

André de Sousa Nunes Teixeira

LIDAR-BASED TOPOLOGICAL MAPPING OF

ORCHARD ENVIRONMENTS

Dissertação no âmbito do Mestrado em Engenharia Eletrotécnica e de
Computadores, do ramo de especialização em Robótica, Controlo e

Inteligência Artificial, orientada pelo Professor Doutor Lino José Forte
Marques e apresentada ao Departamento de Engenharia Eletrotécnica e de
Computadores da Faculdade de Ciências e Tecnologia da Universidade de

Coimbra.

Setembro de 2022

LiDAR-based Topological Mapping of

Orchard Environments

André de Sousa Nunes Teixeira

Coimbra, September 2022

LiDAR-based Topological Mapping of

Orchard Environments

Supervisor:

Prof. Doutor Lino José Forte Marques

Co-Supervisor:
Doutor Sedat Dogru

Jury:

Prof. Doutor António Paulo Mendes Breda Dias Coimbra

Prof. Doutor Cristiano Premebida

Prof. Doutor Lino José Forte Marques

Dissertation submitted in partial fulfillment for the degree of Master of Science in

Electrical and Computer Engineering.

Coimbra, September 2022

Acknowledgements

I would like to express my gratitude to everyone in my life who has helped make this disser-

tation possible in some way.

I would like to thank my supervisor, Professor Lino Marques, for always pointing me in

the correct direction, for the transmitted knowledge, for all of the critical recommendations,

and for providing me the opportunity to work in such an amazing lab.

I would like to express my very special thanks to my co-supervisor, Sedat Dogru, for

all the invaluable suggestions and ideas to improve my work, as well as his continuous and

unconditional assistance and availability to assist in problem solving.

I would like to thank my lab colleagues for all of the knowledge they shared, all of

the questions they answered, all of the ideas they suggested, and all of their assistance in

adjusting to a new environment.

Thank you to the Embedded Systems Laboratory of the Institute of Systems and Robotics

(LSE-ISR) of the University of Coimbra for providing dedicated space and materials for this

effort.

I must also thank my friends who never stopped encouraging me, who always supported

me, and who believed in my aspirations. A special thanks to my friends and lab part-

ners, Chaluça and JP, who gave unquestionable support and always came up with the most

brilliant ideas.

Finally, a special thank you to my parents, brothers, and aunt, for always being there for

me, no matter what life throws at me, for presenting me with this incredible opportunity,

and for inspiring me to follow my ambitions and my own path in life.

ii

Resumo

Nos últimos anos, à medida que a população humana cresce e as consequências do aque-

cimento global se tornam mais severas, os robôs móveis agrícolas autónomos têm vindo a

ser cada vez mais utilizados em múltiplas tarefas. O comportamento autónomo poderá ser

melhor alcançado se o robô for capaz de se localizar e construir um mapa fiável do ambiente

que o rodeia. A grande dimensão dos ambientes agrícolas requer uma representação do mapa

mais compacta para reduzir os requisitos de memória e processamento, e, nesse sentido, a

utilização de mapas topológicos nesse tipo de ambientes é uma boa opção. Esta dissertação

propõe uma nova aplicação de mapas topológicos com ênfase em pomares, onde as árvores

com as suas características distintivas servem como nós e as vizinhanças das árvores servem

como arestas. A solução proposta integra uma abordagem baseada na distância entre nós

juntamente com um método baseado em Iterative Closest Point (ICP) para identificar de

forma eficaz os nós do mapa topológico do pomar. Além disso, foi implementada uma es-

tratégia de localização para mostrar a capacidade do sistema de estimar a posição do robô

no mapa previamente construído. Foi utilizado Robot Operating System (ROS) para imple-

mentar um conjunto de etapas que filtram e segmentam nuvens de pontos 3D para extrair

os troncos das árvores do pomar, construir um mapa topológico, e obter uma estimativa

da posição do robô no mapa. São apresentados resultados preliminares utilizando dados

reais de um Light Detection And Ranging (LiDAR) 3D recolhidos num olival para validar a

abordagem proposta.

Keywords: Robótica Agrícola, Mapeamento Topológico, Pomares, LiDAR, ICP, Local-

ização.

iv

Abstract

Autonomous agricultural mobile robots have seen increasing use for multiple tasks in

recent years, as the human population grows and consequences of global warming become

more severe. Autonomous behaviour can be better accomplished if the robot is able to

localize itself and build a reliable map of its surrounding environment. The large size of

agricultural environments requires a more compact map representation to reduce memory

and processing requirements, and using topological maps in those environments is a good

option in that direction. This dissertation proposes a novel application of topological maps

with a focus on orchards, where the trees with their distinctive features serve as the nodes and

the neighborhoods of the trees serve as the edges for the topological maps. The proposed

solution integrates a distance-based approach alongside an Iterative Closest Point (ICP)-

based method to effectively recognize the nodes of the topological map of the orchard. In

addition, a localization strategy was implemented to showcase the system’s ability to estimate

the robot’s position in the previously built map. Robot Operating System (ROS) was used

to implement a set of stages in a pipeline which filter and segment 3D point clouds to extract

the tree trunks of the orchard, build a topological map, and obtain an estimate of the robot’s

position on the map. Preliminary results using real-world 3D Light Detection And Ranging

(LiDAR) data collected in an orchard are presented to validate the proposed approach.

Keywords: Agricultural Robotics, Topological Mapping, Orchards, LiDAR, ICP, Lo-

calization.

vi

“Life isn’t just about passing on your genes. We can leave behind much

more than just DNA."
— Solid Snake

viii

Contents

Acknowledgements ii

Resumo iv

Abstract vi

List of Acronyms xii

List of Figures xiv

List of Tables xvi

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 3

1.4 Document Structure . 4

2 Related Work 5

2.1 Environment Representations in Robotics . 5

2.2 Topological Mapping in Agricultural Environments 8

2.3 Localization in Agricultural Environments 8

3 Methods 10

3.1 Random Sample Consensus (RANSAC) . 10

3.2 Iterative Closest Point (ICP) . 11

3.3 Euclidean Clustering . 13

3.4 Multilateration . 15

x

4 Proposed Strategy for Topological Mapping and Localization 17

4.1 System Overview . 17

4.2 Map Structure . 18

4.3 Pipeline Stages . 20

4.3.1 Filtering . 20

4.3.2 Segmentation . 22

4.3.3 Map Building . 25

4.3.4 Localization . 28

5 Experimental Work 35

5.1 Hardware Description . 35

5.2 Software . 37

5.3 Experimental Setup . 39

5.4 Tests and Results . 41

5.4.1 Filtering and Segmentation . 41

5.4.2 Map Building . 42

5.4.3 Localization . 43

6 Conclusion and Future Work 50

6.1 Future Work . 50

7 References 52

A 3D Computer-aided Design (CAD) 58

xi

List of Acronyms

2D Two-Dimensional

3D Three-Dimensional

AHRS Attitude and Heading Reference System

CAD Computer-aided Design

CPU Central Processing Unit

EKF Extended Kalman Filter

GNSS Global Navigation Satellite System

ICP Iterative Closest Point

IMU Inertial Measurement Unit

KF Kalman Filter

LiDAR Light Detection And Ranging

OS Operating System

PA Precision Agriculture

PCA Principal Component Analysis

PCL Point Cloud Library

PF Particle Filter

RAM Random Access Memory

RANSAC Random Sample Consensus

ROS Robot Operating System

xii

RTK Real Time Kinematic

RTK-GNSS Real Time Kinematic Global Navigation Satellite System

SLAM Simultaneous Localization and Mapping

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

xiii

List of Figures

1.1 Example of different agricultural environments. 2

2.1 Types of environment representations (From left to right, images were re-

trieved from [32], [29], [33] and [39], respectively). 6

2.2 Example of metric maps. 6

2.3 Example of topological, semantic and hybrid maps. 7

3.1 Example of fitting a line to a set of points using RANSAC (retrieved from

https://en.wikipedia.org/wiki/Random_sample_consensus). 11

3.2 Example of the ICP algorithm (retrieved from https://en.wikipedia.org/

wiki/Iterative_closest_point) . 12

3.3 Example of visualization of euclidean clustering (adapted from [38]). 14

3.4 Example of 2D multilateration with 3 beacons (adapted from [26]). 16

4.1 General overview of the proposed system. 18

4.2 Example of the topological map structure. 20

4.3 General overview of the filtering stage. 21

4.4 Example of results from the filtering stage. 22

4.5 General overview of the segmentation stage. 22

4.6 Example of segmentation results. 24

4.7 General overview of the map building stage. 25

4.8 General overview of the localization stage. 28

4.9 Example of the cluster matching process, where 4 cluster were detected. . . . 31

5.1 Customized Husky robot used in the implementation. 36

5.2 Schematic of the hardware. 36

5.3 Graph of the system’s ROS nodes and topics. 39

5.4 Olive orchard where the experiments were conducted. 40

xiv

https://en.wikipedia.org/wiki/Random_sample_consensus
https://en.wikipedia.org/wiki/Iterative_closest_point
https://en.wikipedia.org/wiki/Iterative_closest_point

5.5 Different paths travelled by the robot for the data collection process. 40

5.6 Example of detections from the filtering/segmentation stage. 42

5.7 Obtained topological map overlaid on satellite view of the orchard field. . . . 43

5.8 Localization errors of the topological map’s nodes. 44

5.9 Histogram of the localization errors of the topological map. 44

5.10 Localization plot for run #1. 46

5.11 Robot’s position errors over time for run #1. 46

5.12 Localization plot for run #2. 47

5.13 Localization plot for run #3. 47

5.14 Convergence distance histogram (red) and normal distribution (black) for run

#1. 49

5.15 Average convergence distance for 2, 3 and 4 tree detections. 49

A.1 3D design and schematic of the IMU mount. 58

A.2 3D design and schematic of the 3D LiDAR mount. 59

A.3 3D design and schematic of the camera mount. 60

A.4 3D design and schematic of the camera lens cover. 61

xv

List of Tables

4.1 Example of possible cluster-node combinations. 31

5.1 Accuracy values of the filtering and segmentation stages. 42

xvi

1 Introduction

1.1 Context and Motivation

The world’s population has been growing at an alarming rate for the past 100 years, with

today’s population being three times the value than it was in the mid 20th century [34].

Alongside this, the threats to global agriculture stand out as one of the most significant in

the extensive list of potential issues caused by global warming. As human population grows

and the increasing consequences of global warming become more severe, so does the need

to maintain a high level of food production while minimizing the effects of human activ-

ity on the environment [10]. Increasing agricultural production rates and efficiency while

minimizing utilized resources is key to solving the challenge of feeding a rapidly growing hu-

man population. This can be achieved by incorporating several state-of-the-art technologies

to enhance agricultural productivity [44], which is directly tied to the concept of Precision

Agriculture (PA), i.e., "the application of technologies and principles to manage spatial and

temporal variability associated with all aspects of agricultural production for the purpose of

improving crop performance and environmental quality" [35]. PA entails the collection and

processing of a sizable volume of agricultural health data. The health of plants is influenced

by a number of variables, including temperature and water content. A farmer can use PA

to precisely determine the conditions that must exist for a crop to be healthy, as well as the

locations and quantities of these conditions at any given time. One of the main drivers of

PA is the automation of agricultural tasks to improve efficiency and reduce costs [35].

In recent years, automation in agricultural environments has become more common with

the use of autonomous robots that can perform several agricultural tasks such as weed de-

tection and removal, crop collection, seeding, mowing, among others [18, 45, 11]. This arises

from the need to save labour costs, prevent people from performing heavy and risky opera-

tions, and provide the farmer with precise information that will help increase productivity

and efficiency [37]. One of the main requirements for automation is the ability of a mobile

1

(a) Olive orchard. (b) Maize field.

Figure 1.1: Example of different agricultural environments.

robot to navigate entire crop fields or orchards in an autonomous and reliable way. To do

so, the robot should be capable of localizing itself and building a map of its surrounding en-

vironment. The map creation process is usually important to provide information to human

operators about the environment or to be used as a reference in the robot’s localization and

planning procedures [1]. There are multiple problems associated with this process, such as

the inherent unstructured nature and harsh conditions of agricultural environments; the lim-

ited precision and computing power of the robot’s on-board sensors and processing unit; and

the dynamic environment that changes drastically over the year, all of which make mapping

a difficult task [1]. Orchard environments simplify some of these problems due to the easiness

of tree detection compared with, for example, crop rows such as beet and maize (Figure 1.1).

Olive orchards also present more distinctiveness between different trees. Therefore, they are

good candidates to start developing the implementation proposed in this dissertation.

1.2 Objectives

The main goal of this dissertation is to take a step ahead towards the challenge of agricultural

automation by developing and implementing a novel application of topological maps with a

focus on unstructured orchard environments, where the trees with their distinctive features

serve as nodes and the neighbourhoods of the trees serve as the edges of the topological map.

This approach aims to improve memory and computational efficiency by only representing

and saving the environmental features that matter, as well as allowing the robot to operate

in a Global Navigation Satellite System (GNSS)-denied environment. Additionally, the sec-

ondary goal includes the implementation of a preliminary localization strategy to estimate

2

the robot’s pose on the map. This also serves as a validation method for the map building

process.

To accomplish the proposed objectives, the first step is to carry out a study of related work

developed in topological mapping and localization in agricultural environments, followed by

setting up the required materials and methods to collect field data and proceeding with the

implementation of the proposed approach. The second step includes the development of the

strategy itself, with a focus on obtaining an accurate and coherent topological map as well

as an acceptable estimate of the robot’s pose on the map. The final step is to perform some

preliminary tests to validate the chosen approach and discuss the obtained results.

1.3 Contributions

To the best of the author’s knowledge, this dissertation presents the first work to develop

a topological map implementation for orchard environments, where the trees with their

distinctive features serve as nodes and the neighbourhoods of the trees serve as the edges of

the map. The main contribution is the construction of a topological map of the orchard and

the development of a strategy to uniquely describe each node using ICP and distance-based

matching. Although localization is not the main goal of this dissertation, it is useful to

validate the quality of the obtained map and take a step towards autonomous navigation in

agricultural environments.

Some of the work developed in this dissertation was submitted and accepted in a paper

for the 5th Iberian Robotics Conference1 [52]. The conference proceedings will be published

by Springer - Lecture Notes in Networks and Systems.

This dissertation was developed within the scope of the project GreenBotics: Intelligent

Robotic System for Digital Agriculture2, under reference PTDC/EEI-ROB/2459/2021, sup-

ported by FCT (Fundação para a Ciência e Tecnologia). The GreenBotics project seeks to

make a substantial contribution to PA by combining sensing, field robotics, probabilistic

machine learning, and agricultural science to create a novel soil-moisture monitoring system

for crop plantations (namely maize). The project has the goal of improving the precision and

reliability of early anomaly identification and monitoring in maize plantations by merging

robotics, data sensors, machine learning, and agricultural expertise, both experimental and

computational.
1See https://www.iberianroboticsconf.eu/home
2See https://sites.google.com/view/agribots/project-greenbotics

3

https://www.iberianroboticsconf.eu/home
https://sites.google.com/view/agribots/project-greenbotics

1.4 Document Structure

This dissertation is organized as follows:

• Chapter 2 introduces some basic background concepts in robotic mapping as well

as significant related works in topological mapping and localization in agricultural

environments.

• Chapter 3 presents some theoretical background on the methods required for the

implementation of the proposed approach.

• Chapter 4 discusses the development and implementation of the proposed approach

for topological mapping and localization in orchard environments. This includes an

overview of the system and its modes of operation; how the topological map is struc-

tured; and a full description of each stage of the mapping and localization pipeline.

• Chapter 5 describes the preliminary experimental work performed to validate the

proposed strategy, including the hardware and software frameworks and packages used

to collect data and develop the strategy, the experimental setup and tests as well as a

brief discussion of the obtained results.

• Chapter 6 summarizes relevant conclusions and future work to improve the proposed

approach.

4

2 Related Work

2.1 Environment Representations in Robotics

Robotic mapping seeks to solve the issue of acquiring spatial models of real-world environ-

ments using mobile robots. With the goal of creating totally autonomous mobile robots,

the mapping challenge is recognized as one of the most crucial issues. We currently have

reliable methods for mapping static, organized, and small-scale environments. The difficulty

of mapping large-scale, dynamic, or unstructured environments is still largely unsolved [48].

There are four main types of environment representations in robotics: metric maps, topo-

logical maps, semantic maps, and hybrid maps (Figure 2.1), each with their own advantages

and disadvantages.

Metric maps represent the geometry of objects in a continuous or discrete metric space

and provide distance data that matches the distances actually found in the mapped real

world. They have the potential for high accuracy but also for high computational costs in

terms of both memory and time. The computational cost is more significant in agricultural

environments, which are typically large in size and lack distinctive features for a landmark

or feature-based map. Metric maps can be subdivided into two major groups: feature-based

maps and grid-based maps. Feature-based maps (Figure 2.2a) include features or landmarks

that are present in the environment being mapped, and these can usually be reliably detected

by the robot’s sensors. These types of maps have been commonly used in mobile robotics,

especially for indoor environments. In [9], the features are extracted lines corresponding to

walls, while [20, 51] use walls and corners as features. In grid-based maps, the workspace is

decomposed into cells that hold one or more values representing the state of the cell. This

decomposition can be exact or approximate. The most common type of grid-based maps and

metric maps in general are occupancy grids, where each cell holds a value that represents the

occupancy of the cell, i.e., either occupied, free, or unknown. There are various alternative

ways to depict the occupancy of the cells in occupancy grid maps, with probability values

5

Figure 2.1: Types of environment representations (From left to right, images were retrieved

from [32], [29], [33] and [39], respectively).

(a) Feature-based map [25]. (b) Occupancy grid-based map [23].

Figure 2.2: Example of metric maps.

being the most common [13]. Other representations where the cells don’t have the same size

have also been proposed, such as quadtrees and octrees [53, 24], to reduce memory usage

while still accurately describing large environments.

Topological maps avoid direct measurement of geometric features and model the envi-

ronment based on its structure and connectivity. They are frequently portrayed as graphs,

where the nodes are significant locations and the edges are the links that connect them.

This leads to the use of fewer computational resources overall, which is an important con-

sideration in field robotics. Topological maps have been used in multiple implementations of

mapping strategies such as in [6] and [30]. The edges are frequently described as the doors

and corridors between the nodes, which are often described as some identifiable location like

a room.

6

(a) Topological map [46]. (b) Semantic map [50]. (c) Hybrid map [12].

Figure 2.3: Example of topological, semantic and hybrid maps.

Semantic maps aim to obtain a spatial understanding beyond navigation by modelling

semantic information through human-like representations. They add information about enti-

ties, such as objects, functions, or events that occur in space. The main purpose of semantic

maps is to provide content that allows some type of reasoning like planning, prediction, and

sensor data interpretation [33]. For that purpose, the mobile robot should be capable of

object and place recognition as well as room categorization. These types of maps are used

to guide high-level choices.

Hybrid maps are a combination of different types of maps, such as metric and topological,

for example. Additionally, a hybrid map features extra linkages that join elements from

several maps together. Since different map types have different strengths and weaknesses,

the ability to make use of the unique capabilities of each map type is one of the main benefits

of hybrid maps [7]. By using a hybrid map, it is possible to go beyond the drawbacks of

each type of map and utilize the component of the hybrid map that is most appropriate for

each activity. Multiple approaches have been proposed that utilize hybrid maps like in [47],

[36] and [14]. Figure 2.3 shows examples of topological, semantic, and hybrid maps.

Topological maps have some drawbacks, such as having low accuracy, giving sub-optimal

paths, as well as being more difficult to build and maintain overall. However, topological

maps have several benefits, which can be helpful in agricultural environments, including good

scalability to large environments, excellent for task planning, being less susceptible to errors,

and not requiring a precise and reliable metric sensor model. For these reasons, topological

maps are excellent choices for use in agricultural settings.

7

2.2 Topological Mapping in Agricultural Environments

Topological maps have seen a lot of applications in indoor or structured environments, and

they have been constructed using LiDARs or cameras, sensors that also serve for navigation.

Vision systems can be used for object detection and room categorization [16] as well as to

perform visual place recognition [28], both of which can be used in the mapping process.

LiDARs can be used to obtain geometric information for semantic labeling of places [49].

They can also be fused with vision sensors to generate topological maps [4]. Most of these

applications require the robot to be operating in a structured or indoor environment.

The use of topological mapping in field applications and more specifically in agricultural

environments such as crop fields and orchards, is recent. Unmanned Aerial Vehicle (UAV)

or satellite images were used to extract topological maps [21, 43] to be later utilized by

Unmanned Ground Vehicle (UGV) for autonomous navigation. There has been an imple-

mentation of topological mapping strategies using only UGVs as well [42]. All these topo-

logical maps focus on the free space and represent the traversable space for the robot with

nodes, which are then connected according to their neighborhood in a graph. Then these

maps are used for path planning for the robot. To the best of the author’s knowledge, no

work in topological mapping of orchard environments utilizing UGVs has been developed.

Furthermore, topological mapping work in agricultural settings assumes that nodes represent

free space.

2.3 Localization in Agricultural Environments

There are two main strategies for robot localization: absolute and relative. The most com-

mon approaches for absolute localization are supported by the use of Real Time Kinematic

Global Navigation Satellite System (RTK-GNSS), and although this technology is becoming

increasingly available and easier to incorporate into agricultural robotic systems [55], it still

presents some drawbacks. Not only does it add a higher cost to the overall system both in

terms of hardware (extra equipment such as a base station and antennas) and software fees

(subscriptions to Real Time Kinematic (RTK) networks), but it is also susceptible to inter-

ference from atmospheric conditions and it can be blocked by the tree canopy, particularly

in dense forests and orchards [15]. Degradation of the GNSS signals can quickly result in

inaccuracies in the localization process, which in turn affect the mapping process negatively.

Relative localization, which relies on local sensing using LiDAR or cameras, can comple-

8

ment GNSS-based localization, and these sensors are also often used to facilitate sensor-based

navigation and mapping [54]. This type of localization has proven useful when GNSS signals

are of low quality or unavailable, which may happen often in the field. For these reasons, the

use of relative localization alongside topological mapping can be convenient in agricultural

environments.

A substantial amount of work has been done on localization in agricultural environments,

most of which relies on a combination of multiple sensors to obtain an estimate of the robot’s

position. In [27], Delaunay triangulation is used to match local point clouds to a global tree

map to estimate the robot’s position. Winterhalter et al. [55] accomplishes localization by

estimating the robot’s pose relative to a GNSS-referenced map of crop rows, allowing it to

fuse crop row detections with GNSS signals to obtain an accurate pose estimate. The most

common methods of localization in agricultural environments rely on the Extended Kalman

Filter (EKF) to fuse information from several sources [19]. More specifically, in orchards

environments, a Particle Filter (PF) with a laser beam model and a Kalman Filter (KF)

with a line-detection algorithm, using a 2D LiDAR, were used as localization strategies

for robot navigation [5]. Overall, the works discussed here are concerned with localizing

the robot on a previously established metric representation of the environment, with little

emphasis on the mapping aspect.

9

3 Methods

This section gives some context for the methods utilized in the implementation of the pro-

posed topological mapping and localization strategy.

3.1 Random Sample Consensus (RANSAC)

RANSAC [17] is an iterative method for estimating a mathematical model’s parameters

from a set of data that includes outliers and, as such, can be considered a technique for

detecting outliers. The algorithm makes the assumption that both inliers and outliers exist

in all of the data we are examining, in which inliers can be fitted to a model with a specific

set of parameters, while outliers never fit that model. It is a completely non-deterministic

algorithm in which a result is produced with a certain probability that increases with the

number of iterations.

In its most basic form, the algorithm is implemented in the following steps:

1. Select a random sample from the initial dataset.

2. Fit a model to the previous obtained subset.

3. Check the remaining dataset against the model and if a data point matches the esti-

mated model, it is considered an inlier.

4. Check if the estimated model is sufficiently good through the number of inliers.

5. Evaluate the model by estimating the error of the inliers relative to the model.

This process is repeated a number of times, yielding either a model that is rejected

because there aren’t enough points identified as inliers or an improved model along with the

accompanying error measure. If the improved model’s error is smaller than the most recent

stored model in the latter scenario, we maintain it. A set of observed data values, a method

for fitting a model to the observations, and some confidence parameters make up the input

10

(a) A dataset of two dimensional points contain-

ing inliers and outliers.

(b) Fitted line (blue) and outliers (red).

Figure 3.1: Example of fitting a line to a set of points using RANSAC (retrieved from

https://en.wikipedia.org/wiki/Random_sample_consensus).

to the RANSAC algorithm. Figure 3.1 shows an example of RANSAC used to fit a 2D line

to a set of points.

In this dissertation, RANSAC is used in ground plane segmentation to obtain a robust

estimation of the parameters for the ground plane, which can then be used to remove every

point that does not belong to it. Along with the typical RANSAC parameters (number

of iterations, confidence threshold, etc.), the implementation in this work also considers

some restrictions in the plane’s direction and normals. The plane needs to be roughly

perpendicular to the z-axis of the LiDAR (which points up), and the normal direction of the

points in the plane must be approximately similar to each other and to the plane’s normal.

This algorithm was implemented using the Point Cloud Library (PCL)1.

3.2 Iterative Closest Point (ICP)

The challenge of correctly matching two or more point clouds, or collections of three-

dimensional points, is known as 3D registration. In order to ensure that the overlapping

areas between the point clouds match as closely as possible, registration determines the rel-

ative pose (position and orientation) between different point clouds in a global coordinate
1https://pointclouds.org/

11

https://en.wikipedia.org/wiki/Random_sample_consensus
https://pointclouds.org/

Figure 3.2: Example of the ICP algorithm (retrieved from https://en.wikipedia.org/

wiki/Iterative_closest_point)

frame. Registration’s main goal is to align disparate point clouds and combine them into a

single point cloud so that processing operations like segmentation and object reconstruction

can then be applied.

ICP is an iterative registration algorithm, meaning it performs a matching step to find

the nearest points and then aligns the pairs of discovered points [8] (Figure 3.2). Iteratively

perfecting the alignment of the source to the target point cloud, these two phases are repeated

until convergence or until achieving another termination condition, such as a maximum

number of iterations. There have been several implementations of this algorithm over the

years. In this dissertation, the PCL implementation was used [22].

In its simplest form, the algorithm is implemented using the following steps [40]:

1. Match the closest point in the target point cloud to each point in the source point

cloud.

2. Use a metric minimization technique based on the root mean square point-to-point

distance to estimate the rotation and translation combination that will best align each

source point with the match discovered in the previous stage.

3. Apply the obtained transformation to the source point.

4. Iterate by repeating from step 1.

The PCL implementation of this algorithm is more complex than the original one, intro-

ducing several steps to improve the final results. It is divided into the following stages:

1. Selection - Sampling Representative Subsets

2. Matching - Closest Points Correspondence Estimation

12

https://en.wikipedia.org/wiki/Iterative_closest_point
https://en.wikipedia.org/wiki/Iterative_closest_point

3. Rejecting and Filtering Correspondences

4. Alignment - Error Metrics and Transformation Estimation

5. Termination Criteria

The selection stage is optional and aims to reduce the computational cost of the algorithm

by only registering a subset of the original point cloud. This is based on the assumption

that, for the purpose of registration, data is frequently duplicated or overly detailed. In the

matching stage, points from the source point cloud are matched to their closest neighbours

in the target cloud. To reduce the computational cost of a greedy search, the PCL imple-

mentation uses various data structures, such as octrees [31] and K-d trees [3]. The goal of

the third stage is to filter out invalid correspondences that may have a negative impact on

the registration outcome in order to speed up the convergence of the transformation estima-

tion procedure to the global minimum. There are several types of correspondence rejection

methods, such as correspondence rejection based on distance, median distance, normal com-

patibility, RANSAC-based, etc. The alignment stage aims to minimize an error metric to

obtain an estimation of the translation and rotation that transform the source point cloud

into the target cloud. Like in the previous stage, there are multiple error metrics that can be

used, such as the standard point-to-point error metric, the point-to-plane error metric, and

linear least squares point-to-plane, among others. Finally, in the last stage, a termination

criteria is defined, i.e., a condition that decides when the algorithm stops. The termination

criteria may include the maximum number of iterations; an absolute transformation thresh-

old; a relative transformation threshold; the maximum number of similar iterations; relative

mean square error; and absolute mean square error. To get a more detailed explanation of

the PCL implementation, see [22].

In this dissertation, the main use of ICP was to obtain the fitness score between the

target and source point clouds as a similarity metric, in order to decide if the detected point

clouds matched the corresponding nodes. Lower fitness scores correspond to similar point

clouds. This matching process was used as a way to uniquely identify the trees, associate

them with corresponding nodes and estimate the robot’s location on the topological map.

3.3 Euclidean Clustering

Clustering is the task of segregating a dataset into groups with data points that share

characteristics, designated clusters. In the case of 3D point clouds, a clustering method

13

Figure 3.3: Example of visualization of euclidean clustering (adapted from [38]).

needs to divide a cloud into smaller groups with similar features. By adopting a 3D grid

subdivision of the space with fixed-width boxes or, more generally, an octree data structure, a

straightforward data clustering approach in the Euclidean sense can be performed. Assuming

an initial point cloud dataset P and the use of a K-d tree structure for nearest neighbour

search, in its simplest form, the algorithm can be implemented using the following steps

(from [41]):

1. Create a Kd-tree representation for the input point cloud dataset P ;

2. Set up an empty list of clusters C, and a queue of the points that need to be checked

Q;

3. Then for every point pi ∈ P , perform the following steps:

(a) Add pi to the current queue Q;

(b) For every point pi ∈ Q do:

i. Search for the set P k
i of k neighbouring points of pi in a sphere with radius

r < dth;

ii. For every neighbor pki ∈ P k
i , check if the point has already been processed,

and if not add it to Q;

(c) When the list of all points in Q has been processed, add Q to the list of clusters

C, and reset Q to an empty list;

4. The algorithm terminates when all points pi ∈ P have been processed and are now

part of the list of point clusters C;

A visualization of euclidean clustering is shown in Figure 3.3.

14

For this dissertation, a conditional euclidean clustering algorithm is used where it is now

possible to fully define the conditions that must be met in order for a neighbour to be merged

into the existing cluster, in addition to the typical distance criterion. In this application, the

custom condition requires a point to be similar to its neighbors in surface normal direction

in order to be added to the final cluster. The user-defined criterion between points already

inside the cluster and neighboring candidate points is evaluated as the cluster expands. In

order to find the candidate points (nearest neighbors points) around each point in the cluster,

an Euclidean radius search is used. The condition has to hold with at least one of a point’s

neighbors, but not with all of them, for that point to be included in the final cluster. The

PCL was used for this implementation.

3.4 Multilateration

Multilateration is a method for estimating a target’s position using range measurements to

known points, i.e., the distances from the target to a set of n beacons. There are multi-

ple solutions to this problem, including analytical and iterative ones. Analytical or direct

algorithms estimate the target’s position using only the range measurements, while itera-

tive algorithms require a reasonably precise initial estimate of the target’s position. The

approach may not converge or may converge to an invalid solution if the initial estimate is

not sufficiently close to the true solution. However, iterative solutions have several advan-

tages, such as the use of redundant measurements; the incorporation of random errors in the

distance measurements; and preventing ambiguous solutions that direct algorithms provide.

For stationary beacons, the gradient descent multilateration algorithm is further detailed in

[2]. Figure 3.4 shows an example of 2D multilateration with 3 beacons.

In this dissertation, multilateration is used to estimate the robot’s position in the map’s

reference frame, where the beacons are the nodes of the topological map (trees), and the

range measurements are the distances from the robot to each tree measured by the 3D

LiDAR. This process generates a set of probable poses for the robot, which are then used

alongside odometry and IMU readings to compute a final estimate of the robot’s position.

15

Figure 3.4: Example of 2D multilateration with 3 beacons (adapted from [26]).

16

4 Proposed Strategy for Topological Map-

ping and Localization

4.1 System Overview

The proposed system consists of a pipeline that can be split into four major stages, with

the output of each stage being the input of the next one. Each stage can be further divided

into multiple steps, which are better explained in the following sections. Figure 4.1 shows

a general overview of the pipeline for the proposed strategy. The four main stages are the

following:

• Filtering Stage

• Segmentation Stage

• Map Building Stage

• Localization Stage

The system takes point cloud data from the 3D LiDAR as input. It then applies a

set of filtering steps to remove the ground plane and tree canopies in order to extract the

trunks, followed by the segmentation stage that isolates individual tree trunks using euclidean

clustering. The resultant set of clusters is then passed to either the localization stage or

the map building stage, depending on the mode in which the system is operating. The

localization stage matches detected clusters with tree trunks from a previously known map

to obtain an estimate of the robot’s location. The map building stage uses the detected

clusters to build a topological map of the unstructured orchard environment and saves it to

the disk for later use.

The proposed system has two modes of operation: the map building mode and the

localization mode. In the first mode, the robot builds a topological map of the environment,

17

Figure 4.1: General overview of the proposed system.

while in the second mode, the robot tries to estimate its location on the previously built

map. As seen in Figure 4.1, the first two stages of the system are common to both modes,

meaning the input point cloud needs to be filtered and segmented into clusters to extract

and isolate the tree trunks, which will be used to either build the topological map or estimate

the robot’s pose.

In the map building mode, a fusion of wheel odometry, IMU readings and RTK-GNSS

data is used to obtain the robot’s pose and build a precise topological map of the orchard.

Due to the sub-centimeter accuracy of the RTK-GNSS system, we can obtain almost the

exact positions of the trees in the orchard. In the localization mode, we assume that the

RTK-GNSS system is not available and, as such, the robot’s pose is obtained by fusing wheel

odometry data, IMU readings and pose estimations from a measurement stage. Using both

ICP and distance-based matching techniques, we are able to match detected clusters with

the known tree trunks from the generated map and consequently obtain a measurement

estimation of the robot’s location in the previously built map using multilateration. This

measurement estimation is then fused with data from wheel odometry and the IMU, allowing

for a more precise final estimation of the robot’s pose on the map.

4.2 Map Structure

A topological map M is given by

M = {N, E} (4.1)

where N and E represent the set of nodes and edges, respectively, which can be described

by

N = {ni}, (4.2)

E = {eij}, i, j = 1, 2, . . . , nn (4.3)

18

with nn being the total number of nodes. In this representation, both nodes and edges can

be seen as data structures that hold information about each tree and its relation with the

neighbouring trees. A node representing tree i is given by

ni = {pi, gi, Pi, Vi} (4.4)

where pi = {xi, yi, zi} represents the tree’s position in a local fixed cartesian coordinate

frame, gi = {ϕi, λi, hi} is the tree’s position in GNSS coordinates (latitude, longitude and

altitude), Pi is an array of point clouds that describe the tree from different viewpoints and

Vi is the corresponding array of vectors that define those viewpoints, with each point cloud

associated to a viewpoint. An array of point clouds and viewpoints is given by

Pi = {Pik}, (4.5)

Vi = {Vik}, k = 1, 2, . . . , nvi (4.6)

where Pik is the point cloud corresponding to viewpoint Vik for node i, viewpoint k. The

number of viewpoints for node i is given by nvi. Each viewpoint indicates the direction from

which the tree was seen and can be represented by a vector referenced in the global map

frame given by

Vik = {vx, vy, vz} (4.7)

where vx, vy and vz represent the vector’s components in the x, y and z directions, respec-

tively.

An edge between tree i and tree j is given by

eij = {dij} (4.8)

where dij is the edge’s length, representing the distance between tree i and tree j. The set of

edges is specified by an adjacency matrix A, where Aij = eij. An example of the topological

map structure is shown in Figure 4.2.

19

Figure 4.2: Example of the topological map structure.

4.3 Pipeline Stages

4.3.1 Filtering

The main goal of this stage is to extract the tree trunks from the original 3D point cloud of

the orchard environment. As seen in Figure 4.3, this stage can be divided into the following

steps:

1. Passthrough filtering (height and intensity)

2. Normal estimation

3. Ground plane segmentation

4. Outlier removal (statistical and radius based)

The filtering stage receives as input raw point cloud data from the 3D LiDAR given by

PCraw = {pi}, i = 1, 2, . . . , nraw (4.9)

with pi = {xi, yi, zi, ii}, where nraw is the number of points in the raw cloud and xi, yi, zi

and ii correspond to the x, y, z and intensity values of point i, respectively. It then applies a

set of passthrough filters to the point cloud, estimates the surface normal at each point, and

removes the ground plane and outliers. This stage outputs a filtered point cloud, PCfiltered

given by

PCfiltered = {pi}, i = 1, 2, . . . , nflt (4.10)

with pi = {xi, yi, zi, ii, ni}, where nflt is the number of points in the filtered cloud and

xi, yi, zi and ii correspond to the x, y, z and intensity values of point i, respectively, and ni

corresponds to the normal vector at point i.

20

Figure 4.3: General overview of the filtering stage.

For the first step of the filtering stage, passthrough filters in both height and intensity

are applied to the raw point cloud, essentially removing every point with height or intensity

values that does not fall into a specific interval. The height corresponds to the z coordinate

in the LiDAR’s reference frame. As outlined in Algorithm 1, we traverse all points in PCraw

and remove every point pi with z and i values outside a specific interval. This step is essential

to significantly reduce the number of points in the cloud, decreasing the computation times

for real-time processing.

In the second step, the surface normal is computed for every point in the filtered cloud.

The problem of determining the normal at a point on the surface is approximated by the

problem of estimating the normal of a plane tangent to the surface, which in turn becomes a

least-square plane fitting estimation problem. The solution for estimating the surface normal

is therefore reduced to an analysis of the eigenvectors and eigenvalues (Principal Component

Analysis (PCA)) of a covariance matrix created from the nearest neighbors of the query

point1. The estimated normals are then concatenated to PCfiltered, adding another field to

each point (ni). This step is required for the ground plane segmentation.

In the third step, a plane segmentation based on RANSAC is applied to the filtered cloud,

to isolate and remove the ground plane. The implemented method for segmentation not only

uses the previously estimated surface normals to extract a plane equation approximately

perpendicular to the z-axis of the LiDAR’s reference frame but also to decide if a point

belongs to the extracted plane based on surface normal similarity between neighbouring

points. In order to reduce computation times, the plane segmentation is only applied to

points that belong to a specific interval, assuming the ground plane is always below the

origin of the LiDAR’s frame. A more detailed explanation of the RANSAC algorithm was

detailed in Section 3.1.

Finally, in the fourth step, two filters are applied to the filtered cloud to eliminate any

outliers that were not removed in the previous steps. The first one is a radius outlier

removal filter, which removes all points in the cloud that do not have at least some number
1PCL Library - Estimating Surface Normals in a Point Cloud - https://pointclouds.org/

documentation/tutorials/normal_estimation.html

21

https://pointclouds.org/documentation/tutorials/normal_estimation.html
https://pointclouds.org/documentation/tutorials/normal_estimation.html

(a) Original point cloud (b) Filtered point cloud (shown in red)

Figure 4.4: Example of results from the filtering stage.

of neighbours within a certain range. As described in Algorithm 1, we compute the number

of neighbouring points (nn) inside a specific radius (r) for each query point pi in PCfiltered. If

nn is less than a certain value (Nn), the corresponding point pi is removed. The second outlier

removal filter performs a statistical analysis on each point’s neighbourhood and trims those

that do not meet a certain criteria. As seen in Algorithm 1, we compute the mean distance

(di) from each query point pi in PCfiltered to its k nearest neighbours. By assuming this

distribution is Gaussian, we then compute the mean (µd) and standard deviation (σd) of these

distances. All points whose mean distance (di) is greater than a threshold (Dmax = µd+α·σd)

are removed from the point cloud, where α is a tunable standard deviation multiplier. Figure

4.4 shows an example of the results from the filtering stage.

4.3.2 Segmentation

The goal of this stage is to isolate the tree trunks obtained from the previous stage into

separate clusters, to be used either by the map building stage to generate a new topological

map or by the localization stage to estimate the robot’s pose on the map. Figure 4.5 shows

a general overview of the segmentation stage.

This stage takes as input the filtered point cloud PCfiltered from the previous stage given

by Equation 4.10 and segments it into clusters to obtain distinct tree trunks, while also

Figure 4.5: General overview of the segmentation stage.

22

Algorithm 1: Tree trunk extraction from 3D point clouds.
Input: A raw 3D point cloud PCraw = {pi}i=1...nraw

Output: A filtered 3D point cloud PCfiltered = {pi}i=1...nflt

PCfiltered ← PCraw;

D = [];

// ––––––- Passthrough filters ––––––-

for pi ∈ PCfiltered do

if pi.z /∈ [z_min, z_max] or pi.i /∈ [i_min, i_max] then
Remove pi from PCfiltered

end

end

// ––––––- Normal estimation and ground plane removal ––––––-

PCfiltered ← normalEstimation(PCfiltered);

PCfiltered ← removeGroundPlane(PCfiltered);

// –––––––– Radius outlier removal filter ––––––––

for pi ∈ PCfiltered do

nn ← numNeighbours(pi, r);

if nn < Nn then
Remove pi from PCfiltered

end

end

// ––––––- Statistical outlier removal filter ––––––-

for pi ∈ PCfiltered do

di ← meanDistanceK(pi, k);

D.append(di)

end

µd ← mean(D);

σd ← std(D);

Dmax ← µd + α · σd;

for pi ∈ PCfiltered do

di = meanDistanceK(pi, k);

if di > Dmax then
Remove pi from PCfiltered

end

end

23

computing the clusters’ centroids and number of points. It outputs an array of detected

clusters given by

Cdetected = {Ci}i=1...m (4.11)

where m is the number of detected clusters. Each cluster can be represented by a custom

data structure that contains some relevant information about the cluster, given by

Ci = {npi, ci, PCi} (4.12)

where npi, ci = {cx, cy, cz} and PCi are the number of points, centroid position in a

cartesian coordinate frame and 3D point cloud of cluster i, respectively. Similar to the map

nodes’ data structure, this can be easily expanded to include more information about the

cluster.

An overview of this stage is outlined in Algorithm 2. To segment the point cloud into

clusters, the Euclidean Clustering method is used together with a custom clustering condition

that needs to hold for a point to be added to a cluster. This condition requires a point to be

similar in surface normal direction to its neighbours in order to be added to a cluster. This

custom condition removes any noisy points that do not belong to a trunk but are still close

enough to be considered part of the cluster by the base Euclidean Clustering algorithm, like

points belonging to leaves at lower heights. Clusters that are considered too small or too

large, i.e., with a number of points below or above a specific threshold, are also removed.

A more detailed explanation of the base euclidean clustering algorithm was described in

Section 3.3. After extracting the clusters, their centroid (c) is computed and saved in the

corresponding data structure, along with the number of points (np) and the cluster’s point

cloud coordinates (PC). All clusters are saved into an array to be used by the next stages.

Figure 4.6 shows an example of the results from the segmentation stage.

(a) Filtered point cloud (shown in red) (b) Detected clusters (shown with boxes)

Figure 4.6: Example of segmentation results.

24

Algorithm 2: Segmentation of tree trunks into clusters.
Input: A 3D point cloud PCfiltered = {pi}i=1...nflt

Output: An array of detected clusters Cdetected = {Ci}i=1...m

C ′ ← ConditionalEuclideanClustering(PCfiltered);

for Ci ∈ C ′ do

p̄← meanp∈Ci
(p);

C.np ← Ci.points.size();

C.c← p̄;

C.PC ← Ci.points;

Cdetected.append(C);

end

4.3.3 Map Building

The goal of this stage is to build the topological map using the detected clusters correspond-

ing to different trees. With that purpose in mind, each cluster is matched against every

known node and according to the distance between them, either a new node is added or an

existing node is updated. Figure 4.7 shows a general overview of this stage, which can be

split into the following steps:

1. Viewpoint computation

2. Cluster matching

3. Edges update

The map building stage receives as input the cluster array from the previous stage

(Cdetected), matches them against every known node and according to the matching result, it

either adds a new node to the map or updates an existing one. It then outputs an updated

version of the topological map, M = {N,E}.

As seen in Figure 4.7, the first step is to obtain the viewpoint from where the tree

was detected. The viewpoint can be represented by a vector referenced in the global map

Figure 4.7: General overview of the map building stage.

25

frame as mentioned in Eq. 4.7 and is obtained by subtracting the cluster’s centroid from the

robot’s position in the map’s reference frame. The viewpoint is computed using the following

equation

Vi = p̄robot − C̄i.c, i = 1, 2, . . . , m (4.13)

where p̄robot is the robot’s position, C̄i.c is the centroid of the detected cluster and m is the

number of detected clusters. The resultant vector is then normalized. This is computed for

every detected cluster.

In the second step, we traverse the topological map’s known nodes (N) and match each

cluster against them. This matching is solely based on position similarity, which means that

if the distance between a cluster’s centroid (Ci.c) and a node’s position (nj.p) is less than a

certain threshold (dmax), we can assume the detected cluster i matches node j in the map.

Otherwise, the detected cluster i is added as a new node to the map.

In the first case where the detected cluster matches an existing node, the matched node’s

position (nj.p) is updated by computing the mean between the centroid of cluster i and the

position of node j,

nj.p =
nj.p+ Ci.c

2
(4.14)

Then, the respective GNSS coordinates are computed by converting the updated position

in the map’s reference frame (nj.p) to geodetic coordinates. If the computed viewpoint

already existed in the database, then the corresponding point cloud (nj.C) is updated by

registering the detected cluster point cloud (Ci.PC) with it. Otherwise, a new viewpoint

for node j is added. Since the viewpoints are represented by vectors, their similarity can be

computed by verifying if the inner product between both vectors is below a certain threshold.

In the second case, when the detected cluster i does not match any existing node, it is

added to the map as a new node, with the cluster’s centroid as the new node’s position,

the GNSS coordinates computed the same way as in the previous case, and a new single

viewpoint added along with the respective point cloud.

Finally, in the third step, the map’s edges are updated, if new nodes were added. The

updating process is solely based on node distance, which means that if the distance between

nodes i and j is less than a certain threshold, the nodes are connected, and the distance is

saved in the edge data structure (eij). With this strategy, the map can also be saved to a file

to be analysed offline and loaded from a file when the robot’s operation resumes, allowing

the robot to start from a previously known map. The algorithm described above is applied

to every detected cluster and it is outlined in Algorithm 3.

26

Algorithm 3: Topological map update.
Input: An array of detected clusters Cdetected = {Ci}i=1...m

Output: A 3D topological map M = {N,E}

for Ci ∈ Cdetected do

Vi ← computeViewpoint(Ci);

for nj ∈ N do

d = distance(Ci.c, nj.p);

if d < dmax then

nj.p← mean(nj.p, Ci.c);

nj.P ← updatePointCloud(Ci.PC, Vi); // Does viewpoint comparison

nj.g ← updateGNSSCoords(nj.p);

node_exists← true ;

break ;

end

end

if node_exists then

continue ;

else

N.addNode(Ci);

E.updateEdges();

end

end

27

4.3.4 Localization

The goal of this stage is to match detected clusters with tree trunks from a previously known

map to obtain an estimate of the robot’s pose on the map. This is achieved by fusing a pose

estimate from a prediction stage with a pose estimate from a measurement stage. Figure 4.8

shows a general overview of this stage, which can be divided into the following steps:

1. Local map matching

(a) Cluster matching

i. Distance-based matching

ii. ICP-based matching

(b) Consistency check

i. Creation of node-cluster combinations

ii. Removal of impossible combinations

2. Multilateration

3. Localization update

The localization stage takes as input the cluster array from the segmentation stage

(Cdetected), performs a cluster-node matching based on distance between clusters and based

on the ICP algorithm, generating a list of possible node-cluster combinations. Using mul-

tilateration, this list is then used to compute a set of possible poses, based on distance

measurements from the robot to each cluster, which are then fused with odometry data to

obtain a final pose estimate.

Local Map Matching

The first step (cluster matching) can be subdivided into two phases. In the first phase,

detected clusters (trees) are matched against known nodes based on the distance between

Figure 4.8: General overview of the localization stage.

28

clusters. As outlined in Algorithm 4, for a single cluster, the distance to every other cluster is

computed and compared with known distances between nodes (E). If the difference between

them is less than a certain threshold (Dth), the two corresponding nodes are added to a

temporary list of nodes (a). This list is then pushed into an array (A) after removing any

duplicate elements. After traversing through every cluster, the common elements between

every element of A are computed, resulting in a preliminary list of candidate nodes (Nc) for

that particular cluster. For example, assuming n clusters were detected, each one will have

n − 1 associated temporary lists of nodes (a) corresponding to the number of connections

between that particular cluster and the other clusters. The common elements between the

cluster’s associated lists of nodes are computed to obtain the preliminary list of candidate

nodes (Nc) for that particular cluster. This algorithm is repeated for every detected cluster.

This phase is important to reduce the number of possible candidate nodes and therefore the

number of times the ICP algorithm is applied, decreasing computation times.

In the second phase of cluster matching, an ICP-based matching process is used to

obtain a reduced set of candidate nodes. This phase takes as input the preliminary list of

candidate nodes generated by the previous stage and outputs a final set of candidate nodes

for each cluster. As outlined in Algorithm 5, for a single cluster, its corresponding point

cloud (Cquery.PC) is registered against every cloud (ni.P) of the nodes in the preliminary

candidate node list (Nc). If the resulting fitness score is less than a specific threshold, the

respective node is added to the final list of candidate nodes (Ncf). Similar to the previous

one, this method is applied to every detected cluster.

The second step (consistency check) is also divided into two phases. The first one aims

to produce all possible cluster-node combinations from the final lists of candidates nodes of

each cluster. Figure 4.9 shows an example where 4 clusters were detected. Each one has

a corresponding list of candidate nodes. For example, cluster 0 (C0), may correspond to

node 2, 3, or 11, and a likely cluster-node combination might be (2, 5, 4, 12), i.e., the

first cluster corresponds to node 2, the second to node 5, the third to node 4, and the last

cluster corresponds to node 12. The text in red represents the actual corresponding node

(ground truth). A fragment of all possible combinations is presented in Table 4.1, where

it can be seen that the final set of possible cluster-node combinations might contain some

inconsistencies. For example, different clusters might be matched to the same node. Because

of this, in the second stage of consistency check, all impossible combinations are removed

by comparing the distances between the clusters in a particular combination with the actual

distances in the known topological map. If there is any discrepancy between these values,

29

Algorithm 4: Distance-based matching for a single cluster.
Input: A query cluster cquery and array of detected cluster Cdetected

Output: A list of candidate nodes for the query cluster Nc

A← [];

a← [];

for Ci ∈ Cdetected do

d← computeDistance(Ci.c, cquery.c);

for ejk ∈ E do

D = abs(d− ejk);

if D < Dth then

a.append(j);

a.append(k);

end

end

a← removeDuplicates(a);

A.append(a);

end

Nc = findCommonElements(A);

Algorithm 5: ICP-based matching for a single cluster.
Input: A query cluster cquery and preliminary list of candidate nodes Nc

Output: A final list of candidate nodes for the query cluster Ncf

for ni ∈ Nc do

score← registerPointClouds(ni.P, cquery.PC);

if score < score_th then

Ncf .append(i);

end

end

Ncf ← findCommonElements(A);

30

Figure 4.9: Example of the cluster matching process, where 4 cluster were detected.

Table 4.1: Example of possible cluster-node combinations.

Combination #
Nodes

Remove (yes/no)
C0 C1 C2 C3

1 2 3 4 2 Yes

2 2 3 4 4 Yes

3 2 3 4 12 Yes

4 2 5 4 2 Yes

...

... 3 5 4 2 No

...

n 11 13 14 12 No

the combination is removed. As such, the final output of the first step (local map matching)

is an array of possible node-cluster combinations. This step only occurs if the number of

detected trees is greater than one.

Multilateration

In the second step of the localization stage, multilateration is used to compute the robot’s

pose for each possible cluster-node combination from the previous step. This generates a set

of probable poses for the robot. Because these poses result from LiDAR measurements, they

are considered measured poses. The multilateration algorithm mentioned in Section 3.4 is

applied to every possible node-cluster combination, generating a set of probable robot poses.

31

For example, for the combination shown in the previous step, nodes 2, 3, 4, and 5 would

be the beacons in the multilateration algorithm, and using the measured distances from the

robot to each of the clusters, a pose would be estimated. Details of the multilateration

algorithm are explained in Section 3.4.

Position Update

Finally, in the last step, the robot’s current pose is estimated by fusing the measured poses

from multilateration with the predicted poses that result from previously estimated poses

and odometry information. The system maintains a list of possible poses that is updated in

each iteration, with the least probable ones being discarded. Assuming x̂ is the state vector

representing the robot’s pose in 2D given by

x̂ = [x, y, θ] (4.15)

the list of probable poses at iteration k is given by

Xk = {x̂1, x̂2, . . . , x̂n} (4.16)

where n is the number of poses.

The pose update process consists of two parts. In the first one, the robot’s current pose

is predicted using data from wheel odometry, the IMU and previous estimated poses. In

the second one, the current estimated pose is updated by fusing the predicted pose with the

measured pose from the multilateration step. Assuming a pose at iteration k, x̂k, the current

predicted pose is given by

x̂−
k = x̂k−1 +∆x̂k−1, k (4.17)

where x̂k−1 is the previous estimated pose and ∆x̂k−1, k is robot’s displacement between

iteration k − 1 and k. This displacement is given by a fusion between data from the wheels

odometry and IMU, provided by the robot_localization package from ROS. This package

uses an EKF to obtain an estimate of the robot’s pose. In the second part of this update

process, the current estimated pose is computed

x̂k = x̂−
k ⊕ ẑki (4.18)

where ẑki is the current measured pose from the multilateration step. This fusion is computed

by averaging both poses. From the set of poses provided by the multilateration step, not all

of them need to be fused with the current predicted pose. With that in mind, a strategy

32

based on range gates is used to determine which of the measured poses is fused with the

current predicted pose. Only the ones within a certain distance of the current predicted pose

are used in the update process.

The steps described above are applied to every pose maintained by the system. Since

this is a multi-hypothesis process, some improbable poses need to be discarded over time.

This is accomplished using a counter (cnt) associated with each pose, which keeps track of

the number of times that particular pose was updated using only the wheels’ odometry and

IMU, i.e., when x̂k = x̂−
k . If that counter goes above a certain threshold (cntth), it can be

assumed that the measurements do not confirm the predictions and, as such, the pose can

be discarded. The localization update step is outlined in Algorithm 6.

The set of estimated poses is initialized equal to the first set of measured poses, i.e., given

a random start point, the system cannot obtain an initial estimate of the robot’s position

until at least two trees are detected. When this occurs, the estimated poses are set equal

to the measured poses computed using multilateration, and the standard position update

process is resumed for the next iterations.

33

Algorithm 6: Robot’s localization update
Input: List of previous estimated poses Xk−1, list of current measured poses Zk

Output: List of current estimated poses Xk

∆xk−1, k ← computeOdomDelta(k);

for x̂k−1 ∈ Xk−1 do

// Discard improbable poses

if cnti > cntth then

continue ;

end

// Predict pose

x̂−
k = x̂k−1 +∆xk−1, k;

// Update pose

for zki ∈ Zk do

d← computeDistance(zki , x̂
−
k);

if d < dmax then

x̂k ← fusePoses(zki , x̂
−
k);

Xk.append(x̂k);

pose_updated← true ;

break ;

end

end

if pose_updated then

continue ;

else

Xk.append(x̂−
k);

cnti ← cnti + 1;

end

end

34

5 Experimental Work

5.1 Hardware Description

The mobile platform used in this work was a customized Clearpath Husky UGV1 (Figure

5.1) equipped with a RTK-GNSS receiver in a dual antenna configuration, a 3D LiDAR, an

Inertial Measurement Unit (IMU) and a WiFi Antenna. Figure 5.2 shows a diagram of the

used hardware.

The on-board LiDAR is a Velodyne Puck2 (formerly known as Velodyne VLP-16), a 16-

channel LiDAR with a range of up to 100 m, 360° horizontal field of view, 30° vertical field

of view (−15° to 15°), typical range accuracy of ±3 cm, vertical angular resolution of 2°,

horizontal angular resolution of 0.1°−0.4° and 5−20 Hz rotation rate. It typically consumes

8 W and outputs up to 300, 000 points/sec through an Ethernet connection.

The GNSS system consists of a Septentrio Ruggedized Box containing an AsteRx4 multi-

frequency dual antenna GNSS receiver3 operating in RTK mode supported by a local GNSS

base station. The receiver has 544 channels for tracking known GNSS signals for all major

constellations (GPS, GLONASS, Galileo, BeiDou, QZSS, IRNSS and SBAS) on both anten-

nas, horizontal accuracy of 0.6 cm, vertical accuracy of 1 cm and support for operation in

RTK mode. The system also contains two PolaNt-x MF4 multi-frequency antennas including

L1/L2/L5 with L-Band correction services.

The IMU is a XSens MTi-300, an Attitude and Heading Reference System (AHRS) with

a roll and pitch accuracy of 0.2° RMS, yaw accuracy of 1° RMS and 520 mW of power

consumption. Its gyroscope has standard full range of 450°/s, in-run bias stability of 10°/h

and 0.01°/s/
√
Hz noise density. Its accelerometer has standard full range of 20 g, in-run

1See https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
2See https://velodynelidar.com/products/puck/
3See https://www.septentrio.com/en/products/gnss-receivers/oem-receiver-boards/

asterx4-oem
4See https://www.septentrio.com/en/products/antennas/polant-x-mf

35

https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://velodynelidar.com/products/puck/
https://www.septentrio.com/en/products/gnss-receivers/oem-receiver-boards/asterx4-oem
https://www.septentrio.com/en/products/gnss-receivers/oem-receiver-boards/asterx4-oem
https://www.septentrio.com/en/products/antennas/polant-x-mf

Figure 5.1: Customized Husky robot used in the implementation.

Figure 5.2: Schematic of the hardware.

36

bias stability of 15 µg and 60 µg/
√
Hz noise density.

Husky was also equipped with a computing platform running an Intel Core i7-3537U

Central Processing Unit (CPU) (2 cores, up to 2.00 GHz) and 8 GB of Random Access

Memory (RAM), as well as a pair of stereo cameras that were not used. Before starting to

develop the software and implement the proposed strategy, Husky was equipped with the

aforementioned sensors. For that purpose, some mounts for the IMU, LiDAR and on-board

cameras were designed and 3D printed (See Appendix A).

5.2 Software

The proposed system was developed in C++ using the ROS5 middleware suite due to its

advantages in the development of software for robotics. ROS isn’t computationally expensive

and is supported by good simulation and visualization tools like Gazebo6 and Rviz7. It also

simplifies the data gathering process through the use of the bag files, allowing for the creation

of datasets for future use, accelerating and simplifying the development process.

Before the data collection process, Husky had to be configured with the relevant software.

The Operating System (OS) was upgraded to Ubuntu 20.04.48 running ROS Noetic. To

interface with the hardware and fetch data in a readable form, the following off-the-shelf

packages were installed and configured:

• 3D LiDAR - velodyne metapackage (includes the velodyne_driver, velodyne_laserscan,

velodyne_msgs and velodyne_pointcloud packages)

• RTK-GNSS - septentrio_gnss_driver

• IMU - ethzasl_xsens_driver

The IMU package had to be migrated from ROS Melodic to ROS Noetic. To implement

the proposed solution, a custom package pcl_processing was developed containing three

separate nodes:

• Filtering Node
5See https://www.ros.org/
6See https://gazebosim.org/home
7See http://wiki.ros.org/rviz
8See https://releases.ubuntu.com/20.04/

37

https://www.ros.org/
https://gazebosim.org/home
http://wiki.ros.org/rviz
https://releases.ubuntu.com/20.04/

– Subscribed Topics:

∗ velodyne_points (sensor_msgs/PointCloud2)

– Published Topics:

∗ filtered_cloud (sensor_msgs/PointCloud2)

• Segmentation Node

– Subscribed Topics:

∗ filtered_cloud (sensor_msgs/PointCloud2)

– Published Topics:

∗ clusters (pcl_processing/ClusterArray)

• Mapping & Localization Node

– Subscribed Topics:

∗ clusters (pcl_processing/ClusterArray)

– Published Topics:

∗ topological_map (visualization_msgs/MarkerArray)

∗ robot_poses (geometry_msgs/PoseArray)

The filtering node subscribes to a point cloud, then performs a series of pre-filtering

operations before publishing the filtered cloud. The segmentation node subscribes to the

filtered cloud, divides it into clusters, each of which corresponds to a distinct tree, and

sends a custom message containing information on the array of found clusters. Finally, the

mapping node subscribes to the previously published cluster array, constructs the topological

map, and estimates the robot’s position, publishing a set of visualization markers containing

the map as well as an array of all probable robot poses. This node also has a save/load

capability, which allows the user to save the generated topological map into a file when the

robot stops operating and load it when the robot resumes operation. Figure 5.3 shows a

graph of the system’s nodes and their relations.

The developed custom messages pcl_processing/ClusterArray and

pcl_processing/Cluster are composed of the following fields:

• pcl_processing/Cluster

38

Figure 5.3: Graph of the system’s ROS nodes and topics.

– uint32 num_points

– geometry_msgs/Point centroid

– sensor_msgs/PointCloud2 cloud

• pcl_processing/ClusterArray

– std_msgs/Header header

– pcl_processing/Cluster[] clusters

5.3 Experimental Setup

The experiments were conducted in an olive orchard (Fig. 5.4) in Polo II, Coimbra, Por-

tugal, during the summer season. The terrain was ramp-like with an uneven surface and a

significant height difference between the lowest and the highest point. Additionally, most

olive trees did not have straight, upright trunks. For practicality reasons and to speed up the

development process, the data was collected in a ROS bag file which contained odometry,

IMU and RTK-GNSS readings apart from the 3D point clouds.

To reduce odometry errors and obtain cleaner 3D point clouds, the robot was driven

between rows and stopped roughly every 2 m to collect the point clouds. The robot’s position

was estimated by fusing data provided by wheel odometry, IMU and RTK-GNSS readings

using the robot_localization package from ROS, which utilizes an EKF. This position

was used as a ground truth for the tests presented in Section 5.4, due to the sub-centimeter

accuracy of the RTK-GNSS readings during the data collection process.

A total of three datasets were collected, with the goal of obtaining different viewpoints of

the same trees and testing the implemented strategy’s robustness to different paths travelled

by the robot. In the first run, the robot moved along the orchard rows downhill, turned

39

Figure 5.4: Olive orchard where the experiments were conducted.

back around a tree, and returned following an approximately parallel path to the downhill

path. In the second run, the robot followed roughly the same path as in the first run but in

the opposite direction. Finally, in the last run, the robot’s path followed a zigzag pattern

around the trees and returned to its initial position. Figure 5.5 depicts the travelled paths.

During data collection, the robot was driven manually using a remote controller.

Figure 5.5: Different paths travelled by the robot for the data collection process.

40

5.4 Tests and Results

A set of preliminary tests were conducted in order to validate the proposed implementation.

These tests were divided into three categories according to the different stages in the proposed

pipeline. The filtering and segmentation tests were coupled together to evaluate the tree

trunk extraction process. The second category of tests includes the quality assessment of

the obtained topological map. Finally, the third category of tests entails the evaluation of

the localization procedure.

5.4.1 Filtering and Segmentation

Since the main objective of the filtering and segmentation stages is to extract and isolate

the tree trunks from the original 3D point cloud, both of these stages are inherently cou-

pled together and, as such, their experimental tests. The primary goal of the filtering and

segmentation tests is to evaluate the tree trunk extraction performance of the proposed

strategy. The system should be able to correctly detect and extract only the trunks of each

tree. With that purpose in mind, for each of the datasets mentioned above, the numbers

of correct and incorrect tree detections were computed and are shown in Table 5.1. Cor-

rect detections occur when the system recognizes and extracts tree trunks, whereas wrong

detections occur when the system detects other aspects of the environment as tree trunks,

such as branches, leaves, ground, and so on. The datasets were manually analyzed, counting

the number of times a detected cluster did not correspond to a tree (incorrect detection) as

well as the number of successfully identified trees (correct detections). Examples of correct

and incorrect detections are shown in Figure 5.6. This test allows for the detection of errors

across all steps of the filtering and segmentation stages, such as the ground removal, trunk

segmentation, etc.

As seen in Table 5.1, the accuracy is within reasonable values, despite the potential

for improvement. This can be accomplished with further fine tuning of the filtering and

segmentation parameters. The accuracy is computed using the following formula,

Accuracy (%) =
No. of correct detections

Total number of detections
× 100 (5.1)

The accuracy was minimum in run 3, as expected, since the robot travelled in a zigzag

pattern, rotating more frequently, which caused the odometry readings to drift and accu-

mulate more error. As such, the received point clouds contained some distortion, resulting

41

Table 5.1: Accuracy values of the filtering and segmentation stages.

Run # No. of correct detections No. of incorrect detections Total No. of detections Accuracy (%)

1 20 3 23 86.96

2 19 2 21 90.48

3 19 5 24 79.17

Mean - - - 85.54

(a) Correct detections (shown with boxes). (b) Incorrect detection (shown with boxes).

Figure 5.6: Example of detections from the filtering/segmentation stage.

in more incorrect detections. Overall, the obtained accuracy values are considered to be

acceptable.

5.4.2 Map Building

The main goal of this test was to assess the quality of the topological map constructed using

the proposed strategy. In this implementation, nodes correspond to trees, and the main goal

was to obtain a topological map in which the node locations matched the real-life locations of

the trees as closely as possible. With that in mind, Figure 5.7 shows the obtained topological

map overlaid on a satellite view of the orchard field. As expected, the nodes almost perfectly

match the tree locations. The small errors are due to errors from the odometry and IMU

readings that increase over time and increase even further as the robot rotates. Figure 5.8

shows the localization error between each node and its respective tree as well as the mean

localization error overall. Figure 5.9 shows an histogram of the map nodes’ localization

errors. The distance error for a given tree/node pair is given by

error = |p̄gt − p̄est| (5.2)

42

Figure 5.7: Obtained topological map overlaid on satellite view of the orchard field.

where p̄gt is the ground truth position of the tree and p̄est is the estimated position of the

node. The ground truth position was obtained by manually retrieving the GNSS coordinates

of the trees using Google Maps9 and converting them to the fixed cartesian coordinate frame,

in which the estimated node positions are referenced. The maximum and minimum errors

were of 2.14 m and 0.095 m, respectively, while the average error was of 0.865 m. Overall,

the results were acceptable, with room for improvement.

5.4.3 Localization

The primary goal of the localization test was to assess the effectiveness of the localization

stage. The ground truth for the experiments was the pose provided by the EKF operating

in ROS robot_localization node, which fused information from GNSS, IMU, and wheel

odometry data. To evaluate the performance of this step, the robot’s estimated and true

positions, as well as the positions of the nodes, were plotted for runs #1, #2 and #3 in Fig.

5.10, Fig. 5.12 and 5.13, respectively.

The topological map was created using data from run #1 before executing the localization

method. The resulting map was then utilized to evaluate the localization stage for all three

runs, in order to assess the algorithm’s robustness and repeatability against various scenarios

and viewpoints. The purpose was to see if the robot could get an accurate estimate of its

position by using a map built at a different time, in slightly different conditions, and from

other viewpoints.

For run #1 (Fig. 5.10), the obtained results were rather decent, with the estimated
9See https://www.google.com/maps/

43

https://www.google.com/maps/

Figure 5.8: Localization errors of the topological map’s nodes.

Figure 5.9: Histogram of the localization errors of the topological map.

44

position being able to approximately follow the ground truth. Occasionally, the estimated

pose drifts slightly or even loses track of the real pose. However, the system is able to

recover once it detects new clusters and matches them to the correct trees. Figure 5.11

shows the robot’s position errors in the x and y directions, and the distance error between

estimated and real poses over time, as well as their respective average errors. For this

run, the average errors between the robot’s estimated and real positions were of 1.6 m

and 0.4 m in the x and y directions, respectively; the average distance error between the

estimated position and the ground truth was 1.7 m. Because the robot lost track of the

true position around the 40 m mark (position A in Fig. 5.10), the comparatively high

error in the x direction had a substantial impact on the distance error. As a result, the

robot followed the incorrect hypothesis given by the multilateration stage, and the error

increased dramatically. Otherwise, when the poses estimated during the multilateration

stage are within acceptable limits, the system can closely track the real position. The

localization graph for this run additionally distinguishes between when the robot’s position

was determined using measurements (green in Fig. 5.10) and when only odometry was

employed, because measurements were not available or the system lost track of the correct

hypothesis (blue in Fig. 5.10). The peaks and valleys seen in Fig. 5.11 might be due to the

fact the robot_localization node was running at a much higher rate than the RTK-GNSS

driver node. Because of this, the EKF in the robot_localization node only fused wheel

odometry and IMU data when GNSS readings were not available, leading to increased errors

(peaks). When GNSS data was included in the fusion process, the error decreased (valleys).

The acquired results for run #2 (Fig. 5.12) were worse than for run #1, as expected,

because the localization algorithm was executed with the map produced using run #1. How-

ever, the outcomes can be deemed acceptable. The average errors in the x and y directions

were 1.7 m and 0.5 m, respectively; the average distance error between the predicted posi-

tion and the ground truth was 1.9 m. Since the observed viewpoints from the trees differed

significantly from the ones used to generate the map in run #3 (Fig. 5.13), the system

was unable to correctly estimate the robot’s position throughout various parts of the run.

Despite this, the robot’s position estimate still approximately followed the ground truth.

A convergence analysis was also performed to test how fast the estimation from the

localization stage was able to converge to the robot’s real position, meaning how quickly

the wrong hypothesis were discarded. Since the data was collected in intervals in a start

and stop approach, time wasn’t used as a convergence measure. Instead the distance the

robot travelled until the multiple hypothesis converged into the correct one was considered.

45

Figure 5.10: Localization plot for run #1.

Figure 5.11: Robot’s position errors over time for run #1.

46

Figure 5.12: Localization plot for run #2.

Figure 5.13: Localization plot for run #3.

47

For 16 different initial positions, the convergence distances were recorded and an histogram

was obtained (Fig. 5.14). A normal distribution was also fitted to the collected data. The

average convergence distance was approximately 6.1 m, the maximum distance was 12.9 m,

the minimum distance was 1.0 m and the standard deviation was 3.0 m.

The convergence distance is not only affected by the initial robot’s position but also

by the number of trees it detects during the convergence process. Fig. 5.15 shows the

average convergence distance for when the system detects 2, 3, or 4 trees while converging

to a single hypothesis. When the robot identifies 2, 3 or 4 trees, the average convergence

distances are 8.29 m, 5.12 m, and 5.19 m, respectively. As expected, the lower the number

of detected trees, the greater the distance the robot has to travel until the system converges

to a single hypothesis. The small difference between the average convergence distances for

3 and 4 detections (5.12 m and 5.19 m) is due to the fact that the hypothesis discarding

algorithm waits for a fixed number of iterations before discarding an hypothesis. Because

of this, if the system generates multiple hypotheses at any given instant, there will always

be a minimum distance the robot has to travel before converging to a single hypothesis.

Although not shown in the results, the uniqueness of the trees’ descriptors also affects the

convergence distance, which might explain the similar average distances when the system

detects 3 or 4 trees. Overall, the outcomes produced were satisfactory, although there is

definitely potential for improvement. The data gathering procedure can always be improved

since the acquired datasets could have been of higher quality, allowing for better results.

48

Figure 5.14: Convergence distance histogram (red) and normal distribution (black) for run

#1.

Figure 5.15: Average convergence distance for 2, 3 and 4 tree detections.

49

6 Conclusion and Future Work

In this dissertation, we proposed a new type of topological map to represent orchard en-

vironments and showed how LiDAR can be used to construct such a map. The mapping

process used a node matching strategy based on distance and ICP to construct a topologi-

cal map of an orchard environment, where the trees with their distinctive features serve as

nodes and the neighbourhoods of the trees serve as the edges of the map. A preliminary

localization strategy was proposed to estimate the robot’s position on the map. ROS was

used to implement a set of stages in a pipeline which filtered and segmented 3D point clouds

to extract the tree trunks of the orchard, build a topological map, and obtain an estimate of

the robot’s position on the map. The proposed method favours modularity and scalability,

allowing for additional information about each node and edge to be easily added to the map

structure, increasing the overall robustness and utility of this strategy.

Three sets of validation tests were performed to assess the strategy’s performance and

demonstrate that it can generate a topological map of the orchard and locate the robot on it.

Overall, the objectives defined for this dissertation were successfully accomplished, taking a

step towards topological mapping of agricultural environments.

6.1 Future Work

Despite the acceptable results presented in Section 5.4, there are several improvements to be

made as follow-up work. Future work will include the addition of more information to both

the nodes and edges. Extra node information will include tree signatures, trunk descriptors

from multiple views, height descriptors, among others. Additional edge information will

incorporate its traversability. This would allow for less memory expensive and overall better

descriptors for the topological map’s nodes from different viewpoints. In spite of being

a preliminary strategy used as a way to quickly validate the map building process, the

localization approach can still be improved upon by integrating prediction and measurement

50

errors into the estimation procedure. It would also be interesting to use other approaches

like a Kalman Filter or a particle filter. The whole strategy can eventually be validated in

a full Simultaneous Localization and Mapping (SLAM) scenario in an orchard, allowing the

robot to build the map while localizing itself as well as update an already constructed map

during navigation. Other future work would also include the integration of the proposed

topological map structure with typical navigation and path planning algorithms to allow full

autonomous navigation. Finally, the implementation of the proposed strategy can be further

optimized to improve computation times and memory efficiency, allowing for real-time use

in real-world scenarios.

51

7 References

[1] André Aguiar, Armando Sousa, Filipe Santos, J. Cunha, and Heber Sobreira. Local-

ization and mapping for robots in agriculture and forestry: A survey. Robotics, 9, Nov

2020.

[2] Nuha A.S. Alwan and Zahir M. Hussain. Gradient descent localization in wireless sensor

networks. In Philip Sallis, editor, Wireless Sensor Networks, chapter 3. IntechOpen,

Rijeka, 2017.

[3] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.

Commun. ACM, 18(9):509–517, Sep 1975.

[4] Fabian Blöchliger, Marius Fehr, Marcin Dymczyk, Thomas Schneider, and Roland Y.

Siegwart. Topomap: Topological mapping and navigation based on visual SLAM maps.

2018 IEEE International Conference on Robotics and Automation (ICRA), pages 1–9,

2018.

[5] Pieter M. Blok, Koen van Boheemen, Frits K. van Evert, Joris IJsselmuiden, and Gook-

Hwan Kim. Robot navigation in orchards with localization based on particle filter and

Kalman filter. Computers and Electronics in Agriculture, 157:261–269, 2019.

[6] O. Booij, B. Terwijn, Z. Zivkovic, and B. Krose. Navigation using an appearance based

topological map. In Proceedings 2007 IEEE International Conference on Robotics and

Automation, pages 3927–3932, 2007.

[7] Pär Buschka. An investigation of hybrid maps for mobile robots. PhD thesis, Örebro

universitetsbibliotek, 2005.

[8] Yang Chen and Gérard Medioni. Object modelling by registration of multiple range im-

ages. Image and Vision Computing, 10(3):145–155, 1992. Range Image Understanding.

52

[9] Young-Ho Choi, Tae-Kyeong Lee, and Se-Young Oh. A line feature based slam with

low grade range sensors using geometric constraints and active exploration for mobile

robot. Autonomous Robots, 24:13–27, 2008.

[10] William R. Cline. Global warming and agriculture. Finance & Development,

0045(001):A007, 2008.

[11] Adrien Danton, Jean-Christophe Roux, Benoit Dance, Christophe Cariou, and Roland

Lenain. Development of a spraying robot for precision agriculture: An edge following

approach. In 2020 IEEE Conference on Control Technology and Applications (CCTA),

pages 267–272, 2020.

[12] Tom Duckett and Alessandro Saffiotti. Building globally consistent gridmaps from

topologies. IFAC Proceedings Volumes, 33(27):405–410, 2000. 6th IFAC Symposium on

Robot Control (SYROCO 2000), Vienna, Austria, 21-23 September 2000.

[13] A. Elfes. Using occupancy grids for mobile robot perception and navigation. Computer,

22(6):46–57, 1989.

[14] L. Emmi, Emile Le Flécher, Viviane Cadenat, and M. Devy. A hybrid representation

of the environment to improve autonomous navigation of mobile robots in agriculture.

Precision Agriculture, 22:1–26, Apr 2021.

[15] Gianluca Falco, Mario Nicola, Marco Pini, Gianluca Marucco, Wim De Wilde, Alexan-

der Popugaev, Paolo Gay, and Davide Ricauda Aimonino. Investigation of performance

of GNSS-based devices for precise positioning in harsh agriculture environments. In 2019

IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgri-

For), pages 1–6, 2019.

[16] David Fernandez-Chaves, Jose-Raul Ruiz-Sarmiento, Nicolai Petkov, and Javier

Gonzalez-Jimenez. From object detection to room categorization in robotics. In Proceed-

ings of the 3rd International Conference on Applications of Intelligent Systems, APPIS

2020, New York, NY, USA, 2020. Association for Computing Machinery.

[17] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartography. Commun.

ACM, 24(6):381–395, Jun 1981.

53

[18] Spyros Fountas, Nikos Mylonas, Ioannis Malounas, Efthymios Rodias, Christoph Hell-

mann Santos, and Erik Pekkeriet. Agricultural robotics for field operations. Sensors,

20(9), 2020.

[19] Gustavo Freitas, Ji Zhang, Bradley Hamner, Marcel Bergerman, and George Kantor. A

low-cost, practical localization system for agricultural vehicles. In Chun-Yi Su, Subhash

Rakheja, and Honghai Liu, editors, Intelligent Robotics and Applications, pages 365–

375, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[20] Axel Großmann and Riccardo Poli. Robust mobile robot localisation from sparse and

noisy proximity readings using hough transform and probability grids. Robotics and

Autonomous Systems, 37(1):1–18, 2001.

[21] Karoline Heiwolt, Willow Mandil, Grzegorz Cielniak, and Marc Hanheide. Automated

topological mapping for agricultural robots. In UKRAS20 Conference: “Robots into the

real world” Proceedings, pages 27–29, May 2020.

[22] Dirk Holz, Alexandru Ichim, Federico Tombari, Radu Rusu, and Sven Behnke. Regis-

tration with the point cloud library - a modular framework for aligning in 3-D. IEEE

Robotics & Automation Magazine, 22:110–124, Dec 2015.

[23] Andrew Howard, Lynne Parker, and Gaurav Sukhatme. The SDR experience: Experi-

ments with a large-scale heterogeneous mobile robot team. 21, Jun 2004.

[24] J. Jessup, S. N. Givigi, and A. Beaulieu. Robust and efficient multi-robot 3D mapping

with octree based occupancy grids. In 2014 IEEE International Conference on Systems,

Man, and Cybernetics (SMC), pages 3996–4001, 2014.

[25] Jin-Woo Jung, Jung-Soo Park, Tae-Won Kang, Jin-Gu Kang, and Hyun-Wook Kang.

Mobile robot path planning using a laser range finder for environments with transparent

obstacles. Applied Sciences, 10:2799, Apr 2020.

[26] Rohan Kapoor, Subramanian Ramasamy, Alessandro Gardi, Chad Bieber, Larry Sil-

verberg, and Roberto Sabatini. A novel 3D multilateration sensor using distributed

ultrasonic beacons for indoor navigation. Sensors, 16(10), 2016.

[27] Qingqing Li, Paavo Nevalainen, Jorge Peña Queralta, Jukka Heikkonen, and Tomi West-

erlund. Localization in unstructured environments: Towards autonomous robots in

forests with delaunay triangulation. Remote Sensing, 12(11), 2020.

54

[28] Stephanie Lowry, Niko Sünderhauf, Paul Newman, John J. Leonard, David Cox, Peter

Corke, and Michael J. Milford. Visual place recognition: A survey. IEEE Transactions

on Robotics, 32(1):1–19, 2016.

[29] Ren C. Luo and Wei-Ting Shih. Autonomous mobile robot intrinsic navigation based

on visual topological map. 2018 IEEE 27th International Symposium on Industrial

Electronics (ISIE), pages 541–546, 2018.

[30] Dimitri Marinakis and Gregory Dudek. Pure topological mapping in mobile robotics.

IEEE Transactions on Robotics, 26(6):1051–1064, 2010.

[31] Donald Meagher. Octree encoding: A new technique for the representation, manipu-

lation and display of arbitrary 3-D objects by computer. Technical report, Rensselaer

Polytechnic Institute, Image Processing Laboratory, Oct 1980.

[32] Rasoul Mojtahedzadeh. Robot obstacle avoidance using the kinect. Master of Science

Thesis Stockholm, Sweden, 2011.

[33] Andreas Nüchter and Joachim Hertzberg. Towards semantic maps for mobile robots.

Robotics and Autonomous Systems, 56(11):915–926, 2008.

[34] United Nations Department of Economic and Social Affairs, Population Division

(2022). World population prospects 2022: Summary of results. 2022. UN

DESA/POP/2022/TR/NO. 3.

[35] Francis J Pierce and Peter Nowak. Aspects of precision agriculture. Advances in agron-

omy, 67:1–85, 1999.

[36] A. Poncela, E.J. Perez, A. Bandera, C. Urdiales, and F. Sandoval. Efficient integration of

metric and topological maps for directed exploration of unknown environments. Robotics

and Autonomous Systems, 41(1):21–39, 2002.

[37] Vaishali Puranik, Sharmila, Ankit Ranjan, and Anamika Kumari. Automation in agri-

culture and IoT. In 2019 4th International Conference on Internet of Things: Smart

Innovation and Usages (IoT-SIU), pages 1–6, 2019.

[38] Pablo Ramon, Robert Bevec, Begoña Arrue, Aleš Ude, and Anibal Ollero. Extracting

objects for aerial manipulation on UAVs using low cost stereo sensors. Sensors, 16:700,

May 2016.

55

[39] Ankit A. Ravankar, Abhijeet Ravankar, Takanori Emaru, and Yukinori Kobayashi. A

hybrid topological mapping and navigation method for large area robot mapping. In

2017 56th Annual Conference of the Society of Instrument and Control Engineers of

Japan (SICE), pages 1104–1107, 2017.

[40] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Proceedings

Third International Conference on 3-D Digital Imaging and Modeling, pages 145–152,

2001.

[41] Radu Bogdan Rusu. Semantic 3D Object Maps for Everyday Manipulation in Human

Living Environments. PhD thesis, Computer Science department, Technische Universi-

taet Muenchen, Germany, Oct 2009.

[42] Luís Santos, Filipe N. Santos, Sandro Magalhães, Pedro Costa, and Ricardo Reis. Path

planning approach with the extraction of topological maps from occupancy grid maps

in steep slope vineyards. In 2019 IEEE International Conference on Autonomous Robot

Systems and Competitions (ICARSC), pages 1–7, 2019.

[43] Luís Carlos Santos, André Silva Aguiar, Filipe Neves Santos, António Valente, and

Marcelo Petry. Occupancy grid and topological maps extraction from satellite images

for path planning in agricultural robots. Robotics, 9(4), 2020.

[44] Uferah Shafi, Rafia Mumtaz, José García-Nieto, Syed Ali Hassan, Syed Ali Raza Zaidi,

and Naveed Iqbal. Precision agriculture techniques and practices: From considerations

to applications. Sensors, 19(17), 2019.

[45] Redmond Shamshiri, Cornelia Weltzien, Ibrahim Hameed, Ian Yule, Tony Grift, Siva

Balasundram, Lenka Pitonakova, Desa Ahmad, and Girish Chowdhary. Research and

development in agricultural robotics: A perspective of digital farming. International

Journal of Agricultural and Biological Engineering, 11:1–14, Jul 2018.

[46] Rafid Siddiqui. On Fundamental Elements of Visual Navigation Systems. PhD thesis,

Blekinge Institute of Technology, 2014.

[47] S. Simhon and G. Dudek. A global topological map formed by local metric maps.

In Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and

Systems. Innovations in Theory, Practice and Applications, volume 3, pages 1708–1714,

1998.

56

[48] Cyrill Stachniss. Robotic mapping and exploration. Springer, 2009.

[49] Cyrill Stachniss, Oscar Martinez Mozos, Axel Rottmann, and Wolfram Burgard. Seman-

tic labeling of places. In International Symposium of Robotics Research, San Francisco,

CA, USA, Oct 2005.

[50] Niko Sünderhauf, Feras Dayoub, Sean McMahon, Ben Talbot, Ruth Schulz, Peter Corke,

Gordon Wyeth, Ben Upcroft, and Michael Milford. Place categorization and semantic

mapping on a mobile robot. In 2016 IEEE International Conference on Robotics and

Automation (ICRA), pages 5729–5736, 2016.

[51] Juan Tardos, José Neira, Paul Newman, and John Leonard. Robust mapping and

localization in indoor environments using sonar data. The International Journal of

Robotics Research, 21, Apr 2002.

[52] André Teixeira, Sedat Dogru, and Lino Marques. LiDAR-based topological mapping of

orchard environments. In Proc. of the 5th Iberian Robotics Conference, Lecture Notes

in Networks and Systems, Zaragoza, Spain. Springer. (Accepted).

[53] Jozef Vörös. Simple path-planning algorithm for mobile robots using quadtrees. IFAC

Proceedings Volumes, 28(20):175–180, 1995.

[54] Ulrich Weiss and Peter Biber. Plant detection and mapping for agricultural robots using

a 3D lidar sensor. Robotics and Autonomous Systems, 59(5):265–273, 2011. Special Issue

ECMR 2009.

[55] Wera Winterhalter, Freya Veronika Fleckenstein, Christian Dornhege, and Wolfram

Burgard. Localization for precision navigation in agricultural fields—beyond crop row

following. Journal of Field Robotics, 38:429 – 451, 2021.

57

Appendix A: 3D CAD

This appendix includes the 3D designs and schematics of the IMU mount, the 3D LiDAR

mount, the camera mount, and the camera lens cover.

(a) 3D design.

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

03/09/2022

1/1

XSens IMU Top Mount

André Teixeira

81

28

38

Ø8.05

45

60

R10

3.3

Ø3.5

5.
72

5.
1

(b) Design schematic (units in mm).

Figure A.1: 3D design and schematic of the IMU mount.

58

(a) 3D design.

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

03/09/2022

1/1

Velodyne Puck Mount

André Teixeira

Ø93.5 Ø11

R30

R51.75R56.75

R10

13.7

10

23
.8

159.94

113.5

13.7 Ø5

(b) Design schematic (units in mm).

Figure A.2: 3D design and schematic of the 3D LiDAR mount.

59

(a) 3D design.

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

03/09/2022

1/1

Point Grey FL3-GE-13S2C-CS Mount

André Teixeira

Ø6

30

33

Ø3

R5

R6
Ø8.05

33

3 7.
56

3

60

6 8.05

7.
5

(b) Design schematic (units in mm).

Figure A.3: 3D design and schematic of the camera mount.

60

(a) 3D design.

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

03/09/2022

1/1

Point Grey FL3-GE-13S2C-CS Lens Cover

André Teixeira

Ø28
.7

Ø30

Ø33

Ø2

Ø33

Ø30

Ø28.7

8

3

3

(b) Design schematic (units in mm).

Figure A.4: 3D design and schematic of the camera lens cover.

61

	Acknowledgements
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Document Structure

	2 Related Work
	2.1 Environment Representations in Robotics
	2.2 Topological Mapping in Agricultural Environments
	2.3 Localization in Agricultural Environments

	3 Methods
	3.1 Random Sample Consensus (RANSAC)
	3.2 Iterative Closest Point (ICP)
	3.3 Euclidean Clustering
	3.4 Multilateration

	4 Proposed Strategy for Topological Mapping and Localization
	4.1 System Overview
	4.2 Map Structure
	4.3 Pipeline Stages
	4.3.1 Filtering
	4.3.2 Segmentation
	4.3.3 Map Building
	4.3.4 Localization

	5 Experimental Work
	5.1 Hardware Description
	5.2 Software
	5.3 Experimental Setup
	5.4 Tests and Results
	5.4.1 Filtering and Segmentation
	5.4.2 Map Building
	5.4.3 Localization

	6 Conclusion and Future Work
	6.1 Future Work

	7 References
	A 3D CAD

