

Marta Sofia Martins

EVALUATION OF POINT CLOUD DATA

AUGMENTATION FOR 3D-LIDAR OBJECT

DETECTION FOR AUTONOMOUS DRIVING

VOLUME 1

Dissertação no âmbito do Mestrado em Engenharia Eletrotécnica
e de Computadores no Ramo de Robótica, Controlo e Inteligência
Artificial orientada pelo Professor Doutor Cristiano Premebida e

apresentada à Faculdade de Ciências e Tecnologia da
Universidade de Coimbra.

Setembro de 2023

Evaluation of Point Cloud Data

Augmentation for 3D-LiDAR Object

Detection in Autonomous Driving

Marta Sofia Martins

Coimbra, September 2023

Evaluation of Point Cloud Data

Augmentation for 3D-LiDAR Object

Detection in Autonomous Driving

Supervisor:

Dr. Cristiano Premebida

Co-Supervisor:
MSc. Iago Gomess

Jury:

Prof. Dr. Urbano Nunes

Prof. Dr. Rui Cortesão

Prof. Dr. Cristiano Premebida

Dissertation submitted in partial fulfillment for the degree of Master of Science in

Electrical and Computer Engineering.

Coimbra, September 2023

Acknowledgements

Firstly, I would like to thank my advisors, Professor Cristiano Premebida and Mas-

ter Iago Gomes, for their support, guidance, and motivation throughout my thesis. Their

collective experience and knowledge that they shared with me proved indispensable to the

completion of this thesis.

Finally, I am deeply grateful for the unwavering support of my family and friends, who

believed in me even when I doubted myself. My most sincere acknowledgment.

ii

Resumo

Os veículos autónomos fizeram progressos significativos nos últimos anos para enfrentar

a natureza imprevisível das condições de condução no mundo real. Os veículos autónomos de

mais alto nível são sistemas complexos que, no limite, podem tomar decisões sem intervenção

humana com base em muitos módulos avançados, como o sistema de perceção. Nesta per-

spetiva, esta tese concentra-se no componente/módulo de perceção da condução autónoma.

A perceção é a capacidade de um sistema autónomo de recolher e extrair dados relevantes

do ambiente. A perceção ambiental (também conhecida como consciência situacional) é

uma compreensão contextual referente à localização dos obstáculos e qual a classe/categoria

semântica que representam, por exemplo, utilizadores da estrada (e.g., peões, ciclistas, veícu-

los) e sinais/marcações. De modo a imitar a perceção humana de profundidade do ambiente,

a tecnologia de deteção de objetos 3D é frequentemente usada. Esta tese, em particular,

utiliza um modelo de aprendizagem profunda (DL) para detetar objetos 3D em cenários

urbanos. A aprendizagem profunda (DL) e outras áreas pertencentes à inteligência artifi-

cial/aprendizagem computacional (AI/ML) são um elemento-chave para robôs autónomos

reproduzirem, entenderem e adaptarem-se ao ambiente envolvente.

Esta tese analisa métodos de aumento de dados em nuvens de pontos, assim como os

seus respetivos efeitos na estimativa da posição e orientação de objetos usando uma rede

profunda recente baseada em LiDAR (PointPillars). Nesse sentido, a arquitetura PointPil-

lars extrai recursos densos e robustos de nuvens de pontos de sensores LiDAR e, em seguida,

uma rede de aprendizagem profunda 2D com uma rede de deteção de objetos SSD modifi-

cada é usada para estimar posições, orientações e previsões de classe dos objetos na nuvem

de pontos. Adicionalmente, esta dissertação apresenta uma avaliação comparativa das difer-

entes técnicas de deteção de objetos 3D em nuvens de pontos. Os resultados mostram que

as técnicas de augmentation globais nas nuvens de pontos têm um impacto significativo na

estimativa da posição e orientação dos objetos.

iii

Palavras-chave: deteção de objetos 3D; condução autónoma; aprendizagem profunda; au-

mento de dados

iv

Abstract

Autonomous vehicles have made significant progress in recent years to tackle the un-

predictable nature of real-world driving conditions. Highest-level self-driving vehicles are

complex systems that, in the limit, can make decisions without human intervention based

on many advanced modules such as the perception system. In this context, this thesis con-

centrates on the perception component/module of autonomous driving. Perception refers to

an autonomous system’s ability to collect information and extract significant data from the

environment. Environmental perception (a.k.a. situational awareness) refers to a contextual

understanding of where the obstacles (e.g., pedestrians, cyclists, cars) and signs/markings

are located and also predicting their semantic meaning. To mimic human depth perception

of the environment, 3D object detection technology is often used. This thesis in particular

utilizes a deep learning (DL) model to detect 3D objects in urban scenarios. DL and other

fields related to artificial intelligence and machine learning (AI/ML) are becoming vital for

autonomous robots to represent, understand, and eventually adapt to their surroundings.

This thesis surveys data augmentation methods in point clouds and their effects on esti-

mating the position and orientation of objects using a recent LiDAR-based deep network (the

PointPillars). In this regard, the PointPillars architecture extracts dense, robust features

from LiDAR sensor point clouds, and then a 2D deep learning network with a modified SSD

object detection network is used to estimate joint positions, orientations, and class predic-

tions of the objects in the point cloud. Additionally, this dissertation presents a comparative

evaluation of different techniques for 3D object detection on point clouds. The results show

that global augmentation techniques on the point clouds have a significant impact on the

estimation of the position and orientation of objects.

Keywords: 3D object detection; autonomous driving; deep learning; data augmentation.

v

“The answers are always inside the problem, not outside.”

— Marshall McLuhan

vii

Contents

Acknowledgements ii

Resumo iii

Abstract v

List of Acronyms xii

List of Figures xiv

List of Tables xvi

1 Introduction 1

1.1 Motivation . 2

1.2 Context and scope . 3

1.3 Aims and objectives . 4

1.4 Outline . 6

2 Related work and background 7

2.1 Perception for Self-Driving Cars . 9

2.2 What is 3D Object Detection? . 10

2.3 Sensors . 11

2.3.1 Ultrasonic Sensor . 11

2.3.2 RADAR . 12

2.3.3 LiDAR . 13

2.3.4 Cameras . 13

2.3.5 Sensors Comparison . 14

2.4 Datasets . 14

2.4.1 KITTI . 15

ix

2.4.2 ApolloScape . 15

2.4.3 H3D . 15

2.4.4 Waymo . 15

2.4.5 nuScenes . 16

2.4.6 Lyft Level 5 . 16

2.4.7 PandaSet . 16

2.5 Summary . 17

3 3D LiDAR Object Detection 18

3.1 Methods . 18

3.1.1 Point-based 3D object detection . 18

3.1.2 Grid-based 3D object detection . 19

3.1.3 Point-voxel based 3D object detection 21

3.1.4 Range-based 3D object detection . 22

3.2 Summary . 24

4 PointPillars Network 26

4.1 Feature Encoder . 27

4.2 Backbone (2D CNN) . 27

4.2.1 RPN . 28

4.2.2 Anchors . 29

4.3 Detection Head (SSD) . 30

4.3.1 VGG16 Model . 31

4.3.2 VGG 16 Transfer Learning Model . 32

5 Data Augmentation 33

5.1 Data augmentation for 2D images . 33

5.2 Data augmentation for 3D point clouds . 34

5.3 Global and Local Data Augmentation . 36

5.3.1 Geometric and Spatial Transformations 36

5.3.2 Noise-based Operation . 37

5.3.3 Sampling-based Operation . 38

6 Developed Work and Experiments 39

6.1 KITTI Dataset . 39

x

6.2 Data Augmentation . 41

6.3 Model Learning . 42

6.3.1 Defining Initial Configurations . 42

6.3.2 Building the Point Pillars Network 43

6.3.3 GT value generation . 47

6.4 Evaluation metrics . 48

6.4.1 Steps for AP Calculation . 49

6.4.2 Evaluation of the Test set: illustration and metrics 50

7 Analysis and discussion of results 52

7.1 Results . 52

7.1.1 Global Operations . 53

7.1.2 Local Operations . 56

7.1.3 Mixed Data Augmentation Results 57

8 Conclusion 59

9 Bibliography 61

A 73

A.1 Loss Functions . 73

B 74

B.1 Intersection over Union . 74

A 76

A.1 Evaluation Metrics . 76

B 78

B.1 Hyper-parameters of Data Augmentation Techniques 78

C Scientific Paper - ROBOT2023: Sixth Iberian Robotics Conference 80

xi

List of Acronyms

AI Artificial Intelligence

ALV Autonomous Land

Vehicle

AOS Average Orientation

Similarity

BEV Bird’s-Eye View

BN Batch Normalization

CV Computer Vision

CNN Convolutional Neural

Network

DA Data Augmentation

DARPA Defense Advanced

Research Projects Agency

DL Deep Learning

GT Ground Truth

IoU Intersection over Union

GM General Motors

HED Honda Research Institute

3D

HRL Hughes Research Labs

xii

KITTI Karlsruhe Institute of

Technology and Toyota

Technological Institute

LiDAR Light Detection and

Ranging

LR Learning Rate

ML Machine Learning

RADAR Radio Detection and

Ranging

R-CNNs Region-based

Convolutional Neural

Networks

ReLU Rectified Linear Unit

RoI Region of Interest

RPN Region Proposal Network

RV Range View

SA-SSD Structure Aware Single

Stage Detector

SSD Single Shot Detector

VGG Visual Geometry Group

V2V Vehicle-to-Vehicle

xiii

List of Figures

1.1 A typical autonomous vehicle system. Based on [12]. 1

1.2 Some examples from the KITTI dataset [35]. 4

1.3 A sample point cloud from the KITTI dataset alongside the corresponding

camera image [101]. 5

2.1 3D Object Annotations [68]. 10

2.2 Ultrasonic Sensor Principle [72]. 11

2.3 Ultrasonic car sensors from Bosch [74]. 12

2.4 Radar for Road Cars [44]. 12

2.5 LiDAR Sensor Principle [90]. 13

2.6 Car cameras [93]. 14

3.1 Point-based 3D object detection method [69]. 19

3.2 Grid-based 3D object detection method [69]. 20

3.3 Point-voxel based 3D object detection method [69]. 21

3.4 Range-based 3D object detection method [69]. 23

4.1 PointPillars Architecture [49]. 27

4.2 Region Proposal Network (RPN) architecture [122]. 28

4.3 Region Proposal Network (RPN). Based on [30]. 28

4.4 Anchor boxes generation [87]. 29

4.5 Single Shot Detector Architecture [61]. 31

4.6 VGG16 Model [81]. 31

5.1 Some examples of data augmentation for 2D images [5]. 33

5.2 Example of Cutblur on 2D images [118]. 34

5.3 Part-Aware Data Augmentation for 3D Object Detection in Point Cloud [26]. 36

5.4 Geometric and Spatial transformations on point cloud [40]. 37

xiv

6.1 Flowchart for Evaluation of Point Cloud Data Augmentation for 3D-LiDAR

Object Detection. Based on [68]. 39

6.2 Velodyne point clouds. 40

6.3 KITTI Coordinate System. 41

6.4 The first step of PointPillars Architecture: Pillar Feature Net. 43

6.5 The second step of PointPillars Architecture: Backbone 2D CNN. 44

6.6 Backbone 2D CNN. 45

6.7 The third step of PointPillars Architecture: Detection Head (SSD). . . . 45

6.8 Detection Head insert on Backbone 2D CNN. 46

6.9 Base Network Structure. 46

6.10 Final Detection. 47

6.11 3D Object Detection from 2D image. 50

6.12 3D Object Detection from Point Cloud. 51

6.13 3D Object Detection from Point Cloud (with GT). 51

B.1 Intersection over Union [46] . 74

B.2 Intersection over Union - poor, good and excellent score[89] 75

xv

List of Tables

2.1 Dataset summary table. 17

7.1 AP values of different detection methods on the KITTI dataset. 52

7.2 mAP values of different detection methods on the KITTI dataset. 52

7.3 AP values of different detection methods on the KITTI dataset with random

rotation data augmentation technique. 53

7.4 AP values of different detection methods on the KITTI dataset with scaling

data augmentation technique. 53

7.5 AP values of different detection methods on the KITTI dataset with random

translation data augmentation technique. 53

7.6 AP values of different detection methods on the KITTI dataset with random

flip data augmentation technique. 54

7.7 AP values of different detection methods on the KITTI dataset with jitter

points data augmentation technique. 55

7.8 AP values of different detection methods on the KITTI dataset with Gaussian

noise data augmentation technique. 55

7.9 AP values of different detection methods on the KITTI dataset with shuffled

points data augmentation technique. 55

7.10 AP values of different detection methods on the KITTI dataset with upsam-

pling data augmentation technique. 56

7.11 AP values of different detection methods on the KITTI dataset with local

random rotation data augmentation techniques. 56

7.12 AP values of different detection methods on the KITTI dataset with local

gaussian noise data augmentation techniques. 57

7.13 AP values of different detection methods on the KITTI dataset with mixed

data augmentation techniques. 57

xvi

7.14 mAP values of different detection methods on the KITTI dataset with mixed

data augmentation techniques. 57

A.1 Evaluation metrics of different detection methods applied to the KITTI dataset. 76

A.2 Evaluation metrics of different detection methods applied to the KITTI dataset

with mixed data augmentation techniques. 77

xvii

1 Introduction

A self-driving car, belonging to the highest level of automation i.e., level 5, is a complex

system capable of moving and making decisions without direct human interaction [71]. It

is composed of sensors, actuators, complex algorithms including machine learning (ML),

and processors [100]. To have the ability to drive autonomously, such a system creates

a representation of their surroundings based on the sensor readings. In terms of sensor

functionality, radar sensors are typically used to examine the position of nearby vehicles.

Video cameras identify traffic lights, read road signs, track other vehicles, and look for

pedestrians. LiDAR sensors reflect pulses of light around the car’s surroundings to measure

distances, identify road edges, and detect and locate obstacles [71]. Ultrasonic sensors detect

obstacles and calculate the ideal steering angle during parking [60].

As illustrated in Figure.1.1, the core competencies of an autonomous vehicle software

system can be categorized into three categories, perception, planning, and control, with

the interactions between these competencies and the vehicle’s interactions with the environ-

ment. Also, Vehicle-to-Vehicle (V2V) communications can be leveraged to realize further

improvements in perception and/or planning areas through vehicle cooperation [13].

Figure 1.1: A typical autonomous vehicle system. Based on [12].

1

Given the aforementioned perspective, the main objective of this thesis is to approach

the perception component of self-driving cars. To tackle sensory perception, this thesis

primarily relies on the use of a deep learning model called PointPillar to detect 3D objects

(i.e., pedestrians, cars, and cyclists) in urban scenarios, based on the LiDAR data provided

by the well-known KITTI dataset. Moreover, data augmentation techniques for a point cloud

and their effect on the detector’s performance were evaluated.

1.1 Motivation

On average, 1.35 million people die annually because of road accidents, about 3700

people a day (i.e., one person every 24 seconds), in addition to 50 million who are injured.

While the main cause of accidents is speeding or alcohol consumption, it is also known that

the state of mind can influence driving, leading to a lack of attention and, consequently,

a mishap. In conclusion, in about 90% of road accidents, the cause is related to human

error [63][110]. With such a grim landscape, the need for transformative solutions becomes

paramount.

In pursuit of safer roads, advanced technologies are explored to reduce the number of

accidents. One of those technologies is 3D object detection, which holds the potential to rev-

olutionize the capabilities of autonomous vehicles. Traditional 2D object detection systems

have been a step forward, enabling rudimentary collision avoidance. However, to ensure the

highest level of safety, autonomous vehicles need to perceive their surroundings in 3D. With

3D object detection integrated into autonomous vehicles, their sensors can accurately gauge

objects’ height, depth, and volume, making more informed decisions and significantly reduc-

ing the likelihood of collisions [4]. By embracing 3D object detection technology, self-driving

cars can be equipped with the ability to mimic human depth perception, translating to safer

and more efficient navigation on our roads.

Although 3D object detection enhances perception, the main point of autonomous

driving lies in the artificial intelligence that “drives" these vehicles. This is where the origin of

the data augmentation concept occurs. Data augmentation involves diversifying the training

dataset by introducing variations to existing data [17]. In the context of self-driving cars,

this approach is fundamental in creating more resilient AI models.

Data augmentation assists in addressing complex scenarios, such as detecting pedes-

trians in a crowd or identifying obstacles on poorly lit roads or different weather scenarios

[29]. Therefore, data augmentation emerges as a pivotal factor in adequately equipping AI

2

systems to contend with the inherent unpredictability of real-world driving conditions. By

integrating these systems with a diverse dataset, autonomous vehicles can handle an array

of scenarios with confidence, elevating overall safety and performance standards.

In summary, the reality of road accidents serves as a booster for innovative interventions.

By integrating 3D object detection technology and embracing data augmentation techniques,

it is possible to redefine road safety. The advancements improve the quality of life for elderly,

visually impaired, and disabled individuals beyond the realm of statistics [71].

1.2 Context and scope

As mentioned before, artificial or sensory perception is a critical aspect of autonomous

driving as the vehicle needs to understand its environment. Perception is the capacity of an

autonomous system to collect information and extract important data from the environment.

Environmental perception refers to a contextual understanding of where the obstacles are

located, detecting road signs/markings, and categorizing data by their semantic meaning.

Localization is the ability of the robot to determine its position related to the environment

[13]. Environment perception is a function that allows autonomous vehicles to have fun-

damental information about the driving environment, including the free drivable area and

surrounding obstacles’ locations, velocities, and predictions of their future states [100]. The

environment perception can be made by LiDARs, cameras, or a fusion between these two

devices.

Among the several tasks for a robust environmental perception, obstacle detection is

essential for autonomous vehicles to safely navigate. The standard approach for this task

employs deep learning models based on Convolutional Neural Networks (CNN) [21] – such as

YOLO [45], to extract features from images, and detect target objects based on the feature

maps.

An important remark regarding 3D detection is the complexity of the annotation process

of the data, which results in the small number of large-scale datasets available for training

and testing models when compared to 2D detection datasets. In this sense, some works in

the literature explored data augmentation techniques for 3D data to increase the number of

samples and their representativeness [55] [49] [48] [95] [26] [84].

However, not every augmentation operation exerts a positive influence on model training

and performance. On the contrary, when an operation is not applied correctly, it tends

to only increase the memory usage, time, and cost of training and developing detection

3

methods. Therefore, this thesis presents an experimental evaluation of 3D data augmentation

operations for 3D obstacle detection on the KITTI dataset.

1.3 Aims and objectives

A perception system of a self-driving car uses, among other modules, object detection

algorithms to create a list of 3D bounding boxes around objects of interest. To evaluate the

3D object detection, it was used the KITTI dataset [34]. KITTI is one of the most popular

mobile robotics and autonomous driving datasets. It consists of hours of traffic scenarios

recorded with different sensor modalities, including high-resolution RGB, grayscale stereo

cameras, and a 3D laser scanner.

The KITTI dataset contains 15k frames and 12919 images RGB images (see Figure

1.2), as well as labels for eight different classes, such as ‘Car’; ‘Van’; ‘Truck’; ‘Pedestrian’;

‘Person sitting’; ‘Cyclist’; ‘Tram’; ‘Misc’ or ‘DontCare’ [18][35]. In this dissertation, just

the classes ‘Car’, ‘Cyclist’, and ‘Pedestrian’ are evaluated due to their representative aspect

concerning the state-of-the-art and importance.

Figure 1.2: Some examples from the KITTI dataset [35].

Among the diverse sensor modalities involved within the extensive KITTI dataset, the

focus of this project converged on using the precision and depth of its LiDAR point cloud.

Figure 1.3 shows a sample LiDAR point cloud from the KITTI dataset.

4

((a)) LiDAR Point Cloud

((b)) Camera Image

Figure 1.3: A sample point cloud from the KITTI dataset alongside the corresponding

camera image [101].

For the 3D LiDAR object detection, it was taken advantage of the PointPillars archi-

tecture, which extracts dense, robust features from LiDAR sensor point clouds and then uses

a 2D deep learning network with a modified SSD object detection network to estimate joint

3D bounding boxes, orientations, and class predictions, such as pedestrians, bicycles, and

cars. To determine if the detection is correct, standard detection metrics were calculated to

evaluate the detector’s performance.

Different techniques for data augmentation in the point cloud were explored to improve

the detector’s performance and add robustness to the model (Appendix C contains the

experiment’s preliminary results submitted to the Sixth Iberian Robotics Conference.)

Data augmentation is a process that generates extended training data by applying various

transformations, modifications, or manipulations to existing data, which allows machine

learning to increase performance [17].

In short, the main objectives of this thesis are:

• Evaluate a LiDAR-based 3D obstacle detector for pedestrian, cyclist, and car classes.

The evaluation’s focus is the performance in locating the position of the 3D object and

its orientation.

5

• Evaluate global and local data augmentation techniques on point clouds and their

effects on estimating the position and orientation of objects.

The implementation part and respective coding have beenwritten in Python in conjunc-

tion with PyTorch environment, an open-source machine learning library used to develop

and train neural network-based deep learning models.

1.4 Outline

The thesis consists of several chapters, which are listed below:

• Chapter 2 provides a general approach to the context of autonomous driving. It

covers the history, current state of the art, and previous works. Additionally, the

chapter discusses the most relevant topics of autonomous cars for this work. These

topics include the perception and 3D recognition of objects and sensor and dataset

comparisons to determine the best options for this work.

• Chapter 3 describes various 3D object detection methods based on LiDAR data.

After the chapter, a concise summary of each method is provided.

• Chapter 4 supplies additional details on the chosen method based on outlined in

Chapter 3, including its structure and implementation.

• Chapter 5 discusses data augmentation techniques that can improve model perfor-

mance.

• Chapter 6 explains the experimental part, including dataset manipulation, evaluation

metrics implementation, and data augmentation technique selection.

• Chapter 7 comprises a detailed presentation of all the results that have been obtained,

along with comprehensive comments on each of them.

• Chapter 8 is the final section of this thesis, which presents the conclusions of the

work carried out and provides some suggestions for future research.

6

2 Related work and background

The company Houdina Radio Control has taken the first step towards autonomous driv-

ing. This company demonstrated a radio-controlled car called Linriccan Wonder [10]. The

car was a 1926 Chandler that had to transmit antennae on its backward compartment, and

it was controlled by another car that sent radio impulses while following it. The transmitting

antennae captured the radio signals and sent them to the circuit-breakers, which controlled

electric motors that directed the vehicle’s movements. It was one of the most primitive

forms of autonomous vehicles. Months after, a modified form of Linriccan Wonder called

"Phantom Auto" was demonstrated by Achen Motors [10].

In 1939, GM sponsored Norman Bel Geddes’s exhibit Futurama at the World’s Fair,

which portrayed embedded-circuit-powered electric cars. The circuits were embedded in the

road and controlled by radio, like the previously seen attempts at driverless cars. So, RCA

Labs showed a notably advanced model for autonomous vehicles [10].

In 1953, RCA Labs built a miniature car controlled by wires placed in a pattern on a

laboratory floor. The engineers Leland Hancock and L. N. Ress took the idea of RCA Labs

to a higher level. In 1958, they experimented with the system in actual highway installations

of surroundings just outside the town of Lincoln, Neb. The car was guided by impulses sent

from a detector circuits series hidden in the pavement. These detectors could determine the

presence and the velocity of metallic vehicles on the surface [10].

Based on sophisticated models in 1959 and throughout the 1960s, General Motors

presented Firebird, which was a series of trial cars that had an electronic guide system

that could accelerate it over an automatic highway without the driver’s participation [27]

[15] [104]. This preceded Ohio State University’s Communication and Control Systems

Laboratory to launch a project in 1966 to develop cars that don’t need drivers. These cars

were triggered by electronic devices embedded in the road.

During the 1960s, United Kingdom’s Transport and Road Research Laboratory tested

a car named Citroen DS, which did not need a driver, that interacted with magnetic wires

7

embedded in the road. Citroen DS traveled in a far more effective way than by human

control [31].

In the 1980s, Ernst Dickmanns and his team at the Bundeswehr University Munich, in

Germany, created a vision-guided Mercedes-Benz robotic van without any interaction from

a driver. After the discovery of this project, there have been progressions in the field of

autonomous driving technology. From 1987 to 1995, EUREKA performed the Prometheus

Project on self-driving vehicles. Another responsible for the breakthrough in the field of

autonomous cars was the DARPA agency of the U.S. Department of Defense [10].

In the United States, new technologies were developed by Carnegie Mellon University,

the Environmental Research Institute of Michigan, the University of Maryland, Martin Mari-

etta, and SRI International to be used in ALV projects. The AVL was the first project that

created a road-following robotic vehicle using computer vision, LIDAR, and autonomous

control [43] [51] [20]. Based on the AVL project, the HRL laboratory designed the first

vehicle with an off-road map and self-driving navigation [10]. Throughout the times, there

has been significant progress in autonomous vehicles.

In 1991, Ernst Dickmanns and Daimler-Benz of Bundeswehr University Munich devel-

oped the twin robots VaMP and Vita.2. These robots could drive on a heavy traffic road with

little human intervention. Although they were semi-autonomous vehicles, they circulated on

free lanes and performed lane changes with the autonomous overtaking of other cars [6].

In 1995, the Mercedes-Benz S-Class created by Dickmanns drove a 1.590 km journey

from Munich to Copenhagen, where about 95% of the trip was in autonomous driving mode.

The car used computer vision and integral memory’s microprocessors intended with parallel

processing to respond in real-time. In the same year, a semi-autonomous car from Carnegie

Mellon University’s Navlab with neural networks to control the steering wheel and human’s

control for throttle and brakes [105] [82] reached 98.2% autonomy on a 5.000 km journey.

This project was called "no hands across America" or HOA.

In 1996, Alberto Broggi presented the ARGO project, which consisted of a modified

Lancia Thema that followed lane marks on roads. The Lancia Thema contained two low-

cost video cameras on board and stereoscopic vision algorithms to perceive the surrounding

environment [14]. ARGO project realized a 1.900 km journey over six days, where 94% of

the time was entirely in automatic mode.

In the 2000s, the Netherlands officialized the first autonomous public transport [98]

Panatoya, 2003; Andréasson, 2001). Also, the US invested in autonomous vehicles for the

military forces such as Demo I (US Army), Demo II (DARPA), and Demo III (US Army).

8

In 2021, Demo III proved the capacity of self-navigation on rough road terrains diverging

obstacles like rocks and trees [10].

2.1 Perception for Self-Driving Cars

Self-driving cars are intended to improve driving safety and traffic efficiency. Con-

sequently, an accurate environment perception system is crucial to gain information and

control decisions. Perception is an essential aspect of Autonomous Driving as the vehicle

needs to perceive its environment. To perceive its surroundings the system needs two stages.

The first stage consists of scanning the road forward to detect changes in driving situations

(traffic lights and signs, pedestrian crossing, and barriers, among others). The second stage

is related to the perception of other vehicles [13]. To achieve object detection, cognition,

and scene perception, self-driving cars need to perceive surroundings in a way at least like

the way the human eye processes information [108]. This leads to cognitive AI systems that

can be able to learn, relearn and act [42].

The viability of DL in autonomous driving is being recognized as some state-of-the-

art results have been attained by Google cars and Uber cars in maps-based localization,

which was trained to drive with little prior knowledge of the roads [11]. These vehicles

take advantage of DL for path planning and obstacle avoidance to process camera-based

information to solve complex CV problems [33]. Even though DL algorithms learn effective

perception control from data, LiDAR costs and the expenses involved in manually annotating

the maps limit the application of DL in self-driving cars [57].

DL and ML are classified into three categories; supervised, unsupervised, and rein-

forcement learning [64]. Supervised learning uses labeled datasets to train algorithms to

classify data or predict results accurately. It adjusts its weights until the model has been

fitted appropriately, which happens as part of the cross-validation process [38]. Unsuper-

vised learning uses machine learning algorithms to examine and cluster unlabeled datasets.

These algorithms find hidden patterns or data groupings without human intervention[38].

Reinforcement learning is a technique where a computer agent learns to perform a task due

to repeated trial-and-error interactions with a dynamic environment [38].

The key steps to implementing these DL techniques consists of the following :

• Backpropagation: the primary method of learning. Compute the error and tries to

minimize the error function in subsequent forward passes [38].

9

• Apply gradient descent to backpropagate the error function [38].

• Subtract a fraction of the gradient from the weight [38].

• Recalculate the weights responsible for making a correct or incorrect decision [38].

• The objective is to minimize the error function, by updating the weights, e.g., using

minibatch or stochastic gradient descent [38].

Observation: More data and very large networks lead to too many parameters and

increased training times [38].

2.2 What is 3D Object Detection?

Definition. 3D object detection seeks to predict the attributes of 3D objects in driving

scenarios from sensory inputs. In most cases, a 3D object can be represented as a 3D cuboid

(as represented in Figure 2.1), called a 3D bounding box, that includes the object inside.

The 3D bounding box is defined by [76]:

• 3D Center Coordinate: T = [xc, yc, zc]
′

• Dimensions: D = [dx, dy, dz] (length, width, and height)

• Heading Angle: θ (the yaw angle, of a cuboid on the ground plane)

• Class (denotes the category of a 3D object)

Figure 2.1: 3D Object Annotations [68].

10

In summary, the 3D bounding box can be represented:

B = [xc, yc, zc, dx, dy, dz, θ, class] (2.1)

2.3 Sensors

A fundamental requirement for a perception system is the choice of sensors that best

adapt to the environmental characteristics with which the robot will be confronted. In the

development of this system can be used ultrasonic sensors, cameras, radar, and LiDAR. Even

though the numerous differences that these sensors have themselves, they are studied and

analyzed according to a similar methodology. They are exteroceptive sensors, which means

all the information is acquired from the environment. They are also active sensors since

they emit an excitation signal to the outside space, waiting afterward for the occurrence of

detection of objects that could be present in the field of view. In this way, the robot manages

to have a perception of the surroundings.

2.3.1 Ultrasonic Sensor

Ultrasonic sensors use sound waves above the 20 kHz range [77] to detect and measure

the distance of the surrounding objects by producing and monitoring an ultrasonic echo

(as illustrated in Figure 2.2), similar to how bats use echolocation to maneuver without

colliding with obstacles. Depending on the sensor and object properties, the effective range

in air is between a few centimeters up to several meters [77]. In the automotive space,

ultrasonic sensors are prevalent for ADAS (Advanced Driver-Assistant Systems) applications.

Ultrasonic sensors are used in robotics applications that require reliable presence, proximity,

or position sensing. Figure 2.3 presents an example of ultrasound sensors used in cars.

Figure 2.2: Ultrasonic Sensor Principle [72].

11

Figure 2.3: Ultrasonic car sensors from Bosch [74].

2.3.2 RADAR

RADAR is a sensor that uses radio waves to calculate distance, velocity, and angle.

A RADAR system contains a transmitter producing electromagnetic waves in the radio or

microwave domain, a transmitting antenna, a receiving antenna, and a receiver and processor

to determine the properties of the objects. The transmitter’s radio waves reflect off the

objects and return to the receiver, giving information about the objects’ locations and speeds.

RADAR operates in extreme weather conditions and over long distances. But it may falsely

identify objects. This sensor can detect pedestrians waiting at a pedestrian crossing [3], as

shown in Figure 2.4.

Figure 2.4: Radar for Road Cars [44].

12

2.3.3 LiDAR

LiDAR is a sensor for determining distance by targeting an object or a surface with

a laser and measuring the time for the reflected light to return to the receiver. Figure [?]

illustrates this principle. LiDAR sensors operate without visible light, which improves the

environmental perception for night driving or low light conditions. In the case of adverse

weather conditions, extra noise is added that changes the quality of the data, which affects

the detection performance [37]. Many 3D object detectors are based on LiDAR sensors as

sensors have a positive influence on the 3D object detection task. LiDAR is a powerful and

efficient sensor, but it is expensive.

Figure 2.5: LiDAR Sensor Principle [90].

2.3.4 Cameras

The principle of working with a digital camera consists of a light incident on an object,

and the reflected light is directed through an aperture present in the camera. These rays are

focused with the help of a lens. A digital camera has sensors divided into red, green, and

blue pixels. When light hits on these pixels, it is converted into energy. This energy will

help to calculate the intensity of the pixel. The pixel intensity can determine the light and

dark areas of the image, and this information is put together to create a digital image of the

captured scene.

Generally, the most used cameras are depth cameras (RGBD) which have an addi-

tional parameter D from RGB cameras[65]. D stands for Depth. The depth sensor has

a monochrome CMOS sensor and an infrared emitter which helps map the 3D image. It

measures the distance of each point on the object by emitting infrared wavelengths and cal-

13

culating the time after the object’s reflection [65]. Figure 2.6 displays an image of a camera

that is installed in a car.

Figure 2.6: Car cameras [93].

2.3.5 Sensors Comparison

The LiDAR sensor is becoming a key element in self-driving cars. This long-range sensor

with 360º scanning and high resolution provides 5D information and good performance under

distinct light conditions (night or day) due to its light sources. Unlike cameras, LiDAR is not

blinded when pointed in light or dark directions. LiDAR has a very high performance[36].

LiDAR technology provides more depth and detail than other solutions, such as radar and

cameras. And also, unlike ultrasonic sensors that are used to detect nearby objects, lidar has

long-range scanning. Due to the ranging accuracy superiority of lidar, the provided physical

information is highly trustworthy [56]. However, the LiDAR sensor has some disadvantages,

such as being an expensive technology compared to other solutions, and it is affected by

some specific atmospheric weather conditions, such as the case of fog and smoke presence.

Since the goal of this project is 3D object detection, it’s necessary to choose a sensor

with good depth information, details, and performance. In this case, the LiDAR sensor is

the best solution for this problem.

2.4 Datasets

Multiple driving datasets have been created to provide multi-modal sensory data and

14

3D observations for 3D object detection. A few of the most popular datasets are introduced

below, and a summary of them can be seen in table 2.1.

2.4.1 KITTI

KITTI was a pioneering work that offers a standard data collection and annotation

model: providing a vehicle with cameras and LiDAR sensors, driving it on roads for data

collection, and annotating 3D objects from the collected data [36]. KITTI includes real-world

images such as rural, urban, and highways. One of these images can have up 15 cars and 30

pedestrians [53]. The datasets are classified as Road, City, Residential, Campus, and Person.

For 3D object detection, labels are subdivided into car, truck, pedestrian, cyclist, etc. The

KITTI dataset is the most used computer vision algorithm evaluation world’s dataset for

autonomous driving scenes [53].

2.4.2 ApolloScape

ApolloScape was an evolving research project that provided innovation across au-

tonomous driving aspects, such as perception, navigation, and control. The apolloScape

dataset is Baidu’s dataset for autonomous driving [62]. The dataset consists of 80k lidar

point clouds and high-quality labels. It is collected in Beijing under various lighting condi-

tions and traffic situations [53]. The apolloScape dataset contains 100K street view frames

with complex traffic flows mixed with vehicles, cyclists, and pedestrians [53].

2.4.3 H3D

The H3D dataset was Honda’s presented, it is a point cloud dataset for autonomous

driving scenes [53]. The H3D dataset includes 104 hours of human driving data, which

generates 150 GB of data (1280 × 720 resolution, 30fps) that involves GPS, images, lidar,

car navigation, and driving performance. This dataset used three cameras, a 360-degree

lidar dataset, a car dynamics analyzer, and a car controller area network (CAN) [62]. One

thing that the H3D, ApolloScape, and KITTI datasets are in common is that all collected

data with the cooperation of cameras, lidar, and GPS [62].

2.4.4 Waymo

Waymo is an autonomous driving car company owned by Google Inc [53]. The Waymo

15

Open dataset is an open-source multimodal sensor dataset for self-driving. Obtained from

Waymo autonomous driving vehicles, the data covers an extensive range of driving scenarios

and environments. Those scenarios can contain obstacles such as pedestrians, automobiles,

and buildings [53] [62].

The Waymo dataset includes 1,000 distinct clips, each captured for 20 seconds, which

is equivalent to 200,000 frames per sensor [62]. The Waymo dataset, as well as the Apollo

dataset, both contain data collected on a rainy day besides a sunny day. Also, they both

added lidar sensors with the cooperation of cameras to collect data, which would make data

more accurate [62].

2.4.5 nuScenes

Developed by Motional, nuScenes was the first dataset to have fully autonomous sensors

for vehicles. The set of sensors contained six cameras, five radars, and one LiDAR, all with

a 360º field of view [16]. Recorded in Boston and Singapore, nuScenes comprises 1000 scenes

capturing a diverse range of traffic situations, driving maneuvers, and unexpected behaviors,

each with 20s duration. Every scene is fully annotated with 3D bounding boxes for 23 classes

and eight attributes [16]. Compared with the KITTI dataset, nuScenes has seven times more

annotations and a hundred times more images [16].

2.4.6 Lyft Level 5

Lyft Level 5 is well recognized as the KITTI dataset [53], and Lyft is also a large-scale

dataset that uses the same data format as the nuScenes [47]. This dataset presents data

collected by three raw LIDAR and seven camera inputs. These sensors are inserted into

autonomous vehicles within a defined geographic area to collect raw data from sensors in

other cars, pedestrians, traffic lights, etc [47]. The Level 5 dataset includes over 55,000

human-labeled 3D annotated frames, underlying HD spatial semantic maps, and surface

maps [53].

2.4.7 PandaSet

PandaSet was the first open-source AV dataset accessible for commercial and academic

usage [80]. This dataset combines one 360° mechanical spinning LiDAR (Panda64), one

forward-facing long-range LiDAR with image-like resolution (PandaGT), and six cameras

[114]. The data collected by the sensors was noted with a combination of cuboid and scale

16

3D sensor fusion segmentation [80]. PandaSet contains more than 100 scenes, each scene

with a duration of 8 seconds, and provides 28 label types for object classification and 37

label types for semantic segmentation [114].

2.5 Summary

This master thesis used the KITTI dataset. As seen in Table 2.1, compared to other

datasets, KITTI has fewer frames, which makes it simpler to manipulate and faster to

run. KITTI is also one of the most used datasets in the context of autonomous vehicles,

with well-established benchmarking for various perception tasks, including 3D detection.

Several 3D detection techniques based on lidars were evaluated on KITTI and are present in

its benchmarking, which presents detection performance and processing time (frame rate).

Thus, KITTI stands out as the best option for this experiment.

Datasets Year Classes Scenes Frames Sensors

KITTI 2012 8 22 15k Camera + LiDAR

ApolloScape 2019 35 - 100k Camera + LiDAR

H3D 2019 8 160 27k Camera + LiDAR

Waymo 2020 4 1k 200k Camera + LiDAR

nuScenes 2020 23 1k 40k Camera + LiDAR

Lyft Level 5 2019 9 366 46k Camera + LiDAR

PandaSet 2020 28 100 60k Camera + LiDAR

Table 2.1: Dataset summary table.

17

3 3D LiDAR Object Detection

3.1 Methods

In this section, the 3D object detection methods centered on LiDAR data i.e., point

clouds or range images, will be introduced. Contrary to images, a point cloud is a 3D

representation that contains sparse and irregular pixels and requires a specific model for

feature extraction. On the other hand, a range image is a dense and compact representation

where range pixels have 3D information [69]. The LiDAR-based 3D object detection models

are based on distinct data representations, including point-based, grid-based, point-voxel-

based, and range-based methods.

3.1.1 Point-based 3D object detection

Point-based 3D object detection, represented in Figure 3.1, uses deep learning tech-

niques on point clouds to leverage the potentialities of DL, namely CNN-architectures. Points

are the raw output data from the capture sensors in mostly 3D geometry acquisition systems

[92]. Using points instead of geometry allows several processing and display simplifications.

Yet, it is hard to generate point-based models, especially when a system is developed with

simple, low-cost components.

Point clouds pass over a point-based backbone network, where the points are sampled,

and point cloud operators learn the features. Based on downsampled points and features,

it will be predicted 3D bounding boxes [69]. Point cloud sampling and feature learning are

two components of point-based 3D object detection.

18

Figure 3.1: Point-based 3D object detection method [69].

Point Cloud Sampling

Furthest Point Sampling (FPS) in PointNet++ [84] has been implemented in detectors

based on points, where the faraway points are chosen in sequence from the original point

set. PointRCNN [97] takes advantage of the FPS technique to gradually downsample input

point clouds and create 3D bounding box proposals.

Point Cloud Feature Learning

In PointNet [84], point-wise multilayer perceptron (MLP) blocks are sequentially ap-

plied to the raw point cloud to generate high-dimensional feature vectors based on points.

The point features are aggregated through the max pooling operation to obtain the new

feature vector [111].

In previous works, Wu et al. [112] present a convolution network, which through MLP

networks and kernel density estimation, it learns the convolution kernel. Newly, Ma et al.

[66] introduce PointMLP which is a deep network based on MLP to process the point cloud.

The network is similar to the PointNet++ network, with additional residual connections and

geometric affine modules.

3.1.2 Grid-based 3D object detection

3D object detectors based on grids convert point clouds into discrete grid representa-

tions, such as voxels, pillars, and bird’s-eye view (BEV) feature maps. After, they use 2D

convolutional neural networks or 3D sparse neural networks to extract grid features and then

19

detect 3D objects from the BEV grid cells [69]. Figure 3.2 illustrates the method of detecting

3D objects using a grid-based system.

Grid-based detectors have two main components: grid-based representations and grid-

based neural networks.

Figure 3.2: Grid-based 3D object detection method [69].

Grid-based representations

As mentioned before, the three types of grid representations are voxels, pillars, and

BEV feature maps. Voxels represent a value on a grid in three-dimensional space. Voxeliza-

tion converts point clouds into voxels. Since point clouds contain sparsely and irregularly

distributed pixels, some voxel cells are empty [69]. Only non-empty voxels are used for

feature extraction. Pillars are a kind of special voxels that have an unlimited voxel size in

the vertical direction. Through a PointNet [84] network, points can be converted into pillar

features. And finally, a bird’s-eye view is a projection of the points into a planar top-down

point-of-view. VoxelNet [123] is an example of a network that uses sparse voxel grids. This

network proposes a new voxel feature encoding (VFE) layer to obtain features of voxel cell

points. PointPillars [49] is a previous work that introduces the pillar representation.

There are two approaches to improving voxel representations: multi-view voxels and

multi-scale voxels. Multi-view voxels propose a dynamic voxelization and fusion from differ-

ent views, e.g., bird’s-eyes and perspective views [121]. In multi-scale voxels, different voxels

scales [116] or reconfigurable voxels [109] are used.

The bird’s-eye view, BEV, feature map is a dense two-dimensional representation, where

each pixel corresponds to a particular area and encodes the points information in this area

[69]. Voxels and pillars can be lifted from the BEV feature maps, and a 3D point inside

the voxel/pillar is projected into the bird’s-eye view [54]. Another way to obtain BEV

20

feature maps, it’s from raw point clouds by summarizing points statistics inside the pixel

area [69]. Binary occupancy [1] and local point clouds height and density [2] are the most

commonly-used statists.

Grid-based neural networks

2D convolutional neural networks for BEV feature maps and pillars and 3D neural

networks for voxels are the two main types of grid-based networks. When applying 2D con-

volutional neural networks to the BEV feature map, 3D objects can be detected from the

bird’s-eye view [69]. 3D sparse neural networks are based on sparse convolutions and sub-

manifold convolutions [39]. Sparse convolutional operators are highly efficient and capable

to generates a real-time inference speed [69]. The SECOND [115] uses two sparse opera-

tors that form a sparse convolution network to extract 3D voxel features. This network has

been implemented in multiple previous works and turn the most used backbone network in

voxel-based detectors.

3.1.3 Point-voxel based 3D object detection

Point-voxel-based methods apply a hybrid structure that uses voxels and points as

representations [58]. Generally, those methods are distributed into two categories: the single-

stage and two-stage detection frameworks. Figure 3.3 provides an illustration of the structure

for both methods.

Figure 3.3: Point-voxel based 3D object detection method [69].

21

Single-stage point-voxel detection frameworks

As voxel-based methods have high computational efficiency and point-based methods

include more details, single-stage point-voxel-based methods naturally benefit from both

two representations [58]. SA-SSD [41] is an example of a single-stage network. This network

uses voxel and point representations, respectively, in the backbone and the auxiliary branch.

In the branch, the 3D SCNN extracts feature that is posteriorly converted into points in

particular layers, and data is processed across point-based networks. The branch predictions

calculate loss and optimize the branch and the backbone. After training, the auxiliary

branch is no longer necessary and can be removed. SA-SSD [41] benefits from two types of

representations.

Two-stage point-voxel detection frameworks

Generally, voxel representations are used in the first stage to provide a set of 3D object

proposals, and point representations are applied to get refined details in the next stage [58].

Fast Point RCNN [22] makes use of the two-stage approach. In the first stage, voxels generate

proposals with convolution methods at the level. And in the second stage, the points within

the proposals are deemed, and the first-stage predictions are refined with fused features.

PV-RCNN [96] was one of the first works of a two-stage method. PV-RCNN uses

SECOND [115] as the voxel-based network in the first stage and the RoI-grid pooling operator

as the point-based representation in the second stage. Some works try to improve the

performance in the second stage by adding new modules and operators, such as RefinerNet

[22], channel-wise Transformer in CT3D [94], and RoI-grid attention in Pyramid R-CNN

[67].

3.1.4 Range-based 3D object detection

A range image is a dense and compact 2D representation where each pixel expresses

the distance between a known reference frame and a perceptible point in the scene [102].

So, a range image reproduces an estimation of the 3D structure of a scene. Range images

can also be mentioned as depth images, depth maps, XYZ maps, and 2.5 D images [8]. To

address detection problems, range-based methods project new models and operators adapted

for range images (see Figure 3.4) and select appropriate views for detection [69].

22

Figure 3.4: Range-based 3D object detection method [69].

Range-based detection models

Singe range images are 2D representations, 3D object detectors based on the range

can share the models with 2D object detectors to handle range images. In LaserNet [73],

multi-scale features and 3D object detection from range images are achieved with a deep

layer aggregation network (DLA-Net).

Range-based operators

Since range image pixels have 3D distance information, the typical convolutional oper-

ator in a 2D network architecture isn’t the best choice for range-based detection because the

pixels in a sliding window can be distant from each in a 3D space [69]. Previous works used

23

new range-based operators for features extracting from range pixels, including range-dilated

convolutions [9], graph operators [19], and meta-kernel convolutions [32].

Views for range-based detection

Range images are taken from the range view (RV), a point cloud spherical projection.

It has been a solution in based-range methods for 3D object detection from the range view

[69]. However, range view detections suffer from spherical projection issues, such as occlusion

and scale variation [69]. To improve that, many methods leverage other views for 3D object

predictions, like the cylindrical view (CYV) [85] and a combination of the range view, bird’s-

eye view (BEV), and point view [59].

3.2 Summary

As seen, there are different methods for 3D object detection, focusing on LiDAR data,

particularly point clouds and range images. The Pillar method is one of the main approaches

discussed previously. In summary:

• Point-Based 3D Object Detection:

– Point-based methods utilize deep learning on point clouds for successful object

detection.

– Raw points obtained from LiDAR sensors are processed through a point-based

backbone network.

– Point cloud sampling (e.g., Furthest Point Sampling) and feature learning (using

PointNet, PointMLP, among others) are crucial steps.

• Grid-Based 3D Object Detection:

– Grid-based methods convert point clouds into discrete grid representations, such

as voxels, pillars, and bird’s-eye view (BEV) feature maps.

– Grid-based detectors consist of grid-based representations (voxels, pillars, BEV)

and grid-based neural networks (2D CNNs for BEV and pillars, 3D CNNs for

voxels).

• Point-Voxel Based 3D Object Detection:

24

– Point-voxel-based methods combine voxel and point representations for detection.

– Single-stage frameworks (e.g., SA-SSD) and two-stage frameworks (e.g., Fast

Point RCNN, PV-RCNN) benefit from both representations.

• Range-Based 3D Object Detection:

– Range images, dense 2D representations of distance, are used for 3D object de-

tection.

– Range-based models (e.g., LaserNet) and operators (range-dilated convolutions,

graph operators) are tailored for range images.

– Different views (range view, cylindrical view, combination of views) are leveraged

to improve detection accuracy.

The Pillar method involves point-based and grid-based approaches, combining raw point

processing and grid representations to achieve accurate 3D object detection from LiDAR

data.

25

4 PointPillars Network

Lang et al. [49] have proposed PointPillars, a novel encoder that uses PointNets to

learn a representation of point clouds organized in vertical columns (pillars). According to

them, PointPillars, compared to other methods, achieved superior results in all classes and

difficulty strata except for the easy subset for the car class. It also outperforms fusion-based

methods on cars and cyclists. PointPillars also has a significant improvement in inference

runtime.

Among the learned encoders VoxelNet is marginally stronger than PointPillars. How-

ever, since the VoxelNet encoder has a slower magnitude and more parameters than PointPil-

lars, it’s not a fair comparison, since when compared to similar inference times, PointPillars

offers a better mean average precision. Lang et al. [49] also demonstrate that PointPillars

dominates all existing methods on the KITTI challenge by offering higher detection perfor-

mance at a faster speed. Their results suggest that PointPillars is a relevant architecture for

3D object detection from LiDAR.

PointPillars. A method for 3D object detection that allows end-to-end learning with

only 2D convolutional layers. PointPillars utilizes an encoder that learns features on pillars

(vertical columns) of the point cloud to predict 3D-oriented boxes for objects [49]. End-to-

end learning is a deep learning process where the model learns all the steps between the initial

input phase and the final output result. In this technique, all the parts are simultaneously

trained instead of sequentially.

PointPillars accepts dense, robust features from point clouds from a LiDAR sensor as

input, estimates oriented 3D bounding boxes, and class predictions, such as pedestrians,

bicycles, and cars. Point Pillars has three steps (Fig. 4.1): (1) a feature encoder, where

point clouds are converted to a pseudo-image; 2) a backbone (2D CNN) to process the

pseudo-image into a high-level representation; and (3) a detection head (SSD) that detects

the objects and create 3D bounding boxes around it.

26

Figure 4.1: PointPillars Architecture [49].

4.1 Feature Encoder

First, the point cloud is divided into grids in the x-y coordinates, creating pillars set.

Each point in the cloud, which is a 4-dimensional vector (x, y, z, reflectance), is converted

to a 9-dimensional vector containing:

D = [x, y, z, r,Xc, Yc, Zc, Xp, Yp] (4.1)

where [Xc, Yc, Zc] is the distance from the geometric center point of the pillar to the point

cloud point, r is the reflectance, and [Xp, Yp] is the distance of the point from the center of

the pillar in the x-y coordinate system.

The pillar sets will be mostly empty due to the sparsity of the point cloud, and the

non-empty pillars will contain few points in them. This sparsity is exploited by imposing a

limit both on the number of non-empty pillars per sample (P) and on the number of points

per pillar (N) to create a dense tensor of size (D, P, N). If a sample or pillar holds too much

data to fit in this tensor, the data is randomly sampled. Oppositely, if a sample/pillar has

too little data to populate the tensor, zero padding is applied [49].

Next, it uses the PointNet network to extract features from the pillars. PointNet applies

to each point, a linear layer followed by BatchNorm and ReLU to generate high-level features,

which in this case is of dimension (C, P, N). This is followed by a max pool operation which

converts this (C, P, N) dimensional tensor to a (C, P) dimensional tensor.

4.2 Backbone (2D CNN)

The backbone constitutes sequential 2D convolutional layers to learn features from the

input. The input is the feature map generated from the feature encoder. Region Proposal

27

Network (RPN) [124] is an example of a backbone.

Figure 4.2: Region Proposal Network (RPN) architecture [122].

This backbone network (Fig.4.2) has three blocks of fully convolution layers. The first

layer of each block downsamples the feature map by half via convolution with a stride size

of 2, followed by a sequence of convolutions of stride 1. After each convolution layer, BN

and ReLU operations are applied. Then, upsample the output of each block to a fixed size

and concatenate them to build the high-resolution feature map.

4.2.1 RPN

A region proposal network (RPN) is a highly optimized algorithm for object detection

effectiveness. RPN (Fig.4.3) generates the proposal to the objects. To create “proposals” for

the area where the object is located, a small network is slid on a convolutional feature map,

which is the last convolutional layer output [87].

Figure 4.3: Region Proposal Network (RPN). Based on [30].

28

RPN contains a classifier and a regressor. The classifier calculates the proposal proba-

bility of getting a target object, and the regression regresses the proposal coordinates [91].

4.2.2 Anchors

RPN uses anchor boxes (Fig.4.4) to compute the bounding box regression value and

class label. An anchor is a central point at the sliding window in question [87].

Figure 4.4: Anchor boxes generation [87].

By default, anchors use 3 scales and 3 aspect ratios [87]. Scale, which is the size of an

image, and aspect ratio are two important parameters for every image. The aspect ratio can

be determined using the following formula:

ratio = W/H (4.2)

where W is the width of the image and H is the height of the image.

So, a total of k = 9 anchors at each pixel. For the entire image, the total of anchors

is WHk. This algorithm presents robustness against translations, so it is a translational

invariant algorithm [87].

Classify anchor boxes

For the classification of each anchor box, Intersection over Union (IoU) distance metric

29

it’s used. IoU is applied to define the extent of anchor box overlap with the target object,

which can be also called a ground truth object [87]. The greater the overlap region, the

greater the IoU.

The bounding boxes are not directly predicted by the network, although the network

predicts the probabilities and refinements that correspond to the anchor boxes [70]. The

network returns a unique set of several anchor box predictions for a different object size.

The final feature map contains object detections for every single class.

Loss Function

The loss function of the RPN is the sum of classification (cls) and regression (reg) loss.

It can be represented as follows [87]:

L(pi, ti) =
1

Ncls

∑
Lcls(pi, p

∗
i) +

λ

Nreg

∑
p∗iLreg(ti, t

∗
i) (4.3)

where i is the index of an anchor; pi is the probability of anchor i being an object or

not; p∗i is the ground-truth label, which is 1 if the anchor is positive, and 0 if the anchor is

negative; ti is a vector of 4 parameterized coordinates of the predicted bounding box; and

t∗i is the ground-truth box associated with a positive anchor. The classification loss, Lcls,

represents log loss over two classes: object or not an object.

To obtain the regression loss can be used the following formula [87]:

Lreg(ti, t
∗
i) = R(ti − t∗i) (4.4)

where R is the robust loss function. The variables Ncls and Nreg are the normalizations,

and λ is 10 by default and scales the classifier and regressor on the same level.

4.3 Detection Head (SSD)

Single Shot Detector (SSD) setup to perform 3D object detection. The objective of the

SSD network (Fig.4.5) is to generate 2D bounding boxes on the features generated from the

backbone layer of the Point Pillars network. Several important reasons for choosing SSD as

a one-shot bounding box detection algorithm are: fast inference and great accuracy. The

single shot detector (SSD) uses features from the network VGG16 [88].

30

Figure 4.5: Single Shot Detector Architecture [61].

4.3.1 VGG16 Model

The VGG model stands for Visual Geometry Group and it’s from Oxford; it’s a stan-

dard deep Convolutional Neural Network (CNN) architecture with multiple layers. The

“deep” refers to the number of layers, for example, VGG-16 has 16 convolutional layers. In

the structure of the VGG16 neural network, as shown in Figure 4.6, all convolution layers

have a 3×3 convolution core size, 1 step size, and there is a maximum of five pooling layers,

which all are 2×2 and the step size is 2. There are three full connection layers, where the

third layer symbolizes the label categories. The final layer is a softmax layer. All hidden

layers are followed by a ReLU nonlinear activation function [103].

Figure 4.6: VGG16 Model [81].

31

4.3.2 VGG 16 Transfer Learning Model

Transfer learning is a machine learning mechanism that takes a pre-trained model on

a large dataset and transfers its knowledge to a smaller dataset, which can be called the

target field so that the target field can reach a better learning effect [25]. VGG16 is a deep

large convolutional neural network that extracts and refines images in depth. Firstly, the

convolutional layers extract the image features, whilst the network layers that are deeper

handle specific tasks [117].

In the migration learning process, pre-trained models can be applied, retaining the

lower layers’ weights and the higher layers, and adjusting the relevant parameters. Since the

source domain data have different distributions, the model is adjusted using the dataset of

the target domain by removing the original upper layer, inserting a new output layer, and

adding up a softmax function to classify the new problem [117]. A process of migrating the

model, by transferring the weights trained in the source field and adjusting the model using

the target field, simplifies the model training process in a new field problem.

32

5 Data Augmentation

5.1 Data augmentation for 2D images

In deep neural networks, training data has a crucial role in learning to perform tasks.

However, compared to the real-world complexity, training data has a limited quantity, so to

enlarge the training set and maximize the knowledge of a network, data augmentation (DA)

is required. A conventional DA method is a global augmentation that learns transformations

invariance in image recognition chores, such as random cropping, random scaling, random

erasing, color jittering, etc [55].

Figure 5.1: Some examples of data augmentation for 2D images [5].

Another approach of DA is local augmentation which generates new training data per-

forming diverse mix operations. MixUp is an example of local data augmentation [113].

MixUp [120] generates new training data using convex combinations of the input pixels/fea-

ture and the output labels. Cutmix [120] swaps removed regions with a patch from other

images instead of mixing the whole images. Cutblur [119] (Fig.5.2) cuts a low-resolution

patch and swaps it with the corresponding high-resolution image region and vice versa,

which is practically the same as making the image partially sparse. This method allows the

model to understand "how" and "where" when super-resolves the image [26].

33

Figure 5.2: Example of Cutblur on 2D images [118].

In addition to global and local DA approaches, random transformation is a well-known

DA technique for 2D data [120]. As an alternative to random transformations of training

data, previous works tried to generate augmented samples with image combination [52],

generative adversarial network (GAN) [99], Bayesian optimization [106], and image inter-

polation [24] in the latent space from the original data. However, these methods generate

different data comparing the original data, resulting in untrustworthy samples. Interpolation-

based approaches [52] can involve pixel-wise interpolation for images. For example, Smart

Augmentation [52] merges samples from the same class to generate augmented data. Due

to disorderly properties and irregular structure, these methods cannot be applied to point

clouds [95].

An optimal combination of predefined transformation functions is another approach

to augment the training samples [55]. AutoAugment [28] suggests a reinforcement learning

strategy to generate symbolic transformation, and then learn DA policies from the data.

However, AutoAugment is not computationally practical for large-scale problems. Soon after,

Fast AutoAugment finds a more efficient search strategy. This method explores advanced

hyper-parameter optimization methods to strike better transformations for augmentation.

Although it sees the best transformations, it is restricted to discovering a fixed augmentation

strategy for all training samples. Contrary to these methods, PointAugment [55], instead

of discovering a fixed augmentation strategy for all the training samples, generates the

transformation functions based on the individual training sample properties and the network

capability during the training process.

5.2 Data augmentation for 3D point clouds

Since 3D object recognition datasets, which include KITTI datasets, have a limited

amount of samples, increasing the size of the data is one of the ways to reduce overfitting

and improve performance. [26]. As with 2D computer vision tasks, one direct approach

34

is to embrace a global augmentation such as translation, random flipping, shifting, scaling,

jittering, and rotation, which can be directly incorporated for expanding 3D objects [55].

Oversampling was also used to solve the foreground-background class imbalance problem by

increasing the number of objects within the point cloud so that the difference between the

number of points belonging to an object and the background in the point cloud is minor

after applying this technique.[26].

Previous works such as PointNet and PointNet++ [84] use DA techniques of random

rotation about the up-axis scaling, random rotation with perturbations, random shifting, and

random jittering of points on the input object sample. RS-CNN and DensePoint followed

identical DA strategies with little variations [95]. Regardless of these DA augmentation

techniques (such as: random rotation, random shifting, random jittering.) with effectiveness

on the models, these data augmentation methods do not fully utilize the point cloud richer

information when compared to the counterparts for 2D images [26].

Several studies investigated augmenting local structures of point clouds [113]. PointAug-

ment [55] is an auto-augmentation network for shape-wise transformation and pointwise dis-

placement based on the individual training sample’s properties and the network capability

under the training process. PatchAugment [95] explores data augmentation in regional areas.

PointWOLF [48] applies weighted transformations in local neighborhoods to increase the 3D

objects’ diversity. However, the works mentioned earlier aren’t appropriate for scene-level

point clouds because they focus on object-level augmentation.

Other studies investigated the mixing idea for augmenting point clouds. PointMixUp

[23], for example, interpolates 3D objects to generate new samples for training. PointCut-

Mix [50] supersedes point object subsets with that of other objects to improve training data.

However, both works focus only on object-level augmentation. Several studies also explore

scene-level mix. For example, GT-Aug cuts instances and attaches them to other LiDAR

scans for the object detection task. PolarMix [113] can accomplish both object-level and

scene-level augmentation. PolarMix designs are aligned with LiDAR-specific data properties

such as partial visibility and density variation, thus guaranteeing high fidelity and effective-

ness of the augmented point clouds. PolarMix is generic and applicable to object detection

tasks.

Patch-based DA methods for 2D have improved performance [95]. Part-aware [26]

firstly extends 2D image patches to 3D partitions and after extends 3D partitions to 3D

point clouds. Part-aware (Fig.5.3) applies five distinct DA types to different partitions, adds

robustness to the network, and improves performance.

35

Figure 5.3: Part-Aware Data Augmentation for 3D Object Detection in Point Cloud [26].

5.3 Global and Local Data Augmentation

Data augmentation techniques can be divided into two classes, global and local data

augmentation [40]. Global data augmentation refers to operations that apply transforma-

tions to the entire point cloud or scene. In turn, local augmentation focuses on specific

regions of the point cloud. Thus, global operations aim to improve the robustness and gen-

eralization of 3D object detectors without introducing local bias. This strategy also enhances

model generalization and is more effective for real-world applications, such as 3D object de-

tection for autonomous vehicles on urban roads. However, it is important to ensure that

the operation preserves the spatial and geometric relationship between the objects and the

foreground/background of the scene. In addition, the operations should also preserve the

objects’ shapes, since they are important for classification.

This work studied global and local augmentation techniques for object detection in

urban roads, using the KITTI dataset. Among the global augmentation techniques, opera-

tions for geometric and spatial transformation, noise-based, and sampling-based operations

were selected. These techniques are described as follows (and for more details, Appendix 6

contains the hyper-parameter values used in each data augmentation technique).

5.3.1 Geometric and Spatial Transformations

The geometric transformations consist of rigid transformation (i.e., rotation, transla-

tion, and scaling) in the entire point cloud. They help the model to become invariant to

36

the orientation, translation, and scaling (i.e., affect the size of objects) of the scene. Some

operations are: rigid transformations (translation + rotation); similarity transformations

(translation + rotation + isotropic scaling); affine transformations (translation + rotation

+ arbitrary scaling + shearing); and random flips [83].

Figure 5.4: Geometric and Spatial transformations on point cloud [40].

5.3.2 Noise-based Operation

These operations involve introducing random or controlled variations to the original

data to create new samples with minor perturbations, with the aim of increasing data diver-

sity and including noise that may actually be present in the data acquisition process. Some

operations are: jitter; Gaussian noise; and shuffling.

• Jittered Points

– Jitter adds uniform noise to point coordinates that randomizes the point locations

by slightly altering their values [86]. This method is helpful when precisely aligned

data can be a problem.

• Gaussian Noise

– Adding noise to the input data allows more data gained for the deep neural

network to train on and improves the robustness and generalization of CNNs [75].

• Shuffling

37

– One way to improve invariance to permutations is by training the model with

shuffling of points [7].

5.3.3 Sampling-based Operation

Sampling-based operations involve manipulating a dataset by selecting certain elements

or generating new ones based on specific criteria. These operations are typically used to man-

age the data size, quality, or representation. Sampling-based operations can be categorized

into oversampling, subsampling, upsampling, and downsampling. While a diverse array of

sampling-based operations exists, this experiment only evaluates the effectiveness of the

upsampling operation.

• Upsampling

– Upsampling is a technique used to increase the spatial resolution of the input fea-

ture map. One of the main advantages is that upsampling increases the resolution

of the output, which can help neural networks localize features more accurately.

38

6 Developed Work and Experiments

This chapter describes the design of the experiments, the techniques, and the evaluation

metrics used. Figure 6.1 shows a general flowchart for 3D object detection using point clouds

with data augmentation. The first step is the data acquisition and representation, which

consists of obtaining the point cloud from a LiDAR sensor and then converting it to a data

representation (e.g., point cloud, range image, grid, or voxels). Each sample has a list of

annotations associated with it. Afterward, the samples are divided into train, validation,

and test sets. The training set undergoes data augmentation operations to either increase

the number of samples, attenuate data imbalance or improve representativeness. Finally,

the data feeds a deep learning model that learns how to detect and classify objects using the

training and validation sets. This final model is evaluated using the testing dataset.

Sensor and Data Representation

Camera LiDAR

Autonomous Car

Image

Depth Image Voxels Point Cloud

Data Processing
and Preparation

Data Augmentation

Data Annotation

Data Split

Train Val Test

Flipping Rotation Cropping Noise Addition

Train Val Test

Model
Learning and Evaluation

Input and Supervision

3D Object Detector

Train Val

Evaluation

Test

Model
Deployment

Figure 6.1: Flowchart for Evaluation of Point Cloud Data Augmentation for 3D-LiDAR

Object Detection. Based on [68].

The following subchapters will provide a more detailed explanation of each step in the

flowchart to clarify the developed work.

6.1 KITTI Dataset

The KITTI dataset used in this work has 2D images, 3D point clouds, and label files.

39

Figure.6.2 is an example of the LiDAR data from the KITTI dataset. The images show two

different views from the same point cloud for a better understanding. In the first image

(figure.6.2(a)) is very hard to perceive something, but in the second image (figure.6.2(b)),

some persons can be seen in the street. In this work, both view perspectives were used.

((a)) BEV

((b)) Front of View

Figure 6.2: Velodyne point clouds.

All the rows in the KITTI dataset’s label files are composed by type of object (car,

pedestrian, cyclist, etc), truncated float (where 0 means truncated, and 1 otherwise), oc-

clusion state (0=fully visible, 1=partly occluded, 2=largely occluded, 3=unknown), alpha

observation angle, 2D bounding box parameters (center, length, width), 3D object dimen-

sions (height, width, length), 3D object location [x, y, z] (in camera coordinates), and yaw

angle, respectively.

40

Since the bounding box information provided in the ground truth (GT) label is in the

camera coordinate system, external parameters are crucial to converting it to the LiDAR

coordinate (Fig.6.3) system during training.

Figure 6.3: KITTI Coordinate System.

6.2 Data Augmentation

The hyperparameters that control the data augmentation techniques used in the code-

base are presented below.

Key data augmentation hyperparameters include:

global_rot_parameter =[−0.78539816 , 0 . 78539816] ,

g lobal_scale_parameter = [0 . 9 5 , 1 . 0 5] ,

g loba l_trans lat ion_parameter = [0 , 0 , 0] ,

random_fl ip_ratio =0.5 ,

j i t t e r_s igma =0.01 ,

j i t t e r _ c l i p =0.05 ,

gauss ian_noise=d i c t (

num_try=100 ,

t r an s l a t i on_std =[0 .25 , 0 . 25 , 0 . 2 5] ,

rot_range =[−0.15707963267 , 0 .15707963267]

) ,

upsampling_num_samples=4,

local_rot_range =[−0.78539816 , 0 . 78539816] ,

local_std_range =[0 .1 , 0 . 2 5] # l o c a l gauss ian no i s e

For more details about the meaning of the hyperparameters, see Annex B.

41

6.3 Model Learning

6.3.1 Defining Initial Configurations

Since LiDARs have a wide range, limits of the x, y, and z dimensions are established

to focus on a smaller region. These limits define the region of interest (RoI) in which it

will be predicting the bounding boxes. The NMS method will be applied to the generated

bounding boxes. The NMS method walks through all classes and, for each class, looks

for possible overlaps (IoU — Intersection over Union) between all bounding boxes. If the

IoU > thr between two boxes of the same class, the algorithm determines that the two

boxes refer to the same object and throws away the box with the lower confidence score.

Based on nms_thr = 0.01, NMS filters out overlapping boxes. To avoid too many remaining

bounding boxes, max_num = 50 is defined. Other configurations also defined include the

maximum number of points, the maximum number of voxels, etc. These configurations allow

transferring the point cloud from 3D coordinates to Pillar coordinates in the Point Pillars

detection pipeline.

Configurations:

#Voxe l i z a t i on

n c l a s s e s=3

voxe l_s i ze =[0 .16 , 0 . 16 , 4]

point_cloud_range =[0 , −39.68 , −3, 69 .12 , 39 .68 , 1]

max_num_points=32

max_voxels=(16000 , 40000)

#Anchors

ranges = [[0 , −39.68 , −0.6 , 69 .12 , 39 .68 , −0.6] ,

[0 , −39.68 , −0.6 , 69 .12 , 39 .68 , −0.6] ,

[0 , −39.68 , −1.78 , 69 .12 , 39 .68 , −1 .78]]

s i z e s = [[0 . 6 , 0 . 8 , 1 . 7 3] , [0 . 6 , 1 . 76 , 1 . 7 3] , [1 . 6 , 3 . 9 , 1 . 5 6]]

r o t a t i o n s =[0 , 1 . 5 7]

#Train ing

a s s i g n e r s = [

{ ’ pos_iou_thr ’ : 0 . 5 , ’ neg_iou_thr ’ : 0 . 35 , ’min_iou_thr ’ : 0 . 35} ,

42

{ ’ pos_iou_thr ’ : 0 . 5 , ’ neg_iou_thr ’ : 0 . 35 , ’min_iou_thr ’ : 0 . 35} ,

{ ’ pos_iou_thr ’ : 0 . 6 , ’ neg_iou_thr ’ : 0 . 45 , ’min_iou_thr ’ : 0 . 45} ,

]

#Val idat i on and Test

nms_pre = 100

nms_thr = 0.01

score_thr = 0 .1

max_num = 50

During the model training, the AdamW optimizer is used to modify the typical imple-

mentation of weight decay in Adam by decoupling weight decay from the gradient update.

AdamW improves training loss (to see more details about loss functions, see Annex A), and

the generalized models are much better than the trained models with Adam.

The learning rate (LR) schedule optimizer is also used during the model training to

adjust the LR based on the number of epochs during the model training. The model was

trained for 160 epochs with an LR initial value of 0.00025. To determine the optimal LR,

optimizer, and number of epochs, an iterative trial and error process was conducted until

the best hyperparameters were identified for the model.

6.3.2 Building the Point Pillars Network

Feature Encoder

Figure 6.4: The first step of PointPillars Architecture: Pillar Feature Net.

The feature encoder (Figure 6.4) can be divided into two steps: pillar layer and pillar

encoder.

43

• Pillar Layer: Based on predefined voxel size, the point cloud with N points is divided

into (432, 496, 1) pillars. The pillars can take the value P = 16000 in the case of the

training set or P = 40000 in the test set. Each pillar chooses M = 32 points and,

if M < 32 points, a padding operation with null points (0) is applied. In the pillar

layer, the data shape changes from (N, 4) to (P,M, 4), and it records the position in

coordinates of the pillars in the (432, 496) map and the number of practical points in

each pillar.

• Pillar Encoder: Firstly, the pillar encoder performs de-mean encoding on the points

in each pillar, transforming (P,M, 4) into (P,M, 3). After decentralizing the valid

points in each pillar, this is (P,M, 2), the original (P,M, 4) is combined with the results

of de-mean encoding and de-center encoding and gets (P,M, 9) vector. To the obtained

vector will be applied convolution kernel pooling: (P,M, 9)− > (P,M, 64)− > (P, 64).

According to the coordinate position of the pillars on the map, the resource scatter

of P pillars is placed on the (432, 496) resource map, and the map of resources of

(64, 496, 432) is obtained and can be registered as (C,H,W).

Backbone

Figure 6.5: The second step of PointPillars Architecture: Backbone 2D CNN.

A backbone (Figure 6.5) is a simple layer that operates in 2D, which can be seen as a

combination of Conv2d+ Bn+ ReLU . The input layer is the pillar features encoded in an

x-y grid. The x-y grid is converted into different scales with features extracted from them,

and in the end, all the features with distinct scales are concatenated into a single tensor

(Figure 6.6). Since the input values were (C,H,W) = (64, 496, 432) after the combination

of Conv2d+BN +ReLU , the final data shape will be (256, 62, 54).

44

Figure 6.6: Backbone 2D CNN.

Detection Head

Figure 6.7: The third step of PointPillars Architecture: Detection Head (SSD).

The SSD approach (Figure 6.7) is based on a feed-forward convolutional network that

generates bounding boxes with a fixed size and scores for the case that object class instances

existed in those boxes, followed by a non-maximum suppression process for the final detec-

tions [61]. The first network layers (as seen in the image 4.5 of the chapter 4.3) are based

on a typical architecture used in high-quality image classification that will be called the

base network. Then an auxiliary structure, specifically a decoder network, is added to the

network to generate the detections (Figure 6.8).

45

Figure 6.8: Detection Head insert on Backbone 2D CNN.

The structure of the base network in Figure 6.8 is represented in Figure 6.9.

Figure 6.9: Base Network Structure.

PointPillars has three anchors of different sizes, and each anchor size has two angles,

so there are six anchors in total. The network is trained in 3 categories: Pedestrian, Cyclist,

and Car.

• Classifier: (6 ∗ C,H/2,W/2)− > (6 ∗ 3, H/2,W/2), i.e. (18, 248, 216)

• Box Regressor: (6 ∗ C,H/2,W/2)− > (6 ∗ 7, H/2,W/2), i.e. (42, 248, 216)

• Orientation Classifier: (6 ∗ C,H/2,W/2)− > (6 ∗ 2, H/2,W/2), i.e (12, 248, 216)

46

So the data shape changes from (6∗C,H/2,W/2)− > [(6∗3, H/2,W/2), (6∗7, H/2,W/2), (6∗
2, H/2,W/2)].

Figure 6.10: Final Detection.

6.3.3 GT value generation

The three branches of the detection head (classifier, box regressor, and orientation clas-

sifier) predict the category based on the anchor, the category of the bounding box (relative

to the offset and size ratio of the anchor), and the category of the rotation angle. So how

the ground truth (GT) value corresponding to each anchor during the training is obtained?

Firstly the anchors are generated. For three different categories, the anchor contains

a total of 3 sizes: [0.6, 0.8, 1.73], [0.6, 1.76, 1.73], and [1.6, 3.9, 1.56], and a rotation arc: 0

and π/2. To get the anchor tensor, 3*2 anchors are placed on each position on the feature

map with the size (H/2,W/2), generating an anchor tensor with shape (H/2,W/2, 3, 2, 7) =

(248, 216, 3, 2, 7). Then correspondence between anchors and GT bounding boxes is estab-

lished. Here, taking the anchor with a size of [0.6, 0.8, 1.73] as an example, first, the IoU (see

Appendix B) with n GT bounding boxes and 248 ∗ 216 ∗ 2 anchors is calculated, and after

the anchors are successively divided into positive and negative anchors.

• Positive anchor: (1) If the maximum IoU between the anchor and all GT bounding

boxes is greater than pos_iou_thr (0.5), then this anchor is positive, and is responsible

for the GT bounding box with the maximum IoU; (2) For each GT bounding box, select

the anchor with the greatest IoU, if its IoU is greater than min_iou_thr (0.35), then

this anchor is positive, and is responsible for the GT bounding box.

• Negative anchor: If the maximum IoU between the anchor and all GT bounding

boxes is less than neg_iou_thr (0.35), then the anchor is a negative anchor.

47

Some anchors do not belong either to the group of positive or neither negative anchors,

which are anchors whose maximum IoU with GT bounding boxes is between 0.35-0.5.

After the correspondence between the anchors and the GT bounding boxes, it is known

which anchors are positive and negative. It is also known which GT bounding box the

positive anchor corresponds to. Finally, the GT value output by the detection head will

be obtained in three different categories: category classifier, box regression, and orientation

classifier.

• Category classifier: Positive and negative anchors take part in the supervision of

category classification. The output here is the result of 3 sigmoids, that is, the anchor

is the confidence of the 0, 1, and 2 classes. The GT value of the negative anchor is (0,

0, 0). The GT value of the positive anchor is (0, 0, 1) or (0, 1, 0) or (1, 0, 0).

• Bounding box regression: Positive anchors take part in the supervision of the

bounding box regression. For the anchor (xa, ya, za, wa, la, ha, θa) and its corresponding

GT bounding box (xgt, ygt, zgt, wgt, lgt, hgt, θgt), the position offset and the size ratio of

the GT bounding box and the predicted anchor by the model:

∆x = xgt−xa

da
, ∆y = ygt−ya

da
, ∆z = zgt−za

da
, where da =

√
((wa)2 + (la)2)

∆w = logwgt

wa , ∆l = log lgt

la
, ∆h = log hgt

ha

∆θ = sin(θgt − θa)

• Orientation classifier: Positive anchors take part in the supervision of the angle

classification. If the angle of the GT bounding box corresponds to the anchor is in

[0, π], then the label is 0; if the angle of the GT bounding box corresponds to the

anchor is in [π, 2π], then the label is 1. The orientation classification is important

because if the orientation of two cars differs by 180º, for example, then sin(θgt− θa) =

sin((θgt + π) − θa), that is, the regressive ∆θ is the same since the orientation of the

car cannot be distinguished.

6.4 Evaluation metrics

To evaluate the experimental results, classification and regression quantitative metrics

were employed. The classification metrics are estimated based on a confusion matrix with

true positive (TP), false negative (FN), false positive (FP), and true negative (TN).

48

• Recall

Recall =
TP

TP + FN
(6.1)

• Precision

Precision =
TP

TP + FP
(6.2)

• F1 score

F1 score =
2× precision × recall

precision + recall
(6.3)

• Mean average precision (mAP)

mAP =
1

n

k=n∑
k=1

APk (6.4)

where n is the number of classes and APk is the average precision of class k. Average

precision (AP) is one way of calculating the area under the PR (precision-recall) curve

and can be defined as:

APk =
TP (k)

TP (k) + FP (k)
(6.5)

The mean average precision (mAP) is calculated for the 2D bounding box, AOS (average

orientation similarity), BEV (bird’s eye view), and 3D bounding box detections. The mAP

of each detection method was calculated for three different degrees of difficulty (0 - easy, 1 -

medium, or 2 - difficult). The difficulty is defined according to the height of the 2D bounding

box, the degree of occlusion, and the degree of truncation.

AOS (average orientation similarity) is used to evaluate orientation, usually considered

together with a 2D bounding box because a 2D bounding box is based on an axis-aligned

bounding box during the evaluation. Briefly, AOS measures the similarity between the

predicted rotation and the ground truth rotation angles:

AOS =
1 + cos(αgt − αp)

2
(6.6)

6.4.1 Steps for AP Calculation

• 1. Calculate the 3D IoU, which is used to determine whether a determinate bounding

box matches the GT box (IoU > 0.7).

• 2. According to the category and the difficulty, GT bounding boxes and detected

bounding boxes are selected.

49

• 3. Determine the score threshold corresponding to the point pair (Pi, Ri) in the PR

curve.

– Create an empty score collection, S;

– For each GT bounding box, select the largest detected bounding box (db) that

has not been matched and its IoU > 0.7 as a matching box. The predicted score

is added to the collection S; if no conditions are met, there is no need to db. The

predicted score is added to the collection S middle;

– Collect pairs S. Intermediate scores are ranked from high to low;

– Calculate the number of GT bounding boxes according to S. Calculate the recall

at |S|/|GT_bbox|. The scores create a threshold set S∗.

• 4. Calculate the PR curve and AP.

– Calculate TP (all matching detected bounding boxes), FN (all unmatched GT

bounding boxes), and FP (all unmatched predicted_scores ≥ s
(1)
i);

– Calculate:

∗ Precision

∗ Recall

– The PR curve and AP calculation are based on the point pair (Pi, Ri).

(1) si: each threshold set of S∗ its composed by si.

6.4.2 Evaluation of the Test set: illustration and metrics

Figures 6.11 and 6.13 show some qualitative results (as 3D detection) by illustrating

the 3D-boxes on a given frame of the test set belonging to KITTI dataset image.

Figure 6.11: 3D Object Detection from 2D image.

50

Figure 6.12: 3D Object Detection from Point Cloud.

Figure 6.13: 3D Object Detection from Point Cloud (with GT).

The respective legend to guide the understanding of the testing results are:

• Red: Pedestrian

• Green: Cyclist

• Blue: Car

• Yellow: GT (Ground Truth)

51

7 Analysis and discussion of results

7.1 Results

Table 7.5 shows the average precision (AP) of the different classes and the difficulty

levels regarding the detection methods, while Table 7.2 presents the mean average preci-

sion (mAP) of the different difficulty levels per class. To evaluate the model, classification

performance-measures such as F1 score, recall, and precision, were calculated (see A.1 from

annex A).

Analyzing Table 7.5 and Table 7.2, it is observed that the ‘Car’ class obtained the

best performance among all classes since it represents the majority of the annotated labels,

and also the size and rectangular shape of the 3D bounding belonging to this class help the

prediction of its orientation when compared to the remaining classes shape (i.e., ‘Pedestrian’

and ‘Cyclist’).

Class Pedestrian Cyclist Car

Difficulty Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BBOX_2D 46.6385 42.6914 40.5610 58.1782 43.5697 40.0704 86.1092 77.9969 77.2292

AOS 27.7677 26.5258 25.3001 54.3573 39.0934 35.9742 85.3043 76.4905 74.8277

BBOX_BEV 37.6112 36.6923 33.5501 52.1940 37.6584 35.9049 85.6656 77.6653 76.6165

BBOX_3D 26.9381 25.1430 24.1276 44.2416 30.3132 29.0027 66.5733 60.2184 54.6960

Table 7.1: AP values of different detection methods on the KITTI dataset.

Difficulty Easy Moderate Hard

BBOX_2D 63.6420 54.7527 52.6206

AOS 55.8097 47.3699 45.3673

BBOX_BEV 58.4902 50.6714 48.6905

BBOX_3D 45.9170 38.5582 35.9421

Table 7.2: mAP values of different detection methods on the KITTI dataset.

52

7.1.1 Global Operations

In general, the obtained results have a small percent precision, therefore some data

augmentation techniques were applied to the training data of the baseline model to increase

the precision of the model. The first data augmentation techniques that were applied are

geometric transformations, such as random rotation, scaling, translation, and flip on the

points clouds, and the obtained individual results, respectively, are shown in the following

Tables:

Class Pedestrian Cyclist Car

Difficulty Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BBOX_2D 65.8472 62.1493 58.3800 80.4138 69.4442 67.2450 90.4396 88.5991 85.8627

AOS 46.5390 43.2790 40.1873 78.7066 61.2886 59.0642 90.0831 87.5234 84.4588

BBOX_BEV 56.6091 50.6296 47.1768 71.7167 58.6304 54.8938 89.4101 86.5404 79.5422

BBOX_3D 49.5107 44.2302 41.2375 68.0679 53.5679 50.8584 82.8154 74.0379 68.1278

Table 7.3: AP values of different detection methods on the KITTI dataset with random

rotation data augmentation technique.

Class Pedestrian Cyclist Car

Difficulty Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BBOX_2D 61.5757 58.6031 54.6101 79.0814 67.1805 63.1162 89.7583 85.3930 79.6553

AOS 34.7239 32.9851 30.6550 76.9454 61.7475 58.2367 89.5584 84.5648 78.4260

BBOX_BEV 57.6708 51.7335 47.7150 73.5661 57.4302 53.8111 88.6441 84.1217 78.4111

BBOX_3D 48.4136 44.0084 41.2220 69.4400 52.1917 49.3618 75.0672 66.0250 64.5190

Table 7.4: AP values of different detection methods on the KITTI dataset with scaling data

augmentation technique.

Class Pedestrian Cyclist Car

Difficulty Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BBOX_2D 53.6988 49.8462 47.8971 70.4430 50.3021 46.1745 86.6287 78.0526 76.9926

AOS 32.4891 30.7464 29.8796 67.2182 46.4454 42.8748 86.0683 76.7673 75.0623

BBOX_BEV 48.3293 44.7255 41.0463 65.5104 44.8617 42.5579 84.9580 77.1724 76.0925

BBOX_3D 39.0264 36.4320 33.4319 65.5104 44.8617 42.5779 84.9580 77.1724 76.0925

Table 7.5: AP values of different detection methods on the KITTI dataset with random

translation data augmentation technique.

53

Class Pedestrian Cyclist Car

Difficulty Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BBOX_2D 57.3324 53.6357 51.9135 73.6033 58.1698 54.0455 88.4448 84.3588 78.7506

AOS 35.1320 33.2585 32.4012 72.1542 55.1395 51.3180 88.0094 83.2988 77.1851

BBOX_BEV 53.83350 48.1993 45.0751 71.5840 50.5661 47.6089 86.9917 83.1604 77.6882

BBOX_3D 45.6012 41.4136 37.8224 68.5832 46.9737 43.3134 70.9394 62.7611 60.7148

Table 7.6: AP values of different detection methods on the KITTI dataset with random flip

data augmentation technique.

As discussed earlier, the main goal of applying geometric transformations is to enhance

the model’s ability to handle rotation, translation, scaling, and flip invariance. These trans-

formations modify the data samples, making them more representative of these variations.

In general, the random rotation transformation resulted in more significant improve-

ments in orientation and pose estimation for all classes compared to other geometric trans-

formations. When compared solely to random flit (another operation that affects object

orientation), random rotations yielded notable differences in performance. Specifically, the

AOS metric for the Hard set showed improvements of approximately 7.79, 7.75, and 7.27

for Pedestrian, Cyclist, and Car, respectively. These results suggest that, between the two

operations, random rotation alone can significantly enhance the classifier’s robustness con-

cerning object orientation. This simplifies the process by eliminating the need for two distinct

methods.

Furthermore, concerning pose estimation, random rotation demonstrated superior over-

all performance. However, when evaluating the BBOX_3D metric, scaling outperformed

random rotation by a small margin of approximately 1.38. Additionally, in the Car class for

the easy, moderate, and hard subsets, random translation surpassed random rotation. This

implies that a combination of random rotation and translation can offer better contributions

to pose and orientation estimation. Nevertheless, if only one option is feasible, relying on

random rotation should suffice for achieving satisfactory overall performance.

After the geometric transformations application on the point cloud, noise-based oper-

ations, such as jitter, Gaussian noise, and shuffling were explored and can be seen in the

tables below.

54

Class Pedestrian Cyclist Car

Difficulty Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BBOX_2D 53.3772 50.6876 48.4943 65.3464 48.3602 45.1187 87.8342 78.2490 76.9634

AOS 31.7557 30.4270 29.3447 63.3383 43.9017 40.9737 87.5738 77.3371 75.4795

BBOX_BEV 46.4298 44.3443 41.3281 61.5708 44.6678 43.2509 86.2903 77.7343 76.4139

BBOX_3D 37.6627 36.1600 33.1984 58.4343 41.5782 37.8097 66.8201 58.1882 53.9783

Table 7.7: AP values of different detection methods on the KITTI dataset with jitter points

data augmentation technique.

Class Pedestrian Cyclist Car

Difficulty Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BBOX_2D 61.2492 58.0822 54.4647 84.3089 69.6610 67.1053 89.4946 87.5695 85.0064

AOS 34.9442 33.4838 31.7364 82.3835 63.5745 61.2440 89.4026 86.9786 84.1780

BBOX_BEV 54.2564 49.7521 45.2796 80.1874 59.1168 56.4294 88.8394 85.7651 79.1107

BBOX_3D 48.8127 43.8644 39.9126 76.0929 55.2278 51.9355 79.8890 71.0105 66.2267

Table 7.8: AP values of different detection methods on the KITTI dataset with Gaussian

noise data augmentation technique.

Class Pedestrian Cyclist Car

Difficulty Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BBOX_2D 52.4766 49.0509 46.7121 71.0058 54.7001 52.1896 87.0185 78.1385 76.9038

AOS 31.3664 29.6963 28.7487 68.1336 50.3405 47.9886 86.4446 76.9225 75.1122

BBOX_BEV 47.0222 44.4001 40.6238 67.0049 47.9679 45.8521 86.2825 77.6774 76.2880

BBOX_3D 39.2020 36.3416 33.3256 64.3584 44.0106 41.8283 68.3598 58.6953 54.5362

Table 7.9: AP values of different detection methods on the KITTI dataset with shuffled

points data augmentation technique.

Furthermore, the noise-based techniques also contributed to the detector’s performance

enhancement, but their impact was lower than that of geometric transformations. In general,

the Gaussian noise had a more positive influence on orientation and pose estimation. When

it comes to 2D and 3D pose estimation, Gaussian noise consistently outperformed all other

operations, such as jittering points and shuffling, across all subsets—easy, moderate, and

hard. Similarly, Gaussian noise demonstrated superior performance in orientation estima-

tion, as evidenced by the analysis of the AOS metric. However, it’s worth noting that when

specifically considering this metric, random rotation achieved slightly better results.

55

These findings suggest that Gaussian noise excels in terms of overall performance com-

pared to other noise-based operations, particularly in the context of pose estimation. On

the other hand, for orientation estimation, the geometric operation of random rotation still

maintains an edge over Gaussian noise in terms of performance.

Class Pedestrian Cyclist Car

Difficulty Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BBOX_2D 55.7855 51.9292 50.0641 70.5508 52.7233 50.4653 87.6876 78.3487 77.3512

AOS 34.0496 31.7363 30.9056 67.1535 48.8495 46.2775 86.9784 76.9475 75.1824

BBOX_BEV 49.0861 46.3124 42.6059 66.9836 46.5759 43.8467 85.6268 77.3618 76.2507

BBOX_3D 40.6971 38.1660 35.5330 64.6337 43.2629 41.8263 664.3221 57.8460 53.2556

Table 7.10: AP values of different detection methods on the KITTI dataset with upsampling

data augmentation technique.

In conclusion, all data augmentation techniques increased the performance of the model

when compared to the baseline model. The effects of the data imbalance were also attenu-

ated. Moreover, random rotation, random translation, and Gaussian noise emerged as the

primary contributors to pose and orientation estimation.

7.1.2 Local Operations

Once global augmentation techniques have been implemented, local ones are introduced,

starting with local random rotations.

Class Pedestrian Cyclist Car

Difficulty Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BBOX_2D 31.3154 26.4510 23.6553 37.5467 33.5032 31.9275 82.7686 63.7786 58.8584

AOS 18.7430 16.9266 15.6738 33.2203 20.0641 19.2504 80.9542 61.7335 56.4501

BBOX_BEV 36.3634 30.5639 26.5352 30.6835 29.1837 27.5405 75.4780 57.9100 54.5686

BBOX_3D 23.0426 18.8785 16.8463 24.3210 22.1568 21.1199 55.0470 43.1295 38.8464

Table 7.11: AP values of different detection methods on the KITTI dataset with local random

rotation data augmentation techniques.

Based on a comparison of the results obtained with the baseline, Table 7.1, it is evident

that there has been a decline. Therefore, it can be concluded that the random local rotation

use is not adequate for this case. The next step involved the implementation of the local

Gaussian noise technique.

56

Class Pedestrian Cyclist Car

Difficulty Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BBOX_2D 46.0877 43.5223 41.0731 61.5304 47.6809 44.0202 87.3664 78.3642 76.8851

AOS 23.9701 22.7201 21.4170 60.4238 45.0272 41.6812 86.8633 77.4982 75.4747

BBOX_BEV 34.3515 32.3396 30.7956 56.7320 39.6605 37.9864 83.6090 77.0285 74.3497

BBOX_3D 24.0265 22.1576 21.4579 52.3665 35.1093 34.2189 65.1113 57.3223 53.5171

Table 7.12: AP values of different detection methods on the KITTI dataset with local

gaussian noise data augmentation techniques.

The local Gaussian noise implementation resulted in slightly better results than the

previous technique but obtained a considerable decrease in accuracy compared to the base-

line (Table 7.1). After thorough analysis, it has been concluded that neither of the local

techniques studied is appropriate for this model.

7.1.3 Mixed Data Augmentation Results

Class Pedestrian Cyclist Car

Difficulty Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BBOX_2D 67.5380 64.1617 59.8471 86.7113 72.3143 68.9202 90.7051 89.4844 87.7153

AOS 49.4916 47.0509 44.11555 85.4363 69.2709 65.7936 90.5950 89.0021 86.9100

BBOX_BEV 60.0715 55.7617 51.6344 83.8891 66.6532 62.9511 89.9997 87.5861 85.6329

BBOX_3D 54.0405 49.5208 45.2106 82.0563 65.0002 61.1422 86.2241 76.4731 74.0131

Table 7.13: AP values of different detection methods on the KITTI dataset with mixed data

augmentation techniques.

Difficulty Easy Moderate Hard

BBOX_2D 81.6515 75.3201 72.1609

AOS 75.1743 68.4413 65.6064

BBOX_BEV 77.9867 68.4413 65.6064

BBOX_3D 74.1070 63.6674 60.1220

Table 7.14: mAP values of different detection methods on the KITTI dataset with mixed

data augmentation techniques.

After applying individual data augmentation techniques, they are combined to opti-

mize performance. In summary, the choice of augmentation techniques had varying impacts

on different classes and tasks, underlining the importance of carefully selecting appropriate

methods to achieve optimal performance for specific scenarios. Although the technique of

57

shuffled points improved some classes, it was observed that combining it with other ap-

proaches decreased the overall performance. Consequently, this technique was not included

in the different data augmentation techniques combination.

58

8 Conclusion

Data augmentation is a process that generates extended training data by applying

various transformations, modifications, or manipulations to the existing data, which allows

machine learning to increase performance in situations where the training data is limited or

low quality. This thesis presents an understanding survey of data augmentation methods in

3D-LiDAR object detection for autonomous driving. The survey covers different point cloud

manipulation techniques and their evaluation.

Deep learning models are computationally expensive and require correctly labeled data.

To improve a model, more data is needed to identify more features. Since data augmentation

can generate additional data from the existing data, it not only improves the model accuracy,

as mentioned before but also saves time and money when collecting more real data is difficult.

Data augmentation offers benefits such as:

• Reduces the cost of data acquisition and data labeling;

• Improves model generalization;

• Improves model accuracy in prediction as more data is used to train the model;

• Data overfitting reduction;

• Deals with an imbalance in the dataset by augmenting the samples from the minority

class.

Although data augmentation is a robust process, it’s crucial to use it cautiously. This

process may not be justified from the computational cost perspective since it can increase

the computational costs and the addiction memory requirements and consequential impose

restrictions on the volume of data generated. While data augmentation prevents the model

from overfitting, some augmentation combinations can conduct underfitting. This slows

training, leading to a massive strain on resources, such as available processing time and

59

GPU quotas. Furthermore, the model can’t learn all the presented information to give

accurate predictions, which leads to high prediction errors.

Future research on expanding the scope of techniques studied with more options for

global and local operations and calibration-related data augmentation techniques can en-

hance the accuracy and robustness of LiDAR-based perception systems [78] [79] [107]. In-

vestigating the performance of object detection models under various calibration settings and

promptly developing effective methods for adapting to out-of-distribution or cross-sensor cal-

ibrations can be promising. To effectively manage calibration changes during operation, it

is crucial to incorporate synthetic calibration variations into the data augmentation pipeline

for LiDAR-based perception system technology advancements.

Including calibration as a data augmentation technique enhances the model’s ability to

generalize and adapt to varying LiDAR sensor configurations in real-world scenarios.

60

9 Bibliography

[1] Hamed H. Aghdam, Elnaz J. Heravi, Selameab S. Demilew, and Robert Laganiere.

Rad: Realtime and accurate 3d object detection on embedded systems. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Workshops, pages 2875–2883, June 2021.

[2] Waleed Ali, Sherif Abdelkarim, Mohamed Zahran, Mahmoud Zidan, and Ahmad El

Sallab. Yolo3d: End-to-end real-time 3d oriented object bounding box detection from

lidar point cloud, Aug 2018.

[3] Neeraj Kumar Arzoo Miglani. Deep learning models for traffic flow prediction in

autonomous vehicles: A review, solutions, and challenges., Sep 2019.

[4] Abhishek Balasubramaniam and Sudeep Pasricha. Object detection in autonomous

vehicles: Status and open challenges, 2022.

[5] Saulo Barreto. Data augmentation, Mar 2023.

[6] Reinhold Behringer and N. Muller. Autonomous road vehicle guidance from autobah-

nen to narrow curves. Robotics and Automation, IEEE Transactions on, 14:810 – 815,

11 1998.

[7] Frederik Benzing, Simon Schug, Robert Meier, Johannes von Oswald, Yassir Akram,

Nicolas Zucchet, Laurence Aitchison, and Angelika Steger. Random initialisations

performing above chance and how to find them, 2022.

[8] Paul J. Besl. Surfaces in range image understanding. Springer-Verlag, 1988.

[9] Alex Bewley, Pei Sun, Thomas Mensink, Dragomir Anguelov, and Cristian Sminchis-

escu. Range conditioned dilated convolutions for scale invariant 3d object detection.

arXiv preprint arXiv:2005.09927, 2020.

61

[10] Keshav Bimbraw. Autonomous cars: Past, present and future - a review of the develop-

ments in the last century, the present scenario and the expected future of autonomous

vehicle technology. ICINCO 2015 - 12th International Conference on Informatics in

Control, Automation and Robotics, Proceedings, 1:191–198, 01 2015.

[11] M. Birdsall. Google and ite: The road ahead for self-driving cars: Semantic scholar,

Jan 1970.

[12] Thomas Braud, Jordan Ivanchev, Corvin Deboeser, Alois Knoll, David Eckhoff, and

Alberto Vincentelli. Avdm: A hierarchical command-and-control system architecture

for cooperative autonomous vehicles in highways scenario using microscopic simula-

tions. Autonomous Agents and Multi-Agent Systems, 35, 04 2021.

[13] Deboeser C. et al Braud T., Ivanchev J. Avdm: A hierarchical command-and-control

system architecture for cooperative autonomous vehicles in highways scenario using

microscopic simulations. autonomous agents and multi-agent systems. Autonomous

Agents and Multi-Agent Systems, 35, 2021.

[14] Alberto Broggi, Massimo Bertozzi, and Alessandra Fascioli. Architectural issues on

vision-based automatic vehicle guidance: The experience of the argo project. Real-

Time Imaging, 6:313–324, 08 2000.

[15] Michael Burgan. The Pontiac Firebird. Capstone Books, 1999.

[16] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang

Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A

multimodal dataset for autonomous driving. In 2020 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 11618–11628, 2020.

[17] Chengtai Cao, Fan Zhou, Yurou Dai, and Jianping Wang. A survey of mix-based data

augmentation: Taxonomy, methods, applications, and explainability, 2022.

[18] Minh Cao and Ramin Ramezani. Data generation using simulation technology to

improve perception mechanism of autonomous vehicles, 06 2022.

[19] Yuning Chai, Pei Sun, Jiquan Ngiam, Weiyue Wang, Benjamin Caine, Vijay Vasude-

van, Xiao Zhang, and Dragomir Anguelov. To the point: Efficient 3d object detection

in the range image with graph convolution kernels. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pages 16000–16009, 2021.

62

[20] Sharat Chandran, Larry S. Davis, Daniel DeMenthon, Sven J. Dickenson, Suresh Gaju-

lapalli, Shie-rei Huang, Todd R. Kushner, Jacqueline LeMoigne, Suni Puri, Tharakesh

Siddalingaiah, and et al. An overview of vision-based navigation for autonomous land

vehicles 1986. U.S. Army Engineer Topographic Laboratories, 1987.

[21] Long Chen, Shaobo Lin, Xiankai Lu, Dongpu Cao, Hangbin Wu, Chi Guo, Chun

Liu, and Fei-Yue Wang. Deep neural network based vehicle and pedestrian detection

for autonomous driving: A survey. IEEE Transactions on Intelligent Transportation

Systems, 2021.

[22] Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast point r-cnn, Aug 2019.

[23] Yunlu Chen, Vincent Tao Hu, Efstratios Gavves, Thomas Mensink, Pascal Mettes,

Pengwan Yang, and Cees G. M. Snoek. Pointmixup: Augmentation for point clouds.

In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors,

Computer Vision – ECCV 2020, pages 330–345, Cham, 2020. Springer International

Publishing.

[24] Zitian Chen, Yanwei Fu, Yinda Zhang, Yu-Gang Jiang, Xiangyang Xue, and Leonid

Sigal. Multi-level semantic feature augmentation for one-shot learning. IEEE Trans-

actions on Image Processing, 28(9):4594–4605, 2019.

[25] Shohei Chiba and Hisayuki Sasaoka. Basic study for transfer learning for autonomous

driving in car race of model car. In 2021 6th International Conference on Business

and Industrial Research (ICBIR), pages 138–141, 2021.

[26] Jaeseok Choi, Yeji Song, and Nojun Kwak. Part-aware data augmentation for 3d object

detection in point cloud. In 2021 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 3391–3397, 2021.

[27] Marc Cranswick. Pontiac firebird - the auto-biography. Veloce Publishing, 2017.

[28] Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le.

Autoaugment: Learning augmentation strategies from data. In 2019 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages 113–123, 2019.

[29] Sebastian Cygert and Andrzej Czyzewski. Toward robust pedestrian detection with

data augmentation. IEEE Access, PP:1–1, 07 2020.

63

[30] Lixuan Du, Rongyu Zhang, and Xiaotian Wang. Overview of two-stage object detection

algorithms. Journal of Physics: Conference Series, 1544:012033, 05 2020.

[31] Cardew K H F. The automatic steering of vehicles. an experimental system fitted to a

DS 19 Citroen Car. 1970.

[32] Lue Fan, Xuan Xiong, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang. Rangedet:

In defense of range view for lidar-based 3d object detection. In Proceedings of the

IEEE/CVF international conference on computer vision, pages 2918–2927, 2021.

[33] Reimer B. Victor T. Fridman L., Lee J. ‘owl’ and ‘lizard’: Patterns of head pose and

eye pose in driver gaze classification. IET Computer Vision, 10:308–314, 2016.

[34] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets

robotics: The kitti dataset. International Journal of Robotics Research (IJRR), 2013.

[35] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous

driving? the kitti vision benchmark suite. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2012.

[36] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous

driving? the kitti vision benchmark suite. In 2012 IEEE Conference on Computer

Vision and Pattern Recognition, pages 3354–3361, 2012.

[37] Ioannis Pratikakis Georgios ZamanakosaLazarosTsochatzidis, Angelos Amanatiadis. A

comprehensive survey of lidar-based 3d object detection methods with deep learning

for autonomous driving., Jul 2021.

[38] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[39] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3d semantic seg-

mentation with submanifold sparse convolutional networks. pages 9224–9232, 06 2018.

[40] Martin Hahner, Dengxin Dai, Alexander Liniger, and Luc Van Gool. Quantifying data

augmentation for lidar based 3d object detection. arXiv preprint arXiv:2004.01643,

2020.

[41] Chenhang He, Hui Zeng, Jianqiang Huang, Xian-Sheng Hua, and Lei Zhang. Struc-

ture aware single-stage 3d object detection from point cloud. In Proceedings of the

64

IEEE/CVF conference on computer vision and pattern recognition, pages 11873–11882,

2020.

[42] Daniël D. Heikoop, Joost C.F. de Winter, Bart van Arem, and Neville A. Stanton.

Effects of platooning on signal-detection performance, workload, and stress: A driving

simulator study, Nov 2016.

[43] Thomas Henderson. Traditional and non-traditional robotic sensors. Springer, 1990.

[44] Chris Jacobs. From adas to driver replacement-is actual radar performance good

enough? | analog devices.

[45] Peiyuan Jiang, Daji Ergu, Fangyao Liu, Ying Cai, and Bo Ma. A review of yolo

algorithm developments. Procedia Computer Science, 199:1066–1073, 2022.

[46] Kaggle. Lyft 3d object detection for autonomous vehicles.

[47] Tahir Emre Kalayci, Gabriela Ozegovic, Bor Bricelj, Marko Lah, and Alexander

Stocker. Object detection in driving datasets using a high-performance computing

platform: A benchmark study. IEEE Access, 10:61666–61677, 2022.

[48] Sihyeon Kim, Sanghyeok Lee, Dasol Hwang, Jaewon Lee, Seong Jae Hwang, and Hyun-

woo J. Kim. Point cloud augmentation with weighted local transformations. In Pro-

ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),

pages 548–557, October 2021.

[49] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar

Beijbom. Pointpillars: Fast encoders for object detection from point clouds. In 2019

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages

12689–12697, 2019.

[50] Dogyoon Lee, Jaeha Lee, Junhyeop Lee, Hyeongmin Lee, Minhyeok Lee, Sungmin

Woo, and Sangyoun Lee. Regularization strategy for point cloud via rigidly mixed

sample. In Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, CVPR 2021, Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pages 15895–15904, United States, 2021.

IEEE Computer Society.

[51] Robert D. Leighty. DARPA ALV (Autonomous Land Vehicle) summary. Defense

Technical Information Center, 1986.

65

[52] Joseph Lemley, Shabab Bazrafkan, and Peter Corcoran. Smart augmentation learning

an optimal data augmentation strategy. IEEE Access, 5:5858–5869, 2017.

[53] Du Y. Zhu M. Zhou S. amp; Zhang L. Li, Z. A survey of 3d object detection algorithms

for intelligent vehicles development - artificial life and robotics. SpringerLink, 2021.

[54] Hongyang Li, Chonghao Sima, Jifeng Dai, Wenhai Wang, Lewei Lu, Huijie Wang,

Enze Xie, Zhiqi Li, Hanming Deng, Hao Tian, and et al. Delving into the devils of

bird’s-eye-view perception: A review, evaluation and recipe, Sep 2022.

[55] Ruihui Li, Xianzhi Li, Pheng-Ann Heng, and Chi-Wing Fu. Pointaugment: An auto-

augmentation framework for point cloud classification. In 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 6377–6386, 2020.

[56] You Li and Javier Ibanez-Guzman. Lidar for autonomous driving: The principles,

challenges, and trends for automotive lidar and perception systems. IEEE Signal

Processing Magazine, 37(4):50–61, 2020.

[57] Yuming Li, Jue Wang, Tengfei Xing, Tianlu Liu, Chengjun Li, and Kuifeng Su. Tad16k:

An enhanced benchmark for autonomous driving. In 2017 IEEE International Con-

ference on Image Processing (ICIP), pages 2344–2348, 2017.

[58] Zirui Li. Lidar-based 3d object detection for autonomous driving. In 2022 International

Conference on Image Processing, Computer Vision and Machine Learning (ICICML),

pages 507–512, 2022.

[59] Zhidong Liang, Ming Zhang, Zehan Zhang, Xian Zhao, and Shiliang Pu. Rangercnn:

Towards fast and accurate 3d object detection with range image representation, Mar

2021.

[60] Bing Shun Lim, Sye Loong Keoh, and Vrizlynn L. L. Thing. Autonomous vehicle

ultrasonic sensor vulnerability and impact assessment. In 2018 IEEE 4th World Forum

on Internet of Things (WF-IoT), pages 231–236, 2018.

[61] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-

Yang Fu, and Alexander C. Berg. Ssd: Single shot multibox detector. In Bastian

Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV

2016, pages 21–37, Cham, 2016. Springer International Publishing.

66

[62] Weiyu Liu, Qian Dong, Pengqi Wang, Guang Yang, Lingzhong Meng, You Song, Yuan

Shi, and Yunzhi Xue. A survey on autonomous driving datasets. In 2021 8th In-

ternational Conference on Dependable Systems and Their Applications (DSA), pages

399–407, 2021.

[63] Lusa. Portugal regista 6880 mortos em acidentes rodoviários na última década, Nov

2020.

[64] Antonio M. López, Gabriel Villalonga, Laura Sellart, Germán Ros, David Vázquez,

Jiaolong Xu, Javier Marín, and Azadeh Mozafari. Training my car to see using virtual

worlds, Aug 2017.

[65] Apoorva M, Nikhil Muralidhar Shanbhogue, Samarth Shreepad Hegde, Yogesh P Rao,

and Chaitanya L. Rgb camera based object detection and object co-ordinate extraction.

In 2022 IEEE 7th International conference for Convergence in Technology (I2CT),

pages 1–5, 2022.

[66] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design

and local geometry in point cloud: A simple residual mlp framework, Nov 2022.

[67] Jiageng Mao, Minzhe Niu, Haoyue Bai, Xiaodan Liang, Hang Xu, and Chunjing Xu.

Pyramid r-cnn: Towards better performance and adaptability for 3d object detec-

tion. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages

2703–2712, 2021.

[68] Jiageng Mao, Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. 3d object detection

for autonomous driving: A review and new outlooks. 06 2022.

[69] Jiageng Mao, Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. 3d object detection

for autonomous driving: A review and new outlooks. arXiv preprint arXiv:2206.09474,

2022.

[70] MathWorks. Anchor boxes for object detection.

[71] Markus Maurer, J. Gerdes, Barbara Lenz, and Hermann Winner. Autonomous Driving.

Technical, Legal and Social Aspects. 05 2016.

[72] Meenakshy. Ultrasonic sensor hc-sr04 with arduino, Nov.

67

[73] Gregory P. Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-Gonzalez, and Carl K.

Wellington. Lasernet: An efficient probabilistic 3d object detector for autonomous

driving, Mar 2019.

[74] Bosch Mobility. Ultrasonic sensor.

[75] Mohammad Momeny, Ali Asghar Neshat, Mohammad Arafat Hussain, Solmaz Kia,

Mahmoud Marhamati, Ahmad Jahanbakhshi, and Ghassan Hamarneh. Learning-to-

augment strategy using noisy and denoised data: Improving generalizability of deep

cnn for the detection of covid-19 in x-ray images. Computers in Biology and Medicine,

136:104704, 2021.

[76] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Košecká. 3d bounding

box estimation using deep learning and geometry. 12 2016.

[77] Akeem Whitehead Mubina Toa. Ultrasonic sensing basics (rev. d), Sep 2019.

[78] Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip H. S. Torr,

and Puneet K. Dokania. Calibrating deep neural networks using focal loss, 2020.

[79] Jeremy Nixon, Mike Dusenberry, Ghassen Jerfel, Timothy Nguyen, Jeremiah Liu,

Linchuan Zhang, and Dustin Tran. Measuring calibration in deep learning, 2020.

[80] PandaSet. Pandaset - open-source dataset for self-driving cars.

[81] Pawangfg. Vgg-16: Cnn model, Jan 2023.

[82] Dean A. Pomerleau. Knowledge-Based Training of Artificial Neural Networks for Au-

tonomous Robot Driving, pages 19–43. Springer US, Boston, MA, 1993.

[83] PyPI. Gryds: a python package for geometric transformations of images.

[84] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep

hierarchical feature learning on point sets in a metric space. In I. Guyon, U. Von

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,

Advances in Neural Information Processing Systems, volume 30. Curran Associates,

Inc., 2017.

[85] Meytal Rapoport-Lavie and Dan Raviv. It’s all around you: Range-guided cylindri-

cal network for 3d object detection. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV) Workshops, pages 2992–3001, October 2021.

68

[86] Jiawei Ren, Liang Pan, and Ziwei Liu. Benchmarking and analyzing point cloud

classification under corruptions. ArXiv, abs/2202.03377, 2022.

[87] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks, Jan 2016.

[88] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-

time object detection with region proposal networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 39(6):1137–1149, 2017.

[89] Adrian Rosebrock. Intersection over union (iou) for object detection, May 2023.

[90] Francisca Rosique, Pedro Navarro Lorente, Carlos Fernandez, and Antonio Padilla.

A systematic review of perception system and simulators for autonomous vehicles

research. Sensors, 19:648, 02 2019.

[91] Vidhya Sagar, Sailesh Jain, and VIDHYASAGAR BS. Yield estimation using faster

r-cnn. 05 2018.

[92] M. Sainz, R. Pajarola, A. Mercade, and A. Susin. A simple approach for point-based

object capturing and rendering. IEEE Computer Graphics and Applications, 24(4):24–

33, 2004.

[93] SEAT. Rear view camera - car terms.

[94] Hualian Shenga, Sijia Cai, Yuan Liu, Bing Deng, Jianqiang Huang, Xian-Sheng Hua,

and Min-Jian Zhao. Improving 3d object detection with channel-wise transformer. In

2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages 2723–

2732, 2021.

[95] Shivanand Venkanna Sheshappanavar, Vinit Veerendraveer Singh, and Chandra Kamb-

hamettu. Patchaugment: Local neighborhood augmentation in point cloud classifica-

tion. In 2021 IEEE/CVF International Conference on Computer Vision Workshops

(ICCVW), pages 2118–2127, 2021.

[96] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and

Hongsheng Li. Pv-rcnn: Point-voxel feature set abstraction for 3d object detection. In

2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pages 10526–10535, 2020.

69

[97] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object proposal

generation and detection from point cloud. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pages 770–779, 2019.

[98] Steven E. Shladover S. Lane Assist Systems for Bus Rapid Transit. Volume I: Tech-

nology Assessment. " Publication RTA 65A0160, US Department of Transportation,

2007.

[99] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and

Russell Webb. Learning from simulated and unsupervised images through adversarial

training. In 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2242–2251, 2017.

[100] Russell SJ and Norvig P. Artificial Intelligence: A Modern Approach. 2nd ed. Upper

Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2, 2003.

[101] Lis K. Gorgon M. Stanisz, J. Implementation of the pointpillars network for 3d object

detection in reprogrammable heterogeneous devices using finn. J Sign Process Syst 94,

06 2022.

[102] Shanmugalingam Suganthan, Sonya Coleman, and Bryan Scotney. Range image feature

extraction with varying degrees of data irregularity. In International Machine Vision

and Image Processing Conference (IMVIP 2007), pages 33–40, 2007.

[103] Jiahui Tao, Yuehan Gu, JiaZheng Sun, Yuxuan Bie, and Hui Wang. Research on

vgg16 convolutional neural network feature classification algorithm based on transfer

learning. In 2021 2nd China International SAR Symposium (CISS), pages 1–3, 2021.

[104] David W. Temple and Dennis Adler. GM’s Motorama: The glamorous show cars of a

cultural phenomenon. MBI Pub., 2006.

[105] C. Thorpe, M. Herbert, T. Kanade, and S. Shafer. Toward autonomous driving: the

cmu navlab. i. perception. IEEE Expert, 6(4):31–42, 1991.

[106] Pham T. Carneiro G. Palmer L. amp; Reid I. Tran, T. A bayesian data augmentation

approach for learning deep models, October 2017.

[107] Juozas Vaicenavicius, David Widmann, Carl Andersson, Fredrik Lindsten, Jacob Roll,

and Thomas Schön. Evaluating model calibration in classification. In Kamalika Chaud-

huri and Masashi Sugiyama, editors, Proceedings of the Twenty-Second International

70

Conference on Artificial Intelligence and Statistics, volume 89 of Proceedings of Ma-

chine Learning Research, pages 3459–3467. PMLR, 16–18 Apr 2019.

[108] Tobias Vogelpohl, Matthias Kühn, Thomas Hummel, Tina Gehlert, and Mark Vollrath.

Transitioning to manual driving requires additional time after automation deactivation,

Apr 2018.

[109] Tai Wang, Xinge Zhu, and Dahua Lin. Reconfigurable voxels: A new representation

for lidar-based point clouds, Oct 2020.

[110] Li K. Li J. Wang J., Huang H. Towards the unified principles for level 5 autonomous

vehicles. Engineering, 7:1313–1325, 2021.

[111] Kevin Wijaya, Dong-Hee Paek, and Seung-Hyun Kong. Advanced feature learning on

point clouds using multi-resolution features and learnable pooling, 05 2022.

[112] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks

on 3d point clouds. In 2019 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 9613–9622, 2019.

[113] Huang J. Guan D. Cui K. Lu S. amp; Shao L. Xiao, A. Polarmix: A general data

augmentation technique for lidar point clouds, July 2022.

[114] Pengchuan Xiao, Zhenlei Shao, Steven Hao, Zishuo Zhang, Xiaolin Chai, Judy Jiao,

Zesong Li, Jian Wu, Kai Sun, Kun Jiang, Yunlong Wang, and Diange Yang. Pandaset:

Advanced sensor suite dataset for autonomous driving. In 2021 IEEE International

Intelligent Transportation Systems Conference (ITSC), pages 3095–3101, 2021.

[115] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection.

Sensors, 18:3337, 10 2018.

[116] Maosheng Ye, Shuangjie Xu, and Tongyi Cao. Hvnet: Hybrid voxel network for lidar

based 3d object detection. pages 1628–1637, 06 2020.

[117] Weiguo Yi, Siwei Ma, Heng Zhang, and Bin Ma. Classification and improvement of

multi label image based on vgg16 network. In 2022 3rd International Conference on

Information Science, Parallel and Distributed Systems (ISPDS), pages 243–246, 2022.

[118] Jaejun Yoo, Namhyuk Ahn, and Kyung-Ah Sohn. Rethinking data augmentation for

image super-resolution: A comprehensive analysis and a new strategy, 2020.

71

[119] Jaejun Yoo, Namhyuk Ahn, and Kyung-Ah Sohn. Rethinking data augmentation for

image super-resolution: A comprehensive analysis and a new strategy. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

June 2020.

[120] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and

Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with local-

izable features. In Proceedings of the IEEE/CVF International Conference on Com-

puter Vision (ICCV), October 2019.

[121] Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang Gao, Tom Ouyang, James

Guo, Jiquan Ngiam, and Vijay Vasudevan. End-to-end multi-view fusion for 3d object

detection in lidar point clouds, Oct 2019.

[122] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d

object detection. pages 4490–4499, 06 2018.

[123] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d

object detection. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 4490–4499, 2018.

[124] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d

object detection. In 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 4490–4499, 2018.

72

Annex A

A.1 Loss Functions

• Category classification loss: Focal Loss

FL(pt) = −αt(1− pt)
γlog(pt), where α = 0.25, γ = 2.0

αt =

 α, y = 1

1− α, y = 0

pt =

 p, y = 1

1− p, y = 0

• Return loss: Smooth L1 Loss

L(xn, yn) =

 0.5(xn − yn)
2/β, if |xn − yn| < β

|xn − yn| − 0.5β, otherwise
,where β =

1

9

• Classification loss: Cross Entropy Loss

L(y, ŷ) = −∑i=1
n ŷilog(yi)

• Total loss: Total loss = 1.0*class classification loss + 2.0*regression loss + 2.0*toward

classification loss

73

Annex B

B.1 Intersection over Union

Intersection over Union is an evaluation metric that measures the accuracy of an object

detector. IoU is often used to evaluate the performance of convolution neural network

detectors. Any algorithm that generates predicted bounding boxes can be evaluated using

IoU. For the application of the IoU algorithm to evaluate an object detector, its needs:

• The GT bounding boxes

• The predicted bounding boxes from the used model

Figure B.1: Intersection over Union [46]

In the figure above, Figure B.1, it can be seen how the IoU calculation is done.

74

Due to the diversity of parameters present in the model, a total match between the

predicted and ground-truth bounding boxes is unrealistic. Therefore, an evaluation metric

that rewards predicted bounding boxes for heavily overlapping with the ground truth needs

to be defined:

Figure B.2: Intersection over Union - poor, good and excellent score[89]

75

Appendix A

A.1 Evaluation Metrics

Table A.1 shows the evaluation metrics of the model without data augmentation tech-

niques.

Evaluation Metrics

Methods F1 score Recall Precision

BBOX_2D 51.7978 41.5207 93.3830

BBOX_BEV 51.6526 41.5287 92.9913

BBOX_3D 42.5625 33.7913 82.8324

Table A.1: Evaluation metrics of different detection methods applied to the KITTI dataset.

Overall it was obtained:

• F1 score: 48.6710

• Recall: 38.9469

• Precisions: 89.7356

In turn, Table A.2 shows the evaluation metrics of the model with mixed data augmen-

tation techniques.

76

Evaluation Metrics

Methods F1 score Recall Precision

BBOX_2D 56.6407 46.3314 96.8260

BBOX_BEV 55.2690 45.0781 95.7270

BBOX_3D 49.8629 39.9867 92.0419

Table A.2: Evaluation metrics of different detection methods applied to the KITTI dataset

with mixed data augmentation techniques.

Overall it was obtained:

• F1 score: 53.9242

• Recall: 43.7987

• Precisions: 94.8650

77

Appendix B

B.1 Hyper-parameters of Data Augmentation Techniques

Below is an explanation of the specific functions of these hyperparameters to provide

further clarification.

• Global/Local Rotation Parameter: Controlling random rotation within the chosen

radians range.

• Global Scale Parameter: Managing the scaling of input data within the chosen

range.

• Global Translation Parameter: This parameter governs global translations applied

to the data.

• Random Flip Ratio: This parameter determines the likelihood of horizontal flipping

during data augmentation.

• Jitter Sigma: Jitter sigma influences the amount of noise added to the data, con-

tributing to the model’s ability to handle noisy input.

• Jitter Clip: Jitter clip constrains the maximum amount of jitter applied to the data,

ensuring controlled noise levels.

• Global Gaussian Noise: This technique encompasses hyperparameters associated

with the addition of Gaussian noise to the data, including the number of trials (num_try),

translation standard deviations (translation_std), and rotation range (rot_range)

parameters.

78

• Local Gaussian Noise: The standard deviation of the normal distribution is sampled

from a uniform distribution with a range of [min,max] = [stdrange[0], stdrange[1]]

• Upsampling Num Samples: This parameter regulates the number of samples gen-

erated during upsampling operations.

79

Evaluation of Point Cloud Data Augmentation
for 3D-LiDAR Object Detection in Autonomous

Driving

Marta Martins1, Iago P. Gomes2, Denis F. Wolf2, and Cristiano Premebida1

1 Institute of Systems and Robotics, University of Coimbra, Portugal.
martasmartins10@gmail.com, cpremebida@deec.uc.pt

2 Institute of Mathematics and Computer Science, University of São Paulo, Brazil.
iagogomes@usp.br, denis@icmc.usp.br

Abstract. Obstacle detection is an essential component for autonomous
vehicles to navigate safely. To overcome some drawbacks of 2D object
detection, many recent methods have been proposed to cope with 3D
detection using LiDAR sensors. This sensor provides depth and more
representative spatial and geometric information to the models, allowing
the estimation of 3D bounding boxes with orientation around the objects
of interest. However, the complexity of 3D annotation, in supervised ob-
ject detection, imposes significant challenges for this task. To address
the annotation problem, some studies have explored data augmentation
techniques for 3D point clouds, but, not all augmentation methods yield
positive impacts on model performance. Therefore, this paper presents
an in-depth evaluation of global data augmentation techniques, specifi-
cally focusing on geometric transformation and noise-based methods for
3D object detection. The results reported in this paper, achieved on the
KITTI dataset, showed a relevant difference in some geometric opera-
tions, and the importance of noise-based methods.

Keywords: 3D object detection, autonomous driving, deep learning,
data augmentation.

1 Introduction

A self-driving car is a complex system capable of making decisions without hu-
man interaction [19], composed of sensors, actuators, complex algorithms, ma-
chine learning, and processors [22]. To have the ability to drive autonomously,
this system creates a representation of their surroundings based on the different
sensor readings. Typically, radar sensors examine the position of nearby vehicles,
cameras can be used to identify traffic lights and road signs, track other vehicles,
and look for vulnerable road users (e.g., pedestrians and cyclists), while LiDAR
sensors reflect pulses of light around the car’s surroundings to measure distances,
identify road edges, and detect and locate obstacles [19]. Ultrasonic sensors, on
the other hand, can be used to detect obstacles and calculate the ideal steering
angle during parking [16].

Appendix C

Scientific Paper - ROBOT2023: Sixth Iberian

Robotics Conference

80

2 Marta Martins, Iago Gomes, Denis Wolf, and Cristiano Premebida

Among the several tasks for a robust environmental perception, obstacle de-
tection is essential for autonomous vehicles to safely navigate. The standard
approach for this task employs deep learning models based on Convolutional
Neural Networks (CNN) [4] – such as YOLO [11], to extract features from im-
ages, and detect target objects based on the feature maps. However, to use these
detections, an autonomous system needs to find a correspondence between the
2D bounding boxes in the image to a 3D coordinate system (i.e., usually a global
coordinate system used for path planning and obstacle avoidance). This trans-
formation requires a calibrated sensor setup, which might not have a straight-
forward implementation [27, 1].

Therefore, to overcome the drawbacks of 2D object detection, several meth-
ods were proposed using different sensors, such as LiDAR, RADAR, and Stereo
Cameras [1]. These methods provide depth and more representative spatial and
geometric information to the models, allowing them to estimate 3D bounding
boxes with orientation around objects of interest. However, the shortcomings of
some of these approaches are the poor or complete lack of semantic informa-
tion, useful for differentiating the object classes. Besides that, some techniques
showed competitive results for detection and classification in standards bench-
marking, such as the PointPillars network [13] on the KITTI dataset [8] using
only LiDAR’s point clouds.

Another important remark regarding 3D detection is the complexity of the
annotation process of the data, which results in the small number of large-
scale datasets available for training and testing models when compared to 2D
detection datasets. In this sense, some works in the literature explored data
augmentation techniques for 3D data to increase the number of samples and
their representativeness [14, 13, 12, 24, 6, 21].

However, not every augmentation operation exerts a positive influence on
model training and performance. On the contrary, when an operation is not
applied correctly, it tends to only increase the memory usage, time, and cost
of training and developing detection methods. Therefore, this paper presents an
experimental evaluation of 3D data augmentation operations for 3D obstacles
detection on the KITTI dataset.

The remainder of this paper is organized as follows: Section 2 presents the
related works; Section 3 describes the experiment setup, network model, and
data augmentation techniques; Section 4 presents and discusses the results; and,
Section 5 concludes the paper with some remarks and future work.

2 Related Work

This section discusses recent related works on the 3D object detection methods
centered on LiDAR data, i.e., point clouds or range images. Contrary to images,
a point cloud is a 3D representation that contains sparse and irregular pixels and
requires a specific model for feature extraction. On the other hand, a range image
is a dense and compact representation where range pixels have 3D information
[17]. The LiDAR-based 3D object detection models are based on distinct data

3D-LiDAR Object Detection 3

representations, including point-based, grid-based, point-voxel-based, and range-
based methods.

2.1 3D Obstacle Detection using LiDAR’s Point Cloud

Point-based 3D object detection uses deep learning techniques on point clouds
to estimate 3D bounding boxes. Points are the raw output data from the cap-
ture sensors in mostly 3D geometry acquisition systems [23]. This data structure
allows several simplification and processing techniques. The point-based back-
bone network extracts features after sampling from a point cloud to reduce the
processing time [17]. Afterward, a decoder network estimates the 3D bounding
boxes using the extracted feature vectors. PointRCNN [25] uses the Furthest
Point Sampling (FPS) technique to gradually downsample input point clouds
and create 3D bounding box proposals. Shi and Rajkumar [26] proposed the
Point-GNN, which uses a graph neural network to extract features from a point
cloud and detect objects.

3D object detectors based on grids convert point clouds into discrete grid
representations, such as voxels, pillars, and Bird’s-eye View (BEV) structures.
After, they use 2D convolutional neural networks or 3D sparse neural networks
to extract grid features and then detect 3D objects from the grid cells [17].
Therefore, they have two main components: grid-based representation and neural
networks. VoxelNet [29] is an example of a network that uses sparse voxel grids.
This network proposes a new voxel feature encoding layer to obtain features
of voxel cell points. PointPillars [13] is a network that introduces the pillar
representation, which is a special kind of voxel that has an unlimited size in
the vertical direction. The SECOND [28] uses two sparse operators that form
a sparse convolution network to extract 3D voxel features. This network has
been implemented in multiple works and became one of the most used backbone
networks in voxel-based detectors.

Point-voxel-based methods apply a hybrid structure that uses voxels and
points as representations [15]. Generally, those methods are distributed into two
categories: the single-stage and two-stage detection frameworks. SA-SSD [10] is
an example of a single-stage network. This network uses voxel and point represen-
tations, respectively, in the backbone and the auxiliary branch. In the branch, the
3D SCNN extracts features that are posteriorly converted into points and pro-
cessed by point-based networks. Chen et al. [5] proposed the Fast Point R-CNN,
a two-stage method, which relies on feature fusion and attention mechanism to
combine voxel and points features.

Finally, range-based methods use range images (e.g., depth images) built
from point clouds, stereo vision, or specific sensors, to represent the spatial and
geometrical information from the environment. These methods employ special-
ized operations to extract features and estimate the 3D bounding boxes, such
as Range Dilated Convolution [2], graph operators [3], and meta-kernel convo-
lutions [7].

4 Marta Martins, Iago Gomes, Denis Wolf, and Cristiano Premebida

2.2 3D Data Augmentation Methods

In deep neural networks, training data has a crucial role in learning to perform
tasks. However, compared to the real-world complexity, training data has a lim-
ited quantity, so to enlarge the training set and maximize the knowledge of a
network, data augmentation (DA) is required. A conventional DA method is a
global augmentation that learns transformations invariance in image recognition
tasks, such as random cropping, random scaling, random erasing, color jittering,
etc. [14]. Another approach of DA is local augmentation which generates new
training data performing diverse mix operations.

Since 3D object recognition datasets, which include KITTI datasets, have a
limited number of samples, increasing the size of the data is one of the ways
to reduce overfitting and improve performance [6]. As with 2D computer vision
tasks, one direct approach is to embrace a global augmentation such as trans-
lation, random flipping, shifting, scaling, jittering, and rotation, which can be
directly incorporated for expanding 3D objects [14]. Oversampling was also used
to solve the foreground-background class imbalance problem [6], by introducing
new objects into a sampled point cloud.

Previous works such as PointNet and PointNet++ [21] use DA techniques of
random rotation about the up-axis scaling, random rotation with perturbations,
random shifting, and random jittering of points on the input sample. RS-CNN
and DensePoint followed identical DA strategies with little variations [24]. Sev-
eral studies investigated augmenting local structures of point clouds [12, 24].
However, the works aren’t appropriate for scene-level point clouds because they
focus on object-level augmentation.

Therefore, this paper investigates 3D data augmentation techniques and their
effects on 3D obstacle detection using the KITTI dataset. We focused on global
augmentation techniques and present a discussion regarding their impact on the
detector performance, evaluated by standard detection metrics. The PointPillars
[13] was used as the baseline model in all experiments, because of its balance
between performance and inference time. In addition, this architecture uses only
LiDAR point clouds, which is the subject of study in this work.

3 3D Obstacle Detection and Data Augmentation

This section describes the design of the experiments, the techniques, and the
evaluation metrics used. Figure 1 shows a general flowchart for 3D object de-
tection using point clouds with data augmentation. The first step is the data
acquisition and data representation, which consists of obtaining the point cloud
from a LiDAR sensor and, then, converting it to a data representation (e.g.,
point cloud, range image, grid, or voxels). Each sample has a list of annotations
associated with it. Afterward, the samples are divided into train, validation, and
test sets. The training set undergoes data augmentation operations to either
increase the number of samples, attenuate data imbalance or improve represen-
tativeness. Finally, the data feed a deep learning model that learns how to detect

3D-LiDAR Object Detection 5

Sensor and Data Representation

Camera LiDAR

Autonomous Car

Image

Depth Image Voxels Point Cloud

Data Processing
and Preparation

Data Augmentation

Data Annotation

Data Split

Train Val Test

Flipping Rotation Cropping Noise Addition

Train Val Test

Model
Learning and Evaluation

Input and Supervision

3D Object Detector

Train Val

Evaluation

Test

Model
Deployment

Fig. 1. General Flowchart for 3D Object Detection. Based on [18].

and classify objects, using the training and validation sets. This final model is
evaluated using the testing dataset.

3.1 Problem Definition

Definition. 3D object detection seeks to predict the attributes of 3D objects
in driving scenarios from sensory inputs. In most cases, a 3D object can be
represented as a 3D cuboid, called a 3D bounding box, that includes the object
inside.
The 3D bounding box is defined by [20]:

– 3D Center Coordinate: T = [xc, yc, zc]
′

– Dimensions: D = [l, w, h] (length, width, and height)
– Heading Angle: θ (the yaw angle, of a cuboid on the ground plane)
– Class: denotes the category of a 3D object

In summary, the 3D bounding box can be represented:

B = [xc, yc, zc, l, w, h, θ, class] (1)

3.2 PointPillars

Lang et al. [13], proposed PointPillars, using an encoder with PointNets
to learn a representation of point clouds organized in vertical columns (pillars).
According to them, the main advantages of the model were the balance between
performance and inference time. They demonstrated these advantages in the
KITTI benchmark by offering higher detection performance at a faster speed.
Their results suggest that PointPillars is a relevant architecture for 3D object
detection using only LiDAR’s point clouds.

PointPillars. A method for 3D object detection that allows end-to-end
learning with only 2D convolutional layers. It uses an encoder that learns features
on pillars (vertical columns) of the point cloud to predict 3D-oriented boxes for
objects [13]. The network has three steps: (1) a feature encoder, where point

6 Marta Martins, Iago Gomes, Denis Wolf, and Cristiano Premebida

Fig. 2. PointPillars Architecture [13].

clouds are converted to a pseudo-image; 2) a backbone (2D CNN) to process the
pseudo-image into a high-level representation; and (3) a detection head (SSD
- Single Shot Detector) that detects the objects and create 3D bounding boxes
around it. Figure 2 shows the network flowchart presented in Lang et al. [13].

3.3 Data augmentation for 3D point clouds

Data augmentation techniques can be divided into two classes, global and local
data augmentation [9]. Global data augmentation refers to operations that apply
transformations to the entire point cloud or scene. In turn, local augmentation
focuses on specific regions of the point cloud. Thus, global operations aim to
improve the robustness and generalization of 3D object detectors without in-
troducing local bias. This strategy also enhances model generalization and is
more effective for real-world applications, such as 3D object detection for au-
tonomous vehicles on urban roads. However, it is important to ensure that the
operation preserves the spatial and geometric relationship between the objects
and the foreground/background of the scene. In addition, the operations should
also preserve the objects’ shapes, since they are important for classification.

This work studied global augmentation techniques for object detection in
urban roads, using the KITTI dataset. Among the global augmentation tech-
niques, we selected operations for geometric and spatial transformation and
noise-based operations. These techniques are described as follows.

• Geometric and Spatial Transformation: The geometric transforma-
tions consist of rigid transformation (i.e., rotation, translation, and scaling) in
the entire point cloud. They help the model to become invariant to the orienta-
tion, translation, and scaling (i.e., affect the size of objects) of the scene. Some
operations are: rigid transformations (translation + rotation); similarity trans-
formations (translation + rotation + isotropic scaling); affine transformations
(translation + rotation + arbitrary scaling + shearing); and random flips.

• Noise-based Operation: These operations involve introducing random
or controlled variations to the original data to create new samples with minor
perturbations, with the aim of increasing data diversity and including noise that
may actually be present in the data acquisition process. Some operations are:

3D-LiDAR Object Detection 7

jittered points; Gaussian noise; shuffling; and, upsampling or downsampling of
the points.

3.4 Evaluation Metrics

To assess the impact of various global data augmentation techniques on the
KITTI dataset, we employed the Average Precision (AP) metric, focusing on the
3D bounding box evaluation for three specific classes: Pedestrian, Cyclist, and
Car. Additionally, we considered three difficulty levels: easy, moderate, and hard.
This metric estimates the area under the precision-recall curve, and provides a
comprehensive assessment of the model’s performance in terms of its ability to
make precise and reliable predictions for each class.

Moreover, we also evaluated the performance of the orientation estimation,
using the Average Orientation Similarity (AOS) metric. It measures the similar-
ity between the predicted rotation and the ground truth rotation angles using
the following equation:

AOS =
1 + cos(αGT − α̃)

2
(2)

where αGT is the ground-truth orientation, and α̃ is the predicted orientation.

4 Results

Table 1 presents the results of the Baseline model, which is the PointPillars
network trained on the standard KITTI dataset without any modifications. Ad-
ditionally, the table includes results for the same model trained with various
augmentation operations applied to the training data.

The Baseline results show an average performance for 3D object detection
on the KITTI dataset, highlighting the effect of data imbalance on individual
performance for each class. The Car class has the best performance among
all classes, since it represents the majority of the annotated labels. The size
and rectangular shape of the 3D bounding belonging to this class also help the
prediction of its orientation, when compared to the shape of the remaining classes
(i.e., Pedestrian and Cyclist).

All data augmentation techniques improved the performance of the model
when compared to the Baseline. The effects of the data imbalance were also
attenuated. However, there are some important remarks regarding the operations
for geometric and spatial transformation and noise-based operations.

As discussed in earlier sections, one of the main goals of applying geometric
transformations is to enhance the model’s ability to handle rotation, transla-
tion, and scaling invariance. These transformations are employed to modify the
data samples, making them more representative of these variations. The Ran-
dom Flip alone resulted in more significant improvements in orientation and
pose estimation for all classes compared to using Random Rotation, Scaling, and
Translation together.

8 Marta Martins, Iago Gomes, Denis Wolf, and Cristiano Premebida

Table 1. AP values of different detection methods on the KITTI dataset

Pedestrian Cyclist Car

Operation Metric Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Baseline
BBOX 3D 26.9381 25.1430 24.1276 44.2416 30.3132 29.0027 66.5733 60.2184 54.6960

AOS 27.7677 26.5258 25.3001 54.3573 39.0934 35.9742 85.3043 76.4905 74.8277

Random Rotation,
Scaling, and Translation

BBOX 3D 50.1598 44.2435 39.9561 74.4308 58.2412 54.9572 83.9472 74.6200 68.0987
AOS 50.2951 47.4574 44.0398 83.5650 64.3258 61.4730 90.3268 87.8260 84.7793

Random Flip
BBOX 3D 54.6959 48.3043 44.9938 80.9197 62.3310 57.8159 85.1716 76.6253 73.6535

AOS 53.7285 49.9011 46.5327 85.7929 69.5090 67.5332 90.4288 88.6429 85.3264

Jittered
Points

BBOX 3D 54.0822 47.4751 44.8138 78.6046 60.7153 57.2212 86.5941 76.9589 73.9640
AOS 53.2396 49.4660 46.1822 85.3422 70.4192 67.4924 90.6147 88.7847 85.7357

Gaussian
Noise

BBOX 3D 55.6522 50.4675 45.9789 81.1417 62.9864 60.0440 85.8992 76.3915 73.6888
AOS 43.1251 40.6006 38.0768 85.0478 70.0361 66.7641 90.6932 88.8141 85.6916

Shuffled
Points

BBOX 3D 52.3244 46.9996 43.1217 79.8587 62.6771 60.2295 85.2163 76.4071 73.5351
AOS 46.4865 43.1040 40.4199 86.6693 72.0034 68.0523 90.4482 88.8746 86.6124

Random
Upsampling

BBOX 3D 54.0405 49.5208 45.2106 82.0563 65.0002 61.4122 86.2241 76.4731 74.0131
AOS 49.4916 47.0509 44.1155 85.4363 69.2709 65.7936 90.5950 89.0021 86.9100

Furthermore, the noise-based techniques also contributed to enhancing the
detector’s performance, but their impact varied for each class. The Jittered
Points approach improved the detection performance of the Car class, while
for the Pedestrian class, the Gaussian Noise had a more positive influence
on pose estimation. On the other hand, the Random Upsampling technique
proved beneficial for the Cyclist class.

Additionally, when considering orientation estimation, the effects of differ-
ent methods were class-specific. The Jittered Points technique led to improved
orientation estimation for the Pedestrian class, while the Shuffled Points and
Random Upsampling methods enhanced orientation estimation for the Cy-
clist and Car classes, respectively. However, there was an exception for the Car
class in the Easy set, where the Gaussian Noise method was the most effective.

In summary, the choice of augmentation techniques had varying impacts on
different classes and tasks, underlining the importance of carefully selecting ap-
propriate methods to achieve optimal performance for specific scenarios. For the
geometric transformation, Random Flip alone achieved relevant performance.
However, for noise-based methods, a combination of different techniques proved
essential, as each method had distinct effects on the detector’s performance for
each class.

5 Conclusion

Data augmentation is a process that generates extended training data by
applying various transformations, modifications, or manipulations to the existing
data, which allows machine learning to increase performance in situations where
the training data is limited or low quality. The focus of this paper was to present
an in-depth study on global data augmentation methods in the context of 3D-
LiDAR object detection for autonomous driving. The survey covers different
point cloud manipulation techniques and their evaluation.

Finally, the proposed study has room for improvement, such as: including
a more extensive range of global data augmentation operations to achieve a

3D-LiDAR Object Detection 9

comprehensive analysis of their impact; adding local augmentation operations to
the study and comparing their differences and impact on detector performance;
investigating the effects of combining global and local augmentation techniques;
and, study the combination of undersampling techniques and data augmentation
as an alternative to reduce the effects of data imbalance together.

Acknowledgments

This paper has been partially supported by the project GreenBotics ref. PTDC/EEI-
ROB/2459/2021 funded by FCT, Portugal. We thank the Coordination for the
Improvement of Higher Education Personnel - Brazil (CAPES) for the finan-
cial support under grant 88887.500344/2020-0, and the São Paulo Research
Foundation (FAPESP) for the financial support under grants 2019/27301-7 and
2022/04473-0.

References

1. Arnold, E., Al-Jarrah, O.Y., Dianati, M., Fallah, S., Oxtoby, D., Mouzakitis, A.: A
survey on 3d object detection methods for autonomous driving applications. IEEE
Transactions on Intelligent Transportation Systems (2019)

2. Bewley, A., Sun, P., Mensink, T., Anguelov, D., Sminchisescu, C.: Range condi-
tioned dilated convolutions for scale invariant 3d object detection. arXiv preprint
arXiv:2005.09927 (2020)

3. Chai, Y., Sun, P., Ngiam, J., Wang, W., Caine, B., Vasudevan, V., Zhang, X.,
Anguelov, D.: To the point: Efficient 3d object detection in the range image with
graph convolution kernels. In: Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 16,000–16,009 (2021)

4. Chen, L., Lin, S., Lu, X., Cao, D., Wu, H., Guo, C., Liu, C., Wang, F.Y.: Deep
neural network based vehicle and pedestrian detection for autonomous driving: A
survey. IEEE Transactions on Intelligent Transportation Systems (2021)

5. Chen, Y., Liu, S., Shen, X., Jia, J.: Fast point r-cnn. In: Proceedings of the
IEEE/CVF international conference on computer vision, pp. 9775–9784 (2019)

6. Choi, J., Song, Y., Kwak, N.: Part-aware data augmentation for 3d object detection
in point cloud. In: 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (2021)

7. Fan, L., Xiong, X., Wang, F., Wang, N., Zhang, Z.: Rangedet: In defense of range
view for lidar-based 3d object detection. In: Proceedings of the IEEE/CVF inter-
national conference on computer vision, pp. 2918–2927 (2021)

8. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The kitti
dataset. The International Journal of Robotics Research (2013)

9. Hahner, M., Dai, D., Liniger, A., Van Gool, L.: Quantifying data augmentation for
lidar based 3d object detection. arXiv preprint arXiv:2004.01643 (2020)

10. He, C., Zeng, H., Huang, J., Hua, X.S., Zhang, L.: Structure aware single-stage 3d
object detection from point cloud. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (2020)

11. Jiang, P., Ergu, D., Liu, F., Cai, Y., Ma, B.: A review of yolo algorithm develop-
ments. Procedia Computer Science 199, 1066–1073 (2022)

10 Marta Martins, Iago Gomes, Denis Wolf, and Cristiano Premebida

12. Kim, S., Lee, S., Hwang, D., Lee, J., Hwang, S.J., Kim, H.J.: Point cloud aug-
mentation with weighted local transformations. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (2021)

13. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: Fast
encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (2019)

14. Li, R., Li, X., Heng, P.A., Fu, C.W.: Pointaugment: An auto-augmentation frame-
work for point cloud classification. In: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2020)

15. Li, Z.: Lidar-based 3d object detection for autonomous driving. In: 2022 Interna-
tional Conference on Image Processing, Computer Vision and Machine Learning
(ICICML) (2022)

16. Lim, B.S., Keoh, S.L., Thing, V.L.L.: Autonomous vehicle ultrasonic sensor vul-
nerability and impact assessment. In: 2018 IEEE 4th World Forum on Internet of
Things (WF-IoT) (2018)

17. Mao, J., Shi, S., Wang, X., Li, H.: 3d object detection for autonomous driving: A
review and new outlooks. arXiv preprint arXiv:2206.09474 (2022)

18. Mao, J., Shi, S., Wang, X., Li, H.: 3d object detection for autonomous driving: A
review and new outlooks. arXiv preprint arXiv:2206.09474 (2022)

19. Maurer, M., Gerdes, J., Lenz, B., Winner, H.: Autonomous Driving. Technical,
Legal and Social Aspects (2016)

20. Mousavian, A., Anguelov, D., Flynn, J., Kosecka, J.: 3d bounding box estimation
using deep learning and geometry. In: Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition (2017)

21. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. Advances in neural information processing
systems (2017)

22. Russell, S.J.: Artificial intelligence a modern approach. Pearson Education, Inc.
(2010)

23. Sainz, M., Pajarola, R., Mercade, A., Susin, A.: A simple approach for point-
based object capturing and rendering. IEEE Computer Graphics and Applications
(2004). DOI 10.1109/MCG.2004.1

24. Sheshappanavar, S.V., Singh, V.V., Kambhamettu, C.: Patchaugment: Local neigh-
borhood augmentation in point cloud classification. In: 2021 IEEE/CVF Interna-
tional Conference on Computer Vision Workshops (ICCVW) (2021)

25. Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection
from point cloud. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 770–779 (2019)

26. Shi, W., Rajkumar, R.: Point-gnn: Graph neural network for 3d object detection
in a point cloud. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 1711–1719 (2020)

27. Wang, Y., Mao, Q., Zhu, H., Deng, J., Zhang, Y., Ji, J., Li, H., Zhang, Y.: Multi-
modal 3d object detection in autonomous driving: a survey. International Journal
of Computer Vision pp. 1–31 (2023)

28. Yan, Y., Mao, Y., Li, B.: Second: Sparsely embedded convolutional detection.
Sensors (2018)

29. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object
detection. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4490–4499 (2018)

