

João Miguel Mendes Gonçalves

Automatic Deployment Solution

for Multi-Cloud Environments

Dissertation in the context of the Master in Informatics Engineering,

specialization in Communications, Services and Infrastructures, advised by

Prof. Dr. Karima Velasquez and Prof. Dr. David Abreu, and presented to the

Department of Informatics Engineering of the Faculty of Sciences and

Technology of the University of Coimbra.

September, 2023

DEPARTMENT OF INFORMATICS ENGINEERING

João Miguel Mendes Gonçalves

Automatic Deployment Solution
for Multi-Cloud Environments

Dissertation in the context of the Master in Informatics Engineering,
specialization in Communications, Services and Infrastructures, advised by
Prof.Dr. Karima Velasquez and Prof. Dr. David Abreu, and presented to the

Department of Informatics Engineering of the Faculty of Sciences and
Technology of the University of Coimbra.

September, 2023

This work is funded by the project POWER (grant number POCI-01-0247-
FEDER-070365), co-financed by the European Regional Development Fund
(FEDER), through Portugal 2020 (PT2020), and by the Competitiveness and
Internationalization Operational Programme (COMPETE 2020).

v

Acknowledgements

To all the professors of the Department of Informatics Engineering of Uni-
versity of Coimbra, who helped and provided learning over this master’s degree
period.

To my supervisors Professor Karima Velasquez and Professor David Abreu
for their availability, collaboration and guidance throughout both semesters. A
special thanks to Professor Marília Curado for presenting and suggesting this
internship proposal.

Finally, to my family and friends for the support, encouragement and guid-
ance through my academic journey.

vii

Abstract

The following report develops the subject of Automatic Deployment Solution
for Multi-Cloud Environments. The main objective of this solution is to perform
the automatic deployment of an application to a Multi-Cloud environment each
time the application is updated. Automating the deployment process of the ap-
plication will replace manual and time-spending procedures that need to be done
to perform the application’s deployment. A Waterfall Model with Staged Deliv-
ery methodology was used for the development of this work, by dividing the
development process into incremental steps, thus allowing the consolidation of
concepts and also allowing defining stages to perform the implementation and
validation of the solution. The work starts with a literature review on Cloud
Computing concepts in order to gain knowledge of Multi-Cloud environments.
Then, a theoretical analysis of Multi-Cloud management tools and Automatic
Deployment tools is performed to determine the tools to be used in the solution.
After the theoretical segment, follows the practical segment of the work, where
the solution is designed, implemented and validated. The general architecture
of the solution is presented, transmitting that the general idea of the solution is
to combine a Multi-Cloud management tool with an Automatic Deployment tool
to perform the automatic deployment of an application to the Cloud. Then, the
incremental steps done in order to develop the solution are presented, by de-
scribing their definition and implementation. The validation of the Automatic
Deployment Solution is performed in the last step, by using a Multi-Cloud man-
agement tool with an Automatic Deployment tool to automatically deploy an
application to the Cloud. Finally, the conclusions taken from the work done are
presented, together with the following steps to be done regarding the usage of
this solution.

Keywords

Automatic Deployment, Automation, Cloud, Multi-Cloud Environments,
Multi-Cloud Management Tools.

ix

Resumo

O presente relatório desenvolve o tema Solução de Implementação Au-
tomática em Ambientes Multi-Cloud. O objetivo principal desta solução é
realizar a implementação automática de uma aplicação para um ambiente
Multi-Cloud sempre que a aplicação seja atualizada. Automatizar o processo de
implementação da aplicação vai substituir processos manuais que consomem
bastante tempo que precisão de ser feitos para realizar a implementação da
aplicação. A metodologia Waterfall Model with Staged Delivery é utilizada para o
desenvolvimento deste trabalho, ao dividir o processo de desenvolvimento em
passos incrementais, permitindo assim a consolidação de conceitos e a definição
de etapas para realizar a implementação e validação da solução. O trabalho
começa com uma análise literária sobre os conceitos de Computação na Cloud
de modo a adquirir conhecimento sobre ambientes Multi-Cloud. De seguida,
é realizada uma análise teórica sobre Ferramentas de Gestão de Multi-Clouds
e Ferramentas de Implementação Automática, para determinar quais as ferra-
mentas a serem utilizadas na solução. Depois da componente teórica, segue-se
a componente prática do trabalho, onde a solução é desenhada, implementada
e validada. É apresentada a arquitetura geral da solução, transmitindo que a
ideia geral da solução é combinar uma Ferramenta de Gestão de Multi-Cloud e
uma Ferramenta de Implementação Automática para realizar a implementação
automática de uma aplicação para a Cloud. De seguida, são apresentados os
passos incrementais realizados para desenvolver a solução, ao descrever a sua
definição e implementação. A validação da Solução de Implementação Au-
tomática é realizada no último passo, ao utilizar uma Ferramenta de Gestão de
Multi-Cloud e uma Ferramenta de Implementação Automática para implementar
automaticamente uma aplicação na Cloud. Para concluir, são apresentadas as
conclusões retiradas do trabalho realizado e são indicados os próximos passos a
serem feitos relativamente à utilização desta solução.

Palavras-chave

Implementação Automática, Automação, Cloud, Ambientes Multi-Cloud, Fer-
ramentas de Gestão de Multi-Clouds.

xi

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem . 3
1.3 Objectives . 3
1.4 Contributions . 4
1.5 Methodology . 4
1.6 Working Plan . 5
1.7 Document Structure . 6

2 Cloud Computing Paradigm 7
2.1 Cloud Computing Characteristics . 8
2.2 Cloud Service Models . 8

2.2.1 Infrastructure as a Service . 9
2.2.2 Platform as a Service . 10
2.2.3 Software as a Service . 10
2.2.4 Everything as a Service . 10

2.3 Deployment Models . 11
2.3.1 Private Clouds . 11
2.3.2 Public Clouds . 12
2.3.3 Community Clouds . 12
2.3.4 Hybrid Clouds . 13
2.3.5 Multi-Clouds . 16

2.4 Multi-Cloud vs. Hybrid Cloud . 17
2.5 Summary . 19

3 Management Tools for Multi and Hybrid Clouds 21
3.1 Management Tools Analysis . 21

3.1.1 Terraform . 22
3.1.2 Anthos . 24
3.1.3 Elastic Kubernetes Service (EKS) 27
3.1.4 Ansible . 29

3.2 Tools Comparison . 31
3.3 Summary . 34

4 Automatic Deployment Tools 35
4.1 Continuous Integration / Continuous Delivery 35
4.2 Kubernetes . 36
4.3 GitHub Actions . 37
4.4 Summary . 38

xiii

Chapter 0

5 Problem Analysis 41
5.1 Problem Description . 41
5.2 Requirements Analysis . 42

5.2.1 Functional Requirements . 42
5.2.1.1 User Stories . 42
5.2.1.2 High-level requirements 43

5.2.2 Non-Functional Requirements 43
5.3 Risk Analysis . 44
5.4 Summary . 46

6 Proposed Solution 47
6.1 General Architecture . 47
6.2 GitHub Actions Workflows . 48
6.3 Scenarios . 53

6.3.1 Scenario 1 . 55
6.3.1.1 Description . 55
6.3.1.2 Implementation and validation 56

6.3.2 Scenario 2 . 58
6.3.2.1 Description . 58
6.3.2.2 Implementation and validation 59

6.3.3 Scenario 3 . 63
6.3.3.1 Description . 63
6.3.3.2 Implementation and validation 64

6.3.4 Scenario 4 . 65
6.3.4.1 Description . 65
6.3.4.2 Implementation and validation 66

6.4 Summary . 69

7 Conclusion 71

xiv

Acronyms

ALB Altice Labs.

API Application Programming Interface.

AWS Amazon Web Services.

BYON Bring Your Own Node.

CAPEX Capital Expenditure.

CDNaaS Content Distribution Network as a Service.

CI/CD Continuous Integration/Continuous Delivery.

CLI Command Line Interface.

CMP Cloud Management Platform.

CPU Central Processing Unit.

CSP Cloud Service Provider.

DaaS Desktop as a Service.

DBaaS Database as a Service.

DEI Department of Informatics Engineering.

DNS Domain Name System.

DNSaaS DNS as a Service.

EC2 Elastic Compute Cloud.

ECR Elastic Container Registry.

EKS Elastic Kubernetes Service.

ELB Elastic Load Balancer.

ENI Elastic Network Interface.

GB Gigabytes.

GCP Google Cloud Platform.

xv

Chapter 0

GKE Google Kubernetes Engine.

HCL Hashicorp Configuration Language.

HTML Hyper Text Markup Language.

HTTP Hypertext Transfer Protocol.

HTTPs Hypertext Transfer Protocol Secure.

IaaS Infrastructure as a Service.

IAC Infrastructure as Code.

IAM Identity and Access Management.

IP Internet Protocol.

IPN Pedro Nunes Institute.

IT Information Technology.

IT - Aveiro Telecommunications Institute of Aveiro.

JSON JavaScript Object Notation.

KVM Kernel-based Virtual Machine.

LAN Local Area Network.

LBaaS Load Balancing as a Service.

LTS Long Term Support.

MaaS Monitoring as a Service.

MoSCoW Must have, Should have, Can have, Won’t have.

NIST National Institute of Standards and Technology.

OPEX Operational Expenditure.

OS Operating System.

PaaS Platform as a Service.

SaaS Software as a Service.

SOA Service-Oriented Architecture.

SSH Secure Shell.

UC University of Coimbra.

URL Uniform Resource Locator.

VCS Version Control System.

xvi

Acronyms

VM Virtual Machine.

VPC Virtual Private Cloud.

VPN Virtual Private Network.

WAN Wide Area Network.

WB Web-Based.

WSL Windows Subsystem for Linux.

XaaS Everything as a Service.

YAML Yet Another Markup Language.

xvii

List of Figures

1.1 Gantt chart for 1st semester . 5
1.2 Gantt chart for 2nd semester . 5

2.1 Cloud model organization . 7
2.2 Cloud service models . 9
2.3 Hybrid architecture patterns . 15

3.1 Terraform workflow . 23
3.2 Anthos architecture diagram . 26
3.3 Amazon EKS setup process . 28
3.4 Amazon EKS architecture . 28
3.5 Ansible’s architecture . 30

4.1 CI/CD flow . 36

6.1 General Architecture . 48
6.2 main.yml events . 49
6.3 main.yml test job . 49
6.4 main.yml deployment job . 50
6.5 delete_scenario.yml . 51
6.6 start_minikube_cluster.yml . 52
6.7 delete_minikube_cluster.yml . 52
6.8 stop_minikube_cluster.yml . 53
6.9 Scenario 1 . 56
6.10 Mongo Express browser page . 58
6.11 Scenario 2 . 59
6.12 Scenario 2 workflows in GitHub . 61
6.13 Mongo Express browser page . 61
6.14 Self-Hosted Runners of Scenario 2 62
6.15 Scenario 3 . 63
6.16 Self-Hosted Runners of Scenario 3 64
6.17 Scenario 3 workflows in GitHub . 65
6.18 Scenario 3 Mongo Express browser page 65
6.19 Scenario 4 . 66
6.20 Scenario 4 Ansible Playbook execution 68
6.21 Scenario 4 workflows in GitHub . 69
6.22 Scenario 4 deployed in a Kubernetes cluster running in DEI’s Cloud 69

xix

List of Tables

2.1 Multi-Cloud vs. Hybrid Cloud . 19

3.1 Multi-Cloud and Hybrid Cloud environment management tools
comparison . 33

5.1 User Stories . 42
5.2 Risk analysis . 45

6.1 Kubernetes objects . 55

xxi

Chapter 1

Introduction

This report was developed within the scope of the Dissertation in Communi-
cations, Services and Infrastructures, in order to create an Automatic Deployment
Solution for Multi-Cloud Environments.

The concept of "Cloud" has gained more relevance and visibility throughout
the years. To an ordinary person, the Cloud is mainly associated with the stor-
age of files and photos on the Internet, so they can backup the files that are on
their personal devices, and so they can access those files and photos anytime and
anywhere. This idea of the Cloud defined by ordinary people is not wrong but is
barely anything regarding the Cloud’s full capabilities and deployment models.

Cloud computing consists of having access to a wide range of computing re-
sources and services through a network connection. These resources and services
can be gathered and installed by the final user, applying a more private approach,
or rented by an external provider that is responsible for managing and building
the infrastructure, resources, and services that are going to be provided, applying
a more public and pay-as-you-use model.

More recently, Cloud computing has become an integral part of many busi-
nesses. For instance, from a startup company perspective, it may be more benefi-
cial to adopt a pay-as-you-use model at the beginning of their business, because
by doing so they do not have to worry about guessing the capacity they might
need, do not have to spend money buying the equipment and running and main-
taining the infrastructure and datacenters, they only have to pay for the resources
they use, and finally, they can go global in a matter of minutes.

At a company’s most advanced stage of their business when they already
have profit and funding, they can opt to migrate to a Private model, becoming re-
sponsible for all the infrastructure, resources, and services needed. This approach
might be more expensive but allows companies to be fully independent and have
total control over their infrastructure.

Another possible scenario is when companies choose a Hybrid or Multi-
model by merging Cloud models, so they can have access and combine the best
characteristics, features, and solutions that each Cloud provides.

1

Chapter 1

Nowadays, many companies may tend to use a Multi-Cloud model approach
instead of the other available Cloud models. This is due to the fact that by opting
for a Multi-Cloud model companies can combine the best of other models and
also avoid a vendor lock-in restriction, which may affect companies that opt for
Public and Hybrid Cloud models.

Moreover, another reason why companies move to either a Hybrid or Multi-
Cloud model is that certain types of health and financial data have restrictions as
to where they must be stored. In addition, the rise of new management technolo-
gies, like Cloud management tools, makes it possible to manage these complex
environments [47].

The main benefit of using Multi-Cloud management tools is the ability to
leverage the best features of different Clouds. Some examples of Multi-Cloud
management tools are Terraform [64], Google Anthos [27], Amazon Elastic Ku-
bernetes Service (EKS) [12], and Ansible [6]. In spite of the management tools
available, companies find it difficult to choose the best management tool for their
business and needs.

The process of choosing a management tool may become difficult and indeci-
sive in some cases. This process is usually composed of the evaluation of metrics,
characteristics, and functionalities of the available tools, and the assessment of
the end-user requirements. The choice of the management tool may vary from
end user to end user, because each user may have different requirements and a
tool may be better suited for one scenario than another.

Management tools can be used together with other tools, such as GitHub Ac-
tions [24], in order to convert some manual and time-spending procedures into
automatic processes. The main objective of this work is to design and develop a
framework for automatic deployment in Cloud and Multi-Cloud environments.

1.1 Motivation

The work presented in this report is incorporated into the POWER project.
This project aims to create an innovative portfolio of products and services,
mostly based on Cloud and cognitive technologies. It is structured into the
following five subprojects: Subproject 1: New Technology Integration; Subpro-
ject 2: Future Networks; Subproject 3: Future Operations; Subproject 4: Future
Services; and Subproject 5: Data Business and 360 Monetization. The partners
that work together in the POWER project are the University of Coimbra (UC)
[4], Pedro Nunes Institute (IPN) [3], the Telecommunications Institute of Aveiro
(IT - Aveiro) [2], and Altice Labs (ALB) [1]. While the UC, IPN and IT - Aveiro
are mostly oriented to the research field, ALB is oriented to the production of
solutions for other companies and for the market, but also supports the research
field in order to have better results for their solutions.

All the researchers who work on the subprojects need to perform experiments
in order to validate their proposals and hypotheses. Before starting the execution

2

Introduction

of those experiments, the researchers need to first configure the testbeds that will
be used. However, the goal of the researchers is to perform their experiments and
not to waste time investigating how to deploy the testbeds and the configurations
needed to do so. Besides being used for the POWER’s subprojects’ testbeds, this
framework can also be used as a basis for the deployment of projects that are
being developed by ALB, such as FOCUS and OpenPlay.

It was determined that the deployment of the testbeds was going to be per-
formed in a Multi-Cloud environment due to ALB’s interest in the advantages of
this type of Cloud deployment model. Some advantages that satisfy ALB’s inter-
ests are the possibility of using multiple Cloud providers thus avoiding a vendor
lock-in, the higher amount of availability zones that are covered, and the ease of
managing some business costs.

1.2 Problem

Taking into consideration the motivation previously mentioned, the problem
identified is how to perform an automatic deployment in different Clouds. In or-
der to accomplish automatic deployment, a Continuous Integration/Continuous
Delivery (CI/CD) tool needs to be used to automate some steps of the deploy-
ment that were being performed manually and directly in the terminal of the
machine where the deployment was being executed. Without an automatic de-
ployment, the user had to deploy all the components of his testbeds manually.
This might not be a problem on a smaller scale testbed, but on a larger scale, it
can become impractical and time-consuming, thus the need for automatic deploy-
ment rather than manual deployment. Also, another point to consider is that the
user might not have knowledge of deployment tools, so performing an automatic
deployment would also solve this issue.

1.3 Objectives

The main objective of this work is to design and develop an automatic de-
ployment solution for Cloud and Multi-Cloud environments, which incorporates
the use of management tools for Multi-Clouds and a CI/CD tool to automate
processes. This objective aims to the automatic deployment of applications both
on-premises and on a Cloud Service Provider (CSP).

To accomplish this objective, a combination of specific goals was set to be
achieved first. The first goal is to identify the requirements to distinguish a Multi-
Cloud from a Hybrid Cloud. The second goal consists of the identification and
analysis of the management tools used for the management of the environment
used. Finally, the third goal was to validate the automatic deployment using
some scenarios and Clouds provided by some of the project’s members, namely
ALB and the Department of Informatics Engineering (DEI) of the UC.

3

Chapter 1

1.4 Contributions

Taking into consideration the objectives and goals described above, this re-
port has produced the following contributions:

• An analysis on the Cloud computing paradigm, focusing on its character-
istics, service models, deployment models and in the differences between
Multi-Clouds and Hybrid Clouds. This analysis is presented in Chapter 2.

• The identification of currently existing tools for Multi-Cloud and Hybrid
Cloud environments management, which were provided in the initial phase
of this work. The tools identified are presented in Section 3.1.

• A comparative analysis between the Multi-Cloud and Hybrid Cloud envi-
ronments management tools that were identified, considering a set of met-
rics and characteristics related to Multi-Cloud support. This contribution is
portrayed in Section 3.2.

• The proposal of a solution for automatic deployment in Cloud and Multi-
Cloud environments. This proposition is presented in Chapter 6.

• The configuration of workflows that can be used as pipeline templates for
CI/CD. The workflows are explained in Section 6.3.

• The documentation of the steps followed to deploy each scenario provided
by ALB. The process followed is presented in Section 6.3.

1.5 Methodology

A Waterfall Model with Staged Delivery approach was used for this intern-
ship’s work. This methodology was chosen because the process of developing the
final version of the solution is divided into incremental steps, thus allowing the
definition and consolidation of concepts and also allowing defining stages to per-
form the implementation and validation of the solution. The flexibility brought
by the Staged Delivery allows solving the problems associated with the Waterfall
Model, such as not having feedback on the work done and cascading bugs. The
feedback on each incremental step will come from the POWER and internship pe-
riodic meetings. Furthermore, due to the feedback provided, the Staged Delivery
will also allow adjusting the incremental steps if needed. In this way, it is granted
that the final version of the solution can meet and satisfy the current interests of
the POWER project instead of only considering the initial plan. In addition, the
tests performed in each incremental step will allow to detect potential cascading
bugs.

4

Introduction

1.6 Working Plan

The work presented in this report started with a literature review during the
1st semester. The review consisted of first studying Cloud Computing concepts
in order to get knowledge on Multi-Cloud environments, presented in Chap-
ter 2, and then performing a theoretical analysis on Multi-Cloud management
tools, presented in Chapter 3. After the literature review was concluded, it was
planned the technological work to be performed during the 2nd semester. Figure
1.1 presents the summary of the work done during the 1st semester.

Figure 1.1: Gantt chart for 1st semester

The 2nd semester consisted of the practical segment of this work. This seg-
ment was divided into four incremental steps to implement and validate the
framework. Each step consisted of first learning the practical concepts and then
applying them to perform and deliver each step. The first step consisted of learn-
ing the technology that was going to be used, the second step consisted of intro-
ducing a CI/CD tool, the third step introduced the deployment in a Kubernetes
cluster and the fourth step introduced a Multi-Cloud management tool. The in-
cremental steps done during the 2nd semester are presented in Chapter 6. Figure
1.2 presents the summary of the work done during the 2nd semester.

Figure 1.2: Gantt chart for 2nd semester

5

Chapter 1

1.7 Document Structure

The remaining of the document is organized as follows:

• Chapter 2 - Provides an overview of the Cloud computing paradigm, in-
cluding its characteristics, deployment models, service models and a com-
parative analysis between Multi-Cloud and Hybrid Cloud;

• Chapter 3 - Reviews and describes the analyzed Multi-Cloud and Hybrid
Cloud environments management tools;

• Chapter 4 - Provides an overview of tools used for automatic deployment.

• Chapter 5 - Presents an analysis of the problem, including its description,
requirements and risks;

• Chapter 6 - Describes the proposed solution to solve the problem at hand,
including its general architecture, workflows, scenarios, implementation
and validation;

• Chapter 7 - Depicts the main conclusions, a summary of the sections ad-
dressed in the report and the steps that can be done in the future.

6

Chapter 2

Cloud Computing Paradigm

This chapter provides an overview of cloud computing, as well as the related
fundamental theoretical concepts to the understanding of the subject covered in
this internship.

The National Institute of Standards and Technology (NIST) defines Cloud
computing as "a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources that can be rapidly
provisioned and released with minimal management effort or service provider
interaction" [49]. Some examples of configurable computing resources are net-
works, servers, storage, applications or services.

With regard to the Cloud model organization, it is composed of five Cloud
computing characteristics, four service models, and five deployment models (or
Cloud types). Figure 2.1 represents the Cloud model organization previously
described with the concepts that will be covered throughout the present chapter.

Figure 2.1: Cloud model organization

7

Chapter 2

2.1 Cloud Computing Characteristics

The Cloud computing model is composed of five essential characteristics.
These characteristics are: On-demand self-service, Broad network access, Re-
source pooling, Rapid elasticity, and Measured service.

The On-demand self-service characteristic affirms that a consumer can provi-
sion computing capabilities, such as server time and network storage, as needed
automatically without requiring human interaction with each service provider
[49]. Considering a start-up context, most users begin by using limited resources
and may increase them over time due to their business growth, and this method-
ology allows them to request more resources all by themselves, without the in-
convenience of personally interacting with the service provider every time they
need to increase their resources [63].

Broad network access states that "capabilities are available over the network
and accessed through standard mechanisms that promote use by heterogeneous
thin or thick client platforms", such as mobile phones, tablets, laptops and work-
stations [49].

The next characteristic is Resource pooling and declares that "the provider’s
computing resources are pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynamically assigned and
reassigned according to consumer demand" [49]. Some examples of resources are
storage, processing, memory and network bandwidth. The main advantages of
resource pooling are the increased robustness against component failures, better
ability to handle localized outbreaks in traffic, and a maximized utilization [71].

Rapid elasticity asserts that resources can be dynamically provisioned and de-
provisioned, and in some cases automatically, to scale rapidly proportionally
with demand [49]. From the customer’s perspective, the resources available often
seem to be unlimited and can be booked in any quantity at any time. Elasticity
is normally associated with infrastructures, therefore with the Infrastructure as a
Service (IaaS) Cloud service model. Elasticity is beneficial because of the need to
keep the gap between demand and capacity as small as possible so that it is not
necessary to refuse requests due to a lack of resources [48].

The last characteristic is Measured service and it states that Cloud systems au-
tomatically control and optimize the appropriated resource usage to the type of
service, such as storage, processing, and bandwidth. Resource usage can be mon-
itored, controlled and reported, providing transparency for both the provider and
the consumer [49].

2.2 Cloud Service Models

This section introduces an analysis of each Cloud service model. There are
three main types of Cloud service models: Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS) and Software as a Service (SaaS). More recently, a new

8

Cloud Computing Paradigm

type of Cloud service model has been introduced, which is the Everything as
a Service (XaaS). Figure 2.2 [62] illustrates the Cloud service models pyramid,
showing some examples of services offered from each Cloud service model and
the main users of each service offered.

Figure 2.2: Cloud service models [62]

2.2.1 Infrastructure as a Service

The first service model is IaaS and provides the consumer with the capability
to provision processing, storage, networks and other computing resources where
the consumer is able to deploy and run arbitrary software, such as Operating Sys-
tems (OSs) and applications. In this service model, the consumer does not have
any kind of control over the underlying Cloud infrastructure, only has control
over OSs, storage and deployed applications [49].

Regarding the management of the infrastructure, the responsibility falls to
the Cloud Service Provider (CSP) and, as previously noted, the consumer has no
control or management permissions over the hardware. As for renting, an Appli-
cation Programming Interface (API) or dashboard is made available to the client
so that he will be able to rent the infrastructure. This service model is the typical
deployment model of Cloud storage providers [57]. Public Cloud providers like
Amazon Web Services (AWS), Microsoft Azure and Google Cloud are examples
of IaaS [55].

9

Chapter 2

2.2.2 Platform as a Service

The Platform as a Service (PaaS) is the model where the consumer is pro-
vided with the capability to deploy onto acquired applications created using pro-
gramming languages, libraries, services and tools supported by the provider. In
this service model, the consumer is not able to manage or control the underlying
Cloud infrastructure including network, servers, OSs or storage, but has con-
trol over the deployed applications and possibly configuration settings for the
application-hosting environment [49].

In other words, it can be stated that the hardware and an application-software
platform are provided and managed by a Cloud service provider, but the user has
to handle the apps running on top of the platform and the data the app needs. De-
velopers and programmers primarily use this service model [57]. Some examples
of PaaS are AWS Elastic Beanstalk, Heroku and Red Hat OpenShift [55].

2.2.3 Software as a Service

In the Software as a Service (SaaS) model the consumer is provided with the
capability to use the provider’s applications running on a Cloud infrastructure.
The applications are accessible from various clients’ devices through either a web
browser or a program interface. In this service model, the consumer does not
manage or control the underlying Cloud infrastructure or individual application
capabilities, with the exception of some user-specific application configuration
settings [49].

The SaaS model incorporates a number of unique characteristics. Some exam-
ples are that allows the consumer to benefit from the vendor’s latest technolog-
ical features without the costs associated with software updates and upgrades;
it allows each consumer to opt either to share access to the software with other
consumers, thus enabling shared total costs, or decide to be a single tenant, thus
providing greater control and security; and also lets users access the vendor’s
software through the Internet on a "pay-as-you-use" basis, rather than licensing,
installing and maintaining software on client’s computers or servers [32].

2.2.4 Everything as a Service

The Everything as a Service (XaaS) is a more recent type of service model that
has been gaining more relevance over time due to the fact that numerous service
models have been proposed in the form of "as a Service" or "aaS".

Despite the options of "aaS" being infinite, some papers regarding the XaaS
concept organize the "aaS" options into various types. Some types of "aaS" are
the following: Traditional services, which are provided either by individual people
directly with concrete actions, or nominally by institutions/society but still im-
plemented by real people who interact with end users, as "Music as a Service";
Network services, which are applications running at the network application layer

10

Cloud Computing Paradigm

and above which are based on application layer network protocols for provision
of capabilities, as "Internet Protocol (IP) Networks as a Service"; Services in pro-
gramming/modelling, which are used in the context of programming and OSs in
a computer system by a process to response to users’ requests, as "Data Access
as a Service"; General Service-Oriented Architecture (SOA) services, which follows
the design pattern of SOA in which distinct pieces of software provide applica-
tion functionality as services to other applications via a protocol, as "Models as a
Service"; Web services, that refers to software functions provided over the Web, as
"Training as a Service"; and finally The Cloud era, that aims to leverage utility and
consumption of computing resources related to Public, Private or Hybrid Cloud
infrastructures such as the previously mentioned IaaS, PaaS and SaaS [72] [73].

To reinforce the idea of XaaS, more "aaS" examples can be Desktop as a Service
(DaaS), Monitoring as a Service (MaaS), DNS as a Service (DNSaaS), Database as
a Service (DBaaS), Load Balancing as a Service (LBaaS), and Content Distribution
Network as a Service (CDNaaS) [61].

2.3 Deployment Models

This section presents a description of each available deployment model. The
five main models of Cloud computing are Private Clouds, Public Clouds, Com-
munity Clouds, Hybrid Clouds, and Multi-Clouds.

2.3.1 Private Clouds

The Private Cloud is defined as "computing services offered either over the
Internet or a private internal network and only to select users instead of the gen-
eral public" [50].

This Cloud infrastructure is provisioned for exclusive use by a single organi-
zation with multiple consumers, like business units [57]. In terms of ownership
and maintenance, Private Clouds may be owned, managed, and operated by the
organization, a third party, or some combination of them [49]. Private Clouds are
also known as internal or corporate Clouds, and some benefits they give to busi-
ness includes self-service, scalability, elasticity [50], and normally a higher degree
in terms of control, privacy, and security through the companies’ firewall.

A situation where security needs to be extremely well managed is when com-
panies have sensitive data stored in their Cloud and this one is managed by a
third party. In this case, the companies need to give the third party access to their
Cloud for them to manage and maintain it, but also need to restrict that access to
a certain level.

On the other hand, Private Clouds are more expensive in terms of costs, be-
ing that still require significant upfront Capital Expenditure (CAPEX) and Oper-
ational Expenditure (OPEX). Other concerns are that the elasticity feature is nor-
mally bounded by existing hardware resources and that the company’s Informa-

11

Chapter 2

tion Technology (IT) department is held responsible for the cost, accountability
and management of the Cloud, thus Private Clouds require the same of staffing,
management, and maintenance expenses as a traditional datacenter ownership
[50].

Private Clouds are capable of delivering two types of Cloud service models.
The first one is IaaS, which allows the use of the infrastructure resources such as
compute, network and storage. The other is PaaS, which allows companies to de-
liver everything from simple Cloud-based applications to sophisticated-enabled
enterprise applications [50].

2.3.2 Public Clouds

The Public Cloud environment is normally created from an IT infrastructure
not owned by the end user but by a CSP, and it is provisioned for open use by
the general public, being shared with multiple organizations using the public
Internet [57] [49] [70]. Regarding ownership and maintenance, Public Clouds
may be owned, managed, and operated by a business, academic, or government
organization, or some combination of them.

Usually, Public Clouds have less privacy and security when compared to Pri-
vate Clouds, but there are cases where Public Clouds may be safer than Private
Clouds. An example is when the IT department responsible for the Private Cloud
management is not as reliable, capable and qualified as the IT department in
charge of the Public Cloud management.

In order to provide a Public Cloud infrastructure, the CSP uses groups of
datacenters that are partitioned into Virtual Machines (VMs) and shared by the
end users [70]. This deployment model uses a "pay per use" basis, meaning that
end users only pay for the resources they consume. A real-life situation where
is proven that this characteristic is actually convenient is in a start-up company
context. Normally, a start-up company does not have enough budget to purchase,
manage, and maintain its own Private Cloud at the beginning of its business,
therefore they choose to use a Public Cloud environment in an initial phase where
the CSP is held responsible for all management and maintenance of the system,
and then, on a latter phase invest and migrate to a Private Cloud environment
[51].

Another point in favour of Public Clouds when compared to Private Clouds is
that elasticity is typically higher, as Public Cloud providers own a bigger amount
of resources to provide. Some examples of Public Cloud providers are Alibaba
Cloud, AWS, Google Cloud, IBM Cloud, and Microsoft Azure [57].

2.3.3 Community Clouds

The Community Cloud infrastructure is "provisioned for exclusive use by a
specific community of consumers from organizations that have shared concerns"
[49], like universities or libraries. With regard to ownership and maintenance,

12

Cloud Computing Paradigm

Community Clouds may be owned, managed, and operated by one or more of
the organizations in the community, a third party, or some combination of them
[49].

About its characteristics, it shares some of the advantages of Private Clouds,
like control, flexibility and customization, with some advantages of Public
Clouds, such as more elasticity and fewer costs. The costs are shared among
the community and regarding security is potentially less secure than a Private
Cloud, but still more secure than a Public Cloud, even though it depends more
on the quality of the Cloud management services than on the deployment model
[61].

In respect of Community Cloud’s advantages, the first is that the costs of
setting up a communal Cloud versus an individual Private Cloud can be cheaper
due to the division of costs among all participants. The second is that the manage-
ment of the Community Cloud can be outsourced to a Cloud provider. The ad-
vantage here is that the provider would be an impartial third party that is bound
by contract and that has no preference for any of the clients involved other than
what is contractually mandated. The third is that the tools residing in the Com-
munity Cloud can be used to leverage the information stored to serve consumers
and the supply chain [32].

Regarding the drawbacks, some examples are that it costs more than a Public
Cloud and that a fixed amount of bandwidth and data storage is shared among
all community members [32].

2.3.4 Hybrid Clouds

A Hybrid Cloud is a more complex type of Cloud, due to its composition
consisting of two or more distinct Clouds, such as Private, Public, or Commu-
nity. Also, for an environment to be considered a Hybrid Cloud, it is manda-
tory that it has a Private Cloud. The most common Hybrid Cloud example is
the combination of a Private and Public Cloud environment, like an on-premises
datacenter, and a Public Cloud computing environment, as AWS, Google Cloud,
and Microsoft Azure [31]. Each Cloud remains a unique entity but is bound to-
gether with other Cloud by standardized or proprietary technology that enables
data and application portability among them [49] [32]. The connection between
the Clouds can be established through Local Area Networks (LANs), Wide Area
Networks (WANs), Virtual Private Networks (VPNs), and/or APIs [57].

A very useful feature supported by Hybrid Clouds is Cloud bursting, which
is the ability to auto-expand the use of Public Cloud resources [47]. This helps en-
terprises achieve cost optimizations by maintaining a bare minimum IT resources
in-house, as they know there is a backup in place, in case there is a sudden spike
in user demand [20].

Nowadays, from a business point of view, companies tend to migrate to Hy-
brid Clouds due to several factors. First, simple Clouds might not provide the
resources and services needed to cover the requirements that big companies de-

13

Chapter 2

mand. Second, the rise of new management technologies allows them to manage
and control more complex environments in a simpler way. An example is having
just an interface that covers various functions. Third, the need to overcome secu-
rity and governance challenges is essential to place some workloads on-premises
and some off-premises. Fourth, using a computing strategy based on Hybrid
Clouds is cheaper and also adds some benefits such as agility. Finally, certain
types of sensitive data, such as financial and health-related data, have limitations
as to where they must be stored, being more secure to store these types of data
on-premises [47].

Through the last few years, many Hybrid Cloud innovative approaches have
been developed. According to David S. Linthicum [47] the emerging hybrid ar-
chitecture patterns can be organized into four categories. The first one is static
location, which refers to architectures where the workload’s location is tightly
bound to Private or Public Clouds, as it is visible in Figure 2.3a with each ser-
vice/API affixed to its Cloud. This means it is difficult to migrate workloads
between Private and Public Clouds. Currently is the most typical architecture.
The following category is assisted replication and refers to architectures where
some workloads can be replicated from Private to Public Clouds, or the other
way around. In Figure 2.3b is illustrated an entire workload located in a Private
Cloud that is to be replicated in a Public Cloud. Due to this architecture’s limited
use of abstraction, the workloads replication needs to be performed with some
technological assistance, such as code and/or interfaces. The third architecture is
automigration and refers to the code or entire workloads moving between Private
and Public Clouds, through human intervention or through automated processes,
by using some abstraction. In Figure 2.3c is presented the automatic movement
of the data and/or workloads between a Private and Public Cloud. The final ar-
chitecture is dynamic migration and refers to moving workload instances between
Private and Public Clouds as if both existed in the same virtual OS. In Figure 2.3d
is shown that the workflows can move from Cloud to Cloud as if they were on
the same server. This last category is the functional objective of Hybrid Cloud
computing [47].

To assemble a Hybrid Cloud and move to a hybrid architecture, there are
some steps that need to be followed to implement and operate such a complex
and distributed technology. Firstly, is necessary to ensure the appropriate secu-
rity mechanisms that cover both Private and Public Clouds. Also, logging and
auditory systems need to be functional as well. A good security approach that
fits in here is an Identity and Access Management (IAM) approach. Furthermore,
the requirements for the Hybrid Cloud that will be developed need to be ana-
lyzed, estimated and understood. Moreover, Private and Public Clouds candi-
dates need to be selected taking into consideration the known compatibility of
each candidate. After that, follows the testing phase in order to assure that the
Hybrid Cloud assembled meets the requirements. Still related to testing, it is a
good practice to implement a noncritical application on the Hybrid Cloud, to try
to find any issues and fix them quickly. In addition, a Cloud Management Plat-
form (CMP) or a CSP are needed to manage the Hybrid Cloud resources. At last,
a usage-based accounting system is needed for show-backs and chargebacks, as
well as to limit the use of resources [47].

14

Cloud Computing Paradigm

(a) Static location (b) Assisted replication

(c) Automigration (d) Dynamic migration

Figure 2.3: Hybrid architecture patterns [47]

15

Chapter 2

2.3.5 Multi-Clouds

A Multi-Cloud is defined as Cloud systems in which applications are hosted
as chunks among a heterogeneous network of different Clouds. In other words,
it can be said that is a Cloud system where different Cloud networks are merged
for different roles. According to [36], Multi-Cloud’s components are all unique
Cloud systems and not deployment models, as happens with Hybrid Clouds.
A Multi-Cloud consists of the combination of two or more Clouds, but for an
environment to be considered a Multi-Cloud it is mandatory that it has at least
two Public Clouds from different CSPs.

When choosing what type of Cloud to use, there are several motivations that
encourage companies to opt for a Multi-Cloud approach. One motivation is due
to legal constraints. This happens when a company needs to operate a part of
its business in one Cloud situated in a specific location, but due to possible law
restrictions in that location, the company needs to perform the storage of the
needed data in a different region or Cloud [36]. Other motivation that leads com-
panies to opt for a Multi-Cloud is when they have planned to expand their in-
frastructure in the future to either enhance productivity, efficiency and security,
meet 24×7 requirements for high data availability, or when the companies have
a global customer base and want to guarantee that their customers do not have
latency issues while accessing their services [39]. At last, one of the most im-
portant motivations is the convenience of combining the resources from different
Clouds in order to use the best resources and services of each CSP in only one
environment.

According to Petcu [53], there are various reasons why the services and re-
sources from multiple Clouds are needed simultaneously. The first reason is to
deal with the peaks in service and resource requests by using external ones. The
second reason is to optimize costs or improve the quality of services. Another
reason is enabling the ability to react to new CSPs’ offers. Other important reason
is to avoid being dependent on only one provider, thus avoiding a vendor lock-
in. Moreover, there is also the possibility to ensure backups in different CSPs in
order to deal with disasters or scheduled inactivity [53] [36].

Petcu [53] proposes a list of technical requirements for a Multi-Cloud. These
technical requirements are organized into three groups. The first set of require-
ments belongs to the development group and some of them are the following: offer
a resource and service management software, offer services that are Cloud ven-
dor agnostic, offer an interface for describing functional and non-functional re-
quirements of the clients, and support the application portability between the
connected Clouds. The second set of requirements belongs to the deployment
group and some requirements listed are: maintaining the particularities of vari-
ous Clouds, not imposing any constraints on the connected Clouds, supporting
the connection with the top Cloud providers, supporting the application reloca-
tion between Clouds, being able to deploy on Private Clouds to enable testing,
debugging or privacy, and the ability to use automated procedures for deploy-
ments. The last group is the execution group, where the requirements are: offering
a monitoring service for the deployed applications, allowing the management of

16

Cloud Computing Paradigm

the full life-cycle of the deployed applications, and allowing a dynamic allocation
of resources or mechanisms for self-adaptation [53].

2.4 Multi-Cloud vs. Hybrid Cloud

As previously mentioned, Multi-Clouds and Hybrid Clouds are Clouds that
are composed of the combination of more than one Cloud. A typical Multi-Cloud
integrates at least two different Clouds of the same type, while a Hybrid Cloud
blends two or more Clouds of different types having at least one Private Cloud. In
addition, in a Multi-Cloud environment, an organization utilizes multiple Public
Cloud services, while a Hybrid Cloud environment is usually used to orchestrate
a single IT solution [68].

Regarding vendor disparities between Multi-Clouds and Hybrid Clouds,
while Multi-Clouds include multiple Clouds from different vendors that provide
multiple Cloud services, Hybrid Clouds only have one vendor associated. In an
industry context, a Multi-Cloud can bring benefits such as enabling a company
to use best-in-class services for each app or task, reducing the risk of vendor
lock-in, and allowing better business planning by opting for the most affordable
services [39].

Considering combination differences, while Multi-Clouds are composed at
least of a combination of Public + Public Clouds, Hybrid Clouds are composed
of two or more Clouds of different types, having at least one Private Cloud in the
combination. A Cloud can be named either a Multi-Cloud or Hybrid Cloud when
the Clouds’ combination consists of, at least, a Public + Public + Private Clouds
mixture. Using fruits as a context for a simpler comparison is like a Multi-Clouds
was at least composed of a combination of two types of apples (Public + Public),
and Hybrid Clouds were at least composed of a combination between apples and
grapes (Public + Private) [39] [68].

Other topics that are important to compare are the costs, availability and
inter-Cloud workloads. As for the cost contrasts, in Multi-Clouds a company
may not be responsible to pay for datacenters or in-house systems, while in Hy-
brid Clouds a company normally faces significant expenditure due to the costs
associated with its Private Cloud. With regard to availability, while in Multi-
Clouds high availability is one of the driving factors due to the CSPs’ availability,
in Hybrid Clouds high availability is dependent on the in-house teams. At last,
about the inter-Cloud workloads, while in a Multi-Cloud setup, different Clouds
can manage different tasks, in Hybrid Clouds different components work simul-
taneously together to run a single IT solution [39].

Regarding the similarities, both Multi-Clouds and Hybrid Clouds are advis-
able for the storage of sensitive data, therefore in both cases, sensitive data stor-
age is subject to infrastructural design and business requirements. The security is
also reliant on the system’s underlying architecture, moreover, in both cases, the
Cloud providers can take the responsibility to safeguard the infrastructure from
external threats and attacks. Another similarity is the emphasis on regulatory

17

Chapter 2

compliance, and in this case, even though Hybrid Clouds setups collaborate with
Cloud providers that adhere to laws, regulations, guidelines and specifications,
Multi-Clouds are slightly superior in this aspect due to the multiple vendors char-
acteristic, which can be beneficial because some laws from a specific vendor may
be more valuable for a certain type of business. The final similarity is that is very
complex to migrate data between each other, being that this task can be time-
consuming and challenging. In a Multi-Cloud setup, data has to be migrated to
multiple different types of Clouds, while in a Hybrid Cloud setup, the migration
is to Public Clouds of different vendors, requiring even more time, resources and
skills to perform it [39].

The following Table 2.1 resumes the comparison between Multi-Clouds and
Hybrid Clouds. The (✓) mark indicates that the Cloud has that characteristic and
the (✗) mark states that the Cloud does not have that characteristic.

Characteristics Multi-Cloud Hybrid Cloud

Clouds from
different vendors ✓ ✗

Multiple Public
Cloud services ✓ ✓

Always includes a
Private Cloud ✗ ✓

Can include a
Private Cloud ✓ ✓

Private + Public
combination ✗ ✓

Public + Public
combination ✓ ✗

Public + Public +
Private

combination
✓ ✓

High costs
associated ✗ ✓

High availability ✓ ✓

Store sensitive
data ✓ ✓

Infrastructural
security ✓ ✓

Emphasis on
regulatory
compliance

✓ ✓

18

Cloud Computing Paradigm

Complex Cloud
migration ✓ ✓

Table 2.1: Multi-Cloud vs. Hybrid Cloud

2.5 Summary

In this chapter, a global overview of the Cloud model organization was pre-
sented. At first, it was presented its five computing characteristics, namely the
on-demand self-service, broad network access, resource pooling, rapid elastic-
ity, and measured service. Secondly, its four service models were depicted, as
IaaS, PaaS, SaaS and XaaS. Finally, it was provided its five deployment models,
which are Private Clouds, Public Clouds, Community Clouds, Hybrid Clouds,
and Multi-Clouds.

The final section of this chapter performed a comparison between Multi-
Clouds and Hybrid Clouds. The main difference is that Multi-Clouds are com-
posed of at least two Public Clouds from different vendors, while Hybrid Clouds
need to have at least a Private Cloud integrated.

19

Chapter 3

Management Tools for Multi and
Hybrid Clouds

This chapter is composed of the presentation of some Multi-Cloud and Hy-
brid Cloud management tools. The sections that compose this chapter are the
following: Management Tools Analysis and Tool Comparison. The first section
presents the investigation performed for each management tool addressed in this
report. The tool analyzed are Terraform [64], Google Anthos [27], Amazon Elastic
Kubernetes Service (EKS) [12] and Ansible [6]. The other section of this chapter
provides a comparison summary between the management tools addressed in
the previous section. To perform the comparison, a set of features is used as com-
parison criteria.

3.1 Management Tools Analysis

This section presents an analysis of some Multi-Cloud and Hybrid Cloud en-
vironment management tools. The management tools addressed are Terraform
[64], Anthos [27], EKS [12] and Ansible [6].

Beyond the tools that are going to be addressed, there are also other tools
available to perform centralized management of Cloud environments. Some ex-
amples are Cloudify [19], Puppet [54] and Chef [18]. In this case, the comparison
will only be performed between Terraform, Anthos, EKS and Ansible [6]. The
reason for this is because Altice Labs (ALB) had an interest in having an analysis
of Anthos, EKS and Ansible, which are recent tools that they do not use and have
little knowledge, and compare them with a tool they are already using, which is
Terraform.

A standard structure was defined in order to perform a similar and balanced
analysis of the management tools in hand. To begin with, the definition of the tool
is provided. Then, it is described how the tool works and how it is composed.
Finally, it is presented the characteristics of the tool.

21

Chapter 3

3.1.1 Terraform

Terraform is an Infrastructure as Code (IAC) that allows the build, change,
and version of both Clouds and on-premises resources safely and efficiently.
The resources are defined in human-readable configuration files that can be
versioned, reused, and shared. Terraform can manage low-level components like
compute, storage and networking resources, as well as high-level components
like Domain Name System (DNS) entries and Software as a Service (SaaS)
features [35]. Terraform provides the foundation for Cloud and on-premises
infrastructure automation using IAC approach to provisioning Cloud infras-
tructure and services [34]. It is classified as an orchestration tool because it is
designed to provision the servers themselves, leaving the job of configuring
those servers to other tools [15].

It uses its own high-level configuration language known as Hashicorp Con-
figuration Language (HCL), or optionally JavaScript Object Notation (JSON), in
order to detail the infrastructure setup. Furthermore, it encourages a more declar-
ative style where the user writes code that specifies his desired end state and the
IAC tool itself is responsible for figuring out how to achieve that state [15]. Also,
it is able to manage multiple Cloud providers and even cross-Cloud dependen-
cies by means of special plugins called providers. Moreover, it is backed by large
communities of contributors and is well documented, both in terms of official
documentation and community resources such as blog posts and StackOverflow
questions [15]. Terraform supports continuous delivery by applying configura-
tion updates, which allows adding, removing or modifying resources, and when
resource arguments cannot be updated, the existing resource will be replaced by
a new one instead. However, Terraform does not support recovery actions, since
any errors need to be addressed manually. Another limitation of Terraform is its
lack of compatibility with other tools, such as VMware, because it is dependent
on Application Programming Interfaces (APIs) to use other tools [65].

Regarding how Terraform works, it creates and manages resources on Cloud
platforms and other services through their APIs. Terraform uses providers to be
enabled to work with virtually any platform or service with an accessible API.
Thousands of providers have already been written by HashiCorp and the Ter-
raform community in order to manage many different types of resources and
services [35]. In terms of the core Terraform’s workflow, it consists of four stages
[35]:

• Write: The resources are defined by ourselves, which may be across multi-
ple Cloud providers and services. An example is to create a configuration to
deploy an application on Virtual Machines (VMs) in a Virtual Private Cloud
(VPC) network with security groups and a load balancer;

• Plan: Terraform creates an execution plan that describes the infrastructure
that will create, update or destroy based on the existing infrastructure and
the written configuration;

• Apply: On approval, Terraform performs the proposed operations in the
correct order, respecting any resource dependencies. An example is when

22

Management Tools for Multi and Hybrid Clouds

the user updates the properties of a VPC and changes the number of VMs
in that VPC, Terraform will recreate the VPC before scaling the VMs;

• Destroy: Terraform decommissions the services and infrastructure config-
ured, so it unwinds everything that has been done. In some sense, is a spe-
cialized version of Apply. An example is when the user creates a staging or
test environment and then needs to destroy it.

Figure 3.1 illustrates Terraform’s workflow stages previously described. The
writing stage is represented by the file where the configurations are written, the
planning stage is represented by Terraform because it is responsible for the plan-
ning, and the apply stage is represented by the Cloud and servers thus is there
where the configurations are going to be applied.

Figure 3.1: Terraform workflow [17]

Terraform can be used by a singular individual practitioner who uses it lo-
cally, and by multiple team members that collaborate to manage the same infras-
tructure. In the single-user case, the user uses Terraform independently without
the multiple users overwrite issues. In the multiple team members case, there is
the need to make sure the team has a constant view and the need to avoid mul-
tiple changes in parallel. As an individual, the user is still writing his Terraform
configurations and planning locally, but now he pushes what he made locally
into a Version Control System (VCS), as GitHub or Bitbucket, to manage and co-
ordinate as it is done for source control. Then the Terraform Enterprise is used to
solve state management issues, to make sure there is only one run at a time, and
to keep variables centrally and encrypted.

Terraform has some characteristics that allow it to solve infrastructure chal-
lenges. The characteristics are the following [35]:

• Terraform allows to manage any infrastructure by using already written
providers for the platforms and services we use, or by using a provider
written by ourselves. Also, Terraform takes an immutable approach to in-
frastructure, reducing the complexity of upgrading or modifying services
and infrastructure, and reducing the likelihood of configuration drift bugs
[15];

23

Chapter 3

• The user can track his infrastructure through a plan generated by Ter-
raform itself, and before modifying his infrastructure Terraform prompts
him for his approval. A state file is used to keep track of the user’s real in-
frastructure, which acts as a source of truth for his environment. Terraform
uses the state file to determine the changes to make to the user’s infrastruc-
ture so that it will match his configuration;

• The user is able to automate changes. Terraform configuration files are
declarative, meaning that they describe the end state of the user’s infras-
tructure. There is no need to write step-by-step instructions to create re-
sources because Terraform handles the underlying logic. Also, Terraform
builds a resource graph to determine resource dependencies and creates or
modifies non-dependent resources in parallel, allowing Terraform to provi-
sion resources efficiently;

• The capability to standardize configurations. Terraform supports reusable
configuration components named modules that define configurable collec-
tions of infrastructure, saving time and encouraging best practices. The user
has the possibility to use publicly available modules from the Terraform
Registry, or write his own;

• The ability to use Terraform in a collaborative way. As the user’s configura-
tion is written in a file, he can commit it to a VCS and use Terraform Cloud
to efficiently manage Terraform workflows across teams.

3.1.2 Anthos

Anthos is Google’s managed applications platform, which allows users to run
Kubernetes and other workloads consistently across on-premises datacenters and
multiple Public Clouds. It may be one of the first Multi-Cloud platforms backed
by a major Cloud provider, with native support for on-premises deployments
and Google Cloud, Amazon and Azure Cloud environments. In order to use this
tool tho run their workflows the users need to pay for a subscription [52] [30].

Anthos focuses on three key capabilities. The first one is Multi-Cloud con-
tainer orchestration and states that Anthos runs on both existing virtualized in-
frastructures and bare-metal servers, enabling the administration of Kubernetes
clusters both on-premises or in the Cloud. The second capability is Automating
policies, which affirms that Anthos’ configuration manager enforces enterprise-
level policies across Multi-Cloud deployments, ensuring constant observation
and security enforcement. The third one is Modernizing security and declares
that Anthos enables integrating security throughout an application’s develop-
build-run cycle and also creates a defence-in-depth security model that employs
a broad selection of security controls consistently across all environments [52].

Regarding how Anthos is built, at its heart is Google Kubernetes Engine
(GKE), which performs some activities like the management of Kubernetes clus-
ters and dependent applications, the monitoring of applications and switching

24

Management Tools for Multi and Hybrid Clouds

loads between on-premises and Cloud. With GKE users can reserve Internet Pro-
tocol (IP) addresses via Google Cloud Virtual Private Network (VPN), allocate
compute resources to a cluster and scale up or scale down the deployment in ac-
cordance with the demands. Moreover, GKE gives the users the ability to manage
all resources using built-in dashboards and gain insights into the functionality of
applications using Google Cloud (Stackdriver) Monitoring and Logging services
[52].

The next Anthos building block is GKE On-Prem, also known as Anthos clus-
ters on VMware. It is a software that brings GKE to on-premises datacenters,
allowing to create, manage and upgrade Kubernetes clusters in an on-premises
environment. It runs on top of VMware vSphere 6.5, but Google is working on
supporting additional hypervisors including Hyper-V and Kernel-based Virtual
Machine (KVM) [52] [66].

The following building block is Anthos Config Management, which is re-
sponsible to help to deploy Kubernetes across a range of environments. It lets
the user simultaneously configure and maintain multiple clusters, and rapidly
develop applications across hybrid container environments. Also, it supports
Kubernetes-native configuration formats, such as Yet Another Markup Language
(YAML) and JSON, to manage a large number of clusters simultaneously [52].

Another building block is the networking component of Anthos, entitled
GKE Hub. Its goal is to connect Google Cloud Services Platform, other Cloud
providers and on-premises clusters’ data. GKE lets the user combine and access
all data from across a Multi-Cloud deployment, and view and manage all
Kubernetes clusters on a single panel.

The final building block is Istio. It allows the user to connect Google Cloud
Platform (GCP), third-party Clouds, databases and other components into a sin-
gle service mesh, supporting load balancing, monitoring of large numbers of clus-
ters and traffic management. In other words, Istio allows to manage communi-
cation among the different clusters as well as deployments and health checkers
[22].

Figure 3.2 represents the diagram of Anthos’ architecture. In it can be visu-
alised the previously detailed blocks that compose Anthos, in which layer they
are situated and if they run on-premises or in the Cloud. Also, it is worth men-
tioning that the GKE On-Prem is situated on the on-premises side, while the GKE
is situated on the Public Cloud side.

25

Chapter 3

Figure 3.2: Anthos architecture diagram [52]

With respect to the features, Google Anthos has the following characteristics
[52] [28]:

• Google Anthos has Multi-Cloud support. It runs on any Public Cloud and
is simple to migrate between Clouds because Kubernetes is supported by
all Cloud providers. Google Anthos also has partnerships with many hard-
ware makers, like Cisco, Dell or Intel, so it can run with the majority of the
on-premises hardware available;

• With Anthos, the user has the ability to monitor and improve the Cloud
application’s performance. It provides visibility into the performance, up-
time, and overall health of Cloud-powered applications. Metrics and logs
can be collected, and dashboards and views may be used to monitor both
the platform and applications;

• Anthos for VMs supports development teams that want to standardize on
Kubernetes but have existing workloads running on VMs that cannot be
easily containerized. It also provides a fit assessment tool to identify the
VMs that are better candidates to shift. This assessment provides compat-
ibility recommendations, identifies the issues that must be resolved before
migration, and provides an Hyper Text Markup Language (HTML) output
in order to ease the view and analysis of the results [29];

• Besides Anthos, Google also developed a Multi-Cloud analytics tool named
BigQuery Omni. This tool was created in order to allow a centralized anal-
ysis of data in an environment with multiple providers. Another reason
why this tool was created is that other analytics tools are often elemen-
tary for Multi-Cloud analytics. Without BigQuery, users would typically
be required to paste the data of the different Clouds they are using to their
primary Cloud analytics tool [67];

• As previously mentioned, Anthos is compatible with on-premises systems
and other Cloud service providers, like Amazon Web Services (AWS) and

26

Management Tools for Multi and Hybrid Clouds

Azure. Also, one major benefit due to the underlying open-source technol-
ogy is that the users are not forced to utilise a specific Cloud vendor [37];

• Anthos can be used to transfer workloads to a GKE container, and to mi-
grate workloads from other providers, like Azure, AWS or VMware VMs
[37].

3.1.3 Elastic Kubernetes Service (EKS)

Amazon EKS is a managed service used to run Kubernetes on AWS without
needing to install, operate and maintain a personal Kubernetes control plane or
nodes. EKS runs and scales the Kubernetes control plane across multiple AWS
availability zones to ensure high availability [13]. On-premises, EKS provides
a consistent Kubernetes solution and totally compatible with integrated tools
and simple deployment to AWS Outposts, VMs or bare metal servers [10]. AWS
Outposts solutions allows the users to extend and run native AWS services on-
premises [11]. Traditionally, Amazon EKS is used for deployment across hybrid
environments.

The applications running on EKS are fully compatible with applications run-
ning on any standard Kubernetes environment, regardless they are running in
on-premises datacenters or Public Clouds. This means that any standard Kuber-
netes application can easily be migrated to EKS without any code modification.
EKS is integrated with many AWS services in order to provide scalability and se-
curity for the users’ applications. Some examples of the capabilities provided are
AWS Elastic Container Registry (ECR) for container images, and also Amazon
VPC for isolation. As it runs updated versions of the open-source Kubernetes
software, the users are able to use all of the existing plugins and tooling from the
Kubernetes community [13].

Regarding how it works, to start with EKS the first step that needs to be done
is to provision an Amazon EKS cluster in the AWS Management Console or with
the AWS Command Line Interface (CLI). This EKS cluster is provisioned through
AWS which creates a master node or control plane. The next step consists of de-
ploying managed or self-managed Amazon Elastic Compute Cloud (EC2) nodes,
also known as worker nodes. They will be connected to the control plane for
management and scaling control. After the cluster is ready, the user can con-
figure the Kubernetes tools that he wants to use, like kubectl or eksctl, in order
to communicate and configure his cluster. After that, the user is able to deploy
and manage workloads on his Amazon EKS cluster the same way he would with
any other Kubernetes environment. In addition, the user can also use the AWS
Management Console to view information about his workloads [13] [59].

Figure 3.3 illustrates the general overview for creating a Kubernetes cluster
with Amazon EKS. Firstly, an Amazon EKS cluster is provisioned. The following
step is the deployment of Amazon EC2 nodes. After that, the Kubernetes tools
that will be used are configured. At last, applications can finally be deployed on
the cluster configured. Also, Figure 3.4 provides a visual representation of the
EKS architecture, showing two VPCs, one with the worker nodes, and the other

27

Chapter 3

with the control plane. A network load balancer and an Elastic Network Interface
(ENI) are used to provide communication between the VPCs.

Figure 3.3: Amazon EKS setup process [13]

Figure 3.4: Amazon EKS architecture [59]

According to Amazon’s documentation, EKS has the following characteristics
[5] [9]:

• By using EKS, the user has access to other AWS services, like AWS Identity
and Access Management (IAM) for authentication, AWS ECR for container
images and AWS Elastic Load Balancer (ELB) for load distributions;

• As mentioned, EKS provides a scalable and highly-available Kubernetes
control plane running across multiple AWS availability zones. It runs the
Kubernetes control plane across the availability zones in order to secure
high availability, and also automatically detects and replaces unhealthy
control plane nodes;

• Typically, EKS is used for hybrid deployments. It can be used on AWS
Outposts to run containerized applications requiring low latencies to
on-premises systems. With this feature, users can manage containers
on-premises with the same ease as they manage their containers in the
Cloud;

28

Management Tools for Multi and Hybrid Clouds

• EKS supports running worker nodes from different Operating Systems
(OSs), like Windows worker nodes alongside Linux worker nodes. This
allows the users to use the same cluster for managing applications on either
OS.

3.1.4 Ansible

Ansible is an open-source Information Technology (IT) automation tool that
automates provisioning, configuration management, application deployment,
workflow orchestration and many other IT processes. Ansible automates the
management of remote systems and controls their desired state. Ansible has
the ability to manage either Linux or Windows systems but the management of
Windows systems may have some limitations because it is a recent feature [56]
[7].

Ansible’s architecture consists of three main components. The first one is the
control node, which is the system where Ansible is installed and where the user
runs Ansible commands. The requirements for this node are that needs to have
any UNIX-like machine with Python installed. This includes Debian, Ubuntu,
macOS and Windows under a Windows Subsystem for Linux (WSL) distribution
since Windows without WSL is not natively supported as a control node. The
second one is the managed nodes, which are the remote systems that Ansible
controls and is where the configurations are going to be performed. These nodes’
requirements are to have Python installed to run Ansible library code and to have
the Secure Shell (SSH) service running. The third component is the inventory,
which is a list created by the user in the control node that contains the managed
nodes IPs or hostnames. It is possible to group multiple IPs or hostnames, thus
grouping nodes with different ends, like web servers or databases [7].

Figure 3.5 illustrates Ansible’s architecture with its components. In it, is pre-
sented the control node with both Ansible installed and the inventory, and also
are shown the connections from the control node to the managed nodes. These
connections are performed via SSH, so there is no need to have any agents in-
stalled in the managed nodes [56] [7].

29

Chapter 3

Figure 3.5: Ansible’s architecture [7]

Ansible works with instructions written in YAML files named Ansible Play-
books. These playbooks are composed of one or more sets of instructions, each
one called an Ansible Play. Each Play is at least composed of two components:
the hosts, which specifies the nodes that will be configured, and the tasks, which
represents the actions to be performed. A task contains its own description and
a module, making sure that each module is executed with certain arguments. A
module is a small program that does one small specific task, like running a com-
mand, creating or copying a file, installing or starting an Nginx server, or starting
a Docker container. Ansible Playbooks can contain in a single file all the configu-
rations to perform in the managed nodes or can import configurations and tasks
written in files that are organized in a directory structure. In this case, the files
are called Ansible Roles.

To begin using Ansible, the user has to make sure the control node and the
managed nodes meet their requirements. Next, the user has to install Ansible in
his control node. Afterwards, the user has to generate a key pair in his control
node and then copy the public key to the nodes he wants to manage. After the
connection part of the setup is done, the user needs to create a working directory
in his control node. In this directory, the user must create the inventory file and
also a file named "ansible.cfg". This "ansible.cfg" is the file where the user speci-
fies some Ansible default configurations, such as specifying which inventory file

30

Management Tools for Multi and Hybrid Clouds

and which key Ansible has to use when running Ansible commands. After this
procedure is done, the user can create and run his Ansible Playbooks from his
working directory.

Ansible’s features are what turn Ansible into a very powerful and accessible
tool. The features linked with Ansible are the following [60] [8]:

• Ansible’s automation has a significant team impact by allowing teams to
save time and be more productive, by eliminating repetitive tasks and also
by reducing the number of mistakes and errors that could happen by doing
tasks manually;

• Ansible is an open-source and free tool and is also very simple to set up
and use, not requiring the user to have any special coding skill or learn any
coding language in specific;

• Ansible is a Cloud agnostic tool, thus it can be used to automate any ma-
chine no matter its location. The machines can be located either on-premises
or in any type of Cloud or Cloud Service Provider (CSP);

• Since the connections between the control node and the managed nodes are
done via SSH, Ansible is considered to be an agentless tool, because there
is no need to install or update an agent in the managed nodes.

3.2 Tools Comparison

In this section is performed a comparison between each management tool
previously described. Most of the features used were proposed by [65]. Is im-
portant to note that despite being similar, the first three features are different and
complement each other. The features used for the comparison are the following:

• Multi-Cloud support: Supporting multiple Cloud providers, by offering
a Cloud abstraction layer which hides differences and avoids the need for
provider-specific customisation causing the vendor lock-in issue.

• Cross-Cloud support: Enhances the Multi-Cloud feature by allowing to
distribute component instances of a single application over multiple Cloud
providers. The advantages of this feature are allowing the selection of the
best-fitting Cloud providers on a per component instance basis, optimis-
ing costs, improving the quality of services and leveraging the application’s
availability as it introduces resilience against the failure of individual Cloud
providers.

• Interoperability approach: The ability to develop applications that com-
bine resources that can interoperate, or work together from multiple Cloud
providers, hence taking advantage of specific features provided by each
provider.

31

• Integration: Being able to enable the use of servers not managed by a
Cloud platform or VMs on unsupported Cloud providers, in order to
support more advanced Infrastructure as a Service (IaaS)/Platform as a
Service (PaaS) services.

• Access: This feature captures what interfaces a Cloud resource orchestra-
tion framework uses to interact with Cloud resources. There are three types
of interfaces supported: CLI, Web-Based (WB) dashboard, and WB API.

• Free use: This feature specifies if the tool is free to use, thus not requiring
the user to pay any kind of subscription or plan.

After the management tools analysis and considering the features just de-
scribed, Table 3.1 was created with the goal of presenting the comparison between
the tools mentioned before. In order to gather the information required to under-
stand if a feature is supported by a tool, the article [65] and official documentation
of each tool were used.

The (✓) mark indicates that the tool supports that feature and the (✗) mark
states that the tool does not support that feature. In the Multi-Cloud support
and Access features, are provided examples of what each tool supports regarding
the feature at hand. The Cross-Cloud support, Interoperability approach and
Free use features are simple "support" or "does not support" questions, therefore
no examples are listed. Regarding the Integration feature, Terraform supports
external IaaS/PaaS but does not allow the user to bring his own node, thus the
(✗) on the Bring Your Own Node (BYON). On the other hand, Anthos, EKS and
Ansible support both options.

Cloud features Terraform Anthos EKS Ansible

Multi-Cloud
support

✓(AWS, GCP,
Azure, OpenStack,
Oracle, vSpheres

and more than 30)

✓(Google Cloud,
Amazon, Azure) ✗(AWS) ✓(Any type of

Cloud and CSP)

Cross-Cloud
support ✓ ✓ ✗ ✓

Interoperability
approach ✗ ✓ ✗ ✓

Integration
✓External
IaaS/PaaS

services ✗BYON
✓ ✓ ✓

Access
✓(CLI, WB

Dashboard, WB
API)

✓(CLI, WB
Dashboard,

Kubernetes API,
Anthos

Multi-Cloud API)

✓(CLI, WB
Dashboard) ✓(CLI)

Free use ✗ ✗ ✗ ✓

Table 3.1: Multi-Cloud and Hybrid Cloud environment management tools comparison

3.3 Summary

This chapter presented four Multi-Cloud management tools. The first one
is Terraform, which is an IAC tool focused on building, changing, and version-
ing both Cloud and on-premises resources. The second one is Anthos, which
allows running Kubernetes and other workloads across on-premises datacenters
and multiple Clouds. The third tool is EKS, which is a service used to run Ku-
bernetes on AWS without needing to install and maintain a personal Kubernetes
control plane or nodes. The last tool is Ansible, which is a Cloud agnostic open-
source and free automation tool focused on the management of remote systems.

A comparison between these tools was performed in this chapter’s last sec-
tion. For this analysis, the following features were used: Multi-Cloud support,
Cross-Cloud support, Interoperability approach, Integration, Access and Free
use. This analysis led to the conclusion that Ansible is the most complete tool
out of the four tools compared. The results of the comparative analysis can be
consulted in Table 3.1.

34

Chapter 4

Automatic Deployment Tools

This chapter is composed of the presentation of tools used for automatic de-
ployment. The sections presented in this chapter are the following: Continuous
Integration/Continuous Delivery (CI/CD), Kubernetes and GitHub Actions.

4.1 Continuous Integration / Continuous Delivery

CI/CD is a method of frequently delivering apps to customers by automat-
ing the stages of app development. Even though CI/CD stands for continuous
integration and continuous delivery, another concept attributed to CI/CD is con-
tinuous deployment. This method is seen as a solution to the problems caused to
development and operations teams when integrating new code into already run-
ning apps. Also, CI/CD is known for introducing automation and continuous
monitoring throughout the lifecycle of apps, from integration and testing phases
to delivery and deployment. These practices taken together are referred to as a
CI/CD pipeline [58].

The "CI" stands for continuous integration, which is an automation process
for developers. It is considered a successful "CI" when code changes to an app
are regularly built, tested and merged into a shared repository. Continuous inte-
gration is a good solution to the problem of having various branches of an app in
development at once that might conflict with each other [58].

The "CD" either stands for continuous delivery or for continuous deployment,
which are automation processes in further stages of a pipeline. Continuous de-
livery means that the changes made by a developer to an application are auto-
matically tested and uploaded to a repository, where they can be deployed to a
production environment by the operation team. The continuous delivery pur-
pose is to ensure that the deployment of new code takes as minimal effort as
possible. Regarding continuous deployment, it refers to automatically releasing
the changes made by a developer from the repository to production, where the
application is usable by customers. This concept’s objective is to avoid overload-
ing operations teams with manual processes that slow down app delivery [58].

35

Figure 4.1 sums up a typical CI/CD flow. The flow begins with continuous
integration by building, testing and merging code changes, then follows the con-
tinuous delivery by automatically releasing the newly updated code into a repos-
itory, and finally follows the continuous deployment by automatically deploying
the updated version of the app to production for the customers to use.

Figure 4.1: CI/CD flow [58]

There are CI/CD tools that help teams to automate their development, de-
ployment and testing. While there are tools that handle all the CI/CD concepts,
there are other tools that are specialized either in the integration concept or in the
delivery and deployment concepts. Some examples of CI/CD tools are GitHub
Actions [24], GitLab [26] and Bitbucket [14]. In addition, teams often use CI/CD
tools together with other DevOps tools in order to strengthen their production
processes. Automation or orchestration tools like Ansible [6], Chef [18], Docker
[21] and Kubernetes [42] are not considered CI/CD tools, but they often appear
in many CI/CD workflows [58].

4.2 Kubernetes

Kubernetes, also known as K8s, is an open-source container orchestration tool
used for automating deployment, scaling and management of containerized ap-
plications. It groups containers that make up an application into logical units for
easy management and discovery. Also, Kubernetes gives the freedom to take ad-
vantage of on-premises or any type of Cloud infrastructure since it can be run in
any virtual or physical environment [42].

Kubernetes brings orchestration features to containerized applications, such
as automated rollouts and rollbacks, service discovery (gives Internet Protocol
(IP) addresses and Domain Name System (DNS) names to pods) and load bal-
ancing across pods, storage orchestration, self-healing, secret and configuration
management, and horizontal scaling. Kubernetes components are defined by
manifests, which are Yet Another Markup Language (YAML) files containing the
detailed configuration of the resources. Some examples of Kubernetes compo-
nents are namespaces, deployments, pods, services and replica sets [42].

To run Kubernetes it is needed to install a Kubernetes cluster, which is a set
of nodes configured to run containerized applications. These clusters are more

36

lightweight and flexible than Virtual Machines (VMs), so they allow for appli-
cations to be more easily developed, moved and managed. Also, unlike VMs,
Kubernetes containers are not restricted to a specific Operating System (OS), thus
they are able to share OSs and run anywhere. For a production environment, it
is a good practice for the cluster to be distributed across multiple worker nodes,
while for a testing environment, the cluster’s components can all run in the same
node [69].

Regarding its composition, Kubernetes clusters are formed with one master
node and a number of worker nodes. The master node has the job of controlling
the state of the cluster, by deciding which applications are running and their cor-
responding container images, and also by choosing in which worker node should
new application components be created. Besides the master node’s main obliga-
tion is to control the cluster, it can also be configured to be possible to create
new components in it. The worker nodes have the responsibility to run the jobs
assigned to them by the master node.

Since a Kubernetes cluster needs a considerable amount of resources in each
node, there is a possibility to quickly set a local cluster in a machine with lower
settings and with any type of system. To do this, it is used a tool called Minikube
[44]. The purpose of this tool is to help new users and students have their first
interaction with Kubernetes technology, focusing on making it easy to learn and
develop for Kubernetes. To use Minikube, the user’s machine needs to have at
least the following settings: 2 Central Processing Units (CPUs), 2 Gigabytes (GB)
of free memory, 20GB of free disk space, Internet connection and a container or
VM manager, such as Docker, Hyper-V or VirtualBox. After installing and start-
ing the Minikube cluster in their machine, the user just needs to write and then
apply the manifest files of the components he wants to create in his local cluster
[44] [43].

4.3 GitHub Actions

The CI/CD tool analysed in this work is GitHub Actions. This tool was se-
lected due to a previous study performed in the context of the POWER project
that compared GitHub Actions with GitLab and Bitbucket and concluded that
GitHub Actions was the best CI/CD tool out of the three.

GitHub Actions is the CI/CD tool provided by GitHub. This platform allows
the automation of building, testing and deployment pipelines. With this tool,
the user can create workflows that build and test pull requests to a repository,
or deploy merged pull requests to production. Beyond DevOps, GitHub Actions
lets create and run workflows to appropriately label issues that someone made in
a repository. To use this tool, it is just needed to have a GitHub repository [25].

GitHub Actions is a tool that brings important benefits to its users. The first
one is that assuming that the user is using a GitHub repository to store his code,
there is no need to integrate a third-party CI/CD tool with GitHub. The second
benefit is that the setup of a pipeline is considerably simple, thus requiring almost

37

no effort from a user. Finally, since it is a tool designed for developers, there is no
need for additional DevOps members in teams whose dedication is to set up and
maintain a CI/CD pipeline in a developers project [38].

The machines that run the workflows are called runners. There are two types
of runners: the GitHub Runners and the Self-Hosted Runners. A GitHub Run-
ner is a VM provided by GitHub that has the job of simply running workflows.
These VMs can either be Linux, Windows, or macOS. These runners are normally
used to run building, testing and merging workflows. A Self-Hosted Runner is a
machine owned by a user that has to be configured to communicate with GitHub
so it can run workflows from the user’s repository. This machine can either be
the user’s personal computer or VM, or a machine located in a datacenter or in
the Cloud. To configure a machine as a Self-Hosted Runner, first, the user has to
access his repository settings, then click on the "Actions" option listed and then
click on the "Runners" option that will appear. After, the user has to click on the
"New self-hosted runner" button, then select the image and architecture of his
machine and finally copy and run in the machine the commands that will appear
after choosing the image and architecture. When configuring the machine, the
user can assign a label to the machine, in order to distinguish that machine from
other Self-Hosted Runners from that repository. After configuring the machine,
it will appear listed in the "Runners" section [25] [23].

The structure of a GitHub Actions workflow consists of events and jobs. An
event is what specifies when the workflow will trigger. There are many events
possible that can trigger a workflow but the most common ones are: on "push",
which is when a push is made to the repository; on "pull_request", which is when
a pull request is made to the repository; and on "workflow_dispatch", which al-
lows triggering the workflow via the "Actions" tab of the repository. A job is what
is going to be executed in the runners. Each job is composed of a set of steps
and by specifying in which runner the job will run. A step can either be a shell
command or an "action", which is a custom application for the GitHub Actions
platform done by other users that can be reused by others. Steps are executed in
order and are dependent on each other. The option that specifies where the job
will run is called "runs-on", and its values can be the OSs of the runners provided
by GitHub or the labels assigned to a specific Self-Hosted Runner [25].

4.4 Summary

This chapter presented a basis for automatic deployment. It began by intro-
ducing the CI/CD concept by stating that is a method of continuously delivering
apps to users by using automation to reduce the effort needed to integrate up-
dates and deliver and deploy the final version of the application. After introduc-
ing the CI/CD concept, it makes a description of tools normally used in CI/CD.
The first tool described was Kubernetes, which is a container orchestration tool
used for automating deployment. Its great advantage is being lighter than VMs,
thus easing the development, movement and management of applications. The
other tool presented was GitHub Actions, which is a CI/CD tool provided by

38

GitHub that has the goal of automating processes by making use of workflows.
Its main benefit is releasing the user from the effort and inconvenience of inte-
grating a third-party CI/CD tool with GitHub to access his repository.

39

Chapter 5

Problem Analysis

This chapter is composed of an analysis of the problem that motivated the de-
velopment of this report. It contains the Problem Description, the Requirements
Analysis and the Risk Analysis. The first section provides the problem’s descrip-
tion, explaining the main challenges regarding the problem presented. The fol-
lowing section presents the requirement analysis, including the identification of
both functional and non-functional requirements. The last section provides the
risks that can happen during the implementation of the proposed solution.

5.1 Problem Description

Nowadays, the demand for resources to deploy applications and services in
the Cloud is increasing in order to enhance the value and expand the reach of the
solutions that are being deployed. Taking into consideration the high amount of
resources demanded, a single Cloud Service Provider (CSP) might not have the
capacity to supply all the resources or features required by companies to fulfil
their needs, so to solve this limitation, companies have realized that relying on
various CSPs and combining the resources provided by them can become benefi-
cial for their business.

The process of managing and configuring various resources and features pro-
vided from different CSPs can become a problem if not done properly. To be-
gin with, it must be ensured that the resources supplied from different places
can interoperate and be combined, hence taking full advantage of every resource
provided. In addition, managing a huge amount of resources and deploying on
different Clouds in a non-automated way can become time-consuming, because
each Cloud may have its own deployment procedure. In other words, is like
if a system administrator is following a procedure to deploy in Google Cloud,
but then has to follow a completely different procedure, and in some cases more
complex, to deploy the same product in a different Cloud. The logical solution to
solve this issue is to use a framework for the automatic deployment in Cloud and
Multi-Cloud environments, with minimum touch management as possible. With
this solution, a system administrator could simply press a button to perform a

41

deployment, regardless of the Cloud where he wants to deploy.

A method to achieve this solution would be to use a combination of Multi-
Cloud management tools, to manage and configure the resources from multiple
CSPs, with a Continuous Integration/Continuous Delivery (CI/CD) tool, in or-
der to automate as much of the deployment procedure as possible.

5.2 Requirements Analysis

This section performs the identification of the functional requirements and
non-functional requirements related to the problem previously described.

5.2.1 Functional Requirements

This section addresses the functional requirements that fall under the scope
of the present problem.

5.2.1.1 User Stories

Table 5.1 presents the generic requirements identified in a User Story format.
The requirements listed are seen from a system administrator’s point of view,
thus following the train of thought of the problem’s description. The first column
indicates what the user intends, while the second column indicates the user’s
objective.

As a System Administrator, I
want...

So that...

automate the procedure to per-
form configurations and de-
ployments

I can reduce the effort needed
for these tasks and focus on
other assignments.

to use a tool able to manage mul-
tiple environments

I don’t have to configure a spe-
cific tool for a specific environ-
ment.

to use a tool that is Cloud agnos-
tic

I freely choose the environments
and providers I need without
any kind of restrictions.

to use a scalable tool I can add additional computing
resources to my environments
without worrying about its con-
figuration effort.

Table 5.1: User Stories

42

5.2.1.2 High-level requirements

This section lists the requirements that define how the framework must be
structured. Some requirements are more important than others, so to define
their prioritization is used the Must have, Should have, Can have, Won’t have
(MoSCoW) prioritization method, which is a four-step approach to prioritize re-
quirements, from most to least important. The four steps of this method are the
following [16]:

• M - Must have: this step identifies the requirements that are necessary for
the successful completion of the project;

• S - Should have: this second category specifies which requirements are im-
portant but not mandatory to complete the project without impacting it;

• C - Can have: this category defines which requirements have a smaller im-
pact when left out of the project;

• W - Won’t have: this final step includes all the requirements not needed for
the project’s time frame.

The requirements considered in the development of the automatic deploy-
ment solution in Multi-Cloud environments are the following:

1. The framework must use a combination of a Multi-Cloud tool with a CI/CD
tool;

2. The framework must be able to simplify and automate complex procedures
by allowing to perform them with just a few steps;

3. The framework must be able to deploy to any type of on-premises or Cloud
environment;

4. The deployments performed by this framework must be done in a Kuber-
netes cluster;

5. The Kubernetes cluster used should have a minimum of two nodes;

6. The framework used could be able to install addons in the Kubernetes clus-
ter.

5.2.2 Non-Functional Requirements

This section addresses the non-functional requirements that fall under the
scope of the present problem.

• Security: Security of the applications deployed due to the information and
data stored. The infrastructure and tools must be secure to ensure there is
no information or data leak. Security is divided into three attributes:

43

– Confidentiality: this attribute is related to the absence of protected
data by parties unauthorized to access the data. In this case, the cre-
dentials to access the tools must be only known by its users;

– Integrity: is related to the improper modification of the systems used.
This can be a problem in a Multi-Cloud environment, due to the com-
bination of different systems and resources used;

– Availability: it concerns the readiness to provide what was deployed.
In order to guarantee high availability, a backup system must be used
beyond the deployed application;

• Usability: The user of the Multi-Cloud tool must have management and
network knowledge, programming background, and orchestration experi-
ence.

5.3 Risk Analysis

Table 5.2 lists the risks identified for the development of the framework. The
first column has a description of each Risk. The second column indicates the level
of Impact of each risk on a zero (0) to five (5) scale, with zero (0) being "no impact"
and five (5) being "high impact". The third column declares the Likelihood of
each risk on a zero (0) to five (5) scale, with zero (0) being "not likely" and five
(5) being "very likely". The fourth column indicates the Severity of each risk,
being the result of the multiplication between the Impact and the Likelihood. The
fifth column declares the Consequence of each risk. The last column provides a
Mitigation Plan for each risk identified.

Risk Impact Likelihood Severity Consequence Mitigation Plan

Not having the budget
to pay for a CSP. 4 4 16

Not being able to test
the framework in a

Public Cloud.

1) Ask for funding from
the project POWER
partners; 2) Test the

framework in
on-premises and

Private Cloud
environments.

Not having the budget
to subscribe to a

Multi-Cloud tool.
3 4 12

Not being able to test a
specific Multi-Cloud

tool.

1) Ask for funding from
the project POWER
partners; 2) Use free

tools in the framework.

The resources needed
can not be supplied by

the provider used.
5 1 10

Not being able to test
the framework in a

Cloud environment.

Test the framework in
an on-premises
environment.

Total failover of the
provider. 4 1 4

Lose the environment
and the applications
deployed in there.

Test the framework in
an on-premises
environment.

Total failover
on-premises. 4 2 8

Lose the workflow files,
configurations and

applications that are
running on-premises.

Have a backup of the
workflow files in a
repository or in an

external storage device,
to have a recovery point

to be able to continue
the testing of the

framework on another
machine.

Table 5.2: Risk analysis

The first risk listed is related to the subscription to a CSP in order to use a
Public Cloud for testing purposes. In case there is no budget for a subscrip-
tion, a possible mitigation plan consists of asking for funding from the project
POWER partners. Other possible mitigation consists of performing the testing
of the framework in on-premises and Private Cloud environments. This risk oc-
curred during the framework implementation and in Section 6.3.4 is presented
the mitigation plan followed.

The second risk describes a similar scenario to the first risk, where there is no
budget to use a Multi-Cloud tool. This risk can be mitigated by asking for fund-
ing from the project POWER partners, or by using a free tool in the framework.
This risk occurred during the framework implementation and in Section 6.3.4 is
presented the mitigation plan followed.

The third risk describes a scenario where the provider used is not able to
supply the resources needed to test the framework in a Private Cloud environ-
ment. In this case, the mitigation plan consists of testing the framework in an
on-premises environment

The fourth risk identifies a scenario where occurs a failover in the provider,
leading to the loss of the environment and the applications already deployed.
The mitigation plane consists of making use of an on-premises environment to
perform the framework tests.

The last risk consists of a situation where could happen a problem that could
lead to the malfunction of the on-premises environment that was being used for
testing. A plan to workaround and prevent this risk consists of having a backup
of the files and procedure followed to perform the framework testing, in order to
have a recovery point and continue the tests using other hardware.

5.4 Summary

The first section of the chapter provided a description of the problem at hand,
pointing out the reasons why the problem should be solved and a method to
achieve a possible solution. The second section offered an analysis of the re-
quirements, first by presenting more generic requirements by using User Stories
from a system administrator’s point of view, and then by listing and prioritiz-
ing more specific requirements by using the MoSCoW method. This section also
mentioned the non-functional requirements that were not crucial for the frame-
work function. The last section assessed the risks that could possibly occur dur-
ing the testing of the framework and also provided a mitigation plan in order to
be possible to workaround them.

46

Chapter 6

Proposed Solution

This chapter presents the proposed solution to solve the problem previously
described. The sections that compose this chapter are the following: General Ar-
chitecture, GitHub Actions Workflows and Scenarios. The first section overviews
the general architecture of the solution. The second section presents the work-
flows that were configured to automate the deployment. The last section de-
scribes the scenarios provided by Altice Labs (ALB) and also presents the process
of implementing and validating each scenario.

6.1 General Architecture

The general architecture of the solution proposed in this chapter has the ob-
jective of automatically deploying a testbed application in the Cloud via GitHub.
For this, a set of workflows was configured, whose purpose is to contain the com-
mands and configurations needed to deploy a specific testbed application.

As is presented in Figure 6.1, the general idea of the solution is to have a de-
ployment team responsible for the configuration of the tools that will be used for
automation and Cloud management. After the tools are configured, they will be
used by a development team that will use a Multi-Cloud tool to manage their en-
vironment and will also use GitHub Actions to automatically deploy their testbed
applications in the Cloud.

47

Figure 6.1: General Architecture

6.2 GitHub Actions Workflows

A set of GitHub Actions workflows were configured in order to perform the
automation of manual processes. The workflows configured had the objective
of deploying and deleting the components of an application and automating the
starting, stopping and deleting of a Minikube cluster. The workflows configured
are the following:

• main.yml;

• delete_scenario.yml;

• start_minikube_cluster.yml;

• stop_minikube_cluster.yml;

• delete_minikube_cluster.yml;

The main.yml workflow is the main workflow of the ones created because it
is the one that applies the manifest files to deploy the Kubernetes components
that compose the application. As shown in Figure 6.2, this workflow gets trig-
gered when a push is made to the main branch of the repository, by using the
"push" option. It can also be manually triggered through GitHub by using the
"workflow_dispatch" option. Also, this workflow is composed of two jobs. The first
one is named "tests" and it is responsible for the validation of the manifest files by
using the Kubeval tool. In Figure 6.3 it is possible to verify that this job runs in a
GitHub Runner. This eliminates the process of installing Kubeval manually in the
local Virtual Machine (VM). By running this job in a GitHub Runner, the Kubeval

48

tool can be easily set up by using the "lra/setup-kubeval@v1" action, without being
necessary to write anything in the runner’s console, such as a password, due to
administrator permissions. This job uses the "actions/checkout@v3" action to check
out the files that are available in the repository. After having access to the mani-
fest files and after Kubeval is set up in the runner, this job runs a set of commands
to validate the manifest files, by comparing them with the schemas available in
the repository [33]. The second job is named "deployment" and it is responsible for
the deployment of the components. This job runs in a VM previously configured
to be a Self-Hosted Runner so that the components could be created in the VM.
As Figure 6.4 shows, this job needs to wait for the "tests" job to successfully finish
before starting. If the "tests" job fails, the "deployment" job will not run. The action
"actions/checkout@v3" is also used so that the "deployment" job can access the mani-
fest files, and then the commands needed to apply the manifest files to create the
components are run.

Figure 6.2: main.yml events

Figure 6.3: main.yml test job

49

Figure 6.4: main.yml deployment job

The delete_scenario.yml workflow has the function of deleting all the compo-
nents without deleting the cluster. The configuration is represented in Figure 6.5.
This workflow is manually triggered through GitHub and this option was con-
figured by using "workflow_dispatch" in the events section. This workflow only
has one job, since there is no need to test the manifest files. It runs in a VM pre-
viously configured to be a Self-Hosted Runner so that the components could be
deleted from the VM. This job uses the "actions/checkout@v3" action to access the
manifest files and then runs the set of commands to delete the components that
were created.

50

Figure 6.5: delete_scenario.yml

The start_minikube_cluster.yml workflow has the function of starting the lo-
cal Minikube cluster. This workflow is manually triggered through GitHub and
this option was configured by using "workflow_dispatch" in the events section. As
Figure 6.6 illustrates, this workflow contains a single job called "start-minikube",
which runs in a Self-Hosted Runner VM, that runs the commands to set Virtu-
alBox as the default driver for Minikube, to start the cluster and to enable the
ingress addon. It is important to note that the "$> minikube start " command must
be protected so that the process started by this command doesn’t get killed by
the Runner when the workflow finishes. If the command was not protected, the
command would create the cluster but the cluster’s state would be "Stopped" in-
stead of "Running" after the workflow is finished. To protect this command is
used "RUNNER_TRACKING_ID="" && " before specifying the command, as it can be seen
in Figure 6.6.

51

Figure 6.6: start_minikube_cluster.yml

The delete_minikube_cluster.yml workflow has the function of deleting the
local Minikube cluster. This workflow is manually triggered through GitHub
and this option was configured by using "workflow_dispatch" in the events section.
As is represented in Figure 6.7, this workflow contains a single job called "delete-
minikube", which runs in a Self-Hosted Runner VM, that runs the command to
delete the cluster.

Figure 6.7: delete_minikube_cluster.yml

52

The stop_minikube_cluster.yml workflow has the function of stopping the lo-
cal Minikube cluster. This workflow is manually triggered through GitHub and
this option was configured by using "workflow_dispatch" in the events section. As
Figure 6.8 illustrates, this workflow contains a single job called "stop-minikube",
which runs in a Self-Hosted Runner VM, that runs the command to stop the clus-
ter.

Figure 6.8: stop_minikube_cluster.yml

6.3 Scenarios

This section describes the implementation scenarios provided by ALB. These
scenarios were designed and have been provided to be used as a basis for an
automatic deployment solution in Cloud and Multi-Cloud environments. There
are four scenarios in total, and the main difference between them is where and
how they are deployed. The first scenario is to be deployed locally, while the
second, third and fourth scenarios are to be deployed in the Cloud. The scenarios
were designed and arranged so that the degree of complexity would gradually
increase from one to the other, in order to have a step-by-step process to deploy
the most complex scenario. The implementation process that was followed to
deploy each scenario is reported after their description. The report consists of
presenting the steps taken in each scenario, including the tools downloaded and
why they were used.

The scenarios are composed of some Kubernetes objects. The objects used
are listed in Table 6.1. The table presents the icon, name and description of each
object used [46] [40] [45] [41].

53

Icon Object Description

Node

Virtual or physical
machine that contains the
services necessary to run

containerized applications

Control Plane
Manages the worker

nodes and the pods in the
clusters

Namespace
Used to isolate groups of
resources within a single

cluster

Ingress

Exposes Hypertext
Transfer Protocol (HTTP)
and Hypertext Transfer

Protocol Secure (HTTPs)
routes from outside the

cluster to services within
the cluster

Service

Routes the traffic to or
between the pods and
assigns a permanent

Internet Protocol (IP) to a
pod

Pod Used to run containers

ReplicaSet
Maintains the number of
stable sets of replica pods
running at any given time

Deployment Defines the desired state
of the pods in the cluster

54

Secret

Stores and manages
sensitive information,

such as passwords and
Secure Shell (SSH) keys

ConfigMap

Stores some external
configuration of an
application, such as
Uniform Resource

Locators (URLs) of a
database or service

Table 6.1: Kubernetes objects

6.3.1 Scenario 1

This subsection presents the description, implementation and validation of
Scenario 1.

6.3.1.1 Description

The first scenario, named OnPrem TST environment, is illustrated in Figure 6.9.
The goal of this scenario is to be used as an introduction to the technology that
will be used in the subsequent scenarios. This scenario is to be deployed locally
and the tool used to deploy it is Minikube, therefore this scenario is seen as a
test-minded scenario.

The scenario is composed of the following components: a single node that
adopts the control plane role, a namespace, a deployment, a replica set, two pods,
a service and an ingress.

55

Figure 6.9: Scenario 1

6.3.1.2 Implementation and validation

To begin the deployment of this first scenario, a VM was created in order to
have a dedicated machine to run the local cluster. The settings settled for the VM
are the following: 2 Central Processing Units (CPUs), 6 Gigabytes (GB) of mem-
ory and 30 GB of disk space. An important point is that the VM needs to support
virtualization, therefore that option needs to be checked in the VM settings. Also,
the Operating System (OS) used was Ubuntu Desktop 22.04.1. After the VM was
created, the next step consisted of updating and upgrading it.

The following step regards the installation of the necessary software and tools
to deploy the scenario. Firstly, VirtualBox was installed because a hypervisor
was needed to virtualize the cluster. Then followed the installation of Minikube,
needed to create and start the cluster, and finally the Kubectl tool was installed in
order to communicate with the cluster. It was also needed to enable an addon in
Minikube in order for the ingress object could work.

After the initial setup was configured, it was previously defined that what
was going to be deployed in the pods was an application and a database, being
that the application deployed was Mongo Express and the database deployed
was MongoDB. Taking that into consideration, there was the need to add two
more components to the scenario in addition to those presented in 6.9, namely a
secret and a config map. After determining what was going to be deployed in the

56

pods, it was initiated the creation and configuration of the manifest files needed
to create the objects that compose the scenario. The manifest files configured
were:

• scenario-1-namespace.yaml;

• mongo-secret.yaml;

• mongo.yaml;

• mongo-configmap.yaml;

• mongo-express.yaml;

• mongo-express-ingress.yaml.

A set of commands was then applied in a certain order to create the scenario.
It is important to note that the order of the creation of the components matters
because some components need to be created to be referenced later in other com-
ponents’ manifest files. The followed procedure was the following:

1. Start Minikube
$> minikube start

2. Deploy the Namespace "scenario-1"
$> kubectl apply -f scenario-1-namespace.yaml

3. Create MongoDB Secret
$> kubectl apply -f mongo-secret.yaml

4. Create MongoDB Deployment and Service
$> kubectl apply -f mongo.yaml

5. Create the ConfigMap, to store the path to the database
$> kubectl apply -f mongo-configmap.yaml

6. Create Mongo Express Deployment and Service
$> kubectl apply -f mongo-express.yaml

7. Enable the ingress addon on Minikube, to be possible to use this component
on a local cluster
$> minikube addons enable ingress

8. Create Mongo Express Ingress
$> kubectl apply -f mongo-express-ingress.yaml

9. Run the following command, and then take note of the ingress’ IP
$> kubectl get ingress -n scenario-1

10. Open the "/etc/hosts" file, and add both the IP noted in the previous step
and the URL defined in the "mongo-express-ingress.yaml" file
$> sudo vim /etc/hosts

• Example of a the line to add: 192.168.100.1 mongoexpress.com

57

11. Open a browser and then access the mongoexpress.com URL defined in the
"mongo-express-ingress.yaml" file

Figure 6.10 illustrates the browser page of the Mongo Express application
thus validating its deployment.

Figure 6.10: Mongo Express browser page

6.3.2 Scenario 2

This subsection presents the description, implementation and validation of
Scenario 2.

6.3.2.1 Description

The second scenario, named OnCloud DEV environment, is illustrated in Fig-
ure 6.11. This scenario has two main goals, one being to add a degree of com-
plexity by introducing a Continuous Integration/Continuous Delivery (CI/CD)
tool to automate processes that were done manually in the previous scenario, and
the other is to initiate the process of deployment into a Cloud. This scenario is
to be deployed locally first and then in the Cloud. The tool used to perform the
automation of processes is GitHub Actions. In there it will be configured a set of
workflows responsible for the automatic deployment of the scenario. Minikube
will also be used to create the cluster where the scenario will be deployed.

The scenario is composed of the following components: two nodes where one
has the control plane role, a namespace, a deployment, a replica set, two pods, a
service and an ingress.

58

Figure 6.11: Scenario 2

6.3.2.2 Implementation and validation

The deployment of this scenario was divided into two parts. The first part is
deploying the scenario via GitHub Actions into a Minikube cluster running in a
local VM. The second part is deploying the scenario via GitHub Actions into a
Minikube cluster running in a VM located in a Cloud.

To begin the deployment of the first part, a VM identical to the one used in
the previous scenario was created in order to have a dedicated machine to deploy
the scenario locally. The software and tools installed in this VM were the same as
those installed in the previous VM. After the machine was ready, it was created a
repository in GitHub with all the manifest files needed to create Scenario 2. The
manifest files configured were:

59

• scenario-2-namespace.yaml;

• mongo-secret.yaml;

• mongo.yaml;

• mongo-configmap.yaml;

• mongo-express.yaml;

• mongo-express-ingress.yaml.

As it was intended to deploy the scenario in a local VM, it was necessary to
configure the VM to become a Self-Hosted Runner so that GitHub could com-
municate directly with it and in order to be possible to run locally the reposi-
tory’s workflows that would apply the manifest files to create the scenario. The
GitHub’s official documentation [23] was followed to configure the VM as a Self-
Hosted Runner.

Afterwards, a set of workflows was used with the aim of replacing some man-
ual steps that were taken to create the first scenario. The workflows used are the
following:

• main.yml;

• delete_scenario_2.yml;

• start_minikube_cluster.yml;

• delete_minikube_cluster.yml;

• stop_minikube_cluster.yml.

To deploy Scenario 2 via GitHub, start_minikube_cluster.yml and main.yml
were executed in this specific order, the first to create the local cluster and the sec-
ond to deploy the components. Figure 6.12 shows what GitHub presents when
the workflows used to deploy Scenario 2 are running and also when they suc-
cessfully finish running.

60

(a) Scenario 2 start_minikube_cluster.yml
running

(b) Scenario 2 start_minikube_cluster.yml
done

(c) Scenario 2 main.yml running (d) Scenario 2 main.yml done

Figure 6.12: Scenario 2 workflows in GitHub

After Scenario 2 was deployed via GitHub, the 9th, 10th and 11th steps that
were done in Scenario 1 were replicated in order to be possible to open the Mongo
Express application page in the browser. Figure 6.11 illustrates the browser page
of the Mongo Express application, which validates this deployment.

Figure 6.13: Mongo Express browser page

61

To deploy the second part, it was created a VM in Department of Informatics
Engineering (DEI)’s Cloud, using the Xen Orchestra hypervisor. Since DEI could
provide more resources, this VM was created with different settings than the ones
used previously. The settings settled for this VM are the following: 6 CPUs, 16
GB of memory and 100 GB of disk space. Taking into consideration the available
templates provided by DEI to create VMs, the OS used was Ubuntu Desktop
20.04. After the VM was created, the nested virtualization was enabled and then
the VM was updated and upgraded.

Regarding the software and tools needed to create the scenario, its was in-
stalled Docker, Minikube and Kubectl. In this case, Docker was used instead of
VirtualBox because the nested virtualization feature in the Xen Orchestra hyper-
visor is very unstable and has problems supporting other hypervisors.

Afterwards, the VM was configured to become a Self-Hosted Runner so that
it could communicate with GitHub. The GitHub’s official documentation [23]
was followed to configure the VM as a Self-Hosted Runner. Since the VM used in
the first part was already listed as a Runner in the repository, this new VM was
configured with a new label, in order to distinguish the two VMs in the workflow
configurations. The label configured was "vm-dei-cloud" and in Figure 6.14 can
be seen, after the VMs names, which are the labels used to identify each Self-
Hosted Runner.

Figure 6.14: Self-Hosted Runners of Scenario 2

The workflows used in this second part were the same as the ones used
in the first part, but in this case, the "runs-on" option was modified in all of
them so that the workflows would run in the VM located in DEI’s Cloud. The
start_minikube_cluster.yml workflow was also modified so that it would set
Docker as the default driver for Minikube ($> minikube config set driver docker) and that it
creates the cluster with two nodes ($> RUNNER_TRACKING_ID="" && (minikube start –nodes 2)).

To deploy Scenario 2 via GitHub, start_minikube_cluster.yml and main.yml
were executed in this specific order, the first to create the local cluster and the
second to deploy the components. After the scenario was deployed via GitHub,
the 9th, 10th and 11th steps that were done in Scenario 1 were replicated in order
to be possible to open the Mongo Express application page in the browser. The

62

browser page of the deployed Mongo Express application is identical to the one
shown in Figure 6.13, completing the validation of this scenario.

6.3.3 Scenario 3

This subsection presents the description, implementation and validation of
Scenario 3.

6.3.3.1 Description

The third scenario, named OnCloud QA environment, is illustrated in Figure
6.15. The goal of this scenario is to introduce the deployment in a Kubernetes
cluster, therefore it is to be deployed in a Kubernetes cluster, located whether in a
Private or Public Cloud. GitHub Actions is also used in this scenario in order to
automate processes. This scenario is indicated to be a production environment-
minded scenario, thus Minikube is not used in this case.

The scenario is composed of the following components: two nodes where one
has the control plane role, a namespace, a deployment, a replica set, two pods, a
service, and an ingress.

Figure 6.15: Scenario 3

63

6.3.3.2 Implementation and validation

To begin the deployment of this scenario, it was needed to access a Kuber-
netes cluster. The cluster was provided by DEI, thus is located in DEI’s Cloud.
The VMs where the cluster was running had the following settings: 4 CPUs, 16
GB of memory, 60 GB of disk space and Ubuntu Server 20.04.3 Long Term Sup-
port (LTS) as the OS. Also, a GitHub repository was created with all the manifest
files needed to create Scenario 3. The manifest files used were:

• scenario-3-namespace.yaml;

• mongo-secret.yaml;

• mongo.yaml;

• mongo-configmap.yaml;

• mongo-express.yaml;

• mongo-express-ingress.yaml.

The VM that has the cluster’s control plane role was configured to become
a Self-Hosted Runner so that GitHub could communicate directly with it and in
order to be possible to run locally the repository’s workflows that would apply
the manifest files to create the scenario. The GitHub’s official documentation
[23] was followed to configure the VM as a Self-Hosted Runner. This VM was
configured with a label called "control-plane", in order to specify its function.
Figure 6.16 shows, after the VMs names, which are the labels used to identify the
Self-Hosted Runners.

Figure 6.16: Self-Hosted Runners of Scenario 3

Afterwards, the workflows needed for this scenario were created in the repos-
itory. Since this scenario does not use a Minikube cluster, there was no need to
create workflows for starting, stopping or deleting a Minikube cluster. Also, since
the Kubernetes cluster is supposed to be already operational, there was also no
need to create a workflow to start the cluster. For the workflows used in this sce-
nario, the "runs-on" option was modified so that the workflows would run in the
control plane VM located in DEI’s Cloud. The workflows used are the following:

64

• main.yml;

• delete_scenario_3.yml;

To deploy Scenario 3 via GitHub, the main.yml workflow was executed to
deploy the components. In Figure 6.17 it is possible to see an illustration of what
GitHub presents when the workflows used to deploy Scenario 3 are running and
also when they successfully finish running.

(a) Scenario 3 main.yml running (b) Scenario 3 main.yml done

Figure 6.17: Scenario 3 workflows in GitHub

After Scenario 3 was deployed via GitHub, the "hosts" file of the host com-
puter was edited with the control plane’s IP and the URL defined in the "mongo-
express-ingress.yaml" in order to be possible to open the Mongo Express appli-
cation page in the browser. Figure 6.18 shows the browser page of the Mongo
Express application deployed, completing the validation of this scenario.

Figure 6.18: Scenario 3 Mongo Express browser page

6.3.4 Scenario 4

This subsection presents the description, implementation and validation of
Scenario 4.

6.3.4.1 Description

The fourth scenario, named OnCloud Tenant PROD environment, is illustrated
in Figure 6.19. This scenario has two main goals, one being to introduce the de-
ployment in a Multi-Cloud environment and the other is to introduce the use of

65

a Multi-Cloud management tool. This scenario is to be deployed in a Kubernetes
cluster located in a Multi-Cloud and is indicated to be a production environment-
minded scenario. Similar to the previous scenario, GitHub Actions is also meant
to be used to automate processes.

The scenario is composed of the following components: two nodes where one
has the control plane role, a namespace, a deployment, a replica set, two pods, a
service, and an ingress.

Figure 6.19: Scenario 4

6.3.4.2 Implementation and validation

Since there was no budget provided to subscribe to Cloud Service Providers
(CSPs), this scenario had to be deployed in DEI’s Cloud and not in a Multi-Cloud
environment, thus following the mitigation plan defined for this risk. Also, since
it was not possible to pay for a Multi-Cloud tool subscription, the tool used in this
scenario had to be a free tool, which in this case was Ansible. Ansible was used
with the goal of automating the process of installing and creating a Kubernetes
cluster in the VMs running in the Cloud. The VMs used for this scenario had the
following settings: 4 CPUs, 8 GB of memory, 50 GB of disk space and Ubuntu
Server 20.04.6 LTS as the OS.

66

Before starting the deployment of the scenario, Python and Ansible were in-
stalled on a computer with Windows under a Windows Subsystem for Linux
(WSL) distribution, thus adopting the control node role. To be possible to in-
stall WSL, the "VM Platform" and "WSL" features need to be checked in the "Turn
Windows features on or off" menu. After that, the "Ubuntu" and "WSL" programs
were installed via the Microsoft Store. Then, Python was also installed in the VMs
that were going to be managed. After the requirements for each node were ful-
filled, it was generated a key pair in the control node for the SSH connections and
then the pub key was copied to the managed nodes. To finalize the setup is was
created the working directory in the control node and inside it is was created the
inventory and ansible.cfg files.

After the setup was finalized, it was configured the Ansible Playbooks needed
to install a Kubernetes cluster in the managed nodes. The Playbooks were config-
ured by using the Ansible Roles concept, thus separating the configurations into
files organized in a directory structure. The roles created perform the following
main tasks:

• Install Docker;

• Install Kubernetes packages;

• Destroy a Kubernetes cluster before creating a new one;

• Initialize a Kubernetes cluster;

• Apply the command to enable the deployment in the control plane.

Figure 6.20 illustrates what is shown in the control node console when the
Playbook is running. The green lines mean that the changes performed by that
task were already done in the managed node, so there is no need to re-apply those
tasks. The yellow lines mean that those tasks performed a configuration change
in the managed node.

67

(a) Ansible Playbook execution (Part 1) (b) Ansible Playbook execution (Part 2)

Figure 6.20: Scenario 4 Ansible Playbook execution

After Ansible finished running the Roles and the Kubernetes cluster was run-
ning, a GitHub repository was created with all the manifest files needed to create
Scenario 4. Then the control plane VM was configured to become a Self-Hosted
Runner. The GitHub’s official documentation [23] was followed to configure the
VM as a Self-Hosted Runner. This VM was configured with the labels "control-
plane" and "master", in order to specify its function. The manifest files available
in the repository were:

• scenario-4-namespace.yaml;

• mongo-secret.yaml;

• mongo.yaml;

• mongo-configmap.yaml;

• mongo-express.yaml;

• mongo-express-ingress.yaml.

Afterwards, the workflows needed for this scenario were created in the repos-
itory. The "runs-on" option was modified in all the workflows so that they would
run in the control plane VM. The workflows used are the following:

• main.yml;

• delete_scenario_4.yml;

68

To deploy Scenario 4 via GitHub, the main.yml workflow was executed to
deploy the components. In Figure 6.21 it is possible to see an illustration of what
GitHub presents when the workflows used to deploy Scenario 4 are running and
also when they successfully finish running.

(a) Scenario 4 main.yml running (b) Scenario 4 main.yml done

Figure 6.21: Scenario 4 workflows in GitHub

To verify the final state of the scenario, the VMs were accessed and in them
was run the "$> kubectl get all -n scenario-4 " command to check if the components were
created. In Figure 6.22, it is possible to see the components deployed and running
in the cluster, thus validating the framework for automatic deployment. Even
though the practical work to validate the framework was only performed in a
Private Cloud, in theory, the framework can also be applied in a Multi-Cloud
environment because the tools that were used (GitHub Actions and Kubernetes)
are Cloud agnostic, so they do the same tasks whatever the type of Cloud that is
being used.

Figure 6.22: Scenario 4 deployed in a Kubernetes cluster running in DEI’s Cloud

6.4 Summary

This chapter began by presenting the general architecture of the framework,
by explaining its components and also the process of performing the automatic
deployment of an application in the Cloud. The following section presented the
GitHub Actions workflows that were configured to automate processes. Those

69

workflows can deploy and delete a scenario and can start, stop and delete a
Minikube cluster. Then, the presentation of the scenarios that were used to per-
form the framework validation was made. The first scenario, which was de-
ployed in a local VM, had the goal of introducing the Kubernetes technology.
The second scenario, which was deployed first in a local VM but then in a VM
located in DEI’s Cloud, had the goal of introducing the CI/CD tool used to auto-
mate the deployment of the scenario. The CI/CD tool used was GitHub Actions.
The third scenario, which was deployed in DEI’s Cloud, had the goal of intro-
ducing the deployment in a Kubernetes cluster. Finally, the last scenario, which
was also deployed in DEI’s Cloud, had the goal of introducing the Multi-Cloud
tool used to automate the configuration of the VMs that compose the scenario
infrastructure. In this scenario, the tool used was Ansible.

70

Chapter 7

Conclusion

The framework presented in this internship report has the goal of automating
the deployment of applications into a Multi-Cloud environment. The develop-
ment process of this framework was divided into two main parts, which are the
literature review and the practical segment. The literature review was made with
the goal of understanding the theoretical concepts that cover the theme of this in-
ternship’s work. The practical segment consisted of the design, implementation
and testing of the framework.

The first topic addressed in the literature review was the Cloud Computing
Paradigm. The main information provided by this chapter is the comparison be-
tween Hybrid Clouds and Multi-Clouds. The comparison led to the conclusion
that the principal difference between them is that while Multi-Clouds are com-
posed of at least two Public Clouds from different vendors, Hybrid Clouds need
to have at least a Private Cloud integrated in its combination.

After concluding the Cloud Computing review to understand what is a Multi-
Cloud environment, it followed the review on management tools for Multi and
Hybrid Clouds. The tools reviewed were Terraform, Anthos, Elastic Kubernetes
Service (EKS) and Ansible, leading to performing a comparison between them.
The comparison induces the conclusion that Ansible is a complete and usable
tool characterized by being Cloud agnostic and free to use without requiring any
kind of subscription.

The last section reviewed was the tools used for automatic deployment.
Firstly, it was introduced the Continuous Integration/Continuous Delivery
(CI/CD) concept. After, it was made the presentation of tools used CI/CD
workflows. The first tool introduced was Kubernetes and the second tool
presented was GitHub Actions. After concluding the review of these tools, it
was concluded that both could be used together in an automatic deployment
solution, by using GitHub Actions to automate the deployment process of an
application and by using Kubernetes to create the containerized environment
where the application was going to be deployed.

After the literature review was finished, started the practical segment of the
work. The process of reaching the final state of the framework was divided into

71

incremental steps. The first incremental step consisted of having the first contact
with the Kubernetes technology. To do this was deployed an application in a
Minikube cluster running in a local Virtual Machine (VM). The following step
introduced automation and deployment in the Cloud. This was accomplished
by automatically deploying an application, using GitHub Actions, in a Minikube
cluster running in a VM located in Department of Informatics Engineering (DEI)’s
Cloud. The third step consisted of performing the automatic deployment into a
Kubernetes cluster, thus upgrading the type and complexity of the cluster that
was being used. In this step, an application was automatically deployed into a
Kubernetes cluster provided by DEI that was running in their Cloud. The last
step introduced the use of a Multi-Cloud management tool. Here, the purpose
of using the Multi-Cloud management tool was to automate the installation and
creation of the Kubernetes cluster in the VMs provided by DEI. The Multi-Cloud
management tool selected for this step was Ansible. To perform the Kubernetes
cluster creation, Ansible Playbooks were configured by using the Ansible Roles
concept. After the cluster was created, GitHub Actions was used once again to
perform the automatic deployment of an application in the cluster created. As the
application was automatically deployed to the created Kubernetes cluster with
success, it can be concluded that not only Kubernetes and GitHub Actions can
indeed work together, but also the framework was successfully validated.

During the development process of this framework, it appeared a set of re-
strictions that put into question the development and validation of the frame-
work. These limitations were not having a budget provided to subscribe to Cloud
Service Providers (CSPs) and to pay for a Multi-Cloud tool subscription. To over-
come the first difficulty that appeared, which did not allow to deploy into a Public
Cloud, the deployment of the last step had to be performed in DEI’s Cloud. Also,
to overcome the second limitation that occurred it was used a free Multi-Cloud
management tool.

Regarding the objectives defined at the beginning of this work, it can be stated
that the framework developed performs its main objective, which is performing
the automatic deployment of an application into Cloud and Multi-Cloud envi-
ronments by using a CI/CD tool to automate processes and a Multi-Cloud man-
agement tool to configure the environment used. This is supported by the accom-
plishment of the goals defined to achieve the main objective. The comparison to
distinguish a Multi-Cloud from a Hybrid Cloud is presented in Table 2.1, thus
completing the first goal. The identification and analysis of management tools
used to manage the environment used was accomplished in Chapter 3. Finally,
the last goal was achieved by performing and validating the automatic deploy-
ment framework by using the scenarios and Clouds provided by the POWER
project’s members.

The advantages that this framework brings to its users are not just to reduce
the effort to perform the deployment of applications but also to provide a simple
procedure to configure the environments where the applications’ deployment is
going to be performed. The usage of this framework will reduce the amount of
human errors that could appear while performing the deployment of an appli-
cation and the configuration of its environment, by using automation processes.

72

Furthermore, this framework can improve Altice Labs (ALB)’s workflows by eas-
ing the integration of new development team members because they do not need
to have previous knowledge of the tool used.

Considering the literature review, it can be declared that the work presented
can be a useful starting point for other researches related not just to Cloud com-
puting, but also to management tools for Multi and Hybrid Clouds. Regarding
the practical segment, despite the limitations that did not allow testing the frame-
work in a Public Cloud, it can still be affirmed that the framework developed
is a valid automatic deployment solution for Multi-Cloud environments. This
statement is supported by the fact that the tools used in the framework (GitHub
Actions, Kubernetes and Ansible) are all Cloud agnostic tools, so the practical val-
idation that was done in DEI’s Cloud can theoretically be done in a Multi-Cloud
environment.

Taking the initial internship proposal into consideration, the next step regard-
ing the usage of this framework consists of arranging the means to have access to
a Public Cloud, in order to be possible to use the framework in a proper Multi-
Cloud environment. Also, another step to be done in the future is to integrate this
framework in other POWER subprojects, by using it to automate the deployment
of applications to be used as testbeds for those subprojects. Furthermore, other
future work that can be done with this solution is testing and integrating other
tools that could allow the improvement of the Kubernetes deployment in Multi-
Cloud environments by using a federated Kubernetes approach, thus permitting
the management of multiple clusters from a single control point.

73

75

References

[1] https://www.alticelabs.com.

[2] https://www.it.pt/ITSites/Index/3, .

[3] https://www.ipn.pt, .

[4] https://www.uc.pt.

[5] Bashair Abdullah M Algarni. Managing deployed containerized web
application on aws using eks on aws fargate. pages 1–39, 2021.

[6] Ansible. Ansible. https://www.ansible.com, . [Online; accessed
9-January-2023].

[7] Ansible. https:
//docs.ansible.com/ansible/latest/getting_started/index.html, .
[Online; accessed 20-August-2023].

[8] Ansible. https://www.ansible.com/overview/it-automation, . [Online;
accessed 22-August-2023].

[9] AWS. Amazon eks features. https://aws.amazon.com/eks/features, .
[Online; accessed 28-December-2022].

[10] AWS. Amazon elastic kubernetes service (eks).
https://aws.amazon.com/eks/?nc1=h_ls, . [Online; accessed
21-December-2022].

[11] AWS. Aws outposts family. https://aws.amazon.com/outposts, . [Online;
accessed 28-December-2022].

[12] AWS. Amazon elastin kubernetes service (eks).
https://aws.amazon.com/eks, . [Online; accessed 8-January-2023].

[13] AWS. What is amazon eks? https:
//docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html, .
[Online; accessed 14-December-2022].

[14] Bitbucket. Bitbucket. https://bitbucket.org. [Online; accessed
22-August-2023].

[15] Yevgeniy Brikman. Why we use terraform and not chef, puppet, ansible,
saltstack, or cloudformation. pages 1–11, 2016.

77

https://www.alticelabs.com
https://www.it.pt/ITSites/Index/3
https://www.ipn.pt
https://www.uc.pt
https://www.ansible.com
https://docs.ansible.com/ansible/latest/getting_started/index.html
https://docs.ansible.com/ansible/latest/getting_started/index.html
https://www.ansible.com/overview/it-automation
https://aws.amazon.com/eks/features
https://aws.amazon.com/eks/?nc1=h_ls
https://aws.amazon.com/outposts
https://aws.amazon.com/eks
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://bitbucket.org

[16] Kate Brush. Moscow method. https://www.techtarget.com/
searchsoftwarequality/definition/MoSCoW-method. [Online; accessed
24-August-2023].

[17] Leonardo Carvalho and Aleteia Araujo. Performance comparison of
terraform and cloudify as multi-cloud orchestrators. pages 1–10, 2020.

[18] Chef. Chef. https://www.chef.io. [Online; accessed 9-January-2023].

[19] Cloudify. Cloudify. https://cloudify.co. [Online; accessed
9-January-2023].

[20] dinCloud. How does cloud bursting work and its pros n cons?
https://www.dincloud.com/blog/
how-does-cloud-bursting-work-and-its-pros-n-cons. [Online; accessed
21-July-2023].

[21] Docker. Docker. https://www.docker.com. [Online; accessed
22-August-2023].

[22] Charles Ferrari, Benedek Kovács, Melinda Tóth, Zoltán Horváth, and Anna
Reale. Edge computing for communication service providers: A review on
the architecture, ownership and governing models. pages 1–6, 2021.

[23] GitHub. Adding self-hosted runners.
https://docs.github.com/en/actions/hosting-your-own-runners/
managing-self-hosted-runners/adding-self-hosted-runners, . [Online;
accessed 11-April-2023].

[24] GitHub. Github. https://github.com/features/actions, . [Online;
accessed 22-August-2023].

[25] GitHub. https://docs.github.com/en/actions/learn-github-actions/
understanding-github-actions, . [Online; accessed 23-August-2023].

[26] GitLab. Gitlab. https://about.gitlab.com. [Online; accessed
22-August-2023].

[27] Google. Anthos. https://cloud.google.com/anthos. [Online; accessed
8-January-2023].

[28] Google Cloud. Anthos. https://cloud.google.com/anthos, . [Online;
accessed 30-November-2022].

[29] Google Cloud. Evaluate vms with fit assessment.
https://cloud.google.com/anthos/a4vm/docs/how-to/fit_assessment, .
[Online; accessed 26-December-2022].

[30] Google Cloud. Google anthos: Overview.
https://cloud.google.com/anthos/clusters/docs/multi-cloud, .
[Online; accessed 30-November-2022].

78

https://www.techtarget.com/searchsoftwarequality/definition/MoSCoW-method
https://www.techtarget.com/searchsoftwarequality/definition/MoSCoW-method
https://www.chef.io
https://cloudify.co
https://www.dincloud.com/blog/how-does-cloud-bursting-work-and-its-pros-n-cons
https://www.dincloud.com/blog/how-does-cloud-bursting-work-and-its-pros-n-cons
https://www.docker.com
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/adding-self-hosted-runners
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/adding-self-hosted-runners
https://github.com/features/actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://about.gitlab.com
https://cloud.google.com/anthos
https://cloud.google.com/anthos
https://cloud.google.com/anthos/a4vm/docs/how-to/fit_assessment
https://cloud.google.com/anthos/clusters/docs/multi-cloud

[31] Google Cloud. What is a hybrid cloud?
https://cloud.google.com/learn/what-is-hybrid-cloud, . [Online;
accessed 30-October-2022].

[32] Sumit Goyal. Public vs private vs hybrid vs community - cloud computing:
A critical review. pages 5–6, 2014.

[33] Yann Hamon. kubernetes-json-schema.
https://github.com/joaommgoncalves/kubernetes-json-schema.
[Online; accessed 11-May-2023].

[34] HashiCorp. Unlocking the cloud operating model: Cloud compliance and
management. pages 1–13, .

[35] HashiCorp. What is terraform.
https://developer.hashicorp.com/terraform/intro, . [Online; accessed
23-November-2022].

[36] Jiangshui Hong, Thomas Dreibholz, Joseph Adam Schenkel, and
Jiaxi Alessia Hu. An overview of multi-cloud computing. page 7, 2019.

[37] Sajid Iqubal. Google anthos with hybrid and multicloud. https://www.
linkedin.com/pulse/google-anthos-hybrid-multicloud-sajid-iqubal?
trk=pulse-article_more-articles_related-content-card. [Online;
accessed 26-December-2022].

[38] Nana Janashia. Github actions tutorial - basic concepts and ci/cd pipeline
with docker. https://www.youtube.com/watch?v=R8_veQiYBjI. [Online;
accessed 2-March-2023].

[39] Vijay Kanade. Multi-cloud vs. hybrid cloud: 10 key comparisons.
https://www.spiceworks.com/tech/cloud/articles/
multi-cloud-vs-hybrid-cloud. [Online; accessed 08-November-2022].

[40] Kubernetes. Configure service accounts for pods. https://kubernetes.io/
docs/tasks/configure-pod-container/configure-service-account, .
[Online; accessed 27-May-2023].

[41] Kubernetes.
https://github.com/kubernetes/community/tree/master/icons/png, .
[Online; accessed 30-July-2023].

[42] Kubernetes. Kubernetes. https://kubernetes.io, . [Online; accessed
22-August-2023].

[43] Kubernetes. Kubernetes. https://minikube.sigs.k8s.io/docs/start, .
[Online; accessed 23-August-2023].

[44] Kubernetes. Kubernetes. https://minikube.sigs.k8s.io/docs, . [Online;
accessed 23-August-2023].

[45] Kubernetes. Statefulsets. https:
//kubernetes.io/docs/concepts/workloads/controllers/statefulset, .
[Online; accessed 27-May-2023].

79

https://cloud.google.com/learn/what-is-hybrid-cloud
https://github.com/joaommgoncalves/kubernetes-json-schema
https://developer.hashicorp.com/terraform/intro
https://www.linkedin.com/pulse/google-anthos-hybrid-multicloud-sajid-iqubal?trk=pulse-article_more-articles_related-content-card
https://www.linkedin.com/pulse/google-anthos-hybrid-multicloud-sajid-iqubal?trk=pulse-article_more-articles_related-content-card
https://www.linkedin.com/pulse/google-anthos-hybrid-multicloud-sajid-iqubal?trk=pulse-article_more-articles_related-content-card
https://www.youtube.com/watch?v=R8_veQiYBjI
https://www.spiceworks.com/tech/cloud/articles/multi-cloud-vs-hybrid-cloud
https://www.spiceworks.com/tech/cloud/articles/multi-cloud-vs-hybrid-cloud
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account
https://github.com/kubernetes/community/tree/master/icons/png
https://kubernetes.io
https://minikube.sigs.k8s.io/docs/start
https://minikube.sigs.k8s.io/docs
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset

[46] Bruce D Kyle. Understanding kubernetes workload node objects.
https://azuredays.com/2020/12/09/
understanding-kubernetes-workload-objects. [Online; accessed
21-April-2023].

[47] David S. Linthicum. Emerging hybrid cloud patterns. page 2, 2016.

[48] Mika Majakorpi. Theory and practice of rapid elasticity in cloud
applications. page 18, 2013.

[49] Peter Mell and Timothy Grance. The nist definition of cloud computing.
pages 2–3, 2011.

[50] Microsoft. What is a private cloud? https://azure.microsoft.com/en-us/
resources/cloud-computing-dictionary/what-is-a-private-cloud, .
[Online; accessed 07-September-2022].

[51] Microsoft. What is a public cloud? https://azure.microsoft.com/en-us/
resources/cloud-computing-dictionary/what-is-a-public-cloud, .
[Online; accessed 22-September-2022].

[52] Yifat Perry. Google anthos: The first true multi cloud platform?
https://bluexp.netapp.com/blog/
gcp-cvo-blg-google-anthos-the-first-true-multi-cloud-platform.
[Online; accessed 30-November-2022].

[53] Dana Petcu. Multi-cloud: Expectations and current approaches. page 1,
2013.

[54] Puppet. Puppet. https://www.puppet.com. [Online; accessed
9-January-2023].

[55] RedHat. Iaas vs. paas vs. saas. https:
//www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas, .
[Online; accessed 06-November-2022].

[56] RedHat. https:
//www.redhat.com/en/topics/automation/learning-ansible-tutorial, .
[Online; accessed 20-August-2023].

[57] RedHat. Types of cloud computing.
https://www.redhat.com/en/topics/cloud-computing/
public-cloud-vs-private-cloud-and-hybrid-cloud#common-questions,
. [Online; accessed 20-August-2022].

[58] RedHat. https:
//www.redhat.com/en/topics/devops/what-is-ci-cd?cicd=32h281b, .
[Online; accessed 22-August-2023].

[59] Syed R Rizvi, Andrew Lubawy, John Rattz, Andrew Cherry, Brian Killough,
and Sanjay Gowda. A novel architecture of jupyterhub on amazon elastic
kubernetes service for open data cube sandbox. pages 3387–3390, 2020.

80

https://azuredays.com/2020/12/09/understanding-kubernetes-workload-objects
https://azuredays.com/2020/12/09/understanding-kubernetes-workload-objects
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-a-private-cloud
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-a-private-cloud
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-a-public-cloud
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-a-public-cloud
https://bluexp.netapp.com/blog/gcp-cvo-blg-google-anthos-the-first-true-multi-cloud-platform
https://bluexp.netapp.com/blog/gcp-cvo-blg-google-anthos-the-first-true-multi-cloud-platform
https://www.puppet.com
https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas
https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas
https://www.redhat.com/en/topics/automation/learning-ansible-tutorial
https://www.redhat.com/en/topics/automation/learning-ansible-tutorial
https://www.redhat.com/en/topics/cloud-computing/public-cloud-vs-private-cloud-and-hybrid-cloud#common-questions
https://www.redhat.com/en/topics/cloud-computing/public-cloud-vs-private-cloud-and-hybrid-cloud#common-questions
https://www.redhat.com/en/topics/devops/what-is-ci-cd?cicd=32h281b
https://www.redhat.com/en/topics/devops/what-is-ci-cd?cicd=32h281b

[60] SimpliLearn. https:
//www.simplilearn.com/tutorials/ansible-tutorial/what-is-ansible.
[Online; accessed 21-August-2023].

[61] Paulo Simões. An introduction to cloud computing, 2022. Presentation for
a subject lectured at Faculdade de Ciências e Tecnologia da Universidade
de Coimbra entitled "Serviços e Infraestruturas de Alto Desempenho".

[62] Stackscale. Cloud computing service delivery models.
https://www.stackscale.com/blog/cloud-service-models/#Cloud_
computing_service_delivery_models,
https://www.stackscale.com/wp-content/uploads/2020/04/
cloud-service-models-iaas-paas-saas-stackscale.jpg. [Online;
accessed 06-November-2022].

[63] Techopedia. On-demand self service. https:
//www.techopedia.com/definition/27915/on-demand-self-service.
[Online; accessed 07-October-2022].

[64] Terraform. Terraform. https://www.terraform.io. [Online; accessed
8-January-2023].

[65] Orazio Tomarchio, Domenico Calcaterra, and Giuseppe Di Modica. Cloud
resource orchestration in the multi-cloud landscape: a systematic review of
existing frameworks. pages 1–24, 2020.

[66] Udesh Udayakumar. Introduction to gke on-prem. https://medium.com/
google-cloud/introduction-to-gke-on-prem-78a42d630eb9. [Online;
accessed 1-December-2022].

[67] Veritis. Google’s anthos: The hybrid and multi-cloud platform that you
need. https://www.veritis.com/blog/
googles-anthos-the-hybrid-and-multi-cloud-platform-that-you-need.
[Online; accessed 26-December-2022].

[68] VMware. Hybrid cloud vs. multi-cloud: What is the difference?
https://www.vmware.com/topics/glossary/content/
hybrid-cloud-vs-multi-cloud.html, . [Online; accessed
08-November-2022].

[69] VMware. https:
//www.vmware.com/topics/glossary/content/kubernetes-cluster.html,
. [Online; accessed 23-August-2023].

[70] VMware. What is a public cloud?
https://www.vmware.com/topics/glossary/content/public-cloud.html,
. [Online; accessed 22-September-2022].

[71] Damon Wischik, Mark Handley, and Marcelo Bagnulo Braun. The resource
pooling principle. page 2, 2008.

81

https://www.simplilearn.com/tutorials/ansible-tutorial/what-is-ansible
https://www.simplilearn.com/tutorials/ansible-tutorial/what-is-ansible
https://www.stackscale.com/blog/cloud-service-models/#Cloud_computing_service_delivery_models
https://www.stackscale.com/blog/cloud-service-models/#Cloud_computing_service_delivery_models
https://www.stackscale.com/wp-content/uploads/2020/04/cloud-service-models-iaas-paas-saas-stackscale.jpg
https://www.stackscale.com/wp-content/uploads/2020/04/cloud-service-models-iaas-paas-saas-stackscale.jpg
https://www.techopedia.com/definition/27915/on-demand-self-service
https://www.techopedia.com/definition/27915/on-demand-self-service
https://www.terraform.io
https://medium.com/google-cloud/introduction-to-gke-on-prem-78a42d630eb9
https://medium.com/google-cloud/introduction-to-gke-on-prem-78a42d630eb9
https://www.veritis.com/blog/googles-anthos-the-hybrid-and-multi-cloud-platform-that-you-need
https://www.veritis.com/blog/googles-anthos-the-hybrid-and-multi-cloud-platform-that-you-need
https://www.vmware.com/topics/glossary/content/hybrid-cloud-vs-multi-cloud.html
https://www.vmware.com/topics/glossary/content/hybrid-cloud-vs-multi-cloud.html
https://www.vmware.com/topics/glossary/content/kubernetes-cluster.html
https://www.vmware.com/topics/glossary/content/kubernetes-cluster.html
https://www.vmware.com/topics/glossary/content/public-cloud.html

[72] Yucong Duan and Guohua Fu and Nianjun Zhou and Xiaobing Sun and
Nanjangud C. Narendra and Bo Hu. Everything as a service(xaas) on the
cloud: Origins, current and future trends. page 3, 2015.

[73] Yucong Duan and Yuan Cao and Xiaobing Sun. Various "aas" of everything
as a service. pages 1–3, 2015.

82

	Introduction
	Motivation
	Problem
	Objectives
	Contributions
	Methodology
	Working Plan
	Document Structure

	Cloud Computing Paradigm
	Cloud Computing Characteristics
	Cloud Service Models
	Infrastructure as a Service
	Platform as a Service
	Software as a Service
	Everything as a Service

	Deployment Models
	Private Clouds
	Public Clouds
	Community Clouds
	Hybrid Clouds
	Multi-Clouds

	Multi-Cloud vs. Hybrid Cloud
	Summary

	Management Tools for Multi and Hybrid Clouds
	Management Tools Analysis
	Terraform
	Anthos
	eks
	Ansible

	Tools Comparison
	Summary

	Automatic Deployment Tools
	Continuous Integration / Continuous Delivery
	Kubernetes
	GitHub Actions
	Summary

	Problem Analysis
	Problem Description
	Requirements Analysis
	Functional Requirements
	User Stories
	High-level requirements

	Non-Functional Requirements

	Risk Analysis
	Summary

	Proposed Solution
	General Architecture
	GitHub Actions Workflows
	Scenarios
	Scenario 1
	Description
	Implementation and validation

	Scenario 2
	Description
	Implementation and validation

	Scenario 3
	Description
	Implementation and validation

	Scenario 4
	Description
	Implementation and validation

	Summary

	Conclusion

