

Nádia Patrícia da Silva Medeiros

SOFTWARE METRICS AND MACHINE LEARNING FOR

SOFTWARE SECURITY

Tese no âmbito do Programa de Doutoramento em Ciências e Tecnologias da

Informação, orientada pelo Professor Doutor Marco Paulo Amorim Vieira e pelo

Professor Doutor Pedro Miguel Lopes Nunes da Costa, e apresentada ao

Departamento de Engenharia Informática da Faculdade de Ciências e Tecnologia

da Universidade de Coimbra.

Dezembro de 2022

Department of Informatics Engineering
Faculty of Sciences and Technology

University of Coimbra

Software Metrics and Machine
Learning for Software

Security

Nádia Patrícia da Silva Medeiros

Doctoral Program in Information Science and Technology
PhD Thesis submitted to the University of Coimbra

Advised by Professor Marco Paulo Amorim Vieira
and Professor Pedro Miguel Lopes Nunes da Costa

December, 2022

Departamento de Engenharia Informática
Faculdade de Ciências e Tecnologia

Universidade de Coimbra

Software Metrics and Machine
Learning for Software

Security

Nádia Patrícia da Silva Medeiros

Programa de Doutoramento em Ciências e Tecnologias da Informação
Tese de Doutoramento apresentada à Universidade de Coimbra

Orientado pelo Professor Doutor Marco Paulo Amorim Vieira
e pelo Professor Doutor Pedro Miguel Lopes Nunes da Costa

Dezembro, 2022

This work was partially supported by the European Commission (EC) through
projects EUBra-BIGSEA and ATMOSPHERE, all under the Cooperation Pro-
gramme, Horizon 2020, and from national funds through the Foundation for
Science and Technology (FCT) in the context of the METRICS project, FCT
POCI-01-0145-FEDER-032504.

- To Laura Alice with love -

ix

x

Acknowledgments

This thesis constitutes an important milestone in my life, for which I am
indebted to all the people who made it possible.

First and foremost, I would like to thank my advisors, Marco Vieira and Pedro
Costa, for their invaluable advice and patience during my PhD journey. Also, for
the continuous support despite the multiple tasks in which they are committed as
a consequence of the important positions they hold. Specifically, I want to thank
Marco Vieira for all the patience and wise advises that in different moments
had great impact in my evolution as a researcher. Also, for integrating me
into the Software and Systems Engineering Group of the University of Coimbra
and transmitting me what was missing in my research, looking for details and
teaching me how to see the opportunities of new research topics. I am also
truly thankful to Pedro Costa for the initial incentive, support and motivation.
He was the encourager of this great journey. I want to thank the constant
guidance, availability, valuable comments and stimulating discussions over the
last years.

I would like to thank Naghmeh Ivaki for her assistance at every stage of the re-
search project. For all the availability and encouragement, the words of support
and all the advises in different situations of my PhD.

I also want to offer my special thanks to all who assisted me at different stages
of this research. To my colleagues and my friends.

Above all, I would like to express my gratitude to my parents and my husband.
Without their tremendous understanding and encouragement in the past few
years, it would be impossible for me to complete this journey.

xi

xii

Abstract

Humans face nowadays the challenge of trusting software systems for
performing most of their daily tasks. The use of information techno-
logy has become so frequent that society can be seen as a combination

of interactions between humans and computers with the aim of facilitating and
speeding up tasks that would otherwise take a lot of time to perform. It is a
well-known fact nowadays that software systems play a dominant role in diverse
critical sectors, including government, financial transactions, healthcare, monit-
oring and control of critical infrastructures. In such sectors, a software failure
(e.g., due to a successful security attack) may cause sensitive data breaches,
financial losses, safety or security issues.

Modern software development projects face conflicting demands, such as, im-
proving process quality to deliver trustworthy software products, and improv-
ing process flexibility to adapt to dynamic contexts. Thus, development teams
are under an increasing pressure to deliver software products in shorter cycles
with higher levels of quality. In fact, software developers often face strict dead-
lines due to various market pressures, and hence they usually strive to produce
working software, disregarding quality aspects, including security. Designing
and developing secure software is a complex endeavour and security measures
should be identified and integrated from the early stages. Security by design
is a concept in software engineering where software products and capabilities
should be designed to be foundationally secure through several measures such
as continuous testing, authentication and authorization safeguards or adherence
to best programming practices.

Research regarding software security is growing, but still faces many challenges
related with the difficulty on defining and computing security metrics to predict
or detect unknown vulnerabilities. Furthermore, the increased importance of
software security has led to the appearance of a large number of tools and
techniques to detect vulnerabilities. However, despite the great advances in the
standards, best practices, processes, techniques and tools used during software
development lifecycle, systems are still frequently deployed with defects and
vulnerabilities that may be exploited by attackers.

This thesis studies the use of Software Metrics and Machine Learning to
assess the trustworthiness level of code units. The ultimate goal is to devise
an approach that, based on evidence of security practices and issues in the
code, supports developers in avoiding or eliminating vulnerabilities
starting from the early phases of the development process. With such
solution, it becomes possible to categorize or prioritize code units based on their
trustworthiness level, warning the developers about the code units that should
be reviewed before deployment, thus avoiding possible weaknesses that may
be exploited by attackers. The main idea is not propose another vulnerability

xiii

detection solution, but instead focus at raising the attention of developers to the
code units that are less trustworthy.

The first contribution is an exploratory and empirical analysis on finding the
best subset of software metrics to distinguish vulnerable from non-vulnerable code
units. This study includes a statistical correlation analysis of software metrics
and security vulnerabilities, a dimension reduction process that contributes to se-
lect different groups of software metrics, and a feature selection analysis focusing
on finding the best subset of software metrics in order to distinguish vulnerable
code units from non-vulnerable ones. Then, we present a comprehensive exper-
iment to study how effective software metrics and machine learning can be on
predicting/detecting vulnerable code units. Several Machine Learning (ML) al-
gorithms, namely, Random Forest, Extreme Boosting, Decision Tree and Linear
and Radial Support Vector Machine, were used to extract vulnerability-related
knowledge from software metrics collected from the source code of different rep-
resentative software projects (Linux Kernel, Mozilla Firefox, Apache HTTPd,
Xen HV and Glibc).

Grounded on the evidence that effectively predicting/detecting vulnerabilities
with ML models on top of software metrics is not possible in most contexts,
we propose a Trustworthiness Benchmarking Framework based on security evid-
ences (e.g., software metrics, code smells) that can be used as indicators of
software quality. The main goal is to compute the trustworthiness score (bench-
marking criterion) of code units in order to be able to compare and rank them.
This score is calculated based on the normalized value of the relevant features
(i.e., security evidences) and their impact on the precision of ML classifier. The
results show a sound ranking of the benchmarked code units.

With the goal of defining a mechanism that, based on evidences of security issues
in the code, supports developers in the detection of potential issues during the
software development process, we propose a framework for code categorization,
in which the code units under evaluation are categorized/prioritized considering
their trustworthiness level. Two different instantiations of these framework are
presented: a consensus-based decision-making (CBDM) approach cap-
able of grouping code units in several categories based on the classification res-
ult of several ML prediction models; and a solution based on trustworthiness
models to categorize and prioritize code, not directly based the results
of the prediction models, but on the clustering of the trustworthiness scores
aggregated from alternative trustworthiness models. We were able to prioritize
and categorize code units from a security perspective, considering different scen-
arios, showing that developers can use these approaches to make more efficient
and effective decisions about the parts of code that might be problematic and
require a deeper analysis and/or refactoring.

Keywords: Software Security, Security Vulnerabilities, Trustworthiness,
Software Metrics, Machine Learning.

xiv

Resumo

Atualmente, a humanidade enfrenta o desafio de confiar em sistemas de
software para realizar a maioria das suas tarefas diárias. A utilização
da tecnologia de informação tornou-se tão frequente que a sociedade

pode ser vista como uma combinação de interações entre humanos e computa-
dores com o objetivo de facilitar e agilizar tarefas que de outra forma levariam
muito tempo para serem executadas. É um fato bem conhecido que hoje em dia
os sistemas de software desempenham um papel dominante em diversos setores
críticos, incluindo o governo, transações financeiras, saúde e controle de infraes-
truturas críticas. Nesses setores, uma falha de software (por exemplo, devido a
um ataque de segurança bem sucedido) pode causar violações de dados confid-
enciais, perdas financeiras ou problemas de segurança.

Os projetos de desenvolvimento de software modernos enfrentam demandas con-
flituantes, como melhorar a qualidade dos processos para fornecer produtos de
software confiáveis e melhorar a flexibilidade dos processos para se adaptar ao
contexto dinâmico. Assim, as equipas de desenvolvimento estão sob uma cres-
cente pressão para entregar produtos de software em ciclos mais curtos com níveis
mais altos de qualidade. Na verdade, os programadores geralmente enfrentam
prazos rígidos devido a várias pressões de mercado e, portanto, geralmente se
esforçam para produzir software que seja funcional, desconsiderando aspectos
de qualidade, incluindo a segurança. Projetar e desenvolver software seguro
é um processo complexo e as medidas de segurança devem ser identificadas e
integradas desde os estágios iniciais. Segurança por design é um conceito em
engenharia de software em que os produtos e recursos de software devem ser
projetados para serem fundamentalmente seguros por meio de várias medidas,
como testes contínuos, salvaguardas de autenticação e autorização ou adesão às
melhores práticas de programação.

A investigação sobre segurança de software está aumentando, mas ainda enfrenta
muitos desafios relacionados com a dificuldade de definir e gerar métricas de se-
gurança para prever ou detectar vulnerabilidades desconhecidas. Além disso,
a crescente importância da segurança de software levou ao surgimento de um
grande número de ferramentas e técnicas para detectar vulnerabilidades. No
entanto, apesar dos grandes avanços nos padrões, melhores práticas, processos,
técnicas e ferramentas utilizadas durante o desenvolvimento de software, os sis-
temas ainda são frequentemente implantados com defeitos e vulnerabilidades
que podem ser explorados por invasores.

Esta tese estuda o uso de Métricas de Software e Aprendizagem Má-
quina para avaliar o nível de confiabilidade de unidades de código. O objetivo
final é criar uma abordagem que, com base em evidências de práticas de se-
gurança e problemas no código, ajude os programadores a evitar ou elim-
inar vulnerabilidades desde as fases iniciais do processo de desenvolvi-

xv

mento. Com esta solução, torna-se possível categorizar ou priorizar as unidades
de código com base no nível de confiabilidade, alertando os programadores sobre
as unidades de código que devem ser revistas antes da implantação, evitando
assim possíveis fragilidades que possam ser exploradas por invasores. A ideia
principal não é propor outra solução de detecção de vulnerabilidades, mas fo-
car em chamar a atenção dos programadores para as unidades de código menos
confiáveis.

A primeira contribuição consiste na análise exploratória e empírica para encon-
trar o melhor subconjunto de métricas de software para distinguir unidades de
código vulneráveis de não vulneráveis. Este estudo inclui uma análise estatística
de correlação entre métricas de software e vulnerabilidades de segurança, um
processo de redução de dimensão que contribui para selecionar diferentes grupos
de métricas de software, e uma análise de seleção de recursos com foco em encon-
trar o melhor subconjunto de métricas de software para distinguir as unidades
de código vulneráveis das não vulneráveis. Em seguida, apresentamos uma ex-
periência abrangente para estudar a eficiência das métricas de software e da
aprendizagem máquina na previsão/detecção de unidades de código vulneráveis.
Vários algoritmos de Aprendizagem Máquina (ML), nomeadamente, Random
Forest, Extreme Boosting, Decision Tree e Linear and Radial Support Vector
Machine, foram usados para extrair conhecimento relacionado com vulnerabil-
idades, a partir de métricas de software coletadas do código-fonte de diferentes
projetos de software representativos (Linux Kernel, Mozilla Firefox, Apache HT-
TPd, Xen HV e Glibc).

Com base na evidência de que prever/detectar efetivamente vulnerabilidades
com modelos de ML usando métricas de software não é possível na maioria dos
contextos, propomos uma Trustworthiness Benchmarking Framework baseada
em evidências de segurança (por exemplo, métricas de software, code smells)
que podem ser usados como indicadores de qualidade de software. O objetivo
principal é calcular a pontuação de confiabilidade (critério de benchmarking)
das unidades de código para poder compará-las e classificá-las. A pontuação de
confiabilidade atribuída a cada unidade de código é calculada usando o valor
normalizado de recursos relevantes (por exemplo, evidências de segurança) e o
seu impacto na precisão do classificador. Os resultados mostraram uma boa
classificação das unidades de código comparadas.

Com o objetivo de definir um mecanismo que, baseado em evidências de prob-
lemas de segurança no código, apoie os programadores na detecção de possí-
veis problemas durante o processo de desenvolvimento de software, propomos
uma framework para categorização de código, no qual as unidades de código sob
avaliação são categorizadas/priorizadas considerando o nível de confiabilidade.
Duas instanciações diferentes dessas estruturas são apresentadas: uma abord-
agem de tomada de decisão baseada em consenso (CBDM) capaz de
agrupar unidades de código em várias categorias com base no resultado da clas-
sificação de vários modelos de previsão de ML; e uma solução baseada em mod-
elos de confiabilidade para categorizar e priorizar código, não direta-
mente baseada nos resultados dos modelos de previsão, mas no agrupamento das
pontuações de confiabilidade a partir de modelos alternativos de confiabilidade.

xvi

Conseguimos priorizar e categorizar as unidades de código do ponto de vista da
segurança, considerando diferentes cenários, mostrando que os programadores
podem usar estas abordagens para tomar decisões mais eficientes e eficazes sobre
as partes do código que podem ser problemáticas e que exigem uma análise e/ou
refatoração mais profunda.

Palavras-chave: Segurança de Software, vulnerabilidades de segurança,
confiabilidade, métricas de software, aprendizagem máquina.

xvii

Foreword

The contributions of this thesis resulted in following publications in international
conferences and journals:

• Medeiros, N. and Basso, T. (2016). Perception of trustworthiness on
web services and applications based on privacy evidences. In 7th Latin-
American Symposium on Dependable Computing (LADC) (fast abstract).

• Medeiros, N., Ivaki, N. R., Costa, P. N. D., and Vieira, M. P. A. (2017b).
Towards an approach for trustworthiness assessment of software as a ser-
vice. In 2017 IEEE International Conference on Edge Computing (EDGE),
pages 220–223;

• Medeiros, N., Ivaki, N., Costa, P., and Vieira, M. (2017a). Software metrics
as indicators of security vulnerabilities. In 28th International Symposium
on Software Reliability Engineering (ISSRE), pages 216–227. IEEE;

• Medeiros, N., Ivaki, N., Costa, P., and Vieira, M. (2018a). An approach for
trustworthiness benchmarking using software metrics. In 2018 IEEE 23rd
Pacific Rim International Symposium on Dependable Computing (PRDC),
pages 84–93. IEEE;

• Medeiros, N., Ivaki, N., Costa, P., and Vieira, M. (2020). Vulnerable
code detection using software metrics and machine learning. IEEE Ac-
cess, 8:219174–219198;

• Medeiros, N., Ivaki, N., Costa, P., and Vieira, M. (2021). An empirical
study on software metrics and machine learning to identify untrustworthy
code. In 17th European Dependable Computing Conference (EDCC);

• Medeiros, N., Ivaki, N. R., Costa, P. N. D., and Vieira, M. P. A.
(2022). Trustworthiness models to categorize and prioritize code
for security improvement. Journal of Systems and Software (JSS),
doi.org/10.1016/j.jss.2023.111621..

The work detailed in this thesis was accomplished at the Software and Systems
Engineering (SSE) group of the Centre for Informatics and Systems of the Uni-
versity of Coimbra (CISUC), within the context of the following projects:

• EUBra-BIGSEA - Europe – Brazil Collaboration of BIG Data Scientific
Research through Cloud-Centric Applications; a 24-month project aiming
at providing services in the cloud for the processing of massive data coming
from highly connected societies, which impose multiple challenges on re-
source provision, performance, Quality of Service and privacy. Processing
those data require rapidly provisioned infrastructures customised to Big

xviii

Data requirements. EUBra-BIGSEA were funded by European Commis-
sion and Brazilian Ministry of Science, Technology, and Innovation.

• ATMOSPHERE - Adaptive, Trustworthy, Manageable, Orchestrated,
Secure Privacy-assuring Hybrid, Ecosystem for REsilient Cloud Comput-
ing; a 24-month project aiming at the design and development of an eco-
system of a framework, platform and application of next generation trust-
worthy cloud services on top of an intercontinental hybrid and federated
resource pool. The framework considers a broad spectrum of properties
and their measures. The platform supports the building, deployment,
measuring and evolution of trustworthy cloud resources, data network and
data services. ATMOSPHERE is funded by the European Union under
the Cooperation Programme, Horizon 2020 grant agreement No 777154.

• METRICS - Monitoring and Measuring the Trustworthiness of Critical
Cloud Systems; cloud is pervasive nowadays, but its adoption in critical
systems is limited by trust issues, mainly influenced by security, dependab-
ility, privacy, fairness and transparency concerns, as per the recent GDPR
regulation. As an evolving concept, the trustworthiness of the system must
be continuously monitored and measured, but there is a lack of means to
do that in cloud environment. This project aims to propose a frame-
work and means for monitoring and assessing the trustworthiness of cloud
systems. This includes the definition of trustworthiness properties, their
continuous measurement and analysis. METRICS is co-funded by the Por-
tuguese Foundation for Science and Technology (FCT) and by the Fundo
Europeu de Desenvolvimento Regional (FEDER) through Portugal 2020 -
Programa Operacional Competitividade e Internacionalização (POCI-01-
0145-FEDER-032504).

xix

Contents

Acknowledgments xi

Abstract xiii

Resumo xv

Foreword xviii

List of Figures xxv

List of Tables xxvii

Acronyms xxix

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contributions . 4
1.3 Outline of the Thesis . 5

2 Background and Related Work 8
2.1 Software Security . 8

2.1.1 Software Vulnerabilities 9
2.1.2 Preventing Software Vulnerabilities 10
2.1.3 Detecting Software Vulnerabilities 12
2.1.4 Evidences of Software Security Vulnerabilities 13

2.2 Secure Software Development Lifecycle (SSDLC) 14
2.2.1 Requirements Definition Phase of SSDLC 15
2.2.2 Design Phase of SSDLC 16
2.2.3 Development and Testing Phases of SSDLC 16
2.2.4 Deployment/Monitoring Phase of SSDLC 17

2.3 Trust and Trustworthiness in Software Systems 18
2.3.1 Trustworthy Software 19
2.3.2 Trustworthiness Assessment 20

2.4 Machine Learning for Software Security 21
2.5 Summary . 23

3 Vulnerable Code Detection using Software Metrics and Machine
Learning: Experimental Studies 25
3.1 Dataset Characteristics . 26
3.2 Correlation between Software Metrics and Security Vulnerabilities 30

3.2.1 Statistical Analysis . 31

xx

Contents

3.2.2 Dimension Reduction . 33
3.2.3 Feature selection . 38

3.3 Software Metrics and Machine Learning to Detect Vulnerabilities 52
3.3.1 Machine Learning Algorithms 53
3.3.2 Application Scenarios and Decision Criteria 54
3.3.3 Class Distribution in the Dataset 56
3.3.4 Experimentation and Analysis 59
3.3.5 Analysis of the Classification Results 67

3.4 Summary . 74

4 Trustworthiness Benchmarking using Software Metrics 77
4.1 Trustworthiness Benchmarking Framework 78

4.1.1 Statistical Analysis and Normalization 79
4.1.2 Relative Importance of Features 80
4.1.3 Trustworthiness Assessment 81

4.2 Framework Instantiation . 81
4.3 Assessment and Results . 84

4.3.1 Statistical Analysis and Normalization 84
4.3.2 Relative Importance of Software Metrics 86
4.3.3 Results and Discussion 88

4.4 Validation and Generalization 90
4.4.1 Responses of the Experts 91
4.4.2 Individual and Aggregated Ranking 92
4.4.3 Approach Generalization Discussion 95

4.5 Summary . 97

5 Security Categorization of Code Units 99
5.1 Code Units Categorization Framework 100

5.1.1 Extract Security Evidences 100
5.1.2 Characterization Models 101
5.1.3 Categorization Mechanism 102
5.1.4 Performance Assessment 103

5.2 Framework Instantiations . 103
5.2.1 Consensus-Based Decision-Making (CBDM) Approach . 104
5.2.2 Trustworthiness Models (TMs) to Categorize Code . . . 106

5.3 CBDM Assessment and Results 110
5.3.1 Best Combinations of Prediction Models 111
5.3.2 Categorization based on the Application Scenarios . . . 113
5.3.3 Assessment of the Categorization Results 116

5.4 TMs Assessment and Results 118
5.4.1 Building the Trustworthiness Models 119
5.4.2 Clustering Results and Discussion 120
5.4.3 Considering Different Number of Clusters 129

5.5 Summary . 131

6 Conclusions and Future Work 133
6.1 Conclusions . 133
6.2 Future work . 135

xxi

Contents

Bibliography 137

Appendixes 151
A - Software Metrics . 152

xxii

List of Figures

2.1 Phases of Secure Software Development Life Cycle. 15

3.1 Distribution of vulnerabilities in different projects. 29
3.2 Project-level metrics and number of vulnerabilities. 32
3.3 Dimension reduction process. 34
3.4 Feature selection procedure. 39
3.5 Analysis of data size over Mozilla Firefox files. 43
3.6 Methodology used in this work. 53
3.7 Undersample process. 56
3.8 Impact of undersampling on performance. 58
3.9 Balanced versus imbalanced representative test sets. 59
3.10 Process of experimentation and analysis. 60
3.11 File level results for Linux Kernel project. 61
3.12 Function level results for Linux Kernel project. 61
3.13 File level results for Glibc project. 62
3.14 Function level results for Glibc project. 63
3.15 File-level results for all projects over all software metrics. 64
3.16 Function-level results for all projects over all software metrics. . 64
3.17 File-level inter-project cross-validation results (Linux Kernel data

is used as training set). 65
3.18 Function-level inter-project cross-validation results (Linux Kernel

data is used as training set). 66
3.19 File-level generalization results. 67
3.20 Function-level generalization results. 67
3.21 Profound analysis of prediction results. 68
3.22 Venn Diagrams of the Classification Results of 5 ML Algorithms. 69
3.23 Comparing TPs, FNs, TNs, and FPs in terms of Software Metrics. 70

4.1 Instantiation of the Trustworthiness Benchmarking Framework. 78
4.2 Benchmarking Process. 82
4.3 Validation process. 91

5.1 Code units categorization methodology. 101
5.2 Models’ characterization. 101
5.3 Categorization Mechanism. 102
5.4 Consensus-Based Code Trustworthiness Assessment. 104
5.5 Instantiating the Approach with an Example for Different Scen-

arios. 106
5.6 Proposed approach for code units categorization. 107
5.7 Characterization model for approach instantiation. 108

xxiv

List of Figures

5.8 Categorization mechanism for approach instantiation. 109

xxv

List of Tables

3.1 File-level metrics. 27
3.2 Function-level metrics. 28
3.3 Summary of the dataset used. 29
3.4 Correlated metrics with the number of vulnerabilities in a project. 32
3.5 Irrelevant and redundant file-level software metrics (a) and their

frequency in 10 random samples of Mozilla Firefox (b). 36
3.6 Irrelevant and redundant function-level software metrics. 38
3.7 The top 6 best results of calibration using file-level metrics. . . 42
3.8 Validation of the genetic algorithm parameters. 43
3.9 The top 3 best results of calibration using function-level metrics. 43
3.10 File-level results for each project. 45
3.11 File-level metrics selected by the heuristic search for each project. 45
3.12 Comparison between the accuracy of the selected file-level metrics

of Apache httpd, Xen HV and Glibc projects with several subsets. 47
3.13 Comparison between the accuracy of the selected file-level metrics

of Mozilla Firefox and Linux Kernel projects with several subsets. 48
3.14 Cross-validation of the selected file-level metrics. 48
3.15 Function-level results for each project. 49
3.16 Function-level metrics selected by the heuristic search for each

project. 49
3.17 Comparison between the accuracy of the selected function-level

metrics of Apache httpd, Xen HV and Glibc with several subsets. 50
3.18 Comparison between the accuracy of the selected function-level

metrics of Mozilla Firefox and Linux Kernel with several subsets. 51
3.19 Cross-validation of the function-level metrics. 51
3.20 Summary of the application scenarios and their corresponding

criteria (Antunes and Vieira [2015]). 55
3.21 Summary of the dataset. 56
3.22 Resampled datasets (Linux Kernel files). 57
3.23 Prediction models’ evaluation results (files ofLinux Kernel project). 69
3.24 Static Code Analyzers results. 73
3.25 Expert-based analysis results. 73

4.1 Summary of the Mozilla Firefox Project. 82
4.2 Statistical data of file-level metrics. 84
4.3 Statistical data of function-level metrics. 85
4.4 Example of the real (a) and normalized (b) values of four software

metrics for five Mozilla Firefox’s files. 86
4.5 Example of the real (a) and normalized (b) values of four software

metrics for five Mozilla Firefox’s functions. 86

xxvi

List of Tables

4.6 File-level metric weights. 87
4.7 Function-level metric weights. 88
4.8 Ranking of files without known vulnerabilities. 88
4.9 Ranking of functions without known vulnerabilities 89
4.10 Ranking of files with vulnerabilities. 89
4.11 Ranking of functions with vulnerabilities 89
4.12 Absolute numbers in pairwise comparison. 90
4.13 Responses of the experts for files. 92
4.14 Responses of the experts for functions. 92
4.15 Individual & aggregated rankings of non-vulnerable files. 93
4.16 Individual & aggregated rankings of non-vulnerable functions. . 93
4.17 Individual & aggregated rankings of vulnerable files. 94
4.18 Individual & aggregated rankings of vulnerable functions. 95
4.19 Rank of files without vulnerabilities. 96
4.20 Rank of files with vulnerabilities. 96
4.21 Rank of functions without vulnerabilities 96
4.22 Rank of functions with vulnerabilities. 96

5.1 Summary of the dataset used. 110
5.2 Best Combinations of Prediction Models for Files of Linux. . . . 111
5.3 Best Combinations of Prediction Models for Functions of Linux. 112
5.4 Best Combinations of Prediction Models for Files of Mozilla. . . 112
5.5 Best Combinations of Prediction Models for Functions of Mozilla. 113
5.6 Linux Kernel file categorization based on the scenarios. 114
5.7 Linux Kernel function categorization based on the scenarios. . . 114
5.8 Mozilla Firefox file categorization based on the scenarios. 115
5.9 Mozilla Firefox function categorization based on the scenarios. . 115
5.10 Reported Vulnerabilities in files of Linux Kernel (Since 2017). . 116
5.11 Reported Vulnerabilities in functions of Linux Kernel (Since 2017).117
5.12 Expert-based ranking of files of Mozilla Firefox. 118
5.13 Expert-based ranking of functions of Mozilla Firefox. 118
5.14 Summary of the dataset used. 119
5.15 File-level metrics Weight. 121
5.16 Function-level metrics Weight. 122
5.17 Example of the real (a) and normalized (b) values of four software

metrics for five Linux Kernel’s files. 122
5.18 Example of trustworthiness scores for five files of Linux Kernel. 123
5.19 Clustering results of Linux Kernel project. 124
5.20 Clustering results of Mozilla Firefox project. 125
5.21 Validation of clustering results using files of Linux project. . . . 126
5.22 Validation of clustering results using functions of Linux project. 127
5.23 Validation of clustering Results using Mozilla files and functions. 128
5.24 Results using different numbers of clusters. 130

A.1 Extended list of complexity metrics. 153
A.2 Extended list of volume metrics. 154
A.3 Extended list of coupling and cohesion metrics. 155

xxvii

Acronyms

AIJ Aggregation of Individual Judgments

AIP Aggregation of Individual Priorities

CLARA Clustering Large Applications

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

CBDM Consensus-Based Decision-Making

CI Continuous Integration

CBO Coupling Between Objects

XSS Cross-site scripting

DM Data Mining

DT Decision Tree

EM Eigenvalue Method

Xboost Extreme Gradient Boost

FN False Negative

FP False Positive

FPR False Positive Rate

HK Henry Kafura

HTTP Hypertext Transfer Protocol

HV Hypervisor

IT Information Technology

IQR Interquartile Range

IDPS Intrusion Detection and Prevention Systems

LCOM Lack of Cohesion

LR Logistic Regression

LF Lower Fence

ML Machine Learning

xxix

Acronyms

MDA Mean Decrease Accuracy

MDG Mean Decrease Gini

NB Naive Bayes

N Negative

NFRs Non-Functional requirements

OSS Open Source Software

OWASP Open Web Application Security Project

ODC Orthogonal Defect Classification

PAM Partitioning Around Medoids

P Positive

PbD Privacy by Design

QbD Quality by Design

RF Random Forest

RATS Rough Auditing Tool for Security

RGMM Row Geometric Mean Method

SSDLC Secure Software Development Lifecyce

SAM Security Assessment Model

SAW Simple Additive Weighting

SDLC Software Development Lifecyce

SMs Software Metrics

SQA Software Quality Assurance

SATs Static Analysis Tools

SQL Structured Query Language

SVM Support Vector Machine

TN True Negative

TP True Positive

TPR True Positive Rate

TMR Trustworthiness Model-Based Rank

TMs Trustworthiness Models

UF Upper Fence

xxx

Chapter 1
Introduction

Modern organizations and infrastructures are backed by software sys-
tems that execute critical operations and transactions, providing
services and dealing with huge amounts of sensitive data for sup-

porting effective decisions and constant business/system adaptation. Besides
that, it is a well-known fact that software systems play a dominant role in our
daily life in diverse critical sectors, including government, financial transactions,
healthcare, monitoring and control of critical infrastructures. In such sectors,
software failures, either caused by internal bugs or by successful security attacks,
can cause more damages than ever before, with serious effects in the disclosure
of confidential data, safety of the users and integrity issues. Therefore, build-
ing trustworthy and secure software is critical for the success of organizations.
This tremendously increased challenge is driving researchers and businesses to
come up with tools, techniques, standards, and regulations to help developers
to improve software security.

Security has been and will continue to be one of the key concerns in most crit-
ical software systems and applications. In fact, it has been shown by several
research works that the central and critical source of security breaches are soft-
ware vulnerabilities such as, Buffer overflow, Structured Query Language (SQL)
injection or Cross-site scripting (XSS) (Wagner et al. [2000]; McGraw [2006]).
Also, research studies show that most software vulnerabilities are either caused
by the use of legacy code or by software configuration, design, and implement-
ation mistakes made by less professional or negligent developers with a lack of
knowledge about security (M.Graff and Wyk [2003]).

Software security issues should be avoided or eliminated from the early stages
of the software development process, as the later the faults are discovered, the
greater may be the consequences and costs of fixing them. To achieve this, de-
velopers need to be able to identify, investigate, and use the code characteristics
to detect/predict security issues. In fact, integrating security within the entire
development lifecycle has been proven to be the most effective way to develop

— 1 —

CHAPTER 1. INTRODUCTION

secure software (Assal and Chiasson [2018]; Vicente Mohino et al. [2019]).

The increased importance of software security has led to the appearance of a
large number of tools and techniques to detect vulnerabilities (Agrawal and
Khan [2009]; Zhao and Gong [2015]; Ghaffarian and Shahriari [2017]; Vieira
et al. [2009]). In practice, to prevent vulnerabilities, software developers should:
i) apply coding best practices and perform security reviews of the code (Wagner
et al. [2000]); ii) use static code analyzers, to examine the source code for vul-
nerable patterns and practices (Elia et al. [2017]; Chess and McGraw [2004]);
and/or iii) execute penetration tests, to check for exploitable vulnerabilities dur-
ing execution (e.g., by emulation of security attacks) (Arkin et al. [2005]).

The problem is that, existing techniques and tools to discover vulnerabilities
or bugs in software frequently provide inaccurate results, reporting nonexistent
vulnerabilities or missing the existing ones (Neto and Vieira [2011a]), forcing
intensive and global code review/correction time consuming tasks, with the con-
sequent increase in costs, and therefore proving to be ineffective and of little use.
It is thus of major importance to research new approaches, techniques and
tools that help developers to avoid or eliminate software vulnerabil-
ities, starting from the early phases of the software development process.

1.1 Problem Statement
Despite the huge advances in standards, best practices, processes, techniques
and tools used during software development lifecycle, software systems are still
frequently deployed with defects and vulnerabilities that may be exploited by
attackers. In fact, since the beginning of the COVID-19 pandemic, FBI reported
a 300% increase in cybercrimes1. This increase on security attacks has led to a
considerable gap between the ability of attackers and the available security skills
of software developers, making security a day-to-day struggle for every software
development team. To improve the current situation, we need to identify, in-
vestigate, and use the early evidences of security issues in the code, in a way
that supports developers in the detection of potential issues during the software
development process (i.e., design and implementation) (Evans and Larochelle
[2002]).

The potential costs of a vulnerability found after deployment are four to eight
times more than when the same vulnerability is dealt with prior to deployment.
The National Institute of Standards and Technology estimates that around $60
billion dollars a year are wasted due to faults in software (Telang and Wattal
[2007]). Also, studies on analysis techniques show that using static code analysis
to discover violations can reduce production costs up to potentially even 23%
(Bardas [2010]).

Static code analysis can be performed manually or by static analysis tools
(SATs). Manual auditing of code is time consuming and requires skilled human
code auditors with sufficient and deep knowledge regarding security vulnerabil-

1https://www.cybintsolutions.com/cyber-security-facts-stats/

— 2 —

CHAPTER 1. INTRODUCTION

ities and security attacks to be able to effectively examine the code. In contrast,
static analysis tools encapsulate security knowledge in a way that does not re-
quire highly skilled human auditors with security expertise, thus, are faster and
can be frequently used to examine the code. Nevertheless, the output of these
tools still requires evaluation by experts. Furthermore, the design and perform-
ance limitations of current tools lead many development teams not to use static
analysis in their development process. Some of those limitations include the
lack of a concise and coherent overview, missing support for multiple repository
applications and multiple languages, and the lack of standardized integration
mechanisms for third-party frameworks (Walker et al. [2020]).

Penetration testing is another widely used technique to help ensuring the security
of software systems. Penetration testing allows discovering vulnerabilities by
simulating attacks. To do this efficiently, testers rely on automated techniques
that gather input vector information about the target and analyze the responses
to determine whether an attack is successful. Techniques for performing these
steps are often incomplete, and the black-box approach followed frequently leaves
parts of the software system untested and vulnerabilities undiscovered (Halfond
et al. [2011]).

Despite all the recent advances on static analysis and penetration testing, it is
well known that both have great limitations, providing a low coverage and a high
false positives rate. In fact, their low effectiveness in detecting vulnerabilities
has been shown in several studies (Antunes and Vieira [2009]; Neto and Vieira
[2011a]).

In recent years, several works studied the use of machine learning algorithms
to predict/detect software vulnerabilities automatically (Alves et al. [2016a];
Ghaffarian and Shahriari [2017]; Russell et al. [2018]). Also, the use of software
metrics for training the classification models to predict vulnerabilities is not a
new topic (Menzies et al. [2006]; Shin [2008]). However, although we can find
several works in the literature that use machine learning algorithms combined
with software metrics to detect vulnerable code (Karim and et al. [2017]; Shen
[2018]), results show that such approach is not really effective specially when
there is a lack of resources (e.g., time, money, and human resources) to deal
with the large number of false alarms produced.

Innovative approaches for improving software security need to be researched,
especially from the perspective of helping development teams to focus their ana-
lysis and testing efforts on the most relevant parts of their code base (from a
security perspective). Our work contributes towards that goal, but instead of fo-
cusing on approaches for detecting vulnerabilities, we focus on the identification
and categorization of code units based on their potential trustworthiness.

In fact, evaluating trustworthiness is a very complex problem mainly due to the
fact that it is a subjective, dynamic and context-dependent concept. Therefore,
we define trustworthiness as the worthiness of a software system being trusted.
Although assessing the trustworthiness of a software system is subjective, it can
be transformed into an objective notion, by carefully identifying and evaluating
all relevant measurable characteristics (functional and non-functional) that may

— 3 —

CHAPTER 1. INTRODUCTION

influence customer’s reliance on that software system. It is worth noting that,
although trustworthiness may involve several dependability attributes (e.g., se-
curity), it is even a notion more general than dependability.

1.2 Contributions
This thesis proposes an approach based on the use of Software Metrics
(SMs) and Machine Learning (ML), not for predicting or detecting
vulnerabilities, but for assessing the trustworthiness level (or cat-
egory) of code units. We focus on software metrics as quality evidences as
these can be collected at any time during the software development process and
are commonly used as indicators of software quality (Rawat et al. [2012]). How-
ever, other kinds of security evidence (e.g., code smells and lack of best practices)
can also be used in most cases.

In short, the most important contributions of this thesis are:

• An exploratory and empirical analysis on finding the best subset
of software metrics for building accurate classifier models, allow-
ing to distinguish vulnerable code units from non-vulnerable ones. For
this, we used a feature selection technique (Guyon and Elisseeff [2003]) to
select a relevant subset of software metrics from a larger set collected at
different code levels (functions, files, and projects). The dataset used (for
this study and for the other contributions of this work) includes a long
list of software metrics (static code metrics) extracted from the source
code of several representative projects developed in C/C++. To build the
classifier models we followed a supervised approach, which considers that
the dataset is completely labeled (each code unit is labeled as vulnerable
or non-vulnerable2). We show that it is possible to use a smaller group
of software metrics to distinguish vulnerable and non-vulnerable units of
code with a high level of accuracy, however, the best subset of predictive
metrics may vary from one software system to another.

• A comprehensive experiment to study how effective software
metrics and machine learning algorithms are on distinguishing
vulnerable from non-vulnerable units of code. Several machine
learning algorithms were used to extract vulnerability-related knowledge
from multiple combinations of software metrics, collected at different ar-
chitectural levels (functions and files), and considering alternative applic-
ation scenarios with different concerns regarding security (highly critical,
critical, low-critical and non-critical systems). In general, the results show
that using Machine Learning algorithms on top of software metrics helps to
identify vulnerable code units in security-critical software systems. How-
ever, they are not helpful for low-critical or non-critical systems due to the
relatively high number of false alarms reported, which bring an additional

2 We are aware that code units labeled as non-vulnerable may indeed have unknown vul-
nerabilities. However, because completely checking the dataset is not feasible, we assume
that those units as being non-vulnerable.

— 4 —

CHAPTER 1. INTRODUCTION

development cost frequently not affordable.

• A framework for benchmarking the trustworthiness of software
that, based on different attributes (e.g., software metrics) and their relative
importance, allow determining how trustworthy a piece of code is, moving
from a subjective to an objective trustworthiness (worthiness for being
trusted) notion. The proposed framework is instantiated for the case of
software metrics of different types (e.g., complexity, coupling, cohesion).
Our results show that such benchmark enables the characterization of files
and functions and their comparison, even for very large projects. In fact,
by comparing our results with an expert-based assessment, we observed
that the proposed benchmark quite accurate ranking of the benchmarked
files and functions.

• A framework to support developers in the identification of the
code units more prone to be vulnerable from the early phases of
coding process. The idea is to group code units into several categories,
representing their trustworthiness level from a security perspective. In
other words, the goal is not to predict or detect vulnerable code, but
instead to be able to develop categorization mechanisms based on the
trustworthiness level of the code units to call the attention of developers
to the most untrustworthy (potentially insecure) ones.

• Proposal of two different categorization models that instantiate the frame-
work above, both based on machine learning algorithms and software
metrics. The first implements a Consensus-Based Decision-Making
(CBDM) approach, where the decision on the trustworthiness level of
a piece of code is made by the aggregation of the classification results ob-
tained by several ML prediction models built using software metrics. The
second is based on Trustworthiness Models (TMs) to categorize and
prioritize code, where the decision is made by clustering the trustworthi-
ness scores of code units, which are computed using the trustworthiness
benchmark mentioned before. Results show that the Consensus-Based
Decision-Making approach is able to prioritize code units from a security
perspective, considering scenarios with diverse security demands, and that
the approach based on Trustworthiness Models can effectively cluster code
units into different trustworthiness levels. Both solutions allow developers
to identify code units that are more prone to be vulnerable.

1.3 Outline of the Thesis
The remainder of this thesis is organized into five chapters.

Chapter 2 presents the most relevant background and related work, discussing
key concepts regarding software security, Secure Software Development Life-
cycles (SSDLCs) and trust and trustworthiness in software systems.

Chapter 3 presents the exploratory and empirical analysis on finding the best
subset of software metrics to distinguish vulnerable code units from non-

— 5 —

CHAPTER 1. INTRODUCTION

vulnerable ones, and the experiment to study how effective software metrics and
machine learning algorithms are in discriminating vulnerable and non-vulnerable
units of code in diverse application scenarios.

Chapter 4 presents the framework to benchmark the trustworthiness of software
systems and a concrete instantiation for the case of software metrics of different
types (e.g., complexity, coupling, cohesion). Experimental assessment and res-
ults are presented and discussed, including aspects related with validation and
generalization of the benchmark.

Chapter 5 presents the code units categorization framework based on software
metrics and machine learning to identify the parts of the code that seem to be
more untrustworthy, in order to help developers to decide which parts of the
code are more prone to be vulnerable. After presenting the framework struc-
ture, two different instantiations are proposed and their respective experimental
evaluation and results are analysed.

Chapter 6 concludes the thesis, offering a synthesis of the work and possible
research paths for extending it.

Appendix A presents a complete list of complexity, coupling and cohesion, and
volume metrics, including the description of each metric.

— 6 —

Chapter 2
Background and Related Work

Nowadays almost every daily life activity, from entertaining games to
the control systems of nuclear sites, is backed by complex software,
prone to be vulnerable, thus a successful security attack has con-

sequences more severe than ever before. Beyond the harmful and non-negligible
impact on reputation, attacks frequently lead to catastrophic failures in the tar-
get systems, sensitive data breaches, financial losses, and even safety violations.
This jeopardizes the trust of end-users, customers, organizations, and businesses
in software systems.

Software security is clearly a crucial issue to consider during the design and im-
plementation of any software system. A lot of efforts focused on the definition
of best practices, standards, and regulations to help developers in building high
quality and secure software have been proposed. However, despite the huge ad-
vances in software development processes, is still very difficult to build software
without security vulnerabilities (Cusumano [2004]).

This chapter presents the background on the identified problem, mainly by in-
troducing the necessary concepts and discussing relevant related work.

The outline of this chapter is as follows. Section 2.1 presents the main concepts
related to software security. The different stages of a Secure Software Develop-
ment Lifecycle (SSDLC) are described in Section 2.2. Section 2.3 presents the
key concepts related to trust and trustworthiness in software systems. A notion
of machine learning algorithms for software security is presented in Section 2.4,
before concluding the chapter with some key remarks.

2.1 Software Security
Software security is a set of concepts, best practices, techniques and tools aim-
ing at protecting software against the actions of malicious actors so that the

— 8 —

CHAPTER 2. BACKGROUND AND RELATED WORK

software continues to provide the expected service under such potential risks.
Any compromise to integrity, authentication and availability makes a software
system insecure.

Several research studies show that software defects/vulnerabilities (e.g., Buffer
overflow, SQL injection) are a central and critical source of security breaches
(McGraw [2006]; Wagner et al. [2000]; Avizienis et al. [2004]) in computer sys-
tems. Such vulnerabilities are mainly caused by unprofessional or negligent
developers who lack security knowledge (Elia et al. [2017]).

Research on software security has a long history and still gets a lot of attention
on several topics, including security protocols and patterns to build secure sys-
tems (Fernandez-Buglioni [2013]), software security testing (Wysopal and et. al
[2006]), vulnerability detection (Antunes and Vieira [2010]), attack prediction
(Abdlhamed et al. [2017]), intrusion detection systems (Di Pietro and Mancini
[2008]), and intrusion tolerance (Deswarte et al. [1991]), just to name some.

The frequent deployment of systems with software defects/vulnerabilities that
escaped the testing phases of the software development process, emphasizes the
importance of focusing on security aspects from the early stages of software
development. Vulnerabilities, if not uncovered and mitigated during software
development, can incur huge cost in terms of time, money and reputation after
deployment. It is thus of utmost importance to integrate security within the
development life cycle, as part of the software development process, in the form
of an ongoing process involving people and practices, to ensure application con-
fidentiality, integrity, and availability.

Security is most effective if planned and managed throughout every stage of
software development life cycle (SDLC), especially in critical applications or
those that process sensitive information. To instruct software developers to in-
corporate security and, in general, quality into software, there are several well-
established and widely known standards and best practice recommendations,
such as Software Quality Assurance (SQA) (Chemuturi [2010]), Open Web Ap-
plication Security Project (OWASP) secure coding practices (Turpin [2010]),
ISO / IEC 270341 (Poulin and Guay [2008]), and Privacy by Design2 (PbD)
(Cavoukian [2009]). However, research and experience show that modern soft-
ware still fails in meeting basic security requirements (Cusumano [2004]).

2.1.1 Software Vulnerabilities
Software vulnerabilities have been widely studied over the years, but they still
remain a significant threat to computer security today. In computer security,
the word vulnerability refers to a weakness in a system, through which, if suc-
cessfully exploited, an attacker may become capable of violating one or more

1Provides guidance to assist organizations in integrating security into the processes used for
managing their applications

2Framework that calls for privacy to be taken into account throughout the whole engineering
process

— 9 —

CHAPTER 2. BACKGROUND AND RELATED WORK

security properties of the system, such as confidentiality, integrity, and availab-
ility, leading to undesired consequences (McGraw and Viega [2005]).

Removing vulnerabilities after deployment is potentially very costly in terms
of time, money, and effort (McGraw [2004]). For this reason, prevention of
vulnerabilities should be carried out in early stages of software development.
However, detecting software vulnerabilities or distinguishing vulnerable from
non-vulnerable code is not trivial. The low effectiveness of vulnerability de-
tection tools, including static code analyzers and penetration testing is a clear
proof of this fact (Evans and Larochelle [2002]; Neto and Vieira [2011a]). Thus,
software is often deployed with bugs that can be exploited by attackers causing
system outages, data breaches, or even safety issues.

The Open Web Application Security Project (OWASP) is a nonprofit found-
ation that works to improve the security of software. Therefore, the OWASP
Top 103 is a standard awareness document for developers and web application
security. It represents a broad consensus about the most critical security risks to
web applications. Companies should adopt this document and start the process
of ensuring that their web applications minimize these risks. The top 10 secur-
ity risks presented in 2021 are: Broken Access Control, Cryptographic Failures,
Injection, Insecure Design, Security Misconfiguration, Vulnerable and Outdated
Components, Identification and Authentication Failures, Software and Data In-
tegrity Failures, Security Logging and Monitoring Failures and Server-Side Re-
quest Forgery.

There are other entities whose mission is to identify, define, and catalog pub-
licly disclosed security vulnerabilities. Common Vulnerabilities and Exposures
(CVE) Details4 is a database that combines information from several sources. It
enables to browse vulnerabilities by vendor, product, type, and date. Therefore,
CVE is a glossary that classifies and analyzes vulnerabilities and then uses the
Common Vulnerability Scoring System (CVSS) to evaluate the threat level of a
vulnerability. Thus, it is possible to identify the most reported vulnerabilities
over the years. As we can observe in CVEDetails5 the most reported vulnerab-
ilities by type are: Execute Code, Denial of Service, Cross-Site Scripting (XSS)
and Buffer Overflow.

2.1.2 Preventing Software Vulnerabilities
Security is clearly a crucial issue to consider during the design of any software
system. Security patterns are increasingly being used by developers who take se-
curity into consideration during the early stages of software development. Thus,
developers are expected to put the necessary effort to apply adequate software
security principles and rules during the development of software systems in order
to minimize the probability of the existence of software vulnerabilities (that can
be exploited by security attacks).

3https://owasp.org/www-project-top-ten/
4https://www.cvedetails.com/
5https://www.cvedetails.com/vulnerabilities-by-types.php

— 10 —

CHAPTER 2. BACKGROUND AND RELATED WORK

Security protocols and patterns to build secure systems (Fernandez-Buglioni
[2013]; Ankrum and Kromholz [2005]) and guidelines that help developers to
design secure code (Acar et al. [2017]) are needed. We can find a large number
of efforts in the literature focused on the definition of best practices, standards,
and regulations to help developers in building high quality and secure software,
such as:

• ISO/IEC 27000 (Disterer [2013]) - provides an overview of information
security management systems and defines related terms (i.e. a glossary
that formally and explicitly defines many of the specialist terms as they
are used and should be interpreted within the ISO27000 standards);

• ISO/IEC 15408 (Potii et al. [2015]) - establishes the general concepts and
principles of Information Technology (IT) security evaluation and specifies
the general model of evaluation;

• Software Quality Assurance (SQA) (Galin [2004]; Chemuturi [2010]; Hei-
mann [2014]) - the ongoing process that ensures the software product meets
and complies with the organization’s established and standardized quality
specifications;

• OWASP secure coding practices (Turpin [2010]; Marcil [2014]) - provides
a secure coding checklist which has a number of prevention techniques
through which damage of different types of software attacks can be min-
imized and mitigated;

• ISO/IEC 27034 (Poulin and Guay [2008]) - multi-part standard (six doc-
uments or parts) that provides guidance on specifying, designing, select-
ing and implementing information security controls through a set of pro-
cesses integrated throughout an organization’s Systems Development Life
Cycle/s (SDLC);

• Privacy by Design (PbD) (Cavoukian [2009]) - calls for privacy to be taken
into account throughout the whole engineering process.

• Sensei (De Cremer et al. [2020]) - tries to enforce secure coding guidelines
in the integrated development environment. An structured description and
comparison between most of these efforts can be found in Beckers et al.
[2014] and Shan et al. [2019].

Despite all these efforts, developers often discard such guidelines either fully
or partially. Validating the software against such guidelines is possible but
also time-consuming, which limits its applicability in reality. Thus, it is still
very difficult for developers to build software without vulnerabilities. This has
led to many works trying to mitigate the damage that such vulnerabilities can
cause at runtime, for example, via intrusion detection systems and attack toler-
ance techniques (Ouffoué et al. [2019]; Abdlhamed et al. [2017]; Ouffoué et al.
[2016]).

— 11 —

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.3 Detecting Software Vulnerabilities
Existing approaches for the detection of vulnerabilities in the early stages of the
software development are nowadays available. For example, static code analysis
(Chess and McGraw [2004]) and penetration testing (Arkin et al. [2005]).

In static code analysis, the source code (or compiled code) of a software is ex-
amined statically, without executing it. Thus static analysis tools are recurrently
used by developers to search for vulnerabilities in the source code of web ap-
plications. However, distinct tools provide different results depending on factors
such as the complexity of the code under analysis and the application scenario
(Nunes et al. [2018]). Static analysis of code can be done manually or by using
static analysis tools (SATs). Manual auditing of code is time consuming and
requires skilled human code auditors with sufficient and deep knowledge regard-
ing security vulnerabilities and security attacks to be able to effectively examine
the code. In contrast, static analysis tools encapsulate security knowledge in a
way that does not require highly skilled human auditors with security expertise,
thus, are faster and can be frequently used to examine the code. Nevertheless,
the output of these tools still requires evaluation by experts.

A first step towards automated detection of security vulnerabilities using static
analysis techniques was presented in Wagner et al. [2000]. The authors focus on
the buffer overrun detection problem. Also, several frameworks to detect vulner-
abilities have been proposed (Monga et al. [2009]). Digtool: A Virtualization-
Based Framework for Detecting Kernel Vulnerabilities is described in Pan et al.
[2017] and a new Framework of Security Vulnerabilities Detection for PHP Web
Application is presented in Zhao and Gong [2015]. In Chess and McGraw [2004]
is presented the importance of automate source-code security with SATs. The
authors argue that the longer a vulnerability lies dormant, the more expensive
it can be to fix. Over the years, several approaches to detect vulnerabilities in
source code using SATs were proposed (Vieira et al. [2009]; Antunes and Vieira
[2015]).

Penetration Testing (Arkin et al. [2005]) is another technique to search for vul-
nerabilities and is used when the code can already be executed. It is the most
frequently and commonly applied of all software security best practices, in part
because it’s an attractive late lifecycle activity. Once an application is finished,
its owners subject it to penetration testing as part of the final acceptance (Arkin
et al. [2005]). It works by emulation of security attacks to check for exploitable
vulnerabilities.

Both static analysis tools and penetration testing tools have limitations and
their low effectiveness in detecting vulnerabilities, providing a low coverage and
a high false positives rate has been shown in several studies (Neto and Vieira
[2011a]; Evans and Larochelle [2002]). In Antunes and Vieira [2010] is proposed
an approach to benchmark the effectiveness of vulnerabilities detection tools in
web services. The authors argue that in order to improve the effectiveness of
detection it is important to adequate the vulnerability detection tool to a specific
context of application.

— 12 —

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.4 Evidences of Software Security Vulnerabilities
Practice shows that it is difficult to detect vulnerabilities until they manifest
themselves as security failures in the operational stage of the software. There-
fore, it would be very useful to know the characteristics of software code that
can indicate vulnerabilities that are uncovered by at least one security failure
during the operational phase of the software. Such indicators, also known as
software evidence, can be used to provide some suggestions to software man-
agers and developers to take proactive action against potential vulnerabilities
and improving their code.

Several approaches are available in the literature to deal with vulnerability pre-
diction based on evidence and data collected from the source code of software
systems (Li and Shao [2019]). In practice, such evidences can be gathered from
different sources, including: software metrics, code smells, lack of security best
practices in the code, alerts given by static code analysers, among others.

Although there are different sources to extract information from the source code
of software regarding security (evidence of security issues), several studies show
that software metrics are widely-used indicators of software quality (e.g., re-
liability and maintainability) (Coleman et al. [1994]; Rosenberg et al. [1998]).
Different works show that there is some correlation between software metrics and
security vulnerabilities (Moshtari et al. [2013]; Alenezi and Zarour [2018]).

Software quality metrics may help better understanding how reliable, safe, and
secure a piece of code is. We can find several works related to the detection of
security issues using data mining, machine learning, and statistical techniques
combined with software metrics (Ghaffarian and Shahriari [2017]). In fact, using
software metrics for training models to predict software vulnerabilities is not
a new topic (Briand and et. al. [2000]; Menzies et al. [2006]; Russell et al.
[2018]).

A software metric is a measure of software characteristics that are quantifiable
or countable. Software metrics are important for many reasons, including meas-
uring software performance considering different characteristics. For example,
complexity, coupling, cohesion and volume can be measured during software de-
velopment and are used to evaluate the quality of software (Fenton and Pfleeger
[1997]):

• Complexity metrics: refer to how complicated and unwieldy it is for
a developer to understand a piece of code (e.g., Cyclomatic Complexity).
High code complexity brings with it a higher level of code defects, making
the code costlier to maintain (Kearney et al. [1986]).

• Coupling metrics: refer to the level of interconnection and dependency
among software entities (e.g., Coupling Between Objects). Entities are
said to be highly coupled when they depend on each other to such an
extent that a change in one necessitates changes in others dependent upon
it. Moreover, highly coupled entities are difficult to understand in isolation
and reuse because dependant entities must be included (Chowdhury and

— 13 —

CHAPTER 2. BACKGROUND AND RELATED WORK

Zulkernine [2011]).

• Cohesion metrics: refer to the degree that a particular entity provides
a single functionality to the software system as a whole (e.g., Lack of
Cohesion). Highly cohesive entities, which have only one responsibility,
are more desirable than weakly cohesive entities that do many operations
and therefore are likely to be less maintainable and reusable (Chowdhury
and Zulkernine [2011]).

• Volume metrics: refer to the size of a program (e.g., Lines of Code).
Programming practices such as redundant usage of operands, or the failure
to use higher-level control constructs will tend to increase the volume.

Liu and Traore [2006] studied the empirical relationship between attackability
as an external software quality attribute and coupling as an internal software at-
tribute. The results show that there is a strong correlation between attackability
and coupling metrics. Complexity metrics are also related to software security
(Shin and Williams [2008]), and several works investigated the correlation of
software metrics and the existence of vulnerabilities (Henrique Alves [2016]). In
fact, software metrics are usually used to evaluate software quality, represented
by several attributes, such as, security, availability, and maintainability (Cole-
man et al. [1994]). Software metrics are able to discriminate vulnerable and non-
vulnerable functions, but it is not possible to find strong correlations between
these metrics and the number of vulnerabilities (Alves et al. [2016b]).

Complexity, coupling, cohesion and volume related structural metrics are im-
portant indicators of the quality of software architecture, and software archi-
tecture is one of the most important and early design decisions that influences
the final quality of the software system. Although some of these metrics have
been successfully used as indicators of software quality, there are no systematic
guidelines on how to use them to predict vulnerabilities in software.

2.2 Secure Software Development Lifecycle (SSDLC)
Current software development processes face conflicting demands: improving
process quality to deliver trustworthy software products, and improving process
flexibility to adapt to dynamic contexts. Software developers often face strict
deadlines due to various market pressures, and hence they strive to produce
working software without much regard of other aspects, including security. Thus,
development teams are under an increasing pressure to deliver software products
in shorter cycles with higher levels of quality (Cao [2012]).

Designing and developing secure software is a complex process and security
measures should be identified and integrated while designing a software product.
Besides that, software security features must be integrated in every stages of
software design. Integrating security within the development life cycle has been
proven to be the most effective way to develop secure software (Vicente Mohino
et al. [2019]). Therefore, security can be improved as well as the quality of
software.

— 14 —

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Phases of Secure Software Development Life Cycle.

Modern businesses, organizations, and critical infrastructures that want to have
a Secure Software Development Life Cycle (SSDLC) should ensure that they
are enabling engineering teams to get it right from the crucially important early
stages of software development. However, creating a SSDLC requires dedicated
effort at each phase of the software development, from requirement gathering
to deployment and maintenance. In other words, SSDLCs requires that the
development team focus on security at each phase of the project instead of just
focusing on functionality.

Several works in the literature have been proposed in order to develop high qual-
ity and secure software using different approaches. Furthermore, it is possible
to identify in which phases of software development process these approaches
should be applied. We categorize and explain them based on different phases
of Secure Software Development Life Cycle, such as, Requirements Definition,
Design, Development, Testing and Deployment/Monitoring, as depicted in Fig-
ure 2.1, and discussed next.

2.2.1 Requirements Definition Phase of SSDLC
The Requirements Definition Phase of the Software Development Life Cycle
(SDLC) includes the scope of work necessary to define, analyze and document
business and end-user requirements. When developing under a structured type
of SDLC, requirements may be further refined within Functional and Non-
Functional Requirements documents. The Non-Functional requirements (NFRs)
are related to the quality attributes of the software to be developed. Therefore,
it is important to better understanding which software quality attributes should
be considered and assured when engineering secure and trustworthy software
systems (Mohammadi et al. [2014]; Hoekstra et al. [2013]).

The business and system analyses are critical and must include security para-
meters for programmers in software requirement specifications (Turner [2014]).
Several works tried to investigate and understand how software quality can be
defined and improved. Furthermore, several principles and guidelines are pro-
posed to secure coding (M.Graff and Wyk [2003]).

In Rosenberg et al. [1998] the authors described how software metrics can be
used to improve the quality and reliability of software products. In Gaffney Jr
[1981] the nature of software quality, software metrics and their relationship
with traditional software indicators (e.g. reliability) are presented. Another

— 15 —

CHAPTER 2. BACKGROUND AND RELATED WORK

work presented in Briand and et. al. [2000] investigate the relationship between
system’ design and the quality of software developed.

It becomes important to understand how software quality is influenced in order
to include new specifications during the requirements phase. Also, the develop-
ment teams should be aware of the guidelines to secure code in the early phases
of software development, such as, how to manage Code Quality and Code Secur-
ity at enterprise scale (Campbell and Papapetrou [2013]), how security can be
evaluated (Criteria [1999]) (Common criteria for information technology secur-
ity evaluation) or which security principles and techniques should be considered
(security [2009]) (Iso 15408-1/2009, Security techniques).

Security assurances are often based on the traditional and ad hoc approach of
conducting penetration tests followed by a patching process. This approach is
very costly and endangers the fulfillment of the basic goals of system secur-
ity, namely confidentiality, integrity, availability, and accountability. Recently,
many researchers addressed security requirements engineering as an integral and
essential element of systems engineering (Saleh and Elshahry [2009]).

2.2.2 Design Phase of SSDLC
In Design Phase the system and software design documents are prepared as
per the requirement specification document in order to define the overall system
architecture. Thus, the system is designed to satisfy the identified functional
and non-functional requirements. The structure of the system including com-
plete architecture diagrams along with technology details should be defined, as
well as the standards and best programming practices to be applied during the
development process.

2.2.3 Development and Testing Phases of SSDLC
The purpose of the Development Phase is to convert the system design proto-
typed in the Design Phase into a software system that addresses all documented
system requirements. At the end of this phase, the system will enter the Test-
ing Phase. Software testing is an important and critical phase of software
development life cycle to find software faults or defects and then correct those
faults. However, testing process is a time-consuming activity that requires good
planning and a lot of resources. Therefore, techniques and methodology for
predicting the testing effort is important process prior the testing process to
significantly increase efficiency of time, effort and costs.

Nowadays, in order to speed up the development process and avoid building the
wrong solution Development and Testing phases are made simultaneously. This
is known as agile development and takes a test-first approach, rather than the
test-at-the-end approach of traditional development. Since agile testing relies on
regular feedback from the end user, testing and coding are done incrementally
and interactively, building up each feature until it provides enough value to
release to production. The main reasons to do agile testing are to save money
and time.

— 16 —

CHAPTER 2. BACKGROUND AND RELATED WORK

Despite all existing efforts during Requirements and Design, software is still
shipped with exploitable vulnerabilities causing huge damages to the systems
and businesses.

Several bugs and vulnerabilities remain undetected for long periods when most
of them are easy to avoid or detect and correct (Elia et al. [2017]). Thus, de-
velopers are often held responsible for security vulnerabilities. The real issues
frequently stem from a lack of organizational or process support to handle se-
curity throughout development tasks (Assal and Chiasson [2019]). Increasingly
developers are becoming aware of the importance of software security, as frequent
security incidents emphasize the need for secure code.

In Agrawal and Khan [2009] is proposed a framework to identify, analyze and
mitigate vulnerabilities during the development phase. This framework may be
applied in conjunction with any of the software development processes in or-
der to detect and remove vulnerabilities in each phase. In Ko et al. [1997] is
presented a real-time intrusion detection system for a distributed system. This
framework allows a runtime monitoring that detect exploitations of vulnerabil-
ities in security-critical programs.

Various research efforts have targeted security testing in the past few years. The
scope of concern and detection capabilities of the proposed approaches differ and
can be applied during Development and Testing phases. For instance, some
of the approaches involve a reasonable amount of manual intervention either
by developers or by code-reviewers to reveal vulnerable code segments in the
software. However, this is usually quite difficult to apply, especially for large-
size software, which limits the applicability of such approaches.

2.2.4 Deployment/Monitoring Phase of SSDLC
After Deployment it is also important to perform continuous monitoring of
software products. There are some works presented in literature propose models
to evaluate and assess the security level. In Siavvas et al. [2021] is presented
a hierarchical security assessment model (SAM) that allows the evaluation of
the internal security of software products. The proposed approach is based on
static analysis alerts and software metrics, following the guidelines of ISO/IEC
25010 (ISO, 2011). The model decomposes the notion of security into a set
of security characteristics (e.g.,Confidentiality), which are further decomposed
into a set of more tangible security properties (e.g., Encapsulation) that are
directly quantifiable from the source code through low-level measures (i.e., static
analysis alerts and software metrics). Also, the work presented in Howard et al.
[2005] proposes a metric for determining whether one version of a system is
more secure than another. Rather than counting bugs at the code level or
counting vulnerability reports at the system level, the authors count a system’s
attack opportunities. They argue that in order to improve system security it is
important to know the likelihood that the system will be successfully attacked
to reduce its attack surface.

Intrusion Detection and Prevention Systems (IDPS) are security systems that

— 17 —

CHAPTER 2. BACKGROUND AND RELATED WORK

are used to detect and prevent security threats to computer systems and com-
puter networks. These systems are configured to detect and respond to security
threats automatically by reducing the risk to monitored computers and networks
(Mudzingwa and Agrawal [2012]). As security incidents are increasing and are
more aggressive, IDPS have also become increasingly necessary, they compliment
the arsenal of security measures, working in conjunction with other information
security tools such as malware filters and firewalls (Patel et al. [2010]).

The IDPS have mainly two methods of detection, Anomaly based and Signa-
ture based (Bashir and Chachoo [2014]). In an anomaly based technique a set
of rules/activities is pre-defined for a user or a system. On the other hand, a
Signature based technique has a database of already known attacks and based
on this knowledge it tries to deal with the intrusions. Also, there are different
types of intrusion detection and prevention systems, such as, Network-Based In-
trusion Systems, Host-Based Intrusion Systems and Hybrid Intrusion Detection
Systems. However, a generic technique needs to be developed that can help us
to secure our software systems in any environment.

2.3 Trust and Trustworthiness in Software Systems
Trust and trustworthiness have been broadly studied in many different areas
(Cho et al. [2015]), (Hardin [2002]). We can find several works in the literature
focusing on trust issue in people social relationship and also regarding trust and
trustworthiness in people within business environment (Slemrod and Katuscak
[2002]).

In computer science, trust is a widely used term in various areas such as semantic
web, game theory and agent systems (Artz and Gil [2007]). For example, con-
sidering software systems trust can be defined as a reliance of a customer on a
system, that it will exhibit the expected behavior. The inherent risk is mainly
based on a subjective belief, which might be formed based on past experiences
with the same system. Thus, the trust level can be defined as the estimated
probability of this reliance. However, the trust level is uncertain and may dy-
namically change. Based on the given definition, trustworthiness can be defined
as the worthiness of a software system for being trusted.

Although it is differently defined in distinct areas, one of the common main
goals in all of those definitions is to accurately assess the trust level as a robust
basis for decision making, which turns out to be a very complex problem. In
general, the complexity of the trust level assessment is primarily derived from the
difficulty of evaluating trustworthiness. Thus, the first and the most important
step for building trust is to establish trustworthiness (Hardin [2002]), finding a
way to assess it as accurate as possible, helping to improve and, if necessary,
providing a mean for comparison.

— 18 —

CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.1 Trustworthy Software
Software trustworthiness is an important concern for developers, researchers, and
enterprises. However, several factors make assessing trustworthiness a nontrivial
task. These factors include the diversity of software systems, the large scale
and high complexity of today’s systems, and the subjective notion of trust and
trustworthiness, because, depending on the context (e.g., critical systems or non-
critical systems), different quality attributes (e.g., security or performance) may
be involved in the assessment of the trustworthiness level of a system (Medeiros
et al. [2018b]).

To build a trustworthy software, a set of functional and non-functional require-
ments should be assured (Amoroso et al. [1994]). Attributes and metrics used
to evaluate the level of functionality of a software can vary from one service
to another, depending on the functions of the software. However, they are in-
dependent from the environment, on which the software is running. Although
the relative importance of the non-functional technical requirements depends on
many aspects including critically of the software (e.g., safety-critical or business-
critical), importance of data (e.g., private data), and money involvement in the
operations (e.g., back transactions), etc., they are usually related to the following
mandatory quality attributes:

• Security and Privacy: assuring security and data privacy is of utmost
importance in cloud computing. Considering the existing tendency for
moving data and services to the cloud and by emerging cyber-attacks,
lack of security and privacy are leading indicators of untrustworthiness.

• Interoperability: integrating systems and having business-to-business
interactions in the cloud environment is essential, pushing the need for
interoperable cloud-to-cloud services. Thus, in the cloud environment,
where heterogeneity is ubiquitous and the need for having diverse systems
successfully working together is unavoidable, the lack of interoperability
decreases the level of trustworthiness.

• Portability: data portability, seen as the ability for moving data across
interoperable systems, applications and cloud services, avoids vendor lock-
in, which is essential in cloud environment.

• Robustness: with portable and interoperable cloud services, it is more
likely to receive more malicious data. Thus, the robustness of services
against these malicious data is essential.

• Scalability: many applications in cloud environment require a relatively
large amount of processing and storage. Also, as the data size growth rate
in most systems is quite high, the lack of scalability is crucial in cloud.

• Performance: in cloud computing, we are usually dealing with big data
and big computing. Therefore, keeping performance at an acceptable level
is also a big concern.

Therefore, the complex nature of trust in computer systems triggered many

— 19 —

CHAPTER 2. BACKGROUND AND RELATED WORK

research work, as discussed next.

2.3.2 Trustworthiness Assessment
Several benchmarks have been proposed in the past targeting different applic-
ation domains with the goal of comparing systems considering specific charac-
teristics. However, traditional and well-established measures disregard funda-
mental trust related aspects that are required by contemporary societies and
modern computer systems. A trust based measure allows comparing the level
of justifiable trust that one can put in different systems as not being susceptible
to particular threats (Neto and Vieira [2011b]). For example, from a security
perspective, the collection of evidence starts from a particular set of threats and
accumulates information regarding how protected the system is against the ac-
complishment of those threats. The advantage is that understanding the threats
faced by the system does not require knowing all the possible attacks that may
realize them. Furthermore, the level of trust is not specific for a particular threat
but instead represents the confidence level that a system as a whole conveys. In
practice, the level of trust that one can put in a system is related to how the
system performs the required tasks and how we perceive its execution.

Trust and trustworthiness assessment of software systems, as in other areas, is
anything but simple, mainly due to the complex and dynamic nature of the
cloud, variety of services (e.g., safety-critical or business-critical), large number
of relevant quality attributes (e.g., security and performance), and last, but
foremost, due to the subjective notion of trust and trustworthiness.

To increase users’ trust in the systems they use, there is a need to develop trust-
worthy systems. These systems must meet the needs of the system’s stakeholders
with respect to security, privacy, reliability, and business integrity .

An approach for trustworthiness benchmarking is presented inWang et al. [2006].
Here the authors describe a conceptual model for the trustworthiness of Internet-
based software and Ding et al. [2012] presents a novel evidential reasoning based
method for software trustworthiness evaluation under the uncertain and un-
reliable environment. Furthermore in Medeiros et al. [2017c] is proposed an
approach for trustworthiness assessment of software as a service.

More trustworthy software systems and trust evaluation mechanisms can be
found in Hasselbring and Reussner [2006] Chiregi and Navimipour [2017] as
well as different trustworthiness assessment models and tools (Li [2017] Limam
and Boutaba [2010]). Besides that, there is also presented in the literature a
design for trustworthy software, including tools, techniques, and methodology
of developing robust software (Jayaswal and Patton [2006]). Another works
define metrics and measurement of trustworthy systems (Cho et al. [2016]) and
indicators for measuring and improving software trustworthiness (Yang et al.
[2009]).

A survey is conducted in Del Bianco et al. [2011] to understand the factors that
influence trust in open source software (OSS) by users and developers. A total
of 151 OSS stakeholders with different roles and responsibilities participated in

— 20 —

CHAPTER 2. BACKGROUND AND RELATED WORK

the survey. The survey results show that functionality and reliability are the
most critical factors.

In a different kind of study (Alarcon et al. [2017a]), transparency and repu-
tation were studied as factors that may influence trust perceptions as well as
time spent reviewing code by professional software developers. In a previous
study, the same authors (Alarcon et al. [2017b]) explored how developers assess
code trustworthiness when asked to reuse an existing code base. They used an
expert-based analysis to explore experienced programmers’ perspectives on code
reuse, and concluded that implementing software when considering factors like
reputation, transparency, and performance can influence the trust in reusing ex-
isting code. In their second study (Alarcon et al. [2017a]), their findings suggest
that the influence of transparency on trust perceptions are not as strong and
straightforward as previously thought.

Despite the merit of these works, they are mainly focused on expert-based ana-
lysis to assess the trustworthiness of the code. Although this helps to under-
stand the essential factors influencing trustworthiness, it cannot be applied in
an automatic way and on a bigger scale. The other shortcoming of these works
compared to what we are presenting in this paper is that they do not consider
security as one of the main factors of software trustworthiness.

In addition to the above works, trust and trustworthiness assessment are vastly
explored in the context of complex and dynamic environments, such as Cloud
(Medeiros et al. [2017b]; Horvath and Agrawal [2015]; Lee and Brink [2020]).
However, most of the works in this context are customer-centric and do not
address the improvement of the software under development, especially from a
security perspective.

2.4 Machine Learning for Software Security
Machine learning is a method of data analysis that automates analytical model
building. It is a branch of artificial intelligence based on the idea that systems
can learn from data, identify patterns and make decisions with minimal human
intervention. Machine Learning are used in several application areas (e.g., fin-
ancial services, transportation, health care) and are based on a diverse set of
techniques. Therefore, through the use of statistical methods, the ML algorithms
are trained to make classifications or predictions, and to uncover key insights in
data mining projects. These insights subsequently drive decision making within
applications and businesses.

There are several commonly used machine learning algorithms that can be ap-
plied to almost any data problem:

• Decision Tree (DT): commonly and most used supervised learning tech-
nique to support decision making. Given a dataset composed of several
features and target classes, by using the Decision Tree technique, a se-
quence of classification rules are generated to make decisions in diverse
cases. To generate these rules, it uses a tree-like model to break up a

— 21 —

CHAPTER 2. BACKGROUND AND RELATED WORK

complex decision into several simpler decisions (S. and et. al. [1991]);

• Random forest (RF): is one of the most popular ensemble learning
algorithm. This algorithm consists of a combination of several DT-based
classifiers, each one fitted on a random sample of a dataset, making it
more accurate and robust to outliers and noise than a single DT-based
classifier (Breiman [2001]);

• Extreme Gradient Boost (Xboost): a specific implementation of the
Gradient Boosting method that uses more accurate approximations to find
the best tree models. Its main difference compared with random forest is
that it builds one tree at a time. Each new tree helps to correct errors
made by the previously trained tree. Xboost models are becoming popular
due to their effectiveness at classifying complex data (Chen and Guestrin
[2016]; Schapire [2002]);

• Linear Support Vector Machine (SVM): SVM is another widely used
supervised machine learning algorithm, which is usually used for solving
classification problems with two classes. Linear SVM performs classifica-
tions by finding a line that best differentiates the target classes by max-
imizing the margin between them (Awad and Khanna [2015]);

• Radial Support Vector Machine (SVM): a nonlinear or radial SVM
applies the kernel trick to find a hyperplane (decision surface), instead of a
line, to best separate two classes, when there are non-linear interactions in
the data. It does a non-linear transformation on the features and converts
them to a higher dimensional space to add non-linearities to the learning
process (Boser et al. [1992]);

• Logistic Regression (LR): it is used to estimate discrete values based on
a given set of the independent variable(s). In simple words, it predicts the
probability of occurrence of an event by fitting data to a logit function.
Since it predicts the probability, its output values lie between 0 and 1
(Feng et al. [2014]);

• Naive Bayes (NB): assumes that the presence of a particular feature in
a class is unrelated to the presence of any other feature (Rish et al. [2001]);

• K-Means: it is a type of unsupervised algorithm which solves the clus-
tering problem. Its procedure follows a simple and easy way to classify a
given data set through a certain number of clusters (assume k clusters).
Data points inside a cluster are homogeneous and heterogeneous to peer
groups (Sinaga and Yang [2020]).

Implementing Machine Learning and Data Mining techniques will allow com-
puter to learn and be able to predict vulnerabilities (Ghaffarian and Shahriari
[2017]). Using software metrics for training models to predict vulnerabilities is
not a new topic (Briand and et. al. [2000]; Menzies et al. [2006]; Li et al. [2018];
Russell et al. [2018]). A survey of various machine learning algorithms with soft-
ware metrics for prediction of software faults is presented in Karim and et al.
[2017]. This work contributes to a consensus on what constitute effective soft-

— 22 —

CHAPTER 2. BACKGROUND AND RELATED WORK

ware metrics and machine learning method in software fault prediction. Other
works tried to measuring, analyze and predict security vulnerabilities in software
systems and also predict vulnerable software components (Alhazmi et al. [2007];
Neuhaus et al. [2007]). A survey of feature selection for vulnerability prediction
using feature-based machine learning is presented in Li and Shao [2019].

However, despite the existence of several works related to the detection of se-
curity issues using machine learning and statistical techniques combined with
software metrics (Ghaffarian and Shahriari [2017]) most of the studies have lim-
itations, such as: works are done over a limited number of software metrics
(e.g., complexity metrics) (Chowdhury and Zulkernine [2011]; Shin and Willi-
ams [2011]; Moshtari et al. [2013]), or focus on a single security issue such as
buffer overflow (Ren and et al. [2019]), or are limited to a specific code unit
(e.g., file/class or function/method) (Shin et al. [2010]) and a specific software
project (Shin and Williams [2008]).

2.5 Summary
This chapter presented the background and related work, addressing aspect such
as software security, secure software development lifecycle, trust and trustworthi-
ness in software systems and finaly machine learning for software security.

The exploitation of software security vulnerabilities can have severe con-
sequences. Thus, it is crucial to devise new processes, techniques, and tools
to support teams in the development of secure code from the early stages of the
software development process, while potentially reducing costs and shortening
the time to market.

Despite all those efforts using standards, best practices, tolls and techniques to
develop software, is still very difficult to build secure software. New approaches
to help developers are still needed. It become crucial to adopt measures to secure
software in early stages of software development. Thus, over the next chapters
we propose approaches that, based on evidence of security practices and issues in
the code, supports developers in avoiding or eliminating vulnerabilities starting
from the early phases of the development process.

— 23 —

Chapter 3
Vulnerable Code Detection using
Software Metrics and Machine
Learning: Experimental Studies

In this chapter, we present an exploratory and empirical analysis on finding
the best subset of software metrics to distinguish vulnerable code units
from non-vulnerable ones, and a comprehensive experiment to study how

effective software metrics are in classifying vulnerable and non-vulnerable units
of code in diverse application scenarios.

To support the studies, we used the dataset from Alves et al (Henrique Alves
[2016], Alves et al. [2016b]), which contains detailed information about the ar-
chitecture, composing files, classes, and functions of five projects implemented
in C/C++. This is also the dataset that we used in the experimental eval-
uations presented in the following chapters. It is important to mention that
the dataset has been updated during the course of this work, so there will be
updates throughout the chapters, considering the characteristics of the data at
each point in time.

To study the possibility of finding the best subset of software metrics to distin-
guish vulnerable code units from the non-vulnerable ones, we conducted an ana-
lysis of the correlation between software metrics and security vulner-
abilities. This includes: (i) a statistical correlation analysis using project-level
metrics and security vulnerabilities; (ii) a dimension reduction that contributes
to select different groups of software metrics; and (iii) a feature selection ana-
lysis using a Genetic Algorithm, focusing on finding the best subset of software
metrics for building accurate classifier models to predict software vulnerabilit-
ies.

To understand if software metrics are discriminative enough for classifying vul-
nerable code units (in diverse development contexts), we present a comprehens-
ive experiment on the use of software metrics as features for creating

— 25 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

machine learning models to detect vulnerabilities. Towards this, we (i)
discuss the class distribution in the dataset; (ii) introduce the set of machine
learning algorithms used; (iii) define the application scenarios and decision cri-
teria; and finally, (iv) discuss the classification results. The characteristics of
the code units misclassified by all machine learning algorithms are analyzed in
detail to better understand the results of the prediction models.

The rest of this chapter is organized as follows. First, in Section 3.1 we introduce
the dataset used. Then, in Section 3.2 we present the analysis of the correla-
tion between software metrics and security vulnerabilities, which is followed by
the experiment to study how effective software metrics and machine learning
algorithms are to detect vulnerabilities in Section 3.3. The chapter closes with
a summary of the main observations and results in Section 3.4.

3.1 Dataset Characteristics
The dataset from Alves et al (Henrique Alves [2016]) is the most complete one
available that fits our purpose. The data, including a long list of software
metrics, was extracted using the Understand tool (SciTools [2017]), from the
source code of five software projects implemented in C/C++: Mozilla Firefox
(mozilla.org), Apache httpd (httpd.apache.org), Linux Kernel (kernel.org), Xen
Hypervisor (xen.org), and Glibc (gnu.org/software/libc). These are important
and representative projects, from a security point of view: they have been used
by many worldwide users and they were targeted by many security attacks.
Moreover, each project is representative of a broader class of software in a par-
ticular category, in terms of functionality (e.g., the Apache httpd represents
HTTP servers, like Oracle and IBM HTTP servers).

The dataset comprises a large number of software metrics of different types, in-
cluding complexity (e.g., Cyclomatic Complexity), volume (e.g., Lines of Code),
coupling (e.g., Coupling Between Objects), and cohesion (e.g., Lack of Cohe-
sion) metrics. In our study, we use a total of 28 function-level metrics, 51
file-level metrics, and 54 project-level metrics. Among the project level met-
rics, 51 are the average values of the corresponding file-level metrics, and the
remaining three correspond to the total lines of code in the project (Count-
TotalLOC), total number of functions(CountTotalFunctions), and total number
of files (CountTotalFiles). The dataset contains information regarding each of
these metrics for each new version of the aforementioned projects from the year
2000 to 2016.

Our work focuses different architectural levels of the projects, including the
entire project, files, and functions, each one having its own set of metrics. It
is worth mentioning that class-related metrics are not considered in our work as
only one of the projects (Mozilla Firefox) is implemented in an object-oriented
language, C++ in the case, and therefore contains classes and methods (which
were excluded from the dataset for our work). The complete list of the software
metrics used, including a short description of each, is presented in tables 3.1 and
3.2 for files and functions, respectively. The complete list of software metrics

— 26 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Table 3.1: File-level metrics.

Software Metrics Description
SumEssential Sum of essential complexity of all nested functions
MaxEssential Maximum essential complexity of all nested functions
SumCyclomaticStrict Sum of strict cyclomatic complexity of all nested functions
CountStmtExe Number of executable statements
SumCyclomatic Sum of cyclomatic complexity of all nested functions
CountLineCodeExe Number of lines containing executable source code
AltCountLineComment Number of lines containing comment, including inactive regions
CountLineCode Number of lines containing source code
AltCountLineBlank Number of blank lines, including inactive regions
CountLineBlank Number of blank lines
AvgEssential Average Essential complexity for all nested functions
CountLine Number of all lines
MaxCyclomaticModified Maximum modified cyclomatic complexity of nested functions
CountStmt Number of statements
CountLinePreprocessor Number of preprocessor lines
MaxCyclomaticStrict Maximum strict cyclomatic complexity of nested functions
AltCountLineCode Number of lines containing source code, including inactive regions
SumCyclomaticModified Sum of modified cyclomatic complexity of all nested functions
CountDeclFunction Number of functions
CountLineInactive Number of inactive lines
CountSemicolon Number of semicolons
CountLineComment Number of lines containing comment
MaxCyclomatic Maximum cyclomatic complexity of all nested functions
CountLineCodeDecl Number of lines containing declarative source code
RatioCommentToCode Ratio of comment lines to code lines
CountStmtDecl Number of declarative statements
AvgLine Average number of lines for all nested functions
CountStmtEmpty Number of empty statements
AvgCyclomaticStrict Average strict cyclomatic complexity for all nested functions

AvgLineCode Average number of lines containing source code for all
nested functions

MaxFanIn Maximum number of calling subprograms plus global
variables read

AltAvgLineCode Average number of lines containing source code for all nested
functions, including inactive regions

AvgFanIn Average number of calling subprograms plus global variables read
MaxFanOut Maximum number of called subprograms plus global variables set
CountPath Number of possible paths, not counting abnormal exits

AltAvgLineComment Average number of lines containing comment for all nested
functions, including inactive regions

AvgLineBlank Average number of blank for all nested functions

AvgLineComment Average number of lines containing comment for
all nested functions

HK HK measures information flow relative to function size

AltAvgLineBlank Average number of blank lines for all nested functions,
including inactive regions

MaxNesting Nesting level of control constructs
FanIn Number of calling subprograms plus global variables read
FanOut Number of called subprograms plus global variables set
AvgFanOut Average number of called subprograms plus global variables set
AvgMaxNesting Average of maximum nesting level of control constructs
SumMaxNesting Sum of maximum nesting level of control constructs
AvgCyclomaticModified Average modified cyclomatic complexity for all nested functions
AvgCyclomatic Average cyclomatic complexity for all nested functions
MaxMaxNesting Maximum nesting level of control constructs
CBO Coupling Between Objects
LCOM Lack of Cohesion in Methods (100% minus the average cohesion)

— 27 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Table 3.2: Function-level metrics.

Software Metrics Description
CountOutput Number of called subprograms plus global variables set
CountLineCodeDecl Number of lines containing declarative source code
MaxNesting Maximum nesting level of control constructs
CountInput Number of calling subprograms plus global variables read
AltCountLineBlank Number of blank lines, including inactive regions
Knots Measure of overlapping jumps
CountLineBlank Number of blank lines
CountLineCode Number of lines containing source code

MinEssentialKnots Minimum Knots after structured programming constructs
have been removed

AltCountLineComment Number of lines containing comment, including inactive regions

MaxEssentialKnots Maximum Knots after structured programming constructs
have been removed

CyclomaticStrict Strict cyclomatic complexity
CountSemicolon Number of semicolons
CountLineComment Number of lines containing comment
CountStmtDecl Number of declarative statements
Cyclomatic Cyclomatic complexity
CountLine Number of all lines
CountLineCodeExe Number of lines containing executable source code
CyclomaticModified Modified cyclomatic complexity
RatioCommentToCode Ratio of comment lines to code lines
CountPath Number of possible paths, not counting abnormal exits

AltCountLineCode Number of lines containing source code, including
inactive regions

CountStmtExe Number of executable statements
CountStmt Number of statements
Essential Essential complexity
CountLinePreprocessor Number of preprocessor lines
CountLineInactive Number of inactive lines
CountStmtEmpty Number of empty statements

considering different types (complexity, volume, coupling and cohesion) and their
description can be found in Appendix A.

The dataset also includes detailed information about the known vulnerabilities in
the projects (disclosed between 2000 and 2016), obtained by analyzing of a large
number of security patches gathered from various sources (i.e., CVEDetails,
Mozilla Foundation Security Advisores (MFSA), and Xen Security Advisores
(XSA)) (Alves et al. [2016b]). It is important to mention that the source of
information regarding the vulnerabilities in the projects is limited to security
reports. Consequently, the functions and files without reported vulnerabilities
and that are labeled in the dataset as non-vulnerable are not necessarily flawless
(with this in mind, we still refer to them as non-vulnerable).

Table 3.3 presents a summary of the projects and their reported vulnerabilities.
It is worth mentioning that only source files (i.e., .c and .cpp files) are considered
in our analysis, so the number of functions, files and lines of code presented do
not include the information of C header files (i.e., .h files). Besides that each
project contained only one record for each file and each function. More details
about the dataset can be found online (Henrique Alves [2016]).

All the types of vulnerabilities in the dataset and their distribution across the five

— 28 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Table 3.3: Summary of the dataset used.

projects analyzed are presented in Figure 3.1. In general, Denial of Service
and HTTP Response Splitting are, respectively, the most (31.4%) and the least
(0.01%) frequent vulnerabilities, although different types of vulnerabilities are
scattered differently depending on the project:

• Denial of Service is the most popular vulnerability in the Linux Kernel;

• In Mozilla Firefox, Execute Code is the most frequent one;

• Memory Corruption was never reported in Apache httpd and Glibc, but
is quite frequent in Mozilla Firefox.

Figure 3.1: Distribution of vulnerabilities in different projects.

Despite the many advantages, there are several drawbacks associated with the
use of this dataset, that should be pointed out. First, the source of information
regarding the vulnerabilities of the projects is limited to the security reports.
Consequently, the functions and files without reported vulnerabilities are not
necessarily flawless. Second, all the projects in the dataset are implemented
in C/C++, while each programming language has its own characteristics and

— 29 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

may differently influence software security (Turner [2014]). Consequently, our
analysis may not be representative for software implemented in other languages
(e.g., Java).

The dataset is quite imbalanced. The number of vulnerable code untis is very
low in all software projects. However, as mentioned before, the dataset has been
updated over time (either because there were changes in the dataset or refine-
ments in the data search). These changes will be shown throughout the next
chapters whenever necessary, for a better understanding of the experiments. The
data presented in Table 3.3 reflects the dataset used to support the experimental
study that is described in the next section.

3.2 Correlation between Software Metrics and Security
Vulnerabilities

To be able to use software metrics for detecting or indicating vulnerable code, it
is important to find out which metrics are somehow correlated to the quality of
the code, from a security perspective. Despite some software metrics may contain
useful information to distinguish vulnerable from non-vulnerable code units,
others might be irrelevant or redundant. Therefore, three sets of experiments
are presented, as discussed next.

We start with a statistical analysis aiming at finding the relationship between
the internal characteristics of the software projects, represented by project-level
metrics, and the number of vulnerabilities known. For this purpose, both Pear-
son (Benesty et al. [2009]) and Spearman (Myers and Sirois [2006]) correlation
coefficients are used. While the first (Pearson) evaluates the linear relation-
ship between project-level metrics and the number of vulnerabilities, the second
(Spearman) evaluates the monotonic relationship between them.

In a second step, we discuss the dimension reduction problem. In order
to build a high performance classification model out of software metrics for
vulnerable code detection, it is important to search for the most informative and
discriminative metrics and to discard the redundant or irrelevant ones, which
may reduce the accuracy and the computational efficiency of the classifier (Liu
et al. [2005]). Again using both Pearson (Benesty et al. [2009]) and Spearman
(Myers and Sirois [2006]) correlation coefficients, this process allows us to reduce
the number of features under consideration (in this case, the number of software
metrics).

A feature selection analysis, based on a Genetic Algorithm, is presented to
understand the best subsets of software metrics considering both file-level and
function-level metrics, without loss of useful information, by eliminating irrelev-
ant and redundant metrics with little or no predictive information. The resulting
subsets of metrics may allow improving the accuracy and comprehensibility of
vulnerability detection/prediction tools.

The three experiments were carried out independently (i.e., they do not depend
on each other) and the results and conclusions obtained will be used as the basis

— 30 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

for the following chapters (e.g., the best subset of software metrics obtained by
the feature selection analysis is used as input for the trustworthiness benchmark
presented in Chapter 4).

The R Project (Team [2017]) was used to run the experiments: R Caret (Kuhn
et al. [2020]) and RandomForest (Kuhn [2016]) packages, respectively providing
the genetic algorithm and the random forest classification algorithm to imple-
ment our methodology. All the experiments were executed on virtual machines
with Ubuntu 16.04, a 2.0 GHz Intel Xeon E312xx (Sandy Bridge) processor,
4GB RAM and 16MB cache.

3.2.1 Statistical Analysis
To calculate the correlation between project-level metrics and the existence of
vulnerabilities two well-known techniques were used:

• Pearson correlation (Benesty et al. [2009]) that evaluates the linear rela-
tionship between the software metrics and the existence of vulnerabilities.

• Spearman correlation (Myers and Sirois [2006]) that evaluates the mono-
tonic relationship between software metrics and security vulnerabilities.

Although we used both Pearson and Spearman correlation coefficients, it is
known that the Pearson correlation is typically used for normally distributed
data (data that follow a bivariate normal distribution). For non-normally dis-
tributed continuous data, for ordinal data, or for data with relevant outliers,
a Spearman rank correlation can be used as a measure of a monotonic associ-
ation (Schober [2018]). Therefore, Pearson correlation results are not the most
adequate for our data, which makes the Spearman correlation results more ap-
propriate to use and discuss.

Table 3.4 presents the project-level metrics that are highly correlated (i.e., Spear-
man or Pearson correlation >= 0.9) with the number of reported vulnerabilities
for the five projects in the dataset (the correlation coefficients were calculated us-
ing the project-level metrics data of all projects), ordered first by the Spearman
and then by the Pearson correlation values.

An interesting observation is that the Coupling Between Objects (CBO) (cal-
culated by counting the number of functions/methods of a file/class that are
coupled with other files/classes) shows a very strong positive linear and mono-
tonic correlation (i.e., both Spearman and Pearson correlations are high) with
the number of vulnerabilities (refer to Figure 3.2 (a)). Thus, a higher CBO
not only decreases the software modularity, but also suggests a lower software
security level. The SumEssential complexity metric (calculated by counting the
cyclomatic complexity after iteratively replacing all structured programming
primitives with a single statement) also shows a very strong positive monotonic
relationship (not linear) with the number of vulnerabilities (refer to Figure 3.2
(b)). This means that the number of vulnerabilities increases with the increasing
value of SumEssential, but not necessarily at a constant rate.

— 31 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Table 3.4: Correlated metrics with the number of vulnerabilities in a project.

Figure 3.2: Project-level metrics and number of vulnerabilities.

CountDeclFunction (number of functions), FanOut (number of called subpro-
grams plus global variables set), SumMaxNesting (sum of the maximum nesting
level of control constructs like if and while), CountStmtDecl (number of declar-
ative statements), HK (information flow relative to function size), and SumCyc-
lomaticModified (identical to cyclomatic complexity except that an entire switch

— 32 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

statement counts as one) are similarly correlated to the quality of the software in
terms of security, all with strong positive monotonic (with Spearman Correlation
= 0.9) relations (e.g., refer to Figure 3.2 (c) for the CountDeclFunction).

Finally, Lack of Cohesion (LCOM) in functions (calculated by removing the
number of function pairs that share other class/file fields from the number of
function pairs that do not share any field of other class/file) has a strong positive
linear connection with the number of vulnerabilities (Pearson Correlation =
0.97). This means that the data is linearly scattered, but not always the number
of vulnerabilities increases with the increasing value of LCOM (refer to Figure
3.2 (d)).

Observing these results, we can conclude that there is a strong correlation
between several project-level metrics and the number of vulnerabilities repor-
ted. This means that these metrics are good indicators of software security and
may be useful for detecting or indicating vulnerable code.

3.2.2 Dimension Reduction
There are several strategies to deal with the issue of identifying the less-
informative software metrics (Feizi-Derakhshi and Ghaemi [2014]), such as:

• Exponential search, which is the most exhaustive search technique, guaran-
teeing that the optimal subset of software metrics is found. Nevertheless,
this strategy is not promising or not feasible in practice when the number
of features (software metrics in our work) is high (for a feature set of size
n, the number of iterations would be 2n).

• Heuristic search, which tries to guarantee the convergence to the (near)
best subset of software metrics. This strategy is time consuming and its
results depend on the classification model that is used as fitness function.

• Statistical-based filtering can be used to find out which metrics may not
be informative for the detection of vulnerable code units.

Four our study, we selected the last strategy, Statistical-based filtering, since it
is relatively fast and independent from the classification models.

3.2.2.1 Dimension reduction process

Figure 3.3 presents the process for dimension reduction. As shown, a detailed
correlation and a redundancy analysis were conducted on the software metrics
at file and function levels, for the five projects included in the dataset. These
analyses allow identifying the least relevant or irrelevant software metrics
(i.e., not or lowly correlated with the class under study, which is the existence
of vulnerability), and the redundant software metrics (with respect to other
metrics).

To identify the irrelevant metrics, we calculate the correlation between metrics
and the existence of vulnerabilities using Pearson (Benesty et al. [2009]) and
Spearman (Myers and Sirois [2006]) correlation coefficients. In practice, both

— 33 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Figure 3.3: Dimension reduction process.

Pearson and Spearman correlation coefficient techniques were used to distinguish
highly correlated features (i.e., when value of one feature increases then the value
of other feature increases by a consistent amount) from the irrelevant ones.

The software metrics can then be ranked by correlation value (from the highly
correlated metrics to the least correlated ones). To select the irrelevant software
metrics from this ordered list, a threshold should be defined. In this study, we
consider the median as the threshold, as it is commonly used in the literature
(Bommert et al. [2020]). In practice, the software metrics with both Pearson and
Spearman correlation values below the median are considered as Irrelevant.

To identify the redundant software metrics, the Markov Blanket Filtering
(Yu and Liu [2004]; Wang et al. [2017]) is used. In this filtering technique, let
G be the current set of software metrics: if software metric (SM) SMj has a
Markov Blanket SMi within G, it suggests that SMj contributes with no more
information beyond SMi to the target class (i.e., existence of vulnerability in
this work), and, therefore, SMj can be safely removed from G. Based on the
Approximate Markov blanket definition from Yu and Liu [2004], given two pre-
dictive software metrics SMi and SMj and the target class V , SMj is redundant
to SMi, if both equations 4.1 and 4.2 are true:

C(SMi, V) ≥ (SMj, V) (3.1)

C(SMi, SMj) > C(SMj, V) (3.2)

where, C(SMi, V) is the correlation coefficient between SMi and the target class

— 34 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

V ; C(SMj, V) is the correlation coefficient between SMj and the target class
V ; and C(SMi, SMj) is the correlation coefficient between the two predictive
software metrics SMi and SMj. For this analysis, we again used both Pearson
and Spearman techniques to calculate the correlation coefficient. In practice,
we consider software metrics as Redundant when they are identified as so (based
on the Approximate Markov blanket), using both Pearson and Spearman tech-
niques.

After identifying the irrelevant and redundant metrics, we generated 5 groups to
be analyzed in further experiments (the goal is to understand whether dimension
reduction based on correlation and redundancy analyses can help to achieve
better results):

i) All, which includes all software metrics present in the dataset;

ii) All - Irrelevant that includes all metrics minus the ones that are con-
sidered as irrelevant;

iii) All - Redundant, which includes all metrics minus the ones that are
considered as redundant;

iv) All - (Irrelevant AND Redundant) that includes all metrics minus the
ones that are listed as irrelevant and as redundant;

v) All - (Irrelevant OR Redundant), including all metrics minus the ones
that are listed as irrelevant or as redundant.

In Section 3.3, these different groups of software metrics will be combined with
different Machine Learning algorithms in order to analyze the performance of
several classification models using different sets of software metrics.

3.2.2.2 Dimension Reduction Results

The statistical correlation analysis to identify the least relevant and the redund-
ant software metrics (to perform dimension reduction) were performed for all
projects (Mozilla Firefox, Linux kernel, Xen, Apache and Glibc) at both file
and function levels. Tables 3.5 and 3.6 present the results obtained for both
levels.

Although the list of irrelevant or redundant metrics identified are not the same
in all projects, we can see a high level of similarity between them. For instance,
in Table 3.5(a) we can observe that: (i) from the 27 file-level metrics (out of
a total of 51 metrics) that are considered as irrelevant in all five projects, 25
appear at least in 3 projects (e.g., AvgCyclomatic, AltAvgLineBlank, AvgCyc-
lomaticModified, AvgCyclomaticStrict); and (ii) similarly, from the 38 file-level
metrics considered as redundant in all projects, 26 appear at least in 3 projects
(e.g., AvgCyclomatic, CountLineBlank, CountLineCodeExe, CountSemicolon).
As for the function-level metrics (Table 3.6), we can observe that: (i) there is
a total of 17 function-level metrics (out of a total of 28 metrics) that are con-
sidered as irrelevant; and (ii) there is a total of 19 function-level metrics (out of
a total of 28 metrics) that are considered as redundant.

— 35 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

To verify the Representativeness of Random Samples, we repeated the above
analyses ten times over 10 random samples (with 10000 records each) of file
level data of the Mozilla Firefox project. The results, presented in Table 3.5(b),
show that, in all cases, 30 software metrics (out of a total of 51 file level metrics)
are identified as irrelevant and 28 software metrics are identified as redundant.
In addition to that, there is a large group of metrics that appear repeatedly
across different sample sets as irrelevant and redundant. For example, as shown
in the last two columns of Table 3.5, 26 out of 30 irrelevant metrics are iden-
tified in at least 7 samples (e.g., FanOut in 10 samples, AvgCyclomatic in 9
samples). We obtained similar results regarding redundant metrics: out of a
total of 28 redundant metrics, 23 are identified as such in at least 6 samples
(e.g., AvgCyclomatic in 10 samples, AltAvgLineBlank in 7 samples).

Table 3.5: Irrelevant and redundant file-level software metrics (a) and their fre-
quency in 10 random samples of Mozilla Firefox (b).

(a) (b)
Irrelevant (I) and Redundant (R) File level metrics # of samples

Software Metrics MOZILLA KERNEL XEN APACHE GLIBC Irr. Red.
1 AvgCyclomatic I / R I / R I / R I / R I / R 9 10
2 AltAvgLineBlank I / R I / R I / R I R 9 7
3 AvgCyclomaticModified I / R I I I / R I / R 8 7
4 AvgCyclomaticStrict I I / R I I / R I / R 8 1
5 AvgLine I I / R R I I / R 9 0
6 FanOut I / R I I / R I / R I 10 1
7 FanIn I I I I I / R 10 0
8 SumMaxNesting I I I I I / R 10 0
9 MaxMaxNesting I I I I R 10 0

10 HK I I I I I 9 0
11 LCOM I I I I I 9 0
12 MaxFanIn I I I I I 10 0
13 CountPath I I I I I 10 0
14 CBO I I I I I 10 0
15 CountLineBlank R R R R R 0 9
16 CountLineCodeExe R R R R R 0 10
17 CountSemicolon R R R R R 0 10
18 CountStmt R R R R R 0 10
19 CountStmtExe R R R R R 0 10
20 MaxCyclomatic R R R R R 1 9
21 MaxCyclomaticModified R R R R R 1 6
22 AltAvgLineCode I / R I / R I / R I / R 10 9
23 AvgLineCode I / R R I / R I / R 10 8
24 AvgLineBlank I I I I / R 9 1
25 CountLineCode R R R R 0 7
26 SumCyclomatic R R R R 0 9
27 SumCyclomaticModified R R R R R 0 8
28 AltCountLineCode R R R R 0 9
29 AltCountLineComment R R R R 0 9
30 SumCyclomaticStrict R R R R 0 8
31 RatioCommentToCode I I I I 10 0
32 CountStmtEmpty I I I I 7 0
33 AvgFanIn I I I I 10 0
34 AltAvgLineComment I / R I / R I 9 10
35 AvgEssential I I I / R 8 0
36 AvgLineComment I I I / R 8 0
37 AltCountLineBlank R R R 0 6
38 CountDeclFunction R R R 1 0
39 CountLine R R R 0 8
40 CountLineCodeDecl R R R 0 10
41 CountStmtDecl R R R 0 0
42 CountLineInactive I I I 2 0
43 MaxFanOut I I I 10 0
44 AvgMaxNesting I I / R 7 0
45 MaxCyclomaticStrict R R 0 2
46 AvgFanOut R 8 0
47 CountLineComment R 0 2
48 SumEssential R 0 6
49 CountLinePreprocessor I 0 0
50 MaxEssential 0 0
51 MaxNesting 0 0

— 36 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

The results suggest that the random samples have quite similar characteristics
and patterns in terms of correlation between the software metrics, and between
the software metrics and the existence of vulnerabilities, which are important
factors in building predictive models out of software metrics. One of these
samples was randomly chosen for further experiments and analysis (in Section
3.3) to ensure the avoidance of any sampling bias that may exist.

— 37 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Table 3.6: Irrelevant and redundant function-level software metrics.

Irrelevant (I) and Redundant (R) Function level metrics
Software Metrics MOZILLA KERNEL XEN APACHE GLIBC
1 MinEssentialKnots I / R I / R I / R I / R R
2 MaxEssentialKnots I / R I / R I I / R I / R
3 CyclomaticStrict R R R I / R R
4 AltCountLineBlank R R I / R R R
5 CountStmtExe R R R R R
6 Cyclomatic R R R R R
7 CountLineCodeExe R R R R R
8 CountLineInactive I I I I I
9 CountLinePreprocessor I I I I I
10 CountStmtEmpty I I I I I
11 AltCountLineCode R R R R
12 CyclomaticModified R R R R
13 CountSemicolon R R R R
14 CountStmt R R R R
15 AltCountLineComment R R I I R
16 RatioCommentToCode I I I I
17 CountLine R R R
18 CountLineCode R R R
19 Knots I I I
20 Essential I I / R I
21 CountLineBlank R I / R
22 CountLineCodeDecl I I / R
23 CountLineComment I / R I
24 CountStmtDecl I R
25 CountInput I
26 MaxNesting I
27 CountOutput
28 CountPath

3.2.3 Feature selection
A feature selection technique, namely, a genetic algorithm combined with the
Random Forest learning algorithm, was used to select the most predictive soft-
ware metrics to distinguish vulnerable from non-vulnerable code units. In the
following subsections, we describe and detail the entire feature selection pro-
cedure, which is depicted in Figure 3.4. Also, we present the genetic algorithm
and its configuration process that includes: (i) a calibration step to choose the
best possible values for the parameters, and (ii) a dataset size setting to identify
which data size is the most adequate to achieve a high quality solution in a
reasonable amount of time. Finally, the results of the feature selection process
are discussed (file and function level), as well as the analysis carried out to verify
the effectiveness of the feature selection results.

3.2.3.1 Feature Selection process

Figure 3.4 presents a very well-known feature selection process (Guyon and
Elisseeff [2003]), that was adapted to our study and includes four stages:

1. Search or Generation of Subset: consists of searching for a new subset
of metrics from the original set of metrics in the dataset. This can be
done in four different ways: i) the search may start with an empty set and

— 38 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

successively, in each iteration, new metrics are added (Forward Search);
ii) it can be started with the full set of metrics and then some of them are
consecutively eliminated in each iteration (Backward Elimination Search);
iii) it can be done by simultaneously adding and removing metrics (Bi-
directional Search); or iv) it can begin with a random subset and continue
by randomly selecting or eliminating metrics (Random Search). We use
the later approach mainly due to the fact that the use of randomness
helps avoiding trapping into local optima in the search space (Srinivas
and Patnaik [1994]).

In addition to the search direction, we need to specify the search strategy.
The basic search strategy is called Exponential Search, which is the most
exhaustive one, guaranteeing that the optimal subset is found. However,
this strategy is not promising when the number of features (software met-
rics in our study) is high (i.e., for a feature set of size n, the number of
iterations would be 2n). For this reason, we use a heuristic search tech-
nique based on a genetic algorithm (Pham and Karaboga [2012]). As
shown in Sexton et al. [1999] and Braun et al. [2001], genetic algorithms
not only guarantee convergence to the (near) best solution, but also offer a
(relatively) rapid convergence and high computational efficiency. Details
on the use of the genetic algorithm are provided in the Section 3.2.3.2.

Search or
Generation of Subset

(1) Determine search
direction and search strategy

Subset
Evaluation

(2) Determine
evaluation mechanism

Reach
Stopping
Criterion?

Validation of
the Result

(3) Determine stopping criterion

Dataset

Subset of
metrics,
dataset

No Yes

Goodness
of subset

(4) Determine
validation
technique

Project1_files

...

All projects' files

Project2_files
Projectn_files

Project1_func
Project2_func

Projectn_func

All projects' func

...

Figure 3.4: Feature selection procedure.

2. Subset Evaluation: the generated (or selected) subset of metrics is eval-
uated. To accomplish this task, we use a supervised wrapper technique
(Guyon and Elisseeff [2003]), as evaluation approach, which builds a pre-
dictive classifier model based on a labeled dataset composed of the chosen
subset of metrics. The quality of this model exposes the goodness of the
subset. In practice, we use Accuracy, which is the most common cri-
terion for evaluating classifier models (Witten et al. [2016]), to measure
the quality of the model in each iteration of the genetic algorithm, thus
the best subset of metrics is selected by maximizing the Accuracy value.
The Accuracy criterion, representing the proportion between the correctly
classified code units (e.g., functions) and the total number of code units,

— 39 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

is calculated using Equation 3.3, where TP , TN , FP , and FN respect-
ively stand for: true positives, true negatives, false positives, and false
negatives.

Accuracy = TP + TN

TP + TN + FP + FN
(3.3)

In addition to accuracy, we also use Cohen’s kappa (Wood [2007]), as a
complementary criterion when Accuracy has the same value in two differ-
ent cases, which shows how much better or worse our classifier model is
compared to what it would be expected by random chance. This criterion
is calculated using Equation 3.4.

Kappa = Accuracy − ExpectedAccuracy

1 − ExpectedAccuracy
(3.4)

To build the predictive classifier, we use Random Forest (Breiman [2001]),
which is one of the most popular ensemble learning algorithms. It consists
of a combination of several decision tree classifiers, each one fitted on a
random sub-sample of a dataset, making it more accurate and robust to
outliers and noise than a single classifier (Breiman [2001]). The reason
for choosing the Random Forest is two-fold: i) it is accurate and does not
overfit, so results are general enough to be extended to other classifiers;
and ii) it efficiently runs on a large dataset with a large set of features
(Breiman [2001]).

3. Reach Stopping Criterion?: either the search process finishes or starts
all over again from the beginning, depending on the stopping criterion.
Since we are using a genetic algorithm, the maximum number of itera-
tions (or generations) is considered as the stopping criterion. When the
value of the stopping criterion (number of iterations) reaches a predefined
value (150 for file-level and 125 for function-level analysis, which are ex-
perimentally observed to be enough for convergence (see Section 3.2.3.2)),
it stops and provides the (near) best subset of metrics.

4. Validation of the Result: the results obtained by the genetic algorithm
combined with the Random Forest classifier, are validated. To validate
the result of this heuristic search, we perform a convergence analysis to see
whether the values assigned to the genetic algorithm parameters lead to a
convergence to the (near) best result. To do so, the algorithm is executed
several times over the same dataset in order to verify the similarity of
the results. Based on evidences gathered from the literature (Grefenstette
[2012]), we assume that the results of genetic algorithms are reliable if the
the convergence rate is more than 60%.

— 40 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

3.2.3.2 The Genetic Algorithm

The previously presented stages are performed by applying the genetic algorithm
as follows:

1. The genetic algorithm starts on the basis of an initial population con-
taining a set of chromosomes (i.e., candidate solutions). In our case, a
set including several subsets of metrics, which are randomly generated,
represents the initial population in the genetic algorithm.

2. A fitness value (Accuracy) is calculated by the random forest classification
algorithm and assigned to each individual of the population (each subset
of metrics).

3. The best individuals (with better fitness values) of the current popula-
tion are randomly combined by employing both crossover and mutation
operations to produce the population of the next generation.

4. The previous steps are repeated over and over until the maximum number
of generations has been achieved.

This heuristic search, which uses the genetic algorithm combined with the ran-
dom forest learning algorithm, is time consuming. There are several important
parameters in the genetic algorithm, whose values may influence both the search
result and the execution time. These parameters are population size, number of
generations, crossover probability, and mutation probability. Selecting the right
values for the genetic algorithm parameters is a difficult context-dependent prob-
lem that needs to be addressed adequately. Otherwise, high-quality solutions
are unlikely to be found in reasonable time. In addition to these parameters,
the size of the data used in the random forest learning algorithm influences
the training time and the performance of the classifier model. In fact, there is a
trade-off between the performance of the search algorithm and the time taken to
find the solution. Usually, a better solution is found when more data is used for
building the classifier model and more generations are produced by the genetic
algorithm. However, these conditions impose more time for the search. Based
on this, a preliminary analysis was conducted addressing two aspects:

• A calibration of the Genetic Algorithm to choose the best possible
values for the parameters;

• A dataset size setting considering multiple data sizes, to identify which
one is the most adequate to achieve a high quality solution in a reasonable
amount of time.

Calibration of the Genetic Algorithm: To choose the best possible values
for the genetic algorithm parameters, the algorithm was calibrated as follows: i)
a set of values for each parameter based on evidences gathered from the literature
(Grefenstette [2012]) was defined; ii) the genetic algorithm was executed by set-
ting all the possible combinations of these values; and iii) the best combination
(i.e. the one that led to the highest accuracy) was selected.

The algorithm was run over the data of the Apache httpd project. Since this

— 41 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

empirical approach for calibrating the genetic algorithm is very time consuming
and the size of the data strongly and linearly influences that time, the Apache
httpd was selected, which is the smallest project in the dataset (see Table 3.3 in
Section 3.1). Note that, the calibration results depend on the given problem
instance and dataset (De Landgraaf et al. [2007]) and due to the fact that
the projects used in this work are different in terms of functionality and code
structure, the algorithm configured based on the result of this calibration may
not lead to the best accuracy in all projects. Nevertheless, the calibration process
allows us to achieve our objective (i.e., to demonstrate that it is possible to
identify the most predictive software metrics to distinguish vulnerable from non-
vulnerable code units).

The initial test values defined for each parameter are as follows:

• Population size <- (30, 40, 50)

• Number of generations <- (100, 125, 150)

• Crossover probability <- (0.7, 0.8, 0.9)

• Mutation probability <- (0.1, 0.2, 0.3)

Considering the file-level metrics, a total of 81 experiments was performed by
setting all the possible combinations of the values. From all these, we highlight
in Table 3.7 the six best results in terms of accuracy using file-level metrics of
Apache httpd. To choose the best of the bests, we used the Cohen’s kappa
criterion. The results show that the combination with population size = 40,
number of generations = 150, crossover probability = 0.8 and mutation probab-
ility = 0.3, leads to the best result.

Table 3.7: The top 6 best results of calibration using file-level metrics.

To validate the results above, we repeated the search algorithm with the selected
parameters and the same dataset to understand how similar the outcomes are.
The results (presented in Table 3.8) show that in 7 cases out of 10 (70% of
times), the algorithm converged to the best Accuracy (0.9766). The list of
metrics selected was exactly the same in the cases with the same Accuracy and
Kappa. Based on evidences in the literature (Grefenstette [2012]), this results
is a good indication of the genetic algorithm convergence.

We repeated the calibration process for the Apache httpd’s function-level met-
rics. From a total of 81 combinations of the values defined for each genetic

— 42 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Table 3.8: Validation of the genetic algorithm parameters.

algorithm parameter, the results showed that the combination with population
size = 50, number of generations = 125, crossover probability = 0.7 and muta-
tion probability = 0.3, leads to the best result in both Accuracy (0.9730) and
Kappa (0.3703), as we can observe in Table 3.9.

Table 3.9: The top 3 best results of calibration using function-level metrics.

Dataset size setting: To understand which dataset size is enough to get a
high quality result in a reasonable time, we run the search algorithm over data-
sets of different (linearly increasing) sizes. For this, we used the data for Mozilla
Firefox’s files (one of the biggest projects) to ensure that there was no strict lim-
itation for increasing the size, as much as necessary, until finding the reasonably
best size (a dataset from a small project would limit the analysis).

Since the number of samples regarding vulnerabilities is small in all projects,
we decided to keep all these for the tests. This way, we started the experiment
by randomly selecting 830 records without vulnerabilities and then added 830
records with vulnerabilities (i.e. all the vulnerabilities for the Mozilla Firefox
project). We then created additional datasets by increasing the size of non-
vulnerable data linearly, until the accuracy results stabilized.

Figure 3.5(a) presents the datasets considered and the combination between
their vulnerable and non-vulnerable records.

Figure 3.5: Analysis of data size over Mozilla Firefox files.

— 43 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Figure 3.5(b) presents the accuracy achieved in each case (scale on right side
vertical axis) and the time taken to achieve this results (scale on the left side
vertical axis). As shown, accuracy increases, although smoothly, for increasing
sizes of data. As for the time taken by the algorithm, an almost linear increase
can be observed. When the data size increases from 4150 to 4980, we see a huge
increase in time (from 39 hours to 53 hours), while the increase in accuracy
is low (from 0.9663 to 0.9687). For this reason, we chose 4150 as the size of
the dataset to be used in this experiment (feature selection using the genetic
algorithm). For the smaller projects (e.g., Apache httpd), whose number of
files is less than 4150, we used the whole dataset in all cases. Although this
analysis could lead to slightly different results if we considered other projects
rather than Mozilla Firefox, it is good enough for our purposes as using this
number of records allows us to keep all vulnerable files or functions plus at-least
the equal number of non-vulnerable ones in all cases.

3.2.3.3 Assess the effectiveness of the feature selection

The genetic algorithm was applied using file-level and function-level software
metrics over the data of the five projects (as will be discussed in sections 3.2.3.4
and 3.2.3.5). To assess the effectiveness of the feature selection process in each
case, we run the genetic algorithm and the Random Forest classifier for all
projects using the configurations (calibrations of parameters and dataset size)
identified previously. When the stopping criterion (number of iterations) reaches
a predefined value, the process stops and the the subset of software metrics that
allow achieving the highest accuracy is selected.

To demonstrate the effectiveness of the selected subsets of metrics for each pro-
ject, we compare the accuracy of the classifier model built using that subset with
the accuracy of models built using:

i) the top correlated metric;

ii) the top 10 individually correlated metrics;

iii) the intersection of the metrics selected for all projects;

iv) the intersection of the metrics selected for at least three projects;

v) all metrics.

To select the top correlated metrics, we calculate the correlation between the
software metrics and the existence of vulnerabilities in functions and files by
using the Point-Biserial correlation coefficient (Tate [1954]), which is suitable
when one variable (existence of vulnerabilities, in this case) is dichotomous.
Furthermore, we cross-validate the results obtained for each project, by using
the datasets from the other projects.

3.2.3.4 File-level feature selection results

Table 3.10 presents the results obtained from the heuristic search for the five
projects individually and collectively (i.e., combination of the data from the five

— 44 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

projects) considering the file-level metrics. The table presents the Accuracy and
Kappa of the selected subsets, the number of records included in the dataset,
and the number of vulnerable records used for each project. In general, the
number of the metrics selected and their combination varies from one project
to another (e.g., from 12 metrics in Glibc to 21 metrics in Mozilla Firefox), but
there are similarities between the selected subsets of metrics.

Table 3.10: File-level results for each project.

These similarities are shown in Table 3.11 in different shades of green: the darker
green indicates that the metric is selected in more projects.

Table 3.11: File-level metrics selected by the heuristic search for each project.

By analyzing these results, we first observe that all metrics selected in the com-
bined dataset (data from all projects; last column in Table 3.11) are also selected
in at least one project, but the reverse is not true. For instance, LCOM that
is selected in Apache httpd and Mozilla Firefox, is not selected in the case
where all data is combined. This is mainly due to the fact that the projects are

— 45 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

architecturally different from each other; therefore, the combination of their ar-
chitectural information may diminish the importance of some metrics that were
discriminative in one of the projects. The fact that all metrics that are selected
in four and five projects (e.g., AvgMaxNesting and CountDeclFunction) are also
selected in the combined dataset, supports this justification. AvgMaxNesting,
the average of maximum nesting level of control constructs in functions of a file,
is a clear example of that.

We also observe that the selected metrics are from all groups, including com-
plexity (e.g., SumEssential), volume (e.g., CountDeclFunction), coupling (e.g.,
CBO), and cohesion (e.g., LCOM). This exposes the limitation of previous re-
search that focus only on complexity metrics (Shin and Williams [2011]; Shin
[2008]; Shin and Williams [2008]) for detecting vulnerabilities or for improving
software security.

We further observe that, from the metrics showing high correlation with the
number of vulnerabilities at the project-level (refer to Table 3.4), the first five
(CBO, SumEssential, CountDeclFunction, FanOut, and SumMaxNesting) are
present in the subset of metrics selected in the combined dataset. HK and
CountStmtDecl (number of declarative statements) are not present in the res-
ulting subset of any project, but instead we can find some metrics that are
highly correlated (Spearman and Pearson correlation >= 0.9) with these two
metrics. In particular, FanIn and FanOut, which are highly correlated with
HK, and CountStmt (Number of statements), which is highly correlated with
CountStmtDecl, are selected in various projects.

The last observation is that, in the cases where the number of records with
vulnerabilities is higher in a dataset (i.e., more vulnerabilities are reported), we
get higher Kappa showing that the classifier model is more precise. The same
is not observed for Accuracy, because the proportion of vulnerable and non-
vulnerable records are not necessarily the same in the datasets, so the number
of non-vulnerable records classified as non-vulnerable (true negatives) influences
the accuracy value. Thus, we see that accuracy is usually higher for datasets
with a lower number of vulnerable records (e.g., 0.9778 in Apache httpd and
0.922 in Linux Kernel), but that does not mean that the classifier model is more
precise. For this reason, we cannot use the accuracy value to compare the results
obtained for different datasets of different projects with different proportions of
vulnerable and non-vulnerable records.

The Kappa value, based on Viera et al. [2005], is interpreted as follows: poor
when less than 0, slight between 0.01 and 0.2, fair between 0.21 and 0.4, moderate
between 0.41 and 0.6, substantial between 0.61 and 0.8, and finally almost perfect
between 0.81 and 0.99. Based on this, we can see that we could build substantial
and close to perfect classifiers using the selected metrics in the case of all projects,
except for Glibc.

To validate the effectiveness of the selected subsets of metrics, we com-
pare them with several relevant individual or groups of metrics. As shown in
Tables 3.12 and 3.13, we compare the accuracy of the classifier model built using
the subset of metrics selected by the genetic algorithm with the accuracy of the

— 46 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Table 3.12: Comparison between the accuracy of the selected file-level metrics
of Apache httpd, Xen HV and Glibc projects with several subsets.

classifier model built using the combinations of metrics mentioned in Section
3.2.3.3.

The results show that, in all projects except Glibc, the Accuracy and Kappa
are higher when the metrics selected by the genetic algorithm are used to build
the classifier model. To double-check the results of Glibc, we repeated the
experiment for this project and achieved a similar result. This means that the
genetic algorithm was not able to converge to the (near) best result in the case
of Glibc. Since we used the Apache https’s data for calibration of the genetic
algorithm, the main reason for this situation can be the non-optimal parameter
set.

The validation results also show that, in the cases where the top one correl-
ated metric (i.e., correlated with the existence of vulnerabilities) is chosen for
building the classifier model, the results are usually worse in terms of Accuracy
and Kappa (i.e., here we can use Accuracy for comparison because the dataset
used for each project is the same in all cases). This observation exposes the
limitations of previous research, which focused on using the correlation between
each individual metric with the existence of vulnerabilities (Shin and Williams
[2008]; Alves et al. [2016b]) to identify the discriminative and predictive software
metrics for vulnerabilities.

— 47 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Table 3.13: Comparison between the accuracy of the selected file-level metrics
of Mozilla Firefox and Linux Kernel projects with several subsets.

A cross-validation was also performed to see how effective the metrics selected
for a given project might be in the other projects. The results, presented in
Table 3.14, are consistent with the previous results, as for each project, except
for Glibc (shown in red), the metrics selected by the genetic algorithm for that
specific project lead to the best results in terms of Accuracy and Kappa (shown
in green).

Table 3.14: Cross-validation of the selected file-level metrics.

3.2.3.5 Function-level feature selection results

Table 3.15 presents the results obtained from the heuristic search for the five
projects individually and collectively (i.e., combination of the data from the five
projects) considering the function-level metrics. The table presents the Accuracy

— 48 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Table 3.15: Function-level results for each project.

and Kappa of the selected subsets, the number of records included in the dataset,
and the number of vulnerable records used for each project.

Table 3.16 presents the function-level metrics selected for the five projects in-
dividually and collectively. As shown, despite being different in number and
combination of metrics, the selected subsets of metrics share similarities. Met-
rics CountStmtEmpty (i.e., number of empty statements) and CountLineCode
(i.e., number of executable lines of source code, also known as SLOC) are selec-
ted for all projects. The CountStmtEmpty, as expected, is also selected for the
combined dataset. The CountLineCode is not selected but instead, a redundant
metric, called AltCountLIneCode (i.e., number of lines containing source code,
including inactive regions), which is highly correlated with CountLineCode (i.e.,
in all projects the correlation between these two metrics is about 0.99 for both
Pearson and Spearman correlation coefficients) is selected.

Table 3.16: Function-level metrics selected by the heuristic search for each pro-
ject.

We also observe that Kappa values are low in comparison to the file-level results.
In general, fair and moderate classifiers are built using the selected metrics.

— 49 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Glibc shows the worse result than the other projects in both file and function
levels.

We further observe that volume metrics (e.g., CountStmtEmpty, Count-
LineCode, CountLineComment, CountStmt) are the majority (i.e., being in four
or five projects) in the selected subsets. This is in contrast to the file-level res-
ults, in which the complexity metrics (e.g., AvgMaxNesting, CountPath) are
the majority. In addition to this, the selected function-level metrics are quite
different from the file-level metrics.

This exposes the limitation of previous research that focus only at a single level
(function or file) for detecting the vulnerabilities (Shin and Williams [2008];
Chowdhury and Zulkernine [2011]; Alves et al. [2016b]). Given these results,
we believe that for identifying the quality of software in terms of security, the
function, file and project level metrics are complementary to each other.

To validate the results above, we used the same approach as for the file-level
metrics. Tables 3.17 and 3.18 present the comparison between the Accuracy
and Kappa of the classifier model built using the metrics selected by the genetic
algorithm and the other 5 cases mentioned above.

Table 3.17: Comparison between the accuracy of the selected function-level met-
rics of Apache httpd, Xen HV and Glibc with several subsets.

Interestingly, we face the same situation as before: in all projects, except for
Glibc, the classifier model is more accurate in the case where the selected metrics

— 50 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Table 3.18: Comparison between the accuracy of the selected function-level met-
rics of Mozilla Firefox and Linux Kernel with several subsets.

are used. This repetition of the same observation proves again that the genetic
algorithm parameters were not properly set for the Glibc project.

The results of the cross-validation, presented in Table 3.19, again confirm that
the metrics selected by the genetic algorithm for each project, except for Glibc,
are the (near) best metrics for building the classifier.

Table 3.19: Cross-validation of the function-level metrics.

— 51 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

3.3 Software Metrics and Machine Learning to Detect
Vulnerabilities

We now present our comprehensive experiment to study how effective software
metrics combined with machine learning algorithms, are in distinguishing vul-
nerable from non-vulnerable code units. In practice, the goal is to contribute to
answer the following Research Questions (RQs):

• RQ1. Can software metrics effectively be used to distinguish vulnerable
code units from the non-vulnerable ones in different application scenarios?

• RQ2. How do different machine learning algorithms perform in this con-
text?

• RQ3. Can the results of this experiment be generalized and applied to
different types of software systems?

We aim to understand how the information provided by software metrics can be
best used by machine learning algorithms to identify vulnerable code units (files,
functions) with high levels of confidence within different circumstances, including
different application scenarios that encompass diverse security concerns. To this
end, this study considers:

1. Five representative software projects (Mozilla Firefox, Linux Kernel,
Apache HTTPd, Xen and Glibc), used both individually and in combina-
tion;

2. Five combinations of software metrics of different types (complexity,
volume, coupling and cohesion) collected at different levels of code (file
and function). These different combinations of software metrics were se-
lected based on dimension reduction approach presented in Section 3.2.2;

3. Five widely-used machine learning algorithms (Random Forest, Extreme
Boosting, Decision Tree, SVM Linear and SVM Radial), considering dif-
ferent configurations to achieve the best prediction results;

4. Four application scenarios with diverse concerns regarding security
(highly-critical, critical, low-critical, non-critical), which in practice are
addressed by using different evaluation criteria (Recall, Informedness, F-
Measure, Markedness). For instance, in the highly-critical systems scen-
ario, detection and elimination of vulnerabilities is of high priority even
if some false alarms are reported, therefore, a criterion that measures the
ratio of detected vulnerable code units independently from false alarms
seems to be of interest. In contrast, in the non-critical systems, the num-
ber of false alarms can be the main concern due to limited development
resources, thus, a criterion that in addition to the correctly classified vul-
nerable code, strongly rewards low false alarms seems to be adequate.

The experimental process is divided in two phases, as shown in Figure 3.6.
The first phase, Preliminary Analysis, is focused on the configuration and
setting of the experiments. These are related to: i) selection of machine learning

— 52 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Figure 3.6: Methodology used in this work.

algorithms; ii) definition of application scenarios and selection of appropriate
evaluation criteria for the scenarios; and iii) adjustment of the dataset class
distribution.

The second phase, Experimentation and Analysis, is focused on running
the experiments based on the configurations defined in the previous phase, and
analyzing the results obtained. In practice, these experiments involve building
and evaluating classification models using different machine learning algorithms,
different combinations of software metrics, and diverse software projects within
different application scenarios. In addition to and integrated with the above
principal phases, we validate the approach and methods used as well as the
results obtained and demonstrate whether the results can be generalized. These
Validation and Generalization (V&G) activities are shown in the Fig. 3.6
with green check marks.

In the following sections, we introduce the Machine Learning algorithms selected,
define the application scenarios and the decision criteria, and present the class
distribution in the dataset. Then, we move to the build and evaluation of the
classification models and the analysis of the classification results.

3.3.1 Machine Learning Algorithms
We selected several commonly used and recommended Machine Learning al-
gorithms for detecting vulnerable code units based on software metrics. By
referring to Ghaffarian and Shahriari [2017] and Alves et al. [2016a], that sur-
vey prediction models used for detecting vulnerabilities, the ones that seem to
be the most commonly used in this area are: Decision Tree (S. and et. al.
[1991]), Random Forest (Breiman [2001]), Support Vector Machine (Awad and
Khanna [2015]) and (Boser et al. [1992]), and Logistic Regression (LR) (Dre-
iseitl and Ohno-Machado [2002]). These selected Machine Learning algorithms
are presented and described in Section 2.4.

— 53 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Since, in practice, LR and SVM with linear kernel usually present similar results
(Westreich et al. [2010]), we use linear SVM in addition to radial SVM and
discard LR. In addition to these, we also include the Extreme Gradient Boosted
(Xboost) (Chen and Guestrin [2016]), as its good performance has been shown
in many cases (Georganos and et al. [2018]).

The selected algorithms are used to perform supervised machine learning. Su-
pervised classification requires that the data is totally labeled, as is the case in
our work. The algorithms are tuned to achieve the best prediction result at the
cost of having longer training time. In the case of Xboost, Linear and Radial
SVM, a list of values (based on literature) are given to the algorithms for each
parameter to try different combinations and the best result is selected in each
case. In the case of Random Forest and Decision Tree, the recommended default
values from the literature are used for each parameter.

3.3.2 Application Scenarios and Decision Criteria
To improve the effectiveness of the Machine Learning models, it is important
to adequate the evaluation criteria to the relevant application contexts. We
consider four distinct scenarios where security assurance has different levels of
relevance, depending on the criticality level of the applications being developed
and also on the availability of resources to deal with security problems. The four
scenarios analyzed were adapted from Nunes et al. [2018], where the authors
define different real-world scenarios of applications to benchmark static analysis
tools. We analyzed the specific characteristics of each scenario and selected an
appropriate criterion associated to each one in order to evaluate the classifiers
built on top of the selected software metrics. The scenarios and associated
criteria are:

• Highly-Critical: this scenario represents highly business or safety crit-
ical systems with demanding security requirements (e.g., e-banking and
e-health), in which the detection and elimination of security vulnerabil-
ities is of high priority (because a successful security attack may cause
serious damages to the system, to business, or to people’s life). Thus, the
classifier models should be able to detect the highest number of vulnerable
code units, even if some false positives are reported. For this scenario, we
choose Recall as criterion to evaluate the classifiers, as it measures the
ratio of vulnerable code units that are correctly classified independently
from false positives.

• Critical: this scenario represents not highly but still critical systems (e.g.,
e-commerce web applications and large scale social networks) in which an
exploited vulnerability usually reflects sensitive data breaches or consider-
able financial losses. In such scenario, classifiers should detect the highest
number of vulnerabilities while avoiding reporting too many false positives
as the resources available to fix and remove vulnerabilities need to be used
appropriately. For this reason, we chose Bookmaker Informedness as
criterion, as it still gives a high importance to true positive rate while
moderately penalizing classification models with high false positive rates.

— 54 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

• Low-Critical: this scenario includes systems that are less critical and
less exposed to attacks. Projects developing these systems usually have
limited budget to be allocated for finding and fixing vulnerabilities. Thus,
both detecting and eliminating the highest number of vulnerabilities and
spending less resources for analysing false positives have equal priority. In
this scenario, F-Measure that evenly combines precision and recall, is an
appropriate criterion.

• Non-Critical: this scenario includes non-critical systems from a security
perspective (i.e., systems that are not usually exposed to attackers). Thus,
we are more concerned with the number of false alarms due to tight budget
and resource restrictions, although we still want to detect vulnerable code
and eliminate vulnerabilities. Markedness is an appropriate criterion in
this context, as it rewards low false alarms and at the same time does not
ignore true positives.

It is important to mention that, bookmaker Informedness and Markedness are
unbiased metrics that characterize the effectiveness of the predictors considering
the proportion of the classifications, similarly to what is done with betting odds
(Powers [2020]). Therefore, Bookmaker Informedness characterizes the effective-
ness of the predictor considering measures of the proportion of outcomes, and
the Markedness quantifies how marked a condition is for the specified predictor,
versus chance.

Table 3.20: Summary of the application scenarios and their corresponding cri-
teria (Antunes and Vieira [2015]).

More details about the selected criteria are presented in Table 3.20. In the
formulas, True Positive (TP) represents the number of vulnerable code that are
correctly classified, True Negative (TN) represents the number of non-vulnerable
code that are correctly classified, False Positive (FP) represents the number of
non-vulnerable code units that are misclassified as vulnerable and False Negative
(FN) represents the number of vulnerable code that are misclassified as non-
vulnerable.

— 55 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

3.3.3 Class Distribution in the Dataset
Table 3.21 presents projects information regarding the number of files and func-
tions used in this experiment. As can be observed, the dataset is different from
the one described in Table 3.3. In fact, the previous dataset contained only one
record to each file and each function and the current dataset contains several
records for each file and function. Therefore, as we have information regarding
each commit of each project, we decided to include all the records (representing
the evolution of the software metrics for each file and function over time).

Table 3.21: Summary of the dataset.

The dataset is quite imbalanced, as the vulnerable code units make a small frac-
tion of the whole dataset (e.g., 2.27% in the case of Linux Kernel files). In such
cases, research shows that machine learning algorithms tend to be overwhelmed
by the large class and ignore the small ones (Chawla et al. [2004]). On the
other side, transforming a representative dataset into a balanced dataset (either
by undersampling or by oversampling) may cause the loss of information about
the frequency of each class and, thus, affecting the accuracy of the classification
models (Batista et al. [2004]). For this reason, we performed an analysis to
find out how balanced the dataset should be in order to build high performance
classifiers for vulnerability detection (i.e., models with high true positive and
low false positive rate). The process used is described in Figure 3.7.

Figure 3.7: Undersample process.

— 56 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

In practice, we apply one of the most effective (in terms of performance) and
efficient (in term of time) strategies to deal with imbalanced data, which is to
moderately undersample the majority class (Estabrooks et al. [2004]), to gradu-
ally balance the dataset (from a fully representative and imbalanced dataset to
a 100% balanced dataset) and observe the impact on the performance. This
allows to select a dataset with the near best class distribution that results in the
near best performance compared to others.

In all experiments, 75% of the resampled dataset was used to train the machine
learning algorithms and 25% of it (disjoint from the training sets) was used to
test them (named as TS1). In addition, to guarantee a fair and representative
evaluation of the classification models, we (randomly) created an additional test
set composed of 25% of the whole dataset (TS2), which is fully imbalanced
and is ensured to be disjoint from the training sets. By doing this, we aim to
understand how the estimation made by a balanced test set differs from the
estimation made by an imbalanced, but representative test set.

Table 3.22 presents the characteristics of the resampled datasets for the Linux
Kernel project. As we can observe, we moved from a fully imbalanced data-
set composed by 2.27% of vulnerable files and 97.73% of non-vulnerable files,
to a balanced dataset with 50% of vulnerable files and 50% of non-vulnerable
files. Also, the number of files used to test the machine learning algorithms are
presented in Test set 1 and Test set 2 columns. Linux Kernel was chosen due
to the fact that it has a higher number of reported vulnerabilities than other
projects, so a low number of vulnerable records would not be a threat to the
validity of the results.

Table 3.22: Resampled datasets (Linux Kernel files).

Figure 3.8 (x-axis: % of vulnerable records in the dataset (from 2.27% to 50%),
y-axis: true positive rate (left) and false positive rate (right)) shows how per-
formance, in terms of true positive rate and false positive rate estimated using
resampled test set (TS1), changes when the training set becomes more balanced.
For all the machine learning algorithms considered, we observe that the true pos-
itive rate increases (e.g., from 0.54 to 0.92 in the case of Random Forest and
from 0.08 to 0.73 in the case of Decision Tree). This means that more vulnerable
code units are detected and less vulnerable code units are misclassified as non-
vulnerable. Thus, for highly critical systems where one wants to detect as many
vulnerabilities as possible (regardless of the false alarms), it is quite effective to

— 57 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

balance the dataset when the number of vulnerable records is lower than the
number of non-vulnerable ones.

Figure 3.8: Impact of undersampling on performance.

Another observation is that, the false positive rate increases for all algorithms
(e.g., from 0.003 to 0.08 in the case of Random Forest and from 0.0007 to 0.31 in
the case of Decision Tree), which means that a higher number of non-vulnerable
code units are misclassified as vulnerable. Thus, for scenarios in which there are
limited resources for fixing or removing vulnerabilities, undersampling the non-
vulnerable class to balance the dataset does not seem to be a good approach.
Similar results are obtained for true positive rate and false positive rate, using
the imbalanced test set (TS2).

As a result, since we are more concerned about detecting vulnerable code units
and aim to improve the tools and techniques in this regard, we have decided
to use the totally balanced (50% vulnerable code units) datasets for
training the machine learning algorithms (in experimentation and analysis
phase).

We also conducted a more detailed comparison between the classifiers using
balanced and imbalanced test sets. For this comparison, we used all machine
learning algorithms, trained using a totally balanced training set and tested
using both balanced (TS1) and imbalanced (TS2) test sets, and evaluated the
classification models by using the four criteria representing the four scenarios
under study.

As shown in Figure 3.9, the Recall and Informedness obtained using TS1 are in
par with the results obtained using TS2. This means that using either a balanced
or an imbalanced test set does not influence the classification results when highly-
critical and critical scenarios are the target of the analysis. But we observe
lower values for F-measure and Markedness in TS2 across all machine learning
algorithms. This is caused by the high number of false positives compared to true
positives, which comes naturally from the TS2 that has a much higher percentage
of non-vulnerable records. Thus, we have decided to use imbalanced but
representative test sets in the following experiments, in order to have
realistic performance estimation for all scenarios.

Due to the time required to carry out all of these experiments (included in the
preliminary analysis), we decided to perform them only at file level. Because

— 58 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Figure 3.9: Balanced versus imbalanced representative test sets.
of this, our decision regarding how to train and test the models may not per-
fectly fit in function-based experiments, but we believe that the implications are
negligible, due to the fact that the nature and context of the problem is quite
similar.

3.3.4 Experimentation and Analysis
The second phase of the study consists of running the experiments. As shown
in Figure 3.10, the data (balanced training sets and representative test sets be-
longing to all projects at both file and function levels) are prepared according
to the configurations determined in the previous phase and then passed to the
selected Machine Learning algorithms. The classification models are built over
the dataset of the five different projects at file and function levels by considering
the several combinations of software metrics and the different application scen-
arios. It is worth repeating that the machine learning algorithms are trained
using balanced training sets and tested using a representative test set in order
to build more accurate vulnerable code detectors and have more realistic per-
formance estimations. Internal and external cross-validation (CV) is performed
in all cases, as discussed next.

V&G - Internal Cross Validation: In order to avoid any overfitting that
might be caused by unrepresentative training sets, internal cross validation is
necessary. Cross-validation is a statistical resampling technique used to estimate
the performance of machine learning models (Yu [2002]). Using this technique,
data is split into k subsets or folds of equal size. Each time, one fold is used as test
set and the remaining k-1 folds are used to train and fit the model. In this work,
we use an internal 10 fold cross validation for building the models, helping
to achieve a fair estimation of the performance for each individual model.

V&G - External Cross Validation: Internal cross validation might not be
enough to ensure fair comparison between distinct models due to the fact that
the initial training and test sets might not be representative of the whole dataset.

— 59 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Figure 3.10: Process of experimentation and analysis.

For this reason, in this work, we use an external 4-fold cross validation to
validate the classification models built. In practice, we divide the whole dataset
into 4 folds. Each machine learning algorithm is executed four times; each time,
it uses one fold for testing and 3 folds for training (which internally uses a 10
folds cross validation). The final performance estimation of each classification
model is an average of the four estimations.

V&G - Generalization Assessment: We conducted two sets of tests to
understand to which extent we can generalize the obtained results:

1. The first set of tests is focused on inter-project cross assessment. In these
tests, the machine learning algorithms are trained using the dataset of one
project (e.g., Linux Kernel) and are tested using the dataset of the other
projects (e.g., Mozilla Firefox). This helps to understand how machine
learning algorithms perform in new situation.

2. In the second set of tests, the machine learning algorithms are trained using
a combined dataset including all projects and tested using the dataset of
each project individually. This helps understanding whether it is helpful
to combine all existing information from source code of different software
projects to achieve a better result.

In the following sections, we present and analyze the results obtained during the
experimentation and analysis phase, including the performance of the machine
learning algorithms and the generalization of the approach.

3.3.4.1 Performance of the Machine Learning Algorithms

We first focus on the results obtained for each project individually and then make
a comparison. Figures 3.11 and 3.12 present the results obtained respectively

— 60 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

for file and function level metrics of the Linux Kernel project. Both include the
results obtained by all Machine Learning algorithms for different scenarios over
five combinations of software metrics (dimension reduction presented in Section
3.2.2). It is worth reminding that all 5 software projects are analyzed by using
four criteria representing four different scenarios. In fact, the assumptions re-
garding the criticality level of the projects are made based on the scenarios.

Figure 3.11: File level results for Linux Kernel project.

Figure 3.12: Function level results for Linux Kernel project.

— 61 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

File level results show that the best performance is always achieved by Ran-
dom Forest and Xboost algorithms. As expected from the non-linear nature of
the dataset, radial SVM always achieve a better performance than linear SVM,
which is almost in par with Decision Tree.

Among different combinations of software metrics, the combination from which
the irrelevant metrics are eliminated slightly shows a better result than other
combinations in most cases. In Figure 3.11, we can also see that the combination
in which the redundant metrics are eliminated shows (slightly) worse results
than the combination with all metrics. In contrast, function level results show
no significant difference between these combinations. This happens because the
function-level dataset is not considered as a high-dimensional dataset (it only
has 28 features), and in such cases it is hard to achieve a better result with
dimension reduction. However, this is not always the same for other projects.
See the results of file level metrics and function level metrics for Glibc project
in figures 3.13 and 3.14, respectively.

Figure 3.13: File level results for Glibc project.

After analysing the results of all projects and all algorithms, we can state that,
dimension reduction, does not always help to achieve a better per-
formance. In fact, dimension reduction has to be done carefully and several
techniques should be tried depending on the classification model in use and the
characteristics of the dataset in order to achieve a better performance.

Regarding the effectiveness of using software metrics and Machine Learning to
detect vulnerable functions, we can conclude that, although the machine learn-
ing algorithms could achieve a reasonable performance in terms of Recall and
Informedness (highly critical and critical scenarios), the results for F-measure
and Markedness (low-critical and non-critical scenarios), which are highly de-
pendent on the number of false positives compared to true positives (refer to

— 62 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Figure 3.14: Function level results for Glibc project.

Table 3.20), are not convincing at all. Despite having high true positive (TPR
= TP/P) and low false positive rates (FPR = FP/N), having a very imbalanced
test set leads to a high number of false positive cases when compared to the
number of true positive cases.

Similar observations can be pointed for the function level results presented
in Figure 3.12, with the difference that the performance of the algorithms using
file level metrics is usually higher than when using function level metrics. Also,
the difference between machine learning algorithms is more visible in file level
results. For example, we cannot see any difference between the algorithms in
terms of F-Measure and Markedness in the figure. This happens due to the
fact that the function-level data is even more imbalanced than the file-level data
(refer to Table 3.21).

To make a comparison between different projects, we present in Figure 3.15 the
results obtained for all projects over the data sets with all file level metrics.
In general, the results for the different projects are quite different mainly due
to the fact that the characteristics of the datasets (i.e., size and distribution
of classes) are different for each project. In most cases, the best performance
is achieved for the Linux Kernel dataset, which is the biggest project and has
more vulnerable code units. This means that the machine learning algorithms
had more evidences and more balanced information to avoid overfitting and
learn (of course not equally) about both classes involved in the dataset. We also
have high Recall and Informedness for Glibc, but, by looking to the very low
F-measure and Markedness values, we can conclude that the high true positive
rate in this case is achieved thanks to highly overfitted models.

— 63 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Figure 3.15: File-level results for all projects over all software metrics.

Figure 3.16: Function-level results for all projects over all software metrics.

Interestingly, the results achieved by the two ensemble algorithms, Random
Forest and Xboost, are quite similar in the case of all projects, for both file and
function level metrics (see figures 3.15 and 3.16). Random Forest and Xboost are
tree-based algorithms and, in both cases, the performance of the model depends
on two distinct sources of error: bias and variance. Gradient boosting models
deal with these sources of error by boosting for many rounds at a low learning
rate. In contrast, Random Forest models deal with them via the number of trees
and tree depth. Achieving very similar results by these algorithms in almost all

— 64 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

cases may imply that both models were able to achieve their best model with
our dataset and no bias or variant could be reduced by neither methods due to
the limitations that exist in the dataset (e.g., being imbalanced with imperfect
labeling).

3.3.4.2 Generalization Assessment

To understand to which extent we can generalize the results and how the Ma-
chine Learning algorithms perform in new (previously unseen) situations, we
performed a inter-project cross assessment, where data of a specific project are
used for training and data of the other projects are used for testing.

At the file level and using data of Linux Kernel as training set, we observe that
the performance decreases in all projects, except in the case of the Linux Kernel
itself, whose data is used for training the machine learning algorithms (see Figure
3.17). An interesting observation is that Linear SVM and DT seem to make
better classifications than other machine learning algorithms when the test set
is completely unknown to the classifiers. This suggests that these algorithms are
able to build more generalizable models than others, thus being more suitable
for unseen code. This is simply because, they build simpler models, which is
more appropriate when the data is more non-parametric in nature (i.e., when
we cannot make assumptions about the distribution of data).

Figure 3.17: File-level inter-project cross-validation results (Linux Kernel data
is used as training set).

At function level and using data of Linux Kernel as training set (see Figure
3.18), all classifiers seem to perform similarly. Interestingly, for Low Critical
and Non-Critical scenarios, Xen achieves a better result than the other projects.

— 65 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Figure 3.18: Function-level inter-project cross-validation results (Linux Kernel
data is used as training set).

This happens due to the fact that this small project has a more balanced test
set compared to other projects.

The same model with more balanced test set, gives less false positive alarms
compared to the number of true positive cases, which leads to achieve higher F-
Measure and Markedness. The same observations are seen when data of Mozilla
Firefox is used as training set in both file and function levels, but in other cases,
when the data of the small projects are used for training, we observed that the
performance of the classifiers is way lower and all classifiers perform similarly in
both file and function level. This happens because the training set is small and
there is not enough variation in training set.

The results of the experiments in which the Machine Learning algorithms are
run over the combined dataset, are presented in figures 3.19 and 3.20 for files and
functions, respectively. We can observe that the performance of the classifiers is
slightly degraded when we use a dataset composed of all 5 projects for building
the classification models. This potentially means that classifiers are able to find
similar characteristics and patterns in the code of five different projects, thus
achieving a reasonable performance level.

The results are similar for function level metrics (figure 3.20). This is a prom-
ising observation as it may mean that we can build a dataset with higher di-
versity (including different types of software project), which is quite helpful for
vulnerebility prediction of unseen code but still have a reasonable level of per-
formance.

— 66 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Figure 3.19: File-level generalization results.

Figure 3.20: Function-level generalization results.

3.3.5 Analysis of the Classification Results
We conducted several more detailed analyses to better understand the results of
the Machine Learning algorithms. As depicted in Figure 3.21, we followed three
approaches:

1. Intersection analysis that aims at understanding the intersections of

— 67 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

the classification (false or true) results of different ML algorithms.

2. Misclassified code analysis that aims at understanding the character-
istics of misclassified code units when compared to correctly classified code
units.

3. Code review that aims at showing that the code units that are wrongly
classified as vulnerable might indeed include unknown vulnerabilities (that
can be the target of future attacks), and that the ones that are correctly
classified as non-vulnerable are not necessarily flawless.

Figure 3.21: Profound analysis of prediction results.

We present the detailed results obtained for the Linux Kernel project at file
level because it is the project with the higher number of known vulnerabilities
(refer to Table 3.21), thus allowing to build a more balanced dataset with a
sufficient number of vulnerable records to avoid overfitting, as much as possible.
Nevertheless, we also conducted the intersections analysis and the analysis of
misclassified code for the Mozilla Firefox project and similar results were ob-
served.

3.3.5.1 Intersection Analysis

The results of the prediction models are summarized in Table 3.23. The total
number of vulnerable records and total number of non-vulnerable records com-
prise only 25% of the entire dataset (test set). Thus, 2178 vulnerable and 93727
non-vulnerable files of the Linux Kernel project are considered in the analysis.
Table 3.23 also presents the number of vulnerable files that were classified as
vulnerable and as non-vulnerable (true positive and false negative classifica-
tions, respectively), and the non-vulnerable files that were classified as non-
vulnerable and as vulnerable (true negative and false positive classifications,
respectively).

It is possible to observe similar patterns between Linear Support Vector Machine
and Decision Trees. However, showing a comparable performance does not imply
that the code is classified or misclassified similarly by these classifiers. For this
reason, we decided to analyse their behaviour in more detail. We use Venn

— 68 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

Table 3.23: Prediction models’ evaluation results (files ofLinux Kernel project).

diagrams to better understand the intersections of the classification results (false
or true) of different machine learning algorithms. Figure 3.22 presents Venn
diagrams showing all possible intersections between the subset of code units
classified as vulnerable or non-vulnerable by the different ML algorithms.

Figure 3.22: Venn Diagrams of the Classification Results of 5 ML Algorithms.

The diagrams show that 1047 vulnerable files (48%) are detected by all models
(a), and that 76 vulnerable files (3.5%) are missed by all classifiers (b). It also
shows that 61803 non-vulnerable files (i.e., no vulnerability was reported up to
the date of the dataset creation) (66%) are classified as non-vulnerable (c), and
that 2941 non-vulnerable files are classified as vulnerable (3.1%) by all classifiers

— 69 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

(d). These four groups of files classified in the same way by the five prediction
models probably share characteristics that lead them to the same class, which
will be discussed next.

3.3.5.2 Misclassified Code Analysis

To better understand the results above, we first compared the characteristics of
the vulnerable/non-vulnerable files misclassified by all classifiers with the char-
acteristics of the files that are correctly classified by all classifiers. All software
metrics were analyzed and we observed that the results are similar across some
software metrics that are highly correlated/redundant (e.g., CountLineCode and
AltCountLineCode).

Figure 3.23 presents the average value of several non-redundant and represent-
ative software metrics (at least one metric from each type including volume,
complexity, coupling and cohesion metrics) for each group of files. Interestingly,
correctly classified vulnerable files (TPs) and wrongly classified non-vulnerable
files (FPs) show very similar structural characteristics (i.e., huge and complex).
This can be observed by their close average values.

Figure 3.23: Comparing TPs, FNs, TNs, and FPs in terms of Software Metrics.

The same is true regarding the correctly classified non-vulnerable files (TNs)
and the wrongly classified vulnerable files (FNs). There is, however, a con-
siderable difference between these two groups (files classified as vulnerable and
files classified as non-vulnerable by the five prediction models). The vulnerable
files classified as non-vulnerable are small and simple in terms of structure. In
contrast, most of the files and functions incorrectly classified as vulnerable are
huge or complex. An example of a misclassified vulnerable file (from FNs) (false
negative) from the Linux Kernel source code is presented below:

1 /*
2 * File Path: fs/ramfs/file-mmu.c
3 * Software Metrics values:
4 * CountLineCode: 15
5 * SumCyclomatic: 0

— 70 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

6 * SumCyclomaticMod: 0
7 * SumCyclomaticStrict: 0
8 * SumEssential: 0
9 * CountPath: 0

10 * FanIn: 0
11 * FanOut: 0 */
12

13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/ramfs.h>
16 #include "internal.h"
17

18 const struct file_operations ramfs_file_operations = {
19 .read = new_sync_read ,
20 .read_iter = generic_file_read_iter ,
21 .write = new_sync_write ,
22 .write_iter = generic_file_write_iter ,
23 .mmap = generic_file_mmap ,
24 .fsync = noop_fsync ,
25 .splice_read = generic_file_splice_read ,
26 .splice_write = generic_file_splice_write ,
27 .llseek = generic_file_llseek ,
28 };
29 const struct inode_operations ramfs_file_inode_operations = {
30 .setattr = simple_setattr ,
31 .getattr = simple_getattr , };

We added the first 11 lines just to provide some information about the file. The
file path is presented in line 2, and the values of several representative software
metrics are included in lines 3 to 11. Such values show how simple the file is. In-
deed, it is impossible to indicate this file as vulnerable by looking only to software
metrics, but we are aware of one exploitable vulnerability that has been reported
for this file (i.e., CWE-264 - Permissions, Privileges, and Access Controls). The
vulnerability consists of a Wrong Assignment Value (according to the Ortho-
gonal Defect Classification (Chillarege and et. al. [1992])) in line 26, which allows
local users to cause a denial of service (system crash). To fix this vulnerability
the line should be simply replaced by .splice_write = iter_file_splice_write,.
Just to offer some context, the Orthogonal Defect Classification (ODC) is a
systematic framework for Software Defect Classification that uses semantic in-
formation from defects to extract cause-effect relationships in the development
process. Thus, provide fast and effective feedback to developers (Chillarege
et al. [1996]). The defect types used are: function, interface, checking, assign-
ment, timing/serialisation, build/package/merge, documentation and algorithm
(Lopes Margarido et al. [2011]).

As for the false positive cases, as mentioned before, the source of information
regarding the vulnerabilities in the dataset is limited to known security reports.
Consequently, files without reported vulnerabilities are not necessarily flawless.
For this reason, given the above results, it is quite probable that some of the cases
considered as false positives are indeed vulnerable, or at least untrustworthy
(although no vulnerability has yet been disclosed). A few lines of an example
of a misclassified non-vulnerable file (i.e., file considered as non-vulnerable in

— 71 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

the dataset, as no vulnerability in that file has been reported before; but it is
classified as vulnerable by all classifiers) from the Linux Kernel source code is
presented next (the whole file is not presented due to space constraints).

1 /*
2 * File Path: drivers/pcmcia/ds.c
3 * Software Metrics values:
4 * CountLineCode: 772
5 * SumCyclomatic: 208
6 * SumCyclomaticMod: 206
7 * SumCyclomaticStrict: 226
8 * SumEssential: 115
9 * CountPath: 2122

10 * FanIn: 399
11 * FanOut: 159. */
12

13 static ssize_t field##_show (struct device *dev, struct
device_attribute *attr, char *buf) \

14 { \
15 struct pcmcia_device *p_dev = to_pcmcia_dev(dev); \
16 return p_dev->test ? sprintf (buf, format, p_dev->field) : -

ENODEV; \
17 }

As the values of the software metrics show (lines 3 to 11), the file is quite com-
plex. To find out whether the file is indeed vulnerable or is a real false alarm,
we performed a code review analysis using different static code analysis tools
(SATs): CppCheck, FlawFinder and Rats (Brar and Kaur [2015]). We choose
these tools since they are open source and are widely used to highlight dif-
ferent possible vulnerabilities within static C/C++ source code. For instance,
CppCheck (https://cppcheck.sourceforge.io/) provides unique code analysis to
detect bugs and focuses on detecting undefined behaviour and dangerous cod-
ing constructs, FlawFinder (https://dwheeler.com/flawfinder/) reports possible
security weaknesses (i.e., flaws) sorted by risk level, and RATS (https://secur-
ity.web.cern.ch/recommendations/en/codetools/rats.shtml) scans typical erros
such as buffer overflows, and design flaws. Reported potential security prob-
lems are known as severities. The tools found several issues in the file, from
which we could confirm two vulnerabilities. One of them can be seen in line
16 (i.e., CWE-134 - Use of Externally-Controlled Format String) where sprintf
operation is used without checking the input value (Missing Checking Input
Value bug according to ODC). Another one, which is not presented here, is a
CWE-120 - Buffer Copy without Checking Size of Input, a classic buffer overflow
issue.

3.3.5.3 Code Review

We run the same three SATs mentioned above (CppCheck, FlawFinder and Rats)
on all files of each group (TPs, FNs, TNs, FPs). The results are summarized in
Table 3.24. Each column shows the number of files of each group in which some
sort of severity (not necessarily a security issue) is detected by each SAT tool.
As shown, all SAT tools detected a higher percentage of files with severity in
the TPs and FPs group (e.g., CppCheck: 84.4% and 87.5% respectively) than

— 72 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

in FNs and TNs (CppCheck: 39%% and 47.3% respectively). This again shows
that files that are classified as vulnerable by all prediction models seem to be
more untrustworthy than others.

Table 3.24: Static Code Analyzers results.

As the low effectiveness of SATs in detecting security vulnerabilities is quite
well-known in the literature, we performed a manual code review to be more
precise about the SATs results. Becauses this is a time-consuming task, we were
not able to review all of the files. Instead, from each group (TP, FN, TN and
FP), we randomly selected 15 files to be reviewed.

The main objectives of this code review are: i) to check whether the detected
severities are the source of security issues and, if so, what kind of defect it
is according to ODC bug classification; and ii) to verify whether the reported
severities in the vulnerable files correspond to the exploited vulnerabilities that
we have in the dataset. The results are presented in Table 3.25.

Table 3.25: Expert-based analysis results.

Observing the results presented in Table 3.25, we were able to confirmed our
claim about the code units that are labeled as non-vulnerable. Out of the 30
non-vulnerable files, we could confirm 18 vulnerabilities in 7 files. Based on
the ODC classification, we can see that most of the vulnerabilities detected by

— 73 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

SATs are caused by missing checking (e.g., input values), Wrong Assignment,
and Wrong algorithm. The severity types identified by SATs in the case of con-
firmed vulnerabilities are limited to a list of operations that mostly manipulate
buffers.

3.4 Summary
This chapter presented a set of experiments to study if software metrics and
Machine Learning algorithms can be used for classifying vulnerable and non-
vulnerable units of code. To do so, we divided the work in two steps: the
prior included statistical correlation analysis, dimension reduction and feature
selection, to understand the correlation between software metrics and security
vulnerabilities (Section 3.2); the late focused on studying how discriminative
software metrics and machine learning algorithms are for classifying vulnerable
code units in different application scenarios (Section 3.3).

Considering the statistical analysis (that studied the interdependency between
software metrics and the correlation of software metrics with the existence and
number of vulnerabilities), the dimention reduction (to select different groups
of software metrics) and the feature selection (where an heuristic search tech-
nique at the function and file levels to find the best subset of metrics for building
a classification model), we can conclude that:

• There is a strong correlation between several project-level metrics and the
number of reported vulnerabilities;

• We cannot clearly state if dimension reduction is (or not) helpful to achieve
better performance, as the combination of metrics that leads to the best
performance strongly depends on the Machine Learning algorithm. For
example, Xboost achieves the best result when all metrics are used, while
Decision Tree shows a better performance when the redundant file-level
metrics are eliminated;

• It is possible to use a group of metrics to distinguish vulnerable and non-
vulnerable units of code with a high level of accuracy. However, the best
subset of predictive metrics may vary from one software system to another;

• For understanding the quality of software in terms of security, the function,
file and project level metrics are complementary to each other.

There are, however, some limitations and threats to the validity that should be
mentioned:

• Accuracy is used to evaluate the subset of metrics during the search pro-
cess. Despite its popularity, accuracy does not show the false positive
and negative rates of the classifier model, which are very important cri-
teria for vulnerability detection tools. Also, a high level of accuracy is
not very indicative performance metrics for imbalanced datasets. Thus, to
deal with this search problem we should use several criteria, such as Re-
call, Informedness, F-Measure, and Markedness, in addition to accuracy,

— 74 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

to evaluate the subsets of metrics.

• To perform the heuristic search, we used the genetic algorithm combined
with Random Forest. We do not claim that these techniques were the best
choices, although they are highly recommended and commonly used in the
literature to solve this kind of problems. We could use other techniques.
Using other techniques and making a comparison between the results is
left for future work.

• Configuring the parameters of the genetic algorithm is one of the main
challenges that needs to be properly addressed to achieve high quality
results. In this work, we performed an empirical calibration to choose the
best values for these parameters. However, the calibration was done using
the dataset of just one project (Apache https) and its results are used for
all projects, which may not be adequate, mainly due to the fact that the
calibration result is usually sensitive to dataset. The results achieved for
Glibc are an evidence for the limitation associated with our calibration.
Nevertheless, our calibration results allowed achieving the main objective
of this work that is, the selection of the most predictive software metrics
to distinguish vulnerable from non-vulnerable code units.

As for the study on whether software metrics and machine learning can
be used to distinguish vulnerable from non-vulnerable code units, the
main insights are (these respond to the Research Questions (RQs) in Section
3.3):

• Software metrics are not sufficient evidence of security issues to be used
directly for building prediction models that can distinguish vulnerable code
from non-vulnerable code in different application scenarios (RQ1);

• ML models created from software metrics are effective for security-critical
applications (highly-critical and critical), in which the detection of vul-
nerabilities is of high priority. In contrast, a large number of false alarms
make them useless for scenarios with low critical or non-critical systems
(RQ2);

• There is no best ML algorithm for all possible contexts of the vulnerability
prediction problem. In our study, RF and Xboost provided more precise
models than other algorithms when data from the same project is used
for training. In contrast, DT and Linear SVM build more generalizable
models, thus providing a better estimation when data from a different
project is used to evaluate the model (RQ3). Thus, it becomes difficult
to generalize the results and apply to different types of software systems;

• To build prediction models with good performance, a relatively balanced
(i.e., having an enough number of vulnerable code units to prevent over-
fitting), precisely labeled (i.e., assuring that the code labeled as non-
vulnerable is free from any vulnerability), and highly representative (i.e.,
covering a vast range of software projects implemented in different lan-
guages) dataset is required. Building such a dataset is a difficult if not
almost impossible endeavour.

— 75 —

CHAPTER 3. VULNERABLE CODE DETECTION USING SOFTWARE
METRICS AND MACHINE LEARNING: EXPERIMENTAL STUDIES

We are aware that this experimental work also has limitations that need to
be taken into account, and most of these threats to validity are related to the
dataset used:

• All the projects in the dataset are implemented in C/C++, and each
programming language has its own characteristics in terms of security.
Consequently, some of the outcomes obtained from our analysis may not
be representative for software implemented in other languages (e.g., Java).

• The source of information regarding the vulnerabilities in the projects is
limited to security reports. Consequently, the functions and files without
reported vulnerabilities are not necessarily flawless. To build the classifier
model, we followed a supervised approach, which considers that our data-
set is completely labeled. However, although the records with vulnerabilit-
ies are (reliable) labeled, but the rest can be seen as being unlabeled. This
way, semi-supervised approaches should be studied as alternative choices
for such cases, where it is not trivial to verify the label of all records due
to the size of the dataset and complexity of the code.

• Although we used the well-known, commonly used, recommended, and
representative machine learning algorithms, the number and diversity are
still limited for a comprehensive analysis. Furthermore, the analysis for
demonstrating the representativeness of random samples as well as the
analysis performed for the understanding the impact of class distribution
are done over the source code of a single project. This may have some
implications on the results obtained with the other projects.

According to our observations and insights, we can conclude that software
metrics are not sufficient evidence of security issues to be used solely
for building detection/prediction models that are able to distinguish
vulnerable code from non-vulnerable code with good performance
and low vulnerability removal cost. Based on this conclusion, in the next
chapters we will be focused on using software metrics not for predicting or de-
tecting vulnerabilities but for assessing the trustworthiness of the code and warn
the developers about their untrustworthy (insecure) code units.

— 76 —

Chapter 4
Trustworthiness Benchmarking
using Software Metrics

Trustworthiness is a paramount concern for users and customers in
the selection of a software solution, specially in the context of com-
plex and dynamic environments. However, assessing and benchmark-

ing trustworthiness (worthiness of software for being trusted) is a challenging
task, mainly due to the variety of application scenarios (e.g., business-critical,
safety-critical), the large number of determinative quality attributes (e.g., secur-
ity, performance), and last, but foremost, due to the subjective notion of trust
and trustworthiness.

This chapter takes trustworthiness as a measurable notion in relative terms
based on security attributes and proposes a framework for the assessment and
benchmarking of software units. The main goal is to build a trustworthiness as-
sessment model based on security evidences (e.g., software metrics, code smells)
that can be used as indicators of software quality. To do so, a trustworthiness
score is assigned to each unit of code, calculated using the normalized value of
relevant features (e.g., security evidences) and their impact on the precision of
the classifier, which is measured by different variable importance measures (e.g.,
Mean Decrease Accuracy and Mean Decrease Gini). This relative trustworthi-
ness score can then be used to compare and rank software elements.

To demonstrate the proposed framework, we assessed and ranked a number of
files and functions of the Mozilla Firefox project based on their trustworthiness
score (using software metrics as security evidences), and conducted a survey
among several software security experts in order to validate the obtained rank.
Results show that our framework is able to provide a sound ranking of the
benchmarked software units.

The outline of this chapter is as follows. First, we present the trustworthiness
benchmarking framework and discuss key aspects such as statistical analysis and
normalization, relative importance of features, and trustworthiness assessment

— 77 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

process. In Section 4.2, we present an instantiation of the framework as a con-
crete example of trustworthiness assessment using software metrics as security
evidences. Experimental results are discussed in Section 4.3, while validation
and generalization aspects are discussed in Section 4.4. The chapter closes with
a summary of the results.

4.1 Trustworthiness Benchmarking Framework
Figure 4.1 depicts the main components of the proposed framework, which res-
ults in the calculation of a trustworthiness score that allows comparing the
trustworthiness of different software elements (e.g., functions, files). The trust-
worthiness score, used as the sole benchmarking criterion, is calculated based on
Security Evidences (i.e., values of features) and their relative importance (i.e,
weight of features), which are the main inputs for the benchmark. As we can
observe in the figure, three phases are considered:

1. Statistical Analysis and Data Normalization: Since the features
are measured using different scales, there is the need to normalize them
to a common scale. To this end, firstly a statistical analysis should be
performed on the input data to better understand the distribution of the
values of each feature, and then, the data is normalized using Feature
Scaling.

2. Identifying Relative Importance of Features: This phase consists of
computing the weight of the features by studying how determinative each
one is in the classification of vulnerable and non-vulnerable units of code.

3. Trustworthiness Assessment: Calculation of the trustworthiness of the
software units under assessment. The output is a trustworthiness score
that allows comparing the trustworthiness of different units.

Figure 4.1: Instantiation of the Trustworthiness Benchmarking Framework.

— 78 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

The proposed framework is generic and easily applicable to different trustwor-
thiness attributes. In fact, we can replace security attributes with any other
trustworthiness attributes (e.g., performance) or add other attributes to the
model. For this, we just need to identify the criteria for measuring the corres-
ponding trustworthiness attributes (e.g., throughput, response time) and their
relative importance.

4.1.1 Statistical Analysis and Normalization
To normalize the value of different features to a common scale, one should per-
form a statistical analysis on the input data to better understand the distri-
bution of the values of each feature. The proposal is to calculate minimum,
maximum, mean and quartiles values for each one. With this statistical inform-
ation, we can simply observe if there are any cases with very large values that
affect the normalization process. To eliminate this effect, outliers can be identi-
fied using a statistical method based on the Interquartile Range (IQR) (Walfish
[2006]).

The IQR is the range between the first and the third quartiles (IQ3 −Q1). Using
this method, any data value falling outside of the acceptable range, between the
lower fence and upper fence, is considered to be an outlier:

AcceptableRange = [LowerFence, UpperFence]
UpperFence(UF) = Q3 + 1.5 ∗ IQR

LowerFence(LF) = Max(Q1 − 1.5 ∗ IQR, 0)
IQR = Q3 − Q1

(4.1)

Feature Scaling (Borkin et al. [2019]], a popular method to normalize the values
of independent variables, should be used to bring the values of the features
into a common range (between 0 and 1, in our work). As we are interested
in characterizing trustworthiness, a higher score (1) should represent a more
trustworthy code unit, thus we need to verify whether each individual feature
has a direct or inverse relationship with the level of trustworthiness.

For this end and considering that we are going to use software metrics as security
evidences in the framework instantiation, we can resort to sections 3.2.1 and 3.2.2
(statistical correlation analysis) to check the partial dependency between each
selected metric and the existence of vulnerabilities.

In most cases, there is an obvious direct relationship, which means an inverse
relationship with trustworthiness: the greater the value of the metric, the more
likely to have a vulnerability, thus the less trustworthy. In a few cases, we have
not seen an obvious direct or inverse relationship. This may seem a bit odd since
these metrics are selected by the classifier as predictive metrics, but it happens
because partial dependency of each metric is calculated individually and, as ex-

— 79 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

plained previously, a software metric that is irrelevant when considered individu-
ally might be highly significant when combined with other metrics. However,
since we are going to normalize the values of the software metrics individually,
we ended up concluding that the selected software metrics, have either an inverse
relationship or an indifferent relationship.

Based on this relationship and given the Acceptable Range (see Equation 4.1),
the value X for each software metric is scaled into the range [0,1] by using
Equation 4.2.

X ′ =

1 − X − LF

UF − LF
: X is in acceptable range

0 : X is an outlier
(4.2)

4.1.2 Relative Importance of Features
To identify the weight of the features (software metrics in our approach instanti-
ation) for building the trustworthiness benchmarking framework, we can resort
to Section 3.2.3 (feature selection analysis) and use the outputs of the random
forest classifier to calculate two common variable importance measures, namely
Mean Decrease Accuracy (MDA) and Mean Decrease Gini (MDG) (Calle and
Urrea [2010]) for each software metric (although any other approaches to com-
pute the relative importance of features can be used). In addition to these
two measures, we also consider the MDAMDG joint measure, which previous
research (Han et al. [2016]) has shown to be a robust one to identify the rel-
ative importance of the features used to build a classifier. These measures are
explained next:

• Mean Decrease Accuracy (MDA) - shows how much the classifier’s
accuracy decreases by dropping a software metric from the list of features.
MDA is normalized by the number of trees in the random forest. The
greater the accuracy drops, the more significant the software metric.

• Mean Decrease Gini (MDG) - is a measure of how each software met-
ric contributes to the homogeneity of nodes in the trees of the resulting
random forest. Each time a particular software metric is used to split a
node, the Gini coefficient for the child nodes are calculated and compared
to that of the original node. Metrics that result in nodes with higher purity
have a higher decrease in Gini coefficient.

• MDAMDG - is a joint measure whose value is the sum of MDA and
MDG. This measure is used to calculate the total importance score of
each software metric. The greater the total score, the more significant the
software metric is.

Given the above explanation, three importance scores (i.e., MDA, MDG, and
MDAMDG) are assigned to each evidence, resulting in three different weights.
Each weight is calculated by normalizing the value of the corresponding import-
ance score to a [0-1] range by considering the number of software metrics, so

— 80 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

that, for each score, the sum of the weights of all software metrics is 1.

4.1.3 Trustworthiness Assessment
To obtain the trustworthiness score for each unit of code under evaluation, we
propose using the Simple Additive Weighting (SAW), which is a commonly
used Multi-Criteria Decision-Making method (Aruldoss et al. [2013]). According
to the SAW method, the score of each given alternative (i.e., a code unit in this
context) is calculated as the weighted sum of the quality of that alternative (i.e.,
the code quality in this context) on each attribute (i.e., features) (Velasquez and
Hester [2013]). For example, let us assume several functions for being reviewed
from a security perspective. Reviewers should evaluate the trustworthiness of
each function and assign it a score (in the range of 0 to 1). The evaluation should
be performed based on two metrics, e.g., function visibility and number of input
parameters, with different importance (e.g., function visibility composes 80% of
the final score and the number of input parameters composes 20% of the final
score). As a result, each function receives a final trustworthiness score from each
reviewer. For one function, if a given reviewer gives 0.9 out of 1 for the first
metric and 0.5 out of 1 for the second metric, the final trustworthiness score of
the function, calculated as the weighted sum of the two metrics, would be 0.9 *
0.8 + 0.5 * 0.2 = 0.82.

Based on this concept, to obtain the trustworthiness score for each unit of code
under evaluation, we need to calculate the sum of the product between the
normalized value of each feature (M) and its associated weight (W), as shown
in Equation 4.3.

Trustworthiness Score =
n∑

i=1
MiWi (4.3)

The index n represents the total number of features used. Note that, this score is
a relative measure of trustworthiness that should only be used for comparison
purposes and not as an absolute measure of security or trustworthiness. The
assumption is that, a trustworthiness level refers to the extent to which a piece of
software can be trusted and the trustworthiness of a code unit can be determined
by the combination of pieces of evidence of software security, showing that it is
trustworthy (Neto and Vieira [2011a]).

Since we calculate three different weights for each feature (MDA, MDG, and
MADMDG), we get three different trustworthiness scores for each code unit.
These scores can finally be used to compare/rank a set code units under evalu-
ation.

4.2 Framework Instantiation
In this section, we present a concrete instantiation of the framework to build
trustworthiness assessment models, taking software metrics as evidences of se-
curity. For this, we work on top of files and functions of the Mozilla Firefox data,

— 81 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

since it is a quite large and well-known software project, with a large number of
known vulnerabilities, a fundamental aspect to achieve more accurate results.
Table 4.1 presents some information about the project. As mentioned before,
the dataset has been updated over time (either because there were changes in
the dataset or refinements in the data search). Because of this, we can observe
a slight difference in the number files and functions of Mozilla Firefox project
comparing with the dataset used in the Section 3.1. It is important to recall
that the approach is generic and applicable to any other software project, as far
as the source code is available for extracting the files and functions data.

Table 4.1: Summary of the Mozilla Firefox Project.

The software metrics used as security attributes, for both files and functions,
were identified using the feature selection presented in Section 3.2.3. Those met-
rics were selected as the best subset of metrics for building a classifier model
(using Mozilla Firefox project data) allowing to distinguish vulnerable pieces of
code from non-vulnerable ones. A total of 21 file-level metrics and 15 function-
level metrics were used, as shown in tables 3.11 and 3.16, respectively. These
input data represent the trustworthiness evidences in our benchmarking pro-
cess.

To demonstrate our benchmarking framework, we selected several files and func-
tions from the source code of the software project under study (i.e., Mozila Fire-
fox) and ranked them using the trustworthiness scores obtained. The process is
depicted in Figure 4.2 and includes two main steps: i) qualify and select the files
and functions for validation, and ii) rank the selected files and functions based
on the trustworthiness score calculated.

Figure 4.2: Benchmarking Process.

— 82 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

To select a meaningful list of files and functions from the Mozilla Firefox
codebase, we divided the files/functions in two groups: with and without known
vulnerabilities. This was done, first because the files and functions with vulner-
abilities do not qualify for trustworthiness evaluation (they cannot be trusted).
Second, we want to eliminate any possible effect of the existence of known vul-
nerabilities (in files and functions) on the judgments of the experts, which will
be used later to validate the output of our approach. However, for the sake of
completeness, we repeat the whole process, including experiments and analyses,
for this group of files/functions (with vulnerabilities) to validate the proposed
approach for this specific case (i.e., to understand its usefulness to compare code
with known vulnerabilities).

We selected 5 files and 5 functions from each group/category. We selected only
5 to make the validation process feasible, since experts were asked to compare
each pair of files/function separately (i.e., a total of 90 comparisons are needed
for only 5 files and 5 functions). The procedure was as follows:

• First selection based on the value of individual software metrics
- To guarantee the diversity of our selection, we first sorted the files/-
functions according to the individual software metrics value (21 software
metrics for file level and 15 software metrics for function level). For each
metric, we then selected the files/functions having the minimum, lower
fence, mean, upper fence and maximum values, resulting in the selection
of 105 files (5 files selected for each of the 21 file-level metrics) and 75
functions (5 functions selected for each of 15 file-level metrics). A random
choice of one was made in the cases where several files/functions had the
same value.

• Cleaning - In this step, we first removed duplicated files/functions and
then removed the files/functions in which all software metrics have a nor-
malized value equal to 0, as in this case we cannot calculate a trustwor-
thiness scores.

• Final selection of files and functions - We sorted the remaining 71
files and 54 functions according to the trustworthiness score calculated
using the MDAMDG weight, a joint measure of both MDA and MDG
(in most cases the order of importance of the metrics given by MDA and
MDG is the same as of MDAMDG). Then we selected 5 non-vulnerable
files (FileA, FileB, FileC , FileD, FileE), 5 vulnerable files (FileF , FileG,
FileH , FileI , FileJ), 5 non-vulnerable functions (FuncA, FuncB, FuncC ,
FuncD, FuncE) and 5 vulnerable functions (FuncF , FuncG, FuncH ,
FuncI , FuncJ) with different levels of trustworthiness score ranging from
the minimum to maximum. It is worth noting that the selection process
is only based on the metrics and not based on the detailed analysis of the
source code.

As final step, the selected files/functions where ranked based on the three trust-
worthiness scores (MDG, MDA, MDAMDG) and the results were analysed. Fur-
thermore, in order to validate the ranking provided by the proposed trustwor-
thiness benchmarking approach we conducted an expert-based ranking. This

— 83 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

ranking was compared with the one obtained by our approach, both for files and
functions without vulnerabilities and files and functions with vulnerabilities, as
will be discussed next.

4.3 Assessment and Results
In this section, we present and analyze the results obtained, including the stat-
istical analysis and normalization, the relative importance of software
metrics and the trustworthiness assessment results.

4.3.1 Statistical Analysis and Normalization
As mentioned before, since the software metrics are measured using different
scales, there is a need to normalize them to a common scale. To this end, a
statistical analysis needs to be performed on the input data to better understand
the distribution of the values of each software metric.

The statistical data obtained for the file and function level metrics are summar-
ized in Table 4.2 and Table 4.3, respectively. Here, we intend to analyze the
distribution of the values of the software metrics at both file and function levels,
in order to identify the outliers that affect the normalization process. As previ-
ously explained, the outliers are identified by calculating the acceptable range
of values based on IQR (IQ3 − Q1).

Table 4.2: Statistical data of file-level metrics.

— 84 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

Table 4.3: Statistical data of function-level metrics.

We can observe that all metrics have a minimum value of 0 for both file and
function levels, and considering the amplitude of values, we can state that the
greatest range of values is observed from the Q3 onwards. The same is to say that
a smaller variation of values is observed in the first 75% of the ordered elements
(files or functions) of the sample. Based on this simple analysis, we observed
that there are cases with very large values that affect the normalization process
(e.g., for the FanIn software metric, the maximum value existing in the dataset is
129882 while the mean value is 108). Also, the results of our statistical analysis
show that, for each software metric, different number of values are considered
to be outliers (refer to the last column of tables 4.2 and 4.3).

As an example, Table 4.4 presents the real (a) and normalized (b) values for
4 out of 21 file-level metrics for the five files selected/qualified for validation
without known vulnerabilities (labeled as nv), as we can see in Label column.
When the normalized value is 0 that means that the original value is higher
than the upper fence and is considered an outlier (e.g., the values of Count-
LineCodeDecl, SumCyclomatic, CountPath and FanIn for file 5 or the values of
CountLineCodeDecl, SumCyclomatic and CountPath for file 4). On the other
hand, when the normalized value is 1, it means that the original value is always
0 (e.g., the value of Sum Cyclomatic, Count Path and FanIn for file 1). For the
remaining cases, the result of Equation 4.2 is used.

Examples of the normalization results for function-level metrics are presented in
Table 4.5. The table presents the real (a) and normalized (b) values for 4 out of
15 function-level metrics for the five functions selected/qualified for validation
without known vulnerabilities.

— 85 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

Table 4.4: Example of the real (a) and normalized (b) values of four software
metrics for five Mozilla Firefox’s files.

Table 4.5: Example of the real (a) and normalized (b) values of four software
metrics for five Mozilla Firefox’s functions.

4.3.2 Relative Importance of Software Metrics
As mentioned before, the software metrics considered in this study are the ones
selected by the feature selection technique discussed in Section 3.2.3 as the best
subset of metrics for building the most accurate classifier over the Mozilla Firefox
dataset. With these, we calculated the three weights for each metric using Mean
Decrease Gini (MDG), Mean Decrease Accuracy (MDA), and MDAMDG as
discussed in Section 4.1.2.

The results obtained for the file and function levels are presented in Table 4.6

— 86 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

and Table 4.7, respectively. The metrics are sorted based on the MDAMDG
value. As shown in both tables, the weights calculated using MDG, MDA,
and MDAMDG are different, but in most cases the order of importance of the
metrics given by MDA and MDG is the same as of MDAMDG. The exceptions
are marked in red.

The relative importance of software metrics used to calculate the trustworthiness
score are presented in the last 3 columns of tables 4.6 and 4.7, for files and
functions, respectively. These weights are the ones used as input to compute
the trustworthiness scores of files and functions of Mozilla Firefox project. Note
that, the sum of the weights of all software metrics is always 1 (e.g., sum of the
weights for MDAMDG_W column).

Table 4.6: File-level metric weights.

As we can observe, the file-level metrics with greater relative importance are
FanOut and CountPath with 0.095 and 0.094 MDAMDG weight value, respect-
ively. On the other hand, the file-level metrics with lowest relative importance
value are CountStmtEmpty and LCOM with 0.013 and 0.010 MDAMDG weight
value (see column MDAMDG_W of Table 4.6). On the other hand, Count-
Line and CountOutput are the metrics with higher weights (0.134 and 0.117
for MDAMDG_W) and CountStmtEmpty and CountLineInactive are the met-
rics with lower weights (0.017 and 0.012 for MDAMDG_W) for funtion-level
metrics, as we can verify in Table 4.7.

— 87 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

Table 4.7: Function-level metric weights.

4.3.3 Results and Discussion
The trustworthiness scores (T Score) of the non-vulnerable files (FileA, FileB,
FileC , FileD, FileE) and functions (FuncA, FuncB, FuncC , FuncD, FuncE)
calculated by our trustworthiness model for three different weights are presented
in tables 4.8 and 4.9, respectively. In both tables, the files and functions are sor-
ted from the most trustworthy to the least trustworthy. It is interesting to notice
that, independently of the weights (MDG_W, MDA_W and MDAMDG_W)
used to calculate the trustworthiness score, the order of the files is always the
same.

Table 4.8: Ranking of files without known vulnerabilities.

The ranking for files is: FileC > FileA > FileE > FileD > FileB, where the
symbol > means more trustworthy than. We can observe that FileC is considered
the most trustworthy file with a trustworthiness score of 0.916 (MDGMDA_W).
On the other hand, FileB is the least trustworthy one with a trustworthiness
score of 0.051 (MDGMDA_W).

— 88 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

Table 4.9: Ranking of functions without known vulnerabilities

The ranking for the functions is also the same, independently of the weight
used: FuncE > FuncD > FuncB > FuncA > FuncC . Therefore, FuncE is
considered the most trustworthy function with a trustworthiness score of 0.955
(MDAMDG_W), while FuncC is the least trustworthy function with a trust-
worthiness score of 0.040 (MDAMDG_W).

Regarding the results for vulnerable units of code (refers to tables 4.10 and
4.11 for files and functions, respectively), the order of files, independently of the
weights (MDG_W, MDA_W and MDGMDA_W), is FileI > FileG > FileJ

> FileF > FileH . Thus, FileI is considered the most trustworthy file with a
trustworthiness score of 0.937 (MDGMDA_W). On the other hand, FileH is the
least trustworthy one with a trustworthiness score of 0.046 (MDGMDA_W).
For functions, the order is FuncG > FuncJ > FuncF > FuncH > FuncI ,
also independently of the weights. This means that, FuncG is considered the
most trustworthy function with a trustworthiness score of 0.950 (MDGMDA_W)
while FuncI is the least trustworthy function with a trustworthiness score of
0.028 (MDGMDA_W).

Table 4.10: Ranking of files with vulnerabilities.

Table 4.11: Ranking of functions with vulnerabilities

— 89 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

4.4 Validation and Generalization
In order to validate the ranking provided by the proposed trustworthiness bench-
marking approach, we conducted an expert-based ranking. This ranking was
compared with the trustworthiness model-based ranking (the ranking ob-
tained by our approach), for both files/functions without vulnerabilities and
files/functions with vulnerabilities.

After selecting the files and functions for validation, we asked twelve experts to
rank the files and functions based on their perceived trustworthiness by providing
them with the source code of the files/functions and the corresponding software
metrics. In practice, the experts, with experience and interest in the security
area (4 PhD students and 8 professors), working in different universities in differ-
ent countries (Portugal, Italy, Brazil, Belgium), were asked to do a comparison
between all the different pairs of files/functions. It is important to mention that
all experts are researchers in the area of secure software engineering, some of
which having more than 10 years of experience.

The experts were provided with the source code of the files/functions and the
available information regarding the individual software metrics. They were asked
to choose the more trustworthy file/function for each possible pair (a total of
90 pairwise comparisons) and assign a value indicating how much trustworthy
a file/function is in comparison to another. For this, we defined four different
levels: much more trustworthy (3), more trustworthy (2), a little more trust-
worthy (1) or non-differentiable (0). We believe that defining more levels would
highly complicate the judgment process for the experts, thus not bringing any ad-
ded value. For supporting further calculations, we transformed these values into
quantitative ones, as shown in Table 4.12, according to the Fundamental Scale
of Absolute Numbers for Pairwise Comparison (Martinez et al. [2014]).

Table 4.12: Absolute numbers in pairwise comparison.

Figure 4.3 depicts the whole process of validation. As described, we start by
the analysis of the experts’ responses where we evaluate the consistency
of the responses and perform a transitivity reduction. Then we calculate the
individual and aggregated rankings of selected files and functions of the
Mozilla Firefox project using the Row Geometric Mean Method (prioritization
method). Finally, we compare the results of our trustworthiness model-based
ranking and the ranking of the experts.

— 90 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

Figure 4.3: Validation process.

4.4.1 Responses of the Experts
We started by analyzing the responses of the experts to find inconsistencies. An
inconsistency occurs when an expert chooses A rather than B, B rather than C,
but C rather than A as the more trustworthy file/function, while based on the
two first statements, A must be more trustworthy than C. For this, we gener-
ated a complete graph to summarize the responses, and performed transitivity
reduction to help identifying such inconsistencies. Inconsistent responses were
decided to be eliminated from the validation process in order to avoid the effect
of contradictory responses on the aggregated ranking of files/functions.

The analysis of the responses resulted in the exclusion of 3 responses/experts (for
both files and functions) from the whole process. Thus, 9 responses remained
for further analysis.

The pairwise comparison of files and functions made by the remaining experts
are presented in Table 4.13 and Table 4.14. Each row presents the comparisons
carried out by one expert and the columns show the judgment made between
each pair of files and functions. For example, in the first column of Table 4.13,
C - A means that FileC is being compared against FileA, and expert 1 (first
row) chooses FileA rather than FileC , but indicates 1, which means that FileA

is a little more trustworthy than FileC .

Observing tables 4.13 and 4.14, we can verify that:

• For expert 1, file A is a little more trustworthy than file C. However, for
all other experts that compared these files, file C was classified as more
trustworthy than files A, E, D and B (with different intensity level);

• In general, file C and file A are the most trustworthy, considering the
opinion of the software security experts involved in the survey. On the

— 91 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

other hand, file B is the less trustworthy, since it is only selected three times
as the more trustworthy, when compared with file D (expert 1, expert 5
and expert 6);

• Function E has been classified as more trustworthy than D, B, A and C
functions (with different intensity level), except for the cases where the
expert was unable to differentiate them (experts 4, 6, 7 and 9 were not
able to differentiate between function E and D);

• In general, functions E and D are the most trustworthy considering the
opinion of the experts. Functions A and C are the less trustworthy.

Table 4.13: Responses of the experts for files.

Table 4.14: Responses of the experts for functions.

4.4.2 Individual and Aggregated Ranking
Based on the pairwise comparisons, we calculated individual and aggregated
ranks for files and functions. There are two possible methods for calculating
the individual ranks: the Eigenvalue Method (EM) and the Row Geometric
Mean Method (RGMM) (Crawford and Williams [1985]). However, it is shown
in Dong et al. [2008] that the difference in the output of these two methods is
meaningless, thus we choose Row Geometric Mean Method, which requires
less computation power.

— 92 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

To calculate the integrated rank of the files and functions, there are also two
known methods: the Aggregation of Individual Judgments (AIJ) (Dong et al.
[2010a]) and the Aggregation of Individual Priorities (AIP). As shown in Dong
et al. [2010a], when RGMM is used to calculate individual rank, the output of
both methods is equivalent. Thus, in this work we use the Aggregation of
Individual Judgments.

The individual and aggregated rankings obtained for non-vulnerable files and
non-vulnerable functions for Mozilla Firefox project are presented in Table 4.15
and Table 4.16, respectively.

Table 4.15: Individual & aggregated rankings of non-vulnerable files.

Table 4.16: Individual & aggregated rankings of non-vulnerable functions.

As we can observe, four out of nine experts obtained the same complete ranking
of files: FileC > FileA > FileE > FileD > FileB (identified in green). This is
the same rank obtained by the aggregation of individual judgments for files. In
the obtained rank of functions, four out of nine experts have the same complete
individual ranking: FuncE > FuncD > FuncB > FuncA > FuncC (identified
in green). In turn, the aggregated rank of functions (presented in Table 4.16)

— 93 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

is slightly different: FuncE > FuncD > FuncA > FuncB > FuncC . However,
we can verify that FuncE and FuncD are considered the most trustworthy for
eight out of nine experts.

The aggregated ranking in Table 4.15 (files) is exactly equal to the one computed
by our benchmarking approach: FileC > FileA > FileE > FileD > FileB.
Considering the individual rankings from the experts, 4 out of 9 experts ranked
the files in that exactly same order. In the other cases, the experts partially
indicate the same order (e.g., FileC > FileA > FileE > FileB appears in 4
responses) and indicate a reverse order for the files that are close to each other
in terms of their trustworthiness score (FileD and FileB, with 0.245 and 0.051
MDAMDG scores, respectively). These results, on one hand, show that the
inconsistency analysis and exclusion of the inconsistent responses were effectively
done. On the other hand, they show that our trustworthiness approach provides
a sound ranking.

Regarding the results for non-vulnerable functions (Table 4.16), again 4 out
of the 9 experts indicate the same ranking as our approach, but the order of
FuncA and FuncB is reversed in the aggregated ranking. This is happening
because 4 experts, that are partially indicating the same order as our approach
(FuncE > FuncD > FuncA > FuncC), choose FuncB as the least trustworthy
function, while it has a higher score than FuncA according to our ranking. For
example, Expert6’s values for FuncB and FuncA are 0.037 and 0.275, while
their scores in our approach using MDAMDG are 0.493 and 0.226, respectively.
Thus, despite having several experts with the same rank as ours, this significant
distance between our rank and several experts (4 experts) in the case of FuncB,
greatly influences the result of the aggregated ranking.

To further verify whether the proposed approach for trustworthiness benchmark-
ing is valid, we repeated the whole process with the files and functions containing
known vulnerabilities. The results are presented in Tables 4.17 and 4.18 for files
and functions, respectively.

Table 4.17: Individual & aggregated rankings of vulnerable files.

— 94 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

Table 4.18: Individual & aggregated rankings of vulnerable functions.

After analyzing the results, we observed that the files ranking obtained by our
trustworthiness approach, FileI > FileG > FileJ > FileF > FileH , matches
the aggregated ranking of the experts, which also maps to the individual ranking
of the majority of the experts (5 out of 9). The same happens for the functions.
Our ranking is FuncG > FuncJ > FuncF > FuncH > FuncI , which corresponds
to the aggregated ranking and to the individual ranking of the majority of the
experts (8 out of 9).

4.4.3 Approach Generalization Discussion
To study the generalization properties of the proposed approach, we repeated
the trustworthiness benchmarking process using different software metrics. Since
the metrics used for building the trustworthiness model were selected considering
the Mozilla Firefox dataset, we need to verify whether the ranking results are
biased. In practice, we repeated the whole ranking process for the same files and
functions but using another set of software metrics, considered as the best set
for distinguishing vulnerable code units from non-vulnerable ones in a dataset
containing the combination of all the five projects (Mozilla Firefox, Linux Kernel,
Apache, Xen and Glibc).

There are common sofware metrics in the two sets of metrics (set of metrics se-
lected for Mozilla Firefox and set of metrics selected for all projects combined),
for both files and functions. For files, the new set of software metrics includes a
total of 16 metrics of which 6 are new (AltAvgLineCode, AltCountLineComment,
AvgCyclomatic, AvgFanIn, CountLineBlank and SumEssential). For functions,
there are also a total of 16 metrics of which 7 are new (AltCountLineCode,
CountInput, CountLineCodeDecl, CountPath, CountStmt, Cyclomatic and Ra-
tioCommentToCode). Refer to Section 3.2.3 for more details on this subset of
metrics.

As shown in tables 4.19, 4.20, 4.21, and 4.22, the same ranking, with slightly
different trustworthiness scores, is achieved respectively for files and functions
without and with vulnerabilities.

— 95 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

Table 4.19: Rank of files without vulnerabilities.

Table 4.20: Rank of files with vulnerabilities.

Table 4.21: Rank of functions without vulnerabilities

Table 4.22: Rank of functions with vulnerabilities.

As we can observe, the trustworthiness model-based ranking obtained using the
set of software metrics selected for Mozilla for files without vulnerabilities is
FileC > FileA > FileE > FileD > FileB, the same as the ranking presented in
Table 4.19 (obtained using the selected metrics for different projects combined).
In addition, the values of the trustworthiness score are similar: 0, 916 > 0, 723
> 0, 482 > 0, 245 > 0, 051 (see table 4.8) using the selected metrics for Mozilla
project, and 0, 930 > 0, 735 > 0, 519 > 0, 216 > 0, 062 (see table 4.19) using
the selected metrics for all projects combined. These results suggest that the

— 96 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

approach can be generalized to other software projects, but further experiments
are needed to get more confidence in such observation (e.g., considering totally
different projects).

4.5 Summary
This chapter presented a framework that aim to move from a subjective to an
objective trustworthiness notion by building a model based on several software
attributes and their relative importance for determining how trustworthy a piece
of software is. The proposed model is based on the architectural quality attrib-
utes of software, represented by concrete software metrics of different types, in-
cluding complexity (e.g., SumCyclomatic), volume (e.g., CountLineCodeDecl),
coupling (e.g., CBO), and cohesion metrics (e.g., LCOM). The main object-
ive is focused on showing the possibility of using software metrics to
benchmark the trustworthiness of software systems.

For validation, we conducted a survey among several software security experts
and calculated individual and aggregated ranks of the same files and functions
based on their pairwise comparison of files and functions. Those ranks were com-
pared with the ranks obtained with our approach. The results show that the
rankings of the experts greatly match the one obtained by our trustworthiness
model-based approach, thus, the proposed trustworthiness benchmarking frame-
work is able to provide a sound ranking of the benchmarked files and functions.
This demonstrates the possibility of using software metrics for benchmarking
the trustworthiness of software systems. We finally showed that the proposed
framework can potentially be generalized to other software project.

Despite the results showed a sound ranking of the benchmarked files and func-
tions, threats to validity should be highlighted:

• Number of files and functions selected - the instantiation and val-
idation of the trustworthiness benchmark were performed using a total
of 10 files (5 non-vulnerable and 5 vulnerable) and 10 functions (5 non-
vulnerable and 5 vulnerable). Although we obtained the trustworthiness
score for all the files and functions of the dataset, we needed to reduce this
number in order to perform the validation. This is an acceptable number
of files and functions, since the experts had to perform the comparison
between all the possible pairs.

• Number of experts considered - our aim was to get as many responses
as possible from experts in the software security field, however this is a
difficult task. Nevertheless, we consider that the results obtained provide
a good basis for demonstrating the validity of the proposed approach.

Considering that trustworthiness is an integrating concept composed by several
but complementary attributes (e.g., performance, availability, security), this pro-
posal is focused only on security aspects (also to make the problem dealable).
However, the proposed framework is applicable, with minimum changes, to any
other trustworthiness attribute. It is also worth noting that security is nowadays

— 97 —

CHAPTER 4. TRUSTWORTHINESS BENCHMARKING USING
SOFTWARE METRICS

a fundamental attribute of trustworthiness in the majority of critical software
systems and applications (Mohammadi et al. [2013]).

As we were able to consider trustworthiness as a measurable notion and to
propose a trustworthiness benchmark capable of providing a sound
scoring of code units, in the next chapter we propose solutions to categorize
and prioritize such units of codes considering their trustworthiness levels.

— 98 —

Chapter 5
Security Categorization of Code
Units

Security is clearly a crucial issue to consider during the design and im-
plementation of any software system. A lot of efforts focused on the def-
inition of best practices, standards, and regulations to help developers

in building high quality and secure software have been proposed. However, it
is still very difficult for developers, if not impossible, to build software without
vulnerabilities. Vulnerabilities, if not uncovered and mitigated during software
development, can incur huge cost in terms of time, money and efforts after
implementation. Thus, it becomes crucial the avoidance and elimination of vul-
nerabilities in the early phases of software development process.

To improve the current situation, we need to identify, investigate, and use the
early evidences of security issues in the code, in a way that supports developers
in the detection of potential issues during the software development process
(i.e., design and implementation) (Evans and Larochelle [2002]). To do so, in
this chapter we propose a framework for code categorization based on
security evidences. The idea is to define a mechanism that, based on the early
evidences of security issues in the code, supports developers in the identification
of potential untrustworthy (insecure) code units starting from the early phases
of the coding process.

The mechanism is composed by a set of characterization models and a cat-
egorization mechanism, and can be applied in different application scen-
arios considering different security concerns. It enables a continuously mon-
itoring of performance based on the improvement of the security evidences,
as the categorization mechanism can be updated using new data/evidences of
security gathered over time. The characterization models are built based on Ma-
chine Learning prediction models with the aim of classifying code units. Then,
the categorization mechanism allows the prioritization of code units for each
model taking into account a specific application scenario. Any kind of predic-

— 99 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

tion model, evidences of security issues (e.g. software metrics or code smells)
and code units (e.g., files, functions) can be used.

To instantiate the framework, we propose two different characterization models:
i) a Consensus-Based Decision-Making (CBDM) approach capable of
grouping code units in several categories based on the classification result of
several prediction models; and ii) Trustworthiness Models (TMs) to cat-
egorize and prioritize code, not directly based the results of the prediction
models, but on the trustworthiness scores computed by several trustworthi-
ness models. Both cases are built on top of Machine Learning algorithms and
software metrics are used as security evidences.

The outline of this chapter is as follows. First, the framework for code units
categorization is described. Then, in Section 5.2, the two instantiations of the
framework are presented. Section 5.3 presents the experimental evaluation for
the CBDM approach, while the results for the approach based on Trustworthi-
ness Models are in Section 5.4. The chapter closes with a summary of the main
insights obtained from the results in Section 5.5.

5.1 Code Units Categorization Framework
Our framework to categorize and prioritize code units using security evidence
is intended to help developers to efficiently and effectively review their code,
being capable of grouping code units into several categories, representing their
trustworthiness level from a security perspective. It does not aim at finding
vulnerable code, but instead at raising the attention of developers to the code
units that seem to be more problematic.

The process is divided into different stages: i) extraction of security evidences, ii)
definition of characterization models, iii) definition of the categorization mech-
anism, and iv) assessment of performance results. The entire process is presented
in Figure 5.1 and described below. Note that, a continuous performance mon-
itoring of the mechanism based on the improvement of the security evidences
can also be included. In practice, the prediction model can be continuously im-
proved by new data collected from the source code under development, but we
leave this for future work.

5.1.1 Extract Security Evidences
Software metrics are widely used indicators of software quality thus, they have
been used as security evidence in many studies. However, other evidences rather
than software metrics, like code smells (Cairo et al. [2018]), lack of secur-
ity best practices in the code, alerts given by static code analysers,
among others, can be used to improve the detection/prediction models to pro-
duce less false alarms and try to find the location and type of vulnerabilities to
provide some suggestions to developers for removing the detected or predicted
vulnerabilities and improving the code.

— 100 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

Figure 5.1: Code units categorization methodology.

The goal of this first phase is to collect all the security evidence related to the
code units that are being used for building the models. Thus, all data such
as software metrics, code smells, security alerts among others, obtained using
different tools and techniques, can be used.

5.1.2 Characterization Models
In this phase, the code unit characterization model should be defined. Our
goal is for the framework to be flexible in a way that any kind and number
of vulnerability prediction models/tools/techniques can be used. Figure 5.2
describes a generic characterization model design process. As shown, the idea is
to use different prediction models or any other technique to evaluate and classify
code units.

Figure 5.2: Models’ characterization.

The input data for this phase are the security evidence for each code unit.
The supporting dataset should be divided into a training set and a test set. The
trainning set will be used to build the prediction models and the test set serves
to evaluate the prediction results. The output of this process are the classified
code units and the relative importance of each security evidence used
by the prediction model to classify each unit of code.

The idea is not to define a generic model, but instead to integrate different

— 101 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

models depending on the information to be used during the instantiation of the
framework. As mentioned previously, different vulnerability prediction mod-
els/tools/techniques can be used as well as different security evidences (e.g.
software metrics, code smells). Furthermore, it is possible to assign weights to
the prediction models used; however, this is a complex problem, as each predic-
tion model may perform differently in different contexts, and for that reason, in
the present work, we consider all the predictors to have the same contribution
for the decision.

5.1.3 Categorization Mechanism
Figure 5.3 describes the process proposed for defining the categorization mech-
anism. Based on the characterization results and considering different ap-
plication scenarios, the code units can be grouped into k categories. For
example, for each characterization model, the code units can be categorized
from Trustworthy to Absolutely Untrustworthy. To assess and validate the cat-
egorization results, a categorization assessment should be performed which
may consist, for example, on a detailed analysis of the reported vulnerabilities
by category.

Figure 5.3: Categorization Mechanism.

Our proposal is to categorize the code units into different categories depending
on the criticality of the system and the available resources (application scenarios
presented in Section 3.3.2). Thus, different thresholds should be defined for
each application scenario. For example, if a Highly-Critical software system
is under evaluation and there are a lot of resources to detect vulnerabilities,
the number of code units to be reviewed can be higher. On the other hand,
if fewer resources are available, a lower number of code units will be reviewed.
This means that increasing the number of categories results in smaller groups
with fewer code units. Therefore, when there are fewer resources to review code
and eliminate vulnerabilities, it is useful to perform the categorization with a

— 102 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

higher number of clusters (e.g., to better support the decision on which units to
consider for being reviewed).

5.1.4 Performance Assessment
To assess the performance of the code classification mechanism (i.e., an instan-
tiation of the proposed framework), we propose two sets of experiments: i) to
analyze the reported vulnerabilities per category, and ii) to perform an expert-
based ranking of code units.

For the first case, the idea is to collected the reported security vulner-
abilities of the project under study from different sources, such as CVEDe-
tails, and then verify the number of code units with reported vulnerabilities in
each category (from more Trustworthy to Absolutely Untrustworthy). In other
words:

1. Collect the reported security vulnerabilities of the project;

2. Identify the code units that have at least one reported vulnerability;

3. Verify to which category each of these vulnerable code units belong to
(i.e., count the number of unique code units with reported vulnerabilities
for each category).

For the second set of experiments, we propose the use of expert-based rank-
ing. The idea it to randomly select several code units (vulnerable and non-
vulnerable) and ask experts to rank them by means of pairwise comparisons
(thus the number of code units to be analyzed should be feasible). In practice,
the experts should be provided with the source code of each unit under analysis
and corresponding value of the security evidences collected (e.g., value of soft-
ware metrics for each code unit), and asked to perform a pairwise comparison
(i.e., assign a value indicating how much trustworthy a code unit is in com-
parison to another). In order to perform the aggregated rankings of code units
based on perceived trustworthiness of the experts, the Aggregation of Individual
Judgments (AIJ) method (Dong et al. [2010b]) can be used. The final step is to
compare the expert-based ranking with the categorization results provided by
our mechanism.

Examples of both experiments to assess the performance of the code classification
mechanism will be seen in detail during the framework instantiation results (see
sections 5.3 and 5.4).

5.2 Framework Instantiations
Here we present two different instantiations of the framework: first, the
Consensus-Based Decision-Making approach and then the Trustworthiness Mod-
els to categorize code.

— 103 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

5.2.1 Consensus-Based Decision-Making (CBDM) Approach
The first instance of the proposed framework addresses the hypothesis of devel-
oping a Consensus-Based Decision-Making (CBDM) approach on top of several
Machine Learning-based prediction models, trained using software metrics data,
to categorize code units with respect to their security. The reasoning is that
such CBDM solution may be more beneficial for software development teams
than the direct output of the vulnerability detection classification models, as
discussed in Chapter 3.

In our proposal, depicted in Figure 5.4, the judgment (or decision on whether a
code unit is more or less trustworthy) is made by aggregating the classification
results from several prediction models that are built using data regarding dif-
ferent security evidences extracted from the code and vulnerabilities previously
reported. In concrete, in our instantiation, the prediction models are built by
running five different machine learning algorithms (selected in Section 3.3.1) on
top of software metrics, to classify code units into two classes: vulnerable or
non-vulnerable. The classification results of the five models are then aggregated
into a single judgment (or decision), which allows categorizing the assessed code
units into five categories that represent different levels of trustworthiness. As
mentioned before, different number of categories can be used depending on the
criticality of the system and the available resources.

Figure 5.4: Consensus-Based Code Trustworthiness Assessment.

Assigning weights to the prediction models is a complex problem, as each pre-
diction model may perform differently in different contexts. For this reason,
we have decided to aggregate the outputs of the prediction models without as-
signing any weight to each individual model. Thus, we define a model where
the combinations of the prediction models are sorted based on the True Positive
rate of the classifications. The idea is to compute the number of vulnerable code
units that are correctly classified by each Machine Learning model and by all
the combinations of the models (we combine the ML results in order to verify if
it is possible to increase the number of vulnerable code units classified as vul-
nerable). The sorted combinations of the prediction models indicate which one
is able to correctly classify a greater number of vulnerable code units.

— 104 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

The detailed Consensus-Based Decision-Making (CBDM) approach encompasses
the following steps:

1. Extract security evidences: software metrics are used as security evid-
ences (28 function level metrics and 51 file level metrics were used, as
discussed in Section 3.1);

2. Build the Prediction Models: the classification models are built over
the dataset of different projects at file and function levels by considering
several combinations of software metrics and different application scen-
arios. As discussed previously in Section 3.3, 75% of the dataset is used
to train the Machine Learning models, the prediction models are trained
using balanced training sets and an internal and external cross-validation
(CV) is performed in all cases. We used five different machine learning
algorithms, Random Forest (RF), Decision Tree (DT), Linear and Ra-
dial Support Vector Machine, and Extreme Gradient Boosted (Xboost)
algorithms.

3. Evaluation of the Individual Prediction Models: In all experiments,
25% of the dataset (disjoint from the training sets) is used as a test set in
order to compute their classification results.

4. Combination of the Prediction Results: Here, we sort all the combin-
ations of the prediction models (2n combinations for n prediction models)
based on the True Positive rate of their combined classification. We give
the highest rank to the combination with all prediction models, as the
files/functions that are pointed as vulnerable by this combination are ab-
solutely untrustworthy and should be in the highest priority for review by
developers. On the other hand, the files/functions that are not classified
as potentially vulnerable by any prediction model, are in the lowest rank,
which means that they can be considered as trustworthy. Finally, we rank
the other combinations based on the number of true positive decisions
made (or potentially vulnerable code detected) by the prediction models
included in each combination. The combinations with more true positive
decisions/classifications have an higher importance in the decision than
others. Thus, the code classified by such combinations as vulnerable is
less trustworthy, requiring a higher priority for review.

5. Categorization mechanism: Based on the results of the prediction
models and considering different application scenarios, the code units are
grouped into several categories from trustworthy to absolutely untrust-
worthy.

Figure 5.5 presents an example of the categorization, considering five different
categories:

1. Absolutely Untrustworthy (where the files/functions were classified as
vulnerable by all machine learning algorithms);

2. Highly Untrustworthy;

3. Untrustworthy;

— 105 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

4. Low Trustworthy;

5. Trustworthy (where the files/functions were classified as non-vulnerable
by all classifiers).

Figure 5.5: Instantiating the Approach with an Example for Different Scenarios.

As we can observe, the number of combinations of prediction models (and con-
sequently the number of code units) included into the Absolutely Untrust-
worthy and the Trustworthy categories will be always the same considering
different application scenarios. This is related to the fact that these categories
include the code units that were classified as vulnerable by all ML algorithms
and the code units that were classified as non-vulnerable by all classifiers. The
number of combinations of prediction models (and consequently the number of
code units) included in the remaining categories (Highly Untrustwothiness,
Untrustworthy and Low Trusworthy) will depend on the the thresholds ap-
plied. Thus, considering different application scenarios (based on the critically of
the system under study and the available resources presented in Section 3.3.2),
we can adjust the boundaries of these categories using the True Positive rate.
For example, if there are a lot of resources available and we want to review a
larger amount of code units, we should define a higher threshold (e.g., TP rate
< 90%). This way, a greater number of ML combinations will be included in
this category (e.g., Highly Untrustworthy). On the other hand, if a lower TP
rate is defined (e.g., TP rate < 80%), less ML combinations will be included
and consequently a smaller number of code units to be reviewed. A more de-
tailed example of this adjustment is shown later during the presentation of the
instantiation results (see Section 5.3).

5.2.2 Trustworthiness Models (TMs) to Categorize Code
The main idea behind the second instantiation is to use the trustworthiness score
of the code units (e.g., files/classes or functions/methods) to categorize/prior-
itize them. To do so, we build on top of the benchmarking approach proposed
in Chapter 4 to compute the trustworthiness score of the code units under eval-
uation. Then, a clustering technique is used to put the code units into several

— 106 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

categories. As before, a category refers to the extent to which a piece of code
is prone to be vulnerable (or untrustworthy), which varies from Absolutely Un-
trustworthy to Highly Trustworthy (the number of categories applied depends on
how much we need to distinguish the code units, as will be discussed later).

As shown in Figure 5.6, each code unit (e.g., function/method, file/class) is
assessed by N Trustworthiness Models (TM1 to TMN), and is assigned with
N scores (each trustworthiness model gives one score to each code unit; S1 to
SN). After calculating all scores, the units are classified into different categories
representing their trustworthiness (or security) level. As mentioned in Chapter
4, the trustworthiness models can be built based on diverse approaches, tech-
niques or tools (in this study, we use several machine learning algorithms to
build our TMs) using different evidences of quality or security issues in code (in
this work, software metrics are used as evidences to train the machine learning
algorithms).

Calculating
Trustworthiness

Scores

Code Unit (e.g.,
function/method,

file/class)
TM1

TM2

TMN

...

S1
S2

SN

...

Identifying
the code Category

Trustworthiness
Category K

Trustworthiness
Category 1

Trustworthiness
Category 2

...

Code unit with
several scores

Figure 5.6: Proposed approach for code units categorization.

A more detailed representation of the aforementioned approach is in Figure 5.7,
considering five TMs, each one based on a different ML algorithm. The very first
step of the process consists in preparing a dataset with detailed information
about the source code of representative software projects with software metrics
and known vulnerabilities (we used the dataset described in Section 3.1).

The second step is to assign each code unit with several trustworthiness
scores. This requires building the trustworthiness models (TMs) following the
Trustworthiness Assessment approach presented in Chapter 4, which includes
normalizing the value of software metrics to a common scale and computing
the relative importance of the software metrics. To normalize the value of the
software metrics to a common scale, we performed a statistical analysis on the
input data and then used the Feature Scaling process described in Section
4.1.1.

— 107 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

Figure 5.7: Characterization model for approach instantiation.

To compute the weights (i.e. relative importance) of the metrics to feed each TM,
we used the importance given to the software metrics by the different Machine
Learning algorithms. In practice, a prediction model is trained using a ML
algorithm to identify vulnerable code using the software metrics information.
The weight given to each software metric by a prediction model indicates its
relative importance when used to distinguish vulnerable from non-vulnerable
code. In other words, each prediction model reveals how important each software
metric is in predicting vulnerable code, and this is used to calculate the software
metrics relative weights for each TM. We used the same five machine learning
algorithms mentioned before: i) Decision Tree, ii) Random Forest, iii) Linear
Support Vector Machine, iv) Radial Support Vector Machine, and v) Extreme
Gradient Boosted.

To configure and run the above algorithms, we used the R Project (Team [2017])
and the R Caret package (Kuhn et al. [2020]). The caret package provides
a set of functions that streamline the process of creating predictive models.
The package contains different functionalities, such as tools for data splitting
pre-processing, feature selection and model tuning using resampling variable
importance estimation. The features (software metrics in this study) importance
was obtained using the varImp() function for each classifier.

The five trustworthiness models (TMs) are built based on the Simple Addit-
ive Weighting (SAW) multi-criteria decision-making method, as discussed in
Section 4.1.3).

The last step of the approach (Figure 5.8) is focused on clustering the code
units to categorize them into different groups representing different trustwor-
thiness levels. Since there is no known set of rules, patterns, or trained models
to transform the vector of scores into a trustworthiness category, we applied a

— 108 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

Figure 5.8: Categorization mechanism for approach instantiation.

clustering technique on top of dataset of trustworthiness scores that resulted
from the previous step.

Clustering is the task of dividing the data into a certain number of clusters in
such a manner that the data belonging to a cluster have similar characteristics
(Rai and Singh [2010]). In our case, the clusters are partitioned based on the
characteristics of the code units in terms of the trustworthiness score.

There are several techniques to perform clustering, which can be categorized
into different types such as, Partitioning techniques, Hierarchical techniques, and
Density-based techniques (Saket and Pandya [2016]). The clustering algorithms,
in general, follow an iterative process to reassign the data between clusters based
on the distance between the clusters (Barioni et al. [2014]). In this instantiation,
we use Partitioning Clustering, which is one of the most commonly used
techniques in the literature.

There are also different types of partitioning clustering methods. The most
popular one is the K-means clustering (MacQueen [1967]), in which each cluster
is represented by the center or means of the data belonging to the cluster.
However, the K-means method is sensitive to outliers. An alternative to K-means
clustering is the K-medoids clustering or Partitioning Around Medoids (PAM)
(Kaufman and Rousseeuw [1990]), which is less sensitive to outliers compared to
K-means. Clustering Large Applications (CLARA) (Gupta and Panda [2019])
is an extension to the PAM algorithm where the computation time has been
reduced to make it perform better for large datasets. Since we have large dataset,
we decided to use CLARA algorithm.

One important input parameter of clustering algorithms is the number of
clusters. In this work, we propose clustering the code units into five clusters
corresponding to five different trustworthiness levels (from Absolutely Un-
trustworthy to Highly Trustworthy). However, as will be show later, we
also considered other values for the number of clusters (3 and 7 clusters) for the
sake of comparison. Decreasing and increasing the number of clusters allow us
to get larger or smaller groups of code units, respectivelly. This can be applied
considering different application scenarios with different resources to review the
code.

— 109 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

5.3 CBDM Assessment and Results
In this section, we present and analyze the results obtained for the consensus-
based decision-making instantiation of the framework for code categorization. As
mentioned, we used five machine learning algorithms on top of software metrics
(evidences of potential security issues in the code) to classify the code units into
two classes, vulnerable or non-vulnerable. Then, we aggregate the classification
results and distribute the code units into five categories representing distinct
levels of trustworthiness.

We run the experiments for files and functions of the Linux Kernel and Mozilla
Firefox projects considering the four application scenarios discussed in Section
3.3.2. There are two main reasons to choose these projects: i) both are long
duration projects with a large codebase, and ii) both have a considerably high
number of reported vulnerabilities (compared to the other three projects in the
dataset).

A summary of the projects regarding the number of code units (files and func-
tions) is presented in Table 5.1. The total number of code units used are in the
gray columns. The data used for training the predicting models corresponds to
75% of the entire dataset and 25% of it, disjoint from the training sets, was used
for testing (presented in green columns). For example, the dataset includes a
total of 383622 files for the Linux Kernel project, of which 8712 are vulnerable
(i.e., as at least one reported vulnerability); a total of 95905 files were used
for testing from which 2178 are labeled as vulnerable and 93727 are labeled as
non-vulnerable.

Table 5.1: Summary of the dataset used.

In the next sections, we present the results obtained during the instantiation of
the CBDM approach. We start with the the analysis of the best combinations
of the prediction models. Then, the categorization based on the application
scenarios is presented. Finally, the categorization results are assessed.

— 110 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

5.3.1 Best Combinations of Prediction Models
Table 5.2 shows the best combinations of the machine learning algorithms for
the case of files of the Linux Kernel project, ordered by the number of
correctly classified vulnerable files (i.e., TP rate). In the first five columns, we
can see the ML algorithms included in each combination. Then, we have the
total number of files and the True Positive Rate per combination. Finally (in the
last column), the accumulative value of TPR (sum of the TP rate of the ordered
combinations) is presented. For example, we can observe that there are 1047
files (labeled as vulnerable) that are considered vulnerable by all ML algorithms
which correspond to 48.07% of TP rate. The Undetected group corresponds
to the FN (False Negative) files, where we see that a total of 76 files (labeled as
vulnerable) are classified as non-vulnerable by all ML algorithms.

Table 5.2: Best Combinations of Prediction Models for Files of Linux.

Table 5.3 shows the best combinations of the machine learning algorithms for
the functions of Linux Kernel project. Here, a total of 346 functions are
considered vulnerable by all machine learning algorithms, which corresponds to
a TP rate of 45.83%. On the other hand, 102 functions are considered non-
vulnerable by all ML algorithms (Undetected group). We can see that the best
combinations (with higher TP rate) change when analyzing files and functions
within the same project. However, there are some combinations that remain
the best even when different code levels are analyzed, for example RF- Xboost-
SVM_R, RF-Xboost-SVM_R-SVM_L, and RF-Xboost-SVM_R-DT. It is also
verified that the best combinations include mostly the prediction models that
individually have better performances (RF and Xboost), which was the expec-
ted (refer to the performance of the Machine Learning algorithms presented in
Section 3.3.4.1).

The results of the best combinations for the Mozilla Firefox project are
presented in tables 5.4 and 5.5 for files and functions, respectively. A total
of 358 files are considered vulnerable by all machine learning algorithms, which
corresponds to a TP rate of 42.42% and 72 files are considered non-vulnerable

— 111 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

Table 5.3: Best Combinations of Prediction Models for Functions of Linux.

by all machine learning algorithms (Undetected group). For functions, 366 are
considered vulnerable by all ML algorithms (TP rate of 52.7%) and 67 functions
are considered non-vulnerable by all ML algorithms. As for Linux Kernel, the
best combinations (with higher TP rates) change when comparing the results of
files and functions.

Table 5.4: Best Combinations of Prediction Models for Files of Mozilla.

When comparing the results between the two projects, it is interesting to verify
that the best combinations in case of files, presented in tables 5.2 and 5.4, are
very similar. In fact, nine out of the ten best combinations are the same on both
projects, but the same is not true for functions. This probably happens due to
the imbalanced nature of the dataset (number of vulnerable and non-vulnerable
records presented in Table 5.1). In fact the function-level data is even more
imbalanced than the file-level, thus affecting the performance of the machine
learning algorithms (as mentioned before in Section 3.3.4.1). Also, it is import-
ant to mention that each prediction model or combination of prediction models

— 112 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

Table 5.5: Best Combinations of Prediction Models for Functions of Mozilla.

perform differently in different contexts and using the two code levels (files and
functions) as input data. Thus, the best combinations must be identified for
each project and for code level.

5.3.2 Categorization based on the Application Scenarios
As explained before, the files that are classified as vulnerable by all 5 classifiers
go to the absolutely untrustworthy category (regardless of being TPs or FPs,
considering the labels in the original dataset). In contrast, files classified as
non-vulnerable (TNs and FNs) by all 5 classifiers go to the trustworthy cat-
egory. Regarding the intermediate categories we need to define the thresholds
considering the four application scenarios. These thresholds are based on the ac-
cumulative true positive rate in each scenario. Table 5.6 presents an example of
the files categorization for the Linux Kernel project considering Highly-Critical,
Critical, Low-Critical and Non-Critical scenarios.

For the Highly-Critical scenario, the intermediate categories relate to a TP rate
higher than 95%, between 90% and 95% and less that 90% (Table 5.6 (a)). In
this example, the limit of the low trustworthy category is set on the combination
at which the cumulative true positive rate exceeds 95%. This means that this
category includes all files minus the trustworthy files and minus the files that are
detected by the combinations that could detect 95% or less of the vulnerable files
during training. Similarly, the untrustworthy category includes all files minus
the trustworthy files, the low trustworthy files, and the files that are detected as
vulnerable by the combinations that could detect 90% or less of the vulnerable
files. Finally, the highly untrustworthy category includes all the files minus
the ones included in the previous categories and the absolutely untrustworthy
ones.

Similar definitions are presented for the other scenarios by changing the value
of thresholds for each category (Table 5.6 (b), (c), and (d)). By analyzing the
number of files in each category in each scenario in Table 5.6, we can see that

— 113 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

Table 5.6: Linux Kernel file categorization based on the scenarios.

Table 5.7: Linux Kernel function categorization based on the scenarios.

the distribution of files changes from one scenario to another. For example, for
the Highly-Critical scenario there are 33, 84 and 938 files categorized as low
trustworthy, untrustworthy and highly untrustworthy, respectively. On the other
hand, for the Non-Critical scenario there are 359, 155 and 541 files categorized
as low trustworthy, untrustworthy and highly untrustworthy, respectively. Note
that, when dealing with highly critical systems, we expect to have more files
categorized as highly untrustworthy. In contrast, when dealing with non-critical
systems, we expect to have fewer files in this category. Thus, the results show
that in fact there are more files categorized as highly untrustworthy in Highly-

— 114 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

Critical scenario than in Non-Critical scenario.

Table 5.8: Mozilla Firefox file categorization based on the scenarios.

Similar observations can be made by analyzing the results of functions for Linux
Kernel presented in Table 5.7 and for files and functions of the Mozilla Fire-
fox project presented in tables 5.8 and 5.9, respectively. The percentage of
files/functions categorized as Highly Untrustworthiness and Low Trustworthy
increase when we compare Non-Critical to Highly-Critical scenarios. As devel-
opment teams are expected to spend more resources to detect vulnerabilities in
Critical scenarios, then more code units can be selected to be reviewed.

Table 5.9: Mozilla Firefox function categorization based on the scenarios.

— 115 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

5.3.3 Assessment of the Categorization Results
To evaluate our approach, we collected (from CVEDetails) the vulnerabilities
reported on the Linux Kernel after 2017 (remember that the dataset includes
only vulnerabilities reported until 2016). Based on these reports, we were able to
identify that new vulnerabilities affected a total of 801 files and 650 functions. It
is important to mention that, since these are new vulnerabilities, they were not
included in the training set used to train the machine learning algorithms. To
perform the assessment of the categorization results, we verified in which cluster
those 801 files and 650 functions were included(i.e., for each cluster, we counted
the number of unique files and functions with new reported vulnerabilities).

Table 5.10 presents the assessment results considering the categorization for the
Highly-Critical scenario of Linux Kernel files (see also Table 5.6 (a)).

In practice, the table presents the categorization of the files that had vulnerab-
ilities before 2017 (i.e. labeled as vulnerable in the dataset) and the number
of those files that again had at least one vulnerability reported in 2017 or after.
For example, among the 33 files that were categorized in the Low Trustworthy
category, 4 had at least one reported vulnerability in 2017 or afterwards, and
from the 84 categorized as Untrustworthy, 7 had at least one reported vulnerab-
ility. Table 5.10 (b) shows the same type of information but for files that were
never reported has vulnerable before 2017 (i.e. labeled as non-vulnerable in the
dataset).

Table 5.10: Reported Vulnerabilities in files of Linux Kernel (Since 2017).

As we can see, the percentage of vulnerable files increases from the trustworthy
category to the absolutely untrustworthy category. This shows that, in fact, the
files categorized as absolutely untrustworthy are more prone to be problematic.
Considering the files labeled as vulnerable in the original dataset, we verified
that, from the ones classified in the absolutely untrustworthy category, 36,5%
were reported as vulnerable in 2017 or after. On the other hand, only 5,3%
of the files in the trustworthy category were reported as vulnerable. The same
pattern can be observed for the files labeled as non-vulnerable in the original
dataset.

An interesting observation is that, 2573 out of the 93727 files (2.7%) that are
labeled as non-vulnerable in our dataset had exploitable vulnerabilities. The

— 116 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

ratio is much higher for the files in the absolutely untrustworthy category, for
which 16.6% of non-vulnerable files were later discovered to be exploitable. We
also observe that 550 of 2178 files labeled as vulnerable in the dataset are re-
ported as vulnerable after 2017, among which 382 and 153 are categorized as
absolutely untrustworthy and highly untrustworthy, respectively.

We repeated this evaluation process for the functions of the Linux Kernel pro-
ject. The results are presented in Table 5.11. As we can verify, although we
observed a slight increase in the the percentage of vulnerable functions from the
trustworthy category to the absolutely untrustworthy category, this increase is
not so significant comparing with the files results. This probably happens due
to the fact that the number of collected vulnerabilities (corresponding to a total
of 650 functions) is very low considering the total number of functions (477342),
which limits this analysis.

Table 5.11: Reported Vulnerabilities in functions of Linux Kernel (Since 2017).

For the Mozilla Firefox project we had to follow a different approach. Al-
though we also collected the list of security vulnerabilities (from CVEDetails)
reported after 2017, the corresponding vulnerable files and functions were not
identified in most cases (i.e., we could not get the information needed to identify
the files and functions that were affected by these vulnerabilities). For this
reason, we were not able to use this information, and instead conducted an
expert-based ranking based on the perceived trustworthiness.

To facilitate the work, we used the results of the expert-based ranking presented
in Section 4.4, were the Aggregation of Individual Judgments (AIJ) method was
used to obtain an aggregated score for 10 files and 10 functions. Tables 5.12 and
5.13 presents the categorization results (Category column) and the expert-based
ranking (Agregated Rank of Experts column) for the 10 files and 10 functions,
respectively. Both of tables are ordered by the aggregated rank of the experts,
from the more trustworthy to the less trustworthy file/function.

As we can observe, most of the files that were considered more trustworthy by
the experts were also categorized as trustworthy by our approach and the files
considered less trustworthy by the experts were categorized as Low Trustworthy
or Highly untrustworthy. An interesting case is file 45301201 that was considered
Untrustworthy by the experts and categorized as Highly untrustworthy by our
approach. This is a file that we know has a vulnerability (column Affected in the

— 117 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

table). On the other hand, the two files that were considered more untrustworthy
by the experts, were categorized as Low Trustworthy, and no vulnerabilities are
known so far for those two files.

The ranking results for the 10 functions of the Mozilla Firefox, presented in
Table 5.13, show that the our categorization mostly matches the ranking by
the experts, again suggesting that our approach is able to achieve a meaningful
categorization result.

Table 5.12: Expert-based ranking of files of Mozilla Firefox.

Table 5.13: Expert-based ranking of functions of Mozilla Firefox.

5.4 TMs Assessment and Results
For the second instantiation, we used again the Linux Kernel (kernel.org) and
Mozilla Firefox (mozilla.org) projects. Table 5.14 presents the summary of the
data for the two projects. The Linux Kernel dataset includes 95905 files, of
which 2178 have at least one known vulnerability, and 477342 functions, of
which 755 are vulnerable. The Mozilla Firefox dataset consists of 46444 files
and 354480 functions, of which 844 and 698 are vulnerable, respectively. The
number of files and functions of Mozilla Firefox project is slightly different from
the dataset presented in Section 5.3. This is due to the fact that, in order to
asses the categorization results of Mozilla Firefox project we resort to the expert-
based ranking performed in Section 4.4. Thus, the 10 files and 10 functions had

— 118 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

to be included in the test set. Since the test set used corresponds to 25% of the
dataset and is randomly chosen, it was necessary to include some of these files
manually.

Table 5.14: Summary of the dataset used.

As before, the dataset includes a total of 51 file-level metrics and 28 function-
level metrics (previously presented). The complete list of software metrics and
a short description of each is presented in tables 3.1 and 3.2 in Chapter 3. The
whole dataset, details of all the analysis performed, and the obtained results are
available online1.

In the following sections, we discuss the building of the Trustworthiness Mod-
els. Then, we present and analyse the clustering results. Finally, we present a
categorization experiment considering different number of clusters.

5.4.1 Building the Trustworthiness Models
To build the trustworthiness models, we started by computing the relative
importance (weight) of each software metric considering the five machine
learning algorithms at hands (Random Forest, Decision Tree, Extreme Gradient
Boosted, and Linear and Radial Support Vector Machine), for both file and
function level metrics of the Linux Kernel and Mozilla Firefox projects. The
relative importance was then normalized into the [0,1] range.

The results are presented in tables 5.15 and 5.16 for file-level and function-level,
respectively. All 51 file-level metrics and 28 function-level metrics are listed.
The results show that the importance of metrics might be different in different
prediction models. The metrics calculated using RF, DT, Xboost, and SVM are
different from each other; however, they are the same in the case of Linear and
Radial SVM (thus, they are presented in a single column (SVM)). As we can
see, the relative importance of the software metrics also varies from one level
to another. These observations strongly support the idea behind our proposed
approach: we need an integration of several prediction models to make a more
precise decision about a piece of code.

It is worth noting that there are tools like LIME (Ribeiro et al. [2016]) that
can help to analyze and interpret the results of the prediction models in a more
precise way. However, in this work, the prediction models are used as an example
for building trustworthiness scoring models (to obtain the weight of software

1The dataset used in this study, the obtained results and detailed analysis of the results are
available at https://github.com/nadiapsm/Access-2022

— 119 —

https://github.com/nadiapsm/Access-2022

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

metrics). For this reason, a detailed analysis of the results of the prediction
models is out of the scope.

In the next step, the value of the software metrics were normalized into
a common range (between 0 and 1). Table 5.17 presents examples of the real
and normalized values for 4 (out of 51) file-level metrics of five files of which
three have known vulnerabilities (labeled with v), and two do not have known
vulnerabilities (labeled with nv), as we can see in Label column.

When the normalized value is 0, that means that the original value is higher
than the upper fence and is considered an outlier (e.g., the value of HK for files
2, 4, and 5). On the other hand, when the normalized value is 1, it means that
the original value is always 0 (e.g., the value of CountLineInactive for file 2).
For the remaining cases, the Equation 4.2 presented in Chapter 4 is used.

By using the trustworthiness models, we obtained four scores for each file
and function of each project (the weights of Linear and Radial SVM are equal).
An example of the results using files of the Linux Kernel project is presented in
Table 5.18. As a higher score represents a more trustworthy code unit, the ex-
amples are ordered from more trustworthy to less trustworthy in the table.

Interestingly, the order of the files is the same considering the different scores.
Only the third file (File ID: 15866802) in the case of RF has a slightly higher
score than the second file. However, the scores given to each file have different
values. Based on this simple example, we might be able to rank the files based
on their combined scores (for instance, by calculating the average value), but
that is not easy/possible when the number of files increases and the files do not
maintain the same order for all scores.

5.4.2 Clustering Results and Discussion
The output of the trustworthiness models (i.e., scores) is used as input for the
clustering process. For each file and function of both projects, clustering was
performed five times: four times based on the individual scores of each model
(scores calculated by TMs built using linear SVM and Radial SVM are the
same), and one time based on the combination of all scores. The number of
clusters in each run is set to 5. The results are presented and discussed in the
following subsections. We start by presenting the cluster results of Linux Kernel
and Mozilla Firefox projects and then discuss the assessment of the results.

5.4.2.1 Clusters of Linux Kernel and Mozilla Firefox projects

Table 5.19 presents the results obtained for Linux Kernel files (a) and functions
(b). Therefore, Table 5.20 presents the results obtained for Mozilla Firefox files
(a) and functions (b).

The first four columns (i.e., Score RF, Score DT, Score Xboost, and Score SVM)
show the results of the clustering performed on each individual score and the
last column shows the result of the clustering performed on the combination of
all scores.

— 120 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

Table 5.15: File-level metrics Weight.

(a) Linux Kernel (b) Mozilla Firefox
Software Metrics RF DT Xboost SVM RF DT Xboost SVM
SumEssential 0,032 0,215 0,167 0,059 0,022 0,200 0,095 0,052
MaxEssential 0,030 0,219 0,120 0,058 0,022 0,000 0,000 0,045
SumCyclomaticStrict 0,023 0,181 0,065 0,054 0,020 0,000 0,000 0,051
CountStmtExe 0,021 0,168 0,029 0,053 0,018 0,000 0,000 0,049
SumCyclomatic 0,018 0,169 0,000 0,053 0,018 0,000 0,000 0,050
CountLineCodeExe 0,022 0,000 0,054 0,048 0,017 0,000 0,026 0,050
AltCountLineComment 0,025 0,000 0,051 0,044 0,021 0,200 0,058 0,050
CountLineCode 0,022 0,000 0,040 0,048 0,020 0,000 0,052 0,051
AltCountLineBlank 0,022 0,000 0,037 0,047 0,020 0,201 0,091 0,052
CountLineBlank 0,020 0,000 0,038 0,046 0,018 0,195 0,000 0,051
AvgEssential 0,024 0,027 0,000 0,049 0,015 0,000 0,000 0,000
CountLine 0,020 0,000 0,029 0,050 0,019 0,000 0,000 0,052
MaxCyclomaticModified 0,021 0,000 0,031 0,046 0,021 0,000 0,000 0,000
CountStmt 0,017 0,000 0,028 0,051 0,015 0,000 0,000 0,050
CountLinePreprocessor 0,022 0,000 0,061 0,000 0,017 0,000 0,044 0,048
MaxCyclomaticStrict 0,021 0,011 0,000 0,050 0,022 0,000 0,030 0,000
AltCountLineCode 0,022 0,000 0,000 0,050 0,018 0,000 0,029 0,052
SumCyclomaticModified 0,019 0,000 0,000 0,052 0,021 0,000 0,031 0,051
CountDeclFunction 0,026 0,000 0,000 0,044 0,020 0,000 0,030 0,047
CountLineInactive 0,024 0,000 0,045 0,000 0,027 0,000 0,079 0,000
CountSemicolon 0,019 0,000 0,000 0,050 0,014 0,000 0,031 0,050
CountLineComment 0,027 0,000 0,041 0,000 0,024 0,204 0,134 0,050
MaxCyclomatic 0,018 0,000 0,000 0,047 0,020 0,000 0,000 0,000
CountLineCodeDecl 0,026 0,000 0,040 0,000 0,016 0,000 0,026 0,051
RatioCommentToCode 0,026 0,000 0,033 0,000 0,028 0,000 0,047 0,000
CountStmtDecl 0,019 0,000 0,039 0,000 0,020 0,000 0,055 0,049
AvgLine 0,025 0,000 0,026 0,000 0,024 0,000 0,000 0,000
CountStmtEmpty 0,021 0,000 0,027 0,000 0,025 0,000 0,000 0,000
AvgCyclomaticStrict 0,016 0,010 0,000 0,000 0,015 0,000 0,000 0,000
AvgLineCode 0,024 0,000 0,000 0,000 0,023 0,000 0,028 0,000
MaxFanIn 0,023 0,000 0,000 0,000 0,019 0,000 0,000 0,000
AltAvgLineCode 0,023 0,000 0,000 0,000 0,024 0,000 0,000 0,000
AvgFanIn 0,022 0,000 0,000 0,000 0,014 0,000 0,000 0,000
MaxFanOut 0,020 0,000 0,000 0,000 0,020 0,000 0,000 0,000
CountPath 0,019 0,000 0,000 0,000 0,024 0,000 0,000 0,000
AltAvgLineComment 0,019 0,000 0,000 0,000 0,016 0,000 0,000 0,000
AvgLineBlank 0,018 0,000 0,000 0,000 0,013 0,000 0,000 0,000
AvgLineComment 0,018 0,000 0,000 0,000 0,017 0,000 0,000 0,000
HK 0,018 0,000 0,000 0,000 0,020 0,000 0,000 0,000
AltAvgLineBlank 0,018 0,000 0,000 0,000 0,013 0,000 0,000 0,000
MaxNesting 0,017 0,000 0,000 0,000 0,018 0,000 0,000 0,000
FanIn 0,016 0,000 0,000 0,000 0,023 0,000 0,030 0,000
FanOut 0,014 0,000 0,000 0,000 0,024 0,000 0,058 0,000
AvgFanOut 0,013 0,000 0,000 0,000 0,020 0,000 0,000 0,000
AvgMaxNesting 0,013 0,000 0,000 0,000 0,017 0,000 0,000 0,000
SumMaxNesting 0,013 0,000 0,000 0,000 0,017 0,000 0,000 0,000
AvgCyclomaticModified 0,012 0,000 0,000 0,000 0,013 0,000 0,000 0,000
AvgCyclomatic 0,011 0,000 0,000 0,000 0,013 0,000 0,000 0,000
MaxMaxNesting 0,011 0,000 0,000 0,000 0,014 0,000 0,000 0,000
CBO 0,010 0,000 0,000 0,000 0,034 0,000 0,000 0,000
LCOM 0,000 0,000 0,000 0,000 0,027 0,000 0,026 0,000

— 121 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

Table 5.16: Function-level metrics Weight.

(a) Linux Kernel (b) Mozilla Firefox
Software Metrics RF DT Xboost SVM RF DT Xboost SVM
CountOutput 0,071 0,044 0,076 0,056 0,055 0,000 0,089 0,053
CountLineCodeDecl 0,062 0,000 0,054 0,048 0,044 0,000 0,063 0,052
MaxNesting 0,043 0,024 0,000 0,000 0,050 0,000 0,034 0,052
CountInput 0,042 0,039 0,068 0,050 0,042 0,000 0,077 0,000
AltCountLineBlank 0,040 0,004 0,050 0,049 0,045 0,207 0,065 0,055
Knots 0,040 0,000 0,047 0,051 0,025 0,000 0,026 0,040
CountLineBlank 0,039 0,005 0,000 0,049 0,052 0,209 0,086 0,055
CountLineCode 0,036 0,163 0,133 0,056 0,039 0,196 0,056 0,053
MinEssentialKnots 0,036 0,182 0,041 0,049 0,024 0,000 0,000 0,000
AltCountLineComment 0,036 0,005 0,031 0,000 0,037 0,000 0,029 0,045
MaxEssentialKnots 0,036 0,180 0,038 0,049 0,025 0,000 0,000 0,000
CyclomaticStrict 0,035 0,007 0,027 0,044 0,026 0,000 0,025 0,050
CountSemicolon 0,034 0,000 0,044 0,047 0,031 0,000 0,038 0,047
CountLineComment 0,034 0,000 0,000 0,000 0,037 0,000 0,000 0,045
CountStmtDecl 0,034 0,000 0,035 0,000 0,042 0,000 0,032 0,048
Cyclomatic 0,034 0,000 0,000 0,043 0,033 0,000 0,000 0,051
CountLine 0,033 0,156 0,059 0,056 0,042 0,196 0,103 0,055
CountLineCodeExe 0,033 0,000 0,045 0,056 0,035 0,000 0,050 0,051
CyclomaticModified 0,033 0,000 0,025 0,044 0,034 0,191 0,020 0,052
RatioCommentToCode 0,033 0,005 0,033 0,000 0,045 0,000 0,042 0,000
CountPath 0,033 0,000 0,049 0,050 0,024 0,000 0,045 0,049
AltCountLineCode 0,033 0,160 0,065 0,056 0,040 0,000 0,045 0,052
CountStmtExe 0,032 0,000 0,039 0,048 0,040 0,000 0,040 0,047
CountStmt 0,031 0,000 0,038 0,048 0,039 0,000 0,033 0,048
Essential 0,031 0,026 0,000 0,049 0,028 0,000 0,000 0,000
CountLinePreprocessor 0,021 0,000 0,000 0,000 0,007 0,000 0,000 0,000
CountLineInactive 0,019 0,000 0,000 0,000 0,006 0,000 0,000 0,000
CountStmtEmpty 0,018 0,000 0,000 0,000 0,052 0,000 0,000 0,000

Table 5.17: Example of the real (a) and normalized (b) values of four software
metrics for five Linux Kernel’s files.

(a) File-level dataset of Linux Kernel project
No. ID File Label Count Line Inactive Sum Cyclomatic Fan Out HK

1 1407302 v 1 4 12 150
2 6081702 v 0 46 164 113172372
3 15866802 nv 141 113 22 13821104
4 2627502 v 7 203 270 23115237
5 32375002 nv 302 385 148 1933014887

(b) Normalized File-level dataset of Linux Kernel project
No. ID File Label Count Line Inactive Sum Cyclomatic Fan Out HK

1 1407302 v 0,993 0,991 0,900 1,000
2 6081702 v 1,000 0,898 0,000 0,000
3 15866802 nv 0,000 0,750 0,817 0,126
4 2627502 v 0,948 0,550 0,000 0,000
5 32375002 nv 0,000 0,147 0,000 0,000

For each cluster (in Table 5.19), the number of files and function included and
the Medoids value of their score are also presented. The Medoids represents
the relative final score of each cluster; thus, it can be used to rank and la-
bel the clusters from trustworthy to absolutely untrustworthy (i.e., Cluster 1
is considered as trustworthy and Cluster 5 is considered as absolutely untrust-
worthy).

Interestingly, in all cases, the number of files and functions included in each
cluster decreases when the value of Medoids decreases. It means that less trust-

— 122 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

Table 5.18: Example of trustworthiness scores for five files of Linux Kernel.

ID File
Trustworthiness Score

RF DT Xboost SVM
1 1407302 0,904 0,975 0,903 0,960
2 6081702 0,548 0,800 0,812 0,811
3 15866802 0,570 0,600 0,585 0,650
4 2627502 0,500 0,518 0,538 0,533
5 32375002 0,295 0,134 0,161 0,242

worthy clusters have fewer code units. For instance, 27156 files (28%) belong to
the cluster with a higher level of trustworthiness, and 12380 files (13%) belong
to the cluster with the lowest trustworthiness level (combination of all scores in
Table 5.19 (a)).

Considering the clustering results for Mozilla Firefox files and functions (presen-
ted in Table 5.20), the main observations are similar to the ones discussed for
Linux Kernel. In fact the number of files and functions decreases as we move
from cluster 1 to cluster 5. Again, the results suggest that less trustworthy
clusters have fewer code units. We again observed that there is no major differ-
ence between the results of clustering on individual scores (considering one single
trustworthiness model) and the results of clustering on the combined scores (con-
sidering several trustworthiness models by aggregating all scores).

5.4.2.2 Assessment of Linux Kernel results

To study the applicability of the proposed approach and the accuracy of the
results, we again used the security vulnerabilities of the Linux Kernel project
reported after 2017 (recall that the dataset used in this experiment only contains
data from 2000 to 2016). That data was not added to the dataset for training
the models, as we wanted to use them for validation. As mentioned before, the
vulnerabilities were collected from CVEDetails and we identified a total of 801
files and 650 functions with vulnerabilities reported after 2017.

The validation consisted of verifying in which cluster each of these files/functions
was classified. In other words, for each cluster, we counted the number of unique
files/functions with reported vulnerabilities after 2017. The assumption is that,
if a specific cluster has more reported vulnerabilities than the others, then the
cluster (potentially) includes code units more prone to be vulnerable.

Table 5.21 presents the results of the five clustering experiments, of which four
are on individual scores and one is on the combination of all scores. Each table
presents the total number of files and the total number of vulnerable files, and
their percentages in each cluster. As we can see:

• The percentage of vulnerable files increases as we move from cluster 1 to
cluster 5. For instance, observing the results using the score of RF (Table
5.21 (a)), the less trustworthy cluster (Cluster 5, having a Medoid value
of 0.304, as shown in Table 5.19 (a)) has the highest percentage of files
discovered as vulnerable in 2017 or after (9.9%);

— 123 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

Table
5.19:C

lustering
results

ofLinux
K
ernelproject.

(a)
File-levelresults

C
lusters

Score
R

F
Score

D
T

Score
X

boost
Score

SV
M

Score
R

F
,

Score
D

T
,

Score
X

boost,
Score

SV
M

#
F

iles
M

edoid
#

F
iles

M
edoid

#
F

iles
M

edoid
#

F
iles

M
edoid

#
F

iles
M

ed.
R

F
M

ed.
D

T
M

ed.
X

boost
M

ed.
SV

M
C
luster

1
22813

0,85
28581

0,933
24769

0,883
26508

0,928
27156

0,830
0,927

0,884
0,927

C
luster

2
22793

0,758
25838

0,801
22591

0,795
25721

0,801
25098

0,738
0,815

0,759
0,802

C
luster

3
21940

0,637
18195

0,631
20851

0,67
18675

0,65
17429

0,578
0,657

0,644
0,65

C
luster

4
15651

0,478
12645

0,404
15400

0,464
13369

0,435
13842

0,478
0,449

0,475
0,478

C
luster

5
12708

0,304
10646

0,076
12294

0,182
11632

0,136
12380

0,337
0,117

0,155
0,148

Total
95905

-
95905

-
95905

-
95905

-
95905

-
-

-
-

(b)
Function-levelresults

C
lusters

Score
R

F
Score

D
T

Score
X

boost
Score

SV
M

Score
R

F
,

Score
D

T
,

Score
X

boost,
Score

SV
M

#
Func.

M
edoid

#
Func.

M
edoid

#
Func.

M
edoid

#
Func.

M
edoid

#
Func.

M
ed.

R
F

M
ed.

D
T

M
ed.

X
boost

M
ed.

SV
M

C
luster

1
135767

0,885
189464

0,928
152339

0,930
173559

0,921
166562

0,876
0,935

0,923
0,924

C
luster

2
115832

0,782
101008

0,817
124464

0,798
113869

0,788
132604

0,756
0,809

0,778
0,797

C
luster

3
95082

0,639
79247

0,650
88195

0,642
78533

0,631
83694

0,571
0,566

0,570
0,583

C
luster

4
73553

0,448
62324

0,351
65060

0,405
62298

0,405
51796

0,386
0,286

0,326
0,343

C
luster

5
57108

0,161
45299

0,045
47284

0,088
49083

0,086
42686

0,133
0,043

0,120
0,084

Total
477342

-
477342

-
477342

-
477342

-
477342

-
-

-
-

— 124 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

Ta
bl
e
5.
20
:C

lu
st
er
in
g
re
su
lts

of
M
oz
ill
a
Fi
re
fo
x
pr
oj
ec
t.

(a
)
Fi
le
-le

ve
lr
es
ul
ts

C
lu

st
er

s
Sc

or
e

R
F

Sc
or

e
D

T
Sc

or
e

X
bo

os
t

Sc
or

e
SV

M
Sc

or
e

R
F

,
Sc

or
e

D
T

,
Sc

or
e

X
bo

os
t,

Sc
or

e
SV

M
#

F
ile

s
M

ed
oi

d
#

F
ile

s
M

ed
oi

d
#

F
ile

s
M

ed
oi

d
#

F
ile

s
M

ed
oi

d
#

F
ile

s
M

ed
.

R
F

M
ed

.
D

T
M

ed
.

X
bo

os
t

M
ed

.
SV

M
C
lu
st
er

1
14
09
4

0,
83
4

19
03
7

0,
93
2

16
22
0

0,
88
6

16
18
5

0,
94
9

15
58
0

0,
83
4

0,
93
9

0,
89
3

0,
94
8

C
lu
st
er

2
10
99
1

0,
72
4

10
31
4

0,
80
4

11
63
8

0,
77
8

12
06
9

0,
83
3

11
59
5

0,
71
6

0,
84
8

0,
79
5

0,
82
7

C
lu
st
er

3
90
68

0,
62
2

66
61

0,
63
5

73
86

0,
64
0

72
70

0,
64
6

83
44

0,
61
5

0,
68
9

0,
64
0

0,
68
6

C
lu
st
er

4
74
04

0,
45
5

49
28

0,
36
7

55
68

0,
44
5

50
14

0,
41
7

53
36

0,
45
5

0,
34
2

0,
44
7

0,
38
0

C
lu
st
er

5
48
87

0,
25
6

55
04

0,
00
0

56
32

0,
14
8

59
06

0,
03
8

55
89

0,
30
7

0,
00
0

0,
14
7

0,
04
3

To
ta
l

46
44
4

-
46
44
4

-
46
44
4

-
46
44
4

-
46
44
4

-
-

-
-

(b
)
Fu

nc
tio

n-
le
ve
lr
es
ul
ts

C
lu

st
er

s
Sc

or
e

R
F

Sc
or

e
D

T
Sc

or
e

X
bo

os
t

Sc
or

e
SV

M
Sc

or
e

R
F

,
Sc

or
e

D
T

,
Sc

or
e

X
bo

os
t,

Sc
or

e
SV

M
#

Fu
nc

.
M

ed
oi

d
#

Fu
nc

.
M

ed
oi

d
#

Fu
nc

.
M

ed
oi

d
#

Fu
nc

.
M

ed
oi

d
#

Fu
nc

.
M

ed
.

R
F

M
ed

.
D

T
M

ed
.

X
bo

os
t

M
ed

.
SV

M
C
lu
st
er

1
12
24
68

0,
83
3

13
45
53

0,
95
4

13
99
25

0,
88
4

13
17
61

0,
94
0

12
20
19

0,
84
4

0,
95
4

0,
90
0

0,
94
9

C
lu
st
er

2
86
25
3

0,
74
8

78
15
0

0,
84
1

80
18
5

0,
75
5

83
87
5

0,
81
9

80
50
6

0,
75
0

0,
85
3

0,
78
8

0,
82
9

C
lu
st
er

3
59
84
0

0,
58
0

60
63
5

0,
66
3

54
52
2

0,
60
9

56
22
3

0,
64
5

54
44
7

0,
63
0

0,
70
9

0,
65
1

0,
68
2

C
lu
st
er

4
42
81
8

0,
38
9

40
29
8

0,
36
9

37
77
2

0,
37
4

40
86
2

0,
40
3

48
03
8

0,
42
4

0,
50
7

0,
46
2

0,
51
6

C
lu
st
er

5
43
10
1

0,
09
2

40
84
4

0,
00
0

42
07
6

0,
10
1

41
75
9

0,
06
7

49
47
0

0,
11
2

0,
03
6

0,
13
3

0,
11
4

To
ta
l

35
44
80

-
35
44
80

-
35
44
80

-
35
44
80

-
35
44
80

-
-

-
-

— 125 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

Table 5.21: Validation of clustering results using files of Linux project.

(a) Score RF
Clusters # Files % Files # vuln. % vuln.
Cluster 1 22813 23,8% 79 0,3%
Cluster 2 22793 23,8% 282 1,2%
Cluster 3 21940 22,9% 643 2,9%
Cluster 4 15651 16,3% 855 5,5%
Cluster 5 12708 13,3% 1264 9,9%

Total 95905 - 3123 -
(b) Score DT

Clusters # Files % Files # vuln. % vuln.
Cluster 1 28581 29,8% 102 0,4%
Cluster 2 25838 26,9% 466 1,8%
Cluster 3 18195 19,0% 519 2,9%
Cluster 4 12645 13,2% 850 6,7%
Cluster 5 10646 11,1% 1186 11,1%

Total 95905 - 3123 -
(c) Score Xboost

Clusters # Files % Files # vuln. % vuln.
Cluster 1 24769 25,8% 82 0,3%
Cluster 2 22591 23,6% 279 1,2%
Cluster 3 20851 21,7% 603 2,9%
Cluster 4 15400 16,1% 816 5,3%
Cluster 5 12294 12,8% 1343 10,9%

Total 95905 - 3123 -
(d) Score SVM

Clusters # Files % Files # vuln. % vuln.
Cluster 1 26508 27,6% 66 0,2%
Cluster 2 25721 26,8% 424 1,6%
Cluster 3 18675 19,5% 592 3,2%
Cluster 4 13369 13,9% 820 6,1%
Cluster 5 11632 12,1% 1221 10,5%

Total 95905 - 3123 -
(e) Score RF, Score DT, Score Xboost, Score SVM

Clusters # Files % Files # vuln. % vuln.
Cluster 1 27156 28,3% 79 0,29%
Cluster 2 25098 26,2% 389 1,55%
Cluster 3 17429 18,2% 555 3,18%
Cluster 4 13842 14,4% 775 5,60%
Cluster 5 12380 12,9% 1325 10,70%

Total 95905 - 3123 -

— 126 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

Table 5.22: Validation of clustering results using functions of Linux project.

(a) Score RF
Clusters # Funcs. % Funcs. # vuln. % vuln.
Cluster 1 135767 28,4% 37 0,03%
Cluster 2 115832 24,3% 129 0,11%
Cluster 3 95082 19,9% 108 0,11%
Cluster 4 73553 15,4% 153 0,21%
Cluster 5 57108 12,0% 175 0,31%

Total 477342 - 602 -
(b) Score DT

Clusters # Funcs. % Funcs. # vuln. % vuln.
Cluster 1 189464 39,7% 65 0,03%
Cluster 2 79247 16,6% 108 0,14%
Cluster 3 101008 21,2% 160 0,16%
Cluster 4 62324 13,1% 108 0,17%
Cluster 5 45299 9,5% 161 0,36%

Total 477342 - 602 -
(c) Score Xboost

Clusters # Funcs. % Funcs. # vuln. % vuln.
Cluster 1 152339 31,9% 45 0,03%
Cluster 2 124464 26,1% 152 0,12%
Cluster 3 88195 18,5% 113 0,13%
Cluster 4 65060 13,6% 132 0,20%
Cluster 5 47284 9,9% 160 0,34%

Total 477342 - 602 -
(d) Score SVM

Clusters # Funcs. % Funcs. # vuln. % vuln.
Cluster 1 173559 36,4% 61 0,04%
Cluster 2 78533 16,5% 89 0,11%
Cluster 3 113869 23,9% 156 0,14%
Cluster 4 62298 13,1% 131 0,21%
Cluster 5 49083 10,3% 165 0,34%

Total 477342 - 602 -
(e) Score RF, Score DT, Score Xboost, Score SVM

Clusters # Funcs. % Funcs. # vuln. % vuln.
Cluster 1 166562 34,9% 57 0,03%
Cluster 2 132604 27,8% 170 0,13%
Cluster 3 83694 17,5% 127 0,15%
Cluster 4 51796 10,9% 94 0,18%
Cluster 5 42686 8,9% 154 0,36%

Total 477342 - 602 -

— 127 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

• In contrast, the cluster with the highest level of trustworthiness (cluster
1, with a Medoid value of 0.85) has the lowest percentage of recently
vulnerable files (0.3%);

• Interestingly, in all cases, the percentage of recent vulnerable files increases
when the cluster becomes less trustworthy. The same observation is true
in the case of Linux kernel functions presented in Table 5.22;

• The results show that, in fact, the files and functions categorized as abso-
lutely untrustworthy are more prone to be problematic.

A key observation of our study suggested that there is no major difference
between the results of clustering on individual scores (considering one single
trustworthiness model) and the results of clustering on the combined scores
(considering several trustworthiness models by aggregating all scores). This
may question the principal idea of our proposed approach by creating doubts
on the need to consider various scores when the same clustering results can be
achieved using only one score. This is true in the present study as we used the
same scoring model in all five models, i.e., the same dataset for creating machine
learning-based models built on the same evidence of software quality, i.e., the
software metrics. Nevertheless, our overall approach is neither limited to ma-
chine learning nor to software metrics. Any evidence of security issues and any
scoring model can be used to assign different scores to each unit of code.

5.4.2.3 Assessment of Mozilla Firefox results

To validate the results obtained for the Mozilla Firefox project, we again resort
to the expert-based ranking performed in Section 4.4, were we asked the experts
to rank 10 files and 10 functions based on their perceived trustworthiness.

The information for the files and functions used for validation is in Table 5.23,
in which we present the ranking and scores given by experts and compare them
with the average Medoids of the cluster to which each file belongs.

Table 5.23: Validation of clustering Results using Mozilla files and functions.

ID File Experts
based results

Average
Medoids

ID Function Experts
based results

Average
Medoids

60426601 0,429 0,912 361442101 0,462 0,919
263601 0,408 0,912 20082901 0,458 0,919
1701201 0,31 0,912 304227601 0,272 0,919
51355601 0,233 0,912 121633001 0,303 0,810
52292101 0,165 0,803 311237201 0,153 0,671
1418301 0,171 0,663 113275001 0,082 0,671
2201801 0,103 0,663 119075401 0,094 0,485
45301201 0,07 0,108 314376601 0,057 0,485
22256501 0,065 0,108 328555501 0,055 0,485
19960501 0,046 0,108 53225001 0,063 0,102

The table is ordered from the highest to the lowest Average Medoid value and
we can clearly observe that the order of files and functions is similar. In fact, the
files are ordered equally by experts based ranking and using the average medoids
(clustering process). For functions, the results are very similar, except for two

— 128 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

functions (ID Function number 121633001 and 119075401). By observing the
source code of those two functions, we noticed that they are very small and
simple (with 18 and 38 lines of code, respectively). We believe that this led to
a higher assessment of trustworthiness in the expert based results.

The results obtained clearly suggest that our approach is able to provide a
meaningful categorization of the files and functions.

5.4.3 Considering Different Number of Clusters
The number of files and functions included in the less trustworthy clusters can be
high in some application scenarios. Thus, it can be helpful to have a higher num-
ber of clusters, allowing the developers to more conveniently chose the groups
to be worked on. For this purpose, we performed an experiment to observe the
impact of the number of clusters on the results.

We used the trustworthiness scores obtained using all trustworthiness models
for clustering files and functions into 3 and 7 clusters, to be compared with the
previously obtained results with 5 clusters. Table 5.24 presents the results for
Linux kernel files (a) and Linux Kernel functions (b). The results obtained (with
3 and 7 clusters) are on par with the previous ones (with 5 clusters): the less
trustworthy a category (or cluster) is, the higher proportion of the code units
included have known vulnerabilities.

We observed that it is possible to categorize the code in a more precise manner
by increasing the number of clusters, allowing to achieve a higher intra-cluster
similarity and lower inter-cluster similarity. This means that increasing the
number of clusters resulted in smaller clusters (with fewer code units) but still
with an appropriate (with respect to the total number of code units in each
cluster and considering their their trustworthiness level) number of code units
with known vulnerabilities (e.g., the least trustworthy category includes a higher
percentage of vulnerable code, i.e., 11.6 % for files data). Therefore, when there
are fewer resources to review code and eliminate vulnerabilities, it is quite useful
to perform the clustering with a higher number of clusters, which decreases the
number of code units that must be reviewed and, at the same time, allows
dealing with a reasonable number of vulnerabilities.

To better understand the characteristics of the code units in each cluster, we
calculated the average value of two key software file and function-level metrics:
CountLineCode and Cyclomatic complexity for functions and CountLineCode
and SumCyclomatic for files. Interestingly, in the case of files, the value of
both CountLineCode and SumCyclomatic metrics increases when the level of
trustworthiness decreases. This continues to be true even if we increase the
number of clusters. In the case of functions, similar results are observed with 5
clusters. However, when the code units are categorized into 3 or 7 clusters, we
cannot see big differences between the average values of the two metrics, which
implies that other metrics rather than the volume and complexity metrics (e.g.,
MaxNesting) were influential in the trustworthiness level of functions. However,
in most cases, the results show that when the size and complexity increase, the

— 129 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

Table
5.24:R

esults
using

different
num

bers
ofclusters.

(a)
F

ile-level
(b)

Function-level
N

um
b

er
of

C
lusters

=
3

N
um

b
er

of
C

lusters
=

3
C

lusters
#

F
iles

%
F

iles
#

V
uln

%
V

uln
C

ountL
ineC

ode
Sum

C
yclom

atic
#

Func
%

Func.
#

V
uln

%
V

uln
C

ountL
ineC

ode
C

yclom
atic

C
luster

1
43,697

45.6%
288

0.7%
183.3

30.7
165,580

34.7%
79

0.04%
32.0

9.2
C

luster
2

33,324
34.7%

1060
3.2%

639.2
147

138,389
29%

75
0.05%

24.8
9.4

C
luster

3
18,884

19.7%
1,775

9.4%
2050.5

613.2
173,373

36.3%
448

0.26%
30.9

9.6
Total

95,905
-

3,123
-

-
-

477,342
-

602
-

-
-

N
um

b
er

of
C

lusters
=

5
N

um
b

er
of

C
lusters

=
5

C
lusters

#
F

iles
%

F
iles

#
V

uln
%

V
uln

C
ountL

ineC
ode

Sum
C

yclom
atic

#
Func

%
Func.

#
V

uln
%

V
uln

C
ountL

ineC
ode

C
yclom

atic
C

luster
1

27,156
28.3%

79
0.3%

119.7
17.4

166,562
34.9%

57
0.03%

6.9
1.7

C
luster

2
25,098

26.2%
389

1.6%
332.8

62.6
132,604

27.8%
170

0.13%
17.8

5.6
C

luster
3

17,429
18.2%

555
3.2%

623.1
141.4

83,694
17.5%

127
0.15%

32.8
10.7

C
luster

4
13,842

14.4%
775

5.6%
1073.7

277.6
51,796

10.9%
94

0.18%
55.9

19.3
C

luster
5

1,238
12.9%

1,325
10.7%

2479.3
764.9

42,686
8.9%

154
0.36%

116.2
37.0

Total
95905

-
3,123

-
-

-
477,342

-
602

-
-

-
N

um
b

er
of

C
lusters

=
7

N
um

b
er

of
C

lusters
=

7
C

lusters
#

F
iles

%
F

iles
#

V
uln

%
V

uln
C

ountL
ineC

ode
Sum

C
yclom

atic
#

Func
%

Func.
#

V
uln

%
V

uln
C

ountL
ineC

ode
C

yclom
atic

C
luster

1
19,190

20%
46

0.2%
93.4

12.0
82,066

17.2%
30

0.03%
33.6

9.5
C

luster
2

18,751
19.6%

168
0.9%

226.5
39.4

45,003
9.4%

22
0.04%

19.8
6.9

C
luster

3
19,002

19.8%
397

2.09%
413.2

81.7
72,538

15.2%
37

0.05%
31.9

9.7
C

luster
4

13,906
14.5%

459
3.3%

687.5
158.6

54,978
11.5%

30
0.05%

29.5
11.6

C
luster

5
9,195

9.6%
459

4.99%
1010.4

259.0
63,074

13.2%
35

0.05%
25.9

8.9
C

luster
6

8,367
8.7%

722
8.63%

1520.4
463.5

80,528
16.9%

166
0.21%

33.7
9.8

C
luster

7
7,494

7.8%
872

11.6%
3010

911.8
79,155

16.6%
282

0.36%
27.6

9.0
Total

95,905
-

3,123
-

-
-

477,342
-

602
-

-
-

— 130 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

trustworthiness level decreases.

An interesting observation is that, when we compare the characteristics of the
vulnerable/non-vulnerable files wrongly classified by all models with the char-
acteristics of the ones that are correctly classified by all models (refer to Figure
3.23 in Section 3.3.5.2), we conclude that correctly classified vulnerable files
(TPs) and wrongly classified non-vulnerable files (FPs) are typically bigger and
more complex. On the other hand, correctly classified non-vulnerable files (TNs)
and wrongly classified vulnerable files (FNs) are normally smaller and simpler
considering their structural characteristics.

5.5 Summary
In this chapter, we proposed a framework for code categorization based on
security evidences. The idea is to define a mechanism that, based on the early
evidences of security issues in the code, supports developers in the detection of
potential issues during the software development process. Two instantiations
of the framework were presented, both of them based on machine learning
algorithms (prediction models) and using software metrics as security evid-
ences: i) a Consensus-Based Decision-Making (CDBM) approach ; and ii) an
approach based on Trustworthiness Models (TMs).

By applying the first approach, we were able to prioritize categories from a
security perspective, considering different scenarios. The results show that the
consensus-based decision-making solution is more useful and suitable for diverse
application scenarios than a single prediction model. Considering the second
approach, the results show that we can effectively use clustering in order to
identify code units more prone to be vulnerable. Thus, developers can use this
approach to make efficient and effective decisions about the parts of code that
might be problematic and require deep analysis. Besides that, it is possible
to adjust the number of clusters considering different scenarios, where different
resources to detect and eliminate vulnerabilities are available.

We highlight the main insights obtained from the results:

• The number of files and functions included in each cluster decreases when
the trustworthiness level decreases. It means that less trustworthy clusters
have fewer code units;

• The percentage of new reported vulnerabilities increases as we move from
trustworthy cluster to absolutely untrustworthy cluster. This strongly
support the validation of the proposed clustering-based approach;

• By increasing the clusters, a higher intra-cluster similarity is achieved.
This means that increasing the number of clusters resulted in smaller
clusters (with fewer code units) with more similar characteristics in terms
of software metrics and trustworthiness level. Thus, when there are fewer
resources to review code and eliminate vulnerabilities, it is quite useful to
perform the clustering with a higher number of clusters.

— 131 —

CHAPTER 5. SECURITY CATEGORIZATION OF CODE UNITS

Although the results show that we can effectively use our approach to make
effective decisions about the parts of code that might be problematic, some
limitations and threats to validity should be highlighted:

• The prediction models are built using Machine Learning algorithms and
software metrics are used as evidence of security issues in code. Although
our experimental evaluations show the applicability of the proposed frame-
work, future work should focus on using different tools and techniques as
scoring models, as well as other security evidences (e.g., code smells);

• The number of files and functions selected to validate the results for the
Mozilla Firefox project is limited (10 files and 10 functions). This is a
feasible acceptable number of files and functions, since the experts had to
perform the comparison between all the possible pairs. However, it would
be better to get a larger number of compared code units;

• The dataset used for instantiating the proposed approach is limited to
two projects. Although the projects are quite big (with a large number of
files and functions used to build the trustworthiness models) and repres-
entative for this study, including more projects could help achieving more
convincing results.

According to the main insights from the results, we can conclude that the idea
of grouping code units into several categories representing their trust-
worthiness level from a security perspective can be used in order to call
the attention of developers to the most untrustworthy code units. In fact, we
consider that the proposed framework for code units categorization and its in-
stantiations are indeed suitable to support developers in the identification of
the code units more prone to be vulnerable from the early phases of coding
process.

— 132 —

Chapter 6
Conclusions and Future Work

This thesis discussed the use of evidence collected from software to identify
potentially vulnerable code units. The main objective is to advance the
state-of-the-art on tools and techniques for improving software secur-

ity, in a way that help development teams from the early phases of software
development process.

Two comprehensive case studies on how software metrics and Machine Learning
can be used to predict/detect vulnerable code units were presented. Then, a
trustworthiness benchmarking framework based on software metrics were pro-
posed, focusing on prioritizing code units based on their perceived trustworthi-
ness. Finally, two alternative methodologies to identify code units more prone
to be vulnerable were proposed. The main goal was to define mechanisms that,
based on evidence of security practices and issues in the code, are able to cat-
egorize code into different trustworthiness levels.

6.1 Conclusions
The thesis began with an exploratory and empirical analysis focusing on the
possibility of finding the best subset of software metrics for building the most ac-
curate classifier model to distinguish vulnerable from non-vulnerable code units.
To do so, a set of different experiments were conducted, namely: (i) a statist-
ical correlation analysis using project-level metrics and security vulnerabilities;
(ii) a dimension reduction that contributes to select different groups of software
metrics; and (iii) a feature selection analysis using the Genetic Algorithm and
the Random Forest classifier.

The results showed that there is a strong correlation between several project-
level metrics and the number of reported vulnerabilities, and it is possible to use
a group of metrics to distinguish vulnerable and non-vulnerable units of code
with a high level of accuracy. However, the best subset of predictive metrics

— 133 —

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

may vary from one software system to another. Besides that, for identifying
the quality of software in terms of security, the function, file and project level
metrics are complementary to each other.

The next contribution of the thesis was a comprehensive experiment to study
how effective software metrics and Machine Learning algorithms are for classify-
ing vulnerable and non-vulnerable units of code. Machine Learning models were
trained considering metrics at different architectural levels and several software
projects. The most important observation is that using Machine Learning al-
gorithms on top of software metrics helps identifying vulnerable code units with
relatively high level of confidence for security-critical software systems (where
the focus is on detecting the maximum number of vulnerabilities, even if false
positives are reported), but they are not helpful for low-critical or non-critical
systems due to the relatively high number of false positive alarms reported when
compared to the number of true positive cases (that bring an additional develop-
ment cost frequently not affordable), which is mainly caused by the imbalanced
nature of our dataset (and similar datasets used in other works).

According to our observations, insights and threats to the validity of the two
case studies, we can conclude that software metrics are not sufficient evidence
of security issues to be used solely for building detection/prediction models that
are able to distinguish vulnerable code from non-vulnerable code with good
performance and low vulnerability removal cost. Moreover, due to the natural
limitations of existing datasets for training and testing these models, it becomes
even more difficult to precisely understand how effective software metrics can
be to detect vulnerable code in different application scenarios.

Based on this strong conclusion, we next focused on using software metrics not
for predicting or detecting vulnerabilities but for assessing/benchmarking the
trustworthiness of the code and warn the developers about their untrustworthy
(insecure) code units. Therefore, we move from a subjective to an objective
trustworthiness notion and proposed a trustworthiness model directly by using
a group of software metrics that were weighted based on the scores given by
a classification model. The output of the proposed benchmark are the trust-
worthiness scores assigned to each code unit. Results show that the proposed
benchmark enables the characterization of units of code and enables their com-
parison. In fact, the trustworthiness benchmarking results were assessed by
comparing the trustworthiness scores assigned to different files and functions
(i.e., ranking of files and functions considering the trustworthiness scores given
by the benchmarking approach) with an expert-based ranking. We observed a
sound ranking of the benchmarked files and functions. Note that, although our
main goal was to build a trustworthiness assessment model based on security
evidences, the framework can be used to benchmark any other attributes of
software quality (e.g., privacy and performance).

Building on top of the results of the proposed benchmarking approach, we next
proposed an approach to identify code units that may be more prone to be
vulnerable, again based on software metrics (security evidence) and machine
learning algorithms. Two different instantiations were presented, the first groun-

— 134 —

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

ded on a Consensus-Based Decision-Making approach, and the second based on
Trustworthiness Models to categorize code.

Results show that the two approaches are able to prioritize and categorize code
units from a security perspective, considering different scenarios. In fact, we
showed that both solutions are more useful and suitable for diverse applica-
tion scenarios than a single prediction model, and that the percentage of new
reported vulnerabilities increases as we move from trustworthy to absolutely un-
trustworthy units of code. Based on this, we strongly believe that developers
can use our approaches to make more efficient and effective decisions about the
parts of code that might be problematic and require a deeper analysis.

It is important to emphasize that, the proposed framework can be instantiated
using different approaches. For example, any other kind of security evidences
(e.g., code smells) or other quality attributes (instead of security) can be con-
sidered. Besides that, other prediction models or techniques to predict/detect
vulnerabilities can be applied as characterization models, and different categor-
ization mechanism (besides grouping classification results of ML and perform
clustering) can be implemented.

6.2 Future work
Building on the results obtained, the important conclusions and contributions,
this thesis opens the door for several future works:

• Study the applicability of other ML algorithms and different artificial in-
telligence techniques (such as neural networks) to predict/detect vulnerab-
ilities, to instantiate the proposed framework for code units categorization.

• Use other evidences rather than software metrics, like code smells , lack
of security best practices in the code, alerts given by static code analys-
ers, among others, to improve the detection/prediction models to produce
less false alarms. Also, consider different quality attributes besides than
security.

• Explore the use of semi-supervised techniques to find natural groupings of
the data for building the classifiers. Semi-supervised approaches should
be studied as alternative choices where is not trivial to verify the label of
all records.

• Different projects with different characteristics in terms of structure and
implemented in different languages should be used.

• Apply the proposed code units categorization framework in a real develop-
ment team working context of continuous integration. However, managing
and performing such experiments is quite challenging.

— 135 —

Bibliography

Abdlhamed, M., Kifayat, K., Shi, Q., and Hurst, W. (2017). Intrusion prediction
systems. In Information Fusion for Cyber-Security Analytics, pages 155–174.
Springer.

Acar, Y., Stransky, C., Wermke, D., Weir, C., Mazurek, M. L., and Fahl, S.
(2017). Developers need support, too: A survey of security advice for software
developers. In 2017 IEEE Cybersecurity Development (SecDev), pages 22–26.
IEEE.

Agrawal, A. and Khan, R. (2009). A framework to detect and analyze soft-
ware vulnerabilities: Development phase perspective. International Journal
of Recent Trends in Engineering, 2.

Alarcon, G. M., Gamble, R., Jessup, S. A., Walter, C., Ryan, T. J., Wood,
D. W., and Calhoun, C. S. (2017a). Application of the heuristic-systematic
model to computer code trustworthiness: The influence of reputation and
transparency. Cogent Psychology, 4(1):1389640.

Alarcon, G. M., Militello, L. G., Ryan, P., Jessup, S. A., Calhoun, C. S., and
Lyons, J. B. (2017b). A descriptive model of computer code trustworthiness.
Journal of Cognitive Engineering and Decision Making, 11(2):107–121.

Alenezi, M. and Zarour, M. (2018). Software vulnerabilities detection based on
security metrics at the design and code levels: empirical findings. Journal of
Engineering Technology, 6(1):570–583.

Alhazmi, O. H., Malaiya, Y. K., and Ray, I. (2007). Measuring, analyzing and
predicting security vulnerabilities in software systems. Computers & Security,
26(3):219–228.

Alves, H., Fonseca, B., and Antunes, N. (2016a). Experimenting machine learn-
ing techniques to predict vulnerabilities. In Seventh Latin-American Sym-
posium on Dependable Computing (LADC), pages 151–156.

Alves, H., Fonseca, B., and Antunes, N. (2016b). Software metrics and security
vulnerabilities: Dataset and exploratory study. In 12th European Dependable
Computing Conference (EDCC), pages 37–44. IEEE.

Amoroso, E. G., Taylor, C. A., Watson, J., and Weiss, J. (1994). A process-
oriented methodology for assessing and improving software trustworthiness.
In CCS ’94.

— 137 —

Bibliography

Ankrum, T. and Kromholz, A. (2005). Structured assurance cases: three com-
mon standards. In Ninth IEEE International Symposium on High-Assurance
Systems Engineering (HASE’05), pages 99–108.

Antunes, N. and Vieira, M. (2009). Comparing the effectiveness of penetration
testing and static code analysis on the detection of sql injection vulnerabilities
in web services. In 2009 15th IEEE Pacific Rim International Symposium on
Dependable Computing, pages 301–306.

Antunes, N. and Vieira, M. (2010). Benchmarking vulnerability detection tools
for web services. In IEEE International Conference on Web Services (ICWS),
pages 203–210. IEEE.

Antunes, N. and Vieira, M. (2015). On the metrics for benchmarking vulnerabil-
ity detection tools. In The 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 505–516. IEEE.

Arkin, B., Stender, S., and McGraw, G. (2005). Software penetration testing.
IEEE Security & Privacy, 3(1):84–87.

Artz, D. and Gil, Y. (2007). A survey of trust in computer science and the
semantic web. Journal of Web Semantics, 5(2):58–71. Software Engineering
and the Semantic Web.

Aruldoss, M., Lakshmi, T. M., and Venkatesan, V. P. (2013). A survey on multi
criteria decision making methods and its applications. American Journal of
Information Systems, 1(1).

Assal, H. and Chiasson, S. (2018). Security in the software development lifecycle.

Assal, H. and Chiasson, S. (2019). ’Think Secure from the Beginning’: A Survey
with Software Developers, page 1–13. Association for Computing Machinery,
New York, NY, USA.

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004). Basic con-
cepts and taxonomy of dependable and secure computing. IEEE transactions
on dependable and secure computing, 1(1):11–33.

Awad, M. and Khanna, R. (2015). Support vector machines for classification -
efficient learning machines: Theories, concepts, and applications for engineers
and system designers. In Efficient Learning Machines, pages 39–66. Apress.

Bardas, A. G. (2010). Static Code Analysis. Romanian Economic Business
Review, 4(2):99–107.

Barioni, M., Razente, H., Marcelino, A., Traina, A., and Jr, C. (2014). Open is-
sues for partitioning clustering methods: An overview. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 4.

Bashir, U. and Chachoo, M. (2014). Intrusion detection and prevention system:
Challenges opportunities. In 2014 International Conference on Computing
for Sustainable Global Development (INDIACom), pages 806–809.

— 138 —

Bibliography

Batista, G. E., Prati, R. C., and Monard, M. C. (2004). A study of the beha-
vior of several methods for balancing machine learning training data. ACM
SIGKDD explorations newsletter, 6(1):20–29.

Beckers, K., Côté, I., Fenz, S., Hatebur, D., and Heisel, M. (2014). A struc-
tured comparison of security standards. In Engineering secure future internet
services and systems, pages 1–34. Springer.

Benesty, J., Chen, J., Huang, Y., and Cohen, I. (2009). Pearson correlation
coefficient. In Noise reduction in speech processing, pages 1–4. Springer.

Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., and Lang, M. (2020).
Benchmark for filter methods for feature selection in high-dimensional classi-
fication data. Computational Statistics & Data Analysis, 143:106839.

Borkin, D., Némethová, A., Michal’čonok, G., Maiorov, K., et al. (2019). Im-
pact of data normalization on classification model accuracy. Research Papers
Faculty of Materials Science and Technology Slovak University of Technology,
27(45):79–84.

Boser, B., Guyon, I., and Vapnik, V. (1992). A training algorithm for optimal
margin classifiers. In COLT ’92 Proceedings of the fifth annual workshop on
Computational learning theory, pages 144–152. ACM.

Brar, H. and Kaur, P. (2015). Comparing detection ratio of three static analysis
tools. International Journal of Computer Applications, 124.

Braun, T. D., Siegel, H. J., Beck, N., Bölöni, L. L., Maheswaran, M., Reuther,
A. I., Robertson, J. P., Theys, M. D., Yao, B., Hensgen, D., et al. (2001).
A comparison of eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems. Journal of Parallel
and Distributed computing, 61(6):810–837.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Briand, L. C. and et. al. (2000). Exploring the relationships between design
measures and software quality in object-oriented systems. Journal of systems
and software, 51(3):245–273.

Cairo, A. S., Carneiro, G. d. F., and Monteiro, M. P. (2018). The impact of
code smells on software bugs: A systematic literature review. Information,
9(11):273.

Calle, M. L. and Urrea, V. (2010). Letter to the editor: stability of random
forest importance measures. Briefings in bioinformatics, 12(1):86–89.

Campbell, G. and Papapetrou, P. P. (2013). SonarQube in action. Manning
Publications Co.

Cao, L. (2012). Dynamic capability for trustworthy software development.
Journal of Software: Evolution and Process, 24(7):837–850.

— 139 —

Bibliography

Cavoukian, A. (2009). Privacy by design - the 7 foundational principles - imple-
mentation and mapping of fair information practices. Information & Privacy
Commissioner, Ontario, Canada.

Chawla, N. V., Japkowicz, N., and Kotcz, A. (2004). Special issue on learning
from imbalanced data sets. ACM Sigkdd Explorations Newsletter, 6(1):1–6.

Chemuturi, M. (2010). Mastering software quality assurance: best practices,
tools and techniques for software developers. J. Ross Publishing.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD International Conference on Know-
ledge Discovery and Data Mining, pages 785–794.

Chess, B. and McGraw, G. (2004). Static analysis for security. IEEE Security
& Privacy, 2(6):76–79.

Chillarege, R. and et. al. (1992). Orthogonal defect classification-a concept
for in-process measurements. IEEE Transactions on software Engineering,
18(11):943–956.

Chillarege, R. et al. (1996). Orthogonal defect classification. Handbook of soft-
ware reliability engineering, pages 359–399.

Chiregi, M. and Navimipour, N. (2017). A comprehensive study of the trust
evaluation mechanisms in the cloud computing. Journal of Service Science
Research, 9:1–30.

Cho, J.-H., Chan, K., and Adali, S. (2015). A survey on trust modeling. ACM
Comput. Surv., 48(2).

Cho, J.-H., Hurley, P. M., and Xu, S. (2016). Metrics and measurement of trust-
worthy systems. In MILCOM 2016 - 2016 IEEE Military Communications
Conference, pages 1237–1242.

Chowdhury, I. and Zulkernine, M. (2011). Using complexity, coupling, and
cohesion metrics as early indicators of vulnerabilities. Journal of Systems
Architecture, 57(3):294–313.

Coleman, D., Ash, D., Lowther, B., and Oman, P. (1994). Using metrics to
evaluate software system maintainability. Computer, 27(8):44–49.

Crawford, G. and Williams, C. (1985). A note on the analysis of subjective
judgment matrices. Journal of mathematical psychology, 29(4):387–405.

Criteria, C. (1999). Common criteria for information technology security evalu-
ation.

Cusumano, M. A. (2004). Who is liable for bugs and security flaws in software?
Communications of the ACM, 47(3):25–27.

— 140 —

Bibliography

De Cremer, P., Desmet, N., Madou, M., and De Sutter, B. (2020). Sensei: En-
forcing secure coding guidelines in the integrated development environment.
Software: Practice and Experience, 50(9):1682–1718.

De Landgraaf, W., Eiben, A., and Nannen, V. (2007). Parameter calibration us-
ing meta-algorithms. In IEEE Congress on Evolutionary Computation (CEC),
pages 71–78. IEEE.

Del Bianco, V., Lavazza, L., Morasca, S., and Taibi, D. (2011). A survey on
open source software trustworthiness. IEEE software, 28(5):67–75.

Deswarte, Y., Blain, L., and Fabre, J.-C. (1991). Intrusion tolerance in dis-
tributed computing systems. In Proceedings of IEEE Computer Society Sym-
posium on Research in Security and Privacy, pages 110–121. IEEE.

Di Pietro, R. and Mancini, L. V. (2008). Intrusion detection systems, volume 38.
Springer Science & Business Media.

Ding, S., Yang, S.-L., and Fu, C. (2012). A novel evidential reasoning based
method for software trustworthiness evaluation under the uncertain and un-
reliable environment. Expert Systems with Applications, 39(3):2700–2709.

Disterer, G. (2013). Iso/iec 27000, 27001 and 27002 for information security
management.

Dong, Y., Xu, Y., Li, H., and Dai, M. (2008). A comparative study of the
numerical scales and the prioritization methods in ahp. European Journal of
Operational Research, 186(1):229–242.

Dong, Y., Zhang, G., Hong, W.-C., and Xu, Y. (2010a). Consensus models for
ahp group decision making under row geometric mean prioritization method.
Decision Support Systems, 49(3):281–289.

Dong, Y., Zhang, G., Hong, W.-C., and Xu, Y. (2010b). Consensus models for
ahp group decision making under row geometric mean prioritization method.
Decision Support Systems, 49(3):281–289.

Dreiseitl, S. and Ohno-Machado, L. (2002). Logistic regression and artificial
neural network classification models: a methodology review. In Journal of
Biomedical Informatics, volume 35, pages 352–359.

Elia, I. A., Antunes, N., Laranjeiro, N., and Vieira, M. (2017). An analysis
of openstack vulnerabilities. In 2017 13th European Dependable Computing
Conference (EDCC), pages 129–134. IEEE.

Estabrooks, A., Jo, T., and Japkowicz, N. (2004). A multiple resampling
method for learning from imbalanced data sets. Computational intelligence,
20(1):18–36.

Evans, D. and Larochelle, D. (2002). Improving security using extensible light-
weight static analysis. IEEE software, 19(1):42–51.

— 141 —

Bibliography

Feizi-Derakhshi, M.-R. and Ghaemi, M. (2014). Classifying different feature
selection algorithms based on the search strategies. In International conference
on machine learning, electrical and mechanical engineering, pages 17–21.

Feng, J., Xu, H., Mannor, S., and Yan, S. (2014). Robust logistic regression and
classification. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and
Weinberger, K., editors, Advances in Neural Information Processing Systems,
volume 27. Curran Associates, Inc.

Fenton, N. and Pfleeger, S. (1997). Software metrics: A rigorous and practical
approach.

Fernandez-Buglioni, E. (2013). Security patterns in practice: designing secure
architectures using software patterns. John Wiley & Sons.

Gaffney Jr, J. E. (1981). Metrics in software quality assurance. In Proceedings
of the ACM’81 conference, pages 126–130. ACM.

Galin, D. (2004). Software quality assurance: from theory to implementation.
Pearson Education India.

Georganos, S. and et al. (2018). Very high resolution object-based land use–land
cover urban classification using extreme gradient boosting. IEEE Geoscience
and Remote Sensing Letters, pages 607–611.

Ghaffarian, S. M. and Shahriari, H. R. (2017). Software vulnerability analysis
and discovery using machine-learning and data-mining techniques: A survey.
ACM Computing Surveys (CSUR), 50(4):56.

Grefenstette, J. J. (2012). Genetic Algorithms for Machine Learning. Springer
Science & Business Media.

Gupta, T. and Panda, S. P. (2019). A comparison of k-means clustering al-
gorithm and clara clustering algorithm on iris dataset. International Journal
of Engineering & Technology, 7(4).

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature
selection. Journal of machine learning research, 3(Mar):1157–1182.

Halfond, W. G. J., Choudhary, S. R., and Orso, A. (2011). Improving penetra-
tion testing through static and dynamic analysis. Software Testing, Verifica-
tion and Reliability, 21(3):195–214.

Han, H., Guo, X., and Yu, H. (2016). Variable selection using mean decrease
accuracy and mean decrease gini based on random forest. In Software Engin-
eering and Service Science (ICSESS), 2016 7th IEEE International Conference
on, pages 219–224. IEEE.

Hardin, R. (2002). Trust and trustworthiness.

Hasselbring, W. and Reussner, R. (2006). Toward trustworthy software systems.
Computer, 39(4):91–92.

— 142 —

Bibliography

Heimann, D. (2014). Ieee standard 730-2014 software quality assurance pro-
cesses. IEEE Computer Society, New York, NY, USA, IEEE Std, 730:2014.

Henrique Alves, Baldoino Fonseca, N. A. (2016). A dataset of source code
metrics and vulnerabilities.

Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., and del Cuvillo, J. (2013).
Using innovative instructions to create trustworthy software solutions.

Horvath, A. S. and Agrawal, R. (2015). Trust in cloud computing. In South-
eastCon 2015, pages 1–8. IEEE.

Howard, M., Pincus, J., and Wing, J. (2005). Measuring relative attack surfaces.
Computer Security in the 21st Century, pages 109–137.

Jayaswal, B. and Patton, P. C. (2006). Design for trustworthy software: Tools,
techniques, and methodology of developing robust software.

Karim, S. and et al. (2017). Software metrics for fault prediction using machine
learning approaches: A literature review with promise repository dataset.
In 2017 IEEE International Conference on Cybernetics and Computational
Intelligence (CyberneticsCom), pages 19–23. IEEE.

Kaufman, L. and Rousseeuw, P. J. (1990). Finding groups in data: An intro-
duction to cluster analysis. Wiley, New York.

Kearney, J. P., Sedlmeyer, R. L., Thompson, W. B., Gray, M. A., and Adler,
M. A. (1986). Software complexity measurement. Communications of the
ACM, 29(11):1044–1050.

Ko, C., Ruschitzka, M., and Levitt, K. (1997). Execution monitoring of secur-
ity critical programs in distributed systems: A specification-based approach.
Proceedings 1997 IEEE Symposium on Security and Privacy, pages 175–187.

Kuhn, M. (2016). The r random forest package.

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A.,
Cooper, T., Mayer, Z., Kenkel, B., Team, R. C., et al. (2020). Package ‘caret’.
The R Journal.

Lee, L. S. and Brink, W. D. (2020). Trust in cloud-based services: A frame-
work for consumer adoption of software as a service. Journal of Information
Systems, 34(2):65–85.

Li, Y. (2017). Software trustworthiness static measurement model and the tool.
International Journal of Performability Engineering, 13.

Li, Z. and Shao, Y. (2019). A survey of feature selection for vulnerability pre-
diction using feature-based machine learning. In Proceedings of the 2019 11th
International Conference on Machine Learning and Computing, pages 36–42.

— 143 —

Bibliography

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., and Chen, Z. (2018). Sysevr: A
framework for using deep learning to detect software vulnerabilities. arXiv
preprint arXiv:1807.06756.

Limam, N. and Boutaba, R. (2010). Assessing software service quality and
trustworthiness at selection time. IEEE Transactions on Software Engineer-
ing, 36(4):559–574.

Liu, H., Dougherty, E. R., Dy, J. G., Torkkola, K., Tuv, E., Peng, H., Ding, C.,
Long, F., Berens, M., Parsons, L., et al. (2005). Evolving feature selection.
IEEE Intelligent systems, 20(6):64–76.

Liu, M. Y. and Traore, I. (2006). Empirical relation between coupling and
attackability in software systems: a case study on dos. In Proceedings of the
2006 workshop on Programming languages and analysis for security, pages
57–64. ACM.

Lopes Margarido, I., Faria, J. P., Vidal, R. M., and Vieira, M. (2011). Clas-
sification of defect types in requirements specifications: Literature review,
proposal and assessment. In 6th Iberian Conference on Information Systems
and Technologies (CISTI 2011), pages 1–6.

MacQueen, J. (1967). Some methods for classification and analysis of multivari-
ate observations. In: Proceedings of the Symposium on Mathematics and
Probability, pages 281–297.

Marcil, J. (2014). Owasp iso iec 27034 application security controls project.
OWASP-Open Web Application Security Project.

Martinez, M., de Andres, D., Ruiz, J.-C., and Friginal, J. (2014). From
measures to conclusions using analytic hierarchy process in dependability
benchmarking. IEEE Transactions on Instrumentation and Measurement,
63(11):2548–2556.

McGraw, G. (2004). Software security. IEEE Security & Privacy, 2:80–83.

McGraw, G. (2006). Software security: building security, volume 1. Addison-
Wesley Professional.

McGraw, G. and Viega, J. (2005). Building secure software. Addition Wesley.

Medeiros, N. and Basso, T. (2016). Perception of trustworthiness on web ser-
vices and applications based on privacy evidences. In 7th Latin-American
Symposium on Dependable Computing (LADC).

Medeiros, N., Ivaki, N., Costa, P., and Vieira, M. (2017a). Software metrics
as indicators of security vulnerabilities. In 28th International Symposium on
Software Reliability Engineering (ISSRE), pages 216–227. IEEE.

Medeiros, N., Ivaki, N., Costa, P., and Vieira, M. (2018a). An approach for
trustworthiness benchmarking using software metrics. In 2018 IEEE 23rd
Pacific Rim International Symposium on Dependable Computing (PRDC),
pages 84–93. IEEE.

— 144 —

Bibliography

Medeiros, N., Ivaki, N., Costa, P., and Vieira, M. (2018b). An approach for
trustworthiness benchmarking using software metrics. In 2018 IEEE 23rd
Pacific Rim International Symposium on Dependable Computing (PRDC),
pages 84–93. IEEE.

Medeiros, N., Ivaki, N., Costa, P., and Vieira, M. (2020). Vulnerable code
detection using software metrics and machine learning. IEEE Access,
8:219174–219198.

Medeiros, N., Ivaki, N., Costa, P., and Vieira, M. (2021). An empirical study
on software metrics and machine learning to identify untrustworthy code. In
17th European Dependable Computing Conference (EDCC).

Medeiros, N., Ivaki, N. R., Costa, P. N. D., and Vieira, M. P. A. (2017b).
Towards an approach for trustworthiness assessment of software as a service.
In 2017 IEEE International Conference on Edge Computing (EDGE), pages
220–223.

Medeiros, N., Ivaki, N. R., Costa, P. N. D., and Vieira, M. P. A. (2017c). Towards
an approach for trustworthiness assessment of software as a service. In 2017
IEEE International Conference on Edge Computing (EDGE), pages 220–223.

Medeiros, N., Ivaki, N. R., Costa, P. N. D., and Vieira, M. P. A. (2022). Trust-
worthiness models to categorize and prioritize code for security improvement.
Journal of Systems and Software (JSS), doi.org/10.1016/j.jss.2023.111621.

Menzies, T., Greenwald, J., and Frank, A. (2006). Data mining static code at-
tributes to learn defect predictors. IEEE transactions on software engineering,
33(1):2–13.

M.Graff and Wyk, V. (2003). Secure coding: principles and practices. Designing
and implementing secure applications.

Mohammadi, N. G., Paulus, S., Bishr, M., Metzger, A., Könnecke, H., Harten-
stein, S., Weyer, T., and Pohl, K. (2013). Trustworthiness attributes and
metrics for engineering trusted internet-based software systems. In Interna-
tional Conference on Cloud Computing and Services Science, pages 19–35.
Springer.

Mohammadi, N. G., Paulus, S., Bishr, M., Metzger, A., Könnecke, H., Harten-
stein, S., Weyer, T., and Pohl, K. (2014). Trustworthiness attributes and
metrics for engineering trusted internet-based software systems. Communic-
ations in Computer and Information Science Cloud Computing and Services
Science, page 19–35.

Monga, M., Paleari, R., and Passerini, E. (2009). A hybrid analysis framework
for detecting web application vulnerabilities. In 2009 ICSE Workshop on
Software Engineering for Secure Systems, pages 25–32.

Moshtari, S., Sami, A., and Azimi, M. (2013). Using complexity metrics to
improve software security. Computer Fraud & Security, 2013(5):8–17.

— 145 —

Bibliography

Mudzingwa, D. and Agrawal, R. (2012). A study of methodologies used in
intrusion detection and prevention systems (idps). In 2012 Proceedings of
IEEE Southeastcon, pages 1–6.

Myers, L. and Sirois, M. J. (2006). Spearman correlation coefficients, differences
between. Wiley StatsRef: Statistics Reference Online.

Neto, A. and Vieira, M. (2011a). Selecting secure web applications using trust-
worthiness bemchmarking. International Journal of Dependable and Trust-
worthy Information Systems, 2.

Neto, A. and Vieira, M. (2011b). To benchmark or not to benchmark security:
That is the question. IEEE/IFIP 41st International Conference on Dependable
Systems and Networks Workshops, page 182–187.

Neuhaus, S., Zimmermann, T., Holler, C., and Zeller, A. (2007). Predicting
vulnerable software components. In Proceedings of the 14th ACM conference
on Computer and communications security, pages 529–540. ACM.

Nunes, P., Medeiros, I., Fonseca, J. C., Neves, N., Correia, M., and Vieira, M.
(2018). Benchmarking static analysis tools for web security. IEEE Transac-
tions on Reliability, 67(3):1159–1175.

Ouffoué, G., Ortiz, A. M., Cavalli, A. R., Mallouli, W., Domingo-Ferrer, J.,
Sánchez, D., and Zaidi, F. (2016). Intrusion detection and attack tolerance
for cloud environments: The clarus approach. In 2016 IEEE 36th International
Conference on Distributed Computing Systems Workshops (ICDCSW), pages
61–66. IEEE.

Ouffoué, G., Zaïdi, F., and Cavalli, A. R. (2019). Attack tolerance for services-
based applications in the cloud. In IFIP International Conference on Testing
Software and Systems, pages 242–258. Springer.

Pan, J., Yan, G., and Fan, X. (2017). Digtool: A virtualization-based framework
for detecting kernel vulnerabilities. In 26th USENIX Security Symposium
(USENIX Security 17), pages 149–165, Vancouver, BC. USENIX Association.

Patel, A., Qassim, Q., and Wills, C. (2010). Survey of intrusion detection and
prevention systems. Information Management and Computer Security, 18.

Pham, D. and Karaboga, D. (2012). Intelligent optimisation techniques: genetic
algorithms, tabu search, simulated annealing and neural networks. Springer
Science & Business Media.

Potii, O., Illiashenko, O., and Komin, D. (2015). Advanced security assurance
case based on iso/iec 15408. In International Conference on Dependability
and Complex Systems, pages 391–401. Springer.

Poulin, L. and Guay, B. (2008). Iso/iec 27034 application security-overview.
20.1 Kyoto, page 29.

— 146 —

Bibliography

Powers, D. M. W. (2020). Evaluation: from precision, recall and f-measure to
roc, informedness, markedness and correlation.

Rai, P. and Singh, S. (2010). A survey of clustering techniques. International
Journal of Computer Applications, 7(12).

Rawat, M. S., Mittal, A., and Dubey, S. K. (2012). Survey on impact of soft-
ware metrics on software quality. IJACSA) International Journal of Advanced
Computer Science and Applications, 3(1).

Ren, J. and et al. (2019). A buffer overflow prediction approach based on software
metrics and machine learning. Security and Communication Networks, 2019.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ” why should i trust you?”
explaining the predictions of any classifier. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining,
pages 1135–1144.

Rish, I. et al. (2001). An empirical study of the naive bayes classifier. In IJCAI
2001 workshop on empirical methods in artificial intelligence, volume 3, pages
41–46.

Rosenberg, L., Hammer, T., and Shaw, J. (1998). Software metrics and reliab-
ility. In 9th international symposium on software reliability engineering.

Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O., Elling-
wood, P., and McConley, M. (2018). Automated vulnerability detection in
source code using deep representation learning. In 2018 17th IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA), pages
757–762. IEEE.

S., S. and et. al. (1991). A survey of decision tree classifier methodology. In
IEEE Transactions on Systems, Man, and Cybernetics.

Saket, S. and Pandya, S. (2016). An overview of partitioning algorithms in clus-
tering techniques. International Journal of Advanced Research in Computer
Engineering & Technology (IJARCET), 5.

Saleh, K. and Elshahry, G. (2009). Modeling security requirements for trust-
worthy systems. Encyclopedia of Information Science and Technology edited
by Mehdi Khosrow-Pour, pages 2657–2664.

Schapire, R. (2002). The boosting approach to machine learning -an overview. In
Nonlinear Estimation and Classification - Lecture Notes in Statistics, volume
171, pages 149–171.

Schober, P. e. a. (2018). Correlation coefficients: Appropriate use and interpret-
ation. Anesthesia and analgesia, 126(5):1763–1768.

SciTools (2017). Understand static code analysis tool.

— 147 —

Bibliography

security, I. J. S. . I. (2009). Iso 15408-1: 2009 - information technology - se-
curity techniques-evaluation criteria for it security. cybersecurity and privacy
protection.

Sexton, R. S., Dorsey, R. E., and Johnson, J. D. (1999). Optimization of neural
networks: A comparative analysis of the genetic algorithm and simulated
annealing. European Journal of Operational Research, 114(3):589–601.

Shan, L., Sangchoolie, B., Folkesson, P., Vinter, J., Schoitsch, E., and Loiseaux,
C. (2019). A survey on the applicability of safety, security and privacy stand-
ards in developing dependable systems. In International Conference on Com-
puter Safety, Reliability, and Security, pages 74–86. Springer.

Shen, X. (2018). Predicting vulnerable files by using machine learning method.
Master’s thesis, Faculty of Electrical Engineering, Mathematics and Computer
Science(EWI), Delft University of Technology.

Shin, Y. (2008). Exploring complexity metrics as indicators of software vulnerab-
ility. In Proc. of the Int. Doctoral Symp. on Empirical Soft. Eng.(IDoESE’08),
page 3.

Shin, Y., Meneely, A., Williams, L., and Osborne, J. A. (2010). Evaluating com-
plexity, code churn, and developer activity metrics as indicators of software
vulnerabilities. IEEE Transactions on Software Engineering, 37(6):772–787.

Shin, Y. and Williams, L. (2008). Is complexity really the enemy of software
security? In Proceedings of the 4th ACM workshop on Quality of protection,
pages 47–50. ACM.

Shin, Y. and Williams, L. (2011). An initial study on the use of execution
complexity metrics as indicators of software vulnerabilities. In Proceedings of
the 7th International Workshop on Software Engineering for Secure Systems,
pages 1–7. ACM.

Siavvas, M., Kehagias, D., and Tzovaras, D. e. a. (2021). A hierarchical model
for quantifying software security based on static analysis alerts and software
metrics. Software Quality Journal, page 431–507.

Sinaga, K. P. and Yang, M.-S. (2020). Unsupervised k-means clustering al-
gorithm. IEEE access, 8:80716–80727.

Slemrod, J. and Katuscak, P. (2002). Do trust and trustworthiness pay off?
Working Paper 9200, National Bureau of Economic Research.

Srinivas, M. and Patnaik, L. M. (1994). Genetic algorithms: A survey. computer,
27(6):17–26.

Tate, R. F. (1954). Correlation between a discrete and a continuous vari-
able. point-biserial correlation. The Annals of mathematical statistics,
25(3):603–607.

Team, R. C. (2017). The r project for statistical computing.

— 148 —

Bibliography

Telang, R. and Wattal, S. (2007). An empirical analysis of the impact of soft-
ware vulnerability announcements on firm stock price. IEEE Transactions on
Software Engineering, 33(8):544–557.

Turner, S. (2014). Security vulnerabilities of the top ten programming languages:
C, java, c++, objective-c, c#, php, visual basic, python, perl, and ruby.
Journal of Technology Research, 5:1.

Turpin, K. (2010). Owasp secure coding practices-quick reference guide.

Velasquez, M. and Hester, P. (2013). An analysis of multi-criteria decision
making methods. International Journal of Operations Research, 10:56–66.

Vicente Mohino, J. d., Bermejo Higuera, J., Bermejo Higuera, J. R., and Si-
cilia Montalvo, J. A. (2019). The application of a new secure software devel-
opment life cycle (s-sdlc) with agile methodologies. Electronics, 8(11).

Vieira, M., Antunes, N., and Madeira, H. (2009). Using web security scanners to
detect vulnerabilities in web services. In IEEE/IFIP International Conference
on Dependable Systems & Networks (DSN), pages 566–571. IEEE.

Viera, A. J., Garrett, J. M., et al. (2005). Understanding interobserver agree-
ment: the kappa statistic. Fam Med, 37(5):360–363.

Wagner, D., Foster, J. S., Brewer, E. A., and Aiken, A. (2000). A first step
towards automated detection of buffer overrun vulnerabilities. In NDSS, pages
2000–02.

Walfish, S. (2006). A review of statistical outlier methods. Pharmaceutical
technology, 30(11):82.

Walker, A., Coffey, M., Tisnovsky, P., and Černý, T. (2020). On Limitations of
Modern Static Analysis Tools, pages 577–586.

Wang, A., An, N., Yang, J., Chen, G., Li, L., and Alterovitz, G. (2017).
Wrapper-based gene selection with markov blanket. Computers in biology
and medicine, 81:11–23.

Wang, H., Tang, Y., Yin, G., and Li, L. (2006). Trustworthiness of internet-
based software. Science in China Series F: Information Sciences, 49:759–773.

Westreich, D., Lessler, J., and Funk, M. J. (2010). Propensity score estima-
tion: neural networks, support vector machines, decision trees (cart), and
meta-classifiers as alternatives to logistic regression. Journal of clinical epi-
demiology, 63(8):826–833.

Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016). Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann.

Wood, J. M. (2007). Understanding and computing cohen’s kappa: A tutorial.
WebPsychEmpiricist. Web Journal at http://wpe.info/.

— 149 —

Bibliography

Wysopal, C. and et. al (2006). The Art of Software Security Testing: Identifying
Software Security Flaws. Pearson Education.

Yang, Y., Wang, Q., and Li, M. (2009). Process trustworthiness as a capability
indicator for measuring and improving software trustworthiness. volume 5543,
pages 389–401.

Yu, C. H. (2002). Resampling methods: concepts, applications, and justification.
Practical Assessment, Research, and Evaluation, 8(1):19.

Yu, L. and Liu, H. (2004). Efficient feature selection via analysis of relevance
and redundancy. Journal of machine learning research, 5(Oct):1205–1224.

Zhao, J. and Gong, R. (2015). A new framework of security vulnerabilities detec-
tion in php web application. In 2015 9th International Conference on Innov-
ative Mobile and Internet Services in Ubiquitous Computing, pages 271–276.

— 150 —

Appendixes

— 151 —

Appendixes

A - Software Metrics
This Appendix presents an extended list of software metrics from different types:
complexity, volume, coupling and cohesion. The metrics used in the experi-
mental evaluations throughout this thesis are identified in blue.

— 152 —

Appendixes

Ta
bl
e
A
.1
:E

xt
en
de
d
lis
t
of

co
m
pl
ex
ity

m
et
ric

s.

M
et

ri
cs

Sh
or

t
N

am
e

M
et

ri
cs

N
am

e
D

es
cr

ip
ti

on
Av

gC
yc
lo
m
at
ic

Av
er
ag
e
C
yc
lo
m
at
ic

C
om

pl
ex
ity

Av
er
ag
e
cy
cl
om

at
ic

co
m
pl
ex
ity

fo
r
al
ln

es
te
d
fu
nc
tio

ns
or

m
et
ho

ds
Av

gE
ss
en
tia

l
Av

er
ag
e
Es

se
nt
ia
lC

yc
lo
m
at
ic

C
om

pl
ex
ity

Av
er
ag
e
Es

se
nt
ia
lc

om
pl
ex
ity

fo
r
al
ln

es
te
d
fu
nc
tio

ns
or

m
et
ho

ds
Av

gE
ss
en
tia

lS
tr
ic
tM

od
ifi
ed

Av
er
ag
e
Es

se
nt
ia
lS

tr
ic
t
M
od

ifi
ed

C
om

pl
ex
ity

Av
er
ag
e
st
ric

t
m
od

ifi
ed

es
se
nt
ia
lc

om
pl
ex
ity

fo
r
al
ln

es
te
d
fu
nc
tio

ns
or

m
et
ho

ds
Av

gC
yc
lo
m
at
ic
M
od

ifi
ed

Av
er
ag
e
M
od

ifi
ed

C
yc
lo
m
at
ic

C
om

pl
ex
ity

Av
er
ag
e
m
od

ifi
ed

cy
cl
om

at
ic

co
m
pl
ex
ity

fo
r
al
ln

es
te
d
fu
nc
tio

ns
or

m
et
ho

ds
Av

gM
ax

N
es
tin

g
Av

er
ag
e
N
es
tin

g
Av

er
ag
e
of

m
ax

im
um

ne
st
in
g
le
ve
lo

fc
on

tr
ol

co
ns
tr
uc
ts

Av
gC

yc
lo
m
at
ic
St
ric

t
Av

er
ag
e
St
ric

t
C
yc
lo
m
at
ic

C
om

pl
ex
ity

Av
er
ag
e
st
ric

t
cy
cl
om

at
ic

co
m
pl
ex
ity

fo
r
al
ln

es
te
d
fu
nc
tio

ns
or

m
et
ho

ds
R
at
io
C
om

m
en
tT

oC
od

e
C
om

m
en
t
to

C
od

e
R
at
io

R
at
io

of
co
m
m
en
t
lin

es
to

co
de

lin
es

C
yc
lo
m
at
ic

C
yc
lo
m
at
ic

C
om

pl
ex
ity

C
yc
lo
m
at
ic

co
m
pl
ex
ity

M
ax

In
he
rit

an
ce
Tr

ee
D
ep
th

of
In
he
rit

an
ce

Tr
ee

M
ax

im
um

de
pt
h
of

cl
as
s
in

in
he
rit

an
ce

tr
ee

Es
se
nt
ia
l

Es
se
nt
ia
lC

om
pl
ex
ity

Es
se
nt
ia
lc

om
pl
ex
ity

Es
se
nt
ia
lS
tr
ic
tM

od
ifi
ed

Es
se
nt
ia
lS

tr
ic
t
M
od

ifi
ed

C
om

pl
ex
ity

St
ric

t
M
od

ifi
ed

Es
se
nt
ia
lc

om
pl
ex
ity

H
K

H
en
ry

K
af
ur
a

M
ea
su
re
s
in
fo
rm

at
io
n
flo

w
re
la
tiv

e
to

fu
nc
tio

n
siz

e
K
no

ts
K
no

ts
M
ea
su
re

of
ov
er
la
pp

in
g
ju
m
ps

M
ax

C
yc
lo
m
at
ic

M
ax

C
yc
lo
m
at
ic

C
om

pl
ex
ity

M
ax

im
um

cy
cl
om

at
ic

co
m
pl
ex
ity

of
al
ln

es
te
d
fu
nc
tio

ns
or

m
et
ho

ds
M
ax

Es
se
nt
ia
l

M
ax

Es
se
nt
ia
lC

om
pl
ex
ity

M
ax

im
um

es
se
nt
ia
lc

om
pl
ex
ity

of
al
ln

es
te
d
fu
nc
tio

ns
or

m
et
ho

ds
M
ax

Es
se
nt
ia
lS
tr
ic
tM

od
ifi
ed

M
ax

Es
se
nt
ia
lS

tr
ic
t
M
od

ifi
ed

C
om

pl
ex
ity

M
ax

im
um

st
ric

t
m
od

ifi
ed

es
se
nt
ia
lc

om
pl
ex
ity

of
al
ln

es
te
d
fu
nc
tio

ns
or

m
et
ho

ds
M
ax

Es
se
nt
ia
lK

no
ts

M
ax

K
no

ts
M
ax

im
um

K
no

ts
af
te
r
st
ru
ct
ur
ed

pr
og
ra
m
m
in
g
co
ns
tr
uc
ts

ha
ve

be
en

re
m
ov
ed

M
ax

C
yc
lo
m
at
ic
M
od

ifi
ed

M
ax

M
od

ifi
ed

C
yc
lo
m
at
ic

C
om

pl
ex
ity

M
ax

im
um

m
od

ifi
ed

cy
cl
om

at
ic

co
m
pl
ex
ity

of
ne
st
ed

fu
nc
tio

ns
or

m
et
ho

ds
M
ax

C
yc
lo
m
at
ic
St
ric

t
M
ax

St
ric

t
C
yc
lo
m
at
ic

C
om

pl
ex
ity

M
ax

im
um

st
ric

t
cy
cl
om

at
ic

co
m
pl
ex
ity

of
ne
st
ed

fu
nc
tio

ns
or

m
et
ho

ds
M
ax

M
ax

N
es
tin

g
M
ax

im
um

N
es
tin

g
M
ax

im
um

ne
st
in
g
le
ve
lo

fc
on

tr
ol

co
ns
tr
uc
t

M
in
Es

se
nt
ia
lK

no
ts

M
in
im

um
K
no

ts
M
in
im

um
K
no

ts
af
te
r
st
ru
ct
ur
ed

pr
og
ra
m
m
in
g
co
ns
tr
uc
ts

ha
ve

be
en

re
m
ov
ed

C
yc
lo
m
at
ic
M
od

ifi
ed

M
od

ifi
ed

C
yc
lo
m
at
ic

C
om

pl
ex
ity

M
od

ifi
ed

cy
cl
om

at
ic

co
m
pl
ex
ity

M
ax

N
es
tin

g
N
es
tin

g
N
es
tin

g
le
ve
lo

fc
on

tr
ol

co
ns
tr
uc
ts

C
ou

nt
Pa

th
Pa

th
s

N
um

be
r
of

po
ss
ib
le

pa
th
s,

no
t
co
un

tin
g
ab

no
rm

al
ex
its

C
yc
lo
m
at
ic
St
ric

t
St
ric

t
C
yc
lo
m
at
ic

C
om

pl
ex
ity

St
ric

t
cy
cl
om

at
ic

co
m
pl
ex
ity

Su
m
C
yc
lo
m
at
ic

Su
m

C
yc
lo
m
at
ic

C
om

pl
ex
ity

Su
m

of
cy
cl
om

at
ic

co
m
pl
ex
ity

of
al
ln

es
te
d
fu
nc
tio

ns
or

m
et
ho

ds
Su

m
Es

se
nt
ia
l

Su
m

Es
se
nt
ia
lC

om
pl
ex
ity

Su
m

of
es
se
nt
ia
lc

om
pl
ex
ity

of
al
ln

es
te
d
fu
nc
tio

ns
or

m
et
ho

ds
Su

m
Es

se
nt
ia
lS
tr
ic
tM

od
ifi
ed

Su
m

Es
se
nt
ia
lS

tr
ic
t
M
od

ifi
ed

C
om

pl
ex
ity

Su
m

of
st
ric

t
m
od

ifi
ed

es
se
nt
ia
lc

om
pl
ex
ity

of
al
ln

es
te
d
fu
nc
tio

ns
or

m
et
ho

ds
Su

m
C
yc
lo
m
at
ic
M
od

ifi
ed

Su
m

M
od

ifi
ed

C
yc
lo
m
at
ic

C
om

pl
ex
ity

Su
m

of
m
od

ifi
ed

cy
cl
om

at
ic

co
m
pl
ex
ity

of
al
ln

es
te
d
fu
nc
tio

ns
or

m
et
ho

ds
Su

m
M
ax

N
es
tin

g
Su

m
ne
st
in
g

Su
m

of
m
ax

im
um

ne
st
in
g
le
ve
lo

fc
on

tr
ol

co
ns
tr
uc
ts

Su
m
C
yc
lo
m
at
ic
St
ric

t
Su

m
St
ric

t
C
yc
lo
m
at
ic

C
om

pl
ex
ity

Su
m

of
st
ric

t
cy
cl
om

at
ic

co
m
pl
ex
ity

of
al
ln

es
te
d
fu
nc
tio

ns
or

m
et
ho

ds

— 153 —

Appendixes
Table

A
.2:Extended

list
ofvolum

e
m
etrics.

M
etrics

Short
N

am
e

M
etrics

N
am

e
D

escription
A
ltAvgLineB

lank
Average

N
um

ber
ofB

lank
Lines

Average
num

ber
ofblank

lines
for

allnested
functions,including

inactive
regions

A
ltAvgLineC

ode
Average

N
um

ber
ofLines

ofC
ode

Average
num

ber
oflines

containing
source

code
for

allnested
functions,including

inactive
regions

A
ltAvgLineC

om
m
ent

Average
N
um

ber
ofLines

w
ith

C
om

m
ents

Average
num

ber
oflines

containing
com

m
ent

for
allnested

functions,including
inactive

regions
A
ltC

ountLineB
lank

B
lank

Lines
ofC

ode
N
um

ber
ofblank

lines,including
inactive

regions
A
ltC

ountLineC
ode

Lines
ofC

ode
N
um

ber
oflines

containing
source

code,including
inactive

regions
A
ltC

ountLineC
om

m
ent

Lines
w
ith

C
om

m
ents

N
um

ber
oflines

containing
com

m
ent,including

inactive
regions

AvgLine
Average

N
um

ber
ofLines

Average
num

ber
oflines

for
allnested

functions
AvgLineB

lank
Average

N
um

ber
ofB

lank
Lines

Average
num

ber
ofblank

for
allnested

functions
AvgLineC

ode
Average

N
um

ber
ofLines

ofC
ode

Average
num

ber
oflines

containing
source

code
for

allnested
functions

AvgLineC
om

m
ent

Average
N
um

ber
ofLines

w
ith

C
om

m
ents

Average
num

ber
oflines

containing
com

m
ent

for
allnested

functions
C
ountD

eclFile
N
um

ber
ofFiles

N
um

ber
offiles

C
ountD

eclFunction
Function

N
um

ber
offunctions

C
ountD

eclInstance
VariableInternal

InternalInstance
Variables

N
um

ber
ofinternalinstance

variables
C
ountD

eclInstanceVariable
ProtectedInternal

Protected
InternalInstance

Variables
N
um

ber
ofprotected

internalinstance
variables

C
ountD

eclM
ethod

ProtectedInternal
LocalProtected

InternalM
ethods

N
um

ber
oflocalprotected

internalm
ethods

C
ountD

eclM
ethodFriend

Friend
M
ethods

N
um

ber
oflocalfriend

m
ethods

C
ountD

eclM
ethodInternal

LocalInternalM
ethods

N
um

ber
oflocalinternalm

ethods
C
ountInput

Inputs
N
um

ber
ofcalling

subprogram
s
plus

globalvariables
read

(FanIn)
C
ountLine

PhysicalLines
N
um

ber
ofalllines

C
ountLineB

lank
B
lank

Lines
ofC

ode
N
um

ber
ofblank

lines
C
ountLineC

ode
Source

Lines
ofC

ode
N
um

ber
oflines

containing
source

code
C
ountLineC

odeD
ecl

D
eclarative

Lines
ofC

ode
N
um

ber
oflines

containing
declarative

source
code

C
ountLineC

odeExe
Executable

Lines
ofC

ode
N
um

ber
oflines

containing
executable

source
code

C
ountLineC

om
m
ent

Lines
w
ith

C
om

m
ents

N
um

ber
oflines

containing
com

m
ent

C
ountLineInactive

Inactive
Lines

N
um

ber
ofinactive

lines
C
ountLinePreprocessor

Preprocessor
Lines

N
um

ber
ofpreprocessor

lines
C
ountSem

icolon
Sem

icolons
N
um

ber
ofsem

icolons
C
ountStm

t
Statem

ents
N
um

ber
ofstatem

ents
C
ountStm

tD
ecl

D
eclarative

Statem
ents

N
um

ber
ofdeclarative

statem
ents

C
ountStm

tEm
pty

Em
pty

Statem
ents

N
um

ber
ofem

pty
statem

ents
C
ountStm

tExe
Executable

Statem
ents

N
um

ber
ofexecutable

statem
ents

— 154 —

Appendixes

Ta
bl
e
A
.3
:E

xt
en
de
d
lis
t
of

co
up

lin
g
an

d
co
he
sio

n
m
et
ric

s.

M
et

ri
cs

Sh
or

t
N

am
e

M
et

ri
cs

N
am

e
D

es
cr

ip
ti

on
Av

gF
an

In
Av

er
ag

e
In
pu

t
Av

er
ag

e
nu

m
be

r
of

ca
lli
ng

su
bp

ro
gr
am

s
pl
us

gl
ob

al
va
ria

bl
es

re
ad

Av
gF

an
O
ut

Av
er
ag

e
O
ut
pu

t
Av

er
ag

e
nu

m
be

r
of

ca
lle
d
su
bp

ro
gr
am

s
pl
us

gl
ob

al
va
ria

bl
es

se
t

C
ou

nt
C
la
ss
C
ou

pl
ed

C
ou

pl
in
g
B
et
we

en
O
bj
ec
ts

N
um

be
r
of

ot
he
r
cl
as
se
s
co
up

le
d
to

[C
B
O

(c
ou

pl
in
g
be

tw
ee
n
ob

je
ct

cl
as
se
s)
]

C
ou

nt
C
la
ss
D
er
iv
ed

N
um

be
r
of

C
hi
ld
re
n

N
um

be
r
of

im
m
ed
ia
te

su
bc

la
ss
es

[N
O
C

(n
um

be
r
of

ch
ild

re
n)
]

C
ou

nt
D
ec
lC
la
ss

C
la
ss
es

N
um

be
r
of

cl
as
se
s

C
ou

nt
D
ec
lC
la
ss
M
et
ho

d
C
la
ss

M
et
ho

ds
N
um

be
r
of

cl
as
s
m
et
ho

ds
C
ou

nt
D
ec
lC
la
ss
Va

ria
bl
e

C
la
ss

Va
ria

bl
es

N
um

be
r
of

cl
as
s
va
ria

bl
es

C
ou

nt
D
ec
lF
un

ct
io
n

Fu
nc
tio

n
N
um

be
r
of

fu
nc
tio

ns
C
ou

nt
D
ec
lIn

st
an

ce
Va

ria
bl
eP

ub
lic

Pu
bl
ic

In
st
an

ce
Va

ria
bl
es

N
um

be
r
of

pu
bl
ic

in
st
an

ce
va
ria

bl
es

C
ou

nt
D
ec
lIn

st
an

ce
Va

ria
bl
eP

riv
at
e

Pr
iv
at
e
In
st
an

ce
Va

ria
bl
es

N
um

be
r
of

pr
iv
at
e
in
st
an

ce
va
ria

bl
es

C
ou

nt
D
ec
lIn

st
an

ce
Va

ria
bl
eP

ro
te
ct
ed

Pr
ot
ec
te
d
In
st
an

ce
Va

ria
bl
es

N
um

be
r
of

pr
ot
ec
te
d
in
st
an

ce
va
ria

bl
es

C
ou

nt
D
ec
lIn

st
an

ce
M
et
ho

d
In
st
an

ce
M
et
ho

ds
N
um

be
r
of

in
st
an

ce
m
et
ho

ds
C
ou

nt
D
ec
lIn

st
an

ce
Va

ria
bl
e

In
st
an

ce
Va

ria
bl
es

N
um

be
r
of

in
st
an

ce
va
ria

bl
es

C
ou

nt
D
ec
lM

et
ho

d
Lo

ca
lM

et
ho

ds
N
um

be
r
of

lo
ca
lm

et
ho

ds
C
ou

nt
D
ec
lM

et
ho

d
St
ric

tP
ub

lis
he
d

Lo
ca
ls

tr
ic
t
pu

bl
ish

ed
m
et
ho

ds
N
um

be
r
of

lo
ca
ls

tr
ic
t
pu

bl
ish

ed
m
et
ho

ds
C
ou

nt
D
ec
lM

et
ho

dA
ll

M
et
ho

ds
N
um

be
r
of

m
et
ho

ds
,i
nc
lu
di
ng

in
he
rit

ed
on

es
C
ou

nt
D
ec
lM

et
ho

dC
on

st
Lo

ca
lC

on
st

M
et
ho

ds
N
um

be
r
of

lo
ca
lc

on
st

m
et
ho

ds
C
ou

nt
D
ec
lM

et
ho

dD
ef
au

lt
Lo

ca
lD

ef
au

lt
V
isi
bi
lit
y
M
et
ho

ds
N
um

be
r
of

lo
ca
ld

ef
au

lt
m
et
ho

ds
C
ou

nt
D
ec
lM

et
ho

dF
rie

nd
Fr
ie
nd

M
et
ho

ds
N
um

be
r
of

lo
ca
lf
rie

nd
m
et
ho

ds
C
ou

nt
D
ec
lM

et
ho

dP
riv

at
e

Pr
iv
at
e
M
et
ho

ds
N
um

be
r
of

lo
ca
lp

riv
at
e
m
et
ho

ds
C
ou

nt
D
ec
lM

et
ho

dP
ro
te
ct
ed

Pr
ot
ec
te
d
M
et
ho

ds
N
um

be
r
of

lo
ca
lp

ro
te
ct
ed

m
et
ho

ds
C
ou

nt
D
ec
lM

et
ho

dP
ub

lic
Pu

bl
ic

M
et
ho

ds
N
um

be
r
of

lo
ca
lp

ub
lic

m
et
ho

ds
C
ou

nt
D
ec
lM

et
ho

dS
tr
ic
tP

riv
at
e

Lo
ca
ls

tr
ic
t
pr
iv
at
e
m
et
ho

ds
N
um

be
r
of

lo
ca
ls

tr
ic
t
pr
iv
at
e
m
et
ho

ds
C
ou

nt
D
ec
lM

od
ul
e

M
od

ul
es

N
um

be
r
of

m
od

ul
es

C
ou

nt
D
ec
lP
ro
gU

ni
t

Pr
og

ra
m

U
ni
ts

N
um

be
r
of

no
n-
ne
st
ed

m
od

ul
es
,b

lo
ck

da
ta

un
its

,a
nd

su
bp

ro
gr
am

s
C
ou

nt
D
ec
lS
ub

pr
og

ra
m

Su
bp

ro
gr
am

s
N
um

be
r
of

su
bp

ro
gr
am

s.
C
ou

nt
In
pu

t
In
pu

ts
N
um

be
r
of

ca
lli
ng

su
bp

ro
gr
am

s
pl
us

gl
ob

al
va
ria

bl
es

se
t
[F
an

In
]

C
ou

nt
O
ut
pu

t
O
ut
pu

ts
N
um

be
r
of

ca
lle
d
su
bp

ro
gr
am

s
pl
us

gl
ob

al
va
ria

bl
es

se
t
[F
an

O
ut
]

C
ou

nt
Pa

ck
ag

eC
ou

pl
ed

C
ou

pl
ed

Pa
ck
ag

es
N
um

be
r
of

ot
he
r
pa

ck
ag

es
co
up

le
d
to

M
ax

Fa
nI
n

M
ax

im
um

In
pu

t
M
ax

im
um

nu
m
be

r
of

ca
lli
ng

su
bp

ro
gr
am

s
pl
us

gl
ob

al
va
ria

bl
es

se
t

M
ax

Fa
nO

ut
M
ax

im
um

O
ut
pu

t
M
ax

im
um

nu
m
be

r
of

ca
lle
d
su
bp

ro
gr
am

s
pl
us

gl
ob

al
va
ria

bl
es

se
t

M
ax

In
he
rit

an
ce
Tr

ee
D
ep
th

of
In
he
rit

an
ce

Tr
ee

M
ax

im
um

de
pt
h
of

cl
as
s
in

in
he
rit

an
ce

tr
ee

[D
IT

]
Pe

rc
en
tL

ac
kO

fC
oh

es
io
n

La
ck

of
C
oh

es
io
n
in

M
et
ho

ds
10

0%
m
in
us

th
e
av
er
ag

e
co
he
sio

n
fo
r
pa

ck
ag

e
en
tit

ie
s
[L
C
O
M
]

— 155 —

	Acknowledgments
	Abstract
	Resumo
	Foreword
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Problem Statement
	Contributions
	Outline of the Thesis

	Background and Related Work
	Software Security
	Software Vulnerabilities
	Preventing Software Vulnerabilities
	Detecting Software Vulnerabilities
	Evidences of Software Security Vulnerabilities

	Secure Software Development Lifecycle (SSDLC)
	Requirements Definition Phase of SSDLC
	Design Phase of SSDLC
	Development and Testing Phases of SSDLC
	Deployment/Monitoring Phase of SSDLC

	Trust and Trustworthiness in Software Systems
	Trustworthy Software
	Trustworthiness Assessment

	Machine Learning for Software Security
	Summary

	Vulnerable Code Detection using Software Metrics and Machine Learning: Experimental Studies
	Dataset Characteristics
	Correlation between Software Metrics and Security Vulnerabilities
	Statistical Analysis
	Dimension Reduction
	Feature selection

	Software Metrics and Machine Learning to Detect Vulnerabilities
	Machine Learning Algorithms
	Application Scenarios and Decision Criteria
	Class Distribution in the Dataset
	Experimentation and Analysis
	Analysis of the Classification Results

	Summary

	Trustworthiness Benchmarking using Software Metrics
	Trustworthiness Benchmarking Framework
	Statistical Analysis and Normalization
	Relative Importance of Features
	Trustworthiness Assessment

	Framework Instantiation
	Assessment and Results
	Statistical Analysis and Normalization
	Relative Importance of Software Metrics
	Results and Discussion

	Validation and Generalization
	Responses of the Experts
	Individual and Aggregated Ranking
	Approach Generalization Discussion

	Summary

	Security Categorization of Code Units
	Code Units Categorization Framework
	Extract Security Evidences
	Characterization Models
	Categorization Mechanism
	Performance Assessment

	Framework Instantiations
	Consensus-Based Decision-Making (CBDM) Approach
	Trustworthiness Models (TMs) to Categorize Code

	CBDM Assessment and Results
	Best Combinations of Prediction Models
	Categorization based on the Application Scenarios
	Assessment of the Categorization Results

	TMs Assessment and Results
	Building the Trustworthiness Models
	Clustering Results and Discussion
	Considering Different Number of Clusters

	Summary

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Appendixes
	- Software Metrics

