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Abstract

The potential of robotic systems in the kitting process for the automotive indus-
try is relevant. It depends on certain conditions, such as the characteristics of
the items being picked, the speed of the process (throughput), and the amount
of space available. The production of a wide range of highly functional products
with many variations (mass customization) has become more common in this in-
dustry, and the use of advanced technologies for warehouse operations (in the
context of Industry 4.0) can provide several advantages to improve the kitting
process. This dissertation examines the benefits and challenges of kitting sys-
tems and proposes innovative hybrid kitting strategies that can overcome these
challenges. The main research questions associated with the design of automated
and collaborative kitting operations are identified, the inherent operations are
quantitatively modeled, and the operational research tools that can address these
questions are defined. The layouts for the Asynchronous and Sequential Hybrid
Kitting Systems are presented, and the Mixed Integer Programming models de-
veloped to allocate components to the robotic or collaborative kitting areas to
minimize the total cycle time of the process are analyzed. Real-world and re-
alistic data from an automotive manufacturer were used to assess the influence
of several critical parameters. The results demonstrated that increasing picking
errors leads to more components being allocated to the collaborative area and a
longer cycle time. A considerable cycle time reduction occurs for the increase in
simultaneous picking by operators. Different scenarios of component allocation
were analyzed to understand the performance of the systems in terms of cycle
time, showing that optimal assignment obtained by the models for both kitting
systems resulted in lower total cycle times, with an advantage for the Sequential
system. Furthermore, the relation between the energy consumption of AGVs and
the kitting operations was addressed within an automated kitting area, showing
the possibilities to minimize it through an Integer Programming model. With
these contributions, industry decision-makers can easily opt for a kit preparation
system to improve the quality of kit preparation with the Asynchronous system
or a faster assembly line-like approach to perform kitting.

Keywords

Kitting; Line Feeding; Mixed-Model Assembly; Optimization; Mixed Integer Pro-
gramming
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Resumo

O potencial dos sistemas robóticos no processo de kitting para a indústria au-
tomóvel é relevante e depende de certas condições, tais como as característi-
cas dos itens selecionados, a velocidade do processo e a quantidade de espaço
disponível. A produção de uma ampla variedade de produtos altamente fun-
cionais com muitas variações (personalização em massa) tornou-se mais comum
nesta indústria e o uso de tecnologias avançadas para as operações num armazém
(no contexto da Indústria 4.0) pode fornecer várias vantagens para melhorar o
processo de preparação de kits. Esta dissertação examina os benefícios e de-
safios dos sistemas de kitting e propõe estratégias de kitting híbridas inovado-
ras que podem superar esses desafios. As principais questões de investigação
associadas ao design de operações de kitting automatizadas e colaborativas são
identificadas, as operações inerentes são modeladas quantitativamente e as fer-
ramentas de investigação operacional que podem ser usadas para abordar essas
questões são definidas. Os layouts para os Sistemas de Kitting Híbridos Assín-
crono e Sequencial são apresentados e os modelos de Programação Inteira Mista
desenvolvidos para alocar os componentes às áreas de kitting robótica e colabo-
rativa, a fim de minimizar o tempo total do ciclo do processo, são analisados. Da-
dos do mundo real e realistas de um fabricante de automóveis foram usados para
avaliar a influência de vários parâmetros críticos. Os resultados demonstraram
que o aumento de erros de picking leva a uma maior alocação de componentes
para a área colaborativa e a um tempo de ciclo mais longo. Uma considerável
redução no tempo de ciclo ocorre com o aumento do picking simultâneo por parte
dos operadores. Diferentes cenários de alocação de componentes foram analisa-
dos para compreender o desempenho dos sistemas em termos de tempo de ciclo,
mostrando que a atribuição ideal obtida pelos modelos para ambos os sistemas
de kitting resultou em tempos de ciclo totais mais baixos, com uma vantagem
para o sistema Sequencial. Além disso, a relação entre o consumo de energia
dos AGVs e as operações de kitting foi investigada numa área de kitting autom-
atizada, mostrando as possibilidades de minimizá-lo por meio de um modelo
de Programação Inteira. Com estas contribuições, os decisores da indústria po-
dem facilmente optar por um sistema de kitting para melhorar a qualidade da
preparação de kits com o sistema Assíncrono ou por uma abordagem mais ráp-
ida, semelhante a uma linha de montagem, para a realização de kitting.

Palavras-Chave

Kitting; Abastecimento à Linha de Montagem; Montagem de Modelos Mistos;
Otimização; Programação Inteira Mista
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Chapter 1

Introduction

This dissertation presents a study on operational research models and tools in
the warehouse of the future context. The purpose of this chapter is to provide an
overview of the work undertaken, clearly defining the problem that this research
aims to address, providing the necessary background context [1.1] and motiva-
tion [1.2] for the research to understand the importance of the problem and the
potential impact of this work. The objectives [1.3] that were set and the structure
[1.4] of this master’s dissertation are also presented in this chapter.

1.1 Context

The automotive industry plays a crucial role in the economic growth of the Euro-
pean Union (EU) and, according to the latest data from the European Association
of Automobile Manufacturers (ACEA, 2022a), it has generated 14.6 million jobs
in the EU, which represents approximately 6.7% of total EU employment. The
industry has also produced 18.5 million cars, accounting for about 20% of global
production, making Europe the second largest producer in the world (Figure 1.1).

Given the high investment and innovation capacity of other regions and signifi-
cantly lower labor costs, it is essential for the third largest transformative industry
in Portugal to initiate projects and initiatives that accelerate innovation and tech-
nological progress in the sector (ACEA, 2022b). This will ensure the maintenance
of production levels and the pace of the automotive industry, as well as the safety
of workers, to mitigate the impact of increasing challenges in the industry, such as
the COVID-19 pandemic. According to the Portuguese Automobile Association
(ACAP), the pandemic resulted in a 28% reduction in automobile production in
Portugal from January to September 2020 compared to the same period the pre-
vious year (ACAP, 2022).

Therefore, it is essential that European Original Equipment Manufacturers (OEMs)
maintain the productivity and competitiveness of their factories by ensuring high
standards of quality and excellence, as well as the ability to customize mass pro-
duction ("mass customization"). This is only possible when operating in a smart,
flexible, and connected factory context.

1



Chapter 1

Figure 1.1: Global automobile production evolution between 2004 and 2019.

The concept of smart factories, which is associated with the fourth industrial rev-
olution, involves flexible production ecosystems that allow automation of their
inherent processes and the ability to self-adapt and learn in real-time based on
the convergence of information and communication technologies. A consortium
comprising complementary skills and expertise from the business entities, as well
as innovation and research system entities, has developed the Warehouse of the
Future (WoF) project to address various convergence technological aspects for the
warehouse of the future. The project WoF aims to develop innovative, flexible
and efficient processes and methodologies to automate the picking, kitting and
material/component handling processes in the industrial context of the factory
floor of a car manufacturing company, located in Portugal.

1.2 Motivation

As the era of mass customization has arrived, the automotive industry has strug-
gled with the exponential increase in the complexity of logistics and intralogistics
processes in the context of a smart warehouse, leading OEMs to adapt their fac-
tories and increasingly optimize their material supply systems for assembly lines
(Brabazon et al., 2010). In this context, based on the concentration of added value
on the production line, the kitting process has become increasingly relevant in the
automotive production industry. Kitting involves the unique and heterogeneous
grouping of various components/parts into a specific structure (a "kit") that will
meet the needs of one or more assembly operations for a particular vehicle.

Although the automotive industry is one of the most advanced in the field of
robotics, with a strong tradition in production automation (Buntak et al., 2019),
picking and kitting processes are still predominantly carried out by operators,

2



Introduction

which has three considerable consequences:

• Higher margins of error, resulting in constraints on production lines;

• Lack of information to understand and remedy the failure, decreasing the
operational efficiency;

• Increased risk of injury to the operators involved in this operation and de-
pendence on the variability associated with the human labor.

The limited automation of picking and kitting processes is mainly due to (i) the
complexity underlying a broad and diverse range of possible combinations of
components/parts due to the increasing trend of mass customization in automo-
tive production, (ii) the high diversity of parts/components (and their suppliers)
in each industrial unit, and (iii) the complexity and variability of the character-
istics of the parts to be handled and included in the kits, due to their geomet-
ric shapes, physical-mechanical characteristics, among others (Polydoros et al.,
2016).

Figure 1.2: Illustrative diagram of the picking and kitting process (Krueger et al.,
2019).

Given the current impossibility of fully automating picking and kitting processes
in the automotive production context, it becomes critical to conduct an efficient
process mapping study of the operations capable of automation, as well as to
define new strategic approaches or technological solutions that can streamline
the most complex processes and thus provide significant gains in terms of pro-
ductivity and competitiveness on the factory floor, freeing up operators for more
demanding and higher value-added tasks.

Moreover, the need to explore ways to minimize energy consumption, particu-
larly in the context of AGVs, which are becoming more and more widely applied
in the industrial companies responsible for transporting components, becomes
paramount in the kitting process. As the manufacturing landscape seeks greater
sustainability, investigating methods to optimize energy usage in tandem with
process enhancement can lead to a more holistic and ecologically responsible pro-
duction environment (Qiu et al., 2015).
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1.3 Objectives

The main objective of this dissertation project is to study and develop operational
research techniques with a focus on the following objectives:

• A comprehensive analysis of the existing designs and implementations of
kitting strategies and the creation of innovative layout concepts for mod-
ern warehouses, identifying and organizing kitting areas, categorizing, and
clustering various types of parts and components;

• The development and characterization of the operations included in the
cycle time correspondent to the kitting process, analyzing how the tasks
should be considered and quantified for this study;

• The investigation and development of mathematical programming models,
hybridization strategies, and optimization-simulation techniques to handle
large-scale instances;

• The compilation of datasets based on the technical information and realis-
tic data collected from picking and kitting activities and specialists in the
different kitting processes;

• The study of the potential of kitting systems to support time and energy-
efficient kit preparation when the picking task is performed robotically;

• The critical analysis of the layouts and models developed in efficiency terms
and feasibility to be implemented in a real environment.

1.4 Structure of the Document

This document is divided into the following chapters:

• State of the Art (Chapter 2) - This chapter aims to provide an overview
of the current state of research in the field of operational investigation. In
this chapter, the literature related to this topic is analyzed, and the current
algorithms that have been developed are explored. This chapter aims to
understand the current state of the field and identify any gaps in the existing
research that my work can address.

• Methodology (Chapter 3) - This chapter provides a detailed description
of the innovative layouts of hybrid kitting systems developed, with all the
components and processes associated characterized as well as the opera-
tional research methods with the mathematical formulation and techniques
used in this research, including the assumptions and limitations of each
method.
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• Results and Discussion (Chapter 4) - Chapter 4 presents the results of ap-
plying the models developed to realistic and real-world data/case study,
providing a detailed analysis of the results and discussing their implica-
tions.

• Energy Consumption of AGVs in Robotic Kitting (Chapter 5) - The fifth
chapter presents an Integer Programming model developed with the goal
of minimizing the energy consumption of AGVs in the kitting process, en-
hancing operational efficiency while ensuring accurate kit assembly.

• Conclusion (Chapter 6) - In this final chapter, a concise and comprehensive
summary of the main findings and contributions of this research is pro-
vided, presenting the contributions of the work and future directions that
research should take in other to improve kitting strategies in modern ware-
houses.
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State of the Art

This chapter aims to present the state of the art, focusing on kitting activities
in modern warehouses, presented models and heuristics that can relate to the
scope of this project, selected according to a set of criteria established between
the author and the supervisors.

First, key findings on line feeding policies are highlighted, and the existing lit-
erature is reviewed on the kitting and picking processes, explaining the main
definitions and considerations proposed, where the use of advanced technolo-
gies and approaches for warehouse operations characterizes the current trend of
Industry 4.0. The order picking systems (OPSs) and all the technological options
proposed to partially or fully automate the process are also reviewed as the per-
formance metrics to evaluate the efficiency and effectiveness are presented. The
different kitting system types considered in the literature and the kitting plan-
ning and costing models used in previous research are analyzed to provide a
better understanding base for this dissertation, opting for the adequate kitting
system configuration to apply in an automotive industry context.

2.1 Assembly Line Feeding Policies

In the domain of manufacturing and assembly line operations, the strategy of
parts feeding plays a pivotal role in maintaining a smooth and efficient work-
flow. Different approaches presented in the literature have been designed to en-
sure that the right components are available at the right time and in the right
quantities for assembly processes. These policies encompass different methods,
each tailored to distinct production scenarios. Four primary types of assembly
line feeding policies are:

• Line Stocking: In the line stocking approach, considered one of the sim-
plest policies of line feeding, the components in a complete pallet or box
are directly delivered from the storage area to the positioned at the Border
of Line (BoL). This strategy is advantageous when there is a high degree of
predictability in component usage as well as higher demand for the same
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components, as it minimizes delays associated with fetching parts from re-
mote storage areas, reducing the need to handle components except for the
transportation (Battini et al., 2015).

• Boxed-Supply: In a boxed-supply line feeding policy, the components stored
in pallets or containers are prepared, being repackaged to be supplied in
smaller boxes to the BoL, where they are stored until depletion, noting that
these boxes are filled with homogenous parts. This policy is similar to the
line stocking with the addiction of transportation from the warehouse to the
preparation area and repackaging processes (Schmid and Limère, 2019).

• Sequencing: Sequencing policy focuses on delivering components to the
assembly line in a predetermined sequence in the case of space restrictions
when having an increasing number of part variants required in the BoL. In
this method, the different part variants stored in pallets or containers are
transported to a preparation area, where the variants are sorted following a
demand sequence into a box. After that, the boxes with the sequenced parts
are transported and stored in the BoL until depletion (Sali et al., 2015).

• Kitting: Kitting represents a sophisticated approach in which all the multi-
ple components and variants required at the BoL in a specific workstation
are bundled together into kits. The process involves retrieving the differ-
ent components to be transported and stored in a preparation area. In this
preparation area, the different parts are repackaged into a kit, being then
transported to the BoL, where all parts of the kit are used and depleted in
one product (Schmid and Limère, 2019).

Within the context of this dissertation, particular emphasis will be placed on eval-
uating the kitting-based line feeding policy, given its potential to employ the ben-
efits of automation within the Industry 4.0 domain and standing to enhance the
effectiveness of assembly line operations.

2.2 Kitting and Picking processes

Kitting and picking processes are essential for warehouse operations, particularly
in the automotive industry, where producing a wide range of highly functional
products with many variations (mass customization) has become a norm. This
reality can be reached by operating in a smart factory context, flexible and con-
nected. According to a study by the Capgemini Research Institute, conversion
to smart facilities has the potential to generate significant productivity improve-
ment, improved Overall Equipment Effectiveness (OEE) and reduced stocks and
Work-In-Progress (WIP) (Capgemini, 2020). This section provides an overview of
the current state-of-the-art kitting and picking processes, their framing, and their
application in the automotive industry.

The kitting and picking processes are integral parts of the logistics operations
in the industry. They involve selecting, preparing, and delivering the necessary
parts and components to assemble medium to complex products (Brynzér and
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Johansson, 1995). Researchers in the fields of logistics, supply chain manage-
ment, production planning, and operational research have been studying these
processes for several years (Sellers and Nof (1987); Bozer and McGinnis (1992);
Caputo et al. (2015b)).

The picking process is an essential aspect of logistics operations in the automotive
industry. The process involves selecting and collecting the parts and components
in the warehouse needed for vehicle assembly (Figure 2.1). It aims to ensure that
the parts and components required in the assembly line are picked correctly at the
right time and in the required quantity. Using advanced technologies like robots
and automated storage and retrieval systems, the picking process can be highly
automated (Jaghbeer et al., 2020).

Figure 2.1: Schematic representation of an Autonomous Mobile Robot (AMR)
picking a component from a shelf.

In the literature, the kitting process has been defined as a method of organizing
and grouping different components and parts in a specific kit (Figure 2.2), which
will then be used for a particular purpose or sent to a specific location. In the
automotive industry, kitting is used to assemble vehicles, where components are
assembled in a particular order and according to a specific set of instructions.
Kitting aims to reduce the number of times an item needs to be handled, thereby
reducing the overall cost and increasing efficiency compared to different supply
policies (Caputo et al., 2021).

Figure 2.2: Schematic representation of an AMR performing the kitting process.

Recent research has shown that using automation and robotics in the kitting and
picking processes can significantly improve efficiency and reduce costs in the au-
tomotive industry. For example, a study by Boysen et al. (2017) found that using
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robots for kitting in the automotive industry can significantly reduce labor costs
and increase efficiency. Another study by Caputo et al. (2018) found that the
use of automation in retrieval kitting systems processes can lead to a significant
reduction in effective costs and an increase in productivity.

In addition to automation and robotics, other advanced technologies, such as su-
pervised and unsupervised learning, are also used to improve kitting and pick-
ing processes. Fager et al. (2021a) found that using supervised and unsupervised
learning in vision-guided robotic bin-picking applications can enhance the qual-
ity of recognition and inventory management in kitting processes, reducing costs
and improving efficiency. A benefit of such an approach is higher resource flex-
ibility and an overall increase in efficiency because the operator and robots can
work better in parallel.

In automotive warehouse operations, picking and kitting systems play a vital
role. Recent research has shown that automation, robotics, and machine learn-
ing can significantly improve efficiency and reduce costs in these processes. As
AMRs are currently being introduced in many intralogistics operations, that can
communicate and negotiate with several resources in the warehouse, such as
other machines, devices, Automated Guided Vehicles (AGVs), or systems, inde-
pendently, decentralizing the decision-making process (Fragapane et al., 2021).

2.3 Advanced Technologies in Warehouse Operations

The current trend in the manufacturing sector is referred to as Industry 4.0. This
transformation is characterized by integrating advanced digital technologies into
production processes. These technologies include cloud computing, self-driving
systems, human-friendly robotics, computer vision, augmented reality, deep learn-
ing algorithms, 3D printing, intelligent sensors, and the integration of devices
and machines through the Industrial Internet of Things (IIoT) (Cohen et al., 2019).

The incorporation of advanced technologies into warehouse operations has the
potential to significantly improve efficiency and cost-effectiveness (Wang et al.,
2016). Autonomous or collaborative robots and drones, for instance, can stream-
line the order-picking process and the majority of the factory operations, enabling
orders to be fulfilled more quickly and accurately than if done manually (Žulj
et al., 2022). Additionally, the implementation of computer vision and deep learn-
ing algorithms can enable machines to quickly identify and locate items within
the warehouse, reducing the amount of time spent searching for products (Fager
et al., 2021a) and drastically minimizing the time needed for motion planning,
through real-time pallet and initial part detection, and pre-computing trajecto-
ries (Holz et al., 2015).

In addition to these technologies, integrating the Industrial Internet of Things
(IIoT) can bring about new levels of connectivity and data-driven decision-making
(Cohen et al., 2019). With sensors and other data-gathering devices installed
throughout the warehouse, it is possible to collect real-time information about
the status of their operations and make data-driven decisions to optimize pro-
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cesses and reduce downtime, reducing the time needed to complete kitting tasks
in a "real world" scenario (Tung et al., 2022).

Furthermore, 3D printing and additive manufacturing can revolutionize how
products are manufactured and distributed, reducing the need for extensive in-
ventories and enabling businesses to respond quickly to changing customer de-
mands (Gaub, 2016).

Accordingly to Hanson and Brolin (2013), kitting is a well-known strategy for
managing materials in assembly systems, which has many advantages over tra-
ditional continuous supply methods. However, one of the main drawbacks of kit-
ting is the high resource consumption required to prepare kits, which includes the
selection and organization of components in kits. The implementation of automa-
tion technology has the potential to significantly decrease the reliance on manual
labor and subsequently reduce operational costs. Furthermore, the process of kit
preparation, which includes the selection and organization of components, is of-
ten associated with concerns related to ergonomics and quality (Hanson et al.,
2018).

2.4 Order Picking Systems (OPSs)

Order picking is an essential aspect of the supply chain and greatly impacts the
success of different enterprises. Despite manual order picking by human laborers
still being prevalent in many organizations, many technological alternatives are
emerging to fully automate the process or support human order pickers.

Order picking, an essential aspect of warehouse operations in the industry, ac-
counts for approximately 55% of these operations time (Bartholdi and Hackman,
2019). It involves retrieving products from storage to fulfill customer orders. It is
considered one of the most labor-intensive activities within a warehouse, and it
can be separated into different tasks shown in Table 2.1.

Table 2.1: Tasks related to the Order Picking process (Bartholdi and Hackman,
2019).

Activity Order-picking time

Traveling 55 %
Searching 15 %
Extracting 10 %

Paperwork and other activities 20 %

Analyzing the Table 2.1, the most considerable portion of the cost of order picking
is due to the travel time involved. Therefore, order picking is a costly operation
within a warehouse. The focus of designing a Order Picking System (OPS) is to
minimize this time that isn’t productive.
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2.4.1 Classification of OPSs

This section presents a classification of OPSs for examination in this dissertation,
which is based on a highly cited article by Jaghbeer et al. (2020). This categoriza-
tion distinguishes OPS based on using a human operator, a robot, or no picker in
performing the picking task, as illustrated in Figure 2.3.

Figure 2.3: Diagram containing the different OPS considered (adapted from Jagh-
beer et al. (2020)).

Human Picking Systems

Human picking refers to the process of manually selecting and picking items, such
as parts or components, from a storage area and preparing them for use or fur-
ther processing (Brynzér and Johansson, 1995). This is performed by a human
worker who physically moves to the storage area, selects the items to be picked,
and moves them to a location where they will be kitted, packaged if necessary,
and processed to the assembly line. Human picking is commonly used in many
different types of operations, including in warehousing and internal distribution
within the factory. While human picking is a labor-intensive process, it is often
necessary due to the flexibility and adaptability of human workers, who can han-
dle a wide range of items, shapes, and sizes, which can correlate with a large
group of items in the automotive manufacturing industry. This category of hu-
man picking can be further divided into two classifications: Picker-to-Parts and
Parts-to-Picker.

According to Tompkins et al. (2010), human OPS includes preparation, searching
for items, traveling to different locations, and picking items from their storage
places.

• In Picker-to-parts, which is widely used, the order picker physically travels
down the aisles to collect items, getting information on the quantity and the
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order of the items to be retrieved, either on a paper pick list or an electrical
device (Grosse et al., 2017). This method can be further categorized into
low-level and high-level order picking.

– In low-level order picking, the order picker retrieves the items from
storage racks or bins as they walk down the storage aisles.

– High-level (or man-aboard) order picking involves using high storage
racks and employing a lifting order-pick truck or crane, upon which
the order picker travels to reach the designated pick location. Upon
arrival, the crane halts automatically in front of the required location,
and the order picker subsequently collects the items.

• In a Parts-to-picker system, the required items are retrieved from storage
using Automated Storage/Retrieval System (AS/RS) such as aisle-bound
cranes, steady conveyors, carousels, or AGVs, and brought to a central de-
pot for picking. The order picker at the central depot selects and packs the
required items while the remaining load is returned to storage. This system
is sometimes referred to as a unit-load or end-of-aisle order-picking sys-
tem. It is characterized by reduced human activities, limited to picking and
packing tasks.

Robot Picking Systems

Robotic picking systems, presented in the right branch of the diagram in Figure 2.3,
are automated OPS that use robots to retrieve and pick items from storage loca-
tions in the warehouse and deliver them to a designated pick position. These sys-
tems are designed to reduce the manual labor involved in order picking, which is
more expensive in the long term than with robots, and improve the efficiency and
accuracy of the process (Lamballais et al., 2017). They typically employ sensory
equipment, machine learning algorithms, and advanced robotic technologies to
identify and retrieve items from storage areas and convey them to the designated
pick location (Lamballais Tessensohn et al., 2020). In contrast to manual order
picking systems, which rely on human workers to perform the entire process,
robotic picking systems automate specific steps, such as search and travel, and
leave only the picking and packing steps to be performed by human workers.

The categorization of OPSs using a robotic picker involves two types, namely
"robot-to-parts" and "parts-to-robot", which differ based on the location at which
the robot performs the act of picking, as noted in Jaghbeer et al. (2020).

• In a Robot-to-Parts OPS, it is similar to the picker-to-parts presented in the
previous subsection (2.4.1), with the difference that here actual robots move
through the storage areas and pick up the respective items (Jaghbeer et al.,
2020). This can be achieved with AGVs carrying robots, normally desig-
nated by AMRs or mobots. Navigating through the warehouse and pick-
ing items, these robots reduce the need for manual labor and increase ef-
ficiency, allowing faster and more accurate picking, leading to improved
overall productivity and cost-effectiveness as well as improving safety in
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the warehouse, as they can handle heavy or hazardous items, freeing up
workers to focus on other tasks;

• In Parts-to-Robot OPS, gantry robots transport items from the warehouse
to a picking station, where a stationary robot picks the required orders
(Jaghbeer et al., 2020), similar to Parts-to-Picker OPS. However, fully auto-
mated picking and picking robots are uncommon and employed only in
exceptional circumstances due to their limited capacity for handling irreg-
ularly shaped, weighted, and sized items (Vanheusden et al., 2023).

Picker-less Systems

Picker-less OPSs, presented in the central ramification in Figure 2.3, consists of a
fully automated warehouse process where no human operator or mobots need
to perform the actual picking due to the installation of dispensers and A-frames.
Stock items are stored in vertical slots lined up in a distinctive A-shaped frame.
A machine automatically takes the bottom item from each slot and puts it into
boxes or containers moving along a conveyor belt under the frame. While pick-
ing the items from the slots is completely automated, regularly replenishing the
hundreds of slots is still physically demanding for human workers (Boywitz et al.,
2019).

2.4.2 Performance metrics in OPSs

Performance metrics in OPS refer to a set of key indicators utilized to measure
the effectiveness and efficiency of the order-picking process (Staudt et al., 2015).
Evaluating these metrics is essential for determining the overall performance of
warehouse operations and guaranteeing that customer requirements are fulfilled
promptly and cost-effectively (Vanheusden et al., 2023). Some commonly used
performance metrics in OPSs include:

• Throughput - refers to the rate at which orders are processed, usually mea-
sured in units per hour.

• Lead time - is the time elapsed from receiving an order to shipping it to the
customer.

• Human factors - include the comfort and ergonomics of the order picking
process for human workers and the health, staff satisfaction and safety im-
plications.

• Quality - refers to the accuracy of the order-picking process, ensuring that
the right items are picked and packed correctly.

• Flexibility - is the ability of the order-picking system to adapt to changing
order patterns and requirements, as well as the ability to handle different
types of products and packaging.
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• Operational efficiency - refers to the use of resources such as time, energy,
and space, as well as the speed and smoothness of the order-picking pro-
cess.

• Operational costs - include the upfront investment in equipment and tech-
nology and ongoing operating costs such as maintenance, energy consump-
tion, and labor costs.

Accordingly to Jaghbeer et al. (2020), different OPSs have different performance
metrics studied and analyzed. In parts-to-picker OPSs, the most commonly re-
searched performance metrics are throughput, lead time, and operational effi-
ciency. Fewer studies analyze human factors, quality, and operational costs. Sim-
ilarly, in robot-to-parts OPSs, there is limited research on the lead time, flexibil-
ity, and costs. Research into throughput, lead time, flexibility, and operational
efficiency in parts-to-robot OPSs is also limited. Although many performance cat-
egories have been studied in picker-less OPSs, flexibility is the one that has re-
ceived the least attention. The same article suggests that further research should
be directed toward improving the flexibility of parts-to-picker systems to be more
effective compared with other OPSs, including those using robots.

An in-depth analysis of Boysen et al. (2017) reveals that the authors concluded
that grouping orders, known as order batching, can be beneficial as it can lower
the number of robots needed. However, it is also important to point out that there
is a shortage of real-life data to support this conclusion and that there is a need for
more case studies to be conducted to understand the benefits of order batching
further.

2.5 Kitting Systems

In mixed-model assembly systems, the role of kitting systems is crucial. Two
distinct approaches to kitting have been identified in the literature: traditional
kitting and direct kitting (Caputo et al., 2021).

Traditional kitting involves the manual or automatic selection, sorting, and orga-
nization of components into kits within a warehouse setting. This approach is
widely used in industry. In contrast, direct kitting utilizes digital manufacturing
techniques such as additive manufacturing to fabricate and assemble customized
kits simultaneously (Hanson and Brolin, 2013). The potential for reduced han-
dling and increased efficiency through this approach is hindered by the current
limitations of additive manufacturing technologies and their limited adoption in
the industry, as stated in Khajavi et al. (2014).

This dissertation is focused on traditional kitting, where pre-manufactured parts
are assembled into kits as a separate process from the actual manufacturing. The
different forms of kitting systems are described and distinguished by the degree
of automation in the distinct stages of picking and kitting the components.

Drawing from a literature review and insightful expert interviews within the in-
dustry, Hanson and Medbo (2016) undertook an analysis encompassing 15 in-
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stances within the automotive sector. Their study focused on discerning critical
design and contextual facets inherent to kitting systems, which wield significant
influence over person-hours consumption. The outcomes of their investigation
underscore the preeminent design factors that exert the most pronounced im-
pact on kitting efficiency, specifically the mean duration required for picking each
component and the spatial density of picking. These factors include the nature
and dimensions of storage bins, the configuration and structural composition of
storage racks, the magnitude of batch processing, and the spatial extent of the
picking region. Remarkably, the size of the components, considered an input pa-
rameter, engenders indirect implications on kitting efficiency by its influence on
all the aforementioned performance metrics (Subsection 2.4.2).

According to Caputo et al. (2021), the kitting process can be divided into differ-
ent stages, such as retrieving parts from storage, selecting and picking the ap-
propriate number of parts for the kit, and assembling the kit. The assembly pro-
cess encompasses more than just placing the parts in the kit container. It could
also include activities like counting or weighing the parts to confirm their correct
quantity, preparing the components before their inclusion in the kit (e.g., cutting
to size, removing the packaging, and conducting quality control), arranging the
parts in the correct order and location within the kit, and keeping track of any
missing components that need to be added later.

In this way, the picking process generally involves two distinct stages: retrieving
the necessary parts and picking parts into a kit. The distinction between these
two steps only becomes relevant when different methods or resources are used to
perform each stage. So, in simpler terms, the kitting process includes one step of
picking the required components and another step of kitting these components
into the final kit.

Different kitting systems are discussed and presented below, where they were
classified into different types to facilitate referring to them during the report. Un-
derstanding the different types of kitting systems, their characteristics, and their
strong points can help differentiate in order to choose and refine the best ap-
proach for improved efficiency.

2.5.1 Type A - Manual Picking and Kitting

In this case, Type A, considering manual picking and kitting, involves human
operators physically selecting the necessary components for a specific kit from
storage containers in the warehouse (see Figure 2.4). These operators may use a
paper-based pick list, which provides information on the specific components re-
quired for each kit, or a picking-by-light system to assist in identifying the correct
components. Once the components have been selected and verified, the operator
will place them in kit boxes in an AGV for transport to the designated location on
the mixed assembly line.

It is important to mention that the manual kitting process may also be supported
by other equipment such as a barcode scanner, RFID reader, pick-by-light, pick-
by-voice, pick-by-HUD or picking carts for the operator to transport the parts

16



State of the Art

Figure 2.4: Schematic representation of the Type A kitting system: picking and
kitting performed by a human operator, using a pick-by-light system.

(Fager et al., 2019b). These tools can help improve the efficiency and accuracy of
the kitting process.

This kitting system has some disadvantages, such as the cost of manual labor,
the risk of ergonomic issues, and the potential for quality problems (Fager et al.,
2020a). Despite these drawbacks, manual kitting remains a popular choice as a
prevalent method for kit preparation in the industry due to its versatility and
ability to adapt to different circumstances.

2.5.2 Type B - Automated Picking and Kitting

A fully automated picking and kitting system, designated as Type B, involves
advanced automation technologies to perform the entire kit preparation process
without human intervention (see Figure 2.5). These systems typically include
a combination of robots, conveyors, and other automated equipment that work
together to pick, sort, and place components in kit boxes (Sellers and Nof, 1989).
Automation technology in these systems can range from simple pick-and-place
robots to more advanced systems that use machine learning and computer vision
to identify and manipulate components precisely (Rieder et al., 2021).

Figure 2.5: A representation of the Type B kitting system, showcasing the integra-
tion of an AMR for picking and AGV for transporting kits to the assembly line.

One key advantage of fully automated picking and kitting systems is the ability
to operate at a much higher efficiency and speed than traditional manual or semi-
automated systems. This is due to the high precision of the automated equipment
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and repeatability in the process, which allows for more efficient and accurate
component handling (Jaghbeer et al., 2020). In addition, these systems can also
help reduce labor costs since they do not require human operators to perform the
kit preparation process.

Furthermore, these systems can improve quality, as automated systems are less
prone to human errors. They can also be programmed to perform several quality
checks throughout the kitting process, such as checking for missing or incorrect
parts, and provide real-time feedback to operators (Azadeh et al., 2019).

However, fully automated kitting systems are typically more expensive in terms
of maintenance than traditional manual systems and may require specialized ex-
pertise to operate and maintain. In addition, implementing these systems may
require significant changes in the logistics and infrastructure of the organization,
which can be a major challenge for some organizations (Sgarbossa et al., 2020).

Implementing the Type B solution must be thoroughly evaluated in terms of per-
formance and cost, as deploying such a system involves a highly significant fi-
nancial investment that must be justified by substantial benefits (Caputo et al.,
2021).

2.5.3 Type C - Human-Robot Collaborative Picking and Kitting

The Type C kitting system, referred to as the Human-Robot Collaborative Pick-
ing and Kitting System, is a hybrid solution that utilizes a blend of manual and
automated techniques for the picking and kitting components. This system in-
volves dividing the same picking area of the warehouse into two sections, one
for manual picking, performed by human operators, and the other for automated
picking, performed by AMRs, also known as mobots (see Figure 2.6). The human
operator and the AMR work concurrently, each responsible for selecting the com-
ponents from their designated section and placing them in kit boxes on an AGV
for transportation to the assembly line.

Figure 2.6: Schematic representation of the Type C hybrid kitting system, where
human operators and AMRs work in parallel to pick and kit components for the
mixed-model assembly line.
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This approach addresses some of the limitations of the fully automated Type B
kitting system (Subsection 2.5.2) by allowing the use of AMRs to pick components
with similar and uniform sizes, weights, and geometries, reducing the need for
specialized grippers and minimizing performance issues (Coelho et al., 2018).
Additionally, limiting the movement of the AMR to a single aisle reduces the
distance it needs to travel, increasing its efficiency.

However, it should be noted that this solution still presents certain challenges.
When coordinating the actions of the AMR and the human operator, achieving a
synchronous process can be difficult (Fager et al., 2020b), and it may not handle
all components required by the assembly line. Furthermore, the operation time
of the AMR may be impacted by the need to place the selected components in the
correct location in the AGV kit box.

2.5.4 Type D - Hybrid Robotised/Manual Picking and Kitting

The solutions presented in previous sections, Types B and C (subsections 2.5.2
and 2.5.3, respectively), can pose a challenge in terms of performance resulting
in a picking and kitting cycle time that is not compatible with the required pace
of the assembly line (Caputo et al., 2021). Several factors significantly impact the
duration of the picking and kitting task by the AMRs, including:

• AMR’s time between two consecutive picking positions;

• AMR’s time to pick components;

• AMR’s time to place the component in the correct location in the kit box;

The Type D kitting system addresses these problems by dividing the picking zone
into two areas, with one area designated for manual picking, performed by hu-
man operators, and the other area designated for automated picking, performed
by AMRs (see Figure 2.7). In the first area, the AMR is responsible for picking
components and bringing them to a buffer, which eliminates the need for the
AMR to place the component in the correct position in the kit box, being a task
developed by the human operator. This approach is similar to the Type B solu-
tion, but the AMR is only responsible for the picking operation, not the kitting
directly. This reduces the time required for the mobot to complete its operations
and improves its performance (Boudella et al., 2018).

In the second zone, the operator prepares the kit boxes, picks the components
prepared by the AMR, and places them into the kit box in the tugger train. Once
the operator finishes these tasks, it collects all the remaining parts. This way, the
Type D solution allows for a more efficient workflow by separating the picking
and kitting functions between the human operators and the AMRs, reducing the
time required for the AMR and increasing its performance.

The human operators and the AMR work simultaneously and independently, al-
lowing an asynchronous harmonized operation, each one responsible for picking
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Figure 2.7: Representation of the Hybrid Robotised/manual picking and kitting
(Type D) showing the division of the picking zone into two sections.

components from their designated aisle and placing them in kit boxes on an AGV
for transportation to the assembly line. This allows for smooth and efficient co-
ordination between the two agents, reducing the risk of errors and increasing the
overall performance of the kitting process.

2.6 Kitting optimization and costing models

Robotics and other advanced technologies can be used to automate the kitting
process. By integrating automated systems, productivity, efficiency, and accu-
racy can be improved significantly, but, as mentioned by Caputo et al. (2021),
the use of fully robotic kitting systems is limited because of the technical difficul-
ties that robots face in completing tasks like selecting individual parts from bulk
containers, placing parts in kit containers in the correct orientation, removing the
packaging, and inserting cardboard sheets and dividers into parts containers. Al-
though some experiments have been conducted with such systems, they are not
widely used due to these challenges.

In addition to technical difficulties, implementing (hybrid) robotic kitting sys-
tems is also hindered by economic considerations. To understand the economic
viability of such systems, it is essential to develop and analyze cost models. These
models consider factors such as capital costs, operating costs such as the costs re-
lated to energy consumption, maintenance costs, and the costs associated with
downtime or failure. When analyzing these costs with the different models, it
is possible to determine the overall economic feasibility of a fully robotic kitting
system and compare it with other alternative solutions. In this way, the role of
cost models in guiding the implementation of automated kitting systems is sig-
nificant (Boysen et al., 2015).

Caputo et al. (2021) examines the cost-effectiveness of different kitting systems.
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The study first creates a categorization framework for different kitting systems
and then develops a comprehensive planning and cost model to compare the
costs of manual and automated kitting systems. It is considered four types of kit-
ting systems: Automated Retrieval – Manual picking and kitting (with AS/RS)
and a buffer conveyor, where operators proceed with picking and kitting); Man-
ual Picking – Manual kitting (traditional warehouse with operators that perform
picking and kitting using a paper pick list); Automation-assisted Picking – Man-
ual kitting (similar to the previous system, but pick-to-light system is incorpo-
rated) and a Hybrid Robotised/manual picking and kitting (consisting of a zone
with a totally automatic kitting system complemented by a totally human op-
erator kitting system to pick and kit the missing parts). The developed model
evaluates the equivalent annual cost of several factors, such as investment in
equipment (AS/RS and cranes), labor costs, energy consumption, warehouse and
storage area space, and costs associated with correcting errors for the kitting sys-
tems considered, as well as the determination of resources specific for each type.
In this work, the required throughput rate and the daily gross volume are deter-
mined for all parts needed to meet the daily demand to achieve the average cycle
time of the process. For the last kitting system proposed, the authors determine
the number of robots (NA) using an iterative procedure, as well as the length of
each aisle L, because the time robots take to complete a kit depends on the length
of the aisle. The findings of the study indicated that automated retrieval systems
are economically advantageous in most cases, except when demand is low or la-
bor costs are minimal. The model also showed that systems designed to avoid
errors are only cost-effective if the cost of a single error is substantial.

In "AMR-assisted order picking problem (AOPP)", Žulj et al. (2022) highlights a
real-world challenge faced by a German automotive Original Equipment Man-
ufacturer (OEM) in its warehouse, where over half a million test components
are stored and numerous customer orders are received. To streamline the order-
picking process, customer orders are grouped and transported by a fleet of AMRs.
The warehouse is divided into separate zones, each comprising a single picking
aisle, and an order picker collects the items of a customer’s order stored in their
zone and passes them to the AMR. The authors propose a mixed integer program-
ming (MIP) approach for the AOPP and show that it is an NP-hard problem. To
tackle this, they present a two-stage heuristic solution that consists of an Adaptive
Large Neighborhood Search (ALNS) component for batching customer orders.
The authors conduct experiments to evaluate the impact of different algorithmic
features on solution quality and demonstrate that their approach can quickly find
high-quality solutions for smaller instances. Additionally, they explore the effect
of increasing the AMR fleet size and changing the travel and walking speed ra-
tios between AMRs and order pickers to minimize total customer order tardiness.
The results reveal that increasing the speed ratio or the fleet size can significantly
reduce total delay, providing valuable insight into the problem. This article is
relevant to this dissertation on optimizing robotic kitting systems.

The study by Fager et al. (2019a) explores the benefits of using collaborative
robots, or cobots, in the kit preparation and order batching processes in mixed-
model assembly operations. The authors aim to determine the improvement in
efficiency that can be achieved by utilizing cobots in these tasks. They use a mod-
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eling approach and conduct laboratory experiments to compare the cycle time
between two scenarios: manual picking and sorting tasks and cobot-assisted kit
preparation and order batching. The authors calculate the order picking time for
each scenario. For the manual scenario, the total order picking time consists of
picking, sorting, and travel times. For the cobot scenario, the total order pick-
ing time includes the picking and travel time (determined in a similar way to
the manual scenario) and the collaborative time, representing the time for the op-
erator to place the Stock Keeping Units (SKUs) in the collaborative zone for the
robot to pick and sort the components, with the time for the first component be-
ing more significant than the subsequent ones. The findings of the study indicate
that using cobots for sorting tasks leads to similar average cycle times compared
to manual operations, with reduced fluctuations in the cycle time. Although the
model is a basic representation of a real-world industrial setting, further research
is required before making any actual implementations. The significance of the
paper is in the modeled application of cobot-assisted kit preparation, which can
be a valuable tool for evaluating the feasibility of incorporating cobots into their
systems. With this model, authors suggest exploring the influence of cobots on
other aspects of kit preparation and the effect of different variables.

In Fager et al. (2021b), the cost difference between a manual and a cobot-supported
process is also evaluated, taking into account the costs with operators, equipment
and quality, finding that a cobot sorting is more robust when high yearly order
volumes exist and when orders have more frequently common components.

The authors of Boudella et al. (2018) introduce a mathematical model aimed at
improving the allocation of different components (SKUs) between a robot and a
human operator during the preparation of a series of kits, using a Mixed Integer
Programming (MIP) model. It contributes to research, developing and modeling
some critical processes in the cycle times for both Robotic and Manual Kitting.
The model was tested using data from an automotive company, and the results
demonstrate that certain requirements must be satisfied in terms of component
features and available floor space to make the automation of the kitting process
feasible. Although the model presents an initial approach to optimizing the hy-
brid robot-human kitting system, further and better research is necessary by re-
fining the model to account for unpredictable demand and testing it in different
settings to increase its robustness. Additionally, the model can be modified to
accommodate different configurations, such as using two robots, and can serve
as a foundation for evaluating manual kitting systems. However, the model has
certain limitations, such as the assumption of parts being stored solely in small
containers and not considering pick-to-light or voice-based manual kitting sys-
tems.

The authors in Schmid et al. (2021) have created a MIP model to design kitting
cells with a U-shaped configuration and applied it to real-world data from the au-
tomotive industry, conducting a study on improving the design of the cells. The
model aims to minimize the total cost, which includes the expenses for restock-
ing, walking, investment, and space. The findings show that this model enhances
the efficiency of the kitting process compared to conventional and heuristic ap-
proaches. However, the study was centered on manual kitting and a relatively
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small number of part families and variants.

Total costs and throughput are evaluated in a collaborative workspace for order
picking operations by Winkelhaus et al. (2022), presenting a simulation model
considering several parameters of hybrid kitting systems, and it shows that it is
generally more efficient than fully manual or fully robotic order picking systems.

Several articles focus on comparing and choosing different line-feeding modes.
Gaub (2016) developed a MIP model to decide the appropriate line feeding method
for each component, between line stocking, kitting, and sequencing modes, be-
ing the model applied to data from a supplier in the automotive industry, for a
mixed-model assembly line. In Caputo et al. (2015a), an integer linear program-
ming mathematical model was designed to allow choosing between kitting, line
stocking and just-in-time delivery policies through economic comparison, but it
is developed in this case for single-model assembly lines operating in a determin-
istic environment. For evaluating the parts assignment between kitting and line
stocking, Limère et al. (2012) also developed a mathematical cost model consid-
ering a case study from a Belgium automotive company, showing that in cases of
space constrain, kitting all parts isn’t the most cost-effective strategy.

To address the planning and scheduling of multistage assembly lines, Vieira et al.
(2022) presents a Recursive Optimisation-Simulation Approach (ROSA) method-
ology with an iterative process to optimize production planning, combining a
two-tier Mixed-Integer Linear Programming (MILP) model with a detailed dis-
crete event simulation model. This method yielded near-optimal solutions en-
compassing essential determinants like lot-sizing choices, production order re-
lease schedules, task delegation between human workers and robots, and the
optimal robot deployment for each period.

Accounting for fully robotic systems, Boudella et al. (2016) modeled kitting oper-
ations in a case with a robot arm mounted on a rail system that travels along a nar-
row aisle to pick parts and proposed a method to reevaluate performance in terms
of cycle times. In literature, research is mainly focused on robotic-picking perfor-
mance evaluation to understand its feasibility in a real-world scenario (Krueger
et al., 2019).

2.7 Energetic Efficiency of AGVs

The literature related to power energy consumption aspects of Automated Guided
Vehicles (AGVs) was explored through several noteworthy articles. Meißner
and Massalski (2020) conducted an in-depth investigation to model the electri-
cal power and energy consumption of AGVs using several movement modules
to analyze the translatory, the rotary, the lifting and lowering movements of the
load-carrying platform, as well as assessing the impact of varying speeds on over-
all energy consumption.

Li et al. (2020) investigated the influence of decentralized storage policy on order
picking performance efficiency, emphasizing the importance of the methods in
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reducing AGV energy consumption. Moreover, the work of Javied et al. (2018)
explored and developed an energy monitoring and management system in an In-
dustry 4.0 context to enhance the ecological footprint and maintain operational
efficacy. Collectively, these studies contribute to the evolving discourse on im-
proving energy efficiency of AGVs, underscoring the significance of sustainable
energy practices in industrial automation.

Kara et al. (2007) focused on the heterogeneous AGV routing problem consid-
ering the minimization of the energy consumption with relationship to loading
weight, demonstrating ways this energy consumption can be decreased through
a particle swarm optimization (PSO) algorithm provided. Kara et al. (2007) con-
sidered the routing problem with the energy consumption due to weight and
distance traveled. On the other hand.

In the work developed by Zhou and He (2021), it is presented a mathematical
model that aims to minimize the total energy consumption and the total line-side
inventory in a static semi-kitting strategy for mixed-flow assembly lines.

2.8 Critical Analysis

A review of the literature has shown that several studies have been conducted on
kitting and picking processes in the automotive industry, with an adequate mod-
eling base as demonstrated by works such as Caputo et al. (2021) and Boudella
et al. (2018). However, while these studies have provided a solid foundation,
there is still space for improvement and further research in this field, such as the
limitations regarding automation configurations and weight and size of the parts.

To enhance the current state of the art in this area, the following improvements
could be made:

• Extending and developing models for additional automation configuration
designs.

• Testing the models more comprehensively to understand better the impact
of different factors such as the weight and size of parts, number of AMRs
available, and picking errors.

• Conduct and develop models to explore the fraction of parts that can be
automatically kitted and picked or need to be kept in a manual operation.

The Type D kitting system stands out when compared to other kitting systems,
such as Type A, B and C, because it addresses many of the challenges faced in
modern manufacturing environments. The Type D system is designed to handle
heterogeneous and irregular components, becoming more common in the auto-
motive industry as manufacturers strive to create new and innovative products.
This system is also more flexible than other kitting systems, allowing for more
straightforward adaptation to new or changing requirements compared to Type
B. The Type D system uses a combination of automation and manual labor, which
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allows for a higher level of control and precision in the kitting process than the
Type C system. This results in more efficient and accurate kitting, reducing the
risk of errors and increasing the overall productivity of the manufacturing pro-
cess compared to the Type A kitting system. In conclusion, the Type D kitting
system has the potential to be more effective in modern manufacturing environ-
ments due to its flexibility, control, and ability to handle heterogeneous and ir-
regular components.

This dissertation will explore the potential benefits and challenges of layout de-
signs inspired by the Type D kitting system (subsection 2.5.4) and investigate
how it can be implemented in a model that can truly describe it. Solving meth-
ods such as mathematical programming models or heuristic approaches should
be explored to compare to manual and collaborative kitting systems. A detailed
analysis aims to demonstrate the potential of this system to improve the kitting
process in modern manufacturing environments in the automotive industry, par-
ticularly when facing heterogeneous and irregular components.

In kitting operations, the cycle time and its cost are crucial factors that need to be
optimized, as demonstrated by the effect that errors can have on these metrics. It
is also essential to ensure coordination and synchronization in the kitting process.

Additionally, the proposed kitting system should be tested with adequate data to
see if it can be successfully implemented in manufacturing settings of the auto-
motive industry. This will support and validate the results and provide a more
accurate understanding of an efficient kitting system. The reviewed research pro-
vided valuable insights into the kitting and picking processes and contributions
to the ongoing efforts in this field.

The impact of the kitting process on the energy efficiency of AGVs remains an un-
derexplored area of research. A comprehensive research will be undertaken into
a complete robotic kitting solution with the aim of identifying effective strate-
gies for minimizing energy consumption by AGVs. This study will aim to be
a promising addition to the ongoing efforts of different industries to automate
warehousing and optimize processes, and it can drive progress in robotic kitting
technologies, improving efficiency and competitiveness in the automotive sector.
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Methodology

The methodology chapter describes the approach to developing hybrid kitting
systems and the operational research model for optimizing kitting operations.
This chapter begins with the comprehensive layouts of the hybrid kitting sys-
tems, highlighting the various components involved and their specific roles. The
chapter then proceeds to describe the processes related to kitting operations con-
sidered during the development of the models, providing a clear understanding
of how the systems operate. Furthermore, the chapter discusses the SKU assign-
ment model developed and its related constraints, demonstrating how it was for-
mulated to optimize the kitting process. Overall, this chapter thoroughly explains
the methodology employed in this study, allowing the reader to understand bet-
ter the research methodology and the framework used to analyze the data.

3.1 Hybrid kitting systems description

After analyzing the State of the Art (Chapter 2) with the leading research develop-
ments and the challenges faced by the industry to implement an efficient kitting
system, two innovative layouts are presented: the Asynchronous Hybrid Kitting
(AHK) System and the Sequential Hybrid Kitting (SHK) System.

3.1.1 Asynchronous Hybrid Kitting (AHK) System

The Hybrid kitting system described in this subsection, designated by AHK Sys-
tem follows a starting point based on the layout developed by Boudella et al.
(2018), which has been improved on its characteristics and kitting organization,
namely how components are transported to the kitting zone. The process in-
volves two semi-independent areas: a robotic kitting area with an Autonomous
Mobile Robot (AMR) picking and placing parts onto an Automated Guided Ve-
hicle (AGV) box, which moves later on to the sorting and kitting area, where the
kits are prepared, and a collaborative kitting area, where a human operator com-
pletes the kits with the support of a pick-to-light system and AGVs to transport
the parts. The tugger trains act as a buffer between the two areas, allowing for a
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balanced distribution of parts and improved productivity.

Figure 3.1 shows a set of kits being prepared, composed of components for each
End Product (EP) to the assembly line, in this kitting system. In the automotive
industry, each part/component used in a EP can have different variants repre-
sented by different and unique Stock Keeping Units (SKUs), differing in terms
of one or several aspects related to its characteristics. This SKUs can be pack-
aged with interlayers, dividers, styrofoam boxes, plastic bags, or others to ensure
quality to SKUs, preventing possible damage.

Figure 3.1: Representation of the AHK System.

As can also be seen in the figure, there are racks in the storage area where the com-
ponents are stored in bins with different sizes and are made of different materials,
some of which can be foldable. The colors in the racks represent bin storage loca-
tions of the same SKUs or different SKUs being variants for a specific category.

To build an EP, the parts are placed in kitting boxes, where each box is formed
so that all the components needed at a point of use on the assembly line can be
placed in one or more boxes grouped into a kit. In the automotive manufacturing
industry, a basic EP consumes basic components while a more configured EP uses
a broad spectrum of components.

In the first step of this kitting process of the robotic kitting area, a AMR needs to
move from its previous location to the correct storage location, where the com-
ponent to be picked is located. In a second step, the AMR picks the components
and places them on a box fixed to a AGV that needs to be available near it, which
will be filled accordingly to the Bill of Materialss (BOMs) accepted. The AGV box
receives the pieces for the later mounted kits, allowing a faster picking process
and considering an adequate strategy to store parts in the warehouse according
to their class, weight, and fragility.

In addition to picking the parts, the AMR is responsible for removing the empty
bins in the storage racks of the robotic kitting area to the evacuation ramps, lo-
cated on the third level of the racks, according to the Figure 3.1, represented by
the dark green color, and removing the dividers and interlayers from the parts,
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implying the necessity of gripper adaptation to accommodate the size, shape, and
material constitution.

When the AGV box is full, a third step begins, where the AGV travels from its
position (near the AMR) to the sorting and kitting area. While this happens, a
new AGV should be moving to a close radius of the AMR to continue the picking
process. After the AGV reaches its designated location in the sorting zone, the
fourth step begins, where a fixed manipulator is installed that starts identifying
the parts, followed by picking and sorting them to the correct kit on the tugger
train (fifth step), which will take the kit to the final position on the assembly line,
which is available with the destination kit boxes already placed to be loaded with
the different parts.

The kits being mounted in the tugger train are completed with the specific parts
that cannot be picked by manipulators, components in packages with plastic bags
or foam protection, or that were allocated to the manual collaborative kitting side
due to optimization and system balancing purposes. An analogous set of steps
occurs in this area with the difference related to the substitution of the AMR by
a human operator that proceeds with the identification of the parts with the sup-
port of the BOM and a pick-to-light system to reduce the time needed for search-
ing components, picking them to the AGV that will follow the operator along the
storage racks. Additionally, the operator(s) proceeding with the picking will also
remove all the packaging of components into a disposal container.

The collaborative kitting area stores parts using a volume-based approach, mean-
ing frequently requested components are located near the output point to mini-
mize the distance traveled by the operator.

In the sorting and kitting zone of the collaborative kitting area, no manipulator
but a human operator is picking the parts from the AGV to complete the correct
kits prepared by the robotic kitting area. To reduce errors in the sorting process
by the human operator, it should be supported by a kit-to-light system (similar to
a pick-to-light system) to help place the part in the correct kit box. This operator
will also be responsible for correctly positioning the kit boxes in the tugger train
to receive the components from both the robotic and collaborative kitting areas.

In this proposed system, the tugger trains act as a buffer that is assumed to
be large enough to decouple the activities presented on both sides (robotic and
collaborative kitting areas) and operate in a certain semi-independent way, i.e.,
while the operator is completing the kits, the robotic side is proceeding with the
BOM to the following kits. When all the kits are assembled, the tugger train will
leave the kitting zone to deliver the kits to the Border of Line (BoL).

To achieve an efficient kit production line, the fraction of parts to be distributed
through the robotic or collaborative kitting area must be well balanced, achieving
a similar working time for both sides of the system, improving productivity, and
avoiding idleness.
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3.1.2 Sequential Hybrid Kitting (SHK) System

The SHK System introduces a slightly distinct layout concept from the previous
model, adopting an assembly line approach to kit formation. This system opti-
mizes the kit production process by incorporating key modifications that enhance
efficiency and reduce handling steps.

In this system (Figure 3.2), the AGVs are equipped with the kitting boxes required
for the assembly line, eliminating the need for subsequent sorting operations,
which are positioned alongside the pickers to facilitate the completion of multiple
kits. An operator initially prepares the kit boxes on the AGVs, ensuring their
readiness to receive components.

Figure 3.2: Representation of the SHK System.

The AGVs follow a unidirectional path, akin to an assembly line, beginning in
the robotic kitting area. Here, an AMR carries out the picking of components and
places them onto the AGV. The AMR executes the picking process, removes any
interlayers and dividers in the components bins, and relocates empty containers
into the evacuation ramps. This step ensures that the components are optimally
placed for efficient kitting.

After collecting all the necessary components in the robotic kitting area, the AGV
transitions to the collaborative kitting area. In this zone, a human operator takes
over picking components to complete the kits. The operator is supported by a bill
of materials (BOM) and a pick-to-light system streamlining the retrieval process.
The operator also meticulously removes all packaging materials surrounding the
components.

The AGVs then assemble into a logistics train configuration, ready to proceed
to the assembly line, similar to the tugger train in the previous layout. This se-
quential hybrid approach aims to balance the workload between the robotic and
collaborative kitting areas, ensuring optimal working times for both sides of the
system. Ultimately, the SHK System maximizes efficiency by integrating the ad-
vantages of robotic precision and human skill, paving the way for a more stream-
lined and productive assembly process.
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3.2 Modeling

The models developed are based on the model proposed by Boudella et al. (2018),
which have been adapted and improved to correctly represent the characteristics
of the innovative layout and organization of the kitting presented.

The aim of the Mixed Integer Programming (MIP) models proposed is to deter-
mine the best (optimal) way to distribute SKUs between the robotic area and the
collaborative area to maximize the efficiency of a kitting system. To do this, we
evaluate the time to complete the necessary operations during a typical prepa-
ration cycle and over a period representing the demand for different EPs. Each
product requires a specific list of SKUs with the number of parts needed. This
information is used to obtain the frequency at which each SKU is used and the
average number of components required based on the number of EPs produced
during the reference period.

After finding the optimal assignment, it is essential to ensure that the resulting
throughput is equal to or greater than the throughput of the assembly line. In
other words, if the throughput of the hybrid kitting system is higher than the
throughput of the assembly line, it can be considered a possible and practical
replacement for the manual kitting system. If not, then the design and layout of
the kitting system should be improved. Once this is done, the workload between
both sides of the system should be allocated in the warehouse.

Firstly, the indexes and parameters will be presented, followed by the decision
variables and the objective function for the AHK System and after for the SHK
System.

3.2.1 MIP model for the Asynchronous Hybrid Kitting (AHK)
System

Indexes

The indexes outline the data entities within the proposed Mixed Integer Program-
ming (MIP) models.

• "R" - indicates that a certain parameter or variable refers to the area of
robotic kitting;

• "C" - indicates that a certain parameter or variable refers to the area of col-
laborative kitting;

• i = [1, 2, ..., Z] - unique identifier of SKUs within the kitting process (where
Z is the total number of SKUs).
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Parameters

The parameters of the model represent information sourced from input data or re-
alistic estimates and may need to be updated as conditions change. They should
be defined accurately and reflect the characteristics of the kitting problem being
modeled because they can significantly impact the results of the model, so it is
important to use the best available information when defining them.

General Parameters

• BS - Batch size, representing the number of EPs prepared simultaneously in
the cycle time of the kitting preparation process;

• Z - Total number of SKUs in the kitting area;

• A - Total area available for the hybrid kitting system (m2);

Components and Bins Parameters

• ni - Number of components needed in the BOM of SKU i;

• fi - Frequency of usage of SKU i in the EPs;

• BWi - Storage bin width of SKU i (m);

• Pi - Number of components of SKU i in a complete storage bin;

• ILi - Number of interlayer sheets in a complete bin of SKU i;

• Di - Number of dividers in a complete bin of SKU i;

• Foi - Number of foam protections in a complete bin of SKU i;

• PBi - Number of plastic bags in a complete bin of SKU i;

• Voli - Volume of SKU i (m3);

• Mi - Weight of SKU i (kg);

• f easi - Feasibility of SKU i for robotic picking;

Robotic Kitting Parameters

• Bg - Percentage of timage that occur in background;

• AWR - Aisle’s width in the robotic kitting area (m);

• RDR - Storage Rack’s depth in the robotic kitting area (m);

• SR - Horizontal spacing between two successive bins (m);
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• RLR - Standard rack Length in the robotic kitting area (m);

• NR
levels - Number of levels in the storage racks in the robotic kitting area;

• FR - Number of facades in the robotic kitting area;

• PsR - Picking sides in the robotic kitting area;

• AMR - Number of AMRs working in the robotic kitting area;

• vAMR - AMRs average velocity (m/s);

• vAGV - AGVs average velocity (m/s);

• SortR - Distance in the sorting zone traveled by the AGV (m);

• tR
i - Time for the AMR/fixed manipulator to pick SKU i (s);

• timage - Average time for the AMR/fixed manipulator controller to capture
and process a single image of a bin(s);

• tR
bin - Average time for the AMR to pick an empty bin and dispose it in the

evacuation zone (s);

• tR
s - Average time for the fixed manipulator to pick a part from the AGV to

the kit box (s);

• tR
IL - Average time for the AMR to remove an interlayer sheet from a bin (s);

• tR
D - Average time for the AMR to remove a divider from a bin (s);

• tgripper_parts - Average time for the AMR to change the gripper to pick differ-
ent parts (s);

• tgripper_pack - Average time for the AMR to change the gripper to pick pack-
aging items (s);

• tgripper_bin - Average time for the AMR to change the gripper to pick empty
bins (s);

• Cal - Additional proportion of time needed for gripper calibration;

• PEi - Probability of occurring a picking error during the initial attempt of
picking SKU i;

• PEbin - Probability of occurring a picking error of empty bins;

• PEsort - Probability of occurring a picking error sorting parts

• PEinterlayer - Probability of occurring a picking error of interlayer sheets;

• PEdivider - Probability of occurring a picking error of bin dividers;

• Col - Impact on collaborating with a human operator on completing kits;
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• ARparts - Parameter describing an efficient assignment rule for changing the
gripper to pick a different part;

• ARpack - Parameter describing an efficient assignment rule for changing the
gripper to pick a different packaging item;

• ARbins - Parameter describing an efficient assignment rule for changing the
gripper to pick a bin;

Collaborative Kitting Parameters

• E fkit_prep - Parameter describing the efficiency in preparing kit boxes;

• AWC - Aisle’s width in the collaborative kitting area (m);

• RDC - Storage Rack’s depth in the collaborative kitting area (m);

• SC - Horizontal spacing between two successive bins (m);

• RLC - Standard rack Length in the collaborative kitting area (m);

• NC
levels - Number of levels in the storage racks in the collaborative kitting

area;

• FC - Number of facades in the Collaborative kitting area;

• PsC - Picking sides in the collaborative kitting area;

• OP - Number of operators working in the collaborative kitting area;

• v̄OP - Human operators average velocity (m/s);

• v̄AGV - AGVs average velocity (m/s);

• SortC - Distance in the sorting zone traveled by the AGV (m);

• simi - Number components of SKU i that a human operator can pick simul-
taneously;

• simpack - Number of packaging items that an operator can pick simultane-
ously;

• tkp - Average time for the operator to prepare a single kit box (s);

• tp2l - Average time required for the pick-to-light system to send data pack-
ages to the modules (s);

• tobs - Average time required for the operator to locate and identify a single
pick-to-light module turned on (s);

• tC
i - Time for the operator to pick SKU i (s);

• tC
bin - Average time for the operator to pick an empty bin and dispose of it in

the evacuation zone (s);
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• tC
s - Average time for the operator to pick a part from the AGV to the kit box

(s);

• tC
IL - Average time for the operator to remove an interlayer sheet from a bin

(s);

• tC
D - Average time for the operator to remove a divider from a bin (s);

• tF - Average time for the operator to remove a foam protection from a bin
(s);

• tPB - Average time for the operator to remove a plastic bag from a bin (s);

• ECcom - Error correction factor related to additional data packages resent;

• ECobs - Error correction factor related to operator failing to observe a turned-
on module;

• ECdetect - Error correction factor related to pick-to-light module proximity
sensor failure, leading to the module’s light being turned off incorrectly;

• ECsort - Error correction factor related to the operator rectifying any mis-
takes by picking a wrongly placed part from one kit box and relocating it to
the correct kit box;

Tugger Train Parameters

• TUGGER - Total number of tugger trains available;

• Trun - Tugger train’s displacement time (s);

• tstop - Tugger train’s single stopping time (s);

• Nkits_MAX - Tugger train kit capacity (s);

Technical Parameters

• MAGV - Maximum weight capacity of the AGV (kg);

• VolAGV - Maximum volume capacity of the AGV (m3);

• Mkit - Maximum weight capacity of the kit box (kg);

• Volkit - Maximum volume capacity of the kit box (m3);

Decision Variables

The decision variables correspond to the unknowns of the problem that the model
aims to determine, subject to constraints, and the information they represent en-
ables to provide a clear answer to the original challenge, supporting the decision-
making process related to attributing SKUs to the robotic kitting area or the col-
laborative kitting area, which is represented by:
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Main Decision Variables

• Binary decision variables representing the allocation of SKUs to the robotic
or collaborative kitting areas;

xi =

{
1, if SKU i is assigned to the robotic kitting
0, otherwise ∀i = 1 . . . Z (3.1)

Auxiliary Decision Variables

• Nkits - Integer decision variable representing the number of kits needed to
be mounted;

• NR
AGV_trips - Integer decision variable representing the number of AGV trips

performed in the robotic kitting area;

• NC
AGV_trips - Integer decision variable representing the number of AGV trips

performed in the collaborative kitting area;

• Ntugger_train_trips - Integer decision variable representing the number of tug-
ger train trips performed;

• a - Continuous decision variable representing the maximum cycle time,
used due to the linearization;

• bi, ∀i = 1 . . . Z - Continuous decision variables to define assignment con-
straints, used due to the linearization.

Objective Function

The objective of the current problem is to find the optimal assignment of SKUs by
minimizing the cycle time of the maximum used picker in the system, ensuring a
good balance, in addition to the time related to the tugger train displacement. In
this way:

Minimize Max
(

CTR, CTC
)
+ Ttugger (3.2)

The Max
(
CTR, CTC) function can be easily linearized. This can be done by intro-

ducing a continuous decision variable a and applying two constraints (3.4) and
(3.5) presented below, making the objective function:

Minimize a + Ttugger (3.3)
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Constrains

The development of a mixed-integer programming (MIP) operational research
model requires the formulation of constraints that accurately represent the prob-
lem at hand. In the context of our kitting problem, there are several types of con-
straints considered to ensure an optimal solution. These constraints are classified
into four main categories: consistency constraints, operational constraints, layout
constraints and assignment constraints. Each of these constraint types plays a
crucial role in defining the variables and the objective function of the MIP model.
In this subsection, each of these constraint types is explained in more detail, high-
lighting their significance and impact on the overall optimization process.

Consistency constraints These constraints ensure the model remains consistent
and free of errors, such as ensuring that the values of variables are according to
the defined previously.

a ≥ CTR (3.4)

a ≥ CTC (3.5)

The constraints described by Inequalities (3.4) and (3.5) establish a relationship
between the continuous variable z and the maximum cycle time of the process,
considering that the objective function is minimization. The cycle time is deter-
mined by two components: the robotic kitting cycle time (CTR) and the collab-
orative kitting cycle time (CTC). The objective of these constraints is to ensure
that the value of a is equal to the maximum cycle time between the robotic kitting
and collaborative kitting processes. In other words, a should take the value of the
higher cycle time to be minimized. To enforce this constraint mathematically, two
inequality constraints are specified. The first Constraint (3.4) states that a must
be greater than or equal to CTR, ensuring that a captures the robotic kitting cycle
time when it is the higher value. Similarly, the second Constraint (3.5) states that
a must be greater than or equal to CTC, ensuring that a captures the collaborative
kitting cycle time when it is the higher value.

xi ∈ {0, 1}, ∀i = 1 . . . Z (3.6)

The Constraint (3.6) defines the binary type of variable xi.

Operational constraints These constraints define the performance of the system
and are related to the kitting system operations and the functional requirements
of the warehouse. In this way, to correctly describe the cycle time of the process,
all its operations and steps have to be adequately modeled for both the robotic
and collaborative kitting areas.
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Robotic Kitting Cycle Time (CTR)

Figure 3.3: Robotic kitting area representation for the AHK System.

An Appendix A has been included in the dissertation to present the main as-
sumptions considered in formulating the cycle time components for the robotic
kitting area. These assumptions were derived from discussions with subject mat-
ter experts within the company, technological solution experts, information gleaned
from scientific literature and documentation such as datasheets, as well as obser-
vations of the current kitting processes of the automotive company.

Picking Time (TR
pick):

TR
pick = TAMR_picking (3.7)

The Expression (3.7) defines the time related to picking in the robotic kitting area,
which includes the AGV picking all parts required for BS EPs and placing them
on the AGV box. The number of parts needed (ni), its frequency in EPs ( fi) and the
number of EPs prepared simultaneously (BS) impact this duration. A factor PEi
was added to represent the proportion of failed picks in each SKU i to evaluate
the effect of robotic pick ability (also considered equal for both the AMR and the
fixed manipulator).

TR
pick =

Z

∑
i=1

xi · TR
i · ni · fi · BS · (1 + PEi) (3.8)
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Image Acquisition Time (Timage_acq):

Tvision = TAMR_vision + Tmanipulator_vision (3.9)

Equation (3.9) defines the duration required for computer vision to capture and
process an image, enabling the AMR and manipulator to identify and locate parts
within a bin. This information is crucial for selecting the most suitable part, typi-
cally the one positioned higher in the bin and closer to the robot. The image acqui-
sition time, as described in Equation (3.10), encompasses the cumulative time for
image analysis and acquisition. It is assumed that the time required for the AMR
and manipulator to acquire an image is equal (tAMR_image = tmanipulator_image =
timage), hence the factor of multiplication by 2. Technological advancements have
reduced this time, as the image acquisition process can occur concurrently in the
background (represented by the parameter Bg). However, in case of unsuccessful
picking attempts, a penalty is incurred, proportional to PEi, which impacts the
overall image acquisition time.

Timage_acq = 2 ·
Z

∑
i=1

xi · timage · ni · fi · BS · [(1 − Bg) + PEi] (3.10)

AMR Displacement Time (TAMR_disp):

TAMR_disp =
dAMR_total

AMR · v̄AMR
(3.11)

The AMR displacement time in the robotic kitting area, Expression (3.11), refers to
the time required for the AMR(s) to traverse the storage area, considering factors
such as acceleration, movement through the racks, and deceleration to reach the
desired position. The average speed of the AMR, denoted as v̄AMR, is determined
as the average value between its maximum travel speed considered and the rate
of speed change.

The distance traveled by the AMR(s), represented by dAMR_total, is determined in
(3.12) by considering the total length of the storage racks. This length is calculated
as the sum of the width of each bin, denoted as BWi, the fixed space size between
the bins in the robotic kitting area, represented by SR, and the empty space in
the racks after placing the component bins, represented by the third term in the
dividend of Equation (3.12), where it is given by the standard rack length, RLR,
subtracted by the size occupied by the ⌊RLR

BWi
⌋ bins in the rack. The introduction

of this last term is an innovative point to add realism to the arrangement of bins
on the racks.

The division by the number of levels in the storage racks, denoted as NR
levels, ac-

counts for the vertical arrangement of the bins and the parameter PsR plays a
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crucial role in evaluating the ability of the AMR to pick components from either
one side (PsR = 1) or both sides (PsR = 2) continuously of the robotic kitting
area.

The number of AMRs in the robotic storage area, denoted as AMR, helps reduce
the time traveled by each AMR, considering that multiple AMRs are operating in
the storage zone and they can be moving to their next picking location allocated
to each one in the racks at the same time.

Based on these considerations, the AMR displacement time is calculated by sum-
ming the distances traveled for each SKU present in the robotic kitting area that
can be picked and dividing by the product of NR

levels, PsR, AMR, and v̄AMR. This
equation provides a quantitative representation of the time required for AMRs to
move within the robotic kitting area, considering the dimensions of the storage
racks and the characteristics of the speed profile of the AMR.

dAMR_total =
Z

∑
i=1

xi ·
BWi + SR +

(
RLR − ⌊RLR

BWi
⌋ · BWi

)
NR

levels · PsR (3.12)

In this way, the AMR displacement time is given by:

TAMR_disp =
Z

∑
i=1

xi ·
BWi + SR +

(
RLR − ⌊RLR

BWi
⌋ · BWi

)
NR

levels · PsR · AMR · v̄AMR
(3.13)

AGV Displacement Time (TR
AGV_disp):

TAGV_disp =
dAGV_total

v̄AGV
(3.14)

The AGV displacement in the robotic kitting area is defined using a relation to
the AMR displacement, considering that the distance covered is defined between
the position of the AMR (where the AGV is near) and the final position located in
the sorting zone.

Based on the relationship observed in the Figure 3.4, the average distance traveled
by the AGV, denoted as d̄R

AGV , is equal to half of its maximum possible distance,
represented by dR

AGV_max, as expressed in Equation (3.15).

The maximum distance traveled by the AGV, dR
AGV_max, is determined by a frac-

tion of the maximum distance traveled by the AMR, dAMR_total, where the fraction
is given by the parameter FR that represents the number of facades in the robotic
kitting area. When FR = 1 (Figure 3.5a), the maximum distance traveled by the
AGV is equal to the one traveled by the AMR, and when FR = 2 (Figure 3.5b),
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Figure 3.4: Expected relation between AMR and AGV traveled distance in the
AHK System.

(a) Warehouse with one facade (FR = 1).

(b) Warehouse with two facades (FR = 2).

Figure 3.5: Practical representation of the number of facades in the robotic kitting
area.
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it is half of the maximum distance traveled by the AMR, as shown in Equation
(3.16).

d̄R
AGV =

1
2

dR
AGV_max (3.15)

dR
AGV_max =

1
FR dAMR_total (3.16)

Considering the distance traveled in the sorting zone, denoted as SortR, the dis-
tance traveled by the AGV, represented by dR

AGV_total, is given by Equation (3.17).
This equation accounts for half of the total distance traveled by the AMR divided
by FR, along with the additional distance in the sorting zone.

dR
AGV_total =

dAMR_total

2 · FR + SortR (3.17)

Consequently, the time required for the AGV displacement, denoted as TR
AGV_disp,

can be calculated by dividing the distance traveled by the AGV by its average
speed, v̄AGV , as expressed in Equation (3.18). This equation takes into account the
distance traveled by the AMR, the number of facades, FR, and the sorting zone
distance SortR. In this duration, the number of AGVs and the number of AGV
trips don’t impact TR

AGV_disp as they are traveling simultaneously to the AMR
performing the picking of SKU, and it is referred to the last trip performed by the
AGV.

TR
AGV_disp =

1
v̄AGV

·
(

dAMR_total

2 · FR + SortR
)

(3.18)

To better understand the mathematical reason for this approach, a demonstration
is presented in Appendix D.

Empty Bin Removal Time (TR
bin_rem):

The process of extracting empty bins by the AMR from their storage positions to
the evacuation zone for the purpose of replenishing their contents with supplies
from external sources is taken into account in the modulation of the cycle time of
the kitting system.

The total time needed to remove the empty bins from the storage rack (Equation
(3.19)) in the robotic kitting area is given by the number of parts needed (ni), its
frequency in EPs ( fi), the number of EPs prepared simultaneously (BS) and the
time of removing each bin individually (tR

bin) which was considered an equal av-
erage value for all bins that contain Pi parts of SKU i. The factor PEbin represents
the proportion of failed picks, i.e., the picking error associated with the empty
bins. As it was considered that the evacuation zone is positioned permanently on
the third level of the storage rack, no travel time is needed to remove the bins.
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TR
bin_rem =

Z

∑
i=1

xi · tR
bin ·

ni · fi · BS
Pi

· (1 + PEbin) (3.19)

Sorting Time (Tsort):

The sorting time consists of a fixed manipulator picking parts from the AGV and
placing them on the correct kit box in the tugger train in the sorting area (Equation
(3.20)). tR

s defines the average sorting time to pick and place a single part of SKU
i in the correct kit box. The factor PEsort represents the proportion of failed picks,
i.e., the error associated with the manipulator when it fails to pick parts and Col
is a parameter representing a delay/waiting time in the manipulator movement
due to the sorting process occurring in a collaborative way with the operator also
sorting components to complete the kits.

TR
sort =

Z

∑
i=1

xi · tR
s · ni · fi · BS · (1 + PEsort + Col) (3.20)

Packaging Removal Time (Tpack_rem):

The total time needed to remove the packaging items that protect the SKUs from
handling damage. These packaging items, as suggested in research (Boudella
et al., 2018) and industry experts, include cardboard dividers, foam and card-
board interlayer sheets, and plastic bags, commonly used in the automotive in-
dustry. In the case of robotic manipulators, is considered that the fixed manipu-
lator only can remove the uniform shape and size packages, being the interlayer
sheets and dividers (Equation (3.21)), which demands that the human operator at
the collaborative kitting area to pick components with other packaging items.

TR
pack_rem = TR

interlayer + TR
divider (3.21)

For each SKU i bin, it is considered the time needed for the manipulator to remove
one interlayer sheet, tR

IL, for all the ILi sheets in the bin of SKU i. An interlayer
sheet picking failure rate (PEinterlayer) is associated with the picking capability of
this material.

TR
interlayer =

Z

∑
i=1

xi ·
ni · fi · BS

Pi
·
[

ILi · tR
IL · (1 + PEinterlayer)

]
(3.22)

For each SKU i bin, it is considered the time needed for the manipulator to remove
one divider (tR

D) for all the Di dividers in the bin of SKU i. A divider picking
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failure rate (PEdivider) is associated with the picking capability of this material.

TR
divider =

Z

∑
i=1

xi ·
ni · fi · BS

Pi
·
[

Di · tR
D · (1 + PEdivider)

]
(3.23)

Consequently:

TR
pack_rem =

Z

∑
i=1

xi ·
ni · fi · BS

Pi
·
[

ILi · tR
IL · (1 + PEinterlayer) + Di · tR

D · (1 + PEdivider)
]

(3.24)

Gripper Change Time (Tgripper):

Tgripper = 2 · Tgripper_pick + Tgripper_pack + Tgripper_bin (3.25)

The time related to the operation of the gripper changing in the AGV and the
fixed manipulator, presented in Equation (3.25), refers to the duration required
to replace the end effector of the manipulator, which is the component responsi-
ble for holding and manipulating the objects. The gripper change time includes
disconnecting the current end effector, connecting the new end effector, and any
additional time required to calibrate or adjust the new end effector. This time is
an essential factor to consider in optimizing the overall cycle time of a manip-
ulator and has an impact on the efficiency and productivity of the system. It is
present in three different situations: the gripper change needed before picking a
certain part (1), the gripper change before removing an empty bin (2), and the
gripper change before removing packaging items (3), where the AGV deals with
all three parameters but the sorting manipulator only proceeds with the operation
(1). To define this parameter, it was considered in Expression (3.25) that the time
needed to change the gripper to pick different components is the same for both
the AMR and the fixed manipulator (TAGV_gripper_pick = Tmanipulator_gripper_pick =
Tgripper_pick). In this way, the first term is multiplied by a factor 2.

Tgripper_pick =
Z

∑
i=1

xi · fi · BS · tgripper_parts · (1 + Cal) · ARparts (3.26)

The Expression (3.26) defines the total time needed to change the gripper before
picking parts, where it considers the time needed for a single tool change before
picking a part where is as an impact of a parameter Cal representing the fraction
of time incremented to calibrate/adjust the end effector, for all fi · BS occurrences.

Incorporating storage assignment rules may aid in enhancing the efficiency of
tool changes by grouping SKUs that can be picked with the same tool. This can
be quantified by ARparts, which signifies the proportion of time reduction of the
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preparation cycle that requires a tool change can be reduced by grouping in the
picking process components that can be picked by the same gripper, reducing
setup times.

Tgripper_pack =
Z

∑
i=1

xi ·
ni · fi · BS

Pi
· (ILi + Di) · tgripper_pack · (1+Cal) · ARpack (3.27)

Regarding the case of gripper change to remove the packaging of the parts (Ex-
pression (3.27)), an analogous method was considered, differing in the fact that it
considered the average number of bins, including the number of components for
SKU i, ni, and the number of parts of SKU i in a bin, and applied before every ILi
interlayers and Di dividers. This value is slightly improved if we have an efficient
assignment rule for inner packaging removal, letting ARpack < 1.

Tgripper_bin =
Z

∑
i=1

xi ·
ni · fi · BS

Pi
· tgripper_bin · (1 + Cal) · ARbins (3.28)

Finally, to describe the time needed to remove empty bins (Expression (3.28)), the
analogous method was also used, considering the time for a single empty bin
removal gripper change, tgripper_bin, for all the number of empty bins removed
during the preparation of BS EPs. An efficient assignment rule to remove empty
bins consecutively can also reduce this time, represented by ARbins parameter.

In this way, the total time needed to change grippers is defined by:

Tgripper = (1 + Cal)
Z

∑
i=1

xi · fi · BS
[
2 · tgripper_parts · ARparts+

+
ni

Pi

(
(ILi + Di) · tgriper_pack · ARpack + tgripper_bin · ARbins

)] (3.29)

Considering the previously presented operations, the cycle time for the robotic
kitting area CTR, in the AHK System, to prepare BS EPs is given by:

CTR = TR
pick + Timage_acq + TAMR_disp + TR

AGV_disp+

+ TR
bin_rem + TR

sort + TR
pack_rem + Tgripper

(3.30)
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Collaborative Kitting Cycle Time (CTC)

Figure 3.6: Collaborative kitting area representation for the AHK System.

To define and obtain the following kitting cycle time parameters of the collab-
orative kitting area, a set of assumptions was considered and are presented in
Appendix B. These assumptions made for the collaborative kitting area are anal-
ogous to those made for the robotic kitting area. They were based on discussions
with experts in the technological solutions to be implemented in the warehouse
of the company addressed in this work, information extracted from scientific lit-
erature and technical documentation such as datasheets, and observations of the
company’s current kitting processes.

Kit Box Preparation Time (Tkit_prep):

The kit box preparation time refers to the duration required for the initial setup
of empty kit boxes within the tugger train, enabling the commencement of the
kitting process in both the robotic and collaborative kitting areas. This process
involves an operator in the sorting area retrieving empty kit boxes and correctly
positioning them within the designated slots of the tugger train. The kit prepara-
tion time encompasses the activities of picking the empty kit boxes and ensuring
their proper placement by the operator, ensuring readiness for subsequent fulfill-
ment of the BOM for each respective kit.

Tkit_prep = Nkits · tkp · (1 − E fkit_prep) (3.31)

Equation (3.31) determines the total kit box preparation time by multiplying the
number of kits (Nkits) by the average time to place one kit box (tkp). The term (1−
E fkit_prep) adjusts the duration based on the efficiency of the process, resulting
in a reduction of the total time accordingly. This parameter accounts for factors
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such as the ability of the operator to handle multiple kit boxes simultaneously,
streamlining the process and reducing the overall duration of kit box preparation.

Pick-to-Light System Identification Time (Tp2l):

Tpick2light = Tp2l_data + Tp2l_operator (3.32)

The pick-to-light system identification time refers to the duration required for the
system to identify and activate the appropriate pick-to-light indicators associated
with specific items or locations in a warehouse or picking area. This process in-
volves the communication between the system and the pick-to-light modules,
which are equipped with visual indicators such as lights or displays.

During the identification time, the system processes relevant SKU information.
The system then sends signals to the pick-to-light modules, identifying and ac-
tivating the appropriate pick-to-light indicators associated with specific items
and/or locations in the warehouse picking area. This process involves the com-
munication between the system and the pick-to-light modules through gateways.

During this operation, according to the technology experts, the system retrieves
information about the items to be picked, such as their location, quantity, or spe-
cific order details. The system then sends data packages with commands to the
pick-to-light modules, which illuminate or display the corresponding indicators
to guide the operator to the correct item and location for picking, represented in
Equation (3.32) by Tp2l_data.

The identification time depends on various factors, including the complexity of
the system, the responsiveness of the communication network, and the efficiency
of the pick-to-light modules themselves, such as the battery and the proximity
sensor to detect the respective picking, and the identification by the operator of
the illuminated devices to identify the need for picking of the respective parts,
represented by Tp2l_operator. It may also be influenced by the number of items or
locations to be identified and the sophistication of the identification algorithms
employed.

According to the development team of the pick-to-light system in the project, if
the proximity sensor fails to detect the picking of at least one component, whether
due to an actual miss or a sensor failure, the picking order remains open. In a
warehouse installation, multiple gateways are installed to provide redundancy
in message delivery to the pick-to-light devices.

In the proximity sensor of the respective modules, false negatives (when the oper-
ator passes their hand, but the module fails to recognize the picking) have a very
low probability of occurrence. However, false positives (when the module in-
correctly considers a picking without the operator’s hand passing through) may
occur with higher probability. The technology offers high flexibility, particularly
in the versatility of changing the module’s batteries.
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Regarding error correction, the system implementation allows for notifying the
operator to pick the missing components or if any incorrect piece has been col-
lected, enhancing the overall reliability and accuracy of the pick-to-light process.

Tp2l = tp2l · (1 + ECcom) +
Z

∑
i=1

(1 − xi) · tobs · (1 + ECobs + ECdetect) (3.33)

The Equation (3.33) represents the pick-to-light system identification time, which
consists of two main components: the system communication time (Tp2l_data) and
the operator observation time (Tp2l_operator).

The first part of the equation, represented by tp2l · (1 + ECcom), accounts for the
time required for the system to send data packages to the pick-to-light modules.
This time includes the transmission time and any potential delays due to com-
munication errors. The parameter ECcom represents the error correction factor,
indicating the additional time needed if a new data package must be sent due to
devices not acknowledging the initial transmission.

The second part of the equation, ∑Z
i=1(1 − xi) · tobs · (1 + ECobs + ECdetect), relates

to the time spent by the operator in observing and responding to the pick-to-light
modules. The term (1 − xi) represents the absence of robotic picking for SKU i,
indicating that it is the responsibility of the operator. The observation time by the
operator, denoted by tobs, accounts for the time it takes for the operator to iden-
tify a pick-to-light module turned on, indicating the need for picking. This time
is influenced by the parameter ECobs, which reflects any additional time required
if the operator fails to observe a turned-on module. Additionally, the parame-
ter ECdetect represents the potential delay if the pick-to-light module proximity
sensor leads to the light of the module being turned off incorrectly without the
operator picking the respective part.

The equation provides a comprehensive representation of the pick-to-light sys-
tem identification time, considering both the communication aspect of the sys-
tem, the observation by the operator, and the response time, being crucial for
optimizing order fulfillment processes, reducing picking errors, and improving
overall operational efficiency in the warehouse environment.

Picking Time (TC
pick):

The picking time in the collaborative kitting area refers to the duration required
for the operator to retrieve components from the designated bins within the racks
and subsequently place them in the nearby AGV. This process involves the man-
ual selection by the operator and handling of the components.

During the picking operation, the operator accesses the bins in the racks and
identifies the specific components needed based on the provided instructions in
the BOM and by the pick-to-light system. The operator then physically retrieves
the components from the bins, ensuring accuracy and precision in the selection.

48



Methodology

Once the components are obtained, the operator places them in the AGV located
in close proximity for further transportation and sorting.

The picking time in the collaborative kitting area is influenced by various factors
such as the layout and organization of the bins, the size and weight of the parts,
the ergonomics of the components, and the efficiency and experience of the oper-
ator. It is crucial to optimize this picking process to minimize the cycle time and
enhance productivity.

TC
pick =

Z

∑
i=1

(1 − xi) · tC
i · ni · fi · BS

simi
(3.34)

Equation (3.34) represents the determination of this picking process performed
by the operator, where the term tO

i represents the time needed for the operator
to perform a single pick and place operation for a component belonging to SKU
i. The remaining factors in the equation are related to the characteristics of SKU
i. These include ni, which represents the total number of components required
for SKU i in a single batch or order. The frequency of usage fi denotes how often
SKU i is required. The batch size BS indicates the number of units produced
simultaneously.

Finally, to consider the maximum number of components of SKU i that the opera-
tor can pick simultaneously, the parameter simi was added. This value is limited
by factors such as the dexterity of the operator, the size and weight of the com-
ponents, and other operational considerations. It ranges from 1 to ni · fi · BS,
meaning the operator can pick anywhere from a single component to the entire
set of SKU i needed at once (Expression (3.35)).

simi ∈ [1; ni · fi · BS] (3.35)

Operator Displacement Time (TC
disp):

TC
disp =

dC
total

OP · v̄OP
(3.36)

Analogously to the robotic kitting area, in order to determine the time taken by
the human operator(s) to move within the collaborative kitting area, several fac-
tors need to be considered, such as the distance traveled by the operator(s), the
number of operators working and the average velocity vO

avg, that should be de-
fined as the average value between his maximum working speed and the rate of
speed change (which includes in initial speed until reaching the limit speed and
the same for stopping).
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dC
total =

Z

∑
i=1

(1 − xi) ·
BWi + SC +

(
RLC − ⌊RLC

BWi
⌋ · BWi

)
NC

levels · PsC
(3.37)

The Equation (3.37) represents the determination of the total distance traveled
by the human operator(s) within the collaborative kitting area. The distance is
determined by considering the length of the storage racks, which is a combination
of the size of each bin of SKU i, denoted as BWi, the fixed space size between
the bins, represented by SC, and the empty space in the racks after placing the
component bins, where it is given by the standard rack length in the collaborative
kitting area, RLC subtracted by the size occupied by the ⌊RLC

BWi
⌋ bins in the rack.

The division by the number of levels in the racks, denoted as NC
levels, considers

the vertical arrangement of the bins.

Additionally, the parameter PsC plays a crucial role in evaluating the ability of
the operator to pick components from either one side (PsC = 1) or both sides
(PsC = 2) of the collaborative area, where it depends on the number of facades in
the warehouse with the relation presented in the Expression (3.38).

{
FC = 1 ⇒ Ps = 1

FC = 2 ⇒ Ps = 1 or 2
(3.38)

Lastly, the number of human operators in the storage area, denoted as OP, is in-
cluded to account for the reduction of the distance traveled by each operator to
pick components. By considering these factors, the equation provides a quan-
titative representation of the distance covered by the human operator(s) in the
collaborative kitting area.

In this way, the operator(s) displacement time is given by:

TOP_disp =
Z

∑
i=1

(1 − xi) ·
BWi + SC +

(
RLC − ⌊RLC

BWi
⌋ · BWi

)
NC

levels · PsC · OP · v̄OP
(3.39)

AGV Displacement Time (TC
AGV_disp):

TC
AGV_disp =

dAGV_total
v̄AGV

(3.40)

The definition of AGV displacement time, in the collaborative kitting area, is de-
fined similarly to the AGV displacement time presented in the robotic kitting
zone, where the distance covered is defined between the position of the human
operator(s) (where the AGV is near) and the final position in the sorting zone.
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The determination of the total distance traveled by AGV can be explained by con-
sidering its relationship with the total distance traveled by the human operator(s)
in the collaborative kitting area, as shown in Figure 3.7.

Figure 3.7: Expected relation between Operator and AGV traveled distance in the
AHK System.

Based on this relationship, it is observed that the average distance traveled by
the AGV, denoted as d̄C

AGV , is equal to half of its maximum possible distance,
represented by dC

AGV_max, as expressed in Equation (3.41).

The maximum distance traveled by the AGV, dC
AGV_max, is determined by a frac-

tion of the maximum distance traveled by the human operator, dOPtotal, where the
fraction is given by the parameter FC. When FC = 1, the maximum distance trav-
eled by the AGV is equal to the one traveled by the operator, and when FC = 2, it
is half of the maximum distance traveled by the operator, as shown in Equation
(3.42). A detailed explanation can be found in Appendix D.

d̄C
AGV =

1
2

dAGV_max (3.41)

dC
AGV_max =

1
FC dOP_total (3.42)

Considering the distance traveled in the sorting zone, denoted as SortC, the to-
tal distance traveled by the AGV, represented by dC

AGV_total, is given by Equation
(3.43). This equation accounts for half of the total distance traveled by the opera-
tor divided by FC plus the additional distance in the sorting zone.

dC
AGV_total =

dOP_total

2 · FC + SortC (3.43)

Consequently, the time required for the AGV displacement, denoted as TC
AGV_disp,

can be calculated by dividing the total distance traveled by the AGV by its aver-
age speed, v̄AGV , as expressed in Equation (3.44). This equation takes into account
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the total distance traveled by the operator, the fraction FC, and the sorting zone
distance SortC. As for the robotic kitting area, the number of AGVs and the num-
ber of AGV trips don’t impact TC

AGV_disp it refers to the last trip performed by the
AGV.

TC
AGV_disp =

1
v̄AGV

·
(

dOP_total

2 · FC + SortC
)

(3.44)

Empty Bin Removal Time (TC
bin_rem):

TC
BinRemoval = TO

remove_bin (3.45)

The empty bin removal time in the collaborative kitting area (Expression (3.45))
is a process analogous to the one observed in the robotic kitting area. It involves
the time required for the operator to effectively remove an empty bin from its
designated location in the storage rack and dispose of it at the nearest evacuation
ramp.

The total time needed for empty bin removal from the storage rack, as repre-
sented by Equation (3.46), takes into account various factors. These include the
number of parts needed (ni), the frequency of the parts in the EPs ( fi), the num-
ber of EPs prepared simultaneously (BS), and the time required to remove each
bin individually (TO

B ). The average removal time, denoted as TO
bin, is assumed to

be the same for all bins containing Pi parts of SKU i. It is important to note that
in the collaborative kitting area, it is assumed that operators do not fail to pick
empty bins.

TC
bin_rem =

Z

∑
i=1

(1 − xi) · tC
bin ·

ni · fi · BS
Pi

(3.46)

Sorting Time (TC
sort):

The sorting process involves the task of a human operator picking parts from the
AGV, which is filled with components for the different kits, and placing them
correctly in the corresponding kit boxes on the tugger train, completing the kits
already being filled by the fixed manipulator from the robotic kitting area. The
sorting time, represented by Equation (3.47), captures the duration required for
the operator to perform this picking and placing operation.

In the equation, tC
s denotes the average time needed for the operator to sort and

place a single part of SKU i into the correct kit box. Similar to the picking time,
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the parameter simi is used to consider the maximum number of components of
SKU i that the operator can pick simultaneously.

It is assumed that there are no errors made by the operator picking components
during the sorting process. However, to account for the possibility of incorrectly
placed parts from both the operator and the fixed manipulator, the term ECsort is
introduced as an error correction parameter. This parameter represents the time
required for the operator to rectify any mistakes by picking a wrongly placed
part from one kit box and relocating it to the correct kit box, following a quality
control procedure.

TC
sort =

Z

∑
i=1

(1 − xi) · tC
s · ni · fi · BS

simi
· (1 + ECsort) (3.47)

By employing this equation, The sorting time, denoted as TO
sorting, is obtained

quantitatively by summing the sorting times for each SKU i from 1 to C, multi-
plied by the respective number of parts, their frequency, the number of EPs, and
the correction error parameter.

Packaging Removal Time (TC
pack_rem):

TC
pack_rem = TC

interlayer + TC
divider + Tf oam + Tplastic_bags (3.48)

The packaging removal process in the collaborative kitting area involves several
tasks (Expression (3.48)), including the removal of various packaging materials
such as interlayer sheets, which are used to separate individual components, di-
viders, foam protections, and plastic bags that may enclose the components. The
objective is to discard these packaging components into a designated container
for disposal.

During the removal process, the operator is responsible for identifying and re-
moving the cardboard dividers, foam, interlayer sheets, and plastic bags from
the bins and components. This step ensures that only the desired components go
to the kit boxes, while the packaging materials are set aside for proper disposal.

Once the packaging materials are removed, the operator must travel to the desig-
nated container for their disposal in an appropriate and environmentally friendly
manner.

The packaging removal process is an integral part of the collaborative kitting area,
as it ensures the effective and efficient handling of packaging materials, keeping
the work environment clean and organized. By adhering to proper packaging
removal procedures, it maintains a streamlined workflow in the production line
and promotes environmental awareness through responsible waste and product
management.
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TC
pack_rem =

Z

∑
i=1

(1 − xi) ·
ni · fi · BS
Pi · simpack

·
[

ILi · tC
IL + Di · tC

D + Foi · tF + PBi · tPB

]
(3.49)

The equation for the packaging removal time, as described by Equation (3.49),
quantifies the time required for the human operator to complete the process of
removing packaging materials in the collaborative kitting area.

In the equation, various parameters are considered to calculate the packaging
removal time. These parameters include the characteristics of each SKU bin, such
as the number of interlayer sheets (ILi), dividers (Di), foam protections (Foi), and
plastic bags (PBi) associated with the bin of SKU i. Additionally, factors like the
number of parts needed (ni), their frequency of usage ( fi), and the number of EPs
produced simultaneously (BS) are taken into account.

The packaging removal time for each SKU bin is computed by multiplying the
respective quantities of interlayer sheets, dividers, foam protections, and plastic
bags by their corresponding removal times (tC

IL, tC
D, tF and tPB, respectively). This

accounts for the effort required to remove each packaging component. The sum-
mation across all SKUs from 1 to C ensures that the packaging removal time is
calculated for all relevant bins.

Furthermore, the factor simpack represents the adjustment factor considering the
maximum number of packages that the operator can handle simultaneously, ac-
counting for the efficiency of the packaging removal process.

By using this equation, one can accurately estimate the total time required for the
human operator to complete the packaging removal process in the collaborative
kitting area, taking into account the specific characteristics of each SKU bin and
the relevant parameters that influence the process.

Given the previously presented operations for the collaborative kitting area, the
cycle time CTC, in the AHK System, to prepare BS EPs is given by:

CTC = Tkit_prep + Tp2l + TC
pick + TOP_disp + TC

AGV_disp+

+ TC
bin_rem + TC

sort + TC
pack_rem

(3.50)

Tugger Train (Buffer) The tugger train system plays a crucial role in the AHK
System layout, serving as a buffer zone where the kits being assembled are tem-
porarily maintained before being transported to the BoL. In this context of the
automotive production process, various components and parts are assembled
into these kits and are used in specific workstations. The tugger train system
acts as a reliable intermediary, efficiently managing the flow of kits between the
warehouse and the BoL where they are needed in different assembly stations.
This ensures a steady supply of kits, enabling smooth operations and minimiz-
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ing downtime. In this way, it becomes essential to analyze and define the time
required for the tugger train to complete its trips, considering factors such as trip
duration, number of kits to transport, and the availability of tugger trains in the
smart factory system. To model the time for the tugger train to deliver the kits, a
set of assumptions were considered and presented in Appendix C.

In a cycle time, the tugger train transports the already assembled kits to the line
side where the required kits are retrieved at the same time that the following kits
are being mounted. Due to this fact, only the time needed to perform the final
tugger train trip, containing the last kit boxes to be delivered, impacts the total
cycle time of the kitting operations. This duration is defined in Equation (3.51),
taking into account the travel time considering no stops at the destination stations
on the BoL, Trun, and the time required for the tugger train to stop, tstop, for all
the Nkits required stops.

Ttugger = Trun + tstop · Nkits (3.51)

For analysis purposes, the total time required for tugger train trips can be easily
obtained with Equation (3.52) by multiplying Ttugger by the number of trips re-
quired for the tugger train to deliver all kits, represented by Ntugger_train_trips and
accounting for the number of tugger trains available, TUGGER.

Ttugger_total =
Ntugger_train_trips ·

(
Trun + tstop · Nkits

)
TUGGER

(3.52)

This innovative consideration of the distance traveled by tugger train and time
factors contributes to a more accurate evaluation of system performance. By in-
corporating these aspects into the analysis, it becomes possible to identify poten-
tial bottlenecks, understand the tugger train impact, and enhance overall system
productivity. Thus, this explicit characterization of the tugger train’s role is a
valuable addition to the analysis of the kitting system.

NR
AGV_trips ≥

∑Z
i=1 xi · ni · fi · BS · Mi

MAGV
(3.53)

NR
AGV_trips ≥

∑Z
i=1 xi · ni · fi · BS · Voli

VolAGV
(3.54)

NC
AGV_trips ≥

∑Z
i=1(1 − xi) · ni · fi · BS · Mi

MAGV
(3.55)

NC
AGV_trips ≥

∑Z
i=1(1 − xi) · ni · fi · BS · Voli

VolAGV
(3.56)

Inequality (3.53) represents the constraint for AGV container weight capacity in
the robotic kitting area. It ensures that the number of AGV trips, denoted by
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NR
AGV_trips, is at least equal to the total weight of parts to be transported in this

area divided by the maximum weight capacity of the AGV, MAGV . Similarly,
Constraint (3.56) guarantees that the weight of the parts does not exceed the AGV
capacity in the collaborative kitting area.

In other way, Inequalities (3.54) and (3.56) represent the constraints for AGVs
containers volume capacity. It ensures that the number of AGV trips is sufficient
to accommodate the total volume of parts to be transported in both the robotic
and collaborative kitting areas, divided by the maximum volume capacity of the
AGV, VolAGV . These constraints ensure that the volume of the parts does not
exceed the capacity of the AGV in the kitting areas.

Nkits ≥
∑Z

i=1 ni · fi · BS · Mi

Mkit
(3.57)

Nkits ≥
∑Z

i=1 ni · fi · BS · Voli
Volkit

(3.58)

Ntugger_train_trips ≥
Nkits

Nkits_MAX
(3.59)

Inequalities (3.57) and (3.58) represent the constraints for kit box weight capacity
and volume capacity, respectively, to determine the number of kit boxes needed.
These constraints ensure that the number of kit boxes, denoted by Nkits, is at least
equal to the total weight divided by the maximum weight capacity of a kit box,
Mkit, and the total volume of SKUs divided by the maximum volume capacity of
a kit box, Volkit, guaranteeing that the weight and volume of the parts assigned
to each kit box do not exceed their respective capacities.

Lastly, Inequality (3.59) represents the constraint for tugger train capacity, to de-
termine the number of tugger train trips. It ensures that the number of tug-
ger train trips, denoted by Ntugger_train_trips, is at least equal to the total number
of kit boxes divided by the maximum kit loading capacity of the tugger train,
Nkits_MAX. This constraint ensures that the tugger train can accommodate all the
required kit boxes.

By incorporating these operational constraints into the model, the number of
AGV trips, kit boxes, and tugger train trips can be determined based on the
weight and volume capacities of the AGV, kit boxes, and tugger train, respec-
tively.

Layout constraints These are constraints that limit the performance of the sys-
tem and are related to the physical limitations of the warehouse such as the space
available to store the parts of the different SKUs.
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i=C

∑
i=1

[
xi ·

(
AWR + FR · RDR) · (BWi + SR)

NR
levels

+

+ (1 − xi) ·
(

AWC + FC · RDC) · (BWi + SC)
NC

levels

]
≤ A

(3.60)

Volbu f f er ≥ Nkits · Volkit (3.61)

The layout constraint described by Inequality (3.60) pertains to the space occupa-
tion by the hybrid kitting system. It ensures that the total occupied space of the
system, calculated on the left-hand side of the equation, for two terms: one for
the robotic kitting area and another for the manual kitting area, does not exceed
the available space of the warehouse denoted by the variable A on the right-hand
side.

In this Inequality (3.60), four parameters are introduced to represent different
dimensions and characteristics of the kitting system: RDR, RDC, AWR, and AWC.
These parameters correspond to the depth of a rack in the robotic kitting area,
the depth of a rack in the collaborative kitting area, the width of the aisle in the
robotic kitting area, and the width of the aisle in the collaborative kitting area,
respectively. For the robotic kitting area, the occupied space is determined by
the product between the warehouse width (given by the width of the aisle, AWR,
and the total depth of the racks, FR ·RDR) and the warehouse length (given by the
width of the bin of SKU i, BWi, and the spacing between bins, SR), divided by the
number of levels in the racks, NR

levels, for all the SKUs allocated in the robotic area.
For the collaborative kitting area, the space occupied is determined analogously
for all the SKUs allocated in this area.

In Constraint (3.61), the buffer volume determines the total volume of kits that
are prepared and sent via tugger train from this area. The volume of kits passing
through the buffer should be greater than or equal to the product of the desired
number of kits mounted, Nkits, and the volume of a single kit, represented by
Volkit. This constraint ensures that the buffer has sufficient capacity to hold the
needed volume of kits transported.

Assignment constraints These constraints are related to the assignment of re-
sources to tasks and can include limitations on the machines available for a cer-
tain task.

If PBi > 0 or Foi > 0 or Feasi = 0 then xi = 0, ∀i = 1 . . . Z (3.62)

Constraint (3.62) should be linearized in order to be applied to the MIP model.
This linearization can be easily performed by introducing one auxiliary binary
variable, bi, and the following inequalities (cf. Boudella et al. (2018)):
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PBi ≤ L · bi, ∀i = 1 . . . Z (3.63)

Foi ≤ L · bi, ∀i = 1 . . . Z (3.64)

Feasi ≥ 1 − bi, ∀i = 1 . . . Z (3.65)

xi ≤ 1 − bi, ∀i = 1 . . . Z (3.66)

bi ∈ {0, 1}, ∀i = 1 . . . Z (3.67)

The assignment constraints described by Inequalities (3.63), (3.64), and (3.65) cap-
ture the conditions that determine whether a part can be allocated to the robotic
kitting area or if it must be assigned to the collaborative kitting area. These con-
straints consider factors such as the presence of plastic bags, foam interlayers,
and the feasibility of robotic picking.

Constraint (3.63) addresses the presence of plastic bags. The term Pbi represents
the number of plastic bags per bin associated with SKU i, and L is a large positive
constant. The constraint states that if a part has plastic bags (Pbi > 0), then
it cannot be allocated to the robotic kitting area (bi = 1 and xi = 0, through
Constraint (3.66)). If an SKU doesn’t have plastic bags (Pbi = 0), so xi can be zero
or one.

Constraint (3.64) deals with foam interlayers. The term FLi represents the number
of foam interlayers associated with SKU i. The constraint states, analogously to
the previous constraint, that if a part has foam interlayers (FLi > 0), it must
be assigned to the collaborative kitting area (xi = 1). This ensures that SKUs
requiring foam interlayers are not allocated to the robotic kitting area.

Constraint (3.65) addresses the feasibility, Feasi, of robotic picking for a given
SKU, due to factors such as the positioning of parts in the bins, shape, or material
constitution. If Feasi = 1, it means that SKU i is suitable for robotic picking,
and therefore it can be allocated (or not) to the robotic kitting area (xi = 1 or 0
depending on the previous constraints). Conversely, if Feasi = 0, it indicates that
SKU i is not suitable for robotic picking. In this case, the constraint ensures that
SKU i is assigned to the collaborative kitting area (xi = 0).

Constraint (3.67) defines the binary type of auxiliary variable bi.

Together, these assignment constraints determine the allocation of parts between
the robotic kitting area and the collaborative kitting area based on the presence of
plastic bags, foam interlayers, and the feasibility of robotic picking. By including
these types of constraints in the mixed-integer programming operational research
model, the resulting model will be able to effectively represent the real-world
scenario and provide valuable insights for analysis of its performance.
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3.2.2 MIP model for the Sequential Hybrid Kitting (SHK) Sys-
tem

Indexes

The indexes "R" and "C" indicate that a certain parameter or variable refers to
the area of robotic or collaborative kitting, respectively, and i = [1, 2, ..., Z] iden-
tifies the SKUs within the kitting process (where Z is the total number of SKUs),
similarly to what was considered to the model of the AHK System (Subsection
3.2.1).

Parameters

The parameters considered in Subsection 3.2.1 for the AHK System were also
considered for the SHK System, except the parameters related to the tugger train
and sorting operations. Additionally, some new parameters are considered:

• α - Parameter describing the simultaneous processes execution;

• tAGV_kp - Time required to prepare one kit box into the AGV (s);

• tAGV_delivery - Average time required to the AGV to perform a delivery from
the Warehouse to the BoL;

• Limkits_per_AGV - Number of kit boxes carried in each AGV.

Decision Variables

The decision variables defined for this kitting system were defined analogously
to the AHK System in Subsection 3.2.1, without considering the auxiliary decision
variables related to the number of trips performed by the AGVs and the tugger
train.

Main Decision Variables

• Binary decision variables representing the allocation of SKUs to the robotic
or collaborative kitting areas;

xi =

{
1, if SKU i is assigned to the robotic kitting
0, otherwise , ∀i = 1 . . . Z

(3.68)

Auxiliary Decision Variables

• Nkits - Integer decision variable representing the number of kits needed to
be mounted;
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• a - Continuous decision variable representing the maximum cycle time,
used due to the linearization;

• bi, ∀i = 1 . . . Z - Continuous decision variables to define assignment con-
straints, used due to the linearization.

Objective Function

The SHK System embraces a distinct operational approach characterized by a
seamless flow across the various stages within both the robotic and collaborative
kitting areas. This stands in contrast to the AHK System, where operations could
operate semi-independently.

The objective function within the SHK System (Equation 3.69) aims to balance
the workload between robotic and collaborative kitting areas, considering that
the processes are executed sequentially and orderly. In this context, the parame-
ter α is the percentage value for increasing the total cycle time due to the robotic
and collaborative cycle time operations not occurring simultaneously. In fact, the
robotic kitting process starts, and the collaborative kitting process can only start
after the SKUs required for the first kits stored on the robotic side are in the AGV
and reach the collaborative kitting area (see Figure 3.8). This refined approach
reflects the synchronization of the system and emphasizes the importance of co-
ordinated operations.

Minimize TAGV_kit_prep + Max
(

CTR, CTC
)
· (1 + α) + TAGV_to_BoL (3.69)

Figure 3.8: Representation of the relation between robotic and collaborative cycle
times with parameter α.

Remarkably, the incorporation of AGVs pre-loaded with kit boxes, tailored to the
components requirements in the assembly line, fundamentally alters the dynam-
ics of the system. With AGVs now equipped to directly transport the appropriate
components to the assembly line, the sorting operation becomes redundant. This
consideration streamlines the process, minimizing unnecessary operations and
optimizing the flow of materials.

As in the objective function of the previous kitting system (Subsection 3.2.1), the
maximum function can be linearized with the introduction of a continuous deci-
sion variable, a, and the Constraints (3.71) and (3.72), getting the objective func-
tion:
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Minimize TAGV_kit_prep + a · (1 + α) + TAGV_to_BoL (3.70)

Constrains

The formulation of constraints for the SHK System draws upon a similar reason-
ing employed in devising constraints for the AHK System, presented in Subsec-
tion 3.2.1. This congruence in approach ensures that the underlying modeling
principles remain consistent across both systems. While adhering to this founda-
tion, some modifications were made, namely the constraints related to the num-
ber of AGVs trips. Additionally, constraints associated with the tugger train were
also excluded from the formulation, reflecting the evolving nature of AGVs trans-
porting the kits in the SHK System.

Consistency constraints These constraints ensure the model is consistent and
error-free, such as verifying variable values against their defined parameters (cf.
Subsection 3.2.1).

a ≥ CTR (3.71)

a ≥ CTC (3.72)

xi ∈ {0, 1}, ∀i = 1 . . . Z (3.73)

Operational constraints These constraints define system performance and re-
late to warehouse operations.

Given the similarity between the majority of operations in the SHK System and
the previous kitting system, the presentation of these operations is more concise.
This is attributed to the foundational framework established in the AHK System,
from which the SHK System derives its structure. Consequently, a more suc-
cinct depiction of operations is viable, concentrating on the novel features and
refinements that the new system introduces. The assumptions considered for the
kitting operations in the robotic and collaborative kitting area, presented in Ap-
pendices A and B, respectively, are valid for the following presented operations.

AGV Kit Box Preparation Time The AGV kit box preparation time is deter-
mined analogously to the one presented for the kit box preparation in the tugger
train in the AHK System (Subsection 3.2.1) have now the time to position the kit
boxes in the AGVs, tAGV_kp, by a human operator, and it is prepared in the area lo-
cated before the robotic kitting area. The assumptions for the kit box preparation
in the SHK system are presented in Appendix C.
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TAGV_kit_prep = Nkits · tAGV_kp · (1 − E fkit_prep) (3.74)

Robotic Kitting Cycle Time (CTR)

Image Acquisition Time (Timage_acq):

Due to the fact that there is no fixed manipulator to sort components to the cor-
rect kit box, there is no need for the factor 2 in the Image Acquisition Time (as
presented in Subsection 3.2.1).

Timage_acq =
Z

∑
i=1

xi · timage · ni · fi · BS · [(1 − Bg) + PEi] (3.75)

AMR Picking Time (TR
pick):

As defined in Subsection 3.2.1, the AMR picking time is determined by:

TR
pick =

Z

∑
i=1

xi · TR
i · ni · fi · BS · (1 + PEi) (3.76)

AMR Displacement Time (TR
AGV_disp):

As formulated in Subsection 3.2.1, the AMR displacement time is determined by:

TAMR_disp =
Z

∑
i=1

xi ·
BWi + SR +

(
RLR − ⌊RLR

BWi
⌋ · BWi

)
NR

levels · PsR · AMR · v̄AMR
(3.77)

AGV Displacement Time (TR
AGV_disp):

For the SHK System, the distance traveled by the AGV and the distance traveled
by the AMR can be correlated as presented in Figure 3.9.

In this layout, it is intended that the AGV only moves in one direction while re-
ceiving components from the AMR in the robotic kitting area, being from the left
to the right according to Figure 3.2, in this way it gets closer to the collabora-
tive kitting area. In other words, when the displacement distance of the AMR
increases, the displacement distance by the AGV decreases. So, in a typical kit-
ting cycle time, the average distance traveled by the AGV is dAMR_total

2 . So, the time
needed for the displacement of the AGV can be determined by Equation (3.78).
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Figure 3.9: Expected of the relation between AMR and AGV traveled distance in
the SHK System.

TR
AGV_disp =

1
v̄AGV

· dAMR_total
2

(3.78)

Packaging Removal Time (TR
pack_rem):

As previously defined in Subsection 3.2.1, the packaging removal time is deter-
mined by:

TR
pack_rem =

Z

∑
i=1

xi ·
ni · fi · BS

Pi
·
[

ILi · tR
IL · (1 + PEinterlayer) + Di · tR

D · (1 + PEdivider)
]

(3.79)

Empty Bin Removal Time (TR
bin_rem):

As previously described in Subsection 3.2.1, the empty bin removal time is deter-
mined by:

TR
bin_rem =

Z

∑
i=1

xi · tR
bin ·

ni · fi · BS
Pi

· (1 + PEbin) (3.80)

Gripper Change Time (Tgripper):

As defined in Subsection 3.2.1, the empty bin removal time, without considering
the gripper change for the fixed manipulator in the SHK System, is determined
by:
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Tgripper = (1 + Cal)
Z

∑
i=1

xi · fi · BS
[
tgripper_parts · ARparts+

+
ni

Pi

(
(ILi + Di) · tgriper_pack · ARpack + tgripper_bin · ARbins

)] (3.81)

The cycle time for the robotic kitting area CTR, in the SHK System, to prepare BS
EPs is given by:

CTR = Timage_acq + TR
pick + TAMR_disp + TR

AGV_disp+

+ TR
pack_rem + TR

bin_rem + Tgripper
(3.82)

Collaborative Kitting Cycle Time (CTC)

Pick-to-Light System Identification Time (Tp2l):

As presented in Subsection 3.2.1, the Pick-to-Light system identification time is
given by:

Tp2l = tp2l · (1 + ECcom) +
Z

∑
i=1

(1 − xi) · tobs · (1 + ECobs + ECdetect) (3.83)

Operator Picking Time (TOP_disp):

As defined in Subsection 3.2.1, the operator picking time is given by:

TC
pick =

Z

∑
i=1

(1 − xi) · tC
i · ni · fi · BS

simi
(3.84)

Operator Displacement Time (TOP_disp):

As presented in Subsection 3.2.1, the operator displacement time is given by:

TOP_disp =
Z

∑
i=1

(1 − xi) ·
BWi + SC +

(
RLC − ⌊RLC

BWi
⌋ · BWi

)
NC

levels · PsC · OP · v̄OP
(3.85)

AGV Displacement Time (TC
AGV_disp):
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In the collaborative kitting area, the movement of the AGV follows a unidirec-
tional path, mirroring the pattern observed in the trajectory of the AGV within
the robotic kitting domain. In this context, the AGV starts its motion from the
collaborative kitting section adjacent to the robotic kitting area, progressively ad-
vancing toward the designated exit zone. This exit point serves as the gateway to
a designated route facilitating the transportation of completed kits to the assem-
bly line. Notably, as the cumulative distance traversed by the operator increases,
the corresponding distance to be covered by the AGV diminishes. Consequently,
within a standard kitting cycle duration, the displacement distance of the AGV
is mathematically approximated as half of the total traveled distance by the op-
erator, i.e., dOP_total

2 . Consequently, the duration required for AGV displacement is
determined by:

TC
AGV_disp =

1
v̄AGV

· dOP_total
2

(3.86)

Packaging Removal Time (TC
pack_rem):

As presented in Subsection 3.2.1, the packaging removal time is given by:

TC
pack_rem =

Z

∑
i=1

(1 − xi) ·
ni · fi · BS
Pi · simpack

·
[

ILi · tC
IL + Di · tC

D + Foi · tF + PBi · tPB

]
(3.87)

Empty Bin Removal Time (Tgripper):

As presented in Subsection 3.2.1, the empty bin removal time is given by:

TC
bin_rem =

Z

∑
i=1

(1 − xi) · tC
bin ·

ni · fi · BS
Pi

(3.88)

The cycle time for the collaborative kitting area CTC, in the SHK System, to pre-
pare BS EPs is given by:

CTC = Tp2l + TC
pick + TOP_disp + TC

AGV_disp+

+ TC
pack_rem + TC

bin_rem
(3.89)

AGVs to the BoL Time (TAGV_to_BoL):

Once the kits have been fully assembled within the AGVs and have reached the
designated exit zone, the AGVs proceed to travel collectively along a pre-defined
route toward a specific zone of demand for the kits in the BoL. Notably, due to
the independent nature of each AGV, upon reaching its individual destination
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area, an AGV can disengage from the convoy without necessitating a stop for the
entire AGV train. As a result, the temporal impact of this particular operation
on the overall cycle time is primarily contingent upon the travel duration of the
final AGV taking a complete kit. In this way, this impact is described by a linear
expression, as it corresponds directly to the duration of the journey undertaken
by the last AGV with the complete kit. The assumptions considered for this op-
eration are presented in Appendix C.

TAGV_to_BoL = tAGV_delivery (3.90)

For analysis purposes, the total time taken by the AGV to deliver all kits is given
by the time needed for one AGV trip, tAGV_delivery, for all the N_kits

Limkits_per_AGV
trips

needed to be performed.

TAGV_to_BoL_total = tAGV_delivery ·
N_kits

Limkits_per_AGV
(3.91)

Constraints (3.92) and (3.93) define the numbers of kit boxes mounted based on
the weight and volume capacities of the kit boxes.

Nkits ≥
∑Z

i=1 ni · fi · BS · Mi

Mkit
(3.92)

Nkits ≥
∑Z

i=1 ni · fi · BS · Voli
Volkit

(3.93)

Layout constraints This constraint defines the physical limitations of the ware-
house, similarly to what was presented in Subsection 3.2.1.

i=C

∑
i=1

[
xi ·

(
AWR + FR · RDR) · (BWi + SR)

NR
levels

+

+ (1 − xi) ·
(

AWC + FC · RDC) · (BWi + SC)
NC

levels

]
≤ A

(3.94)
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Assignment constraints These constraints define the limitation in allocating
certain components to the robotic kitting area, similarly to what was defined in
Subsection 3.2.1.

PBi ≤ L · bi, ∀i = 1 . . . Z (3.95)

Foi ≤ L · bi, ∀i = 1 . . . Z (3.96)

Feasi ≥ 1 − bi, ∀i = 1 . . . Z (3.97)

xi ≤ 1 − bi, ∀i = 1 . . . Z (3.98)

bi ∈ {0, 1}, ∀i = 1 . . . Z (3.99)
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Results and Discussion

In this chapter, the Mixed Integer Programming (MIP) models presented in the
preceding chapter will be experimentally tested to validate the outcomes rigor-
ously. This chapter thoroughly examines the resultant outcomes through a com-
prehensive numerical analysis of diverse scenarios, fostering insightful discus-
sions on the implications and nuances of the acquired results.

4.1 Input data

The data inputs for the developed MIP models were obtained through a variety
of sources, including:

1. Experts from the automotive company: A close contact with experts within
the automotive company to define the layouts and specific parameters re-
lated to SKU characteristics and warehouse dimensions for the MIP models
and to ensure that they were aligned with the objectives of the project.

2. Contacts with technological solutions providers: Several experts in the
field of robotics, warehouse automation, operational research, and hard-
ware communication networks, partners of the automotive company from
which this dissertation originated, to gather information to define and re-
alistically estimate based on laboratory tests AMR and AGV parameters
related to performing the picking operations, for human operators related
parameters and also for the pick to light system.

3. Information obtained from the scientific literature: Based on the scientific
literature on warehouse logistics and automation, information was gath-
ered on the performance of different technological solutions. This informa-
tion was used to validate the parameters of the MIP models and ensure they
were realistic.

4. Datasheets from sensors and devices: The obtained datasheets of several
sensors, AGVs, AMRs, and devices that could be used in warehouse au-
tomation were considered. This information was used to define the ac-
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curacy and reliability of the AMR on picking performance, typical AGVs
maximum weight and volume capacity, AGV, AMR, and operator speeds
and standards on kit boxes volume and weight limits, which was then used
to feed the MIP models.

A sample of 165 SKUs was considered, all consumed by End Products (EPs) dur-
ing a cycle time, with different characteristics, demand, and packaging items,
where 126 SKUs (76.36%) are feasible to have robotic picking. Due to the ex-
tensive list of parameters needed for the model, an Appendix E is presented to
gather the data considered in this analysis.

In order to assess the practical applicability of the models developed in this dis-
sertation, a sensitivity analysis for different parameters for both hybrid kitting
systems was developed to understand their impact on the systems, and a set of
scenarios was meticulously constructed aimed at evaluating the responsiveness
of the models and reliability in real-world contexts, ensuring its capacity to de-
liver timely solutions. For conducting data visualization and analysis, software
tools such as Microsoft Excel and MATLAB were used.

Following the methodology presented earlier in Chapter 3, it is noteworthy that
the problem-solving process for all simulations performed was completed in a
few seconds. This computational efficiency was achieved utilizing the following
hardware and software configurations:

• Asus laptop equipped with a 2.6 GHz Intel(R) Core(TM) i7 CPU, 32 GB of
RAM, a 64-bit operating system and a NVIDIA GeForce GTX 960M graphics
card;

• PyCharm Professional 2023.2 served as the Integrated Development Environ-
ment (IDE) for the Python-based code (Python Version: 3.10);

• IBM LOG CPLEX Academic Edition Application Programming Interface (API),
integrated seamlessly with PyCharm (CPLEX Version: 22.1.1.0);

4.2 Sensitivity Analysis for the Asynchronous Hybrid
Kitting System

4.2.1 Optimal Assignment

The optimal assignment for the Asynchronous Hybrid Kitting System, consider-
ing one AMR (with picking errors of 5%) and one operator picking components,
having 358 variables (330 binary variables, 4 integer variables and 24 continuous
variables) and 693 constraints, was obtained in 1.155 seconds, where the total cy-
cle time, since the preparation of the kits until delivering them to the Border of
Line (BoL) is 2049.181s, for all the 199 kits mounted.
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Table 4.1: Results obtained for the Asynchronous Hybrid Kitting System in the
optimal assignment.

Area Variable (Units) Result
Robotic CTR (s) 1980.976

NR
AGV_trips 9

# SKUs 46 (27.88%)
Collaborative CTC (s) 1981.181

NC
AGV_trips 4

# SKUs 119 (72.12%)
Tugger Train Ttugger (s) 460

Ntugger_train_trips 13
Ttugger_total (s) 2073.500
CTTotal (s) 2441.181
Nkits 199
Volbu f f er (m3) 10.0

Analyzing the results presented in Table 4.1, it can be seen that the balance be-
tween the robotic kitting area operations and the collaborative kitting area op-
erations is achieved since the proximity in the values of CTR and CTC (1980.976
seconds and 1981.181 seconds, respectively). It can also be observed that more
than two-thirds of all components are allocated to the collaborative kitting area,
having 72.12% of SKUs in the collaborative and only 27.88% in the robotic kitting
areas. After analyzing the characteristics of the SKU allocated for each area, it is
seen that the majority of the components in the collaborative area have smaller
dimensions, contrary to the robotic kitting area, in which bigger components
were allocated. The SKUs of smaller dimensions normally have higher quantities
needed, and taking advantage of the human operator picking multiple compo-
nents simultaneously, this attribution is coherent with the findings of Boudella
et al. (2018).

It can be also seen that AGV performs more than double the number of trips in
the robotic kitting area, which is coherent with the previously explained, where
bigger and heavier pieces are transported, so the capacity of AGV is more quickly
achieved, needing to perform more trips. Relatively to the tugger train, the time
required to deliver the last kits to the BoL was 460 seconds, representing 18.8% of
the total cycle time, found to be consistent with Boysen et al. (2015), accounting
for between 10% and 20% of the cycle time.

The results presented in Figure 4.1 depict the duration of each operation in the kit-
ting areas. According to Figure 4.1a, the most time-consuming task for the robotic
cycle time is picking all the components, which constitutes 37% of the entire cycle
time. It is expected that this task would take a considerable amount of time since
the AMR takes 4 to 7 seconds to pick a single SKU. The next most impactful oper-
ation is the sorting time, where the fixed manipulator picks SKUs from the AGV
and moves them to the final kit box. Together, these two operations account for
nearly 60% of the robotic kitting time. The third most impactful operation is im-
age acquisition, which occurs twice for both the AMR and the fixed manipulator.
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This task takes a considerable amount of time to process the positions of SKUs in
the bins to define a correct patch for picking them correctly. The AMR displace-
ment and AGV displacement are tasks with less impact on the cycle time, ac-
counting for less than 4% of the robotic cycle time, which represents a significant
improvement compared to the more than 10% in Boudella et al. (2018). Since the
majority of SKUs had smaller component consumption than those components
present in full bins, removing a few empty bins was justified, and, consequently,
a small empty bins removal time.

For the collaborative kitting cycle time, illustrated in the Pareto chart in Figure
4.1b, it is evident that the kit box preparation stage consumes the most signifi-
cant portion of the cycle time. This outcome aligns with expectations, given that
this phase is responsible for preparing all the kit boxes destined for the BoL. No-
tably, it constitutes 26.8% of the total collaborative kitting cycle time. Following
closely are the component picking and sorting operations, accounting for 23.6%
and 21.3% of the cycle time, respectively. In this context, it was considered that
human operators can take between 2 to 5 seconds to pick an SKU, a shorter time
compared to the AMR. Moreover, operators have the advantage of being able to
pick between 1 to 6 SKUs simultaneously, providing a considerable advantage
compared to the AMR, which can handle only one component at a time. Conse-
quently, the picking time in the collaborative area is substantially lower than in
the robotic area, despite having a higher number of SKUs allocated. The oper-
ation of packaging removal contributes 12.9% to the cycle time, while the pick-
to-light system, with a similar impact as the bin removal operation, accounts for
6.3% and 5.8% of the cycle time, respectively.

Comparatively, the travel times for both the operator and the AGVs have the
least impact on the collaborative kitting cycle time, mirroring the observations in
the robotic kitting cycle. These travel times collectively represent less than 4% of
the collaborative cycle time, representing a notable improvement in operational
efficiency in transportation-related processes.

In this way, the approach taken seems to be effective in reducing traveling and
transportation times required in the warehouse, which was the objective of this
hybrid kitting system.

4.2.2 Impact from the Batch Size

The batch size refers to the quantity of EPs produced simultaneously during the
reference cycle time. With more SKUs and kits to prepare when BS increases,
it is expected that the duration of most operations in both kitting areas should
increase.

As shown in Figure 4.2, the expected increases in the cycle times for both the
robotic and collaborative kitting areas were obtained, and these increases are bal-
anced between the two kitting areas, leading to a consequent increase in the total
cycle time.

From Table 4.2, it can be observed that the number of AGV trips increases more
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(a) Robotic cycle time operations.

(b) Collaborative cycle time operations.

Figure 4.1: Characterization of Asynchronous Hybrid Kitting System cycle time
in the optimal assignment.
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Figure 4.2: Robotic, collaborative and total cycle times according to the batch size
for the Asynchronous Hybrid Kitting System.

rapidly for the robotic kitting area than for the collaborative kitting area. This
difference is due to the characteristics of the larger-sized SKUs in the robotic area
compared to those allocated to the collaborative area, as explained in the previous
section. As the batch size increases, there is a redistribution of SKUs, favoring the
collaborative side. This is expected due to the faster speed of picking and sorting
operations on the collaborative side compared to the robotic.

Table 4.2: Impact from the batch size on cycle times and SKU allocation for the
Asynchronous Hybrid Kitting System.

BS CTtotal (s) #SKUs Robotic #SKUs Collab. NR
AGV_trips NC

AGV_trips
1 2441.181 46 119 9 4
2 4274.513 38 127 17 7
3 6102.993 34 131 24 11
4 7931.407 28 137 32 14
5 9758.794 30 135 40 18
6 11585.406 30 135 48 21
7 13409.952 29 136 55 25
8 15235.483 29 136 63 28
9 17062.7216 28 137 71 32

10 18888.3844 27 138 79 35
11 20717.1125 29 136 87 38
12 22541.5606 28 137 94 42

In Figure 4.3, the variation in cycle time according to the batch size becomes more
evident. Increasing the batch size from 1 to 2 results in approximately a 75%
increase in the total cycle time, while changing it from 2 to 3 results in a 43%
increase. This percentage variation in cycle time tends to stabilize for larger batch
sizes. For instance, when increasing from 7 to 8 and for batch sizes higher than
8, the cycle time tends to increase by approximately 10% for each unit increase in
BS.
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Figure 4.3: Total cycle time percentage variation according to the batch size for
the Asynchronous Hybrid Kitting System.

4.2.3 Impact from the Picking Errors

Many authors state that studies of picking errors in kitting systems should be
carried out although there are few in the literature (Caputo et al. (2021), Boudella
et al. (2018)).

Picking errors manifest themselves across various operations of the Robotic Kit-
ting Area, including picking SKUs from their respective bins (PEi), picking empty
bins from the shelves (PEbin), picking SKUs during the sorting process (PEsort),
handling interlayer sheets within the bins (PEinterlayer), and picking bin dividers
(PEdivider). These five types of picking errors were analyzed, ranging from 1% to
50% error rates, covering a spectrum from minimal to extreme error conditions.
This assessment aimed to understand the impact of these error rates on the cycle
times of kitting operations.

Examining the results presented in Table 4.3, it is evident that a balance between
robotic and collaborative cycle times was consistently kept. As anticipated, a
higher rate of picking errors corresponds to longer cycle times. For instance, the
transition from a 1% error rate to 10% results in an increase of approximately 31
seconds in the total cycle time. This increment escalates to about 140 seconds
when the error rate is elevated to 50%.

The picking error parameters do not appear to be a critical point for the kitting
system, as there is no substantial increase in the total cycle time. This is primarily
due to the dynamic redistribution of SKUs across the kitting areas, favoring the
collaborative side over the robotic side. This redistribution compensates for the
penalties incurred by picking errors on the AMR and fixed manipulator opera-
tions, as evidenced in Figure 4.4.

Concerning the Robotic Kitting Area (Figure 4.5a), it is noteworthy that image
acquisition is the most affected operation by increasing picking errors. When a
picking attempt fails, both the AMR and the fixed manipulator must repeat the
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Table 4.3: Impact from picking errors on cycle times and SKU allocation for the
Asynchronous Hybrid Kitting System.

PE CTR (s) CTC (s) CTtotal (s) #SKUs Robotic #SKUs Collab.
1% 1967.122 1966.886 2427.122 48 117
2% 1969.577 1970.665 2430.665 49 116
5% 1980.976 1981.181 2441.181 46 119

10% 1997.566 1998.431 2458.431 44 121
20% 2029.036 2029.477 2489.477 44 121
30% 2057.207 2057.382 2517.382 41 124
40% 2080.742 2082.609 2542.609 37 128
50% 2106.401 2106.378 2566.401 35 130

Figure 4.4: SKU allocation according to the robotic picking errors for the Asyn-
chronous Hybrid Kitting System.

image processing to identify the new SKU arrangement before initiating another
picking attempt. Consequently, the picking and sorting operations, along with
the packaging removal, contribute to the increased cycle time. Contrariwise, op-
erations such as AGV displacement, empty bin removal, and AGV displacement
experience reduced cycle times due to the reduced allocation of SKUs in this area.

In the Collaborative Kitting Area (Figure 4.5b), a more substantial increase in cy-
cle times is observed for the picking and sorting operations, while the impact on
the pick-to-light system operation is comparatively lower. This effect is attributed
to the higher allocation of SKUs in the collaborative area.

4.2.4 Impact from Simultaneous Picking

An efficiency-enhancing factor for collaborative picking activities is the ability of
human operators to pick multiple SKUs simultaneously, reducing the number of
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(a) Robotic cycle time.

(b) Collaborative cycle time.

Figure 4.5: Robotic and collaborative cycle times according to picking errors by
the AMR(s) and fixed manipulator for the Asynchronous Hybrid Kitting System.
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required movements and, consequently, the time needed for picking and sorting
operations.

According to the data considered for numerical analysis, the number of SKUs
that an operator can pick simultaneously, denoted as simi, can range from 1 to 6,
while the number of packaging items was considered to be 2 items, one in each
hand of the operator. These values were changed from -25%1 to an increase of
100%.

From Table 4.4, it can be observed from column "Var CT" that if simi is penal-
ized by 25%, there is an increase in both robotic and collaborative cycle times,
resulting in a 17.8% increase in the total cycle time. Conversely, an increase in
the number of items that an operator can pick simultaneously leads to significant
improvements in cycle time, along with the allocation of more SKUs to the col-
laborative side. It is evident that this parameter has a considerable impact on the
overall efficiency of the system.

Table 4.4: Impact from simultaneous parts picked by the operator on cycle times
and SKU allocation for the Asynchronous Hybrid Kitting System.

sim CTR (s) CTC (s) CTtotal (s) Var CT #SKUs Rob. #SKUs Collab.
-25% 2415.513 2416.417 2876.417 17.8% 55 110
0% 1980.976 1981.181 2441.181 - 46 119
25% 1829.693 1830.343 2290.343 -6.2% 46 119
50% 1651.216 1651.156 2111.216 -13.5% 42 123
75% 1572.371 1572.358 2032.371 -16.7% 46 119

100% 1470.702 1472.428 1932.428 -20.8% 45 120

Upon analyzing the time required to perform various tasks at the kitting, it can
be observed, from Figure 4.6b, a substantial increase in the duration of picking
and sorting operations when simi decreases by 25%, as well as the packaging re-
moval operation, which doubles in duration when reducing the number of items
removed from 2 to 1. Conversely, with an increase in sim, we see a significant
reduction in the duration of these operations.

In the cycle time of the robotic area (Figure 4.6a), we observe a reduction in the
duration of all operations, which is due to the reallocation of more components
to the collaborative side.

4.2.5 Impact from the Number of AMRs and Operators

To explicitly demonstrate the impact of the number of AMRs and human oper-
ators in the system, several simulations were conducted to test different combi-
nations of values for the number of AMRs and the number of human operators
present in the robotic and collaborative kitting areas, respectively.

Observing the three-dimensional graph in Figure 4.7, it can be concluded that

1For SKUs with simi = 1 in the optimal assignment, it was programmed simi also equal to 1 in
the simulations with a variation of -25% for simultaneous picking.
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(a) Robotic cycle time.

(b) Collaborative cycle time.

Figure 4.6: Robotic and collaborative cycle times according to simultaneous
picked parts by the operator for the Asynchronous Hybrid Kitting System.
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for a given number of operators, as the number of AMRs increases, the cycle
time decreases slightly. However, for a given number of AMRs in the system,
an increase in the number of operators results in a more significant improvement
in cycle time. This graph provides valuable insights to the kitting area manager,
indicating that if it is not possible to allocate a new AMR and operator to the
kitting area to reduce cycle time because of the financial responsibility this would
place on the company, it should be opted for allocating an additional operator, as
it leads to a greater reduction in cycle time.

Figure 4.7: Total cycle time according to the number of AMR and Operators for
the Asynchronous Hybrid Kitting System.

4.2.6 Impact from Collaboration in the Sorting Zone

In the sorting zone, the operator and the fixed manipulator must work in synergy
to place all the required SKUs into the correct kits positioned on the tugger train.
When the operator places an SKU into a specific kit box, and the manipulator also
intends to place a component into the same kit, the manipulator has to wait for
the operator to complete the operation, guaranteeing the safety in the operations.
Consequently, the parameter Col influences an increase in the time taken for the
sorting operation in the robotic area.

By analyzing the parameter Col, varying from 1% to 50%, being related to the time
that the fixed manipulator pauses its operation, it is observed from Table 4.5 that
there is an increase in the cycle time for both kitting areas and, consequently, the
total cycle time. As expected, there is a redistribution of SKUs, but the variation
in cycle time remains smaller than the one observed in the picking errors. In this
case, a transition from 1% to 50% only results in an increase of approximately 35
seconds to the total cycle time, suggesting that it does not significantly impact the
system.
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Table 4.5: Impact from collaboration in the sorting zone on cycle times and SKU
allocation for the Asynchronous Hybrid Kitting System.

Col CTR (s) CTC (s) CTtotal (s) #SKUs Robotic #SKUs Collab.
1% 1977.680 1978.241 2438.241 47 118
2% 1978.867 1978.853 2438.867 47 118
5% 1980.976 1981.181 2441.181 46 119

10% 1984.261 1984.853 2444.853 46 119
20% 1991.645 1992.172 2452.172 43 122
30% 1997.715 1999.396 2459.396 44 121
40% 2006.404 2006.430 2466.430 41 124
50% 2012.224 2012.832 2472.832 38 127

Figure 4.8a explicitly presents the increase in the sorting operation time for the
robotic area and a generalized small reduction in other operations due to the
redistribution of SKUs. This leads to a slight increase in the duration of the op-
erations within the collaborative kitting area (except for the kit box preparation
operation, which remains constant as it does not vary with changes in SKU allo-
cation), as shown in Figure 4.8b.

4.3 Sensitivity Analysis for the Sequential Hybrid Kit-
ting System

4.3.1 Optimal Assignment

Analogously to the previous system, the optimal assignment was obtained for
the Sequential Hybrid Kitting System, being defined 352 decision variables (330
binary, 1 integer, and 21 continuous variables) and 685 constraints. The results
were obtained in 1.208 seconds.

From the cycle times in the robotic and collaborative areas, as shown in Table
4.6, it can be noticed a balance between these times due to their closeness. There
is a higher allocation of SKUs in the collaborative area compared to the Asyn-
chronous Hybrid Kitting System, which was expected because, in this system, the
preparation of kits is not incorporated into the collaborative kitting area, occur-
ring before the AGVs enter the robotic kitting area. Therefore, the collaborative
kitting area can accommodate more SKUs, reducing the cycle time for this area
and, consequently, the overall cycle time.

From Figure 4.9, it can be noticed that the picking operation has the most sig-
nificant impact for both kitting areas, accounting for 52.26% and 47.30% of the
cycle times in the robotic and collaborative areas, respectively. This highlights
the importance of optimizing and improving the process and equipment used for
component picking. Similarly, the packaging removal operation ranks second as
the most impactful operation in both the robotic and collaborative cycle times,
accounting for 16.88% and 24.10%, respectively.
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(a) Robotic cycle time.

(b) Collaborative cycle time.

Figure 4.8: Robotic and collaborative cycle times according to the collaboration
parameter for the Asynchronous Hybrid Kitting System.
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Table 4.6: Results obtained for the Sequential Hybrid Kitting System in the opti-
mal assignment.

Area Variable (Units) Result
Robotic CTR (s) 1087.647

# Components 36 (21.82%)
Collaborative CTC (s) 1088.598

# Components 129 (78,18%)
Kit Preparation TAGV_kit_prep (s) 358.200
Delivery to BoL TAGV_to_BoL (s) 300

TAGV_to_BoL_total (s) 2985
CTTotal (s) 2073.3778
Nkits 199

It is noticeable that the model provides solutions where the movements of the
AMR, human operator, and AGVs are not very significant, avoiding unnecessary
travel times in the kitting process which leads to minimal impact on the total
cycle time. This is a desired outcome in the approach considered for the kitting
systems, outperforming the results of Boudella et al. (2018), where the picker
(robot or operator) has to travel from the starting point to the location of the SKU
to be picked and, after picking the component, it has to travel back to the starting
point.

4.3.2 Impact from the Batch Size

Figure 4.10 highlights that cycle times in both the robotic and collaborative areas
are impacted by an increase in batch size. This trend has been previously ob-
served with the Asynchronous Hybrid Kitting System. Consequently, the total
cycle time also increases. It is worth noting that the rate of increase in total cycle
time is greater than that of the cycle times in the two kitting areas. This is due
to the longer preparation time required for kit boxes when there are more kits to
prepare, which aligns with the characteristics of this system.

From Table 4.7, for a higher BS value there is a greater allocation of SKUs to
the collaborative side, similar to the previous kitting system. This is because
the human operator primarily has a higher picking speed when compared to the
AMR and the fixed manipulator. In the graph in Figure 4.11, it is observed a
greater variation in the total cycle time when transitioning from a BS of 1 to 2. It
tends to decrease, stabilizing at around 10% for each unit increase in batch size,
similar to what was observed in the Asynchronous Hybrid Kitting System.

4.3.3 Impact from the Picking Errors

Picking errors in the robotic area of the Sequential Hybrid Kitting System can
occur in various operations, such as picking SKUs from the bins (PEi), picking
empty bins from the shelves (PEbin), handling interlayer sheets within the bins
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(a) Robotic cycle time operations.

(b) Collaborative cycle time operations.

Figure 4.9: Characterization of Sequential Hybrid Kitting cycle time in the opti-
mal assignment.
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Figure 4.10: Robotic, collaborative, and total cycle times according to the batch
size for the Sequential Hybrid Kitting System.

Figure 4.11: Total cycle time percentage variation according to the batch size for
the Sequential Hybrid Kitting System.
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Table 4.7: Impact from the batch size on cycle times and SKU allocation for the
Sequential Hybrid Kitting System.

BS CTtotal (s) #SKUs Robotic #SKUs Collab. Nkits
1 2073.378 36 129 199
2 3638.411 27 138 398
3 5197.538 20 145 597
4 6755.915 24 141 796
5 8311.290 22 143 995
6 9867.070 19 146 1194
7 11421.499 17 148 1392
8 12979.018 19 146 1591
9 14533.461 18 147 1790

10 16089.438 17 148 1989
11 17645.007 18 147 2188
12 19199.443 17 148 2387

(PEinterlayer), and picking bin dividers (PEdivider). These errors were analyzed in
conjunction for values ranging from 1% to 50%, similar to the previous kitting
system.

The results presented in Table 4.8 indicate that the cycle times for both the robotic
and collaborative areas are evenly balanced across all PE values. An increase in
picking errors led to longer cycle times. Consequently, there is some adjustment
in the distribution of SKUs between the kitting areas. Nevertheless, this variation
is not as pronounced as in the previous kitting system, which has resulted in a
more consistent performance.

Table 4.8: Impact from picking errors on cycle times and SKU allocation for the
Sequential Hybrid Kitting System.

PE CTR (s) CTC (s) CTtotal (s) #SKUs Robotic #SKUs Collab.
1% 1079.595 1080.250 2062.525 39 126
2% 1081.562 1082.477 2065.420 38 127
5% 1087.647 1088.598 2073.378 36 129

10% 1097.485 1097.561 2085.029 41 124
20% 1111.269 1113.847 2106.202 40 125
30% 1128.349 1128.327 2125.054 37 128
40% 1141.259 1141.765 2142.494 36 129
50% 1154.742 1154.309 2159.364 36 129

Figure 4.13a shows an increase in the duration of the picking and image acquisi-
tion operations in the robotic area. It is worth noting the decrease in the duration
of the packaging removal operation for a 10% PE, where the reallocation of com-
ponents with packaging items occurred in the collaborative area, leading to an
increase in SKUs assigned to the robotic side, as shown in Figure 4.12. In Figure
4.13b, it can be observed a more substantial increase in the duration of the picking
operation due to SKU reassignment.
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Figure 4.12: SKU allocation according to the robotic picking errors for the Sequen-
tial Hybrid Kitting System.

4.3.4 Impact from Simultaneous Picking

Analyzing the impact of simultaneous picking of multiple SKUs by the opera-
tor in the collaborative area for the Sequential Hybrid Kitting System, Table 4.9
shows that a 25% penalty in sim leads to a 21.2% increase in the total cycle time.
This shows a more significant impact than the same penalty in the previous kit-
ting system (which represented a 17.8% increase in cycle time). In cases in which
simultaneous picking is improved, a reduction is observed in robotic and collab-
orative cycle times and, consequently, the overall cycle time, as expected. There is
always a higher percentage reduction in this kitting system compared to the pre-
vious one. This highlights the importance of kitting area managers to focus on
efficient picking methodologies to increase the capacity of operators for simulta-
neous picking when implementing this system.

Table 4.9: Impact from simultaneous parts picked by the operator on cycle times
and SKU allocation for the Sequential Hybrid Kitting System.

sim CTR (s) CTC (s) CTtotal (s) Var CT #SKUs Rob. #SKUs Collab.
-25% 1426.658 1426.420 2512.856 21.2% 52 113
0% 1087.647 1088.598 2073.378 - 36 129

25% 1001.599 1002.297 1961.186 -5.4% 41 124
50% 866.766 866.882 1785.147 -13.9% 43 122
75% 820.967 821.040 1725.552 -16.8% 40 125

100% 746.153 746.234 1628.304 -21.5% 39 126

From Figure 4.14a, it is observed a generalized reduction in operations in the
robotic area, as expected due to the allocation of more components to the collab-
orative area. In Figure 4.14b, a reduction in the duration of the picking and pack-
aging removal operations can be seen in the collaborative kitting area, which are
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(a) Robotic cycle time.

(b) Collaborative cycle time.

Figure 4.13: Robotic and collaborative cycle times according to picking errors by
the AMR(s) and fixed manipulator for the Sequential Hybrid Kitting System.
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the operations where simultaneous picking occurs.

4.3.5 Impact from the Number of AMRs and Operators

Given that both kitting systems are based on the same modeling foundation for
kitting operations, it is expected that the behavior of total cycle time in relation
to the number of AMRs and operators would exhibit a similar pattern for both
systems. This expectation is confirmed when observing Figure 4.15, where it can
be noticed that the impact of the number of operators is more significant than the
impact of the number of AMRs.

Increasing the number of operators in the kitting area results in a larger reduction
in CTtotal than increasing the number of AMRs. Therefore, it can be inferred that
allocating more human operators brings more efficiency and competitiveness to
the kitting system considered, especially if the characteristics of the AMRs are not
improved to make them faster in their operations.

4.3.6 Impact from the Collaborative Kitting Cycle Delay Param-
eter

Parameter α present in the total cycle time is a crucial factor reflecting the delay
between the start of operations in the collaborative and robotic areas. It plays a
significant role in determining the overall efficiency of the system.

As α increases, it signifies a longer delay before operations begin in the robotic
area relative to the collaborative area, leading to a higher total cycle time (Figure
4.16). In this way, it is essential to ensure that the first AGVs with the first kits
being mounted are dispatched before starting to mount other kits, guaranteeing
the smooth progression of operations across the entire system to ensure that α is
as small as possible.

4.4 Scenario Analysis

To completely evaluate the proposed kitting systems, simulations were conducted
for various scenarios concerning the allocation of SKUs. This approach allows for
an understanding of which scenario results in a more competitive and efficient
cycle time. Therefore, for both the Asynchronous and Sequential Hybrid Kitting
Systems, the following scenarios were considered:

• Optimal Assignment: Allocation of components obtained through the mod-
els.

• High SKU Allocation to Robotic: Allocation of all components to the robotic
kitting area, except for components that include foam protections, plastic
bags, or those not suitable for robotic picking.
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(a) Robotic cycle time.

(b) Collaborative cycle time.

Figure 4.14: Robotic and collaborative cycle times according to simultaneous
picked parts by the operator for the Sequential Hybrid Kitting System.
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Figure 4.15: Total cycle time according to the number of AMR and Operators for
the Sequential Hybrid Kitting System.

Figure 4.16: Robotic, collaborative and total cycle times according to the parame-
ter α for the Sequential Hybrid Kitting System.
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• High SKU Allocation to Collaborative: Allocation of all components to the
collaborative kitting area.

Analyzing Figure 4.17, it becomes evident that, for the Asynchronous Hybrid
Kitting System, the allocation of SKUs obtained through the model results in a
shorter cycle time compared to the other two scenarios. In the "high SKU alloca-
tion to the robotic area" scenario, 76.4% of SKUs are allocated to the robotic area,
and 23.6% to the collaborative area (see Table 4.10). However, the slower picking
speed of the AMR significantly penalizes the cycle time, resulting in a duration
of 2.5 times longer compared to the Optimal Assignment scenario. In the high
SKU allocation to the collaborative area" scenario, where all components are al-
located to the collaborative area, avoiding the need to separate the warehouse
into two kitting areas, the cycle time increases by 26.9% compared to the Optimal
Assignment scenario.

When analyzing the Sequential Hybrid Kitting System, it is evident that the Opti-
mal Assignment of SKUs results in the most efficient cycle time. This approach is
2.8 times faster than assigning a greater number of SKUs to the robotic side and
20.5% faster than assigning all SKUs to the collaborative area.

Figure 4.17: Robotic, collaborative, and total cycle times in SKU allocation sce-
narios for the two hybrid kitting systems.

Comparing the two systems overall, it is evident that the assembly line concept
underpinning the sequential system offers advantages, as it leads to shorter cycle
times in all three scenarios of SKU allocation.

The scenario that achieved the shortest total cycle time was the Optimal Assign-
ment for the Sequential Hybrid Kitting System, which was 28.4% shorter than the
Optimal Assignment for the Asynchronous Hybrid Kitting System for the given
input data. Therefore, warehouse managers and decision-makers should choose
this system for implementation, taking into account the data considered, if their
primary objective is to minimize kit preparation cycle time.
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Table 4.10: SKU allocation in the kitting areas for the scenarios considered.

Kitting System Scenario #SKUs Robotic #SKUs Collab.

Asynchronous
Optimal Assignment 46 (27.9%) 119 (72.1%)
High SKU allocation to
the robotic area

126 (76.4%) 39 (23.6%)

High SKU allocation to
the collaborative area

0 (0%) 165 (100%)

Sequential
Optimal Assignment 36 (21.8%) 129 (78.2%)
High SKU allocation to
the robotic area

126 (76.4%) 39 (23.6%)

High SKU allocation to
the collaborative area

0 (0%) 165 (100%)

However, if there are significant quality issues in kit assembly, the Asynchronous
Hybrid Kitting System should be considered because it provides more stringent
supervision, including a sorting zone that allows for kit verification before they
are sent to the assembly line, enabling more effective upstream identification of
issues.

Therefore, to select the best hybrid kitting system, the outputs of the models for
specific cases must be evaluated to enable a detailed analysis for the particular
application.
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Energy Consumption of AGVs in
Robotic Kitting

The importance of energy-efficient practices in industrial automation has grown
exponentially in recent years, driven by environmental concerns and the pursuit
of cost-effective manufacturing solutions. Optimizing energy consumption is im-
portant to enhancing operational sustainability and competitiveness in modern
manufacturing, particularly in the automotive industry, where efficiency and pre-
cision are paramount. This chapter explores the energy dynamics of Automated
Guided Vehicles (AGVs) within the domain of robotic kitting in the automotive
sector, being a pioneer work, to the best of our knowledge, in exploring the im-
pact of the distance traveled and the number of trips made in the kitting process
on the energy consumption of AGVs1.

This chapter aims to shed light on the intricate relationship between the energy
consumption of AGVs and the automated kitting process. It presents a compre-
hensive Integer Programming (IP) model designed to optimize the robotic kitting
process in industrial automotive settings. Robotic kitting, involving the efficient
assembly and preparation of kits using automated systems, plays a crucial role in
modern manufacturing facilities. The formulation of the mathematical program-
ming model allows for the consideration of flow-related activities, improving the
adaptability and flexibility of the kitting process to varying order patterns. Nu-
merical experiments demonstrate the effectiveness of the model in achieving key
insights into the energy demand of the AGVs, contributing to advancements in
mapping this process in industrial automation and logistics.

The reduced evaluation in research of fully robotic kitting systems makes it es-
sential to focus on developing and analyzing a layout incorporating Autonomous
Mobile Robots (AMRs) for picking and AGVs for kit assembly. By integrating
these robotic technologies, we seek a comprehensive and automated kitting pro-
cess to optimize operational performance and reduce manual non-value-added

1The contribution presented in this chapter has been accepted to be published in the confer-
ence proceedings of the Sixth Iberian Robotics Conference (ROBOT2023) that will be published
by Springer Lecture Notes in Networks and Systems series, titled "Optimization of the Energy
Consumption for Robotic Kitting in the Automotive Industry", authored by Mário Simões, Telmo
Pinto and Cristóvão Silva.
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tasks. Due to the limited adaptability of robots in manufacturing processes, min-
imizing the number of trips they perform becomes crucial to reducing entropy in
the system and reducing energy consumption.

At the heart of the investigation, the IP model considers critical operations anal-
ogous to the ones presented in Chapter 3 of this dissertation. These include the
time required for kit box preparation on AGVs, the duration of picking opera-
tions executed by Autonomous Mobile Robots (AMRs), the intricacies of image
acquisition and processing, travel times for both AMRs and AGVs, and the tem-
poral aspects of empty component bin removal by AMRs. The primary objective
is unequivocal: to minimize the energy footprint of AGVs in the kitting process,
amplifying operational sustainability while upholding the utmost precision in kit
assembly.

5.1 Robotic Kitting System

5.1.1 Layout Description

The layout presented in Figure 5.1 for the robotic kitting system comprises a two-
sided shelving area, i.e., two facades, both of equal length. Each shelving unit
consists of three levels, with the first two levels designated for storing the com-
ponents required for kit assembly, while the third level houses the ramps for evac-
uating empty bins to be subsequently replenished.

The kitting process involves the use of an Automated Mobile Robot (AMR), a
computer-controlled and wheel-based with a manipulator fixed on its top, which
automatically moves in the warehouse by a combination of software and sensor-
based system, responsible for retrieving the necessary components from the shelv-
ing units and placing them into the kits located on the Automated Guided Vehicle
(AGV). The AGV is a robot equipped with multiple kit boxes designed to receive
and hold the components constituting a kit. In this system, the AGV follows a
fixed path, consistently in the same direction. Upon completing its route through
the storage area, the AGV advances to the border of line to fulfill the kit requests
made during the production planning process.

Based on information gathered from an automotive manufacturer, warehouse
experts, and scientific papers concerning this subject, the racks used have stan-
dard lengths installations, where the bins with the different Single Keeping Units
(SKUs) are positioned, which involves an effective bin allocation. These bins con-
tain parts that can be arranged in partitions made with separators or in bulk for
the case of smaller pieces. The variability in SKU characteristics is related to sev-
eral aspects, such as their material (metal, plastic, rubber), flexibility, shape, di-
mensions, and weight.
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Figure 5.1: Schematic representation of the kitting system considered.

5.1.2 Kitting Process

The kitting process in the robotic system considered consists of a set of carefully
coordinated steps that ensure the efficient and accurate assembly of kits, as pre-
sented in Figure 5.2. The process starts with the Automated Mobile Robot (AMR)
receiving the order, the bill of materials (BOM) ,specifying the required compo-
nents for the kit assembly. Subsequently, the AMR navigates to the designated
shelving unit where the desired part is stored. To identify the exact position of
the component to be picked, the AMR performs image acquisition, utilizing ad-
vanced vision systems to detect and locate the specific part. Once the element is
identified, the AMR executes its gripping mechanism to grasp the piece securely
and subsequently places it into the corresponding kit, which is positioned on the
Automated Guided Vehicle (AGV).

The AMR is preparing multiple kits at the same time, sorting the parts to the
correct kit, ensuring the proper kit assembly, and avoiding the need to have a
sorting system before following to the border of line or completing one kit at a
time, which leads to an increased travel time needed. The AMR and AGV work in
tandem throughout the kitting process. While the AMR continues to complete the
kits by picking and placing the required components, the AGV moves alongside
the AMR, following its designated route. This seamless collaboration ensures a
continuous flow of component retrieval and kit assembly. Upon completing the
preparation of all required kits, where the kits are ready for further assembly or
distribution, the AGV will then move to the border of line. After completing the
assembly of kits and the departure of the AGVs, the AMR will pick up empty
bins from the racks and relocate them to the third level, where the evacuation bin
is located. This final step marks the conclusion of the kitting process, and a new
AGV should be ready to receive parts and assemble new kits.

5.1.3 Mathematical Model

The model considered analyses the cycle time needed to pick all the SKUs re-
quired to form the kits according to the BOM to minimize the energy needed by
the AGVs to transport all the kits in a reference period that represents the average
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Figure 5.2: Diagram with the kitting processes developed.

demand of components in a kitting zone for the automotive industry, adequate
to the number of end products assembled in the production line. To formulate
this model, it is essential to assume that the kitting process can be considered in-
dependent of the processes upstream and downstream of the kitting system. The
upstream processes represent replenishing empty component bins with new full
bins, avoiding accumulation in the evacuation ramp. The downstream processes
include the usage of kits from the AGV, freeing the AGV to return to the ware-
house to fulfill new kit orders. In the sequel, parameters, decision variables, and
the integer programming model are presented. For all the cases, i represents a
single SKU (i ∈ [1, 2, ..., Z], where Z is the total number of SKUs needed to build
the kits).

Parameters

• tkp: time needed to prepare a single kit box (s);

• tim: time needed for the AMR to perform an image acquisition to locate the
component in the bin (s);

• tp_i: time needed for the AMR to pick a single SKU i from the bin to the kit
box (s);

• tbin: time needed for the AMR to return and pick up the empty bin and
place it in the evacuation ramp (s);

• Tlim: temporal window available to proceed with kitting tasks (s).

• PE: parameter describing the AMR’s picking error probability on picking
components;

• PEbins: parameter describing the AMR’s picking error probability on pick-
ing empty bins;

• vAMR: average AMR’s velocity considered (m/s);

• NAGV : number of AGVs available for the kitting operation;

• vAGV : average AGV’s moving velocity considered (m/s);

• LKits: maximum number of kit boxes that AGVs can support;
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• Bg: parameter describing the image acquisition performed in the back-
ground;

• m: parameter describing the electrical power of the AGV in function of the
weight transported (W/kg);

• b: parameter describing the electrical power of the AGV when it is empty
(W).

• Mkit: maximum weight supported in the kit box (kg);

• Mi: weight of SKU i (kg);

• Volkit: maximum volume supported in the kit box (m3);

• Voli: volume of SKU i (m3);

• BWi: Bin’s width of SKU i (m);

• ni: number of components of SKU i in the bill of materials;

• Ni: number of components of SKU i in one full bin;

• Nlevels: number of levels in the racks present in the robotic kitting area;

• S: standard spacing between bins in the racks (m);

• tBOL: time needed for the AGV from the warehouse to the border of line (s);

• F: Number of facades in the warehouse.

Decision Variables

• Nkits: Number of kits carried by the AGV on each trip to the BOL;

• NAGV_trips: Number of AGV trips to deliver all the kits to the BOL;

• CT: Total cycle time of the robotic kitting process (s);

• P: Electrical power required for operating the AGVs (s).

Integer Programming Model

minimize E = P ·
(
TAGV_travel + TBOL · NAGV_trips

)
(5.1)

Subject to:

CT ≥ Tkit_prep + Timage + TAMR_pick + TAMR_travel + TAGV_travel + Tbin_rem (5.2)

CT ≤ Tlim (5.3)

Tkit_prep = Nkits · tkp (5.4)
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Timage =
Z

∑
i=1

tim · (1 + PE)(1 − Bg) (5.5)

TAMR_pick =
Z

∑
i=1

tp_i · ni · (1 + PE) (5.6)

TAMR_travel =
∑Z

i=1 BWi + S
Nlevels · vAMR

(5.7)

TAGV_travel =
∑Z

i=1 BWi + S
Nlevels · vAGV · F

(5.8)

Tbin_rem =
Z

∑
i=1

ni · tbin
Ni

· (1 + PEbin) (5.9)

Nkits ≥
∑Z

i=1 ni · Mi

Mkit
(5.10)

Nkits ≥
∑Z

i=1 ni · Voli
Volkit

(5.11)

NAGV_trips ≥
Nkits

Lkits · NAGVs
(5.12)

P = (m · (Lkits · Mkit) + b) · NAGVs (5.13)

Nkits, NAGV_trips, CT, NAGVs ≥ 0 (5.14)

The objective function (5.1) aims to find the optimal required energy for AGV to
take the kits to the BOL, considering an arrangement of kits on the AGVs and the
allocation of kits to AGVs that minimizes this electrical energy, where it is based
on the relation between electrical energy and Power E = P · t, where the time
depends on the number os AGV trips performed. The process becomes more effi-
cient by minimizing energy consumption, reducing the energy impact of kitting,
and improving overall production efficiency for automotive manufacturers.

The cycle time of the kitting process is given in (5.2): the five operations are con-
sidered, defining the minimum value for the kitting cycle time. As the kitting
operations need to occur in a time frame compatible with all the other activities
in the automotive manufacturer, the maximum duration is defined, limiting the
value of the cycle time in (5.3). In view of each kitting process formulation and
taking into account the assumptions presented in Table 5.1, a set of constraints is
defined, where Equation 5.4 characterizes the time needed by the AMR to pre-
pare the AGV with the kit boxes to accommodate the SKUs present in the BOM,
considering the time for each kit box preparation, applied to all the kit boxes
needed. Equation 5.5 gives the time required for all the SKUs to the AMR system
to capture and process a picture of the bin to locate the component to proceed
with the picking task, which is penalized by the fact that AMR can fail at picking
parts at first attempt, needing to take a new image of the bin. As part of this im-
age processing can happen in background time, the term (1 − bg) aims to reduce
this time when this scenario occurs. Equation 5.6 performs the determination of
the duration of time for the AMR to pick all the SKUs in the BOM, increased by
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Table 5.1: Assumptions considered for the Robotic Kitting System.

Operation Assumption
Kit -The AMR can pick the kit boxes;
Preparation -tkp includes traveling, picking, and placing the kit boxes in the AGV.
Picking -The AMR picks one part at a time;

-tpi includes picking, rotation, and placing the SKU i in the kit box;
-The AMR can fail at picking parts.

Vision -Image acquisition always occurs before picking apart;
-Image acquisition by the AMR can occur as a background process.

AMR Travel -The AMR moves through the entire storage area in each preparation cycle;
-vAMR in an average between its initial speed, limit speed, and final speed;
-The storage zone has two facades.

AGV Travel -The AGV is near the AMR to receive picked parts;
-When the AGV is full, it moves to the border of line;
-vAGV in an average between its initial speed, limit speed, and final speed;

Empty Bin - In a cycle time, it is consumed full bins;
Removal - The AMR can fail at picking empty bins;

- The evacuation ramps are located at the third level of the rack.

the factor (1 + PE) considering the failure rate obtained for the AMR to properly
pick components correctly, always using the same gripper to avoid the existence
of gripper setup times, where tAMR_pick_i depends on the SKU which is being
picked. Equation 5.7 defines the time needed for the AMR to travel through the
aisle, considering the total distance traveled by it, obtained by the width of the
bins and the average spacing between them, and its average velocity (also taking
into account the number of levels in the rack). Equation 5.8 considers the time the
AGV needs to travel with the kits completed to the Border of Line (BoL). Finally,
Equation 5.9 defines the duration of the bin removal process for all the empty bins
present, considering that the AMR can fail at picking container, where (1+ PEbin)
penalizes this time.

On the other hand, (5.10) and (5.11) represent operational constraints to assure
that the number of kit boxes mounted can stand the physical and imposed limi-
tations on the kit boxes relative to their maximum weight and volume capacities,
respectively. Equation 5.12 guarantees the determination of the total number of
AGV trips needed to complete the kitting process for all the Nkits mounted. Fi-
nally, (5.13) defines the electrical power consumed by the AGV for the weight it
can carry, Lkits · Mkit, taking into account a linear fit for a set of weights and re-
spective powers by an AGV, for a set of experimentally obtained data (Meißner
and Massalski, 2020).

5.2 Numerical Analysis of the Model

The IP model was implemented in a PC (Intel Core i7 @ 2.6 GHz and 32 GB RAM)
and using the CPLEX Python API. The results were obtained in milliseconds. A
case study based on the automotive manufacturer application is now tested, con-
sidering realistic data of 165 SKUs. The analysis shows that a significant portion
(more than 50%) of the overall process cycle time is spent on two key activities:
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picking the individual components and preparing the kits. The picking process
by the AMR accounted for approximately 743 seconds, while the kit preparation
took around 264 seconds. These findings emphasize the importance of streamlin-
ing and optimizing these stages to achieve overall process efficiency.

Additionally, several tests were conducted to understand the behavior of the
model concerning the input data and their impact on the energy required by
AGVs. The tests considered an AMR with an average velocity of 1 m/s and a 5%
picking error for both components and bins, while the AGV was defined to have
a speed of 0.8 m/s. The simulations also considered a 10 cm spacing between
containers and two facades in the warehouse to represent real-world conditions
accurately.

In Figure 5.3a, the relationship between energy consumption and the limit of kits
carried by AGVs is depicted, assuming the presence of two AGVs in the ware-
house. The graph demonstrates that energy consumption decreases as the AGV
can carry more kits on each trip. This suggests that consolidating more kits onto
a single AGV reduces the required number of trips, leading to lower energy con-
sumption. However, the potential energy savings become less significant beyond
a certain limit (approximately eight kits per AGV), indicating diminishing re-
turns.

(a) Energy VS Limit of Kit carried by AGVs.

(b) Energy VS Number of AGVs available.

Figure 5.3: Energy Consumption in the Robotic Kitting Process.
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Figure 5.3b illustrates the relationship between energy consumption and the num-
ber of AGVs. Considering that each AGV consumes energy while traveling and
performing kitting tasks, a higher number of AGVs require more energy to sup-
port their operations; the energy is penalized because the reduction in the num-
ber of trips performed doesn’t compensate for the increase in electrical power
required by having more AGVs. On the other side, for few AGVs available, as
the number of AGVs increases, the energy consumption doesn’t vary consider-
ably, which was expected because adding an AGV reduces the number of trips
performed. Performing a quadratic approximation to the data, it is observed that
for the 165 SKUs and 88 kits being created, the optimal number of AGVs would
be two or three.

The results highlight the trade-off between the number of kits per AGV and the
number of AGVs needed for efficient kitting operations. A careful balance must
be struck to optimize energy consumption while ensuring timely and accurate
kit assembly in the cycle time available. The IP model allows decision-makers to
determine the optimal combination of these factors based on their specific opera-
tional requirements and constraints.
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Conclusion

This concluding chapter aims to provide a broad analysis of the work undertaken
in this dissertation, where it summarizes the main accomplishments, drawing
key findings from the research presented in preceding chapters. Furthermore,
it discusses the practical contributions and managerial insights from the models
developed, showing their significance in the overall context of the field. Addi-
tionally, this chapter identifies potential future research and development areas,
outlining possible directions for further exploration and improvement. This work
aimed to contribute to operations research and inspire advancements in innova-
tive kitting layouts.

Kitting demonstrated to be a successful strategy for parts feeding to assembly
lines featuring high variation, particularly in the automotive industry. High vari-
ation requires an increased storage space near the Border of Line (BoL), extending
travel and search times. Kitting mitigates these inefficiencies by decreasing travel
times, optimizing storage space at the BoL, and consequently enhancing the qual-
ity of the End Products (EPs).

6.1 Main Accomplishments

After analyzing the research literature on the different explored types of kitting
systems, understanding the challenges faced by the automotive factory located
in Portugal, and perceiving the limits of previous kitting layouts, two proof of
concept layouts were presented to improve the kitting process.

The Asynchronous Hybrid Kitting (AHK) System layout with two semi-independent
kitting areas, taking the benefits of both the robotic performance on kitting and
the fast adaptability of the human operators, presenting the following features:

• Pickers traveling time reduced, having a nearby AGV to serve a box to
place the picked components, allowing separation of picking components
from the storage rack and moving components to the correct kits;

• Flexibility increased, in the case of introduction of a new EP, new compo-
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nents can be allocated to the adequate kitting zone;

• Improved Capacity, with the tugger train working as a buffer, allowing
both robotic and collaborative kitting areas to complete different kits simul-
taneously;

• Enhanced quality control, having the picker responsible for selecting the
components and a sorting area where a thorough double-check is performed
to ensure the kits contain all the necessary parts. This reduces the probabil-
ity of sending incomplete kits to the BoL or incorrect parts being included
in a kit.

Already in the Sequential Hybrid Kitting (SHK) System, this layout brings the
concept of the production line to the kit formation process, presenting the follow-
ing features:

• Compact layout, where AGVs carry the final kit boxes, eliminating the need
to allocate space for the sorting operation, making this kitting system ideal
for warehouses with more demanding space limitations;

• Reduced number of operations, improving the overall process efficiency
without needing to sort the components involving the picking from the
AGVs to the kit;

• Simpler technical configuration, compared to the AHK System since there
are only AMRs and AGVs operating, eliminating the need for programming
and setup of a Tugger train in the warehouse, being that role performed by
the AGVs.

6.2 Contributions and managerial insights

In the context of the developed models, several innovations have been intro-
duced, advancing upon existing literature in the following key aspects:

1. Impact of the AMRs and Human operators allocated to the kitting area: A
novel aspect of the present models is exploring how the number of AMRs
and human operators impacts the overall cycle time of the kitting process,
providing valuable insights into workforce allocation and resource opti-
mization.

2. Distance modeling for pickers: It introduced a new approach to modeling
the distances traveled by pickers along the storage racks, offering a more
accurate representation of the real-world operational dynamics, accounting
for varying distances between storage locations and the empty space be-
tween component bins due to standard rack width sizes.
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3. Evacuation time for empty bins: The models present the evacuation time
for bins, considering that the evacuation area is consistently located on the
last level of the racks. This realistic depiction ensures that the evacuation
process aligns with practical scenarios.

4. AGV travel time modeling: The inclusion of AGV travel time in both kit-
ting areas is a notable contribution, accounting for the time required for
AGVs to transport components, enhancing the overall practicality of the
models.

5. Gripper changing time for the AMR and the manipulator: The time to
change the grippers for the AMRs and fixed manipulator was modeled,
considering the calibration process necessary for seamless transitions. This
detail addresses the practical challenges of such setups.

6. Pick-to-Light system integration: The models incorporate the pick-to-light
system to support human operators in the component picking process, en-
hancing human picking efficiency and taking into account the inherent pro-
cesses in this system.

7. Kit transport time: Another significant addition is the inclusion of the time
required to send kits to the BoL. This ensures that the entire kitting process
is comprehensively captured, from assembly to delivery of kits.

These innovations contribute to a more holistic and practical understanding of
kitting operations, enabling better decision-making, resource allocation, and pro-
cess optimization in real-world manufacturing environments.

Regarding the obtained results, it was possible to conduct a sensitivity analysis to
study the impact of various factors on cycle times. The investigation included the
effect of batch size, with a tendency for a 10% increase in total cycle time for each
unit increase in BS for larger batch sizes. It also considered the impact of picking
errors in the robotic kitting areas, which led to a reallocation of SKUs between
kitting areas, the influence of simultaneous picking in the collaborative kitting
areas by operators, highlighting its considerable impact on SKU allocation ad-
justments and its contribution to reducing cycle times. Additionally, the impact
of the number of AMRs and operators in the kitting areas was examined, reveal-
ing that allocating an additional operator provides more competitive advantages
in terms of total cycle time than adding another AMR.

For specific characteristics of each system, in the AHK System, a sensitivity anal-
ysis was conducted regarding collaboration in the sorting zone, significantly im-
pacting the sorting operation in the robotic area. Thus, this parameter should be
set as low as possible while ensuring operator safety during sorting operations.
For the SHK System, the parameter α was analyzed, highlighting the importance
of implementing a system that ensures kits are completed in a manner similar to
First Come, First Served (FCFS) system to always have AGVs with dispatched
kits from the robotic to the collaborative area at the beginning, allowing for a
small α.
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Through scenario analysis, constructive aspects were obtained, such as that opti-
mal assignment for both kitting systems resulted in lower total cycle times, with
an advantage for the Sequential system.

These results served as an additional decision support mechanism to understand
the differences between the presented hybrid kitting systems for kit preparation,
showcasing their characteristics and behaviors in response to the available data.
Indeed, the slow speed of AMRs, which results in longer SKU picking times com-
pared to operators, the need to change grippers due to the irregular shapes of
components in the automotive industry, and the time required for image acqui-
sition and processing, considering the complexity of the real environment sur-
rounding AMRs, leave room for technological improvement. This improvement
in robotics used for kit preparation can enhance the competitiveness of robotic
kitting areas, enabling a reduction in the total cycle time of the process.

In chapter 5, it was proposed an IP model offering valuable insights into the
energy demand of AGVs in the robotic kitting process. By considering various
operational parameters, manufacturers can enhance the adaptability of their au-
tomated kitting processes in response to the number of AGV trips performed and
the number of kits carried by the AGVs. Implementing the model with adequate
datasets can lead to reduced energy consumption, increased productivity, and
consequently cost savings in the automotive manufacturing industry. This re-
search contributes to industrial automation and logistics advancements, paving
the way for more sustainable kitting operations, setting the stage for a broad ex-
ploration of the energy dynamics of AGVs in modern warehouses in the context
of Industry 4.0, and serving as a prelude to the in-depth investigation that fol-
lows to uncover new insights that will bolster the sustainability and efficiency of
modern manufacturing practices.

6.3 Future Work

In terms of future research, it would be compelling to use the models to develop
and apply them to new configurations, such as parts-to-picker or even Auto-
mated Storage/Retrieval Systems (AS/RSs) in one or both the robotic and col-
laborative kitting areas, for comparison with new and different scenarios. Addi-
tionally, studying the impact of errors related to incorrect bin replenishment in
the shelves, modeling incorrect picking by the AMR on the cycle time, and dam-
ages occurring to the components during the kitting operations are aspects that
will require further investigation to understand its impact on the cycle time of
the process. In the collaborative side of kitting systems, it would be valuable to
statistically map picking errors since the models developed did not account for
picking errors by the human operator.

Applying the models in different industry settings, such as e-commerce ware-
houses or other sectors dealing with customizable EPs, can provide valuable in-
sights into their generalizability and adaptability beyond the automotive man-
ufacturing context. This exploration can help determine if the principles and
methodologies developed in this dissertation can be extended to optimize kitting
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processes in a broader range of industries, thereby contributing to the advance-
ment of logistics and intralogistics operations in various domains.

The models proposed are quick to obtain solutions, but for applications with very
large instances, heuristics could be used for both of the considered hybrid kitting
systems. Other alternative approaches should be the development of models
that provide a better understanding of the flow of components throughout the
ongoing operations of the kitting areas. This would enable enhanced traceabil-
ity within the process and the warehouse. Furthermore, the application of ma-
chine learning models (for example supervised learning models) could improve
the successfulness of the MIP models developed by providing better estimates to
forecast parameters such as the demand of Stock Keeping Units (SKUs), instead
of being a deterministic parameter as it was considered.

Regarding the Fully Robotic Kitting Systems presented in Chapter 5, future re-
search should focus on exploring additional parameters and constraints to fine-
tune the model and align it to consider more energy-related aspects inherent to
kitting operations. This includes mapping the energy consumption of AMRs in
both the displacement and component picking operations, the energy consump-
tion of the tugger train, and the pick-to-light systems. Another interesting aspect
for future research is studying the impact of the speed of both AMRs and AGVs
on the efficiency of the kitting process and energy consumption.

In conclusion, it becomes increasingly clear that embracing innovative opera-
tional research models, whether through advanced MIP approaches or through
heuristic models, holds the key to unlocking the full potential of hybrid kitting
layouts in the "warehouse of the future". These models, when tailored to analyze
processes at a granular level, promise to unveil the intricate materials flow within
the warehouses in Industry 4.0. With this knowledge in hand, we can boldly steer
towards a future where efficiency, adaptability, and sustainability converge to re-
define the very essence of automated warehousing and logistics.
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Capgemini (2020). How automotive organizations can maximize the smart
factory potential. https://www.capgemini.com/wp-content/uploads/2020/
02/Report-%E2%80%93-Auto-Smart-Factories.pdf. Accessed on January 12,
2023.

Caputo, A. C., Pelagagge, P. M., and Salini, P. (2015a). A decision model for
selecting parts feeding policies in assembly lines. Industrial Management & Data
Systems, 115(6):974–1003.

Caputo, A. C., Pelagagge, P. M., and Salini, P. (2015b). A model for kitting opera-
tions planning. Assembly Automation, 35(1):69–80.

Caputo, A. C., Pelagagge, P. M., and Salini, P. (2018). Economic compari-
son of manual and automation-assisted kitting systems. IFAC-PapersOnLine,
51(11):1482–1487.

Caputo, A. C., Pelagagge, P. M., and Salini, P. (2021). A model for planning and
economic comparison of manual and automated kitting systems. International
Journal of Production Research, 59(3):885–908.

Coelho, F., Relvas, S., and Barbosa-Póvoa, A. P. F. (2018). Simulation of an order
picking system in a manufacturing supermarket using collaborative robots. In
ECMS, pages 83–88.

Cohen, Y., Naseraldin, H., Chaudhuri, A., and Pilati, F. (2019). Assembly systems
in industry 4.0 era: a road map to understand assembly 4.0. The International
Journal of Advanced Manufacturing Technology, 105:4037–4054.

Fager, P., Calzavara, M., and Sgarbossa, F. (2019a). Kit preparation with cobot-
supported sorting in mixed model assembly. IFAC-PapersOnLine, 52(13):1878–
1883.

Fager, P., Calzavara, M., and Sgarbossa, F. (2020a). Modelling time efficiency of
cobot-supported kit preparation. The International Journal of Advanced Manufac-
turing Technology, 106:2227–2241.

112

https://www.capgemini.com/wp-content/uploads/2020/02/Report-%E2%80%93-Auto-Smart-Factories.pdf
https://www.capgemini.com/wp-content/uploads/2020/02/Report-%E2%80%93-Auto-Smart-Factories.pdf


References

Fager, P., Hanson, R., and Fasth-Berglund, Å. (2020b). Dual robot kit prepara-
tion in batch preparation of component kits for mixed model assembly. IFAC-
PapersOnLine, 53(2):10627–10632.

Fager, P., Hanson, R., Fasth-Berglund, Å., and Ekered, S. (2021a). Supervised
and unsupervised learning in vision-guided robotic bin picking applications
for mixed-model assembly. Procedia CIRP, 104:1304–1309.

Fager, P., Hanson, R., Medbo, L., and Johansson, M. I. (2019b). Kit preparation for
mixed model assembly–efficiency impact of the picking information system.
Computers & Industrial Engineering, 129:169–178.

Fager, P., Sgarbossa, F., and Calzavara, M. (2021b). Cost modelling of onboard
cobot-supported item sorting in a picking system. International Journal of Pro-
duction Research, 59(11):3269–3284.

Fragapane, G., De Koster, R., Sgarbossa, F., and Strandhagen, J. O. (2021). Plan-
ning and control of autonomous mobile robots for intralogistics: Literature re-
view and research agenda. European Journal of Operational Research, 294(2):405–
426.

Gaub, H. (2016). Customization of mass-produced parts by combining injection
molding and additive manufacturing with industry 4.0 technologies. Reinforced
Plastics, 60(6):401–404.

Grosse, E. H., Glock, C. H., and Neumann, W. P. (2017). Human factors in order
picking: a content analysis of the literature. International journal of production
research, 55(5):1260–1276.

Hanson, R. and Brolin, A. (2013). A comparison of kitting and continuous sup-
ply in in-plant materials supply. International Journal of Production Research,
51(4):979–992.

Hanson, R. and Medbo, L. (2016). Aspects influencing man-hour efficiency of kit
preparation for mixed-model assembly. Procedia CIRP, 44:353–358.

Hanson, R., Medbo, L., Assaf, M., and Jukic, P. (2018). Time efficiency and phys-
ical workload in manual picking from large containers. International Journal of
Production Research, 56(3):1109–1117.

Holz, D., Topalidou-Kyniazopoulou, A., Rovida, F., Pedersen, M. R., Krüger, V.,
and Behnke, S. (2015). A skill-based system for object perception and manip-
ulation for automating kitting tasks. In 2015 IEEE 20th Conference on Emerging
Technologies & Factory Automation (ETFA), pages 1–9.

Jaghbeer, Y., Hanson, R., and Johansson, M. I. (2020). Automated order picking
systems and the links between design and performance: a systematic literature
review. International Journal of Production Research, 58(15):4489–4505.

Javied, T., Bakakeu, J., Gessinger, D., and Franke, J. (2018). Strategic energy man-
agement in industry 4.0 environment. In 2018 Annual IEEE International Systems
Conference (SysCon), pages 1–4. IEEE.

113



Chapter 6

Kara, I., Kara, B. Y., and Yetis, M. K. (2007). Energy minimizing vehicle rout-
ing problem. In Combinatorial Optimization and Applications: First International
Conference, COCOA 2007, Xi’an, China, August 14-16, 2007. Proceedings 1, pages
62–71. Springer.

Khajavi, S. H., Partanen, J., and Holmström, J. (2014). Additive manufacturing in
the spare parts supply chain. Computers in industry, 65(1):50–63.

Krueger, V., Rovida, F., Grossmann, B., Petrick, R., Crosby, M., Charzoule, A.,
Garcia, G. M., Behnke, S., Toscano, C., and Veiga, G. (2019). Testing the vertical
and cyber-physical integration of cognitive robots in manufacturing. Robotics
and computer-integrated manufacturing, 57:213–229.

Lamballais, T., Roy, D., and De Koster, M. (2017). Estimating performance in
a robotic mobile fulfillment system. European Journal of Operational Research,
256(3):976–990.

Lamballais Tessensohn, T., Roy, D., and De Koster, R. B. (2020). Inventory alloca-
tion in robotic mobile fulfillment systems. IISE transactions, 52(1):1–17.

Li, X., Hua, G., Huang, A., Sheu, J.-B., Cheng, T., and Huang, F. (2020). Storage
assignment policy with awareness of energy consumption in the kiva mobile
fulfilment system. Transportation Research Part E: Logistics and Transportation
Review, 144:102158.

Limère, V., Landeghem, H. V., Goetschalckx, M., Aghezzaf, E.-H., and McGinnis,
L. F. (2012). Optimising part feeding in the automotive assembly industry:
deciding between kitting and line stocking. International Journal of Production
Research, 50(15):4046–4060.

Meißner, M. and Massalski, L. (2020). Modeling the electrical power and energy
consumption of automated guided vehicles to improve the energy efficiency of
production systems. The International Journal of Advanced Manufacturing Tech-
nology, 110:481–498.

Polydoros, A. S., Großmann, B., Rovida, F., Nalpantidis, L., and Krüger, V. (2016).
Accurate and versatile automation of industrial kitting operations with skiros.
In Towards Autonomous Robotic Systems: 17th Annual Conference, TAROS 2016,
Sheffield, UK, June 26–July 1, 2016, Proceedings 17, pages 255–268. Springer.

Qiu, L., Wang, J., Chen, W., and Wang, H. (2015). Heterogeneous agv routing
problem considering energy consumption. In 2015 IEEE International Conference
on Robotics and Biomimetics (ROBIO), pages 1894–1899. IEEE.

Rieder, M., Bonini, M., Verbeet, R., Urru, A., Bartneck, N., and Echelmeyer, W.
(2021). Evaluation of human-robot order picking systems considering the evo-
lution of object detection. In 2021 IEEE International Conference on Industrial
Engineering and Engineering Management (IEEM), pages 1–8. IEEE.

Sali, M., Sahin, E., and Patchong, A. (2015). An empirical assessment of the
performances of three line feeding modes used in the automotive sector: line
stocking vs. kitting vs. sequencing. International Journal of Production Research,
53(5):1439–1459.

114



References

Schmid, N. A., Bao, W., Derhami, S., Montreuil, B., and Limère, V. (2021).
Optimizing kitting cells in mixed-model assembly lines. IFAC-PapersOnLine,
54(1):163–168.

Schmid, N. A. and Limère, V. (2019). A classification of tactical assembly line
feeding problems. International Journal of Production Research, 57(24):7586–7609.

Sellers, C. and Nof, S. (1987). Part kitting in robotic facilities. In Robotics and
Material flow, pages 163–174.

Sellers, C. and Nof, S. (1989). Performance analysis of robotic kitting systems.
Robotics and computer-integrated manufacturing, 6(1):15–24.

Sgarbossa, F., Romsdal, A., Johannson, F. H., and Krogen, T. (2020). Robot
picker solution in order picking systems: an ergo-zoning approach. IFAC-
PapersOnLine, 53(2):10597–10602.

Staudt, F. H., Alpan, G., Di Mascolo, M., and Rodriguez, C. M. T. (2015). Ware-
house performance measurement: a literature review. International Journal of
Production Research, 53(18):5524–5544.

Tompkins, J., White, J., Bozer, Y., and Tanchoco, J. M. (2010). Facilities Planning.
John Wiley & Sons, Inc, 4 edition.

Tung, Y.-S., Bishop, K., Hayes, B., and Roncone, A. (2022). Bilevel optimization
for just-in-time robotic kitting and delivery via adaptive task segmentation and
scheduling. In 2022 31st IEEE International Conference on Robot and Human Inter-
active Communication (RO-MAN), pages 524–531.

Vanheusden, S., van Gils, T., Ramaekers, K., Cornelissens, T., and Caris, A. (2023).
Practical factors in order picking planning: state-of-the-art classification and
review. International Journal of Production Research, 61(6):2032–2056.

Vieira, M., Moniz, S., Gonçalves, B. S., Pinto-Varela, T., Barbosa-Póvoa, A. P., and
Neto, P. (2022). A two-level optimisation-simulation method for production
planning and scheduling: the industrial case of a human–robot collaborative
assembly line. International Journal of Production Research, 60(9):2942–2962.

Wang, S., Wan, J., Li, D., and Zhang, C. (2016). Implementing smart factory of
industrie 4.0: an outlook. International journal of distributed sensor networks,
12(1):3159805.

Winkelhaus, S., Zhang, M., Grosse, E. H., and Glock, C. H. (2022). Hybrid order
picking: A simulation model of a joint manual and autonomous order picking
system. Computers & Industrial Engineering, 167:107981.

Zhou, B. and He, Z. (2021). A static semi-kitting strategy system of jit material
distribution scheduling for mixed-flow assembly lines. Expert Systems with Ap-
plications, 184:115523.

Žulj, I., Salewski, H., Goeke, D., and Schneider, M. (2022). Order batching and
batch sequencing in an amr-assisted picker-to-parts system. European Journal of
Operational Research, 298(1):182–201.

115





Appendices

117





Appendix A

Robotic Kitting Assumptions

Operation Assumption
Picking/Placing - The robotic manipulator picks one part at a time.

- The bins are small enough to consider that
parts stored in the same bin have a similar pick-
ing/placing times duration.
- Manipulator rotation time is included in the pick-
ing/placing time.
- The time needed to change parts orientation to
better fit in the AGV box is included in the pick-
ing/placing time.
- The AMR can fail at picking parts at first attempt.

Image Acquisition - The time duration for image acquisition is an aver-
age value and equal to all bins.
- Image acquisition occurs always before picking
apart.
- Image acquisition by computer vision systems can
occur as a background process.

AMR Displacement - The robotic kitting area can have one or more AMR
operating simultaneously.
- Storage racks have bins added to them so that they
can be achievable in AMR’s path.
- The AMR moves through the entire storage area in
each preparation cycle.
- The AMR’s speed takes into account an average
between its initial speeds, limit speed, and final
speeds.
- No travel speed is needed to remove bins from a
rack in the same position but in different rack levels.
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AGV Displacement - The AGV should be available near the AMR, ready
to receive the picked parts.
- The AGV’s speed takes into account an average
between its initial speeds, limit speed, and final
speeds.
- Multiple AGVs, if present, are synchronized to
maintain smooth operations and avoid collisions or
congestion.
- Potential maintenance requirements and planned
downtime for the AGVs to maintain operational ef-
ficiency occur outside the cycle time.
- The AGV has a limited capacity in weight and vol-
ume.

For the Asynchronous Hybrid Kitting (AHK) Sys-
tem:
- Once the AGV is fully loaded, it moves to the sort-
ing zone for further processing.
- A new AGV is stationed near the AMR to promptly
replace the fully loaded AGV and continue the kit-
ting process.

For the Sequential Hybrid Kitting (SHK) System:
- When the kit is completed with the parts allocated
to the robotic area, the AGV moves to the collabora-
tive kitting area.

Empty Bin Removal - In a cycle time it is consumed full bins.
- The time for picking empty bins is considered an
average value for all types of bins.
- The evacuation ramps are located at the beginning
or at the end of a rack.
- The AMR can fail at picking empty bins on the first
attempt.

Sorting For the AHK System:
- The fixed manipulator sorts one part at a time.
- The tugger train already has the kit boxes placed
and ready to receive parts.
- The fixed manipulator can fail at picking parts on
the first attempt.
- The tugger train remains stationary during the po-
sitioning of the parts.
- The manipulator and operator can work simulta-
neously.
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Packaging Removal - The Manipulator can remove interlayer sheets and
dividers.
- The Manipulator can fail at picking interlayer
sheets and dividers.
- No travel time is needed to remove interlayer
sheets and dividers.
- The number of items is defined considering that
parts consumed are from full bins.

Gripper Change - The AGV needs to change the gripper to pick dif-
ferent parts, packaging items, and empty bins.
- The fixed manipulator needs to pick parts.
- The time required to change the gripper is the
same for both the AMR and the fixed manipulator
when picking a specific part.
- The gripper change time includes disconnecting
the current end effector, connecting the new end ef-
fector, and any additional time required to calibrate
or adjust the new end effector.
- The time needed for a single tool changes before
picking an item, which is influenced by the calibra-
tion parameter Cal.
- Incorporating storage assignment rules may help
optimize the efficiency of tool changes by grouping
SKUs that can be picked with the same tool.
- The grippers’ holder is connected to the base of the
robotic arms so there is no travel time needed.

Table A.1: Assumptions considered for the Robotic Kitting Area.
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Collaborative Kitting Assumptions

Operation Assumption
Kit Box Preparation1 For the Asynchronous Hybrid Kitting (AHK) Sys-

tem:
- The human operator in the sorting zone prepares
the kit boxes in the tugger train.
- Empty kit boxes are within reach for the operator
in the sorting zone.
- tkp includes the time to pick the kit boxes and place
them in the correct position in the tugger train.
- The human operator can prepare multiple kit
boxes at the same time.

Pick-to-Light - The time duration for pick-to-light is an average
value and equal to all modules.
- Pick-to-light module activation always occurs be-
fore the operator’s picking activity.
- Potential communication and picking detection is-
sues may affect the pick-to-light system.
- Pick-to-light module batteries are changed during
maintenance hours, not in the kitting cycle time.
- Operators are alerted to replace pick-to-light mod-
ule batteries before they run out of power.

Picking - The human operator can pick multiple parts simul-
taneously.
- The bins are small enough to consider that parts
stored in the same bin have a similar picking time.
- The time needed to change parts orientation to bet-
ter fit in the AGV box is included in the picking
time.
- The operator doesn’t fail at picking components.

1Operation occurs in the collaborative kitting area only for the Asynchronous Hybrid Kitting
(AHK) System.
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Operator Displacement - The collaborative kitting area allows for the pres-
ence of one or more operators working simultane-
ously.
- Storage racks have bins arranged on different lev-
els to ensure easy access by the operator.
- The operator traverses the entire storage area dur-
ing each preparation cycle.
- The operator’s speed is the average value between
their initial, limit, and final speeds.
- No additional time is required to remove bins from
model’s parameters within the same position.
- No obstacles or obstructions affect the operator’s
movement.

AGV Displacement - The AGV should be available near the Operator,
ready to receive the picked parts.
- The AGV’s speed is the average value between its
initial, limit, and final speeds.
- Multiple AGVs, if present, are synchronized to
maintain smooth operations and avoid collisions or
congestion.
- Potential maintenance requirements and planned
downtime for the AGVs to maintain operational ef-
ficiency occur outside the cycle time.
- The AGV has a limited capacity in weight and vol-
ume.

For the AHK System:
- Once the AGV is fully loaded, it moves to the sort-
ing zone for further processing
- A new AGV is stationed near the operator to
promptly replace the fully loaded AGV and con-
tinue the kitting process.

For the Sequential Hybrid Kitting (SHK) System:
- When the kit is completed with the parts allocated
to the collaborative area, the AGV leaves the kitting
area.

Empty Bin Removal - In a cycle time, full bins are consumed.
- The time for picking empty bins is considered an
average value for all types of bins.
- The evacuation ramps can be located at the begin-
ning, middle, or at the end of a rack.
- The operator doesn’t fail at picking empty bins.
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Sorting For the AHK System:
- The operator can sort multiple parts simultane-
ously.
- The tugger train already has the kit boxes placed
and ready to receive parts.
- The human operator doesn’t fail at picking parts
to sort.
- The tugger train remains stationary during the po-
sitioning of the parts.
- The manipulator and operator can work simulta-
neously.

Packaging removal - The operator can remove all packaging items.
- The Manipulator can fail at picking interlayer
sheets and dividers.
- No travel time is needed to remove packaging
items.
- The number of items is defined considering that
parts consumed are from full bins.

Table B.1: Assumptions considered for the Collaborative Kitting Area.
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Other Kitting Assumptions

Operation Assumption
Tugger Train For the Asynchronous Hybrid Kitting (AHK) Sys-

tem:
- The tugger train is positioned between the robotic
and the collaborative kitting areas to receive the kit
boxes.
- The tugger train can carry and transport multiple
kits.
- The warehouse can have multiple tugger trains
available to allocate to the kitting area.
- All the kit boxes can be placed on the tugger train,
with appropriate places to place them.
- After leaving the kitting area, the tugger train
stops at workstations in the Border of Line (BoL) to
deliver the kits.
- The tugger train is fully operational when allo-
cated to the kitting area in order to deliver kits for
the BoL.

Kit Box Preparation For the Sequential Hybrid Kitting (SHK) System:
- A human operator, located before the robotic kit-
ting area, prepares the kit boxes in the AGVs.
- The AGV can carry and transport one kit.
- Empty kit boxes are within reach for the operator,
so no travel time is needed to place the kit box.
- tAGV_kp includes the time to pick the kit boxes and
place them in the correct position in the AGV.
- The human operator can make the operation faster
picking multiple kit boxes at the same time.
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AGVs to deliver kits For the SHK System:
- When the kit on the AGV is completed in the col-
laborative kitting area, the AGV can start the trip to
deliver it to the correct workstation in the BoL.
- tAGV_delivery is the average time taken by an AGV
to deliver a kit box to the BoL.
- The AGVs are fully operational when allocated to
transport and deliver kits for the BoL.

Table C.1: Assumptions considered for operations outside the robotic and collab-
orative kitting areas.
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Mathematical demonstration of the
distance traveled by the AGV

The following appendix provides a demonstration of how the relationship be-
tween the distance traveled by the AGV and the distance traveled by the picker
(either being an AMR or a human operator) was derived for the Asynchronous
Hybrid Kitting (AHK) System. By using integral theory relations, the follow-
ing formulation justifies the relationship, considering a statistical approach that
aligns with the observed behavior presented in Figure D.1.

Figure D.1: Graphic representing the relation between the distance traveled by
the AGV and the picker (AMR or Human Operator).

Average Value Theorem. If f is a continuous function on [a,b], then its average value
on [a,b] is given by the formula:

fAVG[a,b] =
1

b − a
·
∫ b

a
f (x)dx. (D.1)
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For the case when F = 1 (the picking area has only one facade), we know that
dAGV(dpicker) = dpicker. Therefore, we can express the average distance traveled
by the AGV as:

d̄AGV =
1

L − 0
·
∫ L

0
dAGV(dpicker) ddpicker =

=
1
L
·
∫ L

0
dpicker ddpicker =

=
1
L
·

d2
picker

2

∣∣∣∣L

0
=

1
L
·
[

L2

2
− 0

2

]
=

L
2 Q.E.D.

(D.2)

For the case when F = 2 (the picking area has two facades), we know that if
d = L

2 , we have dAGV(dpicker) = dAGV(L− dpicker), since the function in symmetric
around L

2 . To prove this, we need to demonstrate:

∫ L

0
f (x) dx = 2 ·

∫ L
2

0
f (x) dx (D.3)

Using the following steps:

∫ L

0
f (x) dx =

∫ L
2

0
f (x) dx +
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L
2

f (x) dx =

f (x)= f (L−x)
=
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2

0
f (x) dx +
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L
2
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=
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2

0
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f (y) · (−1) dy =

=
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2
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2

0
f (y) dy =

= 2 ·
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2

0
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(D.4)

In this way, we can determine the average distance traveled by the AGV in a
storage area with two facades:

d̄AGV =
1
L
·
∫ L

0
dAGV(dpicker) ddpicker =

=
1
L
· 2 ·

∫ L
2

0
dAGV(dpicker) ddpicker =

=
2
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·

d2
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2

∣∣∣∣ L
2

0
=

2
L
· L2

22 · 2
=

L
4 Q.E.D.

(D.5)
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Dataset considered for the models

Table E.1: Dataset considered for the general parameters.

Notation Description Value(s) Units
BS Number of End Products (EPs) prepared si-

multaneously
[1, 12] -

Z Total number of SKUs 165 -
A Total area available for the hybrid kitting

system
600 m2

Table E.2: Dataset considered for the components and bin parameters.

Notation Description Value(s) Units
ni Average quantity of SKU i in the BOM [1, 16] -
fi Frequency of usage of SKU i in the EPs [0.05, 1] -
BWi Storage bin width of SKU i [0.2, 0.6] m
Pi Number of components of SKU i in a com-

plete storage bin
[4, 200] -

ILi Number of interlayer sheets in a complete
bin of SKU i

[0, 7] -

Di Number of dividers in a complete bin of
SKU i

[0,2] -

Foi Number of foam protections in a complete
bin of SKU i

[0,1] -

PBi Number of plastic bags in a complete bin of
SKU i

[0,5] -

Voli Volume of SKU i [0.001, 0.026] m3

Mi Weight of SKU i [0.01, 1] kg
f easi Feasibility of SKU i for robotic picking 0 or 1 -
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Table E.3: Dataset considered for the robotic kitting area parameters.

Notation Description Value(s) Units
Bg Percentage of timage occuring in back-

ground
50% -

AWR Aisle’s width in the robotic kitting area 2 m
RDR Storage Rack’s depth in the robotic kitting

area
1 m

SR Horizontal spacing between two succes-
sive bins

0.1 m

RLR Standard rack Length in the robotic kitting
area

1.6 m

NR
levels Storage racks levels in the robotic kitting

area
2 -

FR Number of facades in the robotic kitting
area

2 -

PsR Picking sides in the robotic kitting area 1 -
AMR Number of AMRs working in the robotic

kitting area
[1,5] -

vAMR AMRs average velocity 0.6 m/s
vAGV AGVs average velocity 0.8 m/s
SortR Distance in the sorting zone traveled by the

AGV
1 m

tR
i SKU i picking time by the AMR/fixed ma-

nipulator
[4, 7] s

timage Average time for the AMR/fixed manipu-
lator to capture and process a single image

2 s

tR
bin Average time for the AMR to pick an empty

bin and dispose it in the evacuation zone
5 s

tR
s Average time for the fixed manipulator to

pick a part from the AGV to the kit box
3 s

tR
IL Average time for the AMR to remove an in-

terlayer sheet from a bin
7 s

tR
D Average time for the AMR to remove a di-

vider from a bin
6 s

tgripper_parts Average time for the AMR to change the
gripper to pick different parts

3 s

tgripper_pack Average time for the AMR to change the
gripper to pick packaging items

3 s

tgripper_bin Average time for the AMR to change the
gripper to pick empty bins

3 s

Cal Additional proportion of time needed for
gripper calibration

1% -

PEi Probability of occurring a picking error
during the initial attempt of picking SKU
i

1, 2, 5,..., 50% -

PEbin Probability of occurring a picking error of
empty bins

1, 2, 5,..., 50% -
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PEsort Probability of occurring a picking error
sorting parts

1, 2, 5,..., 50% -

PEinterlayer Probability of occurring a picking error of
interlayer sheets

1, 2, 5,..., 50% -

PEdivider Probability of occurring a picking error of
bin dividers

1, 2, 5,..., 50% -

Col Impact on collaborating with a human op-
erator on completing kits

1, 2, 5,..., 50% -

ARparts Parameter describing an efficient assign-
ment rule for changing the gripper to pick
a different part

90% -

ARpack Parameter describing an efficient assign-
ment rule for changing the gripper to pick
a different packaging item

90% -

ARbins Parameter describing an efficient assign-
ment rule for changing the gripper to pick
a bin

90% -

Table E.4: Dataset considered for the collaborative kitting area parameters.

Notation Description Value(s) Units
E fkit_prep Parameter describing the efficiency in

preparing kit boxes
10% -

AWC Aisle’s width in the collaborative kitting
area

2 m

RDC Storage Rack’s depth in the collaborative
kitting area

1 m

SC Horizontal spacing between two succes-
sive bins

0.1 m

RLC Standard rack Length in the collaborative
kitting area

1.2 m

NC
levels Number of levels in the storage racks in the

collaborative kitting area
4 -

FC Number of facades in the Collaborative kit-
ting area

2 -

PsC Picking sides in the collaborative kitting
area

1 -

OP Number of operators working in the collab-
orative kitting area

[1,5] -

v̄OP Human operators average velocity 0.5 m/s
v̄AGV AGVs average velocity 0.8 m/s
SortC Distance in the sorting zone traveled by the

AGV
1 m

simi Number components of SKU i that a hu-
man operator can pick simultaneously

[1, 6] -
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simpack Number of packaging items that an opera-
tor can pick simultaneously

2 -

tkp Average time for the operator to prepare a
single kit box

3 s

tp2l Average time required for the pick-to-light
system to send data packages to the mod-
ules

0.052 s

tobs Average time required for the operator to
locate and identify a single pick-to-light
module turned on

1 s

tC
i Time for the operator to pick SKU i [2,5] s

tC
bin Average time for the operator to pick an

empty bin and dispose of it in the evacu-
ation zone

2.5 s

tC
s Average time for the operator to pick a part

from the AGV to the kit box
3 s

tC
IL Average time for the operator to remove an

interlayer sheet from a bin
2 s

tC
D Average time for the operator to remove a

divider from a bin
2 s

tF Average time for the operator to remove a
foam protection from a bin

2 s

tPB Average time for the operator to remove a
plastic bag from a bin

4 s

ECcom Error correction factor related to additional
data packages resent

2.5% -

ECobs Error correction factor related to operator
failing to observe a turned-on module

5% -

ECdetect Error correction factor related to pick-
to-light module proximity sensor failure,
leading to the module’s light being turned
off incorrectly

1% -

ECsort Error correction factor related to the oper-
ator rectifying any mistakes by picking a
wrongly placed part from one kit box and
relocating it to the correct kit box;

1% -
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Table E.5: Dataset considered for the tugger train.

Notation Description Value(s) Units
TUGGER Tugger trains available 2 -
Trun Tugger train’s displacement time 1200 s
tstop Tugger train’s single stopping time 10 s
Nkits_MAX Tugger train kit capacity 16 -

Table E.6: Dataset considered for technical parameters.

Notation Description Value(s) Units
MAGV AGV’s maximum weight capacity 500 kg
VolAGV AGV’s maximum volume capacity 0.28 m3

Mkit Kit box’s maximum weight capacity 20 kg
Volkit Kit box’s maximum volume capacity 0.048 m3

tAGV_kp Average time required to prepare a kit box
into the AGV

2 s

tAGV_delivery Average time required for the AGV to de-
liver a kit on the Border of Line (BoL)

300 s
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