working with all the buses that compose it. This option was made to 

simplify and reduce the costs of data collection. To avoid biases and guaranty the generalization of the 

results it was decided to have an heterogeneous set of buses in the sample. 

The sample that will be used to collect data to develop and evaluate the proposed model, 

presented in the next chapters, consists of 5 vehicles (buses), considering different manufacturers, 

models, engines, used oil and manufacturing date as shown in Table 14. 

 

Vehicle 

Identification 
Brand Model 

Year of 

Fabrication 
Engine Engine Oil 

21 Mercedes Citaro O530 2002 
OM906h 

LA 
GALP ULtra S3 

10W40 

34 MAN 
12.240 

HOCL NL 
2007 

D0836L 
OH56 

GALP ULtra LS 
10W40 

67 MAN 
14.240 

HOCL NL 
2009 

D0836L 

OH56 

GALP ULtra LS 

10W40 

80 Temsa 
Avenue 
LF12 

2017 ISBe6.7 
GALP LD Supra 

15W40 

82 Temsa 
Avenue 
LF12 

2017 ISBe6.7 
GALP LD Supra 

15W40 
Table 14 - Selected Fleet for the Case Study 

 

It is important to mention that, given the differences in the year of manufacture of the selected 

vehicles, we will have a varied wear structure, either in the lubrication system or in the engine, since 

the difference between the manufacturing year of the oldest and the newest vehicle is 19 years. Another 

extremely important point in the selection of these vehicles is the use of different types of oils for each 
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brand. This will assure that the proposed model will be not only generalist with regard to vehicles and 

engines, but also with regard to the viscosity of the oils, their inherent characteristics, and the technology 

employed in them. 

 

3.5 System Architecture 

 
According to Siebert et al. (2021) a machine learning model is a mathematical model or piece 

of software that an engineer or data scientist makes intelligent by training it with input data. As such, 

the quality of the model depends on the quality of the training data, so much so that, if we provide false 

information or unworked data, the trained model will give wrong answers. In this section, and to better 

understand the pipeline we follow to develop our intelligent system for the detection of the lubricant oil 

condition, we present an overview of its architecture and the steps it encompasses, Figure 21. 
 

 
Figure 21 - Overview of the Developed System 

 

Our proposal is composed by three main phases. The first phase is Data Collection; The 

second phase consists in Modelling; and the third phase the Deployment. 

In the data collection step, we start by collecting the data, in real-time, using the proprietary 

device that is directly linked to the central system of the vehicles. However, it is important to be aware 

that the collected data cannot be used directly, as it needs to be cleaned, organised and filtered (Siebert 

et al., 2021). To solve this issue, a data preparation is required and so we split our original dataset into 

two separate datasets: Test dataset which consists of the data we will use to test our trained model and 

training dataset which is the data that will train the model so that we have the predictions for our 

problem. 

The second phase is modelling, in this phase we initially select the algorithm we will use to 

answer our problem and with the selected algorithm and the training dataset we create the first functional 

model. At this point we validate the initial model with the validation dataset to get the initial results. If 

the model performance is not sufficient or adequate for the problem, we start the feature 
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engineering process to create new variables to improve the model performance. It is important to 

mention that this process is cyclical and is always redone until the model obtains reliable and 

satisfactory results considering the evaluation metrics. 

The Deployment phase is where the implementation of the final training model occurs and is 

the last step within all the identified phases. The integration of our model into an uncontrolled 

environment, is an essential step of this phase. There is also a monitoring responsibility that must be 

undertaken to evaluate the performance of the model while in a production environment. This is to 

ensure that the model is working well enough and is fit for purpose, and if the results are not sufficient 

in the production environment, we return to the Modelling phase to retrain and update the system.  

It is important to mention that the quality of the ML model is affected by several aspects: the 

type of task to be solved (i.e. classification, anomaly detection), the type of model (Logistic Regression, 

Decision Tree Classifier, Random Forest Classifier, Gradient Boosting Classifier), the data used for 

construction, the way the data is separated for training and test, and with runtime complexity 

requirements or security constraints. Once the system is created, the experiments are managed (using 

hyper-parametric search, cross-validation, independent separation of training tests) so that evaluation 

of the developed model with respect to the results obtained is performed. It does this by measuring 

performance measures (such as precision or recall for classification tasks), performing sensitivity 

analysis, or testing against contradictory examples (Siebert et al., 2021). 
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Chapter 4 - Intelligent System for Oil Classification 

 
With the arrival of artificial intelligence, many projects in lubricant analysis can be improved 

with the use of ML techniques. But learning the ramification of ML, understanding how it works and 

why these techniques should be used, especially knowing if the project in question supports the gains 

and losses of ML are important factors before any implementation. Because of that, in this section we 

detail the experimental study conducted to evaluate the possibility of using a data-driven approach to 

automatically determine the condition of a lubricating oil. We start by describing the process followed 

for data collection, the variables selected, the vehicle characteristics, the label collection and the specific 

protocol to perform the data collection. Then, we go through the exploratory analysis, where we evaluate 

the selected variables through analysis of missing values, operational behaviour of the variables, PCA 

analysis and correlation analysis lastly we present the predictive models and the evaluation metrics 

used. The study of the models was divided in two stages: the first consists in the application of a simple 

model, with the purpose of understanding if the selected selected variables allowed us to determine the 

oil condition. The second stage consists in a more detailed evaluation of several models, where a series 

of cross-validations were performed to obtain the best model and the best combination of variables. 

Finally, after selecting the best model and the best combination of variables, two additional studies were 

performed: the first consists in inserting unknown data in the test dataset and the second analysis consists 

in inserting data of only one temperature variable in the training and test datasets. 

 

4.1 Data Collection 

 
The data collection stage is very important, and the data collected have to come from a 

representative sample. In this way, relevant information about the oil and the vehicles were collected, 

namely: 

 What type of oil was used; 

 How long it has been in use in the vehicle; 

 What are the vehicle's specific characteristics. 
 

Each sample collected is labelled with information about the vehicle to which it refers and 

stored in a database. Note that the more information we have during collection, the better the diagnosis 

of the model and the accuracy of the response. In this way, we perform the data collection from January 

1, 2020 to August 1, 2020, always bearing in mind that the developed model will be implemented in a 

real business environment, in a fleet composed by vehicles with different behaviours. Thus, we cannot 

simply collect as much data as possible without first understanding whether these variables are present 

in a considerable range of vehicles in the studied fleet, to allow the extrapolation of the results to other 

companies operating in the same segment. 
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4.1.1 Variables Description 
 

For the data collection to be generally replicable, it is necessary to describe all the variables 

that will be used in this experiment. The variables are divided into 3 groups: Engine Characteristics (see 

Table 15), Oil Characteristics (see Table 16) and Real Time Data (see Table 17). 

4.1.1.1 Engine Characteristics 

 
According to Morgan & Liu (2009), the satisfactory operation of Diesel engines depends 

largely on the formation and maintenance of lubricating films between parts subject to friction and, at 

the same time, on the nature of these films. Several elements in the cycle of a Diesel engine act together 

in the lubrication. The engines are designed to run for thousands of kilometers and as such they are built 

with a complex lubrication system. Thus, it is necessary to collect the technical data of the engines to 

have a perception of the operation of the lubrication system for which it is intended.  

 

Vehicle 

Id 

Eng 

description 

Eng Cyl 

Number 

Piston 

Stroke 

Lenght 

Cylinder 

Diameter 

Engine 

Power 

(kW) 

Max 

Speed 

Rpm 

Engine 

Displ 

(liter) 

Crank 

sump 

(liter) 

21 OM906hLA 6 0.130 0.102 205 2500 6.370 25.0 

34, 67 D0836LOH56 6 0.125 0.108 177 2650 6.871 27.5 

80, 82 ISBe6.7 6 0.124 0.107 209 2600 6.700 15.1 

Table 15 - Engine Characteristics 
 

By analyzing Table 15, we can verify that all the information described in section 2.3.1 is 

available for each selected vehicle. This information will serve as the basis for the calculations needed 

for the OSF, which is a fundamental feature for the development of the proposed model.  

4.1.1.2 Oil Characteristics 
 

According to Plumley et al. (2018), for the satisfactory performance of the lubrication system, 

it is necessary to have a lubricating oil in defined quantities, with appropriate characteristics, specific 

finishing of the surfaces in contact, ideal clearances between the parts and the specific pressure of the 

contact surfaces. Thus, as mentioned in section 2.4.1, which describes the characteristics of lubricating 

oils and their importance, to develop an intelligent system to determine the operating condition of 

lubricating oils, we need to collect the characteristics of the oils that are used by the vehicles (Table 16). 

 

Oil 

Id 

 

Oil Name 
SAE 

Grade 

ODI 

(km) 

Oil dens 

At 15C 

(g/mL) 

Oil visc 

At -25C 

(cP) 

Oil visc 

At 40C 

(cSt) 

Oil visc 

At 100C 

(cSt) 

Vehicle 

Id 

Oil_1 
GALP Ultra S3 

10W40 
10W40 30000 0.873 7000 90 14.6 21 

Oil_2 
GALP Ultra LS 

10W40 
10W40 20000 0.860 7000 102 15.2 34, 67 

Oil_3 
GALP LD 

Supra 15W40 
15W40 15000 0.877 7000 110 14.5 80, 82 

Table 16 - Oil Characteristics 
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By analyzing Table 16, it is possible to understand that we did not collect information about 

all the characteristics referred in section 2.4.1. Although TAN, TBN, dialetric constant, and flash point 

are important characteristics for identifying a lubricant, they were not used because they require more 

complex chemical tests and equipment and, they did not meet the needs of the system that was 

developed. 

4.1.1.3 Real Time Data 
 

To determine the operating condition of lubricating oils in diesel engines it is necessary to 

collect a large amount of data generated in real time from the operation of the vehicle. This data are 

used by the control units to determine the optimal operation of the vehicle and indicate system faults. 

In our model we will use this same data that passes through the vehicle's communications bus to 

generate all the information needed to build the model. The hardware developed by Stratio, can provide 

a range of more than 200 vehicle parameters in real time, but this amount of parameters is dependent 

on the technology employed in the vehicle, which can vary depending on manufacturer, model and/or 

year of manufacture. In other words, the technology employed in each vehicle results in a greater or 

lesser availability of information and a difference in the speed of data acquisition. Therefore, since our 

selected fleet has vehicles of different brands and models, as well as different manufacturing years, we 

selected the minimum portion of parameters which we knew would be available for all vehicles and 

would be possible to collect in an acceptable quantity. Furthermore, this list was selected to ensure that 

the application could be used in a real environment, and prepared to work in all vehicles of the fleet. 

Table 17 summarizes the collected and the calculated variables. 

 

Variable 

identifiers 
Variable Name Unit Measure 

Collected Variables 

PID100 
Engine Oil 

Temperature 
°C 

PID101 Coolant Temperature °C 

PID108 Engine Oil Pressure mbar 

PID114 Vehicle speed km/h 

PID118 Engine speed rpm 

Calculated Variables 

visc_cin Kinematic Viscosity mm²/s 

visc_din Dynamic Viscosity Pa.s 

Oil_z Oil Stress Factor kW. h⁄liter2 

OSF_v3 Oil Stress Factor W⁄liter2 x 104 

Table 17 - Variables Identifiers 
 

When analyzing Table 17, we can verify that in the "Variable identifiers" column we have 

identifiers for each variable. This type of nomenclature will be used from now on to refer to each of the 
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variables according to the "Variable Name" column. This type of identifier is used to facilitate the 

collection and storage of data, either by the vehicle manufacturer or by Stratio which provided the data. 

It is also important to mention that all the parameters mentioned in Table 17 will be acquired with their 

respective units of measurement, grouped and normalized to remove outliers or data that could hinder 

the construction of the model. 

4.1.2 Staining Test 
 

According to Delgado Ortiz et al. (2014), the maintenance of internal combustion engines, 

can be performed using different lubricant analysis techniques to determine the condition of the oil and 

the system. For more than 50 years, a rapid method of analyzing the condition of the lubricant, called 

the oil slick test (Figure 22), has been used and improved to estimate the degradation of the lubricant 

and the presence of contaminants. With this test, through a visual inspection, it is possible to 

differentiate the contours that experts look for in interpreting the oil slick. According to Delgado Ortiz 

et al. (2014), the central zone (Figure 23) is characterized by its dark and uniform intensity. The 

intermediate or diffusion zone of the slick indicate the degree of dispersion of the carbon particles 

(Figure 24), and presence of contaminants (Figure 25 and Figure 26). With these parameters we can 

collect, information about the dispersion and detergency conditions of a lubricant by dropping an oil 

stain on a filter paper, that provide the model labels. 
 

Figure 22 - Oil Stain Tests – Source: (MOTORcheckUP, 2022) 
 

After dropping the oil on the test paper, an image with up to 4 circles based on the 

chromatographic effect appears. Depending on the age of the oil, the final result will take between 3 to 

10 hours. It is best to leave the test result overnight and then compare it with the reference images on 

the Test Instructions Sheet. The interpretation of the oil slick can be summarized as follow: 

1. The Inner Circle: shows whether the oil has been contaminated by small particles - for 

example, exhaust particles, dirt, dust, abrasions, or other substances (Figure 23); 
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Figure 23 - Inner Circle Show us if Lubricant is Contaminated by Deposits – Source: (MOTORcheckUP, 2022) 
 

2. The second circle: shows if the oil is still in good condition. Compare the coloration of 

the oil (Figure 24); 

 

 
Figure 24 - Second Circle Show us the Condition of the Lubricant – Source: (MOTORcheckUP, 2022) 

 

3. The Jagged Circle: It allows to understand if there is water or coolant are present in the 

oil. The water in the oil forms definite peaks in the outer areas, while the coolant forms 

a yellow ring around the jagged circle (Figure 25); 
 

 
Figure 25 - Jagged Circle Show us if Lubricant is Contaminated by Water or Coolant – Source: (MOTORcheckUP, 2022) 

 

4. The Fuel Circle: It allows to understand if there is fuel in the oil. The larger the 

transparent ring around the outside, the more fuel is in the oil (Figure 26). 

 

 
Figure 26 - Fuel Circle Show us if Lubricant is Contaminated by Fuel – Source: (MOTORcheckUP, 2022) 

 

Although the spot test provides results on a scale of 0 to 9 for solid particle contamination and 

condition, and a scale of no presence, somewhat present and very present for coolant and fuel in the oil, 

we considered a condition scale with less granularity. In concrete, we define a binary scale, where “0” 

indicates that the oil is in good condition and “1” indicates that it is not good. 
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4.1.3 Data Collection Protocol 
 

Oil analysis is a way for the industry to try to expand the oil's operating time. In addition to 

optimizing the application of the product in the machines, the reduction in the number of oil changes 

avoids waste, and makes costs with lubricants lower in the production line. This can be achieved through 

periodic evaluations of the integrity of the lubricants used by the equipment. Therefore, to develop our 

system, it is necessary to collect and evaluate the lubricants. The collection is considered the step prior 

to the lubricant analysis, which is performed following the procedure presented bellow. Note that the 

steps are divided into two segments (direct and indirect) and the materials and equipment used are 

determining factors in the oil evaluation and need to be handled with care. 

The Direct Method corresponds to the steps needed to collect oil samples, which will be used 

to label the lubricant's operating condition. The procedure followed for this method was: 

1. Start the car and wait 10 minutes for the oil to run through the entire engine and warm 

up to operating temperature; 

2. Turn off the car and wait 3 minutes for the oil to return completely to the sump; 
 

3. Take the oil sample wearing unused gloves to avoid contamination of the sample by 

particles in the environment; 

4. Remove a drop of oil, through the dipstick, and place it in the center of the stain test; 
 

5. Wait 3 to 10 hours for the oil drop to be absorbed and for the cotton to separate the 

contaminants; 

6. Compare the test result with the results sheet; 
 

7. Take a picture of the test and store it in a contamination free environment. 
 

It is important to mention that this sequence of steps ensures that the particle concentrations 

reach a uniform distribution throughout the lubricant without contaminating the sample or losing 

valuable information. To store the results of the analysis digitally, we created a spreadsheet. This 

spreadsheet contains the details of the steps followed by the direct method. An example is shown in 

Table 18. 

 

Sample 

collection Id 

Vehicle 

Id 
Date 

Run 

engine 

Stop 

engine 

Time to 

analyze 
Picture 

Sp_01 21 11/01/2020 10:05 10:18 ok ok 

Sp_02 34 11/01/2020 10:03 10:17 ok ok 

Sp_03 67 11/01/2020 10:11 10:22 ok ok 

Sp_04 80 11/01/2020 10:17 10:28 ok ok 

Sp_05 82 11/01/2020 10:23 10:32 ok ok 

Table 18 - Direct Method to Collect Oils Samples 
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As it can be seen from Table 18, for each vehicle we have registred information about the 

vehicle, the engine start and shutdown time, as well as if the time for analysis was met and if a picture 

was taken to store the test in digital format for other possible analyses and search results. Another 

important point to mention is that all sample collections have a unique identifier (i.e., Sp_01) 

The Indirect Method: corresponds to the data that will support the determination of the 

lubricant's working condition. In other words, complementary data obtained with the staining tests and 

that will be important elements to indicate anomalies during the development of this system, as well if 

the results are satisfactory at the end of the data analysis process. The additional information collected 

is detailed bellow: 

1. External Temperature Measurement: Collecting the external temperature at the time of 

the collection of the lubricating oil sample is important because, temperature is a key 

factor in measuring viscosity. Viscosity is one of the most important characteristics of 

lubricants and it is necessary to understand if the external temperature influences this 

variable. Although we have the collection of data stipulated in the period between 

January 1, 2020 to August 1, 2020 with average temperatures between 8°C and 32°C in 

Portugal, the lubricants are not manufactured only to operate in this range of values. If 

we were to implement this system in a fleet that constantly operates in a location with 

high temperatures (above 35 degrees daily), or on the contrary in locations with low 

temperatures (below 10 degrees), we could analyze whether the constant high 

temperatures of the lubricant at rest in the vehicle's crankcase could influence premature 

wear. On the other hand, assuming a situation of constantly low temperatures, we could 

check whether prolonged and more frequent heating of the lubricant from a lower 

temperature to the operating temperature (between 83° and 93° Celsius) would also cause 

premature wear of the lubricant; 

2. Measurement of the lubricant temperature at the time of collection: The measurement of 

this temperature is related to the differentiation between vehicles that were operating 

normally shortly before the sample was collected and vehicles that had been at rest for a 

long period of time. That is, in cases where the vehicle was operating normally, the 

lubricant had been at the ideal operating temperature period longer than the 10 minutes 

determined by the direct method. This type of situation corresponds, in principle, to an 

ideal lubricant viscosity when compared to the situation of vehicles that are at rest. The 

resting vehicles do not have the possibility to get to operating temperature earlier and 

work under optimal conditions gradually, running the lubricant through the whole system 

several times. This information might help justify some anomaly in the collection of the 

sample or even in the oil level, knowing that the lower the level of lubricant in the carter 
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the greater the possibility of finding sediments or contaminating materials in the sample 

when the sample was taken; 

3. Check the vehicle mileage at the time of collection: The collection of this information is 

important to monitor both the operation of the vehicle (highest and lowest level of 

operation) and the lubricant’s operating time. When the oil samples are taken at 15-day 

intervals, we should pay attention to whether there is an anomaly in the operation between 

samples. A week in which the vehicle worked for more hours than usual, or for more 

kilometers, may cause excessive wear during that period, either on the vehicle, because 

it operates for long distances in a short period, or on the oil because it operates close to 

its mileage limit. On the other hand, we can also calculate and determine that the 

degradation index found at the time the sample was taken corresponds to the mileage of 

the vehicle and the mileage of the oil; 

4. Check the oil level at the time of collection: As mentioned earlier, to maintain the perfect 

operation of the vehicle and diesel engine, it is necessary to keep the lubrication system 

always operating at an adequate level and with ideal lubricant. If a situation arises in 

which the vehicle presents a low level of lubricant when the sample is taken, it indicates 

that the vehicle might have been operating with inefficient lubrication and that 

somewhere in the system there is oil leakage, whether due to leakage in the sealing rings, 

defects in the sealing surface, failures in the vacuum pumps, or even excessive oil 

pressure. Another important point to be mentioned with this measurement is that with 

less oil operating in the system, more compounds and/or contaminating materials will be 

dragged to the bottom of the sump, and thus the condition of the remaining oil we want 

to sample will be worse; 

5. Oil refill information: In many fleets of heavy vehicles, a consumption of around 0.6-0.8 

liters per 10000 km is common in relatively new vehicles, but this all depends on the 

condition of the engine, the pump, the oil filter or the rotation level reached of the engine. 

In addition, this consumption increases over time due to the natural wear of engine parts, 

and it can even differ from period to period if the vehicle exceed its normal capacity, 

such as, vehicles that are carrying a heavier load than normal and/or are being used under 

extreme conditions. In other words, if the engine is working hard, it consumes more oil. 

These numerous variables make this average consumption relatively complex to maintain 

in a diversified fleet such as the one selected. So, to understand if we are determining the 

degradation rate of the oil that actually operated throughout the interval between samples, 

we needed to collect the amount of oil that was inserted daily in the vehicles, to avoid 

performing tests on oils that were new due to the excess of insertion. Through this 

information we can determine whether the oil we are evaluating at the time of sample 
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collection, has high amounts of new oil, since the total amount consumed by the vehicle 

has already been replaced in its entirety over the course of its needs. Assuming that heavy 

duty diesel engines need 25 liters, we can have a situation where during the week 5 liters 

of lubricant were refilled due to the level maintenance needs. This value corresponds to 

refills on Sunday (2 liters), Wednesday (3 liters) and Saturday (1 liter). In the end these 

refills represent about 20% of the total oil in the vehicle, without major wear; 

6. Verification of services and date of the last lubrication - When we talk about maintenance 

of vehicles in a fleet, it is normal to have a well-structured sequence of planned 

maintenance, such as: changing brake pads at an interval of 30 thousand kilometers, 

changing engine lubricants at an interval of 20 thousand kilometers and changing oil 

filters at an interval of 2 oil changes. Usually, these maintenances are determined by the 

manufacturers according to brand tests and are generic without any optimization for the 

real situation of the fleet. However, at this point, considering the oil change and the oil 

itself, we must keep in mind the information about when we have the new oil in perfect 

conditions to operate free of any contamination from wear and tear of the equipment and 

when we have the new oil filter installed, whose function is to store the largest amount 

of impurities in the system when the oil circulates between the crankcase and the engine, 

avoiding excessive loss of lubricant properties. This information, whether from oil 

change or filter change, is important to characterize the real condition of the lubricant 

and the equipment in general. This prevents us from obtaining positive results for the 

operating condition of a really bad lubricant and a worn out piece of equipment because 

the filter has stored the largest quantity of particles that would determine its real operating 

condition. This will also avoid the errors associated to the analysis of an oil that has just 

been changed, in an equipment that has already undergone excessive wear, but the 

lubricant has not had time to operate and circulate throughout the system to collect the 

impurities. 

It is worth noting that the collection of this additional information will help to validate if the 

steps in the direct method were followed correctly, as well as help us verify that external factors, such 

as outside temperature, differentiation in operating style, and even the insertion of new oil into the 

lubrication system, will not alter the expected results. Another important point to mention is that all the 

information presented was carefully catalogued, accordingly to Table 19, Table 20 and Table 21 

structure. 
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Sample 

collection 

Id 

Ext_temp 

(°C) 

Oil_temp_AT 

(°C) 

 

Km_actual 

 

Oil_Nvl_actual 

Sp_01 10 68 882555 25 

Sp_02 10 80 730018 25 

Sp_03 10 55 694629 25 

Sp_03 10 75 149369 25 

Sp_03 10 86 148950 25 

Table 19 - Oil Sample Collection 
 

Last_OD_ID Date 
Type of 

Service 
Components Oil Id 

Oil 

Quantity 

Vehicle 

Id 

LOD_01 10/02/2019 Oil - TIPO 1 Oil Oil_01 25 21 

LOD_02 10/06/2019 Oil - TIPO 2 Oil + Filters Oil_01 25 21 

LOD_03 10/10/2019 Oil - TIPO 1 Oil Oil_01 25 21 

Table 20 - Last Oil Drain: Type of Service and Dates 
 

Oil_rep_ 

ID 
Oil_Id 

Vehicle 

_Id 
Week Sun. Mon. Tue. Wed. Thu. Fri. Sat. 

Oilrep_01 Oil_01 21 
1 de 
2020 

2 0 0 3 0 0 1 

Oilrep_02 Oil_01 34 
1 de 
2020 

0 2 0 0 0 3 0 

Oilrep_03 Oil_01 67 
1 de 
2020 

2 1 1 3 0 0 1 

Oilrep_04 Oil_01 80 
1 de 
2020 

0 0 2 0 0 1 0 

Oilrep_05 Oil_01 82 
1 de 

2020 
0 2 0 0 0 1 0 

Table 21 - Oil Reposition Week Before the Test 
 

Through the analysis of Table 19, Table 20 and Table 21, we can see that all data are easily 

accessible and well organized, following the same approach existing for the direct method and using a 

unique identifier for each set of information. In addition, storing this information in digital format with 

unique identifiers for each step structure (i.e., Sp_01, LOD_01, Oilrep_01) or element (vehicle: 21, oil: 

Oil_01) facilitated the corelation of this data and the development of the system as a whole, since from 

a structured database we can perform several tests without worrying about failures in the results that are 

not scaled and that could not be evaluated in depth if they occurred. Exemplifying this interconnection 

of information, we can see that vehicle 21 is a 2002 Mercedes Citation O530 (Table 14) with an 

OM606h LA engine (Table 15) and uses GALP Ultra S3 10W40 lubricant (Table 16). On January 11, 

2020, the sample Sp_01 was collected with the engine start time at 10:05 and shutdown time at 10:18, 

meeting the required time for analysis and storage of the test in digital format (Table 18). During this 

collection the external temperature was 10º Celsius, the initial oil temperature was 68º Celsius, and its 

mileage was 882555, with the oil level at a maximum of 25 liters (Table 19). Checking other 

information, as of the date of the collection there was no oil or filter change (Table 20) and the 
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replacement for level maintenance had a total of 5 liters in the previous week (Table 21) and there was 

an anomaly in the operation of this vehicle this week. Finally, following this procedure of information 

collection and interconnection of data sets, in the end 65 oil samples were collected in the period of 

eight months, Table 22 summarizes the number of samples collected per vehicle. 

 

Vehicle Id Number of samples 

21 8 

34 13 

67 12 

80 16 

82 16 
Table 22 - Number of Samples Collected per Vehicle 

 

By analyzing Table 22 we can see that there is a lower number of samples from vehicle 21 

compared to the rest. This difference was due to an undiagnosed failure in this vehicle, which was not 

related to the lubrication system, but left it inoperable for 2 months. There is one more reason to the 

difference in the number of samples, and it is related to the fact that the collections were always made 

in determined periods (every 15 days), at a fixed time (morning) and in a real environment, where we 

had little control over the availability of the vehicles by the client. In other words, if the client needed 

to use the vehicle, or if the vehicle was not parked in the yard, we could not make the pickup, and thus 

lost that sample. 
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Chapter 5 - Exploratory Data Analysis 

 
Before starting a machine learning project, it is important to ensure that the data is ready for 

the modelling work. Exploratory Data Analysis (EDA) ensures the readiness and ability of the data to 

be used in a machine learning system and allows to better understand the domain of the problem. Thus, 

we perform the following analysis: Missing Values Analysis, Variable Behaviour analysis, analyze the 

need for data balancing, PCA and Correlation analysis. 

 

5.1 Missing Values Analysis 

 
According to Y. Zhang et al. (2021), missing values appear in real world scenarios due to 

multiple reasons such as collection errors or the data acquisition format itself. These missing values 

might lead to the deterioration of the performance of analytical monitoring applications. As such, 

analysing the existence of missing values helps to address several concerns caused by incomplete data, 

since this lack of information can lead to misleading interpretations and possibly failures in the models. 

Before beginning the analysis, it is important to mention some information about the dataset. 

The initial set of the variables was collected in real time (Table 17) from 5 selected vehicles (see Table 

14) obtained through the device developed by Stratio and with a variable acquisition rate. This variable 

acquisition rate is a fundamental point in the development of this study and is related to two factors: 

 The bus communication technology and speed which is dependent on vehicle 

manufacturer, model and year; 

 The priority level that the variable has in the bus. 
 

Since Stratio's data collection equipment gathers information through various communication 

protocols, and each protocol has its particularities in terms of communication speed, it is necessary to 

manage these variable acquisition rates internally. However, even performing this management through 

proprietary software, Stratio's equipment is unable to collect the same amount of information from all 

vehicles, because of limitations in the protocols implemented by the manufacturers. Therefore, the 

initial dataset is formed by data parcels from all selected vehicles, separated by selected variable, with 

an average acquisition rate of 1 Hz. It is still important to mention that the Stratio device sends all 

information to a cloud storage structure through a mobile network or wifi to reduce the costs. After the 

message is received on the server, it is broken into pieces of information (variable points) with their 

respective timestamps and identifiers, and it is stored in a searchable data structure. 

 

Metrics/Parameters 
Oil 

Temp 

Coolant 

Temp 

Oil 

Pressure 

Vehicle 

speed 

Engine 

speed 

Count 183451 313893 3448095 3137167 3462106 

Mean 72.38 72.77 3027.69 27.15 1135.39 

Std 11.71 10.65 695.77 14.49 258.12 
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Min 4.19 4.00 0.00 0.00 0.00 

Quartile 25 % 67.69 68 2560 16.53 1008 

Quartile 50 % 75.5 76 3000 27.35 1130 

Quartile 75 % 81 81 3520 37.08 1264 

Max 126.70 127 5840 89.10 2676 

Size 4542016 4542016 4542016 4542016 4542016 

% of Null values 95.96 93.08 24.08 30.93 23.77 

Table 23 - Metrics of the Data Before the Missing Value Reduction 
 

Looking at the percentage of missing values (last line of Table 23) and through the descriptive 

metrics of the initial data set, it is possible to see that some of the selected parameters contained a large 

amount of missing data and should be addressed prior to their use in the study. In this analysis, it can 

be seen that the parameters oil temperature and coolant temperature have a high percentage of missing 

values compared to vehicle speed and engine speed. This is due to some data acquisition characteristics 

of the Stratio hardware (Automotive, 2021). The data collection by the Stratio system is governed by 

two central rules, value variation and time between acquisitions. These rules exist to avoid interferences 

with the vehicle's internal bus communication to prevent communication failures in safety systems 

(brakes and steering). As such, the system tries to keep the information request rate low. The parameters 

related to temperature (coolant and oil) have little variation of values and a slower variation when 

compared to the vehicle speed and engine speed parameters. 

Taking into account the way the parameters are collected by the Stratio device, we can still 

mention the structure for grouping the data that explains this difference in the number of points for each 

parameter. As mentioned before, at the time of data acquisition, each parameter is acquired with its 

identifier and timestamp. By grouping these parameters in the same time series, we can see that the 

largest amount of acquired values are from the parameters with the largest range of variation and 

requiring the shortest acquisition time. However, the distribution of values per timestamp is not 

homogeneous, that is, there are periods in which we receive more values from one parameter than from 

another. For example, when the vehicle is turned on we receive more values of temperatures than of 

engine rotation and speed, since the vehicle is stopped in idle (without speed and rotation between 550 

and 650 rpm) and the temperature is rising to stabilize at the operating temperature (see Table 24). 

 

Timestamp 
Oil 

Temp. 

Coolant 

Temp. 

Oil 

Pressure 

Vehicle 

Speed 

Engine 

Speed 

02/01/2020 05:49:36 null 5.94 null null null 

02/01/2020 05:49:37 null null 5 null 0 

02/01/2020 05:49:44 null null null 0.00 null 

02/01/2020 05:49:49 6.09 null null null null 

02/01/2020 05:49:56 null null 3495 null 582 

02/01/2020 05:50:04 null null 3468 null 614 

02/01/2020 05:50:20 7.18 null null null null 

02/01/2020 05:50:21 null null 3445 null null 

02/01/2020 05:50:29 null 7.69 3420 null null 
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02/01/2020 05:50:37 8.21 null null null null 

02/01/2020 05:50:57 null 9.44 3395 null null 

02/01/2020 05:51:04 10.00 null null null null 

02/01/2020 05:51:06 null null null null 590 

02/01/2020 05:51:14 null 10.60 null null null 

02/01/2020 05:51:21 11.10 null null null null 

02/01/2020 05:51:30 null null 3375 null null 

02/01/2020 05:51:51 12.70 null null null null 

02/01/2020 05:51:58 null 13.10 null null null 

02/01/2020 05:52:06 null null 3398 null null 

02/01/2020 05:52:13 14.00 null null null null 

02/01/2020 05:52:32 null 14.60 null null null 

02/01/2020 05:52:39 15.20 null null null null 

02/01/2020 05:52:41 null null 3418 null null 

02/01/2020 05:52:59 null 15.90 null null null 

02/01/2020 05:53:07 16.50 null null null null 

02/01/2020 05:53:08 null null 3438 null null 

02/01/2020 05:53:33 null 17.10 null null null 

02/01/2020 05:53:40 17.70 null null null null 

Table 24 - First Data Analysis to Identify Miss Values 
 

It is important to mention that when fetching a piece of data from Stratio's database, it is 

necessary to enter the start and end date information for the period we are looking at. Since we are 

collecting samples from January 1, 2020 to August 1, 2020, we need to collect the real-time information 

from this same period. With the insertion of the start and end date information into our database, the 

result obtained is a dataframe sequence of points. That is, the database returns as rows the values of 

each selected variable indexed to the message reading timestamp. Table 24, shows is an example of the 

result of a request to Stratio's database. We can see the data formatting and the example of the vehicle's  

starting moment, where we have more temperature and pressure data than engine rotation and vehicle 

speed data. It is also important to mention that the message can contain more than one parameter (see 

timestamp line 02/01/2020 05:50:57, Coolant Temp. = 9.44 and Oil Pressure = 3395) or can contain only 

one parameter (see timestamp line 02/01/2020 05:49:49, Oil Temp. = 6.09). 

 

Timestamp 
Oil 

Temp. 

Coolant 

Temp. 

Oil 

Pressure 

Vehicle 

Speed 

Engine 

Speed 

02/01/2020 06:11:57 null null Null 46.00 null 

02/01/2020 06:12:00 null null 4495 null 1360 

02/01/2020 06:12:05 null null Null 43.00 null 

02/01/2020 06:12:07 41.80 null Null null null 

02/01/2020 06:12:08 null 41.10 4345 null null 

02/01/2020 06:12:09 null null null null 1120 

02/01/2020 06:12:14 null null null 38.00 null 

02/01/2020 06:12:18 null null 4458 null 1452 

02/01/2020 06:12:24 null null null 45.00 null 

02/01/2020 06:12:29 43.10 null null null null 
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02/01/2020 06:12:36 null 42.40 null null 1360 

02/01/2020 06:12:41 null null null 40.00 null 

02/01/2020 06:12:44 null null 4323 null null 

02/01/2020 06:12:45 null null null null 1098 

02/01/2020 06:12:51 44.20 null null null null 

02/01/2020 06:12:53 null 43.40 4425 null 1290 

02/01/2020 06:13:01 null null 4668 null null 

02/01/2020 06:13:02 null null null null 1456 

02/01/2020 06:13:06 null null null 23.00 null 

02/01/2020 06:13:10 null null 4358 null 1146 

02/01/2020 06:13:15 null null null 33.50 null 

02/01/2020 06:13:19 null null 4293 null 1216 

02/01/2020 06:13:26 null null null 49.50 null 

02/01/2020 06:13:31 46.90 null null null null 

02/01/2020 06:13:37 null 46.90 null null null 

02/01/2020 06:13:38 null null 4458 null 1320 

Table 25 - Second Data Analysis to Identify Miss Values 
 

Looking at Table 25, we can identify another example of the heterogeneity of the distribution 

of values by timestamp. In this situation the vehicle is operating and there are more engine speed and 

vehicle speed values than temperature values. The same is true to the pressure values that are directly 

correlated with the engine speed. As data collection is more important when the vehicle is operating, 

the largest amount of values come from when the vehicle is on the move. Thus, to deal with this 

difference in the number of real values between the variables, we performed three additional steps to 

accommodate some specifics aspects related to our problem: 

 Step 1 - Split Dataset into Trips: Which corresponds to the identification of the periods 

when the vehicle was running, i.e., making a trip. To do this, we will analyze the periods 

where the engine speed was above 550 RPM and the difference between timestamps is 

greater than 5 minutes, i.e., engine speed >= 550 AND timestamp difference > 5 minutes. 

The rotation information will indicate that the vehicle engine is running, because it 

operates in idle speed between 550 to 650 rpms and everything above these values 

indicates that, either the vehicle is moving, or the vehicle is stopped but connected and 

the accelerator pedal was actuated to increase the rotation and load the systems faster. 

Through the timestamp difference information, we will identify the beginning and end of 

the trip, since the acquisition systems does not work with the engine off. That is, if the 

server stops receiving data for more than 5 minutes it means that the vehicle has shut 

down and the trip has ended. 

 

Timestamp 
Oil 

Temp. 

Coolant 

Temp. 

Oil 

Pressure 

Vehicle 

Speed 

Engine 

Speed 

02/01/2020 21:39:22 null null 4153 null 1022 

02/01/2020 21:39:27 null null null 12.50 null 

02/01/2020 21:39:30 null null 4290 null 1074 
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02/01/2020 21:39:43 null null 4388 null 1180 

02/01/2020 21:39:48 null null null 18.20 null 

02/01/2020 21:40:01 null null 3773 null 964 

02/01/2020 21:40:08 null null null 11.00 null 

02/01/2020 21:40:11 null null 2108 null null 

02/01/2020 21:40:12 null null null null 594 

02/01/2020 21:40:16 null null null 3.30 null 

02/01/2020 21:40:20 null null 2150 null null 

02/01/2020 21:40:24 null null null 0.10 null 

02/01/2020 21:40:37 null null 1818 null 312 

03/01/2020 05:47:19 null 14.10 null null null 

03/01/2020 05:47:20 null null 298 null 584 

03/01/2020 05:47:27 null null null 0.00 null 

03/01/2020 05:47:32 13.20 null null null null 

03/01/2020 05:47:33 null 12.80 3520 null null 

03/01/2020 05:47:42 null null null null 614 

03/01/2020 05:47:54 null null 3495 null null 

03/01/2020 05:48:11 null 13.90 null null null 

03/01/2020 05:48:12 null null null null 592 

03/01/2020 05:48:17 14.50 null null null null 

Table 26 - Third Data Analysis to Identify Miss Values 
 

Through the analysis of Table 26 it is possible to see that there is a pause in the operation of 

this vehicle (between timestamp 02/01/2020 21:40:37 and 03/01/2020 05:47:19), but this comes 

sequentially when collecting the data from Stratio's database. That is, for a human analyst with 

knowledge about the data, this stop time indicates that a trip was finished at 21:40:37 on 02/01/2020 

and a new trip started on 03/01/2020 at 05:47:19, but for an automated system it is considered a 

sequential data without any distinction between them. To be able to impute missing data, we need to 

reduce the possibility of error and for this we must perform the division in trips, so that the data that are 

inserted are not outside the range of operation of that particular period. We can exemplify this in the 

following way: When we take the data from the trip that started on 03/01/2020 at 05:47:19 we know 

that the first real value of the Oil Temp. was 13.20, of the Coolant Temp. was 14.10, of the Oil Pressure 

was 298, of the Vehicle Speed was 0 and of the Engine Speed was 584, that is, we know the exact 

behavior of the variable at the beginning of the trip, in the same way that if the trip ended on timestamp 

03/01/2020 05:48:17 we would know the final values. This would give us the possibility to complete 

the missing values more accurately knowing for example that the Oil Temp. values went from 13.20 to 

14.50, in an ascending manner, took about 40 seconds and had 5 missing points between the known 

initial value and the known final value; 

 Step 2 - Using value interpolation: According to (F. Wang et al., 2021), interpolation 

is the process of using known data values to estimate unknown data values. One of the 

simplest methods is the linear interpolation, that only requires knowledge of two points 

and the constant rate of change between them. This step generates a smoother and more 
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realistic variation of values than using average values between acquired data, since a 

given value does not change to a much larger or smaller value immediately, there is 

always a gradual increase or a gradual decrease. For example, a temperature increases or 

decreases degree by degree (depending on the sampling level) and does not change 

immediately from 10°C to 30°C, if we chose to use the average, we would have all the 

values within this range at 20°C, which does not represent reality as well as using 19 

values in this same range of increase (11°C, 12°C, 13°C, 14°C, ... up to 30°C). 

 

Timestamp 
Oil 

Temp. 

Coolant 

Temp. 

Oil 

Pressure 

Vehicle 

Speed 

Engine 

Speed 

03/01/2020 05:47:19 null 14.10 null null null 

03/01/2020 05:47:20 null 13.77 298 null 584 

03/01/2020 05:47:27 null 13.45 1372 0.00 591 

03/01/2020 05:47:32 13.20 13.12 2446 null 599 

03/01/2020 05:47:33 13.41 12.80 3520 null 606 

03/01/2020 05:47:42 13.63 13.16 3507 null 614 

03/01/2020 05:47:54 13.85 13.53 3495 null 606 

03/01/2020 05:48:11 14.06 13.90 null null 599 

03/01/2020 05:48:12 14.28 null null null 592 

03/01/2020 05:48:17 14.50 null null null null 
Table 27 - Fourth Data Analysis to Identify Miss Values 

 

By analyzing Table 27, it is possible to notice that some missing values were replaced by real 

values, when we use the linear interpolation method. This statement can be confirmed when we compare 

the rows between timestamps 03/01/2020 05:47:32 and 03/01/2020 05:48:17 of the variable oil temp. 

in Table 26 (before interpolation) and Table 27 (after interpolation). Note that the linear method ignores 

the index and treats the values as equally spaced, only needing to know two real values (initial and final 

value) and the number of points that need to be inserted. But when performing this type of method, we 

only replace the missing values by real values in the range of known values, i.e., when looking at the 

result of this method we can see that the values in the first row could not be filled, because the filling 

direction of the values is forward (in the case of values of the Oil Temp. from the value 13.20 towards 

the value 14.50) and there is no previous value that could have been used in the interpolation;  

 Step 3 - Filling missing values: To fill the nulls values two other methods were used 

sequentially: backward fill and forward fill. Is important to mention that these two 

methods were used to replace the “null” values by a known real value, since we did not 

have a range as needed in the interpolation method, so that we could smoothly estimate 

the increase or decrease of the variable values. 

 

Timestamp 
Oil 

Temp. 

Coolant 

Temp. 

Oil 

Pressure 

Vehicle 

Speed 

Engine 

Speed 

03/01/2020 05:47 13.20 14.10 298 0.00 584 

03/01/2020 05:47 13.20 13.77 298 0.00 584 

03/01/2020 05:47 13.20 13.45 1372 0.00 591 
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03/01/2020 05:47 13.20 13.12 2446 0.00 599 

03/01/2020 05:47 13.41 12.80 3520 0.00 606 

03/01/2020 05:47 13.63 13.16 3507 0.00 614 

03/01/2020 05:47 13.85 13.53 3495 0.00 606 

03/01/2020 05:48 14.06 13.90 3495 0.00 599 

03/01/2020 05:48 14.28 13.90 3495 0.00 592 

03/01/2020 05:48 14.50 13.90 3495 0.00 592 

Table 28 - Fifth Data Analysis to Identify Miss Values 
 

Backward fill is used to fill the missing values backwards, copying the last known value and 

forward fill will propagate the last valid observation forward. Through the analysis of Table 28, we can 

see that for Oil Temp. values, the backward fill method was used from timestamp 03/01/2020 05:47:32 

backward, and for Oil Pressure from timestamp 03/01/2020 05:47:54 the forward fill method was used 

forward. 

It is important to mention that the insertion of missing values with a low error margin is only 

possible, if before using the filling methods, we identify the trips for each vehicle. This step of splitting 

into trips is fundamental, since it prevents data from one trip being extrapolated to another that started 

long after the engine was shutdown. After inserting the missing values following the two determined 

steps, we can observe in Table 29 that the percentage of usable values in the model has increased 

significantly, making the grouping of parameters much more stabilized and without large discrepancies 

in the amount of data. 

 

 
Metrics/Parameters 

Oil 
Temp. 

Coolant 
Temp. 

Oil 
Pressure 

Vehicle 
speed 

Engine 
speed 

Count 4337234 4339705 4442110 4519072 4534626 

Mean 73.09 72.71 3027.69 26.90 1103.78 

Std 9.22 9.20 695.77 14.95 266.48 

Min 4.19 4.00 0.00 0.00 0.00 

Quartile 25 % 68.71 68.28 2560 16.17 986.00 

Quartile 50 % 75.04 74.61 3000 27.39 1112.00 

Quartile 75 % 80.23 79.85 3520 37.21 1244 

Max 126.7 127 5840 89.10 2676 

Size 4542016 4542016 4542016 4542016 4542016 

% of Null values 4.50 4.45 2.19 0.50 0.16 
Table 29 - Metrics of the Data After the Missing Value Imputation 

 

It is important to mention, that the value insertion model adopted did not significantly affect 

the initial statistics identified in Table 23 it only reduced the occurrence of missing values (% of null 

values in the Table 29). This shows that the inserted data are close to reality and does not negatively 

affect the results. Besides, we obtain a negligible percentage (less than 5%) of missing values that makes 

it possible to use this data set for the study. 
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5.2 Variables Behaviour Analysis 

 
Visual analysis of data represents one of the most frequently used initial data analysis 

techniques in the development of intelligent fault prediction systems. By visually analyzing the data, 

and/or investigating the behaviour of the variables that will serve as the basis for model development, 

the developer can better understand the problem at hand and make an informed decision about the 

algorithms that will be needed. To perform this type of analysis, we chose to use density plots which 

allow us to get a quick visual understanding of the distribution of the values of the variables. According 

Scott, (2019) in this type of graph, the x-axis represents a data point of the variable as in a histogram 

and the y-axis is the probability density function for the kernel density estimate. However, we must be 

careful to specify that this is a probability density and not a probability. The difference is that the 

probability density is the probability per unit on the x-axis. To convert to an actual probability, we need 

to find the area under the curve for a specific interval on the x-axis. In other words, the y-axis values 

are the determination of the probability of a point occurring between two values x1 and x2, represented 

by the area under the curve between these two points. We generally use the y-axis values of a density 

plot as a value only for relative comparisons between different categories, and in this way this type of 

plot is useful to visualize three properties: 

1. Skewness: describes the symmetry of a distribution. Density curves allow us to quickly 

see whether or not a graph is skewed to the left, to the right, or if it is centered around a 

certain value: 

2. Mean and median: Depending on the skewness of a density curve, we can quickly tell if 

the mean or median is larger in a given distribution. In particular: 

a. If a density curve is left skewed, then the mean is lower than the median; 
 

b. If a density curve is skewed to the right, then the mean is greater than the median; 
 

c. If a density curve is no skew, then the mean is equal to the median. 
 

3. Number of Peaks: Density curves also allow us to quickly see how many "peaks" there 

are in a given distribution. When the distributions has only one peak, it is describe as 

unimodal. However, some distributions can have two peaks which we call bimodal 

distributions and, in rare cases, we can also have multimodal distributions that have more 

than two peaks. 

Thus, from this type of analysis, as shown in Figure 27 to Figure 41 we have conditions to 

identify trends of the data, determining similarity or not of the behavior of the variables among the 

selected vehicles, despite being of different brands, models and years of manufacture. It is important to 

mention that vehicles 30 and 80 are not being presented in this study because the data are similar to 

vehicles 67 and 82 respectively. 



111  

 
 

Figure 27 - Oil Temperature Data from Vehicle 21 
 

 
Figure 28 - Oil Temperature Data from Vehicle 67 

 

 
Figure 29 – Oil Temperature Data from Vehicle 82 

 

Figure 27, Figure 28 and Figure 29 represent the behavior of Oil Temp. in vehicles 21, 67 and 

82. Looking at data presented in the figures it is possible to see that the oil temperature has a similar 

range of values for all vehicles (0 to 120° C). However we have a variation in the percentage of values 

in each temperature segment. Figure 27 shows that vehicle 21 works more frequently in a zone close to 

80 degrees, having a probability density of values almost double the sum of all the other ranges of 

values, while in vehicles 67 and 82 this distribution of values is smoother. By analyzing Figure 28, we 

can determine that vehicle 67 does not exceed 90°C, showing that this vehicle has a very strict 

temperature control and during data collection never had an episode of engine overheating. On the other 

hand, vehicles 21 and 82 have values above 100°C and despite not being high temperatures that imply 

a reduced viscosity (see Figure 6) it may indicate a potential failure of the cooling, temperature control 

and/or the lubrication system, since one of the functions of the lubricant is to cool the engine. When we 

analyze Figure 29 we see that vehicle 82 has a more homogeneous temperature variation compared to 

the other two vehicles (21 and 67), maintaining itself at the ideal operating temperature determined by 
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the manufacturer (83° to 93° C). Regarding vehicle 67, it has a higher percentage of values below this 

oil temperature, remaining cooler and with a higher viscosity. Note that this does not imply a failure or 

potential failure, but determines an increase in fuel consumption due to the need for more power to 

move the engine components. 

We now move on to another analysis, following the same principles but using the coolant 

temperature data as shown in Figure 30, Figure 31 and Figure 32. 

 

 
Figure 30 - Coolant Temperature Data from Vehicle 21 

 

 
Figure 31 - Coolant Temperature Data from Vehicle 67 

 
 

 
Figure 32 - Coolant Temperature Data from Vehicle 82 

 

It is normal to have a similar behaviour between the oil temperature and the coolant 

temperature. This is due to the fact that these two variables should be kept at a difference of 5° to 8°C 

between them. By analyzing Figure 30, Figure 31 and Figure 32 we realize that this is true, i.e., the 

behaviour is similar between the two variables but the variation of values is much more rigid, having a 

percentage of values very close to each other. This rigidity and/or proximity of values is due to the fact 

that the cooling fan has a direct influence on this variable, and, in many cases, it does not have a smooth 
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rotation control, often staying at constant rotation percentages. Analyzing Figure 30 we notice that the 

vehicle 21 keeps the coolant temperature almost always a little below 80°C, which indicates that the fan 

is on all the time in a constant rotation, avoiding the variation of the coolant temperature. Figure 32 show 

that the same is true for vehicle 82, with the temperature staying around 85°C. When analyzing Figure 

31 we notice that the fan is configured in a way to allow the temperature variation but still keep the 

coolant a little cold, out of the ideal operation zone. 

Following our analysis, we move on to the next variable that is represented by oil pressure as 

shown in Figure 33, Figure 34 and Figure 35. 
 

 
Figure 33 - Oil Pressure Data from Vehicle 21 

 

 
Figure 34 - Oil Pressure Data from Vehicle 67 

 

 
Figure 35 – Oil Pressure Data from Vehicle 82 

 

Looking at Figure 33, Figure 34 and Figure 35 we see no significant differences in the ranges 

of values, with the working zone of the oil pressure being common to all vehicles. However, we can 

notice two peaks for vehicle 21 (Figure 33), which means, this data structure is bimodal, informing that 

this car has two frequent working zones. Considering that the ideal working zone for oil pressure is 
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between 2000 mbar and 3500 mbar, the frequency of values for vehicle 21 in the 1500 mbar zone may 

indicate a potential failure in the oil pump of this vehicle or pressure leaks. 

The next analyzed parameter is the vehicle speed. However, it is important to mention that 

this variable is directly related to the type of operation, place of operation, and driver of the vehicle. 

Although speed is extremely important to calculate the OSF features, we cannot measure all the 

unknowns that influence this variable, since we have no control over the place where the vehicle will 

operate, how it will operate and by whom the vehicle will be driven. That is, the use of this variable is 

necessary for the development of the intelligent system, since the lubrication system and the engine 

work according to the driving style. However, their differences cannot indicate a potential failure like 

the other variables, since they are variables directly related to human behavior and not to the behavior 

of the machine itself. 

In Figure 36 through Figure 38 we present the behavior of the variable vehicle speed. 

 

 
Figure 36 - Vehicle Speed Data from Vehicle 21 

 

 
Figure 37 - Vehicle Speed Data from Vehicle 67 

 

 
Figure 38 - Vehicle Speed Data from Vehicle 82 
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By analyzing the Figure 36, Figure 37 and Figure 38, we realize that all cars have the same 

range of values. Figure 36 shows that vehicle 21 operates more at low speeds than the other vehicles, 

which may indicate an operation in areas with speed control, such as near places with large flow of 

pedestrians. 

Finally we will analyze the behavioural pattern of the engine speed in Figure 39, Figure 40 

and Figure 41. 

 

 
Figure 39 - Engine Speed Data from Vehicle 21 

 

 
Figure 40 - Engine Speed Data from Vehicle 67 

 

 
Figure 41 - Engine Speed Data from Vehicle 82 

 

When analyzing Figure 39, Figure 40 and Figure 41, we can see that the operation zone is the 

same in all vehicles, with vehicle 21 having some differences when compared to the other vehicles. This 

vehicle has a higher probability density in values near idle when compared to the other vehicles, which 

confirms the previous analysis that indicates that this vehicle usually operates at lower speeds, i.e., in 

stop and start zones, which can cause greater stress to the lubricant and the engine, and can also cause 

an anomalous heating pattern of the vehicle components (see Figure 18 and Figure 30). Another 
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important point to note is that all vehicles operate in a zone close to the Extra Economic Point, which 

is 1200 to 1500 RPM, on average, for heavy-duty vehicles. This point is important because it shows 

that drivers do not push their vehicles to the limit, i.e., they do not frequently reach the danger zone that 

goes from 2.200 to 2.500 RPM, which is the range that can cause irreversible damage to the engine, 

such as bending the valves in the cylinder head and even bend the connecting rods, because in this range 

the engine completely loses synchronism. In some types of electronic engines there are protection 

sensors that prevent this from happening by cutting off the fuel flow. 

Thus, it can be concluded from this analysis of the behaviour of the variables that all variables 

have a certain level of asymmetry. Indicating that the data may not be normally distributed, however it 

indicates the range of values in which these parameters operate most of the time and confirms the limits 

and optimal values of operation. Another important point of this analysis is the direction we can go to 

potential problems, the types of operation, and the similarities and differences in the data for each 

vehicle, not to mention that we have already eliminated potential problems with the presence of outliers. 

To confirm whether there was a strong or weak relationship between the distribution of values 

across months and vehicles, we applied the Kolmogorov-Smirnov test (K-S test). According to 

Lilliefors (1967), the application of the K-S test in comparing datasets provides a means of testing 

whether a specific dataset (sample) belongs to or resembles a dataset of some fully specified continuous 

distribution. It is important to mention that K-S test returns two values when applied to compare two 

samples and/or datasets: 

 D value: quantifies a distance between the empirical distribution function of the sample 

and the cumulative distribution function of the reference distribution, or between the 

empirical distribution functions of two samples (Lilliefors, 1967); 

 P-value: returns the possibility that we can reject the null hypothesis that the two samples 

were drawn from the same distribution which will hapen if the p-value is less than the 

significance level (Lilliefors, 1967). 

According to this statement, and through the analysis of the graphs of Figure 42 to Figure 56 

separated by variable, we can see in the x axis the values presented by each parameter and in the y axis 

the D values of the K-S test. As with the probabilistic density plot analysis, it is important to report that 

vehicles 30 and 81 are not being presented in this study because the data are similar to vehicles 67 and 

82 (in the case of vehicle 30 similar to 67 and in the case of vehicle 81 similar to vehicle 82 - see Table 

14). 
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Figure 42 - Kolmogorov-Smirnov (K-S) Test of Oil Temperature Data from Vehicle 21 

 

 
Figure 43 - Kolmogorov-Smirnov (K-S) Test of Oil Temperature Data from Vehicle 67 

 

 
Figure 44 - Kolmogorov-Smirnov (K-S) Test of Oil Temperature Data from Vehicle 82 

 

When we check the oil temperature, in Figure 42, Figure 43 and Figure 44 in vehicles 21, 67 

and 82 respectively, we see a striking difference in relation to the D values in vehicle 82 (Figure 44), 

the maximum being approximately 0.97 in the zones close to 80°C, in comparison to 0.031 in vehicle 

67 (Figure 43) and 0.039 in vehicle 21 (Figure 42). This kind of difference is directly linked to the 

acquisition mode of this parameter. This vehicle, despite having the same technical characteristics as 

vehicle 80, has a different data acquisition configuration and therefore the sample rate of this parameter 

in this vehicle is much higher than that of the other selected vehicles. This type of data acquisition 

configuration is determined internally by Stratio automotive in conjunction with the vehicle owner and 

cannot be changed as it is a business rule. Next, we will look at Figure 45, Figure 46 and Figure 47 

which show the D values obtained from the coolant temperature data. 
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Figure 45 - Kolmogorov-Smirnov (K-S) Test of Coolant Temperature Data from Vehicle 21 

 

 
Figure 46 - Kolmogorov-Smirnov (K-S) Test of Coolant Temperature Data from Vehicle 67 

 

 
Figure 47 - Kolmogorov-Smirnov (K-S) Test of Coolant Temperature Data from Vehicle 82 

 

When we analyze Figure 45, Figure 46 and Figure 47 we notice that the distances between the 

distributions which correspond to the D value, reduces in comparison with the values obtained in Figure 

42, Figure 43 and Figure 44. This shows that this parameter was configured and has a similar acquisition 

rate in all selected vehicles. This reduction in value indicates that even when comparing data from 

vehicles with different brands and models, the data have similarities and proximity in their distributions. 

 

 
Figure 48 - Kolmogorov-Smirnov (K-S) Test of Oil Pressure Data from Vehicle 21 
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Figure 49 - Kolmogorov-Smirnov (K-S) Test of Oil Pressure Data from Vehicle 67 
 

 

Figure 50 - Kolmogorov-Smirnov (K-S) Test of Oil Pressure Data from Vehicle 82 
 

By analyzing the Figure 48, Figure 49 and Figure 50, which correspond to the comparison of 

the data distributions for oil pressure, we can indicate the same conclusion obtained from the analysis 

of Figure 45, Figure 46 and Figure 47, i.e. the data have similarities and closeness in their distributions. 

 

 
Figure 51 - Kolmogorov-Smirnov (K-S) Test of Vehicle Speed Data from Vehicle 21 

 

 

Figure 52 - Kolmogorov-Smirnov (K-S) Test of Vehicle Speed Data from Vehicle 67 
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Figure 53 - Kolmogorov-Smirnov (K-S) Test of Vehicle Speed Data from Vehicle 82 
 

Like in the analysis performed on Figure 36, Figure 37 and Figure 38, it is important to 

mention that when analyzing Figure 51, Figure 52 and Figure 53, we must take into consideration that 

this is a parameter that suffers direct influence of the type of operation, place of operation and driver. 

In this way, we can only conclude from the analysis of the D values of vehicle speed, that the 

distributions are similar to each other and can be considered from the same dataset. 

 

 
Figure 54 - Kolmogorov-Smirnov (K-S) Test of Engine Speed Data from Vehicle 21 

 

 
Figure 55 - Kolmogorov-Smirnov (K-S) Test of Engine Speed Data from Vehicle 67 

 

 
Figure 56 - Kolmogorov-Smirnov (K-S) Test of Engine Speed Data from Vehicle 82 
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Finally, by analyzing the Figure 54, Figure 55 and Figure 56, we can confirm that the data 

samples are very close to the same distribution. This type of analysis should be performed for each 

selected parameter because it indicates if we will have to work on the data to make them follow the 

same patterns. By having similar data we can apply calculations and metrics that are transversal, without 

worrying about creating specific analysis means for each parameter and/or vehicle. Thus, it is important 

to present the Table 30 that indicated all the P and D values for the comparisons made with the vehicle 

data: 

 

vid Variable 
K-S test P 

value 
K-S test D value 

 
67 

Oil Temp. 1.87e-11 0.03 

Coolant Temp. 2.42e-34 0.05 

Oil Pressure 0.00 0.22 

Vehicle Speed 8.74e-94 0.09 

Engine Speed 1.21e-56 0.07 

 
80 

Oil Temp. 0.00 0.96 

Coolant Temp. 4.37e-17 0.03 

Oil Pressure 0.00 0.19 

Vehicle Speed 1.84e-36 0.05 

Engine Speed 8.85e-303 0.16 

 
21 

Oil Temp. 4.60e-18 0.03 

Coolant Temp. 5.11e-64 0.07 

Oil Pressure 3.13e-298 0.16 

Vehicle Speed 0.00 0.20 

Engine Speed 0.00 0.35 

 
34 

Oil Temp. 5.54e-143 0.11 

Coolant Temp. 1.18e-44 0.06 

Oil Pressure 0.00 0.37 

Vehicle Speed 1.97e-262 0.15 

Engine Speed 0.00 0.48 

 
82 

Oil Temp. 0.00 0.96 

Coolant Temp. 1.84e-46 0.06 

Oil Pressure 0.00 0.17 

Vehicle Speed 1.90e-12 0.03 

Engine Speed 3.62e-85 0.08 

Table 30 - D Value and P Value from the Kolmogorov-Smirnov (K-S) Test 
 

Through the analysis of the Table 30 we can confirm that only Oil Temp. in vehicle 82 has a 

high D value and all others remain constant. Another important point through the analysis of the table 

is in relation to the P value, as the p-value is less than 0.05 in all comparisons, we reject the null 

hypothesis. Thus, we have enough evidence to say that the samples do not come from a normal 

distribution. This conclusion is important to avoid performing experiments using parametric models. 

Given this, the assessment of the normality of the data distribution is paramount for the proper 

description of the sample and its inferential analysis. Furthermore, it is normal that data sets collected 
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outside controlled testing environments present non-normal distributions, especially in events of high 

variability, with standard deviation greater than half of the mean value contraindicating the use of 

statistical techniques intended for normal samples, under penalty of biasing the parameters and the 

inference of the tests. Even the increase in sample size will not supplant the estimation errors caused by 

the use of distributions inappropriate to the analysis techniques. In addition to concluding the normality 

of the data, by analyzing the two values provided by the test (D-value and P-value), we confirm that 

there are no plausible divergence problems in the data distribution that would justify their removal or 

replacement in the creation of an intelligent system for predicting the operating state of lubricating oils. 

 

5.3 Sample Distribution 

 
When analyzing the data collected from the lubricating oil one must take into account that 

most of the time it is in good working conditions, with the vehicle operating without faults over a long 

periods of timel. This situation results in a highly unbalanced dataset, with our dataset having only 10% 

of samples where the lubricating oil was not in good conditions (see Figure 57). According to Prytz 

(2014), the importance of balancing the data lies in the fact that many classification models are designed 

to work with roughly the same amount of samples for each class Additionally there are several other 

degrading factors of classification performance that are associated with unbalanced data. 

 
 

 
Figure 57 - Percentage of Labels in an Unbalanced Dataset 

 

According to Mitchell (1997), if we develop a system without considering this 

disproportionality in the data, the model will fall victim to the Accuracy Paradox6, where the algorithm 

parameters will not differentiate the minority class from the other categories, despite having an high 

accuracy. This lack of differentiation can cause serious problems since the identification of these 

minority cases can be the target of the challenge to be solved. For example example, consider our 

problem: If our model does not successfully differentiate the positive diagnoses of lubricant system 

 

6 The Accuracy Paradox is by definition a contradictory situation in which a high accuracy in your 

classification system may highlight a failure of your own system to make meaningful predictions. 
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failure, classifying them as negative cases (majority class), we would be developing a system that 

instead of predicting wear and maintaining the health of the equipment would be opening margins for 

excessive wear and consequently a catastrophic failure, which would result in additional costs. Thus, 

according to Prytz (2014), if there is little data from which to learn, a predictive algorithm may have 

difficulty in extracting and learning important patterns that discriminate problem classes and establish 

a reliable decision boundary, which directly interferes with the model's performance in making future 

generalizations about unknown data samples. 

According to Dogan & Birant (2021), methods based on sampling (resampling) are the 

simplest and oldest methods used for balancing datasets. They consist of modifying the structure of the 

unbalanced data set so that it has equivalent amounts of samples for the classes present, either by 

removing (undersampling) or adding (oversampling) new samples. These types of methods are also 

known as data-level approaches, since the entire solution for balancing the data is done directly on the 

dataset, isolating the classification models, which just receive the already balanced data for training. 

Since this process usually occurs before that classification models are trained, sampling methods are 

related to the data pre-processing step. 

To address this issue, we use a stratified data balancing technique, which consists in the initial 

creation of two datasets: a first dataset containing only the data that has the lubricant operating condition 

label and a second dataset with all the occurrences of the non-operating condition label and nearby 

situations. Next, we check how many samples we have in the second dataset, which contains the non- 

operating condition data points, and randomly extract the same amount of situations from the first 

dataset. Thus, we insert that amount of good lubricant operating condition points extracted from the 

first dataset into the second dataset that previously only had non-operating condition situations and form 

a dataset with the same amount of points that determine good lubricant operating condition and non- 

operating condition. After this step we will have a balanced dataset with two operating situations needed 

to create the model. 

 

 
Figure 58 - Percentage of labels in a balanced dataset 
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According to Figure 58, we can see that the final distribution of samples, bringing a data 

structure very close to the ideal (50% of each class). It is important to mention that according to Prytz 

(2014), data balancing, as well as variable selection, missing values imputation and the study of the 

behavior of variables with verification of noisy samples, are fundamental steps that must be 

implemented by the data analyst who is concerned with the reliability of his classification products. 

 

5.4 Principal Component Analysis (PCA) 

 
PCA is an unsupervised dimensionality reduction technique that constructs relevant 

features/variables through linear (linear PCA) or non-linear (central PCA) combinations of the original 

variables. PCA, is a mathematical procedure to convert a set of observations of possibly correlated 

variables into a set of linearly uncorrelated variable values called Principal Components (PC’s) 

(Rodrigues et al., 2020). That is, an orthogonal transformation of the data into a series of uncorrelated 

data that live in the reduced space of the PCA, such that the first component explains the most variance 

in the data with each subsequent component adding more information. Thus, to evaluate this variation 

in our dataset we drawn from the PCA analysis the cumulative variance of the parameters, which 

determines the loss of information with the simplification of variables. According to Rodrigues et al. 

(2020), the cumulative variance is calculated by decreasing order of importance. 

 

 

 
Figure 59 - The Cumulative Explained Variance Ratio as a Function of the Number of Components 

 

According to Figure 59, the blue bars show the percentage of the variance explained by each 

principal component and the red line shows the cumulative sum. From the graph, we can see that the 

first principal component explains 35% of the variance in the dataset. When we consider the first and 

the second, principal components we can explain 63% of the variance, and so on. According to W. 

Wang & Zhang (2005), we can consider that the cumulative variance calculation is adequate to evaluate 

the relationships between the variables, since it explains a large part of the variability of the data, and 

generally an explanation greater than 50% in the first two components is required to use this type of 
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analysis. So, following this analysis, the chart in Figure 59 shows that we need only 4 of the 9 principal 

components to explain 90% of the variation in the original data. But it is necessary to evaluate each 

principal component in detail, examining the magnitude of the coefficients of the original variables. 

That is, the higher the absolute value of the coefficient, the more important will be the variable 

corresponding to the principal component calculation. 

 

 
Figure 60 - Effect of Variables on Each Principal Component 

 

Figure 60 shows the relation between each principal component and a variable, which can 

also be called factor loading. This type of analysis makes it easy to grasp the dimension behind a 

component. The overall dimension would be the optimal lubricating capacity of the equipment, and a 

component strongly correlated with these variables can be interpreted as the dimension of determining 

the rate of degradation of the lubricating oil, i.e., the loss of lubricating capacity of the equipment. The 

importance of each characteristic is reflected by the magnitude (no matter the sign) of the corresponding 

values in the eigenvectors. 

Looking at values inside the heatmap (Figure 60), for principal component 1 (PC-1) the most 

important variables are: Kinematic viscosity (visc_cin), Dynamic viscosity (visc_din), Oil Temp. and 

Coolant Temp. Also, we can see that the characteristics engine speed, vehicle speed and Oil_z are the 

most important for PC2. This analysis of importance of the variables by component is important because 

it indicates which groups of variables impact each other and consequently help understanding the 

lubrication system behavior as a whole. In other words, when we analyze the most important variables 

for PC-1 (Kinematic viscosity (visc_cin), Dynamic viscosity (visc_din), Oil Temp. and Coolant Temp.) 
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we notice that these variables can be considered as a group of data from the lubricant. When we perform 

the same analysis for PC-2 (Engine Speed, Vehicle Speed and Oil Pressure and Oil_z) we can consider 

that this component concerns the system where the lubricant is inserted. 

Looking closer at the way each variable affects the principal components, we can see that PC- 

1 has a negative association with the lubricant temperature and the coolant temperature. On the other 

hand, this component correlates positively with the kinematic and dynamic viscosity. In summary, it is 

intrinsic that these characteristics are extremely important in determining the rate of lubricant 

degradation and that, going in opposite directions, they show evidence that temperature is the primary 

influencer of viscosity and that as temperature increases, viscosity decreases, thereby reducing the 

lubricating capacity of the oil. Following this line of reasoning, PC-2 is more related to the 

characteristics of the equipment itself, showing the importance of a complete view of the equipment 

and the lubrication system in general, not just focusing on the product (lubricating oil) to determine the 

degradation index. 

To have a better understanding of the distribution of samples by class, we developed Figure 

61 which shows our dataset considering only the two Principal Components (PC-1 and PC-2). In 

concrete, samples that correspond to lubricant failures were marked in red and samples that correspond 

to good lubricant operating condition were marked in green. 

 

 
 

 
Figure 61 – Principal Component Analysis (PCA) for Two Principal Components 

 

From the analysis of Figure 61, it is possible to identify that in the interval from -4 to -2 of the 

PC-1 axis, there is a clear separation between labels 0 and 1, which indicates that 18% of the points do 

not overlap. But for values of PC-1 greater than -2 we can see that some samples from the two classes 

overlap, representing the largest portion of the data points (about 82%). This situation show that using 

only these two principal components an ML model will have some difficulties to distinguish between 
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situations where the oil is good for operation and situation where it is not, indicating that we might need 

to rely on more variables. Building on this analysis, we can provide the principal axes in the problem 

space, representing the directions of maximum variance in the data. This means that we can see 

influence in each of the components by feature. 

To help us with this analysis, we will use the Biplot graph, which is a visualization model that 

contains the angulation and projections of the features with respect to the problem definition: 

1. PCA scatter plot which shows the first two components (Figure 61); 
 

2. PCA loading plot which shows how strongly each characteristic influences a principal 

component (Figure 62). 

It is important to mention that all vectors start at the origin of the referential and the projected 

values on the components corresponds to their weight on that component. Also, the angles between the 

individual vectors indicate correlation between them. In classical analysis, the size of the vector is 

proportional to the variance of the variable and the cosine of the angle between two vectors is the 

correlation between the variables. 

 

 
 

 
Figure 62 - Principal Component Analysis (PCA) Biplot Graph 

 

Before starting the analysis of Figure 62, it is noticeable that there is a difference in the 

positioning of the data points in relation to Figure 61. This is due to the fact that to improve the 

visualization of vectors and variables, it was necessary to use factors of scale following the equation: 

 

1 
𝑃𝐶𝐹𝑎𝑐𝑡𝑜𝑟 = 

𝑥 − 𝑥 𝑚𝑎𝑥 𝑚𝑖𝑛 

(7) 
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Where, 𝑃𝐶𝐹𝑎𝑐𝑡𝑜𝑟 is the scale factor of the principal component, 𝑥𝑚𝑎𝑥 is the maximum value 

that this component reached during the PCA analysis and 𝑥𝑚𝑖𝑛 is the minimum value. 

Looking at Figure 62, we can see that the arrows (variables/characteristics) pointing in the 

same direction indicate a correlation between the variables they represent, while the arrows pointing in 

opposite directions indicate a contrast between the variables they represent. It is possible to notice that 

the length of the arrows is different for each variable and this represents how much variance this variable 

explains in the factorial plane. According to W. Wang & Zhang (2005), this can be called the 

representation quality of that variable in the plane. It is also important to mention that the angle between 

the variables gives an indication of how well the variables are correlated. 

1. A small angle indicates that the representation of the two variables in the factorial plane 

are positively correlated. Above we see that oil temperature and liquid temperature are 

positively correlated in this factorial plane; 

2. An angle of 90 degrees indicates that there is no correlation. Above we can see that 

temperatures and Oil_z have little correlation; 

3. An angle of 180 degrees indicates a negative correlation, just as we see to temperatures 

and viscosities; 

4. The variables considered most representative, are those that form smaller angles with the 

line that presents the circle formed with the arrow, that is, temperatures and viscosities. 

We can conclude from this analysis that if we are viewing a multivariate dataset in a high 

dimensional space, with 1 axis per variable, PCA can be used to provide a lower dimensional view of 

the same data, a shadow of the original object when viewed from its most informative point. This is 

done using only the first principal components, so that the dimensionality of the transformed data is 

reduced. By performing the PCA analysis we were able to determine how many components would be 

necessary (see Figure 59) to represent the information in the dataset, the importance of the selected 

variables (see Figure 60), and ascertain if these variables could be used for the development of an 

automatic lubricant condition determination system (see Figure 61 and Figure 62). All these conclusions 

are important because they will determine the obtaining of valid results of the system and its 

implementation in the real environment. 

 

5.5 Correlation Analysis 

 
To further understand the existing relationships between the variables being used, we 

performed a correlation analysis. The correlation coefficients are helpful in studies with many related 

variables because they provide some information that help us understand how the variability of one 

variable affects the other. 
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Figure 63 - Pearson Correlation for the Lubricant Operation Condition (Label 0) 
 

 
Figure 64 – Pearson Correlation for the Non-Operational Condition of the Lubricant (Label 1) 

 

Figure 63 and Figure 64 show a visual representation of the Pearson correlation between every 

pair of variables. The former represents the correlation for situations where the oil is in good conditions 

(Label 0), whilst the latter shows the correlation between the variables when the oil is not in good 

conditions (Label 1). Looking at the results presented in the figures, we can observe the following: 

1. Oil_z in relation to all the other variables, has correlation values for label 0, something 

that is almost not identified for Label 1. This information determines that the calculated 

variable Oil_z is an important and decisive variable for determining the oil’s non- 

operating condition, since it is related to all the variables selected for solving the problem; 

2. Oil pressure in relation to oil and liquid temperature, decreases its correlation value when 

it change from label 0 to label 1. This information indicates that the control for the 
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relation of the amount of oil necessary for complete lubrication of the engine, according 

to its operating temperature, is no longer fully functioning and may not be sufficient;  

3. Oil pressure versus engine speed increases its correlation value when it changes from 

label 0 to label 1. This information determines that the engine needs to rotate faster to try 

to meet the lubrication demand; 

4. The viscosities in relation to the engine speed decrease their correlation values when 

transiting from label 0 to label 1. This information determines that the film required for 

optimal engine lubrication at that speed is no longer being achieved; 

5. Oil pressure versus viscosities increase their correlation values when transitioning from 

label 0 to label 1. This information determines the need for greater lubricant pressure to 

meet lubrication needs, since oil degradation causes it to lose its properties, viscosity 

being one of the most important oil properties. 

Even though Pearson correlation values are relatively higher, we decided to apply one more 

correlation method to analyze the differences. According to Baak et al. (2020), we applied the recently 

developed Phik correlation (Figure 65 and Figure 66), which has been shown to efficiently capture non- 

linear dependencies. The Phik correlation is obtained by inverting the statistics of the chi-square 

contingency test, thus allowing users to also analyze the correlation between numeric, categorical, 

interval and ordinal variables. 

 

 
Figure 65 – Phik Correlation for the Lubricant Operation Condition (Label 0) 
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Figure 66 – Phik Correlation for the Non-Operational Condition of the Lubricant (Label 1) 
 

Unlike Pearson's correlation coefficient which range from -1 to +1, where ±1 indicates perfect 

agreement or disagreement, and 0 indicates no relationship, the coefficient phik has a value in the 

interval [0, 1], which is determined by the distribution of the pair of variables. The values for correlation 

levels are 0 for no association and +1 for complete association. Through the analysis of Figure 65 and 

Figure 66, we can see an increase in the correlation values of most variables. These results suggest that 

there is an association between the variables, but some of them could be non-linear. This correlation 

method, since these variables, as seen in the other methods, are of paramount importance for the 

construction of the system for identifying the operating condition of lubricating oils in diesel engines. 

We are also interested in looking into which variables may or may not be relevant as input to 

develop a model (see Figure 67). 
 

 
Figure 67 - Correlation Between the Input Variables with the Output Variable 
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By looking at Figure 67, we can see from this correlation graph that the variables oil 

temperature and liquid temperature have a high correlation value with the target, which is identified 

because the operating temperatures are directly linked to the calculations made by the electronic control 

unit for the engine’s lubrication needs, and the higher the engine’s operating temperature, the lower the 

kinematic viscosity and the worse the oil’s lubrication power. Another important point to mention is 

that due to the high temperature relationship, there is consequently a correlation value of the kinematic 

and dynamic viscosity with the target, even if to a lesser extent. These viscosity correlation values are 

due to the lubricant properties, and viscosity control is one of the most important factors in determining 

the lubricant’s operating condition. It is worth remembering that this correlation analysis is important 

for the selection of the algorithm that will be used. For example, a feature may be considered important 

for a model that considers linear relationships such as Linear Regression, while it is not important for a 

model that can identify non-linear relationships such as Decision Trees and Random Forest. 
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Chapter 6 - Automatic Oil Classification: Model Design and 

Validation 

An important aspect to be considered when developing an intelligent system is the algorithm 

that will serve as the basis for solving the problem. To answer this question, we need to take into 

account: 

 What kind of answer do we want, i.e., do we want a real number or a category? 

 How is the input data scaled? 

 Do we have labels? 

 Do we want black or white box model that allows an expert to be able to determine if the 

decision path followed is correct? 

 What are the computational resources that we have at our disposal? 
 

We need a model that can handle the characteristics of the data we have, but we also have to 

take into consideration the specific situation in which it will be deployed, namely assisting a human 

operator in the decision making process. As such, we need to choose models that, are able to provide 

the human expert with a possible explanation of the decision process. Finally, and not less important, 

we have to take into consideration the computational resources available to run the model.  

Thus, taking these requirements into account, we selected the supervised machine learning 

algorithm RF (Breiman, 2001) as our first prediction model. According to Keartland & Van Zyl (2020), 

RF is an ensemble classifier that results from the combination of multiple Decision Trees (DT). In the 

standard RF model, we select a limited random number of features from the training set, and use this 

subset (i.e., a bootstrap) to create a complete DT. This procedure is repeated for as many DTs as we 

include in the RF. The RF decision is usually performed using the most popular class predicted by each 

DT. By limiting the number of features that can be selected for the bootstrap and by creating shallower 

DTs, we reduce the computational load required allowing the RF model to be deployed in environments 

with modest computational capabilities. 

According to Jayabharathi & Ilango (2021), DTs and RFs are considered to be some of the 

simplest algorithms to implement and fastest to obtain results. Although an RF is a set of decision trees, 

there are differences between each algorithm: while decision trees generate rules and nodes by 

calculating information gain and gini index (a measure of inequality) using all features, RFs generate 

decision trees using a random subset of characteristics, thus increasing responsiveness. Furthermore, 

while larger DTs (deep trees) may suffer from overfitting problems, RFs avoid this by working with 

random subsets of features, and by building smaller trees from these subsets. Thus, our choice of the 

RF algorithm as the first evaluation is based on the following: 
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1. RFs can be used for both classification and regression and is also one of the most flexible 

and easy-to-use algorithms; 

2. RFs shows good results on various types of problems; 

3. RFs have implementations in the most diverse artificial intelligence libraries available 

today. 

In addition to the points mentioned, RFs have shown good results in a variety of applications, 

such as recommendation engines, image classification, feature selection, rank loan applicants, identify 

fraudulent activities, and predict failures in a mechanical system (Hanafy & Ming, 2021). 

 

6.1 Model Evaluation Metrics 

 
Assessing the performance of a ML algorithm is an essential part of any project. A model may 

achieve satisfying results when evaluated using a specific metric, but otherwise could be not enough for 

application in real world. For this type of situation, it is necessary to select a group of metrics that are 

representative of the problem one is dealing with and that reflects the real conditions of the environment 

where the model will be deployed (Sharma & Gandhi, 2008). Given our specific situation, and the 

imbalanced nature of the problem at hand, we selected the following evaluation metrics to assess the 

performance (Hanafy & Ming, 2021): 

1. Precision score; 

2. Recall score; 

3. F1-score; 

4. ROC curve with AUC. 
 

The result obtained by the evaluation metrics reflects the quality of the model developed, so 

if they are poorly chosen, it will not be possible to evaluate whether the model is in fact meeting the 

necessary requirements. For example, there are cases in determining the condition of the lubricant where 

different errors have different costs, and the metric calculation must reflect this difference.  

 

6.2 Results of the First Model 

 
Before presenting the results, It is important to mention that in our experimental study we 

rely on the Python module scikit-learn (sklearn) implementation (Pedregosa et al., 2011) of the RF 

classification algorithm, with 200 individual DTs of maximum size 4 and with 4 features in each 

bootstrap. For all the other remaining parameters we used the sklearn default values (scikit-learn.org, 

2021). 

For our validation procedure, we use the cross-validation method called K-fold, which 

consists of dividing the total data set into k mutually exclusive subsets of the same size, and from there, 

one subset is used for testing and the remaining subsets are used for validation and parameter estimation, 
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calculating the accuracy of the model on the errors found. This process is performed k times by 

alternating the test subsets in a circular fashion. 

Therefore, we take our original dataset and divide it into subsets, varying k from 2 to 6 and 

comparing the associated average error, in order to determine the best number of subsets or k values: 

 

K-fold 
Average 

Error 

2 17.30% 

4 14.70% 

6 13.60% 
Table 31 – K-Fold Average Error 

 

According to the Table 31 the model that had the lowest associated average error was with 6- 

Fold, thus justifying the choice of the optimal split value for testing. This method allows us to evaluate 

the performance of the model using different training and test datasets keeping the computational costs 

affordable. The results obtained by the prediction model using the RF algorithm, with the parameters 

mentioned above, are summarized in Table 32, where each row shows the average values obtained for 

Recall, F1-Score and Precision. 

 

Metrics Value 

Recall 95.90% (+/- 0.90) 

Precision 97.50% (+/- 0.69) 

F1-score 96.70% (+/- 0.50) 
Table 32 - Results Obtained with the Random Forest Model Using 6-Cross Validation 

 

Looking at the results shown in Table 32, we can identify some important signals that the 

model could be used to determinate the operation condition of the lubricant oils in diesel engines. The 

high score of the recall (95.90%) demonstrate the ability of a classification model to identify a large 

portion of relevant instances, whilst the high score of the precision (97.50%) show the ability of a 

classification model to return only relevant instances and the F1 score (96.70%) that combines recall 

and precision using the harmonic mean confirm our good perception about the performance of the 

model. In summary, a detailed inspection of how each instance is being classified by the model reveals 

that it is able to correctly identify all the instances where the oil is good for operating conditions (label 

0). However, it fails to correctly classify a small number of instances with label 1, i.e., it is not able to 

identify some situations when the lubricating oil should be changed because it is no longer good for 

operating conditions. This is not surprising when one takes the imbalanced nature of the problem at 

hand and the results of the PCA analysis (Figure 61), which revealed that for some cases there is a small 

overlap between samples of the two classes. Looking at the results obtained in the precision metric, we 

can see that they are slightly higher which confirms that the model is identifying most of the situations 

where a vehicle has an oil in the lubricating system that is not in good conditions. Finally, it is important 

to refer the low values of standard deviation for all the metrics, which are an indication of robustness 
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model. In Figure 68 we show the average ROC curve obtained using the same 6-fold cross validation 

discussed earlier. 

 

 

Figure 68 - ROC Curve Obtained by our Model, Using a 6-Fold Cross-Validation 
 

By looking at Figure 68, we can confirm what we have discussed previously, showing that we 

have a high true positive rate. This is a remarkable result (AUC value of 0.98), given the nature of our 

problem, where accurately identifying the situations where the oil is gone bad is of the utmost 

importance to avoid catastrophic failures. We also conducted an analysis to understand which of the 

used features are the most relevant to distinguish the operating conditions. This study will allow us to 

verify if the additional features that we developed (i.e, Oil_z, OSF, Kinematic Viscosity and Dynamic 

Viscosity) are useful. To compute the importance of the features, we used the normalized Gini 

importance metric. Figure 69 depicts the results of the 9 most important features. 

 

 
Figure 69 - Cumulative Sum of the Features Importance 
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Each bar in Figure 69 represents the importance score, between 0 and 1, of the corresponding 

feature. For example, the Oil Temperature (ºC) accounts for an importance score of roughly 0.4. The 

red line represents the cumulative sum of the importance of the different features. A brief perusal of the 

results confirm that the proposed features have a high importance score. In concrete, the Dynamic 

Viscosity accounts for almost 0.20 of importance, the Kinematic Viscosity for approximatly 0.15 and 

the OSF v3 for about 0.10. Another interesting result is that the first 4 variables (Oil Temperature (ºC), 

Dynamic Viscosity, Engine Coolant Temperature (°C) and Kinematic Viscosity) account for 0.90 of the 

importance. The temperature is used by the ECU of the vehicle to compute the lubrification needs of 

the engine. Higher temperatures result in smaller values of the kinematic and dynamic viscosity which 

decrease the lubrication power of the oil. Since viscosity control is one of the most important factors in 

determining the lubricant’s operating condition, it is not a surprise that these variables play an important 

role in the model’s decisions. Despite not having the same level of importance score as the temperatures 

and viscosities we can verify in the fifth position of importance, the calculated feature OSF v3. This 

feature represents the operating conditions of the vehicle and although the selected vehicles are of 

different brands and models they tend to follow the same patterns of operation. Nevertheless, it is 

important to take this descriptor into account in the implementation of the model in a business 

environment where vehicles may have different operating conditions. 

 

6.3 Models Validation 

 
According to Jayabharathi & Ilango (2021), in developing a model to answer a given problem, 

one must compare different approaches and variants and determine through his expertise and the results 

obtained, which algorithm is the most appropriate for the problem at hand. We acknowledge that tuning 

an algorithm with all its characteristics takes time and can become a non-compensatory task, since 

changing one parameter of the algorithm can indicate an improvement or worsening in the final results. 

As such certain conditions must be met to choose an adequate algorithm and solve the problem of 

determining the operating condition of lubricating oils in this study, namely: 

1. Ensure that the amount of data is sufficient to apply a given machine learning algorithm 

to solve the highlighted problem; 

2. The studies and analysis performed previously should determine a particular pattern in 

the data in order to help the algorithm understand the information contained in the data 

and improve decision making; 

3. Performing mathematical approximation analysis assists in extracting knowledge from 

the data and can be applied to certain structured learning algorithms. 

Given these requirements, we perform a cross-validation analysis of results using the 

algorithms described below: 
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 Logistic Regression (LR): Is a statistical model that in its basic form uses a logistic 

function to model a binary dependent variable, although many more complex extensions 

exist. In regression analysis, logistic regression (or logit regression) is estimating the 

parameters of a logistic model (a form of binary regression). Mathematically, a binary 

logistic model has a dependent variable with two possible values, such as pass/fail which 

is represented by an indicator variable, where the two values are labeled 0 and 1. In the 

logistic model, the log-odds (the logarithm of the odds) for the value labeled 1 is a linear 

combination of one or more independent variables (”predictors”); the independent 

variables can each be a binary variable (two classes, coded by an indicator variable) or a 

continuous variable (any real value); 

 Perceptron (PER): Is a linear ML algorithm for binary classification tasks. It may be 

considered one of the first and one of the simplest types of artificial neural networks. It 

is definitely not “deep” learning but is an important building block. Like logistic 

regression, it can quickly learn a linear separation in feature space for two-class 

classification tasks, although unlike logistic regression, it learns using the stochastic 

gradient descent optimization algorithm and does not predict calibrated probabilities; 

 Decision Tree Classifier (CART): Is a non-parametric supervised learning method used 

for classification and regression. The goal is to create a model that predicts the value of 

a target variable by learning simple decision rules inferred from the data features. A tree 

can be seen as a piece wise constant approximation; 

 Random Forest (RF): These are ensemble classifiers, which result from combining 

multiple DT. In the standard RF model, we select a limited random number of features 

from the training set, and use this subset (i.e., a bootstrap) to create a full DT. This 

procedure is repeated for as many DTs as we include in the RF. The RF decision is 

performed using the most popular class predicted by each DT. By limiting the number of 

features that can be selected for the bootstrap, and by not pruning the DTs, we reduce the 

computational burden required allowing the RF model to be deployed in environments 

with modest computational capabilities; 

 Gradient Boosting Classifier (GBM): are a group of ML algorithms that combine many 

weak learning models together to create a strong predictive model. Decision trees are 

usually used when doing gradient boosting. Gradient boosting models are becoming 

popular because of their effectiveness at classifying complex datasets. 

In our experimental study we rely on the Python module scikit-learn implementation of the 

Logistic Regression algorithm, Perceptron algorithm, Decision Tree Classifier algorithm, RF 

classification algorithm and Gradient Boosting Classifier algorithm. Although the initial model results 

are promising, it is also important to mention that for the final validations of the system developed in 
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this study, we performed 3 different experiments: The first experiment is a cross-validation between 

models and the number of features used in each model; in the second experiment we used the best model 

with the number of features selected in the first experiment and trained the model with data from 4 

vehicles and validated if with one vehicle remaining from the original dataset. In the third experiment, 

we selected the two temperature variables (oil and coolant temperature), which serve as the basis of the 

calculation for some of the other variables and trained and tested our best model (selected in the first 

experiment) with only one of these variables at a time. 

6.3.2 Cross Validation of Models and Features 
 

Selecting the best model, as previously mentioned, is a complex task. For instance, it is 

necessary to take into account the computational capabilities, the type of input data and the different 

algorithms that can be applied to solve a problem. Thus, although we obtained worthy results with the 

use of the RF (see Table 32), we performed a systematic study using different models and input 

variables. This experiment had the assumptions of obtaining a robust final model capable of adapting 

to the needs of each vehicle fleet and still verify from a list of algorithms which would provide the best 

results. 

 

 
Figure 70 - Recall: Parallel Coordinate Graph 

 

To facilitate the visualization of the results, we selected the parallel coordinates chart, which 

is commonly used when we have more than one metric and a single cluster. Looking at the results shown 

in Figure 70 we can see that the Recall ranges from 90.20% to 97.90%, showing that in general, all 

models are able to assess the lubricant’s operating conditions well. 
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Figure 71 - Precision Parallel Coordinate Graph 
 

By analysing Figure 71 we can see that our evaluation metric precision ranges from 90.80% 

to 98.80%. These results show that all models have the ability to avoid False Positives when segmenting 

the point cloud. i.e., for every 100 classifications of the lubricating oil's non-condition, it is expected 

that 90 to 98 are really true. 
 

 
Figure 72 - F1 Score: Parallel Coordinate Graph 

 

By analysing Figure 72 we can see that our evaluation metric F1-score ranges from 91.30% 

to 97.90%, This metric takes both precision and recall into account. Thus, according to Hanafy & Ming 

(2021), for the F1-score to be high, both precision and recall must also be high. That is, a model with a 

good F1-score is a model that is capable of both getting its predictions right (high precision) and 

retrieving the examples of the class of interest (high recall). Therefore, this metric tends to be a better 

summary of model quality, showing that all models are able to assess the lubricant’s operating 

conditions well. Looking at the results one can see that, with the insertion of more variables the model 
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becomes more stable and gives better results. Through the combined analysis of the Figure 70, Figure 

71 and Figure 72 we can see that the model with the best results was the one based on the GBM 

algorithm with 7 variables. Taking into account the result obtained in this analysis, we selected the best 

performing model, i.e., the GBM, and used it to study the impact that the different features have on the 

performance. In concrete, and since we have 9 features, we create all the possible sets that result of the 

combination of 7 features. After, we rely on the 6-fold cross-validation method to assess how different 

feature sets affect the performance of the GBM models. 

 

 
 

Figure 73- Box plot obtained by cross-validation of the models and number of features 
 

The results of this analysis are shown in the Boxplot of Figure 73. A detailed analysis of the 

results reveals that the range of precision variation is between 82% and 98% with an average 92% 

among the various combinations. Additionally, we can highlight some important points from the 

analysis of the figure: looking at the combinations of features presented in lines with ID15 and ID16, 
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we can see that the variable Visc_cin and Visc_din seem to have little impact on the model results, i.e., 

even if we do the replacement of the variable Visc_cin by the variable Visc_din or vice-versa in the set 

of input variables the model results obtained are the same. Analyzing the variable combinations present 

in lines with ID8, ID11, ID13, ID25 and ID34, we can see that the combination of variables Oil_z and 

Coolant Temperature (PID101), cause less variance. Looking at the overall results, we can highlight 

that the best combination of variables is: (’Engine Speed - PID118’ + ’Coolant Temperature - PID101’ 

+ ’Oil Temperature - PID100’ + ’Oil Pressure - PID108’ + ’OSF_v3’ + ’Kinematic Viscosity - Visc_cin’ 

+ ’Dynamic Viscosity - Visc_din’) and that the features engineered play a key role in the variability and 

dispersion of the results of each combination. The average results of the selected model, show in the 

line with ID20 are promising and can be seen in Table 33. 

 

Metrics Value 

Recall 97.9% (+/- 0.51) 

Precision 98.8% (+/- 0.72) 

F1-score 97.9% (+/- 0.68) 

Table 33 - Results Obtained with Best Model with Original Dataset – ID20 
 

According the evaluation metrics show in Table 33, we can identify some important signals 

that the model could be deployed in a real world scenario to determinate the operation condition of the 

lubricant oils in diesel engines. The high score of the recall (97.90%) demonstrate the ability of a 

classification model to identify all relevant instances, the high score of the precision (98.80%) show the 

ability of a classification model to return only relevant instances and the F1 score (97.80%) that 

combines recall and precision using the harmonic mean confirm our good perception about the accuracy 

of the model. Even though we had good results with the previous metrics, we still performed a ROC 

curve analysis. 

 

 
Figure 74 - ROC Curve Best Model – ID20 
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The Figure 74 shows the ROC response of different data sets, created from K-fold cross- 

validation. By taking all these curves, it is possible to calculate the average area under curve, and to see 

the variance of the curve when the training set is divided into different subsets. This roughly shows how 

the output of the classifier is affected by changes in the training data, and how different the splits 

generated by K-fold cross-validation are. Still analyzing Figure 74 we can see the AUC results of 0.99, 

given the nature of our problem, where the accurate identification of situations where the lubricating oil 

has gone bad is of utmost importance to avoid catastrophic failures. It is important to mention that this 

evaluation presented in the ROC curve was also performed from a 6-fold cross validation exactly as 

presented in Figure 68. The difference between these two analyses is given by the algorithm used, since 

in Figure 68 we used RF and in Figure 74 we used GBM. This comparison of results is important because 

it demonstrates that the variation of the input data set and the algorithm used can imply differences in 

the results, even if minimal. Thus, we can conclude that the model developed from the GBM algorithm 

with 7 variables does not lose its potential to indicate the lubricant status with a change in the input data, 

and we have confirmed that this model can be used for further analysis in a truly uncontrolled 

environment, but further analysis is still needed to determine if the model developed here can use 

previously unknown vehicle data outside the scope of this project. 

6.3.3 Model Validation with New Vehicle 

 

In order to identify the ability of the chosen model to adapt to unknown data, we conduct an 

experiment where we evaluate the performance of the ML model on classifying the oil conditions on 

vehicles that were not used in it development or training. To perform this analysis, and taken into 

account that our dataset is composed by data of 5 vehicles, we will use the data from 4 vehicles to 

design, develop and train the model, and then we will evaluate the performance on the remaining 

vehicle. Note that the data of this fifth vehicle will never be used during the first phase. In Table 34, 

column "Vehicles Training" correspond to the vehicles that were present in the training dataset and the 

column "Vehicles Testing" the vehicles correspond to the vehicles that was present in the test dataset, 

with their respective results. 

 

Vehicles Training Vehicles Testing AUC Precision Recall 
F1 

Score 

[67, 34, 80, 82] [21] 0.72 0.75 0.72 0.71 

[21, 82, 80, 34] [67] 0.76 0.80 0.76 0.75 

[82, 21, 67, 34] [80] 0.96 0.97 0.96 0.96 

[80, 21, 67, 34] [82] 0.95 0.95 0.95 0.95 

[82, 80, 21, 67] [34] 0.51 0.62 0.51 0.37 

Table 34 - Results Obtained by Model Validation with New Vehicle 
 

Looking at the results of Table 34, it is possible to see that the GBM algorithm with 7 variables 

(see ID20 Figure 73), looses some performance when determining the lubricant oil conditions on a new 

vehicle, obtaining a variation of precision from 62% to 97%, of recall from 51% to 96% and of F1- 
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score from 37% to 96%. According to Table 34, one can see that there are good results when the test 

dataset has data from vehicles 80 and 82. These good results shown in these interactions happen because 

of the difference in the years of manufacture and Km performed on the vehicles that make up the original 

dataset. That is, according to Table 14 vehicles 80 and 82 started their operation in 2017, which 

represents 15 years of service less than the oldest vehicle (Vehicle Identification equal 21 - Mercedes 

Citaro O530 - 2002 in Table 14). Another point that substantiates the good results using these vehicles, 

is due to the fact that vehicles 80 and 82 had an average of 3 years of total operation by the time of data 

collection used in this study (data collection performed between January 1, 2020 to August 1, 2020), 

which represented an average of 151200 km at the end of this period. This average mileage value of the 

80 and 82 vehicles compared to the oldest vehicle present in the dataset indicates a difference of almost 

1M km, which corresponds in the lubrication systems, differences in terms of lubricant consumption 

and operating profile. For example, the older vehicles need almost daily lubricant refills to maintain the 

correct lubricant level and the adjustments between the engine parts have already experienced high 

wear. Still analyzing the results obtained in this experiment, we know vehicles 34 and 67 have very 

similar characteristics as well as vehicles 80 and 82. So it was expected that if we had one of them in 

the test set, having similar data in the training set would result in a good classification performance. But 

the overall metrics of the experiments performed with the 34 and 67 vehicles are in the top 3 worst 

metrics unlike the experiments performed with the 80 and 82 vehicles. This difference in results 

presented in Table 34 is caused by the age of the vehicles and the technologies employed. In other 

words, the average difference of almost 10 years between the 34, 67 and 80, 82 vehicles is not only 

related to the number of lubricant non-operating condition situations encountered, but also represents a 

leap in the availability of information. As mentioned earlier, the older vehicles have more wear and are 

more susceptible to failures, so the data from the older vehicles, in addition to having a lower quantity 

in the dataset as a whole, have a higher weight in relation to the data from the newer cars because they 

have more situations of non-condition of lubricant operation. This situation is confirmed when we verify 

the results of removing vehicle 34 in comparison to removing vehicle 67, where we can see that vehicle 

34 has a higher impact than vehicle 67, being a little older, with approximately 2 years of difference. In 

relation to the availability of information, the current communication protocols allow the acquisition of 

data in larger quantities and with higher resolution, which results in a larger portion of samples in the 

training and test dataset by the vehicles 80 and 82 in comparison with vehicles 34 and 67. In this case 

this situation is not confirmed with vehicle 21 because it has the slowest data transmission rate among 

all the other vehicles and during the data collection period it had most of its time without operating. In 

summary, the removal of vehicles 34 and 67 from the experiment influences much more by the amount 

of data available and by the number of situations of no lubricant operation condition in comparison to 

the data removed from vehicles 80 and 82. 
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6.3.4 Model Validation with Only One Temperature Variable 
 

The main goal of this last experiment is to understand how the temperature variables, namely 

oil and coolant, affect the performance of the models. In concrete, we want to understand if we really 

need both temperatures, or if one would be enough to the models perform well. The main reason behind 

this study is concerned with the fact that in certain situations the vehicles only have information 

regarding one temperature. The experiment consisted of creating two new datasets, divided as follows: 

the first dataset had the variables, 'Engine Speed - PID118' + 'Vehicle Speed - PID114' + 'Coolant 

Temperature - PID101' + 'Oil Pressure - PID108' + 'Oil_z' + 'OSF_v3' + 'Kinematic Viscosity - Visc_cin' 

+ 'Dynamic Viscosity - Visc_din') and the second dataset had the variables ' Engine Speed - PID118' + 

' Vehicle Speed - PID114' + 'Oil Temperature - PID100' + 'Oil Pressure - PID108' + 'Oil_z + 'OSF_v3' 

+ ''Kinematic Viscosity - Visc_cin' + 'Dynamic Viscosity - Visc_din'). Note that in this division, each 

dataset has one temperature variable; the first dataset contains the PID101 that is the Coolant 

Temperature, and the second dataset has the variable PID100 is the Oil Temperature. 

 

 
Figure 75 - Feature Importance - Coolant Temperature 

 

 

Figure 76 - Feature Importance - Oil Temperature 
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After creating these two datasets, we ran the GBM algorithm using each dataset as input data. 

It is possible to see through the analysis of Figure 75 and Figure 76 that there are differences in the 

distribution of variable importance. In the case of the dataset with the Coolant Temperature (Figure 75), 

the values of each characteristic are closer and the distribution of importance is more evenly distributed, 

whereas in the case of the dataset with the Oil Temperature (Figure 76), the importance of this variable 

is almost twice the sum of the importance of all the other variables, which shows that this feature is 

important for the success of the model. This discrepancy in importance values is due to the fact that the 

Oil Temperature is directly related to all the other variables and is a crucial factor in the analysis of 

lubricant degradation. The average results of this experiment were: Precision of 97%, Recall of 96% 

and F1-score of 96%. With these values we see that the performance of the model is extremely 

acceptable if applied only to situations with Oil Temperature. Thus, we should not exclude either of the 

two variables from our problem, since, from our own experience, there are vehicles that can have in 

their communication bus the information of both temperatures or only one of them. For the model to be 

as agnostic as possible, it should have good results with data from both temperatures or just one of them. 
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Chapter 7 - Conclusion 

 
Modern industries rely on maintenance techniques and methods to anticipate failures in their 

equipment. The transportation industry is not an exception, and nowadays they are investing more and 

more in the research and development of methodologies that will allow them to predict vehicles 

breakdown signatures, preventing catastrophic failures and large costs. One of such signatures is 

concerned with the engine maintenance, in which they want to establish the most economical oil change 

and overhaul intervals in terms of cost, wear and failure diagnosis efficiency. 

In this work, we propose an automated method to identify the conditions of lubricating oils in 

diesel engines. We collect data from a fleet of heavy passenger vehicles, and using real-time information 

from in-vehicle sensors, as well as engineered features, we proposed an intelligent system to assist in 

vehicle maintenance. For this development, it was necessary to create a work architecture based on 

CBM and machine learning concepts, which were fundamental to structure a system capable of fitting 

into the predictive maintenance scope. We started by performing an analysis of databases of common 

failures in diesel vehicles, to determine failures in the lubrication systems were capable of predicting 

the operating conditions of the vehicles. After determining the problem that this system would solve, 

we structured it into 3 phases: "Data collection", "Modelling" and "Deployment". For the success of 

each of these phases it was necessary to follow defined steps, which were registered and catalogued in 

the data collection protocol presented, in the experiments performed, and in the system evaluations, in 

order to make possible its application in a real environment. 

To validate the use of the features selected, we carried out a study through correlation and 

PCA, which indicated that the selected variables can determine the answer to the stated problem, but it 

is necessary to have at least 4 variables for the variance of the data is not lost. The kinematic viscosity 

variable proved to be important to characterize the condition of the lubricant. Also 3 of the 4 variables 

that explain 90% of the variance in the original data were engineered by us, showing that it is necessary 

to calculate other variables based on the data to improving the results. Furthermore, the correlation 

analysis identified relationships that confirm that confirmed the relevance of the collected variables, 

consequently, paved the way for the development of a model to identify the operating conditions of 

lubricants in diesel vehicles. The best performing model was the Gradient Boosting Classifier (GBM), 

which successfully predicts whether the oil is good for running conditions or not. Given the reported 

results, the GBM revealed to be effective obtaining a Recall of 94%, a Precision of 96% and an F1- 

score of 95%, which shows that it is capable of identifying most situations in which oil lubricant is not 

good for operating conditions and needs to be changed. Even with good results, to identify potential 

problems in the implementation of the model proposed in this study in a real fleet environment, we 

performed an additional set of experiments. One of the studies performed was designed to identify the 

possibility of the model to generate good results with unknown data. The results of this experiments 

showed that it can be identified that the performance of the model degrades for older vehicles with long 
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service life, obtaining Recall results of up to 51%, an Precision of up to 62%, and an F1-score of up to 

37%. However it had good results for newer vehicles and with more current variable operation profiles, 

getting Recall results of up to 96%, an Precision of up to 97%, and an F1-score of up to 96%. The last 

experiment performed concerned the impact of the temperature variables, since certain vehicles may 

not have this data available on the communication bus. The results of this study show that the model is 

able to identify the operating condition of the lubricating oil even with only one of the temperature 

variables, obtaining a Recall of 96%, a Precision of 97%, and an F1-score of 96%. However, it is 

important to mention in this experiment the feature importance distribution becomes more uniform with 

the use only of the coolant temperature and is uneven with the use only of the oil temperature, indicating 

importance values of 62% for the oil temperature, which shows a difference of almost twice the 

importance of the other variables added together. Finally, it can be said that the results obtained in this 

work are encouraging and constitute a step forward for the automation of monitoring the conditions of 

vehicle lubrication systems in real time. So, we can say that through the system presented and the results 

obtained in this work, the hypothesis presented that learning models allow the automatic prediction of 

the state of the lubricant and the equipment, thus reducing downtime and maintenance costs associated 

with diesel vehicles, is really correct and define that this system can be used in new workshops as a tool 

to assist in maintenance management. 

 

7.1 Summary of Research Contributions 

 
A fundamental part in the delivery of a dissertation is the presentation of its contributions. 

Thus, this section is divided into three points that address the contributions to theory, methodology and 

practice in the environment that guide the development of this automatic system for detection of the 

degradation index of lubricating oils in diesel engines. 

 Theoretical Contributions: Both theory and empirical findings contribute to our 

understanding of the interrelationship between a maintenance and fleet management 

environment with development of new technologies and techniques for failure detection. 

This study also contributes to our understanding of the question of how profit-making 

fleet-based organizations can adopt and utilize initiatives related to data analytics in order 

to improve old maintenance concepts. 

The conclusions of this study suggest that institutionalized initiatives related to lubricant 

analytics are able to predict failures and serve as a basis for continuous maintenance 

improvement, creating the means for continued development in asset management. 

Although there have been some research studies on how organizations should deal with asset 

management and maintenance, this work presents a clear and directed path for 

implementation focused on vehicle fleets. Thus, it can be said that this thesis serves as a 
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guide for theoretical developments in the maintenance of this type of equipment (diesel 

vehicles); 

 Methodological Contributions: The main methodological contribution of the research has 

been the combination and application of concepts of vehicle fleet maintenance 

management, machine learning techniques, data analysis and development of failure 

prediction models. Another methodological contribution lies in the experience gained 

through the application of a case study strategy based on a real fleet, which relies on 

interpretative techniques applied for data collection. This experience may be useful for 

further studies on the adoption and use of initiatives related to failure prediction in 

organizations and in asset maintenance management. 

Finally, a methodological contribution concerns the appropriateness of applying theoretical 

concepts and theories developed in other contexts. The applicability of some theories and 

research models developed in other types of assets developed for studies in the context 

of an extremely controlled environment and with unlimited data support have been 

questioned due to the differences that exist in the technological structures employed in 

the equipment. The successful use of these theories in this study contributes to providing 

examples of the interpretation of case studies on older vehicle fleets with a reduced input 

of information and data collection. 

 Practical Contributions: One of the practical contributions of this research is the detailed 

insight into the development of the system. The selection of a fleet of vehicles operating 

in a real uncontrolled environment reveals that initiatives related to data analysis and 

automatic asset management are neither distant visions nor high cost. This implies that 

for a wider range of failure prediction systems covering a larger number of fleets, 

emphasis should be placed on the contexts in which failures occur, so as to avoid 

spending unnecessary time on the development of purely theoretical models. 

This will help increase developments towards implementation in a real environment, and the 

case study still shows that maintenance professionals and managers need to acquire new 

skills in data analysis in order to realize the development needs in failure prediction 

systems. 

Another practical contribution is the framework for analyzing common failures in a fleet in 

order to gain an understanding of the real needs between maintenance management and 

development in a specific context. The contribution of this research is to understand, based on 

theoretical assumptions, how the initiative for creating failure prediction models can be and 

also how it contributes to development. To this end, the due process model can be used as a 

practical tool for creating new detection and prediction systems. 
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Based on these three areas of contribution (theoretical, methodological, and practical), it can 

be determined that this work has a complete structure for development and implementation. In other 

words, starting with the theoretical contributions it is possible to glimpse paths for further development 

and thereby apply the methodologies that are presented. Finally, through the practical contribution it is 

possible to confirm that this study not only focuses on theoretical developments, but also on the 

implementation in a real environment focused on the active maintenance management of diesel vehicle 

fleets through the analysis of lubricant data. 

 

7.2 Limitations and Future Work 

 
The following work had its limitations overcome without any interference in the final results 

to which it was proposed. However, it is necessary to emphasize the importance of stimulating 

organizations that rely on vehicle fleets for profit generation to create digital and structured databases. 

The level of information that exists today in the vast majority of fleets is mostly in physical format and 

without great possibilities for analysis. This type of format entails a huge effort to transform and 

structure the information into a digital database before starting any development.  

Following this line of structuring and organization of a digital database, we initially suggest 

as future and further work, the development of a system capable of storing and organizing data of 

failures, repairs and fault identification tests in vehicle fleets. This database will serve for new failure 

prediction models and can be used across fleets, since in part of the study of this thesis, we identified 

that it is possible to establish a relationship between the behavior of vehicle data, not caring about brand 

and model as well as the failures that are similar among different fleets. 

A second direction for future work is the development of new failure prediction models for 

different vehicle systems other than the lubrication system. For these developments other tests can be 

used to acquire failure labels, as well as real-time data collection can be performed from other systems. 

It is important to mention that in this document there is a table, even if initial, that indicates systems 

that may be the target of further studies. 

Even with the possibility of developing new models for other vehicle systems, we can still 

cite as a third suggestion for future work, the development of the system described in this document 

based on other machine learning algorithms. These algorithms may not follow the classification lines 

as the ones used in this document, and may not use labels for failure prediction. 

Besides the development of these studies with the use of other algorithms, which opens range 

of comparative options that serve as suggestions, we can also suggest as a fourth option, the 

development of solutions for capturing and organizing labels necessary for supervised structure 

algorithms. It is important to mention that during the development of this study, the developer's 

expertise regarding maintenance data and vehicle behavior information was extremely important to be 

able to analyze the spot tests and visually determine the failure or not of the lubricant. This type of 
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expertise can be transferred to an automatic system that can use a photo of the test to determine whether 

or not the lubricant fails, thus removing the possibility of human error in the final analysis. 

In view of the options presented, it is possible to identify numerous opportunities for future 

work as well as further developments that have already been started in this document. These plausible 

options may be in important areas that range from database structuring to the development of support 

equipment to obtain labels to improve the existing systems. 
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