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Resumo

Nas últimas duas décadas, assistiu-se a um aumento considerável de pacientes crónicos,

incapacitados ou com mobilidade reduzida, devido principalmente ao aumento da esperança

média de vida e da população mundial. Entre estes inúmeros casos, a dor lombar destaca-se

por ser o sintoma que mais preocupação gera entre os profissionais de saúde, não só por

ser capaz de afetar todas as faixas etárias, mas por ser bastante dispendiosa em termos

de pagamento de planos de saúde, invalidez e absentismo no trabalho. A área da fisioter-

apia desempenha um papel fundamental na redução e prevenção da perda funcional desses

pacientes por meio de exercícios e manutenção da atividade física. Contudo, certos fatores

como a crescente demanda por este tipo de serviços, a consequente falta de recursos humanos

e a pandemia do COVID-19 obrigaram a adoção de novas soluções como, por exemplo, a

telereabilitação.

O projeto Intelligent Platform For Autonomous Collaborative Telereabilitation (INPACT)

surge da ligação destas ideias, e visa o desenvolvimento de uma plataforma de telereabilitação

de baixo custo, com uma interface de utilizador capaz de sugerir exercícios remotamente pré-

configurados por um terapeuta. O sistema é capaz de monitorar o desempenho e movimento

do corpo do utente por meio de uma câmara e fornecer feedback por meio de mecanismos

de Deep Learning. O principal foco desta dissertação será assim a implementação do algo-

ritmo responsável pelo processamento de um conjunto de imagens de vídeo, a estimação do

esqueleto, da forma e da pose do indivíduo, e a criação de um modelo tridimensional virtual

do corpo de cada paciente. A partir deste, será possível extrair os vértices da malha corporal

obtida e segmentar a curvatura da coluna, que será posteriormente avaliada e comparada

com a execução correta do exercício para que o utilizador possa ajustar a sua postura e

evitar o risco de lesões.

O método utilizado, designado por HybrIK, consiste então numa solução inovadora de

cinemática inversa neuro-analítica híbrida, responsável por encontrar as rotações relativas

que permitem produzir as localizações desejadas das articulações do corpo. Por meio de
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uma decomposição twist-and-swing, cada parte do esqueleto é decomposta numa rotação

longitudinal e uma rotação no plano, compostas ao longo da árvore cinemática, calculando

a rotação de swing e prevendo a rotação de twist. Além disso, o seu alto desempenho advém

também da adoção de mapas de calor volumétricos na representação final da aprendizagem

das localizações das articulações 3D, estimados pela rede neuronal de alta resolução HRNet-

W48, que permite associar as articulações 3D com o modelo paramétrico SMPL do corpo

humano. Com a malha tridimensional do paciente resultante, recorreu-se a um conjunto

de bibliotecas do Python para que, mediante um processo de interpolação, seja possível

segmentar a curvatura da coluna.

Por fim, de modo a avaliar o HybrIK, foram também conduzidos alguns testes com os

datasets Human3.6M, MPI-INF-3DHP, COCO e 3DPW, relativamente à sua robustez e

capacidade de correção de erros, e uma pequena análise ao ângulo de twist estimado.

Keywords: Telereabilitação, Machine Learning, Deep Learning, Estimação Tridimensional

Humana, Modelo Paramétrico, Interpolação, Curvatura da Coluna.
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Abstract

Over the past two decades, a significant rise in chronic patients with disabilities or reduced

mobility has been observed, primarily attributed to the increased global life expectancy

and population growth. Among these cases, lower back pain stands out as a symptom of

paramount concern to healthcare professionals. Its impact spans across all age groups and

imposes substantial financial burdens in terms of healthcare payments, disability benefits,

and work absenteeism. The field of physiotherapy assumes a pivotal role in mitigating

and preventing functional decline in these patients through exercise and physical activity

maintenance. However, factors like the escalating demand for such services, concurrent

shortages in human resources, and the COVID-19 pandemic necessitated the adoption of

innovative solutions, such as tele-rehabilitation.

The Intelligent Platform For Autonomous Collaborative Telereabilitation (INPACT) project

emerges from these notions, aiming to create a cost-effective telerehabilitation platform. The

platform integrates a user interface capable of remotely suggesting pre-configured exercises

by a therapist. Through the utilization of deep learning mechanisms, the system monitors

user performance and body movements via a camera, providing feedback. This dissertation

primarily focuses on implementing an algorithm responsible for processing video images,

estimating user skeletal structure, shape, and pose, and constructing a virtual 3D model

of each patient’s body. This model facilitates the extraction of vertices from the obtained

body mesh, enabling curvature segmentation of the spine. This curvature assessment is then

compared to the correct exercise execution, empowering users to adjust their posture and

mitigate injury risk.

The proposed method, named HybrIK, introduces an innovative solution through a hybrid

neuro-analytical inverse kinematics approach. It determines the relative rotations necessary

to achieve desired joint positions within the body. Leveraging a twist-and-swing decompo-

sition, each skeleton segment is broken down into a longitudinal and a plane-based rotation,

compounded along the kinematic tree. Swing and twist rotations are then calculated and
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predicted, respectively. The method’s efficiency is further enhanced by the integration of

volumetric heatmaps in the final representation of 3D joint locations. These are estimated

using the high-resolution neural network HRNet-W48, allowing association with the para-

metric SMPL model of the human body. The resultant 3D patient mesh is processed through

Python libraries, employing interpolation to segment spinal curvature.

Ultimately, to assess HybrIK’s performance, tests were conducted with the Human3.6M,

MPI-INF-3DHP, COCO, and 3DPW datasets. These tests evaluated the method’s robust-

ness, error correction capabilities, and provided an analysis of the estimated twist angle.

Keywords: Tele-rehabilitation, Machine Learning, Deep Learning, Three-Dimensional Hu-

man Estimation, Parametric Model, Interpolation, Spinal Curvature.
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“You may never know what results come of your actions, but if you do

nothing, there will be no results."
— Mahatma Gandhi
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1 Introduction

In the last two decades, the number of chronically ill, disabled or mobility-impaired people

has risen sharply, mainly due to the increase in average life expectancy and thus in the world’s

population.

Low back pain is one of the problems of greatest concern to health professionals, not only

because it has increased by about 50% since the 1990s, especially in less developed countries,

but also because it can affect all age groups and is associated with sedentary occupations,

smoking and certain diseases such as obesity [1]. In addition, there are patients who need

post-operative care to avoid long hospital stays and hospital congestion.

Physiotherapists play a fundamental role in reducing and preventing the decline in physi-

ological and functional capacity of these patients through appropriate training exercises and

maintaining a high level of physical activity. Due to the increasing demand for this type

of service, which requires careful and specific attention to each pathology and patient [2],

[3], the resulting lack of human resources and the crisis caused by the COVID-19 pandemic,

which forced the introduction of measures such as the reduction of face-to-face activities and

the introduction of an online or remote consultation modality, health systems are currently

open to new innovation processes to improve the effectiveness and efficiency of the health

services provided [2].

Telerehabilitation is one such development that enables the treatment of acute phases of

illness by replacing the traditional face-to-face approach in the interaction between patient

and physiotherapist. Although it is a relatively new field of research, it covers situations

where it becomes difficult for patients to travel to rehabilitation facilities, which are often

far from their homes. Consequently, studies suggest that clients are more likely to attend

training sessions because of the convenience of being at home, and that healthcare profes-

sionals can better control the time, intensity and sequence of the intervention. Ultimately,

this leads to environmental benefits as clients are less likely to travel [4]. Thus, the term tel-

erehabilitation can be defined as the provision of rehabilitation services to patients remotely,
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usually through the use of virtual reality, augmented reality, motion capture technologies

and, in more complex cases, systems based on machine learning [5]. One example is the so-

called exergames, which aim to stimulate the movement of the patient’s body through virtual

and interactive environments that simulate different sensations and require some physical

effort to play.

The exponential development of certain areas such as the internet, mobile devices and

artificial intelligence means that huge applications and services that put people at the centre

are playing an increasingly important role, because body language is one of the simplest

forms of communication. Considering this, it is easy to see that a computer that better

understands the movements of the human body will lead to significant advances and the

building of a better system of interaction between the two.

1.1 Motivation

One of the most interesting and complex challenges in the fields of computer vision and

artificial intelligence is the analysis and recognition of humans on images, which is divided

into tasks such as action recognition, 3D reconstruction, segmentation and, what arouses the

most interest in the context of this dissertation, the three-dimensional study and estimation

of the posture and shape of the human body.

Since 3D estimation provides additional depth information compared to 2D estimation,

it is suitable for a variety of real-world applications [6]:

• Movies and video games: in the film industry, special effects are widely known to

allow the three-dimensional simulation of actors’ human bodies to produce scenes that

are considered dangerous or unattainable in reality, such as science fiction films set in

outer space. In video games, an accurate and realistic human body becomes a crucial

factor in providing the best experience and entertainment.

• Fashion: due to the growing popularity of online shopping, driven by the COVID-19

pandemic, ordering clothes and even shoes became more accessible with the creation of

a virtual testing system based on the customer’s three-dimensional assessment. Users

can try on different sizes and styles, avoiding complications and delays in returns, for

example.

• Autonomous driving: when we consider an autonomous driving vehicle, it is easy to
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Figure 1.1: Example of pose estimation and motion capture on the set of “Avatar: The Way

of Water”.

understand that it has to make decisions to avoid collisions with pedestrians. Therefore,

it is important to understand its attitude, movement and intention in real time.

• Video surveillance: video surveillance is of great importance to public safety as

it is present in certain services from banks and large shopping centres to traditional

shops and petrol pumps. In this area, body posture estimation techniques can help

surveillance officers detect and identify suspicious persons.

• Health and physiotherapy: a patient’s posture and movement can indicate his

state of health. In this way, the three-dimensional assessment of pose allows health-

care professionals to remotely diagnose, monitor the execution of certain rehabilitation

exercises and thus provide feedback to correct posture and prevent injury on the part

of the patient.

1.2 Challenges

Despite its wide application, the topic of three-dimensional estimation of human pos-

ture has become quite popular in the scientific community, mainly because, unlike two-

dimensional estimation, it presents some unique challenges, including the unknown position

of the person in the image, the possible presence of multiple people in the scene, the heavy

occlusion of body elements, the lack of in-the-wild data, a huge variety of actions and body

shapes, clothing, and much more [6], [7].

1. Several persons: in the case of monocular images, estimating the pose of multiple

people compared to a single person becomes a much more complex task, solely due to
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occlusion by people who are close together, as shown in the figure 1.2. In the context

of video, a new challenge arises when considering the possibility of different angles

of the scene. This includes the ambiguity of cross-viewing, which involves geometric

constraints due to the overlapping of fields of view [8], [9].

Figure 1.2: Illustrative example of a model whose aim is to remove the three-dimensional pose

of several people from different viewpoints, with problems such as occlusion and overlapping

fields of vision [10].

2. Occlusion: the term appears in situations where certain parts of the person’s body

cannot be directly observed by the camera because they are covered by objects, which is

called occlusion, but also in cases where the person performs certain types of actions or

is not properly oriented, as self-occlusion. Since a person’s pose is usually represented

by the position of the points of articulation, there is a great deal of uncertainty and

freedom in estimating them if they are not directly identified in the image.

3. In-the-wild data: in the case of two-dimensional estimation, the creation of large

datasets in nature becomes possible because the pose of the human can be easily

labelled manually. In the case of three-dimensional annotations, the situation is quite

different, as they are captured by proprietary marker-based image processing systems,

which takes a lot of resources and time when creating large datasets. Furthermore, for

different scenarios, there are factors such as lighting, shadows and background colours
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that can add noise and negatively affect the segmentation of the human body for the

many existing algorithms.

4. Depth ambiguity: as one of the main problems of three-dimensional estimation of

static images, it arises from the inversion of a nonlinear lossy transformation that

combines kinematics with perspective projection. Due to the fact that the relative

depth between the joints of the human body is unknown, which means that several 3D

poses can correspond to a single 2D pose, this leads to depth ambiguities between the

two-dimensional and the three-dimensional projection.

Figure 1.3: Illustrative example of depth ambiguity.

To make it clearer, consider the figure 1.3 where the silhouette B and the skeleton C

correspond exactly to the two poses represented by A and D. The stimuli shown in B

and C can be interpreted as if the person were looking forward or backward, since the

depth order of the joints is ambiguous in each representation.

1.3 Problem statement

Combining these ideas, the Intelligent Platform For Autonomous Collaborative Telere-

habilitation (INPACT) project is born, which aims to develop a low-cost telerehabilitation

platform with a user interface capable of remotely suggesting pre-configured exercises related

to lower back pain by a therapist. The system will be able to monitor the performance and

movement of the user’s body via a camera, without having to resort to the usual markers,

thus providing feedback via ML mechanisms.
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The focus of the present work is to develop an algorithm that processes a series of video

images and then estimates the person’s skeleton, shape and posture to create a virtual and

animated three-dimensional model of each patient’s body. From this, the vertices of the

body mesh obtained can be extracted and the curvature of the spine estimated. This is later

evaluated and compared with the correct execution of the exercise previously specified by

the health expert. In this way, the user can adjust their posture and perform the different

exercises correctly, avoiding the risk of injury.

1.4 System Goals

As previously mentioned, the proposed system will employ a Machine Learning-based

approach capable of processing a large set of images depicting the execution of various

rehabilitation exercises recommended by a physiotherapist. Thus, the objectives of this

thesis are appropriately presented:

• Research, study, and testing of an existing three-dimensional human estimation model.

• Processing and analysis of video frames from exercise executions.

• Estimation of the patient’s pose and shape using the proposed model.

• Creation of a volumetric mesh of the patient.

• Error calculation and prediction assessment.

• Segmentation of the patient’s spinal curvature.

1.5 Thesis outline

The current document is organized into 6 chapters. Chapter 1 serves as an introduction,

providing context to the problem, its applications, associated challenges, and a final solution

to mitigate it.

Chapter 2 discusses the essential concepts of Deep Learning networks related to Com-

puter Vision and their evolution into the implemented High-Resolution Network. It also

includes a brief overview of 2D and 3D human pose estimation methods and the three ex-

isting representations of the human body.
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Moving on to Chapter 3, following the structure of the previous chapter, it presents and

analyses some of the existing human pose estimation solutions and systems found in the

literature, particularly those related to telerehabilitation.

Chapter 4 provides a detailed explanation of the employed models, specifically the human

representation model SMPL based on 3D meshes and the human shape and pose estimation

method called HybrIK. This chapter encompasses all the necessary considerations for its

development, theoretical foundations, mathematical calculations, and expected benefits.

In Chapter 5, the datasets used for training and testing the network are analysed, and a

series of tests are conducted to assess the performance of the HybrIK method. These tests

specifically focus on inverse kinematics concepts, twist-and-swing decomposition, and its

error correction capabilities. Additionally, the patient’s spine segmentation process during

telerehabilitation exercises is thoroughly explained.

Finally, Chapter 6 presents the final conclusions along with some points for potential

future work.
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2 Background

This chapter presents the fundamental principles of Deep Learning networks in the con-

text of Computer Vision, tracing their development to the established High-Resolution Net-

work implementation. Additionally, a concise survey of techniques for 2D and 3D human

pose estimation is provided, along with an examination of the three prevailing models rep-

resenting the human body.

2.1 Machine Learning

The last decade has seen a massive increase in the use of artificial intelligence (AI) for var-

ious applications, especially the aforementioned ML technology. Although these two terms

are commonly confused, ML is only a small branch of AI responsible for the development of

algorithms aimed at giving a machine the ability to “learn”, i.e. to improve its performance

on certain tasks based on previous experience or previously provided data. Consequently,

ML relies on the availability of data to train the machine to perform the desired tasks [11].

By its nature, it is a method suitable for applications where the input data is used to

produce an output based on some features of the same inputs, e.g. classification and image

processing. In this context, it is easy to see that ML is one of the most interesting and

promising fields for medical research applications [11].

2.1.1 Convolutional Neural Networks

A convolutional neural network, or CNN, is a subset of ML and is characterised by being

the centre of Deep Learning algorithms. Its architecture is analogous to the connection

patterns of neurons in the human brain and was strongly inspired by the organisation of

the visual cortex. For example, when we are confronted with an image, our brain processes

an enormous amount of information in a very short time, each neuron being in its specific

receptive field and connected to the others to cover the entire visual field. Just as each
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neuron responds to this type of stimulus, the neurons in CNNs will only process data in

their receptive field. Networks thus consist of several layers of nodes: an initial input layer,

one or more hidden layers and finally an output layer. Each of these nodes is connected

to another and has a corresponding weighting and limitation. When the output of a single

node is above this set threshold, the node is activated and sends the data to the next layer of

the network. Otherwise, no data will be shared. Their organisation thus recognises simpler

patterns such as lines and curves at an early stage and relatively complex patterns, for

example faces or objects, at a later stage.

But what is the function of the layers of a Convolutional Neural Network?

CNNs are distinguished from other neural networks by their high performance, regardless of

whether the input is an image, speech or audio signal, and are divided into three main types

of layers.

Convolution Layers

The convolutional layer corresponds to the central building block of a CNN, where most

of the computation takes place. It usually consists of a few components, divided into input

data, a filter and a feature map. Let us say that your input is a colour image consisting of a

3D array of pixels. This means that it consists of three dimensions - height, width and depth

- corresponding to their RGB values. The convolution process thus implies that a feature

detector, commonly called a filter or kernel, goes through each of the receptive fields of the

image and checks whether a particular feature is present.

More specifically, the kernel consists of a two-dimensional matrix of weights, usually 3x3

in size, which, when applied to a small area of the image, allows the scalar product between

the input pixels and their weights to be calculated, and these results are stored in an output

array. Next, the filter goes one step further and repeats the process until the kernel has gone

through the entire image. Also, after each convolution operation, an activation function is

applied to the resulting map to add non-linearity to the model. The final output of the

scalar products is then called the feature or activation map, Figure 2.1.

A CNN is not limited to only one layer of this type, i.e. a second convolutional layer

may follow the first. In these cases, the structure of the CNN becomes hierarchical, as the

subsequent layers have access to the pixels of the receptive fields of the previous layers.

As an example, suppose we are trying to determine whether a particular image contains a

bicycle. If we consider the latter as a sum of parts, consisting of frame, handlebars, wheels
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and pedals, each individual part will form a pattern at a lower level of the network. And

the combination of all the parts represents a higher level, creating a hierarchy of features in

the CNN itself.

Figure 2.1: Convolution operation.

Pooling Layers

However, a limitation of the activation map output of convolutional layers is that they

record the exact position of features in the input. This means that small changes in the

position of a particular feature in the image will result in a different activation map, whether

by cropping, rotating, shifting or other small changes. To solve this problem, pooling layers

come into play, where lower-resolution versions of the input signals are created, consequently

leading to a reduction in the computational power required to process them.

The pooling operation scans a second kernel along the activation map, except that in

this case, there are no weights involved. Instead, the filter applies an aggregation function

to the values of the receptive field, filling a new output matrix and extracting dominant

features that are rotationally or positionally invariant, thus maintaining correct training of

the model.
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There are two main types of pooling:

• Average pooling: As the filter moves over the input, it calculates the average value

within the receptive field to send to the output matrix.

• Max pooling: As the filter moves, it selects the pixel with the maximum value to

send to the output matrix. Compared to the previous approach, this method tends to

be used more frequently.

Figure 2.2: (a) Max pooling. (b) Average pooling.

Fully-connected Layers

Finally, the fully connected layers within a Convolutional Neural Network (CNN) should

not be confused with conventional fully connected neural networks. The conventional neu-

ral network architecture connects every neuron to every neuron in the subsequent layer.

However, this traditional architecture was found to be inefficient for computer vision tasks.

Images provide a substantial input to neural networks, potentially consisting of hundreds or

even thousands of pixels and up to three colour channels. In a traditional fully connected

network, accommodating such inputs necessitates an enormous number of connections and

network parameters. To address this challenge, fully connected layers are typically found

in the middle and/or at the end of neural network architectures. They take the output

from convolutional and pooling layers and make predictions about the most suitable label

to describe the image.

Until recently, this type of network enabled the construction of a new network, the

HRNet, which forms the basis of the method for the practical part of this dissertation.
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2.1.2 HRNet, High Resolution Network

With AlexNet [12], proposed in 2012, there was a rapid development in the architecture of

CNNs in the field of computer vision, which included examples such as GoogleNet, VGGNet,

Resnet and even DenseNet, as illustrated by Figure 2.3, used essentially for classification of

images.

Figure 2.3: Development of networks in the context of computer vision (2012 - today).

However, tasks such as semantic segmentation, object detection and human pose esti-

mation required spatially fine representations. Therefore, these networks started to extend

the already existing classification architectures with high to low resolution subnetworks con-

nected in series. And in the end, they increased the resolution.

But would it be possible to design a new universal architecture suitable for

general computer vision tasks without considering classification tasks? The answer

was given by a group of researchers with the development of the High Resolution Network.

The name derives from the high resolution of the images to be processed and led to breaking

the prevailing design rule by projecting it from scratch.

Figure 2.4: The structure of recovering high resolution from low resolution. (a) A low-

resolution representation learning subnetwork (such as AlexNet, GoogleNet, VGGNet,

ResNet, DenseNet), which is formed by connecting high-to-low convolutions in series. (b)

A high-resolution representation recovering subnetwork, which is formed by connecting low-

to-high convolutions in series. Representative examples include SegNet, DeconvNet, U-Net

and Hourglass, and SimpleBaseline.

12



HRNet maintains these high-resolution representations throughout the whole process.

The network starts from a high-resolution convolution stream, gradually adds high-to-low

resolution convolution streams one by one, and connects the multi-resolution streams in

parallel. The result thus consists of several stages, shown in blue in the Figure 2.5, where

stage n contains n streams corresponding to n resolutions. It is then possible to perform

repeated fusions with multiple resolutions by systematically exchanging information across

the parallel streams.

Figure 2.5: An example HRNet. There are four stages. The 1st stage consists of high-

resolution convolutions. The 2nd (3rd, 4th) stage repeats two-resolution (three-resolution,

four-resolution) blocks several (that is, 1, 4, 3) times.

The high-resolution representations learned from HRNet are strongly spatially accurate.

This is due to two aspects. First, because it is an approach that combines the high and

low resolution convolutional streams in parallel rather than serially, it is able to retain the

high resolution rather than recover it from the low resolution, allowing for a more accurate

spatially learned representation. Second, although most existing fusion schemes aggregate

high-resolution low-level and upsampled low-resolution high-level representations, in the case

of HRNet, multi-resolution fusions are repeated to expand the high-resolution representations

using the low-resolution representations through upsampling, and vice versa.

Since its release in 2019 [13], HRNet has become a standard network for human pose

estimation, and there are signs in the literature that this is just the beginning of new and

even more complex architectures.

2.2 Human Body Pose Estimation

The estimation of human posture is similar to the recognition of facial features, with the

only exception that it is applied to the whole body and is more concerned with movement.

Its main objective is to extract the posture of the human body from one or more images,
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by predicting and connecting body segments. Using the variety of methods and approaches

for 2D and 3D HPE that have been introduced in recent years, the taxonomy shown in the

Figure 2.6 can be created.

Starting on the left side of the tree, 2D HPE can first be divided into two upper levels

of estimation. The SPPE methods, which are responsible for extracting the pose of only

one person per image, and which are divided into approaches based on regression or body

part detection; and MPPE, which on the other hand allow the extraction of the pose of

multiple persons and can be divided into top-down or bottom-up approaches. In the right-

hand branch, more specifically in 3D HPE, it is possible to observe two additional levels in

terms of the type of input data for the model. The first case, Single-view, refers to images

taken with only one camera. Multi-view, as the name suggests, indicates the type of images

taken with multiple cameras placed at different angles. The topics coloured green in the

last line of the tree, which require a specific and somewhat more extensive definition, can be

found in the next chapter, accompanied by some of the most important examples from the

literature.

HPE

2D HPE 3D HPE

SPPE MPPE

Single view Multi-view

SPPE MPPE

Regression
Body part 
detection

Top-down Bottom-up Model-free Model-based Top-down Bottom-up

Figure 2.6: Taxonomy of HPE method types.

2.3 Human Body Modeling

Before we explain the above methods in more detail, it is important to introduce the

different types of human representation used in each method.

Modelling the human body is undoubtedly one of the most important aspects in the HPE

field, as it allows reproducing the key points and the different features extracted from the

input data of a given model. However, it is easy to see that the human body is characterised
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by a highly complex and non-rigid kinematic structure, consisting of multiple joints and

limbs and information about each person’s particular morphology [14], which ultimately

complicates the task of estimating and representing it. Nevertheless, and taking into account

the different application scenarios, it is possible to divide the latter into three different types:

Skeleton-based model, Contour-based model and Volume-based model [15].

Figure 2.7: (a) Skeleton-based model. (b) Contour-based model. (c) Volume-based model.

2.3.1 Skeleton-based model

The first model, also called the kinematic model, is usually represented by a series of joint

positions and the corresponding alignments of the individual limbs, which naturally follow

the skeletal structure of the human body. The Figure 2.7.(a) shows one of these examples,

which is usually described as a graph of edges connected by a set of nodes that form the

respective limbs and joints. However, despite its simple and flexible representation, it has

some limitations when it comes to body texture and contour information, so it is essentially

used for 2D estimation [14], [15].

2.3.2 Contour-based model

The following contour-based model not only captures the relationships between the dif-

ferent parts of the body, but also contains approximate width and contour information for

the limbs and torso [14], [15]. In this planar model used in the first methods of HPE, this

problem was solved with small rectangles or boundaries of the person’s silhouette, as shown

in the Figure 2.7.(b).
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2.3.3 Volume-based model

Finally, there is the volumetric model, which deserves special attention since it is the

subject of study in this dissertation. The first models of this kind were based on the idea

of the planar model and began by defining the various parts of the body by geometrical

solids that comprised cylinders or cones. But with the recent advent of techniques based on

Deep Learning, this kind of model has taken on a new representation in the form of a mesh,

Figure 2.7.(c), made up of a huge set of vertices and faces usually captured by 3D scans of

the human body [14]. Some of the most commonly used examples today are therefore Shape

Completion and Animation of People (SCAPE), Dynamic Human Shape in Motion (DYNA)

and Skinned Multi-Person Linear (SMPL).

SCAPE

In this first example, the model parameters are estimated using a sparse set of markers,

namely 56, attached to the human body. The positions of these markers in space are later

determined using a conventional motion capture system to obtain certain constraints on the

shape of the body. In this way, the pose and shape parameters can be estimated so that the

reconstructed body is forced to lie within the boundaries defined by the markers. All this

presupposes that 3D scans of the subject are already available, since the said markers are to

be placed there [16], [17].

Figure 2.8: Application of the SCAPE model to the motion capture of a person of whom

only one scan is available [16].

DYNA

The DYNA model stands out as one of the most complete in terms of manipulation

and representation of the human body, paying particular attention to details such as the
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deformation of the soft tissues of a real human. Using a high-resolution 4D acquisition system

and about 40, 000 scans of ten people, the relationship between soft tissue movement and

deformation is approximated by a low-dimensional linear subspace. To this end, factors such

as the velocity and acceleration of the whole body, the angular velocities and accelerations

of the limbs and the shape coefficients of the soft tissues are considered to predict the low-

dimensional coefficients. Finally, to make the model as general as possible with regard to

the morphology of the human body, the body mass index of the person is also taken into

account [18].

Figure 2.9: Three different animated body physiognomies performing a series of movements

with the soft tissue deformations predicted by Dyna [18].

SMPL

In the case of the third model, the SMPL, the authors have resorted to the use of vertices

to represent with high precision a variety of body shapes in natural human poses. Learning

its parameters takes into account several types of data, divided into a model of the resting

pose, weight mixtures, pose-dependent blending shapes and even a regression capable of

obtaining the position of the joints from the vertices.

Unlike existing models, SMPL’s pose-dependent blending forms differ in the sense that

they become a linear function of the elements of the pose rotation matrices, which allows

the model to be trained on thousands of three-dimensional meshes of different individuals

in different positions. Furthermore, this model is not only compatible with any existing

rendering engine, but it also applies the idea of DYNA and is thus able to realistically model

soft tissue deformations [19].

The SMPL is the last example in the list of volumetric models for the simple reason

that it was used in the implementation of the algorithm in this thesis. To make everything
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clearer, a detailed explanation of the method is given in chapter 4, including an illustration

and the mathematical formulation used.

18



3 Related work

In recent years, the field of computer vision has witnessed remarkable advancements

in the realm of 3D human pose and shape estimation. As the demand for accurate and

robust techniques in understanding human body movements and shapes continues to grow,

researchers have been actively exploring innovative approaches to tackle this challenging

problem.

This chapter delves into the state-of-the-art methods and techniques employed in 2D and

3D human pose and shape estimation. It provides a comprehensive overview of the most

recent advancements, highlighting both the achievements and the remaining challenges in

this fascinating field.

3.1 2D Single Person Pose Estimation

The 2D SPPE aims to localise the position of the human body joints of a single person

for each input image. If there is more than one person in an image, the image is cropped

to show only one of them in each sub-image so that the SPPE method can move between

them individually. Normally, this process is done automatically by applying detectors to the

whole body [20] or the top half [21]. As mentioned earlier, 2D SPPE can be divided into

two different categories due to the different formulations of the estimation task: Regression

or Body Part Detection, which are described in the following subsections.

3.1.1 Regression

Regression methods use an end-to-end framework with the aim of automatically learning

the association of input images with joints or body model parameters. The first method,

developed by Toshev and Szegedy and known as DeepPose [22], is based on a Deep Neural

Network developed by Krizhevsky et al. called AlexNet [12], and consists of a cascaded deep

neural network capable of identifying key points in the input images. Its performance was
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so impressive that the HPE paradigm moved from classical approaches to Deep Learning,

namely CNNs. Similarly, based on the existing GoogLeNet network [23], Carreira et al. [24]

have proposed a new network, Iterative Error Feedback, which consists of a self-correcting

model that incrementally changes an initial solution by feeding back the prediction error in

the input space. According to them, their network is much more accurate and involves 12x

fewer parameters than the architecture of Krizhevsky et al.

However, a critical issue with regression-based methods is the capture of features that

encode important pose information. In this context, multitask learning became a very pop-

ular strategy for representing features. By sharing representations between correlated tasks,

such as pose estimation and action recognition, the model could be better generalised in its

original task, pose estimation. Li et al. [25] implemented a heterogeneous structure of this

type that was responsible for predicting the coordinates of each joint from complete images

and recognising body parts from a sliding window.

3.1.2 Body Part Detection

In this type of HPE technique, the aim is to train a body part detector to then estimate

the position of its joints, which usually involves two processes. First, heat maps are made

for the key points and then these estimated points are put together to form body postures.

Specifically, this involves estimating K heat maps, {H1, H2, ..., HK}, for a total of K key

points, where the pixel value in each map indicates the probability that the key point is at

position (x, y). In this way, the estimation networks are trained to minimise the discrepancy

between the set of predicted heatmaps and the actual heatmaps.

Compared to joint coordinates, heatmaps provide richer monitoring information, as the

preservation of their spatial position facilitates the training of convolutional networks. Wei

et al. [26] began by introducing a sequential structure based on a set of convolutional

networks, Convolutional Pose Machines, to predict the positions of key joints with multi-

stage processing. This means that at each stage, the networks used the 2D maps created in

the previous stages and gradually produced more refined predictions of the positions of the

body parts.

In addition to efforts to design effective networks for this type of 2D HPE, the structure

of the body is also being studied to provide more and better information for constructing

these appropriate networks. Tang et al. [27] constructed a supervised hourglass-like net-

work, the Deeply Learned Compositional Model, which describes the complex and realistic
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relationships between the different body parts and learns their compositional information

such as orientation, scale and shape. Tang and Wu [28] realised that not all parts of the

body are related when they introduced the Part-based Branches Network, whose task was

to learn the specific representations for each group of parts.

3.2 2D Multi-Person Pose Estimation

Compared to individual HPE, this type of estimation is much more difficult and demand-

ing, not only because you need to determine the number of individuals in the image and

their positions, but also because you need to group the key points of each of them. There

are two different methods to solve these problems: Top-Down and Bottom-Up.

3.2.1 Top-Down Approach

The first stage of this type of approach uses a number of standard segmentation methods,

such as Faster R-CNN or Mask R-CNN, which aim to delineate each person in the image with

a small box, the bounding boxes. In a next step, this allows an individual estimation of the

pose of each of the persons identified with the SPPE techniques of the previous subchapter

by connecting the key points and creating a 2D representation of the human body. This

means that their calculation times are strongly influenced by the number of people in the

input image.

To answer the question “How good can a simple method be?”, Xiao et al. [29] first added

some layers of deconvolution to their ResNet support network to create a simple but effective

structure for building heat maps for high-resolution representations. Sun et al. [13], on the

other hand, built the HRNet network, as explained earlier, which learned reliable high-

resolution representations by connecting subnetworks with multiple resolutions in parallel

and repeatedly combining different scales.

However, in multi-person environments, occlusions and cut-offs often occur as members

inevitably overlap, causing the person detectors used in the first stage to fail. Robustness

to occlusions and cut-offs is therefore an essential aspect of this type of approach. With

this in mind, Fang et al. [30] developed a multi-person pose estimation technique, RMPE,

to improve performance in this type of complex scenario. Specifically, the RMPE structure

was divided into three parts: a symmetric spatial transformer network that detected the

region of a single subject within an imprecise bounding box, a parametric non-maximal
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pose suppression that solved the redundant detection problem, and a pose-guided proposal

generator that improved data training.

3.2.2 Bottom-Up Approach

Bottom-up approaches first identify key points in each image, which are later grouped into

individual subjects and combined to form the predicted poses. As can be readily seen, this

leads to much shorter computation times compared to top-down methods, as the isolated

identification of key points for each subject is not required.

Pishchulin et al. [31] proposed DeepCut, a body part detector based on Fast R-CNN.

It first detected all the body parts in question and then labeled and assembled each of

these parts into a final pose using integer linear programming. But the DeepCut model had

one flaw: it was very computationally intensive. As an alternative, the DeeperCut model

introduced by Insafutdinov et al. [32] appeared, which uses a much more robust detector and

a better incremental optimisation strategy, resulting in better performance and computation

time.

Later, multitasking structures were also used in this type of HPE. Papandreou et al. in-

troduced PersonLab [33], which combined both person estimation and segmentation modules

for keypoint detection and assignment. It consisted of three offsets: short range to refine

the heatmaps; medium range to predict the different keypoints; and long range to group the

keypoints into instances. A second example presented by Kocabas et al. consisted of a multi-

task learning model with a residual network of poses, the MultiPoseNet [34], which was able

to perform prediction, person recognition and semantic segmentation tasks simultaneously.

3.3 3D Single Person Pose Estimation

When we then come to the part that relates to three-dimensional estimation, this first sub-

chapter begins by presenting a variety of techniques and examples of 3D SPPE, characterised

by the fact that they may or may not be based on a particular model. At first glance, this

definition may not be the most informative, but the following points attempt to provide a

better context. It is equally important to add that this type of 3D estimation, like 2D SPPE,

performs the recognition of the person in a first step, followed by their proper segmentation

to identify their boundary in the respective image.
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3.3.1 Model-Based

The parametric model is a powerful tool that provides important preliminary information

that helps in the three-dimensional estimation of the human body, leading many approaches

to resort to this alternative in the final reconstruction of a subject. In this context, and

with recent technological advances, it is possible to divide this estimation into two different

types. The first, the more traditional method based on optimisation, consists of fitting

the parametric model of the human body to joint points or silhouettes, minimising a cost

function. In the second case, with the current and successful application of Deep Learning

techniques, researchers choose to estimate the human body from images through regression

mechanisms [35].

Figure 3.1: Estimation method based on a parametric model. Image taken from [14].

Optimization-based methods

The first methods based on the parametric model and optimisation focused on problems

such as motion tracking. However, it was not long before work emerged that focused on

estimating the morphology of the human body, based on fitting the parametric body to

the silhouettes of single or multiple view images. However, they always proved to be less

robust for the simple reason that they only worked in cases where the person was in a fixed

position or that the models were still too simple to be able to reproduce the complicated

deformation of the person’s poses. It was only after the publication of the model SCAPE,

already presented in the previous chapter, which allowed a more realistic representation of the

human body. Balan et al. [36] proposed to use this tool to track the movement of a person in

a three-dimensional space. In a first part, they first extracted the skeleton of the silhouettes

and initialised SCAPE with the same skeleton. By re-fitting this previously initialised model

to the silhouettes extracted from the images, they were able to deal with quite complex poses

and obtain a much more robust three-dimensional model. Guan et al. [37] chose to construct

23



a specific energy function using silhouettes and labelled 2D joint points. This allowed the

SCAPE model to be adapted to these suggestions and, in turn, the created function to be

minimised. Later, the advent of depth cameras, such as the Kinect, allowed the addition of

depth information to strengthen the construction of the energy function, keeping in mind an

improvement in the adaptation of the model. On the other hand, Bogo et al. [38] proposed

the Delta model, an improved version of SCAPE, and used optimisation processes to adjust

the joints and silhouettes to refine the appearance and also remove the inherent shifts in the

depth images.

But the real change came with the publication of the article by A. Krizhevsky et al. [12].

From then on, Deep Learning techniques began to play a key role in many computer vision

tasks, reaching levels of performance never seen before. One of his first investigations was

an automatic method for estimating human pose and shape. The 2D joints were estimated

by Deepcut [39] and then the SMPL model was fitted to these points to give a three-

dimensional representation of the human body. It proved to be a very popular work, mainly

because of its flexibility, as adding other factors such as silhouettes, 3D joint points from

depth images and multiview images improved the results of previous methods. Alldieck et

al. [40] presented a new solution to improve the estimation of a person’s shape. By building

an energy function between 16 multi-view silhouettes and an undesigned SMPL model, they

were able to estimate some simple clothing items on the person’s body. All this was possible

because the non-designed model relaxed some of the constraints imposed by the original

SMPL model. As a final example, Xu et al. [41] used deep neural networks to automatically

determine the joint points and the corresponding 2D and 3D silhouettes, which made it

possible to extract the skeleton of the pre-digitised model and fit it to the estimated points

and silhouettes.

All this leads to the conclusion that optimisation-based methods depend heavily on a

parametric model of the human body, used strictly to fit the, albeit limited, information

extracted from images or videos. This is a classic approach that has proven useful in the

reconstruction of the human body over the past decades. While the methods presented

have been successful, they are slow and depend heavily on the accuracy of the information

collected, which severely limits their application.

Regression-based methods

With the advent of Deep Learning and subsequent advances in estimating the pose of most
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public datasets, most of the published methods began to be based on DNN. Its excellent

performance in tasks such as human pose segmentation and estimation enabled it to provide

prior information such as joint points and silhouettes, and to predict prior suggestions in

optimisation-based methods. In the context of the whole picture, however, the scenario

became a little different, as these references became quite sparse and superficial. To solve

the problem, the researchers began to use DNN to directly regress the pose and shape

parameters of the entire image. In the early stages, factors such as silhouettes were often

used to define the CNN loss function, which focuses on learning the shape of the person.

For example, Dibra et al. [42] created a series of CNNs to regress silhouettes and learn

the person’s morphology based on the already known SCAPE model. The result was an

improved model based on silhouettes at different scales and multiple views that eventually

matched the shape of the originally proposed model. However, these two examples only deal

with the human body in a simple pose, commonly known as A pose (see Figure 3.2) and are

therefore not suitable for more complicated cases.

Figure 3.2: A Pose.

With the intention of overcoming this obstacle and thereby in-

creasing flexibility in terms of pose, R. Cipolla et al. [43] proposed

to use the SMPL model and derive its parameters from the loss

resulting from the reprojection of the silhouettes. The success was

so great that since then most methods have been using the SMPL

model. Lassner et al. [44] created a loss function for the regres-

sion of the SMPL pose and shape parameters using about 91 2D

joints obtained by SMPLify [45]. On the other hand, Kanazawa

et al. [46] proposed an end-to-end restoration method of the hu-

man body. Using a CNN, they were also able to regress the SMPL

parameters with only a single image. Basically, the training loss

function was based on the joints of the respective image and the

joints of the regressed SMPL model. This method achieved such

good results that it inspired some proposed methods in the following years, namely [47] and

[48]. In the first case, Pavlakos et al. integrated the silhouettes and a predicted mesh to

improve shape performance in the construction of the respective loss function. Kolotouros

et al. on the other hand, chose to combine the two methods for estimating the SMPL pa-

rameters, optimisation and regression, into a new method called SPIN, while incorporating

SMPLify into a training loop to form a self-supervised structure.

Despite all the incredible progress in the field of three-dimensional estimation, there is
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still one small drawback. The model-based methods described here, whether optimisation or

regression, are hardly able to represent certain details of a person’s appearance, since most

parametric models of the human body do not take into account details such as clothing or

hair.

3.3.2 Model-Free

Unlike previous 3D SPPE methods, the techniques presented below do not use parametric

models of the human body as intermediate patterns or for its final three-dimensional rep-

resentation. However, it is equally possible to divide them into two different classes: direct

estimation approaches and 2D-to-3D lifting approaches.

Figure 3.3: (a) Direct estimation approach. (b) 2D-to-3D lifting approach. Image taken

from [14].

Direct estimation methods

Direct estimation methods, as shown in Figure 3.3.(a), infer the 3D pose of a human

from simple images without estimating the 2D position representation in between. One of

these early approaches used Deep Learning and was proposed by Li and Chan [49]. They

used a shallow neural network that synchronously used small sliding windows to train the

recognition of different body parts while regressing the coordinates of the person’s pose. A

similar system was presented by Li et al. [50] in which pairs of images and their respective

three-dimensional poses served as input data for their network, so that the correct pairs
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could be assigned a high score and the rest a low score. However, the system was extremely

inefficient as it required multiple inferences from the network. Sun et al. [51] have therefore

opted for a structure-aware regression mechanism, i.e. instead of a representation based on

joint points, they have chosen a representation based on bones, which has led to greater

stability. To transform the non-linear 3D coordinate regression problem into a more man-

ageable discrete form, Pavlakos et al. [52] proposed a volumetric representation in which the

probability of voxels for each joint is predicted by a neural network.

2D-to-3D lifting methods

In the previous subchapter, the details of the 2D intermediate estimation of the human

pose were discussed, albeit very briefly. This is also the case with the approaches presented

below. Motivated by the recent success of 2D estimation, these 3D HPE methods use 2D pose

detectors in an intermediate phase and then perform a 3D survey to determine the three-

dimensional pose of the person. The first example proposed by Chen and Ramanan [53] was

based on a set of DNNs responsible for the nearest neighbour correspondence between the

predicted 2D pose and the corresponding 3D pose stored in a library, which could fail if the

latter was not conditionally independent of the image. Martinez et al. [54] implemented a

simple but highly effective residual network to regress the 3D joint positions considering the

predicted 2D positions. On the other hand, instead of using 2D poses as an intermediate

representation of their method, Zhou et al. [55] opted for HEMlets. The HEMlets, or Part-

Centric Heatmap Triplets, used three heatmaps to represent the relative depth information

of the joints of the extremities in relation to each part of the skeleton. This shortened

the gap between 2D observation and 3D interpretation. Moreno-Noguer [56] captured the

human pose by regressing two matrices. Both the distances of the 2D and 3D joints of the

body were encoded in two Euclidean distance matrices, as these have the particularity of

being invariant not only to rotations and translations of the image in the plane, but also to

scale when normalisation operations are applied. In the case of Sharma et al. [57] and Li

and Lee [58], they chose to create several hypotheses for three-dimensional poses and use a

classification network to select the most useful posture.

However, the best known and most commonly used datasets in 3D HPE are usually

developed in controlled environments. This makes the task of obtaining annotations on

in-the-wild data quite difficult, not only because of the lack of data of this kind, but also

because of the presence of unusual poses and occlusions. Nevertheless, this has not prevented
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the emergence of new work whose main focus has been on estimating 3D pose for data in-

the-wild. As an example, Habibie et al. [59] adapted a projection loss to refine the human

3D pose without any kind of annotation. The developed 3D-2D projection module was

responsible for computing the positions of 2D body joints when the three-dimensional pose

was estimated in a previous layer of the network. Thus, the loss of the projection served to

update the human 3D pose without the need for the usual annotations.

3.3.3 Conclusion

As for the repeatedly mentioned problem of partial occlusion of the person’s limbs, it has

already been noted that this is a very difficult issue in 3D HPE. The natural solution to

overcome this problem was to estimate the human pose from multiple views, as the parts

hidden in a certain angle may become visible in another angle. But in order to reconstruct

the three-dimensional pose using this strategy, the corresponding location mapping between

different cameras must be resolved. Furthermore, another relatively recent research field

with limited work presented so far is the 3D Human Pose Estimation of multiple individuals.

I have chosen not to go into too much detail on the topic as it strays a little from the aim

of this dissertation, but they are essentially based on methods for estimating the 3D pose of

a single person and Deep Learning architectures.
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Table 3.1: Comparison of the 3D SPPE methods mentioned here in terms of used datasets,

models and performance results.

Method Year Dataset Approach Type MPJPE

[48] 2019 Human3.6M, MPI-INF-

3DHP

Model based Regression 41.1 mm

[59] 2019 Human3.6M, MPI-INF-

3DHP, MPII

Model free Lifting 49.2 mm

[55] 2019 Human3.6M, MPI-INF-

3DHP

Model free Lifting 39.9 mm

[58] 2019 MPI-INF-3DHP, MPII Model free Lifting 52.7 mm

[57] 2019 Human3.6M, HumanEva Model free Lifting 58.0 mm

[41] 2018 Human3.6M Model based Optimization 90.5 mm

[47] 2018 Human3.6M, UP-3D Model based Regression 75.9 mm

[46] 2018 COCO, MPII, LSP, Hu-

man3.6M

Model based Regression 87.97 mm

[44] 2017 UP-3D, HumanEva, Hu-

man3.6M

Model based Regression 80.7 mm

[43] 2017 UP-3D Model based Regression -

[54] 2017 Human3.6M, HumanEva,

MPII

Model free Lifting 62.9 mm

[52] 2017 Human3.6M, HumanEva,

MPII

Model free Direct 71.9 mm

[53] 2017 Human3.6M Model free Lifting 82.7 mm

[51] 2017 Human3.6M, MPII Model free Direct 48.3 mm

[42] 2016 CAESAR Model based Regression -

[56] 2016 Human3.6M, HumanEva-I,

LSP

Model free Lifting 87.3 mm

[50] 2015 Human3.6M Model free Direct 120.2 mm

[49] 2014 Human3.6M Model free Direct 132.2 mm
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3.4 Telerehabilitation

Since telerehabilitation is the main topic of this dissertation, the next section presents

a small selection of platforms of this kind. However, it is equally important to emphasise

that these types of systems are quite new and are essentially based on motion detection

mechanisms.

As mentioned earlier, physiotherapy is characterised by being a particularly expensive

service that is laborious and involves long waiting times for a particular treatment. An

example of this is the detection and correction of gait defects. However, gait rehabilitation

can be supported and accelerated by regular exercises at home with the help of an automatic

feedback solution. The first proposal by Ropars et al. [60] analysed the range of motion of

participants’ shoulders using motion capture data. The method assessed the hypermobility

of the joints1 of each shoulder, the main risk factor for their instability. At the same time,

Bednarski and Bielak [61] used the same technology, but in the diagnosis of knee injuries.

However, it also became possible to develop an alternative diagnostic system using HPE

instead of motion capture. Kleanthous et al. [62] have thus shown that, in addition to

diagnosis and rehabilitation, gait analysis also allows possible identification of imbalances

and prediction of falls, facilitating a rapid response to these types of incidents.

Subsequently, gait analysis proved to be equally effective in quantitatively comparing the

performance of athletes, especially in sports such as athletics. As with the rehabilitation

exercises offered by the physiotherapist, correct posture and technique in training is crucial

to achieve the highest standards and avoid injury and future health problems. In this way,

the integration of HPE techniques into these types of platforms offers doctors and sports

coaches the opportunity to analyse the biomechanics of their patients or athletes and help

them become more effective in their treatment or sport.

1Hypermobility syndrome represents a set of clinical symptoms in which the patient is able to perform

larger than normal movements in the joints, mainly in the hands, shoulders and knees.
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4 Proposed Approach

After contextualising some of the methods available in the literature, this next chapter

delves into the methods used in the practical part of this thesis. Thus, an initial analysis of

the human body model used is presented, followed by a detailed description of the estimation

approach used, which includes all the considerations for its development, the theoretical

foundations, the mathematical calculations applied and the expected benefits.

4.1 Skinned Multi-Person Linear Model

As mentioned above, the present work focuses on the three-dimensional estimation of a

patient’s posture and body shape in order to study and segment the curvature of the back

when performing telerehabilitation exercises. Therefore, a very well known parametric model

called Skinned Multi-Person Linear is used. The main objective of the system presented by

Loper et al. [19] is to create a realistic and animated human body that can be naturally

deformed according to the pose assumed by the person, while at the same time representing

the movements of certain soft tissues such as muscles and synovial tissues1 of a real person.

It is equally important to add that all this is possible on CPU with standard rendering

engines, and at a much higher speed.

With a more technical approach, SMPL consists of a vertex-based blend skinning process

parameterised by shape, β, and pose, θ, parameters. The first, relating to shape, is inter-

preted as a set of values that respond to an increase or decrease in certain initial values. The

next parameter, pose, is determined by the relative rotations of all parts of the body, the

latter being defined by the joints available in a kinematic tree [19]. The term kinematic tree

thus means a skeletal structure of limbs connected by such joints, each of which is influenced

by the preceding limb, commonly called the father, and eventually influences the next, the

child.
1Lining that surrounds the joints and forms a joint capsule. The cells of the synovial tissue produce a

small amount of fluid that nourishes the cartilage and reduces friction, which facilitates movement.

31



The blend skinning process is known to add a mesh surface, in this case a triangular

one, to the underlying skeletal structure, transforming each of its vertices by the influence

of the adjacent bones. To follow standard skinning practise, the model is defined by an

average model shape represented by 23 joints, a concatenated vector of N = 6890 vertices
−
T ∈ R3n in an initial position,

→
θ
∗
, and a set of weights, W ∈ RN×K , shown in Figure 4.1(a).

In the case of figure 4.1(b), the function BS(
→
β) is introduced which receives a vector of

shape parameters,
→
β , and returns the distance of the newly obtained shape compared to the

previous standard model. For figure 4.1(c), a third function BP (
→
θ ) is added which receives a

vector of pose parameters, θ, and takes into account the deformation effects caused by them.

The pose vector is given by
→
θ = [

→
w

T

0 , ...,
→
w

T

K ]
T , where →

wk ∈ R3 corresponds to the axis-angle

representation of the relative rotation of part k with respect to its parent in the kinematic

tree, and the angle relative to the axis of each joint j being converted into a rotation matrix

by the Rodriguez Formula (Equation 4.1). Finally, in 4.1(d), the blend skinning function

W (
−
T , J,

→
θ ,W) is applied, which assumes the vertices in the initial position

−
T , the position

of each of the joints J , the pose
→
θ and a series of weights W to rotate the vertices about the

estimated joints [19].

exp(
→
wj) = I + ŵj sin(∥

→
wj∥) + ŵ2

j cos(∥
→
wj∥), (4.1)

where I is the 3× 3 identity matrix.

Figure 4.1: Example of human body pose and shape configurations calculated by the SMPL

model. (a) Base model without any input parameters, with blend weights illustrated in

colour, and joints in white. (b), (c) Parametrized models by introducing some parameters.

In figure (c), an expansion of the hips can be observed, for instance. (d) Final model with

its respective deformed vertices.
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The SMPL model was created from 3D scans of different faces and poses of thousands

of people, both independent of each other, using Principal Component Analysis (PCA).

By using PCA, we can regress the different scans back to the ten main orthonormal shape

components S and 72 pose displacements P . For example, the first and second principal

components of the parameters of S relate to changes in size and weight respectively. With

the matrices S and P we can define the functions BS, equation 4.2, and BP , equation 4.3.

The first helps to create a more realistic mesh, while the second prepares the subject for a

pose.

BS(
→
β ;S) =

|
→
β |∑

n=1

βnSn (4.2)

BP (
→
θ ;P) =

|
→
9K|∑
n=1

(Rn(
→
θ )−Rn(

→
θ
∗
))Pn (4.3)

Where Sn, Pn ∈ R3N , and Rn(
→
θ ) is the 3× 3 Rodrigues matrix.

Finally, since the SMPL model is differentiable and thus can be used with deep networks

[63], it serves as an illustration tool for the applied neural network, whose task is to find

the correct shape and coefficients of an image or video and thus create an accurate human

representation.

4.2 Hybrid Analytical-Neural Inverse Kinematics Solu-

tion

Apart from this, the reconstruction of a 3D surface from monocular images is one of the

oldest problems in computer vision. Since the publication of statistical parametric models

of human body shape such as SMPL, the recovery of the three-dimensional mesh of indi-

viduals has attracted more and more attention. With the aim of obtaining increasingly

well-matched and physically plausible results, the two aforementioned paradigms have been

developed. Optimisation-based approaches, where different data and regularisation condi-

tions are explored as optimisation targets, and regression-based approaches, where deep

learning techniques are used. However, in the first case, not only are the results sensitive

to initialisation, but the optimisation problem is also non- convex and requires too much

time to solve. On the other hand, in regression methods, since the parameter space of the
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statistical model is abstract, it is difficult for networks to learn the mapping function.

These challenges have led a group of researchers to focus on the area of three-dimensional

key point estimation, which relates to methods that precede direct regression and whose

high performance comes from adopting volumetric heat maps as the final representation

when learning the positions of 3D joints. This inspired them to associate 3D joints with

the parametric model of the human body, Figure 4.2. Not only because joints facilitate

the estimation of the volumetric mesh, but also because current methods for estimating key

points lack an explicit modeling of the length distribution of the body’s bones, which results

in an unrealistic prediction of body structures, such as abnormal limb proportions. Thus,

by leveraging the parametric body model, the represented human form fits better to the real

human body.

Figure 4.2: Loop between 3D skeleton and parametric model, via HybrIK. The 3D skeleton

projected by the neural network can be transformed into a body mesh by inverse kinematics

without sacrificing precision. In turn, the parametric body mesh can generate a realistic 3D

structural skeleton through direct kinematics [64].

Thus was born HybrIK [64], a hybrid analytical-neural inverse kinematics solution that

bridges the gap between the two previous types of estimation. More specifically, inverse

kinematics is a mathematical process responsible for finding the relative rotations that allow

the desired positions of the body’s joints to be generated, and is considered a problem

without a single solution. In this way, the core of the approach is to propose an innovative

IK solution through a twist-and-swing decomposition. That is, each part of the skeleton is

decomposed into a longitudinal rotation and a plane rotation. In Hybrik, these rotations

are recursively composed along the kinematic tree, where the swing rotation is calculated
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analytically and the twist rotation is predicted. A key feature of this method is that the

relative rotation estimated by HybrIK is naturally aligned with the 3D skeleton, without the

need for additional optimisation procedures as in previous approaches. Furthermore, all of

its operations are differentiable, which enables the simultaneous training of 3D joints and

volumetric meshes of the human body.

4.2.1 Preliminary

Before I present the final architecture, it is important to explain some terms and mathe-

matical calculations behind the HybrIK model.

Forward Kinematics

Forward kinematics (FK) in the context of human posture generally refers to the process

of calculating the reconstructed pose Q = {qk}Kk=1 with the resting pose model T = {tk}Kk=1

and the set of relative rotations R = {Rpa(k),k}Kk=1 as input:

Q = FK(R, T ), (4.4)

where K corresponds to the number of joints, qk ∈ R3 denotes the reconstructed 3D position

of the k-th joint, tk ∈ R3 denotes the position of the k-th joint of the residual pose model,

pa(k) returns the index of the parent joint of the k-th joint and Rpa(k),k corresponds to the

relative rotation of the k-th joint relative to its parent joint. The FK can be performed by

recursively rotating the model body part from the root joint to the leaf joints:

qk = Rk(tk − tpa(k)) + qpa(k), (4.5)

where Rk ∈ SO(3) is the global rotation of the k-th joint relative to the canonical space of

the rest pose. The global rotation can be calculated recursively:

Rk = Rpa(k)Rpa(k),k. (4.6)

For the root joint, which has no relatives, we have q0 = t0.

Inverse Kinematics

Inverse kinematics (IK) is the reverse process of FK and calculates the relative rotations

R that can produce the desired joint positions of the input body P = {pk}Kk=1. This process

can then be formulated as follows:

R = IK(P, T ), (4.7)
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where pk denotes the k-th joint of the entry position. Ideally, the resulting rotations should

fulfil the following condition:

pk − ppa(k) = Rk(tk − tpa(k)) ∀1 ≤ k ≤ K, (4.8)

Similarly, we have p0 = t0 for the root joint that has no parent. But the IK problem is ill-

posed because there is no concrete solution or, on the contrary, there are too many solutions

that fit the locations of the target joints.

Twist-and-swing Decomposition

Usually, in the analytical IK formulation, some joints of the body are given fewer degrees

of freedom (DoFs) to simplify the problem, for example 1 or 2 DoFs. In the case of HybrIK,

it was assumed that each joint of the body has 3 full degrees of freedom. As shown in

Figure 4.3, a R ∈ SO(3) rotation can be decomposed into a twist rotation, Rtw, and a swing

rotation, Rsw. Given the initial body part vector of the model and the target vector, the

process of solving R can be formulated as follows:

R = D(
→
p,

→
t , ϕ) = Dsw(

→
p,

→
t )Dtw(

→
t ,

→
ϕ) = RswRtw, (4.9)

where ϕ is the angle of twist estimated by a neural network, Dsw(·) is a closed-form solution

of the swing rotation, and Dtw(·) transforms ϕ into twist rotation. Here R must fulfil the

condition of the Equation 4.8, i.e., →
p = R

→
t .

• Swing: the swing rotation has the →
n axis perpendicular to

→
t and →

p . Therefore, it can

be formulated as follows:
→
n =

→
t × →

p

∥
→
t × →

p∥
(4.10)

and the swing angle α satisfies:

cosα =

→
t · →p

∥
→
t ∥∥→p∥

, sinα =
∥
→
t × →

p∥

∥
→
t ∥∥→p∥

. (4.11)

Therefore, the closed-form solution of the swing rotation Rsw can be derived by Ro-

drigues’ formula:

Rsw = Dsw(
→
p,

→
t ) = I + sinα[

→
n]× + (1− cosα)[

→
n]2×, (4.12)

where [
→
n]× is the asymmetric matrix of →

n and I is the 3× 3 identity matrix.
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Figure 4.3: Illustration of the twist-and-swing decomposition. (a) In the original rotation,

the right palm is turned downwards, forwards and to the left in a single step. (b) In the

twist-and-swing decomposition, the rotation is divided into two steps: First the palm is

turned 90° and then the whole hand is moved forward [64].

• Twist: the twist rotation revolves around itself. So with
→
t itself as the axis and ϕ as

the angle, we can determine the rotation of the twist Rtw:

Rtw = Dtw(
→
t , ϕ) = I +

sinϕ

∥
→
t ∥

[
→
t ]× +

(1− cosϕ)

∥
→
t ∥2

[
→
t ]2×, (4.13)

where [
→
t ]× is the asymmetric matrix of

→
t .

Since the functions Dsw and Dtw are fully differentiable, it is possible to integrate the

twist-and-swing decomposition into the training process. Although a neural network is

required to learn the twist angle, the difficulty of learning is greatly reduced. In addition,

due to the physical limitations of the human body, the angle of twist has a small range of

variation. Therefore, it is also easier to learn the mapping function.

4.2.2 Naive HybrIK

The IK process, like the FK process, can run recursively through the kinematic tree. The

first step is to determine the rotation of the global root R0, whose closed-form solution uses

Singular Value Decomposition (SVD), and the positions of the spine and the left and right
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hips. Then, at each step k, it is assumed that the rotation of the parent joint Rpa(k) is known.

We can therefore reformulate Equation 4.8 with Equation 4.6 as follows:

R−1
pa(k)(pk − ppa(k)) = Rpa(k),k(tk − tpa(k)). (4.14)

Whether →
pk = R−1

pa(k)(pk − ppa(k)) and
→
t k = (tk − tpa(k)), it is possible to solve the relative

rotation by Equation 4.9:

Rpa(k),k = D(
→
pk,

→
t k, ϕk), (4.15)

where ϕk is the twist angle predicted by the network for the k-th joint. The set of twist

angles is denoted Φ = {ϕk}Kk=1. Since the rotation matrices are orthogonal, their inverse

is equal to their transpose, i.e. R−1
pa(k)(pk − ppa(k)) = RT

pa(k)(pk − ppa(k)), which keeps the

resolution process differentiable.

This procedure was called Naive HybrIK, whereby it was possible to solve for the relative

rotation R−1
pa(k),k instead of the global rotation Rk. The reason for this is quite simple: if

the global rotation were decomposed directly, the resulting twist angle would depend on

the rotations of all the predecessor rotations along the kinematic tree, which would lead to

increased variation in the distal joints of the limbs and learning difficulties on the part of

the network.

4.2.3 Adaptive HybrIK

Although the above procedure seems effective, it follows an unstated assumption: ∥pk −

ppa(k)∥ = ∥tk−tpa(k)∥. Otherwise, there would be no solution to Equation 4.8. Unfortunately,

in this case, the body parts predicted by the 3D keypoint estimation method do not always

agree with the resting pose model. In Naive HybrIK, Equation 4.9 can still be solved because

the condition is transformed into:

pk − ppa(k) = Rk(tk − tpa(k)) +
→
ϵ k, (4.16)

where →
ϵ k denotes the error in the k-th step, which has the same direction as pk − ppa(k) and

∥→ϵ k∥ = |∥pk − ppa(k)∥ − ∥tk − tpa(k)∥|. To analyse the reconstruction error, the difference

between the input pose P and the reconstructed pose Q was compared:

∥P −Q∥ ⇔
K∑
k=1

∥pk − qk∥, (4.17)

where Q = FK(R, T ) = FK(IK(P, T ), T ). Combining Equation 4.6 and Equation 4.16 we
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get:
pk − qk = ppa(k) − qpa(k) +

→
ϵ k

= ppa2(k) − qpa2(k) +
→
ϵ pa(k) +

→
ϵ k

= ... =
∑

i∈A(k)

→
ϵ i,

(4.18)

where pa2(k) denotes the parent index of the pa(k)-th joint and A(k) the set of ancestors

of the k-th joint. This means that the difference between the input joint pk and the recon-

structed joint qk is accumulated along the kinematic tree, leading to more uncertainty in the

distal joint.

To solve the problem of error accumulation, a second method, Adaptive HybrIK, has been

proposed. In this method, the target vector is adaptively updated by the newly reconstructed

original joints. Let →
pk = R−1

pa(k)(pk − qpa(k)) and
→
t k be equal to Naive HybrIK. In this way,

the condition in Adaptive HybrIK can be formulated as follows:

pk − qpa(k) = Rk(tk − tpa(k)) +
→
ϵ k. (4.19)

So we have:
pk − qpa(k) = qk − qpa(k) +

→
ϵ k

⇒ pk − qk =
→
ϵ k.

(4.20)

Compared to the previous solution, Equation 4.18, the reconstructed error of this new

solution depends only on the current joint and is not accumulated from the previous joints.

As can be seen in Figure 4.4, in Naive HybrIK the descending joints continue this error once

the main joint is out of position. In the case of Adaptive HybrIK, the solution of relative

rotation always points to the target joint, reducing the error. A solution would go through

an iterative global optimisation process, but this is neither differentiable nor does it allow

end-to-end training.

4.2.4 Framework

The structure of the followed approach is shown in Figure 4.5. First, a heat map is

generated using the neural network through its deconvolution layers and used to predict the

three-dimensional joints P . At the same time, the twist angle Φ and the shape parameters β

are learned from the visual cues of the fully-connected layers. Secondly, the shape parameters

are used to obtain the rest position T by the SMPL model. By combining P , T and Φ, it

is then possible to run HybrIK to solve the relative rotations R of the 3D pose, i.e. the
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Figure 4.4: Example of the reconstruction error. The resting pose is rotated in two stages

to q1 and q2. In the first step, the reconstruction error is →
ϵ 1 due to the inconsistency of the

bone length. In the second step, Naive HybrIK takes p2−p1 as the target direction, resulting

in a cumulative error of →
ϵ 1 +

→
ϵ 2. Instead, Adaptive HybrIK selects the reconstructed joint

q1 to form the target direction p2 − q1, reducing the error to only →
ϵ 2 [64].

position parameters θ. Finally, using the function M(θ, β) of the SMPL model, it is possible

to obtain the triangle mesh M .

Heatmaps and 3D Keypoint Estimation

The network used to estimate the heatmaps and the respective three-dimensional key-

points was the HRNet-W48 [13], initialised with pre-trained weights from ImageNet and

adapted from the ResNet design by distributing the depth to each stage and the number of

channels for each resolution. Its output is fed into a medium pooling layer, followed by the

fully-connected layers to regress β and ϕ. The implementation was done in PyTorch and the

input images were scaled down to 256× 256. In addition, the learning rate is initially set to

1 × 10−3 and reduced by a factor of 10 in the 90th and 120th epochs, giving a total of 140

epochs. The optimisation function chosen was Adam.

Twist Angle Estimation

Instead of regressing the scalar value ϕk directly, the authors decided to learn a two-

dimensional vector (cosϕk, sinϕk) to avoid the problem of discontinuity. The l2 loss is ap-
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plied:

Ltw =
1

K

K∑
k=1

∥(cosϕk, sinϕk)− (cosϕ̂k, sinϕ̂k)∥2, (4.21)

where ϕ̂k is the actual angle of twist for the k-th joint.

Collaboration with SMPL

The SMPL model makes it possible to obtain the skeleton resting pose with the additive

displacements according to the shape parameters β:

T = W (M̄T +BS(β)), (4.22)

where M̄T are the mesh vertices of the mean resting pose and BS(β) is the shape blending

function provided by SMPL. Then the pose parameters, θ, are calculated by HybrIK in a

differentiable manner. In the training phase, the shape parameters β and the rotation

parameters θ are supervised as follows:

Lshape = ∥β − β̂∥2, Lrot = ∥θ − θ̂∥2. (4.23)

The overall learning loss is thus given by:

L = Lpose + µ1Lshape + µ2Lrot + µ3Ltw, (4.24)

where µ1, µ2 and µ3 correspond to the weights of the loss items.

Figure 4.5: Overview of the used framework.
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5 Results and Discussion

In this chapter, we describe the datasets used for training and quantitative evaluation

of HybrIK. Then, some experiments are conducted to analyse the proposed concepts and

some results of comparing the model with approaches already existing in the literature are

reported. Finally, a second set of results derived from the application of the structure 4.5

to examples of rehabilitation exercises is presented, as well as a detailed explanation of the

whole process behind the segmentation of the patient’s spinal curve.

5.1 Datasets

The datasets used were Human3.6M [65], MPI-INF-3DHP [66], COCO [67] and 3D Poses

in the Wild (3DPW) [68]. Each of these datasets contains annotated images of poses of

people engaged in sports or activities of daily living.

The Human3.6M is a multiview dataset recorded in an enclosed and controlled space that

serves as a reference for estimating the 3D human pose. The data is organised into videos

of multiple people performing different activities such as walking, discussing or eating. The

images were extracted from these videos using the tools provided by OpenCV [69]. In the

specific case of our method, subjects S1, S5, S6, S7 and S8 were used for training and only

S9 and S11 for testing.

Similarly, MPI-INF-3DHP also corresponds to a multiview dataset containing videos of

six people performing seven actions indoors. The data is in the same video format and

was extracted as in Human3.6M. However, in this case, both the training and testing sets

were used in their entirety for training and testing HybrIK respectively. On the other hand,

COCO is characterised by the fact that it is a large dataset, essentially used for object

detection and segmentation, containing images and annotations in JSON format of people

engaged in a variety of outdoor activities. It is only used for training.

The last, 3DPW, also outdoors, contains precise 3D poses for evaluation, i.e. it has 2D
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and 3D pose annotations and camera poses for each image sequence. As with Human3.6M,

the data is also organised by videos in which a person is performing activities such as walking,

discussing or performing a physical activity. In addition, it is able to provide highly accurate

SMPL ground truth parameters and is only used for model evaluation.

5.2 Ablation Study

In order to assess the efficiency of the twist-and-swing decomposition and the HybrIK

algorithm, a series of studies were conducted by the authors of HybrIK.

5.2.1 Analysis of the twist rotation

To demonstrate the effectiveness of the twist-and-swing decomposition, the first step was

to analyse the distribution of the twist angle in the 3DPW test set, shown in Figure 5.1.

As expected, due to the physical limitation, only the neck, elbows and wrists have a wide

range of variation. All other joints have a limited range for the angle of twist of less than

30°, which can be estimated with relative confidence.

Figure 5.1: Distribution of the twist angle. Only a few joints have a range over 30º. Other

joints have a limited range of twist angle.

The next step was to develop a test to find out how the twist angles would affect the

reconstructed pose and shape. Thus, the 24 basic joints of the SMPL and the shape pa-
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rameters served as input for HybrIK and with regard to the twist angle, the random values

in [−π, π] and the values estimated by the network were compared. Table 5.1 thus shows

the results of the mean error of the 24 reconstructed SMPL joints, the 14 LSP joints, the

body mesh and the angle of twist. Note that the LSP joints are obtained from the body

mesh by a pre-trained regression mechanism, as for [46], [48]. A brief analysis shows that

the predicted twist angles significantly reduce the error at the mesh vertices and at the LSP

joints. Since most of the twist angles are close to zero, as presented in Figure 5.1), equating

all twist angles to zero also leads to acceptable performance. It can also be observed that the

incorrect angles of twist have no significant effect on the reconstructed SMPL joints (first

value on the left side), but only the swing rotations.

Random Twist Estimated Twist Zero Twist

24 jts 14 jts Vert. 24 jts 14 jts Vert. 24 jts 14 jts Vert.

Error 0.1 40.0 67.3 0.1 6.1 10.0 0.1 6.8 12.1

Table 5.1: Reconstruction error of the 24 reconstructed SMPL joints, the 14 LSP joints, and

the body mesh, with varying twist angles.

5.2.2 Robustness of HybrIK

To demonstrate the better performance of Adaptive HybrIK over Naive HybrIK, the error

of the reconstructed joints of the two was compared. Thus, each of the IK algorithms first

received the real joints, the angle of twist and the shape parameters as input to check whether

they really introduced additional errors. Next, it was decided to assign noise to the same

inputs. As can be seen in Table 5.2, both algorithms have negligible errors when the joints

are correct. However, with noisy joints, Naive HybrIK accumulates a much higher error

along the kinematic tree than Adaptive HybrIK.

GT Joints ± 10 mm ± 20 mm ± 30 mm

Naive HybrIK 0.1 16.2 34.0 53.4

Adaptive HybrIK 0.1 9.8 20.2 31.2

Table 5.2: Naive vs. Adaptive with different input joints. MPJPE of 24 joints is reported.
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5.2.3 Error correction capability of HybrIK

In this experiment, the ability of the HybrIK algorithm to correct errors was investigated.

Thus, the algorithm is fed with the 3D joints, twist angles and shape parameters predicted

by the high-resolution network. In addition, the SMPLify algorithm [45] was applied to the

predicted pose to have a comparison term. As can be seen from the Table 5.3, the error of

the reconstructed joints is reduced to 79.2 mm after HybrIK, while it increases to 114.3 mm

with SMPLify. This is because the network can predict unrealistic body postures, such as

left-right asymmetry or abnormal limb proportions. In contrast, because the resting pose is

generated by the parametric body model, it is ensured that the reconstructed pose matches

the realistic distribution of the body shape.

Predicted Pose HybrIK SMPLify

MPJPE (24 jts) ↓ 88.2 mm 79.2 mm 114.3 mm

Table 5.3: Error correction capability of HybrIK compared to the predicted pose and the

SMPLify method.

5.3 Comparison with the State-of-the-art

To provide a fair comparison with previous methods for three-dimensional human pose

and shape estimation, was used a pre-trained regressor that predicted the 14 LSP joints of

the body mesh for evaluation in the 3DPW and Human3.6M datasets and 17 joints for the

MPI-INF-3DHP.

Table 5.4 shows the results obtained, including model-based and model-free methods.

According to the researchers behind HybrIK, it outperforms all previous methods on all

three datasets and even improves the PVE of 21.9 mm on 3DPW. This only demonstrates

that it is very accurate and reliable in restoring the body mesh using inverse kinematics.

5.3.1 Mean Per Joint Position Error (MPJPE) and Per Vertex Er-

ror (PVE)

Mean per joint position error (MPJPE) is the most common evaluation metric in 3D

human pose estimation. Usually, the position error per joint is given by the Euclidean
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distance between the base joints and the predicted joints. The lower the value, the better

the joint estimate. To calculate this error, the alignment of the root joints must be the same.

In this thesis, the pelvic joint was chosen as the root, and all samples used are normalised

and centred on the same root. The following equation defines our metric as follows:

MPJPE =
1

T

1

N

T∑
t=1

N∑
i=1

∥J (t)
gt − Ĵ

(t)
pred∥

2, (5.1)

where T is the number of samples, and N the number of joints.

It is also possible to use the same formula to evaluate all 6890 vertices of the body mesh

predicted by SMPL. In this case, the actual SMPL parameters must be known in advance,

and the only dataset available for this purpose is 3DPW. This metric is called Per Vertex

Error (PVE).

5.3.2 Percentage of Correct Keypoints (PCK) and Area Under Curve

(AUC)

In the PCK accuracy metric, the detected joint is considered correct if the distance be-

tween its predicted position and its actual position is less than a certain threshold. It is

usually defined relative to the scale of the object within the bounding box. The area under

the curve (AUC) is then calculated for a certain range of PCK thresholds.

These metrics are more meaningful and robust than the MPJPE and show more accurate

prediction errors for each joint. The limit chosen was about 150 mm, which is about half

the size of a person’s head.
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3DPW Human3.6M MPI-INF-3DHP

Method PA-MPJPE MPJPE PVE PA-MPJPE MPJPE PCK AUC MPJPE

SMPLify - - - 82.3 - - - -

HMR 81.3 130.0 - 56.8 88.0 72.9 36.5 124.2

Kolotouros et al. 70.2 - - 50.1 - - - -

Pavlakos et al. - - - 75.9 - - - -

Arnab et al. 72.2 - - 54.3 77.8 - - -

SPIN 59.2 96.9 116.4 41.1 - 76.4 37.1 105.2

Moon et al. 58.6 93.2 - 41.7 55.7 - - -

Naive HybrIK 49.0 80.2 94.6 35.3 55.8 85.9 41.7 91.5

Adaptive HybrIK 48.8 80.0 94.5 34.5 54.4 86.2 42.2 91.0

Table 5.4: Benchmark of state-of-the-art models on 3DPW, Human3.6M and MPI-INF-

3DHP datasets.

5.4 Spine curvature interpolation

Despite the excellent performance of HybrIK, the skeleton used in its estimation is com-

posed of lines connecting various joints, derived from 2D HPE. For limbs considered rigid

bodies, this skeleton-based model is an appropriate way to describe actions. However, the

scenario becomes somewhat different in the case of the torso, which is a non-rigid body, as

the skeleton becomes imperfect by disregarding or reducing bending information. While this

model is effective for simple applications like action recognition, it becomes quite limited

when it comes to motion analysis, spinal diagnostics, or other scenarios requiring accurate

torso information.

The challenge in this last stage thus lay in representing the curvature of the spinal column.

Some datasets add joints in the chest and abdomen to express body flexion. It’s easy to

consider adding multiple key points between the neck and the hip, so that the more of these

points there are, the more similar the line connecting them becomes to the spinal curve.

However, this ends up demanding more computational effort from the network. This is not

only due to estimating a large number of key points, but also because the proximity between

them makes their learning more difficult.

The proposed hypothesis was then the curve fitting through interpolation, which essen-

tially involves the process of determining a function that will take on a set of known values

at certain points, referred to as interpolation nodes. To obtain these nodes, we relied on
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the three-dimensional mesh of the patient resulting from SMPL and HybrIK. This repre-

sentation, containing approximately 6890 vertices, is capable of depicting the human body

with great precision. In addition to its vertices, in order to construct and depict the three-

dimensional mesh, knowledge of the faces formed by these vertices, typically triangular, is

equally essential, as they compose its surface.

Following the medical method for measuring the human spinal column, wherein the

midline of the back can be approximated as the spine [70], the midline of the back surface

of the mesh was taken into account. Thus, in an initial step, and to verify the accuracy of

the mesh obtained by HybrIK to a certain extent, a Blender add-on was utilized, allowing

the visualization of the patient’s mesh, and the information pertaining to vertices and faces

was stored in an object file. However, to make the INPACT platform as autonomous as

possible, this task was eventually automated with a few lines of code. The object file created

was then updated with new data at each execution frame of the exercise. This enabled,

in the subsequent stage, the manual extraction of around 36 vertices from the central line

of the back using a Python package known as Meshio, as illustrated in Figure 5.2. More

importantly, it confirmed that this set of points consistently maintained the same index

regardless of the exercise or position assumed by the patient. This greatly facilitated the

subsequent interpolation process.

In this new interpolation task, we ended up utilizing a second Python library, SciPy,

which stands out for containing several essential tools in solving mathematical, scientific,

and engineering problems. This includes not only a wide range of optimization, integration,

and differential equation algorithms, but also a diverse set of interpolation functions, which

proved to be quite useful. By taking these functions and conducting some tests, it was

possible to conclude that the two best functions for the given problem would be interp1d

and pchip_interpolate. It is important to mention that the term PCHIP, Piecewise Cubic

Hermite Interpolating Polynomial, arises from the fact that this second interpolator uses

monotonic cubic splines to determine the values of the new points. Both interpolators

receive as input the matrices of points x and y from the vertices extracted in the previous

step. This detail is crucial because it requires that the first input matrix of x-coordinate

points be properly ordered. That being said, it’s easy to understand that for a certain set of

exercises, such as the one in Figure 5.5, some of the points on the lower back of the patient

will increase and decrease the value of their x-coordinate, leading to an unordered list. For

this very reason, we opted for two interpolation functions, since the issue no longer occurs

with interp1d.
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Figure 5.2: Visualization of the three-dimensional mesh using the Meshio library and ex-

traction of the 36 vertices from the patient’s back.

Finally, to complete the whole interpolation process and evaluate the accuracy of the

obtained curve, we opted for a series of graphs where we superimposed the three-dimensional

grids of each repetition estimated by HybrIK along with their respective curves. It’s evident

that the most effective way to visualize these results involves applying a rotation to both

elements, such that they are positioned laterally, enabling the observed overlap. A prime

example is the first squat exercise illustrated in Figure 5.3, where the individual is facing

the camera. The approach employed entails the rotation of a plane formed by three points
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along the central line of the back (two at the ends and one central), effectively dividing the

individual in half. The rotation applied to this imaginary plane is consequently mirrored

onto the grid and its corresponding curve, as demonstrated in Figure 5.5. It is essential

to note that although this evaluation is primarily visual, it was readily apparent that the

derived curve is highly accurate and nearly coincides with the boundaries of the grid.
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Figure 5.5: Sequence of 16 images in a squat exercise - Spine curvature segmentation.
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Figure 5.8: Sequence of 16 images in a cat stretch exercise - Spine curvature segmentation.
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6 Conclusion

In conclusion, this thesis embarked on a journey to explore the intersection of telerehabil-

itation, back pain management, human pose and shape estimation, and the innovative use of

the HybrIK method. Through meticulous research, experimentation, and analysis, we have

successfully achieved all the objectives set forth in this work.

By integrating the HybrIK method into our study, we harnessed its power to accurately

estimate human pose and shape, demonstrating its effectiveness in virtual environments for

rehabilitation purposes. This novel approach has paved the way for more accessible and

engaging telerehabilitation programs.

Moreover, we introduced a groundbreaking application of HybrIK by utilizing the vertices

of virtual meshes to segment and analyse spine curvature. This innovation not only enhances

our understanding of the biomechanics of the spine but also provides valuable insights for

personalized rehabilitation strategies, tailored to individual needs.

As we conclude this thesis, we look forward to a future where telerehabilitation, informed

by advancements in human pose and shape estimation techniques like HybrIK, plays a central

role in mitigating the burden of back pain and improving the lives of countless individuals.

This thesis is a testament to our commitment to innovation and our dedication to the

betterment of healthcare for all.
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7 Future work

The work carried out and presented always took into consideration the guidelines provided

throughout the semester and was capable of producing the intended results. However, as

not all systems can be perfect, there are always some aspects that require attention and

improvement. One of these aspects includes the exercises from the previous examples. It is

easily observed and understood that these exercises involve relatively simple movements and

are easily estimated by HybrIK. However, in other cases, such as certain exercises for more

complex rehabilitation that involve, for example, the occlusion and abnormal positioning of

certain limbs, it was noticed that the model returned a highly deformed three-dimensional

mesh of the individual. In this regard, we believe that the first course of action for future

work would involve training the model with a specific rehabilitation dataset, such as Fit3D,

produced by the same researchers from Human3.6. Apart from a variety of 37 exercises

and repetitions, it contains over three million images and configurations of human motion

capture, thus encompassing all major muscle groups. This would make the model specific

to the field of telerehabilitation and enable a much more effective and accurate estimation

through error correction.

The second topic, although not affecting the functioning of the model, is equally im-

portant. As can be observed in Figure 7.1, the patient’s hands and feet exhibit unusual

behaviour, and their face does not display any type of expression. This is due to the volu-

metric model used by SMPL and HybrIK, which does not include any type of joints in these

regions. However, the HybrIK model has recently been updated with SMPL-X, an improved

model of SMPL that allows for a much more realistic representation of the individual, in-

cluding facial expressions and articulated hands. Thus, the work would involve using or

training this new model, HybrIK-X, and verifying if its results show promise.

Lastly, as mentioned earlier, this dissertation was conducted within the scope of the

INPACT project and involved the collaboration of a small group of students and professors.

This encompassed not only the training and implementation of ML algorithms but also the
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creation of an interactive application for the user. Therefore, in order to obtain a functional

final product that may potentially be produced on a large scale, there is the need to integrate

the different parts.

Figure 7.1: Illustrative example of an exercise in which the hands and feet of the three-

dimensional model of the patient exhibit irregular behavior.
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