

Pedro Guilherme da Cruz Ferreira

THE IMPACT OF SOFTWARE AGING ON THE

POWER CONSUMPTION OF MOBILE DEVICES

Dissertation in the context of the Master in Informatics Engineering,

specialization in Software Engineering, advised by Professor João Ferreira

and presented to the Department of Informatics Engineering of the Faculty of

Sciences and Technology of the University of Coimbra.

September of 2023

DEPARTMENT OF INFORMATICS ENGINEERING

Pedro Guilherme da Cruz Ferreira

The impact of software aging on
the power consumption of mobile

devices

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. João Ferreira and
presented to the Department of Informatics Engineering of the Faculty of

Sciences and Technology of the University of Coimbra.

September 2023

Acknowledgements

I would like to express my gratitude to my friends for the unwavering support
and memorable moments they shared with me throughout this journey.

I extend my heartfelt appreciation to my advisor, Prof. João Ferreira, and the
entire Greenstamp project team for their invaluable assistance.

Last but certainly not least, I wish to thank my family, whose unwavering support
has been a constant throughout my life.

Funding

This work was financed by FEDER (Fundo Europeu de Desenvolvimento Re-
gional), from the European Union through CENTRO 2020 (Programa Operacional
Regional do Centro), under project CENTRO-01-0247-FEDER-047256 - Green-
Stamp: Mobile Energy Services.

v

Abstract

Mobile devices are used globally in people’s daily lives, and people spend, on av-
erage more than 3 hours a day on their smartphones, 90% of which are on mobile
applications. In this context, the battery life of mobile devices is an increasingly
important factor in consumer satisfaction, and the energy efficiency of mobile ap-
plications is something they take into account. Software aging is a cumulative
process known as the increasing degradation of the internal state of the software
during its operational cycle. This degradation is marked by mismanagement of
the available resources of the system. Mobile applications are equally affected
by this phenomenon, and it is expected that energy consumption can be affected,
and thus smartphones’ battery lives are affected as a consequence. Previous re-
search has explored the realms of software aging and the energy consumption of
mobile devices and applications. However, a distinctive aspect of our study is
its pioneering attempt to establish a connection between these two areas. Draw-
ing from methodologies and tools employed by prior researchers in the analysis
of software aging and battery consumption, we developed our own approach
aimed at uncovering a potential correlation between them. We conducted exper-
iments using an accelerated workload, simulating random user events on a se-
lection of 20 Android applications across four diverse categories. As part of our
data collection process, we gathered system performance indicators to monitor
the software aging process, in addition to collecting data on battery consump-
tion. Ultimately, owing to the subjective nature of the aging phenomenon, we ad-
dressed the aging variable using distinct variants, each contingent on the number
of aging conditions to which the system was exposed. Then, a statistical analysis
was conducted to seek a correlation between this variable and battery consump-
tion. Additionally, we explored whether there existed a noteworthy disparity in
this correlation among the various application categories, each characterized by
distinct energy and resource consumption profiles. Our analysis indicates that
in cases of stronger aging states, characterized by the presence of multiple aging
conditions in the system, only approximately half of the experiments exhibited
an increase in battery consumption when transitioning from non-aged states to
aged states. The primary category contributing to this increase was identified
as the social media category. Ultimately, our analysis led to the conclusion that,
based on our dataset, no significant correlation could be extrapolated, suggesting
that software aging does not significantly impact the battery consumption of mo-
bile devices. Instances where an increase in battery consumption was observed
were attributed to factors other than the aging status of the system.

Keywords

Software Aging; Battery Consumption; Mobile Devices; Android

vii

Resumo

Os dispositivos móveis são utilizados mundialmente no dia-a-dia das pessoas,
que passam em média mais de 3 horas por dia nos smartphones, 90% dos quais
são passados em aplicações móveis. Neste contexto, a vida útil da bateria dos
dispositivos móveis é cada vez mais um fator importante na satisfação dos uti-
lizadores e a eficiência energética de aplicações móveis é tida em conta. O envel-
hecimento de software é um processo cumulativo que se traduz na degradação
progressiva do estado interno do software durante o seu ciclo de funcionamento.
Essa degradação é caracterizada pela gestão inadequada dos recursos disponíveis
no sistema. As aplicações móveis também são afetadas por esse fenómeno, e é
expectável que o consumo de energia seja afetado, tendo como consequência um
impacto na vida útil das baterias dos smartphones. Os tópico do envelhecimento
de software e do consumo de energia de dispositivos e aplicações móveis já tinha
sido anteriormente investigado. No entanto, o nosso estudo tenta ser pioneiro na
medida em que pretende estabelecer uma ligação entre estas duas áreas. Partindo
das metodologias e ferramentas utilizadas por outros investigadores na análise
do envelhecimento de software e do consumo de bateria, desenvolvemos a nossa
própria abordagem com o objetivo de identificar uma possível correlação entre
ambos. Realizámos experiências utilizando uma carga de trabalho acelerada, que
simula eventos aleatórios dos utilizadores em 20 aplicações Android, distribuí-
das por quatro categorias distintas. O processo de recolha de dados consistiu
em monitorizar indicadores de desempenho do sistema para que fosse possível
acompanhar o seu processo de envelhecimento, além de recolher dados sobre o
consumo de bateria. Dado o caráter subjetivo do fenómeno de envelhecimento,
abordámos a variável de envelhecimento através de diferentes variantes, con-
soante o número de condições de envelhecimento a que o sistema estava sub-
metido em cada ocasião. Posteriormente, realizámos uma análise estatística com
o intuito de procurar uma correlação entre esta variável e o consumo de bate-
ria. Adicionalmente, investigámos se existia uma diferença significativa nesta
correlação entre as diversas categorias de aplicações, cada uma delas caracteri-
zada por perfis distintos de consumo energético de e recursos. A nossa análise
indica que, em casos de estados de envelhecimento mais acentuados, caracteriza-
dos pela presença de múltiplas condições de envelhecimento no sistema, apenas
cerca de metade das experiências registou um aumento no consumo de bateria
ao transitar de estados não envelhecidos para estados envelhecidos. A categoria
principal associada a esse aumento foi a categoria de redes sociais. Por fim, com
base no nosso conjunto de dado e respetiva análise, concluímos que não foi pos-
sível identificar uma correlação significativa, sugerindo que o envelhecimento de
software não tem um impacto significativo no consumo de bateria de dispositivos
móveis. Os casos em que se observou um aumento no consumo de bateria foram
atribuídos a fatores que não são o envelhecimento do sistema.

Palavras-Chave

Envelhecimento de software; Consumo de bateria; Dispositivos móveis; Android

ix

Contents

1 Introduction 1
1.1 Document structure . 2

2 Literature Review 3
2.1 Software faults classification . 3
2.2 Android OS . 5

2.2.1 Android OS Architecture . 5
2.2.2 Android Memory Management 6
2.2.3 Mobile Power Management 8

2.3 Measuring battery consumption on mobile devices 8
2.4 Software aging . 11

2.4.1 Aging indicators . 13
2.4.2 Measuring Software aging in Android 14

2.5 Related Work . 15
2.6 Gaps in the literature . 17

3 Methodology and Experimental Procedures 19
3.1 Preliminary Considerations . 19
3.2 Experimental Setup . 21
3.3 Development of Scripts . 22
3.4 Experimental Tests . 22
3.5 Selection of Android Applications 23
3.6 Execution of Experiments . 23
3.7 Data processing and Statistical Analysis 25

4 Results and analysis 29
4.1 Overall aging impact on battery usage 29
4.2 Categorized aging impact on battery usage 32
4.3 Discussion . 37

5 Planning 39
5.1 Work plan . 39
5.2 Challenges . 41

6 Conclusion 43
6.1 Future Work . 44

References 45

xi

Chapter 0

Appendix A Table with every experiment results 51

xii

Acronyms

ADaRTA Aging Detection and Rejuvenation Tool for Android.

ADB Android Debug Bridge.

APM Advance Power Management.

AR aging-related.

ARB aging-related bug.

ARF aging-related failure.

ART Android Runtime.

BMU Battery Monitoring Unit.

FSM Finite State Machine.

GC Garbage Collection.

HAL Hardware Abstraction Layer.

KPI Key Performance Indicators.

kswapd Kernel swap daemon.

LMK Low-memory killer.

mA milliamps.

mmapping Memory-mapping.

OS Operating System.

PSS Proportional Set Size.

RAM Random Access Memory.

RPC Remote Procedure Call.

RSS Resident Set Size.

SA Software aging.

SDK Software Development Kit.

xiii

Chapter 0

SNMP Simple Network Management Protocol.

TTAF time to aging-related failure.

USS Unique Set Size.

xiv

List of Figures

2.1 The fundamental chain of threats to dependability [16] 4
2.2 Venn diagram of software fault types [27] 5
2.3 "Chain of threats" for an aging-related failure [28] 12

3.1 Experimental methodology Flow Chart 19
3.2 Testbed . 21

4.1 Barplot of experiments with significant correlations (on left) and
Box plot of Correlation strength (on right) 30

4.2 Count of Significant Correlations by Aging Vector Version 31
4.3 Count graph of the game category. 33
4.4 Count plot (on left) and Box plot (on right) of the browser category. 34
4.5 Count plot (on left) and Box plot (on right) of the utility category. . 35
4.6 Count plot (on left) and Box plot (on right) of the social media cat-

egory. 36

5.1 Expected Gantt Chart . 40
5.2 Final Gantt Chart . 40

xv

List of Tables

2.1 Sets of aging indicators and corresponding confidence level. 15
2.2 Table of related work. 18

3.1 Workload throttle tests done and observed behavior. 23
3.2 Android application pool. 24
3.3 Device conditions for each experiment. 24
3.4 Aging conditions used to identify aged system states. 25

4.1 Experiment metrics per category. 32

xvii

Chapter 1

Introduction

Mobile devices are used globally in people’s daily lives, and it is estimated that
people spend, on average, more than 3 hours a day [29] on their smartphones,
with an increasing trend for each year that goes by [42]. It is also expected that
around 90% of the user’s screen time is spent on mobile applications [33]. In
this context, the battery life of mobile devices is an increasingly important factor
in consumer satisfaction. There are mobile applications with millions of down-
loads with the purpose of optimizing the battery consumption of devices, which
shows that users are interested in maximizing the battery duration of their mo-
bile devices. Thus, mobile applications must use energy capacity as efficiently as
possible.

Software aging (SA) is known as an increasing degradation of the internal state
of the software during its operational cycle. This is a cumulative process, just
like aging in humans, and the cumulative effects of successive occurrences of
errors directly influence the manifestation of aging-related failures. The system
mismanagement of available resources, such as improper locking of files, mem-
ory leaking, and unfinished threads, typically leads to this error accumulation.
These errors can be challenging to detect in the system development phase and
expensive to remove.

It is suspected that mobile applications that are affected by this phenomenon, due
to this bad management of resources, can also see an increase in the consumption
of energy and thus affecting the device battery life.

The main goal of this project is to investigate the effects of software aging on
mobile devices (specifically smartphones) and the impacts on energy consump-
tion. At the end of this investigation, we should be able to answer the following
research question:

RQ What is the impact of software aging on the energy consumption of smartphones?

In our pursuit of understanding the relationship between software aging and its
impact on battery consumption in the context of Android applications, we have
established an experimental process. For this purpose, we submitted Android ap-
plications to heavy workloads representative of user actions. We collected metrics

1

Chapter 1

related to the device’s memory usage and management mechanisms to detect ag-
ing patterns. In parallel, battery consumption was also measured. After this, we
searched for a correlation between aging and battery consumption using statisti-
cal tests such as Spearman’s Correlation Coefficient and Wilcoxon Rank Sum.

This work was developed in the context of the GreenStamp project, which aims
to investigate and develop innovative mechanisms for analyzing and cataloging
the energy efficiency of mobile applications integrated into app store processes.

1.1 Document structure

Until now, an introduction and contextualization of the problem were presented,
as well as the goals of this dissertation. This section intends to provide an overview
of the structure of this document and give some insight into what will be present
in each chapter.

Chapter 2 provides a review of relevant theoretical background on various topics
closely related to this research, as well as a discussion of prior research in this
field.

In Chapter 3, we present the structured methodology developed and implemented
throughout this research, along with a detailed explanation of the experimental
procedures employed.

Chapter 4 is dedicated to presenting the findings and conducting an in-depth
analysis.

Chapter 5 looks at the planning done and challenges that arose throughout this
investigation.

Finally, Chapter 6 serves as the concluding chapter of this dissertation, where we
offer remarks and reflections on the work conducted.

2

Chapter 2

Literature Review

This chapter presents an overview of all the topics necessary to understand this
document and reviews previous work related to the research conducted.

This section discusses the theoretical background that underpins this research.
This will include a review of the key concepts and frameworks that support this
study. The key theories most relevant to the topic will be highlighted, and a
discussion will take place about how they have been used to understand and
explain the phenomena being investigated.

2.1 Software faults classification

A service can be described as a sequence of the system’s external states [15]. With
this notion, it is important to know that a fault, error, and failure are not the same
and can be distinguished as the following:

• Fault: The cause of an error. Incorrect code or bugs are prevalent examples
of faults. A fault is active when it produces an error; otherwise, it is dormant
[16].

• Error: Part of the total state of the system that may lead to its subsequent
service failure [15].

• Failure: A deviation of the service delivered by the system from its spec-
ification. This deviation can be in the form of a slowed or limited service
(partial failure), incorrect service, or no service at all [28].

The "chain of threats" (Figure 2.1) can represent the relationship between faults,
errors, and failures. The actions that lead to each be explained by the following
sequence [15]:

1. A fault gets activated by applying input (the activation pattern) to a com-
ponent that causes a dormant fault to become active, generating an error.

3

Chapter 2

2. An error can propagate within a given component and successively be trans-
formed into other errors. This is called internal propagation and is caused
by the computation process. An external propagation happens when an er-
ror reaches the service interface of one component and consequently prop-
agates into another component that receives service from the first one.

3. A service failure occurs when an error is propagated to the service interface
and causes the service delivered by the system to deviate from its correct
service. If this service serves others, this failure can cause a permanent or
transient external fault in them, and so on.

Figure 2.1: The fundamental chain of threats to dependability [16]

Avizienis et al. [15] presented a scheme for classifying faults according to eight
criteria: Phase of occurrence, System boundaries, Phenomenological cause, Di-
mension, Objective, Intent, Capability, and Persistence.

According to this classification, bugs or faults in software code can be defined as
Internal human-made non-malicious permanent software development faults.

Furthermore, the author extends this classification according to the activation re-
producibility of faults:

• Solid/Hard: Faults whose activation and error propagation is reproducible.

• Elusive/Soft: faults whose activation or error propagation is not systemati-
cally reproducible.

Grottke and Trivedi [27] proposed a new fault classification for software faults,
extending previous concepts given by Gray [26]:

• Bohrbug: “A fault that is easily isolated and that manifests consistently un-
der a well-defined set of conditions because its activation and error propa-
gation lack complexity as set out in the definition of Mandelbug. Comple-
mentary antonym of Mandelbug.”

• Mandelbug: “A fault whose activation or error propagation is complex,
where “complexity” can take two forms:

1. The activation or error propagation depends on interactions between
conditions occurring inside the application and conditions that accrue
within the system’s internal environment of the application.

2. There is a time lag between fault activation and failure occurrence, e.g.,
because several different error states have to be traversed in the error
propagation.

4

Literature Review

Typically, a Mandelbug is difficult to isolate, or the failures caused by it are
not systematically reproducible. Complementary antonym of Bohrbug.”

An Heisenbug is a sub-type of Mandelbug and is defined as a fault that stops
causing a failure or manifests differently when one attempts to probe or isolate it
[27].

An aging-related bug (ARB) is also a sub-type of mandelbug and consists of a
fault that leads to the accumulation of errors either inside the running application
or in its system-internal environment, resulting in an increased failure rate or
degraded performance [27]. This type of bug is further classified into sub-types
by other authors, which can be seen in the following Section 2.4.

The following Figure 2.2 shows the representation of these four types of faults in
the form of a Venn diagram.

Figure 2.2: Venn diagram of software fault types [27]

2.2 Android Operating System (OS)

This research is focused on studying software aging in the Android platform due
to its open nature and being the most used mobile OS these days, with a market
share of around 72% [1]. With that said, it is essential to understand the basis of
its architecture and some of the mechanisms built into it.

2.2.1 Android OS Architecture

Android is an open-source operating system developed by the huge multina-
tional technology company Google, based on the Linux kernel. Because of its
open nature, developers can easily modify and add enhanced features to meet
the latest mobile technology requirements.

The major components that compose the architecture of the Android platform are
the following [2]:

• Linux Kernel: As the base of the Android stack, the kernel provides es-
sential services such as memory management, process management, power

5

Chapter 2

management, networking, and device drivers. Using a Linux kernel allows
Android to take advantage of key security features and enables device man-
ufacturers to develop hardware drivers for a well-known kernel.

• Hardware Abstraction Layer (HAL): Provides standard interfaces that ex-
pose device hardware capabilities to the higher-level Java API framework.
This layer consists of multiple library modules that implement each inter-
face for specific hardware components (camera, Bluetooth, etc.). When the
Java API framework requests to access device hardware, the Android sys-
tem loads the specific library module for that component.

• Android Runtime (ART): ART is the runtime environment in which An-
droid applications are executed. ART evolved into providing optimal per-
formance to Android applications regarding compilation, garbage collect-
ing, and debug support. Since version 5.0, each app runs in its own process
and with its instance of the ART, which is written to run multiple virtual
machines on low-memory devices.

• Native Libraries: Consists of a set of native libraries, written in C and C++,
that provide the foundation for the Android operating system. These li-
braries support graphics, data storage, media, and more.

• Java API Framework: The application framework is a set of Java classes
that provide the interfaces and tools needed to build Android applications.
These classes support various features such as data storage, display, con-
nectivity, and more.

• System Apps: The Android applications are at the top of the stack. Any-
one can develop these using the Android application framework and the
Android Software Development Kit (SDK).

2.2.2 Android Memory Management

Android has three types of memory:

• RAM is the fastest type of memory but is usually limited in size.

• zRAM is a partition of RAM used for swap space that grows or shrinks in
size as pages are moved into or taken out of it. Everything is compressed
when placed into zRAM and then decompressed when copied out of zRAM.

• Storage contains all the persistent data, such as the file system and the in-
cluded object code for all apps and libraries. Its capacity is much larger than
the other types, and unlike Linux, it is not used for swap space in Android.

.

RAM is broken into pages that are considered free (unused RAM) or used (RAM
that the system is actively using). These pages fall into two categories:

6

Literature Review

• Cached, which is memory backed by a file in storage (e.g., code, memory-
mapped files). Cached memory can be further classified as private if it is
owned by one process and not shared or shared if used by multiple pro-
cesses.

• Anonymous, which is memory not backed by a file in storage.

The ART keeps track of each memory allocation. Once it determines that the pro-
gram is no longer using a piece of memory, it frees it up without any intervention
from the programmer, a mechanism known as Garbage Collection (GC). GC has
two main goals: finding data objects in a program that cannot be accessed in the
future and reclaiming the resources used by those objects.

Although, as said previously, Android does not use storage as swap space (in
the sense of not paging out unused pages into storage to free up memory), the
ART still uses Memory-mapping (mmapping) and paging to manage memory,
meaning that storage can still be used to store and retrieve data from secondary
storage, but in situations where applications forcefully terminated have a chance
to save its state into storage [8].

Any memory an app modifies, whether by allocating new objects or touching
mapped pages, remains resident in RAM and cannot be paged out. The only way
to release memory from an app is to release object references that the app holds,
making the memory available to the garbage collector. That is with one exception:
any files mmapped in without modification, such as code, can be paged out of
RAM if the system wants to use that memory elsewhere [11]. The only way to
release memory from an app is to release object references that the app holds,
making the memory available to the garbage collector.

Android has two main mechanisms to deal with low memory situations:

• Kernel swap daemon (kswapd) is part of the Linux kernel and converts
used memory into free memory when the free memory of a device reaches
a certain low threshold.

• Low-memory killer (LMK) is a mechanism performed by the kernel where
processes are killed to free up memory in cases where kswapd is not enough.
The processes are killed based on their priority, where background apps are
the first to be killed, and system processes are the last.

The memory footprint of an application can be determined by the following met-
rics:

• Resident Set Size (RSS) is the number of shared and non-shared pages used
by the app.

• Proportional Set Size (PSS) is the number of non-shared pages used by the
app and an even distribution of the shared pages (e.g., if three processes
share a 3MB page, each process has a 1MB PSS).

• Unique Set Size (USS) is the number of non-shared pages used by the app.

7

Chapter 2

2.2.3 Mobile Power Management

A power supply is required to operate hardware components in a computer ecosys-
tem. For that, a request is usually made by software: for instance, a process that
requires the CPU or needs to read from memory or a notification that needs to
make a sound. Power management policies are necessary to orchestrate how dif-
ferent hardware units use a single energy source.

In Android, at the kernel level, is the Power Management component which has
been designed based on the standard Linux Advance Power Management (APM)
technology and has the premise that the CPU should not consume energy if there
is not at least one application or service demanding into applications or services
require power [12].

Android applications, when in need of power resources, must request using soft-
ware parameters called "wake locks", which the application sets to request or
keep computing resources. When there are no active wake locks, Android shuts
down the CPU and other battery-hungry peripherals to save energy when there
is no reason to keep such components active.

Suppose an application needs to gain control of the power state. In that case,
Android OS exposes it through the PowerManagement Java class that permits the
creation of a manager object that manipulates the power state by setting the wake
locks values. This class interfaces with lower levels of the OS stack to control the
power state and can shut down the system when the unit is out of battery. Using
this power management policy, Android allows the kernel to avoid races: wake
locks are activated whenever wake-up events occur, which prevents the kernel
from suspending the system and also provides a direct standard for the kernel
to decide when opportunistic suspension should be started, this is, the kernel
should attempt to suspend the system only whenever there is no active wake-
locks [23].

To determine battery consumption, services with that purpose do not track bat-
tery current draw directly but instead collect timing information (e.g., resource
requests) that can be used to approximate battery consumption by the different
components. The power consumption is specified in milliamps (mA) of current
drawn at a nominal voltage [9].

2.3 Measuring battery consumption on mobile devices

Compared to profiling the runtime of applications running on conventional com-
puters, the profiling energy consumption of applications running on smartphones
faces a unique challenge, asynchronous power behavior, where the effect on a
component’s power state due to a program entity lasts beyond the end of that
program entity [36]. There are three main approaches to measuring the battery
consumption of mobile devices: hardware-based, model-based, and software-
based [17].

8

Literature Review

Hardware-based

This approach quantifies the device’s energy consumption by physically mea-
suring the electric current using a digital multimeter or other instruments with
similar functions. The power consumption is calculated with the product of the
current times the voltage. In the case of a smartphone, this requires connecting
the measurement instrument in series between a terminal of the battery and the
corresponding contact on the phone.

Monsoon power monitor [4] and ODroid [5] are two existing tools that fall in this
category. Although this type of measurement provides the most accurate read-
ings [17], its feasibility of application at a large scale can be challenged. A con-
siderable monetary and setup-time cost is necessary for the reproducibility and
parallelization of studies that consider several devices is limited. It may also im-
ply disassembling the device to bypass the battery, incurring the risk of damaging
the device or voiding the manufacturer’s warranty [40]. A big disadvantage of
this method is that it cannot profile the energy consumption at the application or
method scope.

Model-based

Model-based approaches involve using mathematical models to estimate the en-
ergy consumption of an app or system. These models can be based on vari-
ous factors, such as the hardware and software configurations of the device, the
workload being run, and the power consumption characteristics of the hardware.
Model-based approaches can help predict the energy consumption of a system
before it is built or deployed but may not be as accurate as hardware-based mea-
surements.

Software-based

Software-based approaches to measuring the energy consumption of mobile ap-
plications use data collected from the different software system interfaces to per-
form calculations to assess the energy consumption at the software application
level. At this scope, it is possible to implement profiling techniques instrument-
ing the source code, which permits a detailed analysis of the routines and system
calls that significantly contribute to energy dissipation [17, 36].

Android applications typically access hardware components in two different ways.
When an application uses hardware components supported by the Linux kernel,
the application requests related system calls. Otherwise, the application makes a
Remote Procedure Call (RPC) via the Android binder. Kernel activity monitor-
ing is one technique commonly used with this approach, where these requests
are monitored and used to perform the calculations needed to assess the energy
consumption of the software [44].

There are some disadvantages to using this approach:

9

Chapter 2

• Not as accurate as the hardware-based approach

• Tools that require running in the background will consume some battery as
well and cause an overhead in measurements.

Some tools have been developed to analyze and profile the energy consumption
of mobile applications:

• PowerTutor [6] is an Android application that displays the power consumed
by major system components such as CPU, network interface, display, GPS
receiver, and different applications. It uses a power consumption model
built by direct measurements during careful control of device power man-
agement states. This model generally provides power consumption esti-
mates within 5% of actual values. It also provides a text-file-based output
containing detailed results and can be used to monitor the power consump-
tion of any application.

• Android BatteryStats [3] provides battery status and hardware usage in-
formation and is widely used for battery-related applications. BatteryS-
tats inherits the fundamental limitations of procfs/sysfs, and per-process
usage information is unavailable for particular hardware components. Fur-
thermore, the granularity of information varies with hardware components.
For example, BatteryStats produces component usage statistics on CPU and
WNI traffic by reading procfs/sysfs, whereas display utilization is only
available for the entire system [45].

• Battery Historian [3] converts the report from Batterystats into an HTML
visualization that can be seen in a browser.

• DevScope, an Android application, is an automatic and online tool used to
generate a power model for smartphones. It controls components accord-
ing to the Battery Monitoring Unit (BMU) update rate and automatically
derives the component power model by analyzing the power state changes
[32].

• Eprof is a fine-grained energy profiler for smartphone applications. Based
on the Finite State Machine (FSM) power model, Eprof can analyze the asyn-
chronous energy state of an application, modeling the tail-state energy char-
acteristics of hardware components with routine-level granularity. Energy
metering is achieved via a post-processing mechanism using an explicit ac-
counting policy [36].

• AppScope is an application energy metering framework for the Android
system that uses hardware power models and usage statistics for each hard-
ware component. It provides accurate and detailed information on the en-
ergy consumption of applications by monitoring kernel activities for hard-
ware component requests [44].

10

Literature Review

• PETrA is a software-based tool compatible with Android 5.0 or higher smart-
phones, not requiring any device-specific energy profile. It relies on infor-
mation provided by publicly available Android tools (specifically dmtrace-
dump, BatteryStats, and Systrace) and is able to estimate the energy con-
sumed by an app at the method level [24].

• E-MANAFA is a device-independent, plug-and-play, model-based energy
profiler capable of obtaining fine-grained energy measurements on Android
devices. Besides being able to calculate performance metrics such as the
energy consumed and runtime during a time interval, it allows estimating
the energy consumed by each device component (e.g., CPU, WI-FI, screen)
[40].

• Energy Dashboard [10] is a tool that uses the Android BatteryStats func-
tionalities to automatically collect the power consumption on Android ap-
plications, making it possible to execute experiments in a benchmark ap-
proach.

2.4 Software aging

The concept of software aging can be found in the literature since as early as the
1990s, although its definition has shifted over the years. [35] described software
aging from the perspective of architecture degradation, where software becomes
obsolete due to changing requirements and low maintenance over the years. [30]
differentiates this type of architectural degradation aging from the one that is
used nowadays by distinctly describing "software aging" and "process aging".

The most recent literature describes software aging (described as "process aging"
by Huang et al.) as a phenomenon affecting many software systems, character-
ized by their internal state degradation, progressive performance loss, and the
accumulation of errors over mission time, eventually leading to failure. This phe-
nomenon is a problem for many software systems because, besides the perfor-
mance degradation, it affects the system’s reliability, and security vulnerabilities
can be exposed [22, 28].

In many cases, software aging is due to ARBs and the accumulation of the effects
that these cause on the system. They are difficult to diagnose during testing and
appear only after a long execution and under non-easily reproducible triggering
and propagation conditions.

Figure 2.3 depicts the "chain of threats" in the context of software aging. In this
image, we can see the process until an aging-related failure (ARF) occurs. It starts
with the activation of aging-related (AR) faults by aging factors. These factors can
be internal such as a function call triggering the execution of faulty code, or exter-
nal, where elements from the system’s environment, like users, are the source of
this activation. After that, an accumulation of errors occurs, and eventually, they
are propagated through the system-internal environment until a deviation from
the system’s specification can be noticed by its user, originating an ARF.

11

Chapter 2

If, for example, an application crashes due to insufficient available physical mem-
ory caused by the accumulation of memory leaks, the ARB is a defect in the code
that causes memory leaks; the aging factors are the input patterns that exercise
the code region where the ARB is located and thus activating it; the memory leaks
are the AR errors that accumulate; the ARF happens when the application crashes
due to insufficient memory, meaning that the errors accumulated and propagated
to the system interface.

Figure 2.3: "Chain of threats" for an aging-related failure [28]

The main factors that cause the aging of software systems are the accumulation of
unterminated threads, data corruption, memory bloating, memory leaking, file
fragmentation, unreleased file locks, and numerical error accumulation, among
others [13] [39].

Cotroneo et al. classified aging-related bugs based on the aging effects they have
on the system and identified the following sub-types:

• MEM: ARBs causing the accumulation of errors related to memory man-
agement (e.g., memory leaks, buffers not being flushed);

• STO: ARBs causing the accumulation of errors that affect storage space
(e.g., the bug consumes disk space);

• LOG: ARBs causing leaks of other logical resources, that is, system-dependent
data structures (e.g., sockets or inodes that are not freed after usage);

• NUM: ARBs causing the accumulation of numerical errors (e.g., round-off
errors, integer overflows);

• TOT: ARBs in which the increase of the fault activation/error propagation
rate with the total system run time is not caused by the accumulation of
internal error states. [28] presents a case where the system run time was
incorrectly processed in a missile defense system due to a bug. Still, the
error produced was only propagated into a failure if the system had been
running for more than eight hours. The error states did not accumulate in
this case, so it is considered a TOT ARB.

The time to aging-related failure (TTAF) is an important metric for reliability
and availability studies of systems suffering from software aging. As the name
implies, it corresponds to the time taken until a failure occurs as a consequence
of aging-related faults present in the system. Some authors consider the counting

12

Literature Review

start as the system startup or process creation 3, while others start counting from
the first ARF activation [34]. Others start the clock as an aging state (an aging
indicator exposes an aging trend) is detected [20]. This document adopts the first
definition.

The probability distribution of TTAF is mainly influenced by the intensity with
which the system gets exposed to aging factors. So it is therefore influenced by
the system workload (and thus by the operational profile and the usage intensity
of the system) [34].

However, even in the absence of such faults in the code, aging effects can occur
due to the natural dynamics of a system’s behavior. This kind of aging is thus
referred to as natural aging. Among the examples of natural aging are the frag-
mentation problems experienced by file systems, database index files, and main
physical memory. Such aging effects are not related to a faulty code or design,
but they are a consequence of the system/application usage over its lifetime [28].

2.4.1 Aging indicators

Aging indicators are explanatory variables that, individually or in combination,
suggest if the system state is degrading and thus tell if software aging is affecting
it. They can be divided into two categories based on their granularity [28]:

• System-wide indicators: Provide information related to subsystems like
Operating Systems and Virtual Machines shared by multiple running ap-
plications. Indicators in this category can be free physical memory, used
swap space, file table size, system load, and others.

• Application-wide indicators: Provide specific information about the indi-
vidual application processes, and some examples are: the resident set size
of the process, heap size, response time, launch time, etc.

Past studies show that software aging manifests itself mainly as resource de-
pletion (namely memory depletion) and performance degradation. [19] did an
extensive investigation to identify factors and resource utilization metrics corre-
lated with software aging in the Android OS. Considering that this study was
performed on a smartphone from a specific brand and that results may vary for
other vendors, the following indicators are the ones that were found to be the
most correlated to aging.

• Launch time of activities: Corresponds to the time taken to complete the
initialization of a launched activity. An activity in Android is an applica-
tion component that provides a screen with which users can interact in or-
der to do something [7]. This is a fundamental user-perceived performance
metric that can be used to assess the system performance degradation. Al-
though, we cannot solely rely on this metric, as users might not perform
multiple launches and thus not provide sufficient samples to reveal aging.

13

Chapter 2

This is when the next OS performance indicators are useful to measure sys-
tem degradation, as there is evidence that they are correlated to this metric
[19], and their trends can be used to detect the aging phenomenon.

• PSS indicates the portion of main memory occupied by a process.

• Free and Cached memory respectively indicate the amount of unused mem-
ory and the amount of physical Random Access Memory (RAM) used as
cache memory.

• ZRAMinSWAP and ZRAMPhysicalUsed are related to the usage of zRAM.

• KSM-Saved, KSM-Shared, KSM-Unshared, KSM-Volatile are related to
the memory-saving de-duplication feature of the kernel that merges anony-
mous pages.

• LostRAM which corresponds to the TotalRAM - FreeRAM - UsedRAM,
meaning the difference between the RAM usage that Android can compute
and the actual available RAM.

• Garbage collector pause time (GC-paused) and total time (GC-total), re-
lated to the duration of Garbage collector activities.

• Other memory-related indicators such as the used slab and used buffers
may also be useful.

Table 2.1 was taken from [20] and represents the sets of aging indicators that
were used in the aging detection module of the developed Aging Detection and
Rejuvenation Tool for Android (ADaRTA), as well as its confidence level. This
confidence level represents the likelihood of a trend in that set of indicators rep-
resenting an ongoing aging phenomenon affecting the system.

2.4.2 Measuring Software aging in Android

The way researchers measure aging throughout the existing studies varies in how
aging is identified and the indicators used.

Many studies on software aging in the Android platform consider basic metrics
like heap memory of applications and free physical memory [17, 40, 41, 46]. This
is a simplistic approach, but sometimes, aging trends can be detected through
them.

Cotroneo et al.[20] were by far the investigators that developed a more profound
methodology for this purpose. They developed ADaRTA, which has a module
specialized for aging detection (Aging Detector module). This module does the
following work:

1. From the first timestamp (t0), for each KPI, apply in each window of size
W (50), the Mann-Kendall (MK) test with a confidence level C (95%), and
the Sen procedure to the samples in the respective window. This returns a

14

Literature Review

binary value for the MK test, whether a trend is detected in that window
(1) or not (0), and a slope of the respective trend value of the test. A 0 is
attributed to every window’s slope where no trend was detected.

2. Check the persistence of the detected trend. An aging alert is raised every
time the slope of a Key Performance Indicators (KPI) is always negative
or positive for the last k (5) times, where negative or positive means more
severe aging.

3. Check actual aging states that occur when these aging alerts are raised si-
multaneously in sets of KPIs. These sets of aging indicators are represented
in Table 2.1 with the respective confidence level associated. The higher the
global confidence level, the more likely an ongoing aging phenomenon is
heavily affecting the entire system when trends of that set are present.

Aging indicators
Confidence

level
system_server PSS and Launch Time VERY HIGH

system_server PSS and GC Paused or Total Time VERY HIGH
Launch Time HIGH

system_server PSS HIGH
Free Memory, Cached Memory, Lost RAM MEDIUM

Used PSS, ZRAMinSWAP, ZRAMPhysicalUsed MEDIUM
systemui, huawei.systemManager GC Paused/Total Time LOW

One of KSM-*, Used slab, Used buffers LOW
One of systemui, surfaceflinger, mediaserver PSS VERY LOW

Table 2.1: Sets of aging indicators and corresponding confidence level.

Besides the Launch Time, it is noticeable that all metrics are related to memory
consumption. Cotroneo et al. [21] found this and that the main aging issues can
be confined to key processes of the Android OS that exhibit a systematic inflated
memory consumption. It was concluded that the System Server process plays a
key role in determining the bad performance in responsiveness.

2.5 Related Work

Software aging is highly related to software dependability, and much research
and thousands of papers exist about the subject. This section pretends to high-
light the research done about the topics that are the main focus of this work:
Software aging (and rejuvenation), Mobile (Android) platforms, and Energy con-
sumption of mobile devices/applications.

Garg et al. [25] studied software aging issues from systems in operation by moni-
toring a network of UNIX workstations over 53 days. This research adopted Sim-
ple Network Management Protocol (SNMP) to collect data on resource consump-
tion and OS activity, including memory, swap space, file, and process utilization

15

Chapter 2

metrics. The analysis found that 33% of the reported outages were related to re-
source exhaustion, particularly memory utilization (which exhibited the lowest
time-to-exhaustion among the monitored resources).

Araujo et al. [14] proposed an investigative approach to detect software aging by
monitoring a specific Android application’s memory utilization when running
continuously for a sustained period. The Monkey tool was used to generate a
stressful workload to accelerate software aging and quickly identify its effects.
Linux utilities were used to collect information about the resource utilization of
the device. Experimental results confirmed both the effectiveness of the proce-
dure and the existence of the software aging phenomenon in the application.

Corral et al. [17] presented an approach to relate smartphones’ energy consump-
tion with the device’s operational status, using parameters exposed by the OS.
The solution is presented as an Android app ("CharM"). The authors explain
the data collection strategy and the advantages and limitations of performing the
analysis at the software application level.

Shahriar et al. [41] defined some memory leak patterns specific to Android ap-
plications and then used fuzz testing to emulate memory leaks and discover the
vulnerabilities. Their goal is testing for robustness against memory leaks rather
than aging detection.

Hussein et al. [31] applied a methodology that characterizes energy consumption
and performance of an Android device to correlate the choice of the GC algorithm
to the experienced energy consumption. The authors discuss alternative GC de-
signs that extend Dalvik’s default, mostly concurrent, mark-sweep collector, with
generations and on-the-fly scanning of thread roots.

Qiao et al. [37] conducted experiments to verify aging manifestations under vari-
ous aging conditions from the user’s (response time metric) and system’s (mem-
ory usage) viewpoints and discussed their differences with the aging indicators
in Linux. In this study, aging was caused by injecting memory leaks in different
areas (Dalvik or Native Heap) and processes with distinct priorities (cached, per-
sistent) of default Android OS apps. The results showed various manifestations
between the user’s and the system’s point of view, according to what heap leaks
were injected into and the process priorities.

Cotroneo et al. [19] went further in the research as other metrics were used for the
system’s viewpoint, such as storage usage, garbage collecting times, and other
task-level metrics. The correlation between these metrics and the response time
was calculated, and statistical methods were used to identify the most influential
factors in software aging. In this study, the authors were able to point out specific
Android OS processes and components where an aging trend is present.

Qiao et al. [38] investigated software aging indicators prediction in Android, fo-
cusing on indicators such as the system’s free physical memory and the appli-
cation’s heap memory. They used a Long Short-Term Memory Neural Network
to make this prediction because of the unpredictability of user behavior when
interacting with applications. They then compared the results and accuracy of
these predictions with other prediction methods in the history of software aging

16

Literature Review

research.

Cotroneo et al. [20] also developed a tool named "ADaRTA" that i) performs se-
lective monitoring of system processes and trends in system performance indi-
cators; ii) detects the aging state and estimates the time-to-aging-failure through
heuristic rules; iii) schedules and applies rejuvenation, based on the estimated
time-to-aging-failure.

Most studies are limited to analyzing aging in devices of a specific Android ven-
dor and version of the OS. Cotroneo et al. [21] extended its research to devices
of different vendors under various usage conditions and configurations. Besides
the expected loss of responsiveness and unjustified depletion of physical mem-
ory, the results revealed differences in the aging trends due to the workload fac-
tors and type of running applications, as well as differences due to vendors’ cus-
tomization. By tracking several system-level metrics, the authors showed that
bloated Java containers significantly contribute to software aging and that it is
feasible to mitigate aging through a micro-rejuvenation solution at the container
level.

Cotroneo et al. [22] proposed the first complete resource-specific aging detection
and rejuvenation solution for Android, acting selectively on bloating system data
structures. This micro-rejuvenation technique avoids unavailability by rejuve-
nating only selected data structures instead of system processes or the whole OS.
It is transparent to the end-user, who perceives no aging-related failure yet no
downtime.

2.6 Gaps in the literature

We can see that software aging is a widely explored subject, and much research
has been done, not only on mobile devices but also on other platforms, by ana-
lyzing different metrics of the system to find out if it is affected by software aging
and what are the main signs of this phenomenon.

On the other hand, some research was also done to explore the battery consump-
tion of mobile applications and devices relating to the type of workload and sta-
tus of the system. Multiple tools were also developed with this goal.

However, no research can be found about this phenomenon’s impact on the bat-
tery consumption of devices.

The following Table 2.2 shows what the main themes of this work (Software ag-
ing, Mobile platform, and Energy consumption) the studies referenced in the pre-
vious Section 2.5 address. This investigation tries to fill the gap by connecting the
research on software aging on the mobile platform with energy consumption.

17

Chapter 2

Software aging Mobile platform Energy consumption
Garg et al. [25] x

Araujo et al. [14] x x
Corral et al. [17] x x

Shahriar et al. [41] x
Hussein et al. [31] x x

Qiao et al. [37] x x
Cotroneo et al. [19] x x

Araujo et al. [38] x x
Cotroneo et al. [20] x x
Cotroneo et al. [21] x x
Cotroneo et al. [22] x x

This work x x x

Table 2.2: Table of related work.

18

Chapter 3

Methodology and Experimental
Procedures

This chapter outlines the methodology employed to conduct an empirical analy-
sis of the impacts of software aging on the battery performance of mobile devices.
Figure 3.1 outlines the experimental methodology, and it is structured to provide
a clear framework for the research objectives in a way that has been carefully
delineated to provide a clear understanding of the stages taken to achieve the ob-
jectives of this research. Thus, its structuring ensures the reliability and validity
of the conclusions reached and the possibility of consistent reproduction of our
findings.

Figure 3.1: Experimental methodology Flow Chart

3.1 Preliminary Considerations

The underlying principles of this methodology are based on previous studies
about software aging in the Android platform [14, 19–22, 37, 38, 43]. Three main
decisions were initially taken based on those same studies: What data was to be
collected, How aging would be achieved, and How long should the experiments
last.

19

Chapter 3

What data was to be collected?

In order to monitor the performance of the device regarding software aging, KPI
regarding system memory and its management mechanisms had to be collected.
These indicators were chosen based on other studies referenced in section 2.4.
Specifically, the KPIs collected were:

• PSS of the process System Server

• Cached RAM

• Lost RAM

• Used zRAM

• Total PSS

• Garbage Collection Total Time of the Process System Server

• Garbage Collection Pause Time of the Process System Server

Besides that, battery consumption was another crucial metric to collect.

How was aging going to be achieved?

Previous studies [14, 19–22, 38, 43] into software aging in the Android environ-
ment have used the Exerciser Monkey tool to generate randomized actions that
simulate user inputs. These actions create a representative workload for the sys-
tem under analysis, thus inducing its aging over time. Based on the approach in
such studies, this work follows an analogous strategy to subject Android appli-
cations to the aging process.

How long should the experiments last?

The experiment duration used by previous studies [14, 19, 21, 22, 37, 38, 43] var-
ied tremendously, going from 2 hours [37] to 72 hours [14, 43] or until crash or
battery drain [38]. Cotroneo et al. [21], based on the results of one of his previous
studies [19], concluded that in the experiments where aging was present in the
Android platform, all its trends were noticed after 6 hours of data. With this in
mind, we decided to run our experiments until the device’s battery drained or
the application crashed when it gave us a minimum of 6 hours of data. It is also
important to notice that the experiments run by others during 72 hours could not
be replicated in this research since we are studying software aging and how it im-
pacts battery consumption. To run one application for 72 hours, we would have
to plug the device into an energy source during the experiment, eliminating the
possibility of gathering consumption data.

20

Methodology and Experimental Procedures

3.2 Experimental Setup

The testbed used to run the experiments is represented in Figure 3.2 and consists
of two main devices: a PC with 16 GB of RAM Windows 10 Home (Build 19045),
powered by a 2.80 GHz Intel Core i7-7700HQ CPU with 4 Cores 8 Threads; and
a smartphone (Oppo A16s) running on Android 13, with 5000 mAh of battery
capacity, 4 GB of RAM and powered by an Octa-Core CPU Helio G35.

Figure 3.2: Testbed

Choosing the tools to assist the experiments was also crucial in the research. After
considering all the options, we chose the following tools:

• To create a connection between the PC and the Android smartphone, An-
droid Debug Bridge (ADB) was our choice for the experiment since it pro-
vides a stable wireless connection that makes it possible to collect data
throughout the experiment constantly. Besides that, it is an official An-
droid tool, and its command-line nature makes it easy to use in automation
scripts.

• As explained in the previous section, Exerciser Monkey was chosen for
workload generation since it is used to age Android applications in most
related studies.

• Dumpsys and Logcat were chosen to retrieve information from the smart-
phone from the PC command line since they are strongly coupled with the
ADB tool. Dumpsys collected most of the memory parameters: PSS of the
process System Server, Cached RAM, Lost RAM, Used zRAM, and Total
PSS. Logcat was used to collect Garbage Collection logs, making it possi-
ble to calculate the following times: Garbage Collection Total Time of the
Process System Server and Garbage Collection Pause Time of the Process
System Server

• Batterystats was chosen to retrieve battery consumption information from
the smartphone since it is a lightweight tool that doesn’t consume signifi-
cant device resources, runs in the background, and doesn’t impact the de-
vice’s performance while collecting data. It is an official Android tool, does
not rely on third-party apps or services, and just like dumpsys and logcat,
it is scriptable and automatable due to being easily called from the ‘adb
dumpsys’ command.

21

Chapter 3

3.3 Development of Scripts

Three shell scripts were created to assist the experiments:

• The Exerciser (‘exerciser.sh’) runs the exerciser monkey tool to provide a
workload for the tested application. This aims to provide a substantial
workload for the application under testing. It is important to note that the
significant amount of events generated by the tool in question is included in
this script. This means this quantity is not the limiting factor in determining
the experiment’s conclusion.

• The Collector (‘collector. sh’) is a centerpiece in obtaining information from
the Android device, playing a crucial role in obtaining data for analysis
and continuous monitoring. It uses tools such as ’dumpsys’ and ’logcat’,
as well as the Android file system located in ’/proc/meminfo’, to collect a
wide range of vital information. Data collection occurs every 30 seconds,
ensuring regular and timely capture of relevant information.

• The Runner (’run.sh’) was created with the purpose of preparing the Win-
dows file system to store the files collected from the smartphone and coor-
dinate the simultaneous execution of the exerciser and the collector.

3.4 Experimental Tests

Some experimental tests were run to tune the scripts mentioned above by defin-
ing the following parameters.

Sample rate

The sample rate of data collection needed to be tuned. From previous studies
[14, 19–21, 38, 43], we noticed that the sampling interval varied significantly, rang-
ing from 5 seconds to 2 minutes. We understand that the more data we have to
monitor system performance, the more our analysis will improve. After some
preliminary tests with 10 and 20 seconds of sample rate, 30 seconds was chosen
for this parameter since it was a period in which the system could constantly
retrieve data without desynchronizing.

Workload throttle

One parameter that needed to be tuned was the throttle of the exerciser, which de-
notes the time passed between each event generation. When analyzing previous
studies, we realized that the common values for this event generation rate gen-
erally varied between 500ms and 1000ms. In order to decide which value to use,
we conducted a series of preliminary tests, the results of which are summarised in

22

Methodology and Experimental Procedures

Table 3.1. During these tests, we experimented with different acceleration values
to determine which would be most suitable for our experiment.

Throttle Behavior

500 ms The device crashed due to
too many inputs.

1000 ms The device can handle all the
inputs but slow event generation.

800 ms Good balance between workload velocity
and handling of inputs by the device.

Table 3.1: Workload throttle tests done and observed behavior.

In the end, 800 ms was the time used for the throttle of the event generator.

This choice was fundamental since this methodology stage played an essential
role in guaranteeing future experiments’ integrity and uninterrupted operation,
ensuring that all the necessary data was collected without unexpected occur-
rences.

3.5 Selection of Android Applications

At this stage, we selected a set of Android applications that would serve as re-
search targets. These apps were chosen based on strictly established criteria,
which included:

• Available at the Google Play store or F-droid

• At least 1M downloads

• A rating of at least 3.5 (of 5)

• Be in a Western European Language so that its UI can be understood

• Does not use high energy demanding sensors, specifically GPS.

We chose five applications of multiple four different categories to guarantee that
a large spectrum of applications was covered, contributing to the generalizability
of the research. Table 3.2 provides the group of Android applications used in the
research, categorized by functionality.

3.6 Execution of Experiments

With the experimental setup ready and the applications pool defined, the planned
experiments were executed. This phase involved systematically running the cho-
sen Android applications using the developed scripts, collecting data, and record-
ing observations. Each experiment followed the following structure:

23

Chapter 3

Category Name Category Name

Utility

Unit Converter Ultimate
Open Camera
Turbo Cleaner
Notion
Simple Notes

Game

Uno
Monopoly Go
Bubble Shoot
Candy Crush Saga
Solitaire

Social Media

TikTok
Weibo
Reddit
Twitter
Facebook

Browser

Baidu
Chrome
Brave
Edge
Firefox

Table 3.2: Android application pool.

1. Charge the smartphone battery up to 100%.

2. Restart the device.

3. Connect the smartphone to the laptop through a wireless ADB connection.

4. Guarantee all the predefined test conditions are applied (Table 3.3).

5. Clean the app’s cache.

6. Open the app and fix it so it always stays in the foreground during the
experiment.

7. Unplug the smartphone USB cable so it stops charging.

8. Execute run.sh, which executes Exerciser and Collector simultaneously.

9. Wait until the battery drains or the app crashes.

Table 3.3 summarizes the conditions that our device was configured to every time
to ensure the reliability and consistency of our experimental setup.

Condition Status
Battery 100%

Screen Brightness 50%
Volume 0%

Bluetooth Off
NFC Off
GPS Off

Others Off / 0

Table 3.3: Device conditions for each experiment.

Our Exerciser was configured to a random seed every time it ran. This means that
each experiment executed had a completely different sequence of events injected
into the application. So, we ran each application twice to embrace a larger portion
of functionalities in each experiment. Due to time constraints, this was possible
to do with every app except one of each category.

24

Methodology and Experimental Procedures

3.7 Data processing and Statistical Analysis

For the analysis of the data collected from the device, a temporal analysis was
made based on the ADaRTA tool [20]. The authors of this tool and article de-
scribe the tools’ algorithm and its parameters, such as sample period, window
size, and others. All this was described in Section 2.4.2. We used this information
to develop two Python scripts responsible for the data processing and statisti-
cal analysis of the data retrieved from the device. Firstly, they go through the
system data collected and gather only the important values, creating a complete
matrix with every indicator (columns) value on the respective timestamps (rows).
We created an extra ’aging’ column initialized to 0 that stores the aging state of
the system. In second place, timestamps with unsuccessful indicators collected
are discarded. Then, a sliding window is applied to calculate the trends, and
every five consecutive times an aging trend is detected, the aging column is in-
cremented by one. This increment is based on Table 3.4, which shows the KPI
trends or a combination of trends considered an aging software behavior. This
table is an adaptation of the one presented in Section 2.4.2. Although not having
all the conditions, these are the four most reliable according to [20], and the only
ones that had data we could collect.

Conditions
Increasing trend of System Server PSS

Increasing trend of System Server PSS and
increasing trend of GC Paused Time

Increasing trend of System Server PSS and
increasing trend of GC Total Time
Decreasing trend of Free RAM and

increasing trend of Cached RAM and Lost RAM

Table 3.4: Aging conditions used to identify aged system states.

Finally, the correlation between the ‘aging’ and ‘energy consumption’ columns
was calculated. We considered two approaches to dealing with the aging vari-
able:

• Approach 1: Aging is represented by the natural number resulting from
the previous steps. We investigated whether the aging factor, represented
by a level with five possible values (0 to 4), correlates with the battery con-
sumption observed in different experiments. A significant correlation in
this approach would indicate that the more aging conditions are met con-
cerning the different KPIs, the greater the impact on battery consumption.
To facilitate easier identification, we shall refer to this variant as ’V0’.

• Approach 2: Aging is represented by a binary value corresponding to the
two system states: aged (1) or not aged (0). From this perspective, three
different variants of the aging factor were used:

– V1: If the aging of the previous stage was equal to or greater than 1, a
value of 1 was assigned; otherwise, 0 was assigned.

25

Chapter 3

– V2: If the aging of the previous stage was equal to or greater than 2, a
value of 1 was assigned; otherwise, 0 was assigned.

– V3: If the aging of the previous stage was equal to or greater than 3, a
value of 1 was assigned; otherwise, 0 was assigned.

All these variants result in a binary vector representing the aging factor,
with the second and third requiring more aging conditions to identify the
system as aged. We decided not to go further than V3 because three con-
ditions met already mean a very high likelihood of the system being in an
aged state, based on the article that supported this methodology [8]. Also,
further restrictions in identifying the aged state would mark a lot of states
as not aged when the system would be.

Both approaches use the ‘battery consumption’ variable as a continuous measure
however, due to the different nature of the ‘aging’ variable, it was necessary to
choose suitable statistical tests to analyze the relationships. In the first approach,
‘aging’ is considered an ordinal numerical variable from 0 to 5. With this in mind,
we chose Spearman’s rank correlation coefficient. This non-parametric statisti-
cal test assesses how much a monotonic function can describe the relationship
between two variables. Assuming a 95% confidence level, if the p-value resulting
from the test is less than 0.05, we consider there to be a significant correlation.
In these cases, the correlation coefficient returned by the test ranges between -1
and +1, reflecting both the magnitude (absolute value) and the direction of the
correlation (positive or negative)

For the second approach, we divided the battery consumption data into two
groups:

• B1: Battery consumption values gathered from the system in an aged state
(1).

• B0: Remaining values gathered from a non-aged system (0).

We then applied the non-parametric Wilcoxon Rank Sum Test to assess whether
there was a statistically significant difference between these two groups. This
analysis allows us to determine whether software aging impacts battery con-
sumption in a statistically relevant way.

The hypotheses formulated for this test were:

• H0: B1 <= B0, meaning that battery consumption is inferior or not signifi-
cantly different in aged and non-aged states.

• H1: B1 > B0, meaning that battery consumption is affected positively by
aging in this experiment.

For the same confidence level (95%), if the resultant p-value of the test is less than
0.05, this leads to the rejection of the null hypothesis, indicating that aging signif-
icantly impacts battery consumption in the context of the experiment in question.

26

Methodology and Experimental Procedures

Other values were considered for the sliding window size (W, where 50 was used)
and the number of consecutive slopes to conclude the presence of an aging trend
(where 5 was used). Some variations of these parameters were taken into account
and tested. However, the ones we used provided the most consistent results, de-
tecting more trends regarding individual KPIs and the aging column. Further-
more, these were the numeric values supported by the literature [20].

27

Chapter 4

Results and analysis

In this chapter, we present and discuss the outcomes of our investigation. We will
unravel the potential patterns and trends that emerged from the data, shedding
light on whether or how software aging might influence battery consumption.
This chapter is divided into two sections. First, we analyze the whole pool of
results based on the different approaches to the aging vector (by level and binary).
In the second section, we investigate if different app categories behave differently
regarding the relationship between aging and battery consumption.

Appendix A shows the data of the 36 successful experiments and the respective
correlation metrics between aging and battery consumption. Overall, these ex-
periments consist of 324 hours of experiments.

4.1 Overall aging impact on battery usage

In Figure 4.1, the graph on the left shows, for the first approach to the aging
variable, the number of experiments where aging and battery consumption are
significantly correlated (in orange) and the portion of these that are positively
(green) and negatively (red) correlated. The graph on the right consists of a box
plot for this same approach, where it is possible to see the distribution of correla-
tions through the experiments that showed any.

From both graphs, we see that of the 36 experiments, 21 showed a statistically
significant correlation, 9 positive and 12 negative. The average correlation coef-
ficient is 0.005, and the median is -0.075. The strongest negative correlation de-
tected was -0.289, and the strongest positive correlation was 0.451, which could
be seen as an outlier since the next strongest one was 0.237. Therefore, most ex-
periments showed a weak correlation (inferior to 0.3), with similar disparity for
both directions and a median and average close to 0.

With this data, we conclude that we cannot infer that aging affects battery con-
sumption if we identify aging by levels based on the number of conditions it
represents.

29

Chapter 4

Figure 4.1: Barplot of experiments with significant correlations (on left) and Box
plot of Correlation strength (on right)

The graph in Figure 4.2 shows, for each of the other versions, how many present
a greater battery consumption when the system was aged versus the battery con-
sumption measured when the system was not identified as aged. This graph
represents the Wilcoxon rank sum test results applied to every experiment. It
shows for each version of the binary aging vector (V1, V2, and V3 correspond-
ing to a minimum of 1, 2, and 3 favorable conditions to identify each window
as aged) the total number of experiments (in blue) in relation to the number of
experiments where aging was detected (in orange) and the portion of those that
was detected a greater battery consumption amongst aging states vs non-aging
states (in green).

Firstly, we notice that the orange bars decrease amongst the different versions of
the binary aging vector. This was expected since the more simultaneous aging
conditions are needed to identify the system as aged, the fewer times system
states will be marked as so.

As we can see, in V1 (Only 1 condition to identify as aged), only 9 out of 36 exper-
iments showed a greater battery consumption in the aged instances, correspond-
ing to 25% of the cases. In V2, 9 out of 16 experiments (56%) had a greater battery
consumption when the system was aged. In V3, 4 out of 8 (50%) experiments had
the same behavior.

The way we interpret the results is the following:

• In V1, every experiment was ‘diagnosed’ with aging, meaning that there is a
greater possibility for misidentification of aging in these experiments since
only one of the aging conditions had to be met. This would lead to only a
small proportion of experiments manifesting a greater battery consumption
while the system was aged.

30

Results and analysis

Figure 4.2: Count of Significant Correlations by Aging Vector Version

• In V2 and V3, aging was more restrictively diagnosed in the experiments
since more conditions had to be in favor, possibly leading to a more precise
identification of the aging states. This led to a smaller proportion of exper-
iments diagnosed with aging, and around 50% of those exhibited a greater
battery consumption while the system was aged. We should also notice
that this means that the other half of the experiments showed no increase or
even a decrease in battery consumption when the system aged.

31

Chapter 4

4.2 Categorized aging impact on battery usage

After analyzing the pool applications as a whole, we checked if different app
categories had different behaviors in this context. The first approach of the aging
vector by levels was not considered since no solid correlations were noticed in
the previous section. So, in this section, we only analyze the second approach,
where aging is characterized as a binary factor (0 or 1) based on the number of
aging conditions met (minimum of one, two, or three).

Table 4.1 displays two metrics related to the experiments that can be useful in
interpreting some results. These metrics are the average duration of the experi-
ments per category and the average battery consumption per 30 seconds of exe-
cution.

Category Average duration (h) Average battery
consumption / 30 sec (mAh)

Utility 10,5 2,39
Game 7 3,75

Social Media 9,5 3,16
Browser 9 2,78

Table 4.1: Experiment metrics per category.

32

Results and analysis

Game category

Figure 4.3 presents a bar plot where, for each variant of the aging vector, a blue
bar indicates the total number of experiments made on applications of the game
category, and an orange bar corresponds to the portion of experiments that showed
aging states.

Figure 4.3: Count graph of the game category.

Although no cases where consumption was associated with aging were recorded
in this category, we should note that only in V1 were there opportunities for this
relationship to manifest since, at most, one aging condition was recorded simul-
taneously across every application. Mobile games are known to be one of the
largest energy-consuming categories in the mobile space due to their heavy com-
putational resources (GPU and CPU). The data in Table 4.1 supports this state-
ment, as the experiments with mobile games averaged the least duration and the
most battery consumption per 30 seconds. We speculate that the main reason no
relationship was detected between aging and battery consumption for this cate-
gory is that, in case this relationship exists, it is not significant in comparison to
the natural behavior of the application in terms of energy consumption.

33

Chapter 4

Browser category

Figure 4.4 graphically presents the ’browser’ category results. On the left, a count
plot is displayed with the total number of experiments in this category (in blue),
the number of experiments where aging was detected (in orange), and the portion
of those where battery consumption was greater when the system was considered
aged (in green). These values are presented across the three variants of the binary
aging vector - V1, V2, and V3. The graph on the right consists of a box plot that
exhibits the difference in average consumption per 30 seconds across the apps of
this category. This difference is computed between the consumption measured in
non-aged states (B0) and aged states (B1). Only the apps where an increase was
noticed from B0 to B1 were considered for this plot.

Figure 4.4: Count plot (on left) and Box plot (on right) of the browser category.

This category does not seem to have any solid pattern since in V1, only in a small
portion of the experiments with aging, the battery consumption had any relation
with that factor; in V2, this relation was present in half of the aged applications,
and none V3. This variety of results could be explained due to the nature of these
applications. Depending on the workload applied to the browser, it can navi-
gate to many different pages with distinct resource demands and energy profiles.
This could be the main reason for such heterogeneity in results, which makes us
believe that it is not the most adequate category to analyze software aging behav-
ior. When analyzing the battery consumption difference from B0 to B1, a 0.5 mAh
increase was recorded in V1 and V2.

34

Results and analysis

Utility category

Figure 4.5 presents the same information as the previous category but in relation
to the applications categorized as utilities.

Figure 4.5: Count plot (on left) and Box plot (on right) of the utility category.

The utility category, characterized by being a category of applications with low
resource usage and battery consumption, had a decrease in the number of ex-
periments where battery consumption was considered to be affected by aging
along the different versions. If we consider only V1, where only one condition is
necessary to identify aging, this is the category where battery consumption was
considered to have a greater relationship with aging. Based on these applica-
tions’ low resource usage and energy-consuming nature (supported by our data
in table 4.1), we would expect this category to manifest a higher relation between
aging and battery consumption, assuming that there is one. If that were the case,
any possible effect aging had would have a greater impact since an increment
in energy consumption would be more visible. However, stronger signs of ag-
ing, specifically V2, did not support this hypothesis, and in V3, we do not have
enough data since only one experiment reached aging states. When it comes to
the difference in energy consumption from the non-aged states to the aged states
across the experiments that showed an actual increase, it was more noticed the
stronger the aging signs were. In V1 the applications saw an increase of around
0.5 mAh, and an increase of up to 1.3 mAh in V2 and V3. We should notice
that these increases in consumption are significant (10% to 40%), but we cannot
discard the cases where no relationship between aging and battery consumption
could be inferred.

35

Chapter 4

Social Media category

Figure 4.6 presents the same plots as the others but for the social media applica-
tions.

Figure 4.6: Count plot (on left) and Box plot (on right) of the social media cate-
gory.

The Social Media category had the most cases where aging was detected, and bat-
tery consumption increased in aged states amongst V2 and V3 variants. In both,
around 60% of the cases where aging was detected, an increase in battery con-
sumption was noticed. Based on our results, social media applications were the
apps that, under strong aging signs (minimum of two and three simultaneous ag-
ing conditions), most consistently showed an influence on battery consumption.
When looking at the difference in energy consumption between non-aged and
aged states, this was also the category where this increase was more visible, aver-
aging 0.7 to 2.8 mAh, which corresponds to 30% to 60% more energy consumed
in aged states.

36

Results and analysis

4.3 Discussion

Based on the presented results, the key findings we derive from this research are:

• If we consider aging a multi-level variable characterized by the number of
aging conditions simultaneously present in each state, no strong correlation
was observed between aging and energy consumption.

• However, When we treat aging as a binary variable, the following observa-
tions are made:

– Weakly identified aging states, where only one aging condition is ob-
served, see no relevant impact on battery consumption.

– When strong aging signs are present in the system, i.e. at least two and
three aging conditions are recorded simultaneously, half of the applica-
tions analyzed show an increase in battery consumption. This suggests
that these aging states can significantly influence the energy consump-
tion of applications.

• When considering the different app categories, based on our data, we can
conclude that:

– Mobile games do not reveal strong aging signs, and in the weak states
of aging manifested, it was impossible to infer any correlation with
battery consumption.

– When browsing, we should not expect a relevant increase in battery
consumption due to aging.

– Utility applications are low energy consuming, and we do not have
enough evidence to say that when aged, the battery consumption is
influenced.

– Social Media applications, when submitted to strong aging conditions,
have a high probability of seeing their battery consumption impacted
by 30% to 60%

When we consider the results as a whole, intending to address the main ques-
tion of this study, we can summarize by stating that aging does not directly affect
battery consumption. In the spontaneous cases where we saw a correlation, the
increase in battery consumption could be explained by other factors, such as the
execution of higher CPU and GPU-demanding tasks. Although we do not have
data to confirm this assumption, we know that the battery consumed was higher
in aged states versus non-aged states in only about half of the total experiments
where aged states were achieved. This is enough to conclude that our data does
not support the hypothesis that aging affects the battery consumption of an An-
droid device.

37

Chapter 5

Planning

This chapter offers an overview of the global planning for this work. The first
section presents the work plan in the form of two Gantt charts, illustrating both
the anticipated and the actual achievements. The second section outlines some
challenges that posed potential threats to the success of this work.

5.1 Work plan

This section provides a timeline of the tasks and the major milestones that were
expected to be achieved versus what actually was achieved.

Initially, planning was done considering the delivery at the end of June. The
following list and Fig. 5.1 show the expected tasks in the Gantt chart that was
designed with that goal in mind.

• Aim 1: Clarification of the software aging techniques to implement, what
tools to use, and familiarization with them.

• Aim 2: Execution of the experiments.

• Aim 3: Validation of the experiments.

• Aim 4: Analysis of the results and re-execution of experiments (if needed)

• Aim 5: Writing the dissertation.

However, some obstacles appeared, especially in the definition of the aging tech-
nique to implement, retarding the progress of the dissertation and changing our
initial plan. Fig. 5.2 presents the final Gantt with the fulfilled plan.

• Aim 1: Choice and experimentation of the software aging technique to im-
plement.

• Aim 2: Choice of tools for data collection and experimentation with them.

39

Chapter 5

February March April May June

Aim 1

Aim 2

Aim 3

Aim 4

Aim 5

Figure 5.1: Expected Gantt Chart

• Aim 3: Definition of parameters and development of scripts for experiment
automation.

• Aim 4: Execution of the experiments.

• Aim 5: Development of scripts for data processing.

• Aim 6: Statistical analysis of the results.

• Aim 7: Writing the dissertation.

Feb. March April May June July August Sept.

Aim 1

Aim 2

Aim 3

Aim 4

Aim 5

Aim 6

Aim 7

Figure 5.2: Final Gantt Chart

40

Planning

5.2 Challenges

This section presents some challenges that deviated from our initial planning.

Challenge #1

The first challenge to our investigation was the choice of the aging technique to
implement. The initial approach aimed to use fault injection to incite aging symp-
toms in the applications. However, this approach was not successful, retarding
the progression of the work done.

Challenge #2

Another challenge to this work was the long duration of the experiments. These
were very time-consuming since most of them ran until the smartphone battery
drained. Besides that, every experiment that unexpectedly ended early cause of
a crash had to be discarded. This led the number of experiments available for the
statistical analysis in the end to be lower than expected.

41

Chapter 6

Conclusion

This work presents an approach to examine the impact of software aging on the
energy consumption of mobile devices. Previous research has already delved into
the realm of software aging, particularly within the Android platform, where sev-
eral approaches aimed to analyze the presence and effects of this phenomenon
within the OS. Additionally, the topic of energy consumption in mobile devices
and applications has garnered significant attention in the scientific community,
leading to the development of numerous tools designed to measure and optimize
battery usage. However, the correlation between software aging and battery con-
sumption has remained unexplored by researchers.

The state of the art was examined to acquire the essential knowledge regarding
the software aging phenomenon, including its causes, primary aging indicators,
methods employed for its detection, and the industry’s methodologies for mea-
suring battery consumption in mobile devices.

Armed with this knowledge, we devised an experimental process aimed at draw-
ing essential conclusions about software aging impact on battery consumption.
This process involved executing Android applications under an accelerated work-
load, collecting the requisite metrics for identifying signs of aging and assessing
battery consumption, and subsequently applying appropriate statistical analyses
to the collected data.

Due to the subjective nature of the aging factor, we adopted two distinct ap-
proaches to identify this factor. The first approach treated it as an ordinal vari-
able, with each state characterized by the number of aging conditions present. In
the second approach, aging was considered a binary variable, with states catego-
rized as either ’aged’ (1) or ’not aged’ (0) based on the number of detected aging
conditions.

None of the results from either approach strongly indicated a clear impact of soft-
ware aging on battery consumption. When considering aging as a binary factor,
approximately half of the experiments that reached an aging state supported by
multiple aging conditions showed increased battery consumption from non-aged
states to aged states. However, we concluded that this is an insufficient number of
experiments to assert that aging was the primary cause of this increase in battery

43

Chapter 6

consumption. Other contributing factors may have played a role in explaining
this behavior of the applications.

6.1 Future Work

This dissertation provides the possibility of several future work directions. Firstly,
a promising approach would involve addressing the main limitation of this study
by expanding the research to encompass a larger data set of applications and/or
conducting a higher frequency of experiments for each application.

Moreover, exploring the extension of this research to other platforms, such as iOS,
could provide valuable insights into whether the relationship between aging and
battery consumption varies.

Lastly, there is an opportunity to extend this research to investigate the impact
of software rejuvenation on the battery consumption of mobile devices. This
could be achieved by implementing rejuvenation techniques on aged applica-
tions and thoroughly analyzing battery consumption throughout the experiment
before and after the rejuvenation actions were performed.

44

References

[1] Mobile operating system market share worldwide | statcounter global
stats, . URL https://gs.statcounter.com/os-market-share/mobile/
worldwide. (Accessed on 09-03-2023).

[2] Platform architecture | android developers, . URL https://developer.
android.com/guide/platform. (Accessed on 09-03-2023).

[3] Profile battery usage with batterystats and battery historian | android devel-
opers, . URL https://developer.android.com/topic/performance/power/
setup-battery-historian. (Accessed on 09-03-2023).

[4] High voltage power monitor | monsoon solutions | bellevue, . URL https:
//www.msoon.com/high-voltage-power-monitor. (Accessed on 09-03-2023).

[5] Odroid, . URL https://www.hardkernel.com/. (Accessed on 09-03-2023).

[6] Powertutor, . URL http://ziyang.eecs.umich.edu/projects/powertutor/
index.html. (Accessed on 09-03-2023).

[7] Activity | android developers, . URL https://developer.android.com/
reference/android/app/Activity/. (Accessed on 09-03-2023).

[8] Memory management in android | medium,
. URL https://arsenasatryanit.medium.com/
memory-management-in-android-79f899347d9. (Accessed on 09-03-2023).

[9] Power profiles for android | android open source project, . URL https:
//source.android.com/docs/core/power. (Accessed on 01-16-2023).

[10] Energydashboard, . URL https://github.com/multilanguageservice/
energyDashboard. Accessed: 11-01-2023.

[11] Overview of memory management | android developers, . URL https://
developer.android.com/topic/performance/memory-overview. (Accessed
on 09-03-2023).

[12] Power management | android open source, . URL https://
wladimir-tm4pda.github.io/porting/power_management.html. (Accessed
on 09-03-2023).

45

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://developer.android.com/topic/performance/power/setup-battery-historian
https://developer.android.com/topic/performance/power/setup-battery-historian
https://www.msoon.com/high-voltage-power-monitor
https://www.msoon.com/high-voltage-power-monitor
https://www.hardkernel.com/
http://ziyang.eecs.umich.edu/projects/powertutor/index.html
http://ziyang.eecs.umich.edu/projects/powertutor/index.html
https://developer.android.com/reference/android/app/Activity/
https://developer.android.com/reference/android/app/Activity/
https://arsenasatryanit.medium.com/memory-management-in-android-79f899347d9
https://arsenasatryanit.medium.com/memory-management-in-android-79f899347d9
https://source.android.com/docs/core/power
https://source.android.com/docs/core/power
https://github.com/multilanguageservice/energyDashboard
https://github.com/multilanguageservice/energyDashboard
https://developer.android.com/topic/performance/memory-overview
https://developer.android.com/topic/performance/memory-overview
https://wladimir-tm4pda.github.io/porting/power_management.html
https://wladimir-tm4pda.github.io/porting/power_management.html

Chapter 6

[13] Zuriani Abdullah, Jamaiah Yahaya, Siti Rohana, Sazrol Bojeng, and Aziz
Deraman. The implementation of software anti-ageing model towards green
and sustainable products. International Journal of Advanced Computer Science
and Applications, 10, 01 2019. doi: 10.14569/IJACSA.2019.0100507.

[14] Jean Araujo, Vandi Alves, Danilo Oliveira, Pedro Dias, Bruno Silva, and
Paulo Maciel. An investigative approach to software aging in android appli-
cations. pages 1229–1234, 2013. doi: 10.1109/SMC.2013.213.

[15] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on De-
pendable and Secure Computing, 1(1):11–33, 2004. doi: 10.1109/TDSC.2004.2.

[16] Algirdas Avizienis, Vytautas U, Jean-claude Laprie, and Brian Randell. Fun-
damental concepts of dependability. 04 2001.

[17] Luis Corral, Anton B. Georgiev, Alberto Sillitti, and Giancarlo Succi. A
method for characterizing energy consumption in android smartphones.
pages 38–45, 2013. doi: 10.1109/GREENS.2013.6606420.

[18] Domenico Cotroneo, Michael Grottke, Roberto Natella, Roberto Pietran-
tuono, and Kishor S. Trivedi. Fault triggers in open-source software: An
experience report. pages 178–187, 2013. doi: 10.1109/ISSRE.2013.6698917.

[19] Domenico Cotroneo, Francesco Fucci, Antonio Ken Iannillo, Roberto
Natella, and Roberto Pietrantuono. Software aging analysis of the android
mobile os. pages 478–489, 2016. doi: 10.1109/ISSRE.2016.25.

[20] Domenico Cotroneo, Luigi De Simone, Roberto Natella, Roberto Pietran-
tuono, and Stefano Russo. A configurable software aging detection and re-
juvenation agent for android. pages 239–245, 2019. doi: 10.1109/ISSREW.
2019.00078.

[21] Domenico Cotroneo, Antonio Ken Iannillo, Roberto Natella, and Roberto
Pietrantuono. A comprehensive study on software aging across android
versions and vendors. Empirical Software Engineering, 25, 09 2020. doi:
10.1007/s10664-020-09838-3.

[22] Domenico Cotroneo, Luigi De Simone, Roberto Natella, Roberto Pietran-
tuono, and Stefano Russo. Software micro-rejuvenation for android mo-
bile systems. Journal of Systems and Software, 186:111181, 2022. ISSN 0164-
1212. doi: https://doi.org/10.1016/j.jss.2021.111181. URL https://www.
sciencedirect.com/science/article/pii/S0164121221002636.

[23] Soumya Kanti Datta, Christian Bonnet, and Navid Nikaein. Android power
management: Current and future trends. pages 48–53, 2012. doi: 10.1109/
ETSIoT.2012.6311253.

[24] Dario Di Nucci, Fabio Palomba, Antonio Prota, Annibale Panichella, Andy
Zaidman, and Andrea De Lucia. Software-based energy profiling of android
apps: Simple, efficient and reliable? pages 103–114, 2017. doi: 10.1109/
SANER.2017.7884613.

46

https://www.sciencedirect.com/science/article/pii/S0164121221002636
https://www.sciencedirect.com/science/article/pii/S0164121221002636

References

[25] S. Garg, A. van Moorsel, K. Vaidyanathan, and K.S. Trivedi. A methodology
for detection and estimation of software aging. pages 283–292, 1998. doi:
10.1109/ISSRE.1998.730892.

[26] Jim Gray. Why do computers stop and what can be done about it? 1985.

[27] Michael Grottke and Kishor Trivedi. A classification of software faults. 27,
01 2005.

[28] Michael Grottke, Rivalino Matias, and Kishor S. Trivedi. The fundamentals
of software aging. pages 1–6, 2008. doi: 10.1109/ISSREW.2008.5355512.

[29] Josh Howarth. Time spent using smartphones (2023 statistics), 2023. URL
https://explodingtopics.com/blog/smartphone-usage-stats. (Accessed
on 09-03-2023).

[30] Y. Huang, C. Kintala, N. Kolettis, and N.D. Fulton. Software rejuvenation:
analysis, module and applications. pages 381–390, 1995. doi: 10.1109/FTCS.
1995.466961.

[31] Ahmed Hussein, Mathias Payer, Antony Hosking, and Christopher A. Vick.
Impact of gc design on power and performance for android. 2015. doi: 10.
1145/2757667.2757674. URL https://doi.org/10.1145/2757667.2757674.

[32] Wonwoo Jung, Chulkoo Kang, Chanmin Yoon, Donwon Kim, and Hojung
Cha. Devscope: A nonintrusive and online power analysis tool for smart-
phone hardware components. page 353–362, 2012. doi: 10.1145/2380445.
2380502. URL https://doi.org/10.1145/2380445.2380502.

[33] Lauren. Mobile app download statistics usage statistics (2023), 2022.

[34] Rivalino Matias Jr., Kishor S. Trivedi, and Paulo R.M. Maciel. Using acceler-
ated life tests to estimate time to software aging failure. pages 211–219, 2010.
doi: 10.1109/ISSRE.2010.42.

[35] D.L. Parnas. Software aging. pages 279–287, 1994. doi: 10.1109/ICSE.1994.
296790.

[36] Abhinav Pathak, Y. Hu, and Ming Zhang. Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof. Eu-
roSys’12 - Proceedings of the EuroSys 2012 Conference, 04 2012. doi: 10.1145/
2168836.2168841.

[37] Yu Qiao, Zheng Zheng, and Fangyun Qin. An empirical study of software
aging manifestations in android. pages 84–90, 2016. doi: 10.1109/ISSREW.
2016.19.

[38] Yu Qiao, Zheng Zheng, and YunYu Fang. An empirical study on software
aging indicators prediction in android mobile. pages 271–277, 2018. doi:
10.1109/ISSREW.2018.00018.

[39] Tajmilur Rahman, Joshua Nwokeji, and Tejas Manjunath. Analysis of cur-
rent trends in software aging: A literature survey. Computer and Information
Science, 15:19, 08 2022. doi: 10.5539/cis.v15n4p19.

47

https://explodingtopics.com/blog/smartphone-usage-stats
https://doi.org/10.1145/2757667.2757674
https://doi.org/10.1145/2380445.2380502

Appendix

[40] Rui Rua and João Saraiva. E-manafa: Energy monitoring and analysis tool
for android. 2023. doi: 10.1145/3551349.3561342. URL https://doi.org/
10.1145/3551349.3561342.

[41] Hossain Shahriar, Sarah North, and Edward Mawangi. Testing of memory
leak in android applications. pages 176–183, 2014. doi: 10.1109/HASE.2014.
32.

[42] Srishti. Average screen time: Statistics (for laptops & smartphones), 2023.
URL https://elitecontentmarketer.com/screen-time-statistics/.
(Accessed on 09-03-2023).

[43] Caisheng Weng, Jianwen Xiang, Shengwu Xiong, Dongdong Zhao, and
Chunhui Yang. Analysis of software aging in android. pages 78–83, 2016.
doi: 10.1109/ISSREW.2016.20.

[44] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, and Hojung
Cha. Appscope: Application energy metering framework for android smart-
phones using kernel activity monitoring. USENIX ATC, 06 2012.

[45] Lide Zhang, Birjodh Tiwana, Robert P. Dick, Zhiyun Qian, Z. Morley Mao,
Zhaoguang Wang, and Lei Yang. Accurate online power estimation and
automatic battery behavior based power model generation for smartphones.
pages 105–114, 2010.

48

https://doi.org/10.1145/3551349.3561342
https://doi.org/10.1145/3551349.3561342
https://elitecontentmarketer.com/screen-time-statistics/

Appendices

49

Appendix A

Table with every experiment results

51

Appendix A

test/folder process category samples duration (h)
teste_26 com.baidu.searchbox 4 922 7.7
teste_30 com.physphil.android.unitconverterultimate 1 1423 11.9
teste_31 com.simplemobiletools.notes 1 651 5.4
teste_32 com.simplemobiletools.notes 1 1433 11.9
teste_33 net.sourceforge.opencamera 1 1416 11.8
teste_34 com.sina.weibo 3 756 6.3
teste_35 com.reddit.frontpage 3 1170 9.8
teste_36 com.baidu.searchbox 4 1142 9.5
teste_41 notion.id 1 996 8.3
teste_44 com.physphil.android.unitconverterultimate 1 1482 12.4
teste_45 com.free.turbocleaner 1 1238 10.3
teste_46 com.matteljv.uno 2 751 6.3
teste_47 com.scopely.monopolygo 2 812 6.8
teste_48 com.zhiliaoapp.musically 3 1055 8.8
teste_49 com.zhiliaoapp.musically 3 1093 9.1
teste_50 com.android.chrome 4 1072 8.9
teste_51 org.mozilla.firefox 4 951 7.9
teste_52 com.microsoft.emmx 4 1485 12.4
teste_54 beetles.puzzle.solitaire 2 990 8.3
teste_55 com.twitter.android 3 1495 12.5
teste_56 com.facebook.lite 3 1499 12.5
teste_57 notion.id 1 1207 10.1
teste_58 com.reddit.frontpage 3 885 7.4
teste_59 com.twitter.android 3 1057 8.8
teste_60 com.facebook.lite 3 1499 12.5
teste_61 com.android.chrome 4 1234 10.3
teste_62 com.microsoft.emmx 4 1196 10
teste_63 org.mozilla.firefox 4 793 6.6
teste_64 com.matteljv.uno 2 846 7.1
teste_66 com.king.candycrushsaga 2 953 7.9
teste_67 net.sourceforge.opencamera 1 1499 12.5
teste_68 com.scopely.monopolygo 2 954 8
teste_69 com.king.candycrushsaga 2 737 6.1
teste_70 com.brave.browser 4 794 6.6
teste_71 sonic.bubbleshoot.classic 2 679 5.7
teste_72 sonic.bubbleshoot.classic 2 728 6.1

52

Table with every experiment results

Spearman correlation (V0) Wilcoxon Rank Sum (V1)
test/folder statistic p-value statistic p-value
teste_26 -0.054 0.150 -1.371 0.915
teste_30 0.160 0.000 5.060 0.000
teste_31 0.231 0.000 4.996 0.000
teste_32 0.150 0.000 5.035 0.000
teste_33 0.238 0.000 7.203 0.000
teste_34 -0.050 0.257 -1.806 0.965
teste_35 0.234 0.000 6.998 0.000
teste_36 -0.212 0.000 -6.616 1.000
teste_41 -0.012 0.723 -0.489 0.688
teste_44 -0.026 0.370 -0.875 0.809
teste_45 -0.104 0.000 -3.568 1.000
teste_46 0.011 0.806 0.246 0.403
teste_47 0.059 0.124 1.540 0.062
teste_48 -0.015 0.676 -0.529 0.702
teste_49 -0.021 0.557 -0.587 0.722
teste_50 -0.076 0.020 -2.322 0.990
teste_51 0.153 0.000 4.121 0.000
teste_52 -0.024 0.408 -0.950 0.829
teste_54 -0.017 0.606 -0.516 0.697
teste_55 -0.084 0.002 -3.048 0.999
teste_56 0.094 0.001 3.239 0.001
teste_57 0.093 0.003 2.978 0.001
teste_58 -0.195 0.000 -5.034 1.000
teste_59 -0.041 0.258 -1.140 0.873
teste_60 -0.185 0.000 -6.414 1.000
teste_61 -0.074 0.013 -2.472 0.993
teste_62 -0.092 0.004 -2.874 0.998
teste_63 0.451 0.000 11.026 0.000
teste_64 -0.085 0.022 -2.296 0.989
teste_66 -0.237 0.000 -6.391 1.000
teste_67 0.035 0.240 1.174 0.120
teste_68 -0.021 0.555 -0.591 0.723
teste_69 -0.125 0.003 -2.936 0.998
teste_70 -0.224 0.000 -5.786 1.000
teste_71 0.027 0.533 0.624 0.266
teste_72 0.027 0.525 0.637 0.262

53

Appendix A

Wilcoxon Rank Sum (V2) Wilcoxon Rank Sum (V3)
test/folder statistic p-value statistic p-value
teste_26 -1.317 0.906 0.336 0.368
teste_30
teste_31 3.469 0
teste_32 0.758 0.224
teste_33
teste_34 4.038 0 3.859 0
teste_35 5.137 0 3.01 0.001
teste_36 2.722 0.003 1.588 0.056
teste_41 4.435 0 3.028 0.001
teste_44 -1.716 0.957
teste_45
teste_46
teste_47
teste_48 1.924 0.027
teste_49
teste_50
teste_51
teste_52 2.185 0.014
teste_54
teste_55 -0.892 0.814 -0.892 0.814
teste_56 4.972 0 1.861 0.031
teste_57 -1.685 0.954
teste_58
teste_59 -0.053 0.521 -0.038 0.515
teste_60 -1.349 0.911
teste_61
teste_62 0.449 0.327
teste_63
teste_64
teste_66
teste_67
teste_68
teste_69
teste_70
teste_71
teste_72

54

Table with every experiment results

test/folder average consumption b0 (mAh) average consumption b1 (mAh)
teste_26 1.78 1.94
teste_30 2.25 2.96
teste_31 1.78 2.13
teste_32 1.87 2.08
teste_33 1.8 2.23
teste_34 4.26 5.85
teste_35 4.36 7.17
teste_36 3.32 3.88
teste_41 3.45 4.76
teste_44 2.38 1.7
teste_45 3.03 2.52
teste_46 4.31 4.57
teste_47 3.96 4.25
teste_48 3.32 3.91
teste_49 3.31 3.25
teste_50 2.97 2.75
teste_51 3.39 3.89
teste_52 2.23 2.36
teste_54 2.98 2.94
teste_55 2.53 2.2
teste_56 2.36 3.03
teste_57 2.84 2.13
teste_58 2.29 2.01
teste_59 3.96 4.03
teste_60 2.27 1.04
teste_61 2.08 2.02
teste_62 2.72 3.32
teste_63 4.06 4.59
teste_64 3.17 2.96
teste_66 3.18 3
teste_67 2.31 2.38
teste_68 2.88 2.83
teste_69 3.29 3.13
teste_70 2.87 2.59
teste_71 5.25 5.28
teste_72 5.31 5.33

55

	Introduction
	Document structure

	Literature Review
	Software faults classification
	Android os
	Android os Architecture
	Android Memory Management
	Mobile Power Management

	Measuring battery consumption on mobile devices
	Software aging
	Aging indicators
	Measuring Software aging in Android

	Related Work
	Gaps in the literature

	Methodology and Experimental Procedures
	Preliminary Considerations
	Experimental Setup
	Development of Scripts
	Experimental Tests
	Selection of Android Applications
	Execution of Experiments
	Data processing and Statistical Analysis

	Results and analysis
	Overall aging impact on battery usage
	Categorized aging impact on battery usage
	Discussion

	Planning
	Work plan
	Challenges

	Conclusion
	Future Work

	References
	Appendix Table with every experiment results

