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Abstract

Multispectral imagery is frequently incorporated into agricultural tasks, providing valu-

able support for applications such as image segmentation, crop monitoring, field robotics,

and yield estimation. From an image segmentation perspective, multispectral cameras can

provide rich spectral information, helping with noise reduction and feature extraction. As

such, this work concentrates on the use of data-combination (fusion) approaches to enhance

the segmentation process in agricultural applications. More specifically, in this work, differ-

ent fusion approaches are compared by combining RGB and NDVI as inputs for crop row

detection, which can be useful for autonomous robots operating in the field. The inputs are

used individually as well as combined at different times of the process (early and late fusion)

to perform classical and deep learning (DL)-based semantic segmentation. In this work,

two agriculture-related datasets are subjected to analysis using both DL-based and classical

segmentation methodologies. The experiments reveal that classical segmentation methods,

utilizing techniques such as edge detection and thresholding, can effectively compete with

DL-based algorithms, particularly in tasks requiring precise foreground-background sepa-

ration. This suggests that traditional methods retain their efficacy in certain specialized

applications in the agricultural domain. Moreover, among the fusion strategies examined,

late fusion emerged as the most robust approach, demonstrating superiority in adaptability

and effectiveness across varying segmentation scenarios.

Keywords: Multispectral fusion, Semantic Segmentation, Deep Learning.
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Resumo

As imagens multiespectrais são frequentemente incorporadas em tarefas agrícolas, fornecendo

um apoio valioso para aplicações como segmentação de imagens, monitorização de culturas,

robótica agrícola e estimativa de rendimento. Do ponto de vista da segmentação de ima-

gens, as câmaras multiespectrais podem fornecer informações espectrais valiosas, ajudando

na redução de ruído e extração de características. Como tal, este trabalho concentra-se

na utilização de abordagens de combinação de dados (fusão) para melhorar o processo de

segmentação em aplicações agrícolas.

Mais especificamente, neste trabalho são comparadas diferentes abordagens de fusão

fazendo combinação de RGB e NDVI como entradas para a deteção de filas de culturas,

o que pode ser útil para robôs autónomos que operam no campo. As entradas são utilizadas

individualmente, assim como combinadas em diferentes momentos do processo (fusão precoce

e fusão tardia) para realizar a segmentação semântica clássica e baseada em deep learning.

Neste trabalho, dois datasets relacionados com a agricultura são analisados com recurso

a metodologias de segmentação baseadas em deep learning e clássicas. Os experimentos

revelam que os métodos clássicos de segmentação, utilizando técnicas como deteção de bordas

e thresholding, podem competir eficazmente com algoritmos baseados em deep learning,

especialmente em tarefas que requerem uma separação precisa entre o primeiro plano e o

plano de fundo. Isso sugere que métodos tradicionais mantêm a sua eficácia em aplicações

especializadas no domínio agrícola. Além disso, entre as estratégias de fusão examinadas,

a fusão tardia emergiu como a abordagem mais robusta, demonstrando superioridade em

adaptabilidade e eficácia em cenários de segmentação variados.

Keywords: Fusão Multispectral, Segmentação Semântica, Deep Learning.
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"Our greatest weakness lies in giving up. The most certain way to

succeed is always to try just one more time.”
Thomas A. Edison
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1 Introduction

1.1 Context and Motivation

Agriculture has a major global impact on human prosperity and sustainability, as ap-

proximately 40% of the world’s ice-free land is already under agricultural production [4].

In the context of agriculture, the use of mobile robots has the main objective of develop-

ing technology-based solutions for supporting/executing labor-intensive, resource-demanding

and time-consuming operations [5]. For example, robots can automate a variety of laborious

tasks such as cultivation, inspection, spraying, pruning and harvesting [6]. A shortage of

agricultural workers coupled with an aging farmer population and rising agriculture wages

have prompted farmers and researchers to take an interest in the development of automation

systems [6]. Moreover, interest in this application domains has been also encouraged by the

decrease in equipment costs, the increase in computational power, and the growing interest

in non-destructive food assessment methods [7].

Humans have the innate ability to understand and interpret visual scenes, for that reason

is an effortless task for us. Providing such capabilities to robots has been an active research

field for decades [8], which is known as robotic perception or simply perception. Robots

equipped with such technology are able to function in increasingly complex and harsh envi-

ronments. This is critical in agricultural environments, since they are challenging to operate

in due to the constantly changing conditions and harsh terrain, which makes perception-

related tasks such as navigation, object detection, semantic mapping, and plant recognition

both difficult and essential.

Autonomous robots, in general, rely on the information captured by a collection of ex-

teroceptive (e.g. cameras and LiDAR) and proprioceptive (e.g. encoders, IMUs) sensors. In

particular, the navigation functions of agricultural robots rely mainly on sensors such as

Global Navigation Satellite Systems (GNSS), Inertial Navigation Systems (INS), Light De-

tection and Ranging (LiDAR), and Red, Green, Blue (RGB) cameras [9]. These sensors
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(e.g. RTK-GPS or High-definition RGB cameras) have allowed much progress in agricultural

machinery in terms of autonomous navigation, which were initially inspired by traditional

robots/Autonomous Vehicles (AVs) operating in real-world scenarios. In agricultural envi-

ronments, the robots have to operate in unstructured, harsh and rapidly changing environ-

ments dominated by vegetation, where, for instance, RGB cameras are less fitted due to the

lack of the capability to capture important vegetation information such as the chlorophyll.

This information can be sensed in other spectral bands such as Near-Infrared (NIR) and

Red Edge (RE), which serve as vital indicators for assessing the plants’ health status [10].

Additionally, within the context of this work, they play a important role in enhancing the

differentiation between vegetation (crop) and soil (Fig. 1.1).

The different spectral bands can be captured by Multispectral (MS) sensors, where the

MS images are captured at specific frequencies across the electromagnetic spectrum [11],

which can provide a more detailed and comprehensive view of an object or scene when

compared to an image captured at a singular wavelength.

A particular perception task used in agriculture for detection of weeds in crops [12], crop

mapping [13] and disease detection [14] is image segmentation. This task involves classifying

an image into distinct regions or segments. In particular, semantic segmentation, also known

as pixel-level classification, is the process of clustering parts of an image together that belong

to the same object class [15].

Recently, the rise of Deep Learning (DL) techniques has greatly promoted semantic seg-

mentation research [16]. For example, the introduction of Fully Convolutional Network

(FCN) [17] and encoder-decoder architectures has significantly increased the segmentation

accuracy and paved the way for DL-based semantic segmentation. Compared to the tradi-

tional methods, the DL-based approaches have demonstrated remarkable effectiveness im-

provements [16].

Part of the work developed in this Dissertation has been utilized to contribute to a

scientific paper, which has subsequently been accepted for presentation at the ROBOT2023:

Sixth Iberian Robotics Conference [18].

1.2 Objectives

This dissertation aims to assessing the applicability of data-combination (a.k.a. data

fusion) approaches using MS data for segmentation-related agricultural tasks. To support

the experimental part and respective results, two distinct datasets have been employed, (i) a

2



Figure 1.1: Reflectance of vegetation and soil across different wavelengths. Based on [1].

dataset for assessing where the drivable areas are within maize crops, so robots and/or agri-

cultural machinery may keep the trajectory without damaging the crop, and (ii) a vineyard

dataset captured via drone with the goal of vine identification [19]. Specifically, the intention

is to leverage the rich and complementary information available in the various spectral bands

to guaranty robust operation in agricultural environment conditions.

The specific objectives of this thesis are the following:

• Collecting and annotating a MS dataset obtained from maize crops using a robotic

platform, annotated with crop row information;

• Carrying out a comparative study encompassing both deep learning (DL)-based and

classical segmentation techniques;

• A thorough comparison between fusion and non-fusion methodologies, examining the

impact of fusion in agricultural tasks;

• In-depth evaluation of two distinct fusion techniques: early fusion and late fusion.

1.3 Dissertation Outline

The structure and key content of each chapter in this dissertation are summarized as

follows:

• Chapter 1 (the current chapter) presents the context and motivation and the objec-

tives for this dissertation.

3



• Chapter 2 presents background information on image segmentation, multi-sensor

multi-modality combination and DL fundamental concepts, and related work on DL

semantic segmentation with different fusion approaches.

• Chapter 3 provides an overview of the materials (datasets) employed and outlines

the methodology utilized in this work.

• Chapter 4 reviews the implementation details, results and discussion.

• Chapter 5 presents conclusions from the results of the work developed and future

work.

4



2 Background and Related Work

2.1 Image Segmentation

Image segmentation is a computer vision process that involves dividing an image into

distinct segments, each representing a particular object or region. The problem can be

addressed by classifying pixels with semantic labels (semantic segmentation), partitioning

objects by instances (instance segmentation), or both (panoptic segmentation) [20] (See

Fig. 2.1).

Given an image (Fig. 2.1a), semantic segmentation describes the task of classification of

individual pixels with a set of classes, which is exemplified in Fig. 2.1b. Instance segmentation

advances this concept by distinguishing individual object instances within the image, as

demonstrated in Fig. 2.1c. Finally, panoptic segmentation takes on a more challenging task

by merging semantic labeling and instance differentiation, as illustrated in Fig. 2.1d.

Due to the specific objective of solely isolating crops from the background, the semantic

segmentation method serve as the key element of this work.

2.1.1 Classical Image Segmentation Methods

In the field of computer vision, traditional image segmentation techniques have been used

for decades to extract meaningful information from images [21]. In these techniques, regions

of an image with common characteristics, such as color, texture, or brightness, are identified

using mathematical models and algorithms. Such techniques are usually computationally

efficient and relatively simple to implement.

Although there are a variety of traditional image segmentation techniques, this section

will focus on addressing three of the most common techniques, which were used in this work:

Thresholding (Otsu’s method), Edge-based Segmentation and Region-based Segmentation.

5



(a) (b)

(c) (d)

Figure 2.1: Example of the three types of image segmentation, where (a) represents the input
image, while (b), (c), and (d) correspond to the semantic, instance, and panoptic segmentation
masks, respectively. Source: [2].

Thresholding

Thresholding, the simplest image segmentation technique, utilizes a threshold value to

divide pixels based on their intensity. This technique is particularly effective for segmenting

objects with high intensity in contrast to other objects or backgrounds. The threshold can

serve as a constant in low-noise images, but can also be dynamic in some cases. By dividing a

grayscale image into two segments based on their intensity relationship, thresholding results

in a binary image [22].

A problem with simple thresholding is that is necessary to manually specify the threshold

value. One widely-used thresholding method that solves this problem is the Otsu’s method,

which automatically determines an optimal threshold based on the image’s intensity distri-

bution.

Edge-based segmentation

Edge-based segmentation is a technique for detecting the boundaries or edges of objects

in images. As edges represent rapid changes in color or intensity, edge-based segmentation

attempts to separate objects from their surrounding environment by identifying these tran-

sitions. An algorithm often used as a preprocessing step to locate and highlight edges is the

6



Canny edge detection.

The Canny edge detection algorithm was developed by John F. Canny in 1986 and is

multi-stage process that can be described in 4 steps [23]:

1. Noise Reduction: This step involves removing noise from the image using a Gaussian

filter. This will enhance the quality of edge detection by reducing the influence of small

variations that may be mistaken for edges.

2. Intensity Gradient Calculation: The smoothed image is then filtered by applying Sobel

filters in both the horizontal and vertical directions. The resulting gradient compo-

nents, horizontal (Gx) and vertical (Gy), obtained from the Sobel filtering process, are

needed to calculate the gradient magnitudes and angles. Their equations are described

as follows:

Edge Gradient (G) =
√

G2
x + G2

y (2.1)

Angle (θ) = tan−1
(

Gy

Gx

)
(2.2)

3. Non-maximum Suppression: In this step, the goal is to thin out the edges by only keep-

ing the pixels that are the most likely to be on an edge. This is achieved by considering

the gradient magnitudes and angles calculated in the previous step. For each pixel,

non-maximum suppression involves checking its neighbors along the gradient direction

and preserving the pixel’s value only if it’s the local maximum in that direction.

4. Hysteresis Thresholding: The final step involves determining which edges to keep and

which to discard based on thresholding. This is done using two threshold values: a

high and a low threshold. Pixels with gradient magnitudes above the high threshold

are definitely considered edges, while pixels with gradient magnitudes below the low

threshold are discarded. Pixels with gradient magnitudes between the low and high

thresholds are included as edges only if they are connected to pixels above the high

threshold.

The Canny edge detection algorithm is going to be used later in this work for the edge-

based segmentation as part of the so-called classical methods.

Region-based segmentation

The technique of region-based segmentation consists in dividing an image into regions

based on similarity criteria, such as color, texture, or intensity. Unlike edge-based segmenta-
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tion that focuses on detecting object boundaries, region-based segmentation aims to group

pixels or regions with similar characteristics. This technique is particularly useful when

objects of interest have consistent characteristics throughout their regions. Regions can be

formed either by grouping pixels into regions (region growing algorithm) or by subdividing

a single region successively (split and merge algorithm) [24].

One powerful method within region-based segmentation is the watershed segmentation

technique. The watershed transform is a traditional method within gray-scale mathematical

morphology used for image segmentation [25].

It establishes an analogy with geographical watersheds [25], which separate areas drained

by different river systems. In image analysis, the watershed transform treats an image

as a topographic surface, where high-intensity regions represent peaks and low-intensity

areas correspond to valleys. The process starts by "filling" isolated valleys (local intensity

minima) with distinct-colored "water" (labels). As water levels rise, valleys with nearby

peaks gradually merge, similar to filling basins. To prevent excessive merging, barriers form

where water meets. These barriers correspond to the boundaries that separate the image’s

drainage basins.

This method naturally identifies object and region boundaries. However, due to noise or

irregularities, it may lead to over-segmentation (generating too many segments). To mitigate

this, a marker-based watershed algorithm can be employed, making the process interactive.

In marker-based watershed, specific regions are marked as foreground, background, or

uncertain using labels. In this approach, the segmentation results are improved by incorpo-

rating the user’s knowledge. This type of marker-based watershed is the technique used in

this work for region-based segmentation.

2.2 Multi-sensor multi-modality combination

Image fusion refers to the process of combining two or more images by integrating the in-

formation present in each of the individual images. The outcome is an image-representation

that has more valuable, or complementary, information than the single source images indi-

vidually. The goal of this process is to assess the data at each pixel location in the input

images and preserve the data from that image that best represents the true scene content or

enhances the usefulness of the fused image for a particular application [26].

As pointed out in the previous chapter, the use of only RGB cameras is not sufficient

to capture essential vegetation information, such as chlorophyll absorption, in agricultural
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contexts. MS imagery achieves this thanks to their spectral bands outside the visible spec-

trum, providing a superior scene understanding. Some notable applications of MS images in

agriculture include plant disease detection, fruit maturity, and crop production analysis [11].

To make a better use of these images, fusion methods can be applied, which encompass,

usually, three steps: (i) understanding which modalities should be fused, (ii) determining

the appropriate method for fusing the information, and (iii) specifying where the information

should be fused along the network [27][28].

Focusing on ‘where’ the information is fused, there are three common stages, (i) the early

fusion, (ii) the middle fusion, and (iii) the late fusion. Early fusion consists of combining

(merging) the data at the input layer. Early fusion is more straightforward in the case of MS

fusion, as the inputs are of the same type (images). When dealing with different modalities,

the data must be integrated at the middle or later stages of the process, due to the differences

between the data types [29]. Middle or intermediate fusion, a concept employed within

network-style learning frameworks, involves the combination of feature maps from different

modalities at an intermediate layer of the model architecture. The most common method,

yet simplistic, for early and middle fusion is the concatenation. Late fusion, also referred to

as decision-level fusion, consists of training features separately for each modality and merging

them at later layers. A simplified visualization of these three fusion approaches is presented

in Fig. 2.2, where a multimodal semantic segmentation framework is used to illustrate the

three fusion approaches, using RGB and Normalized Difference Vegetation Index (NDVI)

representations as inputs.

Despite being a image-fusion of one sensor, MS image combination uses the same tech-

niques as multimodal fusion. While multimodal fusion in autonomous navigation usually

combines images and other types of sensors, such as LiDAR or radar, MS fusion specifically

refers to the fusion of images captured at different frequencies across the electromagnetic

spectrum.

Fusion techniques have demonstrated their value in outdoor settings. In their work,

[30] employed fusion techniques combining multispectral and multimodal data, providing

evidence that the fused outcomes, specially late fusion, surpass segmentation based solely

on RGB data under challenging outdoor conditions. In the same study, they also noted that

segmentation using individual spectra yielded the best results with RGB data compared to

the other modalities they experimented with, such as NIR.

In this thesis, the approaches chosen to carry out multi-spectral combination (multi-

channels w.r.t. CNN framework) are:

9



• Early fusion: Achieved by by merging preprocessed inputs through concatenation be-

fore feeding them into the network.

• Late fusion: Achieved by computing the pixel-wise weighted sum of the class likelihoods

of each model before the final class decision.

Figure 2.2: Simplified approach of early, middle and late fusion, using RGB and NDVI as inputs.

2.3 Deep Learning - A Short Review

Deep learning is a subcategory of Machine Learning (ML) that aims to model high-level

abstractions of data using multiple layers of neurons consisting of complex structures or

non-linear transformations [31].

In deep learning, but also in traditional machine learning, two learning approaches are

fundamental in how models are trained: supervised and unsupervised learning. In this dis-

sertation, supervised learning techniques were utilized for the task of semantic segmentation

with DL methods. Additionally, it’s worth noting that, in this work, the classical approaches

are categorized as unsupervised segmentation methods in a broader sense, as they do not

incorporate a sophisticated learning process.

Supervised Learning

In the supervised learning approach, models are trained using ground truth data, which,

in the context of semantic segmentation, corresponds to masks with pixel-wise labels. It is

provided to the model the input data paired with corresponding outputs [32]. This training

10



data is commonly labeled by a data scientist during the preparatory phase, prior to its

utilization for training and evaluating the model. At end of the training phase, it is expected

that the model will have acquired a substantial understanding of the relationship between

inputs and outputs, then it may be able to classify unknown datasets and predict their

outcomes [33].

The main advantage of this technique is the ability to collect data or generate data output

from prior knowledge. However, the disadvantage of this approach arises when the training

set lacks samples that should belong to a particular class, potentially causing the decision

boundary to become overstrained. In general, this technique is simpler than other techniques

in the way of learning while still achieving high performance [32].

2.3.1 Convolutional Neural Networks (CNNs)

CNN stands out as one of the most popular and utilized DL networks [34]. CNN is a type

of artificial neural network designed specifically for processing structured grid data, such as

an RGB image made up of three 2D arrays representing pixel intensities across the three

color channels [35]. These networks are capable of performing tasks such as segmentation,

classification, and detection.

On a review of DL concepts, [32] pointed out three benefits of these networks:

1. The primary advantage of CNNs is their weight sharing property, which reduces the

number of trainable parameters, thereby contributing to improved generalization and

preventing overfitting.

2. Simultaneously training the feature extraction layers and the classification layer leads

to a model output that is not only well-structured but also heavily reliant on the

extracted features.

3. Implementing large-scale networks is notably simpler using CNNs compared to other

neural network architectures.

The essential elements of a CNN are convolutional, pooling and fully connected layers

(see Fig. 2.3).

For image classification, the goal is to transform the spatial tensor obtained from convo-

lutional layers into a fixed-length vector. To achieve this, fully connected layers are utilized.

As a result of this process, spatial information is lost. In semantic segmentation tasks, spatial

information preservation is essential. Various architectural approaches have been developed
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Figure 2.3: Schematic diagram of a basic CNN.

to address this requirement. FCN, exemplified by models like DeepLab, and encoder-decoder

architectures, such as SegNet, are two types of networks usually employed for these tasks.

Convolutional Layer

Convolutional layers are the backbone of CNNs. The convolutional layer employs con-

volutional filters, also known as kernels. These kernels operate through a process called

convolution, in which they slide across the input image’s pixels. At each position, the ker-

nel’s elements are multiplied with the corresponding input values, and the results are summed

to generate a single value in the output feature map. This operation is performed repeat-

edly as the kernel goes through the input image, resulting in a feature map that highlights

specific patterns or features. Initially, the kernel starts with random values, and throughout

the training process the kernel weights suffer fine-tuning, facilitating the extraction of the

desired features [32]. Figure 2.4 provides a visual representation of this operation.

These layers are typically used in sequence with each other. In the initial convolutional

layers, low-level features are extracted, whereas higher-level features are captured in the

subsequent convolutional layers.

Several parameters can influence the convolution process, such as kernel size, stride, and

padding. The kernel size refers to the dimensions of the filter, typically represented as a

matrix. The choice of kernel size impacts the scale of features the filter can detect. Larger

kernels are able to capture broader features, while smaller kernels focus on finer details.

The stride parameter determines how the kernel moves as it convolves across the input

image. A larger stride skips more pixels, resulting in down-sampled feature maps and reduced

computational load.

Padding involves adding additional pixels around the input image, often with zero values,
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before convolutions are performed. Padding helps to prevent details from being lost at the

edges of the image.

Figure 2.4: Convolution operation with zero padding, with a kernel size and a stride of 3 × 3 and
1, respectively. Source: [3].

Pooling Layer

Pooling layers aim to progressively reduce the dimensionality of the representation, re-

ducing both parameter count and the model’s computational complexity [36]. Among the

various pooling approaches, one of the most widely employed is max-pooling. Max-pooling

involves selecting the maximum value from a set of values within a specific region of a fea-

ture map, and uses it to create a down-sampled (pooled) feature map (see Fig. 2.5). This

operation highlights the most dominant feature present in that region.

Figure 2.5: Max-pooling with 2 × 2 filter. Source: [3].

Non-linearity Layer

The Non-linearity Layers, also known as the activation function layers, are employed

after all layers with weights (also called learnable layers), such as convolutional layers. It is

designed to introduce non-linearities into the network, which allows it to capture and model

complex relationships in data that cannot be captured through linear transformations alone.

Two of the most common used activation functions are ReLU (Rectified Linear Unit)

and Sigmoid. The Sigmoid function takes any real value as input and outputs values in the
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range of 0 to 1. It is commonly used for models in classification and segmentation tasks,

where it is necessary to compute the likelihood of the input belonging to a given class. Since

probability of anything exists only between the range of 0 and 1, sigmoid is the right choice

because of its range. The sigmoid function is expressed as follows:

σ(x) = 1
1 + e−x

(2.3)

ReLU is a popular activation function that replaces all negative input values with zero

and leaves positive values unchanged. The advantages of this characteristic include speeding

up network training, which results in faster convergence of gradient descent [37]. Mathemat-

ically, the ReLU function can be expressed as in equation 2.4.

f(x) =


x if x > 0

0 otherwise

(2.4)

In Figure 2.6, the plots of the ReLU and Sigmoid functions are represented.

Figure 2.6: Activation functions: Rectified linear unit (ReLU) and Sigmoid [3].

Moreover, it is relevant to highlight that the output layer of a network, often an activation

function, must be carefully selected based on the task at hand. This functions used for

the final layer often differ from those applied to preceding layers. The function need to be

chosen according to the task in hands. For tasks involving multiclass classification, a common

choice is the softmax, given that this function normalizes the raw output scores from the last

layer into a set of target class probabilities, ensuring that values lie between 0 and 1 while

collectively summing up to 1. Additionally, for tasks involving binary classification, another

common choice is the sigmoid activation function, previously introduced in this section [3].

Backpropagation

Backpropagation is an algorithm used during the train of artificial neural networks. Dur-

ing the training process, the network modifies its internal parameters, known as weights and
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biases, to learn the relationships within the processed data. This adjustment is made by

backpropagation.

In practice, input data enters the network during the forward pass, generating an output

prediction [38]. This predicted output is then compared against the actual target output,

resulting in a numerical value named "loss". The loss quantifies how far off the network’s

predictions are from the true values, and the objective of backpropagation is to minimize

this loss by recalibrating the network’s parameters. This process involves two main steps:

• Backward Pass (Backpropagation): This step involves calculating the gradients of the

loss based on each parameter (weight and bias) in the network. These gradients, which

indicate each parameter’s impact on the error, are propagated backward through the

network’s layers, enabling the network to determine how to adjust its parameters to

reduce the loss.

• Optimization: Once the gradients are known, an optimization algorithm is employed

to update the network’s parameters in a way that reduces the loss. This optimiza-

tion process is repeatedly applied over multiple iterations (epochs), making the net-

work gradually converge towards a set of parameter values that result in minimal loss.

While gradient descent optimization is commonly used, there are other optimization

algorithms available, such as Adam [39], RMSProp [40], Adagrad [41], etc.

2.3.2 Encoder-decoder

An extensively used architecture for semantic segmentation is the encoder-decoder (rep-

resented in Fig. 2.7), which has to main modules: an encoder and an decoder. The encoder

uses convolutional and pooling layers to map the input image to a fixed-size representation,

often called a latent space representation. The decoder maps the latent space representation

to an output space, which, in segmentation tasks, corresponds to a mask with pixel-wise

labels.

The down-sampling layers form the encoder, while the up-sampling layers form the de-

coder. In summary, the encoder outputs a tensor encompassing object information, shape,

and size, while the decoder utilizes such tensor-representation to generate segmentation

maps.
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Figure 2.7: Encoder-Decoder architecture.

SegNet

SegNet is an Encoder-Decoder-based architecture specifically designed for semantic image

segmentation tasks. It was introduced by Badrinarayanan et al. [42] in their work. The key

innovation of SegNet lies in its architecture that allows for pixel-wise semantic segmentation

while preserving spatial information through an encoder-decoder structure.

In SegNet, the decoder part, in addition to using up-sampling layers, incorporates a

specialized operation called "max-pooling indices". These operations are similar to skip

connections in the way they contribute to preserve important information from the encoder

component. Specifically, these pooling indices represent the positions of the maximum values

that were recorded during the corresponding max-pooling operations in the encoder. The

up-sampling layers then use these indices to place the pooled values back in their original

locations, effectively reconstructing the high-resolution feature map.

In the Fig. 2.7 is possible to see a SegNet architecture, where the arrows originating from

the encoder and pointing towards the decoder represent the pooling indices.

2.3.3 Fully Convolutional Networks (FCNs)

The concept of FCNs was introduced by Long et al. in their work [17]. An FCN includes

only convolutional layers, allowing it to generate a segmentation map of the same size as the

input image [20].

FCNs are primarily designed for semantic segmentation tasks and, due to their ability to

make accurate pixel-level predictions, FCNs are used in a variety of fields, such as medical

image analysis [43], autonomous driving [44].
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DeepLab

DeepLab is a FCN-based segmentation architecture tailored for semantic image segmen-

tation, proposed by Chen et al. [45]. One of the main contributions of the network is its use

of atrous (dilated) convolutions.

The dilated convolution expands the receptive field size, without adding more parameters,

by introducing gaps in the kernel. Figure 2.8 illustrates an Atrous convolution with a 3×3

dilated kernel, where the dilation rate (r) is set to 2. This configuration illustrates how

atrous convolutions effectively increase the receptive field while preserving a compact kernel

size.

One of the notable variants of DeepLab is DeepLabV3 [46]. Apart from using Atrous

Convolution, this variant uses an improved Atrous Spatial Pyramid Pooling (ASPP) mod-

ule, which was presented in its predecessor, DeepLabV2. The enhanced ASPP module in

DeepLabV3 is effective at capturing features across multiple spatial scales, enabling the

model to manage objects of diverse sizes, improving the performance of the network.

Figure 2.8: Atrous convolution.

2.4 Semantic Segmentation on MS Combination

Before the DL era, semantic segmentation relied primarily on handcrafted features and

classifiers such as SVM [47] and Random Forest, and clustering techniques such as K-

means [48], which were used to used to group similar pixels together. These methods had

the advantage of simplicity and low computational cost. However, nowadays CNNs have

revolutionized the field in recent years and are now the most effective technique in pattern

recognition-based applications [49]. One of the strongest advantages of using DL in image
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processing is the reduced need of feature engineering, thanks to the ability to automatically

extract features from raw data, with features at higher levels of the hierarchy being formed

by the extraction of features from lower levels [35].

Agricultural-related work on segmentation relies heavily on DL networks. Common deep

learning algorithms are FCN [17], SegNet [42], U-Net [50], DeepLab [51], PSPNet [52].

In [53], RGB images were used as input to test the U-Net under various scenarios, in-

cluding shadows, weeds, gaps in the crop row, intense sunlight conditions, and different

growth stages. On the other hand, authors in [54] compared the DeeplabV3+ model with

UNet using both RGB and MS images. They employed transfer learning techniques to ex-

tract wheat lodging area. Authors in [19] compared different encoder-decoder architectures

and demonstrated that SegNet, U-Net and ModSegNet achieved similar results for vineyard

segmentation. Authors in [55] conducted semantic segmentation of tree-like plants. They

employed an asynchronous training approach, training two separate networks on RGB and

depth data, which was encoded as a 3-channel HHA (depth, height from the ground, and

angle of the surface normal with gravity) image. These networks were later combined using

a late fusion architecture. Authors in [56] employed SegNet for the dense semantic classifi-

cation of weeds using multispectral images acquired via a Micro Aerial Vehicle (MAV). To

accommodate multiple inputs, they customized the network by incorporating concatenation,

thus implementing a form of early fusion. In a different study from [57], using a combination

of RGB and NIR data they made a sunflower planting areas segmentation across a range of

deep learning architectures, including Support Vector Machine (SVM), FCN, SegNet, and a

novel SegNet variant.

It is clear from the existing work that crop row detection has progressed over time and

there are a number of advantages that deep learning based systems have over classical ap-

proaches in semantic segmentation. In Table 2.1 a summary of all the articles mentioned

above is presented.

Article Bands Architecture Fusion Application
[53] RGB Encoder-Decoder (UNet) Not Performed Crop Row Detection
[58] RGB + RGN DeepLabV3+/Encoder-Decoder (UNet) Not Performed Extraction of wheat lodging area

[19] RGB + RE + NIR Encoder-Decoder (SegNet/
U-Net/ModSegNet) Early Vineyard segmentation

[55] RGB + Depth HHA-Net/Encoder-Decoder(SegNet) Early/Late Segmentation of Tree-like Vegetation
[56] NIR + Red + NDVI Encoder-Decoder (SegNet) Early Weed detection
[57] RGB + NIR SVM/FCN/Encoder-Decoder (SegNet) Early Sunflower planting areas segmentation

Table 2.1: Related work for semantic segmentation in agriculture.
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3 Materials and Methods

This section outlines the methods, tools, and processes employed to conduct the experi-

ments in this work. Firstly, the segmentation problem is formulated in generic terms, then

a comprehensive characterization of the study sites is provided, along with the technical

details of the recorded maize data. In addition, the necessary geometric calibration is also

described. Finally, the segmentation problem is formulated in a multispectral fusion context

by focusing, specifically, on early and late fusion techniques from two distinct information

sources.

3.1 Problem Formulation

Image segmentation involves the task of dividing an image into regions, or objects, based

on their shared characteristics. Image segmentation can be defined as a function that maps

an input image to a class likelihood mask. Thus, let I represent the input image, defined as

a three-dimensional array I = [pijk]h×w×b, where pijk ∈ [0, ..., 255] denotes the pixel intensity

at coordinates (i, j, k). The image dimensions are given by h (height), w (width), and b

(number of spectral bands), with i ∈ [1, h], j ∈ [1, w], and k ∈ [1, b]. To perform image

segmentation, we aim to obtain a class likelihood mask Q, represented by Q = [qijk]h×w×c.

Here, qijk ∈ [0, 1] indicates the likelihood of the pixel at coordinates (i, j, k) belonging to

each of the C = {1, ..., c} segmentation classes, constrained by ∑c
k=1 qijk = 1.

In the specific context of this study, we focus on binary segmentation. This means

that only one target-class is considered, resulting in a single-channel likelihood matrix Q =

[qij]h×w×1. Hence, the final segmentation mask with a class per pixel M = [mij]h×w ∈ {0, 1},

is obtained through a threshold-based approach:

mij =


1 if qij ≥ T

0 if qij < T

(3.1)
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where T is a threshold value chosen to distinguish between the positive and negative classes

in the segmentation.

The binary segmentation framework is used to compare classical methods with deep

learning (DL)-based approaches using two input modalities: RGB (IRGB) and NDVI (IN).

The RGB image IRGB is defined as a tree-dimensional array IRGB = [pRGB
ijk ]h×w×3, capturing

the visible spectrum (400-700 nm) with the Red, Green, and Blue bands. On the other hand,

the NDVI image IN is a two-dimensional array IN = [pN
ij ]h×w, representing the Normalized

Difference Vegetation Index. The NDVI is calculated as:

IN = NIR − Red

NIR + Red
, (3.2)

where Red and NIR correspond to specific spectral bands. The Red band lies within the

visible spectrum, while the NIR band extends beyond the visible range (700 to 1100 nm).

These bands are particularly valuable for agricultural monitoring, capturing the absorption

of chlorophyll in visible light and its reflection in the NIR spectrum.

3.2 Study Site and Materials

The study was conducted using data collected from a maize crop known as Vargem

Grande (VG) located in the Coimbra region, in the center of mainland Portugal (see Fig.

3.1a). The data was collected in July 2022, specifically during the early growth stage of the

plants. To ensure optimal lighting conditions and minimize shadow interference, the data

was collected around midday under sunny weather conditions.

The multispectral dataset was captured using a Parrot Sequoia multispectral camera1.

This camera consists of four monochrome sensors (Green, Red, Red Edge, and Near Infrared)

along with an RGB sensor (see Fig. 3.1c). To facilitate the data collection process, the

camera was mounted on a mobile platform known as the Jackal from Clearpath2. The

camera was positioned 1.2 meters above the ground, with the sensors facing downward (see

Fig. 3.1b).

To gather the data, the robot was teleoperated in-between the crop rows. Images from all

five sensors were captured every two seconds, ensuring a comprehensive dataset for analysis.

1Parrot Sequoia User Guide
2Jackal Homepage
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(a)

(b) (c)

Figure 3.1: Study site and material used to record the dataset, where (a) illustrates the studied
maize crop denominated Vargem Grande, (b) is the recording setup with which the dataset was
recorded, and (c) is the multispectral sensor with its five sensors.

3.2.1 Geometric Calibration

Geometric calibrations were required before data labeling could proceed. In addition to

the small physical offset between monochrome and RGB sensors, the RGB camera had a

different resolution and focal length from the other bands, as shown in Table 3.1.

First, the RGB camera’s resolution was lowered to match that of the other images in the

dataset, and went from 4068 × 3456 to 1280 × 960. After this initial step, a radial distortion

correction was applied to the different bands images to rectify any disparities in the focal

length compared to the RGB camera. The RGB image served as the reference, guiding the

adjustments made to the other images to ensure their alignment with the same parameters

as the RGB image. This correction was performed using the Brown-Conrady model, which

accounts for both tangential and radial distortion in an image. This model uses the following

equation:
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Sensors Band: Center wavelength (width) Resolution Focal Length HFoV VFoV
[nm] [px] [mm] [º] [º]

Monochrome G: 550(40); R: 660(40); RE: 735(10); 1280 × 960 3.98 62 49
NIR: 790(40)

RGB R, G, B 4068 × 3456 4.88 64 50

Table 3.1: Specifications of the sensor. Field of View (FoV)

xu = x + ρx + ωx

yu = x + ρy + ωy

(3.3)

ρx = (x − xc) ·
(
k1 · r2 + k2 · r4 + · · ·

)
︸ ︷︷ ︸

radial terms

ρy = (y − yc) ·
(
k1 · r2 + k2 · r4 + · · ·

)
︸ ︷︷ ︸

radial terms

(3.4)

ωx =
[
P1 ·

(
r2 + 2 · (x − xc)2

)
+ 2 · P2 · (x − xc) · (y − yc)

]
·

(
1 + P3 · r2 + · · ·

)
︸ ︷︷ ︸

tangential terms

ωy =
[
2 · p1 · (x − xc) · (y − yc) + p2 ·

(
r2 + 2 · (y − yc)2

)]
·

(
1 + p3 · r2 + · · ·

)
︸ ︷︷ ︸

tangential terms

, (3.5)

where (x, y) are distorted image points, (xu, yu) are the corresponding undistorted image

points, (xc, yc) is the center of distortion, ki is the ith radial distortion coefficient, Pj is the

jth tangential distortion coefficient, and r =
√

(x − xc)2 + (y − yc)2.

Finally, after all images had been corrected, a labeling process was conducted on all the

images that met a quality criterion, making a total of 532 annotations. The VG dataset was

made specifically for maize field navigation. In this context, the annotations are focused on

classifying the rows, while the remaining areas are considered as background. An example

of this annotation is present in Fig. 3.2.
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Figure 3.2: Overlay of an image from the VG dataset with its corresponding mask.

3.3 Image Fusion

Fusion, in the context of image segmentation, refers to the integration of information

derived from diverse sources into a unified representation. The fusion process can be applied

at various stages, depending on the segmentation methods employed [30].

3.3.1 Early Fusion

In the context of image processing, early fusion involves the merging of information at

the input level, specifically within the pixel space. In this work, early fusion is employed

using two different approaches: classical segmentation methods and DL-based segmentation

methods.

In the comparison between classical and DL-based methods, the representation of early

fusion varies depending on the approach used. Specifically, when employing classical ap-

proaches, the RGB image IRGB is transformed into a grayscale representation denoted as

IGr = [pGr
ij ]h×w. This conversion is achieved using the standard formula:

pGr
ij = 0.299 pR

ij + 0.587 pG
ij + 0.114 pB

ij , (3.6)

where pR
ij, pG

ij, and pB
ij represent the pixel intensities of the Red, Green, and Blue bands at

the coordinate (i, j), respectively, with i ∈ [1, h] and j ∈ [1, w]. The resulting grayscale

image IGr has dimensions given by h × w.

For classical approaches, the fused representation IEc is obtained by computing the pixel-

wise mean between the NDVI image IN and the grayscale image IGr:

pEc
ij =

pN
ij + pGr

ij

2 , (3.7)
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here, pN
ij and pGr

ij represent the pixel intensities of the NDVI and grayscale images at the (i, j)

coordinate, respectively. The resulting fused representation IEc is an image of dimensions

h × w. On the other hand, when employing DL-based segmentation methods, the fused

representation IEd is obtained by channel-wise concatenation of the RGB image IRGB and

the NDVI image IN . This is represented as:

IEd = [IRGB, IN ] =
[
pRGB

ijk | pN
ijk

]
h×w×4

(3.8)

where pRGB
ijk and pN

ijk represent the pixel intensities of the RGB and NDVI images at the

(i, j, k) coordinate, respectively. The resulting fused representation IEd is a tensor with

dimensions h × w × 4, where the first three channels correspond to the RGB image and the

fourth channel corresponds to the NDVI image. Figure 3.3 provides a visual representation

of this approach in a DL architecture.

Figure 3.3: Deep learning architecture employing an early fusion approach, where the NDVI and
RGB are concatenated as inputs.

3.3.2 Late Fusion

Early fusion involves merging information at the input space, while late fusion performs

the merging at the output space. In this study, late fusion is achieved by computing the

pixel-wise weighted sum of the class likelihoods of each model before the final class decision.

In the context of a late fusion framework, the segmentation process involves two input

images: IN and IRGB. Each image is individually processed through a segmentation model,

generating respective output likelihood masks: QN = [qN
ij ]h×w×1 and QRGB = [qRGB

ij ]h×w×1,

where, qN
ij and qRGB

ij ∈ [0, 1] represent the likelihood of the positive class at the pixel coor-

dinates (i, j).

The fused representation is obtained by computing a pixel-wise weighted sum of the

likelihoods from both segmentation models. Hence, the fused likelihood qL
ij at the pixel

24



coordinates (i, j) is calculated using the following formula:

qL
ij = α · qN

ij + β · qRGB
ij , (3.9)

where α and β are weights that can be adjusted to balance the contribution of each likelihood

according to the models’ performance. By controlling the values of α and β, the fusion

process can be fine-tuned to achieve optimal segmentation results based on the strengths of

the individual models.

For a more concise summary of the methods employed in this dissertation, Figure 3.4

illustrates a simplified approach to both early and late fusion.

Figure 3.4: Simplified approach of early and late fusion using RGB and NDVI as inputs on deep
(encoder-decoder architecture) and classic methods.
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4 Experimental Evaluation and Dis-

cussion

This section provides a comprehensive assessment of early and late fusion techniques

within a multispectral image segmentation framework applied to the AgRA domain. The

section outlines the datasets used for evaluation, describes the implementation details and

evaluation metrics employed, and presents a thorough discussion of the quantitative and

qualitative results obtained.

4.1 Datasets

The proposed approaches undergo evaluation using primarily the maize crop dataset

(referred to as VG) described in the section 3.2. Complementary, a dataset collected from

vineyards are used to assess cross-domain generalization capability. For the VG dataset, a

total of 532 images were recorded for each of the five sensors (R, G, RE, NIR, and RGB). The

images were aligned and cropped to a final size of 1100 × 825, and for evaluation purposes,

they were resized to 240 × 240. The dataset was then split into an 80/20 ratio for training

and testing, respectively. Regarding the vineyard data, the dataset encompasses images of

240 × 240 from three distinct vineyards. The evaluation follows the approach proposed in

[19], employing a cross-validation method that involves training on data from two vineyards

and testing on the third. Relevant information about the datasets can be found in Table 4.1.

Dataset Vargem Grande Qta Baixo ESAC Valdoeiro
Sample Size (Train/Test) 532 (425/107) 150 189 120
Bands R, G, RE, NIR, RGB B, G, R, RE, NIR, Thermal
Dimensions Fusion 1100×825 240×240

Table 4.1: Dataset information, where B,G,R,RE and NIR represent Blue, Green, Red, Red-edge
and Near-infrared, respectively.
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4.2 Implementation Details

This section outlines the implementation details of both the classical and DL-based seg-

mentation approaches. Python was chosen as the programming language for both classical

and DL approaches.

Classical Approach

Three classical segmentation methods were employed: Otsu’s thresholding1, edge-based2,

and region-based2 techniques.

For Otsu’s thresholding, was used a opencv threshold function with an automatic thresh-

old value on a grayscale image to perform the segmentation. This threshold value was de-

termined using Otsu’s algorithm, which finds the threshold (t) that minimizes the weighted

within-class variance, as expressed by the following equation:

σ2
w(t) = q1(t)σ2

1(t) + q2(t)σ2
2(t) (4.1)

where, qi(t) is the probability of class i pixels at threshold t, with i ∈ {0, 1} representing

discrete class labels. σ2
j (t) is the variance of class j pixels at threshold t, where j can be

either 0 (background) or 1 (foreground).

In the case of edge-based segmentation, to detect the edges of the objects was used

the Canny edge detector from scikit-image library, with Sigma (standard deviation of the

Gaussian filter) value as default. After this first step, to fill the contours was applied,

the binary_fill_holes function from the SciPy library. Finally, a process was applied to

remove small objects from the segmented image. To achieve this, the remove_small_objects

function from the scikit-image library was employed. Specifically, objects smaller than a

specified minimum size were filtered out. In this case, a minimum size of 21 was chosen,

meaning that objects with fewer than 21 connected pixels were removed from the segmented

image.

Lastly, a region-based segmentation was performed. Initially, an elevation map was

created by applying the Sobel gradient to the grayscale images. Following this step, markers

were assigned for background and plants based on gray value histograms. This assignment

process involved trial and error to achieve the best results. Finally, the watershed transform,

1OpenCV Image Thresholding - Otsu’s thresholding.
2Edge-based and Region-based segmentation - Canny edge-detector and Watershed transform.
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as detailed in section 2.1.1, was applied to fill regions of the elevation map with these markers.

Deep Learning Approaches

In this work, two distinct DL-based segmentation models were utilized: SegNet3 and

DeepLabV34. SegNet employs an encoder-decoder architecture, where the input is gradually

encoded to a latent space and then gradually decoded to an output mask. In contrast,

DeepLabV3 upsamples the latent representation in fewer steps.

Both models were implemented using the PyTorch [59], which is a ML and DL framework

based on the Torch library. They were executed on a hardware setup consisting of an NVIDIA

GEFORCE GTX 3090 GPU and an AMD Ryzen 9 5900X CPU with 64 GB of RAM. The

training process utilized the AdamW optimizer [60] with a learning rate of 1e-3 for VG and

approximately 1e-4 and 1e-5 for Vineyard models. The Binary Cross-Entropy with Logits

Loss (BCEWithLogitsLoss) function was employed to calculate the loss, and the outputs

(logits) were passed through a sigmoid activation function to obtain the final probabilities.

4.2.1 Evaluation Metrics

The performance of the segmentation methods was evaluated using several metrics, in-

cluding pixel accuracy (acc), F1 score, and Intersection over Union (IoU). These metrics

provide insights into the accuracy and quality of the segmentation results.

The pixel accuracy of a segmentation map is measured by the proportion of correctly

classified pixels. Even though accuracy is straightforward, it might not be optimal for

imbalanced datasets in which one class dominates. This is where the F1 score excels. The

F1 score balances precision (correctly predicted positive pixels) and recall (actual positive

pixels correctly identified), resulting in a single value that considers both false positives and

false negatives.

IoU, also known as the Jaccard index, quantifies the overlap between predicted and

ground truth segmentation masks. It calculates the ratio of the intersection of these masks

to their union. For semantic segmentation tasks, it is a common metric used to evaluate

spatial accuracy.

The pixel accuracy is defined as:

Acc = TP + TN

TP + FP + TN + FN
, (4.2)

3SegNet GitHub Implementation
4DeepLabV3 Pytorch
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where TP, TN, FP, and FN represent True Positives, True Negatives, False Positives, and

False Negatives, respectively. The F1 score is calculated as:

F1 score = 2 × TP

2 × TP + FP + FN
. (4.3)

The IoU is computed as:

IoU = Area of Intersection
Area of Union , (4.4)

where Area of Intersection refers to the number of overlapping pixels between the predicted

mask and ground truth mask: A∩B = {pij : pij ∈ A and pij ∈ B}, where pij denotes a pixel

at coordinate (i, j), while A and B represent the ground truth mask and the predicted mask,

respectively. The Area of Union represents the total number of pixels encompassed by both

prediction and ground truth masks, including the overlapping region: A ∪ B = {pij : pij ∈

A or pij ∈ B}, where pij denotes a pixel at coordinate (i, j), while A and B represent the

ground truth mask and the predicted mask, respectively.

4.3 Results and Discussion

This section presents the experimental results for both classical and DL-based segmen-

tation methods, comprising both quantitative and qualitative assessments. The qualitative

results are organized in Table 4.2, while the visual representations of the segmentation masks

are illustrated in Fig 4.1. Each segmentation approach is evaluated in four distinct methods:

first, with the RGB and NDVI modalities individually, followed by the modalities fused using

early and late fusion techniques, as described in Section 3.3. The results were obtained with

the segmentation threshold T = 0.5, for the late fusion results, both models were given an

equal contribution: i.e. α = 0.5 and β = 0.5.

Classical vs DL-based

In this work, classical unsupervised and supervised DL-based segmentation methods were

employed. The classical methods demonstrate to perform well on tasks where the primary

objective is to separate foreground from background, as is the case of the Vineyard dataset,

where the goal is to segment individual plants. In such case, unsupervised approaches are

competitive with DL-based approaches, offering the advantage of simplicity and lower com-

plexity. However, in segmentation tasks that involve identifying spatial regions, containing

both foreground and background, such as the Maize dataset, where the objective is to detect
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Maize Vineyard

Method

Dataset VG Qta. Baixo ESAC Valdoeiro Average

Acc. F1 IoU Acc. F1 IoU Acc. F1 IoU Acc. F1 IoU Acc. F1 IoU

O
T

S

RGB 74.4 28.3 16.7 57.6 41.9 27.6 79.1 52.7 40.2 74.5 38.6 26.0 71.4 40.4 27.6
NDVI 76.1 32.3 19.6 84.1 61.7 46.1 65.6 49.7 34.8 92.4 67.8 56.0 79.6 52.9 39.1

Early F. 75.6 34.1 20.9 71.6 52.7 37.7 71.4 55.5 41.2 89.5 65.3 52.7 77.1 51.9 38.1
Late F. 67.5 33.7 20.8 83.0 67.5 44.7 89.5 66.8 42.9 91.6 81.6 56.7 82.7 62.4 41.3

Ed
ge

-b
. RGB 76.6 12.9 6.9 69.8 15.5 8.5 78.1 26.3 15.4 86.9 22.7 13.1 77.9 19.4 10.5

NDVI 75.6 13.0 7.0 70.3 16.8 9.3 61.1 18.7 10.4 94.2 48.6 33.7 75.3 24.3 15.1
Early F. 84.1 21.0 11.9 76.8 16.3 8.9 65.4 14.8 8.0 93.9 39.3 25.8 80.1 22.9 13.7
Late F. 70.1 14.0 7.6 64.8 18.9 10.6 71.1 25.5 14.8 87.6 39.1 25.1 73.5 24.4 14.5

R
eg

io
n-

b. RGB 84.1 21.0 11.9 78.3 47.4 33.1 78.9 44.3 33.2 85.3 44.6 31.2 81.7 39.3 27.4
NDVI 82.2 12.4 6.7 89.0 67.9 52.5 76.0 50.9 37.3 97.2 76.3 63.8 86.1 51.9 40.1

Early F. 76.7 19.0 10.5 81.3 52.7 37.0 87.6 63.5 49.8 97.3 77.6 65.2 85.8 53.2 40.6
Late F. 81.8 25.3 14.7 93.1 69.3 34.9 92.1 48.9 24.6 98.6 82.7 45.2 91.4 56.6 29.9

Se
gN

et

RGB 96.2 87.1 78.5 84.9 52.1 35.6 73.1 41.9 27.7 92.1 58.0 41.3 86.6 59.8 45.8
NDVI 95.6 85.3 76.1 85.9 64.4 48.4 78.5 51.4 36.8 93.9 67.1 51.7 88.5 67.1 53.3

Early F. 96.8 89.3 80.8 81.1 42.1 26.7 81.4 50.5 33.9 94.3 61.0 43.9 88.4 60.7 46.3
Late F. 96.1 86.9 78.6 86.2 56.4 40.4 75.9 46.9 33.0 93.4 61.4 45.7 87.9 62.9 49.4

D
ee

pl
ab

V
3 RGB 96.5 87.9 79.8 81.8 35.6 21.8 82.0 45.0 30.1 91.0 56.2 39.7 87.9 56.1 42.9

NDVI 95.9 86.0 77.3 87.3 59.2 42.2 77.7 33.8 21.4 89.1 44.2 28.8 87.5 55.8 42.4
Early F. 97.3 89.2 81.2 82.1 31.0 18.7 79.9 37.3 23.8 89.9 52.8 36.4 87.3 52.6 40.0
Late F. 96.6 87.7 80.2 85.3 47.5 32.0 81.0 39.0 25.9 92.5 58.0 42.3 88.9 58.1 45.1

Table 4.2: Segmentation performance on the Maize (VG) and Vineyard (Qta. Baixo, ESAC, and
Valdoeiro) datasets, employing classical approaches such as Otsu Threshold (OST), Edge-based,
and Region-based, as well as DL-based approaches including SegNet and DeeplabV3. Each method
is evaluated with four scores: RGB and NDVI individually, and both modalities fused using early
and late fusion techniques. The performance scores are presented in percentage [%], with the best
score highlighted in bold and the second-best scores underlined.
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Figure 4.1: Qualitative segmentation results of both VG and vineyard dataset. The images (a)
to (f) (top row), represent respectively the RGB, NDVI and ground-truth masks. Images (g) to (l)
(middle row) represent segmentation masks generated by classical approaches. And finally, images
(m) to (r) (bottom row) represent segmentation masks generated by SegNet. More specifically,
images (g) to (i) were generated by Otsu, while images (j) to (i) were generated with a region-
based method.

the plant rows, supervised DL-based approaches show a clear advantage due to their ability

to learn spatial information. The results obtained in our experiments consistently confirm

this, as depicted in Table 4.2 and Fig 4.1.

Fusion vs No-Fusion

The results consistently show that late fusion either achieves the best performance or

ranks a close second, distinctly outperforming early fusion. This superiority means that, on

average, extracting features from individual modalities first and then fusing them at a later

stage yields better results compared to one model from both modalities combined.

Upon analyzing the average results, it becomes evident that late fusion capitalizes on the

model with the highest performance. By averaging the outputs of both models, late fusion is

able to reduce the noise associated with the lesser-performing model. However, this method

also has a downside: valuable information from the best-performing model may be diluted

or lost. Thus, while late fusion leverages the strengths of both models to enhance overall

robustness, finding the right balance in the contributions of each model becomes crucial.

One potential approach to achieve this balance is to weight the contributions based on their
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respective performance. Investigating this weighted fusion strategy offers an interesting

avenue for future work.

MS vs RGB

To compare MS and RGB imagery, we can based on the results summarized in Table 4.2,

with the representative of MS data being the NDVI. The results clearly indicate that NDVI

outperformed RGB in most of the classic segmentation methods, showcasing its effectiveness

in capturing relevant information for vegetation-related tasks. This observation aligns with

our expectations, given that NDVI is specifically designed to highlight vegetation and its

health.

A closer examination of the results reveals that NDVI not only outperformed RGB in

classic methods but also demonstrated strong performance in DL-based segmentation meth-

ods, such as Segnet.

In the case of DeeplabV3, NDVI achieved results that were nearly on par with RGB.

This result is intriguing and suggests that for this particular DL architecture, both NDVI

and RGB can be equally effective.

Runtime Analysis

In terms of computational performance, DL methods demand a considerable amount of

time to execute due to the intensive computations involved. In our case, the maximum run-

time reached approximately twenty-five minutes for the entire training process, specifically

during late fusion, where the batch size supported by the hardware was limited to 32 (VG)

and 16 (Vineyard). In contrast, classical methods demonstrate the opposite behavior, being

significantly faster and achieving results within a minute.
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5 Conclusions

5.1 Final Dissertation Remarks

This work aimed to study the impact of fusion (combining) approaches of multispectral

data in segmentation tasks applied domains related to digital-precision agriculture and agri-

cultural robotics. The study was conducted on both classical and DL-based segmentation

methods, where the experimental part is supported by two datasets: a dataset of vineyards

and a dataset of maize crops, recorded and curated specifically for this study. In addition,

there was an intention to conduct comparisons between fusion and non-fusion methodologies,

as well as to evaluate both DL and traditional segmentation techniques.

The experimental findings show two principal observations: First, classical segmentation

methods, utilizing techniques like thresholding and edge detection, are competitive against

DL-based approaches in tasks requiring foreground-background separation. This highlights

their continued applicability in specialized scenarios. Second, late fusion, where individual

modalities are processed and then fused, emerges as the most robust approach, demonstrating

its superior adaptability across various experimental conditions. These insights offer valuable

guidance for both current applications and future research in segmentation algorithms.

5.2 Future Work

Regarding future work, there are some potential changes to improve the current research,

which are listed below:

• Investigate different fusion methods, such as middle fusion, and compare their outcomes

to the existing results.

• Incorporate additional spectral bands as inputs, such as the RE, to improve the current

results.
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Abstract. Multispectral imagery is frequently incorporated into agri-
cultural tasks, providing valuable support for applications such as im-
age segmentation, crop monitoring, field robotics, and yield estimation.
From an image segmentation perspective, multispectral cameras can pro-
vide rich spectral information, helping with noise reduction and feature
extraction. As such, this paper concentrates on the use of fusion ap-
proaches to enhance the segmentation process in agricultural applica-
tions. More specifically, in this work, we compare different fusion ap-
proaches by combining RGB and NDVI as inputs for crop row detection,
which can be useful in autonomous robots operating in the field. The
inputs are used individually as well as combined at different times of
the process (early and late fusion) to perform classical and DL-based
semantic segmentation. In this study, two agriculture-related datasets
are subjected to analysis using both deep learning (DL)-based and clas-
sical segmentation methodologies. The experiments reveal that classical
segmentation methods, utilizing techniques such as edge detection and
thresholding, can effectively compete with DL-based algorithms, partic-
ularly in tasks requiring precise foreground-background separation. This
suggests that traditional methods retain their efficacy in certain spe-
cialized applications within the agricultural domain. Moreover, among
the fusion strategies examined, late fusion emerges as the most robust
approach, demonstrating superiority in adaptability and effectiveness
across varying segmentation scenarios. The dataset and code is avail-
able at https://github.com/Cybonic/MISAgriculture.git

1 INTRODUCTION

In agriculture, autonomous robots are becoming increasingly popular because of
the potential benefits they may have on food security, sustainability, resource-use
efficiency, reduction of chemical treatments, and optimization of human effort
and yield [14]. Alongside this trend, the utilization of multispectral imagery in

Appendix A

Scientific Paper - ROBOT2023: Sixth
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agricultural applications, including AgRA (Agricultural Robotics and Automa-
tion), has become increasingly significant in recent years. Some notable appli-
cations of these images include plant disease detection, fruit maturity, and crop
production analysis [5].

Certain bands, captured at specific frequencies across the electromagnetic
spectrum, have the ability to reveal distinct information about plants. Among
these bands, the near-infrared (NIR) band holds significance in agricultural tasks
(e.g., assessing crop health) as it can effectively highlight chlorophyll absorption
and water content in plants. One widely used index that relies on the NIR
band is the Normalized Difference Vegetation Index (NDVI), which provides a
quantitative measure of vegetation greenness and density. Compared with RGB-
only data, incorporating this additional spectral information can enhance the
discrimination of different objects and features within images. This enables more
accurate identification and classification of crops, improving the process of image
segmentation [19].

This work focuses on assessing the applicability of fusion approaches using
multispectral data for segmentation-related agricultural tasks. Specifically, we
investigate two fusion approaches: early fusion and late fusion. Early fusion in-
volves combining the information from multiple sources at the input level before
the segmentation process. This means that the data from different sources are
merged into a single representation prior to segmentation. On the other hand,
late fusion occurs after the segmentation process has been applied to each indi-
vidual image. The segmentations are obtained independently, and then ”fused,”
or combined, at a later stage. By exploring both early and late fusion techniques,
we aim to assess their impact on image segmentation performance and determine
which fusion approach yields superior results for the specific objectives of this
work.

Through a comprehensive comparative analysis, the aim of this work is to
make significant progress in automatic crop-row detection by studying early
and late fusion of multispectral data using classical and DL-based segmentation
approaches. To accomplish this, this paper brings two key contributions:

• A curated multispectral dataset collected on maize crops using a robotic
platform, with crop row annotations;

• An extensive comparison study conducted on both deep learning (DL)-
based and classical segmentation methods, focusing on early and late fu-
sion techniques across two distinct datasets. The findings reveal two key in-
sights: First, classical segmentation approaches prove to be competitive with
DL-based methods in tasks that involve foreground-background separation,
demonstrating their continued relevance in certain applications. Second, late
fusion emerges as the most robust fusion approach, showcasing its superior
adaptability and effectiveness across various scenarios.
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2 RELATED WORK

Image segmentation is a fundamental task in computer vision, which involves the
division of an image into meaningful regions or objects to understand the scene
[11][18][4]. In the past, semantic segmentation relied on methodsusing threshold-
ing [15], edge-based [12] and region-based [6] . These methods have the advantage
of simplicity and low computational cost.

On the other hand, convolutional neural networks (CNNs) have revolution-
ized the field in recent years and are now the most effective technique in pattern
recognition application [8]. One of the strongest advantages of using DL in im-
age processing is the reduced need for handcrafted features. These improvements
helped agricultural tasks such as disease detection in vines [7], identification of
crops, weeds, and soil [10] through architectures such as encoder-decoder SegNet
and Mask R-CNN respectively.

Image Segmentation can improve scene understanding however, complex en-
vironments require complementary information that multiple modalities can give
to better understand the scene [1]. To achieve this goal, fusion methods can be
applied which encompass, usually, three steps. First, it is necessary to under-
stand which modalities should be fused, then what method should be applied
to fuse the information, techniques like addition or average mean, concatenation
or ensemble, and finally where should the information be fused along the net-
work [3][20]. Focusing on ‘where’ the information is fused, we highlighted two
stages, (i) the early fusion which consists of combining (merging) the data at
the input layer , and (ii) the late fusion which consists of training features sep-
arately for each modality and merging them at later layers using methods such
as element-wise summation [17].

3 MATERIALS AND METHODS

This section outlines the methods, tools, and processes employed to conduct the
experiments of this work. Firstly, we provide a comprehensive characterization
of the study sites and present the technical details of the recorded maize data.
Secondly, we formulate the segmentation problem in generic terms and then in
a multispectral fusion context by focusing, specifically, on early and late fusion
techniques of two distinct information sources.

3.1 Study Site and Materials

The study was conducted using data collected from a maize crop known as
Vargem Grande (VG) located in the Coimbra region, situated in the center of
mainland Portugal (see Fig. 1a). The data collection took place during July of
2022, specifically during the early growth stage of the plants. To ensure optimal
lighting conditions and minimize shadow interference, the data was collected
around midday under sunny weather conditions.
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(a)

(b) (c)

Fig. 1: Study site and material used to record the dataset, where (a) illustrates
the studied maize crop denominated Vargem Grande, (b) is the recording setup
with which the dataset was recorded, and (c) is the multispectral sensor with its
five sensors.

The multispectral dataset was captured using a Parrot Sequoia multispectral
camera1. This camera consists of four monochrome sensors (Green, Red, Red
Edge, and Near Infrared) along with an RGB sensor (see Fig. 1c). To facilitate
the data collection process, the camera was mounted on a mobile platform known
as the Jackal from Clearpath2. The camera was positioned 1.2 meters above the
ground, with the sensors facing downward (see Fig. 1b).

To gather the data, the robot was teleoperated in-between the crop rows.
Images from all five sensors were captured every two seconds, ensuring a com-
prehensive dataset for analysis.
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Table 1: Specifications of the sensor. Field of View (FoV)

Sensors Band: Center wavelength (width) Resolution Focal Length HFoV VFoV

[nm] [px] [mm] [º] [º]

Mono- G:550(40); R:660(40); RE:735(10); 1280×960 3.98 62 49

-chrome NIR:790(40)

RGB R,G,B 4068×3456 4.88 64 50

Fig. 2: Simplified approach of early and late fusion using RGB and NDVI as
inputs on deep and classic methods.

3.2 Problem Formulation

Image segmentation involves the task of dividing an image into regions, or ob-
jects, based on their shared characteristics. Mathematically, image segmentation
can be defined as a function that maps an input image to a class likelihood
mask. Thus, let I represent the input image, defined as a three-dimensional
array I = [pijk]h×w×b, where pijk ∈ [0, ..., 255] denotes the pixel intensity at
coordinates (i, j, k). The image dimensions are given by h (height), w (width),
and b (number of spectral bands), with i ∈ [1, h], j ∈ [1, w], and k ∈ [1, b]. To
perform image segmentation, we aim to obtain a class likelihood mask Q, rep-
resented by Q = [qijk]h×w×c. Here, qijk ∈ [0, 1] indicates the likelihood of the
pixel at coordinates (i, j, k) belonging to each of the C = {1, ..., c} segmentation
classes, constrained by

∑c
k=1 qijk = 1.

In the specific context of this study, we focus on binary segmentation. This
means that only one class is considered, resulting in a single-channel likelihood
matrix Q = [qij ]h×w×1. Hence, the final segmentation mask with a class per
pixel M = [mij ]h×w ∈ {0, 1}, is obtained through a threshold-based approach:

1Parrot Sequoia User Guide
2Jackal Homepage
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mij =

{
1 if qij ≥ T

0 if qij < T
(1)

where T is a threshold value chosen to distinguish between the positive and
negative classes in the segmentation.

The binary segmentation framework is used to compare classical methods
with deep learning (DL)-based approaches using two input modalities: RGB
(IRGB) and NDVI (IN ). The RGB image IRGB is defined as a tree-dimensional
array IRGB = [pRGB

ijk ]h×w×3, capturing the visible spectrum (400-700 nm) with

the Red, Green, and Blue bands. On the other hand, the NDVI image IN is a
two-dimensional array IN = [pNij ]h×w, representing the Normalized Difference
Vegetation Index. The NDVI is calculated as:

IN =
NIR−Red

NIR+Red
, (2)

where Red and NIR correspond to specific spectral bands. The Red band lies
within the visible spectrum, while the NIR band extends beyond the visible range
(700 to 1100 nm). These bands are particularly valuable for agricultural moni-
toring, capturing the absorption of chlorophyll in visible light and its reflection
in the NIR spectrum.

3.3 Image Fusion

Fusion, in the context of image segmentation, refers to the integration of in-
formation derived from diverse sources into a unified representation. The fusion
process can be applied at various stages, depending on the segmentation methods
employed [16]. In this study, we specifically investigate two fusion approaches:
early fusion and late fusion.

Early Fusion In the context of image processing, early fusion involves the
merging of information at the input level, specifically within the pixel space.
In this study, early fusion is employed using two different approaches: classical
segmentation methods and DL-based segmentation methods.

In the comparison between classical and DL-based methods, the representa-
tion of early fusion varies depending on the approach used. Specifically, when
employing classical approaches, the RGB image IRGB is transformed into a
grayscale representation denoted as IGr = [pGr

ij ]h×w. This conversion is achieved
using the standard formula:

pGr
ij = 0.299 pRij + 0.587 pGij + 0.114 pBij , (3)

where pRij , p
G
ij , and pBij represent the pixel intensities of the Red, Green, and Blue

bands at the coordinate (i, j), respectively, with i ∈ [1, h] and j ∈ [1, w]. The
resulting grayscale image IGr has dimensions given by h× w.



Title Suppressed Due to Excessive Length 7

For classical approaches, the fused representation IEc is obtained by comput-
ing the pixel-wise mean between the NDVI image IN and the grayscale image
IGr:

pEc
ij =

pNij + pGr
ij

2
, (4)

here, pNij and pGr
ij represent the pixel intensities of the NDVI and grayscale images

at the (i, j) coordinate, respectively. The resulting fused representation IEc is
an image of dimensions h × w. On the other hand, when employing DL-based
segmentation methods, the fused representation IEd is obtained by channel-
wise concatenation of the RGB image IRGB and the NDVI image IN . This is
represented as:

IEd = [IRGB , IN ] =
[
pRGB
ijk | pNijk

]
h×w×4

(5)

where pRGB
ijk and pNijk represent the pixel intensities of the RGB and NDVI images

at the (i, j, k) coordinate, respectively. The resulting fused representation IEd is
a tensor with dimensions h × w × 4, where the first three channels correspond
to the RGB image and the fourth channel corresponds to the NDVI image.

Late Fusion Early fusion involves merging information at the input space, while
late fusion performs the merging at the output space. In this study, late fusion
is achieved by computing the pixel-wise weighted sum of the class likelihoods of
each model before the final class decision.

In the context of a late fusion framework, the segmentation process involves
two input images: IN and IRGB . Each image is individually processed through
a segmentation model, generating respective output likelihood masks: QN =
[qNij ]h×w×1 and QRGB = [qRGB

ij ]h×w×1, where, q
N
ij and qRGB

ij ∈ [0, 1] represent
the likelihood of the positive class at the pixel coordinates (i, j).

The fused representation is obtained by computing a pixel-wise weighted sum
of the likelihoods from both segmentation models. Hence, the fused likelihood
qLij at the pixel coordinates (i, j) is calculated using the following formula:

qLij = α · qNij + β · qRGB
ij , (6)

where α and β are weights that can be adjusted to balance the contribution of
each likelihood according to the models’ performance. By controlling the values
of α and β, the fusion process can be fine-tuned to achieve optimal segmentation
results based on the strengths of the individual models.

4 EXPERIMENTAL EVALUATION

The evaluation section in this study provides a comprehensive assessment of early
and late fusion techniques within a multispectral image segmentation framework
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Table 2: Dataset information, where B,G,R,RE and NIR represent Blue, Green,
Red, Red-edge and Near-infrared, respectively.

Dataset Vargem Grande Qta Baixo ESAC Valdoeiro

Sample Size (Train/Test) 532 (425/107) 150 189 120

Bands R, G, RE, NIR, RGB B, G, R, RE, NIR, Thermal

Dimensions Fusion 1100×825 240×240

applied to the AgRA domain. The section outlines the datasets used for eval-
uation, describes the implementation details and evaluation metrics employed,
and presents a thorough discussion of the quantitative and qualitative results
obtained.

4.1 Datasets

The proposed approaches undergo evaluation using primarily the maize crop
dataset (referred to as VG) described in Section 3.1. Complementary, a dataset
collected from vineyards are used to assess cross-domain generalization capa-
bility. For the VG dataset, a total of 532 images were recorded for each of the
five sensors (R, G, RE, NIR, and RGB). The images were aligned and cropped
to a final size of 1100 × 825, and for evaluation purposes, they were resized to
240× 240. The dataset was then split into an 80/20 ratio for training and test-
ing, respectively. Regarding the vineyard data, the dataset encompasses images
of 240× 240 from three distinct vineyards. The evaluation follows the approach
proposed in [2], employing a cross-validation method that involves training on
data from two vineyards and testing on the third. Relevant information about
the datasets can be found in Table 2.

4.2 Implementation Details

This section outlines the implementation details of both the classical and DL-
based segmentation approaches.

Classical Approach Three classical segmentation methods were employed:
Otsu’s thresholding3, edge-based4, and region-based4 techniques. For Otsu’s
thresholding, the opencv threshold function with an automatic threshold value
was utilized to perform the segmentation. In the case of edge-based segmentation,
the Canny edge detector was employed to detect the edges of the objects, with
further processing to fill the contours and remove small objects from the seg-
mented image. Lastly, a region-based segmentation was performed by generating

3OpenCV Image Thresholding - Otsu’s thresholding.
4Edge-based and Region-based segmentation - Canny edge-detector and Watershed

transform.
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an elevation map using the Sobel gradient, determining markers for background
and plants based on gray value histograms, and then applying the watershed
transform to fill regions of the elevation map with those markers.

Deep Learning Approaches In this study, two distinct DL-based segmenta-
tion models were utilized: SegNet5 and DeepLabV36. SegNet employs an encoder-
decoder architecture, where the input is gradually encoded to a latent space and
then gradually decoded to an output mask. In contrast, DeepLabV3 upsamples
the latent representation in fewer steps.

Both models were implemented using the PyTorch [13] framework and ex-
ecuted on a hardware setup consisting of an NVIDIA GEFORCE GTX 3090
GPU and an AMD Ryzen 9 5900X CPU with 64 GB of RAM. The training
process utilized the AdamW optimizer [9] with a learning rate of 1e-3 for VG
and approximately 1e-4 and 1e-5 for vine models. The Binary Cross-Entropy
with Logits Loss (BCEWithLogitsLoss) function was employed to calculate the
loss, and the outputs (logits) were passed through a sigmoid activation function
to obtain the final probabilities.

4.3 Evaluation Metrics

The performance of the segmentation methods was evaluated using several met-
rics, including pixel accuracy (acc), F1 score, and Intersection over Union (IoU).
These metrics provide insights into the accuracy and quality of the segmentation
results. The pixel accuracy is defined as:

acc =
TP + TN

TP + FP + TN + FN
, (7)

where TP, TN, FP, and FN represent True Positives, True Negatives, False
Positives, and False Negatives, respectively. The F1 score is calculated as:

F1 score =
2× TP

2× TP + FP + FN
. (8)

The IoU is computed as :

IoU =
Area of Intersection

Area of Union
, (9)

where Area of Intersection refers to the number of overlapping pixels between
the predicted mask and ground truth mask: A∩B = {pij : pij ∈ A and pij ∈ B},
where pij denotes a pixel at coordinate (i, j), while A and B represent the ground
truth mask and the predicted mask, respectively. The Area of Union represents
the total number of pixels encompassed by both prediction and ground truth
masks, including the overlapping region: A ∪ B = {pij : pij ∈ A or pij ∈ B},
where pij denotes a pixel at coordinate (i, j), while A and B represent the ground
truth mask and the predicted mask, respectively.

5SegNet GitHub Implementation
6DeepLabV3 Pytorch
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Table 3: Segmentation performance on the Maize (VG) and Vine (Qta. Baixo,
ESAC, and Valdoeiro) datasets, employing classical approaches such as Otsu
Threshold (OST), Edge-based, and Region-based, as well as DL-based ap-
proaches including SegNet and DeeplabV3. Each method is evaluated with four
scores: RGB and NDVI individually, and both modalities fused using early and
late fusion techniques. The performance scores are presented in percentage [%],
with the best score highlighted in bold and the second-best scores underlined.

Maize Vine

Method

Dataset
VG Qta. Baixo ESAC Valdoeiro Average

Acc. F1 IoU Acc. F1 IoU Acc. F1 IoU Acc. F1 IoU Acc. F1 IoU

O
T
S

RGB 74.4 28.3 16.7 57.6 41.9 27.6 79.1 52.7 40.2 74.5 38.6 26.0 71.4 40.4 27.6

NDVI 76.1 32.3 19.6 84.1 61.7 46.1 65.6 49.7 34.8 92.4 67.8 56.0 79.6 52.9 39.1

Early F. 75.6 34.1 20.9 71.6 52.7 37.7 71.4 55.5 41.2 89.5 65.3 52.7 77.1 51.9 38.1

Late F. 67.5 33.7 20.8 83.0 67.5 44.7 89.5 66.8 42.9 91.6 81.6 56.7 82.7 62.4 41.3

E
d
g
e-
b
. RGB 76.6 12.9 6.9 69.8 15.5 8.5 78.1 26.3 15.4 86.9 22.7 13.1 77.9 19.4 10.5

NDVI 75.6 13.0 7.0 70.3 16.8 9.3 61.1 18.7 10.4 94.2 48.6 33.7 75.3 24.3 15.1

Early F. 84.1 21.0 11.9 76.8 16.3 8.9 65.4 14.8 8.0 93.9 39.3 25.8 80.1 22.9 13.7

Late F. 70.1 14.0 7.6 64.8 18.9 10.6 71.1 25.5 14.8 87.6 39.1 25.1 73.5 24.4 14.5

R
eg
io
n
-b
. RGB 84.1 21.0 11.9 78.3 47.4 33.1 78.9 44.3 33.2 85.3 44.6 31.2 81.7 39.3 27.4

NDVI 82.2 12.4 6.7 89.0 67.9 52.5 76.0 50.9 37.3 97.2 76.3 63.8 86.1 51.9 40.1

Early F. 76.7 19.0 10.5 81.3 52.7 37.0 87.6 63.5 49.8 97.3 77.6 65.2 85.8 53.2 40.6

Late F. 81.8 25.3 14.7 93.1 69.3 34.9 92.1 48.9 24.6 98.6 82.7 45.2 91.4 56.6 29.9

S
eg
N
et

RGB 96.2 87.1 78.5 84.9 52.1 35.6 73.1 41.9 27.7 92.1 58.0 41.3 86.6 59.8 45.8

NDVI 95.6 85.3 76.1 85.9 64.4 48.4 78.5 51.4 36.8 93.9 67.1 51.7 88.5 67.1 53.3

Early F. 96.8 89.3 80.8 81.1 42.1 26.7 81.4 50.5 33.9 94.3 61.0 43.9 88.4 60.7 46.3

Late F. 96.1 86.9 78.6 86.2 56.4 40.4 75.9 46.9 33.0 93.4 61.4 45.7 87.9 62.9 49.4

D
ee
p
la
b
V
3 RGB 96.5 87.9 79.8 81.8 35.6 21.8 82.0 45.0 30.1 91.0 56.2 39.7 87.9 56.1 42.9

NDVI 95.9 86.0 77.3 87.3 59.2 42.2 77.7 33.8 21.4 89.1 44.2 28.8 87.5 55.8 42.4

Early F. 97.3 89.2 81.2 82.1 31.0 18.7 79.9 37.3 23.8 89.9 52.8 36.4 87.3 52.6 40.0

Late F. 96.6 87.7 80.2 85.3 47.5 32.0 81.0 39.0 25.9 92.5 58.0 42.3 88.9 58.1 45.1
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4.4 Results and Discussion

This section presents the experimental results for both classical and DL-based
segmentation methods, comprising both quantitative and qualitative assessments.
The qualitative results are organized in Table 3, while the visual representations
of the segmentation masks are illustrated in Fig 3. Each segmentation approach
is evaluated in four distinct methods: first, with the RGB and NDVI modal-
ities individually, followed by the modalities fused using early and late fusion
techniques, as described in Section 3.3. The results were obtained with the seg-
mentation threshold T = 0.5, for the late fusion results, both models were given
an equal contribution: i.e. α = 0.5 and β = 0.5.

Classical vs DL-based In this work, we employ classical unsupervised and su-
pervised DL-based segmentation methods. The classical methods demonstrate
to perform well on tasks where the primary objective is to separate foreground
from background, as is the case of the Vineyard dataset, where the goal is to
segment individual plans. In such case, unsupervised approaches are competitive
with DL-based approaches, offering the advantage of simplicity and lower com-
plexity. However, in segmentation tasks that involve identifying spatial regions,
containing both foreground and background, such as the Maize dataset, where
the objective is to detect the plant rows, supervised DL-based approaches show
a clear advantage due to their ability to learn spatial information. The results
obtained in our experiments consistently confirm this, as depicted in Table 3 and
Fig 3.

Fusion vs No-Fusion The results consistently show that late fusion either
achieves the best performance or ranks a close second, distinctly outperforming
early fusion. This superiority means that, on average, extracting features from
individual modalities first and then fusing them at a later stage yields better
results compared to one model from both modalities combined.

Upon analyzing the average results, it becomes evident that late fusion capi-
talizes on the model with the highest performance. By averaging the outputs of
both models, late fusion is able to reduce the noise associated with the lesser-
performing model. However, this method also has a downside: valuable informa-
tion from the best-performing model may be diluted or lost. Thus, while late
fusion leverages the strengths of both models to enhance overall robustness, find-
ing the right balance in the contributions of each model becomes crucial. One
potential approach to achieve this balance is to weight the contributions based on
their respective performance. Investigating this weighted fusion strategy offers
an interesting avenue for future work.

Runtime Analysis In terms of computational performance, DL methods de-
mand a considerable amount of time to execute due to the intensive computations
involved. In our case, the maximum runtime reached approximately twenty-five
minutes for the entire training process, specifically during late fusion, where the
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Fig. 3: Qualitative segmentation results of both VG and vineyard dataset. The
images (a) to (f) (top row), represent respectively the RGB, NDVI and ground-
truth masks. Images (g) to (l) (middle row) represent segmentation masks gen-
erated by classical approaches. And finally, images (m) to (r) (bottom row)
represent segmentation masks generated by SegNet. More specifically, images
(g) to (i) were generated by Otsu, while images (j) to (l) were generated with a
region-based method.

batch size supported by the hardware was limited to 32 (VG) and 16 (Vine).
In contrast, classical methods demonstrate the opposite behavior, being signifi-
cantly faster and achieving results within a minute.

5 CONCLUSIONS

This work studies the impact of fusion (combining) approaches of multispectral
data in segmentation tasks applied domains related to digital-precision agricul-
ture and agricultural robotics. The study was conducted on both classical and
DL-based segmentation methods, where the experimental part is supported by
two datasets : a dataset of vineyards and a dataset of maize crops, recorded and
curated specifically for this study.

The experimental findings show two principal observations: First, classical
segmentation methods, utilizing techniques like thresholding and edge detec-
tion, are competitive against DL-based approaches in tasks requiring foreground-
background separation. This highlights their continued applicability in special-
ized scenarios. Second, late fusion, where individual modalities are processed
and then fused, emerges as the most robust approach, demonstrating its su-
perior adaptability across various experimental conditions. These insights offer
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valuable guidance for both current applications and future research in segmen-
tation algorithms.
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Rothacker-Feder, E., Sa, I., Schaefer, A., Siegwart, R., Stachniss, C., Walter, A.,
Winterhalter, W., Wu, X., Nieto, J.: Building an aerial–ground robotics system for
precision farming: An adaptable solution. IEEE Robotics & Automation Magazine
28(3), 29–49 (2021). DOI 10.1109/MRA.2020.3012492

15. Sahoo, P., Soltani, S., Wong, A.: A survey of thresholding techniques. Computer
Vision, Graphics, and Image Processing 41(2), 233–260 (1988)

16. Valada, A., Oliveira, G., Brox, T., Burgard, W.: Towards robust semantic segmen-
tation using deep fusion. In: Robotics: Science and systems (RSS 2016) workshop,
are the sceptics right? Limits and potentials of deep learning in robotics, vol. 114
(2016)

17. Valada, A., Oliveira, G.L., Brox, T., Burgard, W.: Deep multispectral semantic
scene understanding of forested environments using multimodal fusion. In: 2016
international symposium on experimental robotics, pp. 465–477. Springer (2017)

18. Yu, H., Yang, Z., Tan, L., Wang, Y., Sun, W., Sun, M., Tang, Y.: Methods and
datasets on semantic segmentation: A review. Neurocomputing 304, 82–103 (2018)

19. Yuan, K., Zhuang, X., Schaefer, G., Feng, J., Guan, L., Fang, H.: Deep-learning-
based multispectral satellite image segmentation for water body detection. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14,
7422–7434 (2021)
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