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Abstract

The purpose of this thesis is to obtain new regularity results for degenerate fully nonlinear equations.
In order to keep the text as self-contained as possible, we begin by studying uniformly elliptic

equations. Next we study degenerate fully nonlinear free transmission problems, where the degeneracy
rate varies in the domain. We prove optimal pointwise regularity depending on the degeneracy rate. Our
arguments consist of perturbation methods, relating our problem to a homogeneous, fully nonlinear,
uniformly elliptic equation, as studied in the first part of the thesis.

Finally, we examine Hamilton-Jacobi equations driven by fully nonlinear degenerate elliptic
operators in the presence of superlinear Hamiltonians. By exploring the Ishii-Jensen inequality, we
prove that viscosity solutions are locally Lipschitz-continuous, with estimates depending on the
structural conditions of the problem. We conclude this chapter with an application of our findings to a
two-phase free boundary problem.





Resumo

O objetivo desta tese é obter novos resultados de regularidade para equações degeneradas comple-
tamente não lineares. Por forma a manter o texto o mais auto-contido possível, começamos por
apresentar um estudo completo das equações uniformemente elípticas.

De seguida, estudamos problemas degenerados não lineares de transmissão livre, onde a de-
generecência varia no domínio. Provamos regularidade ótima pontual, dependendo da degenerecência.
Os nossos argumentos consistem em métodos de perturbação, relacionando o nosso problema com
um homogéneo, não linear, uniformemente elíptico, como o estudado na primeira parte da tese.

Finalmente, examinamos equações de Hamilton-Jacobi controladas por um operador degenerado
não linear, na presença de um Hamiltoniano super-linear. Explorando a desigualdade de Ishii-Jensen,
provamos que soluções viscosas são Lipschitz-contínuas, com estimativas dependendo das condições
estruturais do problema. Concluímos este capítulo com uma aplicação dos nossos resultados a um
problema com fronteira livre de duas fases.
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Chapter 1

Introduction

This thesis is aimed at obtaining regularity results for some nonlinear equations. These results are
useful in the sense that they yield higher regularity than the one necessary to define the solutions to
the equation. The simplest example to illustrate this fact is the Laplace equation: if u ∈C2(B1) is a
solution of the equation

∆u = 0, in B1,

then we actually know that u ∈C∞(B1). The remarkable fact about this assertion is that all the partial
derivatives of u have to be continuous, even the ones that do not appear in the equation. This is the
idea behind a regularity result: we start by assuming that u ∈ C2 so that we can define it to be a
solution, and we obtain the higher regularity u ∈C∞. Note that u may not be differentiable, or even
continuous, up to the boundary ∂B1.

We will consider a weak notion of solution, called viscosity solution, introduced by Crandall and
Lions. This very weak notion allows for solutions to be nowhere differentiable, while providing very
general existence and uniqueness theorems. For a very comprehensive exposition of the basic theory
of viscosity solutions to fully nonlinear equations, we recommend the article [19].

Regularity results for equations in nondivergence form have been the subject of study for many
years, starting with the linear equation

TrA(x)D2u = f (x), in B1. (1.0.1)

If u is a bounded solution of (1.0.1), then we have the following results:

1. (Cordes-Nirenberg). Let 0 < α < 1 and assume that ∥A− I∥L∞(B1) ≤ δ = δ (α), for a small δ .
Then u ∈C1,α(B1/2) and

∥u∥C1,α (B1/2)
≤C

(
∥u∥L∞(B1)+∥ f∥L∞(B1)

)
;

2. (Schauder). If A and f belong to Cα(B) then u ∈C2,α(B1/2) and

∥u∥C2,α (B1/2)
≤C

(
∥u∥L∞(B1)+∥ f∥L∞(B1)

)
;

1



2 Introduction

3. (Calderón-Zygmund). If A is continuous in B1 and f ∈ Lp(B1), for some 1 < p < ∞, then
u ∈W 2,p(B1/2) and

∥u∥W 2,p(B1/2)
≤C

(
∥u∥L∞(B1)+∥ f∥Lp(B1)

)
.

For a complete study of these results, we recommend the book [31].

In chapter 3 we consider extensions of these results to the fully nonlinear case, following the ideas
in [15]. We present a comprehensive study of uniformly elliptic equations of the form

F(D2u,x) = f (x), for x ∈ B1. (1.0.2)

We prove the Aleksandrov-Bakelman-Pucci estimate, and use it to obtain a Harnack inequality and
Hölder continuity of solutions; we obtain uniqueness of solutions by a variation of Jensen’s uniqueness
theorem in [38]. We conclude this chapter by proving interior C1,α regularity of solutions of (1.0.2).
This is done by a perturbation argument relating our equation to the simpler one F(D2u,x0) = 0, with
x0 fixed, for which we have C1,α regularity available.

The two problems we consider involve degenerate elliptic equations which do not fall under the
scope of the previous chapter. The equations we consider can be written in the more general form

F(D2u,Du,u,x) = f , for x ∈ B1.

We present a maximum principle, Proposition 4.4.1, which can be found in [19]. This result can be
applied to a large family of degenerate problems to obtain Hölder continuity.

In Chapter 4 we consider the following degenerate equation

|Du|β (x,u,Du)F
(
D2u

)
= f (x) in B1, (1.0.3)

where β ≥ 0, F is uniformly elliptic and f is bounded and continuous.

Problems of the form

|Du|β F
(
D2u

)
= f

belong to a larger class of equations studied in a series of papers by Birindelli and Demengel, starting
with the singular case in [7]. The degenerate case was also considered in [8, 9]. An important
development concerning higher regularity for degenerate fully nonlinear equations was put forward in
[34]. In that paper, the authors obtain local C1,α regularity, for

α ∈ (0,α0) and α ≤ 1
1+β

,

with α0 corresponding to the C1,α0 regularity of the homogeneous equation F
(
D2u

)
= 0. In [34,

Lemma 6], the authors provide a connection between the homogeneous degenerate equation and the
corresponding homogeneous uniformly elliptic equation. This step unlocks a higher regularity class
which they access via a tangential path.
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The methods introduced in [34] resonated, launching new perspectives in the theory of degenerate
fully nonlinear equations. In [12], the authors consider the equation

|Du|β (x) F
(
D2u

)
= f (x),

where β is allowed to change sign, and obtain local C1,α regularity, where

α ∈ (0,α0) and α ≤ 1
1+∥β+∥∞

+∥β−∥∞

,

with β+ and β− corresponding to the positive and negative parts of β , respectively. The estimates
obtained in [12] are independent of the continuity modulus of β .

In [32], the authors consider a degeneracy law depending on the sign of the solution. They study
the equation

|Du|β+χ{u>0}+β−χ{u<0}F
(
D2u

)
= f (x),

which has constant degeneracy rates at each of the phases {±u > 0}, but has a discontinuity across
the free boundary ∂{u = 0}. They obtain local C1,α regularity, for

α ∈ (0,α0) and α ≤ 1
1+max{β−,β+}

.

The authors also establish existence of solutions via Perron’s method combined with a fixed point
argument.

Finally, we mention the recent paper [29], where the author considered the following equation
[
|Du|βu(x)+a(x)χ{u>0}|Du|β1 +b(x)χ{u<0}|Du|β2

]
F(D2u) = f , in Ω,

u = g on ∂Ω,

where βu(x) = β+χ{u>0}+β−χ{u<0}. In this setting, the author proves existence and uniqueness of
solutions and obtain local C1,α regularity.

In Chapter 4, we will present two main results which improve the regularity results in the
aforementioned literature. First, we present a very simple proof of local regularity under very general
assumptions on β (x,u,Du). Indeed, we only require β to be well-defined, nonnegative and bounded
from above. The second and main result consists of a pointwise regularity result under more restrictive
assumptions on β .

Obtaining a pointwise regularity result, that is, a regularity result which varies over the domain,
is useful when the optimal regularity of the solutions depends intrinsically on the structure of the
problem, which varies over the domain. As can be seen from the previously mentioned literature,
there is a clear dependence in the exponent α of the optimal regularity of solutions and the degeneracy
rate β .

In Chapter 5, we consider a problem which belongs to a different class of degenerate equations,
where the degeneracy is intrinsic to the operator F itself. This introduces a significant difficulty, as
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one does not have a solid theory to fall back to, in contrast with equation (1.0.3). We study a fully
nonlinear Hamilton-Jacobi equation of the form

F(D2u)+H(Du,x) = f (x) in Ω ⊂ Rd , (1.0.4)

where F : S(d)→ R is degenerate elliptic and the Hamiltonian H = H(p,x) satisfies standard growth
and continuity conditions. These conditions include the following Hamiltonian

H(p,x) = a(x)
(
1+ |p|2

)m
2 +V (x).

We prove that viscosity solutions to (1.0.4) are locally of class C0,1. In addition, we examine a
two-phase free boundary problem driven by the operator in (1.0.4). In this context, our findings
include the existence of solutions and regularity estimates across the free boundary. The conditions
we impose on the structure of the problem are fairly general and cover important examples, such as
Bellman and Isaacs equations.

Hamilton-Jacobi (HJ) equations of second-order often relate to stochastic optimal control problems
[30]. In this context, the value function of the optimization problem is a viscosity solution of the
associated HJ equation. For developments at the intersection of viscosity solutions, Hamilton-Jacobi
equations and optimal control, we refer the reader to [4, 5, 17, 20, 36, 37]. Concretely, (1.0.4) arises
in the following context.

Suppose the state of a system is constrained to the open and bounded subset Ω ⊂ Rd and driven
by the stochastic differential problem dXt = α(Xt)dt +

√
2σ(Xt)Wt for t > t0

Xt0 = x ∈ Ω,
(1.0.5)

where α : Ω → Rd is a feedback control in some admissible class A , σ : Ω → Rd2
is a matrix-valued

map accounting for the volatility, Wt is a d-dimensional Brownian motion adapted to a given stochastic
basis, and t0 > 0 and x ∈ Ω are fixed. The cost functional of the problem is given by

J(x,α) := Ex
[∫

τx

t0
L(xt ,αt)dt +Ψ(xτx)

]
, (1.0.6)

where Ex denotes the conditional expectation for Xt0 = x, τx is the exit-time of the trajectory starting
in x at t0, the function L : Ω×Rd → R is a given Lagrangian, and Ψ : ∂Ω → R is an exit cost. The
value function of the optimal control problem (1.0.5)-(1.0.6), defined as

u(x) := inf
α∈A

J(x,α),

is a viscosity solution toTr
[(

σ(x)T σ(x)
)

D2u
]
+H(Du,x) = 0 in Ω,

u = Ψ on ∂Ω,
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where H is the Legendre transform of the Lagrangian L, and the boundary condition is met in some
appropriate sense. If we allow the volatility σ(·) to vanish somewhere in Ω, the associated HJ equation
becomes degenerate.

The study of (1.0.4) in the case F ≡ Tr appears, for instance, in [47]. In that paper, the author
proves the existence of classical solutions for the problem under Neumann boundary conditions and
natural growth regimes on the Hamiltonian H. The role of Neumann (or oblique) boundary conditions
relates to state-constrained optimal control problems, as they encode a reflection at the boundary; we
refer the reader to [48].

An in-depth account of state-constrained optimal control problems is the subject of [45], where
the authors examine (1.0.4) in the uniformly elliptic setting. In addition to establishing local Lipschitz
continuity of the solutions, the authors connect the characterisation of boundary conditions with
the growth regime of the Hamiltonian. Indeed, for sub-quadratic Hamiltonians, solutions blow up
as they approach ∂Ω, requiring a relaxed notion of boundary condition. However, in the (strictly)
super-quadratic case, solutions are globally Hölder continuous. See [6] for related developments.

The regularity theory available for (1.0.4) in the degenerate elliptic case advanced substantially
with the contributions in [16]. Among the findings in that paper, we highlight the Hölder continuity of
subsolutions in the presence of super-quadratic Hamiltonians. The remarkable aspect of this result
is in the one-sided requirement entailed by the subsolution condition. To properly appreciate the
minimality of such an assumption, we briefly recall the Krylov-Safonov theory. Concerning uniformly
elliptic fully nonlinear operators, the latter implies Hölder continuity provided a two-sided control is
available. Indeed, let P± be the Pucci extremal operators and C > 0 be a constant; if u ∈C(Ω) is a
viscosity solution to

P−(D2u)≤C in Ω

and
P+(D2u)≥−C in Ω,

the Krylov-Safonov theory ensures the Hölder continuity of u. However, if one of the former
inequalities fails to hold, the theory is no longer available; see, for instance, [15, 49, 55]. We notice
the results in [16] also include global Hölder continuity for subsolutions and Lipschitz regularity for
the solutions of the homogeneous problem.

In [2], the authors study (1.0.4), considering F(M,x) = Tr(A(x)M), for a degenerate elliptic
matrix-valued map A : Ω → Rd2

. The findings in [2] advance the general theory of Hamilton-Jacobi
equations, as they cover a general maximum principle, Lipschitz continuity for the solutions of the
homogeneous equation with explicit estimates (in terms of the matrix A and the structure of H),
and state-constrained boundary conditions. We notice the Lipschitz continuity result in [2] relies
on the maximum principle [19, Theorem 3.2] and explores the connection of the trace operator and
eigenvalues.

Our contribution is two-fold. By developing an intrinsically nonlinear argument, we prove that
viscosity solutions to (1.0.4) are Lipschitz continuous with estimates. Then we examine a consequence
of our regularity result to a two-phase free boundary problem and prove the existence of solutions,
with estimates in Hölder spaces.





Chapter 2

Preliminary results

2.1 Basic notation and terminology

We will denote by Rd the d-dimensional Euclidean space with norms

|x|=
√
|x1|2 + ...+ |xd |2,

|x|∞ = max{|x1|, ..., |xd |}.

By Br(x0) =
{

x ∈ Rd : |x− x0|< r
}

we denote the open ball centered at x0 with radius r. For
simplicity, we denote Br := Br(0).

By Qr(x0) =
{

x ∈ Rd : |x− x0|∞ < r/2
}

we denote the open cube centered at x0 with side length
r. We also denote Qr := Qr(0).

diam(Ω) and |Ω| will denote the diameter and the d-dimensional Lebesgue measure of Ω, respec-
tively.

A function L is called affine if L(x)−L(0) is a linear function.
If u is a real-valued function, we denote by u+ and u− its positive and negative parts, respectively,

so that u = u+−u−.
We will make use of the multi-index terminology: if α1, ...,αd ∈ N0 and α = (α1, ...,αd), we call

|α|= α1 + ...+αd and define the derivative

Dαu(x) :=
∂ |α|

∂xα1
1 ...∂xαd

d
u(x).

2.2 Results in real analysis

In this section we include some useful results for real analysis.
Let f : Ω → R be a measurable function and denote by µ f (t) its distribution function, that is,

µ(t) = µ f (t) := |{x ∈ Ω : | f (x)| ≥ t}|. (2.2.1)

This function satisfies the following properties (see also [31, Lemma 9.7]).

7



8 Preliminary results

Lemma 2.2.1. For any p > 0 and | f |p ∈ L1(Ω), it holds

µ(t)≤ t−p
∫

Ω

| f |p (2.2.2)

and ∫
Ω

| f |p = p
∫

∞

0
t p−1

µ(t)dt. (2.2.3)

Proof. Clearly, for every t > 0, it holds

µ(t)t p ≤
∫
{| f |≥t}

| f |p

≤
∫

Ω

| f |p.

For (2.2.3), we start by assuming that p = 1. Then

∫
Ω

| f |dx =
∫

Ω

∫ | f |

0
dt dx.

We want to apply Fubini’s theorem to interchange the integration order. Note that we can rewrite the
domain of integration

{(x, t) ∈ Ω×R : 0 ≤ t ≤ | f (x)|, x ∈ Ω}
={(x, t) ∈ Ω×R : t ∈ R, | f (x)| ≥ t},

and so ∫
Ω

| f |dx =
∫

∞

0

∫
{| f |≥t}

dydt

=
∫

∞

0
|{| f | ≥ t}|dt

which proves the case p = 1. For an arbitrary p > 0, call g = | f |p ∈ L1(Ω) and s = t p. Then by the
previous argument and a simple change of variables we conclude∫

Ω

gdx =
∫

∞

0
µg(s)ds

=
∫

∞

0
|{g > s}|ds

=
∫

∞

0
|{| f |p > t p}| pt p−1dt.

The following lemma will be instrumental when obtaining Hölder continuity (see [31, Lemma
8.23] for the proof).
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Lemma 2.2.2. Let ω be a nondecreasing function on the interval (0,R0] satisfying, for all R ≤ R0,
the inequality

ω(τR)≤ γω(R)+σ(R),

where σ is also nondecreasing and 0 < γ,τ < 1. Then, for every µ ∈ (0,1) and R < R0, we have

ω(R)≤C
((

R
R0

)α

ω(R0)+σ(RµR1−µ

0 )

)
(2.2.4)

where C =C(γ,τ) and α = α(γ,τ,µ) are positive constants.

2.3 Characterization of Hölder spaces

Hölder spaces constitute an important subspace of the space of continuously differentiable functions,
and they correspond to the desired regularity in all the results we will discuss in this thesis.

We say u ∈Ck,α(Ω) if u ∈Ck(Ω) and the following holds

|u|Ck,α (Ω) := max
|β |=k

sup
x ̸=y

|Dβ u(x)−Dβ u(y)|
|x− y|α

< ∞. (2.3.1)

The space Ck,α(Ω) becomes a Banach space when equipped with the norm

||u||Ck,α (Ω) = ||u||Ck(Ω)+ |u|Ck,α (Ω). (2.3.2)

We are particularly interested in the spaces C0,α , which we call Cα , and C1,α . We give an
equivalent characterization of these spaces.

Proposition 2.3.1. A function u is in Cα(Ω) if and only if, for every x ∈ Ω, there exists Cx and a
uniform constant K > 0 such that

||u−Cx||L∞(Br(x)) ≤ Krα . (2.3.3)

Furthermore, if |Cx|+2K ≤ M for every x ∈ Ω, then

||u||Cα (Ω) ≤ M.

A similar characterization holds for the C1,α spaces. We present the proof only for this case.

Proposition 2.3.2. A function u is in C1,α(Ω) if and only if, for every x ∈ Ω, there exists an affine
function ℓx(y) = ax +bx · (y− x) and a uniform constant K > 0 such that

||u− ℓx||L∞(Br(x)) ≤ Kr1+α . (2.3.4)

Furthermore, if |ax|+ |bx|+4K ≤ M for every x ∈ Ω, then

||u||C1,α (Ω) ≤ M.
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Proof. For the direct implication, assume that u ∈ C1,α(Ω) and let K = |u|C1,α (Ω). Define ℓx(y) =
u(x)+Du(x) · (y− x). Then, by Taylor’s formula with Lagrange remainder,

u(y) = u(x)+Du(ξ ) · (y− x),

for some ξ ∈ [x,y] (the line segment). Then

u(y) = u(x)+Du(x) · (y− x)+(Du(ξ )−Du(x)) · (y− x).

Hence,

|u(y)− ℓx(y)|= |u(y)−u(x)−Du(x) · (y− x)|=
= |(Du(ξ )−Du(x)) · (y− x)| ≤
≤ K|ξ − x|α |y− x| ≤ K|y− x|1+α .

Now, for any fixed x ∈ Ω and r > 0, taking y ∈ Br(x), clearly |y− x|1+α ≤ r1+α and (2.3.4) follows
readily.

For the reverse implication, we start by defining the useful rescaling

fr(x) =
1
r

f (rx).

Let x,y be two points a distance r apart, and by translation, assume that x =−y. Then, noting that
Br/2 ⊂ Br(x),Br(y),

||ℓx,r/2 − ℓy,r/2||L∞(B1) ≤ ||ur/2 − ℓx,r/2||L∞(B1)+ ||ur/2 − ℓy,r/2||L∞(B1) =

=
2
r

sup
z∈B1

|u(rz/2)− ℓx(rz/2)|+ 2
r

sup
z∈B1

|u(rz/2)− ℓy(rz/2)|=

=
2
r

sup
z∈Br/2

|u(z)− ℓx(z)|+
2
r

sup
z∈Br/2

|u(z)− ℓy(z)| ≤

≤2
r

sup
z∈Br(x)

|u(z)− ℓx(z)|+
2
r

sup
z∈Br(y)

|u(z)− ℓy(z)| ≤ 4Krα ,

assumption (2.3.4) being used in the last inequality.

We now see how the L∞(B1) norm controls the coefficients of an affine function. Let l(x) = a+b ·x
satisfy ||l||L∞(B1) ≤C. Then, choosing x = 0 we get |a| ≤C. Choosing now x = b

|b|(1+ε) ∈ B1, we get∣∣∣∣a+ |b|
1+ ε

∣∣∣∣≤C =⇒ |b|
1+ ε

≤ |a|+C

=⇒ |b| ≤ 2C(1+ ε).

Letting ε ↓ 0, we get |b| ≤ 2C.
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Now we apply this reasoning to our estimate. We have that

(lx,r/2 − ly,r/2)(z) =
2
r
(a+(bx −by) · rz) = 2a/r+2(bx −by) · z,

where a = ℓx(0)− ℓy(0). Our previous calculation tells us that

|bx −by| ≤ 4Krα . (2.3.5)

Finally, from (2.3.4) and the Taylor formula for u ∈C1, we can check that ax = u(x) and bx = Du(x).
Indeed, writing Lx(y) = u(x)+Du(x) · (y− x), we get

u(y) = Lx(y)+o(r),

for y ∈ Br(x). Hence, ||u−Lx||L∞(Br(x)) = o(r). So

||Lx − ℓx||L∞(Br(x)) ≤ ||u− ℓx||L∞(Br(x))+ ||u−Lx||L∞(Br(x)) ≤
≤ Kr1+α +o(r) = o(r).

Then, in particular,

|u(x)−ax|= |Lx(x)− ℓx(x)|= o(r)

hence, letting r → 0, we get that ax = u(x) and so

Lx(y)− ℓx(y) = (Du(x)−bx)(y− x).

By contradiction, assume bx ̸= Du(x). Then, we can fix

y = x+
Du(x)−bx

2|Du(x)−bx|
r ∈ Br(x)

to get

|Du(x)−bx| ≤
o(r)

r
→ 0

as r → 0, hence bx = Du(x), which, together with (2.3.5), gives |u|C1,α (Ω) ≤ 4K. The final expression
follows from the definition of the norm in C1,α(Ω).

From Proposition 2.3.2 we see that a function belongs to the space C1,α if it has an affine expansion
at every point which approximates it very well, in every small scale. This is a much more useful
characterization than the one given by the definition, because it is something we can quantify by
finding this approximation ℓx and proving it satisfies the required estimate. However, it is impractical
to prove that estimate (2.3.4) holds for every 0 < r < 1. Instead, we prefer the following discrete
characterization.
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Proposition 2.3.3. Suppose we can find r < 1 and sequences of affine functions ℓk(x) = ak +bk · x,
such that

∥u− ℓk∥L∞(Brk (x0))
≤ Krk(1+α). (2.3.6)

Then u ∈C1,α(x0) with constant C(r)K.

The usefulness of this characterization lies in the fact that we can prove (2.3.6) using an induction
argument. This is the core of many articles in regularity theory by perturbation methods, which
we study in the next chapter. The main idea can be described as follows: assume, as our induction
hypothesis, that estimate (2.3.6) holds up to k, and define the following rescalling

vk(x) =
u− ℓk

Krk(1+α)
(rkx+ x0), for x ∈ B1.

This rescaling vk allows us to measure how the PDE behaves in a small scale around the point x0. If
this rescaling parameter α is properly chosen, vk will solve an adequate PDE which will yield the
next iteration of the induction step. In some cases, this microscopic behaviour of the PDE improves
over each zooming iteration and in these cases, we are able to obtain a better estimate than (2.3.6), the
more we zoom in. Therefore, to be able to capture the optimal regularity for these cases, we developed
a new characterization of Hölder spaces, which we present in the following proposition.

Proposition 2.3.4. Suppose we can find r < 1, sequences of affine functions ℓk(x) = ak +bk · x and
exponents αk ↑ α , such that (αk −α) = o(k) and

∥u− ℓk∥L∞(Brk (x0))
≤ Krk(1+αk). (2.3.7)

Then u ∈C1,α(x0) with constant C(r)K and 0 < α < 1.

Proof. Assume without loss of generality that x0 = 0. The idea is that ℓk → ℓ uniformly, where ℓ

satisfies the desired characterization.
Consider the first order scaling fr(x) := 1

r f (rx). We have, by assumption,

∥ℓk+1 − ℓk∥L∞(Brk+1 )
≤ ∥u− ℓk+1∥L∞(Brk+1 )

+∥u− ℓk∥L∞(Brk+1 )

≤ Kr(k+1)(1+αk+1)+Krk(1+αk)

≤ Krk(1+αk)
(

rk(αk+1−αk)+1
)

≤ 2Krk(1+αk),

since αk+1 −αk ≥ 0 and r < 1. First order scaling gives

∥(ℓk+1)rk − (ℓk)rk∥L∞(B1)
≤ 2Krkαk .

Clearly, this estimate in B1 implies the following estimates on the coefficients

|ak+1 −ak| ≤ Krk(1+αk),

|bk+1 −bk| ≤ Krk αk . (2.3.8)
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Since these are Cauchy sequences, we have that

ak → a, bk → b,

respectively in R and Rd . It now follows that ℓk → ℓ in L∞(B1), where ℓ = a+ b · x. Using these
estimates, we get

∥u− ℓ∥L∞(Brk )
≤ ∥u− ℓk∥L∞(Brk )

+ |ak −a|+ rk|bk −b|

≤CKrk(1+αk),

where C depends only on r. Now, we apply the usual discretization strategy: for an arbitrary 0 < R < 1,
there exists k ∈ N such that rk+1 ≤ R < rk. Then,

∥u− ℓ∥L∞(BR)
≤ ∥u− ℓ∥L∞(Brk )

≤CKrk(1+αk)

≤ rk(αk−α)CKrk(1+α).

Now we use the fast convergence αk → α , so that

lim
k→∞

|k(αk −α)|= 0.

Then rk(αk−α) <C1 and therefore we get the desired inequality

∥u− ℓ∥L∞(BR)
≤C(r)KR1+α .

The previous proposition will be especially useful to obtain C1,α( ·) regularity, when α is a function.
To define this space, note that the characterization in Proposition 2.3.2 is pointwise, and therefore is
easily adapted to the case where α is a function.

Definition 2.3.5. A function u is in C1,α( ·)(Ω) if for every x ∈ Ω, there exists an affine function
ℓx(y) = ax +bx · (y− x) and a uniform constant K > 0 such that

||u− ℓx||L∞(Br(x)) ≤ Kr1+α(x).

Furthermore, we define

||u||C1,α( ·)(Ω) := sup
x∈Ω

|ax|+ sup
x∈Ω

|bx|+4K.

2.4 Viscosity solutions

The concept of viscosity solutions was introduced by Crandall and Lions in [20]. The virtues of this
definition are that it allows for merely continuous functions to be solutions of PDEs and provides very
general existence and uniqueness results.
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Definition 2.4.1 (Viscosity solution). We say that u ∈C(B1) is a viscosity subsolution (resp. superso-
lution) of

F(D2u,Du,u,x) = f (x), in B1, (2.4.1)

or we write F(x,u,Du,D2u)≤ f (x) (resp. ≥ f (x)), if the following condition holds:

If x0 ∈ B1, ϕ ∈C2(B1) and u−ϕ has a local maximum (resp. minimum) at x0, then

F
(
D2

ϕ(x0),Dϕ(x0),u(x0),x0
)
≤ f (x0), ( resp. ≥ f (x0)).

We sometimes refer to the pair of vector and matrix (Dϕ(x0),D2ϕ(x0)) satisfying the prior
property as a subjet (resp. superjet), adopting the notation in [20].

We say u is a viscosity solution, if it is both a subsolution and a supersolution.

This weaker notion of solution is consistent with the classical one, as illustrated in the following
example.

Example 2.4.2. Assume that F =−Tr, f ≡ 0 and u ∈C2 is a classical subsolution of

−∆u(x)≤ 0, for x ∈ B1.

We want to check that u is also a viscosity subsolution of this equation. Indeed, let x0 ∈ B1 be arbitrary,
and take ϕ ∈C2(B1) such that u−ϕ has a local maximum at x0. Then

D2(u−ϕ)(x0)≤ 0.

Therefore

−∆(u−ϕ)(x0) =−Tr(D2u(x0)−D2
ϕ(x0))≥ 0.

Since −∆u(x0)≤ 0, we obtain −∆ϕ(x0)≤ 0, as intended. Since x0 was arbitrary, we see that u is a
viscosity subsolution. Similarly, we obtain the same result for supersolutions and we can conclude
that classical solutions are also viscosity solutions.

The reciprocal implication is even simpler: If we assume that u ∈C2(B1) is a viscosity solution of
the Laplace equation, then it is a classical solution. Indeed, we can just take ϕ = u and noting that
u−u ≡ 0 has local maxima and minima at every point, we get immediately from the definition that u
solves the equation at every point. Hence these notions of solution are equivalent, provided we have
enough regularity to define classical solutions.

Example 2.4.3. To understand why we use the term subsolution, let u solve the equation−∆u(x) = f , for x ∈ B1,

u = g, for x ∈ B1,
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and let v be a strict subsolution, that is−∆v(x)< f , for x ∈ B1,

v = g, for x ∈ B1.

Then the function ω := v−u is a strict subsolution of the homogeneous problem−∆ω(x)< 0, for x ∈ B1,

ω = 0, for x ∈ B1.

Hence, by the maximum principle, ω is strictly negative inside B1, implying that the subsolution v is
strictly below the solution u in B1.

The following monotocity assumption is crucial in our study

F(M, p,r,x)≤ F(N, p,s,x), whenever N ≤ M,r ≤ s. (2.4.2)

This assumption is composed of the two following assumptions

F(M, p,r,x)≤ F(N, p,r,x), whenever N ≤ M, (2.4.3)

and

F(M, p,r,x)≤ F(M, p,s,x), whenever r ≤ s. (2.4.4)

Condition (2.4.3) is called degenerate ellipticity. When combined with (2.4.4) we obtain (2.4.2) and
we say that F is Proper. We will also always assume that F is continuous w.r.t. all its variables.

The following results are useful, although simple to prove.

Proposition 2.4.4. Let u ∈C(B1). The following are equivalent.

1. u is a viscosity subsolution of (2.4.1);

2. Let x0 ∈ B1 and A be a small neighborhood of x0 contained in B1. Take ϕ ∈C2(A) such that

ϕ ≥ u in A and u(x0) = ϕ(x0), (2.4.5)

then F(D2ϕ(x0),Dϕ(x0),u(x0),x0)≤ f (x0);

3. Same as 2, with ϕ being a quadratic polynomial.

Proof. Clearly 1 =⇒ 2 and 2 =⇒ 3 hold. We only prove that 3 =⇒ 1. Let x0 ∈ B1 be an arbitrary
point, A be a small neighborhood of x0 and take ϕ ∈C2(A) such that u−ϕ has a maximum at x0 in
the set A. For a small ε > 0, define the polynomial

Pε(x) :=u(x0)+Dϕ(x0) · (x− x0)

+
1
2
(x− x0) ·D2

ϕ(x0)(x− x0)−
ε

2
|x− x0|2.
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Since ϕ ∈C2(A), we can write

ϕ(x) =u(x0)+Dϕ(x0) · (x− x0)

+
1
2
(x− x0) ·D2

ϕ(x0)(x− x0)+o(|x− x0|2).

Therefore, for rε > 0 sufficiently small, we have Pε(x) ≤ ϕ(x) ≤ u(x) for every x ∈ Brε
(x0) with

equality if x = x0. Hence Pε is a quadratic polynomial that touches u from below at the point x0. By 3,
we have

F(D2
ϕ(x0)− εI,Dϕ(x0),u(x0),x0)≤ f (x0).

Recalling that F is continuous, we can take the limit ε → 0+ to obtain

F(D2
ϕ(x0),Dϕ(x0),u(x0),x0)≤ f (x0),

hence we conclude that u is a viscosity subsolution of (2.4.1).

Remark 2.4.5. Whenever property (2.4.5) holds, we say ϕ touches u from below at the point x0.

Similar statements also hold for viscosity supersolutions. Indeed, if u is a viscosity subsolution of
F(D2u,x) = f (x), then the function v =−u is a viscosity supersolution of G(D2v,x) =− f (x), where

G(M,x) :=−F(−M,x)

is still (λ ,Λ)-elliptic, that is, it is uniformly elliptic with ellipticity constants λ and Λ.

2.5 Punctually second order differentiability

As we saw in the previous section, we are interested in touching our solution from above and below by
paraboloids. In this section we will prove that we can get important information about the regularity
of a function by studying the properties of the paraboloids that touch it.

We say that P is a convex paraboloid of opening M whenever

P(x) = ℓ(x)+
M
2
|x|2, (2.5.1)

where ℓ is an affine function. We say P is a concave paraboloid of opening M if −P satisfies (2.5.1).

If u is a continuous function defined on Ω and A is an open subset of Ω, for x0 we can define

Θ(u,A)(x0) (2.5.2)

to be the infimum of all positive constants M for which there exists a convex paraboloid of opening M
that touches u from above at x0 in A. We define (2.5.2) to be +∞ if no such constant M exists. One
can check that Θ(u,A) is a Borel measurable function on A.
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Using concave paraboloids that touch u from below instead, we similarly define

Θ(u,A)(x0) ∈ [0,∞].

We finally consider

Θ(u,A)(x0) = max{Θ(u,A)(x0),Θ(u,A)(x0)} ≤ ∞.

In the next result we import boundedness from Θ(u,A) into the second derivatives of u. Note that the
proof differs substantially from the reference [15, Proposition 1.2]. Indeed, we get a better constant in
the inequality at the cost of the proof being much longer.

Proposition 2.5.1. Let u ∈C(Ω) and B be a convex domain such that B ⊂ Ω. Let r > 0 and define

Θ(u,r) := Θ(u,Ω∩Br(x))(x), for x ∈ B.

Assume that, for some constant K, Θ(u,r)(x)≤ K for any x ∈ B. Then u ∈C1,1(B) and

|Du(x)−Du(y)| ≤ ∥Θ(u,r)∥L∞(B)|x− y|, for x,y ∈ B. (2.5.3)

Proof. Since Θ(u,r)≤ K, then for every fixed x,

u(x)+b1 · (y− x)− K
2
|y− x|2 ≤ u(y)

≤u(x)+b2 · (y− x)+
K
2
|y− x|2, for y ∈ Br(x).

We start by proving that b1 = b2. In fact, since

(b1 −b2) · (y− x)≤ K|y− x|2,

if we assume that b1 ̸= b2, we can take 0 < δ < r and

y = x+δ
b1 −b2

|b1 −b2|
∈ Br(x),

implying |b1 −b2| ≤ Kδ , which is a contradiction since we can take δ to be arbitrarily small. Hence
we have

−K
2
|y− x|2 ≤ u(y)−u(x)−b1 · (y− x)≤ K

2
|y− x|2

and therefore u is differentiable at every point x ∈ B and b1 = Du(x). Additionally, we have that, for
almost every x ∈ B,

|Du(x)−Du(y)| ≤ K1|x− y|, for y ∈ Br(x), (2.5.4)



18 Preliminary results

where K1 := ∥Θ(u,r)∥L∞(B) ≤ K. We will prove that (2.5.4) actually holds for every x ∈ B. By
contradiction, assume there exists x0 ∈ B such that

|Du(x0)−Du(y)|> K1|x0 − y|, for y ∈ Br(x0). (2.5.5)

Let A := {x ∈ B : Θ(u,r)(x)≤ K1}. Since A is dense in B, there exists a sequence (xn)n converging
to x0 with xn ∈ A and therefore for every 0 < δ ≪ r there exists n0 such that for every n > n0,
Br−δ (x0)⊂ Br(xn). Thus

sup
y∈Br−δ (x0)

|Du(x0)−Du(y)| ≤ sup
y∈Br(xn)

|Du(xn)−Du(y)|

≤K1r.

So for every y ∈ Br−δ (x0),

|Du(x0)−Du(y)| ≤ r
r−δ

K1|x0 − y|.

Since we can take δ to be arbitrarily small, we obtain a contradiction with (2.5.5).
We now extend this local estimate to the whole set B. For this purpose, let x,y ∈ B be arbitrary.

Take N to be the smallest integer which is larger than or equal to |x− y|/r, and define

zk :=
k
N

x+
(

1− k
N

)
y.

Then |zk − zk−1| ≤ r and

|Du(x)−Du(y)| ≤
N

∑
k=1

|Du(zk)−Du(zk−1)|

≤K
N

∑
k=1

|zk − zk−1|= K|x− y|,

where the equality holds because zk are collinear.

When u has improved regularity a stronger statement than 3 in Proposition 2.4.2 holds. For this
purpose, we introduce the following definition.

Definition 2.5.2. We say that a continuous function u in Ω is punctually second order differentiable
at x0 ∈ Ω if there exists a paraboloid Px0 such that

u(x) = Px0(x)+o(|x− x0|2), as x → x0,

which means that |u(x)−Px0(x)| |x− x0|−2 → 0 as x → x0. We define D2u(x0) := D2Px0 .

In this case, 3. in Proposition 2.4.2 holds for this particular polynomial Px0 . The proof is identical
to Proposition 2.4.2 and shall be omitted.
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Lemma 2.5.3. Assume that u is a viscosity subsolution of (3.1.1) in B1 and that u is punctually second
order differentiable at x0 ∈ B1. Then

F(D2u(x0),x0)≤ f (x0).

The following result consists of two assertions. The first one is due to Rademacher, see [27,
Section 5.8.3, Theorem 6]. The second assertion is called the area formula for Lipschitz maps, see
[28, Section 3.3.2, Theorem 1].

Theorem 2.5.4. Let H : BR ⊂Rd →Rd be a Lipschitz map. Then H is differentiable almost everywhere
in BR.

Let A ⊂ BR be such that |BR \A|= 0 and H is twice differentiable at every point in A. Then

|H(BR)| ≤
∫

A
|detDH|,

where DH denotes the Jacobian matrix of H.





Chapter 3

Uniformly elliptic equations

3.1 Introduction

This chapter concerns the study of fully nonlinear uniformly elliptic equations of the form

F(D2u,x) = f , for x ∈ B1, (3.1.1)

where f : B1 → R is a continuous function.
In order to make this thesis as self-contained as possible and to provide a more detailed expla-

nation of the results presented in the book [15], which the author believes can be challenging for
a Ph.D. student, we closely follow its contents in this chapter. By doing so, we hope to provide a
comprehensive understanding of the concepts and results presented in the book and to facilitate the
reader’s comprehension of the research presented in this thesis.

We start with the following essential assumption.

Definition 3.1.1. We say F is uniformly elliptic if there are two positive constants 0 < λ ≤ Λ, called
ellipticity constants, such that

λ∥N∥ ≤ F(M,x)−F(M+N,x)≤ Λ∥N∥,

for every M,N ∈ S(d) where N ≥ 0.

We write N ≥ 0 whenever N is a non-negative definite matrix. We consider the matrix norm
induced by the euclidean norm on Rd , i.e.,

∥N∥ := sup
|x|=1

Nx.

Recall that every N ∈ S(d) can be uniquely decomposed as N = N+−N− where N+,N− ≥ 0 and
N+N− = 0. We then have the following equivalent characterization.

Lemma 3.1.2. F is uniformly elliptic if and only if

F(M,x)≤ F(M+N,x)+Λ∥N+∥−λ∥N−∥.

21
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Proof. We start with the direct implication. Let M,N ∈ S(d) be arbitrary, write N = N+−N− as
above and call M′ := M−N−. Then

F(M,x)−F(M+N,x) =F(M,x)−F(M+N+−N−,x)

=F(M′+N−,x)−F(M′+N+,x)

=F(M′+N−,x)−F(M′,x)+F(M′,x)−F(M′+N+,x)

≤−λ∥N−∥+Λ∥N+∥,

as intended.
For the indirect implication, let N ≥ 0. Then

F(M,x)−F(M+N,x)≤ Λ∥N∥.

Also,

F(M+N,x)−F((M+N)−N,x)≤−λ∥N∥,

which implies

F(N,x)−F(M+N,x)≥ λ∥N∥.

Combining both, we get that F is uniformly elliptic.

Proposition 3.1.3. Let u and v be viscosity subsolutions of (3.1.1). Then h := max{u,v} is also a
viscosity subsolution of (3.1.1).

Proof. Let ϕ ∈ C2(B1) touch h from above at the point x0 (we can assume this without loss of
generality by Proposition 2.4.2 item 2). Supposing h(x0) = u(x0), then ϕ touches u from above at x0

and since u is a viscosity subsolution, F(D2ϕ(x0),x0)≤ f (x0), as intended.

The following result relates to extension of supersolutions.

Proposition 3.1.4. Let Ω and Ω1 be bounded domains such that Ω ⊂ Ω1. Suppose that u ∈C(Ω1)

is a viscosity supersolution of F(D2u,x) = f (x) in Ω1 and v ∈C(Ω) is a viscosity supersolution of
F(D2v,x) = g(x) in Ω.

Assume that v ≥ u on ∂Ω∩Ω1 and let

ω =

u in Ω1 \Ω,

min(u,v) in Ω

and

h =

 f , in Ω1 \Ω,

inf( f ,g), in Ω.

Then ω is a viscosity supersolution in Ω1 of F(D2ω,x) = h(x).
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Proof. Let ϕ ∈C2 touch ω from below at x0 ∈ Ω1. If ω(x0) = u(x0) then ϕ touches u from below
at x0, and therefore F(D2ϕ(x0),x0) ≥ f (x0) ≥ h(x0). If u(x0) < ω(x0) = v(x0) then x0 ∈ Ω (by the
assumption that v ≥ u on ∂Ω∩Ω1) and ϕ touches v from below at x0. It follows that F(D2ϕ(x0),x0)≥
g(x0)≥ h(x0).

An important result concerns the closedness of the family of viscosity solutions.

Proposition 3.1.5. Let {Fk}k∈N be a sequence of (λ ,Λ)-elliptic operators and let {uk}k∈N be a
sequence of viscosity subsolutions of Fk(D2uk,x)≤ f (x) in B1. Assume that Fk converges uniformly
in compact sets of S(d)×B1 to F and that uk converges locally uniformly to u ∈C(B1). Then F is
(λ ,Λ)-elliptic and

F(D2u,x)≤ f (x).

Proof. We start by proving that F is (λ ,Λ)-elliptic. Let M,N ∈ S(d) and assume N ≥ 0. For every
ε > 0, there exists k0 such that for every k ≥ k0, we have |Fk(M,x)−F(M,x)| ≤ ε∥M∥. Hence

F(M,x)−F(M+N,x)≤Fk(M,x)−Fk(M+N,x)+ ε(∥M+N∥+∥M∥)
≤(Λ+ ε)∥N∥+2ε∥M∥.

Letting ε ↓ 0, we obtain

F(M,x)−F(M+N,x)≤ Λ∥N∥.

Similarly we can prove the lower bound. We now prove that u is a viscosity subsolution of F(D2u,x)≤
f (x). Let x0 ∈ B1 be arbitrary and consider the paraboloid P that touches u from above at x0. Take
ε > 0 arbitrarily small and define

Pε(x) = P(x)+
ε

2
|x− x0|2.

Since uk → u locally uniformly, then for every δ > 0 there exists k0 such that for every k ≥ k0,

sup
x∈B9/10

|u(x)−uk(x)| ≤ δ .

Then, by continuity, uk −Pε attains a local maximum at some point xk, so we can write

(uk −Pε)(xk)≥(uk −Pε)(x0)

≥u(x0)−Pε(x0)−δ =−δ .

Furthermore,

Pε(xk)≥ u(xk)+
ε

2
|xk − x0|2,
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and so

(uk −Pε)(xk)≤uk(xk)−u(xk)−
ε

2
|xk − x0|2

≤δ − ε

2
|xk − x0|2.

Combining both estimates, we get

|xk − x0|2 ≤
4δ

ε

Fixing δ = ε3

4 , thus also fixing k0, we get

|xk − x0| ≤ ε.

Since uk −Pε has a local maximum at xk and uk is a viscosity subsolution of Fk(D2uk,x)≤ f , we get

Fk(D2P+ εI,xk)≤ f .

As ε ↓ 0, we get δ ↓ 0 and k → ∞ and thus

F(D2P,x)≤ f

since F is continuous and xk → x.

Remark 3.1.6. The previous Proposition is very useful when combined with Arzelà-Ascoli Theorem.
Indeed, if {Fk}k∈N is a sequence of (λ ,Λ)-elliptic operators, then they are equicontinuous and
equibounded on compact sets of S(d). Therefore, there exists a subsequence which converges to
some F . If we can prove similar properties for the solutions uk, then we can again use Arzelà-Ascoli
Theorem to conclude that uk → u locally uniformly, again up to a subsequence. Then Proposition
3.1.5 implies that the limit of the solutions solves a uniformly elliptic equation, which is extremely
useful.

3.2 Pucci operators and the class S of solutions

In this section, we are interested in replacing any equation of the form (1.0.2) with a couple of
inequalities which will depend only on the ellipticity constants λ and Λ. To motivate this idea, we
start with the linear equation

−Tr(A(x)D2u) = f (x) (3.2.1)
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where A(·) is a matrix function with eigenvalues in the interval [λ ,Λ]. Then, we can write

λ Tr D2u−−Λ Tr D2u+ ≤−Tr(A(x)D2u),

Λ Tr D2u−−λ Tr D2u+ ≥−Tr(A(x)D2u),

and so, by defining the Pucci extremal operators

P−
λ ,Λ(M) := λ Tr M−−Λ Tr M+,

P+
λ ,Λ(M) := Λ Tr M−−λ Tr M+,

we see that u also satisfies the following inequalities

P−
λ ,Λ(D

2u)≤ f ,

P+
λ ,Λ(D

2u)≥ f .

This argument can be generalized to any (λ ,Λ)-elliptic operator F , provided

F(0,x)≡ 0, for x ∈ B1. (3.2.2)

We shall always assume (3.2.2) holds true. This is not restrictive since we can rewrite (3.1.1) as

G(D2u,x) := F(D2u,x)−F(0,x) = f (x)−F(0,x).

Before proving this fact, we start with some important definitions and basic properties.

Definition 3.2.1. We denote by S(λ ,Λ, f ) the space of viscosity subsolutions of the extremal equation

P−
λ ,Λ(D

2u)≤ f .

Similarly, we denote by S(λ ,Λ, f ) the space of viscosity supersolutions of the extremal equation

P+
λ ,Λ(D

2u)≥ f .

We also define

S(λ ,Λ, f ) := S(λ ,Λ, f )∩S(λ ,Λ, f )

and

S∗(λ ,Λ, f ) := S(λ ,Λ, | f |)∩S(λ ,Λ,−| f |).

Remark 3.2.2. For simplicity, we will often omit the ellipticity constants in all the objects we have
just defined. We also use the notation S(0) = S and similarly for the remaining classes of solutions.
We have the simple inclusion S( f )⊂ S∗( f ) and S = S∗.

We present some basic properties of the Pucci operators.



26 Uniformly elliptic equations

Lemma 3.2.3.

(1) P−(M)≤ P+(M);

(2) If λ ′ ≤ λ ≤ Λ ≤ Λ′, then

P+
λ ,Λ(M)≤ P+

λ ′,Λ′(M)

and

P−
λ ,Λ(M)≥ P−

λ ′,Λ′(M);

(3) P−(M) =−P+(−M);

(4) P±(αM) = αP±(M) whenever α ≥ 0;

(5) P−(M)+P+(N)≤ P+(M+N)≤ P+(M)+P+(N);

(6) P−(M)+P−(N)≤ P−(M+N)≤ P−(M)+P+(N);

(7) If N ≥ 0 then −Λ∥N∥ ≤ P−(N)≤ P+(N)≤−dλ∥N∥;

(8) P± are uniformly elliptic operators with ellipticity constants λ and dΛ.

Similar properties also hold for the classes of solutions.

Lemma 3.2.4.

(1) If λ ′ ≤ λ ≤ Λ ≤ Λ′ then S(λ ,Λ, f )⊂ S(λ ′,Λ′, f ). The same holds for S, S and S∗;

(2) If u ∈ S( f ) then −u ∈ S(− f );

(3) Let α > 0, r > 0, u ∈ S( f ) and define v(x) = αu(x/r), for x ∈ Br. Then v ∈ S(α f (x/r)/r2);

(4) Let u ∈ S( f ), ϕ ∈C2(B1) and P+(D2ϕ(x))≤ g(x), for x ∈ B1. Then u−ϕ ∈ S( f −g).

The following proposition generalizes the argument in the beginning of this section to the fully
nonlinear case.

Proposition 3.2.5. Let u be a viscosity subsolution of F(D2u,x) ≤ f (resp. supersolution of
F(D2u,x)≥ f ). Then

u ∈ S
(

λ

d
,Λ, f

)
(resp. u ∈ S

(
λ

d
,Λ, f

)
).

More generally, for any ϕ ∈C2(B1), we have

u−ϕ ∈ S
(

λ

d
,Λ, f (x)−F(D2

ϕ(x),x)
)

(resp. u−ϕ ∈ S
(

λ

d
,Λ, f (x)−F(D2

ϕ(x),x)
)
).
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Proof. We only prove the second statement since it implies the first one by choosing ϕ = 0 and
recalling (3.2.2).

Let ϕ ∈C2(B1) be an arbitrary function. We want to prove that

u−ϕ ∈ S
(

λ

d
,Λ, f (x)−F(D2

ϕ(x),x)
)
,

that is, if ψ ∈C2(B1) is a function which touches u−ϕ from above at x0, then

P−
λ/d,Λ(D

2
ψ(x0))≤ f (x0)−F(D2

ϕ(x0),x0).

Note that in this case the function ϕ +ψ touches u from above at x0. Hence

f (x0)≥F(D2
ϕ(x0)+D2

ψ(x0),x0)

≥F(D2
ϕ(x0),x0)−Λ∥D2

ψ(x0)
+∥+λ ∥D2

ψ(x0)
−∥

≥F(D2
ϕ(x0),x0)−Λ Tr D2

ψ(x0)
++

λ

d
Tr D2

ψ(x0)
−

=F(D2
ϕ(x0),x0)+P−

λ/d,Λ(D
2
ψ(x0)),

which is the desired inequality. In the first inequality, we used that u is a viscosity subsolution of
F(D2u,x)≤ f and the second inequality follows from Lemma 3.1.2.

3.3 Examples of fully nonlinear equations

1. Isaacs Equations Let A and B be any index sets and Aα,β (·) be matrix functions with
eigenvalues in [λ ,Λ]. Then Isaac’s equation is of the form

F(D2u,x) := sup
β∈B

inf
α∈A

(−Tr Aα,β (x)D
2u− fα,β (x)) = 0.

This important class of equations arises in stochastic differential games, see [54]. We stress the
fact that these operators are fully nonlinear, lack differentiability and are non-convex/concave.

2. Bellman Equations In the particular case when |B|= 1, we get the simpler equation

F(D2u,x) := inf
α∈A

(−Tr Aα(x)D2u− fα(x)) = 0.

Since we are taking the infimum of linear functions, F(·,x) is a concave function. This operator
describes the optimal cost in a stochastic control problem, see [42].

3.4 Alexandroff-Bakelman-Pucci estimate

The Alexandroff-Bakelman-Pucci estimate, often abbreviated ABP estimate, is a form of maximum
principle for weak solutions of nonlinear elliptic equations. It provides a pointwise estimate on
solutions in terms of a measure theoretic quantity.
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We start with some definitions and properties regarding convex functions.

Definition 3.4.1. Let ω be a function defined in a set A ⊂ Rd and let x0 ∈ A. If ℓ is an affine function
that touches ω from below at x0 in A, then we say that ℓ is a supporting hyperplane of ω at x0.

Remark 3.4.2. We recall that if A is an open convex set and ω is a convex function defined on A, then
it admits a supporting hyperplane at every point x0 ∈ A, however this hyperplane may not be unique
(in case ω is not C1). The existence of this supporting hyperplane is guaranteed by Hahn-Banach
theorem applied to the open convex set {(x,y) ∈ A×R : y > ω(x)}.

Definition 3.4.3. Let v be a continuous function in an open convex set A. The convex envelope of v in
A is defined as

Γv(x) :=sup
ω

{ω(x) : ω ≤ v in A, ω convex in A}

=sup
ℓ
{ℓ(x) : ℓ≤ v in A, ℓ is affine}

Clearly Γv is a convex function in A. The set {v = Γv} is called the (lower) contact set of v. The
points in the contact set are called contact points.

The classical ABP estimate states that any strong supersolution u of the linear elliptic problem−Tr(A(x)D2u)≥ f , for x ∈ B1,

u(x)≥ 0, for x ∈ ∂B1,

satisfies the estimate

sup
B1

u− ≤C

(∫
{Γu=u}

(
f−

D∗

)d
) 1

d

,

where D∗ corresponds to the geometrical average of the eigenvalues of A. For a proof of this result
see [31, Section 9.1]. In this chapter we will present an adaptation of the classical ABP estimate to
viscosity solutions of fully nonlinear equations, developed by Caffarelli in [13, 14], stated as follows.

Theorem 3.4.4. Let u ∈ S( f ) in BR where f is a continuous and bounded function. Assume that u is
continuous in BR and u ≥ 0 on ∂BR. Then

sup
BR

u− ≤CR
(∫

BR∩{u=Γu}
( f−)d

) 1
d

. (3.4.1)

Here we have extended u by zero outside of BR, so that −u− is continuous in B2R; Γu corresponds to
the convex envelope of −u− in B2R and C is a universal constant.

The fact that the source term f only contributes over the contact set should not be overlooked and
will play an important role in the future. The main difficulty in proving Theorem 3.4.3 for a viscosity
supersolution is the fact that u might be very irregular. However, we will prove that Γu is C1,1 and so
the proof of the classical ABP estimate for strong solutions applies. The following result proves this
regularity at contact points.
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Lemma 3.4.5. Let u ∈ S( f ) in Bδ . Assume that f is bounded and continuous, and that ϕ is a convex
function in Bδ such that 0 ≤ ϕ ≤ u in Bδ and 0 = ϕ(0) = u(0). Then

ϕ(x)≤C

(
sup
Bδ

f−
)
|x|2, for x ∈ Bνδ , (3.4.2)

where ν < 1 and C are positive universal constants.

Proof. Fix 0 < r ≤ δ/4 and define

C =
1
r2 sup

Br

ϕ.

Since ϕ is convex, it must attain its supremum at the boundary, therefore there must exist x0 ∈ ∂Br

such that

Cr2 = ϕ(x0).

Since the set B := {x ∈ Bδ : ϕ(x)≤Cr2} is convex and includes Br, the same reasoning implies that
x0 ∈ ∂B. It follows from Remark 4 that there exists a supporting hyperplane H to B at x0. Since
x0 ∈ ∂B∩ ∂Br, this H is unique and corresponds to the tangent hyperplane in Rd to Br that passes
through x0. Indeed, if there exist two distinct hyperplanes supporting B at x0, then B has to “curve in a
non C1 way" at x0, and since x0 ∈ Br ⊂ B, it has to curve “outwards", which violates the convexity
property.

Thus

ϕ ≥Cr2, for x ∈ H ∩Bδ . (3.4.3)

For convenience and without loss of generality, we can assume that x0 = (0, . . . , 0, r) and H = {x ∈
Rd : xd = r}. We write x = (x′,xd) where x′ ∈ Rd−1.

Consider the open set A := Bδ/2 ∩{−r < xd < r} obtained by cutting Bδ/2 by H and −H. Then
∂A = A1 ∪A2 ∪A3, where

A1 = Bδ/2 ∩{xd = r},
A2 = Bδ/2 ∩{xd =−r},
A3 = ∂Bδ/2 ∩{−r ≤ xd ≤ r}.

By (3.4.3) and since ϕ ≥ 0 in Bδ , we get

ϕ ≥Cr2 in A1 and ϕ ≥ 0 in A2 ∪A3. (3.4.4)

To complete the proof, it suffices to obtain an upper bound for C. To do so, we will construct a
barrier function P which curves upwards “too much" in the direction xd and is therefore a subsolution
of some extremal equation. It will additionally curve downwards in the remaining directions x′ to
guarantee that it touches u from below at some point y ∈ A. Since u ∈ S( f ), P will be a supersolution
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to the extremal equation

P+(D2P)≥ f (y).

Combining both extremal equations will yield the desired estimate. For this purpose, define the
paraboloid

P(x) =
C
8
(xd + r)2 −4C

r2

δ 2 |x
′|2.

In A3, δ 2/4 = |x|2 ≤ |x′|2 + r2 ≤ |x′|2 +δ 2/16. Hence

4C
r2

δ 2 |x
′|2 ≥ 3

4
Cr2.

Therefore P ≤Cr2 in A1 and P ≤ 0 in A2 ∪A3. Combining this with (3.4.4) we get P ≤ ϕ ≤ u in ∂A.
On the other hand, P(0)> 0 = ϕ(0) = u(0). It follows that u−P attains its minimum at some interior
point y ∈ A and so an appropriate vertical translation of P, call it again P, touches u from below at
y ∈ A. Since u ∈ S( f ), at the point y it must hold

P+(D2P)≥ f (y)≥−sup
Bδ

f−. (3.4.5)

Since

D2P = diag
(
−8C

r2

δ 2 , . . . ,−8C
r2

δ 2 ,
C
4

)
,

we can explicitly compute

P+(D2P) =−λC
4

+Λ(d −1)8C
r2

δ 2 .

Taking

r ≤ δ

8

√
λ

(d −1)Λ
,

we get

P+(D2P)≤−λC
8

.

Combining this with (3.4.5), we conclude that

C ≤ 8
λ

sup
Bδ

f−.
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Therefore supBr
ϕ ≤ (8/λ )(supBδ

f−)r2. Taking r = |x| we obtain (3.4.2) with

ν =
1
8

√
λ

(d −1)Λ
.

The following result relates the pointwise behavior of a function u with a measure theoretical
behaviour of its convex envelope Γu. Note that we do not require u ∈ S( f ), therefore this result is
independent of the differential equation. See [31, Section 9.1] for a more detailed proof.

Lemma 3.4.6. Let u ∈C(BR) satisfy u ≥ 0 on ∂BR and let Γu be defined as in Theorem 3.4.3. Assume
further that Γu ∈C1,1(BR).

Then there exists a set A ⊂ BR such that |BR \A| = 0, Γu is second order differentiable at any
x ∈ A and

sup
BR

u− ≤C(d)R
(∫

A
det D2

Γu

) 1
d

, (3.4.6)

where C(d) is a dimensional constant.

Proof. Since the proof if trivial if u ≥ 0, we may assume that u− ̸≡ 0. From u− = 0 on ∂BR we have
that

M := sup
BR

u− = u−(x0)> 0,

for some x0 ∈ BR. The idea of the proof is to use the area formula (see Theorem 2.5.4) to the Lipschitz
map DΓu. The main step is to obtain

BM/3R ⊂ DΓu(BR), (3.4.7)

i.e., for every y∈BM/3R, there exists x∈BR such that y=DΓu(x). Since Γu is convex and continuously
differentiable, DΓu(x) corresponds to the gradient of the corresponding hyperplane of Γu at x. For
each number C and each vector ξ ∈ BM/3R, consider the affine function L(x) =C+ξ · (x− x0). We
will prove that for every ξ ∈ BM/3R, there exists C such that L touches u from below at a point x∗ ∈ BR.
Indeed, if this is not true, then there exists C such that L touches u from below at x∗ ̸∈ BR. Since
−u− ≡ 0 outside BR, x∗ ∈ ∂B2R and L(x∗) = u(x∗) = 0. Note also that

−M = u(x0)> L(x0) =C.

Hence

L(x∗)<−M+ξ · (x∗− x0)

≤−M+ |ξ | |x∗− x0|

≤−M+
M
3R

3R = 0
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which is a contradiction. This proves (3.4.7). By considering the measures of these sets, we get

C(d)
Md

Rd ≤ |DΓu(BR)|. (3.4.8)

By Theorem 2.5.4 we know that DΓu is differentiable almost everywhere in BR. That is, DΓu is
differentiable at any x ∈ A with |BR \A|= 0. Therefore, applying the area formula (see again Theorem
2.5.4) and recalling that since Γu is convex, D2Γu(x)≥ 0 for every x ∈ A,

|DΓu(BR)| ≤
∫

A
detD2

Γu.

Combining this with (3.4.8) we get

C(d)
Md

Rd ≤
∫

A
detD2

Γu.

In order to conclude Theorem 3.4.3 from Lemma 3.4.5, it suffices to prove that Γu ∈ C1,1(BR)

and det D2Γu(x) = 0 a.e. x ∈ BR \{u = Γu}. Lemma 3.4.4 already addresses the contact points. The
following result studies the remaining points. Note that again we don’t assume that u belongs to S( f ).

Lemma 3.4.7. Let u ∈C(BR) such that u ≥ 0 on ∂BR and let Γu be defined as in Theorem 3.4.3. Fix
K > 0 and 0 < r ≤ R and assume that for any x0 ∈ BR ∩{u = Γu} there exists a convex paraboloid of
opening K that touches Γu by above at x0 in Br(x0); that is, with the terminology of Section 2.5,

Θ(Γu,Br(x0))(x0)≤ K, for x0 ∈ Bd ∩{u = Γu}. (3.4.9)

Then Γu ∈C1,1(BR) and hence there exists a set A ⊂ BR such that |BR \A|= 0 and Γu is second
order differentiable at any x ∈ A. Moreover, we have that

sup
BR

u− ≤C(d)R
(∫

A∩{u=Γu}
det D2

Γu

) 1
d

,

where C(d) is a dimensional constant.

Recall that Γu is defined as the convex envelope in B2R of −u−, after extending u = 0 outside
BR. Therefore (Γu)|∂B2R ≡ 0 and by convexity, Γu ≤ 0 in B2R. Since Theorem 3.4.3 is trivial when
u ≥ 0, we can (and do) assume that there exists some point z ∈ BR such that u(z)< 0 and so Γu < 0 in
B2R. Note also that Γu has a supporting hyperplane at every point in B2R, i.e., for any x0 ∈ B2R, there
exists an affine function ℓ that touches Γu from below at x0 ∈ B2R – see Remark 4 when x0 ∈ B2R; if
x0 ∈ ∂B2R the existence of ℓ follows from the fact that Γu in polar coordinates is affine with respect
to r for R ≤ r ≤ 2R. Indeed, it is clear that {u = Γu} ⊂ BR since u ≡ 0 in B2R \BR and Γu < 0 in B2R.
Let now e ∈ ∂B1 and R ≤ r ≤ 2R. We can write r = λR+(1−λ )2R with λ = 2− r/R and we want
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to prove that

Γu(re) =λΓu(Re)+(1−λ )Γu(2Re)

=
(

2− r
R

)
Γu(Re).

Defining the affine function

fe(r) =
(

2− r
R

)
Γu(Re),

by convexity of Γu, it holds Γu(re) ≤ fe(r). Since fe is also convex and f (r) ≤ 0 = u(re) for
R ≤ r ≤ 2R, by maximality of Γu it must hold Γu(re) ≥ fe(r), which implies that Γu is affine with
respect to r.

Now we present the proof of Lemma 3.4.6.

Proof of Lemma 3.4.6. By Lemma 3.4.5 it suffices to prove that Γu ∈C1,1(BR) and

det D2
Γu(x) = 0, a.e. x ∈ BR \{u = Γu}. (3.4.10)

To prove this, we will observe that for a.e. x ∈ BR \ {u = Γu}, Γu behaves linearly in at least one
direction e at a neighborhood of x hence in this direction ∂ 2

e Γu = 0 and therefore (3.4.10) follows.
As we noted before, for any y0 ∈ BR ∩{u = Γu}, there is a hyperplane L0 that touches Γu from

below at y0; by (3.4.9), there is a paraboloid that touches Γu from above at y0. It follows that u ∈C1,1

at y0, that L0(y) = Γu(y0)+DΓu(y0) · (y− y0) and

Θ(Γu,Br(y0))(y0)≤ K, for y0 ∈ BR ∩{u = Γu}. (3.4.11)

Step 1 – Let x0 ∈ BR \{u = Γu} and let L be the supporting hyperplane for Γu at x0 in B2R. We claim
the following

(a) x0 belongs to a simplex S with vertices x1, . . . ,xd+1, (i.e. S is the convex hull of the set
{x1, . . . ,xd+1}) and L = Γu in this simplex. The points x1, . . . ,xd+1 need not be all distinct.
Moreover, all vertices xi are in BR ∩{u = Γu}, except for possibly one xd+1 ∈ ∂B2R.

(b) If we write x0 = ∑
d+1
1 λixi, where λi are non-negative and add up to 1, then λi ≥ 1/(3d) for at

least one index i for which xi ∈ BR ∩{u = Γu}.

We start by proving the claim. Since Γu is convex, it has a supporting hyperplane at x0, i.e., there
exists an affine function L that touches Γu from below at x0. By maximality of Γu, this L has to touch
−u− at at least one point in B2R, since otherwise we could slide up the function L until we touch −u−

thus violating the maximality of Γu. Therefore the closed convex hull C of {x ∈ B2R : L(x) =−u−(x)}
is nonempty.

Assume that x0 /∈ C. Let a = dist(x0,C) and y0 ∈ C be the only point such that |x0 − y0| = a.
Define

ℓ(x) =
a
2
− y0 − x0

2
· (x− x0).
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Then ℓ(x0)> 0 and for every y ∈C,

ℓ(y)≤ ℓ(y0)< 0.

There exists a small ε > 0 such that if we define the open set Cε := {x ∈ B2R : dist(x,C)< ε}, ℓ is still
negative in Cε . Furthermore, since −u−−L > 0 outside of C, there exists a small ε1 > 0 such that
−u−−L > ε1 outside of Cε . Let M := maxB2R

ℓ and δ = ε1/M. Then L+δℓ≤−u− in B2R.

However, by maximality of Γu,

Γu(x0)≥ (L+δℓ)(x0)> L(x0)

which contradicts the fact that Γu(x0) = L(x0). Hence x0 ∈C.

We can therefore apply Caratheodory’s theorem which implies that x0 is the convex combination
of d +1 points x1, . . . ,xd+1 in {x ∈ B2R : L(x) =−u−(x)}. We easily check that there is at most one
xi ∈ ∂B2R, since otherwise there is a line segment [xi,x j]⊂ B2R such that for every y in the open line
segment (xi,x j), 0 = L(y)≤ Γu(y) which contradicts the fact that Γu < 0 in B2R. For the same reason,
there is no xi in B2R \BR. This proves part (a) of the claim.

We now prove (b). If all xi belong to BR, then λi ≥ 1/(d +1)≥ 1/(3d) for at least one index i. If
on the other hand xd+1 ∈ ∂B2R and λi < 1/(3d) for every i = 1, . . . ,d, then λd+1 > 2/3 and therefore

|x0| ≥λd+1|xd+1|−
d

∑
i=1

λi|xi|

>
2
3

2R− 1
d

dR = R

which is a contradiction, since x0 ∈ BR. This concludes Step 1 which implies that for every x0 ∈
BR \{u = Γu}, there exists an open line segment through x0 where Γu is affine. Therefore to complete
the proof it suffices to prove that Γu is twice differentiable a.e. in BR. We do this by proving that
Γu ∈C1,1(BR).

Step 2 – Let x0 and L be as in Step 1 and take h ∈ Rd with |h|< R. By (b), we can relabel xi such
that x1 ∈ BR ∩{u = Γu} and λ1 ≥ 1/(3d) and write

x0 +h = λ1

(
x1 +

h
λ1

)
+λ2x2 + · · ·+λd+1xd+1.

Since L touches Γu from below and Γu is convex, we have

L(x0 +h)≤ Γu(x0 +h)≤ λ1Γu

(
x1 +

h
λ1

)
+λ2Γu(x2)+ · · ·+λd+1Γu(xd+1).

Supposing that |h|< r/(3d), we have |h|/λ1 < r. Recall that L is a supporting hyperplane for Γu at
x1 ∈ BR ∩{u = Γu} and L(x) = Γu(x1)+DΓu(x1) · (x− x1); this together with (3.4.11) applied with
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y0 replaced by x1 give

L(x0 +h)≤ Γu(x0 +h)≤λ1

(
L
(

x1 +
h
λ1

)
+

K
2

∣∣∣∣ h
λ1

∣∣∣∣2
)

+λ2L(x2)+ · · ·+λd+1L(xd+1).

Therefore

Θ(Γu,Br/(3d)(x0))(x0)≤ 3dK, for x0 ∈ BR \{u = Γu},

which combined with (3.4.11) gives

Θ(Γu,Br/(3d))≤ 3dK

for every x ∈ BR. We can now apply Proposition 2.5.1 which implies that Γu ∈C1,1.

To complete the proof, let x ∈ A∩ (BR \ {u = Γu}). Recall that |BR \A| = 0 and Γu is twice
differentiable in A. Since there exists a line segment [x−h,x+h] for some |h| ≪ 1 where Γu is affine,
it follows

h ·D2
Γu(x)h = 0.

This combined with the fact that D2Γu is a symmetric non-negative definite matrix implies that it has
at least one eigenvalue which is zero, therefore (3.4.10) follows.

We are now ready to prove Theorem 3.4.3.

Proof of Theorem 3.4.3. We claim that

Θ(Γu,BνR(x0))(x0)≤C sup
BR

f−, for x0 ∈ BR ∩{u = Γu} (3.4.12)

and

detD2
Γu(x0)≤C f−(x0), a.e. x0 ∈ BR ∩{u = Γu}, (3.4.13)

where C and ν < 1 are positive universal constants. Theorem 3.4.3 follows immediately from this
claim using Lemma 3.4.6 with r = νR and K =C supBR

f−.

We proceed by proving the claim. Take x0 ∈ BR∩{u = Γu} and let L be the supporting hyperplane
for Γu at x0. Proposition 3.1.4 applied with F = P+ implies that −u− = min(u,0) ∈ S(λ ,Λ, f−χBR)

in B2R.

Since L is affine, Γu −L is convex and −u−−L ∈ S(λ ,Λ, f−χBR) in B2R. We also have (for every
0 < δ < R) that Bδ (x0)⊂ B2R, 0 ≤ Γu −L ≤−u−−L in Bδ (x0) and equalities hold at x0. Applying
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Lemma 3.4.4 with u replaced by −u−−L we get

L(x)≤ Γu(x)≤ L(x)+C

(
sup

Bδ (x0)

f−χBR

)
|x− x0|2,

for every x0 ∈ Bνδ (x0). This implies (3.4.12) and letting δ → 0 by continuity of f we get (3.4.13)
which proves the claim.

As an immediate corollary we obtain the maximum principle for viscosity solutions.

Corollary 3.4.8. Let u ∈C(Ω). Then

(1) if u ∈ S and u ≤ 0 on ∂Ω then u ≤ 0 in Ω.

(2) if u ∈ S and u ≥ 0 on ∂Ω then u ≥ 0 in Ω.

3.5 Harnack inequality and Hölder continuity

This section is dedicated to obtaining the Harnack inequality for uniformly elliptic equations. It
consists of a quantitative version of the strong maximum principle in the sense that it quantifies how
far from zero a nonnegative solution of an elliptic equation is allowed to go. This quantity is measured
by the Ld norm of the source term f plus the value of u at a particular point, multiplied by a universal
constant.

We start with two important tools: a barrier function which controls the behavior of u and a
corollary of the Calderón-Zygmund cube decomposition. With these tools, we can use the ABP
estimate obtained in the previous section in an appropriate iterative way to obtain an Lε (or weak
Harnack) estimate for u, that is, we obtain an exponential decay for the distribution function of u.
Since this estimate is universal, we can apply the same reasoning to the function C1 −C2u and obtain
the Harnack inequality for u. As immediate consequences of this proof, we obtain the weak Harnack
inequality and a local maximum principle.

We conclude this section with the first regularity result for solutions of uniformly elliptic equations.
Indeed, we prove that functions in the class S( f ) are Hölder continuous in the interior of their domain.
The importance of this result is two-fold: first of all, it provides the first compactness result for
solutions, opening the way to use Proposition 3.1.5, recall also Remark 2. Secondly, we emphasize
that this regularity result holds for the large class S( f ), which we recall, corresponds to the class of
subsolutions and supersolutions of the extremal Pucci equations. As we will see later in this chapter,
it turns out that if u is a viscosity solution of F(D2u,x) = 0, then the first order quotient differences of
u, defined as Dhu(x) = u(x+h)−u(x)

|h| which approximate it’s first derivatives, belong to the class S and
thus are Hölder continuous with universal estimates (in particular, independent of h). Therefore, we
again resort to Proposition 3.1.5 combined with Remark 2 to take the limit |h| → 0 and get u ∈C1 and
Du ∈Cα , that is, u ∈C1,α .

3.5.1 Barrier function and cube decomposition

We start by constructing a barrier function.
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Lemma 3.5.1. Given the constants 0 < λ ≤ Λ, there exists a smooth function ϕ in Rd and positive
universal constants C and M > 1 such that

ϕ ≥ 0, in Rd \B2
√

d , (3.5.1)

ϕ ≤−2, in Q3, (3.5.2)

P−(D2
ϕ)≥−Cξ in Rd , (3.5.3)

where 0 ≤ ξ ≤ 1 is a continuous function in Rd with suppξ ⊂ Q1. Recall that Q1 ⊂ Q3 ⊂ B2
√

d .
Moreover, ϕ ≥−M in Rd .

Proof. Let α := max{1,(d −1)Λ/λ −1}. Note that

B1/4 ⊂ B1/2 ⊂ Q1 ⊂ Q3 ⊂ B3
√

d/2 ⊂ B2
√

d .

Define

ϕ(x) := M1 −M2|x|−α , for x ∈ Rd \B1/4;

we fix

M1 :=
21−α(3

2

)−α −2−α
> 0

and

M2 :=
2dα/2(3

2

)−α −2−α
> 0,

such that
ϕ|∂B2

√
d
≡ 0 and ϕ|∂B3

√
d/2

≡−2,

therefore (3.5.1) holds. We further extend ϕ smoothly to all Rd such that (3.5.2) holds. Note that this
extension depends only on d, λ and Λ.

We finally check (3.5.3) by computing the hessian in polar coordinates (r,θ1, . . . ,θd−1). Since ϕ

is radially symmetric we can assume that x = (r,0, . . . ,0). For r ≥ 1/4 we have

∂i jϕ = 0 if i ̸= j,

∂iiϕ = M2αr−α−2 if i > 1,

∂11ϕ =−M2α(1+α)r−α−2.

By the definition of P− and the choice of α we get, for |x| ≥ 1/4

P−(D2
ϕ)(x) =λ Tr D2

ϕ
−−Λ Tr D2

ϕ
+

=λM2α(1+α)|x|−α−2 − (d −1)ΛM2α|x|−α−2

=λαM2|x|−α−2((1+α)− (d −1)Λ/λ
)
> 0.
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Since the extension of ϕ depends only on universal constants, we further have for |x| ≤ 1/4,

P−(D2
ϕ)(x)≥−C(d,λ ,Λ).

We now take 0 ≤ ξ ≤ 1 smooth such that ξ ≡ 1 in B1/4 and ξ ≡ 0 outside B1/2 so that (3.5.3)
holds.

Next we introduce the second tool we will need in the remaining of this section. It is a corollary of
the Calderón-Zygmund cube decomposition. We start by introducing some terminology. We start with
the unit cube Q1. The first iteration consists of splitting this cube into 2d identical cubes of half length
and we then repeat this iteration to each subcube. The cubes obtained this way are called dyadic
cubes.

If Q is a dyadic cube different from Q1, we say that a cube is the predecessor of Q, and denoted
by Q̃, if Q is one of the 2d cubes obtained from dividing Q̃.

Lemma 3.5.2. Let A ⊂ B ⊂ Q1 be measurable sets and 0 < δ < 1 satisfying

(a) |A| ≤ δ ,

(b) If Q is a dyadic cube such that |A∩Q|> δ |Q|, then Q̃ ⊂ B.

Then |A| ≤ δ |B|.

Proof. We use the Calderón-Zygmund cube decomposition technique of the L1 function χA; see
section 9.3 of [31]. The idea is to subsequently divide A into very small cubes until they all satisfy the
first part of (b). Since

|Q1 ∩A|
|Q1|

= |A| ≤ δ ,

Q1 does not satisfy (b), so we divide Q1 into 2d dyadic cubes and we keep all the “good" subcubes,
i.e. the ones that satisfy (b). If Q is a “bad" cube, that is if it satisfies

|Q∩A|
|Q|

≤ δ ,

then we again split Q into 2d dyadic cubes and repeat the argument. In this way, we pick a family
Q1,Q2, . . . of “good" cubes satisfying

|Qi ∩A|
|Qi|

> δ , ∀i.

We now prove that this family of cubes exhausts A, in measure. If x ̸∈
⋃

Qi, then x belongs to
an infinite number of closed dyadic cubes Q with diameter tending to zero, so we can write Q → x.
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Applying the Lebesgue differentiation theorem to χA at x, we get that

χA(x) = lim
Q→x

1
|Q|

∫
Q

χA dλ

= lim
Q→x

|Q∩A|
|Q|

≤ δ < 1.

Since

χA(x) =

1, for x ∈ A,

0, for x ̸∈ A,

we see that the set of points in A which don’t belong to
⋃

Qi has measure zero.

Consider the family of predecessors of the cubes Qi. Since we can have repeated cubes, we relabel
them so that {Q̃i}i∈N are pairwise disjoint. Recalling that we only divided the “bad" cubes, we see
that

|Q̃i ∩A|
|Q̃i|

≤ δ .

Furthermore, from (b) we have that Q̃i ⊂ B, for any i ≥ 1. Hence

A ⊂
⋃
i≥0

Q̃i ⊂ B.

We conclude that

|A| ≤ ∑ |Q̃i ∩A| ≤ δ ∑ |Q̃i|= δ |∪ Q̃i| ≤ δ |B|.

3.5.2 Harnack inequality

We present the following inequality for viscosity solutions of uniformly elliptic equations.

Theorem 3.5.3. Let u ∈ S∗( f ) in Q1 satisfy u ≥ 0 in Q1, where f is continuous and bounded in Q1.
Then

sup
Q1/2

u ≤C
(

inf
Q1/2

u+∥ f∥Ld(Q1)

)
,

where C > 1 is a universal constant.

The proof of this theorem will have important consequences, which we detail later. Recall that
S∗( f ) = S∗(λ ,Λ, f ) = S(λ ,Λ, | f |)∩S(λ ,Λ,−| f |). It is convenient to instead prove this result under
a smallness regime.
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Lemma 3.5.4. Let u ∈ S∗( f ) in Q4
√

d , u ∈C(Q4
√

d) satisfy u ≥ 0 in Q4
√

d , where f is continuous and
bounded in Q4

√
d . Assume that infQ1/4 u ≤ 1 and ∥ f∥Ld(Q4

√
d)
≤ ε0. Then supQ1/4

u ≤C, where ε0 and
C are universal constants.

Indeed Theorem 3.5.3 follows from Lemma 3.5.4 by the following reasoning. Take u ∈ S∗( f )∩
C(Q4

√
d) with u ≥ 0 in Q4

√
d . For any δ > 0, consider the function

uδ := u
(

inf
Q1/4

u+δ +
∥ f∥Ld

ε0

)−1

.

By the properties of the Pucci operators, we have

uδ ∈ S∗
(

f
(

inf
Q1/4

u+δ +
∥ f∥Ld

ε0

)−1
)
.

Moreover, uδ falls in the smallness regime of Lemma 3.5.4 which gives, after letting δ → 0,

sup
Q1/4

u ≤C
(

inf
Q1/4

u+∥ f∥Ld(Q4
√

d)

)
. (3.5.4)

To get Theorem 3.5.3, we proceed with the standard covering argument: Take x0, x1 ∈ Q2
√

d such
that u(x0) = supQ2

√
d

u and u(x1) = infQ2
√

d
u. Consider an overlapping chain of cubes Q1, . . . ,QN

connecting x0 to x1, where N is bounded by a constant which depends only on d. Note that since they
overlap, we have for every i that infQi u ≤ supQi+1 u. Therefore

u(x0) =sup
Q1

u ≤C
(

inf
Q1

u+∥ f∥Ld(Q4
√

d)

)

≤C

(
sup
Q2

u+∥ f∥Ld(Q4
√

d)

)

≤C
(

C
(

inf
Q2

u+∥ f∥Ld(Q4
√

d)

)
+∥ f∥Ld(Q4

√
d)

)
=C2 inf

Q2
u+(C+1)∥ f∥Ld(Q4

√
d)

≤·· · ≤CN inf
QN

u+
N−1

∑
i=0

Ci ∥ f∥Ld(Q4
√

d)

≤C
(

u(x1)+∥ f∥Ld(Q4
√

d)

)
,

where C is still universal. After a simple rescaling we obtain Theorem 3.5.3.

The idea of the proof of Harnack inequality is the following. Let u be as in Lemma 3.5.4 and let
λu(t) := |{u > t}∩Q1| be its distribution function. It suffices to prove that

λu(t)≡ 0, for t ≥C, (3.5.5)

with C universal. This will be done through two steps:
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(a) First, we prove some power decay for λu, i.e., λu(t)<Ct−ε , for some universal C and ε . This
is accomplished using Lemmas 3.5.1, 3.5.2 and the ABP estimate.

(b) Then, using step (a), we prove the same decay for all C1 −C2u (where C1 and C2 are positive
constants) at every scale, that is, every small cube. From this, we get λu ≡ 0 for t ≥C.

Remark 3.5.5. Step (b) is the difficult part of the proof and corresponds to Lemma 3.5.7. The main
idea is the following: we prove (3.5.5) by contradiction, by noting that if there exists a point x0 such
that u(x0)>C is universally large, then for a universally small cube Q containing x0, supQ u ≥ νu(x0),
where ν > 1 is also universal. That is, there exists a point x1 close to x0 satisfying u(x1)> νC. After
rescaling and translating, we can iterate this result, getting a sequence of points xn → x∞ ∈ Q1/2 such
that u(xn)→+∞, which is a contradiction since u is continuous.

We start with some lemmas. Here f will always be a continuous and bounded function on Q4
√

d .

Lemma 3.5.6. There exist universal constants ε0 > 0, 0 < µ < 1 and M > 1, such that if u ∈ S(−| f |)
in Q4

√
f , u ∈C(Q4

√
d) and f satisfy

u ≥ 0, in Q4
√

d , (3.5.6)

inf
Q3

u ≤ 1 and (3.5.7)

∥ f∥Ld(Q4
√

d)
≤ ε0, (3.5.8)

then

|{u ≤ M}∩Q1|> µ. (3.5.9)

Proof. Let ϕ be the barrier function introduced in Lemma 3.5.1 and define ω := u+ϕ . Recall that
B2

√
d ⊂ Q4

√
d , ϕ is smooth and P−(D2ϕ)≥−Cξ . By property (4) of Lemma 3.2.3 we have

ω ∈ S(−| f |−Cξ ) in B2
√

d .

We have that ω ∈C(B2
√

d) and ω ≥ 0 on ∂B2
√

d by (3.5.6) and (3.5.1). We also have that infQ3 ω ≤−1
by (3.5.7) and (3.5.2). Applying the ABP estimate in Theorem 3.4.3 to ω we get

1 ≤C

(∫
{ω=Γω}∩B2

√
d

(| f |+Cξ )d

)1/d

≤C∥ f∥Ld(Q4
√

d)
+C |{ω = Γω}∩Q1|1/d .

(3.5.10)

In the second inequality, we used that 0 ≤ ξ ≤ 1 and suppξ ⊂ Q1. Let now ε0 be so small that
C∥ f∥Ld(Q4

√
d)
≤Cε0 ≤ 1/2. Then we get

1
2
≤C|{ω = Γω}∩Q1|1/d

≤C|{u ≤ M}∩Q1|1/d .
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We emphasize the importance in the previous proof that ∥ f∥Ld({ω=Γω}) appears in the right hand
side of the ABP estimate and that the contact set {ω = Γω} carries important information about the
function ω . In this case, we have used that ω ≤ 0 implies u ≤ M, in the contact set of ω . Next we
iterate Lemma 3.5.5.

Remark 3.5.7. Note the following useful properties of dyadic cubes. If Q is a dyadic cube then
Q = Q1/2i(x0), for some i ≥ 0 and x0 ∈ Q1; moreover,

Q4
√

d/2i(x0)⊂ Q4
√

d , and

i ≥ 0 =⇒ Q̃ ⊂ Q3/2i(x0).

Lemma 3.5.8. Let u be as in Lemma 3.5.5. Then

|{u ≥ Mk}∩Q1}| ≤ (1−µ)k, (3.5.11)

for k = 1,2, . . . , where M and µ are as in Lemma 3.5.6.
Therefore, we have

|{u ≥ t}∩Q1| ≤ Rt−ε , for t > 0, (3.5.12)

where R and ε are positive universal constants.

Proof. We proceed by induction. The case k = 1 is already proved in Lemma 3.5.5. Suppose now
(3.5.11) holds up to k−1, and define the sets

A = {u > Mk}∩Q1, B = {u > Mk−1}∩Q1.

If we manage to prove that

|A| ≤ (1−µ)|B|, (3.5.13)

then (3.5.11) follows by the induction hypothesis. To apply Lemma 3.5.2 with δ = 1−µ , we first
verify that the assumptions are verified. Clearly A ⊂ B ⊂ Q1 and |A| ≤ |{u > M}∩Q1| ≤ 1− µ ,
by Lemma 3.5.5. It remains to prove that condition (b) holds; that is, we need to show that if
Q = Q1/2i(x0) is a dyadic cube such that

|A∩Q|> (1−µ)|Q| (3.5.14)

then the predecessor satisfies Q̃ ⊂ B. Arguing by contradiction, suppose this is not the case. Then we
can take

x̃ ∈ Q̃ such that u(x̃)≤ Mk−1. (3.5.15)

Consider the change of coordinates

x = x0 +
1
2i y, y ∈ Q1, x ∈ Q := Q1/2i(x0)
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and the function

ũ(y) := u(x)/Mk−1.

Applying Lemma 3.5.5 to ũ will yield the next iteration and complete the induction argument. Indeed,
assuming for now that ũ satisfies the hypothesis of this Lemma, then by (3.5.9) we get

µ ≤ |{ũ(y)≤ M}∩Q1|= 2id |{u(x)≤ Mk}∩Q|.

Hence |Q\A|> µ|Q|, contradicting (3.5.14).

It remains to prove that ũ satisfies the hypothesis of Lemma 3.5.5. By Remark 6 we have
ũ(y) ∈ S( f (x)/(22i

Mk−1) =: f̃ (y)) in Q4
√

d and

x ∈ Q̃ =⇒ y ∈ Q3.

Therefore ũ ≥ 0 and infQ3 ũ ≤ u(x̃)/Mk−1 ≤ 1 by (3.5.15). Finally,

∥ f̃∥Ld(Q4
√

d)
=

2i

22iMk−1
∥ f∥Ld(Q4

√
d)
≤ ∥ f∥Ld(Q4

√
d)
≤ ε0.

To conclude the proof, note that (3.5.12) follows immediately from (3.5.11) by taking R =

(1−µ)−1 and ε satisfying 1−µ = M−ε .

Next we present the final lemma before the proof of Lemma 3.5.4, which will be used inside a
contradiction argument. Recall that if u ∈ S∗( f )⊂ S(| f |) then −u ∈ S(−| f |).

Lemma 3.5.9. Let u ∈ S(| f |) in Q4
√

d . Assume that f satisfies (3.5.6) and u satisfies (3.5.12).

Then there exist universal constants M0 > 1 and σ > 0 such that, for ε as in (3.5.12) and
ν = M0/(M0 −1/2)> 1, the following holds:

If j ≥ 1 is an integer and x0 satisfies

|x0|∞ ≤ 1/4 (3.5.16)

and

u(x0)≥ ν
j−1M0, (3.5.17)

then

Q j := Ql j(x0)⊂ Q1 and sup
Q j

u ≥ ν
jM0,

where l j = σM−ε/d
0 ν−ε j/d .
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Proof. Take σ > 0 and then M0 > 1 such that

1
2

σ
d > d2ε(4

√
d)d (3.5.18)

and

σM−ε/d
0 +RM−ε

0 ≤ 1
2
, (3.5.19)

with R and ε given by (3.5.12). By (3.5.19) we get l j ≤ 1/2 which combined with (3.5.16) implies

Ql j/(4
√

d)(x0)⊂ Ql j(x0) = Q j ⊂ Q1. (3.5.20)

We argue by contradiction, assuming that supQ j u < ν jM0 and show that this leads to a contradiction.
By (3.5.20) and (3.5.12) we have that∣∣∣∣{u ≥ ν

j M0

2

}
∩Ql j/(4

√
d)(x0)

∣∣∣∣≤ ∣∣∣∣{u ≥ ν
j M0

2

}
∩Q1

∣∣∣∣
≤Rν

− jε
(

M0

2

)−ε

.

(3.5.21)

Consider the change of coordinates

x = x0 +
l j

4
√

d
y, y ∈ Q4

√
d , x ∈ Q j

and define the function

v(y) =
νM0 −ν1− ju(x)

(ν −1)M0
.

This change of coordinates defines bijections between the following sets.

x ∈ Ql j(x0) [resp. Q3l j/(4
√

d), Ql j/(4
√

d)(x0)]

⇐⇒ y ∈ Q4
√

d [resp. Q3, Q1].

We start by claiming that v satisfies the hypothesis of Lemma 3.5.5. Then we can apply Lemma 3.5.6
and get

|{v(y)> M0}∩Q1}| ≤ RM−ε

0 .

By the implication

u(x)< ν
jM0/2 =⇒ v(y)> ν

ν −1/2
ν −1

= M0
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we get that ∣∣∣∣{u(x)< ν
j M0

2

}
∩Ql j/(4

√
d)(x0)

∣∣∣∣≤ ( l j

4
√

d

)d

RM−ε

0 .

Since this inequality and (3.5.21) produce a dichotomy, we must have(
l j

4
√

d

)d

≤
(

l j

4
√

d

)d

RM−ε

0 +Rν
− jε
(

M0

2

)−ε

.

Since RM−ε

0 ≤ 1/2, we get

1
2

(
l j

4
√

d

)d

≤ Rν
− jε
(

M0

2

)−ε

.

By the definition of l j, we finally get

1
2

σ
d ≤ R2ε(4

√
d)d ,

which is a contradiction with (3.5.18).

We now prove the claim that v satisfies the conditions of Lemma 3.5.5. Clearly

v(y) ∈ S

[
−
(

l j

4
√

d

)2 (
ν

j−1(ν −1)M0
)−1 | f (x)|=: f̃ (y)

]
∩C(Q4

√
d),

for y ∈ Q4
√

d . Also v > 0 in Q4
√

d since by assumption of the contradiction supQ j u < ν jM0. Further-
more, (3.5.17) implies that infQ3 v ≤ 1. We finally prove f̃ still satisfies (3.5.9).

∥ f̃∥Ld(Q4
√

d)
=

σM−ε/d
0 ν−ε j/d

4
√

dν j−1(ν −1)M0
∥ f (x)∥Ld(Q j)

≤
σM−ε/d

0 ν−ε j/d

4
√

dν j−1(ν −1)M0
ε0

Using (3.5.19), ν > 1 and ν = 2(ν −1)M0, we get

∥ f̃∥Ld(Q4
√

d)
≤ ν−ε j/d

8
√

dν j−1(ν −1)M0
ε0 ≤

ν−ε j/d

4
√

dν j
ε0 ≤ ε0.

This verifies the claim which completes the proof.

We are finally ready to prove Harnack Inequality.

Proof of Lemma 3.5.4. By the assumptions of Lemma 3.5.4, u satisfies the assumptions of Lemma
3.5.5 and therefore it satisfies the Lε estimate (3.5.12).
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Recall that l j = σM−ε/d
0 ν−ε j/d , for j ∈N. Since the associated series is convergent, there exists a

large integer j0, depending only on the universal constants σ , M, ε , d and ν , such that

∑
j≥ j0

l j ≤
1
4
. (3.5.22)

We will prove, by contradiction, that

sup
Q1/4

u ≤ ν
j0−1M0. (3.5.23)

This will conclude the proof since C = ν j0−1M0 is universal. We suppose that (3.5.23) is not true.
Then, there exists some point x j0 satisfying

|x j0 |∞ ≤ 1
8

and u(x j0)≥ ν
j0−1M0.

Thus we are in conditions of applying Lemma 3.5.7, yielding a point x j0+1 such that

|x j0+1 − x j0 |∞ ≤
l j0

2
and u(x j0+1)≥ ν

j0M0.

Calling u1 := ν−1u, we easily see that u1 still satisfies the assumptions of Lemma 3.5.7. We can
therefore iterate this argument, thus getting a sequence of points (x j) j≥ j0 satisfying

|x j+1 − x j|∞ ≤
l j

2
and u(x j+1)≥ ν

jM0, for j ≥ j0.

Note also that

|x j| ≤|x j0 |+
j−1

∑
k= j0

|xk+1 − xk|

≤1
8
+ ∑

k≥ j0

lk
2
≤ 1

4

by (3.5.22) and thus (3.5.16) is always verified.

Since (x j) j is a Cauchy sequence, it must converge to some point x∞ ∈ Q1/2. By continuity, we get

u(x∞) = lim
j→∞

u(x j)≥ lim
j→∞

ν
jM0 =+∞.

This contradiction implies that

sup
Q1/4

u ≤ ν
j0−1M0

which completes the proof.



3.5 Harnack inequality and Hölder continuity 47

The proof of Harnack Inequality implies the following important results. The first one is called
weak Harnack inequality, and requires u to be merely a nonnegative supersolution. The second result
is called local maximum principle and applies to subsolutions.

Theorem 3.5.10.

(1) Let u ∈ S(λ ,Λ, f ) in Q1, where f is continuous and bounded in Q1. Then

∥u∥Lp0 (Q1/4) ≤C
(

inf
Q1/2

u+∥ f∥Ld(Q1)

)
,

where p0 > 0 and C are universal constants.

(2) Let u ∈ S(λ ,Λ, f ) in Q1, where f is continuous and bounded in Q1. Then, for any p > 0,

sup
Q1/2

u ≤C(p)
(
∥u+∥Lp(Q3/4)+∥ f∥Ld(Q1)

)
,

where C(p) is a constant depending only on d, λ , Λ and p.

Proof. Part (1) follows immediately from Lemma 3.5.6 combined with Lemma 2.2.1; recall also the
argument leading to (3.5.4).

To verify (2), we start by assuming that u ∈ S( f ) ⊂ S(| f |) in Q4
√

d , ∥ f∥Ld(Q4
√

d)
≤ ε0 and

∥u+∥Lε (Q1) ≤ R1/ε , where ε0 is as in Lemma 3.5.5, and R and ε are as in Lemma 3.5.6. Then
by (2.2.2) in Lemma 2.2.1, we have

|{u ≥ t}∩Q1| ≤ t−ε

∫
Q1

(
u+
)ε ≤ Rt−ε , for t > 0,

that is, u satisfies (3.5.12). Therefore, Lemma 3.5.7 still applies and hence the proof of Lemma 3.5.4
gives

sup
Q1/4

u ≤C.

Rescalling u we get

sup
Q1/4

u ≤C
(
∥u+∥Lε (Q1)+∥ f∥Ld(Q4

√
d)

)
for any u ∈ S( f ) in Q4

√
d . By rescaling, we get (2) for p = ε . If p > ε we can apply Hölder inequality

and get

∥u+∥Lε (Q3/4) ≤ |Q3/4|
1
r ∥u+∥Lp(Q3/4),

1
r
+

1
p
=

1
ε
.
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Hence

sup
Q1/2

u ≤C
(
|Q3/4|

1
r ∥u+∥Lp(Q3/4)+∥ f∥Ld(Q1)

)
≤C
(
∥u+∥Lp(Q3/4)+∥ f∥Ld(Q1)

)
,

since |Q3/4|
1
r < 1.

The proof for any p < ε follows by interpolation.

An important consequence of the weak Harnack inequality in Theorem 3.5.8 is the following
strong maximum principle for supersolutions.

Proposition 3.5.11. Let u ∈ S in Q1. Assume that u ≥ 0 in Ω and u(x0) = 0 for some x0 ∈ Q1. Then
u ≡ 0 in Q1.

Remark 3.5.12. By Proposition 3.2.4, if u is a viscosity supersolution of F(D2u,x) = 0 with F(0,x)≡
0, then u ∈ S(λ/d,Λ,0) and therefore u also satisfies the strong maximum principle.

As another important consequence of the Harnack Inequality, we have the following Liouville
type theorem.

Corollary 3.5.13. Let u ∈ S(0) in Rd be bounded from below (or above). Then u is constant.

Proof. We can assume, without loss of generality, that infu = 0. Then, for every ε > 0, there exists a
point x0 such that u(x0)≤ ε . In every ball B2R(x0), we have by Harnack inequality that

sup
B2R(x0)

u ≤Cε.

Let x ∈Rd be an arbitrary point and take R so large that x ∈ B2R(x0). Since the constant C is universal
(hence independent of R), we have u(x)≤Cε . Letting ε → 0 we conclude the proof.

3.5.3 Cα regularity for the class S∗( f )

The following result is a very important application of the Harnack inequality. It was first discovered
by De Giorgi in 1957 and Nash in 1958 for linear equations of the form Lu = Di(ai j(x)D ju) where the
coefficients were assumed to be merely bounded in L∞. It follows easily from the Harnack inequality
in Theorem 3.5.3 combined with the instrumental Lemma 2.2.2.

Proposition 3.5.14. Let u ∈ S∗( f ) in Q1. Then

(1) For a universal constant γ < 1, it holds

oscQ1/2 u ≤ γ oscQ1 u+2∥ f∥Ld(Q1).

(2) Furthermore, u ∈Cα(Q1/2) and

∥u∥Cα (Q1/2)
≤C

(
∥u∥L∞(Q1)+∥ f∥L∞(Q1)

)
,
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where 0 < α < 1 and C > 0 are universal constants.

Proof. We start by proving (1). Define mr := infQr u, Mr := supQr
u and or := oscQr u = Mr −mr. We

apply the Harnack inequality, Theorem 3.5.3, to the nonnegative functions u−m1 and M1 −u in Q1

(which clearly belong to S∗( f )), recall property (3) of Lemma 3.2.2). We get

M1/2 −m1 ≤C
(

m1/2 −m1 +∥ f∥Ld(Q1)

)
and

M1 −m1/2 ≤C
(

M1 −M1/2 +∥ f∥Ld(Q1)

)
Adding both estimates we obtain

o1/2 +o1 ≤C
(

o1 −o1/2 +2∥ f∥Ld(Q1)

)
,

that is,

o1/2 ≤
C−1
C+1

o1 +
2C

C+1
∥ f∥Ld(Q1)

which concludes (1).

We now proceed with (2). Recalling the scaling property (3) in Lemma 3.2.3 we get, for every
0 < R < 1

oscQR/2 u ≤ γ oscQR u+2R2∥ f∥Ld(QR).

We can easily check that the assumptions of Lemma 2.2.2 are satisfied, with R0 = 1, ω(t) = ot ,
σ(t) = 2t2∥ f∥Ld(Qt), γ = (C−1)/(C+1) and τ = 1/2. It yields

oscQR u ≤C
(

Rα oscQ1 u+2R2µ∥ f∥Ld(QRµ )

)
for every 0 < R < 1 and 0 < µ < 1. Hence,

sup
x,y∈QR

|u(x)−u(y)| ≤ RαC
(
∥u∥L∞(Q1)+∥ f∥Ld(Q1)

)
,

that is, u ∈Cα(Q1/2) with

∥u∥Cα (Q1/2) ≤C
(
∥u∥L∞(Q1)+∥ f∥Ld(Q1)

)
,

where 0 < α < 1 and C > 0 are universal constants.

Remark 3.5.15. Using a standard covering argument, it is possible to state Proposition 3.5.11 in balls
B1/2 and B1 instead of cubes Q1/2 and Q1, respectively.
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As we mentioned previously, we can combine Hölder continuity of solutions with the closedness
of the family of viscosity solutions (recall Proposition 3.1.5) via Arzelà-Ascoli Theorem to get the
following important compactness result.

Proposition 3.5.16. Let (Fk)k∈N be a sequence of (λ ,Λ)-elliptic operators, (uk)k∈N be a sequence of
viscosity solutions in Ω of Fk(D2uk,x) = fk(x).

Assume that (Fk) converges uniformly in compact sets of S(d)×Ω to F, that (uk)k is universally
bounded in compact sets of Ω and that ∥ fk − f∥L∞(Ω) → 0.

Then there exists u ∈ C(Ω) and a subsequence of (uk)k that converges locally uniformly to u.
Moreover, F(D2u,x) = f (x) in the viscosity sense, in Ω.

3.6 Uniqueness of solutions

This section is devoted to proving uniqueness of solution of the fully nonlinear Dirichlet problemF(D2u) = 0, for x ∈ B1,

u = ϕ, for x ∈ ∂B1.

In the next section we will see how this result implies interior C1,α regularity for this homogeneous
problem.

We begin by defining a class of approximate solutions as introduced by Jensen in [38]. Let
u ∈C(B1) and H be an open set with H ⊂ B1. We define, for ε > 0, the upper ε-envelope of u (with
respect to H) as

uε(x0) = sup
x∈H

{
u(x)+ ε − 1

ε
|x− x0|2

}
, for x0 ∈ H.

To get a geometric intuition of this definition, consider at each point x ∈ H the corresponding
concave paraboloid of opening 2/ε and vertex at (x,u(x)+ ε). Then the graph of uε corresponds to
the upper envelope of this family of paraboloids. Therefore, this approximation will smoothen the
function u from below, but not from above. To see this, consider the following examples.

Example 3.6.1. Let u(x) =−|x| for x ∈ R and consider

uε(x0) = sup
x∈H

{
−|x|+ ε − 1

ε
|x− x0|2

}
.

Then clearly uε(0) = ε . For x0 > 0, let x∗0 correspond to the point where the supremum is attained.
Since x∗0 ≥ 0, we can calculate explicitly that x∗0 = (x0 − ε/2)+ and so, for 0 < x0 < ε/2 we get that

uε(x0) = ε − 1
ε

x2
0.

By symmetry, this expression holds for |x0|< ε/2. Therefore the upper envelope has removed the
edge at the origin and we obtain a smooth function.
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Example 3.6.2. On the other hand, let u(x) = |x| for x ∈ R and consider

uε(x0) = sup
x∈H

{
|x|+ ε − 1

ε
|x− x0|2

}
.

Then for x0 > 0 we get that the supremum is obtained at the point x∗0 = x0 + ε/2 and so

uε(x0) =
∣∣∣x0 +

ε

2

∣∣∣+ ε − ε

4
= x0 +

5ε

4
.

On the other hand, if x0 < 0 then x∗0 = x0 − ε/2 and

uε(x0) =
∣∣∣x0 −

ε

2

∣∣∣+ ε − ε

4
=−x0 +

5ε

4
.

Therefore, for any x0, we have

uε(x0) = |x0|+
5ε

4
,

which is still only C0,1 at the origin.

We formulate the previous ideas in the following theorem.

Theorem 3.6.3. Let uε be the upper ε-envelope of u. Then,

(a) uε ∈C(H) and uε ↓ u uniformly in H as ε → 0.

(b) For any x0 ∈ H there exists a concave paraboloid of opening ε/2 that touches uε from below
at x0 ∈ H. Hence uε is in C1,1 from below in H. In particular, uε is punctually second order
differentiable at almost every point of H.

(c) Let u be a viscosity subsolution of F(D2u) = 0 in B1 and H1 be an open set such that H1 ⊂ H.
Then, for ε ≤ ε0 (where ε0 depends only on u, H and H1), uε is a subsolution of F(D2u) = 0 in
H1; in particular, since uε is punctually twice differentiable, F(D2uε(x))≤ 0 a.e. x ∈ H1.

Similarly we can define the lower envelope uε which will converge to u from below. Of course the
smoothening effect will be reversed, as hinted by Examples 3 and 4. We proceed with some properties
of uε

Lemma 3.6.4. Let x0,x1 ∈ H. Then

(1) There exists x∗0 ∈ H such that uε(x0) = u(x∗0)+ ε −|x∗0 − x0|2/ε;

(2) uε(x0)≥ u(x0)+ ε;

(3) |uε −uε(x1)| ≤ (3/ε) diam H |x0 − x1|;

(4) If 0 < ε < ε ′ then uε(x0)≤ uε ′(x0);

(5) |x∗0 − x0| ≤ ε oscH u;
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(6) 0 < uε(x0)−u(x0)< u(x∗0)−u(x0)+ ε .

Proof. (1), (2), (4) and (6) are immediate. To obtain (3) let x ∈ H and note that

uε(x0)≥u(x)+ ε − 1
ε
|x− x0|2

≥u(x)+ ε − 1
ε
|x− x1|2 −

1
ε
|x0 − x1|2 −

2
ε
|x− x1||x0 − x1|

≥u(x)+ ε − 1
ε
|x− x1|2 −

1
ε

diam H |x0 − x1|−
2
ε

diam H |x0 − x1|

=u(x)+ ε − 1
ε
|x− x1|2 −

3
ε

diam H |x0 − x1|.

Taking the supremum of x over H we get

uε(x0)≥ uε(x1)−
3
ε

diam H |x0 − x1|

as intended.
Combining (1) and (2) we obtain (5) by noting that

1
ε
|x∗0 − x0|2 =u(x∗0)−u(x0)|

≤u(x∗0)−u(x0)

≤oscH u.

It will be useful to define the second differential quotient

∆
2
h u(x0) :=

u(x0 +h)+u(x0 −h)−2u(x0)

|h|2

for h ∈ Rd which is well-defined provided x0, x0 +h, x0 −h ∈ Ω, where Ω is the convex domain of u.
Note that if

P(x) :=−K
2
|x− x|2,

then

∆
2
h P(x0) =−K

2

If additionally P touches u from below at x0, then

∆
2
hu(x0) =

u(x0 +h)+u(x0 −h)−2u(x0)

|h|2

≥P(x0 +h)+P(x0 −h)−2P(x0)

|h|2

=∆
2
h P(x0) =−K

2
.
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Therefore, since ∆2
h is linear,

∆
2
h (u−P)≥ 0.

Now we prove that if ∆2
h v≥ 0 for every h, then v is convex. Indeed, let x,y∈Ω, call x0 :=(x+y)/2∈Ω

and h := (x− y)/2. Then

0 ≤ ∆
2
h v =

v(x)+ v(y)−2v
( x+y

2

)∣∣ x−y
2

∣∣ ,

thus

v
(

x+ y
2

)
≤ v(x)+ v(y)

2

which implies that v is convex. The following result, called the Alexandroff-Buselman-Feller theorem,
concerns with the regularity of convex functions (see Theorem 1 in section 6.4 of [28]), recall
Definition 2.5.2.

Theorem 3.6.5. Let u be a convex function in B1. Then u is punctually second order differentiable at
every point x0 ∈ B1.

Combining this result with the previous argument, we obtain the following

Proposition 3.6.6. Let u be a continuous function in a convex domain Ω and assume that at every
point x ∈ Ω there exists a concave paraboloid with opening K which touches u from below at x. Then

u(x)+
K
2
|x|2

is convex in Ω. In particular, u is punctually second order differentiable at almost every point x ∈ Ω.

We are now ready to prove Theorem 3.6.1.

Proof of Theorem 3.6.1. Property (3) in Lemma 3.6.2 implies that uε are continuous (actually Lips-
chitz). By (4), uε decreases as ε → 0. By (5) and (6)

|uε(x0)−u(x0)| ≤ |u(x∗0)−u(x0)|+ ε ≤ ε(oscH u+1)

which converges to 0 as ε → 0, uniformly in x0. This implies (a).
To prove (b), note that

P0(x) := u(x∗0)+ ε − 1
ε
|x− x∗0|2 ≤ uε(x), for x ∈ H,

with equality at x = x0, hence P0 touches uε from below at x0, which implies the first assertion of (b).
Proposition 3.6.4, applied with Ω = B where B is any ball contained in H, implies that uε is punctually
second order differentiable a.e. in H.

We finally prove (c). Let x0 ∈ H1 and P(x) be a paraboloid that touches u from above at x0. It
suffices to prove that F(D2P) ≤ 0. Since F(D2u) ≤ 0, we want to construct a perturbation Q of P
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which touches u from above. This approximation is given by

Q(x) = P(x+ x0 − x∗0)+
1

ε|x0 − x∗0|
− ε.

Note that D2Q = D2P. By property (5) of Lemma 3.6.2, there is ε0 > 0 such that if ε < ε0 and x0 ∈ H1,
then x∗0 ∈ H. Take x ∈ H sufficiently close to x∗0 such that x+ x0 − x∗0 ∈ G. Then

uε(x+ x0 − x∗0)≥ u(x)+ ε − 1
ε
|x0 − x∗0|2.

Therefore, again for x sufficiently close to x∗0,

u(x)≤ P(x+ x0 − x∗0)+
1
ε
|x0 − x∗0|2 − ε = Q(x)

and

Q(x∗0) =P(x0)+
1
ε
|x0 − x∗0|2 − ε

=uε(x0)+
1
ε
|x0 − x∗0|2 − ε

=u(x∗0),

since x∗0 corresponds to the point where the supremum is attained. Therefore Q touches u from above
at x∗0 and so

0 ≥ F(D2Q) = F(D2P),

as intended. The last statement in (c) follows from (b) and Lemma 2.5.3.

Remark 3.6.7. It was essential in our argument that if u solves the equation F(D2u) = 0, then
v(x) = u(x+ x0)+ y0 still solves the same equation. Therefore, this reasoning would not work for
equations of the type F(D2u,x) = 0 or F(D2u,u) = 0.

We proceed with the most important result of this chapter – the uniqueness of solution of the
homogeneous equation with Dirichlet boundary conditions. This result is a variation of the Jensen’s
method.

Theorem 3.6.8. Let u be a viscosity subsolution of F(D2ω) = 0 in Ω and v be a viscosity supersolution
of F(D2ω) = 0 in Ω. Then

u− v ∈ S
(

λ

d
,Λ

)
, in Ω.

We recall that if either u or v are C2, then the result follows immediately from Proposition 3.2.4.
Therefore, we will instead prove that uε − vε ∈ S

(
λ

d ,Λ
)

in Ω, for sufficiently small ε and use the

closedness of this class to conclude the result for u− v. Although the envelopes uε and vε are not C2,
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they are differentiable almost everywhere and can be touched by paraboloids from below and above,
respectively, at every point.

Proof. We fix H and H1 such that H1 ⊂ H ⊂ H ⊂ Ω; we will start by proving that for ε small enough,
uε − vε ∈ S(λ/d,Λ) in H1. For this purpose, let P be a paraboloid that touches uε − vε from above
at x0 in Br(x0) ⊂ H1. We are done once we prove that P−

λ/d,Λ(D
2P) ≤ 0. We may assume that

B2r(x0)⊂ H. Take δ > 0 and define the auxiliary function

ω(x) := vε(x)−uε(x)+P(x)+δ |x− x0|2 −δ r2.

We will apply the area formula in Lemma 3.4.6 to the function ω , so we proceed by checking that the
assumptions are verified. We have that ω ≥ 0 on ∂Br(x0) and by (b) in Theorem 3.6.1 we know that
for any x ∈ Br(x0) there exists a convex paraboloid Px of opening K, independent of x, that touches ω

from above at x in Br(x). Furthermore ω(x0)< 0 hence supBr(x0)
ω− > 0. We are thus ready to use

Lemma 3.4.6 to ω in BR := Br(x0). With the notation therein, we have that if x ∈ Br ∩{ω = Γω},
then Px also touches Γω by above at x in Br(x). We have that

0 <
∫

Br(x0)∩{ω=Γω}
det D2

ω. (3.6.1)

By (b) in Theorem 3.6.1 we also get that there exists A ⊂ Br(x0) such that |Br(x0)\A|= 0 where both
uε and vε are punctually twice differentiable. By (c) in Theorem 3.6.1,

F(D2vε(x))≥ 0 and F(D2uε(x))≤ 0, for x ∈ A. (3.6.2)

Since Γω is convex and Γω ≤ ω , then the points x ∈ A∩{ω = Γω} correspond to maxima of the
function ω −Γω , thus D2ω(x)≥ D2Γω(x)≥ 0, that is,

D2
ω is nonnegative definite at A∩{ω = Γω}. (3.6.3)

It follows from (3.6.1) that there exists a point x1 ∈ A∩{ω = Γω} and at this point we have, by (3.6.2)
and (3.6.3) that

0 ≥F(D2uε(x1)) = F(D2vε(x1)−D2
ω(x1)+D2P+2δ I)

≥F(D2vε(x1)+D2P+2δ I)

≥F(D2vε(x1)+D2P)−2Λδ

≥F(D2vε(x1))−Λ∥(D2P)+∥+λ∥(D2P)−∥−2Λδ

≥−Λ∥(D2P)+∥+λ∥(D2P)−∥−2Λδ

≥ΛTr(D2P)++
λ

d
Tr(D2P)+−2Λδ

=P−
λ/d,Λ(D

2P)−2Λδ .

Letting δ → 0 concludes that uε − vε ∈ S
(

λ

d ,Λ
)

in Ω, for sufficiently small ε . By the closedness of
this class (recall Proposition 3.1.5), we conclude the result for u− v.
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Corollary 3.6.9. The Dirichlet problemF(D2u) = 0, in Ω,

u = ϕ, on ∂Ω,

has at most one viscosity solution u ∈C(Ω).

This corollary follows immediately from Theorem 3.6.5 combined with the maximum principle
for viscosity subsolutions, Corollary 3.4.7.

3.7 C1,α regularity for solutions of F(D2u) = 0

In this section we will present the proof of C1,α regularity of solutions to the homogeneous equation
F(D2u) = 0. Note that, without additional conditions on the operator F , this regularity is optimal, as
proven by the counter-examples in [50–53].

The following result is an immediate consequence of Theorem 3.6.5. Denote by Ωh := {x ∈ Ω :
d(x,∂Ω)> h}.

Proposition 3.7.1. Let u be a viscosity solution of F(D2u) = 0 in Ω. Let h > 0 and e ∈ Rd with
|e|= 1. Then

u(x+he)−u(x) ∈ S
(

λ

d
,Λ

)
in Ωh.

Next we present an auxiliary result relating an estimate on the difference quotient of a function
and its Hölder regularity.

Proposition 3.7.2. Let u ∈C(Ω)∩L∞(Ω). Suppose there exists K > 0 and α ∈ (0,1) such that

sup
Br(x0)

|u(x0 + x)−2u(x0)+u(x0 − x)| ≤ Kr1+α ,

for every 0 < r < 1 and every x0 ∈ Ω with Br(x0) ⊂ Ω. Then u ∈ C1,α
loc (Ω). In addition, for every

Ω′ ⋐ Ω there exists C0 > 0 for which

∥u∥C1,α (Ω′) ≤C0
(
∥u∥L∞(Ω)+K

)
.

Proof. We divide the proof in 3 steps:

(i) u ∈C0,1(Ω) and thus u is punctually differentiable at almost every point;

(ii) For almost every x ∈ Ω, there exist an affine function ℓx such that

∥u− ℓx∥L∞(Br(x)) ≤ Kr1+α

and |ℓx| ≤C
(
∥u∥L∞(Ω)+K

)
;
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(iii) Property (ii) actually holds for every x ∈ Ω.

(i) is clear by definition of the space C0,1(Ω). To prove (ii), note that since u is punctually differentiable
at almost every point, we can define

A := {x ∈ Ω : u is punctually differentiable at x}

and |Ω\A |= 0. Therefore, for every x ∈ A and |h| sufficiently small,

u(x+h) = u(x)+Du(x) ·h+o(|h|)

and

u(x−h) = u(x)−Du(x) ·h+o(|h|).

Adding both we get

u(x+h)−2u(x)+u(x−h) = o(|h|)

which combined with the assumption gives the estimate

o(|h|)≤ K|h|1+α .

This proves (ii) with ℓx(y) = u(x)−Du(x) · (y− x). Clearly |ℓx| ≤C(∥u∥L∞(Ω)+K) holds.
We finally prove (iii). Let x ∈ Ω and r > 0 be arbitrary. By contradiction, assume that there exists

x0 such that (ii) does not hold, that is, assume that for every affine function ℓ there exists r > 0 such
that

∥u− ℓ∥Br(x0) > Kr1+α . (3.7.1)

Since (ii) holds for every x ∈ A which is dense in Br(x0), there exists a sequence of points xn → x0

and a sequence of affine functions (ℓn)n such that |ℓn| ≤C
(
∥u∥L∞(Ω)+K

)
and

∥u− ℓn∥L∞(Br(xn)) ≤ Kr1+α ,

for every r > 0. Furthermore ℓn → ℓ0 locally uniformly for some affine function ℓ0, up to a subsequence.
So, for every ε > 0 there exists n1 such that if n > n1 then ∥ℓn − ℓ0∥L∞(Br(xn)) ≤ ε . Since xn → x0, for
every δ > 0, there exists n2 > 0 such that if n > n2, then

Br−δ (x0)⊂ Br(xn).

Let n0 = max{n1,n2} and take n > n0. Then

sup
y∈Br−δ

|u(y)− ℓ0(y)| ≤ sup
Br(xn)

|u(y)− ℓn(y)|+∥ℓn − ℓ0∥L∞(Br(xn))

≤Kr1+α + ε
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So, for every y ∈ Br−δ (x0) we get

|u(y)− ℓ0(y)| ≤
(

r
r−δ

)1+α

K|y− x0|1+α + ε.

Since we can take δ and ε to be arbitrarily small, we get a contradiction with (3.7.1).
Once we have proven (iii), the result follows from Proposition 2.3.3.

The following result will allow us to bootstrap the Hölder regularity obtained in Section 3.5.3 and
get C1,α regularity.

Lemma 3.7.3. Let 0 < α < 1, 0 < β ≤ 1 and K > 0 be constants. Let u ∈ L∞([−1,1]) satisfy
∥u∥L∞([−1,1]) ≤ K. Define for h ∈ R with 0 < |h| ≤ 1,

vβ ,h =
u(x+h)−u(x)

|h|β
, x ∈ Ih

where Ih := [−1,1 − h] if h > 0 and Ih := [−1 − h,1] if h < 0. Assume that vβ ,h ∈ Cα(Ih) and
∥vβ ,h∥Cα (Ih) ≤ K, for any 0 < |h| ≤ 1. It then holds

(1) If α +β < 1, then u ∈Cα+β ([−1,1]) and ∥u∥Cα+β ([−1,1]) ≤CK;

(2) If α +β > 1, then u ∈C0,1([−1,1]) and ∥u∥C0,1([−1,1]) ≤CK;

(3) If in particular β = 1, then u ∈C1,α([−1,1]) and ∥u∥C1,α ([−1,1]) ≤CK;

where C in (1), (2), (3), (as well as inside the proof) depends only on α +β .

Proof. By the symmetry of the problem with respect to the change of variables x →−x, it suffices to
bound |u(x+ ε)−u(x)| for −1 ≤ x ≤ 0, ε > 0 and x+ ε ≤ 1.

Fix the integer i satisfying x+2iε ≤ 1 ≤ x+2i+1ε and define τ0 := 2iε . Then −1 ≤ x ≤ x+τ0 ≤ 1
and

1/2 ≤ τ0 ≤ 2. (3.7.2)

Define also

ω(τ) := u(x+ τ)−u(x), for 0 < τ ≤ τ0.

Then it holds

|ω(τ)−2ω(τ/2)| ≤|u(x+ τ)−2u(x+ τ/2)+u(x)|

≤
(

τ

2

)β

|vβ ,τ/2(x+ τ/2)− vβ ,τ/2(x)|

≤K
(

τ

2

)α+β

,
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since ∥vβ ,τ/2∥Cα ([−1,1−τ/2]) ≤ K by hypothesis. By the same reasoning, we get

|ω(τ0)−2ω(τ0/2)| ≤CKτ
α+β

0

|2ω(τ0/2)−22
ω(τ0/22)| ≤CK21−(α+β )

τ
α+β

0

. . .

|2i−1
ω(τ0/2i−1)−2i

ω(τ0/2i)| ≤CK2(i−1)(1−(α+β ))
τ

α+β

0 .

By triangular inequality, we get

|ω(τ0)−2i
ω(ε)|=|ω(τ0)−2i

ω(τ0/2i)|

≤CKτ
α+β

0

i−1

∑
j=0

2 j(1−(α+β )).

Since 2−i = τ
−1
0 ε ≤ 2ε by (3.7.2), and ∥u∥L∞([−1,1]) ≤ K, we have that

|ω(ε)| ≤2−i|ω(τ0)|+CK2−i
τ

α+β

0

i−1

∑
j=0

2 j(1−(α+β ))

≤4Kε +CKετ
α+β−1
0

i−1

∑
j=0

2 j(1−(α+β )).

Now if α +β < 1, we get

|ω(ε)| ≤4Kε +CKετ
α+β−1
0 2i(1−(α+β ))

=4Kε +CKε
α+β

≤CKε
α+β .

That is,

|u(x+ ε)−u(x)| ≤CKε
α+β ,

and we get (1).

If α +β > 1, then we instead have

|ω(ε)| ≤4Kε +CKετ
α+β−1

≤CKε,

and we get (2).

If in particular β = 1, then v1,h corresponds to the difference quotient of u. Since v1,h ∈Cα(Ih)

we have ∣∣∣∣u(x+h)−u(x)
h

− u(y+h)−u(y)
h

∣∣∣∣≤ K|x− y|α ,
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for every x,y ∈ Ih and 0 < |h|< 1. Fixing y = x−h we get

|u(x+h)−2u(x)+u(x−h)| ≤ K|h|1+α ,

placing u in the setting of Proposition 3.7.2 which gives u ∈C1,α([−1,1]) with ∥u∥C1,α ([−1,1]) ≤CK,
thus concluding (3).

We now bootstrap Lemma 3.7.3 to get interior C1,α regularity. Recall that because of the ABP in
Theorem 3.4.3, u is bounded in B1.

Corollary 3.7.4. Let u be a viscosity solution of F(D2u) = 0 in B1. Then u ∈ C1,α(B1/2) with the
estimate

∥u∥C1,α (B1/2)
≤C

(
∥u∥L∞(B1)+ |F(0)|

)
,

where 0 < α < 1 and C are universal constants.

Proof. Fix e ∈ Rd with |e|= 1 and 0 < h < 1/8. By Proposition 3.7.1, for every 0 < β ≤ 1 it holds

vβ (x) =
1

hβ
(u(x+he)−u(x)) ∈ S(λ/d,Λ), in B7/8.

Therefore by Proposition 3.5.11 properly scaled we have the following interior Hölder estimate
for vβ

∥vβ∥Cα (Br)
≤C(r,s)∥vβ∥L∞(B(r+s)/2) ≤C(r,s)∥u∥C0,β (Bs)

, (3.7.3)

where C(r,s) depends on universal constants, r and s, 0 < r < s ≤ 7/8, 0 < h < (s− r)/2 and α is
universal.

By making α smaller if necessary, we can assume it is not of the form α = 1/k for any k ∈N, and
therefore there exists a universal integer i such that iα < 1 < (i+1)α . Since u ∈ S(λ/d,Λ,F(0)) (by
Proposition 3.2.4) we can again apply Proposition 3.5.11 and get the interior estimate for u

∥u∥Cα (B7/8)
≤C

(
∥u∥L∞(B1)+ |F(0)|

)
=: CK;

where K = ∥u∥L∞(B1)+ |F(0)|. Applying once again (3.7.3) with β = α and r = r1 < s = 7/8 we get

∥vα∥Cα (Br1 )
≤C(r1)∥u∥Cα (B7/8)

≤C(r1)K,

where 0 < h < (7/8− r1)/2 and C(r1) depends only on universal constants and r1. This estimate
places vα in the assumptions of Lemma 3.7.3 which can now be applied in line segments parallel to e.
We get

∥u∥C2α (Br2 )
≤C(r1,r2)K, for r2 < r1.
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We now repeat the argument, first applying (3.7.3) and then Lemma 3.7.3 with β = 2α , thus getting
u ∈ C3α(Br4). We can iterate this argument i times and since iα < 1 < (i+1)α , by (2) of Lemma
3.7.3 we will arrive at

∥u∥C0,1(B3/4)
≤CK.

We apply one last time (3.7.3) with β = 1 and get

∥v1∥Cα (B1/2)
≤C∥u∥C0,1(B3/4)

≤CK,

for every |e|= 1 and 0 < h < 1/8. Finally by (3) in Lemma 3.7.3 we complete the proof.

3.8 C1,α regularity for solutions of F(D2u,x) = f

In this section we will prove interior C1,α regularity for viscosity solutions of the nonhomogeneous,
fully nonlinear, uniformly elliptic equation with variable coefficient

F(D2u,x) = f (x), for x ∈ B1. (3.8.1)

The argument consists primarily of the following steps:

(1) First we prove that we can assume, without loss of generality, that both ∥ f∥L∞(B1) and the
oscillation of F(M,x) with respect to x are arbitrarily small;

(2) Step (1) implies that for every x0 ∈ B1 and r > 0 sufficiently small, the equation behaves
similarly to the homogeneous equation with constant coefficients

F(D2u,x0) = 0, for x ∈ Br(x0); (3.8.2)

(3) We then establish an approximation argument which consists in proving that solutions of
equations which are similar, have to be close in L∞ norm. More precisely, because of step (1),
solutions of equations (3.8.1) and (3.8.2) have to be arbitrarily close in the L∞ norm;

(4) Because of Corollary 3.7.4, solutions of (3.8.2) belong to C1,α(B1/2) with universal estimates;

(5) The final steps consists of importing the information from steps (3) and (4) to get improved
regularity of solutions of (3.8.1).

Start by defining the oscillation function of an elliptic operator F by βF,x0 : B1 → R given by

βF,x0(x) := sup
M∈S(d)\{0}

|F(M,x)−F(M,x0)|
∥M∥

.

We aim at establishing the following regularity result.

Theorem 3.8.1. Assume that F is continuous in x ∈ B1, βF,x0 is Hölder continuous for every x0 ∈ B1

and f ∈ L∞(B1). Let 0 < α < 1 and ce be the constants given by Corollary 3.7.4 and fix 0 < α < α .
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Then any solution u of F(D2u,x) = f (x) in B1 is in C1,α(B1/2) and satisfies the interior estimate

∥u∥C1,α (B1/2)
≤C

(
∥u∥L∞(B1)+∥ f∥L∞(B1)

)
.

We start by noting that it suffices to prove the theorem assuming that F(0,x)≡ 0, ∥u∥L∞(B1) ≤ 1
and for any arbitrary ε > 0 to be fixed, ∥ f∥L∞(B1) ≤ ε and there exists a small r0 > 0 such that for
every x0 ∈ B1/2 and every r < r0,

∥βF,x0∥Ld(Br(x0)) ≤ εr.

Indeed, since we can rewrite our problem as F(D2u,x)−F(0,x) = f (x)−F(0,x), it is no restriction
to assume that F(0,x)≡ 0. Let ε > 0 to be fixed, call

K := max
{
∥u∥L∞(B1)+

∥ f∥L∞(B1)

ε
,1
}

and define v(x) := K−1u(x). Then v is a viscosity solution of G(D2v,x) = g(x), where G(M,x) =
K−1F(KM,x) and g(x) = K−1 f (x). Note that G is still (λ ,Λ)-elliptic and

βG,x0 = sup
M∈S(d)\{0}

|K−1F(KM,x)−K−1F(KM,x0)|
∥M∥

= sup
N∈S(d)\{0}

|F(N,x)−F(N,x0)|
∥N∥

=βF,x0 .

Since βF,x0 ∈ Cγ(B1) for some 0 < γ < 1 and βF,x0(x0) = 0, then for every x ∈ Br(x0) it holds
βF,x0(x)≤Crγ where C = ∥βF,x0∥Cγ (B1). Therefore, for r0 small enough and for every r < r0 we have

∥βF,x0∥Ld(Br(x0)) ≤ εr.

Finally we note that ∥v∥L∞(B1) ≤ 1 and ∥g∥L∞(B1) ≤ ε . Therefore, if we are able to prove Theorem
3.8.1 under this smallness regime, we get v ∈ C1,α(B1/2) and ∥v∥C1,α (B1/2)

≤ C which immediately
implies u ∈C1,α(B1/2) with

∥u∥C1,α (B1/2)
≤C

(
∥u∥L∞(B1)+∥ f∥L∞(B1)

)
.

Next we present a consequence of this smallness regime. It states that if the equation F(D2u,x) =
f (x) is sufficiently close to the equation F(D2h,x0) = 0 then the corresponding solutions are very
close, that is, ∥u−h∥L∞(B1/2) ≪ 1. In what follows, for simplicity of notation, we will always assume
that x0 = 0. We also call βF,0 = β .

Lemma 3.8.2. Assume that F is continuous in x ∈ B1, β is Hölder continuous and f ∈ L∞(B1). Let
0 < α < 1 and ce be the constants given by Corollary 3.7.4.

For every 0< δ < 1, there exists ε0 > 0 such that, if u∈C(B1) is a viscosity solution to F(D2u,x)=
f (x) in B1 satisfying ∥u∥L∞(B1)

≤ 1, ∥ f∥L∞(B1)
≤ ε0 and ∥β∥Ld(Br) ≤ ε0r, then one can find a function
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h which is a viscosity solution to F(D2h,x0) = 0 such that

∥u−h∥L∞(B1/2)
≤ δ .

Such a function h satisfies

∥h∥C1,α0 (B1/2)
≤C∥h∥L∞(B3/4)

.

Proof. We argue by contradiction. For simplicity, we split the proof in 3 steps.

Step 1 – Assume that there exist δ0 > 0 and sequences ( fn)n, (Fn)n and (un)n satisfying

1. ∥ fn∥L∞(B1)
≤ 1/n;

2. ∥un∥L∞(B1)
≤ 1;

3. if we call βn := βFn , then ∥βn∥Ld(Br) ≤ r/n,

linked together by the equations

Fn(D2un,x) = fn;

however, for every viscosity solution h of F(D2h,0) = 0 it holds

∥un −h∥L∞(B1/2) > δ0. (3.8.3)

By Proposition 3.5.11, there exists a universal β such that (un)n ⊂ Cβ

loc(B1) with universal
estimates, therefore there exists u∞ ∈ C(B1) such that un → u∞ locally uniformly in B1. Clearly
∥u∞∥L∞(B1) ≤ 1.

At this point, we relate u∞ and the sequence (Fn( · ,0))n. Notice that for every n ∈ N, Fn( · ,0)
is (λ ,Λ)-elliptic and therefore uniformly Lipschitz continuous. Consequently, there exists a (λ ,Λ)-
elliptic operator F∞( · ,0) such that Fn( · ,0)→ F∞( · ,0) locally uniformly.

Step 2 – We claim that
F∞(D2u∞,0) = 0 in B9/10. (3.8.4)

To establish (3.8.4), let p(x) be a paraboloid touching u∞ locally from above at a point x∗ ∈ B1. We
need to verify that

F∞(D2 p,0)≤ 0. (3.8.5)

If (3.8.5) fails to hold, then there exists ζ > 0 such that F∞(D2 p,0) = ζ . Since Fn( · ,0) converges
locally uniformly to F∞( · ,0), we may suppose, without loss of generality, that

Fn(D2 p,0)−F∞(D2 p,0)≥−1
n
.

Fix λ ∗ > 0 as to satisfy
λ

dλ ∗ ≥ max
{

1,Λ,
∣∣D2 p

∣∣} ,
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and let ϕn ∈C(B1) be the unique viscosity solution toP−
λ ∗,1(D

2ϕn) = |βn|+ 1
n in B1

ϕn = 0 on ∂B1.
(3.8.6)

First, notice that ϕn → 0 uniformly. Furthermore

P−
λ ∗,1(D

2
ϕn) =−Tr(D2

ϕn)
+−λ

∗ Tr(D2
ϕn)

−

≤−∥(D2
ϕn)

+∥+dλ
∗∥(D2

ϕn)
−∥

Hence

λ

dλ ∗

(
|βn|+

1
n

)
≤−Λ∥(D2

ϕn)
+∥+λ∥(D2

ϕn)
−∥.

Then, we estimate

Fn(D2 p+D2
ϕn,x)≥ Fn(D2 p,x)−Λ∥(D2

ϕn)
+∥+λ∥(D2

ϕn)
−∥

≥ Fn(D2 p,0)−
∣∣D2 p

∣∣βn(x)−Λ∥(D2
ϕn)

+∥+λ∥(D2
ϕn)

−∥

≥ F∞(D2 p,0)− 1
n
−
∣∣D2 p

∣∣βn(x)

+
λ

dλ ∗

(
|βn|+

1
n

)
≥ F∞(D2 p,0)

= ζ . (3.8.7)

Now, because p(x) touches u∞ from above at x∗, the function

ψn(x) := p(x)+ϕn(x)+
ζ |x− x∗|2

4Λ
+C

touches un from above at some point xn in a vicinity of x∗, for n ≫ 1 and some constant C > 0. As a
consequence, we obtain

1
n
≥ fn(xn)≥ Fn(D2

ψ(xn),xn)

≥Fn(D2 p+D2
ϕ(xn),xn)−Λ

ζ

2Λ
,

therefore

Fn(D2 p+D2
ϕ(xn),xn)≤

ζ

2
+

1
n
,

which produces a contradiction, for n large enough, if (3.8.7) is evaluated at xn. Hence (3.8.4) holds
true.
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Step 3 – Notice that (3.8.4) falls within the scope of Corollary 3.7.4, which implies that u∞ ∈
C1,α

loc (B9/10), with universal estimates. By taking h := u∞, we reach a contradiction with (3.8.3) and
complete the proof.

Once an approximation lemma is available, we control the oscillation of the solutions in balls of a
fixed, universal, radius. This is the content of the next proposition.

Proposition 3.8.3. Suppose the assumptions of Lemma 3.8.2 are in force. Then, given α ∈ (0,α),
there exists a universal constant 0 < ρ ≪ 1 and an affine function

ℓ(x) := a+b · x

with a ∈ R and b ∈ Rd , satisfying
∥u− ℓ∥L∞(Bρ )

≤ ρ
1+α .

Proof. Take δ0 > 0 to be fixed later. It follows from Proposition 3.8.2 that, for ε0 sufficiently small,
there exists h ∈C1,α

loc (B1) such that

∥u−h∥L∞(B9/10)
≤ δ0.

Consider the affine function
ℓ(x) := h(0)+Dh(0) · x

and compute

sup
Bρ

|u(x)− ℓ(x)| ≤ sup
Bρ

|h(x)−h(0)−Dh(0) · x|

+ sup
Bρ

|u(x)−h(x)|

≤Cρ
1+α +δ0,

where C > 1 is a universal constant. Making the universal choices

ρ :=
(

1
2C

) 1
α−α

and δ0 :=
ρ1+α

2
, (3.8.8)

the proof is completed.

Proposition 3.8.4. Suppose the assumptions of Lemma 3.8.2 are in force. Then, given α ∈ (0,α),
there exists a sequence (ℓn)n∈N of affine functions of the form

ℓn(x) = an +bn · x,

satisfying
∥u− ℓn∥L∞(Bρn ) ≤ ρ

n(1+α), (3.8.9)

and
|an −an−1|+ρ

n−1|bn −bn−1| ≤Cρ
(2+α)(n−1), (3.8.10)



66 Uniformly elliptic equations

for every n ∈ N.

Proof. We reason through an induction argument. For clarity, we choose to split the proof into three
steps.

Step 1 – We start with the case n = 1. Let ℓ0 := 0 and set

ℓ1(x) := h(0)+Dh(0) · x+ 1
2

x ·D2h(0)x,

where h is the approximating function whose existence is ensured by Lemma 3.8.2. Owing to
Proposition 3.8.3, (3.8.9) is immediately verified. To produce (3.8.10), one resorts to the universal
estimates for h, in C1,α

loc (B1)-spaces, available in Lemma 3.8.2.

Step 2 – We then formulate the induction hypothesis; that is, we suppose (3.8.9)-(3.8.10) have been
verified for n = 1, . . . ,k and establish those conditions in the case n = k+1. To that end, we introduce

vk(x) :=
(u− ℓk)

ρk(2+α)

(
ρ

kx
)
.

The function vk solves

ρ
k(1−α)F(ρk(α−1)D2vk,ρ

kx) = ρ
k(1−α) f (ρkx) in B1,

which we rewrite as

Fk(D2vk,x) = fk(x) in B1,

and we will now verify that Fk, vk and fk fall under the assumptions of Lemma 3.8.2.
Firstly, it is clear that Fk( · ,0)≡ 0 and Fk is still (λ ,Λ)-elliptic. Now we examine βk := βFk . As

before,

βk = sup
M∈S(d)\{0}

|ρk(1−α)F(ρk(α−1)M,x)−ρk(1−α)F(ρk(α−1)M,x0)|
∥M∥

= sup
N∈S(d)\{0}

|F(N,x)−F(N,x0)|
∥N∥

=β .

Finally, ∥ fk∥L∞(B1) ≤ ∥ f∥L∞(B1) ≤ ε0 and by the induction assumption (3.8.9), we have ∥v∥L∞(B1) ≤ 1.
Therefore, vk is entitled to the conclusion of Lemma 3.8.2, which guarantees the existence of a

function h ∈C1,α
loc (B1) such that ∥∥vk −h

∥∥
L∞(B9/10)

≤ δ .

Reasoning as in the proof of Proposition 3.8.3, we conclude

sup
x∈Bρ

|vk(x)− ℓk(x)| ≤ ρ
1+α , (3.8.11)
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where
ℓk(x) := h(0)+Dh(0) · x.

Rescaling (3.8.11) back to the unit ball, we get

sup
B

ρk+1

|u(x)− ℓk+1(x)| ≤ ρ
(1+α)(k+1), (3.8.12)

where

ℓk+1(x) := ak+1 +bk+1 · x,

with
ak+1 := ak +ρ

k(1+α)h(0), (3.8.13)

and
bk+1 := bk +ρ

k(α)Dh(0), (3.8.14)

Step 3 – From (3.8.12) we establish the inequality in (3.8.9) for n = k+1. To verify that (3.8.10) is
also satisfied for n = k+ 1, it suffices to rearrange the terms in (3.8.13) and (3.8.14) and combine
them with the uniform estimates for h.

Theorem 3.8.1 follows immediately from Proposition 3.8.4 combined with Proposition 2.3.3.





Chapter 4

A degenerate fully nonlinear free
transmission problem

4.1 Introduction and main results

In this chapter, we will study the following equation

|Du|β (x,u,Du)F
(
D2u

)
= f (x) in B1, (4.1.1)

where β ≥ 0, F is uniformly elliptic and f is bounded and continuous. The model (4.1.1) accounts
for a diffusion process degenerating as a variable power of the gradient.

We will present two main results. First, we obtain a local regularity result under very general
assumptions on β (x,u,Du). Indeed, we only require β to be well-defined, non-negative and bounded
from above.

We emphasize that the dependence of β on u and Du can be nonlocal and therefore we need
to adapt the definition of viscosity solution, since we can not write β (x0,u(x0),Dϕ(x0)) for a test
function ϕ ∈C2(B1).

Definition 4.1.1 (Viscosity solution). We say that u ∈C(B1) is a viscosity subsolution (resp. superso-
lution) of (4.1.1) if the following condition holds:

If x0 ∈ B1, ϕ ∈C2(B1) and u−ϕ has a local maximum (resp. minimum) at x0, then

|Dϕ(x0)|β (x0,u,Dϕ)F
(
D2

ϕ(x0)
)
≤ f (x0), ( resp. ≥ f (x0)).

We say u is a viscosity solution, if it is both a subsolution and a supersolution.

The first result is the following.

Theorem 4.1.2 (Local C1,α regularity). Let u ∈C(B1) be a viscosity solution to (4.1.1). Assume that
0 ≤ β (x, t, p)≤ βM for fixed βM; assume also that F is uniformly (λ ,Λ)-elliptic, F(0) = 0 and f is
continuous and bounded in B1. Let finally α0 ∈ (0,1) be given in Remark 12 below.

69
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Then, there exist α > 0 and C > 0 such that any viscosity solution u of (4.1.1) is in C1,α(B1/2)

and

[u]C1,α (B1/2)
≤C

(
∥u∥L∞(B9/10)

+∥ f∥L∞(B1)

)
,

where

α = min
{

α
−
0 ,

1
1+βM

}
,

and C =C(λ ,Λ,d,βM).

We now state some remarks concerning this result.

Remark 4.1.3. Theorem 4.1.2 includes the following examples

• β (x,u,Du) = β (x)χG(u), where G(u) = B1 \{u = |Du|= 0};

• β (x,u,Du) = θ(|Du|), where θ(t)→ 2 as t → 0 and θ(t)→ 1 as t → ∞. This equation was
considered for the first time in [10].

Remark 4.1.4. The regularity class is interpreted in the following sense: If 1
1+βM

< α0, then solutions
are C1,α(B1/2) with α = 1

1+βM
; if, alternatively, α0 ≤ 1

1+βM
, then solutions are C1,α(B1/2) for every

α < α0.

Remark 4.1.5. By the classical Krylov-Safanov and Trudinger theory (see Corollary 3.7.4), every
viscosity solution of

F(D2u) = 0, in B1,

belongs to C1,α0(B1/2) for a universal α0 ∈ (0,1).

As one can see from the previous result, there is an intrinsic dependence between the regularity
obtained and the degeneracy rate. Hence, if this rate is variable over the domain, it seems natural to
obtain regularity results which also vary over the domain. This idea, put forward in Lemma 4.6.2
which corresponds to the geometric iterations, is the novelty in this chapter. By considering variable
exponents in each iteration, we are able to better capture the pointwise degenerate behaviour of the
equation.

To obtain this improved regularity, we consider the following explicit expression for the exponent.
Let Gi(u,Du)⊂ B1, i = 1, ...,N be disjoint sets which depend on the solution u and its gradient Du,
and define G0(u,Du) := B1 \

⋃N
i=1 Gi(u,Du). Assume the exponent β has the form

β (x,u,Du) =
N

∑
i=0

βi(x)χGi(u,Du). (4.1.2)

An example to keep in mind is the following. Let N = 2,
G1(u,Du) = {u > 0}, G2(u,Du) = {u < 0} and G0(u,Du) = {u = 0}. If β0 = 0, β1 and β2 are
constants, then we recover the result from [32]. Our result is thus more refined, not only in the
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sense that it includes a much broader class of degeneracies, but also because we obtain an improved
pointwise regularity.

The second main result in this chapter is the following.

Theorem 4.1.6 (Pointwise C1,α regularity). Let u ∈C(B1) be a viscosity solution to (4.1.1). Assume
that β is given by (4.1.2) with βi(·) ∈ [0,βM] for fixed βM ≥ 0 and have modulus of continuity ω

satisfying

limsup
t→0

ln
(

1
t

)
ω(t) = 0; (4.1.3)

assume also that F is uniformly (λ ,Λ)-elliptic, F(0) = 0 and f is continuous and bounded in B1. Let
finally α0 ∈ (0,1) be given in Remark 12.

Then any viscosity solution u of (4.1.1) is C1,α(·)(B1/2) and

[u]C1,α(·)(B1/2)
≤C

(
∥u∥L∞(B9/10)

+∥ f∥L∞(B1)

)
,

where

α(x) = min
i=0,...,N

{
α
−
0 ,

1
1+βi(x)

}
,

and C =C(λ ,Λ,d,βM,ω).

Assumptions of the type (4.1.3) are typical when obtaining higher regularity of solutions to
equations with variable exponents. For example, in [1] the authors are able to prove improved
regularity to a class of variational problems with variable exponents, under the assumption above.

Pointwise regularity has been the subject of various papers, see for example [15] and [46]. These
are useful when a certain property is not verified locally but instead only at a point. Obtaining such a
result as in Theorem 4.1.3 instead of a local regularity result as in Theorem 4.1.2, comes with a cost,
since we must assume stronger uniform continuity of the functions βi. However, more information is
gathered. For example, consider N = 0,

β0(x) = 1000e−
1
2 |1000x|2

and assume F is convex, so that α0 = 1 (see [15, Chapter 6]). Then a local result would yield C1,α

regularity, with α = 1
1001 . The problem with this result is that β0 ≈ 0 except in a small neighborhood

of 0. On the other hand, Theorem 4.1.3 would immediately yield C1,α regularity with α ≈ 1 for points
away from the origin.

Another advantage of having such a sharp pointwise regularity comes when studying the free
boundary of the problem, where a finer analysis is required.

This chapter is organized as follows. Section 4.2 introduces the assumptions to hold throughout
this chapter, some basic notation and a characterization of Hölder spaces. We also obtain a simple
proof for Theorem 4.1.2. In Section 4.3, we simplify the equation, rewriting it as viscosity inequalities
and removing the dependence of the exponents on the solution. We then obtain an important smallness
assumption, which provides a tangential path between our equation and the homogeneous one.
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Hölder continuity of a perturbed equation is the topic of Section 4.4. In Section 4.5 we derive an
approximation lemma. Finally, Section 4.6 consists of the geometric iterations with variable exponents
which combined with the characterization of Hölder spaces put forward in Section 4.2, provides the
improved, pointwise Hölder continuity of the gradient.

4.2 Preliminary material and main assumptions

In this introductory section, we present some basic results that will be instrumental in the sequel and
detail our main assumptions. We start with some notation.

Next, we introduce the uniform ellipticity assumption, assumed to hold throughout this chapter.

[A1] (Uniform ellipticity). The operator F : S (d)→ R is (λ ,Λ)-elliptic, i.e, there exist 0 < λ ≤ Λ

such that
λ |N| ≤ F(M)−F(M+N)≤ Λ|N|,

for every M,N ∈ S (d), with N ≥ 0.

A well-known consequence of [A1] is the uniform Lipschitz regularity of F (see for example [15,
Chapter 2]).

Next, let Gi(u,Du) ⊂ B1, i = 1, ...,N be disjoint sets and define
G0(u,Du) := B1 \

⋃N
i=0 Gi(u,Du). Assume the exponent β has the form

β (x,u,Du) =
N

∑
i=0

βi(x)χGi(u,Du).

We now make some assumptions on βi. First, assume they have a modulus of continuity which decays
at the origin as o(ln(1/t)−1).

[A2] (Uniform continuity of the exponents). The exponents βi : B1 → R have modulus of continuity
satisfying

limsup
t→0

ln
(

1
t

)
ω(t) = 0.

Note that [A2] is equivalent to the following statement. For every
0 < r < e−1, the following holds

limsup
k→∞

kω(rk) = 0.

Hence, by definition, for every ε > 0 there exists δ1 > 0 such that if ρ ≤ δ1, then for every k ∈ N,

k ln
(

1
ρ

)
ω(ρk)≤ ε.

Since ρ will be chosen to be small, we can assume ρ < e−1, and it follows that

kω(ρk)≤ ε.
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Now, by defining ε = α0−α

2 (it will become clear later why we make this choice) we also fix δ1 such
that if ρ ≤ δ1, then for every k ∈ N,

kω(ρk)≤ α0 −α

2
. (4.2.1)

This δ1 depends only on the continuity modulus ω , the universal exponent α0 introduced in Remark
12, and the exponent α which is defined in Theorem 4.1.3.

Remark 4.2.1. To emphasize this idea, let’s consider some concrete examples. Suppose ω(t)= t1/2 and
choose α such that ε = α0−α

2 = 1/100. Then one can calculate that (4.2.1) holds for ρ ≤ 4.7×10−7.
If ε = 1/1000, then we need ρ ≤ 2.55×10−9. These are numbers that depend only on these quantities
and can be calculated, provided we know the expression of ω explicitly.

An example of a modulus of continuity satisfying [A2] is

ω(t) = ln
(

1
t

)−p

,

with p > 1.

Finally, we assume that the exponents are non-negative and bounded uniformly from above.

[A3] (Boundedness of the exponents). There exists a constant βM such that

0 ≤ βi(·)≤ βM < 1.

To conclude this introductory section, we present a simple proof of Theorem 4.1.2, using the
results from [32].

Lemma 4.2.2. Let u ∈C(B1) be a viscosity solution to the equation

|Du|β (x,u,Du)F
(
D2u

)
= f (x), (4.2.2)

with β ∈ [0,βM] and βM ≥ 0.

Then u is a viscosity subsolution to the equation

min
{

F
(
D2u

)
, |Du|βM F

(
D2u

)}
≤ ∥ f∥L∞(B1)

, (4.2.3)

and a viscosity supersolution to the equation

max
{

F
(
D2u

)
, |Du|βM F

(
D2u

)}
≥−∥ f∥L∞(B1)

. (4.2.4)

Proof. We prove only that if u is a viscosity subsolution to (4.2.2), then it is a subsolution to (4.2.3),
noting that the remaining case follows similarly.

Let ϕ ∈C2(B1) be such that u−ϕ has a local maximum at x0. Then

|Dϕ(x0)|β (x0,u,Dϕ)F
(
D2

ϕ(x0)
)
≤ f (x0).
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Thus, depending on whether |Dϕ(x0)| ≥ 1 or |Dϕ(x0)|< 1 one of the following must hold, respectively

F
(
D2

ϕ(x0)
)
≤ ∥ f∥L∞(B1)

,

|Dϕ(x0)|βM F
(
D2

ϕ(x0)
)
≤ ∥ f∥L∞(B1)

,

provided F
(
D2ϕ(x0)

)
≥ 0 (clearly if this is not the case, both inequalities are trivially verified). In

either case, we have

min
{

F
(
D2

ϕ(x0)
)
, |Dϕ(x0)|βM F

(
D2

ϕ(x0)
)}

≤ ∥ f∥L∞(B1)
.

Hence, we have proved that u is a subsolution of (4.2.3).

This simple result places the equation (4.2.2) in the framework of [32] with θ1 = 0 and θ2 = βM

(see Proposition 1 therein). A direct application of [32, Theorem 2] yields local regularity u ∈
C1,α(B1/2) with

α = min
{

α
−
0 ,

1
1+βM

}
,

together with the estimate

[u]C1,α (B1/2)
≤C

(
∥u∥L∞(B9/10)

+∥ f∥L∞(B1)

)
,

which implies Theorem 4.1.2.
The remaining of this chapter is devoted to proving Theorem 4.1.3. In the next section, we begin

our analysis.

4.3 Scaling properties

The following result disconnects the dependence of the exponents on the solution, by separating the
possible cases.

Lemma 4.3.1. Let u ∈C(B1) be a viscosity solution to the perturbed equation

|Du+ p|β (x,u,Du)F
(
D2u

)
= f (x), (4.3.1)

with β given by (4.1.2). Assume that assumptions [A1], [A2] and [A3] are in force.
Then u is a viscosity subsolution to the equation

min
i=0,...,N

{
|Du+ p|βi(x) F

(
D2u

)}
≤ ∥ f∥L∞(B1)

, (4.3.2)

and a viscosity supersolution to the equation

max
i=0,...,N

{
|Du+ p|βi(x) F

(
D2u

)}
≥−∥ f∥L∞(B1)

. (4.3.3)



4.3 Scaling properties 75

Proof. We prove only that if u is a viscosity subsolution to (4.3.1), then it is a subsolution to (4.3.2),
noting that the remaining case follows similarly.

Let ϕ ∈C2(B1) be such that u−ϕ has a local maximum at x0. Then

|Dϕ(x0)+ p|β (x0,u,Dϕ)F
(
D2

ϕ(x0)
)
≤ f (x0),

where

β (x0,u,Dϕ) =
N

∑
i=0

βi(x0)χGi(u,Dϕ)(x0).

Since Gi, i = 0, ...,N, form a disjoint partition of B1, there is a unique i0 ∈ {0, ...,N} such that
x0 ∈ Gi0(u,Dϕ). Thus

|Dϕ(x0)+ p|βi0 (x0)F
(
D2

ϕ(x0)
)
≤ f (x0).

In particular, we have

min
i=0,...,N

{
|Dϕ(x0)+ p|βi(x0)F

(
D2

ϕ(x0)
)}

≤ ∥ f∥L∞(B1)
.

Hence, we have proved that u is a subsolution of (4.3.2).

The following result states that to prove Theorem 4.1.3, we can assume a smallness regime,
without loss of generality. It provides a tangential path between our equation and the homogeneous
one.

Proposition 4.3.2 (Smallness regime). Let u be a subsolution to the equation

min
i=0,...,N

{
|Du|βi(x) F

(
D2u

)}
≤ ∥ f∥L∞(B1)

, (4.3.4)

and a supersolution to the equation

max
i=0,...,N

{
|Du|βi(x) F

(
D2u

)}
≥−∥ f∥L∞(B1)

. (4.3.5)

satisfying

[u]C1,α (x0) ≤C,

under the assumption that ∥u∥L∞(B9/10)
≤ 1 and ∥ f∥L∞(B1)

≤ ε0 , where C and ε0 are universal constants.
Then, Theorem 4.1.3 holds.

Proof. Let u(x) = Ku(x) where

K :=

(
∥u∥L∞(B9/10)

+
∥ f∥L∞(B1)

ε0

)−1

.
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Note that we can assume K ≤ 1, since otherwise we are already in the smallness regime and we can
just take K = 1.

The function u is a viscosity subsolution to

min
i=0,...,N

{
K−βi(x)|Du|βi(x)KF

(
K−1D2u

)}
≤ K ∥ f∥L∞(B1)

,

which implies

min
i=0,...,N

{
|Du|βi(x)F(D2u)

}
≤ max

i=0,...,N

{
K1+βi(x)

}
∥ f∥L∞(B1)

,

where F(M) := KF
(
K−1M

)
still satisfies [A1]. Since K ≤ 1, we immediately get

min
i=0,...,N

{
|Du|βi(x)F(D2u)

}
≤ ε0.

Similarly, we get

max
i=0,...,N

{
|Du|βi(x)F(D2u)

}
≥−ε0.

Since ∥u∥L∞(B9/10)
≤ 1, we note that the smallness assumptions are now satisfied. Hence, if we verify

that

[u]C1,α (B1) ≤C,

we can infer that

[u]C1,α (B1) ≤C1

(
∥u∥L∞(B9/10)

+∥ f∥L∞(B1)

)
, (4.3.6)

where C1 depends on ε0, which will be fixed universally.

Remark 4.3.3. The choice of K in the previous proof differs from the literature (see for example [32]).
The observation that K ≤ 1 allows us to obtain the simple estimate (4.3.6).

In the following section we obtain improved regularity.

4.4 Hölder continuity

In this section, we obtain a compactness result for solutions. This result is essential when studying
stability since it will allow us to obtain convergence of sequences of solutions.

We start by stating the maximum principle for viscosity solutions, Theorem 3.2 of [19].

Proposition 4.4.1 (Maximum principle). Let Ω be a bounded domain and G, H ∈C
(
S (d)×Rd ×B1

)
be degenerate elliptic. Let u1 be a viscosity subsolution of G

(
D2u1,Du1,x

)
= 0 and u2 be a viscosity
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supersolution of H
(
D2u2,Du2,x

)
= 0 in Ω. Let ϕ ∈C2(Ω×Ω). Define v : Ω×Ω → R by

v(x,y) := u1(x)−u2(y).

Suppose further that (x,y) ∈ Ω×Ω is a local maximum of v−ϕ in Ω×Ω. Then, for every ι > 0,
there exist matrices X and Y in S (d) such that

G(X ,Dxϕ (x,y) ,x)≤ 0 ≤ H (Y,−Dyϕ (x,y) ,y) ,

and the matrix inequality

−
(

1
ι
+∥A∥

)
I ≤

(
X 0
0 −Y

)
≤ A+ ιA2

holds true, where A := D2ϕ (x,y).

We proceed by stating a result from [35], which we present in the following simplified form.

Proposition 4.4.2. Let u ∈C(B1) be a bounded viscosity subsolution to equation

P−
λ ,Λ

(
D2u

)
−|Du|= 0, in {|Du|> γ}

and a viscosity supersolution to equation

P+
λ ,Λ

(
D2u

)
+ |Du|= 0, in {|Du|> γ}.

Then u ∈Cθ
loc(B1) and, for every 0 < τ < 1, there exists C > 0 such that

∥u∥Cθ (Bτ )
≤C.

The constant θ depends only on d,λ ,Λ and C depends only on d,λ ,Λ, γ,∥u∥L∞(B9/10)
,τ .

Intuitively, in the set where the gradient of a function u is bounded, the function is already
Lipschitz. The idea behind the previous result is that if u is a solution of an elliptic equation in the set
where its gradient is very large, then we are able to obtain improved regularity.

This proposition will imply Hölder continuity of solutions to (4.3.2) and (4.3.3) in the case where
|p| is sufficiently small. More precisely, let A0 > 1 (to be fixed) be such that |p|< A0. We claim that
u is a viscosity subsolution to

F
(
D2u

)
−|Du|= 0, in {|Du|> 2A0}. (4.4.1)

Indeed, take ϕ ∈ C2 such that u − ϕ has a local maximum at
x0 ∈ {|Du| > 2A0}. Then |Dϕ(x0)| > 2A0 and therefore
|Dϕ(x0)+ p| ≥ A0 > 1. From (4.3.2) we have

min
i=0,...,N

{
|Dϕ(x0)+ p|βi(x0)F

(
D2

ϕ(x0
)
)
}
≤ ∥ f∥L∞(B1)

,
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which implies

F
(
D2

ϕ(x0
)
)≤ ∥ f∥L∞(B1)

≤ |Dϕ(x0)|

since we are under the assumption ∥ f∥L∞(B1)
≤ ε0 and ε0 will be chosen very small. Hence, from

uniform ellipticity and recalling that F(0) = 0,

P−
λ ,Λ

(
D2

ϕ(x0
)
)−|Dϕ(x0)| ≤ F

(
D2

ϕ(x0
)
)−|Dϕ(x0)| ≤ 0.

We verified that u is a viscosity subsolution to (4.4.1). In a similar way, we prove that u is a viscosity
supersolution to

P+
λ ,Λ

(
D2

ϕ(x0
)
)+ |Du|= 0,

in {|Du|> 2A0}. Hence, we proved the following corollary.

Corollary 4.4.3. Let u ∈ C(B1) be a bounded viscosity subsolution to (4.3.2) and a supersolution
to (4.3.3). Assume [A1], [A2] and [A3] are in force, let ∥u∥L∞(B9/10)

≤ 1, ∥ f∥L∞(B1)
≤ ε0 and assume

further that |p|< A0. The constants ε0 and A0 will be fixed in the sequel.

Then u ∈ Cθ
loc(B9/10) for some θ ∈ (0,1), depending only on d,λ ,Λ. In addition, for every

0 < τ < 9/10, there exists C > 0 such that

∥u∥Cθ (Bτ )
≤C,

where C =C(d,λ ,Λ,A0,τ).

In the following lemma we obtain Hölder continuity for arbitrary p ∈ Rd , which concludes this
section.

Lemma 4.4.4 (Cθ regularity). Let u ∈ C(B1) be a bounded viscosity subsolution to (4.3.2) and a
supersolution to (4.3.3). Assume [A1], [A2] and [A3] are in force and let ∥u∥L∞(B9/10)

≤ 1 and
∥ f∥L∞(B1)

≤ ε0, to be fixed universally.

Then u ∈ Cθ
loc(B9/10) for some θ ∈ (0,1), depending only on d,λ ,Λ. In addition, for every

0 < τ < 9/10, there exists C > 0 such that

∥u∥Cθ (Bτ )
≤C,

where C =C(d,λ ,Λ).

Proof. We begin by using Proposition 4.4.1 to obtain a subjet and a superjet satisfying the estimate
(4.4.5) below. This was done in [32, Proposition 7] but for completion we replicate the proof.

Fix 0 < r < 1−τ

2 and define

ω(t) = t − t2

2
.
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For constants L1, L2 > 0 and x0 ∈ Br, we set

L := sup
x,y∈Br(x0)

[
u(x)−u(y)−L1ω (|x− y|)−L2

(
|x− x0|2 + |y− x0|2

)]
Set A0 = 4L1 and assume |p| ≥ A0.

We aim at establishing that there exist constants L1 and L2, independent of x0, for which L ≤ 0.
This immediately implies that u is Lipschitz continuous in Bτ by taking x0 = x.

We argue by contradiction. Suppose there exists x0 ∈ Bτ for which L > 0, regardless of the choices
of L1 and L2. Consider the auxiliary functions ψ,φ : B1 ×B1 → R given by

ψ (x,y) := L1ω (|x− y|)+L2

(
|x− x0|2 + |y− x0|2

)
and

φ (x,y) := u(x)−u(y)−ψ (x,y) .

Let (x,y) be a point where φ attains its maximum. Then

φ (x,y) = L > 0

and

L1ω (|x− y|)+L2

(
|x− x0|2 + |y− x0|2

)
≤ 2.

Set

L2 :=

(
4
√

2
r

)2

.

Then

|x− x0|+ |y− x0| ≤
r
2
,

which implies that x,y ∈ Br(x0). In addition, x ̸= y, since if this isn’t the case we would conclude that
L ≤ 0.

We now use Proposition 4.4.1 to ensure the existence of a subjet (ξx,X) of u at x and a superjet
(ξy,Y ) of u at y with

ξx := Dxψ (x,y) = L1ω
′ (|x− y|)σ +2L2 (x− x0) ,

ξy :=−Dyψ (x,y) = L1ω
′ (|x− y|)σ −2L2 (x− x0) ,

where

σ :=
x− y
|x− y|

.
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Since ω ′ (|x− y|)≤ 1,

|ξx| ≤ L1 +
L2

2
≤ 2L1, (4.4.2)

and

|ξy| ≤ L1 +
L2

2
≤ 2L1 (4.4.3)

for L1 large enough.
In addition, the matrices X and Y satisfy the inequality(

X 0
0 −Y

)
≤

(
Z −Z
−Z Z

)
+(2L2 + ι) I, (4.4.4)

for

Z := L1ω
′′ (|x− y|)σ ⊗σ +L1

ω ′ (|x− y|)
|x− y|

(I −σ ⊗σ) ,

where 0 < ι ≪ 1 depends solely on the norm of Z.
Next we apply the matrix inequality (4.4.4) to special vectors as to obtain information about the

eigenvalues of X −Y . First, apply it to vectors of the form (z,z) ∈ R2d to get

z · (X −Y )z ≤ (4L2 +2ι) |z|2

which implies that all eigenvalues of X −Y are less than or equal to 4L2 +2ι .
Now we apply (4.4.4) to the vector z = (σ ,−σ) to obtain

σ · (X −Y )σ ≤4L2 +2ι +4L1ω
′′ (|x− y|)

=4L2 +2ι −4L1.

We thus conclude that at least one eigenvalue of X −Y is below 4L2 + 2ι − 4L1, which will be a
negative number, provided we choose L1 large enough.

Evaluating the minimal Pucci operator on X −Y , we get

P−
λ ,Λ(X −Y )≥4λL1 − (λ (d −1)Λ)(4L2 +2ι)

≥3λL1 (4.4.5)

for L1 even larger, if necessary. Furthermore, these jets satisfy the viscosity estimates

min
i=0,...,N

{
|p+ξx|βi(x)F(X)

}
≤ ε0, (4.4.6)

and

max
i=0,...,N

{
|p+ξy|βi(x)F(Y )

}
≥−ε0. (4.4.7)
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Since we fixed A0 = 4L1 and assumed |p| ≥ A0, this together with (4.4.2) and (4.4.3) imply

|p+ξx| ≥ 2L1 > 1,

|p+ξy| ≥ 2L1 > 1.

Hence, (4.4.6) and (4.4.7) imply, respectively,

F(X)≤ ε0

and

F(Y )≥−ε0.

Combining these inequalities with (4.4.5) by means of uniform ellipticity, we get

3λL1 ≤ 2ε0,

which is clearly a contradiction, provided we choose L1 large enough.
This concludes the proof for the case |p| ≥ A0, which combined with Corollary 4.4.3 completes

the proof.

With compactness available, we proceed with a key step in our tangential analysis.

4.5 Approximation lemma

We present an approximation lemma for the perturbed equation.

Lemma 4.5.1 (Approximation lemma). For every 0 < δ < 1, there exists ε0 > 0 such that, if u ∈C(B1)

is a viscosity subsolution to (4.3.2) and a viscosity supersolution to (4.3.3), satisfying ∥u∥L∞(B9/10)
≤ 1

and ∥ f∥L∞(B1)
≤ ε0, then one can find a function h which is a viscosity solution to F(D2h) = 0 for

some F satisfying assumption [A1], such that

∥u−h∥L∞(B1/2)
≤ δ .

Such a function h satisfies

∥h∥C1,α0 (B1/2)
≤C∥h∥L∞(B3/4)

.

Proof. We argue by contradiction. For simplicity, we split the proof in steps.

Step 1 – Assume that there exist δ0 > 0 and sequences (un)n, (Fn)n and (β n
i )n such that

1. ∥un∥∞
≤ 1;

2. Fn satisfy [A1];

3. β n
i satisfy [A2] and [A3];
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linked together by the equations

min
i=0,...,N

{
|Dun + pn|β

n
i (x) Fn

(
D2un

)}
≤ 1

n

and

max
i=0,...,N

{
|Dun + pn|β

n
i (x) Fn

(
D2un

)}
≥−1

n
,

in the viscosity sense, in B1; however, for every function h ∈C1,α0 , it holds

∥un −h∥L∞(B1/2)
> δ0. (4.5.1)

Step 2 – Since un are equibounded in Cθ (B9/10), by the Arzelà-Ascoli Theorem they will converge, up
to a subsequence, locally uniformly to
u∞ ∈C(B1).

Since Fn are (λ ,Λ)-elliptic, they are also Lipschitz continuous. Therefore, again by the Arzelà-
Ascoli Theorem they will converge locally uniformly to an (λ ,Λ)-elliptic operator F∞.

Finally, since β n
i satisfy assumptions [A2] and [A3] they will converge locally uniformly to

continuous functions β ∞
i , respectively.

Our goal is to prove that the limiting function u∞ is a viscosity solution to the equation F∞(D2u∞) =

0. We only prove that it is a subsolution, since the proof for supersolution is analogous. We will
consider two cases, depending on the limit behaviour of (pn)n.

Step 3 – Assume that (pn)n does not admit a convergent subsequence. Then |pn|→∞. Let ϕ ∈C2(B1)

and assume that u∞ −ϕ attains a local strict maximum at x0 ∈ B1. By contradiction, assume that

F∞

(
D2

ϕ(x0)
)
> 0. (4.5.2)

There exists a sequence xn → x0 such that un −ϕ has a local maximum at xn. Notice that Dϕ(xn)→
Dϕ(x0) and D2ϕ(xn)→ D2ϕ(x0). Also, by the equation satisfied by un in the viscosity sense, we have

min
i=0,...,N

{
|Dϕ(xn)+ pn|β

n
i (xn) Fn

(
D2

ϕ(xn)
)}

≤ 1
n
.

Taking n large enough, we have |Dϕ(xn)+ pn|> 1 and since β n
i ≥ 0, we get

Fn
(
D2

ϕ(xn)
)
≤ 1

n
,

which is inconsistent with (4.5.2), when we take the limit n → ∞. Therefore,

F∞(D2
ϕ(x0))≤ 0,

concluding the proof for the case |pn| → ∞.
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Step 4 – Suppose now that we can extract a subsequence pn → p∞. Resorting to standard stability
results (see for example [19, Remarks 6.2 and 6.3]), we conclude that u∞ is a viscosity subsolution to

min
i=0,...,N

{
|p∞ +Du∞|β

∞
i (x) F∞(D2u∞)

}
≤ 0,

and a viscosity supersolution to

max
i=0,...,N

{
|p∞ +Du∞|β

∞
i (x) F∞(D2u∞)

}
≥ 0.

We can assume without loss of generality that p∞ = 0, i.e., assume that u∞ is a viscosity subsolution to

min
i=0,...,N

{
|Du∞|β

∞
i (x) F∞(D2u∞)

}
≤ 0,

and a viscosity supersolution to

max
i=0,...,N

{
|Du∞|β

∞
i (x) F∞(D2u∞)

}
≥ 0.

We now claim that these inequalities imply that F∞(D2u∞) = 0. This is proved in Lemma 4.5.2 below.
Step 5 – Since F∞(D2u∞) = 0, by Remark 12 we get that u∞ ∈C1,α0(B1/2). This, together with the
uniform convergence un → u∞ produces a contradiction with (4.5.1), which completes the proof.

We present a homogeneous division lemma which concludes the proof of Lemma 4.5.1. We follow
closely the proof of [34, Lemma 6].

Lemma 4.5.2. Let u ∈C(B1) be a bounded viscosity subsolution to

min
i=0,...,N

{
|Du|βi(x)F

(
D2u

)}
≤ 0, (4.5.3)

and a viscosity supersolution to

max
i=0,...,N

{
|Du|βi(x)F

(
D2u

)}
≥ 0. (4.5.4)

Then u is a viscosity solution to

F
(
D2u

)
= 0.

Proof. We prove that (4.5.4) implies F
(
D2u

)
≥ 0, noting that F

(
D2u

)
≤ 0 follows similarly from

(4.5.3) in a similar way.
Let P(x) = 1

2(x− y) ·N(x− y)+b · (x− y)+u(y) be a polynomial touching u strictly from below
at a point y ∈ B3/4. We shall assume, without loss of generality, that y = 0 and u(0) = 0. Then we
have the estimate

min
i=0,...,N

{
|b|βi(0)F(N)

}
≤ 0.
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If b ̸= 0 then the result is trivial, so assume that P(x) = 1
2 x ·Nx. We argue by contradiction,

assuming that F(N)< 0. By ellipticity, this implies that N has at least one positive eigenvalue. Let S
be the subspace generated by the eigenvectors corresponding to the positive eigenvalues and consider
the projection PS to this subspace. We consider the following perturbed test function

ψ(x) = P(x)+ ε|PSx|, for x ∈ Br.

For ε large enough, u−ψ attains a negative minimum at Br −B 9
10 r (since S is not empty and u is

continuous). Indeed, let m = maxBr
|u−P| and ε = 21m

r . Then

min
x∈B 9

10 r

(u(x)−P(x)− ε|PSx|)≥−m− 21M
r

9
10

r =−199
10

m;

on the other hand, for x ∈ ∂Br,

u(x)−P(x)− ε|PSx| ≤ m− 21m
r

r =−20m,

which concludes that the minimum is negative and attained at x0 ∈ Br \B 9
10 r.

Using this ε , we claim that PSx0 ̸= 0. In fact, since (u−ψ)(x0)≤ (u−ψ)(x),

(u−P)(x0)− ε|PSx0| ≤ (u−ψ)(x)

if PSx0 = 0, we take x = 0 and get

(u−P)(x0)≤ (u−ψ)(0) = (u−P)(0) = 0.

But P touches u strictly from below at y = 0 which implies (u−P)(x0) ≥ 0 with equality only if
x0 = 0, therefore (u−ψ)(x0) = 0, contradicting the fact that the minimum is negative and that x0 ̸= 0.

We proved that |PSx0| ̸= 0 which implies that ψ is smooth in a neighbourhood of x0. Hence, for an
appropriate translation of ψ , call it ψ̃ , u− ψ̃ has a local minimum in Br at x0. Let B be the Hessian of
|PSx| at x = x0. Note that since |PSx| is a convex function, B ≥ 0. We also have the viscosity inequality

max
i=0,...,N

{
|Nx0 + εe0|βi(x0)F(N + εB)

}
≥ 0,

for e0 =PSx0/|PSx0|. Note (Nx0+εe0) ·PSx0 > 0, since PS is the projection into the subspace generated
by the eigenvalues of N associated with its positive eigenvalues. Then, by ellipticity we obtain

F(N)≥ F(N + εB)≥ 0,

which is a contradiction. Hence F
(
D2u

)
≥ 0 which concludes the proof.

In the next and final section of this chapter, we provide an iterative scheme to control the oscillation
of the gradient.
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4.6 Hölder continuity of the gradient

In the following lemmas, we proceed with the geometric iteration argument in a sequence of concentric,
shrinking balls. The first geometric iteration follows immediately from the approximation lemma.

Lemma 4.6.1. Let u ∈ C(B1) be a viscosity subsolution to (4.3.2) and a viscosity supersolution
to (4.3.3). Under the assumptions of Lemma 4.5.1, for every θ < α0, there exists a polynomial
ℓ(x) = a+b · x and a constant 0 < ρ < 1, depending on ω and universal constants, such that

∥u− ℓ∥L∞(Bρ )
≤ ρ

1+θ .

Furthermore, there exists a universal C > 0 such that |a| ≤C and |b| ≤C.

Proof. By Lemma 4.5.1, there exists h ∈C1,α0(B1/2) such that

∥u−h∥L∞(B1/2)
≤ δ ,

with the uniform estimate

∥h∥C1,α0 (B1/2)
≤C∥h∥L∞(B3/4)

.

This implies that, for every 0 < r ≪ 1 and for the polynomial
ℓ(x) = h(x0)+Dh(x0) · (x− x0),

∥h− ℓ∥L∞(Br(x0))
≤Cr1+α0 ,

with |h(x0)| ≤C and |Dh(x0)| ≤C where C is universal.

Let θ < α0 be arbitrary and take r = ρ given by

ρ := min
{

δ1, (2C)
1

θ−α0

}
,

where δ1 is given implicitly in (4.2.1). Finally fix δ = ρ1+θ

2 , which also fixes ε0 via Lemma 4.5.1.
Then

∥u− ℓ∥L∞(Bρ (x0))
≤∥u−h∥L∞(Bρ (x0))

+∥h− ℓ∥L∞(Bρ (x0))

≤δ +Cρ
1+α0 ≤ ρ

1+θ .

Now we iterate the previous result concentric, shrinking balls.

Lemma 4.6.2 (Geometric iterations). There exist a non-decreasing sequence (αk)k and universal
constants ε0 > 0 and ρ > 0 such that if u is a viscosity subsolution of (4.3.2) and a supersolution
of (4.3.3) with p = 0, satisfying ∥u∥L∞(B9/10)

≤ 1 and ∥ f∥L∞(B1)
≤ ε0, there exist polynomials ℓk(x) =
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ak +bk · x such that

∥u− ℓk∥L∞(B
ρk (x0))

≤ ρ
k(1+αk), (4.6.1)

and

|ak −ak−1|+ρ
k−1|bk −bk−1| ≤Ceρ

(k−1)(1+αk−1). (4.6.2)

Furthermore, the sequence (αk)k converges to

α := min
i=0,...,N

{
α
−
0 ,

1
1+βi(x0)

}
and

limsup
k→∞

k (α −αk) = 0. (4.6.3)

Proof. Assume without loss of generality that x0 = 0. Take ε0 and ρ given by Lemma 4.6.1, depending
on θ , which will be fixed soon.

Define the nondecreasing sequence

αk := min
i=0,...,N

{
α
−
0 , min

x∈B
ρk

(
1

1+βi(x)

)}
,

which converges to the number

α := min
i=0,...,N

{
α
−
0 ,

1
1+βi(0)

}
.

Note that, by [A2],

k

(
1

1+βi(0)
− 1

1+maxx∈B
ρk βi(x)

)
≤k

(
max
x∈B

ρk
βi(x)−βi(0)

)
≤kω(ρk).

Therefore, considering all possible cases, we can easily check that

0 ≤ k(α −αk)≤ kω

(
ρ

k
)
,

with

limsup
k→∞

kω(ρk) = 0.

To prove (4.6.1) and (4.6.2), we will proceed by induction.

Let ℓ0 ≡ 0 and ℓ1 be given by Lemma 4.6.1. Then (4.6.1) and (4.6.2) hold for k = 1 by Lemma
4.6.1.



4.6 Hölder continuity of the gradient 87

Assume that (4.6.1) and (4.6.2) hold up to k. Define

vk(x) =
(u− ℓk)

ρk(1+αk)
(ρkx).

Then ∥vk∥L∞(B1)
≤ 1 and vk is a viscosity subsolution to

min
i=0,...,N

{
ρ

kαkβi(ρ
kx)
∣∣Dvk(x)+ρ

−kαk bk
∣∣βi(ρ

kx)
Fk
(
D2vk

)}
≤ ρ

k(1−αk)ε0,

where

Fk(M) := ρ
k(1−αk)F

(
ρ

k(αk−1)M
)
.

This implies the following estimate

min
i=0,...,N

{∣∣Dvk(x)+ρ
−kαk bk

∣∣βi(ρ
kx)

Fk
(
D2vk

)}
≤ max

i=0,...,N

{
ρ

k(1−αk)−kαkβi(ρ
kx)
}

ε0 ≤ ε0,

where the last inequality follows from the definition of αk. Calling
pk := ρ−kαk bk and β k

i (x) := βi(ρ
kx), we get that vk is a subsolution to

min
i=0,...,N

{
|Dvk(x)+ pk|β

k
i (x) Fk

(
D2vk

)}
≤ ε0.

Similarly, we prove that vk is a viscosity supersolution to

max
i=0,...,N

{
|Dvk(x)+ pk|β

k
i (x) Fk

(
D2vk

)}
≥−ε0.

Note that β k
i still satisfy assumption [A2].

Hence, we can use Lemma 4.6.1 to guarantee the existence of a linear function ℓ(x) = a+ p · x
such that

sup
Bρ

|vk − ℓ| ≤ ρ
1+θ ,

where θ = α+α0
2 < α0 and the coefficients satisfy

a = h(0),

p = Dh(0),
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where h is a viscosity solution to G(D2h) = 0 and G has the same ellipticity constants as F . Hence,
as a straightforward application of ellipticity, h has interior C1,α0 estimates which imply universal
bounds on the coefficients of ℓ.

Rescalling back to the unit ball, we get

sup
x∈Bρ

∣∣∣∣ u− ℓk

ρk(1+αk)
(ρkx)− ℓ(x)

∣∣∣∣≤ ρ
1+θ

⇐⇒ sup
y∈B

ρk+1

∣∣∣u(y)− ℓk(y)−ρ
k(1+αk)ℓ(ρ−ky)

∣∣∣≤ ρ
1+θ

ρ
k(1+αk)

⇐⇒ sup
y∈B

ρk+1

|u(y)− ℓk+1(y)| ≤ ρ
1+θ

ρ
k(αk−αk+1)ρ

k(1+αk+1),

where

ℓk+1(y)− ℓk(y) =(ak+1 −ak)+(pk+1 − pk) · y
=ρ

k(1+αk)h(0)+ρ
kαk Dh(0) · y.

Because of (4.2.1), we have

ρ
k(αk−αk+1) ≤ ρ

−kω(ρk) ≤ ρ
α−α0

2 ,

hence, we can further estimate

ρ
1+θ

ρ
k(αk−αk+1)ρ

k(1+αk+1) ≤ ρ
θ−αk+1ρ

α−α0
2 ρ

(k+1)(1+αk+1)

and since θ = α+α0
2 , we can write

θ −αk+1 +
α −α0

2
= α −αk+1 ≥ 0.

Combining all these inequalities, we can finally estimate

sup
y∈B

ρk+1

|u(y)− ℓk+1(y)| ≤ ρ
(k+1)(1+αk+1)

which proves (4.6.1) and since |h(0)| ≤C, |Dh(0)| ≤C, estimate (4.6.2) follows immediately aswell.
This concludes the proof for the case x0 = 0. A standard translation locates this argument at any point
x0 ∈ B1/2.

Theorem 4.1.3 follows from Lemma 4.6.2 together with Proposition 2.3.4.



Chapter 5

Fully nonlinear Hamilton-Jacobi
equations of degenerate type

5.1 Introduction and main results

In this chapter, we study a fully nonlinear Hamilton-Jacobi equation of the form

F(D2u)+H(Du,x) = f (x) in Ω ⊂ Rd , (5.1.1)

where F : S(d)→ R is degenerate elliptic, the Hamiltonian H = H(p,x) satisfies natural growth and
continuity conditions, and f ∈ L∞(Ω) is Lipschitz continuous. In the superlinear setting, we prove that
viscosity solutions to (5.1.1) are locally Lipschitz-continuous. In addition, we examine a two-phase
free boundary problem driven by the operator in (5.1.1). In this context, our findings include the
existence of solutions and regularity estimates across the free boundary. The conditions we impose
on the structure of the problem are fairly general and cover important models, such as Bellman and
Isaacs equations. An example of Hamiltonian falling under our assumptions is

H(p,x) := a(x)
(
1+ |p|2

)m
2 +V (x),

provided a,V : Ω → R are Lipschitz-continuous and bounded from above and below, and m > 1.
Our contribution is two-fold. By developing an intrinsically nonlinear argument, we prove that

viscosity solutions to (5.1.1) are Lipschitz continuous, with estimates. Then we examine a consequence
of our regularity result to a two-phase free boundary problem and prove the existence of solutions,
with estimates in Hölder spaces. Our main result reads as follows.

Theorem 5.1.1 (Improved regularity of solutions). Let u ∈ C(Ω) be a viscosity solution to (5.1.1)
where F : S(d) → R is degenerate elliptic, Lipschitz-continuous and positively homogeneous of
degree 1, and f ∈ L∞(Ω) is Lipschitz-continuous. Suppose the Hamiltonian H is superlinear and
satisfies natural growth and continuity conditions, detailed in Section 5.2. Then u is locally Lipschitz-
continuous in Ω. Moreover, for every Ω′ ⋐ Ω, there exists C > 0 such that

|u(x)−u(y)| ≤C
(

1+∥u∥L∞(Ω)+∥ f∥L∞(Ω)

)
|x− y|,

89



90 Fully nonlinear Hamilton-Jacobi equations of degenerate type

for every x,y ∈ Ω′. The constant C > 0 depends only on Ω′, and the data of the problem.

The proof of Theorem 5.1.1 relies on two building blocks. First, we examine the superquadratic
case, i.e., H(p,x) ∼ C+C|p|m, with m > 2. In this setting, we prove that solutions to (5.1.1) are
γ-Hölder continuous for γ := (m−2)/(m−1). Here we follow closely the strategy put forward in [2,
Section 3], adapting its techniques to the fully nonlinear setting. Then we refine the application of the
Ishii-Jensen Lemma to produce Lipschitz regularity in the superlinear setting.

Once Theorem 5.1.1 is available we turn to a free boundary problem driven by a particular instance
of the operator in (5.1.1). For constants λ+,λ− ∈ R, consider the problem

Tr(A(x)D2u)+H(Du,x) = λ+χ{u>0}+λ−χ{u<0} in Ω(u), (5.1.2)

where Ω(u) := {u > 0}∪{u < 0}. We note that (5.1.2) holds only in the region where the solutions do
not vanish, and no PDE information is available in {u = 0}. In many cases, viscosity solutions exist
following Perron’s method, when a comparison principle is available, and one can build appropriate
sub- and supersolutions. Meanwhile, the present setting introduces important difficulties. First, the
dependence of (5.1.2) with respect to the solution implies the lack of properness. As a consequence,
one should not expect a comparison principle to hold at the level of the equation, which precludes the
use of usual arguments. Also, and perhaps even more important, the growth regime of the Hamiltonian
H requires further compatibility conditions for the boundary data; see [16].

We argue through a regularization of the right-hand side of (5.1.2), removing the dependence of
the equation on zero-order terms. We combine our findings in regularity theory with former results on
the existence of solutions for superquadratic Hamilton-Jacobi equations. Then a fixed-point argument
ensures the existence of viscosity solutions to the Dirichlet problem associated with (5.1.2). For a
similar approach in the context of free transmission problems, see [56].

The remainder of this chapter is organised as follows. Section 5.2 gathers our primary assumptions
and recalls a few preliminaries. The proof of Theorem 5.1.1 is the subject of Section 5.3. Finally, in
Section 5.4, we prove the existence of viscosity solutions for the Dirichlet problem associated with
(5.1.2).

5.2 Preliminary material and main assumptions

Here we detail the main assumptions used in this chapter and collect a few preliminaries. We start
with the conditions imposed on the second-order operator F .

Because we rely on the monotonicity of F in the space of symmetric matrices, we equip the latter
with a partial order relation. For M,N ∈ S(d), we say that M ≥ N if M−N is positive semi-definite,
i.e., for every ξ ∈ Rd , we have

ξ
T (M−N)ξ ≥ 0.

Our primary condition on F concerns its degenerate ellipticity.

Definition 5.2.1. We say F : S(d)→ R is degenerate elliptic if

F(M)≤ F(N)
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whenever M,N ∈ S(d) are such that M ≥ N.

We continue with an assumption combining degenerate ellipticity and Lipschitz continuity for F .

[A1] (Monotonicity and Lipschitz continuity). The operator F : S(d)→R is monotone non-increasing
and Lipschitz continuous. That is, there exists a constant CF > 0 such that

F(M)−F(N)≤CF
∣∣(N −M)+

∣∣ , (5.2.1)

for every M,N ∈ S(d).

The condition in (5.2.1) is equivalent to requiring F to be degenerate elliptic and Lipschitz
continuous, with constant CF > 0; see Lemma 5.2.3. The choice for (5.2.1) stems from our argument
since we compare F(M) and F(N) in terms of the eigenvalues of M and N. We also require F to be
positively homogeneous of degree one.

[A2] (Homogeneity of F). The operator F is positively homogeneous of degree 1. That is, for every
M ∈ S(d) and every s ≥ 0, we have

F(sM) = sF(M).

The typical example of an operator satisfying assumptions [A1] and [A2] is the Bellman operator.
Indeed, let A be a measurable index set and consider a family of matrices (Aα)α∈A such that

0 ≤ Aα ≤ (CFd−1)I,

for every α ∈ A . Then the operator

F(M) := inf
α∈A

(−Tr(AαM))

satisfies both [A1] and [A2].

Now, we turn to the Hamiltonian H and detail the growth and continuity conditions under which
we work.

[A3] (Structural conditions). We suppose there exist constants m > 1 and C1,C2,C3 > 0 such that
H = H(p,x) satisfies

−C1 +C2|p|m ≤ H(p,x)≤C3 (1+ |p|m) , (5.2.2)

for every p ∈ Rd and x ∈ Ω. Also,

|H(p,x)−H(p,y)| ≤ (C3|p|m +C1) |x− y| (5.2.3)

for every x,y ∈ Ω, and p ∈ Rd . Finally, we require

|H(p,x)−H(q,x)| ≤C3 (|p|+ |q|+1)m−1 |p−q| , (5.2.4)

for every p,q ∈ Rd , and every x ∈ Ω.
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The typical example of a Hamiltonian satisfying [A3] is

H(p,x) = a(x)
(
1+ |p|2

)m
2 +V (x),

where a,V : Ω → R are Lipschitz continuous, with

0 <C∗ ≤ a(x)≤C∗ and 0 ≤V (x)≤C∗,

for some fixed constants 0 <C∗ ≤C∗.
Next we recall the definition of viscosity solution adapted to this problem.

Definition 5.2.2 (Viscosity solution). We say u ∈ USC(Ω) is a viscosity sub-solution to (5.1.1) if, for
every x0 ∈ Ω and every ϕ ∈C2(Ω) such that u−ϕ has a local maximum at x0, we have

F(D2
ϕ(x0))+H(Dϕ(x0),x0)≤ f (x0).

Likewise, we say that u ∈ LSC(Ω) is a viscosity supersolution to (5.1.1) if, for every x0 ∈ Ω and every
ϕ ∈C2(Ω) such that u−ϕ has a local minimum at x0, we have

F(D2
ϕ(x0))+H(Dϕ(x0),x0)≥ f (x0).

If u ∈C(Ω) is simultaneously a viscosity sub-solution and a viscosity supersolution to (5.1.1), we say
it is a viscosity solution to (5.1.1).

Recall that we say u ∈ USC(Ω) if for every x0 ∈ Ω,

limsup
x→x0

u(x)≤ u(x0).

We say u ∈ LSC(Ω) if −u ∈ USC(Ω).
We use Proposition 4.4.1, corresponding to the Jensen-Ishii Lemma, to prove preliminary regularity

results as usual in the literature. Now, the relevance of estimating F(Xε)−F(Yε) in terms of the
eigenvalues of Xε −Yε becomes clear. Hence, we proceed by verifying that [A1] is equivalent to
supposing that F is degenerate elliptic and Lipschitz continuous.

Lemma 5.2.3. Suppose F : S(d)→ R satisfies [A1]. Then F is Lipschitz continuous, with constant
CF , and monotone non-increasing. That is, for every M,N ∈ S(d), we have

|F(M)−F(N)| ≤CF |N −M| , (5.2.5)

and
F(M)≤ F(N), (5.2.6)

provided N ≤ M. Conversely, suppose F satisfies (5.2.5) and (5.2.6). Then it also satisfies [A1].

Proof. We start by proving that [A1] implies (5.2.5) and (5.2.6). Indeed, if M ≥ N then (N−M)+ = 0
and we immediately get (5.2.6). Also, since |(N −M)+| ≤ |N −M|, we get

F(M)−F(N)≤CF |N −M| .
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Swapping M and N we get

F(N)−F(M)≤CF |N −M| ,

and (5.2.5) follows.

Now we prove that (5.2.5) and (5.2.6) imply [A1]. Fix M,N ∈ S(d) arbitrarily and recall that
M−N = (M−N)+− (M−N)−. Then

F(M) =F(N +(M−N))≤ F(N − (M−N)−)≤ F(N)+CF |(N −M)+|,

where the first inequality follows from (5.2.6), and the second one is a consequence of (5.2.5).

5.3 Interior Lipschitz continuity

We reduce the problem posed in Ω ⊂ Rd to an equation prescribed in the unit ball, B1 ⊂ Rd . Let
Ω′ ⋐ Ω. For every r ∈ (0,1), one can find a natural number n = n(r) ∈ N such that there exists a
subset {x1, . . . ,xn}⊂ Ω′, with Br(xi)⊂ Ω for every i ∈ {1, . . . ,n}. In addition, the family (Br/2(xi))

n
i=1

covers Ω′; that is,

Ω
′ ⊂

n⋃
i=1

Br/2(xi).

As a result, we suppose Ω′ = Br/2(x1), with x1 = 0 ∈ Ω′, and prescribe our problem of interest in
open balls. In what follows, we denote with C(d) any constant depending only on the dimension; this
notation refers to possibly different constants within our arguments.

The next lemma accounts for the Hölder regularity of sub-solutions to (5.1.1). The strategy of the
proof yields a modulus of continuity depending explicitly on the growth regime of H.

Lemma 5.3.1 (Hölder continuity for sub-solutions). Let u ∈ USC(B1) be a sub-solution to (5.1.1).
Suppose assumptions [A1]-[A2] are in force. Suppose further H satisfies [A3] with m > 2. Then

|u(x)−u(y)| ≤ K|x− y|γ ,

for every x,y ∈ B1/4, where

γ =
m−2
m−1

, (5.3.1)

and

K := 2
1

m−1

(
4

m
m−1

(
CFC(d)

C2γm

) 1
m−1

+4
(∥ f∥L∞(B1)+C1

C2γm

) 1
m
)
.

Proof. Fix x ∈ B1/2 and define the function φ : B1/2(x)→ R as

φ(y) := K
(

1
4
−|y− x|2

)−1

|y− x|γ .
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To establish the lemma, it suffices to show that

w(y) := u(y)−u(x)−φ(y)≤ 0, (5.3.2)

for every y ∈ B1/2(x). Indeed, it would imply that, for every y ∈ B1/4(x),

u(y)−u(x)≤ φ(y) = K
(

1
4
−|y− x|2

)−1

|y− x|γ ≤ 16
3

K|y− x|γ .

We split the remainder of the proof into three steps.

Step 1 – Here, we prove that w, as defined in (5.3.2), has no local maximum in B1/2(x)\{x}. Suppose
otherwise, and let y∗ ∈ B1/2(x) \ {x} be a point of local maximum for w. Because u is a viscosity
sub-solution of (5.1.1), Definition 5.2.2 implies

F(D2
φ(y∗))+H(Dφ(y∗),y∗)≤ f (y∗).

We will produce a contradiction by verifying that φ is also a strict supersolution.

Step 2 – Without loss of generality, set x = 0 and notice that

Dφ(y) = K

(
γ

4 |y|
γ−2 +(2− γ)|y|γ(1

4 −|y|2
)2

)
y,

and

|Dφ(y)|m ≥ Km
(

1
4
−|y|2

)−2m

|y|γ−2 γm

4m , (5.3.3)

where the choice of γ in (5.3.1) is instrumental. Moreover, a dimensional constant C(d)> 0 exists
such that

|D2
φ(y)| ≤C(d)K

(
1
4
−|y|2

)−3

|y|γ−2.

Because F is Lipschitz continuous and satisfies F(0) = 0, we obtain

−F(D2
φ(y))≤CF |D2

φ | ≤CFC(d)K
(

1
4
−|y|2

)−3

|y|γ−2. (5.3.4)

Combining (5.3.3) with (5.3.4), we get

F(D2
φ(y))+H(Dφ(y),y)≥−CFC(d)K

(
1
4
−|y|2

)−3

|y|γ−2 −C1

+C2Km
(

1
4
−|y|2

)−2m

|y|γ−2
γ

m

≥−C1 +

(
−CFC(d)K +C2

γm

4m Km
)
,
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where the last inequality holds because (1/4− t2)−3tγ−2 > 1, for every t ∈ (0,1/2) and γ ∈ (0,1).
Finally, the choice of K ensures that(

−CFC(d)K +C2
γm

4m Km
)
> ∥ f∥L∞(B1)+C1;

hence, φ is a supersolution of (5.1.1), and we obtain a contradiction. Therefore, w does not have an
interior local maximum point. In the next step, we prove that w cannot attain its local maximum on
∂B1/2.

Step 3 – To see that w does not attain a local maximum on ∂B1/2, start by noticing that φ(y) blows up
as y → ∂B1/2(x). As a consequence, the supremum of w in B1/2 has to be attained in B1/2.

Because of Step 2, it cannot be attained in B1/2(x)\{x}; hence, the supremum of w is attained at
x. Because w(x) = 0, we conclude w ≤ 0 in B1/2(x), and the proof is complete.

In the sequel, we produce a Lipschitz-regularity result for the solutions to (5.1.1). Our argument
is based on Proposition 4.4.1, and follows closely the reasoning developed in [2]. The main difference
stems from the (fully) nonlinear character of the problem. Here, we resort to assumption [A1] and
explore the interplay between the operator F , the eigenvalues of a given matrix, and the Hamiltonian
H. In what follows, we include the sub-quadratic case 1 < m ≤ 2.

Because the source term f is Lipschitz-continuous and bounded in Ω, we can absorb it into the
Hamiltonian H, at the expense of changing the constants appearing in (5.2.2)-(5.2.4) accordingly. In
doing so, we are allowed to examine the homogeneous variant of (5.1.1) given by

F(D2u)+H(Du,x) = 0 in B1. (5.3.5)

In the sequel we detail the proof of Theorem 5.1.1.

Proof of Theorem 5.1.1. We start by setting L as

L = max

{
2

1
m−1

((
CFC(d)

C2γm

) 1
m−1

+

(
C1

C2γm

) 1
m
)
,

2
(

3mCFC(d)
C3

C2

) 1
m−1

,

(
C1

C3

) 1
m
}
.

(5.3.6)

It suffices to prove that, for every x̂ ∈ B1/2,

limsup
x→x̂

u(x̂)−u(x)
|x̂− x|

≤ L.

We suppose there exists x̂ ∈ B1/2 such that

limsup
x→x̂

u(x̂)−u(x)
|x̂− x|

> L. (5.3.7)
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By combining Proposition 4.4.1 and Lemma 5.2.3 with the conditions in assumptions [A1]-[A3], we
obtain a contradiction and complete the proof. For ease of presentation, we split the argument into
four steps.

Step 1 – Consider first an auxiliary function. Let φ : B3/4 → [1,∞) be such that φ ≡ 1 in B1/2, with
φ(x)→ ∞ as |x| → 3/4. Suppose also

|D j
φ(x)| ≤C(d)(φ(x)) jm+(1− j) , (5.3.8)

for j ∈ {1,2}, x ∈ B3/4, and some dimensional constant C(d) > 0. For α > 0, denote with Ψ :
B3/4 ×B3/4 → R the function

Ψ(x,y) := u(x)−u(y)−Lφ(y) |x− y|− 1
2α

|x− y|2 .

For 0 < α ≪ 1 sufficiently small, we claim that there exist xα ,yα ∈ B3/4 such that

Ψ(xα ,yα) = sup
x,y∈B3/4

Ψ(x,y)> 0. (5.3.9)

In addition, the function φ(y) localizes yα away from the boundary ∂B3/4. Also, because 0 < α ≪ 1,
the term − 1

2α
|x− y|2 ensures that xα is close to yα and, therefore, also away from ∂B3/4. Finally,

xα ̸= yα , since otherwise the supremum in (5.3.9) would be zero.

Notice that
1

2α
|xα − yα |2 ≤ oscB3/4 u ≤ 2∥u∥L∞(B3/4).

Hence by the continuity of u, we get

limsup
α→0

(
Lφ(yα) |xα − yα |+

1
2α

|xα − yα |2
)

≤ limsup
α→0

sup
{

u(y)−u(z) : y,z ∈ B3/4, |y− z| ≤
(

2α oscB3/4 u
) 1

2
}

(5.3.10)

=0.

In the case m > 2, Lemma 5.3.1 yields

Lφ(yα) |xα − yα |+
1

2α
|xα − yα |2 ≤ u(xα)−u(yα)≤ K̃ |xα − yα |γ ,

where γ = m−2
m−1 and K̃ stands for the constant K in Lemma 5.3.1 in the case f ≡ 0. Thus,

φ
m−1(yα)|xα − yα | ≤ L1−mK̃m−1. (5.3.11)

Next we resort to Proposition 4.4.1.
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Step 2 – Because (xα ,yα) is a maximum point for Ψ and u solves (5.3.5), Proposition 4.4.1 yields
symmetric matrices Xε,α and Yε,α such that(

Xε,α 0
0 −Yε,α

)
≤ Jα + εJ2

α , (5.3.12)

for every ε > 0 and α > 0, sufficiently small. Moreover,

F(Xε,α)+H (Pα ,xα)≤ 0 ≤ F(Yε,α)+H (Pα −Qα ,yα) , (5.3.13)

where

σα :=
xα − yα

|xα − yα |
, Pα :=

(
Lφ(yα)+

|xα − yα |
α

)
σα ,

and
Qα := L|xα − yα |Dφ(yα).

Finally, we write Jα as

Jα =
Lφ(yα)

|xα − yα |

(
Z1 −Z1

−Z1 Z1

)
+

1
α

(
I −I
−I I

)
+L

(
0 Z2

ZT
2 Z3

)
,

with Z1 := I −σα ⊗σα , Z2 := Dφ(yα)⊗σα , and

Z3 :=−(Z2 +ZT
2 )+D2

φ(yα)|xα − yα |.

In the next step, we estimate F(Yε,α)− sF(Xε,α) from above.

Step 3 – It follows from [A1] that

F(Yε,α)−F(sXε,α)≤CF
∣∣(sXε,α −Yε,α)+

∣∣ . (5.3.14)

For s > 0, let As be given by

As =

(
s2I sI
sI I

)
.

Multiply both sides of (5.3.12) by As and evaluate the resulting inequality at vectors of the form
(ω,ω) ∈ R2d . As a consequence, one obtains

ω
T ((s2 + s)Xε,α − (s+1)Yε,α

)
ω ≤ L(s+1)ωT (Z2 + sZT

2 +Z3
)

ω +O(ε).
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Set s := 1+β |xα − yα |, with β = βφ m−1(yα), for β yet to be fixed. It follows that

ω
T (sXε,α −Yε,α)ω ≤ Lω

T (Z2 + sZT
2 +Z3

)
ω +O(ε)

= Lω
T ((s−1)σα ⊗Dφ(yα))ω

+Lω
T (D2

φ(yα)|xα − yα |
)

ω +O(ε)

≤ |ω|2L((s−1)|Dφ(yα)||xα − yα |)
+ |ω|2L

(
|D2

φ(yα)||xα − yα |
)
+O(ε)

≤ |ω|2LC(d)βφ
2m−1(yα)|xα − yα |+O(ε).

In conclusion,

F(Yε,α)− sF(Xε,α)≤CF
∣∣(sXε,α −Yε,α)+

∣∣
≤CFC(d)Lβφ

2m−1(yα)|xα − yα |+O(ε). (5.3.15)

In what follows, we estimate F(Yε,α)− sF(Xε,α) from below.

Step 4 – We start with three auxiliary inequalities. Because of (5.3.8), we have

|Qα |
|xα − yα |

≤C(d)φ m−1(yα)≤C(d)L1−m|Pα |m. (5.3.16)

More generally, for any θ > 0,

|Qα |
|xα − yα |

≤C(d)L1−θ
φ

m−θ (yα)|Pα |θ . (5.3.17)

Also,
L|D2

φ(yα)| ≤C(d)L1−m
φ

m−1(yα)|Pα |m. (5.3.18)

In the sub-quadratic case 1 < m ≤ 2, one combines (5.3.17) with θ = 1 and (5.3.10) to get

lim
α→0

|Qα |
|Pα |

≤ lim
α→0

C(d)|φ(yα)|m−1|xα − yα |= 0.

For m > 2, in the superquadratic case, (5.3.16) builds upon (5.3.11) to produce

|Qα | ≤C(d)L1−mK̃m−1|Pα |.

Hence, in either case, we have |Qα | ≤ |Pα |, for α small enough, since (5.3.6) implies

L ≥ 2
1

m−1

((
CFC(d)

C2γm

) 1
m−1

+

(
C1

C2γm

) 1
m
)
. (5.3.19)
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Now we use (5.3.13) to write

F(Yε,α)−F(sXε,α)≥ sH(Pα ,xα)−H(Pα −Qα ,yα)

≥ (s−1)H(Pα ,xα)−C3(1+2|Pα |)m−1|Qα |
− (C3|Pα |m +C1)|xα − yα |

≥ (s−1)(C2|Pα |m −C1)−C3(1+2|Pα |)m−1|Qα |
− (C3|Pα |m +C1)|xα − yα |.

We used [A2] in the first inequality, whereas |Qα | ≤ |Pα | leads to the second one. Since |Pα | ≥
L > 1, it follows that 1+2|Pα | ≤ 3|Pα |, and from the lower bound L ≥ (C1/C3)

1/m, we also obtain
C3|Pα |m +C1 ≤ 2C3|Pα |m. Thus, we can further estimate

F(Yε,α)−F(sXε,α)

≥ (s−1)C2|Pα |m −C3(3|Pα |)m−1|Qα |−2C3|Pα |m|xα − yα |

≥
(

βC2|Pα |m −C3(3|Pα |)m−1 |Qα |
|xα − yα |

)
|xα − yα |

−2C3|Pα |m|xα − yα |
≥
(
βC2|Pα |m −C3(3|Pα |)m−1 (

φ
m−1(yα)|Pα |

))
|xα − yα |

−2C3|Pα |m|xα − yα |
= |Pα |m

(
βC2 −C33m−1

φ
m−1(yα)−2C3

)
|xα − yα |.

We used (5.3.17) with θ = 1 in the last inequality. Because β = βφ m−1(yα), we get

F(Yε,α)−F(sXε,α)≥|Pα |mφ
m−1(yα)

(
βC2 −C33m−1 −2C3φ

1−m(yα)
)
|xα − yα |

≥|Pα |mφ
m−1(yα)|xα − yα |, (5.3.20)

provided we set β = C3
C2
(3m−1 +2).

Combining (5.3.20) and (5.3.15) we get

|Pα |mφ
m−1(yα)|xα − yα | ≤CF

(
C(d)Lβφ

2m−1(yα)|xα − yα |+O(ε)
)
.

Let ε → 0 and divide both sides of the former inequality by the quantity |xα − yα |φ 2m−1(yα). Then

Lm ≤ |Pα |m

φ m(yα)
≤CL,

where C =CFC(d)β . This is a contradiction since

L ≥ 2
(

3mCFC(d)
C3

C2

) 1
m−1

.

Therefore we have proven that u is locally Lipschitz continuous, with constant L given by (5.3.6).
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Remark 5.3.2. The proof of Theorem 5.1.1 provides a constructive way to produce the Lipschitz
constant C associated with u. In fact, this is given by L > 0, as defined in (5.3.6).

5.4 A two-phase free boundary problem

Now, we explore a consequence of Lemma 5.3.1 in the context of free boundary problems. It concerns
the existence of a viscosity solution to−Tr(A(x)D2u)+H(Du,x) = λ+χ{u>0}+λ−χ{u<0} in Ω(u)

u = g on ∂Ω

(5.4.1)

where Ω is a C2-domain, A : Ω → S(d) is degenerate elliptic, 0 < λ− < λ+ are constants, g ∈
C0,m−2

m−1 (∂Ω) is given, and Ω(u) is given by

Ω(u) := {x ∈ Ω |u(x) ̸= 0} .

We notice the equation holds only where the solution does not vanish, and hence, no information is
available across the free boundary Γ(u) := ∂{u > 0}∪∂{u < 0}.

We prove the existence of a locally Hölder-continuous viscosity solution to (5.4.1) with suitable,
estimates. To do that, we introduce an assumption on the data A : Ω → S(d) and g : ∂Ω → R.

[A4]. We suppose A : Ω → S(d) to be degenerate elliptic and bounded from above. In addition, there
exists λ > 0 such that

ν(x)T A(x)ν(x)≥ λ

for every x ∈ ∂Ω. Also, we suppose g ∈C0,m−2
m−1 (∂Ω), with

|g(x)−g(y)| ≤ K|x− y|
m−2
m−1

for every x,y ∈ ∂Ω, where K > 0 is fixed, though yet to be determined. In addition, suppose

0 < inf
x∈∂Ω

g(x)< 2λ−.

The importance of [A4] is in unlocking an intermediate step in our analysis, namely [16, Theorem
2.12]. In fact, the superquadratic character of (5.4.1) introduces a number of subtleties in the arguments
leading to the existence of solutions. See the discussion in [16, Section 2.3].

Theorem 5.4.1 (Existence of solutions). Let Ω ⊂ Rd be an open, bounded domain of class C2.
Suppose assumption [A4] is in force. Then there exists a viscosity solution u ∈C(Ω) to the problem

(5.4.1). In addition, we have u ∈C
0,m−2

m−1
loc (Ω). Finally, for every Ω′ ⋐ Ω, there exists a positive constant

C =C
(
m,∥A∥L∞(Ω),K,λ ,diam(Ω),dist(Ω′,∂Ω)

)
such that

∥u∥
C0, m−2

m−1 (Ω′)
≤C

(
1+∥u∥L∞(Ω)+max{|λ+|, |λ−|}

)
.
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The proof of Theorem 5.4.1 combines several ingredients. First, we consider a family of auxiliary
equations indexed by a parameter ε > 0. For each equation in the family, the existence of a (unique)
viscosity solution follows from [16, Theorem 2.12]. Lemma 5.3.1 implies estimates independent of
ε > 0 and allows us to apply Schauder’s Fixed Point Theorem to conclude the argument. We proceed
by introducing an auxiliary problem.

For v ∈C(Ω) and 0 < ε < 1, define gv
ε : Rd → R as

gv
ε(x) := max

(
min

(
v(x)+ ε

2ε
,1
)
,0
)
,

if x ∈ Ω, and gv
ε ≡ 0 in Rd \Ω. Now, for x ∈ Ω, let hv

ε(x) := (gv
ε ∗ηε)(x), where ηε is a standard

mollifier. We consider the auxiliary problemεu−Tr(A(x)D2u)+H(Du,x) = λ+hv
ε +λ−(1−hv

ε) in Ω ⊂ Rd

u = g on ∂Ω.
(5.4.2)

Through a fixed-point approach, we show the existence of a solution uε ∈ C(Ω) to the Dirichlet
problemεuε −Tr(A(x)D2uε)+H(Duε ,x) = λ+huε

ε +λ−(1−huε

ε ) in Ω ⊂ Rd

uε = g on ∂Ω.
(5.4.3)

This argument relies on a variant of Lemma 5.3.1 applied to (5.4.2). By taking the limit ε → 0 in
(5.4.3) and applying Lemma 5.3.1 once more, we obtain the existence of a viscosity solution to (5.4.1).
The first step towards proving Theorem 5.4.1 is the following proposition.

Proposition 5.4.2. Let Ω ⊂ Rd be an open, bounded domain of class C2. Suppose assumption [A4]
is in force. Then, for every 0 < ε < 1/4, there exists uε ∈ C(Ω) solving (5.4.3) in the viscosity

sense. In addition, uε ∈ C
0,m−2

m−1
loc (Ω). Moreover, for every Ω′ ⋐ Ω, there exists a positive constant

C =C
(
m,∥A∥L∞(Ω),K,λ ,diam(Ω),dist(Ω′,∂Ω)

)
such that

∥u∥
C0, m−2

m−1 (Ω′)
≤C

(
1+∥u∥L∞(Ω)+max{|λ+|, |λ−|}

)
. (5.4.4)

Proof. For ease of presentation, we split the proof into three steps.

Step 1 – Notice that, given v ∈C(Ω), we have

|λ+hv
ε(x)+λ−(1−hv

ε(x))−λ+hv
ε(y)−λ−(1−hv

ε(y))| ≤ ωv,ε(|x− y|),

where ωv,ε(·) is a modulus of continuity depending on v and ε > 0. Hence, the right-hand side of the
equation in (5.4.2) is a continuous function up to the boundary ∂Ω. A straightforward application of
[16, Theorem 2.12] ensures the existence of a unique viscosity solution uv

ε to (5.4.2).

Notice also the proof of Lemma 5.3.1 extends to the case of (5.4.2). As a consequence, uv
ε ∈

C
0,m−2

m−1
loc (Ω) for every 0 < ε < 1/4 and every v ∈ C(Ω). Moreover, for every Ω′ ⋐ Ω, there exists a
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constant C > 0 depending on the data of the problem and Ω′, but not depending on ε or v, such that

∥uv
ε∥C0, m−2

m−1 (Ω′)
≤C. (5.4.5)

uniformly in v ∈C(Ω) and ε ∈ (0,1/4).

Step 2 – We now define K ⊂C(Ω) as

K :=
{

w ∈C(Ω) : ∥w∥L∞(Ω) ≤C0
}
,

where C0 > 0 will be chosen later. Notice that K is closed in C(Ω). In the sequel, we define a map
T : K →C(Ω). For fixed ε ∈ (0,1/4), take v ∈ K and denote with uv

ε the unique solution to (5.4.2),
whose existence follows from the previous step. Define T v := uv

ε and notice that the existence of a
fixed point for T is tantamount to the existence of solutions to (5.4.3).

To prove the existence of a fixed point for T , we start by noticing that it is possible to choose
C0 > 0, independent on v and ε , such that T (K )⊂ K . This follows from the construction of sub
and supersolutions for the problem; see the proof of [16, Theorem 2.12].

We continue by proving that T (K ) is pre-compact. Let (T vn)n∈N be a sequence of elements
in T (K ). Because |T vn| ≤ C0, for every n ∈ N, the sequence is equibounded. In addition, (5.4.5)
ensures it is also equicontinuous. Hence, (T vn)n∈N converges to an element v∗ ∈ T (K ), through a
subsequence if necessary.

Finally, we verify that T is sequentially continuous. Suppose (vn)n∈N ⊂ K converges to some
v ∈ K . We prove that T vn → T v, as n → ∞. Indeed, because T (K ) is pre-compact, we infer that
(T vn)n∈N converges, through a subsequence if necessary, to some w ∈ K . The stability of viscosity
solutions and the uniqueness available for (5.4.2) ensure that T v=w. To conclude that T is continuous,
we must verify the former equality does not depend on the particular subsequence. Indeed, suppose
a different subsequence yields T vnk → w′, as k → ∞. Since vnk → v as k → ∞, we reason as before
(resorting to the stability of viscosity solutions and the uniqueness for (5.4.2)) to obtain T v = w′.

Step 3 – The properties of the subset K and the operator T allow us to apply the Schauder Fixed
Point Theorem, as in [31, Corollary 11.2], to conclude the existence of uε ∈ K such that Tuε = uε .

That is, uε solves (5.4.3). Because the conclusions of Lemma 5.3.1 apply, we have uε ∈C
0,m−2

m−1
loc (Ω)

and the estimate in (5.4.4) holds.

Now, we detail the proof of Theorem 5.4.1.

Proof of Theorem 5.4.1. We take a sequence (εn)n∈N such that εn → 0 as n → ∞ and consider the
sequence (un)n∈N of solutions to

εnun −Tr(A(x)D2un)+H(Dun,x) = λ+hun
εn
+λ−(1−hun

εn
) in Ω.

Because the estimate in (5.4.4) holds for un, for every n ∈ N, we conclude there exists u∗ ∈Cβ

loc(Ω)

such that un → u∗ in the Cβ -topology, for every 0 < β < m−2
m−1 .

Now, let x ∈ {u∗ > 0} and write τ := u∗(x). Suppose u∗−ϕ has a (strict) local maximum at x, for
ϕ ∈C2(Ω). There exists a sequence (xn)n∈N such that xn → x and un −ϕ has a local maximum at xn.
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On the other hand, there exists N ∈ N such that

un(xn)>
τ

2
> εn

provided n > N. Hence,

εnun(xn)−Tr(A(xn)D2
ϕ(xn))+H(Dϕ(xn),xn)≤ λ+hun

εn
(xn)+λ−(1−hun

εn
(xn));

by taking the limit n → ∞, we obtain

−Tr(A(x)D2
ϕ(x))+H(Dϕ(x),x)≤ λ+.

Conversely, suppose x ∈ {u∗ < 0} and write σ := u∗(x). If u∗−ϕ has a (strict) local maximum at x,
for ϕ ∈C2(Ω) we reason as before to conclude

−Tr(A(x)D2
ϕ(x))+H(Dϕ(x),x)≤ λ−.

It ensures that u∗ is a sub-solution to (5.4.1) in Ω(u). An analogous argument ensures that u∗ is also a
supersolution and completes the proof.

Remark 5.4.3. Our proof of Theorem 5.4.1 yields further information since it produces two viscosity
inequalities satisfied by the solution in the region {u = 0}. Indeed, the viscosity solution to (5.4.1),
whose existence follows from Theorem 5.4.1, satisfies

λ− ≤−Tr(A(x)D2u)+H(Du,x)≤ λ+ in Ω

in the viscosity sense. Besides solving the equation in the positive and negative phases, it also solves
a pair of inequalities in the whole domain.
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