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Resumo 

O glaucoma, uma das principais causas de perda irreversível da visão, é caracterizado 

pela perda de células ganglionares da retina e danos no nervo ótico, onde os principais fatores 

de risco são a pressão intraocular elevada e o envelhecimento. Foi demonstrado que a 

neuroinflamação induzida pela microglia desempenha um papel crucial no início e progressão 

da doença. Tem sido mostrado que o controlo da neuroinflamação mediada pelas células da 

microglia é suficiente para proteger as células ganglionares da retina de danos, reforçando o 

papel crucial da microglia na doença. No nosso grupo, foi mostrado que a exposição da 

microglia à pressão elevada induz a liberação de fatores citotóxicos que promovem a morte das 

células da retina, nomeadamente das células ganglionares da retina. No entanto, o sensor na 

microglia que deteta as alterações da pressão na membrana plasmática ainda não foi 

identificado.  

Piezo1, um canal iónico mecanosensível, deteta alterações na pressão e tensão de 

cisalhamento cuja ativação tem sido associada à inflamação. Piezo1 é expresso na microglia, 

mas o seu papel na retina e a sua contribuição para a neuroinflamação no glaucoma ainda não 

foram explorados. Este estudo teve como objetivo estudar o papel da ativação do Piezo1 na 

reatividade da microglia induzida por pressão elevada. 

Células BV-2 foram expostas a pressão hidrostática elevada (70 mmHg acima da 

pressão normal) em condições de normoxia (EHP; 20% O2) e em condições de hipoxia (hEHP; 

2% O2) por 4 e 24 horas, na presença ou ausência de 0,5, 1 e 10 μM GsMTx4 (inibidor do 

Piezo1). As células foram incubadas com 1, 5 e 10 μM Yoda1 (agonista do Piezo1). Os níveis de 

proteicos do canal Piezo1 foram quantificados por Western blot. A fagocitose foi avaliada com 

microesferas fluorescentes. A produção de NO foi avaliada pelo ensaio da reação de Griess e 

com a sonda DAF-FM. Os níveis proteicos de iNOS, TAZ, YAP e p-YAP (S397) foram 

quantificados por Western blot. 

Este trabalho mostrou que Piezo1 é expresso em células BV-2 e que, com a exposição 

ao hEHP, houve um ligeiro aumento na expressão do canal. Curiosamente, a ativação do Piezo1 

mostrou um ligeiro aumento na eficiência da fagocitose, enquanto a exposição ao hEHP não 

mostrou alterações na eficiência da fagocitose. 

O efeito da ativação de Piezo1 no stress nitrosativo não mostrou alterações na 

concentração média de nitrito. No entanto, a avaliação direta da produção de NO, revelou que a 

exposição a hEHP aumentou significativamente a produção de NO.  



 

15 
 

A ativação de Piezo1 não afetou os níveis proteicos totais de TAZ, YAP e p-YAP (S397). 

Em relação à sua localização subcelular, a ativação do Piezo1 não afetou os níveis proteicos, 

quer a nível nuclear quer a nível do citoplasma, de TAZ nem YAP, no entanto, exibiu uma 

tendência a diminuir os níveis citoplasmáticos de p-YAP (S397).  

Este trabalho mostrou que Piezo1 é expresso em células BV-2 e pode desempenhar um 

papel na reatividade desta linha celular de microglia, uma vez que mostrou uma tendência a 

aumentar a eficiência da fagocitose e a produção de NO com incubação de Yoda1, bem como 

sob EHP e hEHP, respetivamente. O efeito de ativação de Piezo1 não mostrou efeitos 

significativos na localização subcelular de YAP, TAZ e p-YAP (S397), no entanto, é necessária 

uma investigação mais aprofundada para compreender melhor os mecanismos de indução de 

reatividade na microglia induzidos pela ativação do Piezo1.  

 

Palavras-chave: Microglia; glaucoma; pressão hidrostática elevada; canal Piezo1; 

neuroinflamação; via de sinalização Hippo. 
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Abstract 

Glaucoma, a leading cause of irreversible vision loss, is characterized by retinal 

ganglion cell loss and optic nerve damage, where the main risk factors are elevated intraocular 

pressure and ageing. It has been shown that microglia-induced neuroinflammation plays a 

crucial role in the disease's onset and progression. The control of microglia-mediated 

neuroinflammation is sufficient to protect retinal ganglion cells from damage, reinforcing the 

crucial role of microglia in disease. In our group, it has been demonstrated that exposing 

microglia to elevated pressure induces the release of cytotoxic factors that promote retinal death. 

However, the sensor of elevated pressure in microglia has not been identified yet.  

Piezo1, a mechanosensitive ion channel, detects alterations in pressure and shear stress 

and its activation has been linked to inflammation. Piezo1 is expressed in microglia but its role 

in the retina and its contribution to neuroinflammation in glaucoma has not been explored. This 

study aimed to investigate the role of Piezo1 activation in elevated pressure-induced microglia 

reactivity. 

BV-2 cells were exposed to elevated hydrostatic pressure (70 mmHg above normal 

pressure) in normoxic conditions (EHP; 20% O2) and in hypoxic conditions (hEHP; 2% O2) for 

4 and 24 hours, in the presence or absence of 0.5, 1 and 10 µM GsMTx4 (Piezo1 inhibitor). 

Cells were incubated with 1, 5 and 10 µM Yoda1 (Piezo1 agonist). Piezo1 protein levels were 

quantified by Western blot. Phagocytosis was assessed with fluorescent microbeads. NO 

production was assessed by Griess reaction assay and with the NO-sensitive probe DAF-FM. 

Protein levels of iNOS, TAZ, YAP and p-YAP (S397) were quantified by Western blot. 

This work showed that Piezo1 is expressed in BV-2 cells and the exposure to hEHP, 

leads to a slight increase in the channel expression. Intriguingly, Piezo1 activation showed a 

slight increase in phagocytosis efficiency, while exposure to hEHP showed no alterations in 

phagocytosis efficiency. 

The effect of Piezo1 activation in nitrosative stress showed no alterations in the medium 

nitrite concentration. However, when directly examining the production of NO, revealed that the 

exposure to hEHP significantly increased NO production.  

Piezo1 activation did not affect the total protein levels of TAZ, YAP, and p-YAP (S397). 

Regarding their subcellular location, Piezo1 activation did not affect TAZ nor YAP nuclear and 

cytosolic protein levels, however, it exhibited a tendency to decrease cytoplasmic levels of p-

YAP (S397).  
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Altogether this work showed that Piezo1 is expressed in BV-2 cells and might play a 

role in the reactivity of these microglia cell line once it showed a tendency to enhance 

phagocytosis efficiency and increase NO production with Yoda1 incubation as well as under 

EHP and hEHP, respectively. Piezo1 activation effect showed no significant effects in the YAP, 

TAZ and p-YAP (S397) subcellular location, however, it is required further investigation to 

better understand Piezo1 activation – induced microglia reactivity mechanisms.  

 

Keywords: Microglia; glaucoma; elevated hydrostatic pressure; Piezo1 channel; 

neuroinflammation; Hippo signalling pathway 
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1.1 The eye: anatomy and physiology 

The eye's primary function involves the conversion of incident light into electrical 

signals, which are subsequently transmitted through the optic nerve to the brain (Purves et al., 

2015; Willoughby et al., 2010). It can be divided into two distinct parts, the anterior and the 

posterior segments. In the anterior segment, the outermost layer is the cornea, a transparent 

tissue that acts as a protective cover and refracts excessive light. The iris controls the size of the 

pupil, regulating the amount of light that enters the eye. The lens is a flexible structure that 

adjusts its shape enabling the focus of objects in different planes. The ciliary body, a ring-like 

structure surrounding the lens that produces the aqueous humour, a clear and watery fluid that 

provides support for the eyeball and nutrients to the cornea and lens (Downie et al., 2021; 

Willoughby et al., 2010).  

The posterior segment comprises the vitreous humour that fills the space between the 

lens and the retina, supporting the eye's shape and providing structural integrity (DelMonte & 

Kim, 2011; Gao et al., 2008). The retina is a layer of light-sensitive neuronal cells lined in a 

well-organized structure that is responsible for the conversion of light stimuli into electrical 

signals (Demb & Singer, 2015; la Cour & Ehinger, 2005). The choroid is a vascular layer that 

provides oxygen and nutrients to the outer retinal layers (Willoughby et al., 2010). The 

outermost layer is the sclera, whose main role is to maintain the shape and integrity of the eye 

and helps to keep the eye's intraocular pressure stable (Boote et al., 2020; Watson & Young, 

2004) (Figure 1). 

 

 

 

 

 

 

 

Figure 1 | Anatomy of the human ocular globe. Illustration of the eye structure, including the 

cornea, iris, ciliary body, lens, vitreous humour, retina, sclera, choroid and the optic nerve. 

Adapted from NationalCancerInstituteUS 2021. 
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1.2 The retina: structure and function 

The retina is a tissue located in the posterior part of the eye and just like the brain and 

spinal cord, it is part of the central nervous system (CNS), where its main function is to convert 

light stimuli in the form of photons into neuroelectric impulses so that the brain can process the 

images captured by the eyes (Hoon et al., 2014; Ptito et al., 2021). 

This sensory tissue presents a well-organized structure composed of layers of cell 

bodies, the nuclear layers, intercalated with the plexiform layers, where the retinal cells 

establish synapses. The outermost layer is the retinal pigment epithelium (RPE), a monolayer of 

cuboid and pigmented cells whose main goal is to provide support and pigment production for 

the photoreceptors (rods and cones), as well as the removal of cell debris. Outer and inner 

segments (OS/IS) of photoreceptors connect with the upper part of the RPE. The cell bodies of 

the photoreceptors are located in the outer nuclear layer (ONL) and establish synapses with 

bipolar cells in the outer plexiform layer (OPL). The inner nuclear layer (INL) contains the cell 

bodies of the bipolar, horizontal, and amacrine cells, that form synapses with retinal ganglion 

cells (RGCs) in the inner plexiform layer (IPL). The nuclei of RGCs and displaced amacrine 

cells are located in the ganglion cell layer (GCL). Next is the nerve fibre layer (NFL) composed 

by the RGCs’ axons that form the optic nerve that will transmit the signal to the visual cortex in 

the brain, where the information will be processed (Madeira, Boia, et al., 2015b; Masland, 2001; 

Santiago et al., 2020). 

Alongside neurons, the retina also contains glial cells, endothelial cells, and pericytes. 

Retinal glial cells form a supportive and protective network, establishing complex interactions 

with neurons and blood vessels. There are three main types of glial cells in the retina: Müller 

cells, astrocytes, and microglia (Bringmann et al., 2009; Reichenbach & Bringmann, 2020).  

Müller cells, the most abundant glia in the retina, extend throughout its entire thickness, 

with their cell bodies located at the INL. Astrocytes are predominantly confined to the 

innermost retinal layers, and their cell bodies are mostly restricted to the NFL. Microglia cells 

are the resident immune cells of the retina and are typically found in the inner parts of the retina 

(Fischer et al., 2010; Vecino et al., 2016). 

The retina is a highly active and energy-demanding tissue that requires a substantial 

blood supply for its functions. The primary blood supply is provided by the choroid, which is 

characterized by fenestrated vessels, allowing efficient exchange of oxygen and nutrients (Joyal 

et al., 2018; Purnyn, 2013). The blood vessels are formed by endothelial and surrounded by 

pericytes that provide structural support and regulate blood flow. Another vascular circulation 
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supply is provided by the central retinal artery, located at the centre of the optic nerve 

(Overbeeke, J.J. & Sekhar, N., 2003; Singh Hayreh, 2001). 

This system is associated with a blood-retinal barrier (BRB) formed by a non-

fenestrated network of vessels that maintain tight junctions of the retinal endothelial cells, 

representing the inner BRB. The outer BRB is maintained by tight junctional complexes 

between RPE cells and the barrier formed by Bruch's membrane. BRB function comprises the 

control of the movement of substances between the blood and the retina, ensuring proper retinal 

function and protection (Campbell & Humphries, 2013; Cunha-Vaz et al., 2011; Runkle & 

Antonetti, 2011) (Figure 2). 

 

Figure 2 | Schematic representation of the retinal structure. The neuroretina cells include 

rod/cone photoreceptors, bipolar cells, horizontal cells, amacrine cells and retinal ganglion cells; 

as well as three types of glial cells (Müller cells, astrocytes, and microglia). Retinal layers (from 

the most internal to the outer layers): nerve fibre layer (NFL), ganglion cell layer (GCL), inner 

plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear 

layer (ONL), photoreceptors outer and inner segments (OS/IS), retinal pigment epithelium 

(RPE), choroid (Ch). Image adapted from Zhou & Chen (2023). 
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1.2.1 Retinal neuronal cells  

There are five types of neurons in the retina: photoreceptors (rods and cones), horizontal 

cells, bipolar cells, amacrine cells, and RGCs. Visual information follows two pathways for 

processing and transmission: the vertical pathway (direct pathway) and the horizontal pathway 

(lateral pathway) (Ptito et al., 2021).  

The vertical pathway is a direct and unidirectional transmission of visual information, 

involving a sequential flow of retinal neuronal cells from photoreceptors to bipolar cells, and 

finally to RGCs. The RGCs' axons extend to form the optic nerve, which in turn carries this 

information to the brain for further processing and interpretation (Byzov et al., 1977; Rosso et 

al., 2021). The horizontal pathway involves horizontal and amacrine cells and is responsible for 

lateral interactions, such as lateral inhibition, enhancing visual contrast and sharpness. It 

improves spatial resolution and sensitivity to light and dark contrasts, refining visual 

information before transmitting it to the brain (Masland, 2004). 

1.2.1.1. Photoreceptors  

Photoreceptors are responsible for phototransduction, a process that converts light 

photons into a biological signal, culminating in the release of glutamate at the photoreceptor 

synapse (Mahroo & Duignan, 2022). There are two classes of photoreceptors: rods and cones. 

Rods are characterized by higher light sensitivity and slower kinetics, mainly mediating 

scotopic vision, while cones function under bright light, conveying brightness, colour 

information and visual acuity (Zang & Neuhauss, 2021).  

Rods and cones outer segment (OS) comprise tightly packed membrane discs containing 

visual pigments such as rhodopsin and other proteins involved in phototransduction, while the 

inner segment (IS) contains all the cell organelles (Santo & Conte, 2022). In order to prevent 

metabolic stress caused by continuous exposure to light, the most distal portion of the OS 

undergoes daily shedding by RPE, with the incorporation of newly formed discs (Arendt, 2003).  

1.2.1.2. Horizontal cells  

As part of the horizontal pathway, horizontal cells are GABAergic interneurons that 

receive information from photoreceptors and modulate the signal output, facilitating long- and 

short-range interactions (Schubert et al., 2010). Horizontal cells also offer lateral feedback 

inhibition that maintains the visual system's sensitivity to brightness and supports contrast 

enhancement (Chapot et al., 2017).  

Horizontal cells present dendrites with many clustered terminals that connect 

individually with photoreceptors. Depending on the species, horizontal cells can be subdivided 
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according to its morphology and function (Miller & Peichl, 1993). The most highlighted 

difference relies on the presence or absence of the axon: A-type cells are axon-less contacting 

exclusively with cones through its dendritic trees; B-type cells present axon terminal systems 

that contact exclusively with rods, whereas its dendritic trees contact exclusively with cones 

(Boije et al., 2016; Mangel, 1991).  

1.2.1.3. Bipolar cells  

Bipolar cells act as an intermediary for visual information transmission from 

photoreceptors and horizontal cells to amacrine cells and finally RGCs (Euler et al., 2014). 

Bipolar cells can be categorized as ON or OFF bipolar cells, depending on their response to 

glutamate (Snellman et al., 2008).  

ON bipolar cells depolarize in response to increased light levels, transmitting 

information about the presence of light or brightness. In contrast, OFF bipolar cells 

hyperpolarize when light decreases, conveying information about darkness or the absence of 

light. (Burkhardt, 2011; Puller et al., 2017). 

Bipolar cells can also be distinguished according to the type of photoreceptor they 

interact with: rod bipolar cells receive input from multiple rod photoreceptors, allowing them to 

function well in low-light conditions; cone bipolar cells interact with a smaller number of cone 

photoreceptors and are primarily responsible for processing visual information in brighter light 

conditions and in colour vision (Hildebrand & Fielder, 2011).  

1.2.1.4. Amacrine cells  

Amacrine cells are retinal interneurons located in the INL and are involved in lateral 

interactions within the retina. They lack axons and modulate visual signals by releasing gamma-

aminobutyric acid (GABA) and glycine, both inhibitory neurotransmitters (Johansson et al., 

2010; Masland, 2012).  

These features enable amacrine cells to inhibit the activity of other neurons, enhancing 

visual contrast by adjusting sensitivity to light and adapting the retina to different lighting 

conditions. Displaced amacrine cells in the GCL are also engaged in detecting light contrast and 

movement (Euler et al., 2014; Lechner et al., 2017).  

1.2.1.5. Retinal ganglion cells 

RGCs cell bodies are inserted in the GCL and their axons converge at the optic disc, 

forming the optic nerve. RGCs exhibit diversity with various subtypes, each responding to 

different aspects of visual stimuli such as colour, motion, contrast, or orientation. A notable 

characteristic of RGCs is the partial crossing-over of their axons at the optic chiasm, 
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contributing to binocular vision in forward-facing eyes (Chidlow & Osborne, 2003; Schiller, 

2010).  

Melanopsin-containing RGCs are photosensitive, expressing melanopsin, and are 

involved in circadian rhythm regulation, pupillary light reflex, and sleep (Lax et al., 2019). As a 

neuronal cell type, RGCs have limited regenerative capacity after the establishment of synaptic 

connections shortly after birth, making them susceptible to injuries and contributing to ocular 

pathologies like glaucoma (Boia et al., 2020; Santiago et al., 2014; Schmidt et al., 2011). 

1.2.2. Retinal glial cells 

Glial cells are non-neuronal located within the CNS providing physical and metabolic 

assistance. They aid in neuronal communication, nutrient and oxygen supply, removal of 

neuronal waste and elimination of pathogens. Glia cells in the retina comprise astrocytes, Müller 

cells and microglia (Vecino et al., 2016).  

1.2.2.1. Astrocytes 

Astrocytes are present in the NFL and GCL. These glial cells provide structural support 

to retinal neurons and regulate the exchange of nutrients and waste products between blood 

vessels and neurons. They also contribute to the formation and maintenance of the BRB, 

protecting the retina from harmful substances (Chang et al., 2007; Sofroniew & Vinters, 2010).  

Additionally, astrocytes help to regulate ion balance and neurotransmitter levels, 

modulating synaptic activity. In response to injury, astrocytes become activated and participate 

in glial (Cunha-Vaz et al., 2011; Vecino et al., 2016). 

 1.2.2.2. Müller cells 

Müller cells are the predominant glial cells in the retina, and interact with all types of 

retinal cells, including neurons, contributing to the establishment of retinal architecture during 

development (Bringmann et al., 2006; Coughlin et al., 2017). They serve as a crucial support 

system, maintaining retinal integrity, and are responsible for the metabolic support of retinal 

neurons, regulating the transport of nutrients and molecules. These cells play a vital role in 

maintaining ion and water balance, essential for proper neuronal function and overall retinal 

health, as well as in the establishment of the BRB (J.-J. Wang, 2015).  

Additionally, Müller cells act as protectors by swiftly removing neurotransmitters after 

synaptic transmission, preventing excitotoxicity and maintaining a clear signal-to-noise ratio. 

They produce and secrete neurotrophic factors, growth factors, and cytokines crucial for 

neuronal survival (Reichenbach & Bringmann, 2013). In response to retinal injury or disease, 
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Müller cells can become reactive and contribute to glial scar formation. While this response 

aims to limit damage spread, excessive scarring can negatively impact visual function and 

contribute to the pathogenesis of diseases such as glaucoma (Graca et al., 2018). Müller cells 

possess a unique property called "waveguiding", allowing them to guide light horizontally along 

their elongated processes, which enhances visual sensitivity (Ball et al., 2022; Shabahang et al., 

2018). 

1.2.2.3. Microglia  

Microglia are the resident immune cells of the CNS and play a pivotal role in 

maintaining homeostasis in the brain and in the retina environment. Constantly surveying the 

surrounding microenvironment, microglia act as the first line of defence, rapidly responding to 

any sign of injury, infection, or neurodegeneration (Kim & Joh. 2006; Eyo & Wu, 2013). In a 

quiescent state, phagocytosis, surveillance, and capacity for releasing soluble factors are core 

properties through which microglia contribute to key biological functions for instance 

neurogenesis, synapse remodelling, tissue repair, myelination, and immune defence (Paolicelli 

et al., 2022).  

When the neuronal tissue experiences injury or faces pathological stimuli, microglia 

react, performing phagocytosis and promoting the release of pro-inflammatory molecules, 

cytokines and chemokines, to clear pathogens, remove damaged cells, and initiate tissue repair. 

(Karlstetter et al., 2010; Silverman & Wong, 2018). However, in cases of chronic or 

dysregulated neuroinflammation, reactive microglia can contribute to neurotoxicity and damage 

of the neuronal tissue (Shao et al., 2022) leading to neurodegenerative diseases in the brain, 

Alzheimer’s disease (AD), Parkinson’s disease, amyotrophic lateral sclerosis (H. S. Kwon & 

Koh, 2020) and in the retina, glaucoma (H. L. Zeng & Shi, 2018a) and age-related macular 

degeneration (Guo et al., 2022). 

 

1.3 Microglia in the central nervous system 

1.3.1 Microglia contribution to neuroinflammation 

Neuroinflammation is a complex immune response in the CNS triggered by injury, 

infection, or neurodegenerative disorders. The triggers of neuroinflammation activate the 

immune response within the CNS, leading to the release of pro-inflammatory cytokines, 

chemokines, and reactive oxygen species (ROS) (DiSabato et al., 2016; Williams et al., 2017). 

This immune response can recruit peripheral immune cells to the brain and retina, further 

exacerbating the inflammatory process (Sochocka et al., 2017). Neuroinflammation is a double-
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edged sword with the potential to both protect and harm the CNS, depending on its context and 

duration (Ji et al., 2014; Schwartz & Baruch, 2014). 

Microglia play a crucial role in neuroinflammation. When the CNS faces stress or 

damage, microglia react by undergoing morphologic, transcriptomic and proteomic alteration. 

(Paolicelli et al., 2022) exhibiting a pro-inflammatory response with released molecules, such as 

cytokines, chemokines, reactive oxygen species (ROS) and nitrite oxide (NO) (Long et al., 

2022; Madeira, Boia, et al., 2016; Muzio et al., 2021; Zeng et al., 2023).  

In acute situations, microglia's pro-inflammatory response is beneficial as it helps clear 

pathogens, remove damaged cells, and initiate tissue repair. However, these acute episodes can 

induce microglial priming, a long-lasting memory change, where microglia become more 

sensitive and reactive to subsequent inflammatory triggers. (Lima et al., 2022). During priming, 

microglia experience epigenetic modifications and changes in gene expression, leading to an 

altered immune response with heightened release of pro-inflammatory molecules upon 

encountering a secondary inflammatory stimulus (J.-W. Li et al., 2018; Niraula et al., 2017; 

Perry & Holmes, 2014). Persistent priming can lead to chronic neuroinflammation and 

contribute to the progression of neurodegenerative disorders such as AD, Parkinson's disease, 

and glaucoma (DeMaio et al., 2022; Ramirez et al., 2017).   

1.3.2 Glaucoma 

Glaucoma is an optic neuropathy that represents the leading cause of irreversible 

blindness affecting 57.5 million people worldwide (Allison et al., 2020). It is a chronic 

neurodegenerative disease characterized by the degeneration of RGCs which results in the 

excavation of the optic nerve head interfering with the normal circuit of transmission of visual 

information to the brain (Kang & Tanna, 2021; Pardue & Allen, 2018). Although glaucoma is a 

multifactorial disease, besides factors such as genetics, vascular abnormalities, metabolism or 

immune function, elevated intraocular pressure (IOP) has been described as a major risk factor 

for the disease onset and progression (Safa et al., 2022).  

In most cases, glaucoma manifests as a silent disease that progresses without presenting 

symptoms until a late stage of neuronal damage and visual loss, therefore early interventions are 

essential to slow the progression of the disease (Weinreb et al., 2014). Although there is no cure, 

all current therapeutic approaches seek to reduce IOP through eyedrops, laser or surgery 

(Schuster et al., 2020).  

While the molecular mechanisms that contribute to glaucoma onset and progression are 

yet to be understood, it has been described that elevated IOP exercises a mechanical strain on 

the optic nerve tissue, disrupting axonal transport (Zukerman et al., 2021). However, it is 
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important to better understand these molecular mechanisms in order to find new and more 

effective therapeutic targets. 

1.3.3 Neuroinflammation in glaucoma 

Chronic neuroinflammation has emerged as a critical factor in glaucoma. Among 

glaucoma patients, it has been revealed that the concentration of pro-inflammatory cytokines, 

such as IL-8 (Kuchtey et al., 2010), IL-1β and TNF-α (Baudouin et al., 2021), is elevated, 

supporting the existence of an inflammatory milieu within glaucomatous conditions (Aires & 

Santiago, 2021; Tezel, 2022). Moreover, elevated IOP, one of the major risk factors for 

glaucoma onset and progression, is sufficient to induce reactivity in microglia (Ramírez et al., 

2020).  

In response to elevated IOP and the mechanical strain that it imposes on optic nerve 

fibres, microglia shift from their quiescent to a reactive state characterized by the release of pro-

inflammatory factors and phagocytosis enhancement (Aires et al., 2020; Madeira, Boia, et al., 

2015b; Madeira, Elvas, et al., 2015a). This activation is prominently observed in both the retina 

and, notably, in the optic nerve head, resulting in damage and cellular death of the RGCs, the 

hallmark of glaucoma (Bosco et al., 2011; Howell et al., 2014) 

To study the effect of IOP in microglia-induced neuroinflammation, in vivo and in vitro 

models have emerged as powerful strategies for delving into the complex molecular details of 

glaucoma offering new insights into disease mechanisms and potential therapeutic targets. An 

example of an in vivo model is laser photocoagulation-induced ocular hypertension. (Ortín-

Martínez et al., 2015; Salinas-Navarro et al., 2010), while the most used in vitro model is the 

elevated hydrostatic pressure (EHP) model, which uses a pressure chamber, to elevate pressure 

(Aires et al., 2017, 2019, 2020). 

In our group, it has already been shown that EHP exposure induces cell migration and 

proliferation, increases iNOS expression and enhances phagocytosis efficiency in BV-2 cells 

and in primary retinal microglia (Ferreira-Silva et al., 2020). Moreover, EHP exposure induces 

alterations of microglia morphology, increases pro-inflammatory cytokines (IL-1β and TNF-α) 

release and contributes to RGC death (Madeira, Elvas, et al., 2015). In animal models of 

glaucoma, laser photocoagulation-induced ocular hypertension activates microglia with MHCII 

induction, increases IL-1β and TNF-α and shows retinal and optic nerve RGC death (Madeira, 

Ortin-Martinez, et al., 2016).  
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1.3.4 Hypoxic conditions in microglia-induced glaucoma 

neuroinflammation  

In the context of hypoxic conditions, hypoxia-inducible factor 1-alpha (HIF-1α) 

emerges as a pivotal transcription factor, central to the cellular response towards diminished 

oxygen levels. Activation of HIF-1α regulating cytochrome oxidase subunit expression by 

reducing respiratory capacity in order to reduce ROS production (Fukuda et al. 2007).  

Notably, hypoxia can elicit the activation of microglia, it has been reported to increase 

pro-inflammatory cytokines and chemokines and enhance phagocytosis (X. Wang et al., 2022). 

Prolonged or chronic hypoxia has been associated to microglial priming, contributing to 

neuroinflammation, and potentially implicating it in the pathogenesis of neurodegenerative 

conditions (Kiernan et al., 2020).  

In glaucomatous conditions, mice animal models after ocular hypertension inducion, 

show a hypoxic environment in retinal cells, RGCs, bipolar cells, and amacrine cells but also in 

glial cells, Müller cells and microglia (Jassim et al., 2022). This hypoxic state can be induced by 

IOP which upregulates the expression of HIF-1α observed in the retina and optic nerve head of 

glaucomatous eyes (Tezel G. & Martin B. 2004). Prolonged exposure to hypoxia, has been 

reported to induce RGCs damage contributing to the progression of glaucoma (Jassim & Inman, 

2019). 

1.4 Piezo1 mechanosensitive ionic channel  

In 2010, Coste et al., revealed a novel family of mechanically activated cation channels 

in eukaryotes, the Piezo channels. These channels play important roles in touch sensing, 

pressure, respiration, angiogenesis, and stem cell differentiation (He et al., 2018; Nonomura et 

al., 2017; Yang et al., 2016). Piezo channels are classified into Piezo1 and Piezo2. Typically, 

Piezo 1 is mainly expressed in non-sensory tissues in neurons and in non-neuronal cell types, 

while Piezo2 channels are mainly expressed in the nociceptive system (Jäntti et al., 2022a). 

Piezo1 is expressed in mouse and human microglia (T. Zhu et al., 2023) 

1.4.1 Piezo1 channel structure and activation 

Structural data show that Piezo1 is a trimer with a trilobed topology that can be divided 

into two functional segments, the peripheral mechanotransduction and the central ion 

conduction pore. The peripheral portion encompasses the extracellular distal blades, peripheral 

helices (PHs), anchors within the transmembrane region, and intracellular beams. In contrast, 

the central component includes the C-terminal extracellular domains (CEDs), inner helices (IHs) 
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and outer helices (OHs) within the transmembrane region, and intracellular C-terminal domains 

(CTDs). Additionally, the combination of three CEDs forms an extracellular cap, while the 

intracellular beam links the PHs to the CTD. Within the transmembrane region, several 

transmembrane helical units (THUs) exist, roughly categorized as IHs, OHs, and PHs (De 

Vecchis et al., 2021; Xu et al., 2021) (Figure 3). 

 

Figure 3 | Schematic representation of the Piezo1 channel structure. Piezo1 unit domains in 

three different perspectives: lateral, bottom and top view. C-terminal extracellular domain 

(CED); intracellular C-terminal domain (CTD); inner helix (IH); outer helix (OH); peripheral 

helices (PHs). Image from  Xu et al., (2021). 

 

As a mechanosensitive ion channel, Piezo1 plays a vital role in converting mechanical 

forces, such as tension, pressure, or membrane stretching, into electrical signals within cells. 

When subjected to mechanical forces, Piezo1 undergoes deformation and opens, allowing the 

flow of calcium ions (Ca2+), across the cell membrane (Fang et al., 2021; Yuan et al., 2023a). 

The influx of calcium through Piezo1 channels can trigger a cascade of intracellular events 

leading to changes in gene expression, cell differentiation, and various cellular responses 

(Huang et al., 2023; H. Liu et al., 2022). 
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1.4.2 Piezo1 role in the Hippo signalling pathway 

The Hippo signalling pathway is a signalling pathway that plays a crucial role in 

regulating cell proliferation, tissue growth, and organ size. It is involved in maintaining tissue 

homeostasis and preventing the development of tumours (Boopathy & Hong, 2019; M. Fu et al., 

2022a). One of the key downstream targets of the Hippo signalling pathway is the 

transcriptional coactivator Yes-associated protein (YAP) and its paralog, transcriptional 

coactivator with PDZ-binding motif (TAZ) (Y. Yu et al., 2020; Zhao et al., 2020).  

When the Hippo signalling pathway is active, YAP and TAZ are phosphorylated by 

LATS1/2 kinases. Phosphorylated YAP/TAZ are sequestered in the cytoplasm, preventing them 

from entering the nucleus promoting cell death and inhibiting cell proliferation. However, when 

the Hippo signalling pathway is inactive, YAP and TAZ are dephosphorylated and can 

translocate to the nucleus, where they interact with transcription factors to promote cell growth 

and survival (H. Kwon et al., 2022; Meng et al., 2016; Plouffe et al., 2016) (Figure 4).  

 

 

 

 

 

 

 

Figure 4 | Schematic representation of the Hippo signalling pathway. Activation of 

the Hippo signalling pathway (Left), YAP/TAZ proteins are phosphorylated by multiple 

upstream signals, promoting its cytoplasmic retention and proteolytic degradation. When the 

Hippo signalling pathway is deactivated (Right), YAP/TAZ are not phosphorylated and 

translocate to the nucleus, where they bind to the transcriptional enhanced associate domain 

(TEAD) and regulate genes required for cell proliferation and survival. Image from 

Biorender.com. 
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Piezo1 has been reported to deactivate the Hippo signalling pathway, promoting YAP 

and TAZ translocation to the nucleus inducing cell proliferation and tissue growth (Cobbaut et 

al., 2020; Y. Xiong et al., 2022a). In such conditions, Piezo1-induced YAP translocation to the 

nucleus can lead to uncontrolled cell proliferation and tumour growth, which has been reported 

in cancer cell migration and metastasis in cancers such as ovarian cancer (Y. Xiong et al., 

2022a) cholangiocarcinoma (B. Zhu et al., 2021) and oral squamous cell carcinoma (Hasegawa 

et al., 2021). The interplay between Piezo1 and YAP has also been reported to be involved in 

microglia-induced neuroinflammation in neurodegenerative disorders including AD, where it 

may play a role in neuronal cell death and inflammation (Bruno et al., 2021).  

1.4.3 Pharmacological regulation of the Piezo1 channel 

1.4.3.1 Yoda1 a Piezo1 channel agonist 

Besides mechanical stimuli, Piezo1 exhibits selective activation through Yoda1, a 

synthetic small molecule identified via high-throughput screening (Syeda et al., 2015). Yoda1 is 

recognized for its specific capability to activate the Piezo1 ion channel, as it has no modulatory 

effects on Piezo2 (Wijerathne et al., 2022).  

Electrophysiology evidence has revealed that Yoda1 functions as a gating modifier for 

Piezo1 (Wijerathne et al., 2022). The rapid diffusion of hydrophobic Yoda1 from the solvent to 

the membrane and its binding site from the intracellular side of the membrane induces a twist-

tilt-twist-like opening motion of the Piezo1 arm, reducing the mechanical activation threshold, 

changing the open/close equilibrium toward the open state (Botello-Smith et al., 2019) (Figure 

5).  

Numerous studies have indicated that effective concentrations for inducing a 

mechanical response typically range between 1 to 2 µM. However, at higher concentrations, 

above 10 µM, significant cytotoxicity has been observed in endothelial cells exposed to Yoda1 

for more than 4h (Davies et al., 2019; Syeda et al., 2015). Furthermore, it is worth noting that 

the saturation point occurs at concentrations near 30 µM (Wijerathne et al., 2022). 
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Figure 5 | Mechanism of action for Piezo1 activation through Yoda1. The Piezo1 arm (blue) 

is in a bent position in homeostatic conditions. In the presence of a stimulus that is not strong 

enough to trigger a response, the arm extends slightly because the lipid bilayer becomes flatter 

not sufficient to open the channel. Yoda1 binds between the arm and Repeat A (pink) acting like 

a wedge, separating these two domains. This wedge-like effect eventually results in the opening 

of the channel when sub-threshold stimuli are present. Adapted from (Botello-Smith et al., 

2019). 

 

1.4.3.2 GsMTx4 a Piezo1 channel inhibitor 

GsMTx4, also referred to as Grammostola spatulata mechanotoxin 4, is a small, 

amphipathic peptide toxin derived from the venom of the chilean rose tarantula, Grammostola 

spatulate (Suchyna, 2017; Suchyna et al., 2000). This peptide stands out for its distinctive 

property of selectively inhibiting cation-permeable mechanosensitive channels including Piezo1 

(Bae et al., 2011). Moreover, its inhibition is non-stereospecific, as both its enantiomers (L- and 
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D-form) demonstrate the ability to inhibit mechanosensitive channels (Gnanasambandam et al., 

2017).  

GsMTx4 acts on mechanosensitive channels like Piezo1 through direct interaction with 

the gating elements of the channel, rather than obstructing the actual channel pore. This 

interaction results in the adjustment of local membrane tension by modifying the mechanical 

properties of the surrounding lipid bilayer, thereby enhancing its stiffness. Consequently, this 

binding process restricts the occupation of deeper modes within relaxed bilayers, ultimately 

giving rise to an effect reminiscent of "tension clamping." Furthermore, GsMTx4's impact 

extends to the inhibition of whole-cell Piezo1 currents, primarily achieved through the 

stabilisation of the channel's closed state (Gnanasambandam et al., 2017). 

The effectiveness of GsMTx4 in inhibiting the Piezo1 channel has generated varying 

recommendations from manufacturers and researchers. In the literature it has been reported that 

lower concentrations (500 nM) are sufficient for successful inhibition (H. Li et al., 2019), while 

others advocate for higher concentrations (1-10 μM) to achieve a full response (Miyamoto et al., 

2014).  

1.4.4 Piezo1 channel physiological role 

As a mechanical force-sensing ion channel, Piezo1 is widely distributed across various 

tissues and cell types in the human body, including red blood cells, endothelial cells, sensory 

neurons, and more (Lai et al., 2022). This extensive distribution highlights its crucial role in 

governing various physiological processes, showcasing the intricate link between mechanical 

forces and cellular responses (Qin et al., 2021).  

1.4.4.1 Piezo1 role in the central nervous system 

Piezo1 plays a crucial role in mechanosensation within sensory neurons in the CNS. 

These neurons detect external mechanical stimuli like touch and pressure, and Piezo1 converts 

the mechanical stimulus into electrical signals for processing by the nervous system (H. Liu et 

al., 2022). Additionally, Piezo1 is essential for maintaining neuronal functions, including 

guiding axonal growth and promoting neuronal maturation during processes like axon formation 

and neurogenesis (Song et al., 2019).  

Nonetheless, emerging evidence suggests that Piezo1 activation contributes to the 

pathogenesis of various neurological conditions, including neuropathic pain, 

neuroinflammation, and neurodegenerative disorders (Y. Y. Zhang et al., 2023). As a key 

regulator of neuronal excitability, any disruptions in Piezo1 activity hold the potential to either 

contribute to the initiation of epilepsy or influence the severity of the seizures (Tufail et al., 

Introduction 



 

35 
 

2011). Furthermore, Piezo1 channels located within the endothelial cells lining cerebral blood 

vessels serve as sensors for detecting both shear stress and blood flow and can modulate the 

permeability of the blood-brain barrier (BBB), leading to neuroinflammation (Fels & Kusche-

Vihrog, 2020; Zhou et al., 2014). This is a recurring characteristic observed in numerous 

neurological disorders both in the brain and in the retina (Zong et al., 2023).  

Piezo1 is implicated in MS, where its activation inhibits axon regeneration and 

potentiates demyelination-induced axonal damage, contributing to MS progression (Yang et al., 

2022; Zong et al., 2023). Furthermore, inhibiting Piezo1 has been associated with reduced 

demyelination-induced axonal damage and the application of Yoda1 has been observed to 

induce demyelination (Velasco-Estevez et al., 2020; Yang et al., 2022).  

Recent studies shed light on Piezo1's potential role in the context of AD. The stiffened 

microenvironment induced by the amyloid plaques can hyperactivate the Piezo1 channel 

(Tortorella et al., 2022). As previously discussed Piezo1 activation deactivates the Hippo 

signalling pathway, promoting YAP nuclear translocation. Emerging studies also show that 

YAP-induced gene transcription may have implications for neuroinflammation and 

neurodegeneration in AD (Bruno et al., 2021; Velasco-Estevez et al., 2022).  

In the retina, recent studies suggest Piezo1 as a potential contributor to glaucoma 

progression where elevated IOP is a major risk factor for disease progression, Piezo1 activation 

has been associated with the suppression of RGC neurite outgrowth, hindering their 

regeneration and connectivity, contributing to cell death (Morozumi et al., 2020). Additionally, 

Piezo1 has been linked to optic nerve head astrocyte reactivity (J. Liu, Yang, et al., 2021), 

indicating that Piezo1 plays a role in glaucoma. 

1.4.4.2 Piezo1 channel activation in microglia 

Besides biochemical cues, microglial activity is believed to be influenced by physical 

factors such as tissue stiffness and mechanical forces (Smolders et al., 2019).  In vitro 

experiments have provided evidence that primary microglia can adapt to the stiffness of their 

environment showing a tendency to migrate toward areas characterized by higher stiffness and 

modifying their morphology, and actin cytoskeleton (Bollmann et al., 2015). 

Piezo1 is expressed in murine and human microglia cells as well as in microglia cellular 

lines such as BV-2 This channel functions as a mechanosensor in microglial cell lines and plays 

a regulatory role in both microglial migration patterns and immune responses by modulating the 

pro-inflammatory response (T. Zhu et al., 2023).  
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Few studies have been performed in this field, for instance, Morozumi et al., 2020 

showed that Piezo1 is upregulated in chronic elevated IOP model mouse retina. Additionally, 

enhanced stiffness, mediated by Piezo1, was also associated with increased pro-inflammatory 

cytokine production in microglia primary mouse microglia and BV-2 cells (T. Zhu et al., 2023)  
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Aims 

Glaucoma manifests as RGCs neurodegeneration and optic nerve damage, where 

elevated IOP and advanced age are the principal risk factors. In our group, it has already been 

shown that microglial cells become reactive in EHP conditions and in glaucoma animal models 

with exhibit elevated IOP. However, the precise mechanism linking heightened pressure to 

microglial activation is yet to be elucidated. Our working hypothesis posits that Piezo1 within 

microglial cells are activated in response to increased pressure, thereby initiating a cascade of 

events characterized by calcium influx, ultimately culminating in the acquisition of a reactive 

phenotype by microglia. 

In this work, the mechanisms triggered by Piezo1 activation in microglia when these 

cells are challenged with elevated pressure were studied. For that, this work was divided into 

two main tasks.  

 The first task focused on the effects of elevated pressure on Piezo1 activation and its 

effect on microglia reactivity. In the absence of mechanical stimulus, Yoda1 is able to open 

Piezo1 channels, moreover, the activation of Piezo1 can be inhibited by GsMTx4. Additionally, 

microglia cells were exposed to EHP and hEHP as mechanical stimuli, and microglia reactivity 

was determined. Microglia function was evaluated by assessing phagocytosis efficiency using 

fluorescent microbeads. Furthermore, the impact of Piezo1 activation on NO production was 

assessed through Griess Reaction assay, and by incubating BV-2 cells with the DAF-FM probe. 

Additionally, Western blot analysis was employed to assess the expression of iNOS. 

The goal of the second task goal was to elucidate the molecular mechanisms following 

Piezo1 channel activation. Existing evidence indicates that calcium influx, resulting from 

Piezo1 activation, promotes the nuclear localization of mechanoreactive transcription YAP and 

TAZ. To achieve this, BV-2 cells were exposed to EHP and hEHP either alone or in the presence 

of GsMTx4. Additionally, BV-2 cells were stimulated with Yoda1. TAZ and YAP protein levels 

were assessed by Western blot in total protein lysates and in subcellular fractions.  
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2.1 BV-2 cell line 
 

BV-2 cells, a murine microglia cell line was used. Cells were maintained in T-75 cm2 

culture flasks at a density of 1.5 x 106 cells/cm2 with Roswell Park Memorial Institute (RPMI) 

medium 1640 (cat # 21875-034, Gibco, ThermoFisher Scientific, Paisley, UK) supplemented 

with 10% (v/v) Fetal Bovine Serum (FBS) (cat # 10270-106, Gibco, ThermoFisher Scientific, 

Paisley, UK), 1% (v/v) antibiotic solution of penicillin and streptomycin (cat # 15140-122, 

Gibco, ThermoFisher Scientific, Paisley, UK) and 2 mM L-Glutamine (cat # 25030-081, Gibco, 

ThermoFisher Scientific, Paisley, UK). Cells were kept in a humidified environment of 5% CO2 

at 37°C and cultures were passed when cells reached 80-90% confluence. For experiments, BV-

2 cells were cultured in RPMI supplemented with 2% FBS and 1% (v/v) antibiotic solution of 

penicillin and streptomycin at a density of 1.9×104cells/cm2 in 6-well plates or 1×104cells/cm2 

in 12-well plates. 

 

2.2 Cell treatment 

Cell cultures were maintained on a standard cell incubator or exposed to elevated 

hydrostatic pressure (EHP) using a pressure chamber (with 2% O2 [hEHP] or 20% O2 [EHP]) to 

elevate pressure 70 mmHg above normal atmospheric pressure for 4 or 24 h. Piezo1 

mechanosensitive channel was pharmacologically manipulated by incubating cells with 1, 5 and 

10 μM Yoda1 (cat # 5586, Tocris, Bristol, UK), a Piezo1 agonist for 4 h or with 0.5, 1 and 10 

μM GsMTx4 (cat # ab141871, Abcam, UK), a Piezo1 inhibitor, one hour prior to the exposure 

to EHP. 

 

2.3 Phagocytosis assay  

Phagocytic efficiency in BV-2 cells was assessed by incubating cells with 0.0025% 

fluorescent latex microbeads (cat # L1030, Sigma-Aldrich, St Louis, MO) for 60 minutes prior 

to the end of cell treatment described above, at 37°C in a standard cell incubator or in a pressure 

chamber. In the end, cells were fixed using 4 % paraformaldehyde (PFA) with 4% sucrose at 

room temperature (RT) for 20 minutes. Fixed cells were permeabilized and blocked with a 

solution of 0.2% Triton X-100 (cat # 11869, Merck, Darmstadt, Germany) and 10% BSA (cat # 

A1391, PanReac Química S.L.U., Barcelona, Spain) for 5 minutes and stained with Phalloidin - 

Tetramethylrhodamine B isothiocyanate (1:500; cat # P1951 Sigma-Aldrich, St Louis, USA) a 

label that stains actin filaments in the cytoskeleton and 4',6-Diamidino-2-Phenylindole, 
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Dihydrochloride (DAPI) (1:2000; cat # P1306, Invitrogen, ThermoFisher Scientific, 

Massachusetts, USA) for 30 minutes protected from light. Coverslips were mounted using a 

fluorescence mounting medium (cat # 302380-2, Dako, Santa Clara, USA) and 10 random field 

images for each condition were acquired using an inverted fluorescence microscope (Zeiss Axio 

Observer.Z1 inverted microscope) with a 200x magnification (Plan-Apochromat 20x/0.8). 

Phagocytic efficiency was calculated with the following formula: 

𝑃ℎ𝑎𝑔𝑜𝑐𝑦𝑡𝑜𝑠𝑖𝑠 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =
(1 ∗  b1 + 2 ∗  b2 + 3 ∗  b3 … + n ∗  bn)

Total number of cell
∗ 100 

Where bn represents the number of cells containing b beads (b=1, 2, 3 … up to a maximum 

of 6 points for more than 5 beads per cell) as previously described by our group (Aires et al., 

2019b; Madeira, Boia, et al., 2016b). 

 

2.4  Griess reaction assay 

Griess reaction assay is a colourimetric assay used to assess the nitrite production 

(NO2
−) in the culture medium that detects nitrite by the spontaneous oxidation of nitric oxide 

(NO) (D. Li et al., 2018). NO2
- reacts under acidic conditions with sulfanilic acid to form a 

diazonium cation which subsequently couples to the aromatic amine 1-naphthylamine to 

produce a red-violet coloured, water-soluble azo dye that can be measured using a 

spectrophotometer(Tsikas, 2007). The culture medium was collected and centrifuged at 1000g 

for 5 min at 4°C to remove cell debris and the supernatant was collected. In a 96-well plate, the 

previous centrifuged culture medium was incubated with Griess mixture (1% (v/v) 

sulfanilamide in 5% (v/v) phosphoric acid (H3PO4) and with 0.1% (v/v) N-1-naphtyletilene 

diamine) in a proportion 1:1 for 30 minutes, protected from the light. The optical density was 

measured at 550 nm using a spectrophotometer (Synergy HT; Biotek, Winooski, USA) and 

nitrite concentration was determined by comparison to a 1 mM sodium nitrite standard curve 

(Aires et al., 2019b). 

 

2.5 Nitrite oxide quantification 

NO production was assessed using 4-amino-5-methylamino2’,7’-difluororescein 

diacetate (DAF-FM diacetate) (cat # D23844, Invitrogen, ThermoFisher Scientific, Eugene, 

USA), a non-fluorescent reagent whose amino groups capture NO, de-acetylating the compound 
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to become DAF-FM, producing a green fluorescence that can be detected by fluorescence 

microscopy. 

For this assay, cell medium was collected and stored. Cells were incubated with 8 µM 

DAF-FM-DA in Krebs-Henseleit Ringer Solution (KHR: 140 mM NaCl, 1 mM EDTA, 10 mM 

HEPES, 3 mM KCl, 5 mM glucose, pH 7.4) for 60 minutes before the stimuli at 37°C in a 

humidified atmosphere of 5% CO2. After incubation, the DAF-FM solution was replaced by the 

previously collected medium and cultures were exposed to the described treatments. In the end, 

it was performed cell staining as described above. Coverslips were mounted using glycergel 

(DAKO, Agilent, Santa Clara, CA, US) pre-heat at 56°C. Five images were randomly acquired 

for each condition using a confocal microscope (Zeiss LSM 710 laser-scanning confocal) with a 

630x magnification (Plan-Apochromat 63x/1.4 Oil DIC). 

Fluorescence was analysed using the ImageJ software and measured by means of the 

corrected total cell fluorescence (CTCF), calculated using the formula below as described in 

Madeira et al., 2015. 

CTCF = Integrated density − (Area of selected cell × Mean fluorescence background 

reading) 

 

2.6 Protein extraction 

For total extracts, it was used a lysis buffer aimed for phosphorylated forms (50 mM 

Tris-HCl, pH 8.0; 150 mM NaCl; 1% (v/v) NP-40; 0.5% (v/v) sodium deoxycholate; 0.1% (v/v) 

SDS; 2 mM Na3VO4, 10 mM NaF, and a tablet of protease inhibitors (cOmplete mini, cat # 

11836153001, Merck, Mannheim, Germany). The extracts for Piezo1 protein detection were 

obtained using radioimmunoprecipitation assay buffer (RIPA) (150 mM NaCl; 50 mM Tris-

base; 5 mM EGTA, pH 7.5; 1% (v/v) Triton X-100; 0.5% (v/v) sodium deoxycholate; 0.1% 

(v/v) SDS; 1 mM DTT and protease inhibitors). The culture medium was removed, and cells 

were washed three times with ice-cold PBS, the respective buffers were added, and cells were 

scrapped manually and collected. Samples were sonicated with three pulses of 5s ON 

intercalated with 1s OFF with a 20% amplitude on ice and centrifuged at 3000 g for 10 min at 

4°C. The supernatant was collected and stored at -80°C until further use. 

The culture medium was removed for nuclear and cytosolic extracts, and cells were 

washed twice with ice-cold PBS. A hypertonic buffer (10 mM HEPES, pH 7.9; 10 mM KCl; 0.1 

mM EDTA; 0.4% (v/v) NP-40; 1 mM DTT; 1.5 mM Na3VO4; 50 mM NaF; 1 mM PMSF and 

protease inhibitors) was added for 10 minutes. Cells were scrapped manually, collected, and 
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kept on ice for 30 minutes with vortex each 10 min. Cells were centrifuged at 5690 g for 12 min 

at 4°C and the supernatant corresponding to the cytosolic part was collected and stored at -80°C 

until further use. The pellet was resuspended on a hypotonic buffer (20 mM HEPES, pH 7.9; 0.4 

NaCl; 1 mM EDTA; 10% (v/v) glycerol; 1 mM DTT; 1.5 mM NaVO4; 50 mM NaF; 1 mM 

PMSF and proteases inhibitors) and left on ice for one hour with vortex every 20 minutes. 

Samples were sonicated with three pulses of 1s ON intercalated with 1s OFF at an amplitude of 

20% on ice and centrifuged at 28944 g for 20 min at 4°C. Supernatant corresponding to the 

nuclear fraction was collected and stored at -80°C until further use. 

 

2.7 Protein quantification 

Total extracts and the cytosolic fraction were quantified using the PierceTM BCA Protein 

Assay kit (cat # 23225, ThermoFisher Scientific, Massachusetts, USA) following the 

manufacturer’s instructions and 60 µg or 30 µg of protein from each sample were loaded in the 

gels, for total and cytosolic fractions, respectively.  

For nuclear fraction, samples were quantified using the Bradford reagent prepared by 

dissolving 50 mg of Coomassie Brilliant Blue G-250 in 50 mL of methanol, adding 100 mL 

85% (w/v) phosphoric acid (H3PO4) and filtered. The reagent was stored at 4°C protected from 

light (Bradford, 1976). In a 96-well plate it was added 5 µL of the samples to each well and 250 

µL of Bradford reagent. To promote the reaction the plate was kept on a shaker for 30 seconds 

and incubated 10 min RT protected from light. Absorbance was measured using a 

spectrophotometer at an emission of 595 nm and protein quantification was assessed using a 

standard curve of BSA (1, 0.5, 0.25, 0.125 and 0 mg/mL). 

 

2.8 Western Blot 

Samples were denatured by dilution 1:6 in Sample Buffer 6x (0.35 M Tris-base, 0.4% 

SDS, pH 6.8; 30% Glycerol; 10% SDS; 0.012% Bromophenol blue) and then heated at 95°C for 

5 minutes and separated in acrylamide gel (8%) by electrophoresis for approximately 1 hour at 

an initial voltage of 60 V for stacking separation and 140 V for resolving separation in an 

electrophoresis buffer (25 mM Tris-base; 190 mM Glycine; 0.1% (v/v) SDS; pH 8.8). Proteins 

were transferred to nitrocellulose membranes or polyvinylidene fluoride (PVDF) specifically for 

Piezo1 by wet transference at 4°C for 2 hours and 30 minutes at 70 V.  
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Before blockage, membranes were incubated for 5 minutes with Ponceau Staining (cat # 

P7170, Sigma, St. Louis, USA), washed with deionised water to remove the excess of the 

solution and revealed using a ChemiDoc MP Imaging System. Membranes were blocked in 5% 

BSA in TBS-T (Tris-base saline with 0.05% Tween-20) for phosphorylated proteins or 5% non-

fat milk in TBS-T for non-phosphorylated. The incubation of the primary antibodies (Table 1) 

occurred overnight at 4°C and the secondary antibody (goat anti-rabbit IgG (H+L)-HRP 

conjugated; 1:10000 in 5% BSA/TBS-T, cat # 170-6515, Bio-Rad, California, USA) took place 

on the day after for 1 hour, followed by the revelation in ImageQuant LAS 500 

chemiluminescence CCD camera using Western Bright Sirius HRP substrate (cat # K12043, 

Advansta, San Jose, USA) in a proportion 1:1.  

Quantification was performed using ImageLab program version 6.1 and assessed the 

adjusted volume of each band of the sample. Normalization was valued by the sample volume 

ratio to the total protein volume of each lane using Ponceau Staining.  

Table 1 | Western Blot primary antibodies. 

Primary antibody Host Dilution 
Catalogue 

number 
Supplier 

Anti-Piezo1 Rabbit 1:600 cat # PA5-77617 Invitrogen 

Anti-TAZ Rabbit 1:1000 cat # 4883 Cell Signaling 

Anti-iNOS Rabbit 1:500 cat # SC650 Santa Cruz 

Anti-YAP Rabbit 1:1000 cat # 4912 Cell Signaling 

Anti-pYAP (S397) Rabbit 1:1000 cat # 13619 Cell Signaling 

 

2.9 Statistical analysis 

The results are presented as mean ± standard error of the mean (SEM). The data were analysed 

firstly using the Shapiro-Wilk test to assess the normality of the sample distribution. In case of 

normal distribution, it was used one-way analysis of variance (ANOVA), followed by Sidak's 

multiple comparisons test.  For non-normal distribution, it was performed a Kruskal-Wallis test 

followed by Dunn’s multiple comparison test. Statistical analysis was performed in Prism 5.0 

Software (GraphPad Software) and p values less than 0.05 were taken as significant. 
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3.1 Effect of EHP on the protein levels of Piezo1 in BV-2 cells 

It has been recently described that the Piezo1 channel is expressed in microglia as well 

as in BV-2 cells (T. Zhu et al., 2023). Thus, BV-2 cells were challenged with hEHP for 4h or 

24h and protein levels of Piezo1 were assessed by Western blot (Figure 6). 

 

 

 

 

 

 

 

 

 

Figure 6 | Effect of EHP on the protein levels of Piezo1 in BV-2 cells. BV-2 cells were 

exposed to hEHP (2% O2) for 4 and 24h. Piezo1 protein levels were assessed by Western Blot. 

Results are expressed as mean ± SEM in percentage of the control and were obtained from 4 

independent experiments. 

The exposure of BV-2 cells to hEHP during 4h and 24h, slightly increased the Piezo1 

protein levels to 314±145% and 321±180% of control, respectively.  

 

3.2 Effect of Piezo1 activation in the phagocytic activity of 

BV-2 cells 

Phagocytosis is one of the main features of microglia activation, to remove cell debris 

prior to cell regeneration, and altered phagocytosis can be involved in the pathogenesis of 

several CNS dysfunctions (R. Fu et al., 2014). Thus, phagocytic activity of BV-2 cells was 

assessed by analysing the incorporation of fluorescent latex microbeads (Figure 7).  
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Figure 7 | Effect of Piezo1 activation in the phagocytic activity of BV-2 cells. BV-2 cells 

were incubated with Yoda1 (1 µM, 5 µM and 10 µM) or exposed to hEHP (2% O2) or EHP 

(20% O2) during 24h in the presence or absence of GsMTx4 (500 nM, 1 µM and 10 µM). 

Phagocytosis was assessed after incubating cells with fluorescent microbeads (green). 

Cytoskeleton was labelled with phalloidin-TRITC (red) and nuclei were stained with DAPI 

(blue). Cells were visualized in a Zeiss fluorescence microscope with an objective of 20x. Scale 

200 µm. (A) Representative images for each condition and respective (B) Phagocytic activity 

determined using the formula indicated in the Materials and Methods section, after acquiring 10 

images per condition. Results are presented as mean ± SEM and were obtained from 4-6 

independent experiments.  

 

To evaluate the effect of Piezo1 activation in phagocytic activity, BV-2 cells were 

exposed to the channel agonist (Yoda1 at 1, 5 and 10 M). Moreover, BV-2 cells were 

challenged with hEHP (2% O2) and EHP (20% O2) for 24h in the presence or absence of the 

Piezo1 inhibitor (GsmTx4 at 500 nM, 1 and 10 M).  

Figure 7B shows that when BV-2 cells were incubated with Yoda1 10 µM, there was a 

slightly increased phagocytic efficiency to 68±11% when compared to the control (44±5%). 

Exposure to hEHP did not change the phagocytic efficiency (49±7%) compared to control 

conditions. Interestingly, pre-treatment with GsMTx4 (500 nM and 1 µM) in cells exposed to 

hEHP for 24h tended to increase the phagocytic efficiency to 72±18% and 62±14%, 

respectively, however, the incubation with GsMTx4 1 µM showed no alterations (49±13%) in 

comparison to the control.  
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Regarding Figure 7D, Yoda1 incubation showed a slight increase in phagocytosis 

efficiency in a concentration of 5 µM (22±4%) when compared to control conditions (13±1). 

The exposure to 24h of EHP also showed a slight increase in phagocytosis efficiency (26±5% of 

the control). Pre-incubation incubation with GsMTx4 1 µM in cells exposed to 24h EHP 

showed a slight decrease (18±4% of control) when compared to EHP. At concentrations of 500 

nM and 10 µM, GsMTx4 incubation showed a slight increase in phagocytosis efficiency when 

compared to control conditions (22±5% and 22±1%, respectively). 

 

3.3 Effect of Piezo1 activation in nitrative stress 

Microglia activation contributes to oxidative and nitrative stress (Cobb & Cole, 2015). 

To study the effect of Piezo1 activation in nitrative stress, BV-2 cells were incubated with the 

channel agonist (Yoda1 at 10 µM). Furthermore, BV-2 cells were exposed to hEHP (2% O2) for 

4h or 24h with or without Piezo1 inhibitor (GsMTx4 at 1 µM). Thus, nitrite concentration was 

evaluated by the Griess reaction assay (Figure 8), as an indirect method to determine NO 

production, which was also evaluated by fluorescence microscopy using the DAF-FM probe 

(Figure 9). The iNOS protein levels were evaluated by Western blot (Figure 10).  

At a cellular level, nitrate (NO3
-), nitrite (NO2

-) and nitric oxide (NO) exist in an 

equilibrium of oxidation/reduction reactions (Falls et al., 2017). When the state of equilibrium is 

disrupted, it gives rise to the generation of peroxynitrite (ONOO-), a profoundly toxic reactive 

species capable of inducing lipid peroxidation and causing oxidative damage to proteins (Iizumi 

et al., 2016). The production of NO2
- was quantified using the Griess reaction in the cell 

supernatant (Figure 8).  
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Figure 8 | Effect of Piezo1 activation in the nitrite concentration. BV-2 cells were incubated 

with 10 µM Yoda1 or exposed to hEHP (2% O2) for 4h and 24h, in the presence or absence of 1 

µM GsMTx4. Nitrite levels were determined in the culture medium supernatant using the Griess 

reaction method. The results are presented as mean ± SEM in percentage of control and were 

obtained from 3-5 independent experiments. 

BV-2 cells incubated with Piezo1 agonist (Yoda1 at 10 µM) showed a slight decrease in 

nitrite concentration to 70±16% of the control. When BV-2 cells were exposed to hEHP for 4h 

and 24h no significant alterations were detected in nitrite concentration (86±20% and 94±20% 

of control, respectively). Additionally, pre-treatment with 1µM GsMTx4 did not show 

alterations (82±14% and 83±13%, respectively). 

A more direct and accurate method to quantify NO production is by using the probe 

DAF-FM a probe that when in contact with NO forms a fluorescent benzotriazole (Nasuno et 

al., 2020), (Sheng et al., 2005). BV-2 cells were incubated with DAF-FM for 1h prior to 

exposure to the described treatments and its green fluorescence was measured by means of the 

corrected total cell fluorescence (CTCF) (Figure 9).  

 

 

 

Results 

Results 



 

54 
 

 

 

Figure 9 | Effect of Piezo1 activation in the production of NO. BV-2 cells were incubated 

with the NO-sensitive probe DAF-FM-DA (green) one hour prior to the incubation with 10 µM 

Yoda1 or exposure to hEHP (2% O2) for 4 and 24h in the presence and absence of 1 µM 

GsMTx4. Nuclei were stained with DAPI (blue) and cytoskeleton with phalloidin-TRITC (red). 

The preparations were visualised using a Zeiss LSM 710 confocal microscope with an oil 

objective of 63x and were acquired 5 images per condition. Scale 10 µm. (A) Representative 

images for 4h exposure to hEHP from 3 independent experiments are depicted and (B) its 

respective calculated CTCF. (C) Representative images for 24h of hEHP exposure and (D) its 

respective calculated CTCF, n=4, p<0.05 one-way ANOVA followed by Sidak’s multiple 

comparisons test. 

The incubation with Yoda1 10 µM showed no significant alterations in DAF-FM CTCF 

measurement (7720±2035) when compared to control conditions (6664±1906). The exposure to 

hEHP did not reveal alterations in NO-induced fluorescence in CTCF when compared to the 

control (8926±2959). Pre-incubation with GsMTx4 1 µM in cells exposed to 4h hEHP revealed 

no significant alterations in NO-induced fluorescence in CTCF when compared to control 

conditions (9340±3287) (Figure 9 B). 

The graph presented in Figure 9 D, shows that the incubation of BV-2 cells with Yoda1 

10 µM slightly increased the NO-induced fluorescence in CTCF to 12353±1560 when 

compared to control conditions (7653±1472). The exposure to hEHP for 24h significantly 

increased the NO-induced fluorescence in CTCF to 17934±2826% (p<0.05) when compared to 

the control. The pre-treatment with GsMTx4 (1 µM) in cells exposed to 24h of hEHP slightly 

decreased NO-induced fluorescence in CTCF (12629±2194% of control) when compared to 24h 

hEHP.  
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NO is synthesised by NO synthases (NOS). Although there are three isotypes of these 

enzymes, the inducible isoform of NOS (iNOS) is expressed in microglia and is known to 

contribute to the response of microglia upon injury (Sierra et al., 2014). To study the effect of 

Piezo1 activation on iNOS protein levels, BV-2 cells were exposed to the mentioned treatments 

and the total protein content was collected and assessed by western blot (Figure 10). 

 

 

 

 

 

 

 

 

 

Figure 10 | Effect of Piezo1 activation in the protein levels of iNOS. BV-2 cells were 

incubated with 10 µM Yoda1 or exposed to hEHP (2% O2) for 4 and 24h with and without 1 

µM GsMTx4. iNOS protein levels were assessed using Western Blot. Results are presented as 

mean ± SEM and are expressed in percentage of the control, from 4 independent experiments.  

No alterations were observed in iNOS protein levels when BV-2 cells were incubated 

with Yoda1 (10 µM) (170±97% of control) compared with the control. In cells exposed to hEHP 

for 4h, iNOS protein levels were 823±547% of control. The pre-treatment with 1 µM GsMTx4 

showed a tendency to decrease iNOS protein levels (60±17% of control) when compared to 4h 

hEHP (p=0.09). After 24h exposure to hEHP, there seems to be a high increase in iNOS protein 

expression to 3400±2595% when compared to control conditions, however, statistically non-

significant. The pre-treatment with GsMtx4 1 µM slightly increased iNOS protein levels to 

1023±479% of control. 
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3.4 Effect of EHP and Piezo1 activation in the protein levels of 

TAZ, YAP and p-YAP (S397) 

The activation and translocation of mechanosensory protein YAP and its homologous 

protein TAZ to the nucleus are critical steps in their role as transcriptional coactivators, and they 

are tightly controlled by the Hippo signalling pathway that controls its cellular location (M. Fu 

et al., 2022b). Furthermore, emerging evidence indicates that Piezo1 deactivates the Hippo/YAP 

signalling pathway, promoting YAP and TAZ translocation to the nucleus. (B. Zhu et al., 2021) 

To assess the effect of Piezo1 activation in the expression of TAZ and YAP proteins, as 

well as the phosphorylated form of YAP, p-YAP (S397), BV-2 cells were incubated with the 

channel agonist (Yoda1 at 10 µM). BV-2 cells were also exposed to hEHP (2% O2) for 4h or 24h 

with or without Piezo1 inhibitor (GsMTx4 at 1 µM). Afterwards, the protein content was 

isolated and evaluated by western blot (Figure 11).  
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Figure 11 | Effect of EHP and Piezo1 activation in the protein levels of TAZ, YAP and p-

YAP (S397). BV-2 cells were incubated with 10 µM Yoda1 or exposed to hEHP for 4 and 24h in 

the presence or absence of 1 µM GsMTx4. The total protein levels of (A) TAZ, (B) YAP, and 

(C) p-YAP (S397) were assessed by Western Blot. Results are presented as mean ± SEM and are 

expressed in percentage of the control and were obtained from 3 (A), 2 (B), and 4 (C) 

independent experiments.  

Regarding TAZ total protein levels (Figure 11 A) there are no alterations when BV-2 

cells were incubated with Yoda1 10 µM (94±26% of control). The same was observed for BV-2 

cells exposed to hEHP for 4h or 24h (110±7% and 96±34%, respectively) and pre-treatment 

with GsMTx4 had no effect on TAZ protein levels in cells exposed to hEHP for 4h or 24h 

(123±40% and 103±4%, respectively). 

In YAP total protein levels (Figure 11 B), the incubation of BV-2 cells with Yoda1 10 

µM showed a decrease in YAP protein levels to 11±11% of control although not statistically 

significant. There was a slight decrease in the total protein levels in BV-2 cells exposed to hEHP 

for 4h or 24h (38.5±26.5% and 42±29%, respectively). Although non-significant, the pre-

treatment with GsMTx4 in cells exposed to hEHP for 24h decreased YAP total protein levels 

(26±3%) in comparison to control conditions. 

For p-YAP (S397) (Figure 11 C), there were no significant alterations in the total protein 

levels after Yoda1 10 µM incubation (88±15% of control) when compared to control conditions. 

The exposure of BV-2 cells to hEHP for 4h or 24h also showed no alterations (124±28% and 

99±27%, respectively) and the pre-treatment with GsMTx4 1 µM did not affect p-YAP(S397) 

total protein levels (81±3% and 82±30%, respectively). 

Considering that it is necessary that the YAP/TAZ complex translocate to the nucleus to 

promote gene transcription, after assessing the protein levels in all cellular content we assessed 

both nuclear and cytosolic fractions of each protein (Figure 12). 

No alterations were observed in nuclear TAZ protein levels when BV-2 cells were 

incubated with Yoda1 10 µM (115±20% of control). The exposure to EHP (20% O2) for 4h or 

24h also showed no differences in TAZ nuclear protein levels (114±21% and 115±25%, 

respectively), which did not change with the pre-treatment with GsmTx4 1 µM (99±20% and 

105±16%, respectively) (Figure 12A). 
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Figure 12 | Effect of EHP and Piezo1 activation in the protein levels of TAZ, YAP, and p-

YAP (S397) in the cytosolic and nuclear fraction of BV-2 cells. BV-2 cells were incubated 

with 10 µM Yoda1 or exposed to EHP for 4 and 24h in the presence or absence of 1 µM 

GsMTx4. The protein levels in the nuclear and cytosolic fractions of TAZ (A and B), YAP (C 

and D), and p-YAP (S397) (E and F) were assessed by Western Blot. Results are expressed as 

mean ± SEM in percentage of the control and were obtained from 2-4 independent experiments. 

Regarding the cytosolic fraction of TAZ (Figure 12 B), the incubation with Yoda1 10 

µM had no effect on TAZ cytosolic protein levels (110±7%) when compared to control 

conditions (100%). BV-2 cells exposed to 4h of EHP showed a slight increase to 143±16% of 

control, an effect that was diminished by the pre-treatment with GsMTx4 1 µM (86±21%), 

although not statistically significant. The exposure to EHP for 24h in the absence and presence 

of GsMTx4 1 µM had no alterations on TAZ cytosolic protein levels (76±21% and 77±14%, 

respectively). 

For YAP nuclear protein levels (Figure 12 C), no alterations were observed when BV-2 

cells were incubated with Yoda1 10 µM (124±12% of control). The exposure to EHP for 4h 

slightly increased protein levels to 155±15%, an effect that had no alterations with the pre-

treatment with GsMTx4 1 µM (133±21%). The exposure to 24h of EHP slightly did not affect 

nuclear protein levels of YAP (137±13%), and the pre-treatment with GsMTx4 1 µM showed a 

slight increase to 166±32% when compared to the control.  

For YAP cytosolic fraction (Figure 12 D), incubation with Yoda1 10 µM had no 

alterations in protein levels (85±17%) when compared to control conditions. The same was 

observed for BV-2 cells exposed to EHP for 4h or 24h (113±55% and 83±39%, respectively), an 

effect that had no alterations with the pre-treatment with GsMTx4 1 µM (83±53% and 

113±30%, respectively). 

For p-YAP (S397) nuclear protein levels (Figure 12 E) there was a slight decrease when 

cells were incubated with Yoda1 10 µM to 55±8% of control. The exposure to EHP for 4h did 

not affect p-YAP (S397) nuclear protein levels (71±18%), however, 24h exposure to EHP 

showed a decrease (68±14%) when compared to control conditions, although not statistically 

significant. Pre-treatment with GsMTx4 1 µM in cells exposed to 4h or 24h of EHP had no 

effect on p-YAP (S397) nuclear protein levels (68±14% and 76±14%, respectively). 

Regarding p-YAP (S397) cytosolic fraction (Figure 12 F), Yoda1 10 µM incubation had 

no effect on the protein levels (90±12%) when compared to control conditions (100%). 

Exposure to EHP for 4h did not alter the protein levels (127±44%), however, pre-treatment with 

GsMTx4 1 µM slightly increased cytosolic protein levels to 182±77% of control. The exposure 
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for 24h to EHP did not change the cytosolic protein levels of p-YAP(S397) (145±60%) when 

compared to the control, an effect that had no alteration with the pre-treatment with GsMTx4 1 

µM (114±35%). 
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In glaucoma, a neurodegenerative disease characterized by RGC loss and optic nerve 

damage, microglia are central contributors to neuroinflammation (H. L. Zeng & Shi, 2018b). In 

response to injury such as elevated IOP or ischemia, microglia release proinflammatory 

mediators, driving a neuroinflammatory cascade (Fernández-Albarral et al., 2022). While 

initially mobilized as neuroprotective agents to clear debris and promote repair, sustained 

activation can lead to a shift towards a neurotoxic phenotype, exacerbating retinal damage and 

neuronal loss (J. Liu, Liu, et al., 2021). In the retina, the receptor in microglia that responds to 

conditions of ocular hypertension that might be responsible for triggering the inflammatory 

phenotype remains elusive. In our hypothesis, we postulated that the mechanosensitive ion 

channel Piezo1 is involved in the process by which microglial cells detect mechanical pressure, 

subsequently triggering mechanotransduction and inducing inflammation (Tang et al., 2023). In 

this work, we studied the contribution of the Piezo1 mechanosensitive channel in elevated 

pressure-induced microglia reactivity. 

In the realm of glaucoma research, EHP models are used to mimic conditions of 

elevated IOP, enabling the possibility to study the cellular and molecular mechanisms that may 

contribute to disease onset and progression (Aires et al., 2017). In our group, several studies 

have been conducted using BV-2 cells showing that exposure to EHP is sufficient to induce 

microglia reactivity (Madeira, Elvas, et al., 2015a) with an enhancement of motility, migration, 

phagocytic activity, and proliferation (Ferreira-Silva et al., 2020). Moreover, microglia cells 

release extracellular vesicles when exposed to EHP, showing that BV-2 cells detect pressure 

changes (Aires et al., 2020). 

Oxygen homeostasis is vital for mammalian health, with disruptions in oxygen 

availability, known as hypoxia, impacting cellular behaviour, and triggering various 

physiological responses (Samanta et al., 2017). Additionally, hypoxia-induced microglia 

reactivity promotes neuroinflammation in the developing brain and the retina (Kaur et al., 

2013). In response to oxygen deprivation, a critical cellular event occurs through the 

stabilization and activation of HIF-1α. HIF-1α operates as a transcription factor capable of 

exerting a direct influence on microglial reactivity, by promoting the transcription of pro-

inflammatory genes, including cytokines and chemokines (Hashimoto et al., 2023; Palazon et 

al., 2014). It has also been reported that IOP promotes a hypoxic environment that induces 

RGCs damage contributing to the progression of glaucoma (Jassim & Inman, 2019) 

In the first part of the current work, the effect of hEHP in BV-2 cells was studied. The 

exposure to hEHP showed a slight increase in the protein levels of Piezo1 in BV-2 cells. It has 

been reported that the Piezo1 channel is upregulated under pressure conditions in lung 

endothelial cells in animal models of pulmonary hypertension (Ziyi Wang et al., 2021) and in 
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mice cardiomyocytes (Z.-Y. Yu et al., 2022). Moreover, low oxygen levels potentially mediate 

Piezo1 upregulation as reported in some cell types and tissues, such as endothelial cells (Z. 

Wang et al., 2021) and lung epithelial cells (H. Xiong et al., 2022). A possible mechanism might 

be through HIF-1α activation in response to hypoxia that binds directly to hypoxia-response 

elements within the promoter region of target genes (Yfantis et al., 2023), which might include 

Piezo1, however, no information has been reported in the literature so far. 

Phagocytosis is the process by which microglia engulf and remove dead cells, debris, 

and potentially harmful substances, contributing to the maintenance of neuronal tissue 

homeostasis (Galloway et al., 2019; Ha et al., 2021). Piezo1 activation did not significantly alter 

phagocytosis efficiency. Nevertheless, the effect of Yoda1 in phagocytosis seems to be 

concentration-dependent, and we can speculate that higher concentrations or incubation time 

could result in a significant effect. Piezo1 activation enhances phagocytosis efficiency in murine 

microglia cells in AD (Jäntti et al., 2022b). The exposure to hEHP did not affect phagocytosis 

efficiency. Hypoxia exposure is also reported to also enhance phagocytosis in RAW264.7 cells, 

a macrophage-like cell line and in primary peritoneal macrophages demonstrating that hypoxia-

induced overexpression of HIF-1α is sufficient to lead to an increase in phagocytosis (Anand et 

al., 2007). It has been also reported that the phagocytosis activity of pulmonary macrophages is 

impaired in intracellular hyperoxic conditions (Patel et al., 2016). Hypoxia disrupts the efficient 

flow of electrons through the mitochondrial electron transport chain. This inefficiency occurs 

because oxygen, the terminal electron acceptor, becomes less accessible, consequently 

generating ROS within the cell. Therefore, despite the external oxygen deficiency, this ROS 

accumulation creates an intracellular hyperoxic condition (Kung-Chun Chiu et al., 2019). 

Piezo1 activation is also reported to increase ROS in cells such as cardiomyocytes (Yuan et al., 

2023b) and in macrophages (Atcha, Jairaman, et al., 2021b). Taking this into consideration, our 

results showing no alterations in phagocytosis efficiency when cells were exposed to hEHP 

might indicate that Piezo1 activation in conditions of hypoxia leads to an exacerbated ROS 

production, creating an intracellular hyperoxic environment that impairs phagocytosis 

efficiency. 

When evaluating the impact of EHP on phagocytosis efficiency, our findings exhibited a 

tendency to increase phagocytosis efficiency when compared with control, according to 

previous findings (Aires et al., 2019c). Yoda1 slightly increased phagocytosis efficiency while 

Piezo1 inhibition with pre-incubation of 1 µM GsMTx4 attenuated the EHP effect on 

phagocytosis efficiency. Even though GsMTx4 can inhibit Piezo1 opening, it is not Piezo1 

specific and might be acting in other mechanosensitive channels, not fully inhibiting Piezo1, 

this might suggest that Piezo1 might play a role in modulating microglia phagocytosis. Taking 
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into consideration, these results might suggest that Piezo1 activation enhances phagocytosis 

efficiency in BV-2 cells while prolonged low levels of oxygen under EHP conditions might 

impair it. Nevertheless, additional research is necessary to draw comprehensive conclusions. 

Microglia-induced nitrosative stress assumes a pivotal role in the intricate pathogenesis 

of glaucoma, wherein the intricate orchestration of NO extends its influence on the regulation of 

blood flow within the optic nerve head and the modulation of intraocular pressure (Schmidl et 

al., 2013). Dysregulation of NO production and signalling pathways can incite vascular 

dysfunction culminating in the dysfunction and damage in RGCs (Garhöfer & Schmetterer, 

2019; Wareham et al., 2018). To explore the effect of Piezo1 activation in nitrosative stress NO 

production was assessed by the Griess reaction assay, an indirect method that measures the 

concentrations of nitrites in the culture medium. No alterations were observed in the nitrite 

concentration, which might be due to the fact that the Griess reaction assay is relatively 

sensitive but might not be suitable for detecting low levels of NO production (Csonka et al., 

2015; Hunter et al., 2013). When assessing NO production directly with the DAF-FM probe, our 

results showed that Piezo1 activation for 4 h had no effect on NO production even in cells 

exposed to hEHP, while 24h exposure increased NO production. According to the literature, 

Piezo1 activation enhances NO production in red blood cells (Kuck et al., 2022) and endothelial 

cells (Lhomme et al., 2019). The same is reported for macrophages (Jackson et al., 2007) in 

hypoxic conditions. Both stimuli, Piezo1 activation and hypoxia exposure have been reported to 

have a time-dependent component. Regarding Piezo1 activation, (Swain & Liddle, 2021) 

showed in a smaller time scale (5s - 1 min) that prolonged Yoda1 incubation (1 min) induces a 

higher NO production. NO production has also been reported to be a calcium-dependent process 

(Kuck et al., 2022). Considering that Yoda1 leads to a partial opening of the channel, limiting 

the extent of Ca2+ influx, and given that alterations in intracellular Ca2+ levels are known to 

impact NO production in endothelial cells (Silva & Ballejo, 2019) and in astrocytes (Nianzhen 

Li et al., 2003), our findings imply that the Ca2+ influx triggered by Yoda1 may elicit a slight 

increase in NO production, falling short of achieving full channel activation. Hypoxia-induced 

NO production is time-dependent. Min et al., (2006) showed that hypoxia (1% O2) increases 

HIF-1α expression and NO production with a maximum effect after 24h exposure in bovine 

aortic endothelial cells, explaining the lack of significant alteration when exposed to hEHP for 

4h. Moreover, with these results, it is not possible to conclude whether this effect was due to 

Piezo1 activation, hypoxia exposure or even a cumulative effect of the two factors, however, the 

slight decrease of NO production with the pre-incubation with GsMTx4 might suggest a 

predominant role of Piezo1. 
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Upregulation in iNOS expression has been correlated with an increase in NO 

production, evident both within a hypoxic milieu (Stachon et al., 2020; Thompson et al., 2009) 

and also following Piezo1 channel activation (Cai et al., 2023; X. Zhang et al., 2022). iNOS 

protein levels slightly increased when cells were exposed to hEHP for 4h, but the increase was 

higher after 24 h exposure, suggesting the possibility of time-dependent effect. Furthermore, the 

slight decrease in iNOS expression following a 24 h exposure to hEHP after pre-incubation with 

the channel inhibitor GsMTx4 in comparison to the respective hEHP conditions might suggest 

that Piezo1 activation might enhance iNOS expression, however, the slight increase when 

compared to the control might suggest a cumulative effect of hypoxia in the upregulation of 

iNOS. 

Piezo1 has been described to influence YAP and TAZ subcellular localization through 

modulation of the Hippo signalling pathway (B. Zhu et al., 2021). Upon Piezo1 activation, the 

Hippo signalling pathway is deactivated consequently promoting the nuclear translocation of 

YAP and TAZ. Within the nucleus, YAP and TAZ engage in gene transcription processes (M. Fu 

et al., 2022; R. Liu & Persson, 2004). Regarding the Hippo signalling pathway elements, our 

results showed that Piezo1 activation demonstrates no significant impact on the total levels of 

TAZ. In hypoxia, the activation of hypoxia-inducible factors (HIFs) also deactivates the Hippo 

signalling pathway, promoting the nuclear translocation of YAP and TAZ, and enhancing their 

transcriptional activities in cancer cell lines (Ma et al., 2015). When assessing TAZ, YAP and p-

YAP (S397) total protein levels, our results revealed only a slight decrease in YAP total protein 

levels. Yan et al., (2014b) showed that hypoxia (1% O2 for 24 h) reduces YAP total protein 

levels in ovarian cancer cell lines, however, it is also reported a reduction in p-YAP total protein 

levels and a modest increase of total TAZ. Regarding the effect of Piezo1 activation, Y. Xiong et 

al., (2022) showed that in ovarian cancer cell lines YAP total protein levels after incubation with 

Yoda1 (50 μM) showed no alterations in total protein levels, while p-YAP total protein levels 

showed a decrease. To have a better understanding of Piezo1’s effect on TAZ, YAP and p-YAP 

(S397) total protein levels, further experiments must be performed using EHP as a mechanical 

stimulus in normoxic conditions. 

When examining the subcellular distribution at both nuclear and cytosolic levels, Piezo1 

activation had no effect on either TAZ or YAP protein levels. According to the literature, 

incubation with 50 μM Yoda1 has no effect on YAP cytosolic protein levels in A-1847 and 3AO 

cells, cellular lines of ovarian cancer, showing an increase in its nuclear localization (Y. Xiong 

et al., 2022b), which was not evident in our results. This disparity could be attributed to the 

limited number of repetitions, fostering heightened variability. The lack of changes in YAP's 

cytoplasmic levels could potentially be attributed to the documented direct impact of Piezo1 
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activation on the Hippo signalling pathway's upstream regulation of YAP, particularly targeting 

LATS1 (Y. Xiong et al., 2022b). This kinase is responsible for YAP/TAZ phosphorylation and 

retention in the cytoplasm when Hippo signalling pathway is activated, it has been reported that 

phosphorylation of LATS1 may be inhibited by intracellular calcium (Wei & Li, 2021). Our 

analysis of p-YAP (S397), an inactive YAP form, indicates a minor reduction in nuclear and a 

slight decrease in cytosolic levels upon Piezo1 activation. These align with existing literature 

that suggests Piezo1 activation suppresses the Hippo signalling pathway, thereby retaining 

YAP’s phosphorylated form in the cytoplasm for further degradation (B. Zhu et al., 2021). 

However, the absence of statistical significance underscores these findings. 

Taken together, our results show that Piezo1 might be upregulated in hEHP conditions 

and its activation in BV-2 cells might enhance phagocytosis efficiency, which might be impaired 

due to the hypoxia exposure. hEHP exposure increases NO production and might be a time-

dependent stimulus, however, more experiments must be performed in normoxic conditions to 

have a better understanding of the Piezo1 activation effect in NO production. Piezo1 activation 

effect in YAP/TAP cellular dynamics is more comprehended when assessing their subcellular 

location which revealed a slight increase in YAP nuclear levels as well as a slight increase in p-

YAP (S397) cytosolic protein levels. 
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In this study, we demonstrated that BV-2 cells express Piezo1, and in conditions of 

hEHP there was a slight increase in the protein levels of Piezo1. Concerning the role of Piezo1 

activation on microglia phagocytosis, Yoda1 incubation and EHP exposure slightly increased 

phagocytosis efficiency, an effect that was attenuated when Piezo1 was inhibited through pre-

incubated with 1 µM GsMTx4. Exposure to hEHP did not affect phagocytosis efficiency.  

Regarding the Piezo1 activation effect on nitrosative stress, when directly assessing the 

NO production, the cumulative effect of Piezo1 activation through 24 h exposure to EHP in a 

hypoxic environment significantly enhanced NO production and highly increased iNOS 

expression. 

To investigate the influence of Piezo1 on the Hippo signalling pathway, we analysed the 

protein levels of TAZ, YAP, and p-YAP (S397). No alterations were detected in these proteins in 

hypoxic conditions. When examining the subcellular location of these proteins, Piezo1 

activation caused a tendency to decrease cytoplasmic levels of p-YAP (S397). 

Further experiments are needed to elucidate the role of the Piezo1 channel in elevated 

pressure-induced microglia reactivity. On a first analysis, it would be interesting to complete the 

Western blot results on the EHP effect on Piezo1 expression levels in BV-2 cells, by 

immunolabeling and qPCR to assess mRNA levels. Additionally, we plan to enhance our 

understanding of the cellular localization of YAP and TAZ by utilizing confocal imaging 

techniques. To expand our investigation on the impact of Piezo1 activation on microglia 

reactivity, we will analyse other aspects of microglia function beyond phagocytosis, for 

instance, cell migration through techniques such as scratch wound assays and the Boyden 

chamber migration assay as well as the production of pro-inflammatory cytokines (IL-1β and 

TNF) using ELISA kits.  

For future research and more in-depth analysis, several intriguing avenues could be 

explored. One approach would be to silence the channel, possibly through techniques like 

CRISPR-Cas9, in order to better understand its impact. Additionally, investigating the role of 

Piezo1 in relation to LATS1 could provide valuable insights into Piezo1 activation's direct effect 

on the Hippo signalling pathway. Furthermore, conducting a genetic study involving glaucoma 

patients to determine whether Piezo1 is upregulated in the disease could offer valuable clinical 

relevance and shed light on its potential significance in the context of glaucoma. 
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