
Victor Franco Costa

COEVOLUTIONARY
GENERATIVE ADVERSARIAL NETWORKS

Doctoral thesis submitted in partial fulfillment of the Doctoral Program in
Information Science and Technology supervised by Professor Nuno
António Marques Lourenço, co-supervised by Professor João Nuno
Gonçalves Costa Cavaleiro Correia and Professor Fernando Jorge

Penousal Martins Machado, and presented to the Department of
Informatics Engineering of the Faculty of Sciences and Technology of the

University of Coimbra.

November 2022

C O E V O L U T I O N A RY
G E N E R AT I V E A D V E R S A R I A L N E T W O R K S

victor franco costa

vfc@dei.uc.pt

A thesis submitted to the

University of Coimbra

in partial fulfillment of the requirements for the

Doctoral Program

in Information Science and Technology

Department of Informatics Engineering
Faculty of Sciences and Technology

University of Coimbra

Coimbra, November 2022

This work was partially funded by the FCT - Foundation for Science and Technol-
ogy, I.P./MCTES through national funds (PIDDAC), within the scope of CISUC R&D
Unit - UIDB/00326/2020 or project code UIDP/00326/2020, and by the project grant
DSAIPA/DS/0022/2018 (GADgET).

Coevolutionary Generative Adversarial Networks
© 2022 Victor Franco Costa

this thesis was prepared under the supervision of:
Nuno António Marques Lourenço
João Nuno Gonçalves Costa Cavaleiro Correia
Fernando Jorge Penousal Martins Machado

A B S T R A C T

Generative Adversarial Networks (GANs) became a hot topic, presenting impressive
results in the field of generative Machine Learning (ML). The GAN model consists
of two neural networks that are trained simultaneously as adversaries. Research has
been conducted to improve the GAN model, but there are still open challenges, such
as the training stability and the necessity to manually design the architectures.

Evolutionary Algorithms (EAs) are a family of algorithms inspired by biological evo-
lution, simulating the evolutionary mechanism found in nature. These algorithms are
designed to use selective pressure to discover solutions for problems. In coevolution,
more than one species are evolved simultaneously in a competitive or cooperative
environment. The application of EAs in the evolution of neural networks is called
neuroevolution, which can be used to automatically design the network architectures.

Our main goal is to propose a method that integrates neuroevolution and coevolu-
tion to enhance the coordination of the GAN training process, effectively applying the
principles of Evolutionary Computation (EC) and ML. We hypothesize that using EAs
to drive the training of GAN can improve the stability and provide the discovery of
efficient network architectures. Therefore, new models are proposed in the context of
this thesis. Our first contribution is a novel method called Coevolutionary Generative
Adversarial Networks (COEGAN). This model combines neuroevolution and coevolu-
tion to guide the training of GANs and to discover efficient architectures. COEGAN
is evaluated in different scenarios, using datasets commonly adopted to assess the
performance of GANs and compared with other GAN proposals. We design a set of
experiments to test our hypothesis by exploring the capacity of the model to improve
the training stability and the automatic discovery of efficient network architectures.
The results show that our models can overcome common issues in GANs and also
outperform other non-evolutionary approaches.

COEGAN was also improved with new mechanisms not only related to EAs but also
concerning advances developed for GANs. Experimental results suggest that these
proposals leverage the outcome quality, approximating the results with state-of-the-
art proposals. An evaluation method is also designed for simultaneous visualization
and quantification of the results. When applied to COEGAN and its variations, we
demonstrate the evolutionary aspects of the model and the ability to avoid issues
such as mode collapse. The results of this research are important to provide a robust
solution to train GANs, with stable training and automatic discovery of network ar-
chitectures, showing the potential of the application of EAs in GANs. With a stable
solution, a broader range of applications can be explored without the cost of manual
intervention in the design process of GANs.

v

R E S U M O

Redes Generativas Adversárias (RGA) tornaram-se um tema relevante, apresentando
resultados impressionantes no campo dos modelos generativos de aprendizado de
máquina (AM). O modelo RGA consiste em duas redes neuronais que são treinadas si-
multaneamente como adversárias. Pesquisas foram realizadas para melhorar as RGA,
mas ainda existem desafios em aberto, como a estabilidade do treinamento e a neces-
sidade de projetar manualmente as arquiteturas.

Algoritmos Evolucionários (AE) são uma família de algoritmos inspirados na
evolução biológica, simulando o mecanismo evolutivo encontrado na natureza. Esses
algoritmos são projetados para usar pressão seletiva para descobrir soluções para prob-
lemas. Na coevolução, mais de uma espécie evolui simultaneamente em um ambiente
competitivo ou cooperativo. A aplicação de AE na evolução das redes neuronais é
chamada de neuroevolução, pondendo ser usada para projetar automaticamente as
arquiteturas das redes.

Nosso principal objetivo é propor um método que combine neuroevolução e co-
evolução para aprimorar a coordenação do processo de treinamento das RGA, apli-
cando efetivamente os princípios da Computação Evolutiva (CE) e da Aprendizagem
de Máquina (AM). Nossa hipótese é que o uso de AE para conduzir o treinamento
das RGA pode melhorar a estabilidade e proporcionar a descoberta de arquiteturas
de rede eficientes. Deste modo, novos modelos são propostos no contexto desta tese.
Nossa primeira contribuição é um novo método chamado COEGAN (Redes Generati-
vas Adversárias Coevolucionárias). Este modelo combina neuroevolução e coevolução
para coordenar o treinamento das RGA e descobrir arquiteturas eficientes. COEGAN
foi avaliado em diferentes cenários, usando conjuntos de dados comumente adotados
para avaliar o desempenho das RGA e comparando com outras propostas. Experi-
mentos foram projetados para testar a hipótese deste trabalho de modo a explorar a
capacidade do modelo de melhorar a estabilidade do treinamento e a descoberta au-
tomática de arquiteturas de rede eficientes. Os resultados mostram que nossos mod-
elos podem evitar problemas comuns em RGA e também superar outras abordagens
não evolutivas.

O COEGAN também foi aprimorado com novos mecanismos relacionados tanto ao
AE quanto aos avanços desenvolvidos para RGA. Os resultados experimentais sug-
erem que essas melhorias alavancam a qualidade dos resultados, aproximando-os do
estado da arte. Um método de avaliação foi proposto para promover a visualização e
quantificação simultânea dos resultados. Quando aplicado ao COEGAN e suas vari-
ações, demonstramos os aspectos evolutivos do modelo e a capacidade de evitar prob-
lemas. Os resultados desta tese são importantes para fornecer uma solução robusta

vii

para treinar RGA, com treinamento estável e descoberta automática de arquiteturas de
rede, mostrando o potencial da aplicação de AE em RGA. Com uma solução estável,
uma gama mais ampla de aplicações pode ser explorada sem o custo de intervenção
manual no processo de criação das RGA.

viii

A C K N O W L E D G E M E N T S / A G R A D E C I M E N T O S 1

Começo por expressar a minha profunda gratidão aos meus orientadores, professores
Nuno Lourenço, João Correia e Penousal Machado. A orientação e o incentivo de-
les foram elementos indispensáveis para a realização da pesquisa e elaboração deste
documento.

Aos meus familiares, especialmente aos meus pais, agradeço por acreditar em
minha capacidade e pelo apoio ao ingressar nessa jornada.

Expresso um agradecimento especial à minha companheira Talita Leão, cujo apoio
e incentivo foram fundamentais durante todo o meu percurso. A sua presença e apoio
constante representaram uma força imensa durante este longo processo.

Por fim, expresso minha gratidão aos meus antigos professores e colegas, cuja in-
fluência no passado foi determinante para a minha formação. A todos que, de alguma
forma, contribuíram para a concretização deste trabalho, o meu mais sincero obrigado.

1 For personal reasons, the acknowledges are written in Portuguese. Apologies to the non-Portuguese
speakers.

ix

C O N T E N T S

1 introduction 1

1.1 Research Questions . 3

1.2 Contributions . 4

1.3 Document Structure . 6

2 background and related work 7

2.1 Generative Adversarial Networks . 7

2.1.1 Issues . 9

2.1.2 Evaluation Metrics . 11

2.1.3 Visualizing the Distribution of Samples 13

2.1.4 Variations of GANs . 15

2.2 Evolutionary Algorithms . 21

2.2.1 Neuroevolution . 23

2.2.2 Coevolution . 25

2.2.3 Competitive Coevolution and Neuroevolution 27

2.3 Evolutionary Algorithms and Generative Adversarial Networks 29

2.3.1 Analysis of Evolutionary Aspects of GANs 29

2.3.2 Current Proposals . 30

2.3.3 Discussion . 37

2.4 Summary . 42

3 coevolutionary generative adversarial networks 43

3.1 Model . 43

3.1.1 Fitness . 45

3.1.2 Variation Operators . 45

3.1.3 Pairing Strategy . 47

3.1.4 Selection . 47

3.2 Experiments . 48

3.2.1 Experimental setup . 49

3.2.2 Results . 50

3.3 Evaluation and Comparison . 53

3.3.1 Experimental Setup . 54

3.3.2 Results . 55

3.4 Discussion and Limitations . 64

4 exploring the evolutionary aspects of the model 67

4.1 Using the Skill Rating as Fitness . 67

4.1.1 Model . 68

4.1.2 Experiments . 70

4.1.3 Discussion . 75

xi

xii contents

4.2 Exploring the Evolution of GANs through Quality Diversity 77

4.2.1 Model . 77

4.2.2 Experiments . 79

4.2.3 Discussion . 88

4.3 Summary . 89

5 incorporating gan advances into the evolutionary model 91

5.1 Mutation of Loss Functions . 91

5.1.1 New Mutation Operator . 91

5.1.2 Experiments . 92

5.1.3 Discussion . 99

5.2 COEGAN-v2 . 100

5.2.1 Model Extensions . 100

5.2.2 Experiments . 101

5.2.3 Discussion . 111

5.3 Summary . 113

6 evaluating the progress of generative models through t-sne 115

6.1 Evaluation Method . 116

6.2 Experiments . 118

6.2.1 Experimental Setup . 118

6.2.2 Results: COEGAN on Fashion-MNIST 120

6.2.3 Results: COEGAN-v2 on CelebA 123

6.3 Summary . 125

7 conclusions and future work 127

7.1 Future Work . 131

bibliography 133

L I S T O F F I G U R E S

Figure 1 High-level interaction between the components of a GAN dur-
ing the training process. 8

Figure 2 Mode collapse occurring in the MNIST dataset. 10

Figure 3 Losses of the generator and discriminator of a training with the
vanishing gradient issue. 11

Figure 4 Example of the distribution of images from MNIST by t-SNE
into a two-dimensional grid. 14

Figure 5 High-level interaction between the components of a Condi-
tional GAN during the training process. Note the additional
conditional input, indicating to the model that the number 3

should be represented. 20

Figure 6 Representation of (a) the all vs. all, (b) all vs. best, and (c) random
pairing strategies. 26

Figure 7 A 3 × 3 grid representing the spatial coevolution mechanism
used in Lipizzaner. The neighborhood of the central cell in-
cludes the four-highlighted nodes in the grid. Each cell contains
one discriminator, one generator, and a mixture of weights. Im-
age adapted from Al-Dujaili et al. (2018) 34

Figure 8 Example of genotypes of a discriminator and a generator. The
discriminator contains two convolution layers and one linear
layer. The generator has one linear and two deconvolution lay-
ers. The parameters are listed for each gene (e.g., activation
type, kernel size, and the number of channels). 44

Figure 9 Example of crossover between discriminators. 46

Figure 10 Representation of (a) the all vs. all pairing strategy and (b) the
all vs. k-best competition pattern with k = 2. 48

Figure 11 Fitness for discriminators and generators with a 95% confidence
interval. 50

Figure 12 Progression of layers and the reuse of parameters with a 95%
confidence interval. 51

Figure 13 Samples created by a generator after the evolutionary process. . 51

Figure 14 The progression of samples created by the best generator
through generations . 52

Figure 15 Best (a) discriminator and (b) generator found after the final
generation. 53

Figure 16 Losses of the discriminator and generator on the MNIST dataset. 55

xiii

xiv List of Figures

Figure 17 The average number of layers on the MNIST dataset. 56

Figure 18 The average number of times a gene was reused when trained
on the MNIST dataset. 56

Figure 19 Root mean squared error on the MNIST dataset. 57

Figure 20 Inception Score on the MNIST dataset. 57

Figure 21 Fréchet Inception Distance (FID) Score on the MNIST dataset. . 58

Figure 22 Samples generated by COEGAN when training on the MNIST
dataset. 59

Figure 23 Best (a) discriminator and (b) generator found by COEGAN
when training on the MNIST dataset. 60

Figure 24 Losses of the discriminator and generator on the Fashion-
MNIST dataset. 60

Figure 25 The average number of layers on the Fashion-MNIST dataset. . 61

Figure 26 The average number of times a gene was reused when trained
on the Fashion-MNIST dataset. 61

Figure 27 Root mean squared error on the Fashion-MNIST dataset. 62

Figure 28 Inception Score on the Fashion-MNIST dataset. 62

Figure 29 FID Score on the Fashion-MNIST dataset. 63

Figure 30 Samples generated by COEGAN when training on the Fashion-
MNIST dataset. 63

Figure 31 The FID score of COEGAN on the CelebA dataset. COEGAN
achieves a FID score of 89.8± 17.2 at the last generation. 64

Figure 32 Samples generated by COEGAN when training on the CelebA
dataset. 65

Figure 33 Best FID score for generators with a 95% confidence interval . . 72

Figure 34 Comparison between the best FID score and the respective skill
rating of generators trained with the SVHN dataset. 74

Figure 35 Results for the experiments with the MNIST dataset. 75

Figure 36 Average number of parameters in the neural networks of gen-
erators and discriminators at each generation. Note that the
number of parameters for the DCGAN-based experiments is
constant, as there is not an evolutionary algorithm applied to
this case. 76

Figure 37 Samples produced by the best generator after the COEGAN
training. 76

Figure 38 Best FID Score on the MNIST dataset. 82

Figure 39 Boxplot of the FID score on MNIST dataset showing the perfor-
mance of best generators computed for each independent run. . 83

Figure 40 Average FID Score on the MNIST dataset. 83

Figure 41 Average number of samples used to train all discriminators
with MNIST. 84

List of Figures xv

Figure 42 Average number of samples used to train all generators with
MNIST. 84

Figure 43 Average number of samples used to train best discriminators
with MNIST. 85

Figure 44 Average number of samples used to train best generators with
MNIST. 85

Figure 45 Distribution of samples using t-SNE with the MNIST Dataset.
We show samples (a) from the input dataset, the best genera-
tor at the (b) first generation, (c) after ten generations, and (d)
at the end of training. We fed t-SNE with 1600 samples from
each scenario and used the results for positioning them into a
two-dimensional space. The number of overlapped samples is
displayed for each case. 86

Figure 46 Best FID Score on the CelebA dataset. 87

Figure 47 Samples created by (a) DCGAN after collapsing in final training
epoch and by (b) COEGAN+NSGC after training. 88

Figure 48 Best FID Score on the Fashion-MNIST dataset for COEGAN
and COEGAN with mutation of the loss functions. 94

Figure 49 Distribution of individuals in the population of generators re-
garding the loss function. The best individual of each genera-
tion is darker. 95

Figure 50 Distribution of individuals in the population of discriminators
regarding the loss function. The best individual of each gener-
ation is darker. 95

Figure 51 Distribution of individuals in the population of discriminators
regarding the loss function for all executions (best individuals
are darker). 96

Figure 52 Distribution of individuals in the population of generators re-
garding the loss function for all executions. The best individual
of each generation is darker. 96

Figure 53 Best FID Score on the Fashion-MNIST dataset for COEGAN
and DCGAN with and without batch normalization. 97

Figure 54 Boxplot of the FID score on Fashion-MNIST dataset showing
the performance of best generators computed for each inde-
pendent run. 98

Figure 55 Samples created by COEGAN+BN after training on Fashion-
MNIST. 99

xvi List of Figures

Figure 56 Example of genotypes of a discriminator and a generator. The
discriminator contains two convolution layers and one linear
layer. The generator has one linear, one deconvolution, and
one convolution with upsampling as layers. Normalization, the
number of output channels, and the number of output features
are randomly chosen. 102

Figure 57 FID score on Fashion-MNIST dataset showing the performance
of best generators computed for each independent run. 105

Figure 58 Boxplot of the FID score on Fashion-MNIST dataset showing
the performance of best generators at the last generation com-
puted for each independent run. 106

Figure 59 Boxplot of the FID score on Fashion-MNIST dataset showing
the performance of best score among all generations computed
for each independent run. 107

Figure 60 Samples produced by the best generator found by COEGAN-v2

when trained with Fashion-MNIST. 108

Figure 61 Architectures of the best generator and the best discrimina-
tor found by COEGAN-v2 after the evolutionary process. Both
the architecture of the discriminator (a) and the architecture of
the generator (b) are composed of five layers, using different
strategies for normalization. Furthermore, the generator con-
tains layers with the two possibilities for upscaling designed
in the model (transpose convolution and nearest upsampling
followed by convolution). 109

Figure 62 Average number of hidden layers using spectral, batch, and
none normalization strategies for generators evolved in COEGAN-
v2. 110

Figure 63 Average number of hidden layers using spectral, batch, and
none normalization strategies for discriminators evolved in
COEGAN-v2. 110

Figure 64 Average number of hidden layers of generators of types De-
convolution or ConvUpsample (Convolution with upsample)
in COEGAN-v2. 111

Figure 65 Boxplot of the execution time spent to calculate the fitness for
individuals in COEGAN composed of two to five layers. 111

Figure 66 Boxplot of the execution time spent to calculate the fitness for
individuals in COEGAN-v2 composed of two to five layers. . . 112

Figure 67 FID score on CelebA showing the performance of best genera-
tors computed for each independent run. 112

Figure 68 Samples produced by the best generator found by COEGAN-v2

when trained with CelebA. 113

Figure 69 Overview of the evaluation method designed to analyze the
progress of generators and discriminators in GANs. 116

Figure 70 Two-dimensional grid revealing the distribution of images after
applying t-SNE for generations 5 (a), 10 (b), 100 (c) of COEGAN,
and for the Fashion-MNIST dataset (d). 120

Figure 71 Comparison of samples created by the generator and samples
from the input dataset using t-SNE. First row shows samples
created by generators from the last generation of COEGAN.
Second and third rows display the nearest and farthest samples
from Fashion-MNIST using distances from the resulting t-SNE
grid. 121

Figure 72 Minimum distances between samples from Fashion-MNIST
and samples created by generators at the last generation of CO-
EGAN. 122

Figure 73 Average Jaccard index (10 executions) for COEGAN when com-
paring synthetic samples with samples drawn from Fashion-
MNIST. 122

Figure 74 Two-dimensional grid revealing the distribution of images af-
ter applying t-SNE for generations 5 (a), 10 (b), 100 (c) of
COEGAN-v2, and for the CelebA dataset (d). 123

Figure 75 Comparison of samples created by the generator and samples
from the input dataset using t-SNE. First row shows samples
created by generators from the last generation of COEGAN-v2.
Second and third rows display the nearest and farthest samples
from CelebA using distances from the resulting t-SNE grid. . . 124

Figure 76 Minimum distances between samples from the CelebA dataset
and samples created by generators at the last generation of
COEGAN-v2. 125

Figure 77 Average Jaccard index (10 executions) for COEGAN-v2 when
comparing synthetic samples with samples drawn from CelebA. 125

L I S T O F TA B L E S

Table 1 Aspects of the GAN used in the evaluated proposals. 38

Table 2 Components of the evolutionary algorithm used in the evalu-
ated proposals. 39

xvii

Table 3 Comparison of the experiments presented in the EA proposals
to train GANs. 41

Table 4 Parameters for the experiments. 49

Table 5 Parameters for the evaluation experiments. 54

Table 6 FID score of best generators in MNIST in the last generation. . 58

Table 7 FID score of best generators in Fashion-MNIST in the last gen-
eration. 61

Table 8 Experimental parameters. 71

Table 9 FID score of the algorithms used in the experiments with SVHN. 73

Table 10 FID score of the algorithms used in the experiments with MNIST. 75

Table 11 Experimental parameters. 81

Table 12 Average FID score of best generators after training with the
MNIST dataset. 82

Table 13 Experimental Parameters . 93

Table 14 Average FID of best generators in Fashion-MNIST 97

Table 15 Experimental parameters. 104

Table 16 FID score of best generators in Fashion-MNIST in the last gen-
eration and the best score among all 100 generations. 105

Table 17 FID score of best generators in CelebA in the last generation
and the best score among all 150 generations. 108

Table 18 Experimental Parameters . 119

L I S T O F A L G O R I T H M S

Algorithm 1 Generative Adversarial Networks (GAN) training algorithm. . . 9

Algorithm 2 General framework of an Evolutionary Algorithm (EA). 22

A C R O N Y M S

AdaIN Adaptive Instance Normalization

AC-GAN Auxiliary Classifier Generative Adversarial Networks

ALI Adversarially Learned Inference

xviii

acronyms xix

ANN Artificial Neural Network

BEGAN Boundary Equilibrium Generative Adversarial Networks

BiGAN Bidirectional Generative Adversarial Networks

CAN Creative Adversarial Networks

CatGAN Category-aware GAN

CDE-GAN Cooperative Dual Evolution based Generative Adversarial Network

CE-GAN Evolutionary Generative Adversarial Networks with Crossover

CoDeepNEAT Coevolution DeepNEAT

DeepNEAT Deep NeuroEvolution of Augmenting Topologies

COEGAN Coevolutionary Generative Adversarial Networks

DENSER Deep Evolutionary Network Structured Representation

DCGAN Deep Convolutional Generative Adversarial Networks

EA Evolutionary Algorithm

EC Evolutionary Computation

E-GAN Evolutionary Generative Adversarial Networks

ELU Exponential Linear Unit

EMOCGAN Evolutionary Multiobjective Cyclic GAN

FID Fréchet Inception Distance

GA Genetic Algorithm

GAN Generative Adversarial Networks

GMAN Generative Multi-Adversarial Network

IGD Inverted Generational Distance

InfoGAN Information Maximizing Generative Adversarial Networks

LAPCA Layered Pareto Coevolution Archive

LSGAN Least Squares Generative Adversarial Networks

MAD-GAN Multi-Agent Diverse GAN

ML Machine Learning

MLP Multi-Layer Perceptron

MOEA Multi-Objective Evolutionary Algorithm

MMD Maximum Mean Discrepancy

Mustangs MUtation SpaTial gANs

NEAT NeuroEvolution of Augmenting Topologies

xx acronyms

NSLC Novelty Search with Local Competition

NSGA Nondominated Sorting Genetic Algorithm

NSGA-II Nondominated Sorting Genetic Algorithm II

PSO Particle Swarm Optimization

QD Quality Diversity

t-SNE t-Distributed Stochastic Neighbour Embedding

ReLU Rectified Linear Unit

RMSE Root Mean Squared Error

SAGAN Self-Attention Generative Adversarial Networks

SANE Symbiotic, Adaptive Neuro-Evolution

SN-GANs Spectrally Normalized Generative Adversarial Networks

SVHN Street View House Number

WGAN Wasserstein Generative Adversarial Networks

WGAN-GP Wasserstein Generative Adversarial Networks with Gradient Penalty

RGAN Relativistic Generative Adversarial Network

RSGAN Relativistic Standard Generative Adversarial Network

RaSGAN Relativistic Average Standard Generative Adversarial Network

1
I N T R O D U C T I O N

Generative models have the goal of learning an input distribution to build a
model capable of producing samples based on the high-level representation of the
data (Salakhutdinov and Hinton, 2009; Tu, 2007). When applied to the image do-
main, generative models are often trained using an image dataset for synthesizing
new images with the same characteristics as the input data. Learning these models is
a challenging task because of the dimensionality and complexity of the data (Tu, 2007).
Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) gained relevance
in recent years, presenting a growing interest of the community on the improvement
of generative models. GAN proposes an adversarial model used to produce samples
based on an input distribution. In this context, the adversarial model are represented
by the use of two components, a discriminator and a generator, trained together in
a competitive process. When successful, the simultaneous training of the discrimi-
nator and the generator in a unified algorithm leads to the construction of strong
components that are able to discriminate samples and synthesize realistic data. The
generative component in GANs gained significant attention for representing a pow-
erful generative model capable of producing innovative samples based on an input
distribution. However, GANs can also be used to produce strong classifiers by making
use of the discriminator built after successful training.

The discriminator and the generator in GANs are Artificial Neural Networks
(ANNs) (Goodfellow et al., 2014). A real data distribution, usually in the form of a
dataset or a probabilistic distribution, is used as input for training the discrimina-
tor. However, the generator is trained using another distribution, usually a normal or
uniform distribution, that represents the latent space. Thus, the generator learns to
capture the real data distribution indirectly, i.e., it will not directly receive data from
the input dataset. The discriminator acts as the judge of the generator, analyzing the
synthetic samples created based on the learned distribution to identify their probabil-
ity to belong to the input data. In this process, the discriminator learns to distinguish
between fake and real samples drawn from the input data distribution. These compo-
nents are trained simultaneously as adversaries, resulting in a zero-sum game between
them.

GANs have been used successfully to produce samples in a variety of domains.
However, the most impressive results have been in the image domain, representing
significant advances when compared to other methods by the production of realistic
samples (Arjovsky, Chintala, and Bottou, 2017; Karras et al., 2018; Zhang et al., 2018a).

1

2 introduction

Despite all the success, the training of GANs is challenging, and the presence of
problems such as the vanishing gradient and the mode collapse is common (Brock,
Donahue, and Simonyan, 2019; Fedus et al., 2018). Moreover, it is difficult to find a way
to make the training process stable, and the necessity of manual design for efficient
models are relevant issues affecting the progress of GANs and a broader adoption on
other applications (Wang, She, and Ward, 2019).

The vanishing gradient problem occurs when the discriminator becomes too strong
and can easily distinguish between fake and real samples. In this case, the loss function
will not be representative enough to contribute to the training process, preventing the
gradients to flow through the generator, and the training progress stagnates. Concern-
ing mode collapse, this problem occurs when the generator captures only a fraction
of the dataset distribution provided as input to the discriminator. This is not desirable
since we want to reproduce the diversity of the data distribution. Although there are
strategies to minimize the effect of these problems, they remain mostly unsolved (Gul-
rajani et al., 2017; Salimans et al., 2016). The majority of the proposed solutions to
these problems rely on the modification of the loss function used to guide the mod-
els (Arjovsky, Chintala, and Bottou, 2017; Berthelot, Schumm, and Metz, 2017; Mao
et al., 2017; Zhang et al., 2018a), and/or the usage of layers in the neural networks
that provide some stability (Miyato et al., 2018; Radford, Metz, and Chintala, 2015).

Another issue, not related only to GANs but also to neural networks in general, is
concerned with their design. Usually, the topology and hyperparameters are chosen
empirically, based on expert knowledge, which requires researchers and practitioners
to put a large effort and time in repetitive tasks (e.g., fine-tuning) (Brock, Donahue,
and Simonyan, 2019). In GANs, the architecture design is crucial due to the adversarial
characteristics of the components. The generator and the discriminator have to be in
equilibrium in order to achieve convergence on the training process. If one component
becomes more powerful than the other, the GAN will suffer from training stability
issues.

To tackle the problem of automatically designing ANNs, several approaches have
been proposed in the literature (Assunção et al., 2019; Miikkulainen et al., 2017; Mori-
arty and Miikkulainen, 1997; Stanley and Miikkulainen, 2002; Yao, 1999). Neuroevolu-
tion is a field of research in artificial intelligence that is concerned with the application
of Evolutionary Algorithms (EAs) to automatically design and optimize neural net-
works (Yao, 1999). EAs are a family of algorithms that are inspired by the evolutionary
mechanism found in nature (Sims, 1994a). Algorithms in this family use a population
of potential solutions that are evolved through generations to produce an optimized
outcome for a given problem. An individual from the population encodes the solution
through an internal representation called genotype. The algorithm applies a transfor-
mation function for transforming a genotype into the concrete representation of the
solution called phenotype. Then, individuals can be evaluated and selected for re-
production, composing the next generations of potentially better solutions. Neuroevo-

1.1 research questions 3

lution applies these concepts to evolve neural networks, where genotypes represent
neural networks that must be optimized for a given objective.

In neuroevolution, both the network architecture (e.g., topology, hyperparameters,
and optimization method) and the parameters (e.g., weights) can be evolved (Yao,
1999). NeuroEvolution of Augmenting Topologies (NEAT) (Stanley and Miikkulainen,
2002) is a well-known neuroevolution method that evolves the weights and topologies
of neural networks. Recently, DeepNEAT (Miikkulainen et al., 2017) was proposed in
order to expand NEAT to larger search spaces, such as in deep neural networks.

Taking into account that GANs use ANNs as models for the generator and the
discriminator, one can use neuroevolution to design these models. However, the way
GANs work, where the generator and the discriminator are competing with each other
in a zero-sum game, raises some challenges, namely regarding on how to promote
this competition in the context of EAs. Coevolution is the simultaneous evolution of
at least two distinct species (Hillis, 1990; Rawal, Rajagopalan, and Miikkulainen, 2010).
In competitive coevolution, individuals of these species are competing together, and
their fitness function directly represents this competition. Thus, we can assess the
applicability of a competitive coevolution environment in an EA to train GANs.

1.1 research questions

In spite of the success and impressive results, GANs are hard to design and train. The
balance between the generator and the discriminator is essential for training stability
and convergence. If the balance between the two is disrupted, the end results will be
compromised, often leading to poor results for the application domain. Despite the
recent efforts, the stability issues remain mostly unsolved. Besides, the choice for the
neural network architecture to be used for the discriminator and the generator is not
a straightforward decision, being usually decided manually through experimentation.
There is also no consensus about the best architecture to use in GANs, as this choice
depends on the context of the application.

The hypothesis behind this work is that the training process of GANs can be im-
proved by the use of EAs, in the form of neuroevolution and coevolution. From this
hypothesis, the following research questions arise and are the subject of the investiga-
tion in the scope of this thesis:

I How to define useful fitness functions for the discriminator and the generator of
a GAN that induce evolutionary pressure to produce efficient models?

II Can neuroevolution be applied to GANs to create useful neural network architec-
tures?

III Can the use of coevolution improve the training stability of GANs?

4 introduction

IV Does the proposed evolutionary algorithm solve common problems in GANs,
such as the mode collapse and the vanishing gradient?

To handle Question I, we propose and evaluate different functions to be used as fit-
ness on the discriminator and generator inside an EA. These fitness functions should
provide evolutionary pressure to achieve the goals defined by the GAN model. Ques-
tion II refers to the assessment of the neuroevolution strategies applied in the context
of GANs. The architectures of the neural networks discovered by the proposed method
should be analyzed to identify their characteristics and performance in the experi-
ments. To answer Question III, we analyze the training convergence of the proposed
algorithm through experimentation. This analysis should identify the occurrence of
common problems in GANs, also answering Question IV. We also propose an eval-
uation method to provide a coherent visualization and quantification of the issues
related to Question IV.

1.2 contributions

During the research process, the following contributions were made in the context of
this thesis:

• Literature Review: A review of the state of the art on the applications of EAs in
GANs.

• Coevolutionary Generative Adversarial Networks (COEGAN): We propose a
method that integrates neuroevolution and coevolution to enhance the coor-
dination of the GAN training process, effectively applying the principles of
Evolutionary Computation (EC) and Machine Learning (ML). An experimental
study was conducted to assess the contributions of this model compared to other
GANs using datasets such as MNIST, Fashion-MNIST, SVHN, and CIFAR-10. We
show that this model improves the training stability of GANs and provides au-
tomatic discovery of efficient network architectures. As the training of a GAN
is recognized as an unstable process, the results of this research is important to
provide a robust solution to train GANs, with stable training and automatic dis-
covery of network architectures. By having a stable model for training GANs, it
becomes possible to explore a wider range of applications without the need for
manual intervention in the design process, thereby reducing associated costs.

• Improvements in Coevolutionary Generative Adversarial Networks (COEGAN):
As we identified possible improvements in the original model, we propose to
incorporate new mechanisms of GANs and EAs to make the model more robust.
Thus, we explore the use of other fitness functions and different approaches for
the Evolutionary Algorithm (EA). Furthermore, we incorporate into the model
more robust mechanisms for GANs.

1.2 contributions 5

• Evaluation Method for Generative Models: We propose a new method to vi-
sualize and quantify the performance of generative models. This method was
applied in the context of this thesis to study the performance of COEGAN.

Concerning the scientific dissemination of the work, the previous contributions re-
sulted in a series of publications in prestigious international conferences and a book
chapter. Following we list these publications and the corresponding chapter of this
thesis that originated the work.

The work conducted in Chapter 2 produced the following book chapter:

• Costa, Victor, Nuno Lourenço, João Correia, and Penousal Machado (2020b).
“Neuroevolution of Generative Adversarial Networks.” In: Deep Neural Evolu-
tion. Springer, pp. 293–322.

The work conducted in Chapter 3 resulted in the following publications:

• Costa, Victor, Nuno Lourenço, and Penousal Machado (2019). “Coevolution of
Generative Adversarial Networks.” In: International Conference on the Applica-
tions of Evolutionary Computation (Part of EvoStar). Springer, pp. 473–487.

• Costa, Victor, Nuno Lourenço, João Correia, and Penousal Machado (2019). “CO-
EGAN: Evaluating the coevolution effect in generative adversarial networks.” In:
Proceedings of the Genetic and Evolutionary Computation Conference. ACM,
pp. 374–382.

Furthermore, the advances in the model proposed in Chapter 4 and Chapter 5 pro-
duced the following publications:

• Costa, Victor, Nuno Lourenço, João Correia, and Penousal Machado (2020c).
“Using Skill Rating as Fitness on the Evolution of GANs.” In: International
Conference on the Applications of Evolutionary Computation (Part of EvoStar).
Springer, pp. 562–577.

• Costa, Victor, Nuno Lourenço, João Correia, and Penousal Machado (2020a). “Ex-
ploring the evolution of GANs through quality diversity.” In: Proceedings of the
2020 Genetic and Evolutionary Computation Conference, pp. 297–305.

• Costa, Victor, Nuno Lourenço, João Correia, and Penousal Machado (2021). “Im-
proved Evolution of Generative Adversarial Networks.” In: Proceedings of the
Genetic and Evolutionary Computation Conference Companion.

Finally, the evaluation model proposed in Chapter 6 resulted in the following pub-
lications:

• Costa, Victor, Nuno Lourenço, João Correia, and Penousal Machado (2021).
“Demonstrating the Evolution of GANs Through t-SNE.” In: Applications of Evo-
lutionary Computation. Ed. by Pedro A. Castillo and Juan Luis Jiménez Laredo.
Cham: Springer, pp. 618–633. isbn: 978-3-030-72699-7.

6 introduction

1.3 document structure

The remainder of this document is organized as follows. Chapter 2 introduces the
background concepts related to this work, focusing on GANs, EAs, neuroevolution
and coevolution, presenting state-of-the-art approaches that apply EAs to GANs. In
Chapter 3 we detail our proposal to apply EAs in the context of GANs and present
our first experimental results. Chapter 4 explore different evolutionary mechanisms
used to improve the original proposal and achieve better results, giving directions for
further improvements. Chapter 5 presents a new version of the model that incorpo-
rates recent advances regarding GANs. Chapter 6 presents our proposal to inspect the
performance of generative models. Finally, Chapter 7 presents the conclusions of this
thesis and research directions for future work.

2
B A C K G R O U N D A N D R E L AT E D W O R K

This chapter presents the background concepts and the recent advances on the top-
ics related to this thesis. Section 2.1 introduces the Generative Adversarial Networks
(GAN) model and its variations that are relevant to this thesis. We also present and dis-
cuss the main challenges that occur when training GANs which support the hypoth-
esis proposed in this thesis. Section 2.2 presents the concepts related to Evolutionary
Algorithms (EAs), focusing on neuroevolution and coevolution. Finally, Section 2.3
describes the current proposals that use EA in the context of GANs.

2.1 generative adversarial networks

Generative Adversarial Networks (GAN), proposed by Goodfellow et al. (2014), is an
adversarial model that became relevant mostly due to the performance achieved in
generative tasks for the image domain, representing significant improvements over
other generative methods.

The vanilla model of a GAN combines two Artificial Neural Networks (ANNs): a
discriminator D and a generator G. The goal of the discriminator D is to distinguish
between real and fake examples, given a real data distribution, usually in the form
of a dataset. The generator G outputs fake samples, attempting to capture the data
distribution used in the training of D. For this, the generator receives data from an
input distribution (e.g., a uniform or a normal distribution), representing the latent
space of the generative model. These components are trained simultaneously as ad-
versaries, creating strong generative and discriminative components. Even though the
generator never looks directly at the data distribution given to the discriminator, in a
successfully trained GAN, the created samples approximate the characteristics of the
input dataset. Figure 1 depicts the interaction between these components when using
a digits input dataset, such as the MNIST dataset (LeCun, Cortes, and Burges, 1998).
In this thesis, we focused on the application of GANs to the image domain. Therefore,
the real and fake samples mentioned above are representations of images from the
dataset and from the generator, respectively.

The discriminator and generator are trained with backpropagation through a gra-
dient descent method (LeCun, Bengio, and Hinton, 2015). Therefore, different loss
functions are used in the GAN components. The loss function of the discriminator is
defined as follows:

J(D)(D,G) = −Ex∼pdata
[logD(x)] − Ez∼pz [log(1−D(G(z)))]. (1)

7

8 background and related work

random input

Generator

loss created sample

Discriminator

loss

input dataset

Figure 1: High-level interaction between the components of a GAN during the training pro-
cess.

In Eq. 1, pdata represents the dataset used as input to the discriminator, z is the
latent space, pz is the latent distribution, G is the generator, and D is the discriminator.
In this equation, the discriminator is used to estimate the probabilities of samples from
the input dataset being real and synthetic samples to be fake. The difference between
these probability distributions gives the loss used to update the parameters of the
neural network.

For the generator, the loss function is defined by:

J(G)(G) = Ez∼pz [log(1−D(G(z)))]. (2)

In Eq. 2, z, pz, G and D represent the latent space, the latent distribution, the gener-
ator, and the discriminator, respectively. In this equation, the discriminator is used to
assess the capabilities of the generator to produce samples that approximates the in-
put data. Thus, the loss function aims to minimize the probability of synthetic samples
to be classified as fake. However, gradients can be saturated in this loss function (Eq.
(2)) early in training when the generator is still striving to learn the input distribution.
In this case, it is easy for the discriminator to reject synthetic samples with high prob-
ability. Therefore, to tackle this issue, a non-saturating version of the loss function is
defined by:

J(G)(G) = −Ez∼pz [log(D(G(z)))]. (3)

This version of the loss function invert the logic used in Eq. 2, aiming to maximize the
probability of synthetic samples to be classified as real.

The training procedure of a GAN is presented in Algorithm 1. In lines 2-6, the dis-
criminator is trained for k steps, using a set of m samples usually referred to as batch.

2.1 generative adversarial networks 9

Algorithm 1 Generative Adversarial Networks (GAN) training algorithm.

1: for n iterations do
2: for k steps do
3: fake_samples← sample(m,Pz(g))
4: real_samples← sample(m,Pdata(x))
5: train_discriminator(D,G, fake_samples, real_samples)

6: end for
7: fake_samples← sample(m,Pz(g))
8: train_generator(G,D, fake_samples)

9: end for

The generator is trained in lines 7-8. The losses described by Equations 1 and 3 are
applied in lines 5 and 8, respectively. The optimization method used for training can
be any stochastic gradient descent method, such as the Adam optimizer (Kingma and
Ba, 2015) or RMSprop (Tieleman and Hinton, 2012). In this case, the errors calculated
by the loss functions Eq. (1) and Eq. (3) flow through the neural networks of the dis-
criminator and the generator, and the trainable parameters (i.e., weights and biases)
are adjusted according to the optimization method.

The interactions between the generator and the discriminator is paramount to the
training stability. However, the balance between them is frequently disrupted, making
the training of GANs a challenging task. Often, to achieve good outcomes in training, a
trial-and-error approach is used. Therefore, researchers developed a set of techniques
and recommendations to increase the probability to achieve convergence. Salimans
et al. (2016) proposes the use of strategies such as label smoothing and minibatch
discrimination to obtain better results in training. However, these strategies only min-
imize the effect of the problems, and finding the right settings is challenging and time
consuming.

2.1.1 Issues

Many researchers proposed variations over the original GAN model attempting to
solve the most common problems affecting the training of GANs, namely the vanish-
ing gradient and the mode collapse problems. These problems recurrently affects the
outcome of GANs, representing a significant challenge to obtain efficient models for
different applications (Creswell et al., 2018). Although several approaches have been
proposed to improve the GAN model, these problems still affect the training (Arjovsky,
Chintala, and Bottou, 2017; Gulrajani et al., 2017; Salimans et al., 2016).

10 background and related work

2.1.1.1 Mode Collapse

The mode collapse problem occurs when the generator captures only a small portion
of the distribution provided as input to the discriminator. This diminished representa-
tion is not desirable since the aim of the generator is to reproduce the whole distribu-
tion of the data and with the possibility of adding novelty to the output samples.

(a) (b) (c)

Figure 2: Mode collapse occurring in the MNIST dataset.

Figure 2 shows an example of samples created by a generator suffering from mode
collapse after a failed training of a GAN using the MNIST dataset. We can see in Figure
2(a) that only the digits 9 and 7 are represented, which correspond to a small portion
of the numbers presented in the dataset. Figures 2(b) and 2(c) show another issue re-
garding the mode collapse, where the digits cannot be identified correctly since the
generator creates only a superposed combination of digits. Thus, these issues demon-
strated in 2 characterizes the mode collapse problem. In this case, the generator learns
to represent only a small fraction of the input distribution. The loss functions used in
the original GAN model do not take into account the diversity of samples produced
by generators. This is only addressed indirectly by the capacity of the discriminator
to learn the behavior of the generator. Therefore, there are cases that the discriminator
does not achieve the desired capabilities in the training process, benefiting the genera-
tor to exploit specific sections of the input distribution to deceive the discriminator. In
these cases, the trained parameters of the generator will be focused on the generation
of a specific subset of the data.

2.1.1.2 Vanishing Gradient

The vanishing gradient problem occurs when the discriminator becomes so powerful
that it cannot be deceived by the generator anymore when distinguishing between
fake and real samples. Hence, the loss function will have a small value, making the
gradients so small that they are not contributing to update the trainable parameters of
the generator during the gradient descent algorithm, and the GAN training stagnates.

2.1 generative adversarial networks 11

The equilibrium between the discriminator and generator is essential to the training,
and when the vanishing gradient problem happens this equilibrium is violated in an
irreversible way.

Discriminator
Generator

Iteration

Lo
ss

Figure 3: Losses of the generator and discriminator of a training with the vanishing gradient
issue.

Figure 3 depicts an example of the training of a GAN that suffered from the van-
ishing gradient problem. We can see in this figure the progression of losses of the
generator and discriminator through iterations. Note that when the discriminator loss
becomes zero (marked by the dashed vertical line), the generator stops to improve and
stagnates until the end of the training. As such, the quality of samples created by the
generator will not improve anymore. As argued by Fedus et al. (2018), it is important
to note that the divergence between the generator and discriminator does not need
to always decrease. Even when the loss increases, the training can reach good solu-
tions in the end. Therefore, regarding the vanishing gradient, the problem only occurs
when the loss approximates zero. Otherwise, the GAN model is able to tolerate iter-
ations where the losses deviate from the objective and produce a worse value (when
compared to the previous step).

2.1.2 Evaluation Metrics

To evaluate the performance of GANs, samples created by the generator should be ana-
lyzed following a standard procedure, preferably by using an automatic measurement
of the quality of the samples to compare the results obtained from different variations
of GANs or other generative solutions. However, there is not a consensus yet in the
community about the best metric to perform this analysis and it remains an open
problem. In Xu et al. (2018), an empirical evaluation is presented on metrics that can
be applied to GANs, such as the Kernel Maximum Mean Discrepancy (MMD), Incep-
tion Score, Fréchet Inception Distance (FID), Wasserstein distance, and the 1-Nearest
Neighbor classifier. Nevertheless, we highlight in this section two of the most common
metrics used by researchers: the Inception Score and the FID score.

12 background and related work

2.1.2.1 Inception Score

The Inception Score, defined by Salimans et al. (2016), is an automatic metric to evalu-
ate synthetic image samples created based on an input dataset. This method uses the
Inception Network (Szegedy et al., 2015, 2016) to get the conditional label distribution
of the images created by a generative algorithm. The network is previously trained
using the ImageNet dataset (Russakovsky et al., 2015). Therefore, the Inception Score
is defined as:

IS(x,y) = exp(ExKL(p(y|x)||p(y))), (4)

where x is the input data, y is the label of the data, p(y) is the label distribution, p(y|x)
is the conditional label distribution, and KL is the Kullback–Leibler (Goodfellow et
al., 2014) divergence between the distributions p(y|x) and p(y). Salimans et al. (2016)
recommend evaluating the metric on a large number of samples, such as 50000, to
provide enough diversity to the score.

Barratt and Sharma (2018) found some issues with the Inception Score, namely its
sensitivity to the weights of the Inception Network used in the calculation. Addition-
ally, the network used in the Inception Score, which was trained in the ImageNet
dataset, may not be applicable with consistent performance to other datasets.

2.1.2.2 Fréchet Inception Distance Score

Fréchet Inception Distance (FID) (Heusel et al., 2017) is one of the state-of-the-art
metrics to compare the generative components of GANs. The FID score outperforms
other metrics, such as the Inception Score, with respect to diversity and quality (Lucic
et al., 2017). In FID, a hidden layer of Inception Net (Szegedy et al., 2015, 2016) (trained
on ImageNet (Russakovsky et al., 2015)) is used to transform images into a feature
space that is interpreted as a continuous multivariate Gaussian. This transformation
is applied to a subset of the real dataset and samples created by the generative method.
The mean and covariance of the two resulting Gaussians are estimated and the Fréchet
distance between these Gaussians is calculated by:

FID(x,g) = ||µx − µg||
2
2 + Tr(Σx + Σg − 2(ΣxΣg)

1/2), (5)

where µx, Σx, µg, and Σg represent the mean and covariance estimated for the real
dataset x and fake samples g, respectively, and Tr is the trace function applied on the
resulting matrix of the operations with Σx and Σg. In summary, the score is given by
the norm of the means and the trace of the covariances estimated for real and fake
data.

2.1.2.3 Skill Rating

Another approach to evaluate GANs is to use an existing game rating system. In this
context, the Skill Rating has been successfully used to evaluate GANs to assess the skill

2.1 generative adversarial networks 13

of generators and discriminators (Olsson et al., 2018). The approach is to consider each
generator and discriminator as a player in a game. Thus, one step of the GAN training
algorithm is designed as a match between one generator and one discriminator. The
outcome of the matches is used as input to calculate the skill of each player, generating
a ranking corresponding to the skills of them.

In games like chess, it is common to use a rating system to quantify the skill of
players. In this context, the Glicko-2 (Glickman, 2013) rating system can be used to
measure the performance of players given a history of matches, taking into account
three variables: the rating r, the deviation RD, and the volatility σ. The rating, r, indi-
cates the actual skill of the player after a sequence of matches with other players in
a game. The volatility, σ, represents the expected variability on the rating of a player.
The deviation, RD, represents the confidence in the player’s rating. A system constant
τ is also used to control the rate of change on the volatility σ. Different from r, RD,
and σ, this parameter is associated with the whole rating system.

All players are initialized with the recommended values of 1500 for the rating r,
350 for the deviation RD and 0.06 for the volatility σ. These values can be adjusted
according to the characteristics of the application. At a fixed time period, the results
of all matches between players are stored and used to update the rating r, deviation
RD, and volatility σ. It is recommended to use a time span large enough to contain at
least 10 to 15 games for each player.

2.1.3 Visualizing the Distribution of Samples

Besides evaluation metrics, a tool to visualize the results is also important not only to
provide insight for the coverage of the distribution achieved by the generative model
but also to detect issues such as the mode collapse problem. In this regard, Zhang et al.
(2018b) proposed the use of t-Distributed Stochastic Neighbour Embedding (t-SNE) to
visualize the distribution of images produced by the generative model.

The t-SNE (Maaten and Hinton, 2008) is a technique used to produce a map of two
or three dimensions that represents the data distribution. The t-SNE algorithm works
iteratively. A set of pairwise affinities is calculated for the input data and the solution is
randomly initialized using a probabilistic distribution. At each iteration, the gradient
is calculated based on the Kullback-Leibler divergence between the high-dimensional
input space and the corresponding lower-dimensional representation. The gradient
is used to update the solution. After all iterations, t-SNE outputs the final solution,
representing points in a two or three-dimensional grid for the input data. Figure 4

shows an example of the distribution of images from the MNIST dataset by t-SNE.
The number of iterations and perplexity are two important parameters for the t-SNE

algorithm. Perplexity defines how the neighborhood of each data point is handled.
Values between 5 and 50 are commonly chosen for perplexity (Maaten and Hinton,

14 background and related work

Figure 4: Example of the distribution of images from MNIST by t-SNE into a two-dimensional
grid.

2008). The number of iterations limits the number of steps used to update the final
solution.

Principal Components Analysis (PCA) can be used as a preprocessing step to re-
duce the dimensionality of the data, suppress noise, and achieve a faster computa-
tion (Kobak and Berens, 2019; Maaten and Hinton, 2008). For example, PCA was used
to reduce the dimensionality of the data to 30 and 50 by Maaten and Hinton (2008)
and Kobak and Berens (2019), respectively.

t-SNE provides a useful visualization of complex distributions by revealing the
structure of the data. Regarding GANs, the visualization method proposed by Zhang
et al. (2018b) was capable of coherently distribute the produced samples into a two-
dimensional grid by grouping images considering their inner characteristics.

2.1 generative adversarial networks 15

2.1.4 Variations of GANs

Several advances over the original GAN model were recently proposed (Arjovsky,
Chintala, and Bottou, 2017; Berthelot, Schumm, and Metz, 2017; Durugkar, Gemp,
and Mahadevan, 2016; Karras et al., 2018; Karras, Laine, and Aila, 2018). These pro-
posals focused not only on the improvement of the quality of the created samples but
also on the improvement of the training stability. In this section, we detail the main
proposals that have been put forward to address and mitigate the issues discussed in
Section 2.1.1. These proposals are divided into two main categories (Pan et al., 2019;
Wang, She, and Ward, 2019): architecture improvements and alternative loss functions.
We also included in this study a third category related to conditional GANs, which
is another modification of the original model that has slightly different applications.
As conditional GANs introduce other aspects into the model, modifying the original
objective of GANs, we put these proposals in a separated category.

2.1.4.1 Architecture Improvements

The architectures for generators and discriminators initially used in GANs were
based on Multi-Layer Perceptron (MLP) (Goodfellow et al., 2014). In 2015, Radford,
Metz, and Chintala proposed Deep Convolutional Generative Adversarial Networks
(DCGAN), which quickly became a reference architecture for the discriminator and
the generator in GANs. This architecture is composed of a set of constraints and rules
that were experimentally evaluated and that revealed performance gains over other
generative methods. Some of these rules are:

• Use batch normalization in the generator and discriminator: helps to stabilize
learning and the gradient flow;

• Use the ReLU activation function in all hidden layers of the generator: allows
the model to learn the color space of the input distribution;

• Use LeakyReLU in all layers of the discriminator: achieves good performance
in images with high resolution.

In the experiments conducted by Radford, Metz, and Chintala (2015), the training
stability was improved with DCGAN, but this model still had issues such as the mode
collapse problem in some executions.

Berthelot, Schumm, and Metz (2017) developed a model called Boundary Equilib-
rium Generative Adversarial Networks (BEGAN), where the most relevant contribu-
tion is the use of an autoencoder as the discriminator, instead of a classical neural
network. BEGAN also uses a different loss function, based on the Wasserstein dis-
tance (Arjovsky, Chintala, and Bottou, 2017). The authors argued that BEGAN presents
better training results with respect to the stability and quality of the created samples.

16 background and related work

Durugkar, Gemp, and Mahadevan (2016) proposed Generative Multi-Adversarial
Network (GMAN), a model that uses multiple discriminators in the training process.
GMAN uses the set of discriminators to select the best two for training the generator.
The authors argued that this strategy leads to an improvement in the samples quality
and the necessity of fewer training iterations when compared to regular GANs.

Following this line of research, Ghosh et al. (2018) explore an approach called Multi-
Agent Diverse GAN (MAD-GAN) that also uses multiple components in the GAN
training. However, instead of multiple discriminators, they propose to use multiple
generators. In MAD-GAN, all generators share the parameters of the initial layers and
only the last layer is completely independent. The discriminator is also changed to
include another output: the prediction of which generator created the input sample.
The experiments evidenced that the use of multiple generators helped to increase the
variability on the created samples and avoid the mode collapse problem.

Elgammal et al. (2017) propose a variation over the original GAN model to leverage
the possibility of creativity called Creative Adversarial Networks (CAN). The authors
claimed that the samples created in a regular GAN are not entirely innovative, and
proposed changes to the model to improve the creation of novelty on the generated
samples. In CAN, the discriminator outputs the probability of the sample to be an
artwork and also classifies the sample into predefined possibilities of art styles. This is
similar to the Conditional GAN model proposed by Odena, Olah, and Shlens (2017).
The main difference is that in CAN the generator is not conditioned with additional
input. The extra output of the discriminator is used only to help the generator training.

Karras et al. (2018) proposes a strategy to grow the model progressively during
training, by increasing the layers in both discriminator and generator. This mecha-
nism will make the model more complex while the training procedure runs, allowing
it to generate higher resolution images at each phase. However, these layers are added
progressively in a preconfigured way, i.e., they are not produced by a stochastic pro-
cedure. Karras et al. (2018) tested the proposal in different datasets, achieving better
training performance and stability, and generating realistic high-resolution images.

Self-Attention Generative Adversarial Networks (SAGAN), proposed by Zhang et al.
(2018a), introduces a self-attention module into GANs. Self-attention is a mechanism
capable of representing the interactions between data points within a context (Vaswani
et al., 2017). In SAGAN, this module was used in the generator and the discriminator,
introducing the capacity to model the relationship between spatial regions of the input
sample. The self-attention module works by adding a mechanism after convolutional
layers that decompose the input obtained from this previous layer into two feature
spaces. These feature spaces are used to learn how the model maps different regions
of the input sample. When using the self-attention module, SAGAN was able to create
more detailed samples when compared to the state-of-the-art.

Karras, Laine, and Aila (2018) propose a style-based architecture for the generator.
In this model, the generator does not directly receive data from the latent space. First,

2.1 generative adversarial networks 17

a transformation is made to an intermediate latent space W that is feed to each convo-
lution layer in the generator architecture. Adaptive Instance Normalization (AdaIN) is
used to control the effect of the intermediate latent space. The experiments evidenced
that the use of this architecture improves the quality of the created samples.

Brock, Donahue, and Simonyan (2019) presented the results for large-scale experi-
ments with GANs, using in the generator and discriminator a higher number of pa-
rameters than in any previous experiments found in the literature. The authors found
that using large batch sizes in training promotes better results concerning the quality,
but made the system more prone to stability issues. Another evaluation was made
about the use of a truncated normal as the latent distribution. This distribution was
demonstrated to provide the best results regarding the sample quality, but with a
reduction in the variety of created samples. For large models, using the truncated nor-
mal distribution affects the quality of the samples by introducing unwanted artifacts.
To tackle this issue, Brock, Donahue, and Simonyan (2019) proposed the use of the
following orthogonal regularization function:

Rβ(W) = β||WTW ⊙ (1− I)||2f , (6)

where W is the weights matrix of a layer, β is the hyperparameter controlling the effect
of the regularization, 1 is a matrix filled with ones, and I is the identity matrix. Using
the orthogonal regularization given by Eq. 6 improved the results for large models and
made the truncated normal distribution viable. However, even with the application
of these strategies, issues regarding training stability are still present. The authors
argued that not only the individual aspects of the discriminator and the generator are
paramount to the training stability, but also the interaction between them.

Other models propose to combine GANs with other neural network architectures.
Makhzani et al. (2016) designed a model combining autoencoder with the adversar-
ial mechanisms proposed for GANs. In their model, the latent code produced by
the encoder is used as input for the discriminator to identify real or fake samples.
This mechanism helps the decoder to produce realistic samples. Thus, in this case, it
is the decoder that generates the samples and no generator is used in the solution.
Other models using autoencoders were proposed in Bidirectional Generative Adver-
sarial Networks (BiGAN) (Donahue, Krähenbühl, and Darrell, 2017) and Adversarially
Learned Inference (ALI) (Dumoulin et al., 2017). In these cases, the encoder is intro-
duced into the solution for mapping images to the latent space used in the discrimina-
tor. The generator is used instead of a decoder to produce the samples. VQGAN (Esser,
Rombach, and Ommer, 2021) makes use of a transformer to enhance the GAN architec-
ture, producing high-resolution images with better quality when compared to other
models.

18 background and related work

2.1.4.2 Alternative Loss Functions

Another strategy to overcome the training issues is to modify the loss functions used
to guide the training of GANs. Since the original GAN proposal, researchers put for-
ward a variety of alternative loss functions, attempting to minimize problems such as
the vanishing gradient and the mode collapse problems, resulting in improved mod-
els such as Wasserstein Generative Adversarial Networks (WGAN) (Arjovsky, Chin-
tala, and Bottou, 2017), Wasserstein Generative Adversarial Networks with Gradient
Penalty (WGAN-GP) Gulrajani et al. (2017), Least Squares Generative Adversarial
Networks (LSGAN) (Mao et al., 2017), and Relativistic Generative Adversarial Net-
work (RGAN) (Jolicoeur-Martineau, 2019). A study from Lucic et al. (2017) compares
the performance of alternative models such as WGAN, LSGAN, and WGAN-GP, with
respect to the original GAN. In this empirical study, the experimental evaluation sug-
gests that there are no relevant differences between the assessed alternatives and the
original GAN model.

Arjovsky, Chintala, and Bottou (2017) proposed a new model derived from the origi-
nal GAN called WGAN. Their approach uses a new loss function for the discriminator
and the generator to improve the training stability. These loss functions are based on
the Wasserstein distance between the real data distribution and the distribution cre-
ated by the generator, given by:

W(px,pg) = sup||D||L⩽1Ex∼px [D(x)] − Ez∼pz [D(G(z))], (7)

where the loss function of the discriminator is:

LWGAN
D = Ex∼px [D(x)] − Ez∼pz [D(G(x))], (8)

and the loss function of the generator is:

LWGAN
G = −Ex∼pz [D(G(z))], (9)

where D represents the discriminator, G is the generator, px is the input distribution,
pg is the generated distribution given by Ez∼pz [G(z)] obtained from the latent space
z. It is important to note that D, the discriminator, should be a 1-Lipschitz function,
i.e., the gradients of the discriminator have an upper bound of 1. WGAN ensures this
by clipping the weights of the discriminator to a predetermined range limited by a
constant hyperparameter.

Arjovsky, Chintala, and Bottou (2017) found no occurrence of the mode collapse
problems in their experiments. However, further experiments made by (Gulrajani et
al., 2017) revealed that there are still stability issues, such as vanishing gradient, in the
training method of WGAN.

To address some of these issues, Gulrajani et al. (2017) proposed WGAN-GP, an
improvement over the original WGAN model that uses gradient penalty to enforce

2.1 generative adversarial networks 19

the Lipschitz constraint over the discriminator function. The loss for the discriminator
is defined as:

LWGAN−GP
D = Ex∼px [D(x)] − Ez∼pz [D(G(z))] + λEx∼px [(||∇xD(x)||2 − 1)2], (10)

where the λ parameter controls the effect of the gradient penalty in the loss. In spite of
this enhancement, Mescheder, Geiger, and Nowozin (2018) showed that WGAN-GP
does not always converge, i.e., the balance between the generator and the discrimina-
tor can be disrupted.

Mao et al. (2017) proposed another method called LSGAN. The contribution of this
method is the use of the least squares loss function for the discriminator, given by:

LLSGAN
D = Ex∼px [D(x) − 1] + Ez∼pz [D(G(z))2]. (11)

The loss function for the generator is given by:

LLSGAN
G = −Ez∼pz [(D(G(z)) − 1)2]. (12)

Mao et al. (2017) claim that LSGAN is able to generate better samples and also has a
more stable training when compared to the original GAN proposal.

Jolicoeur-Martineau (2019) introduced relativistic properties into the GAN model,
defining new loss functions that produced the models Relativistic Standard Gener-
ative Adversarial Network (RSGAN) and Relativistic Average Standard Generative
Adversarial Network (RaSGAN). The following loss functions is used in RSGAN:

LRSGAN
D = E(x,z)∼(pd,pz)[f(D(x) −D(G(z)))], (13)

LRSGAN
G = E(x,z)∼(pd,pz)[f(D(G(z)) −D(x))], (14)

The loss functions of RaSGAN are defined by:

LRaSGAN
D = Ex∼pd

[f(D(x) − Ez∼pzD(G(z)))]+

Ex∼pz [1− f(D(G(z)) − Ex∼pd
D(x))],

(15)

LRaSGAN
G = Ex∼pd

[1− f(D(x) − Ez∼pzD(G(z)))]+

Ex∼pz [f(D(G(z)) − Ex∼pd
D(x))],

(16)

where f(x) is defined by log(sigmoid(x)). Experiments with relativistic GANs showed
that training is more stable and produced samples with better quality when compared
to other solutions, such as the original GAN (Jolicoeur-Martineau, 2019).

Miyato et al. (2018) presented a new weight normalization strategy called spec-
tral normalization. This strategy should be used in the architecture of the discrimina-
tor of existing GAN models and affects the calculation of the loss function. Models
using this technique are called Spectrally Normalized Generative Adversarial Net-
works (SN-GANs) and obtain more diversity of samples created by the generator.

20 background and related work

random input

Generator

loss created sample

Discriminator

loss

input dataset

3
Conditional Input

Figure 5: High-level interaction between the components of a Conditional GAN during the
training process. Note the additional conditional input, indicating to the model that
the number 3 should be represented.

2.1.4.3 Conditional GAN

Conditional GAN is a modification over the original GAN proposal that introduces
a mechanism to condition the output sample created by the generator. In conditional
GANs, the model usually receives another input representing the type of sample that
should be created. Figure 5 shows the representation of a Conditional GAN. When
compared to the representation of the original GAN model (Figure 1), we can see that
a new input is supplied for the discriminator and the generator to conditioning the
generated sample.

Conditional GANs have the same stability issues present in the original GAN model.
Thus, they can also suffer from mode collapse and vanishing gradient. The contribu-
tions of the model are related to a new mechanism to influence the type of results
created by the generator.

Mirza and Osindero (2014) presented the first proposal using this approach. In their
work, the auxiliary information is provided to both the discriminator and the genera-
tor in addition to the regular inputs to conditioning the output sample.

Isola et al. (2017) developed an approach similar to the one used by Mirza and
Osindero (2014) to translate from an input image to another image. For example, the
additional input can be a map image, resulting in the translation of this map to a
realistic aerial photo. Reed et al. (2016) also used a similar approach to generate im-
ages with conditional GANs. However, instead of an image, they used text as the
conditioning input.

2.2 evolutionary algorithms 21

Odena, Olah, and Shlens (2017) proposed another strategy to condition the output
created by the generator. The model, called Auxiliary Classifier Generative Adversar-
ial Networks (AC-GAN), provided the conditioning input only to the generator. The
discriminator receives the same input as the original GAN model (i.e., samples from
the input dataset). However, instead of only one output representing the probability
of the sample to be real (i.e., to be a sample from the input dataset), the output also
includes the class of the given sample, as in Odena (2016). The generator also adds to
its output the class of the created sample.

In Information Maximizing Generative Adversarial Networks (InfoGAN) (Chen et
al., 2016), a latent code is added into the input to condition the output samples. An
auxiliary distribution Q, represented by a neural network, is used in the regularization.
The experiments conducted by Chen et al. (2016) showed that InfoGAN is able to
learn disentangled representations on datasets such as MNIST and Street View House
Number (SVHN). Therefore, the manipulation of the latent code is equivalent to a
meaningful transformation of the output sample.

CycleGAN (Zhu et al., 2017a) uses unpaired images to train GANs for image trans-
lation. Different of other approaches using images as input, these unpaired images
do not preserve the information about the corresponding pairs of samples from the
input and the respective output. CycleGAN introduces a cyclic process of training for
GANs. The algorithm uses two mapping functions: one that translates an image from
a domain X to a domain Y and the reverse function (Y → X). The discriminators DX

and DY are used in this process. Results show that the model can be used in applica-
tions such as style transfer and photo enhancement. The cyclic process was also used
to design BycicleGAN (Zhu et al., 2017b). In this model, paired images are used to
train a model in two cycles. One cycle uses an autoencoder to learn the latent code z

and reconstruct the input samples. The other cycle reverses the process by using z to
learn the samples and reconstruct the latent code. The result of this process is a hybrid
model that is able to produce diverse results on tasks related to image translation.

Other approaches can be used to drive the training process of GANs. EAs can be
applied to GANs, making use of selective pressure to achieve efficient models. We
present solutions using this approach in Section 2.3. First, we introduce in the next
section the concepts of EAs relevant to this thesis.

2.2 evolutionary algorithms

Evolutionary Algorithms (EAs) are a family of algorithms inspired by the theory of
natural selection proposed by Darwin (1859), simulating the evolutionary mechanism
found in nature (Holland, 1992; Koza, 1992; Sims, 1994a,b). There are several variants
and applications of EAs that aim to solve a diverse variety of problems. In EAs, a pop-
ulation of potential solutions is generated. This population is composed of individuals
that represent a solution for a given problem, using a high-order abstraction to encode

22 background and related work

their characteristics called genotype. A solution derived from the genotype mapped
to the problem domain is called phenotype.

Algorithm 2 represents the main steps of an EA (Goldberg, 1989; Yao, 1999). First,
the population is initialized (line 1) and evaluated (line 2). After this, the algorithm
works iteratively. Each iteration from the main loop (line 3) represents a generation
of the population. The algorithm runs until a termination condition is met, such as
the maximum amount of generations or a desired fitness value. In each generation,
the individuals are evaluated using a fitness function. The outcome of the fitness func-
tions is used on the selection of individuals for reproduction to compose the offspring.
The offspring will compete with the parents for a place in the next population, and
a new iteration starts. The fitness function is used in lines 2 and 6. It represents a
score of each individual in solving the problem. Selection is used in line 4. Typically, a
stochastic approach is used to select individuals based on their fitness. Those selected
individuals are used in the reproduction step (line 5). Reproduction may use meth-
ods such as crossover between mates and mutation in the offspring generation. The
last step is the replacement (line 7), where individuals in the current population are
replaced by the new individuals (offspring) according to some rule (e.g., replace the
least fit individuals).

Algorithm 2 General framework of an Evolutionary Algorithm (EA).

1: P ← initialize_population()
2: evaluate_population(P)
3: while not_terminated() do
4: R← select(P)

5: C← reproduce(R)

6: evaluate_population(C)
7: P ← replace(P,C)
8: end while

EAs can also be applied to solve multiobjective optimization problems, origi-
nating a new class of algorithms called Multi-Objective Evolutionary Algorithms
(MOEAs) (Zhou et al., 2011). Nondominated Sorting Genetic Algorithm (NSGA) (Srini-
vas and Deb, 1994) is arguably the most popular MOEAs that uses an elitist method
to implement a Pareto-based search approach. Nondominated Sorting Genetic Algo-
rithm II (NSGA-II) (Deb et al., 2002) is an improvement over the original NSGA that
uses an algorithm to sort solutions and determine nondominated fronts to define the
next populations. Besides, a crowding-distance computation is used as a second crite-
rion to prioritize solutions in less explored spaces. This algorithm also uses an archive
to keep the previously explored solutions and improve diversity. Individuals are usu-
ally inserted into the archive using a probabilistic approach.

2.2 evolutionary algorithms 23

Quality Diversity (QD) algorithms are a family of EAs aiming to improve the diver-
sity of viable solutions discovered during the evolutionary process (Pugh et al., 2015).
Novelty Search with Local Competition (NSLC) (Lehman and Stanley, 2011) uses a
Pareto-based MOEA, such as NSGA-II, to promote the quality and diversity of solu-
tions. NSLC uses as objectives the quality and novelty of individuals according to a
local neighborhood. Therefore, when combined with NSGA-II, NSLC does not use
the crowding-distance mechanism because the novelty criterion already produces the
desired diversity.

MAP-Elites (Mouret and Clune, 2015) is another proposal in the class of QD al-
gorithms. In MAP-Elites, an archive of phenotypes is kept to explore the diversity
of high-performing solutions. Thus, at each step, an item of the archive is chosen to
produce the offspring. Then, the performance is calculated and the newly generated
individual is placed into the archive in the position determined by the feature space,
replacing older individuals in case of better performance.

2.2.1 Neuroevolution

Neuroevolution is the application of EAs to automatically design a neural network.
Neuroevolution can be used to evolve the weights, topology, and hyperparameters of
a neural network (Stanley and Miikkulainen, 2002; Yao, 1999).

In neuroevolution, an abstract representation of the neural network is encoded in the
genotype. On the other hand, the phenotype is the concrete neural network based on
this abstract representation. Two approaches may be used to encode a neural network
into the genotype: direct or indirect (Yao, 1999). The genotype using a direct encoding
represents a neural network directly, i.e., all nodes and connections of the model are
encoded into a data structure. An example of direct encoding is the use of a list
of genes, where each element represents one node or a connection between nodes
(Stanley and Miikkulainen, 2002). In the indirect encoding, the genotype specifies rules
for the generation of the neural network. An example of indirect encoding is the use of
a structured grammar to represent rules that will be derived in the process of neural
network generation (Assunção et al., 2017; Lourenço, Pereira, and Costa, 2015).

When neuroevolution is used to generate a network topology, a substantial benefit
is the automation of the architecture design and parameter decision, transforming
a manual human effort into an automatic procedure. This automation is even more
critical with the rise of deep learning that is producing deeper models and creating
large search spaces (Miikkulainen et al., 2017). However, the size of the search space is
also a challenge for neuroevolution (Martinez et al., 2021), such as the time-consuming
executions that may turn their application unfeasible.

One of the first neuroevolution examples is the work by Moriarty and Miikkulainen
(1997) Symbiotic, Adaptive Neuro-Evolution (SANE). SANE works by evolving indi-
vidual neurons and blueprints. These neurons are the components of a hidden layer

24 background and related work

in a two-layered neural network. Each neuron is composed of a set of weights that
connects it with inputs and outputs. A blueprint is a recipe that chooses a subset of
components from the neurons population to form a complete neural network. Thus,
SANE evolves both the population of neurons and the way they should be connected,
i.e., the blueprint. In the evaluation phase, each element of the population of blueprints
is transformed into a neural network by selecting individuals in the population of neu-
rons. This network is evaluated against a parasite opponent to obtain a fitness value.
This fitness is used in offspring generation for both neurons and blueprints.

NeuroEvolution of Augmenting Topologies (NEAT) (Stanley and Miikkulainen,
2002) is a neuroevolution algorithm that evolves the weights and topologies of neural
networks. In NEAT, a Genetic Algorithm (GA) is used to encode and evolve neural
networks. The genotype of the individuals contains two lists representing the nodes
(neurons) of the neural network and the connections between them. The initial popu-
lation contains individuals with small genomes, that will incrementally become more
complex through generations by gradually adding more nodes and connections to the
neural networks. The algorithm also proposes the use of a mechanism to promote
novelty in the population. This mechanism works by assigning an innovation number
to each gene to mark its origins. The population is divided into species based on the
similarity of the genomes, that is calculated based on the innovation number of the
genes. NEAT also uses fitness sharing to represent the fitness of each individual be-
longing to a species. Experiments demonstrated that the strategies used in NEAT were
efficient and useful in the promotion of innovation. Stanley and Miikkulainen (2004)
conducted further experiments, arguing that NEAT was also successfully applied in a
coevolution context.

The NEAT model was also expanded to work on larger search spaces, such as deep
neural networks, in the Deep NeuroEvolution of Augmenting Topologies (DeepNEAT)
and Coevolution DeepNEAT (CoDeepNEAT) methods (Miikkulainen et al., 2017). In
DeepNEAT, genes in the genome represent entire layers of a deep neural network and
the connection between them. Furthermore, CoDeepNEAT combines the ideas used in
SANE with DeepNEAT to introduce a two-level evolutionary mechanism that evolves
modules and blueprints, promoting the evolution of repetitive structures.

Assunção et al. (2018, 2019) proposed a method to search for efficient topologies
and also to tune the hyperparameters, called Deep Evolutionary Network Structured
Representation (DENSER). DENSER uses a two-level algorithm to evolve the topolo-
gies and parameters of deep neural networks. The first level is concerned with the
overall architecture of the network. The second level is responsible for giving the in-
ner parameters of each layer. DENSER uses GA on the first level and grammatical
evolution on the second level. The variation operators affect these two levels by spe-
cific types of mutation. Crossover was also used in the reproduction process. This
proposal was evaluated on the MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100,
achieving performance similar to other manually designed state-of-the-art proposals.

2.2 evolutionary algorithms 25

When compared to other automatic methods, DENSER was able to outperform their
results in the experiments made by the authors.

2.2.2 Coevolution

The simultaneous evolution of at least two distinct populations (also denominated
species) is called coevolution (Hillis, 1990; Rawal, Rajagopalan, and Miikkulainen,
2010). There are two types of coevolution algorithms: cooperative and competitive.
In cooperative coevolution, individuals of different species cooperate in the search
for efficient solutions, and the fitness function of each species is designed to reward
this cooperation. Several works used cooperative coevolution to evolve neural net-
works, such as in García-Pedrajas, Hervás-Martínez, and Muñoz-Pérez (2003), García-
Pedrajas, Hervás-Martínez, and Ortiz-Boyer (2005), Gomez, Schmidhuber, and Miikku-
lainen (2008), and Potter and De Jong (1995). In competitive coevolution, individuals
of different species are competing between them in the search for better solutions.
This competition is designed by the problem domain and can be, for example, players
competing in a game (Ficici and Pollack, 2003) or robots dueling for resources (Nelson,
Grant, and Henderson, 2004). In this case, their fitness function directly represents this
competition in a way that scores between species are inversely related.

The work by Hillis (1990) is one of the first to address evolution with competitive
coevolution. In his work, the adversarial populations are characterized as hosts and
parasites. Following this terminology, a predator-prey approach was used to model the
coevolutionary algorithm. Specifically, individuals from the population of predators
(parasites) hunt the less-fitted individuals from the population of preys (hosts).

There are several other approaches to model the interaction from different popula-
tions in coevolution (Antonio and Coello, 2018; Sims, 1994a). Figure 6 shows examples
of the following strategies:

• all vs. all: this approach pairs each individual from one population with each
individual in the other population (Figure 6(a));

• all vs. best: this strategy pairs each individual from one population with the best-
fitted individual in the other population (Figure 6(b));

• random: this approach randomly matches individuals across populations (Fig-
ure 6(c)).

The use of coevolution in EAs can cause some issues, such as intransitivity and
disengagement (Antonio and Coello, 2018; Mitchell, 2006). The intransitivity occurs
when a solution a is better than b and b is better than c, but this does not guarantee
that a is better than c. This issue can lead to cycling between these solutions during the
evolutionary process, breaking the progress of individuals toward optimal solutions.
Disengagement occurs when the equilibrium between the populations is broken. In

26 background and related work

a1

a2

a3

a4

b1

b2

b3

b4

(a) all vs. all

a1

a2

a3

a4

b1

b2

b3

b4

best individuals

(b) all vs. best

a1

a2

a3

a4

b1

b2

b3

b4

(c) random

Figure 6: Representation of (a) the all vs. all, (b) all vs. best, and (c) random pairing strategies.

this case, individuals from one population are much better than individuals from the
other, leading to ineffective progression.

There are some other approaches to apply coevolution in the context of EAs. Spa-
tial coevolution was studied by Mitchell (2006) and Williams and Mitchell (2005). In
spatial coevolution, individuals are spatially distributed and a spatial logic is used
to pair individuals on the evaluation phase. For example, Mitchell (2006) made ex-
periments distributing the individuals among a toroidal grid, where each cell holds
one individual for each coevolutionary population. The fitness was calculated using
individuals from each cell, and the selection used the neighborhood of these cells to
rank the individuals. The crossover also follows these spatial rules defined by this
strategy. This strategy was found to overcome the issues with coevolution strategies
mentioned before. Williams and Mitchell (2005) found that spatial coevolution pro-
motes diversity in the population. They also found that spatial coevolution promotes
individuals that target specific weaknesses of individuals from the other population
in the neighborhood.

2.2 evolutionary algorithms 27

2.2.3 Competitive Coevolution and Neuroevolution

In this section, we detail existing proposals of competitive coevolution algorithms in
the evolution of neural networks in some adversarial domains, such as competitive
robots and game playing.

Sims (1994a) proposed a model to evolve virtual creatures by competition in a simu-
lated environment. The author used a coevolution algorithm to evolve the morphology
and the neural controller systems of a virtual creature. The creatures may be seen as
articulated robots with logical controllers performing autonomous actions. The simu-
lated environment had a cube in its center that is the primary objective of the duel.
The creature that reached the cube first within a certain amount of time was declared
the winner. The fitness function was proportional to the time the creature had the cube
under control. This promotes the evolution of individuals that not only win but also
defeat an enemy by a large margin. A directed graph was used as the mechanism to
represent the genotype of an individual. The genotype to phenotype transformation in
respect to morphology is based on a hierarchy of articulated three-dimensional rigid
parts. Each node in the directed graph of the genotype has information about the crea-
ture, such as the dimensions of the rigid part, the joint-type of a connection between
parts, and a set of neurons that controls the part. This set of neurons is responsible
for the behavior of creatures. Neurons receive as inputs the information sensed by
rigid parts and output forces or torques to be used by joints between them. During
the evolution of creatures, both the neural network structure and the weights are ad-
justed. Crossover and mutation are used to generate offspring based on the surviving
parents of an iteration. In each iteration, two creatures are selected to enter into a
duel in the simulated environment. The pairing alternative selected by the author was
all vs. best: the best-performing individual is chosen to be paired with all other indi-
viduals. The model was evaluated both for single-species and two-species evolution.
The results are better for two species, where creatures in each species developed their
morphology and neural controllers efficiently to reach the cube and create counter
strategies against the other species.

Lubberts and Miikkulainen (2001) proposed an approach to evolve a neural network
to play the game of Go. Since it is difficult to find a good opponent to play against the
proposed algorithm, the authors suggested replacing this opponent by using compet-
itive coevolution. They used neuroevolution techniques along with a coevolutionary
algorithm to evolve neural networks in the task of playing Go. To make competi-
tive coevolution possible, they created two species, called hosts and parasites, using
the terminology of Hillis (1990). Hosts have the objective of finding an optimal solu-
tion. Parasites try to defeat hosts by taking advantage of their weaknesses. The SANE
(Moriarty and Miikkulainen, 1997) system was adapted to be used for evolving two
adversarial populations simultaneously. For performance reasons, the authors limited
the experiments to a 5x5 board. The overall performance was compared with a model

28 background and related work

using standard evolution to evolve a solution to Go, and the proposed method outper-
forms it by a large margin. Therefore, Lubberts and Miikkulainen (2001) concluded
that coevolution is useful in generating solutions for adversarial problems, mostly
when it is hard to have a good opponent for these problems to evaluate these evolving
solutions.

Stanley and Miikkulainen (2004) described a method that used coevolution to evolve
complex neural network architectures to be used as robot controllers. They used the
NeuroEvolution of Augmenting Topologies (NEAT) (Stanley and Miikkulainen, 2002)
method and applied it to a competitive environment: a robot duel. In this environment,
two robots have to fight against each other and the last one standing wins. The robot
controller is a neural network that receives several inputs (e.g., energy supplies posi-
tion, energy left, enemy position, and enemy energy) and outputs the strength that
should be applied to the motors that are responsible for the movement of the robot.
As a competitive coevolution method, the fitness function depends on the competition
between robots in this duel. This fitness was used in the regular NEAT method, and
neural networks evolve following the rules defined in NEAT. In NEAT, individuals
start small and become complex through generations. The hypothesis that this com-
plexification process is important in competitive coevolution was validated experimen-
tally by the authors. Thus, the proposed model was evaluated against the following
variations: fixed-topology coevolution of large networks, fixed-topology coevolution
of small networks, fixed-topology coevolution of best complexifying network, and
simplifying coevolution. Stanley and Miikkulainen (2004) concluded that complexifi-
cation, a characteristic inherited by using NEAT, is paramount to discover complex
and optimized solutions in a coevolutionary domain.

Chong, Tan, and White (2005) proposed a coevolution model to develop solutions
for playing Othello (also known as Reversi). The model evolves neural networks that
evaluate solutions proposed by minimax search strategies. As the topology of the
network is fixed, the model is focused on the evolution of weights. The neural network
takes the board state as input and outputs a score representing the evaluation of this
state. The selection process uses a tournament between pairs of networks, where the
ten best networks are selected to be in the next generation. The selected networks will
also be the parents used to generate the offspring, in which only the mutation operator
will be used in the breeding process. The authors compared the solutions obtained by
this process using external computer players. Solutions generated by the proposed
model outperformed the external computer player in most of the games played. So,
Chong, Tan, and White (2005) concluded that the use of coevolution is useful in the
context of an evaluation function used in a minimax search.

Monroy, Stanley, and Miikkulainen (2006) proposed a combination of NEAT and
Layered Pareto Coevolution Archive (LAPCA) (a Pareto coevolution strategy). In this
method, LAPCA was used as the coevolution memory in order to direct the evolution-
ary path towards better solutions. Therefore, the EA used NEAT guided by LAPCA

2.3 evolutionary algorithms and generative adversarial networks 29

on the population control. The authors argued that the use of LAPCA reduced the
number of iterations needed in the EA. Besides, the use of LAPCA in the experiments
evidenced a better performance when compared to other approaches (e.g., random
sampling).

Rawal, Rajagopalan, and Miikkulainen (2010) proposed a model that used both com-
petitive and cooperative coevolution to evolve a neural controller for robots in a preda-
tor and prey domain. The model starts with a fixed architecture that was previously
designed by hand, and they were only concerned with the evolution of the neural con-
troller weights. In the first set of experiments, the authors found that the architecture
was not enough to generate efficient solutions. Thus, they improved the architecture
of the neural controller by hand, creating a hierarchical strategy using multiple neural
networks. With this new architecture, the results were positive and complex solutions
were generated to address the problem. Therefore, the authors concluded that the
model proposed by them was able to create complex, cooperative, and competing so-
lutions to the predator and prey scenario. However, it is important to note that the
initial architecture problem might be automatically addressed by a model that evolves
both the weights and topology of the neural network.

2.3 evolutionary algorithms and generative adversarial networks

Several aspects that compose the Generative Adversarial Networks (GAN) model can
be subject to evolution in an Evolutionary Algorithm (EA). However, it is important
to keep in mind that the EA should preserve the balance of these components to
address the stability issues listed in Section 2.1.1. In this section we present and discuss
the possibilities for the application of EA to optimize the GAN model. The options
related to neuroevolution and the aspects of GANs are presented as possible choices
to design an algorithm. Next, we describe works that use EA for training and evolution
of GANs.

Other non-evolutionary techniques were also proposed to automatically search for
efficient architectures of GANs. AutoGAN (Gong et al., 2019) applies a multi-level
architecture search for generators. AdversarialNAS (Gao et al., 2020) uses a differen-
tiable method to search for efficient architectures not only for generators but also for
discriminators. However, these works are beyond the scope of this research and we
focus specifically on the use of EA with GANs.

2.3.1 Analysis of Evolutionary Aspects of GANs

Neuroevolution can be fully applied in the context of GANs. The evolution of the
topologies of the discriminator and the generator should take into account that the
equilibrium between them is paramount to the convergence of the training process.
Not only the structure (i.e., the number of layers and the connections between them)

30 background and related work

but also the internal characteristics of each layer composing a neural network can be
the subject of evolution. For example, the type of a layer (e.g., convolution or fully con-
nected), the number of output features, and the activation function (e.g., ReLU, ELU,
Tanh). Other aspects relevant to the network can also be a variable of the individual,
such as the choice for the optimizer used in the training, the learning rate, the batch
size, and the number of training iterations.

We can also make use of other techniques regarding Evolutionary Computation (EC)
in neuroevolution, such as coevolution. For instance, GANs can be modeled as a com-
petitive coevolution problem, where we consider a population of discriminators com-
peting with a population of generators. Therefore, an EA can make use of competitive
coevolution concepts to match individuals from these two populations at the evalu-
ation phase. Furthermore, we can relate problems that frequently affect the training
of GANs (Section 2.1.1) to coevolution problems. For example, the vanishing gradient
can be linked to the disengagement issue. Thus, the use of coevolution and strategies
to avoid its common problems can be explored in combination with other techniques
(e.g., neuroevolution) to solve the challenges of the GAN training process.

2.3.2 Current Proposals

In this section we present the state-of-the-art on the application of EA in GANs. This
work builds upon the analysis of Costa et al. (2020b) expanding the scope to other
models recently proposed. We describe the solutions, focusing on the choices concern-
ing the aspects of the EA and the characteristics of GANs, showing the characteristics
of the algorithms concerning the selection method, fitness functions, variation opera-
tors, evaluation, and experiments.

2.3.2.1 Progressive Growing of GANs

Karras et al. (2018) proposed a training method that uses a predefined strategy for
progressive growing the architecture of a GAN. As the model progresses in a pre-
configured way, the proposal of Karras et al. (2018) does not use EAs in the training
process. This method shares characteristics with NEAT (Section 2.2.1), the neuroevo-
lution algorithm proposed by Stanley and Miikkulainen (2004). Both methods rely on
a simple start point and make use of complexification strategies in the search for bet-
ter solutions. However, NEAT uses a coevolution approach, while Karras et al. (2018)
uses a predefined procedure, relying on the previous knowledge about the problem
to manually predefine a good start point and the progression path. Therefore, as the
evolutionary path is predefined, Karras et al. (2018) do not use a population to search
for different solutions. Their method is equivalent to the use of a single individual
through the training process.

2.3 evolutionary algorithms and generative adversarial networks 31

2.3.2.2 E-GAN

Evolutionary Generative Adversarial Networks (E-GAN)1 was one of the first propos-
als to use EAs to optimize GANs (Wang et al., 2018). Their approach evolves GANs
using a mutation operator that selects the loss function of the individuals between
a set of predefined possibilities. They also use minimal populations of individuals,
only to capture the possibilities of losses predefined in the definition of the model.
The evolution occurs only in the generator, and a single-fixed discriminator is used
as an adversary for the population of generators. The network architectures for the
generator and the discriminator are fixed and based on DCGAN (Radford, Metz, and
Chintala, 2015).

The possibilities for the loss functions are implemented through three mutation op-
erators: minimax, heuristic, and least-squares mutation. In this case, the population of
generators is composed of three individuals, each one representing one of the possible
losses. The minimax mutation follows the original GAN objective given by Eq. (3), min-
imizing the probability of the discriminator to detect fake samples. On the other hand,
the heuristic mutation aims to maximize the probability of the discriminator making
mistakes regarding fake samples. The least-squares mutation is based on the objective
function used in LSGAN (Mao et al., 2017). Each loss function in the predefined set
focused on an objective to help in the GAN learning process.

Two criteria were used as fitness in the evaluation phase of the algorithm. The first,
called quality fitness score, is defined as:

Fq = Ez∼pz [(D(G(z)))], (17)

that is similar to the loss function used in the generator of the original GAN model
(Eq. (1)). The second criteria, called the diversity fitness score, is defined as:

Fd = − log ∥∇D − Ex∼px [log(D(x))] − Ez∼pz [log(1−D(G(z)))]∥. (18)

In Eq. (17) and Eq. (18), z, pz, px, G and D represent the latent space, the latent
distribution, the input dataset, the generator, and the discriminator, respectively. These
two fitness criteria are combined as follows:

F = Fq + γFd, (19)

where the γ parameter is used to regulate the influence of the diversity criteria on the
final fitness.

At each generation, individuals are evaluated following their specific loss function,
and only the best-fitted generator survives. In the next generation, the survivor indi-
vidual is used to train the discriminator and to generate the three descendants for the
next evaluation.

1 Code available at https://github.com/WANG-Chaoyue/EvolutionaryGAN.

32 background and related work

The E-GAN model was evaluated on the CIFAR-10, LSUN and CelebA datasets.
The Inception Score was used as the metric to analyze the results. Wang et al. (2018)
concluded that E-GAN improved the training stability and achieved satisfactory per-
formance, outperforming other methods in specific scenarios.

Li et al. (2021) propose a framework C-GAN that incorporates a crossover operator
that can be integrated into other evolutionary models for GANs. The operator is based
on Q-filtered distillation crossover (Bodnar, Day, and Lió, 2020). The process consists
of using one parent as the basis of the offspring model and select the generated data of
parents to be used on the learning process for the offspring. The authors included C-
GAN in E-GAN to produce a new model called Evolutionary Generative Adversarial
Networks with Crossover (CE-GAN)2. Experiments on CIFAR-10 show that CE-GAN
is capable of achieve competitive results when compared to E-GAN with respect to
Inception and FID scores.

2.3.2.3 Pareto GAN

A neuroevolution approach for training GANs was proposed by Garciarena, Santana,
and Mendiburu (2018). Although not named by the authors, we refer to this solution
as Pareto GAN3. The proposal uses a genetic algorithm to evolve the architecture
of the neural networks used for both the generator and the discriminator. A single
individual (Gi,Di) is used to represent both the generator and the discriminator in
the EA.

The crossover operator combines two parents exchanging the discriminator and the
generator between them. For example, a crossover between the individuals (G1,D1)

and (G2,D2) produces the children (G1,D2) and (G2,D1). The crossover operator
does not change the internal state of the generator and the discriminator in each
individual. To accomplish this, a set of possible mutations is applied to individuals
when creating a new generation.

Regarding the architecture of the neural networks the mutation can change, add
or remove a layer. When changing a layer, the operator can modify the weights, the
activation function, and/or the loss function used in the GAN algorithm. Other mod-
ifications include changing the characteristics of the algorithm, such as the number of
iterations for the generator and the discriminator when applying the GAN training
algorithm to an individual.

A benchmark for GANs based on the problem of Pareto set approximations was
also proposed (Garciarena, Santana, and Mendiburu, 2018). The comparison between
the Pareto front of a solution and the real front is used to assess the quality of the
samples and can also identify issues, such as the mode collapse problem. Therefore,
the Inverted Generational Distance (IGD) (Coello and Sierra, 2004) was used as fitness

2 Code available at https://github.com/AlephZr/CE-GAN.
3 Code available at https://github.com/unaigarciarena/GAN_Evolution.

2.3 evolutionary algorithms and generative adversarial networks 33

to drive the EA. The IGD measures the smallest distance between points in the true
Pareto front and in the Pareto front approximation and is given by:

IGD =
1

|R|

(∑
r∈R

mina∈Ad(r,a)p
) 1

p

, d(r,a) =

(
m∑

k=1

(rk − ak)
2

) 1
2

, (20)

where R is the real Pareto front, A is the Pareto approximation, and m is the number
of vectors in R.

The evaluation phase will transform each individual (Gi,Di) into a concrete GAN,
composed of a discriminator and a generator, that will be trained according to the
regular GAN algorithm. The fitness is calculated, and the selection uses the Pareto-
dominance to compose the offspring that will form the next generation.

The proposed solution was evaluated using bi-objective functions as the input data,
each one with 10 input variables. A population of 20 individuals, evaluated for 500

generations, was used in the experiments. The authors concluded that the algorithm
was able to found architectures for the discriminator and the generator that improve
the Pareto set approximation. The experiments do not include evaluations with image
datasets. However, experiments using the same data dimension as the MNIST dataset,
i.e., with 784 input variables, were also conducted. The authors demonstrated that the
solution is scalable to this dimension, as the results showed that useful architectures
were also found in this case. Furthermore, a study of transferability study demon-
strated the capacity of generalization of the solution to different problems (Garciarena,
Mendiburu, and Santana, 2020).

2.3.2.4 Lipizzaner

Al-Dujaili et al. (2018) proposed a model called Lipizzaner4 that defines a coevolu-
tionary framework to train and evolve GANs. In Lipizzaner, the evolution occurs only
on the internal parameters of the generator and discriminator, such as the weights of
their neural networks. Thus, the network architecture used in both the discriminator
and generator is fixed and defined a priori. The architecture varies with the dataset
used in the experiments.

The fitness used in Lipizzaner for the generators and discriminators is based on the
GAN objective function, defined as:

L(u, v) = Ex∼pdata
[ϕ(Dv(x))] + Ex∼Gu

[ϕ(1−Dv(x))], (21)

where ϕ is a concave function in the interval [0, 1], pdata is the input dataset, Gu

is the generator with the parameters u, and Dv represents the discriminator with its
parameters v.

4 Code available at https://github.com/ALFA-group/lipizzaner-gan.

34 background and related work

At the evaluation step, L(ui, vj) is calculated for each pair (Gi,Dj), and the fitness
values are updated as fui

−= L(ui, vj) and fvj
+= L(ui, vj) for generators and dis-

criminators, respectively.

mixture weights

G D

mixture weights

G D

Figure 7: A 3× 3 grid representing the spatial coevolution mechanism used in Lipizzaner. The
neighborhood of the central cell includes the four-highlighted nodes in the grid.
Each cell contains one discriminator, one generator, and a mixture of weights. Im-
age adapted from Al-Dujaili et al. (2018)

Spatial coevolution (Mitchell, 2006; Williams and Mitchell, 2005) was used to design
the algorithm that trains and evolves generators and discriminators. Individuals are
allocated on a two-dimensional toroidal grid, where each cell contains individuals
from the generator and discriminator populations. In the evaluation phase, the EA
matches individuals in neighbor cells following a coevolutionary pairing approach. A
five-cell neighborhood was used to determine these interactions. Figure 7 displays an
example of a 3x3 grid with the spatial coevolution strategy used in Lipizzaner.

Lipizzaner uses two mutation operators. The first operator mutates the learning
rates of the optimization method used in the generator and the discriminator. In this
case, a normal distribution is used to change the learning rate at small steps in each
generation. The second operator is a gradient-based mutation that updates the weights
of the individuals in the populations of generators and discriminators. The generator
is determined as a mixture of generators in this neighborhood. Furthermore, an evo-
lution strategy combined with a performance metric (e.g., the Inception Score or FID)
is used to update the mixture of weights.

The model was evaluated on the MNIST and CelebA datasets, using a 2× 2 grid,
forming a population of 4 generators and 4 discriminators. These populations were
evolved through 400 generations and the Adam optimizer (Kingma and Ba, 2015) to
update the weights. The authors found that Lipizzaner was able to avoid the mode
collapse problem in most of the experiments. Moreover, the authors argued that the
model can recover from the mode collapse issue and continue to improve as the train-

2.3 evolutionary algorithms and generative adversarial networks 35

ing advances through next generations. Further experiments demonstrate the contri-
butions of the components in Lipizzaner through ablation studies (Hemberg et al.,
2021).

A further improvement proposes to optimize the spatial coevolution strategy, creat-
ing a new model called Lipi-Ring (Toutouh and O’Reilly, 2021). In Lipi-Ring, a ring
topology is used instead of a toroidal grid. When compared to Lipizzaner, Lipi-Ring
is able to achieve similar performance but with lower computational resources.

2.3.2.5 Mustangs

MUtation SpaTial gANs (Mustangs) combines E-GAN and Lipizzaner in a hybrid
approach to train and evolve GANs5 (Toutouh, Hemberg, and O’Reilly, 2019). As in
Lipizzaner and E-GAN, the topologies of the generator and discriminator are kept
fixed during the evolutionary process.

The Mustangs model uses the same fitness strategy used in Lipizzaner (Eq. (21)). At
each evaluation step, the value L(ui, vj) is computed for each pair (Gi,Dj), and the
fitness values are updated as fui

−= L(ui, vj) and fvj
+= L(ui, vj) for generators and

discriminators, respectively.
The variation operators used in Mustangs are a combination of the ones used in

Lipizzaner and E-GAN. Therefore, as in E-GAN, the loss function of the individuals
can be changed. However, the strategy used here is to randomly select one of the
three possibilities for the loss function, instead of evaluating the individuals using all
losses. The goal is to increase the diversity of genomes in the population. In addition,
Mustangs also uses the mutation operators and the strategy to update weights of
Lipizzaner. Crossover is not used in this proposal.

The evaluation phase follows the same proposal as Lipizzaner. As in Lipizzaner,
Mustangs uses spatial coevolution to pair discriminators and generators, using a
toroidal grid to spatially distribute the individuals. Individuals are matched using the
grid neighborhood to calculate the fitness and evaluate each individual. The generator
is determined as a mixture of generators in this neighborhood, the same strategy used
in Lipizzaner.

Mustangs was evaluated with the MNIST and the CelebA datasets. As the archi-
tectures of the neural networks that compose a GAN are fixed and predefined, the
authors chose different topologies according to the dataset used in the experiments. A
four-layer MLP network with 700 neurons and a DCGAN-based architecture was used
for the experiments with the MNIST and the CelebA dataset, respectively. For MNIST,
a grid size of 3x3 was used with a time limit of 9 hours. For CelebA, the experiments
were executed with a 2× 2 grid for 20 epochs. A comparison between standard GAN,
E-GAN, Lipizzaner, and Mustangs was presented. The authors found that Mustang
is able to generate the best results concerning the FID score. They also concluded

5 Code available at https://github.com/mustang-gan/mustang.

36 background and related work

that spatial coevolution is an efficient way to model the population of generators and
discriminators to train GANs.

2.3.2.6 CDE-GAN

Cooperative Dual Evolution based Generative Adversarial Network (CDE-GAN)6 (Chen
et al., 2020) evolves a separated population of generators and discriminators to train
GANs. A soft mechanism was proposed to promote a stable interaction between gener-
ators and discriminators in the model. This mechanism is paramount in CDE-GAN for
the application of the GAN training and keeps the balance between generators and dis-
criminators, avoiding problems such as the vanishing gradient. Thus, discriminators
will be weakened to allow the generator to gradually learn the input distribution. In
practice, the losses achieved by generators are softened by applying softmax weighted
arithmetic average over the respective adversarial discriminators.

The architecture of generators and discriminators are fixed and do not evolve
through generations. Mutation is used as the variation operator to switch the loss
functions of generators and discriminators. Thus, CDE-GAN uses a mechanism simi-
lar to E-GAN, but also adding the possibility of using different loss functions not only
on generators but also on discriminators. Individuals can use the loss functions of the
original GAN model (the non-saturated and the minimax versions) and from LSGAN.

The offspring is created based on the best individuals in the generation. For this,
the fitness of individuals is calculated based on the interaction between generators
and discriminators.

Experiments were conducted using CIFAR10, LSUN, and CelebA datasets. The ar-
chitectures used in the experiments were based on DCGAN and also on a simple
architecture based on MLP. Results show that CDE-GAN is able to avoid mode col-
lapse and promote stable training. It also shows consistent performance when trained
on complex image datasets.

2.3.2.7 Other Approaches

Bharti, Biswas, and Shukla (2021) propose Evolutionary Multiobjective Cyclic GAN
(EMOCGAN), a model that uses MOEA to tackle the stability problem of GANs. It is
based on conditional GANs (Section 2.1.4.3), using cyclic GANs as the base model for
the application of the EA. Evolutionary mechanisms of E-GAN are also used to pro-
vide variation and selective pressure for individuals. Experiments with EMOCGAN
were conducted on datasets related to image-to-image translation. Results show that
the proposed EA is able to outperform a non-evolutionary cyclic GAN model.

Category-aware GAN (CatGAN)7 (Liu, Wang, and Liang, 2020) proposes the use of
EA to drive the training of GANs for text generation. The model uses a hierarchical

6 Code available at https://github.com/shiming-chen/CDE-GAN.
7 Code available at https://github.com/williamSYSU/CatGAN.

2.3 evolutionary algorithms and generative adversarial networks 37

EA to stabilize the GAN training, pursuing an equilibrium between quality and diver-
sity on the generated text samples. The algorithm evolves a population of generators
that are trained and evaluated in a dynamic environment given by a specific discrimi-
nator. For this, a new objective function was proposed to take into account categorical
data. At each generation, individuals in the population of generators reproduce based
on mutation. Hierarchical selection is applied to compose the next generation. Ex-
periments were conducted using text datasets to compare the proposed evolutionary
model with other non-evolutionary GAN models. The results show that CatGAN is
able to generate text with quality and retaining diversity, outperforming most of the
other models evaluated in the experiments.

Other models rely on different approaches to evolve GANs. Cruz, Acosta-Mesa, and
Mezura-Montes (2021) use Particle Swarm Optimization (PSO) to design and train
GANs to generate biomedical Chest X-Ray images of pneumonia. In this model, the
architectures of the neural networks grow progressively and are evaluated by using
the FID score.

2.3.3 Discussion

Section 2.3.2 presented the current proposals that apply EAs in the context of GANs. In
recent years we have seen several proposals that rely on EAs to optimize the different
components of GANs. Next, we present and discuss these characteristics regarding
the aspects of the GAN model used in the proposals, the choices concerning the EA,
and the experimental results.

2.3.3.1 Characteristics of the GAN model

Table 1 presents choices with respect to the GAN model used in each proposal. These
proposals are compared under the perspective of four attributes: the number of dis-
criminators used in the algorithm, the number of generators, the architecture of each
component, and the loss function used to train the GAN.

Except for E-GAN, all proposals used multiple discriminators. For the generators,
all proposals used multiple generators, with E-GAN using a fixed number of three
generators, corresponding to the number of possible loss functions designed in the
algorithm. Thus, E-GAN works with small populations, limiting the evolutionary op-
tions that can emerge through generations. With variation operators similar to E-GAN,
CDE-GAN also works with small populations. On the other hand, Mustangs adapted
successfully the E-GAN model in the context of a larger population, using the spatial
coevolution approach of Lipizzaner to handle the individuals.

Regarding the architecture, only Pareto GAN allows it to be modified during the
evolutionary process. The other proposals used a predefined and fixed architecture
for the neural networks of generators and discriminators. As such, Pareto GAN works

38 background and related work

Table 1: Aspects of the GAN used in the evaluated proposals.

Algorithm Discriminator Generator Architecture Loss Function

E-GAN single-fixed three DCGAN-based evolvable1

Pareto
GAN

many many evolvable evolvable1

Lipizzaner many many MLP and DCGAN-
based2

original GAN

Mustangs many many MLP and DCGAN-
based2

evolvable1

CDE-GAN many many MLP and DCGAN-
based2

evolvable

1 The loss function is selected using a predefined set of possibilities.
2 The DCGAN-based architecture was used with the CelebA dataset and a simpler
approach was applied with the MNIST dataset (see Section 2.3.2.4 and Section 2.3.2.5)

with larger search spaces, as the architectures that can emerge from the EA have a
high number of possibilities. It has also the potential to handle the balance between
generators and discriminators, as the complexity of the architecture is determined by
the algorithm.

Concerning the loss function, Lipizzaner uses a fixed one for the GAN training,
whilst CDE-GAN, E-GAN, Pareto GAN, and Mustangs allow it to be modified by
evolution. This approach uses a set of predefined possibilities to select and attribute a
loss function to an individual. A more flexible approach can also be used instead of a
predefined set, using genetic programming to discover better loss functions for GANs.
However, the proposals analyzed in this chapter did not explore this approach.

2.3.3.2 Components of the Evolutionary Algorithm

Table 2 presents a comparison between the solutions presented in Section 2.3.2, focus-
ing on the components of the evolutionary algorithm, namely: the pairing approach,
the variation operators, the fitness function, and the selection method.

As multiple generators and/or discriminators are used in all proposals, and the
GAN training occurs using generators and discriminators as adversarial, we need a
mechanism to pair the individuals. With the exception of Pareto GAN, all other solu-
tions use separated individuals to represent discriminators and generators. In E-GAN,
as there are only a single discriminator and three generators, the policy for pairing is
to use the discriminator to evaluate all three generators. Lipizzaner and Mustangs use
a spatial coevolution strategy to match generators and discriminators. It is important

2.3 evolutionary algorithms and generative adversarial networks 39

Table 2: Components of the evolutionary algorithm used in the evaluated proposals.

Algorithm Pairing Variation Operators Fitness Selection

E-GAN one-vs-three mutation (loss) custom best individ-
ual

Pareto
GAN

– crossover and muta-
tion

IGD Pareto domi-
nance

Lipizzaner
spatial
coevolution

mutation (weights) GAN objec-
tive

spatial

Mustangs
spatial
coevolution

mutation (weights,
loss)

GAN
objective1

spatial

CDE-GAN all-vs-bests mutation (loss) custom best individu-
als

1 The FID score is used as the performance metric to evolve the mixture of weights in
Mustangs.

to note that the spatial coevolution mechanism applied in Lipizzaner and Mustangs
uses the mixture of weights from the neighborhood to compose the weights of the gen-
erator in each cell, taking advantage of multiple individuals to produce a single model.
The other solutions do not apply an analogous mechanism to combine weights from
different individuals. Pareto GAN has individuals with diverse architectural charac-
teristics in the population, preventing the use of the mixture mechanism designed for
Lipizzaner and Mustangs. CDE-GAN uses the best individuals from the generation to
compose pairs on the breeding and evaluation of the offspring.

The variation operators are paramount to provide diversity in the search for good
solutions in an EA. Pareto GAN uses crossover and mutation as operators. It is also the
solution that provides the most variability regarding the elements that can be evolved
through generations in the EA. As Pareto GAN models its individual as a represen-
tation of the entire GAN, i.e., encoding both the discriminator and the generator into
the genotype, the crossover works exchanging the generator and the discriminator be-
tween two parents to form the offspring. The other solutions modeled the GAN with
independent genotypes to represent the generator and the discriminator. Therefore,
this approach is not applicable to them.

Pareto GAN has evolvable neural network architectures for discriminators and gen-
erators. The mutation operator is used to provide small changes in these architectures
that are built through generations to produce strong discriminators and generators.
E-GAN, Lipizzaner, and Mustangs use a restricted mutation strategy. In E-GAN, only
the loss function can be evolved. CDE-GAN uses a similar approach but applying

40 background and related work

different loss functions not only to discriminators but also for generators. In Lipiz-
zaner, gradient-based mutations are applied to update the weights of generators and
discriminators. Furthermore, Lipizzaner uses an evolution strategy to update the mix-
ture of weights used for generators. Mustangs combines the operators of E-GAN and
Lipizzaner.

The choice for fitness is diverse among the proposals. E-GAN uses a custom function
that represents the quality and diversity of the created samples. As only the generator
is subject to evolution, the discriminator does not have a fitness associated. CDE-GAN
uses a similar approach but also introduces the fitness for discriminators. Pareto GAN
based its fitness on the concepts of the Pareto front, using the IGD to represent the
fitness value. Lipizzaner and Mustangs use the GAN objective function to calculate
the fitness for the individuals. In addition, the FID score was used as the performance
metric to evolve the mixture of weights by Toutouh, Hemberg, and O’Reilly (2019).

The selection method used in E-GAN is based on the choice of the best generator.
As E-GAN has only three generators, each one with a specific loss function, the fitness
guide the evolution by selecting the function that fits the best generator for the cur-
rent environment. The switch between functions through generations contributes to
E-GAN with enough diversity in training to achieve convergence. CDE-GAN select the
I best discriminators and J best generators to compose the next generation. In Pareto
GAN, Pareto dominance is used as the strategy to select individuals to form the next
generation. Lipizzaner and Mustangs have a selection strategy based on the spatial
coevolution mechanism used in the evaluation phase. The neighborhood is used to
evaluate and replace the individual in the center of a neighborhood according to the
fitness.

2.3.3.3 Experiments and Results

Table 3 compares the proposals under the perspective of the experimental setup used
to assess the contributions of each solution. Four experimental attributes are presented:
the dataset used in the training, the number of generators and discriminators in the
populations, the number of generations used in training, and the metric used to eval-
uate the results.

Except for Pareto GAN, all proposals used image datasets in the experiments. Pareto
GAN uses bi-objective functions to validate the model, also including a function that
simulates the data dimension of the MNIST dataset. In the category of images, MNIST
is a simple dataset and should be used carefully to draw generic conclusions about the
performance of a solution. The CelebA dataset is perhaps the most commonly used
data to validate GANs. Therefore, it would be important to assess the performance of
Pareto GAN in this dataset.

The populations used in the experiments vary a lot among the proposals. Except
for E-GAN and CDE-GAN, the solutions used multiple individuals for both popula-
tions in the experiments. Although it is possible to use more individuals in E-GAN,

2.3 evolutionary algorithms and generative adversarial networks 41

Table 3: Comparison of the experiments presented in the EA proposals to train GANs.

Algorithm Dataset Population (Discrim-
inators × Generators)

Generations Metric

E-GAN CIFAR-10, LSUN,
CelebA

1× 3 200000 Inception
Score

Pareto
GAN

bi-objective func-
tions

201 500 IGD

Lipizzaner MNIST, CelebA 4× 4 400 –

Mustangs MNIST, CelebA 4× 4, 9× 9 time-limited,
20

FID score

CDE-GAN CIFAR-10, LSUN,
CelebA

[1, 2, 4, 8]× 1 100k to 400k Inception
score

1 In Pareto GAN one individual completely represents a GAN, i.e., it contains both a
generator and a discriminator.

the experiments used only a single discriminator and three possibilities for generators
(representing each possible loss function). CDE-GAN can also use multiple generators,
but the experiments were limited to a single individual in order to limit the execution
time. In Pareto GAN, one individual completely represents a GAN. Therefore, 20 indi-
viduals were used, meaning that 20 independent GANs with their own generator and
discriminator were trained through generations. Lipizzaner and Mustangs use spatial
coevolution to distribute the individuals in a grid of 2× 2 for the MNIST dataset. For
CelebA, Mustangs used a grid of 3× 3. As these grids hold a single generator and
discriminator in each cell, the population is composed of 4 and 9 individuals for the
2× 2 and 3× 3 setups, respectively. As a five-cell neighborhood is applied, spatial co-
evolution reduces the number of iterations needed to evaluate the individuals. Thus,
a larger number of individuals can be used to evaluate Lipizzaner and Mustangs.

The number of generations used to evaluate each approach also present high vari-
ability. Each approach adapted the experiments to use a number of generations re-
specting their internal characteristics. For example, as E-GAN and CDE-GAN works
with smaller populations, the number of generations needed to converge is much
higher than the others. Mustangs used a time-limited strategy of nine hours for the
experiments with MNIST and a limit of 20 generations for experiments with CelebA.
The time-limited approach used in the MNIST experiments corresponds to more than
150 generations.

Mustangs use the FID score to report and analyze the results achieved by trained
generators. As discussed in Section 2.1.2, the FID score is currently the state-of-the-art

42 background and related work

metric used to evaluate and compare GANs. The Inception Score, the former most
used metric for GANs, was applied in the experiments for E-GAN and CDE-GAN.
Pareto GAN adopted the IGD as the metric, which is adequate to its approach based
on the Pareto set approximations. Lipizzaner analyzed the results through visual in-
spections and does not present an evaluation with respect to an objective measure-
ment. As the proposals use different metrics, we can not directly compare the results
of all proposals.

2.4 summary

In this chapter, we reviewed the background and the state of the art about Genera-
tive Adversarial Networks (GANs) and Evolutionary Algorithms (EAs). Section 2.1
presented the concepts about GAN, describing its challenges and variations of the
original model. Despite the recent advances in the field, it is possible to see that there
are still open problems. The stability of training remains a challenge, being tackled by
researchers using different approaches, such as new loss functions and/or alternative
architectures. Section 2.2 introduced EAs, focusing on neuroevolution and coevolu-
tion. In Section 2.2.3, we also described proposals that used competitive coevolution
to evolve neural networks.

Finally, Section 2.3 presented state-of-the-art proposals that unifies concepts of EAs
and GANs. We described proposals that train GANs using techniques from EC such
as neuroevolution and coevolution.

The architectures of the generator and the discriminator are paramount to the equi-
librium on the GAN training, and coevolution combined with neuroevolution can give
the capabilities needed to balance their power. Furthermore, we can relate problems of
GANs to coevolution problems. For example, the vanishing gradient problem (Section
2.1.1) can be linked to the disengagement issue (Section 2.2.2). Thus, we explore in the
next chapter the use of EA to improve the training of GANs by using a combination
of existing coevolution and neuroevolution techniques.

3
C O E V O L U T I O N A RY G E N E R AT I V E A D V E R S A R I A L N E T W O R K S

In this chapter, we introduce our proposal to use Evolutionary Algorithms (EAs) to
train and evolve Generative Adversarial Networks (GANs) called Coevolutionary Gen-
erative Adversarial Networks (COEGAN). This work was first published in Costa,
Lourenço, and Machado (2019), with a more detailed evaluation and validation pub-
lished in Costa et al. (2019). The present chapter adapted and reproduced parts of
these works.

As described in Section 2.1.1, GANs can suffer from mode collapse and vanishing
gradient, making them hard to train. To address these issues, we propose the use of
EAs to evolve GANs, improving the training stability and, at the same time, discover-
ing novel neural network architectures for the discriminator and generator.

This chapter provides a detailed description of COEGAN, validating the proposal
experimentally in different scenarios. Section 3.1 describes the model and details each
main component. Section 3.2 presents the results of the first experimental evaluation
of COEGAN. In Section 3.3, the model is compared with other proposals presented
in the literature. Finally, Section 3.4 summarizes the conclusions and points out the
limitations of the proposal and directions for further improvement.

3.1 model

Coevolutionary Generative Adversarial Networks (COEGAN) (Costa et al., 2019;
Costa, Lourenço, and Machado, 2019) combines neuroevolution and coevolution
in the coordination of the GAN training algorithm. Our approach is inspired by
NeuroEvolution of Augmenting Topologies (NEAT) and DeepNEAT (Miikkulainen
et al., 2017), extending and adapting them to the context of GANs adopting the same
representation and selection mechanisms. Our main modification and contribution
concerns the introduction of mechanisms to take into account a competitive coevolu-
tionary environment, where generators and discriminators are paired as adversaries.

In COEGAN, the genome is represented as an array of genes, which are directly
mapped into a phenotype that consists of a sequence of layers in a deep neural net-
work. Each gene represents a linear, convolution, or transpose convolution layer. More-
over, each gene also has an activation function, chosen from the following set: ReLU,
Leaky ReLU, ELU, Sigmoid and Tanh. From the specific parameters of each type of
gene, convolution and transpose convolution layers only have the number of output
channels as a random parameter. The stride and kernel size are fixed as 2 and 3, respec-
tively. The number of input channels is calculated dynamically, based on the previous

43

44 coevolutionary generative adversarial networks

Convolution
activation: ELU
kernel size: 3
out channels: 256

Convolution
activation: ELU
kernel size: 3
out channels: 64

Linear
activation: Sigmoid
in features: 3136
out features: 1

(a) Discriminator

Linear
activation: ReLU
in features: 100
out features: 4096

Deconvolution
activation: ReLU
kernel size: 3
out channels: 128

Deconvolution
activation: ELU
kernel size: 3
out channels: 1

(b) Generator

Figure 8: Example of genotypes of a discriminator and a generator. The discriminator contains
two convolution layers and one linear layer. The generator has one linear and two
deconvolution layers. The parameters are listed for each gene (e.g., activation type,
kernel size, and the number of channels).

layer. Similarly, the linear layer only has the number of output features as the random
parameter. The number of input features is calculated based on the previous layer.
Only the activation function, output features, and output channels are subject to the
variation operations.

Figures 8(a) and 8(b) show an example of a discriminator and a generator genotype,
respectively. The discriminator genotype is composed of a convolutional section and is
followed by a linear section (fully connected layers). As in the original GAN approach,
the output of discriminators is the probability of the input sample be a real sample
drawn from the dataset. Similarly, the generator genotype is composed of a linear
section, followed by a transpose convolutional section. The output of the generator is
a fake sample, with the same characteristics (i.e., dimension and channels) of a real
sample.

COEGAN evolves two separated populations: a population of generators, where
each Gi represents a generator; and a population of discriminators where each Dj

represents a discriminator. Inside each population, a speciation mechanism inspired in
the strategy used in NEAT is applied to promote innovation. This mechanism ensures
that individuals with new layers will have the chance to survive long enough to be as
powerful as individuals from previous generations. The speciation mechanism divides
the population into species based on a similarity function, comparing the genomes
to compose groups of similar individuals. Thus, the innovation, represented by the
addition of new genes into a genome, causes the creation of new species when the
modified individuals do not fit into the current species. Therefore, as the selection
mechanism take the species into account, these new individuals have the chance to
survive through generations and reach the performance of older individuals in the
population.

3.1 model 45

For the current proposal of COEGAN, we are only interested in the evolution of
the neural network architecture. The parameters of the layers in the phenotype (e.g.,
weights and bias) are trained by the gradient descent method and will not be part of
the evolution. The number of parameters to be optimized is too large and evolving
them will increase the computational complexity.

3.1.1 Fitness

For discriminators, the fitness is based on the loss obtained from the regular GAN
training method (Section 2.1), i.e., the fitness is equivalent to:

J(D)(D,G) = −Ex∼pdata
[logD(x)] − Ez∼pz [log(1−D(G(z)))], (22)

where pdata represents the dataset used as input to the discriminator, z is the latent
space, pz is the latent distribution, G is the generator, and D is the discriminator.

We have tried to use the same approach for the generator. However, preliminary
experiments evidenced that the loss does not represent a good measure for quality in
this case. The loss for generators, represented by Eq. 3 (Section 2.1), is unstable during
the GAN training, making it not suitable to be used as fitness in an EA.

To address this issue, we selected the Fréchet Inception Distance (FID) (Heusel et al.,
2017) as the fitness for generators, defined as:

FID(x,g) = ||µx − µg||
2
2 + Tr(Σx + Σg − 2(ΣxΣg)

1/2), (23)

where µx, Σx, µg, and Σg represent the mean and covariance estimated for the real
dataset x and fake samples g, respectively, and Tr is the trace function applied on the
resulting matrix of the operations with Σx and Σg.

As presented in Section 2.1.2.2, FID is the state-of-the-art metric to compare the gen-
erative components of GANs and outperforms other metrics, such as the Inception
Score (Salimans et al., 2016). Using the FID score we put selection pressure in genera-
tors and direct the evolution of the population towards strong generators with respect
to this metric.

3.1.2 Variation Operators

The variation operators used in COEGAN are defined by mutation operators that
perform three main modifications to the networks layers:

• Add: In the addition operation, a new layer is randomly drawn from the set of
possible layers. For discriminators, the available layers are linear and convolu-
tion. For generators, the available layers are linear and transpose convolution
(also called deconvolution).

46 coevolutionary generative adversarial networks

Convolution
activation: ELU
out channels: 256

Linear
activation: ELU
out features: 1

cut point

Convolution
activation: ELU
out channels: 256

Linear
activation: ELU
out features: 64

Linear
activation: Sig.
out features: 1

cut point

Convolution
activation: ELU
out channels: 256

Linear
activation: ELU
out features: 64

Linear
activation: Sigmoid
out features: 1

Figure 9: Example of crossover between discriminators.

• Remove: The remove operation randomly chooses an existing layer and excludes
it from the genotype.

• Change: The change operation modifies the attributes and/or the activation
function of an existing layer. In this case, the activation function is randomly
chosen from the set of possibilities listed before. Other specific attributes can be
changed depending on the type of layer. The number of output features and the
number of output channels are mutated for the linear and convolution layers, re-
spectively. The mutation of these attributes follows a uniform distribution, with
a predefined range limiting the possible values.

It is important to note that during the breeding process the parameters (weights and
bias) are copied when the genes involved in the mutation are compatible. This ensures
that the new individual will carry the training information from the previous genera-
tion. However, when the attributes of a linear or convolution layer change, the trained
parameters are lost. This happens because the setup of weights changes, becoming
incompatible with the new layer. Consequently, the weights are not transferred from
the parents and the layer will be trained from scratch.

Besides mutation, we have also defined and evaluated a crossover operator. The
crossover process uses the transition between convolutional layers and linear (fully
connected) layers as the cut point. Figure 9 represents an example of this process.
However, preliminary tests evidenced that crossover decreases the performance of
the system. The composition of new individuals using segments of different neural
networks caused instability in training, leading to poor results.

3.1 model 47

3.1.3 Pairing Strategy

In the evaluation step of the EA, discriminators and generators must be paired to
calculate the fitness for each individual in the population. As discussed in Section 2.2.2,
the pairing strategy is paramount to coevolution.

As we want to train the GAN to avoid problems such as the mode collapse and
vanishing gradient, we consider the use of the all vs. best strategy here. In this way, we
avoid training individuals against adversaries with poor capacities. However, we select
k individuals rather than only one to promote diversity in the GAN training, naming
this strategy as all vs. k-best. We pair each generator with k best discriminators from
the previous generation and, similarly, each discriminator with k best generators. For
the first generation, we assume a random pairing approach since we do not have a
ranking of the best individuals, i.e., k random individuals are selected for pairing in
the initial evaluation.

Another approach is to apply the all vs. all pairing strategy, where each discriminator
is paired with each generator, resulting in many competitions. In this case, the fitness
for discriminators will be the average of the losses obtained by each training pair.
The all vs. all strategy would also be interesting for our model as it will improve
the variability of the environment for both discriminators and generators during the
training. However, the trade-off is the time to execute this approach.

Figure 10 displays examples of the all vs. all and all vs. k-best pairing strategies for a
population of generators and discriminators. The first column contains the generators
gi ∈ G and the second column contains the discriminators dj ∈ D. In Figure 10(a),
all pairwise combinations are generated for the application of the GAN training algo-
rithm:

P = {(gi,dj) |gi ∈ G,dj ∈ D}

Figure 10(b) represents an example of the all vs. best strategy approach with k = 2.
The best individuals are highlighted and the set is composed of the individuals g1,
g2, d1, and d2. In this case, after the initial generation, the GAN training algorithm is
applied in the following set of pairs:

P = {(g1,d1), (g1,d2), (g1,d3), (g1,d4), (g2,d1), (g2,d2),

(g2,d3), (g2,d4), (g3,d1), (g3,d2), (g4,d1), (g4,d2)}

3.1.4 Selection

For the selection phase we used a strategy based on NEAT (Stanley and Miikkulainen,
2002), where we divided the population of generators and discriminators into subpop-
ulations, following a speciation strategy. Each species contains individuals with sim-
ilar network structures. For this, we define the similarity between individuals based

48 coevolutionary generative adversarial networks

g1

g2

g3

g4

d1

d2

d3

d4

(a) all vs. all

g1

g2

g3

g4

d1

d2

d3

d4

best individuals

(b) all vs. k-best

Figure 10: Representation of (a) the all vs. all pairing strategy and (b) the all vs. k-best competi-
tion pattern with k = 2.

on the parameters of each gene composing the genome. Different from NEAT, we do
not use the weights of each layer to differentiate between individuals. Therefore, we
calculate the distance δ between two genomes i and j as the number of genes that ex-
ist only in i or j. Each species inside the populations of generators and discriminators
are clustered based on a threshold δt. This threshold is calculated to suit the desired
number of species.

The selection occurs inside each species. The number of individuals selected inside
each species is proportional to the average fitness of the individuals belonging to
it. Given the number of individuals to keep in a species, a tournament between kt
individuals is applied to finally select the individuals to breed and compose the next
generation.

3.2 experiments

In this section, we evaluate the performance of our method on the image dataset
namely MNIST. Normally, the network would be training for several epochs using the
whole dataset. However, this demands large-scale computational resources, and to
reduce this we will use only a subset of the dataset per generation. This strategy, com-

3.2 experiments 49

bined with the transfer of parameters between generations, ensures the evolutionary
pressure towards efficient solutions and to promote the GAN convergence.

There is no consensus on the metric to represent the quality of samples generated
by generative models. However, as stated in Section 2.1.2.2, it has been shown that FID
is a good metric when comparing the quality of samples generated by GANs (Lucic
et al., 2017). Therefore, we used the FID score, the same metric used as fitness for
generators, to compare our results with the state of the art.

3.2.1 Experimental setup

Table 4 describes the parameters used in all experiments reported in this section.

Table 4: Parameters for the experiments.

Evolutionary Parameters Value

Number of generations 100

Population size (generators) 20

Population size (discriminators) 20

Crossover rate 0%

Add Layer rate 30%

Remove Layer rate 10%

Change Layer rate 10%

Output features range [32, 1024]

Output channels range [16, 128]

k (all vs. best) 3

Tournament kt 2

FID samples 1000

Genome Limit 4

Species 4

GAN Parameters Value

Batch size 64

Batches per generation 20

Optimizer RMSProp

Learning rate 0.001

50 coevolutionary generative adversarial networks

For the evolutionary parameters, we execute our experiments for 100 generations.
We used 20 individuals for the population of both generators and discriminators. We
acknowledge that a larger population would probably achieve better results, but the
computational cost would be too large. The size of the genome was limited to four
layers, also to reduce the computational cost. The number of species used was set
to four, permitting an average of five individuals per species in each subpopulation
(generators and discriminators). We empirically defined a probability of 30%, 10%
and 10% for the add, remove and change mutations, respectively. As stated before,
crossover was not used in the experiments reported in this section.

For the GAN parameters, we choose 64 as batch size, running 20 batches per gen-
eration. This amounts to 1280 samples per generation to train discriminators. The
optimizer used in the training method was RMSProp (Tieleman and Hinton, 2012).
We have also conducted preliminary experiments with Adam (Kingma and Ba, 2015),
but the best results were achieved with RMSProp.

The MNIST dataset was used and we executed each experiment 10 times to achieve
the results within a confidence interval of 95%.

3.2.2 Results

Figure 11 shows the progression of fitness for the best generators and discriminators.
In Figure 11(a), we can see the fitness for generators reducing through generations
with reduced variance, providing evidence that the FID score is a good metric to
guide the evolutionary process. For discriminators (Figure 11(b)), we can see a high
variance, which can harm the selection process in the EA, suggesting that there is
room for improvement regarding the choice of the fitness function.

0 10 20 30 40 50 60 70 80 90
generation

50

100

150

200

250

300

FI
D

(a) Fitness for generators

0 10 20 30 40 50 60 70 80 90
generation

0.2

0.4

0.6

0.8

1.0

Di
sc

rim
in

at
or

 L
os

s

(b) Fitness for discriminators

Figure 11: Fitness for discriminators and generators with a 95% confidence interval.

In the final generation, the mean FID was 49.2, with a standard deviation of 10.5.
Inspecting the results obtained by our model, it is possible to see that the model

3.2 experiments 51

did not collapse into a single point from the input distribution, which is a common
problem in GANs.

Figure 12 shows the progression of the network through generations. We can see in
12(a) the average number of layers in the population of generators and discriminators.
Because we have limited the genotype to a maximum of four genes, the number of
layers rapidly saturates. This is an indication of premature optimization. We can over-
come this issue by either increasing the limit or decreasing the growth rate (i.e., reduce
the mutation probability). Figure 12(b) shows the number of genes with the param-
eters reused in each generation. The linear growth in the amount of reused genes is
evidence of the transference mechanism. Because we use a strategy similar to transfer
learning to keep the trained parameters, this reuse is important to pass the trained
weights through generations. With this mechanism, we can use a subset of the input
data in each generation, ensuring that weights that are kept through generations will
have the chance to be trained with other subsets of the dataset.

0 10 20 30 40 50 60 70 80 90
generation

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

la
ye

rs

Generator
Discriminator

(a) Layers per generation

0 10 20 30 40 50 60 70 80 90
generation

0

2000

4000

6000

8000

10000

12000

14000

Generator
Discriminator

(b) Reused genes

Figure 12: Progression of layers and the reuse of parameters with a 95% confidence interval.

Figure 13: Samples created by a generator after the evolutionary process.

Figure 13 represents samples generated in one execution, evidencing that our model
does not collapse into a single point of the input distribution. We can see this behavior

52 coevolutionary generative adversarial networks

occurring in all executions, suggesting that COEGAN is able to solve, at least partially,
the mode collapse problem. Moreover, all executions reached convergence with the
equilibrium between the discriminator and the generator, and the vanishing gradient
never occurs. This evidences that our proposal brings stability to the training proce-
dure of GANs.

(a) Generation 1. (b) Generation 5. (c) Generation 10.

(d) Generation 20. (e) Generation 30. (f) Generation 40.

(g) Generation 50. (h) Generation 70. (i) Generation 100.

Figure 14: The progression of samples created by the best generator through generations.

Figure 14 shows the progression of the generator during the evolutionary process.
We can see that in the first generation there are only noisy samples, without any
structure resembling a digit. After five generations (Figure 14(b)), we can see some
structure emerging to form the digits. From generation 10 onwards we can start to
distinguish between the digits, with a progressive improvement of the quality.

Finally, figure 15 presents the best network architecture discovered after the last
generation. We can see that both components reached the limit of four layers imposed

3.3 evaluation and comparison 53

Conv2d
activation: ReLU
kernel size: 3
out channels: 64

Linear
activation: Sigmoid
in features: 12544
out features: 256

Linear
activation: Sigmoid
in features: 256
out features: 32

Linear
activation: Sigmoid
in features: 32
out features: 1

(a) Discriminator

Linear
activation: TanH
in features: 100
out features: 256

Linear
activation: LeakyReLU
in features: 256
out features: 784

Deconv2d
activation: ReLU
kernel size: 3
out channels: 64

Deconv2d
activation: TanH
kernel size: 3
out channels: 1

(b) Generator

Figure 15: Best (a) discriminator and (b) generator found after the final generation.

in the experiments. Furthermore, both the generator and the discriminator were com-
posed by a combination of convolutional and linear layers with different activation
functions.

3.3 evaluation and comparison

To validate the performance of our method, we experiment COEGAN with the MNIST
(LeCun, Cortes, and Burges, 1998) and Fashion-MNIST (Xiao, Rasul, and Vollgraf,
2017) datasets, comparing with other approaches. We also evaluate COEGAN in ex-
periments with CelebA to assess the contributions of the method in a more complex
dataset. This section reproduces the experiments made in Costa et al. (2019) and Costa
et al. (2020b).

We evaluate COEGAN against a random search method and a reference architecture
based on Deep Convolutional Generative Adversarial Networks (DCGAN) (Radford,
Metz, and Chintala, 2015). The random search method is similar to COEGAN, but
instead of the fitness described in Section 3.1.1, we use a random function as the
fitness of individuals in the population, drawing values from a uniform distribution
to assign fitness values for individuals. In this way, we ablate the fitness functions
proposed for COEGAN to inspect their ability to promote selective pressure in the
model. All other characteristics of the random method, such as the pairing strategy,
remain the same as used in COEGAN. The DCGAN model is a well-defined set of
architectural constraints, used as a reference in several works related to evaluations
of GANs (Karras et al., 2018; Lucic et al., 2017). We follow this approach to build
a reference architecture (based on DCGAN) to compare our results with commonly
used models in the context of GANs.

54 coevolutionary generative adversarial networks

3.3.1 Experimental Setup

Table 5 presents the parameters used in all experiments reported in this section.

Table 5: Parameters for the evaluation experiments.

Evolutionary Parameters Value

Number of generations 50

Population size (generators) 10

Population size (discriminators) 10

Add Layer rate 20%

Remove Layer rate 10%

Change Layer rate 10%

Output features range [32, 1024]

Output channels range [16, 128]

Tournament kt 2

FID samples 1000

Root mean squared error samples 1000

Genome Limit 6

Species 3

GAN Parameters Value

Batch size 64

Batches per generation 20

Optimizer Adam

Learning rate 0.001

The number of generations used in all experiments is 50. We used 10 individuals
for each population of generators and discriminators. In order to limit the computa-
tional resources used in our experiments, the size of the genome was limited to six
layers. To emulate a network with similar power, the DCGAN architecture used in
the experiments also contains six layers. We use three species for each population of
generators and discriminators, which allow an average of 3 individuals per species.
We empirically defined a probability of 20%, 10%, and 10% for the add, remove and
change mutations, respectively. A higher probability for these mutations causes the
premature convergence of the system, leading to performance issues and instability

3.3 evaluation and comparison 55

on the GAN training process. Hence, the probability rates were kept low but sufficient
to create diversity in the population through generations.

For each pair of (Gi, Di), 20 batches were executed per generation, with the batch
size of 64. Therefore, in our scenario of a population composed of 10 generators and
10 discriminators with the all vs. all pairing strategy, each individual will execute 200

batches per generation. Note that, as DCGAN is not an EA, the experiments with this
model contain only one discriminator and one generator. Therefore, the evolutionary
parameters do not apply to the experiments with DCGAN. In this case, we set the
number of batches to 200 to keep it comparable with COEGAN and the random search
method. The optimizer used in the training method was Adam (Kingma and Ba, 2015)
with a learning rate of 0.001.

3.3.2 Results

To compare the results between COEGAN, Random Search and DCGAN, we use the
FID score (Heusel et al., 2017), Inception score (Salimans et al., 2016) and the Root
Mean Squared Error (RMSE). The RMSE is calculated between samples created by the
generator and real samples randomly drawn from the input dataset. All figures in this
Section contain plots with curves representing the average of the results from 10 runs,
with a confidence interval of 95%.

3.3.2.1 MNIST

First, we present the results for the experiments on the MNIST dataset.

0 10 20 30 40

generation

0.5

1.0

1.5

2.0

lo
ss

Generator

Discriminator

Figure 16: Losses of the discriminator and generator on the MNIST dataset.

Figure 16 displays the average of losses for the best generator and discriminator
found by COEGAN in each generation. As stated in Section 3.1.1, this figure indicates

56 coevolutionary generative adversarial networks

that the use of the GAN loss function as the fitness for generators is not a good metric
to assess the performance of an individual. We can see the value of the loss increasing
with generations as well as some instability in the values.

0 10 20 30 40

generation

1.0

1.5

2.0

2.5

3.0

3.5

la
ye

rs

Generator

Discriminator

Figure 17: The average number of layers on the MNIST dataset.

Figure 17 presents the average progression of layers in the genome of individuals
belonging to the population of generators and discriminators. The number of layers
gradually increases with generations, demonstrating that the speciation mechanism
used in COEGAN protects the innovation and creates a favorable environment for
individuals with more layers.

0 10 20 30 40

generation

0

1000

2000

3000

4000

5000

6000

re
us

e
of

ge
ne

s

Generator

Discriminator

Figure 18: The average number of times a gene was reused when trained on the MNIST
dataset.

3.3 evaluation and comparison 57

Figure 18 displays the average number of times a gene was reused during the train-
ing process on the MNIST dataset. The results for this metric shows that the informa-
tion is kept through generations.

0 10 20 30 40

generation

0.55

0.60

0.65

0.70

0.75
R

M
S

E
S

co
re

COEGAN

random

DCGAN

Figure 19: Root mean squared error on the MNIST dataset.

The RMSE is displayed in Figure 19, comparing the results for COEGAN, the ran-
dom method, and DCGAN. We introduced this metric to evaluate the novelty of the
samples created by generators in the different models analyzed in the experiments. In
other words, we want to ensure that the samples are not a copy of the data from the in-
put dataset. Thus, Figure 19 indicates that all methods exhibit some innovation in the
new samples, with the DCGAN method being better for this metric. This means that
the samples that are being created represent the data from the input dataset, without
being an exact copy.

0 10 20 30 40

generation

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

In
ce

pt
io

n
S

co
re

COEGAN

random

DCGAN

Figure 20: Inception Score on the MNIST dataset.

58 coevolutionary generative adversarial networks

Figure 20 shows the average of the Inception Score (higher is better) for generators
in COEGAN, Random Search, and DCGAN. For this metric, the DCGAN provides the
best results. However, COEGAN is better than the random approach, demonstrating
that our choice for fitness is relevant to the EA.

0 10 20 30 40

generation

50

100

150

200

250
F

ID

COEGAN

random

DCGAN

Figure 21: FID Score on the MNIST dataset.

Table 6: FID score of best generators in MNIST in the last generation.

Algorithm Last FID

COEGAN 41.0± 7.4

Random 124.1± 42.2

DCGAN 66.0± 8.7

The FID of the generators in COEGAN, Random Search and DCGAN are displayed
in Figure 21 and Table 6 (lower is better). We can see that the FID for COEGAN is
better than the results of the random search and DCGAN. To support our analysis,
we statistically test the significance of our findings. We used a non-parametric test
(Mann-Whitney U, α = 0.05) with Holm-Bonferroni correction to perform a pairwise
comparison between the solutions. We found that the improvement of COEGAN over
the random search and DCGAN is statistically significant (p < 0.001).

Moreover, the random search shows a high variability in the FID results, mainly
caused by the stochastic process introduced by this approach. In what concerns the
comparison between COEGAN and DCGAN, a study made by Lucic et al. (2017)
found that the FID score is a good representation of diversity and quality of gen-
erated samples when compared to real samples. Thus, based on this study and the
results displayed in Figure 21, the best generator found in COEGAN outperforms the
generator in the reference architecture based on DCGAN.

3.3 evaluation and comparison 59

Figure 22: Samples generated by COEGAN when training on the MNIST dataset.

Figure 22 contains samples generated by the best generator found in COEGAN
trained with the MNIST dataset after 50 generations. We can observe a good represen-
tation of the MNIST dataset in the generated samples. We found no evidence of the
vanishing gradient and the mode collapse problem in all executions of COEGAN. As
individuals with these issues perform worse than others, they will eventually not be
selected by the EA, preventing these problems to persist through generations. Further-
more, a diverse population of generators and discriminators can increase the variabil-
ity provided in the training process when compared to a regular GAN. This variation
contributes to a stronger training algorithm, preventing the mode collapse and the
vanishing gradient problems.

Figures 23(a) and 23(b) represent the best architecture found by COEGAN after 50

generations. Both architectures are composed of a combination of linear and convolu-
tional layers (represented in the images by Conv2d and Deconv2d). It is relevant to
note that not only the final architecture is important but also the process to construct
the final models because of the mechanism of transference of the learned weights
through generations. Therefore, COEGAN found models for the generator and the
discriminator with fewer layers than the reference architecture based on DCGAN, but
with better performance with respect to the FID metric.

3.3.2.2 Fashion-MNIST

The same methodology to assess the performance of COEGAN (used with the MNIST
dataset in Section 6.2.2) was applied on the Fashion-MNIST dataset.

Figures 24, 25, 26, 27, 28 and 29 present results with similar characteristics of the
previous results on the MNIST dataset.

As in the MNIST results, we can see in Figure 29 and Table 7 that the FID score
for COEGAN outperforms the other methods. We used a non-parametric test (Mann-
Whitney U, α = 0.05) with Holm-Bonferroni correction to perform a pairwise com-

60 coevolutionary generative adversarial networks

Conv2d
activation: LeakyReLU
kernel size: 5
out channels: 16

Conv2d
activation: LeakyReLU
kernel size: 5
out channels: 128

Linear
activation: ReLU
in features: 4608
out features: 64

Linear
activation: Sigmoid
in features: 64
out features: 64

Linear
activation: Sigmoid
in features: 64
out features: 1

(a) Best Discriminator

Linear
activation: LeakyReLU
in features: 100
out features: 64

Linear
activation: ReLU
in features: 64
out features: 784

Deconv2d
activation: LeakyReLU
kernel size: 5
out channels: 32

Deconv2d
activation: TanH
kernel size: 5
out channels: 1

(b) Best Generator

Figure 23: Best (a) discriminator and (b) generator found by COEGAN when training on the
MNIST dataset.

0 10 20 30 40

generation

0

1

2

3

4

5

lo
ss

Generator

Discriminator

Figure 24: Losses of the discriminator and generator on the Fashion-MNIST dataset.

3.3 evaluation and comparison 61

0 10 20 30 40

generation

1.0

1.5

2.0

2.5

3.0

3.5

la
ye

rs

Generator

Discriminator

Figure 25: The average number of layers on the Fashion-MNIST dataset.

0 10 20 30 40

generation

0

1000

2000

3000

4000

5000

6000

re
us

e
of

ge
ne

s

Generator

Discriminator

Figure 26: The average number of times a gene was reused when trained on the Fashion-
MNIST dataset.

Table 7: FID score of best generators in Fashion-MNIST in the last generation.

Algorithm Last FID

COEGAN 84.1± 17.5

Random 149.5± 29.3

DCGAN 140.8± 11.6

parison between the solutions. We found that the improvement of COEGAN over the
random search and DCGAN is statistically significant (p < 0.001).

62 coevolutionary generative adversarial networks

0 10 20 30 40

generation

0.65

0.70

0.75

0.80

0.85

R
M

S
E

S
co

re
COEGAN

random

DCGAN

Figure 27: Root mean squared error on the Fashion-MNIST dataset.

0 10 20 30 40

generation

1.0

1.5

2.0

2.5

3.0

In
ce

pt
io

n
S

co
re

COEGAN

random

DCGAN

Figure 28: Inception Score on the Fashion-MNIST dataset.

Furthermore, the Inception Score is still better for DCGAN on the Fashion-MNIST
dataset. The progression in the number of layers, presented in Figure 25 is similar to
the MNIST results.

As the Fashion-MNIST dataset is more complex than MNIST, we can conclude that
our method can be applied in more elaborated datasets. However, experiments with
larger datasets such as CelebA (Liu et al., 2015) and CIFAR-10 (Krizhevsky and Hinton,
2009) can be conducted to support this statement. In Section 3.3.2.3, we present the
results on the CelebA dataset.

Figure 30 contains samples generated by the best generator found in COEGAN
trained with the Fashion-MNIST dataset after 50 generations. We can see a variety
of images being generated, following the distribution of the input dataset. As in the

3.3 evaluation and comparison 63

0 10 20 30 40

generation

100

150

200

250

F
ID

COEGAN

random

DCGAN

Figure 29: FID Score on the Fashion-MNIST dataset.

Figure 30: Samples generated by COEGAN when training on the Fashion-MNIST dataset.

results with the MNIST dataset, we also found no evidence of the vanishing gradient
and the mode collapse problem in all executions.

3.3.2.3 CelebA

To assess the applicability of COEGAN in complex datasets, we expand the experi-
ments to include the results with the CelebA dataset (Liu et al., 2015). For this, we
use an experimental setup similar to the one described in Section 3.3.1, with some
modifications to accommodate the new dataset. Concerning the architecture, we only
use convolution and transpose convolution layers when adding a new gene, excluding
the linear layer from the set of possibilities, following the directions of recent models
for GANs Radford, Metz, and Chintala, 2015. Furthermore, we allow only ReLU and
Leaky ReLU as possible activation functions in the mutation operators. The popula-
tions of generators and discriminators contain 10 individuals each, divided into three

64 coevolutionary generative adversarial networks

species. The all vs. all pairing strategy was applied, using 100 batches of 64 images to
train each pair. The images from the CelebA dataset were rescaled to 64× 64.

Figure 31 presents the FID score for COEGAN through generations. As expected,
we can note the decreasing behavior of the FID score, resembling the behavior pre-
sented in the previous experiments. This is an indication of the generalization ability
of COEGAN to effectively work with more complex datasets like CelebA. The average
FID score achieved by COEGAN in the last generation is 89.8± 17.2. No evidence of
the vanishing gradient and mode collapse was found in the experiments.

0 10 20

generation

50

100

150

200

250

300

350

400

F
ID

COEGAN

Figure 31: The FID score of COEGAN on the CelebA dataset. COEGAN achieves a FID score
of 89.8± 17.2 at the last generation.

Figure 32 displays samples created by COEGAN at the final generation by one of
the best models. We can clearly see the formation of faces in each created sample,
with elements coherently positioned in each face. The variety achieved on samples
also indicates that COEGAN achieved convergence when training, avoiding problems
such as the mode collapse. However, the produced samples are not perfect. Undesired
artifacts can be seen in some samples, affecting the quality of the outcome.

3.4 discussion and limitations

Generative Adversarial Networks (GAN) achieved important results for generative
models in the field of computer vision. However, there are stability problems in the
training method, such as the vanishing gradient and the mode collapse problems, as
described in Section 2.1.1.

We presented in this chapter the first advances of this research, that originated a
model called COEGAN (Costa et al., 2019; Costa, Lourenço, and Machado, 2019). This
model uses neuroevolution and coevolution in the coordination of the GAN training
process, making use of the adversarial characteristics of a GAN to apply a coevolu-

3.4 discussion and limitations 65

Figure 32: Samples generated by COEGAN when training on the CelebA dataset.

tion environment. The model was designed with inspiration on NEAT (Stanley and
Miikkulainen, 2004) and DeepNeat (Miikkulainen et al., 2017), and also on recent ad-
vances in GANs, such as in Karras et al. (2018).

Moreover, we presented experiments made with the MNIST and Fashion-MNIST
datasets to assess the efficiency of COEGAN. We found no evidence of the vanish-
ing gradient and the mode collapse problem in all experiments with COEGAN. The
selection process and the variation introduced by a diverse population of generators
and discriminators contribute to the prevention of these issues, resulting in a more
stable training solution than regular GANs. We compare our results with a random
search method and also with a reference architecture based on DCGAN. The results
displayed that COEGAN achieved a FID better than DCGAN and the random method
for both datasets. However, the Inception Score of the DCGAN model was better than
COEGAN. The Inception Score is a metric that has issues to represent the diversity
and quality of the samples, being gradually replaced by the FID score in the analysis
of the quality of GANs. We also show that COEGAN is better than a random search
model, demonstrating the efficiency of the EA proposed by us. It is also important to
note that COEGAN discovered models for generators and discriminators with fewer
layers than the DCGAN used in our experiments. Therefore, the evolutionary process
that leads to the final models in COEGAN also contributes to find more efficient neural
networks regarding their architectural size. We argue that the mechanism of weights
transference through generations promote the sufficient knowledge to smaller neural
networks for achieving performance comparable to larger networks.

The use of an external evaluator, represented by the FID score, introduces a per-
formance penalty in the proposal. The FID score uses the Inception Net to evaluate
samples. Inception Net is a relatively big neural network, slowing down the process
of achieving a metric for generators. Furthermore, the process of calculating the score
is also CPU intensive, relevantly increasing the computational cost of the solution.

The diversity of individuals explored through generations can also be improved.
The use of other mechanisms related to Evolutionary Computation (EC) can be studied

66 coevolutionary generative adversarial networks

in the context of the model proposed in this chapter to balance the trade-off between
quality and diversity of individuals.

Several improvements that were proposed for GANs can also be explored in
COEGAN. For example, the use of alternative loss functions as a replacement of the
original loss functions for GANs. Besides, new architectural mechanisms can be incor-
porated to enrich the search space, permitting the discovery of better models.

Chapter 4 and Chapter 5 propose modifications into the original COEGAN model to
address these limitations and improve the quality of the results. These modifications
address not only aspects of the EA but also mechanisms related to GANs.

4
E X P L O R I N G T H E E V O L U T I O N A RY A S P E C T S O F T H E M O D E L

Coevolutionary Generative Adversarial Networks (COEGAN), introduced in Chap-
ter 3, proposes the use of neuroevolution and coevolution to orchestrate the training
of GANs. Despite the advances in training stability, there is still room for improvement
in the model.

This chapter presents our proposals to improve COEGAN concerning the evolu-
tionary aspects of the solution. In concrete, we explore the use of alternative fitness
functions and a different approach regarding the design of the Evolutionary Algo-
rithm (EA). Each proposal is validated by experimental evaluation in different scenar-
ios.

The remainder of this chapter is organized as follows. Section 4.1 proposes the use
of the Skill Rating as fitness function. Section 4.2 explore the use of Quality Diversity
(QD) to improve the exploration of the search space on the evolution of Generative
Adversarial Networks (GANs). Finally, Section 4.3 summarizes the conclusions and
points out directions for further improvement.

4.1 using the skill rating as fitness

The experimental evaluation of COEGAN identified that the fitness function is cru-
cial to guide the evolution of the components, mainly regarding the discriminator.
Currently, the discriminator uses the loss function of the respective GAN compo-
nent. However, this function displayed a high variability behavior, disrupting the
evolution of the population. The generator uses the Fréchet Inception Distance (FID)
score, which introduces an external evaluator represented by a trained Inception Net-
work (Szegedy et al., 2015, 2016). Fréchet Inception Distance (FID) showed good re-
sults when used as fitness, but there are drawbacks, namely the execution cost and
the dependence of an external evaluator.

The FID score is currently the most used metric by the community, but several
other metrics have been proposed to evaluate the performance of GANs (Borji, 2019;
Xu et al., 2018). One example is the Skill Rating, which has been successfully used
to evaluate GANs in some contexts (Olsson et al., 2018). Skill rating uses a game
rating system to assess the skill of generators and discriminators. Each generator and
discriminator is considered as a player in a game and the pairing between them is
designed as a match. The outcome of the matches is used as input to calculate the
skill of each player.

67

68 exploring the evolutionary aspects of the model

We took inspiration from the use of skill rating to quantify the performance of
generators and discriminators in GANs to design a fitness function to be used within
COEGAN. Specifically, we replace the regular fitness used in COEGAN with the skill
rating, i.e., the discriminator and the generator use the skill rating metric instead
of the loss function and the FID score. To analyze the impact of this modification,
we present an experimental study, comparing the results with the previous approach
used in COEGAN, a random search approach, and with a non-evolutionary model
based on DCGAN.

4.1.1 Model

One way to apply the skill rating to measure the performance of players given a
history of matches is the application of the Glicko-2 (Glickman, 2013) rating system.
The system takes into account three variables: the rating r, the deviation RD, and
the volatility σ (refer to Section 2.1.2.3 for more details). A constant τ is used for
controlling the rate of change of σ.

Glicko-2 was previously used to compare evolutionary algorithms on a given prob-
lem, using the solutions found by them as input to the rating system (Veček et al.,
2014; Veček, Mernik, and Črepinšek, 2014). Thus, the algorithms are ranked according
to the rating score.

Another application of the Glicko-2 system was to evaluate the performance of
GANs (Olsson et al., 2018). In this case, the rating was applied between discriminators
and generators of different epochs to evaluate their progress. The authors found that
skill rating provides a useful metric to relatively compare GANs.

We took inspiration from these use cases and applied the Glicko-2 system in
COEGAN by changing the fitness function to use the skill rating metric computed
using Glicko-2. Therefore, each generator Gi and discriminator Dj have an associated
skill rating, represented by r, RD, and σ.

In the evaluation phase of the evolutionary algorithm, discriminators and genera-
tors are matched to be trained with the GAN algorithm and also to be evaluated for
selection and reproduction. We modeled each evaluation step between a generator
and a discriminator as a game and applied the skill rating calculation, composing a
tournament of generators against discriminators. Therefore, as we use the all vs. all
pairing strategy, each outcome of the match between (Gi,Dj) is stored and used to
update the skill rating at the end of each generation. Inspired by the approach of Ols-
son et al. (2018), we use the following equations to calculate the outcome of a match
for the discriminator:

Dreal
j =

∑
x∼pdata

th
(
Dj(x) > 0.5

)
(24)

4.1 using the skill rating as fitness 69

Dfake
ij =

∑
z∼pz

th
(
Dj(Gi(z)) < 0.5

)
(25)

Dwr
ij =

Dreal
j +Dfake

ij

m+n
(26)

where Dreal
j is the win rate of the discriminator with respect to the real data, Dfake

ij

is the rate related to the fake data, DWR
ij is the overall win rate of the discriminator Dj,

th is a threshold function that outputs 1 when the threshold is met and 0 otherwise,
Dj outputs the probability of the sample to be real, Gi is the generator, pdata is the
input distribution, x is a sample drawn from the input distribution, pz is the latent
distribution, z is the latent input for the generator, m is the number of real samples,
and n is the number of fake samples. In summary, the win rate for the discriminator
is based on the number of mistakes made by it with the real input batch (Eq. 24) and
fake data produced by the generator (Eq. 25).

For the generator, the result is calculated as:

Gwr
ij = 1−Dwr

ij (27)

where Dwr
ij is the discriminator win rate given by Eq. 26.

The win rates of each generator and discriminator are used as input to update the
skill rate of the individuals. Each individual Gi and Dj has a set of outcomes Twr,
containing the win rate of each match and the skill of the adversary. Thus, a generator
Gi has a set Twr

Gi
containing each pair (Gwr

ij ,Dsk
j) for a generation. A discriminator

Dj has a set Twr
Dj

containing each pair (Dwr
ij ,Gsk

i). The sets Twr
Gi

and Twr
Dj

are used to
calculate the new skill rating at the end of the generation, represented by Gsk

i and
Dsk

j , respectively. It is important to note that the update of the skill rating of a player
depends on the skill of the adversary, i.e., winning a game against a strong player is
more rewarding than winning against a weak player.

We propose in this section the use of skill rating as fitness in COEGAN, represented
by the use of Dsk

j instead of Eq. 1 for discriminators and Gsk
i instead of Eq. 5 for gen-

erators. Therefore, the fitness functions for discriminators and generators are defined
as:

FDj
= rDsk

j
, FGi

= rGsk
i

, (28)

where rDsk
j

and rGsk
i

are the rating r for discriminators and generators, respectively.
At each generation, individuals update the skill rating following these rules. In the
breeding process, the offspring carry the skill rating of their parent. In this way, we
keep track of the progress of individuals through generations, even when mutations
occur.

70 exploring the evolutionary aspects of the model

4.1.2 Experiments

To evaluate the use of skill rating with COEGAN, we conducted an experimental
study using the Street View House Numbers (SVHN) dataset (Netzer et al., 2011). The
SVHN dataset is composed of digits from 0 to 9 extracted from real house numbers.
Therefore, it is a dataset with a structure similar to the MNIST dataset (LeCun, Cortes,
and Burges, 1998) used in previous COEGAN experiments, but with more complexity
introduced by the use of real images, presenting digits with a variety of backgrounds.
The experiments compare the results of the original COEGAN approach (with the FID
score and the loss function as fitness for generators and discriminators), COEGAN
with skill rating applied as fitness, a random search approach, and a DCGAN-based
architecture. We also present a comparison between the FID score and the skill rating
metric in experiments with the MNIST dataset.

4.1.2.1 Experimental Setup

Table 8 lists the parameters used in our experiments. These parameters were chosen
based on preliminary experiments and the results presented previously (Costa et al.,
2019; Costa, Lourenço, and Machado, 2019). All experiments are executed for 50 gener-
ations. The number of individuals in the populations of generators and discriminators
is 10. This number of individuals is enough to achieve the recommended matches to
feed the Glicko-2 rating system. For the variation operators, we use the rates 20%, 10%,
and 10% for the add layer rate, remove layer rate, and change layer rate, respectively.
The number of output channels is sampled using the interval [32, 256]. A tournament
with kt = 2 is applied inside each species to select the individuals for reproduction
and the algorithm self-adjust to contains 3 species for the population of generators
and discriminators. The number of samples used to calculate the FID score is 2048. To
make the experiments comparable, each individual has a genome limited to 4 genes,
the same number of layers used in the DCGAN-based experiments. Besides, as the
DCGAN-based model does not use an evolutionary algorithm, these evolutionary pa-
rameters described above are not applied to it.

The initial skill rating parameters used in the experiments are the same suggested by
the Glicko-2 system (Glickman, 2013), i.e., the rating r, deviation RD, and the volatility
σ are initialized with 1500, 150, and 0.06, respectively. The system constant τ was set to
1.0. We conduct previous experiments to choose the best τ for our context. We found
no relevant changes with respect to this parameter.

All experiments used the original GAN model, i.e., the neural networks are trained
with the classical loss functions defined by Eq. 1 and Eq. 3. The GAN parameters
were chosen based on preliminary experiments and the setup commonly used on
the evaluation of GANs (Gulrajani et al., 2017; Karras et al., 2018; Radford, Metz, and
Chintala, 2015). The batch size used in the training is 64. The Adam optimizer (Kingma
and Ba, 2015) is used with the learning rate of 0.001, beta 1 of 0.5, and beta 2 of

4.1 using the skill rating as fitness 71

Table 8: Experimental parameters.

Evolutionary Parameters Value

Number of generations 50

Population size (generators and discriminators) 10

Add Layer rate 20%

Remove Layer rate 10%

Change Layer rate 10%

Output channels range [32, 256]

Tournament kt 2

FID samples 2048

Genome Limit 4

Species 3

Skill Rating Parameters Value

r, RD, σ 1500, 350, 0.06

constant τ 1.0

GAN Parameters Value

Batch size 64

Batches per generation 20

Optimizer Adam

Learning rate 0.001

Betas 0.5, 0.999

0.999. Each pairing between generators and discriminators is trained by 20 batches
per generation. As the all vs. all is used, each generator and discriminator will be
trained for a total of 200 batches. For the DCGAN-based experiments, we have a
single generator and discriminator. Therefore, we train them for 200 batches to keep
the results comparable with the COEGAN experiments.

The results are evaluated using the FID score and the skill rating. For the SVHN
dataset, the FID score is based on the Inception Network trained with the SVHN
dataset instead of the ImageNet dataset, the same strategy used in the experiments
of Olsson et al. (2018). For the MNIST results, we use the Inception Network trained
with the ImageNet dataset. All results presented in this section are obtained by the
average of five executions, with a confidence interval of 95%.

72 exploring the evolutionary aspects of the model

4.1.2.2 Results

Figure 33 presents the results of the best FID score per generation for the experiments
with the SVHN dataset. We can see that the results for the original COEGAN proposal,
i.e., COEGAN guided by the FID and the loss as fitness functions, are still better
than the results for COEGAN with the skill rating metric. However, COEGAN guided
by skill rating presented better FID scores than the random search approach. Thus,
this evidences that skill rating provides useful information to the system, presenting
evolutionary pressure to the individuals in the search of efficient models. Moreover,
COEGAN with the FID score as fitness outperforms the DCGAN-based approach,
illustrating the advantages of COEGAN.

0 10 20 30 40

generation

100

150

200

250

300

350

F
ID

COEGAN + Skill

COEGAN + FID

DCGAN

Random

Figure 33: Best FID score for generators with a 95% confidence interval

We found in the experiments that skill rating sometimes overestimates the score for
bad individuals, affecting the final results of the training. A dataset with the complex-
ity of SVHN may require more training epochs to achieve better outcomes, and the
variability introduced by the all vs. all pairing may be too large for complex datasets.
Therefore, another approach such as spatial coevolution used by Al-Dujaili et al. (2018)
and Toutouh, Hemberg, and O’Reilly (2019) will be considered in further experiments.
Furthermore, the calculation of the match outcome, given by Eq. 24-27, can be im-
proved to overcome this problem.

Table 9 shows the average FID of the best scores at the last generation for each
experiment with the SVHN dataset. We can see the difference between the FID of the
solutions evaluated in the experiments. As expected, the result for the random search
approach is unstable and worse than the others.

Despite the slightly inferior results when compared to COEGAN with FID as fit-
ness, the advantage of using the skill rating is that we can avoid the use of an external
evaluator as in the FID calculation, represented by the Inception Network. The execu-
tion cost of the skill rating metric is also lower than the FID score and the FID score
requires a high number of samples to have a good representation of the data. In our

4.1 using the skill rating as fitness 73

Table 9: FID score of the algorithms used in the experiments with SVHN.

Algorithm FID Score

COEGAN + Skill 135.1± 9.8

COEGAN + FID 111.7± 22.1

DCGAN-based 119.0± 10.1

Random search 148.9± 30.7

experiments, we use 2048 against 64 on the skill rating calculation (64 represents the
batch size used in Eq. 26). Furthermore, the Inception Network has a complex archi-
tecture and the FID score uses slow procedures in the calculation. Skill rating uses the
own neural network of individuals in the experiments, and the Glicko-2 system is fast
to execute.

Figure 34 shows the progression of the skill rating through generations compared
with the best FID scores. We can see in COEGAN guided by skill rating a clear im-
provement of the rating, as this is the same function used to provide evolutionary
pressure in the individuals. In the experiments of COEGAN with FID, the progress
also exists but is less relevant. The random approach presented an erratic behavior of
the skill rating, showing that the individuals do not improve in this approach. In the
DCGAN-based experiments, the skill rating behaves differently, showing a decreasing
pattern. As there is only a single discriminator and generator, the number of matches
per generation is only one. Therefore, we do not meet the recommendations of the
Glicko-2 system of having at least ten matches per time period and the rating is not
useful for this case.

Except for the DCGAN experiments, we can also see in Figure 34 some level of
correlation between the best FID score and the respective skill rating among the gen-
erators in the populations. The results show that skill rating follows the tendency of
the FID score, evidencing that it can be used to guide the evolution of GANs. We com-
puted the Pearson correlation and the Spearman rank correlation between FID and
skill rating to support this analysis. We found a relevant negative correlation for the
experiments with COEGAN guided by skill rating, achieving a Pearson correlation
coefficient of −0.8 and a Spearman rank correlation of −0.73. As FID is a distance
measurement (lower is better) and skill rating is a score (high is better), a negative
correlation is expected.

We experienced high variability on the FID score in the experiments with the
SVHN dataset, both for the Inception Network trained with the ImageNet and SVHN
datasets. Therefore, we conduct a study using the MNIST dataset to better understand
the relationship between the FID score and skill rating. We used the same parameters

74 exploring the evolutionary aspects of the model

0 10 20 30 40

generation

125

150

175

200

225

250

F
ID

FID Score

Skill Rating 1450

1500

1550

1600

1650

1700

S
ki

ll
R

at
in

g

(a) COEGAN + Skill, Pearson: -0.8, Spearman:
-0.73

0 10 20 30 40

generation

100

125

150

175

200

225

250

F
ID

FID Score

Skill Rating 1440

1460

1480

1500

1520

1540

S
ki

ll
R

at
in

g

(b) COEGAN + FID, Pearson: -0.54, Spearman:
0.18

0 10 20 30 40

generation

100

150

200

250

300

350

F
ID

FID Score

Skill Rating

1460

1470

1480

1490

1500

S
ki

ll
R

at
in

g

(c) DCGAN-based, Pearson: 0.91, Spearman:
0.89

0 10 20 30 40

generation

125

150

175

200

225

250
F

ID
FID Score

Skill Rating 1440

1450

1460

1470

1480

1490

1500

S
ki

ll
R

at
in

g

(d) Random search, Pearson: -0.16, Spearman:
0.02

Figure 34: Comparison between the best FID score and the respective skill rating of generators
trained with the SVHN dataset.

presented in Table 8, but limiting the number of generations to 30. Figure 35(a) shows
a smoother progression of skill rating and FID, illustrating a more clear relation be-
tween them, which is confirmed by the Pearson’s correlation coefficient of −0.96 and
the Spearman’s rank correlation of −0.99.

We also show in Figure 35(b) and Table 10 that COEGAN guided by skill rating
achieves performance similar to COEGAN guided by FID, outperforming the random
search approach.

Figure 36 presents the average number of parameters in generators and discrim-
inators from the experiments with the SVHN dataset. As there is no evolutionary
algorithm applied to DCGAN, the number of parameters is constant. It is important
to note that the average number of parameters on the individuals in the COEGAN
experiments is much lower than the parameters in DCGAN. Despite this, the results
of COEGAN are still better than DCGAN, showing that COEGAN is able to find
more efficient models. We limited in the experimental setup the number of layers in
the genome. Experiments with an expanded setup should be conducted to assess the
possibility of even better results.

4.1 using the skill rating as fitness 75

0 10 20

generation

50

100

150

200

250

300

350

400

F
ID

FID Score

Skill Rating

1200

1400

1600

1800

S
ki

ll
R

at
in

g

(a) Best FID score and the respective skill rating
for COEGAN + Skill. Pearson: −0.96, Spear-
man: −0.99

0 10 20

generation

100

200

300

400

F
ID

COEGAN + Skill

COEGAN + FID

DCGAN

Random

(b) Best FID score for all solutions

Figure 35: Results for the experiments with the MNIST dataset.

Table 10: FID score of the algorithms used in the experiments with MNIST.

Algorithm FID Score

COEGAN + Skill 67.7± 12.0

COEGAN + FID 51.5± 18.5

DCGAN-based 44.7± 3.1

Random search 111.2± 74.9

Figure 37 shows samples produced by the generator after the COEGAN training
with FID and skill rating as fitness. In order to achieve better quality, we trained the
algorithms using 200 batches at each generation (instead of 20). We can see that the
quality of the samples is similar, with both strategies presenting variability on the
samples.

4.1.3 Discussion

We propose the use of a game rating system, based on the application of Glicko-2 in-
troduced by Olsson et al. (2018), to design a new fitness strategy for COEGAN. Specifi-
cally, we changed the fitness function used by discriminators and generators to use the
skill rating metric instead of the loss function and the FID score. We conducted exper-
iments to evaluate this proposal and compare the results with the previous COEGAN
fitness proposal, a DCGAN-based approach, and a random search model.

The results evidenced that, although the FID score as fitness provides better results,
the skill rating method also contributes with useful information in the evolution of

76 exploring the evolutionary aspects of the model

0 10 20 30 40

generation

200000

400000

600000

800000

1000000

1200000

1400000
P

ar
am

et
er

s
COEGAN + Skill

COEGAN + FID

DCGAN

Random

(a) Number of parameters for generators

0 10 20 30 40

generation

0

200000

400000

600000

800000

1000000

1200000

1400000

P
ar

am
et

er
s

COEGAN + Skill

COEGAN + FID

DCGAN

Random

(b) Number of parameters for discriminators

Figure 36: Average number of parameters in the neural networks of generators and discrimina-
tors at each generation. Note that the number of parameters for the DCGAN-based
experiments is constant, as there is not an evolutionary algorithm applied to this
case.

(a) COEGAN with skill rating as fitness (b) COEGAN with the FID score and loss func-
tion as fitness

Figure 37: Samples produced by the best generator after the COEGAN training.

GANs, while showing other advantages. The use of COEGAN with skill rating out-
performs the random search approach, demonstrating the effectiveness of this fitness
function. When compared to the FID score, the advantages when using skill rating are
the lower execution cost and the self-contained solution, i.e., skill rating does not need
to use an external component such as in the FID score. The calculation of the FID re-
quires a trained Inception Network, making the score highly dependent on the context
where it was trained and applied. Therefore, skill rating has the potential to be used in
more domains. Besides, the skill rating does not require a neural network to interpret
images produced by generators. Instead, the output of the discriminator is used in the
calculation, resulting in a lower execution cost when compared to the FID score. We
also show that there is a correlation between the FID score and the skill rating metric
when using the latter as fitness with COEGAN. However, skill rating worked better

4.2 exploring the evolution of gans through quality diversity 77

with the MNIST dataset, making this correlation more evident. The SVHN dataset is
more complex and sometimes leads to the disagreement between FID and skill rating.

The strategy to obtain the results of matches between generators and discrimina-
tors can be improved to better represent the player’s skill. In this work, we use only
individuals from the current generation in the skill rating calculation. However, there
are common problems that occur in competitive coevolution algorithms that can affect
this strategy, such as intransitivity. The intransitivity problem means that a solution
a is better than other solution b and b is better than c, but it is not guaranteed that
a is better than c, leading to cycling between solutions during the evolutionary pro-
cess and harming the progress toward optimal outcomes (Antonio and Coello, 2018;
Mitchell, 2006). Therefore, besides the matches between each pair (Gi,Dj), individu-
als in the current generation can also be matched against individuals from previous
generations. The algorithm can keep an archive of the best individuals from previous
generations to match them against the current individuals to ensure their progression.
In this way, we can avoid the cycling between solutions and the intransitivity problem.

4.2 exploring the evolution of gans through quality diversity

Experimental results with the original model show that COEGAN provides a more
reliable training when compared to regular GANs in similar scenarios. However, the
lack of diversity evidenced in the experimental evaluation (Section 3.2) affects the
quality of the results leaving space for improvements. In this section we study the ap-
plication of a novelty mechanism in COEGAN to improve the exploration of solutions.
Quality Diversity (QD) algorithms are a class of solutions that can be used to enhance
the population and produce a diversity of efficient individuals (Pugh et al., 2015).

We propose a new model combining concepts used on COEGAN and a QD algo-
rithm for guiding the evolution of GANs. Instead of using strategies such as the speci-
ation based on NeuroEvolution of Augmenting Topologies (NEAT) to support evolu-
tion, we propose the use of Novelty Search with Local Competition (NSLC) (Lehman
and Stanley, 2011), a quality diversity algorithm that uses mechanisms of novelty in
the search for efficient solutions. We aim to improve the exploration of the search
space and achieve better models for generators and discriminators.

To validate our proposal, we conducted experiments using the MNIST (LeCun,
Cortes, and Burges, 1998) and CelebA (Liu et al., 2015) datasets. We compare the
results between the original COEGAN approach and two variations of our proposal:
COEGAN with NSLC and with an alternative using a global competition strategy.

4.2.1 Model

We propose a different evolutionary approach to guide the COEGAN evolutionary
process by replacing the NEAT-based evolutionary algorithm with an approach based

78 exploring the evolutionary aspects of the model

on Novelty Search with Local Competition (NSLC) (Lehman and Stanley, 2011). As
originally proposed by Lehman and Stanley (2011), we use Nondominated Sorting
Genetic Algorithm II (NSGA-II) (Deb et al., 2002) as the Multi-Objective Evolutionary
Algorithm (MOEA) for NSLC.

The new proposal keeps some components from the original COEGAN model,
namely the genotypic representation, the variation operators, and the competitive co-
evolutionary model (Section 3.1). Next we describe the differences and new aspects of
the model proposed in this work.

We designed the pairing between individuals at the evaluation phase according to
the all vs. all coevolution model used in COEGAN. However, as NSGA-II uses an elitist
approach to select individuals to form the next generation, both the current population
and the derived offspring should be evaluated. For this, we match generators from the
current population with discriminators from the offspring, and discriminators from
the current population with generators from the offspring population. This ensures
the progress of all individuals through generations, making it possible to properly
select them when targeting quality and diversity. The main drawback here is that now
the double amount of individuals needs to be evaluated, increasing the execution cost
of the algorithm. However, it is important to note that we keep the same number of
training steps for each individual when compared to the original COEGAN approach.

Tournament is applied to select individuals for reproduction. As proposed by the
NSGA-II algorithm, a dominance operator is used to determine the result of the tour-
nament between a set of individuals. In our work, we use the constrained version of
the operator, ensuring that the population does not deviate too much from the objec-
tive defined by the fitness function. Thus, we use not only the concept of dominance
but also the feasibility of solutions.

NSGA-II designs the dominance operator using the ranking of solutions determined
by the nondominated sorting algorithm, aiming to obtain solutions in the Pareto-
optimal front. The feasibility concept ensures that, when comparing two solutions
si and sj, the fitness function meets the constraint f(sj) < 2f(si), otherwise sj is con-
sidered unfeasible. In summary, the solution si constrained-dominates a solution sj
when si is feasible and sj is not, or both solutions are feasible and si dominates sj.
Note that one of the solutions will always be feasible, i.e., the case that both solutions
are unfeasible is not possible.

The definition of the neighborhood is paramount to the NSLC algorithm, being
used in both the quality and diversity criteria. To determine the neighbors of each
individual, we use the distance between the architectures of the neural networks of in-
dividuals, which is directly defined by the similarity between genomes. This distance
is the same used originally in COEGAN to group individuals into species. Two indi-
viduals are considered equal if they have the same genome, i.e., the same sequence of
genes, disregarding other characteristics like age or the number of samples currently
used in the training. It is important to note that the neighborhood calculation consid-

4.2 exploring the evolution of gans through quality diversity 79

ers not only the current population but also the archive of previous solutions. This
archive is filled following a probabilistic approach, i.e., at each generation individuals
are inserted into the archive with a certain probability.

In NSLC, n nearest neighbors of an individual are selected to calculate the inno-
vation and the competition objectives. Innovation is defined by the average distance
between the individual and the neighborhood. The competition objective is defined by
the number of neighbors the individual outperforms with respect to the fitness value.
In our proposal, the fitness is the same used in COEGAN: Eq. (1) for discriminators
and Eq. (3) for generators.

The innovation criteria make it possible to better explore the available architectures
characterized by the genotype representation. When combined with the strategy used
to calculate the competition score, different niches can be efficiently explored to lever-
age the search space. Compared to the original COEGAN approach, we expect to
improve the diversity of solutions and eventually find better results concerning the
FID score. In COEGAN, the number of species is fixed and needs to be defined before-
hand, being a limitation over the capacity of innovation for individuals that need to
survive through generations to show consistent performances. In COEGAN guided by
NSLC, the exploration of the search space is improved by the novelty criterion, using
the quality definition to guide the population through the objective of obtaining better
solutions.

4.2.2 Experiments

To validate our proposal, we present an experimental analysis of the application of
Quality Diversity in the evolution of GANs1. Therefore, we conduct experiments us-
ing MNIST to evidence the performance of the algorithm proposed in this work com-
pared with the original COEGAN model. We also design experiments with an alter-
native version of the solution which uses a global competition mechanism, i.e., the
neighborhood is not limited by a constant n and uses all individuals available. We
call this version of the algorithm Novelty Search with Global Competition (NSGC),
inspired by the global competition approach experimented by Lehman and Stanley
(2011). Therefore, we refer in our experiments to three variations of COEGAN:

• COEGAN: The original COEGAN proposal;

• COEGAN+NSLC: COEGAN trained with the NSLC algorithm;

• COEGAN+NSGC: COEGAN trained with the NSGC algorithm;

The FID score was used to measure the quality of the produced samples. Besides, the
strategy proposed by Zhang et al. (2018b) was applied to present the visual distribu-
tion of image samples, using t-SNE (Maaten and Hinton, 2008) to embed samples into

1 Code available at https://github.com/vfcosta/qd-coegan.

80 exploring the evolutionary aspects of the model

a two-dimensional space. Further experiments with the CelebA dataset were made
to compare our method with a non-evolutionary GAN approach in a more complex
dataset.

4.2.2.1 Experimental Setup

Table 11 lists the parameters used in our experiments. These parameters were selected
based on the experiments presented in Chapter 3. The number of generations used
in all experiments is 50. Each population of generators and discriminators contains
10 individuals. We use a probability of 30%, 10%, and 10% for the add, remove and
change mutations, respectively. The genome of generators and discriminators was
limited to four genes, representing a network of four layers in the maximum allowed
setup. This setup is sufficient to discover efficient solutions for the experiments with
the MNIST dataset.

For the original COEGAN, we use 3 species in each population of generators and
discriminators. For COEGAN with NSLC, the number of neighbors n is limited to 3

and the probability to insert individuals into the archive is 10%. The global version
of the QD algorithm does not limit the neighborhood, using all individuals when
calculating the novelty and competition values.

Figures in this section display plots with curves representing the average of the
results from 15 independent executions, with a confidence interval of 95%.

4.2.2.2 Results

We present in this section the results of the experimental analysis, comparing the
solutions using the QD algorithm with the previously proposed COEGAN model.
First, we present the results using the MNIST dataset. Then, we provide a further
analysis with CelebA, a more complex dataset, comparing our proposal with a regular
GAN approach.

Figure 38 shows the FID score of the best individuals for each generation when
training with the MNIST dataset. We can see that the COEGAN+NSLC solution out-
performs the original COEGAN model by a small margin until approximately half
generations but has equivalent performance at the end. This effect is mostly due to
the increased exploration capability given by the QD algorithm, which produces a
more diverse population but causes a less focused evolution of more fitted individuals.
Besides, COEGAN+NSGC, the global competition variation, has better performance
than COEGAN+NSLC and the original COEGAN approach. The results obtained by
comparing the global and local competition versions of the algorithm are similar to
results presented by Deb et al. (2002), where the global version also achieved better
fitness than NSLC.

We can see in Figure 39 and Table 12 that COEGAN+NSGC consistently achieved
better results than the other approaches. COEGAN provides more unstable results

4.2 exploring the evolution of gans through quality diversity 81

Table 11: Experimental parameters.

Evolutionary Parameters Value

Number of generations 50

Population size (generators) 10

Population size (discriminators) 10

Add Layer rate 30%

Remove Layer rate 10%

Change Layer rate 10%

Output channels range [32, 256]

Tournament kt 2

FID samples 1024

Genome Limit 4

Species 3

Neighborhood size n 3

Archive probability 10%

GAN Parameters Value

Batch size 64

Batches per generation 50

Optimizer Adam

Learning rate 0.001

when compared to the global approach, presenting a higher standard deviation in
FID values when trained with the experimental setup described in Table 11. This
effect is also present in the experiments with COEGAN+NSLC, indicating that the
high diversity produced by our experimental setup affects the results with respect
to the FID score. Tacking into account these results, we conclude that the diversity
provided by COEGAN+NSGC is sufficient to achieve better results in our approach
for training GANs.

To support our analysis, we statistically test the significance of our findings. We
assume that the results do not follow a normal distribution, as the normality test
(Shapiro-Wilk, α = 0.05) rejected this hypothesis for COEGAN and COEGAN+NSLC
(p < 0.001). Then, we used a non-parametric test (Mann-Whitney U, α = 0.05) with
Holm-Bonferroni correction to perform a pairwise comparison between the solutions
evaluated in this work. We found that the improvement of COEGAN+NSGC over CO-

82 exploring the evolutionary aspects of the model

0 10 20 30 40

generation

100

20

30

40

50
60
70
80
90

200

300

F
ID

(l
og

sc
al

e)

COEGAN

COEGAN+NSLC

COEGAN+NSGC

Figure 38: Best FID Score on the MNIST dataset.

Table 12: Average FID score of best generators after training with the MNIST dataset.

Algorithm FID Score

COEGAN 36.8± 18.6

COEGAN+NSLC 35.2± 12.5

COEGAN+NSGC 24.3± 3.3

EGAN is statistically significant (p = 0.03). Moreover, the performance improvement
of COEGAN+NSGC over COEGAN+NSLC is also statistically significant (p < 0.001).
We found no statistical difference between COEGAN and COEGAN+NSLC (p = 0.34).

We also show in Figure 40 the FID scores of all individuals in the population of
generators when training with MNIST. This result evidences that COEGAN+NSLC
has a better exploration of the search space, increasing the diversity and leading to
the discovery of not only good individuals but also less efficient solutions. The local
competition approach used in NSLC has a stronger effect on the protection of inno-
vation, as the competition calculation uses the fitness values from similar individuals,
i.e., it uses the n closest neighbors concerning the architectural similarity. The effect of
this is the discovery of niches that are not efficient in terms of fitness. In the scenario
of global competition, individuals have to outperform a broader range of solutions to
survive through generations, leading to the discovery of better models.

Figures 41 and 42 display the average number of samples used in the training pro-
cess for all discriminators and generators in the population, respectively. In these
charts, we confirm the effect of the novelty strategy applied in our solution, which
is evident in Figure 41. These results evidence that newer individuals were more fre-
quently selected through generations in the solutions based on the QD algorithm,

4.2 exploring the evolution of gans through quality diversity 83

Figure 39: Boxplot of the FID score on MNIST dataset showing the performance of best gener-
ators computed for each independent run.

0 10 20 30 40

generation

100

60

70
80
90

200

300

400

F
ID

(l
og

sc
al

e)

COEGAN

COEGAN+NSLC

COEGAN+NSGC

Figure 40: Average FID Score on the MNIST dataset.

resulting in fewer training samples directly seen by them (new individuals can have
new genes introduced by variation operators). As expected, we also show that nov-
elty is more present in the local competition solution when compared to the global
competition version.

Figures 43 and 44 provide additional support for this analysis, showing the number
of samples used in training of the best individuals in the population of discriminators
and generators, respectively. The curves follow a similar behavior of Figures 41 and
42, evidencing that best individuals at each generation also present more innovation
in the solutions using COEGAN+NSLC.

A difference in the novelty effect is evident when comparing Figure 41 to Figure 42

and Figure 43 to Figure 44. The effect of innovation is more evident for discrimina-
tors (Figures 41 and 43) than in the results with generators (Figures 42 and 44). We

84 exploring the evolutionary aspects of the model

0 10 20 30 40

generation

0

2500

5000

7500

10000

12500

15000

nu
m

b
er

of
sa

m
pl

es

COEGAN

COEGAN+NSLC

COEGAN+NSGC

Figure 41: Average number of samples used to train all discriminators with MNIST.

0 10 20 30 40

generation

0

5000

10000

15000

20000

nu
m

b
er

of
sa

m
pl

es

COEGAN

COEGAN+NSLC

COEGAN+NSGC

Figure 42: Average number of samples used to train all generators with MNIST.

attribute this difference to the choice of fitness functions. As concluded in Chapter 3,
the FID score used in generators is a more reliable metric than the loss function used
in discriminators. This affects the quality criterion used in the NSGA-II optimization
method, making the selection of better individuals more assertive. However, further
experiments are required to confirm this effect on innovation in the population.

To better study the quality and diversity achieved by our model, we present in Fig-
ure 45 the distribution of samples produced by the best generator at different steps of
the training process in one execution using the COEGAN+NSGC approach. Samples
are placed in a 40× 40 grid, positioned according to t-SNE2. For this, 1600 samples
from each case were used in the t-SNE training and a discretization function is applied

2 An expanded version of these images using a 120 × 120 grid is available at
https://github.com/vfcosta/qd-coegan.

4.2 exploring the evolution of gans through quality diversity 85

0 10 20 30 40

generation

0

2500

5000

7500

10000

12500

15000

17500

nu
m

b
er

of
sa

m
pl

es

COEGAN

COEGAN+NSLC

COEGAN+NSGC

Figure 43: Average number of samples used to train best discriminators with MNIST.

0 10 20 30 40

generation

0

5000

10000

15000

20000

nu
m

b
er

of
sa

m
pl

es

COEGAN

COEGAN+NSLC

COEGAN+NSGC

Figure 44: Average number of samples used to train best generators with MNIST.

to place these samples into the two-dimensional space. This method results in some
overlapping samples, which indicates the level of diversity obtained by a model, i.e.,
fewer overlapping samples is evidence of better representation of the latent space.

Figure 45(a) represents the distribution of the MNIST dataset, i.e., the variety of
samples used in training. We can see in Figure 45(b) that, at the initial stage, the
samples are noisy and do not resemble images from MNIST, creating a high number
of overlapping samples. In generation 10, represented by Figure 45(c), the distribution
of samples is closer to the presented in Figure 45(a), although we can still see some
lack of quality and under-representation of some digits. Figure 45(d) shows samples
produced after the whole evolutionary process. These samples have better quality and
preserve diversity, resulting in 1077 overlapping samples, even lower than the 1121

overlapping samples presenting in the MNIST dataset.

86 exploring the evolutionary aspects of the model

(a) MNIST dataset
1121 overlapped samples

(b) Generation 1

1436 overlapped samples

(c) Generation 10

1189 overlapped samples
(d) Generation 50

1077 overlapped samples

Figure 45: Distribution of samples using t-SNE with the MNIST Dataset. We show samples (a)
from the input dataset, the best generator at the (b) first generation, (c) after ten
generations, and (d) at the end of training. We fed t-SNE with 1600 samples from
each scenario and used the results for positioning them into a two-dimensional
space. The number of overlapped samples is displayed for each case.

To assess the efficiency of our solution in complex datasets, we used COEGAN+NSGC,
the best performing version of the proposed algorithm, to conduct experiments with
CelebA (Liu et al., 2015). For the sake of simplicity, we reduced the type of layers only
to convolution and transpose convolution layers when adding a new gene, excluding
the linear layer from the set of possibilities. Besides, the activation functions were re-
stricted to ReLU and Leaky ReLU in the mutation operators. The populations of gen-
erators and discriminators contain 5 individuals each. The images from the CelebA

4.2 exploring the evolution of gans through quality diversity 87

0 10 20 30 40

Training epoch

100

150

200

250

300

350

400

F
ID

DCGAN

COEGAN+NSGC

Figure 46: Best FID Score on the CelebA dataset.

dataset were rescaled to 64× 64. To handle images of bigger sizes, we increased the
genome limit to 5 and the number of batches per generation to 200. The remainder of
the parameters is the same presented in Table 11.

We compare the results of our approach with a regular GAN that uses an archi-
tecture based on DCGAN (Radford, Metz, and Chintala, 2015). In the DCGAN-based
experiments, the architecture of the generator and the discriminator is composed of
four layers. Previous experiments with neural networks using five layers were con-
ducted but the results were more unstable, making the four-layers version more suit-
able for comparison with COEGAN+NSGC. It is important to note that we ensure the
DCGAN approach is trained with the same number of samples of an individual in
COEGAN+NSGC. Therefore, we define one training epoch as the training of DCGAN
with 1000 batches. For COEGAN+NSGC, one training epoch is equivalent to one gen-
eration of the evolutionary algorithm. As we use the all vs. all pairing approach, each
individual is also trained with 1000 batches per generation (5 individuals times 200

batches).
Figure 46 presents the progression of the best FID score when training with CelebA.

We can see a smooth progression of the FID in the COEGAN+NSGC approach, leading
to a final result consistently better when compared to the DCGAN-based solution.
In DCGAN, FID varies during the training epoch, demonstrating spikes during the
process mostly due to the occurrence of common stability issues on the GAN training,
such as the mode collapse problem (Brock, Donahue, and Simonyan, 2019). This is
evidence that our approach provides more stability on GAN training when compared
to regular GANs with similar architectures.

Figure 47 shows samples created by both approaches when trained with the CelebA
dataset. Figure 47(a) displays samples created by the DCGAN approach after the final
epoch when issues were observed in training. This is an example of the resulting effect

88 exploring the evolutionary aspects of the model

(a) DCGAN (b) COEGAN+NSGC

Figure 47: Samples created by (a) DCGAN after collapsing in final training epoch and by (b)
COEGAN+NSGC after training.

of a spike that occurred in the DCGAN training. In Figure 47(b) we can see samples
produced after training with COEGAN+NSGC. Although spikes are not present, the
quality of samples produced by COEGAN+NSGC is still not perfect, but better than
DCGAN.

4.2.3 Discussion

We have investigated in this section the application of a QD algorithm to train and
evolve GANs. Chapter 3 presents COEGAN, a model that uses coevolution with an
EA inspired by NEAT to train GANs. However, the lack of diversity and premature
optimization leave room for improvement of the solution.

We propose an extension of COEGAN to use a Quality Diversity (QD) algorithm
in order to improve the exploration of the search space. Therefore, we design a new
EA that combines COEGAN with the approach used in the Novelty Search with Local
Competition (NSLC) algorithm.

The experimental results show that the use of QD to guide the evolution of GANs
improved the diversity in the population, leading to the discovery of better models.
Furthermore, experiments with a version of the algorithm using global competition
evidence that we can consistently outperform the previous results of COEGAN in the
MNIST dataset. Experiments with the CelebA dataset indicate that our proposal pro-
vides a more stable training when compared to a regular GAN based on the Deep Con-
volutional Generative Adversarial Networks (DCGAN) architecture, avoiding prob-
lems such as mode collapse and vanishing gradient.

4.3 summary 89

4.3 summary

In this chapter, we revisit the COEGAN model to address limitations previously iden-
tified in Section 3.4. Thus, we explore evolutionary aspects of the algorithm to propose
the incorporation of new mechanisms to improve the model. This originated two vari-
ations of the original model. The first, described in Section 4.1, proposes to replace
the fitness with functions based on the Skill Rating. The second proposal, described in
Section 4.2, focused on the structure of the EA. Therefore, recent advances in the field
were investigated and we redesigned the algorithm using a QD approach.

The experiments with the Skill Rating in COEGAN shows that it contributes with
useful information when used as fitness for evolving GANs. When compared to the
original COEGAN proposal, that uses the FID score as fitness, COEGAN with the skill
rating results in a lower execution cost and a self-contained solution, i.e., it does not
depends on an additional neural network such as in the FID score. We also show that
there is a correlation between the FID score and the skill rating as fitness in COEGAN.

The experiments using QD with COEGAN shows that the diversity in the popula-
tion was improved, leading to the discovery of better models. Furthermore, the QD
approach consistently outperformed the results of the original COEGAN and provides
a more stable training when compared to a regular GAN, avoiding problems such as
mode collapse and vanishing gradient.

Other strategies to further improve the model rely on the incorporation of recent
advances related to GANs in the model. For example, using loss functions that were
demonstrated to be more robust and provide better results with respect to the gen-
erative quality. Chapter 5 explores this approach and presents new variations of
COEGAN that incorporate new mechanisms for GANs.

5
I N C O R P O R AT I N G G A N A D VA N C E S I N T O T H E E V O L U T I O N A RY
M O D E L

This chapter presents our proposals to improve Coevolutionary Generative Adversar-
ial Networks (COEGAN) through the incorporation of recent advances proposed for
Generative Adversarial Networks (GANs). Namely, we introduce new alternatives for
the loss functions, different kinds of layers, and a new mutation operator. Experiments
using different datasets were conducted to validate the effects of these proposals.

The remainder of this chapter is organized as follows. Section 5.1 proposes a mu-
tation operator to switch the loss functions used in the GAN training. Section 5.2
incorporates recent advances proposed for GANs into the model. Finally, Section 5.3
summarizes the conclusions and points out directions for further improvement.

5.1 mutation of loss functions

The loss functions are paramount for the success of the GAN training. Recently, sev-
eral proposals of loss functions have emerged in the literature. Taking this into ac-
count, we propose a new variation operator that expands the possible loss functions
used in discriminators and generators. In this way, we incorporate into COEGAN the
improved loss functions developed for GANs to leverage the performance of the gen-
erative model. The objective of this study is to assess the contributions of alternative
loss functions in our coevolutionary setup.

To evaluate our hypothesis, we devised and performed a series of experiments to
compare the original COEGAN proposal with the new variation operator. We also
compare COEGAN with a classical GAN approach with and without mechanisms to
achieve better GAN training.

5.1.1 New Mutation Operator

We propose in this section an extension of the original COEGAN variation operators
to introduce the mutation of the loss function, where the offspring have a probability
to switch the current loss function to one randomly selected from a predefined list.
With this new operator, we can have individuals with different losses, similarly to
E-GAN.

To keep the performance of discriminators comparable, we always use Eq. (1) as
the fitness, even when a different loss function is used for training the discriminator.
Therefore, when comparing individuals for the selection phase, discriminators that

91

92 incorporating gan advances into the evolutionary model

were mutated to use a different loss function will still be evaluated using the loss
function originally defined for GANs.

We selected the loss functions from WGAN, LSGAN, RSGAN, and RaSGAN as the
set of possibilities for this mutation operator. Therefore, in addition to the original loss
functions defined in Eq. (1) and Eq. (3), we use the alternative loss functions defined
in Section 2.1.4.2 by Equations (8), (9), (11), (12), (13), (14), (15), and (16).

It is important to note that these alternative losses do not output probabilities as the
discriminator result. Therefore, the sigmoid function is not applied in the final layer
of discriminators. These variations output unbounded scores used as input in their
specific loss functions.

5.1.2 Experiments

We design a set of experiments to assess the contributions of our model regarding the
quality and stability in the GAN training using Fashion-MNIST to assess the perfor-
mance of COEGAN under different scenarios. To evaluate the quality of the resulting
models, we use the FID score, i.e., the same function used for fitness in generators.

First, we evaluate our new proposed mutation operator in comparison with CO-
EGAN. Next, we compare COEGAN with a DCGAN-based model with and without
batch normalization, similarly to the experiments conducted for WGAN by Arjovsky,
Chintala, and Bottou (2017). With this study, we want to show that COEGAN is able
to evolve robust models, even without using mechanisms to improve the training sta-
bility.

5.1.2.1 Experimental Setup

Table 13 lists the parameters used in our experiments. These parameters were selected
based on the results of our previous experiments (Chapters 3 and 4). The number of
generations used in all experiments is 100. Each population of generators and discrim-
inators contains 10 individuals. We use a probability of 30%, 10%, and 10% for the
add, remove, and change mutations, respectively. To make the comparison between
COEGAN and DCGAN fair, the genome of generators and discriminators was limited
to four genes for COEGAN, representing a network of four layers in the maximum
allowed setup. We also limited the type of layers only to convolution and transpose
convolution layers for the addition mutation. This setup is a compromise between
a low computational cost and the capacity of discovering efficient solutions to the
problems being tackled. More layers would be suitable only for datasets with larger
dimensions. We use three species in each population of generators and discriminators.
To evaluate generators, we apply the FID score with 5000 samples.

To apply the GAN training algorithm, we use a batch of 64 images and the Adam
optimizer (Kingma and Ba, 2015) with 0.001 as the learning rate. COEGAN uses a

5.1 mutation of loss functions 93

Table 13: Experimental Parameters

Evolutionary Parameters Value

Number of generations 100

Population size (generators) 10

Population size (discriminators) 10

Add Layer rate 30%

Remove Layer rate 10%

Change Layer rate 10%

Mutate Loss function rate 30%

Output channels range [32, 512]

Tournament kt 2

FID samples 5000

Genome Limit 4

Species 3

GAN Parameters Value

Batch size 64

Batches per generation 10

Optimizer Adam

Learning rate 0.003

limited set of input data at each step. Therefore, we use 10 batches per training pair.
Preliminary experiments evidenced that a bigger number of batches brings instability
to the system. This happens because bad individuals can exist in the population, and
the all vs. all pairing approach will make use of them extensively in training. Hence,
small steps on training, i.e., a smaller number of batches, achieved better results in
our model.

Figures in this section display plots with curves representing the average of the
results from 20 independent executions, with a confidence interval of 95%.

5.1.2.2 Results

Figure 48 shows the progress of the FID score through evolution for the classical
COEGAN proposal and COEGAN with mutation of the loss function enabled.

We can see that the curve of the original COEGAN decreases faster. This is evidence
that COEGAN is already robust enough to solve the common stability issues in GANs.
Therefore, the alternative loss functions used in our experiments do not contribute to

94 incorporating gan advances into the evolutionary model

0 100

generation

100

40

50

60
70
80
90

200

300

F
ID

 (
lo

g
sc

al
e)

COEGAN
COEGAN + Loss Mutation

Figure 48: Best FID Score on the Fashion-MNIST dataset for COEGAN and COEGAN with
mutation of the loss functions.

the improvement of the proposed model. Besides, mixing different loss functions in
a population of individuals brings more complexity to the system, leading to the cre-
ation of more evolutionary paths that make the algorithm harder to achieve consistent
results.

As suggested by Lucic et al. (2017), different alternatives for GANs can achieve
similar results when in similar conditions and tuned properly. This is aligned with our
results, showing that individuals in COEGAN could not benefit from these different
approaches.

We present in Figures 49, 50, 51, and 52, how the individuals are using the possible
loss functions in our experiments. In these charts, each row represents a loss function
and the generations are represented in the horizontal axis. Each circle corresponds to
an individual, and the darker circles are the best individuals for each specific genera-
tion. Following, we analyze the insights achieved through these charts.

In Figure 49 and Figure 50 we show the distribution through generations of indi-
viduals regarding the loss function in one execution of COEGAN. As mutation of the
loss function is enabled in this case, we can see how individuals switch through loss
functions.

For generators (Figure 49), we can see that all loss functions were used and became
the best for some generations. However, for discriminators (Figure 50), we can clearly
see a tendency to choose individuals with the loss function originally proposed for dis-
criminators in Eq. (1). In the execution represented by Figure 50, individuals with this
loss function performed better than others in almost all generations. It is also impor-
tant to note that, to keep individuals comparable, we use Eq. (1) as fitness even when
other losses are used. Therefore, this tendency is justified by the selection pressure
determined by the use of a specific loss function as fitness.

5.1 mutation of loss functions 95

Figure 49: Distribution of individuals in the population of generators regarding the loss func-
tion. The best individual of each generation is darker.

Figure 50: Distribution of individuals in the population of discriminators regarding the loss
function. The best individual of each generation is darker.

Figure 51 shows the distribution of loss functions for discriminators in all executions.
We can see that in almost all executions and generations the best individual uses the
original loss function for discriminators. Therefore, the tendency to select individuals
with the original GAN function is evident.

96 incorporating gan advances into the evolutionary model

Figure 51: Distribution of individuals in the population of discriminators regarding the loss
function for all executions (best individuals are darker).

For generators (Figure 52), we have better distribution of different loss functions in
the population. As we use the FID score as fitness, the loss function is not used as
fitness in this case.

Figure 52: Distribution of individuals in the population of generators regarding the loss func-
tion for all executions. The best individual of each generation is darker.

5.1 mutation of loss functions 97

Given these results, we conduct further experiments to assess how other strategies
used to improve GANs impact COEGAN. Specifically, we compare the original pro-
posal with a model based on DCGAN under different conditions. We disable batch
normalization in COEGAN and DCGAN to assess the behavior of training in this sce-
nario, resulting in the following variants: COEGAN+BN, COEGAN-BN, DCGAN+BN,
and DCGAN-BN; where +BN/-BN indicates the presence or absence of batch normal-
ization in the architecture, respectively.

0 100

generation

100

30

40

50

60
70
80
90

200

300

F
ID

 (
lo

g
sc

al
e)

DCGAN + BN
COEGAN + BN
DCGAN - BN
COEGAN - BN

Figure 53: Best FID Score on the Fashion-MNIST dataset for COEGAN and DCGAN with and
without batch normalization.

Figure 53 displays the progress of FID through generators. In this graph, we can
clearly see that the solution based on DCGAN is not stable when batch normalization
is disabled. However, we can see that COEGAN-BN is able to find robust models, as
depicted by the decreasing behavior on the FID score.

Table 14: Average FID of best generators in Fashion-MNIST

Algorithm FID Score

DCGAN+BN 35.5± 2.9

COEGAN+BN 39.8± 6.8

DCGAN-BN 85.8± 11.7

COEGAN-BN 53.2± 9.4

These results are confirmed by Figure 54, where the average FID between all ex-
ecutions is displayed. We can also see that COEGAN consistently outperforms DC-
GAN when batch normalization is disabled. When comparing COEGAN+BN and DC-
GAN+BN, the performance is similar, with COEGAN+BN achieving better results in
some executions. The benefits of COEGAN are more visible in complex datasets such

98 incorporating gan advances into the evolutionary model

Figure 54: Boxplot of the FID score on Fashion-MNIST dataset showing the performance of
best generators computed for each independent run.

as CelebA (Liu et al., 2015), as experimentally demonstrated in (Costa et al., 2020b).
The results also evidenced that batch normalization contributes to the performance,
although the effect is smaller in COEGAN compared with DCGAN.

When comparing COEGAN-BN and DCGAN-BN we provide evidence of the sta-
bility introduced by the evolutionary algorithm. COEGAN-BN has better training sta-
bility, leading to better performance concerning the FID score. On the other hand,
DCGAN-BN shows unstable results, evidencing problems such as mode collapse in
some executions.

We statistically test the significance of the results to support our analysis. Hence,
the non-parametric test Mann-Whitney U (α = 0.05) with Holm-Bonferroni correction
was used to compare relevant pairs of solutions evaluated in our experiments. We
found a statistical difference between COEGAN+BN and DCGAN+BN (p = 0.04) with
a minor effect size. Besides, the improvement of COEGAN+BN over COEGAN-BN
is statistically significant (p < 0.0001). The performance improvement of COEGAN-
BN over DCGAN-BN is also statistically significant (p < 0.0001), evidencing that our
proposal achieves better training stability in difficult conditions.

Figure 55 contains samples created by the generator after training COEGAN+BN
on the Fashion-MNIST dataset. We can see that COEGAN successfully captured the
distribution of Fashion-MNIST, displaying a variety of samples with corresponding
quality.

5.1 mutation of loss functions 99

Figure 55: Samples created by COEGAN+BN after training on Fashion-MNIST.

5.1.3 Discussion

In this section, we investigated the inclusion of alternative loss functions into CO-
EGAN by proposing a new mutation operator that switches the loss function of gen-
erators and discriminators. We also compare our model to the commonly used ap-
proaches to overcome stability issues when training GANs, such as alternative loss
functions and new architectural mechanisms.

Experiments were conducted to compare COEGAN with and without mutation of
loss functions. Results show that COEGAN does not benefit from the mixing of dif-
ferent loss functions into the evolutionary process when using the FID score and the
original loss functions for discriminators to provide selective pressure. However, the
use of other variations of GANs in a different setup, such as using other fitness func-
tions, can be used in COEGAN to explore their improved capabilities to produce better
generative models.

We also studied the behavior of COEGAN in the presence of other commonly used
techniques for training GANs. Thus, COEGAN is compared with a DCGAN-based
approach with and without batch normalization enabled in the architecture. We statis-
tically showed that COEGAN is more stable than DCGAN when batch normalization
is not enabled. This result indicates that the proposed evolutionary method achieved
enough stability to train GANs, avoiding common issues even in hard scenarios.

The strategy to explore another variation of GANs is revisited in Section 5.2. Fur-
thermore, other mechanisms were evaluated to assess the contributions to the design
of a new variation of our evolutionary model for GANs.

100 incorporating gan advances into the evolutionary model

5.2 coegan-v2

In this section we detail COEGAN-v2 (Costa et al., 2021b), which is an extension
of the original model, incorporating recently proposed advances for GANs in the
Evolutionary Algorithm (EA). Specifically, we improve the original COEGAN model
(described in Chapter 3) by adding the possibility of having spectral normalization in
layers and also incorporate a new kind of upsampling layer for generators (Brock, Don-
ahue, and Simonyan, 2019; Miyato et al., 2018). Additionally, we propose the use of
RaSGAN (Jolicoeur-Martineau, 2019) to guide the evolution of GANs in our model for
generators and discriminators, using the loss functions not only for the GAN training
but also as fitness functions. In this way, we avoid the costly computation of the FID
score for every individual at each generation, making use of the same losses obtained
during the GAN training process.

Experiments were conducted to further investigate the contributions of COEGAN-
v2 to the stability of GAN training. Thus, we compare the results achieved by
COEGAN-v2, the original COEGAN proposal, and non-evolutionary GAN with dif-
ferent stabilization mechanisms using the datasets Fashion-MNIST (Xiao, Rasul, and
Vollgraf, 2017) and CelebA (Liu et al., 2015).

5.2.1 Model Extensions

The original COEGAN relies on the Fréchet Inception Distance (FID) metric to guide
the evolutionary process. The main reason behind this is concerned with the fact that
the loss functions from the original GAN model do not allow for a proper evolu-
tionary pressure when applied for generators. However, computing the FID for every
individual is computational expensive. To reduce this effort and keep a stable fitness
function, we propose the use of the loss functions of RaSGAN to drive the evolution of
individuals in both populations of generators and discriminators. Experiments with
RaSGAN showed that training is more stable and produced samples with better qual-
ity when compared to other solutions, such as the original GAN (Jolicoeur-Martineau,
2019). Therefore, we include these losses in the training step for each pair of genera-
tors and discriminators in COEGAN-v2. The loss functions of RaSGAN are defined in
Section 2.1.4.2 by Eq. (15) for discriminators and Eq. (16) for generators.

With this extension, the algorithm no longer uses the FID score to guide the evolu-
tion. The FID score is used only as the metric to report the quality of the best indi-
viduals through generations and to allow the comparison with other methods from
the literature. It is also important to note that the FID score uses an external neural
network (Inception Net) that leads to a high time-consuming task for the evaluation of
individuals in the EA. Since COEGAN-v2 is guided by the loss functions of RaSGAN,
it is substantially faster than the original COEGAN. The resulting fitness is directly
calculated by the average of the losses obtained for each training pair of generators

5.2 coegan-v2 101

and discriminators, eliminating the need for extra steps to compute the fitness of indi-
viduals.

In this proposal, we also change the genome to introduce random normalization for
layers in generators and discriminators. Therefore, layers can be created with none,
batch, or spectral normalization. Spectral normalization is a kind of normalization
used in the discriminator of SN-GAN. However, different from SN-GAN, we also
include the possibility of using spectral normalization in generators to let the selective
pressure identify the usefulness of this mechanism in these individuals.

In the original COEGAN proposal, we use transpose convolution (also called decon-
volution) in generators to produce the resulting samples. We incorporate in COEGAN-
v2 the option to use convolution combined with upsampling (nearest neighbor). There-
fore, new layers for generators are chosen between these two options: transpose convo-
lution and convolution with upsampling, respectively represented as Deconvolution
and ConvUpsample in the genome.

Figure 56 shows examples of the genotype of a discriminator and a generator for
COEGAN-v2. We represent in each gene the attributes that can be randomly initialized
by the EA, such as the normalization strategy, number of features, and number of
output channels. To reduce the computational requirements, we limit the activation
function to ReLU in all layers except the output layers of generators and discriminators.
For the discriminator (Figure 56(a)), the genotype is composed of three layers. The first
layer is a convolution layer with spectral normalization chosen as the normalization
strategy. The second layer is also a convolution layer, but without normalization. The
last gene represents a linear layer that outputs the probability of the input sample for
being real (i.e., the probability that the sample belongs to the input dataset and was not
produced by a generator). For the generator (Figure 56(b)), the first gene is a linear
layer that receives the latent distribution and has batch normalization. The second
gene is a Deconvolution layer that applies transpose convolution to upscale the image,
having no normalization enabled in this case. The last gene is a ConvUpsample layer,
which uses nearest-neighbor upsampling to upscale the image to produce the final
outcome. In this case, this final layer uses spectral normalization.

5.2.2 Experiments

We design a set of experiments to assess the performance of our model regarding the
quality and stability of the GAN training. We compare COEGAN-v2 with the original
COEGAN and also with a non-evolutionary model based on DCGAN. We use the FID
score to evaluate the quality of the results produced by generators at each generation
of the training process.

For COEGAN, we evaluate the original approach and also a variation called CO-
EGAN+loss, which uses the loss function of the original GAN model (Eq. (1) and
Eq. (3)) as fitness. For the DCGAN approach, we use two variations to ensure a fair

102 incorporating gan advances into the evolutionary model

Convolution
activation: ReLU

kernel size: 3
out channels: 256

normalization: spectral

Convolution
activation: ReLU

kernel size: 3
out channels: 64

normalization: none

Linear
activation: Sigmoid
in features: 3136
out features: 1

normalization: spectral

(a) Discriminator

Linear
activation: ReLU
in features: 100

out features: 4096
normalization: batch

Deconvolution
activation: ReLU

kernel size: 3
out channels: 128

normalization: none

ConvUpsample
activation: TanH

kernel size: 3
out channels: 1

normalization: spectral

(b) Generator

Figure 56: Example of genotypes of a discriminator and a generator. The discriminator con-
tains two convolution layers and one linear layer. The generator has one linear, one
deconvolution, and one convolution with upsampling as layers. Normalization, the
number of output channels, and the number of output features are randomly cho-
sen.

comparison with COEGAN-v2. The first variation uses DCGAN with batch normal-
ization and the original loss functions of GANs. The second variation, called DC-
GAN+RG+SN, uses DCGAN with spectral normalization in the discriminator, as rec-
ommended by Miyato et al. (2018), and also the loss functions of RaSGAN. Both vari-
ations have the same architecture composed of four layers.

5.2.2.1 Experimental Setup

Table 15 presents the settings used in the experiments of this work. These parameters
were selected based on the results of our previous experiments (Chapters 3 and 4). The
number of generations is set to 50. In addition, we train the best individuals discovered
in the last generation for 50 more steps. To achieve equivalence in the comparison
of our experiments, the non-evolutionary models based on DCGAN are trained for
100 epochs. The number of batches used in each generation takes into account the
pairing mechanism to have individuals trained for the same amount of data in both the
evolutionary and the non-evolutionary approaches. For the evolutionary approaches,
the populations of generators and discriminators contain 5 individuals each. We found
that this amount is sufficient to provide the variability required for the proposed
method. The probabilities for mutations to add, remove, and change genes are 30%,

5.2 coegan-v2 103

10%, and 10%, respectively. In COEGAN and COEGAN-v2, the genome starts with
only one input and output layer and can grow to a maximum of 5 layers. This setup
is sufficient to discover efficient solutions and is able to encode models that deviate
from the guidelines of the DCGAN architecture while keeping the computational load
moderate. We use two species in each population of generators and discriminators.
We apply the FID score with 10000 samples of the input dataset and 10000 samples
produced by each evaluated generator.

To apply the GAN training algorithm, we use a batch of 64 images and the RMSprop
optimizer (Tieleman and Hinton, 2012) with 0.0002 as the learning rate. COEGAN uses
a limited set of input data at each step. Therefore, we use 50 batches per training pair.
Experiments were repeated for 20 independent executions to report the average values
with a confidence interval of 95% and allow for a sound statistical analysis.

The experimental study is divided into two main steps. The first step compares
the performance of COEGAN-v2 with the original COEGAN and non-evolutionary
GANs by using the Fashion-MNIST dataset. This dataset is composed of grayscale
images of fashion items with dimension 28× 28 and is commonly used in benchmarks
of computer vision tasks. Next, we compare the performance of COEGAN-v2 with
non-evolutionary GANs in a more complex scenario. Thus, we use CelebA, a dataset
composed of RGB images of celebrity faces, resized in our experiments to 32× 32 for
the sake of computational resources to keep the same setup of Table 15. Experiments
were performed on an Intel Core i9-9900K with 3.60GHz as CPU and an NVIDIA
GeForce RTX 2060 (6GB RAM) as GPU.

5.2.2.2 Results: Fashion-MNIST Dataset

Figure 57 displays the average FID score for the approaches evaluated in the exper-
iments using Fashion-MNIST on training. We can see that COEGAN-v2 is able to
outperform the original COEGAN proposal and also the solutions based on DCGAN.

The vertical line in Figure 57 marks the generation where the evolutionary process
ends and the training only phase starts for the COEGAN based approaches. After
this mark, the best generator and discriminator were selected to continue the train-
ing for 50 more epochs. We can see that the performance of COEGAN degrades af-
ter the evolutionary phase, i.e., after the selective pressure is no longer working to
guide individuals towards efficient solutions. On the other hand, individuals discov-
ered by COEGAN-v2 were able to continue the improvement in the training phase.
Individuals discovered by COEGAN-v2 have into their architectures aspects that help
to achieve better training stability, such as different normalization mechanisms and
the loss functions of RaSGAN.

In Figure 58 and Figure 59, we display a Boxplot representing the FID score after
the last generation and the best score among all generations, respectively. The results
show that COEGAN-v2 achieved better outcomes concerning the FID score of gen-
erators. Table 16 presents the average FID scores in the last generation and also the

104 incorporating gan advances into the evolutionary model

Table 15: Experimental parameters.

Evolutionary Parameters Value

Number of generations 50

Number of training epochs 50

Population size (generators) 5

Population size (discriminators) 5

Add Layer rate 30%

Remove layer rate 10%

Change layer rate 10%

Output channels range [32, 256]

Tournament kt 2

FID samples 10000

Genome limit 5

Species 2

GAN Parameters Value

Batch size 64

Batches per generation 50

Optimizer RMSprop

Learning rate 0.0002

average best FID value found during the 100 generations for all executions in our
experiments. COEGAN-v2 achieved in the last generation an average of 24.8 ± 9.3,
outperforming by 22% the second-best approach, represented by DCGAN+RG+SN
(31.8 ± 3.2). Furthermore, COEGAN-v2 achieved 20.3 ± 4.5 as the average best FID
score among generations, obtaining 13.2 as the best FID over all executions. Experi-
ments of Lucic et al. (2017) reported the average best FID score of 18.0± 1.1 for WGAN
in the Fashion-MNIST dataset when conducting a large-scale hyperparameter search.
On average, COEGAN-v2 is able to achieve similar performance, outperforming in
some executions the WGAN results reported by Lucic et al. (2017). However, some
outliers executions in COEGAN-v2 obtain high FID scores, showing that there is still
room for improvement in the solution.

To support our analysis, we validate statistically the significance of our findings.
We apply the Shapiro-Wilk test with significance level α = 0.05 to check the hypoth-
esis of COEGAN-v2 results following a normal distribution, rejecting this hypothesis
(p = 0.002). As such, we use the non-parametric test Mann-Whitney U (α = 0.05) with

5.2 coegan-v2 105

0 100
generation

100

20

30

40
50
60
70
80
90

200

300

FI
D

(lo
g

sc
al

e)

evolve train

COEGAN-v2
COEGAN
COEGAN+loss
DCGAN
DCGAN+RG+SN

Figure 57: FID score on Fashion-MNIST dataset showing the performance of best generators
computed for each independent run.

Table 16: FID score of best generators in Fashion-MNIST in the last generation and the best
score among all 100 generations.

Algorithm Last FID Best FID

COEGAN-v2 24.8± 9.3 20.3± 4.5

COEGAN 33.3± 5.9 27.4± 5.0

COEGAN+loss 35.0± 10.2 28.6± 5.0

DCGAN 34.2± 2.1 30.7± 1.4

DCGAN+RG+SN 31.8± 3.2 28.8± 0.8

Holm-Bonferroni correction to perform a pairwise comparison. We found that the im-
provements of COEGAN-v2 over all other solutions are statistically significant with
p < 0.005. These results reveal that our proposal consistently achieve better results
concerning the FID score in our experimental scenario. When comparing the original
COEGAN proposal and the DCGAN based models, we found no statistical signifi-
cance. In this case, the benefits of the original COEGAN proposal are more relevant
for harder scenarios.

Figure 60 displays a random sampling of images created by generators in one ex-
ecution of COEGAN-v2. It is evidenced in these samples that our proposal was able
to produce high-quality samples without getting undesired effects, such as the mode
collapse problem.

In Figure 61 we present the architectures found by COEGAN-v2 for the generator
and the discriminator that produced the samples from Figure 60. In this case, the max-
imum number of layers allowed in our setup was explored for both the discriminator

106 incorporating gan advances into the evolutionary model

Figure 58: Boxplot of the FID score on Fashion-MNIST dataset showing the performance of
best generators at the last generation computed for each independent run.

and the generator. The discriminator has three layers using spectral normalization, one
with batch normalization and one without normalization. The generator has spectral
normalization only in the output layer, alternating between batch normalization and
no normalization in the remaining four layers. The generator also contains both Decon-
volution and ConvUpsample layers, making use not only of the transpose convolution
mechanism but also the nearest upsampling followed by convolution.

We also analyzed the distribution of the normalization strategies in hidden layers of
generators and discriminators when applying COEGAN-v2 in the evolutionary phase
(first 50 generations). In Figure 62, we can see the use of the different normalization
strategies for individuals in the population of generators. The preference for a strategy
is not evident in these results. Batch normalization and no normalization are slightly
favorable in relation to spectral normalization. Figure 63 shows the use of the different
normalization strategies for discriminators. In this case, the preference for batch nor-
malization is clear, making spectral normalization the less used strategy in the hidden
layers of discriminators. This result indicates that spectral normalization may not be
paramount for COEGAN-v2.

Figure 64 shows the average number of hidden layers using either Deconvolution
or ConvUpsample for individuals in the population of generators in COEGAN-v2.
It is evidenced in this figure that the selective pressure produced a clear preference
for ConvUpsample. This result indicates that the addition of this new possibility for
generators was relevant for the improvement achieved by COEGAN-v2, showing that
the gain obtained when using this type of layer is complementary to the improvement
on the proposed EA for GANs.

We also compare the time spent to evaluate a single individual for COEGAN and
COEGAN-v2. For this, we create individuals with the number of layers varying from

5.2 coegan-v2 107

Figure 59: Boxplot of the FID score on Fashion-MNIST dataset showing the performance of
best score among all generations computed for each independent run.

two to five to measure the time spent to calculate the fitness. We applied the settings
described in Table 15 in this experiment. Thus, COEGAN calculates the FID score
using 10000 samples and COEGAN-v2 uses 50 batches of 64 images to calculate the
average losses to use as fitness. Results of 100 independent executions are displayed in
Figure 65 for COEGAN and Figure 66 for COEGAN-v2. For both models, we can see
that the execution time is slightly increasing within the number of layers. However, the
cost for calculating the fitness in COEGAN is much higher. With five layers, COEGAN-
v2 took 0.9022± 0.3972 seconds to execute the fitness function while COEGAN took
31.7696± 0.7011 seconds. Therefore, we evidence with these results that the FID score
represents a significant impact on the performance of COEGAN and COEGAN-v2

overcomes this limitation by using a much faster approach.

5.2.2.3 Results: CelebA Dataset

To assess our contributions in a more complex scenario, we conduct experiments
using the CelebA dataset (Liu et al., 2015) with the best evolutionary and non-
evolutionary approaches evaluated in Section 5.2.2.2. Thus, we compare the perfor-
mance of COEGAN-v2 and non-evolutionary GAN models based on DCGAN with re-
spect to the outcome quality measured through the FID score. For our experiments, we
rescale images from CelebA to 32× 32 to have a similar setup to Table 15. As CelebA is
a more complex dataset than Fashion-MNIST, we extend the number of training-only
epochs to 100 to give enough computation time for the models. Furthermore, we learn
from the architectures discovered in the experiments with Fashion-MNIST to reduce
the search space by allowing only ConvUpsample layers in generators, leading to two
versions of the solution: COEGAN-v2 and COEGAN-v2-up. We also applied the same

108 incorporating gan advances into the evolutionary model

Figure 60: Samples produced by the best generator found by COEGAN-v2 when trained with
Fashion-MNIST.

approach to produce two DCGAN models: DCGAN and DCGAN-up. DCGAN uses
Deconvolution (transpose convolution) and DCGAN-up use ConvUpsample layers in
generators. Besides, both DCGAN models follow the best performing model of the
experiments with Fashion-MNIST (Section 5.2.2.2), using spectral normalization and
the loss functions of RaSGAN.

Table 17: FID score of best generators in CelebA in the last generation and the best score
among all 150 generations.

Algorithm Last FID Best FID

COEGAN-v2+up 11.6± 1.9 9.9± 1.4

COEGAN-v2 13.0± 2.8 11.4± 1.9

DCGAN+up 22.7± 1.4 20.9± 0.6

DCGAN 35.6± 3.0 33.9± 2.0

Figure 67 shows the average FID score for COEGAN-v2, COEGAN-v2+up, DC-
GAN, and DCGAN+up when training on CelebA. We can see that both variations
of COEGAN-v2 are able to outperform by a large margin the non-evolutionary mod-
els based on DCGAN.

Table 17 displays the FID score in the last generation and also the best FID score
among all generations. COEGAN-v2+up achieved an average FID of 11.6± 1.9 against
22.7 ± 1.4 for DCGAN+up (the best non-evolutionary models in our experiments),
representing an improvement of 49%. COEGAN-v2 also outperforms DCGAN+up,
achieving an FID 43% smaller.

5.2 coegan-v2 109

Convolution
activation: ReLU

kernel size: 3
out channels: 256

normalization: spectral

Convolution
activation: ReLU

kernel size: 3
out channels: 128

normalization: batch

Convolution
activation: ReLU

kernel size: 3
out channels: 64

normalization: none

Convolution
activation: ReLU

kernel size: 3
out channels: 256

normalization: spectral

Linear
activation: Sigmoid
in features: 2304
out features: 1

normalization: spectral

(a) Discriminator

Linear
activation: ReLU
in features: 128

out features: 4096
normalization: batch

ConvUpsample
activation: ReLU

kernel size: 3
out channels: 128

normalization: none

Deconvolution
activation: ReLU

kernel size: 3
out channels: 64

normalization: batch

ConvUpsample
activation: ReLU

kernel size: 3
out channels: 256

normalization: none

ConvUpsample
activation: TanH

kernel size: 3
out channels: 1

normalization: spectral

(b) Generator

Figure 61: Architectures of the best generator and the best discriminator found by COEGAN-
v2 after the evolutionary process. Both the architecture of the discriminator (a) and
the architecture of the generator (b) are composed of five layers, using different
strategies for normalization. Furthermore, the generator contains layers with the
two possibilities for upscaling designed in the model (transpose convolution and
nearest upsampling followed by convolution).

We use the non-parametric test Mann-Whitney U (α = 0.05) with Holm-Bonferroni
correction to compare pairs of solutions from our results. We found that the improve-
ment of COEGAN-v2 and COEGAN-v2+up over DCGAN models is statistically sig-
nificant with p < 0.001. Therefore, the results evidence that COEGAN-v2 is also able
to outperform a regular GAN in complex datasets such as CelebA. The smaller search
space given by the experiments with COEGAN-v2+up leads to a better performance

110 incorporating gan advances into the evolutionary model

0 10 20 30 40 50
generation

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e
Spectral
Batch
None

Figure 62: Average number of hidden layers using spectral, batch, and none normalization
strategies for generators evolved in COEGAN-v2.

0 10 20 30 40 50
generation

0.00

0.25

0.50

0.75

1.00

1.25

1.50

va
lu

e

Spectral
Batch
None

Figure 63: Average number of hidden layers using spectral, batch, and none normalization
strategies for discriminators evolved in COEGAN-v2.

with respect to the FID score when compared to COEGAN-v2. However, these results
are not statistically significant (p = 0.12).

During the evolutionary phase (first 50 generations), the variation on the FID score
is evident for the COEGAN-v2 models. At this phase, the evolutionary algorithm
is still searching for efficient architectures. At the train-only phase, we get a more
stable behavior of the FID score, as the architectures are fixed, being trained to achieve
maximum performance.

Figure 68 displays samples created by COEGAN-v2 in one execution. We can see
the diversity and high quality of the produced images, following the characteristics of
the CelebA dataset.

5.2 coegan-v2 111

0 10 20 30 40 50
generation

0.0

0.5

1.0

1.5

va
lu

e

ConvUpsample
Deconvolution

Figure 64: Average number of hidden layers of generators of types Deconvolution or ConvUp-
sample (Convolution with upsample) in COEGAN-v2.

2 3 4 5
number of layers

30

31

32

33

34

du
ra

tio
n

(s
ec

on
ds

)

model
COEGAN

Figure 65: Boxplot of the execution time spent to calculate the fitness for individuals in CO-
EGAN composed of two to five layers.

5.2.3 Discussion

In this section, we have incorporated into COEGAN new mechanisms to improve the
performance and achieve better results in the training of GANs with the objective of
achieving better training with respect to quality and stability. COEGAN uses competi-
tive coevolution and neuroevolution to evolve and train GANs, using the FID score to
guide the evolution of generators. However, the FID score is computationally expen-
sive and introduces a relevant cost to performance. Furthermore, although COEGAN
provides stable results in hard scenarios, the quality of the produced outcome is not
as competitive as state-of-the-art results concerning GANs. To overcome this issue, we

112 incorporating gan advances into the evolutionary model

2 3 4 5
number of layers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

du
ra

tio
n

(s
ec

on
ds

)

model
COEGAN-v2

Figure 66: Boxplot of the execution time spent to calculate the fitness for individuals in
COEGAN-v2 composed of two to five layers.

0 100
generation

10

100

9

20

30
40
50
60708090

200

300
400
500

FI
D

(lo
g

sc
al

e)

evolve train

COEGAN-v2
COEGAN-v2+up
DCGAN
DCGAN+up

Figure 67: FID score on CelebA showing the performance of best generators computed for
each independent run.

propose COEGAN-v2, an extension to COEGAN that enhances the model with the
possibility of using spectral normalization, a new type of layer for the generator, and
alternative loss functions not only for training but also for fitness assignment in the
evolutionary process.

We compared COEGAN-v2 with the original model and also with a non-evolutionary
strategy based on DCGAN. Results show that COEGAN-v2 is able to outperform the
other approaches when training on the Fashion-MNIST dataset by at least 22%. Be-
sides, we show that the improvement of COEGAN-v2 over DCGAN and the original
COEGAN model is statistically significant. Experiments were also conducted using
the CelebA dataset. Results revealed that COEGAN-v2 is able to consistently outper-

5.3 summary 113

Figure 68: Samples produced by the best generator found by COEGAN-v2 when trained with
CelebA.

form DCGAN, producing better results concerning the quality of generated images.
We statistically showed that COEGAN-v2 achieved better results with respect to the
FID score when compared to the original model and also non-evolutionary GANs.
This result indicates that the proposed evolutionary method achieved enough stability
to train GANs, discovering efficient models and avoiding common issues even in hard
scenarios. A study on the execution cost of the evaluation phase of the EA shows that
COEGAN-v2 is much faster than COEGAN.

5.3 summary

In this chapter, we extend the COEGAN considering the directions described in Sec-
tion 3.4 regarding GANs. First, we propose in Section 5.1 a new mutation operator
for COEGAN that switches the loss function of the individuals. Based on these results
and further advances proposed for GANs, we propose COEGAN-v2 in Section 5.2.

The results show that the inclusion of a new mutation operator in COEGAN to
select different loss functions does not improve the results. This provides us with
strong evidence that using a coevolutionary approach to evolve GAN architectures
minimizes the training problems. This is further confirmed by the study we conduct
where we compare the performance of COEGAN whilst using a mechanism from the
literature to stabilize the training of GANs. Therefore, we conclude that the aspects
of evolutionary computation used in COEGAN are important to provide stability in
training and discover efficient architectures for GANs.

114 incorporating gan advances into the evolutionary model

Experiments with COEGAN-v2 show that it achieves better stability and outper-
forms the original COEGAN and non-evolutionary GANs with respect to the FID
score when trained on the Fashion-MNIST dataset, achieving an average score of
24.8± 9.3 against 31.8± 3.2 for the best non-evolutionary approach (an improvement
of 22%). A performance comparison between COEGAN and COEGAN-v2 evidenced
that the evaluation strategy used in COEGAN-v2 is much faster than using the FID
score. In the experiments with CelebA, we show that COEGAN-v2 is able to discover
efficient models with at least 43% better FID when compared with the regular GAN
models used in our experiments. We also show that the improvement of COEGAN-v2

is statistically significant. Besides, the results show that both COEGAN and COEGAN-
v2 achieved better stability on training, leading to better results with respect to the
quality of the produced images. Therefore, we conclude that the aspects of evolution-
ary computation used in COEGAN are important to provide stability in training and
discover efficient architectures for GANs.

6
E VA L U AT I N G T H E P R O G R E S S O F G E N E R AT I V E M O D E L S
T H R O U G H T- S N E

In Chapter 3 we proposed and detailed Coevolutionary Generative Adversarial Net-
works (COEGAN), which relies on neuroevolution and coevolution to build and train
Generative Adversarial Networks (GAN) to overcome the stability issues. We showed
through experimental analysis that the method was able to discover efficient models
for GANs in different datasets. An improved version called COEGAN-v2 was pro-
posed in Section 5.2 incorporating recent advances on GANs into the model, such as
the use of loss functions from RaSGAN. Despite the results, further evidence is needed
to show the progress of generators and discriminators during the evolutionary search.

In this chapter we propose a new method to evaluate the progress of GANs using
the samples produced by generators, and discriminators to transform these samples
into feature vectors. Then, we design an evaluation method that uses t-Distributed
Stochastic Neighbour Embedding (t-SNE) (Maaten and Hinton, 2008) to visualize and
quantify the performance of discriminators and generators. For this, we rely on the
feature space produced by trained discriminators to analyze images produced by gen-
erators and also samples drawn from the input dataset. The t-SNE algorithm receives
this feature space to distribute those images in a two-dimensional grid. A metric based
on the Jaccard index in the resulting t-SNE maps is proposed to quantify the perfor-
mance achieved by GAN models.

This evaluation method is used to analyze the evolution of discriminators and gen-
erators in the original COEGAN model trained on the Fashion-MNIST dataset (Xiao,
Rasul, and Vollgraf, 2017). The experiments evidenced that the distribution of samples
produced by our evaluation method is able to show how the evolutionary process in
COEGAN progresses. The results provide additional evidence of the evolution of gen-
erators and discriminators achieved by COEGAN, depicting that it is able to overcome
common limitations in the GAN training, such as the mode collapse problem.

We have also applied the evaluation method in a more complex scenario to as-
sess our contributions. Thus, we designed experiments with COEGAN-v2 using the
CelebA dataset (Liu et al., 2015). The results show that the proposed evaluation
method is also suitable in this context. Besides, we provide further evidence of the
evolutionary aspects achieved by COEGAN-v2.

The remainder of this chapter is organized as follows. Section 6.1 presents the
method proposed in this chapter to evaluate the progress of discriminators and genera-
tors; Section 6.2 displays the experimental results using our evaluation method; finally,

115

116 evaluating the progress of generative models through t-sne

COEGAN

Discriminator

Generator

input dataset

Preprocess:
PCA or none t-SNE

2d grid

Metric:
Jaccard Index

Figure 69: Overview of the evaluation method designed to analyze the progress of generators
and discriminators in GANs.

Section 6.3 presents our conclusions, discussing the limitations and future work for
the evaluation method.

6.1 evaluation method

We proposed a new method that simultaneously provide visual information and met-
rics regarding the progress of discriminators and generators in GANs. The aim of this
method is to provide further insights into how the evolution of GANs is progressing.
To validate our proposal, we applied this method in COEGAN to give further evidence
of its evolutionary contribution to the creation of strong generators and discriminators.
Nevertheless, this method can also be applied in regular GANs.

Figure 69 presents an overview of the architecture of the evaluation method. We
start by training the GAN model, in this case COEGAN, using the desired input
dataset. After the training, we collect snapshots of the best discriminators and gen-
erators from different generations to analyze their performance. Instead of feeding
t-SNE directly with image samples, we use discriminators to process images and ex-
tract features from them. Thus, discriminators receive samples from the input dataset
and samples created by generators to construct a high-dimensional features matrix.
This is achieved by using the resulting values of the last hidden layer of discrimina-
tors when processing these samples, i.e., the feature space produced by the neural
network before applying the classification layer. The dimensionality of the features
matrix depends on the architecture of the discriminator used in the process. To im-
prove the performance, another dimensionality reduction technique such as Principal
Components Analysis (PCA) is used to reduce the number of features. Depending on
the complexity of the data, this preprocessing step can be skipped and the full features
matrix can be used to feed t-SNE.

6.1 evaluation method 117

The resulting matrix contains data from the input dataset and also from all gener-
ators we want to evaluate. Thus, the resulting data of all inputs are jointly used for
creating a lower-dimensional representation of the data. It is important to note that
we need to provide all data at once for the t-SNE distribution, otherwise, we do not
achieve correspondence between the resulting grids.

The next step transforms the output of t-SNE into a two-dimensional grid that spa-
tially distributes the images. This grid represents a map revealing the distribution of
samples according to their inner characteristics, allowing the visualization of problems
such as mode collapse. This is achieved by inspecting the grid to ensure that the distri-
bution of samples is not concentrated in a single region. We can also visually compare
the distribution of samples from the input dataset with samples from the generator
to assess how good the generative model is. Furthermore, by using discriminators to
transform images into a feature space, we also assess their capacity to classify samples.
Efficient discriminators are able to produce a feature matrix containing useful infor-
mation to distribute images into the two-dimensional grid. In this way, we have an
indirect measure of the performance of discriminators, making a complete assessment
of both components of a GAN.

We also propose a metric to quantify the performance of the model. The same data
used to produce the visualizations is used in this metric to keep the coherence with
the qualitative and quantitative analysis. For this, given a map MG of samples pro-
duced by a generator and a map Md produced by the input dataset, we calculate the
Euclidean distances D(i,j) between all samples in MG and Md:

Di,j = ∥MG
i −Md

j ∥. (29)

Samples in MG and Md are not perfectly equal and distances in Di,j are not zeroed.
As such, we need to define a threshold for the similarity between samples. A global
threshold τ is defined by the median of the minimum distances in Di for maps MG

related to the last generation. This threshold defines the set of samples in MG with
corresponding samples in Md as:

IG = {MG
i |∃j,Di,j < τ}. (30)

The set IG contains the samples in MG that were successfully approximated by a
sample in Md, evidencing that this part of the input distribution was captured by
the model. Thus, we consider this set as the intersection between these two grids and
calculate the Jaccard index as:

JG =
|IG|

|MG ∪Md|
(31)

Using Eq. (31) we can quantify the quality of models. A high JG indicates that
the generator was able to capture the input distribution successfully. On the other

118 evaluating the progress of generative models through t-sne

hand, a perfect score in this metric indicates that the generative model is not able to
produce innovative samples, i.e., it means that the model is memorizing the samples
from the input dataset. It is important to note that these values can not be used to
compare different executions of the evaluation method proposed in this work. The
values achieved through Eq. (31) are related to a specific execution of the process. The
comparison between different generative models is possible by jointly using data from
them in one execution of the method.

The method described in this section can be generalized to work with other gen-
erative models that are not related to GANs. In this case, the feature matrix can be
achieved by the use of an external component. For example, similarly to the strat-
egy employed by the FID score, Inception Net (Szegedy et al., 2016) can be used to
construct the feature matrix. Another option is to directly use the image samples to
feed the t-SNE algorithm and extract the metrics. With this generalized version of
the evaluation method, the values obtained through Eq. (31) will represent only the
performance of the generative model, since no discriminative component is assessed.

6.2 experiments

Experiments were conducted to assess the evolution of generators and discrimina-
tors in COEGAN and COEGAN-v2 using the evaluation method proposed in this
work. In concrete, we use the Fashion-MNIST dataset in the training of COEGAN to
gauge the characteristics of the proposed evaluation method. To further assess how
the evaluation method works in a more complex scenario, we use it in the CelebA
dataset (resized to 32× 32). For this, we make use of the more efficient method given
by COEGAN-v2, verifying its performance in this dataset.

6.2.1 Experimental Setup

Table 18 describes the parameters used in our experiments. These parameters were
chosen based on previous results and the characteristics of datasets used in this work
(Chapter 3 and Chapter 4).

We train for 100 generations with a population of ten and five individuals for CO-
EGAN and COEGAN-v2, respectively. The probabilities for mutations to add, remove,
or change genes are 30%, 10%, and 10%, for both models. COEGAN uses the FID score
as fitness (Eq. (5)) with 5000 samples in the calculation. In COEGAN, the genome was
limited to four genes, representing a network of four layers in the maximum allowed
setup. To tackle a more complex dataset, the genome was limited to five genes in
COEGAN-v2. Only convolution layers were used as options when creating new genes
by the addition mutation operator. We use three species in each population of gen-
erators and discriminators for COEGAN, reducing it to two species for COEGAN-v2

because of the smaller population used in its experiments.

6.2 experiments 119

Table 18: Experimental Parameters

Evolutionary Parameters COEGAN COEGAN-v2

Number of generations 100 100

Population size (generators and discriminators) 10, 10 5, 5

Probabilities (add, remove, change) 30%, 10%, 10% 30%, 10%, 10%

Output channels range [32, 512] [32, 512]

Tournament kt 2 2

FID samples 5000 not used

Genome Limit 4 5

Species 3 2

GAN Parameters COEGAN COEGAN-v2

Batch size 64 64

Batches per generation 10 50

Optimizer Adam RMSprop

Learning rate 0.003 0.0002

Evaluation Parameters COEGAN COEGAN-v2

PCA dimensions 50 not used

t-SNE Perplexity 30 30

t-SNE Iterations 1000 1000

Samples per model 1000 1000

In COEGAN, for each training pair of GANs, we use 10 batches of 64 images and
the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.003. COEGAN-v2

uses 50 batches of 64 images and the RMSprop optimizer (Tieleman and Hinton, 2012)
with a learning rate of 0.0002.

In Table 18 we also list the parameters used in the evaluation method. We rely on
PCA to reduce the dimensionality of the data to 50. The original dimension of the
data depends on the architecture of the discriminator. For the t-SNE algorithm, 30
and 1000 were used as perplexity and number of iterations, respectively. We use 1000

samples from each model and from the input dataset to obtain the two-dimensional
map through t-SNE.

120 evaluating the progress of generative models through t-sne

6.2.2 Results: COEGAN on Fashion-MNIST

This section describes the results of COEGAN trained with the Fashion-MNIST
dataset.

(a) Generation 5 (b) Generation 10

(c) Generation 100 (d) Input Dataset

Figure 70: Two-dimensional grid revealing the distribution of images after applying t-SNE for
generations 5 (a), 10 (b), 100 (c) of COEGAN, and for the Fashion-MNIST dataset (d).

First, we show the results of a single execution of COEGAN using the parameters
defined in Table 18. Figure 70 presents the resulting map of images after the applica-
tion of t-SNE with the feature map of the best discriminator at the last generation. In
Figures 70(a), 70(b), and 70(c), we can see the distribution of samples created by the
best generators at generation 5, 10 and 100, respectively. Figure 70(d) represents the
distribution of the input dataset. Looking at the results, it is possible to see that, at
generation 5, samples are concentrated in a compact region of the grid, indicating that

6.2 experiments 121

the distribution has not been successfully captured yet. Looking at the distribution af-
ter 10 generations of the evolutionary process it is possible to see some improvements
concerning the capture of the distribution of the input dataset. In the final genera-
tion, we can see that the distribution of samples resembles the input dataset, with
Figures 70(c) and 70(d) presenting a similar structure regarding the two-dimensional
grid. Furthermore, when comparing the distribution of samples from Figures 70(c)
and 70(d) we can see that the mode collapse issue does not affect the GAN model.

Figure 71: Comparison of samples created by the generator and samples from the input dataset
using t-SNE. First row shows samples created by generators from the last generation
of COEGAN. Second and third rows display the nearest and farthest samples from
Fashion-MNIST using distances from the resulting t-SNE grid.

We show in Figure 71 examples of created samples and their respective nearest
and farthest samples from the input dataset concerning the t-SNE map. We can see
that the t-SNE map, calculated through the features trained for discriminators, is able
to aggregate images based on similarity. Thus, the neighborhood of a sample in the
t-SNE grid contains images with similar characteristics.

We use the outcome of t-SNE to extract some metrics to quantify and represent
the observations we made by visual inspection. For this, we calculate the distances
between each sample created at generations 5, 10, and 100 with the samples from the
input dataset using Eq. (29).

Figure 72 shows the distribution of the minimum distances between each generated
sample in the last generation and samples from the input dataset (Eq. (29)). This
distribution is used to calculate the threshold for the next step. In this case, we use the
value of the median (0.0394) as the threshold.

This threshold is applied to get the intersection between the map of the input dataset
and maps of generations 5, 10, and 100 (Eq. (30)). We use the number of samples in
this intersection to calculate the metric to quantify the progress of the model.

Figure 73 displays the Jaccard index (Eq.(31)) between created samples and the
input dataset for generators and discriminators at generations 5, 10, and 100 for ten
executions. The results corroborate that discriminators in all three generations were
able to identify poor samples produced by generators in generation 5. This is shown

122 evaluating the progress of generative models through t-sne

(a) Histogram of distances (b) Boxplot of distances

Figure 72: Minimum distances between samples from Fashion-MNIST and samples created by
generators at the last generation of COEGAN.

Figure 73: Average Jaccard index (10 executions) for COEGAN when comparing synthetic sam-
ples with samples drawn from Fashion-MNIST.

by the low Jaccard index, revealing that samples do not have strong similarities with
the input dataset. For samples created at generation 10, we can see that the more
evolved discriminators are slightly better at identifying the fake samples. Finally, all
three discriminators were able to successfully distribute samples when evaluated with
samples created at the final generation. Besides, more evolved discriminators are better
at the distribution of samples, leading to better results concerning the proposed metric.
The Jaccard index for generators in the last generation is 0.753± 0.112. As expected,
this value is smaller than 1, revealing that generators are not memorizing the dataset,
being able not only to capture the input distribution but also to produce innovative
samples.

6.2 experiments 123

6.2.3 Results: COEGAN-v2 on CelebA

In this section we present the results of COEGAN-v2 trained with the CelebA dataset
using our evaluation method. The CelebA dataset is more complex than Fashion-
MNIST, composed of colorful faces that are not directly divided into classes.

(a) Generation 5 (b) Generation 10

(c) Generation 100 (d) Input Dataset

Figure 74: Two-dimensional grid revealing the distribution of images after applying t-SNE for
generations 5 (a), 10 (b), 100 (c) of COEGAN-v2, and for the CelebA dataset (d).

Figure 74 presents the resulting map of images after the application of t-SNE with
the feature map of the best discriminator at the last generation. In Figures 74(a), 74(b),
and 74(c), we can see the distribution of samples created by the best generators at
generation 5, 10 and 100, respectively. Figure 74(d) represents the distribution of the
input dataset. In the first map (generation 5), samples are concentrated in a region
of the grid, demonstrating a poor performance in capturing the characteristics of the

124 evaluating the progress of generative models through t-sne

input dataset. However, after 10 generations we can see improvements in the ability of
the generator to capture the distribution. At the final generation, we can see that the
distribution of samples resembles the input dataset. Therefore, Figures 74(c) and 74(d)
presents similar structure regarding the two-dimensional grid. Furthermore, the wide
distribution of samples in the final generation shows that the mode collapse problem
is not present in this experiment.

Figure 75 presents a comparison between samples created by COEGAN-v2 and sam-
ples from the input dataset. The top row contains samples produced by the generator.
The second and third rows contain the respective nearest and farthest samples from
the input dataset with respect to the euclidean distance of the positions in the t-SNE
maps. We can see that the nearest samples from the input dataset share common char-
acteristics with the samples produced by generators. However, this is not as evident as
in the experiments with Fashion-MNIST, since CelebA is a more complex dataset that
is not directly separated into classes. Nevertheless, we can still see that t-SNE maps
calculated using the features extracted by discriminators are able to aggregate similar
images.

Figure 75: Comparison of samples created by the generator and samples from the input dataset
using t-SNE. First row shows samples created by generators from the last generation
of COEGAN-v2. Second and third rows display the nearest and farthest samples
from CelebA using distances from the resulting t-SNE grid.

Figure 76 displays the distribution of the minimum distances when comparing the
maps produced by generators with the map from the input dataset (Eq. (29)). The
median value of this distribution is 0.0356. This value is used in Eq. (30) to determine
the intersection between two maps.

Figure 77 shows the application of the Jaccard index (Eq.(31)) between samples cre-
ated by COEGAN-v2 and the CelebA dataset at generations 5, 10, and 100 for ten
executions. The results clearly show the progress of the GAN model through gener-
ations. First, in generation 5, the model is not capable to generate good samples. In
generation 10, we can see better samples but without quality and variety. Finally, in
generation 100, the distribution of samples created by COEGAN-v2 presents a similar
structure with the input dataset. As with Fashion-MNIST (Section 6.2.2), the metric for

6.3 summary 125

(a) Histogram of distances (b) Boxplot of distances

Figure 76: Minimum distances between samples from the CelebA dataset and samples created
by generators at the last generation of COEGAN-v2.

Figure 77: Average Jaccard index (10 executions) for COEGAN-v2 when comparing synthetic
samples with samples drawn from CelebA.

generators in the last generation is smaller than 1 (0.8295± 0.0714). This is a demon-
stration that the discovered models are able to produce innovative samples.

6.3 summary

We design an evaluation method to visualize and measure the progress of genera-
tors and discriminators in Generative Adversarial Networks (GANs). In our proposal,
t-SNE is used to distribute samples in two-dimensional grids to provide a visual in-
spection of the quality of discriminators and generators. Furthermore, a metric based
on the Jaccard index between t-SNE maps was designed to quantitatively represent
the aspects of the model, providing the relation between the visual characteristics of
the grids with a concrete metric.

126 evaluating the progress of generative models through t-sne

To validate our proposal and assess our contributions, we apply the evaluation
method in the context of GANs and Evolutionary Algorithms. COEGAN combines
competitive coevolution and neuroevolution on the evolution of GANs and is capable
of avoiding stability issues on training, using selective pressure to guide the progress
of generators and discriminators. A further improvement of this model was proposed
to design COEGAN-v2. Therefore, we use COEGAN and COEGAN-v2 in our experi-
ments to show the evolution of discriminators and generators through our evaluation
method, providing further evidence of their evolutionary aspects.

Results show both by visual inspection and the proposed metric that COEGAN and
COEGAN-v2 are able to gradually evolve GANs, avoiding problems such as mode
collapse. We also show that the use of t-SNE proposed in this work can aggregate
similar samples and provide their efficient distribution in a two-dimensional grid.

7
C O N C L U S I O N S A N D F U T U R E W O R K

Generative models gained popularity in recent years mainly due to the impressive
results in the image domain. In this context, Generative Adversarial Networks (GANs)
represented a relevant advance in generative models. In GANs, two neural networks, a
generator and a discriminator, are trained in an adversarial setup. Taking into account
the modus operandi of GANs, the generative component plays a crucial role in the
model. Specifically, the generator receives a vector of random numbers that is used to
generate a set of synthetic samples. These samples are provided to the discriminator,
along with samples from the input dataset. The goal of the discriminator is to identify
which samples are real and which ones are synthetic. The training is performed by
adjusting the parameters of both models, taking into account: 1) the ability of the
generator to create samples that can deceive the discriminator; 2) the ability of the
discriminator to distinguish the synthetic samples from the real ones. Despite the
impressive results achieved so far, the training of a GAN is challenging and often
requires a trial-and-error approach to obtain the desired outcome. Different techniques
arise to tackle these issues, producing improved models and different approaches
for training, such as alternative loss functions and architectural changes. One line of
research relies on the use of Evolutionary Algorithm (EA) to train and evolve GANs,
which is the focus of this work.

The research hypothesis of this thesis is that the training of GANs can be improved
by using EA. Precisely, we investigate the application of neuroevolution in the context
of GANs. Furthermore, we propose to take advantage of the adversarial characteristics
of GANs and model the problem as a competitive coevolution environment. Our goal
is to tackle the issues that affect GANs, such as the mode collapse and vanishing
gradient problems. To assess our hypothesis, we had to find answers to the following
research questions:

I How to define useful fitness functions for the discriminator and the generator of
a GAN that induce evolutionary pressure to produce efficient models?

II Can neuroevolution be applied to GANs to create useful neural network architec-
tures?

III Can the use of coevolution improve the training stability of GANs?

IV Does the proposed evolutionary algorithm solve common problems in GANs,
such as the mode collapse and the vanishing gradient?

127

128 conclusions and future work

Before developing our proposal, we introduced the fundamental concepts required
for this work. First, we describe the canonical GAN model, presenting its limitations
and variations. We discuss the stability problems that affect these models, such as
the vanishing gradient and the mode collapse problem, which make their training a
challenging task. Several improvements over the original model are also described,
detailing the mechanisms used to achieve a more robust solution. We also discuss
metrics that can be used to evaluate the performance of GAN, such as the Inception
and Fréchet Inception Distance (FID) scores. We also provide an introduction to EAs,
focusing on neuroevolution and coevolution. EAs are computational models that sim-
ulate the evolutionary mechanism found in nature. Neuroevolution, the application
of EAs in the evolution of neural networks, is described and its relevant models are
presented. Coevolution is the simultaneous evolution of more than one population.
Important works in these areas were described and are foundations for our work. Fi-
nally, we analyze the evolutionary aspects of GANs, presenting a survey of current
works using EAs on the training of GANs. We detail in this survey the main charac-
teristics of the evolutionary methods used to train GANs, showing different aspects
of each solution regarding the evolutionary algorithm and also the GAN model.

The research conducted to answer these questions resulted in a new model
called Coevolutionary Generative Adversarial Networks (COEGAN). We show that
COEGAN is capable of overcoming the issues affecting GANs providing a stable train-
ing, which confirms our hypothesis that EAs can be used to improve the training pro-
cess of GANs. This model is the main contribution of this thesis and, together with its
variations and the experimental analysis, provided answers to the research questions
enumerated above.

We start by proposing the COEGAN model, which combines neuroevolution and
coevolution in the coordination of the GAN training process. We provide through
COEGAN the first answers to the research questions of this thesis. Experiments were
conducted to evaluate the performance of COEGAN and compare it with regular
(non-evolutionary) GAN proposals. The results show that COEGAN is able to pro-
duce stable training and better results when compared to regular GANs. However, we
found that the search space can be better explored by using new evolutionary mech-
anisms in the solution, such as Quality Diversity (QD) algorithms. Some aspects of
the model could also be improved, such as the use of more efficient fitness functions.
Furthermore, new variations of GANs were proposed in the literature and could be
used to enrich the baseline model. Besides, we found no evidence of the vanishing
gradient and the mode collapse problem in our experiments with COEGAN in the
MNIST and Fashion-MNIST datasets. This result answers our question regarding the
usefulness of EAs in GANs. Although this partially fulfills the research question IV,
this is further enforced later in this thesis by the proposal of a new evaluation method.

Next, we revisited the original COEGAN model to provide efficient alternatives
concerning the EA. Therefore, we investigate the use of alternative fitness functions

conclusions and future work 129

to replace the ones previously proposed for COEGAN, giving an alternative answer
to the research question I. The use of skill rating as fitness functions was introduced
in COEGAN, replacing the GAN loss and the FID score used in the original model.
Additionally, to explore the research question II, we also adapt the solution to use a
QD algorithm to guide the evolution. In this case, Novelty Search with Local Compe-
tition (NSLC) was incorporated into the model to provide a better exploration of the
search space.

After this, we decide to explore the inclusion of recent improvements proposed for
the GAN model. Therefore, we explore the use of alternative loss functions for GANs
through a new mutation operator. This operator can switch between predefined loss
functions to have individuals with different configurations in the population. We also
propose to incorporate relevant advances to build a new version of the model called
COEGAN-v2, such as the use of spectral normalization and a new type of layer for
the generator. In this model, we use RaSGAN not only as loss functions but also as
fitness in the EA. Thus, we avoid using the external evaluator when calculating the
FID score.

During the experiments conducted to evaluate COEGAN, we relied on the FID
score to provide evidence not only for the quality of the samples but also to show that
mode collapse did not affect the model. We also provide evidence of these aspects
by visual inspection of the distribution of samples. However, there was no relation
between the visual inspection and the metric used to assess the model. To fill this gap,
we propose a new evaluation method in Chapter 6 to answer the research question IV.
Experiments show that the evaluation method is useful for giving information about
the performance of the generative model both by visual inspection and by a metric
calculated based on the Jaccard index between distribution maps. It is also evidenced
by the application of this evaluation method that COEGAN and COEGAN-v2 are able
to produce efficient generative models, avoiding common issues such as the mode
collapse problem.

The research and experimental analysis conducted in this work showed that
COEGAN is capable of avoiding common issues that are present in the classical
GAN training. Furthermore, COEGAN provides the discovery of efficient architec-
tures through an extensible representation of neural networks in the genotype. Thus,
it is possible to incorporate other mechanisms to produce even powerful generative
models. This extension was applied to produce COEGAN-v2 and can be revisited to
construct an updated model.

The contributions of this research provide new applications of EAs, proposing mod-
els that approximate the fields of Evolutionary Computation (EC) and Machine Learn-
ing (ML) through the use of GANs. During the course of our research, we show that
EAs are in fact capable of building models that avoid the most common pitfalls of the
GAN training, answering the research question III.

We summarize our answers to the research questions as follows:

130 conclusions and future work

I How to define useful fitness functions for the discriminator and the generator of
a GAN that induce evolutionary pressure to produce efficient models?

We propose in COEGAN the use of FID and the loss function of the discriminator
to be used as fitness functions (Chapter 3). Furthermore, we propose the use
of different strategies for the fitness functions in Section 4.1. Our experimental
evaluation evidence that the loss functions used in this work are useful to guide
the evolution of GANs and produce efficient models.

II Can neuroevolution be applied to GANs to create useful neural network architec-
tures?

The experimental evaluations of COEGAN in Section 3.2 and Section 3.3 evidence
that the proposed model is capable of creating useful neural network architec-
tures in the context of GAN. Besides, the evolutionary algorithm was assessed in
Section 4.2 by the incorporation of QD to better explore the search space for the
problem. We show that a better exploration of the search space through a more
efficient evolutionary algorithm generates better architectures.

III Can the use of coevolution improve the training stability of GANs?

The models proposed in this work use competitive coevolution to train the dis-
criminators and generators of GANs. Experiments with COEGAN (Sections 3.2,
3.3, 4.1, and 4.2) and COEGAN-v2 (Section 5.2) shows that the training process is
more stable when compared to regular GANs.

IV Does the proposed evolutionary algorithm solve common problems in GANs,
such as the mode collapse and the vanishing gradient?

Experiments with COEGAN (Sections 3.2, 3.3, 4.1, and 4.2) and COEGAN-v2

(Section 5.2) evidence through the FID score that the training process avoids the
mode collapse and the vanishing gradient. Furthermore, we propose an evalua-
tion method in Chapter 6 to provide a metric and a visual way to better evidence
this result. We show through this evaluation method that our models are able to
successfully capture the input distribution used in training, producing a diverse
distribution of samples through the two-dimensional grid.

The work conducted in this thesis originated six international peer-reviewed con-
ference papers (Costa et al., 2019, 2020a,c, 2021a,b; Costa, Lourenço, and Machado,
2019) and one book chapter (Costa et al., 2020b). We also make the source code of our
models fully available on GitHub at:

• COEGAN: https://github.com/vfcosta/coegan

• COEGAN with QD: https://github.com/vfcosta/qd-coegan

• Evaluation Method: https://github.com/vfcosta/gen-tsne

7.1 future work 131

7.1 future work

Research on generative models, particularly related to GANs, are improving fast and
better models are being regularly proposed. The results achieved mainly in the image
domain are impressive. It is possible to produce realistic samples with high resolution.
Besides, advances are also being achieved in the generation of videos.

One research direction to improve the work presented in this thesis is to evaluate the
incorporation of the new mechanisms proposed for GANs into COEGAN. For exam-
ple, self-attention modules can be used to enrich the model. This creates the possibility
to explore more complex datasets to produce strong generative models through EAs.
In this case, datasets such as CIFAR-100, LSUN, and ImageNet can be used to train the
models. However, one relevant challenge is the computational cost of the solution. Ex-
ploring the search space of large neural networks, such as modern solutions proposed
for GANs, consumes a lot of computational power. Therefore, another research direc-
tion is to use strategies of EA to handle the computational complexity of the solution
to make experiments feasible in complex models.

The evaluation method proposed in this work can be extended and assessed in
other generative models. Furthermore, the method can be applied to compare different
generative approaches in more complex datasets, studying the relationship between
the proposed metric with other measurements commonly used to evaluate generative
models, such as the FID score. The evaluation method could also be used to create
common baseline for researchers to validate and compare their solutions with others.
Regarding real-world applications for the evaluation method, the proposal can be
extended to provide a interface for intuitive generation of samples, improving the
capacity to explore the latent space of generative models.

This thesis focused on the image domain to assess our contributions. However,
GANs are also used in other domains, such as text and audio. Therefore, this work
can be expanded to assess the contribution in these domains. Besides, other variations
of GANs such as Conditional GAN can be used as the target models of the EA.

B I B L I O G R A P H Y

Al-Dujaili, Abdullah, Tom Schmiedlechner, Erik Hemberg, and Una-May O’Reilly
(2018). “Towards distributed coevolutionary GANs.” In: AAAI 2018 Fall Sympo-
sium.

Antonio, Luis Miguel and Carlos A Coello Coello (2018). “Coevolutionary Multiobjec-
tive Evolutionary Algorithms: Survey of the State-of-the-Art.” In: IEEE Transactions
on Evolutionary Computation 22.6, pp. 851–865.

Arjovsky, Martin, Soumith Chintala, and Léon Bottou (2017). “Wasserstein generative
adversarial networks.” In: International Conference on Machine Learning, pp. 214–
223.

Assunção, Filipe, Nuno Lourenço, Penousal Machado, and Bernardete Ribeiro (2017).
“Automatic Generation of Neural Networks with Structured Grammatical Evolu-
tion.” In: IEEE Congress on Evolutionary Computation (CEC).

Assunção, Filipe, Nuno Lourenço, Penousal Machado, and Bernardete Ribeiro (2018).
“Evolving the Topology of Large Scale Deep Neural Networks.” In: European Con-
ference on Genetic Programming. Springer, pp. 19–34.

Assunção, Filipe, Nuno Lourenço, Penousal Machado, and Bernardete Ribeiro (2019).
“DENSER: deep evolutionary network structured representation.” In: Genetic Pro-
gramming and Evolvable Machines 20.1, pp. 5–35.

Barratt, Shane and Rishi Sharma (2018). “A note on the inception score.” In: arXiv
preprint arXiv:1801.01973.

Berthelot, David, Thomas Schumm, and Luke Metz (2017). “BEGAN: Boundary equi-
librium generative adversarial networks.” In: arXiv preprint arXiv:1703.10717.

Bharti, Vandana, Bhaskar Biswas, and Kaushal Kumar Shukla (2021). “EMOCGAN:
a novel evolutionary multiobjective cyclic generative adversarial network and its
application to unpaired image translation.” In: Neural Computing and Applications,
pp. 1–15.

Bodnar, Cristian, Ben Day, and Pietro Lió (2020). “Proximal distilled evolutionary rein-
forcement learning.” In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 34. 04, pp. 3283–3290.

Borji, Ali (2019). “Pros and cons of GAN evaluation measures.” In: Computer Vision
and Image Understanding 179, pp. 41–65.

Brock, Andrew, Jeff Donahue, and Karen Simonyan (2019). “Large Scale GAN Training
for High Fidelity Natural Image Synthesis.” In: International Conference on Learning
Representations.

133

134 bibliography

Chen, Shiming, Wenjie Wang, Beihao Xia, Xinge You, Zehong Cao, and Weiping Ding
(2020). “CDE-GAN: Cooperative dual evolution based generative adversarial net-
work.” In: arXiv preprint arXiv:2008.09388.

Chen, Xi, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel (2016). “InfoGAN: Interpretable representation learning by information
maximizing generative adversarial nets.” In: Advances in neural information process-
ing systems, pp. 2172–2180.

Chong, Siang Y, Mei K Tan, and Jonathon David White (2005). “Observing the evolu-
tion of neural networks learning to play the game of Othello.” In: IEEE Trans. on
Evolutionary Computation 9.3, pp. 240–251.

Coello, Carlos A Coello and Margarita Reyes Sierra (2004). “A study of the paral-
lelization of a coevolutionary multi-objective evolutionary algorithm.” In: Mexican
International Conference on Artificial Intelligence. Springer, pp. 688–697.

Costa, Victor, Nuno Lourenço, João Correia, and Penousal Machado (2019). “CO-
EGAN: Evaluating the coevolution effect in generative adversarial networks.” In:
Proceedings of the Genetic and Evolutionary Computation Conference. ACM, pp. 374–
382.

Costa, Victor, Nuno Lourenço, João Correia, and Penousal Machado (2020a). “Explor-
ing the evolution of GANs through quality diversity.” In: Proceedings of the 2020
Genetic and Evolutionary Computation Conference, pp. 297–305.

Costa, Victor, Nuno Lourenço, João Correia, and Penousal Machado (2020b). “Neu-
roevolution of Generative Adversarial Networks.” In: Deep Neural Evolution.
Springer, pp. 293–322.

Costa, Victor, Nuno Lourenço, João Correia, and Penousal Machado (2020c). “Using
Skill Rating as Fitness on the Evolution of GANs.” In: International Conference on
the Applications of Evolutionary Computation (Part of EvoStar). Springer, pp. 562–577.

Costa, Victor, Nuno Lourenço, João Correia, and Penousal Machado (2021a). “Demon-
strating the Evolution of GANs Through t-SNE.” In: Applications of Evolutionary
Computation. Ed. by Pedro A. Castillo and Juan Luis Jiménez Laredo. Cham:
Springer, pp. 618–633. isbn: 978-3-030-72699-7.

Costa, Victor, Nuno Lourenço, João Correia, and Penousal Machado (2021b). “Im-
proved Evolution of Generative Adversarial Networks.” In: Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion.

Costa, Victor, Nuno Lourenço, and Penousal Machado (2019). “Coevolution of Gen-
erative Adversarial Networks.” In: International Conference on the Applications of
Evolutionary Computation (Part of EvoStar). Springer, pp. 473–487.

Creswell, Antonia, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta,
and Anil A Bharath (2018). “Generative adversarial networks: An overview.” In:
IEEE Signal Processing Magazine 35.1, pp. 53–65.

Cruz, Juan-Antonio Rodríguez-de-la, Héctor-Gabriel Acosta-Mesa, and Efrén Mezura-
Montes (2021). “Evolution of Generative Adversarial Networks Using PSO for Syn-

bibliography 135

thesis of COVID-19 Chest X-ray Images.” In: 2021 IEEE Congress on Evolutionary
Computation (CEC). IEEE, pp. 2226–2233.

Darwin, Charles (1859). On the Origin of Species by Means of Natural Selection, or the
Preservation of Favored Races in the Struggle for Life. London: John Murray.

Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan (2002). “A
fast and elitist multiobjective genetic algorithm: NSGA-II.” In: IEEE Transactions
on Evolutionary Computation 6.2, pp. 182–197.

Donahue, Jeff, Philipp Krähenbühl, and Trevor Darrell (2017). “Adversarial Feature
Learning.” In: International Conference on Learning Representations.

Dumoulin, Vincent, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb,
Martin Arjovsky, and Aaron Courville (2017). “Adversarially Learned Inference.”
In: International Conference on Learning Representations.

Durugkar, Ishan, Ian Gemp, and Sridhar Mahadevan (2016). “Generative multi-
adversarial networks.” In: arXiv preprint arXiv:1611.01673.

Elgammal, Ahmed, Bingchen Liu, Mohamed Elhoseiny, and Marian Mazzone (2017).
“CAN: Creative adversarial networks, generating "art" by learning about styles
and deviating from style norms.” In: arXiv preprint arXiv:1706.07068.

Esser, Patrick, Robin Rombach, and Bjorn Ommer (2021). “Taming transformers for
high-resolution image synthesis.” In: Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 12873–12883.

Fedus, William, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M. Dai, Shakir Mo-
hamed, and Ian Goodfellow (2018). “Many Paths to Equilibrium: GANs Do Not
Need to Decrease a Divergence At Every Step.” In: International Conference on Learn-
ing Representations.

Ficici, Sevan G and Jordan B Pollack (2003). “A game-theoretic memory mechanism
for coevolution.” In: Genetic and Evolutionary Computation Conference. Springer,
pp. 286–297.

Gao, Chen, Yunpeng Chen, Si Liu, Zhenxiong Tan, and Shuicheng Yan (2020). “Adver-
sarialNAS: Adversarial neural architecture search for gans.” In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5680–5689.

García-Pedrajas, Nicolás, César Hervás-Martínez, and José Muñoz-Pérez (2003). “COV-
NET: a cooperative coevolutionary model for evolving artificial neural networks.”
In: IEEE Transactions on Neural Networks 14.3, pp. 575–596.

García-Pedrajas, Nicolás, César Hervás-Martínez, and Domingo Ortiz-Boyer (2005).
“Cooperative coevolution of artificial neural network ensembles for pattern classi-
fication.” In: IEEE transactions on evolutionary computation 9.3, pp. 271–302.

Garciarena, Unai, Alexander Mendiburu, and Roberto Santana (2020). “Analysis of the
transferability and robustness of GANs evolved for Pareto set approximations.”
In: Neural Networks 132, pp. 281–296.

136 bibliography

Garciarena, Unai, Roberto Santana, and Alexander Mendiburu (2018). “Evolved GANs
for Generating Pareto Set Approximations.” In: Proceedings of the Genetic and Evo-
lutionary Computation Conference. GECCO ’18. Kyoto, Japan: ACM, pp. 434–441.

Ghosh, Arnab, Viveka Kulharia, Vinay P Namboodiri, Philip HS Torr, and Puneet K
Dokania (2018). “Multi-agent diverse generative adversarial networks.” In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8513–
8521.

Glickman, Mark E (2013). “Example of the Glicko-2 system.” In: Boston University,
pp. 1–6. url: http://www.glicko.net/glicko/glicko2.pdf.

Goldberg, David E. (1989). Genetic Algorithms in Search, Optimization and Machine Learn-
ing. 1st. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Gomez, Faustino, Jürgen Schmidhuber, and Risto Miikkulainen (2008). “Accelerated
neural evolution through cooperatively coevolved synapses.” In: Journal of Machine
Learning Research 9, pp. 937–965.

Gong, Xinyu, Shiyu Chang, Yifan Jiang, and Zhangyang Wang (2019). “AutoGAN:
Neural architecture search for generative adversarial networks.” In: Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 3224–3234.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio (2014). “Generative Adversarial
Nets.” In: NIPS. Curran Associates, Inc., pp. 2672–2680.

Gulrajani, Ishaan, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville (2017). “Improved training of Wasserstein GANs.” In: Advances in Neural
Information Processing Systems, pp. 5769–5779.

Hemberg, Erik, Jamal Toutouh, Abdullah Al-Dujaili, Tom Schmiedlechner, and Una-
May O’Reilly (2021). “Spatial Coevolution for Generative Adversarial Network
Training.” In: ACM Transactions on Evolutionary Learning and Optimization 1.2, pp. 1–
28.

Heusel, Martin, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter (2017). “GANs trained by a two time-scale update rule converge to
a local nash equilibrium.” In: Advances in Neural Information Processing Systems,
pp. 6629–6640.

Hillis, W Daniel (1990). “Co-evolving parasites improve simulated evolution as an
optimization procedure.” In: Physica D: Nonlinear Phenomena 42.1-3, pp. 228–234.

Holland, John H (1992). “Genetic algorithms.” In: Scientific american 267.1, pp. 66–73.
Isola, Phillip, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros (2017). “Image-to-image

translation with conditional adversarial networks.” In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 1125–1134.

Jolicoeur-Martineau, Alexia (2019). “The relativistic discriminator: a key element miss-
ing from standard GAN.” In: International Conference on Learning Representations.
url: https://openreview.net/forum?id=S1erHoR5t7.

http://www.glicko.net/glicko/glicko2.pdf
https://openreview.net/forum?id=S1erHoR5t7

bibliography 137

Karras, Tero, Timo Aila, Samuli Laine, and Jaakko Lehtinen (2018). “Progressive Grow-
ing of GANs for Improved Quality, Stability, and Variation.” In: International Con-
ference on Learning Representations.

Karras, Tero, Samuli Laine, and Timo Aila (2018). “A style-based generator architec-
ture for generative adversarial networks.” In: arXiv preprint arXiv:1812.04948.

Kingma, Diederik P and Jimmy Ba (2015). “Adam: A method for stochastic optimiza-
tion.” In: International Conference on Learning Representations (ICLR).

Kobak, Dmitry and Philipp Berens (2019). “The art of using t-SNE for single-cell tran-
scriptomics.” In: Nature communications 10.1, pp. 1–14.

Koza, John R (1992). Genetic programming: on the programming of computers by means of
natural selection. Vol. 1. MIT press.

Krizhevsky, Alex and Geoffrey Hinton (2009). Learning multiple layers of features from
tiny images. Tech. rep. Citeseer.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning.” In: nature
521.7553, pp. 436–444.

LeCun, Yann, Corinna Cortes, and Christopher J.C. Burges (1998). “The MNIST
database of handwritten digits.” In: http://yann.lecun.com/exdb/mnist/.

Lehman, Joel and Kenneth O Stanley (2011). “Evolving a diversity of virtual creatures
through novelty search and local competition.” In: Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation, pp. 211–218.

Li, Junjie, Junwei Zhang, Xiaoyu Gong, and Shuai Lü (2021). “Evolutionary Generative
Adversarial Networks with Crossover Based Knowledge Distillation.” In: arXiv
preprint arXiv:2101.11186.

Liu, Zhiyue, Jiahai Wang, and Zhiwei Liang (2020). “CatGAN: Category-aware genera-
tive adversarial networks with hierarchical evolutionary learning for category text
generation.” In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34.
05, pp. 8425–8432.

Liu, Ziwei, Ping Luo, Xiaogang Wang, and Xiaoou Tang (2015). “Deep learning face at-
tributes in the wild.” In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 3730–3738.

Lourenço, Nuno, Francisco B Pereira, and Ernesto Costa (2015). “SGE: A structured
representation for grammatical evolution.” In: International Conference on Artificial
Evolution (Evolution Artificielle). Springer, pp. 136–148.

Lubberts, Alex and Risto Miikkulainen (2001). “Co-evolving a go-playing neural net-
work.” In: Proceedings of the GECCO-01 Workshop on Coevolution: Turning Adaptive
Algorithms upon Themselves, pp. 14–19.

Lucic, Mario, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bous-
quet (2017). “Are GANs Created Equal? A Large-Scale Study.” In: arXiv preprint
arXiv:1711.10337.

Maaten, Laurens van der and Geoffrey Hinton (2008). “Visualizing data using t-SNE.”
In: Journal of machine learning research 9.Nov, pp. 2579–2605.

138 bibliography

Makhzani, Alireza, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow (2016). “Ad-
versarial Autoencoders.” In: International Conference on Learning Representations.
url: http://arxiv.org/abs/1511.05644.

Mao, Xudong, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul
Smolley (2017). “Least squares generative adversarial networks.” In: 2017 IEEE
International Conference on Computer Vision (ICCV). IEEE, pp. 2813–2821.

Martinez, Aritz D, Javier Del Ser, Esther Villar-Rodriguez, Eneko Osaba, Javier Poy-
atos, Siham Tabik, Daniel Molina, and Francisco Herrera (2021). “Lights and shad-
ows in Evolutionary Deep Learning: Taxonomy, critical methodological analysis,
cases of study, learned lessons, recommendations and challenges.” In: Information
Fusion 67, pp. 161–194.

Mescheder, Lars, Andreas Geiger, and Sebastian Nowozin (2018). “Which training
methods for GANs do actually Converge?” In: arXiv preprint arXiv:1801.04406.

Miikkulainen, Risto, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier
Francon, Bala Raju, Arshak Navruzyan, Nigel Duffy, and Babak Hodjat (2017).
“Evolving Deep Neural Networks.” In: arXiv preprint arXiv:1703.00548.

Mirza, Mehdi and Simon Osindero (2014). “Conditional generative adversarial nets.”
In: arXiv preprint arXiv:1411.1784.

Mitchell, Melanie (2006). “Coevolutionary learning with spatially distributed popula-
tions.” In: Computational Intelligence: Principles and Practice. Piscataway, NJ: IEEE
Computational Intelligence Society, pp. 137–154.

Miyato, Takeru, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida (2018). “Spec-
tral Normalization for Generative Adversarial Networks.” In: International Confer-
ence on Learning Representations.

Monroy, German A, Kenneth O Stanley, and Risto Miikkulainen (2006). “Coevolution
of neural networks using a layered pareto archive.” In: Proceedings of the 8th annual
conference on Genetic and evolutionary computation. ACM, pp. 329–336.

Moriarty, David E and Risto Miikkulainen (1997). “Forming neural networks through
efficient and adaptive coevolution.” In: Evolutionary computation 5.4, pp. 373–399.

Mouret, Jean-Baptiste and Jeff Clune (2015). “Illuminating search spaces by mapping
elites.” In: arXiv preprint arXiv:1504.04909.

Nelson, Andrew L, Edward Grant, and Thomas C Henderson (2004). “Evolution of
neural controllers for competitive game playing with teams of mobile robots.” In:
Robotics and Autonomous Systems 46.3, pp. 135–150.

Netzer, Yuval, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y
Ng (2011). “Reading digits in natural images with unsupervised feature learning.”
In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning.

Odena, Augustus (2016). “Semi-supervised learning with generative adversarial net-
works.” In: arXiv preprint arXiv:1606.01583.

http://arxiv.org/abs/1511.05644

bibliography 139

Odena, Augustus, Christopher Olah, and Jonathon Shlens (2017). “Conditional image
synthesis with auxiliary classifier GANs.” In: Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, pp. 2642–2651.

Olsson, Catherine, Surya Bhupatiraju, Tom Brown, Augustus Odena, and Ian Goodfel-
low (2018). “Skill rating for generative models.” In: arXiv preprint arXiv:1808.04888.

Pan, Zhaoqing, Weijie Yu, Xiaokai Yi, Asifullah Khan, Feng Yuan, and Yuhui Zheng
(2019). “Recent Progress on Generative Adversarial Networks (GANs): A Survey.”
In: IEEE Access 7, pp. 36322–36333.

Potter, Mitchell A and Kenneth A De Jong (1995). “Evolving neural networks with
collaborative species.” In: Summer Computer Simulation Conference, pp. 340–345.

Pugh, Justin K, Lisa B Soros, Paul A Szerlip, and Kenneth O Stanley (2015). “Con-
fronting the challenge of quality diversity.” In: Proceedings of the 2015 Annual Con-
ference on Genetic and Evolutionary Computation, pp. 967–974.

Radford, Alec, Luke Metz, and Soumith Chintala (2015). “Unsupervised representa-
tion learning with deep convolutional generative adversarial networks.” In: arXiv
preprint arXiv:1511.06434.

Rawal, Aditya, Padmini Rajagopalan, and Risto Miikkulainen (2010). “Constructing
competitive and cooperative agent behavior using coevolution.” In: Computational
Intelligence and Games (CIG), 2010 IEEE Symposium on, pp. 107–114.

Reed, Scott, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and
Honglak Lee (2016). “Generative adversarial text to image synthesis.” In: arXiv
preprint arXiv:1605.05396.

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. (2015).
“Imagenet large scale visual recognition challenge.” In: International Journal of Com-
puter Vision 115.3, pp. 211–252.

Salakhutdinov, Ruslan and Geoffrey Hinton (2009). “Deep boltzmann machines.” In:
Artificial Intelligence and Statistics, pp. 448–455.

Salimans, Tim, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen (2016). “Improved techniques for training GANs.” In: Advances in Neural
Information Processing Systems, pp. 2234–2242.

Sims, Karl (1994a). “Evolving 3D morphology and behavior by competition.” In: Arti-
ficial life 1.4, pp. 353–372.

Sims, Karl (1994b). “Evolving Virtual Creatures.” In: Proceedings of the 21st Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’94. ACM,
pp. 15–22.

Srinivas, Nidamarthi and Kalyanmoy Deb (1994). “Muiltiobjective optimization us-
ing nondominated sorting in genetic algorithms.” In: Evolutionary computation 2.3,
pp. 221–248.

Stanley, Kenneth O and Risto Miikkulainen (2002). “Evolving neural networks through
augmenting topologies.” In: Evolutionary computation 10.2, pp. 99–127.

140 bibliography

Stanley, Kenneth O and Risto Miikkulainen (2004). “Competitive Coevolution through
Evolutionary Complexification.” In: Journal of Artificial Intelligence Research 21,
pp. 63–100.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich (2015).
“Going deeper with convolutions.” In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 1–9.

Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna
(2016). “Rethinking the inception architecture for computer vision.” In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826.

Tieleman, Tijmen and Geoffrey Hinton (2012). “Lecture 6.5-RMSProp: Divide the gradi-
ent by a running average of its recent magnitude.” In: COURSERA: Neural networks
for machine learning 4.2, pp. 26–31.

Toutouh, Jamal, Erik Hemberg, and Una-May O’Reilly (2019). “Spatial Evolutionary
Generative Adversarial Networks.” In: arXiv preprint arXiv:1905.12702.

Toutouh, Jamal and Una-May O’Reilly (2021). “Signal propagation in a gradient-based
and evolutionary learning system.” In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 377–385.

Tu, Zhuowen (2007). “Learning generative models via discriminative approaches.” In:
Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on. IEEE,
pp. 1–8.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin (2017). “Attention is all you need.”
In: Advances in Neural Information Processing Systems 30.

Veček, Niki, Matej Črepinšek, Marjan Mernik, and Dejan Hrnčič (2014). “A compari-
son between different chess rating systems for ranking evolutionary algorithms.”
In: 2014 Federated Conference on Computer Science and Information Systems. IEEE,
pp. 511–518.

Veček, Niki, Marjan Mernik, and Matej Črepinšek (2014). “A chess rating system for
evolutionary algorithms: A new method for the comparison and ranking of evolu-
tionary algorithms.” In: Information Sciences 277, pp. 656–679.

Wang, Chaoyue, Chang Xu, Xin Yao, and Dacheng Tao (2018). “Evolutionary Genera-
tive Adversarial Networks.” In: arXiv preprint arXiv:1803.00657.

Wang, Zhengwei, Qi She, and Tomas E. Ward (2019). “Generative Adversarial Net-
works: A Survey and Taxonomy.” In: arXiv preprint arXiv:1906.01529.

Williams, Nathan and Melanie Mitchell (2005). “Investigating the success of spatial
coevolution.” In: Proceedings of the 7th annual conference on Genetic and evolutionary
computation. ACM, pp. 523–530.

Xiao, Han, Kashif Rasul, and Roland Vollgraf (2017). “Fashion-MNIST: a novel im-
age dataset for benchmarking machine learning algorithms.” In: arXiv preprint
arXiv:1708.07747.

bibliography 141

Xu, Qiantong, Gao Huang, Yang Yuan, Chuan Guo, Yu Sun, Felix Wu, and Kilian Wein-
berger (2018). “An empirical study on evaluation metrics of generative adversarial
networks.” In: arXiv preprint arXiv:1806.07755.

Yao, Xin (1999). “Evolving artificial neural networks.” In: Proceedings of the IEEE 87.9,
pp. 1423–1447.

Zhang, Han, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena (2018a). “Self-
attention generative adversarial networks.” In: arXiv preprint arXiv:1805.08318.

Zhang, Han, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang,
and Dimitris N Metaxas (2018b). “StackGAN++: Realistic image synthesis with
stacked generative adversarial networks.” In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 41.8, pp. 1947–1962.

Zhou, Aimin, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagaratnam Sugan-
than, and Qingfu Zhang (2011). “Multiobjective evolutionary algorithms: A survey
of the state of the art.” In: Swarm and Evolutionary Computation 1.1, pp. 32–49.

Zhu, Jun-Yan, Taesung Park, Phillip Isola, and Alexei A Efros (2017a). “Unpaired
image-to-image translation using cycle-consistent adversarial networks.” In: Pro-
ceedings of the IEEE international conference on computer vision, pp. 2223–2232.

Zhu, Jun-Yan, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver
Wang, and Eli Shechtman (2017b). “Multimodal Image-to-Image Translation by
Enforcing Bi-Cycle Consistency.” In: Advances in neural information processing sys-
tems, pp. 465–476.

	Abstract
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	1 Introduction
	1.1 Research Questions
	1.2 Contributions
	1.3 Document Structure

	2 Background and Related Work
	2.1 Generative Adversarial Networks
	2.1.1 Issues
	2.1.2 Evaluation Metrics
	2.1.3 Visualizing the Distribution of Samples
	2.1.4 Variations of GAN

	2.2 Evolutionary Algorithms
	2.2.1 Neuroevolution
	2.2.2 Coevolution
	2.2.3 Competitive Coevolution and Neuroevolution

	2.3 Evolutionary Algorithms and Generative Adversarial Networks
	2.3.1 Analysis of Evolutionary Aspects of GAN
	2.3.2 Current Proposals
	2.3.3 Discussion

	2.4 Summary

	3 Coevolutionary Generative Adversarial Networks
	3.1 Model
	3.1.1 Fitness
	3.1.2 Variation Operators
	3.1.3 Pairing Strategy
	3.1.4 Selection

	3.2 Experiments
	3.2.1 Experimental setup
	3.2.2 Results

	3.3 Evaluation and Comparison
	3.3.1 Experimental Setup
	3.3.2 Results

	3.4 Discussion and Limitations

	4 Exploring the Evolutionary Aspects of the Model
	4.1 Using the Skill Rating as Fitness
	4.1.1 Model
	4.1.2 Experiments
	4.1.3 Discussion

	4.2 Exploring the Evolution of GANs through Quality Diversity
	4.2.1 Model
	4.2.2 Experiments
	4.2.3 Discussion

	4.3 Summary

	5 Incorporating GAN Advances into the Evolutionary Model
	5.1 Mutation of Loss Functions
	5.1.1 New Mutation Operator
	5.1.2 Experiments
	5.1.3 Discussion

	5.2 COEGAN-v2
	5.2.1 Model Extensions
	5.2.2 Experiments
	5.2.3 Discussion

	5.3 Summary

	6 Evaluating the Progress of Generative Models through t-SNE
	6.1 Evaluation Method
	6.2 Experiments
	6.2.1 Experimental Setup
	6.2.2 Results: COEGAN on Fashion-MNIST
	6.2.3 Results: COEGAN-v2 on CelebA

	6.3 Summary

	7 Conclusions and Future Work
	7.1 Future Work

	Bibliography

