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Abstract

Mobile robots are progressively taking over tasks in various industries, from industrial oper-
ations to space exploration, enhancing efficiency, safety, and productivity while also expanding
the possibilities for automation and exploration in challenging environments. Difficulties in per-
forming tasks such as navigation, target recognition and obstacle avoidance must be overcome.

Motion planning is a crucial component within mobile robot navigation that establishes
a route from an initial to a target point. However, in unknown domains, this task becomes
significantly more challenging. In the absence of a global map of the environment, a local
navigation strategy must be exploited. In local motion planning, short-term paths are devised
based on real-time sensory observations of the surrounding environment.

This dissertation proposes a Deep Reinforcement Learning (DeepRL)-based approach to
solve robot local motion planning in environments populated by both static and dynamic
obstacles. It leverages the Double Dueling Deep Q-Network (D3QN) and a costmap representa-
tion of the robot’s surrounding environment paired with distances and orientation measurements
to define the Reinforcement Learning (RL) state model. In conventional DeepRL approaches,
experiences used to train the RL agent are usually sampled uniformly. In this work, the prior-
itized experience replay technique is implemented to enhance the learning efficiency by giving
priority to training samples with higher impact. Reward propagation was also implemented to
address the delayed rewards’ problem common in RL, by assigning responsibility for a specific
outcome to the various actions that contributed to it.

The introduced motion planning algorithm comprises two separate stages: training and
testing. During training, the agent learns via trial-and-error which actions lead to a collision-free
movement towards the target. The testing phase assesses the agent’s decision-making strategy in
an online stage. To enhance the training stage, facilitating convergence and improving long-term
generalization, curriculum learning techniques were integrated.

Evaluation and validation took place within Gazebo simulation environments using the
turtlebot virtual robot. The presented results showcase the developed framework’s effectiveness
in both static and dynamic environments, highlighting the benefits of the proposed techniques.

Keywords: Mobile Robot Navigation, Local Motion Planning, Deep Reinforcement Learn-
ing, Curriculum Learning, Dynamic Environments
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Resumo

Os robôs móveis estão a assumir cada vez mais tarefas em diversas áreas, desde aplicações
industriais até exploração espacial, aumentando a eficiência, segurança e produtividade, e ex-
pandindo as possibilidades de automação e exploração em ambientes complexos. Dificuldades
na execução de tarefas como navegação, reconhecimento de alvos e desvio de obstáculos devem
ser superadas. O planeamento de movimento é um componente crucial na navegação de robôs
móveis que estabelece uma rota de um ponto inicial para um ponto destino. No entanto, em
domínios desconhecidos, esta tarefa torna-se significativamente mais complicada. Na ausência de
um mapa global do ambiente, uma estratégia de navegação local deve ser explorada. No planea-
mento de movimento local, trajetos de curto prazo são elaboradas com base em observações
sensoriais do ambiente envolvente em tempo real.

Esta dissertação propõe uma abordagem baseada em DeepRL para resolver o planeamento
de movimento local de robôs em ambientes com obstáculos estáticos e dinâmicos. Beneficia da
utilização de uma Double Dueling Deep Q-Network (D3QN), e de uma representação de mapa de
custos do ambiente circundante do robô, em conjunto com medidas de distância e orientação para
definir o modelo de estado de RL. Nas abordagens convencionais de DeepRL, as experiências
usadas para treinar o agente de RL são amostradas de forma uniforme. Neste trabalho, a
técnica de repetição de experiência priorizada é implementada para melhorar a eficiência da
aprendizagem, dando prioridade às amostras de treino com maior impacto. A propagação de
recompensas também foi implementada para lidar com o problema de recompensas atrasadas
comuns em RL, atribuindo responsabilidade por um resultado específico às várias ações que
contribuíram para o mesmo.

O algoritmo de planeamento de movimento introduzido envolve duas etapas distintas: treino
e teste. Durante o treino, o agente aprende, por tentativa e erro, as ações que levam a um movi-
mento sem colisões em direção ao alvo. A fase de teste avalia a estratégia de tomada de decisão
do agente numa etapa ‘online’. Para aprimorar a etapa de treino, facilitando a convergência e
melhorando a generalização a longo prazo, foram integradas técnicas de aprendizado por cur-
rículo. A avaliação e validação foram efetuadas em ambientes de simulação Gazebo utilizando o
robô virtual turtlebot. Os resultados apresentados destacam a eficácia da estrutura desenvolvida
em ambientes estáticos e dinâmicos, bem como as vantagens das técnicas propostas.

Palavras-chave: Navegação de Robôs Móveis, Planeamento de Movimento Local, Aprend-
izagem Profunda por Reforço, Aprendizagem por Currículo, Ambientes Dinâmicos
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“Learn as if you will live forever, live like you will die tomorrow.”
Mahatma Gandhi
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1
Introduction

This chapter introduces the concepts explored in the proposed work, including the project’s
motivation, predefined objectives, and key contributions.

1.1 Context and Motivation

Mobile robots have the potential to revolutionize various industries, including healthcare,
logistics, and manufacturing. These robots can perform repetitive and physically demanding
tasks, allowing humans to focus on more creative and strategic work. Additionally, they can
improve workplace safety by taking on dangerous tasks, such as handling hazardous materials
or working in high-risk areas [4]. However, to integrate mobile robots into human-populated
domains, they must be able to navigate and interact with their environment in a safe, reliable and
efficient manner. This requires advanced perception, planning, and decision-making capabilities,
as well as the ability to understand and respond to human behavior [5]. Recent advancements
in Machine Learning (ML) and computer vision have enabled robots to better understand and
model human behavior, allowing them to operate in complex and dynamic environments [6].
Robots now possess the capability to utilize sensors for detecting human presence and movement,
analyzing facial expressions and body language, and even comprehending speech and natural
language.

For a robot to operate and navigate effectively in complex environments, it must be able
to know how to travel from point A to point B while avoiding obstacles in its way. This is
denominated as path or motion planning, and it is an essential component of the robot naviga-
tion process, the other being localization and mapping [7]. Path planning algorithms determine
the best path for a robot to follow from its current location to its intended destination while
avoiding obstacles and minimizing costs such as distance, time, or energy consumption. ML-
based approaches have shown great potential in path planning for indoor mobile robots. RL
is one such approach that has been used to learn optimal policies for navigating in complex
environments [8, 9, 10, 11]. RL agents learn, via trial-and-error, to take actions that maximize a
reward signal, in order to attain a predetermined objective such as reaching the destination while
avoiding obstacles. However, RL algorithms can face limitations in terms of sample complexity,
memory requirements, and computational complexity. One way to overcome these limitations is
by using Deep Learning (DL) techniques. DL [12, 13, 14] involves training DNNs, multi-layered
configurations inspired by biological neural networks, allowing them to learn more complex and
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abstract representations of data. DNNs have been used to build maps from sensory data and
to estimate the robot’s position and orientation accurately [15]. These perceptual capabilities
are vital for effective motion planning in complex environments. The merge of RL and DL has
resulted in a contemporary machine learning division, denominated Deep Reinforcement Learn-
ing (DeepRL). DeepRL has allowed the learning of complex behaviors and control policies in
real-world environments, thus enabling the development of methods capable of facing previously
intractable problems [16]. By using DeepRL for motion planning in indoor robot navigation, the
agent can assess environmental stimuli in real-time and make decisions that are more appropri-
ate to the situation at hand. This can help to improve the overall efficiency and effectiveness
of indoor navigation in dynamic unknown environments, in which traditional approaches tend
to be less effective since they typically involve using an obstacle map to plan a route through a
known environment.

1.2 Proposed Framework

The main purpose of this dissertation was to design and implement a motion planning al-
gorithm for robot navigation in unknown indoor environments populated by static and dynamic
obstacles using DeepRL techniques. Inspired by the work presented in [1], the proposed method,
based on DQN frameworks [17], is specifically designed to operate solely based on real-time sens-
ory data. To mitigate the influence of the sensors’ intrinsic properties, a costmap representation
of the surrounding environment is employed. The framework diagram, presented in Fig. 1.1,
was initially introduced in [1] for robotic motion planning in environments populated by static
obstacles. In this work, specific components of this framework, particularly the reward model
and the neural network, were meticulously refined and enhanced to empower the RL-agent to
execute efficient motion planning not only within static environments but also within dynamic
ones. The framework consists of two stages: training and testing (online).

During the training stage, sensory data in the form of laser scans retrieved from a Light
Detection And Ranging (LiDAR) sensor is used to build a costmap at each time step t. The
DeepRL agent uses a stack of 4 sequential costmaps CStack along with a stack of 4 sequential
affordance-based measurements PStack related to the robot’s current pose and the target location
to formulate an environment state st. This state is then fed into a two-stream DNN that maps
it into an action at which is taken by the robot, triggering an environment change. In the
subsequent time step, t+1, a new state st+1 is computed, and a reward value is assigned to the
state transition st → st+1 resultant from the robot taking action at. The DNN is then fed with
transition tuples (st, at, st+1, rt) of past experiences to tune its parameters in order to learn,
over time, to accurately determine the viability of executing the action at on similar st states.
The goal of the training phase is to obtain a model that maximizes the total episodic rewards,
compelling collision-free motion of the robot towards the target.

In the testing or online stage, the fine-tuned models derived from the training phase are
employed to guide the agent’s decision-making process. The ultimate goal is for the agent to
autonomously navigate from a source to a target destination while avoiding any collision with
obstacles.
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Figure 1.1: Proposed DeepRL-based local navigation framework taken from [1].

1.3 Objectives and Key Contributions

The development of the proposed DeepRL-based local motion planning algorithm involved
the accomplishment of several objectives, executed chronologically as follows:

1. Adaptation of the framework 1.1 introduced in [1] to effectively address dynamic environ-
ments. This included:

• Designing an enhanced reward model and action set.

• Designing a suitable Deep Neural Network architecture.

2. Implementation of the PER and reward propagation techniques.

3. Deployment of curriculum and dynamic environments.

4. Validation of the DeepRL-based local navigation method within static environments.

5. Evaluation of the proposed PER, reward propagation and curriculum learning techniques.

6. Validation of the DeepRL-based local navigation method within dynamic environments.

The main contributions of the project are addressed in the following chapters:

• Developed Work (Chapter 4): Introduces and explains the design of each compon-
ent within the developed DeepRL framework, along with the simulation environments
specifically created to validate the framework.

• Software and Hardware Materials (Chapter 5): Describes the software and hardware
resources utilized to accomplish the defined objectives.

• Results and Discussion (Chapter 6): Presents the results obtained from the validation
of the proposed framework across both static and dynamic simulation environments, while
also providing an evaluation of the proposed techniques: PER, reward propagation and
curriculum learning.
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2
Background Material

This chapter covers the fundamental concepts of Robot Motion Planning, Reinforcement
Learning, Deep Learning, and Deep Reinforcement Learning.

2.1 Motion Planning

Robot motion planning or path planning is, in a simplified point of view, one of the three
stages of robot navigation, the other two being localization and mapping.

2.1.1 Motion vs. Path Planning

Path planning aims at finding an optimal path between the origin and destination by
strategies like shortest distance or shortest time. Motion planning, on the other hand, aims
at handling local short-term decisions, therefore having to consider kinetics features, velocities
and poses of the robot and the dynamic objects nearby them when they move towards the goal.
Therefore, in addition to achieving long-term optimal or suboptimal planning goals as path
planning, motion planning must consider short-term optimal or suboptimal reactive strategies
to make instant or reactive response [18].

2.1.2 Global vs. Local Motion Planning

Motion planning can be categorized as global or local, depending on whether all the in-
formation about the environment is known or not [19]. Global path planning operates in well
known environments, while local path planning operates in unknown environments, generating
short-term paths based on local representations built from sensory data in real-time.

2.1.3 Static vs. Dynamic Motion Planning

Motion Planning is also often categorized as static and dynamic. Static motion planning
assumes an unchanging environment. Dynamic motion planning, on the other hand, considers
the presence of moving obstacles and adapts the robot’s motion in real-time to handle any
change in the environment. Typically, dynamic planning involves online methods, while static
planning can be successfully accomplished using offline techniques [20].
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2.2 Reinforcement Learning

Reinforcement Learning (RL) [21, 22] is a subfield of ML that is concerned with the design
and development of algorithms and models that allow an agent to learn and make decisions based
on feedback received from the environment. Table 2.1 describes the parameters of conventional
RL techniques. The agent’s objective is to learn, by trial-and-error, a policy that maximizes the
expected cumulative reward.

action 

Environment

state 
reward 

state 

Agent

Figure 2.1: Reinforcement Learning framework.

As illustrated in Fig. 2.1, RL is composed of five main components: the agent, the en-
vironment, the states, the actions, and the rewards. At each time step t, the agent interacts
with the environment and takes an action at based on its current state st. The environment
responds, in the subsequent step t+ 1, with a reward signal rt, which the agent uses to update
its policy π(st). This process continues until a terminal state condition is met, or a step limit T
is reached, at which point, the environment resets, initiating a new episode. The return of each
episode e is calculated as the cumulative sum of step rewards, discounted by a factor γ:

Re =
T∑
i=0

γi · rt+i, γ ∈ [0, 1] (2.1)

According to how they handle the knowledge and representation of the environment, RL
algorithms can be categorized as follows:

• Model-based: the agent builds an explicit model P (st+1|st, at) and uses it to estimate
which action to take based on each transition probabilities and reward rt.

• Model-free: the agent learns and refines a value function V (st) solely through inter-
action with the environment, without any prior knowledge of its dynamics or transition
probabilities.

According to how they utilize the learning data during training, RL algorithms can also be
categorized as:

• On-Policy: the agent uses the current version of its policy to interact with the environ-
ment and acquire data. This data is then used to update that same policy.
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Table 2.1: Reinforcement Learning parameters.

Parameter Designation Description
st State Instance of the state space S, a set of all possible states of the environment.

at Action
Command that the agent executes based on its policy or strategy, selected from a set of

possible actions A.

rt Reward Scalar feedback signal that the agent receives from the environment after taking an action.

π(st) Policy Agent’s strategy for selecting actions based on the current state. Maps states to actions.

V (st) State-Value Function
Function that estimates the expected cumulative reward starting from a given state and

following a particular policy.

Q(st, at) Action-Value Function
Function that estimates the expected cumulative reward for selecting the action at in the

state st following a particular policy.

γ Discount Factor
Determines the importance of future rewards relative to immediate rewards, 0 means only

immediate rewards matter while 1 means that future rewards are equally important.

α Learning Rate
Controls how much the agent updates its value estimates based on new information. The

higher learning rate, the more reactive the agent will be to new information.

• Off-Policy: the agent acquires data by following one policy, denominated as behavior
policy, while learning and improving a different policy called target policy, using the ac-
quired data.

2.2.1 Policy Evaluation

The goal of policy evaluation is to assess the performance of a given policy in the environ-
ment. In order to maximize the expected cumulative reward achieved by following a policy π,
the agent must estimate the value function for that policy, which can be categorized as:

• State-Value function V (st): Quantifies how good it is for the agent to be in a specific
state st under the policy π(st).

• Action-Value function Q(st, at): Represents the value of taking action at in state st and
following the policy π(st).

Some of the most prominent policy evaluation methodologies include Dynamic Program-
ming, Monte Carlo and Temporal Difference Learning [21]:

• Dynamic Programming (DP): model-based approach that involves solving Bellman
equations iteratively through policy or value iteration to converge to the optimal policy or
value function:

V (st)← rt + γ ·
∑

st+1∈S
P (st+1|s, at) · V (st+1) (2.2)

• Monte Carlo (MC): estimates the value function by simulating complete episodes,
starting from a given state and following the policy until the end of the episode. The value
V (st) is updated using the observed return rt and the learning rate α:

V (st)← V (st) + α · [rt − V (st)] (2.3)

• Temporal Difference (TD): combining ideas from the previous two methods, TD learn-
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ing updates the value function based on the difference between the current estimate and
an estimate from a subsequent state, using the observed immediate reward rt and the
estimated value of the next state V (st+1):

V (st)← V (st) + α · [rt + γ · V (st+1)− V (st)] (2.4)

2.2.2 Exploration vs. Exploitation

The exploration versus exploitation trade-off is a critical aspect of RL [16]. Exploration
refers to the process of trying out random actions to gather more information about the envir-
onment’s dynamics in order to potentially discover better actions that lead to higher long-term
rewards. Exploitation, in turn, involves using the agent’s acquired knowledge and experience
to select actions that are expected to yield high immediate rewards based on the learned policy
or value function. Overemphasizing exploration might lead the agent to not take advantage of
the learned knowledge and, consequently, make uninformed decisions. On the other hand, an
excessive focus on exploitation might result in suboptimal actions and global policy.

Model-free RL algorithms use an epsilon-greedy (ϵ-greedy) exploration strategy, where the
agent explores by selecting a random action with probability ϵ and exploits by choosing the
action with the highest estimated value, with probability of 1-ϵ.

2.2.3 Q-Learning

Q-learning [23] is a model-free off-policy RL algorithm used to optimize, by trial-and-error,
an agent’s ability to make decisions.
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Q-Table
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Environment

Select
Action

Compute
Reward

Update
Q-Table

Assets

a0 a1 ... an

s0 Q(s0,a0) Q(s0,a1) ... Q(s0,an)

s1 Q(s1,a0) Q(s1,a1) ... Q(s1,an)

... ... ... ... ...

sn Q(sn,a0) Q(sn,a1) ... Q(sn,an)
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at
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Agent

state 
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Figure 2.2: Q-Learning pipeline.

As illustrated in Fig. 2.2, the Q-learning algorithm starts by initializing, with arbitrary
Q-values, a Q-table composed by a row for each state, and a column for each action. Through
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interaction with the environment, the agent selects an action a ∈ A using an ϵ-greedy exploration
method, previously described in Section 2.2.2. It can either explore, by picking a random action,
or exploit, by picking the action with the highest Q-value for the current state s ∈ S. The agent
then moves into a new state and receives a reward from the environment that is used to update
the Q-table with Q-values which represent the predicted usefulness of performing a specific action
in a particular state. The Q-values are computed using the Bellman equation:

Q(st, at)←− Q(st, at) + α · [rt + γ ·maxaQ(st+1, a)−Q(st, at)] (2.5)

• Q(st, at): State-action pair prediction;

• α: Learning rate;

• rt: Immediate reward received after taking the action at;

• γ: Discount factor that balances immediate and future rewards;

• maxaQ(st+1, a): Highest expected reward for all possible actions a in state st+1.

2.3 Deep Learning

Deep Learning (DL) [12, 13] is a subfield of ML that emerged from the foundation of
Artificial Neural Network (ANN) [24] and focuses on artificial intelligence, making use of Deep
Neural Networks (DNNs) and their ability to learn and make predictions or decisions autonom-
ously.

2.3.1 Artificial Neural Networks

ANNs are inspired by the structure and function of the human brain and designed with
multiple layers of interconnected nodes, known as artificial neurons or perceptrons. As illustrated
in Fig. 2.3, each neuron takes input values, performs a computation, and passes the result to
the next neuron (feed-forward) until the final output layer is produced. The intermediate layers
between the input and output layers are called hidden layers and allow the network to learn
hierarchical representations of the input data, extracting increasingly abstract features at each
layer. Each connection between layers has a weight w which determines the strength of the
connection and a bias b which allow the network to make predictions even when all input values
are zero or near-zero.

The computation is performed through the application of a nonlinear activation function
(fx) to the sum of a bias term (b) and the product of the signals from active neurons in preceding
layers (xj) and the corresponding weights (wi,j) associated with the channels that establish
connections to the neuron, for each one of the n neurons:

ŷi = fx(b+
n∑

j=1

xj · wi,j) (2.6)
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Figure 2.3: Artificial Neural Network architecture.

The activation function fx is a crucial component in ANNs that introduce nonlinearity to
the network’s output, enabling it to model complex relationships in data and learn intricate
patterns. They determine whether a neuron should be activated or not based on the weighted
sum of the inputs. Some popular activation functions include [12]:

• Sigmoid: maps the input to a value between 0 and 1.

fx =
1

1 + e−x
(2.7)

• Hyperbolic Tangent (tanh): maps the input to a value between -1 and 1.

fx =
ex − e−x

ex + e−x
(2.8)

• Rectified Linear Unit (ReLU): replaces negative inputs with zero and passes positive
inputs unchanged.

fx = max{0, x} (2.9)

2.3.2 Neural Network Training

The neural network training is a key process of DL that involves the tuning of the network’s
parameters θ, denoted as (w; b) and randomly initialized. The goal is to enable the network to
make accurate predictions or classifications. The training process is segmented into the following
phases:

1. Forward propagation: data fed into the input layer travels through the hidden layers
via weighted connections until an output layer is produced.

2. Loss calculation: the output of the network yi is compared to the actual target values
ŷi and a loss function L(θ) is used to quantify the discrepancy between the network’s
prediction and the actual target. One of the most commonly used loss function is the

9



DeepRL-Based Dynamic Motion Planning for Robot Navigation in Unknown Indoor
Environments

Mean Squared Error (MSE) function:

L(θ) =
1

n

n∑
i=1

(yi − ŷi)
2 (2.10)

3. Backpropagation: using the chain rule, the gradient of the loss associated to θ is cal-
culated, starting from the output layer and moving backward through the network. This
gradient indicates how much each parameter contributed to the error.

4. Gradient descent: the gradients calculated during the backpropagation process are util-
ized to update the network’s parameters θ. This update involves both magnitude and
direction, which are determined by optimization algorithms like Stochastic Gradient Des-
cent (SGD) [25] and Adaptative Moment Estimation (ADAM) [26]. This iterative process
aims to adjust the parameters θ as to minimize the loss function L(θ).

The primary goal of training Neural Networks (NNs) is to ensure that the resulting fine-
tuned model demonstrates satisfying performance not only on the training data but also on
similar data during testing. Nonetheless, throughout experimentation, the intricate and poten-
tially inaccurate learning process can give rise to certain behavioral challenges. The two most
prevalent issues encountered when training DNNs are the following:

• Overfitting: the network excels in performance exclusively on the training data.

• Underfitting: the model lacks the capacity or complexity to represent the relationships
present in the dataset. This is often caused by poor design of the networks’ architecture
or insufficient training.

Several methods have been proved to be efficient in addressing overfitting [27]. These
include techniques such as early stopping, network reduction, data expansion, and regularization.
When it comes to tackling underfitting, the optimal strategies involve augmenting the model’s
complexity and extending the training duration.

2.3.3 Neural Networks Architectures

The deployment of DNNs has shown remarkable success across diverse domains such as
computer vision, natural language processing, speed recognition, and reinforcement learning.
The variety of applications has prompted the use of different neural network architectures,
including:

• Convolutional Neural Network (CNN): used for image and video analysis tasks [28].

• Recurrent Neural Network (RNN): used for sequential data, like text and speech
[29].

2.3.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [28, 12, 13] are a specialized type of DNN architec-
ture designed for processing grid-like data, such as images or videos. Their distinguishing factor
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lies in the integration of convolutional layers, enabling them to automatically learn and identify
patterns in visual data. This type of DNN have led to significant advances in image recognition
and object detection, among others tasks.

Input Image Feature Extraction

Flatten

Classification

Convolutional Layer Activation layer Pooling Layer Fully Connected Layer

Output Classes

Figure 2.4: Overview of Convolutional Neural Networks architecture for image classification.

As shown in Fig. 2.4, a general architecture of a CNN includes five different components:

• Convolutional layers: responsible for feature extraction. They apply filters or kernels
to small regions of the input data. These filters learn to detect specific basic features such
as edges, corners and textures. The filter is slid over the input data and dot products are
computed to produce a feature map. This convolutional operation captures local patterns
and allows the network to learn hierarchical representations.

• Pooling layers: often used after the convolution layers to reduce the spatial dimensions of
the feature map while retaining important information. Max pooling is a popular pooling
technique where the maximum value within a region of the feature map is taken, effectively
downsampling the data.

• Activation layers: used to apply activation functions to the output of convolutional
layers in order to introduce non-linearity to the network and help it learn more complex
patterns.

• Batch normalization layers: often applied after the activation layers to stabilize and
accelerate the training process. It normalizes the mean and standard deviation of the
activations, reducing internal covariate shift and improving gradient flow.

• Fully connected layers: dense layers responsible for classification. They process the
flattened features outputted by the last convolutional layer and make final predictions.

2.3.4 Transfer Learning

Transfer Learning (TL) [30] is a ML technique that involves leveraging knowledge acquired
from training a model on one task to improve performance on a different, yet related, task.
Instead of training from scratch, a pre-trained model’s learned features, weights, or architecture
are used as a foundation for a new model, making learning faster and more effective. This
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approach has proved particularly useful when there is limited data for the task or when training
from scratch is resource-intensive.

CNNs frequently take advantage of this method, using networks pretrained on large datasets
like ImageNet [31] and fine-tuning them for specific tasks with smaller datasets. This approach
leverages the learned features to boost performance on new tasks.

2.4 Deep Reinforcement Learning

Despite achieving satisfactory results in the past, RL algorithms were always limited in
terms of scalability and constrained to low-dimensional problems. This is due to their tabular
framework, which grows computationally over expensive when dealing with high-dimensional
data. To overcome this challenge, researchers introduced DNNs into RL architectures, providing
them powerful tools such as function approximation and representation learning [16]. The
combination of DL and RL methods defines the revolutionary field of DeepRL, whose framework
is illustrated in Fig. 2.5. This technique has enabled robots to interact with complex and
dynamic environments and make accurate decisions [32].

action 

Environment

state 
reward 

state 

Agent

Figure 2.5: Deep Reinforcement Learning framework.

2.4.1 Value-based vs. Policy-based Learning

DeepRL agents employ one of two different learning methodologies to learn optimal decision-
making strategies: Value-based and Policy-based. These strategies diverge in how they approach
the learning process and represent the agent’s knowledge:

• Value-based: the agent focuses on learning the values associated with different state-
action pairs using DNNs as action-value functions Q(st, at; θ).

• Policy-based: the agent focuses on directly learning the best decision-making strategy
by optimizing the policy π(st, at; θ) using DNNs.

2.4.2 Deep Q-Learning

Deep Q-Learning, also denominated DQN is a value-based learning method introduced by
Mnih et al. [17] that integrates DL with the Q-learning algorithm described in Section 2.2.3. By
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replacing Q-tables with neural networks to estimate the Q-values, it becomes able to handle high-
dimensional state spaces, therefore improving the performance and stability of the traditional
Q-learning method.
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Figure 2.6: Deep Q-learning training stage overview.

As illustrated in Fig. 2.6, the DQN framework comprises three main components: a policy
network, a target network, and a replay buffer. The policy network (θ) is fed with the current
state of the environment st and approximates Q-values for all possible actions at. The target
network (θ−), in turn, is used to compute the target Q-values for updating the policy network,
in order to stabilize the learning process and prevent Q-value divergence. The target network
mirrors the policy network’s architecture but undergoes less frequent parameter updates θ− ← θ

.

While in Q-learning, the computation of the Q-values relies on the conventional Bellman
equation 2.5, DQN operates under the assumption of the Bellman equation’s optimal condition
(α =1):

Q(st, at)←− r(st, at) + γ ·max
a

Q(st+1, a) (2.11)

The replay buffer [33] is an experience replay mechanism used by DQN to store transitions
(state, action, next state, reward), witnessed in each training episode step t, in a buffer with
size N . This buffer helps in breaking the temporal correlations between consecutive transitions,
leading to more stable learning.

In the training phase, the agent starts by interacting with the environment, observing the
current state st, selecting an action at through an ϵ-greedy exploration strategy, receiving a
reward rt and transitioning to the next state st+1, filling the replay buffer with transition tuples
(st, at, st+1, rt). After each step, a random batch of tuples (si, ai, si+1, ri) is sampled from the
buffer and fed into the policy and target networks. Subsequently, a loss value is computed based
on the networks’ outputted Q-values, typically using the MSE function:
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L(θ) = ||yt(a)−Q(si, ai; θ)||2 ≡ ||ri +

Target Net︷ ︸︸ ︷
γ ·max

a
Q(si+1, a; θ

−)−
Policy Net︷ ︸︸ ︷

Q(si, ai; θ)||2 (2.12)

The loss is then backpropagated through the policy network to update its parameters θ:

△θ = α · L(θ) · ∇θQ(si, ai; θ) (2.13)

In the testing or online phase, only the trained policy network is used, and a low exploration
rate ϵ is set, to prioritize exploitation. The agent interacts with the environment, using the
learned Q-values to select the action that yields the highest expected total return Q∗(st, a; θ

∗):

at ← argmax
a∈Q(s,:;θ∗)

Q(st, a; θ
∗) ≡ Q∗(st, a; θ

∗) (2.14)

Ideally, the agent is able to use the fine-tuned network model θ∗ to drive its decision-making
process accurately.

2.4.3 Dueling Deep Q-Network

DDQN is an extension of DQN proposed by Wang et al. [34] that separates the neural
network into two streams (Fig. 2.7):

• Value stream fcV : composed by a single neuron layer, it estimates the state value V (st)

which represents the baseline level of expected reward from the state st regardless of the
action.

• Advantage stream fcA: composed by a layer with number of neurons equal to the
actions space k. It estimates the advantage value A(st, at), which indicates the advantage
of taking a particular action at in that state st

This two stream network architecture allows the algorithm to learn which actions are valu-
able in which states separately, improving its stability and learning efficiency. The advantage
value is calculated by subtracting the predicted state value V (st) from the optimal state-action
Q∗(st, at):

A(st, at) = Q∗(st, at)− V (st) = rt + γ · V ∗(st+1)− V (st) (2.15)

The Q-value Q(st, at) is then estimated by adding the state value V (st) to the difference
between the advantage value A(st, at) and the mean of the advantage of all k actions. This
difference ensures that the advantage values are centered around zero, which helps in stabilizing
learning:

Q(st, at) = V (st) +A(st, at)−
1

k

k∑
a=1

A(st, a) (2.16)
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Figure 2.7: Dueling Deep Q-Network architecture.

Thus, in DDQN, the policy network update process is not performed only considering the
output neuron with the highest Q-value, like in DQN, as it’s also given information about every
experience from the state value neuron. Therefore, the value stream allows for more efficient
learning.

In DDQNs, the policy network update process differs from DQNs. It isn’t solely based on
the output neuron with the highest Q-value, as it also use information from every experience
through the state value neuron. This inclusion of the value stream results in more efficient
learning.

2.4.4 Double Deep Q-Network

In standard DQN algorithms, the Q-network uses the same set of parameters to both select
the best action and estimate its value (see Equation 2.17), which can lead to overestimation
of Q-values, particularly in cases where the agent hasn’t learned the true Q-values accurately.
Hasselt et al. proposed a solution to mitigate this issue by decoupling the action selection and
value estimation steps (see Equation 2.18), giving rise to the D2QN architecture [35].

yDQN (t) = rt + γ ·max
a

Q(st+1, a; θ
−) (2.17)

yD2QN (t) = rt + γ ·Q(st+1, argmax
a

Q(st+1, a; θ); θ
−) (2.18)

Analogously to DQN, D2QN uses the policy network θ to select the action with the highest
Q-value for the current state. However, while DQN uses the same policy network to estimate
the Q-values for the selected action, D2QN uses the target network θ−.

2.4.5 Dueling Double Deep Q-Network

The combination of the dueling architecture proposed by Wang et al. and the double variant
proposed by Hasselt et al. resulted in the D3QN. This method benefits from the use of two
separate DNNs to estimate the optimal action values, as well as the separation of the value
function into two components. This allows the algorithm to more effectively learn the optimal
action-selection policy, leading to a stabler and faster learning of value functions and policies.
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2.4.6 Curriculum Learning

Curriculum learning [36, 37] is a ML technique where data is presented to a model in a
structured order, starting on simpler examples and gradually progressing towards more complex
ones. This method benefits from:

• Facilitating convergence: by starting on simpler examples, this method can speed up
convergence and help the model avoid local minima during training;

• Improving long-term generalization: learning from simpler cases initially can lead to
better generalization on more complex cases in later stages.

Curriculum learning has shown promising results in tasks such as image recognition, se-
quence generation, and reinforcement learning, as it guides the learning towards a more efficient
and effective process.

This technique can be applied to RL algorithms, where the agent undergoes training in a
series of progressively more complex environments, exemplified in Fig. 2.8. The agent is initially
trained on environment (a) until a fine-tuned network model is obtained, and saved. Following
the transfer learning methodology addressed in Section 2.3.4, the saved network’s parameters
θ are then preloaded in the network, and the agent is trained on the subsequent environment
(b). This process repeats until the final and more complex environment (d). As knowledge is
transferred from one environment to the next, the sequence of tasks induces a curriculum, which
has been proven to enhance the performance of RL-agents on challenging tasks and expedite
their convergence to an optimal policy [37].

Complexity

(a) (b) (c) (d)

Figure 2.8: Curriculum learning environments.
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3
State of the Art

In this chapter, some of the most popular mobile robotic motion planning algorithms are
described, with particular focus on optimal value approaches based on DeepRL.

Motion Planning

The robotic motion planning problem has been widely studied and a variety of methods
have been implemented to tackle this problem [18].

3.1 Global Motion Planning

Global motion planning algorithms are categorized as traditional algorithms. Under this
category are graph-search, sampling-based, and interpolating curve algorithms.

3.1.1 Graph-Search algorithms

Some of the most popular graph-search algorithms include Dijkstra′s and A∗ algorithms.
Dijkstra′s [38] works by exploring a graph from a starting node and maintaining a set of visited
nodes and unvisited nodes. At each step, it selects the node with the smallest tentative distance
from the starting node and updates the tentative distances of its neighboring nodes. This process
is repeated until the destination node is reached or until there are no more unvisited nodes. The
algorithm then backtracks to find the shortest path from the starting node to the destination
node. A∗ [39] is an extension of Dijkstra’s that uses a heuristic evaluation function to guide the
search towards the destination node and improve its efficiency:

f(i) = g(i) + h(i) (3.1)

• i - robot current localization;

• g(i) - past-cost function from the starting node to i;

• h(i) - Euclidean distance from i to the target node.
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3.1.2 Sampling-based algorithms

Sampling-based motion planning is a popular approach that involves sampling random
configurations and using them to generate a roadmap of the robot’s workspace. Sampling-based
methods are widely used in mobile robotic motion planning due to their ability to handle high-
dimensional state spaces and complex environments [40]. Some examples of sampling-based
methods include Probabilistic Roadmap (PRM) [41], Rapidly-exploring Random Tree (RRT)
[42], and their variants. PRM consists of randomly sampling the configuration space of the
robot and creating a graph representation of the free space. The algorithm uses this graph to
plan collision-free paths for the robot. RRT is based on randomly growing a tree from the start
configuration towards the goal configuration. The path planning algorithm then uses this tree
to plan collision-free paths for the robot.

3.2 Local Motion Planning

Local motion planning algorithms include reaction-based, classical ML, policy gradient RL
and optimal value RL.

3.2.1 Reaction-based algorithms

Reaction-based motion planning algorithms use real-time feedback from sensors to generate
and adjust motion plans for the robot. Widely used reaction-based algorithms include Potential
Field Method (PFM) [43] and Dynamic Window Approach (DWA) [44]. PFM consists of model-
ling the robot’s environment as a field of attractive and repulsive forces, usually associated with
the robot’s desired destination and the obstacles in the robot’s path, respectively. These forces
are then summed up, and the resultant force is used to define the robot’s movement course.
DWA consists of defining a window of possible velocities and accelerations and dynamically
update it based on the robot’s current velocity and available space in the environment. The
algorithm then selects the next motion command by calculating a cost function for each possible
velocity and acceleration pair and choosing the pair with the minimum cost.

3.2.2 Reinforcement Learning algorithms

Reinforcement Learning (RL) and DeepRL have emerged as promising approaches for ro-
botic motion planning, showing great potential in addressing the limitations of traditional meth-
ods in handling high-dimensional state spaces and dynamic environments [15, 45].

3.2.2.1 Policy Gradient RL algorithms

Policy gradient RL algorithms directly optimize a parameterized policy to maximize the
expected cumulative reward. These algorithms are able to learn stochastic policies that can
explore the state space more effectively and can handle high-dimensional state and action spaces
efficiently. Some of the most popular policy gradient RL algorithms include A3C [46], PPO [47]
and DDPG [48, 49].
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Asynchronous Advantage Actor Critic (A3C) [46] is a DeepRL algorithm that combines
policy gradient and value-based methods. It allows for efficient parallelization of the learning
process, by running multiple copies of the environment and the agent in parallel, with each copy
interacting with the environment and updating its own weights asynchronously. This technique
uses an actor-critic architecture, where the actor selects actions based on the policy and the
critic estimates the value of each state.

Proximal Policy Optimization (PPO) [47] is another DeepRL algorithm that combines policy
gradient and value-based methods. This algorithm iteratively optimizes a clipped surrogate
objective function, which limits the size of the policy update at each iteration to prevent large
changes. PPO uses a value function to estimate the state-value function, which is used to
estimate the expected reward of being in a particular state.

Deep Deterministic Policy Gradient (DDPG) [48, 49] is a DeepRL algorithm that combines
policy gradient and Q-learning methods to learn a deterministic policy that can be used to
directly select actions in continuous action spaces. DDPG uses an actor-critic architecture,
where the actor network maps states into actions, and the critic network evaluates the quality of
those actions. Similarly to DQN, this method also uses experience replay and target networks
to improve stability during training, and is capable of learning in high-dimensional continuous
state and action spaces.

3.2.2.2 Optimal value RL algorithms

In optimal value RL algorithms, the robot learns a value function that assigns a value to
each possible action in each possible state of the environment. The value function is then used
to select the optimal action to take in each state to maximize a reward signal, which is defined
by the designer to reflect the robot’s objectives. The most popular optimal value RL algorithms
are the Q-learning algorithm [8, 50, 51], and the DQN algorithm along with its variants D2QN,
DDQN and D3QN.

Mnih et al. introduced the DQN [17], a value-based DL method designed upon a Q-
Learning architecture [23] that approximates a Q-function with a DL architecture, obtaining,
at the time, ground-breaking results in learning policies to play Atari games. Over the years
many improvements over the DQN were proposed, Wang et al. [34] proposed the DDQN, an
extension of the DQN method that improves learning efficiency by separating the action-value
estimation into state-value and advantage functions, thus enabling more effective exploration
and decision-making capability of mobile robots in complex environments. Hasselt et al. [35]
proposed the D2QN, a DQN variant that addresses the overestimation bias issues present in the
original algorithm by using an additional network to estimate a separate Q-value and update
the other network, thus disentangling updates from biased estimates.

Due to its remarkable success in learning control policies from raw pixel images in various
games [17], DeepRL inspired researchers to apply DQN to robotic motion planning tasks, where
agents use raw sensor data to learn collision-free paths in cluttered and dynamic environments.

Ozdemir et al. proposed a DDQN-based algorithm [52] that uses LiDAR scans and RGB-D
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images to obtain a 3D point cloud and converts it into 2D laser data. This data is then used,
along with robot-target distance and angle and a heuristic reward, to obtain motor speed pairs
to drive the robot from a source to a target destination.

Lei et al. [53] and Wang et al. [54] proposed approaches to robot motion planning using the
D2QN method. In [53], LiDAR dot matrix information (angle and distance) and local target
point coordinates are fed into a CNN and, with a simple and straight forward reward model,
fixed-length omnidirectional movements are obtained. In [54], robot-obstacles and robot-target
distances (obtained from LiDAR scans), robot location and velocity and target location are
used, along with a heuristic reward, to obtain motor speeds. Also, the latter makes use of PER
to improve learning efficiency. Leão et al. proposed a DQN approach [55] that feeds the robot’s
distances to obstacles and to the target, obtained through a LiDAR, and a heuristic reward to
the DNN which outputs motor speed pairs.

Ramirez et al. proposed another approach to robot motion planning [56] that uses D3QN,
an extension of DQN that, by combining the D2QN and DDQN variants, benefits from the
advantages of both. The network is fed with depth images, polar coordinates (distance and
angle) and a simple straight forward reward and outputs motor speed pairs. In addition to
this, PER, Multi-step Q-learning, Categorical DQN and NoisyNet methods are implemented,
forming the commonly called Rainbow DQN which resulted in a better performance than the
standard DQN. A brief summary of the aforementioned works is presented in Table 3.1.

Table 3.1: Summary of DeepRL-based optimal value motion planning strategies.

Article Simulator Method States Actions Rewards

Leão et al.[55] Flatland DQN Laser measurements
Linear-angular

speed pairs
Heuristic reward

Ozdemir et al.[52] Gazebo DDQN
Laser scan;

Robot-target-relative data

Linear-angular

speed pairs

Penalty for collision;

Reward for reaching the goal;

Reward based on velocity

and robot-target angle

Lei et al.[53] Pygame
D2QN

CNN
2D LiDAR Scan

Fixed-length omni-

directional movements

of eight directions

Penalties for each step and

collision;

Reward for reaching the goal

Wang et al.[54] Gazebo D2QN

Laser measurements;

Robot’s location and velocity;

Target’s location

Linear-angular

speed pairs
Heuristic reward

Ramirez et al.[56] Gazebo D3QN
Depth Image and

Polar Coordinates

Linear-angular

speed pairs

Penalties for each step and

collision;

Reward for reaching the goal
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This chapter presents an in-depth description of the implemented DeepRL framework, in-
cluding the developed ANNs, state, action, and reward models. A description of the simulation
environments built to validate the framework is also presented.

4.1 Proposed DeepRL-based Framework

This work proposes a solution to robot local motion planning in unstructured and dynamic
environments. To effectively manage the high-dimensional state spaces imposed by such environ-
ments, as discussed in Sections 2.4 and 3.2.2, a DeepRL-based approach was adopted, implying
the design and implementation of an DNN, and a state, action and reward model.

The developed DeepRL-based framework, depicted in Fig. 1.1 of Section 1.2, features a sim-
ulated environment, a costmap representation of the environment, and the Double Dueling Deep
Q-Network (D3QN) method addressed in Section 2.4.5. Analogously to any RL methodology,
the proposed method is divided into two distinct stages:

• Training stage: this phase involves iteratively refining the frameworks’ DNN through
trial-and-error. The pipeline of the training phase is illustrated in Fig. 4.1 and described
in-depth in Algorithm 1. After each training episode where the robot successfully reaches
the target, a network model is stored, containing the employed DQN architecture along
with its current parameter values θ.

• Testing or online stage: a saved network model derived from the training phase is used
in this stage to control the robot’s movements and verify its decision-making strategy.
Ideally, the network model should guide the robot towards the target while avoiding col-
lisions with obstacles.

Throughout the development of this framework, several DNNs, reward models and action
sets were explored and refined until achieving satisfactory results. The DNN, reward model and
action set that ultimately yielded these results are discussed in the following sections.
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Figure 4.1: Training stage pipeline.
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Algorithm 1: DeepRL-based Motion Planning for Indoor Robot Navigation
Define the agent’s state, action, and reward models
Define the initial and target points
Define the number of training episodes M and maximum steps T
Define the network’s hyperparameters
Define the target network θ update rate Ur

Define the reward propagation window Pw

Initialize the system’s ROS nodes and establish its subscriptions and publishers
Initialize the DQN policy and target networks (θ and θ−)
Initialize the replay buffer D to capacity N and define the batch size Nb

for episode e = 1 to M do
Initialize environment
for step t = 1 to T do

Take action at using an ϵ-greedy exploration method
Get the robot’s odometry data from /odom callback
Get the sensor readings from /scan callback
Define st+1

if st+1 is terminal then
if dT ≤ dmin then

Reward the agent, rt = RT

Save the DQN model
else

Penalize the agent, rt = PO if using Reward Propagation then
for i = 1 to Pw do

Propagate the last Pw rewards in the buffer, ri = rt

break
else

Compute the reward value rt following the reward model

Store transition tuple (st, at, st+1, rt) in D with maximal priority pt = maxi<1 pi

Sample a batch of Nb tuples (si, ai, si+1, ri) from D with probability P (i) (4.1)
Compute importance-sampling weight wi (4.3)
Calculate TD-error δi (4.2)
Update transition priority pi ← |δi|
Compute yt(a) (2.18)
Compute the policy network Qvalues, Q(si, a; θ)

Perform a gradient descent step with loss ||yt(a)−Q(si, ai; θ)||2, updating θ

if t % Ur = 0 then
Replace the target DQN parameters θ− ← θ

st ← st+1
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4.2 Deep Neural Network

The DeepRL architecture proposed in this work is inspired by the work of Daniel Palaio
[1]. In [1], a two-stream D3QN architecture (see Section 2.4.5), shown in Fig. 4.2 is used to
enable the RL agent to learn how to perform effective motion planning towards its target, while
avoiding static obstacles. In order to efficiently extend this collision-free motion to contemplate
not only static but also dynamic obstacles, this work introduced enhancements to the DNN
employed in [1] (refer to Fig. 4.2), giving rise to the augmented DNN illustrated in Fig. 4.3.
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Figure 4.2: Original Dueling Deep Q-Network architecture [1].

The first stream of the proposed DNN (Fig. 4.3) is a feature extraction stream, addressed
in Section 2.3.3.1, and is used for dealing with the costmap grid-like representation (Cstack).
This stream is composed by 6 convolutional layers, detailed in Table 4.1, followed by a flatten
layer.

The second stream is composed by 3 fully-connected layers: fc1, fc2, and fc3, described
in Table 4.1 and deals with affordance-based inputs p = {dT , ϕ, dO} relative to the robot’s
Euclidean distances to the target (dT ) and to the nearest obstacle (dO) and the orientation
disparity between the robot and the target (ϕ).

The outputs of these two stream are concatenated and forwarded through an additional set
of two fully-connected layers (fc4 and fc5). The outputs of these layers are subsequently fed into
the advantage and value fully-connected layers (fcA and fcV ) which are used to compute the
Q-values considering a dueling architecture (see Section 2.4.3).

Addressing the need for a stable learning process, as discussed in Section 2.4.2, two equal
networks with characteristics as aforementioned, are employed as the policy network with para-
meters θ, and the target network with parameters θ−. The policy network estimates the Q-values
for the current state-action pair, Q(st, at) while the target network estimates the Q-values for
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the next state-action pair Q(st+1, at+1). Only the policy network is trained, and its weights are
periodically cloned to the target network at a defined interval Ur.

To tackle the problem of state-action value overestimation that leads to impoverished
policies, as explained in Section 2.4.4, the D2QN variant [35] is exploited in this work.
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Figure 4.3: Proposed Dueling Deep Q-Network architecture.

Table 4.1: Layer configurations of the proposed DNN.

Layer Parameters

Input {Cstack, PStack}

conv1 Filters = 32, Kernel size = 3, Stride = 1, Activation = ReLU

conv2 Filters = 32, Kernel size = 3, Stride = 1, Activation = ReLU

maxpool Kernel size = 2, Stride = 2

conv3 Filters = 64, Kernel size = 3, Stride = 1, Activation = ReLU

conv4 Filters = 64, Kernel size = 3, Stride = 1, Activation = ReLU

maxpool Kernel size = 2, Stride = 2

conv5 Filters = 128, Kernel size = 3, Stride = 1, Activation = ReLU

conv6 Filters = 128, Kernel size = 3, Stride = 1, Activation = ReLU

maxpool Kernel size = 2, Stride = 2

fc1 Neurons = 64, Activation = ReLU

fc2 Neurons = 32, Activation = ReLU

fc3 Neurons = 16, Activation = ReLU

fc4 Neurons = 128, Activation = ReLU

fc5 Neurons = 64, Activation = None

fcV Neurons = 1, Activation = None

fcA Neurons = Nactions, Activation = None
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4.3 Replay Buffer

In this work, the Prioritized Replay Buffer (PER), an improvement of the experience replay
buffer addressed in Section 2.4.2, is exploited.

In the traditional replay buffer, explained in Section 2.4.2, the agent’s experiences are stored
in the replay buffer and then uniformly sampled from it to be used to update the target network
θ−. However, not every experience is equally valuable or informative for learning and thus,
uniformly sampling this experiences makes learning inefficient. The PER, introduced by Schaul
et al. [57], aims to improve the model’s learning efficiency by prioritizing the training samples
used.

Whenever a new experience is stored in the PER, a probability of transition P is assigned to
it based in the magnitude of the TD-error pi associated with that experience. During training,
the agent samples experiences from the PER with probabilities proportional to their priority
values. Each priority value P (i) is formulated as:

P (i) =
∥pαi ∥∑
k∥pαk∥

(4.1)

Here, α is the impact factor for TD-error, which is defined as δ:

δi = ri + γ ·Q−(si, argmax
a

Q(si+1, a))−Q(si, a) (4.2)

This prioritization of experiences introduces, however, a bias in the sampling process that
can lead to overfitting. In order to mitigate this issue, the implemented PER uses a technique
called importance sampling for correcting this bias. The sampling weights are calculated based
on the priority value P (i), the number of samples in the buffer N , and an impact factor for
sampling importance β:

wi =

(
1

N · P (i)

)β

(4.3)

The integration of these three components (P (i), δi, and wi) is described in Algorithm 1
(Section 4.1).

4.4 State, Action and Reward Models

4.4.1 State Model

As shown in the proposed DeepRL-based framework illustrated in Fig. 1.1, the agent
employs information about its surrounding environment acquired through sensors, specifically
a 2D LiDAR sensor. This information, comprising laser scans and distance measurements, is
converted into states, specific data structures supported by the framework’s DNN.
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Traditional DeepRL methods often feed the laser scans directly into the DNN which can
result in network updates being influenced by intrinsic and extrinsic features such as sensor
positioning, distance range and angular resolution. Drawing inspiration from [1], this work
proposes a solution based on costmaps to mitigate these biases in generalization. The proposed
costmaps are defined as 40×40 grids with a length of 1-meter, centered in the robot. Each cell
within the grid is initialized to 0 at each step and set to 1 if overlapped by any laser scan reading,
as illustrated in Fig. 4.4. The convolution layer of the DNN (see Fig. 4.2) is fed with a stack of
four sequential costmaps (see Fig. 4.4) in order to represent continuous environment variations
rather than short-term paths only.
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Figure 4.4: Costmap representation and Cstack structure.

In addition to the costmap representation, data pertaining to correlations between the robot
and the target, as well as the robot and the nearest obstacle p = {dT , ϕ, dO} is integrated into
the state model to augment the agent’s situational awareness (see Fig. 4.5). Similarly to the
Cstack structure, affordance-based measurements p from 4 sequential time steps are employed to
formulate the structure Pstack = {pt−3, pt−2, pt−1, pt}. The stop action was exclusively used on
environments with dynamic obstacles.

p =


dT : Euclidean distance between the robot and target;

ϕ : Orientation disparity between the robot and target;

dO : Euclidean distance between the robot and the nearest obstacle.

The complete state model is thus formulated as S = {Cstack, Pstack}.

4.4.2 Action Model

As addressed in Section 2.4, DeepRL agents respond to environment observations through
actions. Policy gradient algorithms such as PPO and DDPG operate within continuous action
spaces, while deep Q-learning algorithms, such as the one proposed in this work, use discrete
action spaces. In this work, the robot’s actions were employed as linear and angular speed pairs
(v, w). The action set defined to control the robot’s movement is composed of 29 distinct actions
described in Table 4.2.
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t

t-1

Target

Figure 4.5: Robot-target-relative data representation.

Table 4.2: Action Set.

Linear vel. (m/s); Angular vel. (rad/s) Description

{0.0; 0.0} Stop action

{0.15; 0.0}, {0.25; 0.0} Forward movements

{0.15; 0.25}, {0.15; 0.5}, {0.15; 0.75}, {0.15; 1.0}
{0.15; 1.25}, {0.15; 1.5}, {0.15; 2.0} Left turns with

{0.25; 0.5}, {0.25; 0.75}, {0.25; 1.0}, {0.25; 1.25} linear component
{0.25; 1.5}, {0.25, 2.0}

{0.15; -0.25}, {0.15; -0.5}, {0.15, -0.75}, {0.15; -1.0}
{0.15; -1.25}, {0.15; -1.5}, {0.15; -2.0} Right turns with

{0.25; -0.5}, {0.25; -0.75}, {0.25; -1.0}, {0.25; -1.25} linear component
{0.25; -1.5}, {0.25; -2.0}

4.4.3 Reward Model

In DeepRL frameworks, the reward model plays a crucial role in guiding the agent’s learning
process by providing feedback on its actions. The reward model defines the scalar value rt

assigned to the action at based on the originated state transition st ← st+1.

In this work, the reward model is structured to provide high rewards for actions that guide
the agent toward a compelling collision-free motion towards the target. This model incorporates
three distinct reward components: rT , rO and rS , based on the robot-pose-relative data (see
Fig. 4.4) and the number of steps t taken, defined as follows:
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rO = 0.05 · (−0.5 + 1

1 + e−50|dOt+1
−0.3| )

rT = 0.05 ·
dTt − dTt+1

dTt+1

rO + e(−0.9|dTt+1
|)

rS = 0.05 ·max(−0.01t,−2), t ∈ [0, T ]

(4.4)

The rO component rewards the agent for actions that help maintain a safe distance between
the robot and the nearest obstacle. The rT component rewards the agent for actions that
contribute to reducing the robot’s Euclidean distance to the target. The rS component is used
to penalize the agent for actions that contribute to an increasing in the time taken to reach the
target.

For non-terminal states, the cumulative reward rt at each step is computed as the sum of
these three reward components. For terminal states, the agent receives a substantial reward RT

if the robot’s distance to the target is below a specified threshold dTmin or a penalty (negative
reward) PO if the robot’s distance to the nearest obstacle is below a given threshold dOmin :

rt =


RT , if dT < dTmin

PO, if dO < dOmin

rT + rO + rS , otherwise

(4.5)

In order to address the problem of delayed rewards [8], common in RL, and achieve high
levels of performance in complex environments, this work proposes the use of reward propagation.
The reward propagation technique consists of assigning credit or blame for a specific outcome to
the different actions that contributed to that outcome, improving the agent’s learning efficiency
over time. The reward is propagated whenever the robot collides with an obstacle by applying
the penalty PO not only to the current step’s reward rt but also to the previous w steps’ rewards
stored in the replay buffer:

rn−i = rt, i ∈ [1, w] (4.6)

Here, n denotes the number of experiences stored in the replay buffer at step t.

4.5 Simulation Environments

In order to validate the developed framework and evaluate the proposed methods, apart
from employing the pre-existing Stage 4 environment, additional simulation environments were
built using the Gazebo software described in Section 5.3.

4.5.1 Dynamic environment

To validate the developed DeepRL-based framework for dynamic motion planning, a sim-
ulation environment featuring dynamic obstacles was required. Therefore, this work involved
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the creation of the Stage 4 Dynamic environment depicted in Fig. 4.6b. This environment was
derived from the Gazebo’s Stage 4 environment depicted in Fig. 4.6a.

(a) Gazebo’s Stage 4. (b) Gazebo’s Stage 4 Dynamic.

Figure 4.6: Gazebo’s Stage 4 environments.

Similarly to the original Gazebo’s Stage 4 environment, the Stage 4 Dynamic environment,
shown in Fig. 4.6b, has four walls with five meter length defining the workspace area. Fur-
thermore, eight additional walls with a length of one meter are positioned within the workspace
to simulate static obstacles. However, the Stage 4 Dynamic environment introduces motion to
the two white cylindrical objects present in the Stage 4 environment. These cylinders follow a
designated trajectory indicated by the red arrows with a velocity of 0.2 meters per second.

4.5.2 Curriculum Environments

To evaluate the application of curriculum learning techniques (discussed in Section 2.4.6)
to the developed DeepRL framework, a set of five environments, represented in Fig. 4.7, was
created within Gazebo. The base configuration of all five environments consists of a rectangular
layout with four walls delineating the operational space for the robot. In addition to this base
setup, supplementary walls are gradually added into each environment to simulate additional
static obstacles, progressively increasing each environment’s complexity in comparison to the
preceding one.
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Figure 4.7: Gazebo’s Curriculum environments.
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5
Software Tools and Hardware Mater-
ials

This chapter introduces and briefly describes the software and hardware resources employed to
achieve the defined objectives.

5.1 Ubuntu Operating System

Ubuntu [58] is a free and open-source Linux distribution based on Debian, and is widely
used for desktop computing. It is developed and maintained by Canonical, and is a popular
choice for developing robot frameworks due to its support for a wide range of both hardware
and software components, as well as its user-friendly nature and adaptability. Ubuntu includes
a variety of software tools and libraries that are commonly used in the development of robotic
applications, highlighting ROS [59] (addressed in Section 5.2), and Gazebo (Section 5.3). It also
offers a range of programming languages and development tools, including Python, C++, and
Git, which are commonly used in robot development.

The version chosen for this work was Ubuntu 20.04 LTS, a long-term support release of the
Ubuntu operating system, released on April 23, 2020.

5.2 Robot Operating System

Robot Operating System (ROS) [59] is an open-source framework designed for building and
programming robotic applications. It provides a collection of tools, libraries, and conventions
that aim to simplify the task of creating complex and robust robot behavior across diverse robotic
platforms. ROS is characterized by its modular and scalable architecture, which promotes code
reusability and the integration of new components into existing systems. It supports multiple
programming languages including Python, C++ and Java, and provides a distributed computing
infrastructure that enables efficient communication between different processes and devices. The
main components of the ROS framework are outlined in Table 5.1. Some key features of ROS
include:

• Node-based architecture: ROS employs a node-based architecture in which each node
is a separate process, facilitating internode communication through messages;
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• Message passing: ROS provides a flexible and efficient mechanism for communication
between different components of a robot system;

• Package management: ROS provides a range of both 2D and 3D visualization tools
useful for understanding and debugging robot systems.

Table 5.1: ROS framework main components.

Component Description

Core Provides the foundational components

Master Manages the communication between nodes

Parameter Server Stores and manages parameters used by nodes

Nodes Individual processes that make up a ROS system

Topics Named channels that allow nodes to send and receive messages

Messages Data structures used to communicate information between nodes

Services Allow nodes to synchronously request and receive data from other nodes

Notifying

Master

Publishes

Publishing

Publisher
Subscribes

Subscribing

SubcriberTopic

Message

Figure 5.1: Publisher-subscriber ROS Protocol.

The publisher-subscriber protocol provides a way for different components (nodes) within a
robotic system to communicate without tight coupling, enhancing the modularity and flexibility
of the system. This protocol operates through the following steps:

1. A publisher node informs the master node that it is publishing messages on topic A;

2. A subscriber node informs the master that it wishes to subscribe to topic A;

3. The master notifies the subscriber whenever a message in published in topic A;

4. Upon receiving notification from the master, the subscriber establishes a connection with
the publisher to receive the message.

To ensure compatibility between the ROS and the various hardware and software com-
ponents utilized in this project, the thirteenth distribution release of ROS was employed: ROS
Noetic Ninjemys. The publisher-subscriber protocol depicted in Fig. 5.1 was exploited, and
specific ROS topics were created and utilized, as enumerated and detailed in Table 5.2.

As previously discussed, a DeepRL framework operates through interactions of two key
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Table 5.2: ROS topics.

Topic Message Type Description

/odom nav_msgs/Odometry Robot position and orientation

/scan sensor_msgs/LaserScan Cluster of scanned points

/tf tf2_msgs/TFMessage Translation and rotation between frames

/cmd_vel geometry_msgs/Twist Linear and angular speeds

/costmap nav_msgs/OccupancyGrid Binary grid with occupation information

/map_metadata nav_msgs/MapMetaData Grid width and height

/scan

/mapper /gazebo/cmd_vel/costmap

/odom

Figure 5.2: ROS computation graph.

components: the agent and the environment. The communication between them is established
via the /mapper and the /gazebo ROS nodes.

As illustrated in Fig. 5.2, the /mapper node subscribes to the /scan and /odom topics
to acquire LiDAR sensor readings and the robot’s odometry data, respectively. The agent
uses this data to build the CStack and the PStack, as described in Section 4.4.1, and computes
the actions (detailed in Section 4.4.2). These discrete actions are subsequently converted into
geometry_msgs/Twist to match ROS message type and published in the /cmd_vel topic to
control the virtual robot’s motors.

For diagnostic purposes, an additional topic, /costmap, was employed to visualize the cost-
maps generated by the agent at each step. This topic subscribes to the /mapper node, which
supplies nav_msgs/OccupancyGrid messages containing an occupancy grid computed from data
received from the /scan topic.

5.2.1 RViz

As mentioned in Section 5.2, the ROS framework offers various visualization tools, and one
prominent tool is RViz [60]. RViz is a 3D visualization tool that allows users to visualize and
interact with sensor data and robot models. It is often used for robot simulation, testing and
debugging, providing a user-friendly interface for real-time display of sensor data such as point
clouds, laser scans and camera images. Moreover, RViz facilitates the visualization of 3D models
of robots and their surrounding environment and interact with them using tools like selection,
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translation, and rotation.

In the context of this work, RViz played an important role in visualizing the costmaps
created at each time step, as detailed in the previous Section 5.2. Figure 5.3 presents an
example of RViz’s visualization of a costmap produced from the obstacles present in the Gazebo
environment.

Figure 5.3: Gazebo environment and respective RViz costmap representation.

5.3 Gazebo

The robot development is often a costly, time-consuming and potentially unsafe process.
Robotic simulation involves creating virtual environments in which robotic systems can be tested,
validated, and optimized. This helps avoid potential injuries and damages, prevents the need for
design changes after part production has started, reduces cycle times in manufacturing processes,
and minimizes the need for excessive paperwork [61]. Therefore, simulation plays a vital role in
modern robotics by reducing costs, enabling rapid experimentation, and enhancing the quality
of robotic systems.

Gazebo is an open-source 3D multi-robot simulation environment [62]. Is allows users
to simulate the behavior and interactions of multiple robots in a virtual environment before
deploying them in the real world [63]. Gazebo can also simulate a wide range of sensors, including
cameras, LiDAR, and sonar, while incorporating physics features such as gravity and friction to
make the simulation more realistic.

To integrate the implemented ROS framework with Gazebo simulator, the ROS meta pack-
age gazebo_ros_pkgs [64] was utilized. This meta package includes multiple packages that
provide the necessary interfaces for simulating a robot in Gazebo using ROS messages, services,
and dynamic reconfigure [62].

5.4 Turtlebot3

For the deployment of the proposed DeepRL framework within the simulation environment
addressed in the previous Section 5.3, a mobile robot is essential to acquire and transmit all
the data necessary to the software control modules. To fulfill this requirement, the TurtleBot3
Burger, depicted in Fig. 5.5, was selected.
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Figure 5.4: Gazebo’s Stage 4 environment.

Figure 5.5: TurtleBot3 Burger and respective Gazebo’s representation.

TurtleBot3 [65] is an affordable and versatile open-source robot platform designed for edu-
cation, research, and hobbyist purposes [66]. It is developed by the Open Robotics and part of
the ROS ecosystem [67]. The hardware specifications of the robot are described in Table 5.3
which includes a LiDAR sensor detailed in Table 5.4, enabling it to perceive its surrounding
environment.

Table 5.3: TurtleBot3 Burger hardware specifications [2].

Size (L x W x H) 138mm x 178mm x 192mm

Maximum translational velocity 0.22 m/s

Maximum rotational velocity 2.84 rad/s

Weight 1kg

Maximum payload 15kg

Laser Distance Sensor 360 Laser Distance Sensor LDS-01

5.5 Hardware Components

This section provides an overview of the key technical specifications of the two computers em-
ployed during the development of this work, with particular emphasis on the GPU, due to its
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Table 5.4: 360 Laser Distance Sensor LDS-01 specifications [3].

Distance Range 120 ∼ 3,500mm

Distance Accuracy (120mm ∼ 499mm) ±15mm

Distance Accuracy(500mm ∼ 3,500mm) ±5.0%

Distance Precision(120mm ∼ 499mm) ±10mm

Distance Precision(500mm ∼ 3,500mm) ±3.5%

Scan Rate 300±10 rpm

Angular Range 360°

Angular Resolution 1°

impact and importance on DNNs training.

5.5.1 Graphical Processing Unit

Deep Learning (DL) has revolutionized the field of artificial intelligence by enabling the
development of complex models capable of learning from large datasets. However, training
these models can be computationally demanding and time-intensive. Thanks to their parallel
processing capabilities and high performance, GPUs have played a crucial role in accelerating
DL tasks significantly.

NVIDIA has significantly contributed to this acceleration with its CUDA framework. Compute
Unified Device Architecture (CUDA) [68] is a parallel computing platform and API that allows
developers to leverage the computational power of GPUs. It enables tasks to be separated
into smaller parallel operations, significantly speeding up computations. To further enhance
DL on GPUs, NVIDIA provides the CUDA Deep Neural Network (cuDNN) library [69]. This
GPU-accelerated library offers optimized implementations of DNN operations. It is designed to
increase the efficiency of training and inference processes in DL models.

Throughout the development of this work, two separate GPUs were utilized: the NVIDIA
GeForce RTX 3060 and the NVIDIA GeForce RTX 3080ti. Their specifications are listed in
Table 5.5.

Table 5.5: GPUs specifications.

NVIDIA GeForce RTX 3060 RTX 3080ti
CUDA Cores 3584 7424

Base Engine Clock 1.320 GHz 1.125 GHz
Boost Engine Clock 1.807 GHz 1.590 GHz

Video Memory 12GB GDDR6 12GB GDDR6
Memory Clock 7.5 GHz 1.875 GHz
Memory Bus 192-bit 256-bit

Memory Bus Bandwidth 360 GB/s 512 GB/s
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5.5.2 Central Processing Unit and Random-Access Memory

The CPUs employed in this work were the AMD Ryzen 7 3800X and the Intel Core i7-12700H,
specified in Table 5.6. Additionally, both computer systems were configured with 32GB of
memory.

Table 5.6: CPUs specifications.

AMD Ryzen 7 3800X Intel Core i7-12700H
Cores 8 14

Threads 16 20
Boost Clock 4.5 GHz 4.7 GHz

5.6 Python and VSCode

For the development of the software algorithm used in this project, Python was selected as
the programming language due to its simplicity, and robust ecosystem of libraries and frame-
works tailored for ML and DL. The libraries utilized to support the implementation of the
proposed framework are outlined in Table 5.7.

Table 5.7: Python libraries.

Library Version Description

PyTorch [70] 2.0.0 Deep Learning library

Rospy [71] 1.16.0 Client library for ROS that enables Python to interface with ROS components

NumPy [72] 1.24.1 Numerical computation library

Matplotlib [73] 3.1.2 Graphical data visualization library

Pandas [74] 1.5.2 Data analysis, time series, and statistics library

Seaborn [75] 0.12.2 Statistical data visualization library

The integrated development environment (IDE) in which the algorithm was developed was
Visual Studio Code. VSCode [76] is a popular and widely-used code editor developed by Mi-
crosoft. It is known for its lightweight yet powerful features, extensibility, and support for a
wide range of programming languages, including Python.

5.6.1 Pytorch

PyTorch [70, 77] is an open-source DL framework developed by Facebook’s artificial intelli-
gence research group. It provides a Python-based scientific computing package that allows users
to perform machine learning tasks such as DNN development, training, and deployment. It is
known for its dynamic computational graph system, which allows for easier and faster model
development and training. It supports both CPU and GPU computation and can run on a wide
range of hardware, from laptops to clusters of GPUs. It also provides an active community of
developers who contribute to its development and provide support.
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PyTorch served as a powerful tool for implementing and training deep learning models in the
proposed framework. Its dynamic nature, user-friendly design, and strong community support
were instrumental in achieving the project’s goals.
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6
Results and Discussion

This chapter presents the results of testing and validating the developed DeepRL-based
framework for motion planning in static and dynamic simulation environments.

6.1 Motion Planning in Environments with Static Obstacles

This section provides an overview of the validation process for the developed motion plan-
ning strategy in environments populated by static obstacles. It also discusses the evaluation of
various techniques, including prioritized experience replay, reward propagation, and curriculum
learning, and compares different Deep Q-Learning variants. The evaluation within static envir-
onments was performed in Gazebo’s Stage 4 environment, described in Section 5.3 of Chapter
5.

6.1.1 Scenario 1

With the proposed DeepRL framework implemented and employing the D3QN and the
hyperparameters detailed in Table 6.1, the agent was trained in Gazebo’s Stage 4 environment,
with a simple scenario - Scenario 1 - illustrated in Fig. 6.1. In this Scenario, the agent’s goal was
to navigate from its initial position (-1.0, 0.0) to a single target point (1.0, 0.0), while avoiding
collision with any obstacle.

Table 6.1: Simulation parameters utilized in Scenario 1.

Parameter Value Parameter Value

Number of episodes (M) 2000 Discount Factor (γ) 0.99

Buffer Size (N) 200000 Immediate penalty (PO) -1.5

Batch Size (Nb) 256 Immediate reward (RD) 2.0

Exploration threshold (ϵ) 0.01∼1.0 Distance to target threshold (dTmin) 0.1

Exploration decay (ϵdecay) 1.25/M Distance to obstacle threshold (dOmin) 0.12

Number of Steps (T ) 500 Reward propagation window (Pw) N/A

Learning Rate (lr) 0.0001 Target Net Update rate (Ur) 10

As depicted in Fig. 6.2a, the agent reached the target with consistency in the last 200
training episodes. Figure 6.2c further illustrates that the paths more often taken by the robot
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Figure 6.1: Gazebo’s Stage 4 environment Scenario 1. The agent’s initial position is located
at the turtlebot’s location, and the target point is represented by the red circle.

(a) Distances. (b) Rewards. (c) Paths.

Figure 6.2: Training results in Gazebo’s Stage 4 Scenario 1. (a) shows the distances between
the robot and the target and the end of each episode. In (b) is illustrated the episodic rewards,
and in (c) is illustrated the paths taken by the robot, with the reward on each step represented

by color.

were near-optimal collision-free paths towards the target. As detailed in Table 6.2, the training
phase took about 8 hours and resulted in a total of 773 saved network models. The accuracy of
the test model was assessed based on the number of times that the agent successfully reached
the target, in 25 tests. The outcome indicated a success rate of 40%, meaning that the agent
managed to reach the target in 10 out of 25 attempts.

Table 6.2: Training and testing details in Scenario 1.

Training Duration Training Results Saved Models Test Model Accuracy
7h44min Fig. 6.2 773 2000/2000 0.4

43



DeepRL-Based Dynamic Motion Planning for Robot Navigation in Unknown Indoor
Environments

6.1.1.1 Prioritized Experience Replay

With the base DeepRL framework validated on Scenario 1, the first iteration was to evaluate
the employment of the PER, explained in Section 4.3 (Chapter 4). With the PER implemented,
the agent was once again trained in Gazebo’s Stage 4, Scenario 1. The training results are shown
in Fig. 6.3.

(a) Distances. (b) Rewards. (c) Paths.

Figure 6.3: Training results in Gazebo’s Stage 4 Scenario 1 with PER.

The integration of the proposed PER method resulted in significantly better results. As
demonstrated in Fig. 6.3a, the agent exhibited significantly better consistency in reaching its
target. Figure 6.3c indicates that the agent effectively learned the shortest collision-free path
towards the target point. As detailed in Table 6.3, the integration of PER led to a more than
30% increase in the number of saved models and improved the agent’s success rate in reaching
the target by 120%. Given the substantial advantages of PER, all subsequent tests incorporated
this technique.

Table 6.3: Training and testing details in Scenario 1 with PER.

Training Duration Training Results Saved Models Test Model Accuracy
7h25min Fig. 6.3 1010 1988/2000 0.88

6.1.1.2 Reward Propagation

The second iteration was made to evaluate the reward propagation technique, addressed
in Section 4.4.3 of Chapter 4. Thus, upon integrating equation 4.6 in the framework’s reward
model, the agent was trained using Scenario 1 (see Fig. 6.1 and Table 6.1), with a reward
propagation window of 5 steps (Pw = 5). The training results are presented in Fig. 6.4.

The effects of the reward propagation technique are evident in the increased density of
red dots in Fig. 6.4c. This is due to the fact that whenever the agent collides, the penalty
PO received in that step was propagated to the preceding 5 steps. Figure 6.4a shows further
enhancement in the agent’s consistency in reaching the target point over the last 500 episodes.
This improvement is apparent when comparing the average distance (yellow) line in Fig. 6.4a to
that in 6.3a. As detailed in Table 6.4, the integration of reward propagation resulted in a nearly
14% increase in the agent’s accuracy in reaching its goal destination, achieving a remarkable
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(a) Distances. (b) Rewards. (c) Paths.

Figure 6.4: Training results in Gazebo’s Stage 4 Scenario 1 with PER and reward
propagation.

100% accuracy in 25 attempts. Due to the significant benefits of this approach, all subsequent
tests included the reward propagation technique in addition to the PER technique.

Table 6.4: Training and testing details in Scenario 1 with PER and reward propagation.

Training Duration Training Results Saved Models Test Model Accuracy
7h47min Fig. 6.4 966 1999/2000 1.0

6.1.1.3 Deep Q-Learning Variants

In this section, the DQN variant employed in the proposed DeepRL-based framework is
evaluated through a comparison with other variants discussed in Section 2.4 of Chapter 2 in
order to assess its advantages. The agent underwent three distinct training phases, differing
solely on the DQN method employed: DQN, DDQN, and D2QN. The training results for these
three variants are illustrated in Figures 6.5, 6.6, and 6.7, respectively.

(a) Distances. (b) Rewards. (c) Paths.

Figure 6.5: Training results in Gazebo’s Stage 4 Scenario 1 with DQN.

DQN, the conventional Deep Q-Learning algorithm, lacks the advantages found in DDQN
and D2QN. Consequently, as expected, it exhibited less satisfactory performance during the
training process, as illustrated in Fig. 6.5a.

As previously explained in Section 2.4.3 (Chapter 2), the DDQN variant features a two
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(a) Distances. (b) Rewards. (c) Paths.

Figure 6.6: Training results in Gazebo’s Stage 4 Scenario 1 with DDQN.

stream network architecture that allows the agent to independently assess the value of actions
in different states. This technique enhances both the stability and learning efficiency of the
learning process, as evident in the results displayed in Fig. 6.6.

(a) Distances. (b) Rewards. (c) Paths.

Figure 6.7: Training results in Gazebo’s Stage 4 Scenario 1 with D2QN.

The D2QN variant introduces the decoupling of the action selection and value estimation
steps, as explained in Section 2.4.4 (Chapter 2). This separation contributes to more stable
and faster learning by mitigating the issue of Q-values overestimation, which is reflected in the
results shown in Fig. 6.7.

Table 6.5 provides an overview of the training details and testing results for all four Deep
Q-Learning approaches. Notably, the D3QN variant emerged as the top performer among the
others. It achieved the shortest training duration of 7 hours and 47 minutes, and retained the
highest number of saved network models. In the testing phase, it achieved the highest accuracy
of 100%, meaning that the agent flawlessly reached the target in all 25 attempts.

Table 6.5: Training and testing details in Scenario 1 with DQN, DDQN, D2QN, and D3QN.

Variant Training Duration Training Results Saved Models Test Model Accuracy
DQN 8h06min Fig. 6.5 14 1710/2000 0.08

DDQN 8h16min Fig. 6.6 640 1795/2000 0.96

D2QN 9h53min Fig. 6.7 316 2000/2000 0.92

D3QN 7h47min Fig. 6.4 966 1999/2000 1.0
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6.1.2 Scenario 2

With the developed DeepRL-based framework successfully validated in the relatively simple
Scenario 1, the next step was to assess its performance in a more challenging Scenario. For that
purpose, Scenario 2 was defined within Gazebo’s Stage 4 environment, featuring four distinct
target points scattered throughout the environment, as illustrated in Fig. 6.8. At the beginning
of each training episode, one of the four targets is randomly chosen, and the agent initiates its
motion at (-1.0, 0.0). With its target destinations being further away, the agent faces more
obstacle-avoidance and orientation-amendment situations and, consequently, more state rep-
resentations to learn from, which ultimately increases the training complexity and duration.
Furthermore, this multi-target configuration allows the agent to explore diverse regions of the
environment, improving its knowledge of the entire workspace and consequently enhancing its
decision-making capabilities. Employing the D3QN along with the PER and reward propagation
techniques, and the hyperparameters detailed in Table 6.6, the agent was trained in Gazebo’s
Stage 4 environment within Scenario 2. The training results are presented in Fig. 6.9 and
detailed in Table 6.7.

2

1

3 4

Figure 6.8: Gazebo’s Stage 4 environment Scenario 2. The agent’s initial position is located
at the turtlebot’s location, and the target points are represented by the red circles.

Table 6.6: Simulation parameters utilized in Scenario 2.

Parameter Value Parameter Value

Number of episodes (M) 5000 Discount Factor (γ) 0.99

Buffer Size (N) 200000 Immediate penalty (PO) -1.5

Batch Size (Nb) 256 Immediate reward (RD) 2.0

Exploration threshold (ϵ) 0.01∼1.0 Distance to target threshold (dTmin) 0.1

Exploration decay (ϵdecay) 1.25/M Distance to obstacle threshold (dOmin) 0.12

Number of Steps (T ) 500 Reward propagation window (Pw) 5

Learning Rate (lr) 0.0001 Target Net Update rate (Ur) 10
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(a) Distances. (b) Rewards. (c) Paths.

Figure 6.9: Training results in Gazebo’s Stage 4 Scenario 2.

Figure 6.9a indicates a promising learning curve and shows that the agent consistently
reached the target in the last 1000 training episodes. Figure 6.9c showcases the agent’s ability
to learn optimal paths towards each of the four targets. As expected, the training duration
increased significantly, primarily due to the larger number of the training episodes and the
increased complexity of Scenario 2. Nonetheless, the number of saved network models was
similar to Scenario 1 (see Table 6.4). In the testing stage, detailed in Table 6.8, the agent
demonstrated its proficiency by reaching the targets with an overall accuracy of 77%.

Table 6.7: Training details in Gazebo’s Stage 4 Scenario 2.

Training Duration Training Results Saved Models Test Model
27h18min Fig. 6.9 1163 4993/5000

Table 6.8: Testing details in Gazebo’s Stage 4 Scenario 2.

Target Tests Accuracy
1 32 0.66

2 29 0.90

3 17 0.65

4 23 0.87

Overall 100 0.77

6.1.3 Curriculum Learning

The curriculum learning technique discussed in Section 2.4.6 of Chapter 2 was evaluated
using the 5 distinct environments described in Section 4.5.2 of Chapter 4. Figure 6.10 illus-
trates the initial and target points, represented by green and red dots, respectively, for each
environment.

Employing the parameters specified in Table 6.9, the agent was consecutively trained within
all five environments, starting on the simplest (a) and finishing on the most complex (e). In
each transition between environments, the last saved network’s parameters from the preceding
training phase are employed to initialize the target and policy networks for training in the
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subsequent environment. Furthermore, after training in the initial environment (a), the agent’s
exploration threshold is halved (ϵ = 0.01 ∼ 0.5) and its learning rate is decreased by 10 times
(lr = 0.00001). These adjustments are implemented to encourage exploitation, leveraging the
knowledge acquired in the previous environments. The training results are shown in Fig. 6.11.

(a) (b) (c) (d) (e)

Figure 6.10: Gazebo’s curriculum environments.

Table 6.9: Simulation parameters utilized in curriculum environments.

Parameter Value Parameter Value

Number of episodes (M) 2000 (1) Discount Factor (γ) 0.99

Buffer Size (N) 200000 Immediate penalty (PO) -1.5

Batch Size (Nb) 256 Immediate reward (RD) 2.0

Exploration threshold (ϵ) 0.01∼0.5 (2) Distance to target threshold (dTmin) 0.1

Exploration decay (ϵdecay) 1.25/M Distance to obstacle threshold (dOmin) 0.12

Number of Steps (T ) 500 (3) Reward propagation window (Pw) 5

Learning Rate (lr) 0.00001 (4) Target Net Update rate (Ur) 10
(1) The number of episodes was set to 2000 for all environments except (a), where it was set to 1000.
(2) The exploration threshold was set to 0.5 for all environments except (a), where it was set to 1.0.
(3) The number of max steps was set to 500 for all environments except (e), where it was set to 600.
(4) The learning rate was set to 0.00001 for all environments except (a), where it was set to 0.0001.

The results depicted in Fig. 6.11 show, as expected, that the agent’s consistency in reaching
the target point decreased as the environment’s complexity increased. Nonetheless, the results
were satisfactory, and the trend observed in the average robot-to-target distance suggests that
by increasing the number of training episodes, the agent’s performance is likely to improve. As
detailed in Table 6.10, the agent exhibited proficiency in reaching the target in all environments,
attaining a success rate of 100% in the simplest one (a) and 44% on the most intricate one (e).
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(a) (b) (c)

(d) (e)

Figure 6.11: Results of training with knowledge transfer in the curriculum environments (see
Fig. 6.10).

To further assess the benefits of this technique, the agent was trained from scratch on all
environments, using the same parameters (Table 6.9). To ensure a fair comparison, the number
of episodes for each training was increased to 3000, 5000, 7000, and 9000, for environments (b),
(c), (d), and (e), respectively. The training results are depicted in Fig. 6.12 and detailed in
Table 6.11.

The comparison between the results presented in Fig. 6.11 and those in Fig. 6.12 clearly
proves the advantage of the curriculum learning technique employed. When trained from scratch
in each environment, the agent’s learning curves exhibited significantly greater instability, and
its consistency in reaching the target was notably inferior. In the testing phase, the accuracy
of the agent trained from scratch (see Table 6.11) was considerably lower than the accuracy of
the agent trained with knowledge transfer (see Table 6.10), mainly in the two most complex
environments ((d) and (e)).

Table 6.10: Training and testing details with knowledge transfer.

Environment Training Duration Training Results Saved Models Test Model Accuracy
(a) 4h11min Fig. 6.11a 570 989/1000 1.0

(b) 13h48min Fig. 6.11b 1330 2000/2000 1.0

(c) 15h01min Fig. 6.11c 829 1700/2000 0.84

(d) 19h40min Fig. 6.11d 783 1650/2000 0.96

(e) 26h30min Fig. 6.11e 66 1972/2000 0.44
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(a) (b) (c)

(d) (e)

Figure 6.12: Results of training from scratch in the curriculum environments (see Fig. 6.10).

Table 6.11: Training and testing details, without knowledge transfer (training from scratch).

Environment Training Duration Training Results Saved Models Test Model Accuracy
(a) 4h11min Fig. 6.12a 570 989/1000 1.0

(b) 12h39min Fig. 6.12b 303 3000/3000 0.88

(c) 28h39min Fig. 6.12c 630 5000/5000 0.84

(d) 47h39min Fig. 6.12d 1607 5577/7000 0.24

(e) 38h14min Fig. 6.12e 5 9000/9000 0.12

6.2 Motion Planning in Environments with Dynamic Obstacles

The ultimate goal of this work was to evaluate the performance of the developed framework
in dynamic environments. To achieve this, the agent was trained in the Gazebo’s Stage 4
Dynamic environment depicted in Fig. 6.13 and addressed in Section 4.5.1 of Chapter 4 within
the Scenario 2 described in Section 6.1.2. Due to the advantages of transfer learning verified in
Section 6.1.3, this technique was employed in the training process. The networks were initialized
with the parameters from the network model previously obtained in the static Gazebo’s Stage 4
environment (see Table 6.7). The training results are presented in Fig. 6.14 and further detailed
in Table 6.12.

Figure 6.14a shows that the agent learned how to efficiently navigate towards the target
points. The paths taken by the robot (see Fig. 6.14c) reveal that the agent avoided the non-
optimal paths and exploited the near-optimal ones previously learned in the static environment,
while learning how to behave towards the new dynamic obstacles. This demonstrates the transfer
of knowledge acquired in the static environment (see Fig. 6.8) to the dynamic environment.
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Figure 6.13: Gazebo’s Stage 4 Dynamic environment.

(a) Distances. (b) Rewards. (c) Paths.

Figure 6.14: Training results in Gazebo’s Stage 4 Dynamic Scenario 2 with knowledge
transfer.

During the testing stage, detailed in Table 6.13, the agent showcased proficient motion
planning abilities by reaching the targets with an overall accuracy of 84% in 100 attempts.

Table 6.12: Training details in Gazebo’s Stage 4 Dynamic Scenario 2 with knowledge transfer.

Training Duration Training Results Saved Models Test Model
45h30min Fig. 6.14 7293 10000/10000

Table 6.13: Testing details in Gazebo’s Stage 4 Dynamic Scenario 2 with knowledge transfer.

Target Tests Accuracy
1 25 1.0

2 28 0.82

3 23 0.78

4 24 0.75

Overall 100 0.84
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6. Results and Discussion

To verify the advantages of knowledge transfer from the static environment to this dynamic one,
the agent was trained under the same conditions but from scratch. Figure 6.15 and Tables 6.14
and 6.15 present the results obtained.

(a) Distances. (b) Rewards. (c) Paths.

Figure 6.15: Training results in Gazebo’s Stage 4 Dynamic Scenario 2 without knowledge
transfer (training from scratch).

Table 6.14: Training details in Gazebo’s Stage 4 Dynamic Scenario 2 without knowledge
transfer.

Training Duration Training Results Saved Models Test Model
34h30min Fig. 6.15 23 13407/15000

Table 6.15: Testing details in Gazebo’s Stage 4 Dynamic Scenario 2 without knowledge
transfer.

Target Tests Accuracy
1 25 0.0

2 28 0.04

3 23 0.0

4 24 0.07

Overall 100 0.03

Upon comparing the results depicted in Fig. 6.14 and those in Fig. 6.15, the benefits of transfer
learning become evident. When trained from scratch in the Stage 4 Dynamic environment, the
agent struggled to learn how to execute a collision-free motion towards any of the targets, as it
only reached a target in 23 out of 15000 training episodes (see Table 6.14). Consequently, the
poor performance in the training stage led to unfavorable results in the testing stage, as detailed
in Table 6.15. During testing, the agent showcased an accuracy of only 3% in stark contrast to
the 84% accuracy achieved with knowledge transfer (see Table 6.13).
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7
Conclusion

This dissertation proposes an approach for robotic local motion planning within unknown
indoor environments populated by both static and dynamic obstacles. The approach is based
on DeepRL techniques, particularly leveraging the Deep Q-Learning algorithm. The system
was developed to address the need for adaptable strategies in DeepRL-based dynamic indoor
robot navigation for sensor-equipped mobile platforms. The ultimate aim was to establish a
sensor-agnostic local motion planning method capable of seamless transferability across different
robotic systems. A comprehensive survey of robot motion planning, RL, DL, and DeepRL,
was meticulously conducted to provide the foundational conceptual support for the developed
framework.

The development process began with the design of the D3QN and state, action, and reward
models, drawing inspiration from the prior work [1] and meticulously adapted to align with the
specific objectives of this work. The defined state model incorporated a costmap representation
of the robot’s surroundings, along with a goal-based affordance that includes the robot’s distance
and orientation towards the target, as well as its proximity to the nearest obstacle. To comply
with the defined state model and properly convert its representations into Q-values, the D3QN
was devised to employ a dual-stream architecture. Over the course of development, several
reward models and action sets were iteratively conceived and assessed until the desired level of
performance was achieved. Additionally, the proposed PER and reward propagation techniques
were implemented, and dedicated environments were created to facilitate the evaluation of the
curriculum learning methodology in later stages.

Upon completing the design of each component, the motion planning algorithm proposed in this
work was ready for deployment on a virtual robot - the Turtlebot - to execute its action-selection
policy in a virtual environment. Initial experiments took place in a Gazebo environment pop-
ulated by static obstacles to validate the developed DeepRL-based local motion planning ap-
proach. The PER and reward propagation methods revealed advantageous, leading to their
incorporation into the system onwards. Additionally, a comparative assessment between the
proposed D3QN variant and other variants was conducted, highlighting the advantages of the
D3QN. Furthermore, experiments performed within the curriculum environments, employing
transfer learning techniques, demonstrated the effectiveness of the proposed curriculum learning
technique. The RL agent effectively leveraged knowledge acquired in previous simpler tasks
to efficiently tackle more complex ones. Lastly, having successfully validated the framework
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the in static environments and considering the observed benefits of the appliance of curriculum
learning techniques in the networks’ training, the framework was validated in a dynamic en-
vironment. The evaluation yielded outstanding results, as the agent was able to learn how to
efficiently behave towards dynamic obstacles, demonstrating the successful accomplishment of
the dissertation’s main goal.

7.1 Future Work

Although the mobile robot navigation framework proposed and developed in this work has
yielded promising results, there is still room for improvement. This section briefly presents some
potential areas for enhancement.

Enhanced Training

Incorporate an augmentation to the training regimen by substantially increasing the num-
ber of episodes per session and simultaneously engaging multiple robots in contributing to the
network model’s training. Further evaluation of the RL agent’s capacity to generalize its learned
skills.

3D Representation

Develop and implement a 3D representation of the robot’s surrounding environment to
empower it to execute more complex behaviors, such as docking.

Global Context

Exploit existing data from global metric or semantic representations to enhance the RL
agent’s ability to effectively navigate dynamic environments.

Geometry Awareness

Take into consideration the robot’s platform geometry to enable learning orientation adjust-
ments, allowing it to navigate through narrow passages like as door frames.

Real-World Validation

Validate the framework in real mobile robots and environments using simulation-to-reality
transfer techniques.
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