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Resumo

Ao gerar uma protéına num laboratório, os cientistas isolam os genes que codificam

a protéına de interesse e inserem-na num organismo hospedeiro, uma bactéria ou

uma levedura. A cadeia de criação de novas protéınas é gerada, extráıda, purificada

e analisada. O processo de purificação é uma série de testes que exploram as pro-

priedades f́ısicas e qúımicas da protéına, como a hidrofobicidade e o tamanho. O

processo de análise é mais para determinar a identidade e as funções da protéına,

utilizando testes como o ELISA. Todo este processo é irregular e pode ser curto ou

levar meses ou anos para completar o estudo da protéına.

A conceção de protéınas desempenha um papel importante e é uma forma inovadora

de gerar protéınas de-novo. Este método permite criar protéınas ”à medida” para

tarefas espećıficas, como o reforço do sistema imunitário.

Por isso, algumas estratégias computacionais foram apresentadas ao longo do tempo

para ajudar neste processo; o AlphaFold ajudou a prever a forma das protéınas,

o modelo Rosetta ajudou a obter a energia mı́nima e a criação de protéınas 3-

D espećıficas para uma função necessária, o Alinhamento de Sequências compara

protéınas rapidamente para que se possa detetar se há alguma mutação, eliminação

ou inserção, se pertencem à mesma famı́lia de protéınas para que possam ter a

mesma função.

Neste trabalho, exploramos o universo da geração de protéınas através da imple-

mentação de diferentes modelos, nomeadamente em modelos de Processamento de

Linguagem Natural (PLN). Para isso, analisamos a estrutura e a sequência das

protéınas, encontramos uma forma de validar as sequências proteicas e, em seguida,

implementamos um modelo capaz de capturar a complexidade das sequências pro-

teicas e, posteriormente, gerar protéınas válidas.

Palavras-Chave

Conceção de Protéınas, Geração de Protéınas, Redes Neuronais baseadas em sequências,

Aprendizagem Profunda.
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Abstract

When generating a protein in a laboratory, scientists isolate the genes that code for

the protein of interest and insert it into a host organism, a bacteria or yeast. The

pipeline of creation of new proteins is generated, extracted, purified, and analyzed.

The purification process is a series of tests that exploit the physical and chemical

properties of the protein, such as hydrophobicity and size. The analysis process is

more to determine the protein’s identity and functions using tests like ELISA. This

entire process is irregular and can be short or take months or years to complete the

protein study.

Protein Design plays an important role and is a novel way to generate de-novo

proteins. This method makes it possible to make ”custom-made” proteins for specific

tasks, such as boosting the immune system.

On that account, some computational strategies have been presented over time to

aid in this process; AlphaFold helped in predicting proteins’ shape, Rosetta’s model

helped in obtaining the minimum energy and the creation of 3-D proteins specific

to a function needed, Sequence Alignment compares proteins quickly so it can be

detected if there are any mutation, deletions or insertion if they belong to the same

family of proteins so they can have the same function.

In this work, we explore the universe of protein generation by implementing different

models, especially in Natural Language Processing (NLP) models. To do this, we

analyze the structure and sequence of proteins, find a way to validate protein se-

quences, and then implement a model capable of capturing the complexity of protein

sequences and later generating valid proteins.

Keywords

Protein Design, Protein Generation, Sequence-based Neural Networks, Deep Learn-

ing.
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1

Introduction

1.1 Context

Designing novel and structurally functional proteins remains one of the most sig-

nificant challenges in bioinformatics research. Protein generation aims to develop

machine-learning models and deep-learning architectures to generate novel and func-

tional proteins for various applications, such as drug discovery, enzyme design, and

protein engineering.

Machine learning models for protein generation typically work by learning the sta-

tistical patterns of existing protein sequences in a given dataset and then using

these patterns to generate new sequences similar to the input data. There is a

plethora of Machine Learning architectures such as Recurrent Neural Networks

(RNN), Generative Adversarial Network (GAN), Variational Autoencoders (VAE),

or Transformers to generate new sequences.

Several challenges associated with protein generation using machine learning include

ensuring the generated sequences are biologically feasible, stable and have desired

functions. Additionally, generating novel sequences sufficiently different from ex-

isting sequences is challenging. Recent advances in machine learning and compu-

tational biology have shown promising results in generating novel and functional

protein sequences [1].

Overall, protein generation using machine learning models has the potential to lead

to significant breakthroughs in bioinformatics and decisive findings across drug dis-

covery, protein engineering, and other applications in the life sciences.

1



1. Introduction

1.2 Motivation

Proteins play a vital role in various biological processes and are the building blocks

of life. They exhibit an incredible diversity of functions, structures, and interactions,

crucial to understanding cellular processes, diseases, and drug design [2,3]. The tra-

ditional approach to studying proteins involves experimental techniques, which can

be costly, time-consuming, and limited by the vast complexity of protein structures

and sequences. In recent years, deep neural networks have emerged as promising

tools for protein generation due to their ability to learn complex patterns and fea-

tures from large datasets [4].

One of the most significant challenges in protein generation lies in predicting the

3D structure of a protein from its amino acid sequence. Proteins can fold into

many unique 3D conformations, and understanding this 3D structure is crucial to

deciphering their function. Experimentally determining protein structures through

X-ray crystallography or Nuclear Magnetic Resonance (NMR) [5] is time-consuming

and resource-intensive. A computational approach is template-based and does not

consider multiple conformations. Deep neural networks offer a new paradigm, as

they can capture the complex relationships between protein sequences and their

corresponding 3D structures from existing structural data [6].

As protein generation using deep neural networks is a relatively nascent field, there is

a need to have well-established methods and models. Developing robust and accurate

models requires extensive research and validation to ensure their applicability across

different protein families and functions. Moreover, creating large and high-quality

datasets of protein sequences with annotated structures and functions is challenging

due to the diversity and complexity of proteins [7].

Another significant hurdle in protein generation is that there is no universal formula

to determine the structure or function of a protein solely from its sequence. The

relationship between sequence and structure/function is highly intricate and context-

dependent, making it challenging to develop a single standardized model. Deep

neural networks can excel in recognizing patterns in data. With sufficient training

on diverse datasets, they can capture the essence of these complex relationships,

offering valuable insights into protein structure and function prediction.

However, protein sequences can vary significantly in length, ranging from a few

dozen to several thousand amino acids [7]. The vast number of possible amino acid

2



1. Introduction

arrangements makes it challenging to manually explore the vast sequence space.

Additionally, proteins can suffer various post-translational modifications, increasing

complexity. Deep neural networks can efficiently handle large-scale datasets and

learn intricate patterns [8], allowing them to capture the diverse composition and

length variations in protein sequences.

The sequence of a protein is not merely a linear string of amino acids; it also pos-

sesses complex spatial and structural arrangements. The arrangement of secondary

structures like alpha-helices, beta-sheets, and loops significantly influences the pro-

tein’s function [9]. Deep neural networks, especially those designed for sequence-to-

sequence mapping or language modelling, can inherently account for context depen-

dencies and hierarchical patterns, enabling them to generate sequences with desired

structural features [10].

Achieving a capable model can benefit greatly. Besides possibly passing the need for

X-ray crystallography, it can help expand the protein universe since the vast majority

of proteins in nature remain unexplored due to the vastness of sequence space [11].

This expansion of the protein universe offers exciting prospects for discovering new

functional proteins, enzymes, and potential therapeutic targets. By generating the

3D structures of proteins and their potential binding sites, researchers can virtually

screen large compound libraries to identify drug candidates that may interact with

specific proteins [12,13]. This rational drug design approach can significantly speed

up drug development, saving time and resources.

Moreover, several pathologies are connected to proteins with aberrant conformations

or lack of function due to genetic mutations within the coding DNA region [14].

Thus, understanding how specific mutations affect protein structure and function is

crucial for developing targeted therapies. Computational methods can help predict

the impact of mutations on protein stability, folding, and interactions, offering valu-

able information for precision medicine. It can assist in identifying non-functional

proteins, allowing for personalized drug design and treatment strategies based on

the patient’s specific protein profiles [15].

1.3 Objectives

The main goal of this master thesis is to explore and develop deep learning models

capable of generating novel protein sequences with specific functions and properties.

The leading objectives to fulfil are the following:

3



1. Introduction

1. Build a dataset of curated proteins with 1D sequential data

2. Introduce a Deep Learning Model that generates proteins.

3. Exploit the capabilities of extracting the context of a sequence in the RNNs.

4. Build a baseline model to compare the results.

5. Build a deep learning architecture model based on a transformer.

6. Investigate novel training methodologies to enhance the model’s performance.

7. Explore a validation process for the generated proteins.

8. Evaluation and validation of the performance of the models in identifying and

validating.

1.4 Document Structure

The remainder of this document is organised into six different chapters. It begins

with an introduction that presents the protein context, the work’s impetus, and the

objectives to be achieved to solve the proposed problem. Chapter 2, Background,

introduces the main concepts needed to understand bioinformatics. Chapter 3, State

of the Art, shows the main computational approaches used in protein discovery.

Chapter 4, Methods, describes the methodology employed throughout the research

work associated with this thesis, including the data and treatment used. Chapter

5, Framework, explains the architecture and the procedure to train and validate the

model. Chapter 6, Results, presents the results and the discussion obtained from

each model proposed. Finally, Chapter 7, Conclusion, concludes the master thesis

and presents future approaches and possibilities for the proposed work.

4
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Background

2.1 Bioinformatics

Bioinformatics focuses on exploring computational approaches to solve mostly chal-

lenges within the biology domain, to analyse and interpret biological data, for ex-

ample, proteins, Deoxyribonucleic Acid (DNA), Ribonucleic Acid (RNA), bacteria,

genome [16].

One of the main areas of research in bioinformatics involves protein classification,

prediction and generation based on its primary attributes [17]. It can involve pre-

dicting the structure and function of the proteins. The tools and techniques include

sequence alignment [18], protein structure prediction and molecular dynamics sim-

ulations.

Overall, bioinformatics is pivotal in driving many advances in biology and medicine.

It provides new tools to interpret complex biological data, explore yet unknown data

and discover new treatments that can improve human health and well-being.

2.1.1 Proteins Overview

Proteins play a pivotal role in the functioning of living organisms, as they are in-

volved in a wide range of biological processes and interactions with themselves, other

proteins or other molecules besides proteins. These include but are not limited to

growth and maintenance, regulation of biochemical reactions, acting as messengers,

providing structural support, maintaining proper pH levels, facilitating fluid balance,

supporting the immune system, facilitating transportation and storage of nutrients,

and supplying energy to the body. Proteins are present in our daily lives. More-

over, certain groups of proteins have been actively employed in several industries,

with enzymes, for example, being widely utilised in the food, textile, and detergent

5



2. Background

industries [19].

Proteins are complex biomolecules that perform various functions within living or-

ganisms. The functions of proteins depend on multiple parameters, including in-

teractions with the environment, structural properties, and the specific amino acid

sequences that make up the protein [20].

The primary structure of a protein refers to the linear sequence of amino acids

that make up the protein. The folding of the protein into its characteristic three-

dimensional shape, known as its tertiary structure, is determined by the interactions

between the amino acid residues within the protein and is further influenced by

the environment. A protein’s secondary structure refers to the backbone’s local

arrangements, such as the alpha helix or beta sheet, that give rise to the tertiary

structure. The quaternary structure of a protein refers to the interactions between

multiple chains and the existence of multiple chains in a protein, which can affect

its function [20].

The discovery of new proteins holds significant potential not only for the advance-

ment of human health but also for the improvement of our daily lives. One example

is the enzyme cellulase, which has been utilised in various applications such as de-

tergents, paper processing, and other industries since the early 1990s. Cellulases

are considered one of the most essential enzymes in the global market due to their

versatility and effectiveness in breaking down cellulose, a significant component of

plant-based materials. Therefore, identifying new proteins and their characteris-

tics can benefit human health and lead to the development of new products and

industries [21].

Overall, the structure of a protein is crucial to determine its function. Understand-

ing its structural properties and interactions can provide valuable insight into its

functions and potential applications.

Amino Acid

Amino acids are a group of organic molecules that are mainly composed of a primary

amino group (−NH2), an acidic carboxyl group (−COOH), and an organic R group

(or side chain). Proteins comprise amino acids; each amino acid contains a central

carbon atom (C) attached to the amino and carboxyl groups, an attachment to a

hydrogen atom and the R group in the central carbon. The R group, or side chain,

makes the main distinction between each amino acid, according to the chemical

6



2. Background

properties of the R group [22].

Even though hundreds of amino acids have been found in nature, in proteins, there

are usually 20 standard amino acids [23], and sometimes there are rare occurrences

of more. However, these 20 are considered the default [24]. It can be observed in the

following table A.1. Besides the specific amino acid codes, sometimes a placeholder

is used when a peptide or protein analysis cannot conclusively identify the residue.

Protein Structure

Protein structures are composed of building blocks known as amino acids. These

amino acids are linked by peptide bonds formed by the condensation reaction be-

tween the carboxyl group of one amino acid and the amino group of another, re-

sulting in the removal of a water molecule (H2O). The sequence of amino acids and

the number of peptide bonds in a protein is determined by the genetic code in the

DNA.

Proteins also have multiple levels of structure, each with a unique function and

properties.

• Primary Structure: This is the linear sequence of amino acids that com-

prises the protein. It is the simplest level of protein structure. It determines

the sequence of amino acids, of which there are 20 naturally occurring plus

an indefinite number of amino acids made by chemical synthesis, genetic engi-

neering, or a combination of both [25]. The primary structure, sequence order,

side-chains and interactions also serve as a blueprint for the formation of the

more complex levels of protein structure, such as the secondary, tertiary and

quaternary structures [20].

• Secondary Structure: refers to the local arrangements of the backbone,

such as the alpha helix or beta sheet, that give rise to the tertiary structure.

The secondary structure is formed by interactions between the atoms of the

backbone and the hydrogen bonds between the peptide bonds [20]. The alpha

helix is a spiral structure that forms when the peptide bonds form hydrogen

bonds between the carbonyl oxygen atoms of one amino acid and the nitrogen

atoms of another amino acid four or five residues away. This structure creates

a helix shape. The beta-pleated sheet is a flat structure formed when the

peptide bonds form hydrogen bonds between the nitrogen atoms of one amino

acid and the oxygen atoms of another amino acid five or more residues away.
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This structure creates a flat sheet shape. The alpha helix and the beta-pleated

sheet are essential in stabilising the tertiary structure of a protein. However,

other less common secondary structures, such as beta turns, beta hairpins and

loops, also exist.

• Tertiary Structure: The tertiary structure of a protein refers to the three-

dimensional shape formed by the interactions between the amino acids’ side

chains (R groups). These interactions include bonding, repulsion and attrac-

tion of charges, hydrogen bonds, dipole-dipole interactions, and hydrophobic

interactions. A unique bond in this structure is the disulfide bond, which links

the sulfur-containing side chains of cysteines. The stability of the tertiary

structure is crucial, as it needs to remain intact under different environmental

conditions such as pH, temperature, and the presence of other molecules. The

energy consumption from the interactions between the amino acid residues

helps maintain the global energy minimum and the stability of the struc-

ture. [26]

• Quaternary Structure: Refers to organising multiple polypeptide chains

into a single functional protein. This structure is relatively uncommon com-

pared to single-unit proteins, which consist of a single polypeptide chain

[20]—the presence of multiple polypeptide chains in protein results in the

formation of a quaternary structure. Haemoglobin is a notable example of

a protein with a quaternary structure, as it is composed of four polypeptide

chains and plays a crucial role in transporting oxygen throughout the blood.

The interaction between these multiple polypeptide chains allows for more

complex functions and increased stability of the protein [27].
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Figure 2.1: Protein Structure Levels: Primary, Secondary, Tertiary, Quaternary
[28]
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Proteins Design

Protein design uses computational methods and techniques to create new or modify

existing proteins with specific properties or functions. It is done by manipulating

the protein’s amino acid sequence, tertiary structure, and quaternary structure and

engineering new interactions between different parts of the protein [29]. Protein

design is a powerful tool in biotechnology and medicine, as it can be used to create

new enzymes, biosensors, and therapeutics [30–32].

One of the standard techniques used in protein design is rational design, where the

protein’s structure and function are understood and then manipulated to create a

desired outcome. This method is mainly used when the desired protein already

exists in nature, but with slight modifications, it can be improved [33].

Another technique is directed evolution, miming natural selection in the laboratory

to create new proteins with desired properties. This method involves creating a

library of random mutations in the protein of interest and selecting the variants

with the desired properties through various screening methods [34].

Protein design is a highly interdisciplinary field involving researchers from various

backgrounds, such as biochemistry, bioinformatics, and computer science. Advance-

ments in protein design have led to the development of new therapeutics [30], au-

toimmune diseases, and genetic disorders. Protein design also has potential for appli-

cations in biotechnology, such as creating new enzymes for industrial processes [31],

and in environmental science.

2.2 Sequence Alignment

Protein sequence alignment is comparing two or more amino acid sequences to iden-

tify regions of similarity or difference. It is an essential step in many bioinformatics

analyses [35].

There are several algorithms and software tools available for performing protein

sequence alignments, including global alignment methods such as Needleman-Wunsh

[36] and local alignment methods such as Smith-Waterman [37]. These methods

differ in how they score the alignments and the types of alignments they are best

suited for.

Global alignment methods aim to align the entire length of two sequences, while
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local alignment methods focus on finding the best matching region within the

sequences. These methods can use different scoring matrices and gap penalties to

evaluate the similarity between the sequences [38].

2.2.1 Smith-Waterman

The Smith-Waterman (SW) algorithm is a widely used method for local sequence

alignment of proteins. The algorithm compares two protein sequences and identifies

regions of similarity between them using a dynamic programming approach [37].

The method constructs a matrix H, indexed by (i,j), where i and j correspond to the

length of the two aligned protein sequences. The matrix H is filled systematically

based on a scoring function.

The scoring function used in the SW algorithm incorporates several parameters,

such as the penalty for opening and extending gaps, the score for matches and

mismatches, and a substitution matrix. The penalty for opening and extending gaps

is used to penalise the insertion or deletion of amino acids in the alignment, and

this penalty is typically subtracted from the overall alignment score. The score for

matches and mismatches is based on a substitution matrix, which assigns a numerical

value to the similarity between different amino acids. This score determines the

similarity between the amino acids at a particular position in the aligned sequences.

The matrix H(i,j) is filled by considering the maximum possible score of a local

alignment ending at a particular position (i,j) in the two sequences being aligned,

taking into account the scores of the previous positions in the matrix, the gap

penalties and the match/mismatch scores. The optimal local alignment corresponds

to the highest score in the matrix H, representing the similarity between the aligned

sequences.

Considering:

A−one sequence used in the method with length n,

ai−the residue of sequence A in position i

B−the other sequence used in the method with length m

bi−the residue of sequence B in position i

s(ai, bj)−The similarity score of ai and bi

Wk−the penalty of a gap that has length k

11
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The algorithm will work as follows:

1. Determine the substitution matrix and the gap penalty.

2. Construct a scoring matrix H with the shape (n+1) by (m+1).

3. Fill H. Hk0 = H0l = 0 for 0 ≤ k ≤ n & 0 ≤ l ≤ m

Hij = max



Hi−1,j−1 + s(ai, bj),

maxk≤1{Hi−k,j −Wk},

maxl≤1{Hi,j−l −Wl},

0

4. Traceback. Starting at the highest score in the matrix H and ending at a cell

where the score is 0, there is no similarity.

2.2.2 Needleman-Wunsch

The Needleman-Wunsch algorithm is a global sequence alignment algorithm used to

align two sequences by maximising the overall similarity between them [36]. It is

a dynamic programming algorithm that constructs a matrix, similar to the Smith-

Waterman algorithm, where the rows and columns correspond to the positions in

the two sequences being aligned.

The Needleman-Wunsch algorithm uses a scoring function that assigns a value for a

match, a mismatch, and the insertion or deletion (gap) of an amino acid. The score

for a match is typically positive, the score for a mismatch is typically negative, and

the score for a gap is also typically negative. The algorithm begins by initialising

the first row and column of the matrix with the cumulative gap penalties. Then,

it systematically fills the rest of the matrix by considering the maximum possible

alignment score for each position (i,j) in the two sequences being aligned, taking

into account the scores of the previous positions in the matrix, the gap penalties,

and the match/mismatch scores [36].

The optimal global alignment corresponds to the last element of the matrix; this

score represents the degree of similarity between the two sequences being aligned.

The final alignment can be reconstructed by tracing the matrix and identifying the

path leading to the optimal alignment score [36].
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2.2.3 BLAST

Basic Local Alignment Search Tool (BLAST) is a software tool used to search for

similarities between a query sequence and a database of sequences. The most com-

mon use of BLAST is to search for similar sequences in public databases, such as

the National Center for Biotechnology Information (NCBI) database, to identify ho-

mologs of a given query sequence and calculate its statistical significance. BLAST

can be used to align sequences of various types, including DNA, RNA and proteins,

and it can be run in different modes, depending on the type of sequences and the

research question [39].

There are several versions of BLAST, each optimised for different sequences and

research questions. The most commonly used versions are [39]:

• BLASTN: for aligning nucleotide sequences against a nucleotide database.

• BLASTP: for aligning a protein sequence against a protein database.

• BLASTX: for aligning a nucleotide sequence against a protein database, using

a six-frame translation of the nucleotides.

• TBLASTN: for aligning a protein sequence against a nucleotide database,

using a six-frame translation of the database sequences.

• TBLASTX: for aligning a nucleotide sequence against a nucleotide database,

using a six-frame translation of both the query and the database sequences.

The BLAST algorithm starts by first looking for “seed” matches between the query

sequence and the database sequences, which are short stretches of the query sequence

used to initiate the alignment process. The algorithm calculates a score for each seed

match based on the alignment of individual residues and the gap penalties. If the

score is above a certain threshold, the match is considered a “hit”. These hits are

then extended in both directions using the dynamic programming approach to find

the optimal local alignment. The algorithm then reports the best alignment(s) with

the highest score and their location in the database [40].

2.2.3.1 Non-Redundant Database Integration

The Non-redundant (NR) database [41] constitutes a cornerstone of sequence simi-

larity analysis within the BLAST tool provided by the National Center for Biotech-

nology Information. Its purpose lies in mitigating the challenge of sequence re-
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dundancy, which arises from including multiple highly similar sequences originating

from various sources.

To counteract redundancy, the NR database employs a systematic curation pro-

cess that groups highly similar sequences into clusters, thereby retaining only one

representative sequence per cluster. This strategy drastically reduces the size of

the database while preserving the diversity of biological information. The resulting

NR database is a curated collection of non-redundant sequences, offering a more

accurate representation of the biological sequence space.

Integrating the NR database within BLAST searches revolutionises sequence simi-

larity analysis. Its role in curbing redundancy and enhancing precision contributes

to more meaningful results, ultimately empowering researchers to uncover intricate

biological relationships more accurately and efficiently.
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State of the Art

3.1 Computational Protein Engineering

In recent years, there has been a significant increase of computational methodologies

capable of challenging the task that is Protein Design, from predicting the structure

[42, 43] to the function of proteins [44]. These models learn the distribution of

natural proteins and can generate new, unseen proteins with the desired properties.

In 2000, the Rosetta software was released. This software is suited for computational

protein structure prediction, including protein structure prediction, protein-protein

docking, and ligand-binding prediction [45]. Rosetta primarily focuses on predict-

ing the structure of proteins based on their amino acid sequence. However, it can

also be used for protein design. It uses computational methods to search for se-

quences that fold into a specific structure or conformation, such as energy-based

scoring, structural constraints, and evolutionary information [46]. The disadvan-

tages of Rosetta’s are the complexity, due to the number of options and param-

eters [45], the dependence on experimental data, Rosetta’s predictions are often

improved when using experimental data, such as X-ray crystal structures [46], mak-

ing Rosetta time-consuming and less useful for predictions of completely novel or

unknown proteins.

In 2001, Baker et al. [17] proposed a model that classifies enzymes based on their

individual properties. A part of the model is pre-trained by replicating unlabelled

proteins using a stacked LSTM. It successfully learned how the sequence follows

after it is fine-tuned to classify. It also achieved good results in classifying the type

of enzyme it is.

Recurrent Neural Networks can achieve good results in classifying and generating

protein sequences. Liu et al. 2017 [47] used an LSTM model that learns the sequence
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of the protein and can classify its function, later on using BLAST to validate the

results, showing the possibility that an LSTM is capable of grasping the sequence

and understanding how it functions without the usage of more advanced protein

structures. In 2017, Cao et al. 2017 [48] applied fine-tuning and transfer learning so

the drug generator could generate new drugs to target specific targets and proteins.

Despite focusing on drug development, this proposal still considered how the protein

functions and the behaviour of proteins.

The work of Karimi et al., 2019 [42] proposes the use of a semi-supervised framework

GAN, named Conditional Wasserstein Generative Adversarial Network (CWGAN).

Here, it has a generator, a discriminator network, and an oracle that feeds the gen-

erator on how the protein would fold. The CWGAN uses the Wasserstein distance

metric instead of the Jensen-Shannon [49]. It will generate protein sequences with

a secondary structure similar to an alpha helix. Despite achieving good results, the

model is limited to one type of protein folding and a limited dataset of just alpha-

helix protein structures. Sabban et al. 2020 [43] also propose a stacked LSTM

capable of generating de-novo helical proteins for the generator. However, it suffers

from the limitation of just a type of protein structure. Also, the lack of comparisons

to the other state-of-the-art works does not corroborate the results.

As evidenced in the state of the art, most works are around the 3D element of the

proteins and not the more novel primary structure. In another area of bioinformatics,

such as drug development, it is possible to work with a 1D sequence. Grechishnikova

proposes a Transformer, where given a protein amino acid sequence, it outputs a drug

string sequence, known as Simplified Molecular Input Line Entry System (SMILES)

[50]. The encoder of the transformer will transform the amino acid sequence into

a continuous representation that is then passed to the decoder. The decoder may

consult any time the output is given by the encoder due to the attention mechanism

in the transformer.

Advancements in text generation have paved the way for knowledge transfer to the

realm of biological string sequence despite the distinct domains involved. Notably,

Goodfellow’s introduction of GAN has found application in numerous papers, facil-

itating the generation and validation of proteins [51]. Another milestone was the

introduction of Seq2Seq models [52], which introduced the encoder-decoder archi-

tecture. Subsequently, Transformers [53] adapted this structure, incorporating an

attention mechanism to weigh the significance of various input elements. These

developments culminated in creating the latest iteration of text generation models,
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known as Generative Pre-trained Transformer (GPT) [54]. GPT-3, an unsuper-

vised pre-training language model, can respond accurately to prompts, representing

a significant leap in text generation.
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4

Methods

4.1 Artificial Neural Networks

Machine Learning (ML) is a subset of artificial intelligence that focuses on developing

algorithms and statistical models. These models can learn and make predictions or

decisions without explicit instructions. There are several types of ML, such as

supervised learning, unsupervised learning, and semi-supervised learning [55].

Supervised learning is when the model is trained on labelled data, meaning that the

input and the output are provided during training. The model learns how to map

the inputs to results, and later, it can be applied to new and unseen inputs.

The opposite of supervised learning is unsupervised learning; the model is trained on

unlabeled data and tries to discover patterns. The main goal of unsupervised learn-

ing is to understand the underlying structure of the data and find hidden patterns

or unknown features.

Semi-supervised learning is a combination of supervised and unsupervised learning.

The algorithm is provided with a dataset that contains labelled and unlabeled data.

This way, the labelled examples are used to train the model and the unlabeled

examples are used to help the model learn more about the data structure.

Artificial Neural Network (ANN) is a ML model inspired by how the human brain

works. For example, the brains have neurons, and an ANN consists of connected

processing units known as nodes, perceptrons or neurons [56,57]. Each neuron takes

inputs, performs calculations, and produces an output. The inputs to a neuron are

typically the outputs from other neurons or its output. Some neuron’s calculation

is the dot product, summation and activation function.

A typical structure of a neuron in an ANN includes the following components:

19



4. Methods

• Inputs, xi: These are the values passed into the neuron, typically the output

values of other neurons in the network.

• Weights, wi: These are the values used to multiply the input values, which are

used to adjust the importance of the input values.

• Bias: This value is added to the sum of the inputs and weights, which helps

to adjust the neuron output.

• Summation function,
∑

: This mathematical function adds up all the inputs

multiplied by the weights and adds the bias value.

• Activation function, f : This mathematical function is applied to the summa-

tion function’s output. It is used to introduce non-linearity in the output,

which helps the network to learn complex relationships in the data.

x2 w2 Σ f

Activate

function

y

Output

x1 w1

x3 w3

Weights

Bias

b

Inputs

The Multilayer Perceptron (MLP) consists of an input layer, one or more hidden

layers, and an output layer. The input layer receives and passes the input data to

the hidden layers. Each hidden layer processes the data using a set of weights and

biases and applies an activation function to introduce non-linearity. The output

layer produces the final output of the network.

Deep Neural Network (DNN) are a type of ANN with a deep architecture, meaning

they have multiple layers, typically many hidden layers. These layers comprise

interconnected nodes or neurons, which process and transmit information. The

structure of a DNN can be composed of an input layer, one or more hidden layers,

and an output layer. The input layer receives the input data, the hidden layers

process the data, and the output layer provides the predictions or output. Thanks to

their deep architecture and non-linear activation functions, DNNs can learn complex

patterns and relationships in the data.
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The main problem in DNN is that it needs a large dataset and algorithms to adjust

the connections between the neurons to learn appropriately. This is because DNNs

typically have many parameters or connections between nodes, which require a lot

of data and computational resources to optimise. Additionally, DNNs are prone to

overfitting, where the model becomes too specialised to the training data and cannot

generalise well to new data. To solve these challenges, regularisation and early

stopping can be used to prevent overfitting and improve the model’s generalisation.

Transfer learning techniques can also leverage pre-trained models and fine-tune them

on specific datasets, reducing the data and computational resources required to train

a DNN [58].

The effectiveness of deep neural network (DNN) models hinges significantly on the

choice of the gradient descent optimizer and the loss function.

There is also a need for updating in a neural network, which typically involves using

a loss function, also known as a cost function, to measure the error or difference

between the predicted and actual output. The goal is to minimise this error. This

process is known as backpropagation, where the error is propagated back through the

network, and the neurons’ weights and biases are adjusted to reduce the error. The

adjustments to the weights and biases are determined by optimisation algorithms

such as gradient descent, which calculates the gradient of the loss function concerning

the network’s parameters and updates them in the opposite direction to minimise

the loss. This process is repeated multiple times during the training until the error

reaches an acceptable level or a stopping criterion is met [59].

Gradient descent serves as the cornerstone for training deep neural networks. It’s an

iterative optimization algorithm to discover a given function’s minimum (or max-

imum). In artificial neural networks, gradient descent is crucial in adjusting the

model’s parameters to minimize a specified loss function. A key element in this

process is the learning rate, which governs the step size required to reach a lo-

cal minimum. In essence, the loss function quantifies prediction errors, facilitat-

ing the calculation of gradients that are subsequently backpropagated through the

network—from the output layer to the input layer—to update the corresponding

weights. Two challenges often encountered during this process are the vanishing

and exploding gradient issues. The former occurs when the error becomes too small,

leading to minimal updates when it reaches the input layer. Conversely, the latter

occurs when the gradient grows exponentially as it is propagated backwards.
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4.1.1 Recurrent Neural Network

A RNN is a neural network that processes sequential data. It comprises a series of

interconnected neurons capable of retaining information from prior inputs, allowing

it to process data with temporal dependencies.

RNNs are particularly useful for tasks such as natural language processing [60–62],

speech recognition, and time series prediction. They comprise a series of layers,

typically including an input layer, one or more hidden layers, and an output layer.

The main characteristic of RNNs is the presence of recurrent units, which are similar

to traditional feedforward neurons, but with the addition of where the output of a

neuron is fed back as input to the same neuron, allowing information to be passed

from one-time step to the next [63].

Their capacity to transmit information to neighbouring neurons within the same

layer facilitates the temporal persistence of information, having a memory. The

neuron’s output depends on the input and its predecessors with this procedure.

There are several types of RNNs, including the traditional Vanilla RNN, LSTM net-

works [64], and Gated recurrent units (GRU) networks. LSTM and GRU networks

are variations of the Vanilla RNN designed to address the problem of vanishing

gradients, which can occur when training RNNs with long-term dependencies [65].

RNNs can be trained using various optimisation algorithms, such as Backpropagation

Through Time (BPTT) and the more recent Truncated Backpropagation Through

Time (TBPTT) algorithm [66]. The critical difference between BPTT and the stan-

dard backpropagation algorithm is that in BPTT, the error is propagated through

all the time steps in the sequence, not just the final time step. It allows the network

to learn dependencies between the input and output at different time steps and

better suits sequential data tasks. However, BPTT has the drawback of requiring a

large amount of memory to store the gradients, which can be an issue when training

on long sequences. To alleviate this, TBPTT is used, where only a limited number

of time steps are used to backpropagate the error.

4.1.2 Long Short-Term Memory

An LSTM cell is a RNN capable of learning long-term dependencies in sequential

data. The LSTM cell, Figure 4.1, is composed of several gates that control the
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Figure 4.1: LSTM Cell

flow of information through the cell, which allows the model to remember or for-

get information [64] selectively. The basic structure of an LSTM cell includes the

following:

Forget Gate f : This gate defines how much one must forget.

Input Gate i: This gate decides how the present input needs to flow.

Gate gate g: This gate treats the hidden state in the LSTM.

Output Gate o: This gate is responsible for the final output and hidden state.

Each gate is composed of a sigmoid layer and a point-wise multiplication operation.

The sigmoid layer outputs a value between 0 and 1, which acts as a ”gate” that

controls the flow of information. The point-wise multiplication operation applies to

the input, forget, and output states.

The LSTM cell updates its state at each time step using the current input, the

previous state, and the learned parameters. The following formulas are used for this

update:

it = σ(Wi · [ht−1, xt] + bi)

ft = σ(Wf · [ht−1, xt] + bf )

ot = σ(Wo · [ht−1, xt] + bo)

gt = tanh(Wg · [ht−1, xt] + bg)

ct = ft ⊙ ct−1 + it ⊙ gt
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ht = ot ⊙ tanh(ct)

Where it, ft, ot and gt are the input, forget, output and cell input gate activations,

respectively, at time step t, ht−1 and xt are the previous hidden state and current

input, W denotes the weight matrices, b denotes the bias vectors, σ is the sigmoid

function, and ⊙ denotes element-wise multiplication.

4.1.3 Sequence to Sequence

Mikolov introduced Seq2Seq in his Ph.D. Thesis [67]. It receives an input sequence

and generates another sequence. Due to the vanishing gradients problem, most

Seq2Seq based architectures rely on using LSTM cells since they do not suffer from

the vanishing gradient as much.

In Figure 4.2, the Seq2Seq model is an architecture that consists of two RNNs, an

encoder and a decoder.

Encoder: It transforms the sequence to a fixed-length hidden vector for each ele-

ment in the sequence. This hidden vector represents the context for that element.

The encoder RNN processes the input sequence one step at a time, updating its

hidden state ht at each time step t according to the following formulas:

ht = RNN(xt, ht−1)

ct = RNN(xt, ct−1)

where xt is the input at time step t, ht is the hidden state at time step t, and ct is

the memory cell state at time step t.

Decoder: It takes in the hidden vectors from the encoder, its hidden states and

the current element to produce the next hidden state and the next element.

The decoder RNN then takes in the context vector cT and generates the output

sequence one step at a time, updating its hidden state st and output yt at each time

step t according to the following formulas:

st = RNN(yt−1, st−1, cT )

yt = softmax(Wy · st)
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Figure 4.2: Seq2Seq Architecture

where yt−1 is the output at time step t-1, st is the hidden state at time step t, cT is

the final memory cell state from the encoder, and Wy is a weight matrix, sometimes

it can be a different activation function besides softmax.

The traditional Seq2Seq model has some disadvantages, such as the inability to

handle long sequences efficiently and the tendency to generate repetitive or generic

responses. To address these issues, extensions to the Seq2Seq model, such as the

attention-based Seq2Seq and the Transformer architecture, have been proposed [68].

4.1.4 Transformer

An architecture used for Natural Language Process (NLP) is the Transformers,

Figure 4.3. This architecture uses a mechanism known as Attention, capturing

the features between two input sequences and effectively modelling the relationships

and dependencies within the sequence [53].

The structure of this model is an encoder-decoder structure. The encoder is com-

posed of a stack of N identical layers. Each layer possesses sub-layers. The first

is a multi-head self-attention mechanism, and the second is a fully connected neu-

ral network. The output of each layer is summed and then normalised. Here the

encoder maps an input sequence of symbols (x1, ..., xn) to a sequence of continuous

representation z = (z1,..., zn).

The decoder comprises N layers and possesses the same layers as the encoder and

an additional multi-head attention focusing on the encoder’s output. The decoder

also receives the pretending target as output. However, it shifts to the right, but

the multi-head attention responsible for the input, which is the target shifted to the

right, the self-attention is modified so that the sub-layer prevents from attending to
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Figure 4.3: Transformer Architecture Overview

subsequent positions. By utilizing z, the decoder generates an output of sequence

(y1,...,ym) of symbols one element at a time. The model is also regressive, consum-

ing the previously generated symbols as additional input when generating the next

symbol.

The Transformer architecture employs a consistent structure in which stacked self-

attention and point-wise, fully connected layers are utilized for both the encoder

and decoder components.

The attention in the Transformer consists of a Scaled Dot-Product Attention.

The input consists of queries, keys and values. Here, the output consists of a dot

product of the query with all keys divided by the square root of the dimension of

keys,
√
dk, and apply a softmax to obtain the weights on the values, Equation 4.1.

Attention(Q,K,V ) = softmax(
QKT

√
dk

)V (4.1)
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Figure 4.4: Multihead and Scale-Dot Product Attention

However, the model does not just perform a single attention function. The model

projects the different inputs a number of times, h, with different linear projections.

An attention function is performed in parallel on each projection version of queries,

keys and values. All values are concatenated and projected, resulting in the final

values, as depicted in the equation 4.2.

MultiHead(Q,K,V ) = Concat(head1, ..., headh)W
O

,whereheadi = Attention(QWQ
i ,KWK

i , V W V
i )

(4.2)

Besides the attention sub-layers, as mentioned before, both the decoder and the

encoder contain a fully connected feedforward network. It consists of two linear

transformations with a ReLU activation in between, equation 4.3.

FFN(x) = max(0, xW1 + b1)W2 + b2 (4.3)

Since there is no recurrence nor convolution, to use the order of the sequence, there

is a need to inject the relative and absolute position of the tokens in the sequence.

To achieve this, a ”positional encoding” is added to the input embeddings at the

bottoms of the encoder and decoder stacks. The positional encodings have the exact

dimensions as the embeddings so that they can be summed. There are different types

of positional encodings. The one used in the original work is the sine and cosine

functions of different frequencies.

PEpos,2i = sin(pos/100002i/dmodel)

PEpos,2i+1 = cos(pos/100002i/dmodel)
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Interpretability is a vital aspect of deep learning techniques, and Transformers offer

a valuable tool for achieving it: attention mechanisms. These mechanisms allow

us to visualize the model’s decision-making process, and one popular method for

doing so is through attention maps. Attention maps illustrate how different input

tokens influence each other’s importance when generating output. They come in

various forms, including heatmap-based representations and Token-to-Token Atten-

tion, which reveals how each token in the input sequence contributes to other tokens

in the same sequence.

Transformers often use multiple attention heads and have multiple layers, allowing

the model to capture different types of relationships between tokens. It can visualize

the attention patterns learned by each attention head or how the model’s focus

changes as it processes information through deeper layers.

4.1.5 Reinforcement Learning

RL is a distinct approach to machine learning that addresses the challenge of training

intelligent agents to make sequential decisions in an environment to maximise a

reward signal. It differs from supervised and unsupervised learning, which are two

other widely used learning paradigms, in terms of the learning process and the types

of problems they tackle [69–71].

RL involves studying a Markov decision process, where an agent interacts with the

environment ϵ over discrete time steps t. At each time step, the agent receives a

state st from a state space S and selects an action at from an action space, guided

by a policy π(at|st). In this framework, maximising the expected cumulative reward

becomes a central objective.

To address this objective, the concept of the Q-function emerges as a fundamental

component of the Markov decision process. The Q-function represents an agent’s

expected cumulative reward by taking a particular action a in a given state s and

following a policy π. In mathematical terms, the Q-function is defined as:

Qπ(s, a) = E

[
∞∑
t=0

γtrt | s0 = s, a0 = a, π

]
(4.4)

where:

• Qπ(s, a) represents the Q-value or expected cumulative reward for taking ac-
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tion a in state s and following policy π thereafter.

• rt is the reward obtained at time step t.

• γ is the discount factor determining the importance of future rewards compared

to immediate rewards.

The Q-function (4.4) plays a vital role in making optimal decisions by guiding the

agent to choose actions that maximise the expected cumulative reward. Different

algorithms, such as Q-learning and Deep Q-Network (DQN), aim to learn and es-

timate the optimal Q-function to enable optimal decision-making in Reinforcement

Learning tasks [70,72].

The provided Q-function definition assumes an infinite horizon setting, where the

summation extends to infinity. However, in practice, there are often finite-horizon

or episodic settings where the summation is limited to a fixed number of time steps

or episodes.

As mentioned in a previous statement, the objective is to maximize the expected

reward from the actions taken. So, it was determined that the focus should be on

the following objectives:

maxEŷ1,...,ŷT∼πθ(ŷ1,...,ŷT ) [r (ŷ1, . . . , ŷT )] (4.5)

max
y

Aπ (st, yt) (4.6)

max
y

Aπ (st, yt) → Maxy Qπ (st, yt) (4.7)

There are multiple approaches to addressing this problem. One method involves

utilizing Equation 4.5, while another leverages the expected discounted reward

E[Rt =
∑T θ = tϕθ−trθ]. Alternatively, we can aim to maximize the advantage

function (Equation 4.6) or solve it by optimizing the Q-function using Equation 4.7.

The most straightforward algorithm designed to address Equation 4.5 is known

as the Policy Gradient (PG). In contrast, the actor-critic method expands upon

Equation 4.6 by incorporating the Q-function. Enhanced strategies can be developed

by optimizing Q-functions, as shown in Equation 4.7, which can further improve

policy gradient and actor-critic methods.
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4.1.5.1 Policy Gradient

PG is based on the principle We observe and act. It means the policy varies ac-

cording to the application used, so it observes and then chooses how to behave. For

in-text applications that receive text as input, X tries to generate the output y,

being the policy a language model, p(y|X). For a sequence output, when it reaches

the end of the sequence, it compares the current policy (ŷt) against the ground-truth

action sequence (yt) and calculates a reward based on the metric used. The objec-

tive is to optimize the agent’s parameters to maximize its reward. These algorithms

do not estimate Q-values; instead, they prioritise the policy’s parameters directly to

maximize the expected cumulative reward. An example of such an algorithm that

employs policy gradients is REINFORCE, algorithm 1, [72].

Algorithm 1 Policy Gradient: REINFORCE

Input: Input sequences (X), ground-truth output sequences(Y ), and if possible
an already pre-trained policy model(π0)

Output: Trained model with REINFORCE

while not converged do
Select a batch of size N from X and Y
Observe the sequence reward and calculate the baseline rb
Calculate the loss
Update the parameters of the network

The main challenge of REINFORCE is the high variance since only one sample is

used at a given time step. Consequently, one solution is to sample N sequences of

actions and update the gradient by averaging all those values. The result is a loss

similar to the Equation 4.8.

L0 =
1

N

N∑
i=1

∑
t

log πθ(ŷi|ŷi,t−1,si,t,ci,t−1
)× (r(ŷi,1,...,ŷi,T )− rb) (4.8)

A challenge stems from the fact that rewards are observed only after the entire se-

quence of actions is completed. This delay can be problematic when the model needs

to make critical decisions at specific points within the sequence, and the delayed re-

ward may not accurately reflect the quality of those decisions. Consequently, the

REINFORCE algorithm requires waiting until the end to assess performance, result-

ing in slower convergence and potentially suboptimal results. One effective solution

is to pre-train the model for several epochs before transitioning to the REINFORCE

algorithm.
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4.1.5.2 Actor-Critic

The actor-critic approach is a temporal difference version of policy gradients (PG).

It involves two networks: the Actor and the Critic. The Actor is responsible for

selecting actions, while the Critic assesses the quality of those actions and provides

feedback.

To mitigate variance, PG incorporates a baseline reward. A model is employed to

compute this baseline reward in the actor-critic framework. Here’s how it works: The

Actor generates samples and policy states at times t and t+1. The Critic estimates

the value function Vπ(s; Ψ) and provides the Actor with estimations. The Actor

then leverages these estimations to calculate reward approximations and update the

loss, as depicted in Equation 4.9.

L0 =
1

N

N∑
i=1

∑
t

log πθ(ŷi|ŷi,t−1,si,t,ci,t−1
)× AΨ(si,t,yi,t) (4.9)

4.1.5.3 Deep Q-Network

The ‘Q’ in Q-Learning represents a specific reinforcement learning technique called

off-policy temporal difference learning. Unlike REINFORCE, which requires waiting

until the end of an episode to calculate the final reward and discounted rewards,

Q-Learning uses the Bellman equation to update the value function for a given

State-Action pair. This enables Q-Learning to consider future rewards and efficiently

update the value functions for all actions without waiting for episode completion [70].

The Bellman Equation consists of the agent updating the current perceived value

with the estimated optimal future reward, which assumes that the agent will search

through all existing actions and choose the state action pair with the highest Q-

value.

Q(St, At) = (1− α)Q(St,At) + α ∗ (Rt + λ ∗maxαQ(St+1, a)) (4.10)

The process in the DQN is first to initialise Main and Target neural networks and,

secondly, choose an action using the Epsilon-Greedy Exploration Strategy. Finally,

update the network weights using the Bellman Equation.

Compared to the other methods, this model is forced to use two neural networks.
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Both networks must have the same architecture but different weights. In every N

step, the weights from the leading network are copied to the target network.

The Epsilon-Greedy exploration strategy chooses a random action with an epsilon

probability and exploits the best-known action with 1-epsilon. The best action ob-

tained from the neural networks is the one with the most significant value predicted,

which also represents the Q-value [72].

4.2 Protein Folding

Protein folding refers to the process by which a newly synthesised or denatured

protein assumes its functional three-dimensional structure. Proteins are linear chains

of amino acids, and their function is intricately tied to their three-dimensional shape.

During protein folding, the linear chain of amino acids folds and twists into a specific

three-dimensional conformation. This process is guided by different interactions of

the protein chain with the surroundings, such as hydrogen bonding, electrostatic

interactions, hydrophobic interactions, and minimal energy consumption.

The folding of a protein is crucial for the proper function. If the proteins fail to fold

correctly, they may become unstable, non-functional and even harmful to cells.

In informatics, protein folding refers to the computational modelling and simulation

of protein structures and their dynamics. It usually requires the use of machine

learning and the use of large protein databases. The three state-of-the-art algo-

rithms in protein folding are OmegaFold, ESMFold and AlphaFold. AlphaFold uses

a network-based model, ESMFold leverages a large-scale language model for protein

prediction, and OmegaFold is a deep transformer-based protein language model.

4.2.1 AlphaFold

In AlphaFold, Figure 4.5 heavily relies on Multiple Sequence Alignment (MSA) for

the prediction of 3D structure, considering that it is also used as inputs of the

model, which maps the evolutionary relationship between corresponding residues

of genetically related sequences, to achieve highly accurate predictions. It is widely

accepted that MSA-dependent structural prediction tools gain 3D positional context

clues from pairs of residues that co-evolve over time. However, it makes them reliant

on naturally occurring protein sequences. It also identifies similar protein sequences

that may have a structure similar to the input [6].
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Figure 4.5: AlphaFold’s Structure [6]

In the second step, AlphaFold uses an attention-based neural network architecture

known as a Transformer-based to predict the 3D structure of the target protein.

The network considers the predicted distances between pairs of amino acids in the

protein sequence and the ”similar templates”. Later, it will refine the representation

for the MSA and pair interactions and exchange information between both.

The interactions and MSA information output is taken to the structure module. It

takes the ”MSA representation” and the ”pair representation” and leverages them to

construct a three-dimensional model of the structure. The result is a list of cartesian

coordinates representing each protein atom’s position.

After generating a final structure, it will take all the information, MSA, pair and pre-

dicted structure, and repeat the process several times to the start of the Transformer-

based model.

4.2.2 OmegaFold

To overcome the need for MSA in the prediction process of languaged-based models

associated with protein sequences, OmegaFold has a language modelling component

called OmegaPLM that uses Transformers and attention mechanisms to learn indi-

vidual and pairwise residue representations for each protein sequence. Therefore,

they achieve better accuracy on structure prediction in orphan proteins and anti-

body design as they do not require MSA as their input. However, it achieves lower
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Figure 4.6: OmegaFold’s Structure [73]

scores for proteins already possessing MSA. It makes the non-MSA-reliant better

for protein engineering tasks.

The OmegaFold introduces the OmegaPLM, Figure 4.6, a deep Transformer-basedProtein

Language Model (PLM), which is initially trained on an extensive collection of un-

aligned and unlabelled model protein sequences, learning single and pairwise residues

embeddings. OmegaPLM captures structural and functional information encoded

in the amino acid sequences. After this is fed to the GeoFormer, a new geometry-

inspired transformer neural network further distils the structure and physical rela-

tionship between amino acids. Lastly, a structural module predicts the 3D structure

of all the atoms [73]. The Geoformer’s primary purpose is to make the embeddings

from the OmegaPLM more geometrically consistent. It captures the geometry of a

protein structure with representation, which is then projected to a structure mod-

ule. Depending on the OmegaFold outputs, either a PDB file or recycle the process

again, refining the structure until a certain number of iterations.

4.3 Metrics

4.3.1 BLAST “E-value”

The expectation value, E-value, returned by BLAST corresponds to the measure of

the reliability of the similarity of the query to the sequence.

E = m ∗ n/2S (4.11)
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The equation 4.11 represents how the E-value is calculated. Where parameter m

represents the size of the query, n represents the size of the database where BLAST

was performed, and S is the measure of the similarity of the query to the sequence

given. Furthermore, there are no database size limitations since this encompasses

the entire UniProt database, which consists of at least 24,815,519 entries as of 2022,

exclusively within UniProtKB. [74].

The main problem with the E-value is that it tends to be conservative when the query

sequence is short, making it difficult to achieve a high S value. However, BLAST

employs strategies to mitigate this problem. BLAST employs various statistical

methods and algorithms to adjust the E-value calculation, considering factors like

query length and database size, thus helping to provide more accurate significance

estimates for shorter query sequences.

The ideal value for sequence similarity is closer to 0, indicating a high degree of

similarity. Values approaching 0.01 are considered suitable matches for homology.

When the similarity score exceeds 10, it suggests few significant matches, potentially

indicating relations between the sequences.

In the range between 0.01 and 10, the match is considered less significant, but it

may hint at a tentative remote homology relationship. In this case, some smaller

sections of the sequences exhibit a degree of similarity.

4.3.2 plDDT

To correctly predict the 3D structure of a specific protein, it is critical to compute

a well-calibrated and sequence-resolved confidance score. Additionally, when pre-

dicting complete chains, it is necessary to have high confidence. AlphaFold and

OmegaFold produce a per-residue confidence metric called the plDDT [6].

The plDDT score is assigned to individual amino acid residues within the protein

sequence. This assignment aids in the characterization of the prediction quality at a

local level. The score falls into distinct value intervals, each indicative of a different

degree of confidence in the prediction accuracy.

Residues with plDDT scores falling within the [90, 100] range represent regions

of high-confidence predictions. According to the model’s robust estimation, these

residues are anticipated to closely align with the true protein structure.

In the [70, 90[ range, plDDT scores mean moderate confidence in the prediction.
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Even though these residues will likely adopt a structure resembling the true protein

configuration, minor uncertainties may exist regarding their precise spatial arrange-

ment.

Predictions characterized by plDDT scores ranging [50, 70[ belong to the moderate

confidence category. The model’s confidence in these regions is reduced, implying

potential local deviations from the protein structure.

Residues scoring within the interval [30, 50[ indicate low-confidence predictions. The

model’s certainty in the accuracy of the predicted structure for these residues is

diminished, possibly suggesting significant deviations from the true structure.

Lastly, plDDT scores within the [0, 30[ range correspond to regions with the lowest

confidence predictions. These predictions are perceived as least reliable, meaning a

higher likelihood of inaccuracies in the predicted protein structure.

Considering that the plDDT score is assigned individually to each residue, it is

necessary to compute the mean score to obtain a global estimation of the predicted

structures. Equation 4.12 computes perspective on the confidence of the structure’s

existence in its entirety.

GlobalplDDT (p) =

∑
plDDT (pi)

length(p)
(4.12)
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Framework

Figure 5.1: Framework Overview

The framework comprises two central components, illustrated in Figure 5.1. The

‘Generator’ is responsible for creating protein sequences, while the ‘Environment’

assesses the quality of these generated proteins.

Within the ’Generator,’ the model follows the structure depicted in Figure 5.1 to

produce valid, real-world protein sequences.

The training involves a two-phase generative model for protein sequences, combining

a sequence-to-sequence approach with reinforcement learning. In the initial phase,

the model learns the grammar and patterns of protein sequences from a provided

dataset. It predicts the following amino acids at each step using a recurrent neural

network, generating a sequence of probabilities for these amino acids. Training

employs Maximum Likelihood Estimation (MLE) to minimize the cross-entropy loss

between the predicted and actual sequences. Additionally, an extra 100 epochs of

training are conducted for the Transformer model with proteins containing a noise

level of 0.6.
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In the second phase, the model undergoes refinement through RL. Another model,

called the ’evaluator,’ assesses a specific number of proteins generated by the ’gen-

erative model’ and assigns quality scores based on predefined criteria, indicating

confidence in the 3D protein structure. The ’generative model’ is then trained to

maximize the quality scores assigned by the evaluator using policy gradient methods.

Ultimately, the goal is to achieve a substantial percentage of proficient proteins that

conform to real-world standards and exhibit diversity.

5.1 Generator

This work employed two Generator models: a stacked LSTM and a Transformer.

The LSTM served as a baseline for result comparison, while the Transformer demon-

strated the capabilities of deep neural networks in protein generation. Both models

received tokenised protein sequences as input, subsequently padded to ensure con-

sistent outputs. This approach allowed the models to learn the structural aspects

of protein sequences. The loss function applied during training was cross-entropy.

The protein prediction process within these models follows a random search method-

ology. It involves taking the model’s output, dividing it by a user-defined tempera-

ture, and passing it through a Softmax function, as depicted in Equation 5.1. This

operation yields probabilities for each token in the sequence. Subsequently, a token

is randomly selected based on these probabilities.

p(token) = Softmax(model(X)/temperature) (5.1)

The introduction of the temperature parameter influences the distribution of these

probabilities. Lower temperatures increase the likelihood of obtaining high-quality

sequences, while higher temperatures introduce more randomness. For this work,

a default temperature of 0.8 was chosen, striking a balance between introducing

randomness and favouring high-quality sequence generation.

5.1.1 Parameterization for Different Models

Several parameters are available for adjustment in the context of training these

models. However, the primary objective is to explore the feasibility of generating

1D protein sequences. Given the absence of a definitive set of parameters, we base
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our choices on related works within the field of protein generation.

The effectiveness of deep neural network (DNN) models hinges significantly on the

choice of the gradient descent optimizer and the loss function. Different variants

of gradient descent exist, and for this context, we utilized the Adaptive Moment

Estimation with Weight Decay (AdamW) optimizer in both the baseline LSTM and

the Transformer models.

AdamW [75] represents an enhanced iteration of the Adaptive Moment Estima-

tion (Adam) optimization algorithm, explicitly addressing the weight decay reg-

ularization challenge present in the original Adam optimizer. Weight decay is a

valuable technique for preventing overfitting. However, Adam applies weight decay

indiscriminately to both gradients and model parameters, leading to undesirable

behaviour. AdamW resolves this issue by decoupling weight decay from the opti-

mization process and directly applying it to the model parameters during weight

updates. This approach enhances training stability, particularly in deep learning

models where weight decay is critical in overfitting prevention. AdamW has gained

popularity across various machine learning tasks and architectures thanks to its

ability to separate weight decay from optimization cleanly.

The choice of a loss function depends on the type of machine learning problem being

addressed, such as regression, classification, or other specialized tasks. This kind of

task was used in the 1st phase, a Cross-Entropy Loss, and in the 2nd phase, where

it was the reinforcement learning, Mean Squared Error (MSE).

The structure of the stacked LSTM is six layers of long short-term memory layers

that map the output into the number of tokens with a linear function. The last

layers are bidirectional and also have a dropout layer between one another. At the

beginning of the layer, it has an embedding to better represent the proteins in a

structure that the computer can easily understand. This model’s prediction is more

exhaustive because it predicts one token will repeat the whole process until it reaches

the max length or an ending token. It had parameters similar to Table 5.1.

The structure of the Transformer follows the default values in the paper ‘Attention

is all you need’, [53], with some minor tweaks. The embedding has a size of 512,

and the number of heads is 16 due to the complexity of the proteins and their

relationships between the amino acids. The dropout is still 0.2; the inputs are the

protein sequence, and the target shifts to the right. Ultimately, it will be like Table

5.2.
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Table 5.1: Parameters settings for the stacked LSTM model.

Parameters Value
Epochs 200
Batch size 64
LSTM layers 5
Dropout Rate 0.2
Embedding Dimension 200
Bidirectional True
Vocabulary Size 27
Learning Rate 0.0001
Hidden LSTM dimension 256

Table 5.2: Parameters settings for the transformer model.

Parameters Value
Epochs without noise 200
Epochs with noise 100
Noise percentage 60%
Batch size 16
Transformer layers 6
Dropout Rate 0.2
Embedding Dimension 512
Number of Heads 16
Vocabulary Size 27
Learning Rate 0.0001
Hidden Transformer dimension 512
Step Function Step=30;gamma=0.1

5.2 Environment

Accurately validating proteins generated through computational methods is critical

to ensure their functional relevance and reliability. Predicting the tertiary structure

of protein sequences using reliable models that excel in protein folding, such as Al-

phaFold and OmegaFold, presents a promising approach for this task. Adequately

folded proteins assume their functional tertiary structure, enabling them to effec-

tively carry out specific biological roles. In contrast, misfolding or improper folding

can lead to protein dysfunction and contribute to diseases like Alzheimer’s, Parkin-

son’s, and prion-related disorders. In this subsection, we delve into the process of

protein validation, the choice of the OmegaFold model over AlphaFold for specific

scenarios, and the development of a reward function to incentivise the generation of

valid proteins.
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AlphaFold and OmegaFold’s performance varies depending on the size and the se-

quence type. Suppose it is a single-sequence input. OmegaFold performs better

with orphan proteins and antibodies, achieving higher statistical prediction accu-

racy than AlphaFold. In that case, orphan proteins do not have similar proteins to

make a proper multiple sequence alignment. However, if the sequence is long, above

the 2000 amino acids, the results are better for the AlphaFold due to numerous

sequence alignments [73, 76].

In terms of runtime, the OmegaFold is faster than the AlphaFold for short protein

sequences. However, the difference is increasingly slower the lengthier the sequence

is Alphafold surpasses OmegaFold; this can be checked in Table 5.3, [77].

Table 5.3: Runtime AlphaFold vs OmegaFold based on the length of the protein
sequence [77]

Sequence\Architecture AlphaFold OmegaFold

50 45 3.66
100 55 7.42
200 91 34.07
400 210 110
800 810 1425
1000 2800 Failed

So, considering protein folding prediction for the proteins generated, factors like

protein family similarity, sequence characteristics, and length play a crucial role in

selecting an appropriate model. OmegaFold, renowned for its efficiency in predicting

protein folding for shorter sequences and orphan proteins, emerges as the better

option in cases where the proteins may lack similarity to known protein families

and have unique characteristics. Its ability to handle sequences with fewer than

500 amino acids while being faster and designed for individual sequences further

solidifies its suitability for handling unknown proteins.

We employ the plDDT score to validate the generated proteins, a well-established

confidence measure in protein folding models. The plant score quantifies the accu-

racy of the predicted protein folding by measuring the difference between predicted

and experimental local distances in the protein structure. Based on the findings in

AlphaFold’s paper [6], proteins with plDDT scores above 90% are deemed scientif-

ically correct. In contrast, those with scores above 70% have a generally accurate

backbone, with neighbouring values also considered exemplary.
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The validation of proteins through the plant score provides a basis for designing

a reward function that promotes the generator to produce valid proteins while pe-

nalising misfolded sequences. We adopt the plant score as a threshold for a good

protein, accepting values near 0.7 and offering substantially low rewards for other

cases. The reward function (Equation 5.2) provides a reward of 1 for sequences with

plant scores greater than or equal to 0.7, indicating the generation of valid proteins.

Conversely, sequences with lower plant scores receive a reward of 0.1, discouraging

the production of misfolded or improper protein structures.

Reward(p) =



1 if plDDT (p) >= 0.75

plDDT (p) if 0.75 > plDDT (p) >= 0.6

0.1 if 0.6 > plDDT (p) >= 0.4

0 else

(5.2)

The reward function forms the core of the RL approach employed to train the gen-

erator. The generator is pre-trained on a large dataset of protein sequences to

comprehend the underlying grammar in protein structures. Subsequently, the gen-

erator generates 200 protein sequences and recycles them again, giving them to the

model as input so it can improve the generation step; with this, each sequence is

treated as an action of the model. The Environment then rewards these actions

based on the validation results using the plant score. The RL approach allows us

to handle the challenge of determining rewards only upon completing each protein

sequence. It is similar to the algorithm in Reinforcement Learning in Policy Gradi-

ent, Chapter 4.1.5.1, of REINFORCE, 1. It was the preferred choice since we can

only determine if it is good when it reaches the end of a protein sequence, and only

then can we determine the reward. In the end, it follows the algorithm 2, where the

starting token is just the start of the sequence token.

Algorithm 2 Training:2nd phase

Input: Trained generator model(G), if needed, starting tokens(X),
OmegaFold(π0)

Output: Trained model with Reinforce Learning

while not converged or episodes < 200 do
Generate from G 200 proteins sequences using X as starting tokens
Observe the sequence reward using π0 and calculate the baseline rb
Calculate the loss
Update the parameters of the network
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Figure 5.2: An example of a protein structure visualization in the AlphaFold style.
The visualization highlights the secondary structure elements and overall fold of the
protein.

5.3 Visualization

The visual representation of protein structures using the AlphaFold style, leveraging

three-dimensional (3D) Protein Data Bank (PDB) visualizations.

The AlphaFold approach provides accurate protein structure predictions. It offers a

unique visualization style that captures the essential features of protein architecture,

as shown in Figure 5.2.

The AlphaFold-style visualization provides several key insights into the predicted

protein structure:

• Secondary Structure Elements: The visualization highlights alpha-helices,

beta-strands, and other secondary structure elements, enabling a quick assess-

ment of the protein’s fold.

• Visual Confirmation: Presenting the predicted protein structure in an

AlphaFold-style visualization allows us to assess the accuracy and validity of

the generated structures visually. This verification strengthens the credibility

of the results.

• Exemplifying Complex Relationships: In complex scenarios where se-
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quence motifs influence intricate structural elements, visualizations act as a

visual narrative that simplifies the depiction of complex relationships. These

visualizations spotlight how specific sequence characteristics influence the final

three-dimensional fold and how complex it is; one of these is beta-sheets

5.4 Dataset

The database was extracted from UniProt. The database is also known as Swiss-Prot

[78]. This database is a comprehensive, high-quality, manually annotated protein

sequences and functional information resource. The Swiss Institute of Bioinformatics

maintains it in collaboration with the European Molecular Biology Laboratory.

One prominent feature of Swiss-Prot is its high-quality annotation of protein se-

quences. Each sequence is curated by experts who review the available experimental

evidence and literature to identify the protein’s function, sub-cellular localisation,

post-translational modifications, and other relevant information. This feature makes

the model biased, generating knowledge of already proven valid proteins and can

have a structure associated with it [79].

AlphaFold has introduced an additional feature, the plant value, representing the

confidence level of the predicted protein sequence’s 3D structure. This attribute

provides insights into the protein’s physical properties and increases the reliability

of the predictions in real-world applications [6].

The data acquisition phase yielded 437 272 proteins, each characterised by unique

size, function, and species features. Furthermore, each protein sequence was assigned

a corresponding global plant value, which provides an estimate of the accuracy of

the predicted 3D structure.

As illustrated in Figure 5.3, the dataset distribution highlights a higher prevalence

of protein sequences at the edge of the plant versus sequence length graph. It

suggests that the most reliable and least noisy data points are located in this area.

Consequently, we have excluded all data points with scores below 70 and above 600

in sequence length to ensure high-quality data for further analysis.

As a result, the total number of proteins in the dataset decreased from 437,272 to

333,533. By filtering out proteins with plant scores below 70 and above 600 and

limiting the sequence length, we introduced a more substantial bias towards shorter

and 3D-oriented proteins more likely to represent valid structures in the real world.
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The difference in length distribution between the original and filtered datasets is

shown in Figure 5.4.

After the dataset is defined, we apply tokenisation; tokenisation breaks down a

protein sequence into smaller units, which can be used as inputs for downstream

NLP tasks. In protein sequences, tokenisation can be achieved by representing each

amino acid letter as a unique numerical value. To tokenise a protein sequence to

individual characters with respective numbers, we can map each amino acid letter

to its corresponding integer value.
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Figure 5.4: Preprocessing process in the Swiss-Prot dataset
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In addition to tokenising each amino acid letter, we can add special characters to

indicate the start and end of the sequence and pad characters to ensure that all

sequences have the same length. Garanting in the future that the model receives

proteins of consistent size.
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Results and Discussion

In protein generation exploration, it is crucial to draw comparisons between gen-

erated and random sequences to discern the distinctions and understand how an

original sequence fits into the protein universe. This comparative analysis allows us

to gauge the similarity between generated and genuine proteins while highlighting

the differences from random strings of letters. Acknowledging that each generated

protein may exhibit distinct characteristics, potentially deviating from naturally oc-

curring proteins, is essential. The diversity in protein characteristics underscores

the complexity of this field. To determine the validity of proteins, the possibility

to do this was to check if there is a possibility of 3D proteins and compare them

to different approaches. We use OmegaFold and the formula in 4.3.2 to obtain the

global value and use the median to have a better resolution on the distribution. To

add, this also follows the procedure of generating a sequence and then feeding it

again to the model to add some corrections if needed or make it to the appropriate

length. However, we must know if the model is learning, if it is better than some

baseline models, if it can capture protein intricacies and if there is some novelty in

generated proteins. Thus, there are five questions it must answer.

Table 6.1: Validation results for 200 proteins using OmegaFold’s plDDT values for
four different approaches.

Mean St. Dev. 1st Quartile Median 3rd Quartile

Transformer with No RL 39.20 15.75 27.08 34.61 46.21
Transformer with RL 43.32 18.05 28.88 38.41 54.29
LSTM 32.55 14.97 25.66 28.51 33.78
Random 30.38 11.83 23.12 25.67 33.19

1. Does Transformer Performance Improve with Reinforcement Learn-

ing for Protein Structure Prediction?
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Transformer NoRLTransformer RL LSTM Random
0

20

40

60

80

Figure 6.1: Comparison of Protein Structure Prediction Models: Box Plot depict-
ing the distribution of plDDT values for the Transformer with No RL, Transformer
with RL, LSTM, and Random

The proposed approach could also receive an extra training procedure using

Reinforcement Learning using the OmegaFold as the Environment and check

if it can be used as one. The plDDT values were also used to check if they

were close to an accurate representation.

According to Table 6.1, we can conclude that the median plDDT score in-

creases from 34.61 to 38.41 when RL is used. This median score suggests that

the model’s predicted structures are closer to the ground truth with RL. The

mean plDDT score also increases from 39.20 to 43.32 with RL. This means

that the predictions’ overall quality tends to be higher when RL is used. The

standard deviation increases from 15.75 to 18.05 when RL is used. This stan-

dard deviation score implies that the plDDT scores are more spread out from

the mean when RL is employed. It could suggest that RL introduces more

variability in prediction quality.

The Interquartile Range (IQR), represented by the difference between the

third and the first quartiles, measures the spread of the middle 50% of the

data. In both cases, the IQR is quite large, indicating substantial variation in

the quality of predictions. The larger IQR in the RL condition (Q3 − Q1 =
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54.29−28.88 = 26.21) compared to the non-RL condition (Q3−Q1 = 46.21−
27.08 = 19.13) suggests that while RL might lead to higher median and mean

scores, it also introduces more variability in the quality of predictions.

Based on this data, using RL results in slightly better median and mean plDDT

scores, which suggests that the model is better at generating protein sequences.

However, the increased variability also implies that there might be cases where

the model performs worse with RL.

It was also applied the t-test with a significance level of 0.05; conducting

hypothesis tests can help determine if the observed differences are statistically

significant and not by randomness. The premise is: Is there a significant

difference between the two conditions (”No RL” and ”Yes RL”)?

• H0: The two models have no significant difference.

• Ha: The two models have a significant difference.

The results were a t-statistic of −2.42 and a p-value of 0.0158. The t-statistic

value −2.42 suggests that the means of the two conditions are significantly

different. The negative sign indicates that the mean plDDT values for the

”Yes RL” condition tend to be higher than for the ”No RL” condition. The

p-value of 0.0158 is less than the significance level of 0.05. This p-value is more

significant since it will determine whether the null hypothesis is rejected. Since

it is less than 0.05, it indicates that the difference is statistically significant at

the 0.05 significance level. In other words, the likelihood of observing such a

difference due to random chance is less than 0.05. However, it is also essential

to consider other parameters, such as the plDDT distribution.

Given these results and observing the plDDT distribution in Figure 6.1, we

can confidently conclude that using reinforcement learning (RL) in the model’s

predictions statistically impacts the plDDT values and produces fewer outliers.

The ”Yes RL” condition produces higher plDDT values than the ”No RL”

condition. However, it must also be added that the results can be biased due

to the Environment being the OmegaFold.

2. How does the proposed model behave against a simple LSTM and

random sequences?

By referring to Table 6.1 between the LSTM, the Random, and the Trans-
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former with RL, the validation results for the LSTM approach exhibit a mean

plDDT value of 32.55, indicating an unsatisfactory performance in generating

protein sequences because it is distant from the threshold considered satisfac-

tory in OmegaFold. The relatively high standard deviation (14.97) suggests

considerable variability in performance across the 200 proteins evaluated. The

IQR of 8.11 suggests that most predictions fall within a relatively narrower

performance range, highlighting varying degrees of success across different pro-

teins.

Contrasting the LSTM approach, the Random approach yields notably lower

mean (30.38) and median (25.67) plDDT values, signifying a lack of meaningful

predictive power for protein sequences. The minor standard deviation (11.83)

and wider IQR (10.06) indicate a more consistent yet overall unsatisfactory

performance, emphasizing the inability of the Random approach to provide

accurate protein structure predictions as it was expected since the OmegaFold

would give the sequences a deficient score since it does not follow a paradigm.

The Transformer with RL approach emerges as the most promising among the

three methodologies, boasting the highest mean (43.32) and median (38.41)

plDDT values, closer to the threshold in OmegaFold’s confidence of 50. These

higher results suggest a superior capability in predicting accurate protein struc-

tures compared to LSTM and Random approaches. However, the larger stan-

dard deviation (18.05) and substantial IQR (25.41) reveal notable variability

in performance across different proteins. This variability could stem from

the inherent complexity of protein structures and their diverse challenges for

predicting the OmegaFold and its biases.

We further bolster our analysis by applying box plots to each case, as depicted

in Figure 6.1. The utilization of box plots offers a visual representation that

complements our earlier findings and augments the understanding of our re-

sults. Despite having already presented the quartiles and IQR in our initial

analysis, including box plots introduces an additional layer of insights, partic-

ularly the detection of potential outliers that bear significance in the context

of the examined sequence generation approaches.

Multiple 0 values in the LSTM case emerge as a distinct outlier. This pecu-

liarity stems from instances where sequence generation failed to produce valid

results; no sequence was generated or too small of a sequence to be considered
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a protein sequence. While this occurrence introduces a challenge inherent to

the LSTM approach, it simultaneously underscores the necessity for addressing

such limitations in future iterations.

The presence of outliers in the Random case hints at instances where the

unpredictable nature of the random sequence generation led to unexpected

outcomes. This phenomenon underscores the inherent variability and ran-

domness inherent to the approach, highlighting the essential role of controlled

methodologies for sequence generation.

The most intriguing outliers are observed within the plDDT. Extremely high

plDDT values beckon attention due to their potential implications. These

instances may signify predictions that remarkably mirror experimental data,

hinting at high-confidence regions or structurally accurate motifs within the

generated sequences. However, it is essential to tread with caution, as the

possibility exists that such extreme plDDT values could be the result of co-

incidental alignment with experimental data—a fortunate occurrence rather

than a definitive, accurate prediction.

The distinction between true accuracy and fortuitous alignment becomes evi-

dent when contrasting these extreme plDDT values with those emerging from

the Random case. Here, the fortuity of achieving high plDDT values highlights

the chance nature of the phenomenon. This revelation reiterates the necessity

for robust methodologies that transcend chance and can consistently produce

high-quality predictions.

It was also applied a t-test comparing the LSTM model and the Transformer

to confirm that the model performs better, helping determine whether the

observed differences in mean performance between the two models are likely

due to chance or are genuinely reflective of a difference in model effectiveness.

• H0: The two models have no significant difference.

• Ha: The two models have a significant difference.

The results were a t-statistic of approximately −6.48 and a p-value extremely

low of 2.83e−10. With these results, it can be determined that the calculated

t-statistic is approximately −6.48. This t-statistic measures the magnitude of

the difference between the means of the two approaches’ plDDT values, indi-

cating that the Transformer approach’s mean is significantly higher than that
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of LSTM. The p-value obtained from the t-test is remarkably low, approx-

imately 2.83e − 10. This p-value signifies the probability of observing such

extreme differences in means by chance. A p-value of this magnitude is well

below conventional significance thresholds, providing strong evidence to reject

the null hypothesis that there is no significant difference between the two ap-

proaches. Instead, it supports the conclusion that the difference in means is

statistically significant.

In our exploration of protein sequence generation methodologies, we system-

atically investigated the capabilities of deep learning models. Our analysis,

conducted through both visual and quantitative approaches, revealed valuable

insights.

Box plots were employed to illustrate data distribution and characteristics,

shedding light on distinct patterns that highlight the inherent variability in

each approach. Additionally, statistical validation using t-tests highlighted sig-

nificant performance disparities between the Transformer and LSTM models,

solidifying the credibility of our findings.

Table 6.1 succinctly summarizes key statistics, providing a concise overview of

each model’s performance.

In summary, our exploration unveiled a noteworthy contrast: advanced mod-

els offer precision in protein sequence generation compared to the stochastic

nature of random approaches. This emphasizes the transformative potential

of deep learning methods, particularly the Transformer architecture, in gener-

ating protein sequences with predictive capabilities.

3. Does the proposed model capture common and complex secondary

structures?

In protein structure prediction, the accurate characterization of secondary

structures, including alpha helices and beta sheets, is fundamental. This aims

to provide insight into the model’s effectiveness in protein sequence generation.

The prevalence of Alpha-Helices observed in 98.5% proteins highlights the

tendency for this well-defined secondary structure element to emerge. Alpha-

helices are shared and stable motifs formed by hydrogen bonds between neigh-

bouring residues along the polypeptide chain. The recurring pattern of Alpha-
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Table 6.2: Secondary Structure Composition Analysis of 200 Protein Sequences
Generated from Scratch and 368 Proteins with Fully Known and Valid Structures:
A Per-Protein Classification Perspective

Alpha-Helix Beta Sheets Coil 310 Helix π Helix

Generated Proteins from Transformer RL 98.5% 51.5% 100% 71.0% 10.5%
Generated Proteins from LSTM 94.0% 64.8% 95.9% 78.9% 8.5%
Natural Proteins 97.0% 96.2% 100% 95.9% 24.7%

Helices contributes to their predictability.

Coils are dynamic regions without a fixed secondary structure, allowing pro-

teins to adopt diverse conformations. Their ubiquity across all 200 gener-

ated proteins underscores the intrinsic flexibility and variability of protein

sequences. Coil regions challenge precise sequence-to-structure predictions,

reflecting the intricate interplay of factors governing protein folding.

Although Beta Sheets are relatively common, their formation introduces in-

tricacies due to precise hydrogen bonding alignment and potential steric hin-

drances. Beta Sheets are present in 51.5 proteins, essential for structural

diversity in the generated sequences. Their coexistence with other structural

elements emphasizes the complexity inherent in protein sequence design.

The occurrence of 310 Helices in 71% proteins and π Helices in 10.5% pro-

teins introduces additional layers of complexity. These less common secondary

structure elements are notable for their distinctive conformations, often arising

in specific structural contexts. The presence of these helices in the generated

sequences demonstrates their rich structural diversity.

When comparing the secondary structure compositions of generated proteins

to natural proteins of similar size and scientifically validated structures in

Table 6.2, notable differences become apparent. Firstly, generated proteins

tend to have a higher percentage of Alpha-Helices, indicating that the model

predictor is proficient in generating this structural element. However, there

are notable shortcomings in replicating Beta Sheets in generated proteins,

and we observe an overrepresentation of 310 Helices and π Helices. These

deviations suggest that the predictor may have biases, limitations, or a lack

of representation in the dataset.

Another intriguing observation is the 100% representation of Coil regions in
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generated proteins. This leads us to question how unassigned or ambiguous

structural regions are classified in this context. Importantly, it’s crucial to

remember that the source of these generated structures is a protein folding

model predictor. This predictor introduces inherent biases and does not con-

sider environmental factors, such as pH, temperature, or ionic strength, which

can significantly impact protein stability and structure.

Coil regions may become more prevalent in specific environmental conditions

due to the disruption of hydrogen bonds or other stabilizing interactions that

typically favour the formation of Alpha-Helices or Beta Sheets. The inability

of predictive models to account for such environmental influences contributes

to the observed differences between generated and natural proteins.

In comparing the secondary structure composition of proteins generated by

two distinct models, Transformer RL and LSTM, notable differences emerge.

The Transformer RL model excels in generating Alpha-Helices, making it a

strong choice for applications where this secondary structure element is crucial.

On the other hand, the LSTM model demonstrates superior performance in

generating Beta Sheets, offering an advantage for those seeking proteins rich in

this structure. Both models exhibit a high representation of Coil regions. The

LSTM model has a slight edge in generating 310 Helices, while both models

exhibit a low representation of π Helices. However, the distance of both models

in these structures is too small to have a preference just for the structure.

In summary, the proposed model excels in generating Alpha-Helices but faces

limitations in replicating other structural elements to the same level as in

nature. The high occurrence of Coil regions in generated proteins may be due

to unresolved structural regions and the predictor’s omission of environmental

factors. These findings underscore the need to understand the predictor’s

biases and the impact of environmental conditions on protein structure. Our

analysis reveals the diverse landscape of structural motifs, from predictable

Alpha-Helices to adaptable Coils and precision-demanding Beta Sheets.

4. Do the Amino Acids distribute similarly to the naturally occurring

proteins?

The comparison of amino acid distribution between the generated and natu-

rally occurring proteins provides valuable insights into the characteristics of

the generated sequences. As can be seen in Table 6.3, Amino acids such as
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Methionine (M), Glutamine (Q), and Tryptophan (W) show differences in dis-

tribution between the two datasets. These variations may indicate unique

preferences in the sequence generation process, or their representation in the

dataset could be more predominant. A notable contrast is seen in Lysine (K),

which is significantly more prevalent in the generated proteins than the nat-

ural ones. This contrast suggests a potential bias in the sequence generation

model towards incorporating lysine-rich sequences.

The overrepresentation of Lysine (K) and Valine (V) in the generated proteins

indicates distinct sequence preferences. These patterns could be driven by the

architecture of the sequence generation model or other factors that influence

amino acid selection. However, Aspartic Acid (D) and Serine (S) exhibit sim-

ilar distributions in both datasets. This similarity suggests that the sequence

generation process captured some common patterns in natural sequences.

The varying amino acid distributions could have implications for the structural

and functional properties of the generated proteins. For instance, the elevated

presence of Lysine (K) might impact the sequences’ electrostatic interactions

and folding propensity.

While the differences in amino acid distribution are evident, their statistical

significance should be assessed. Conducting hypothesis tests can determine

whether the observed deviations are statistically meaningful or arise due to

chance. A used test for comparing two groups of categorical data, such as

amino acid counts, is the Chi-squared test of independence. So the hypothesis

is:

• H0: No significant difference in the amino acid distribution between the

generated and naturally occurring proteins exists.

• Ha: There is a significant difference in the distribution of amino acids

between the two datasets.

After applying the Chi-squared test, it gave an insight into the correlation

between both distributions.

• Chi-squared statistic: The calculated Chi-squared statistic is approx-

imately 6.83. This statistic represents the overall divergence between

the observed and expected counts of amino acids in the two datasets.

The statistical value serves as an indicator of the magnitude of disparity
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Table 6.3: Comparison of Amino Acid Distribution in 200 Generated Proteins and
Natural Occurring Proteins

Amino Acid Generated (%) Natural Occurring (%)

M 1.39 2.32
E 5.22 6.32
T 4.00 5.53
P 4.14 5.02
S 5.59 7.14
K 12.92 5.19
V 5.01 6.73
L 11.69 9.68
N 3.81 3.93
Q 3.07 3.90
F 3.18 3.87
Y 2.34 2.91
I 8.76 5.49
D 3.82 5.49
R 4.25 5.78
A 9.56 8.76
H 1.50 2.26
W 0.39 1.25
G 8.07 7.03
C 1.28 1.38

between the distributions.

• Degrees of freedom: The degree of freedom is 19, the number of amino

acids being compared minus 1. This value helps determine the critical

value for assessing the statistical significance.

• p-value: The p-value is approximately 0.995. This p-value reflects the

probability of observing the observed differences (or more extreme dif-

ferences) in amino acid distribution between the generated and naturally

occurring proteins if there were no actual differences in the distributions.

The result with a p-value of approximately 0.995 suggests no statistically sig-

nificant evidence to reject the null hypothesis. In other words, the observed

differences in amino acid distribution between the two datasets could plausi-

bly occur due to random variation rather than reflecting an actual difference

in distribution. It is essential to consider the high p-value in context. The

high p-value suggests that the observed differences are not substantial enough
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to be confidently attributed to differences in amino acid distribution between

the generated and naturally occurring proteins. When discussing these results,

addressing the limitations and implications is valuable. While the Chi-squared

test did not identify a statistically significant difference, other factors, such as

sample size or model biases, could contribute to the observed variations.

In conclusion, our analysis provides valuable insights into the amino acid dis-

tribution in generated protein sequences. While statistical tests suggest non-

significant differences, the implications extend beyond statistical significance.

These findings underscore the nuanced interplay between computational meth-

ods and biological complexity, motivating further exploration and refinement

of protein sequence generation approaches.

5. To what extent do generated protein sequences deviate from natural

proteins, and how do these deviations contribute to unique protein

architectures?

To answer this question, a chimeric approach was used. Chimeric proteins

result from the fusion of segments from two or more distinct genes. These

segments can come from different genes within the same genome or from dif-

ferent organisms. Chimeric sequences can affect protein function, structure,

and biological roles.

Additionally, the very nature of chimeric proteins, formed by combining seg-

ments from disparate proteins, inherently leads to combined functional do-

mains, motifs, chemical values, and structural features that might not be

commonly observed in natural proteins. This fusion of diverse elements could

engender novel functionalities or unique binding properties.

To find if a protein is chimeric, we used BLAST. We compared the 200 gener-

ated proteins to the NR database (subsection 2.2.3) and determined if it has

more than one alignment with different protein families, having an e-value less

than 10.

In the end, 42 chimeric sequences among the generated set were present, under-

scoring the deliberate integration of distinct protein segments. This prevalence

of chimerism contributes to a departure from conventional protein composi-

tion, manifesting as a unique subset defined by fused segments from disparate

origins.
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The analysis highlights discernible deviations in structural attributes within

the generated protein sequences. The subset of chimeric sequences, consti-

tuting almost one-quarter of the total, serves as a focal point of distinction.

Chimeric assembly introduces unique structural motifs that deviate from the

norms observed in naturally occurring proteins.

Although the term ”chimerism” remains implicit, its influence is evident through

the alignment of chimeric sequences against the NR database. This alignment

underlines the biological relevance of these sequences and their resonance with

known entities. This unspoken interaction underscores chimeric influence in

shaping unique protein architectures.

Chimerism, the fusion of distinct protein segments, can impact the plDDT

scores of the generated protein sequences. As chimeric sequences integrate

segments from different sources, they might introduce regions of more signif-

icant structural uncertainty due to the blending of diverse structural motifs.

Consequently, specific regions within chimeric sequences might exhibit lower

plDDT scores, reflecting higher structural uncertainty or variability. These

scores can explain the values having a mean plDDT value of 43 and also ex-

plain when some areas on some proteins have high scores and then low scores

on others zones, and this can be observed in Figure 6.2.

Figure 6.2: Chimeric Protein Structure Generated by the Proposed Model

In conclusion, the investigation into the characteristics and properties of the
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generated protein sequences unveils discernible deviations from their natural

counterparts. The chimeric subset, supported by NR database alignment,

constitutes a distinct dimension of this analysis. These deviations, marked by

structural and functional variations, provide insights into the potential emer-

gence of unique protein architectures—an arena ripe for further exploration

within protein science.

6.1 Shortcomings

While our study has yielded valuable insights into protein sequence generation using

advanced machine learning techniques, several limitations inherent to the method-

ology and constraints of the investigation merit careful consideration. While not

diminishing the significance of our findings, these limitations underscore the com-

plexities and nuances inherent in the pursuit of accurate protein structure prediction.

Model Complexity and Computational Resources: The utilization of an in-

tricate Transformer model—acknowledged for its prowess in sequence-to-sequence

tasks—introduced computational challenges. Specifically, the model’s architectural

depth and parameter richness demanded substantial computational resources. How-

ever, the formidable computational demands were accompanied by a trade-off in

execution time. In future work, generative transformer models such as GPT could

be used, a State-of-the-Art model in generating sequences. Despite our use of Al-

phaFold, driven by the unavailability of OmegaFold at the onset of the study, the

substantial time investment required for generating proteins, even with the former’s

efficiency, remained a factor.

Protein Length and Training Constraints: The inherent complexity of pro-

teins, particularly those surpassing a length of 300 residues, introduces challenges in

training deep learning models efficiently. Our study encountered limitations stem-

ming from the impracticality of training on proteins of realistic length within rea-

sonable time frames. While our investigation focused on sequences of lengths man-

ageable within our computational resources, we acknowledge that this limitation

might restrict the generalizability of our findings to longer protein sequences.

Absence of Comprehensive Evaluation Metrics: A notable limitation pertains

to the evaluation metrics employed in our study. The absence of comprehensive met-

rics tailored to sequence generation and structural prediction necessitated creative

adaptations of existing metrics. While our evaluation criteria included fundamental
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sequence validity, the absence of specialized metrics for assessing the structural fi-

delity of generated sequences merits attention. This limitation emphasizes the need

to develop rigorous and contextually relevant evaluation methodologies.

Complexity of Reinforcement Learning: Our foray into employing reinforce-

ment learning (RL) introduced complexities inherent to this paradigm. The lack of

a universally established reward function framework demanded iterative trial-and-

error exploration. This process may inadvertently introduce biases in the policy

function’s design, underscoring the intricate interplay between algorithmic architec-

ture and the problem domain.

Data Accessibility and Bias: Our study was conducted on accessible datasets,

eliminating potential data-related challenges. Nonetheless, the convenience of data

accessibility gives rise to apprehensions regarding the adequacy of representation

and the potential introduction of bias within the training data. Ensuring a compre-

hensive and diverse dataset that accurately mirrors the complexity and diversity of

protein structures remains an ongoing challenge in protein structure prediction.
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Conclusion

This investigation’s core is a comprehensive analysis of protein generation, viewed

through the lens of sequence data. As we conclude this research, we thoroughly

assess the implications of our findings within the context of protein science.

Our primary objective was to systematically assess the capabilities of machine learn-

ing models in generating intricate protein sequences. To achieve this goal, we con-

ducted an in-depth analysis of sequence data to uncover the underlying factors

influencing the generation of these vital biological components. Our investigation

involved three fundamental models: LSTM, Transformer, and a framework combin-

ing the Transformer with OmegaFold, allowing us to assess their protein generation

potential.

We have demonstrated some ability to generate protein sequences with complex sec-

ondary structures using machine learning models, particularly Transformers. This

discovery underscores the presence of predictability and latent patterns within pro-

tein sequences. It becomes evident that the outcomes are not random but reflect

the model’s capacity to decipher and construct structured sequences. Notably, these

structured elements encompass alpha helices, beta sheets, and coils, which are in-

tegral to protein architecture, serving both functional and structural roles. Our

findings shed light on the capability of machine learning models to simulate intri-

cate structural motifs, thereby advancing our understanding of protein sequence

generation within a computational framework.

We applied a robust statistical approach further to bolster the credibility and sig-

nificance of our exploration. OmegaFold’s mean value of 43.32 and its positively

skewed distribution underscore the model’s proficiency in protein generation. Addi-

tionally, by employing t-tests, we quantified the significant performance gap between

the Transformer and LSTM models, providing statistical validation for our observed
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trends. Furthermore, the t-test comparing the Transformer’s performance with that

of random sequences reaffirmed that the model had learned and could handle the

complexity inherent in protein sequences.

In conclusion, our research has illuminated the potential of machine learning models,

particularly the Transformer, in generating intricate protein sequences with complex

secondary structures. These findings underscore the predictive power inherent in

protein sequences and their generation.

7.1 Future Work

In protein sequence generation, numerous promising avenues beckon for exploration.

Among these, the utilization of transfer learning stands out as a potent tool. Lever-

aging transfer learning to engineer protein sequences with specific attributes is

promising for real-world applications.

Our quest to design proteins with tailored traits—ranging from stability in extreme

conditions to hydrophobicity and more—confronts a challenge: data scarcity. To

overcome this problem, Transfer Learning emerges as a potential solution, drawing

insights from diverse datasets to inform the creation of sequences optimized for

distinct functionalities.

In addition to Transfer Learning, we explore the potential of deploying advanced

models suited for sequence generation tasks. Models like GPT, initially designed

for language tasks, serve as a strong foundation. We explore how integrating such

advanced models can enhance our ability to design sequences with specific charac-

teristics, ushering in new possibilities.

Furthermore, we emphasize the importance of evaluation metrics. Generating se-

quences with known traits enables the establishment of benchmarks for comparison.

This approach allows for a more nuanced assessment of the model’s predictive ca-

pabilities. The interplay between generated sequences and naturally occurring pro-

teins possessing similar attributes has the potential to advance our understanding

of sequence-structure relationships and the reliability of predictions.
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Appendix A

Table A.1: Amino Acids

Amino Acid 3-letter 1-letter Ambudance in Proteins (%) [80]

Alanine Ala A 8.76
Arginine Arg R 5.78

Asparagine Asn N 3.93
Aspartate Asp D 5.49
Cysteine Cys C 1.38
Glutamine Gln Q 3.9
Glutamate Glu E 6.32
Glycine Gly G 7.03
Histidine His H 2.26
Isoleucine Ile I 5.49
Leucine Leu L 9.68
Lysine Lys K 5.19

Methioninr Met M 2.32
Phenylalanine Phe F 3.87

Proline Pro P 5.02
Serine Ser S 7.14

Threonine Thr T 5.53
Tryptophan Trp W 1.25
Tyrosine Tyr Y 2.91
Valine Val V 6.73
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Table A.2: Ambiguous Amino Acids

Ambiguous Amino Acids 3-letter 1-letter Amino Acids included

Any / Unknown Xaa X All
Asparagine or Aspartate Asx B D, N
Glutaine or Glutamate Glx Z E, Q
Leucine or Isoleucine Xle J I, L

64



Bibliography

[1] R. Pearce and Y. Zhang, “Deep learning techniques have significantly impacted

protein structure prediction and protein design,” Current opinion in structural

biology, vol. 68, pp. 194–207, 2021.

[2] Y. Zeng, T. Zhao, and A. R. Kermode, “A conifer abi3-interacting protein plays

important roles during key transitions of the plant life cycle,” Plant Physiology,

vol. 161, no. 1, pp. 179–195, 2013.
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