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Abstract

In the mold industry, being a highly competitive sector, organizations are con-
stantly seeking ways to optimize their business processes in order to gain a com-
petitive edge. This has led to a push for the integration of Industry 4.0 tech-
nologies in order to gain access to advanced management tools. Consequently,
the amount of manufacturing process data significantly increased, allowing for
more accurate and real-time process analyses. This is also the case of the molds
industry, where nowadays, we continue to observe that organizations face nu-
merous challenges, including suboptimal resource management, uncertainties in
providing accurate delivery dates to clients, and a lack of visibility into ongoing
processes on the production floors. These issues can prevent the ability to track
the current status of production for specific molds or parts of a mold, leading to
inefficiencies and potential customer dissatisfaction.

To address these challenges, a study was carried out in which we employed Pro-
cess Mining (PM) algorithms to analyze real-world data on production processes
within the mold industry. These data were used as metrics for a Genetic Algo-
rithm (GA), which was employed to optimize and determine the most feasible
schedules for the production floors.

By integrating PM and GA, our approach seeks to increase scheduling efficiency,
resource utilization, and visibility into ongoing production processes.

Through this approach, organizations in the mold manufacturing industry can
achieve greater process control, reduce delays, and gain the ability to provide
more accurate delivery dates to clients, thereby enhancing their overall market
competitiveness.

Keywords

Process Mining, Petri Nets, Genetic Algorithm, Business Process Discovery, Mold
Manufacturing, Mold Industry.
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Resumo

Na indústria dos moldes, sendo este um sector altamente competitivo, as orga-
nizações procuram constantemente formas de otimizar os seus processos empre-
sariais de modo a obterem uma vantagem competitiva. Isto leva a que exista um
impulso para a integração de tecnologias da Indústria 4.0, com o intuito de obter
acesso a ferramentas de gestão mais avançadas. Consequentemente, a quanti-
dade de dados resultantes dos processos de fabrico aumentou significativamente,
permitindo análises mais precisas aos processos e em tempo real. Este é também
o caso da indústria de moldes, onde, atualmente, continuamos a observar que
as organizações enfrentam inúmeros desafios, incluindo uma gestão de recursos
insuficiente, incertezas no fornecimento de datas de entrega suficientemente pre-
cisas aos clientes e uma falta de visualização dos processos em curso no chão de
fábrica. Estes problemas podem impedir a capacidade de acompanhar o estado
atual da produção de moldes específicos ou peças de moldes específicas, resul-
tando em ineficiências e na potencial insatisfação dos clientes.

Para responder a estes desafios, foi realizado um estudo em que utilizámos al-
goritmos de Process Mining (PM) para analisar dados reais sobre os processos de
produção na indústria de moldes. Estes dados foram utilizados como métricas
para um Genetic Algorithm (GA), que foi aplicado para otimizar e determinar os
escalonamentos mais viáveis para os pisos de produção.

Ao integrar PM e GA, a nossa abordagem visa aumentar a eficiência dos escalo-
namentos, a utilização de recursos e a visibilidade dos processos de produção em
curso.

Através desta abordagem, as organizações presentes na indústria de fabrico de
moldes podem obter um maior controlo sobre os processos, reduzindo os atrasos
e obter a capacidade de fornecer datas de entrega mais precisas aos seus clientes,
aumentando assim a sua competitividade no mercado em geral.

Palavras-chave

Process Mining, Petri Nets, Genetic Algorithm, Business Process Discovery, Fabrico de
Moldes, Indústria de Moldes.
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Chapter 1

Introduction

The rise of Industry 4.0 – the integration of Internet of Things (IoT), cloud com-
puting, data processing and analytics into the factories’ infrastructure, the au-
tomatic collection, transformation, and processing of data from manufacturing
floors have become feasible. Given this transformative potential, it is wise to in-
vestigate these events to retrieve feedback regarding the existent processes. Buz-
zwords like business activity monitoring and business process intelligence imply that
organizations and software developers want solutions that can extract insight
from so-called event logs [van der Aalst and Weijters, 2004], which include, for
each record, a certain product or service identifier, a timestamp, an activity and
the resources needed to perform it. These concede the application of Process Min-
ing (PM) algorithms to discover, compare and enhance manufacturing processes.
PM is an analytical discipline that provides a set of tools that allow insights for
the optimization of business processes in a given environment. These tools are
composed by algorithms that transpose the events captured in the event logs and
pinpoint their relation with the business logic and how they were executed.

In this work, we divert our attention to the mold industry, which is characterized
by having an ad hoc manufacture, meaning that no two molds are produced the
same way, due to not only being different from each other, but also for having
a singular production context including, for instance, resources’ availability at
certain moment, time constraints and the overall activity in the factory, resulting
in unstructured business processes, also known in literature as Spaghetti processes
[van der Aalst, 2011].

This work aims to improve the scheduling of activities within the mold indus-
try’s manufacturing processes, a notoriously unpredictable industry, by employ-
ing process mining algorithms to uncover a more accurate representation of the
business processes performed on the shop floor. By doing so, we want to create
schedules that are more aligned with industry needs and increase overall produc-
tion efficiency.

One of the most difficult aspects of this work is to effectively organize, clean, and
standardize the data collected from the mold industry’s manufacturing floors.
This enables the uncovering of meaningful insights and patterns in the process,
which in turn allows for more optimal resource planning. The process of data
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preparation can be time-consuming and requires a detailed understanding of
the data, including the meaning and relationships of the different fields in the
database. Despite the challenges, this step is essential to the success of our re-
search, as it establishes the basis for accurate and effective scheduling of activities
in the mold industry.

1.1 Context

This work is part of a wider scoped project named Prom4Prod, which is co-
funded by the Portugal 2020 program. The goal of this wider project is to create a
decision support, planning, and production management system for engineer-to-
order job-shop production industries. This work is validated for the case of the
plastics injection molds industry, using real data obtained from historical process
execution of the factory floor.

The Prom4Prod project comprises the research, design, and validation of sev-
eral industry-relevant components, innovative management approaches, and the
comprehensive development of a decision support system. The research pri-
marily involves the application of Process Mining (PM) techniques to analyze
engineer-to-order production systems. By using PM, the system provides users
with valuable data to support in production, resource management, and other
crucial decision-making processes.

Moreover, the developed system undergoes thorough validation using real pro-
duction data acquired from the mold company within the project’s consortium.
The design and validation of a decision support system are based on real pro-
cesses, including the use of heuristics and analysis of similar situations. This
approach aims to enhance the system’s ability to offer valuable insights and sup-
port informed decision-making for optimizing production processes within the
industry.

In this work, we primarily focus on addressing objectives related to the schedul-
ing of molds manufacturing processes, and their validation using real data. Our
aim is to develop a module to be integrated into the Prom4Prod infrastructure to
capture the composition of previously built molds using PM in order to generate
schedules for the production of individual parts of the molds.

1.2 Problem and Motivation

The molds industry is a highly competitive sector, and as a result, it is subjected
to a significant amount of pressure on costs and production times. This pres-
sure drives the sector to become more efficient in order to have the best decision-
making mechanisms, which in turn affects their business processes with the goal
of reducing inefficiencies.

The challenge in mold manufacturing is that each mold is a one-of-a-kind, made-
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to-order production, undergoing a series of unique operations due to their own
particular characteristics, which leads to frequently occurring adjustments in their
planning [Mourtzis et al., 2014]. Therefore, each mold is also completely unique
in terms of the manufacturing business processes that are carried out. As a re-
sult, planning decisions and their changes are always dependent on a triple: the
mold’s specific planning, the production status of the several existing molds, and
the processes to be concretely performed on the production line.

As witnessed by members involved in the Prom4Prod project, in the real-world,
manufacturers attempt to incorporate each mold into their manufacturing pro-
cesses wherever feasible, taking into account primarily the resources available
at the moment, usually in a first come first-served fashion, while still recogniz-
ing the value of the customers who have placed orders. This causes a variety of
issues, including deviations in the molds produced, bottlenecks within the man-
ufacturing processes, and non-conformities to their ideal process models.

Currently, the factory floor planning is carried out manually, taking a top-down
approach. Unfortunately, this method is prone to errors due to its lack of granu-
larity. Given the existing circumstances, this manual approach remains their only
known method. This process consumes a significant amount of time, resulting
in infrequent scheduling. Consequently, the current situation perpetuates a cy-
cle where poor scheduling gives rise to ad hoc processes, further worsening the
accuracy of scheduling.

1.3 Objectives

The mold industry is characterized by its ad hoc techniques and having a high
complexity, which in turn leads to unstructured processes as it operates on a
make-to-order basis. However, by structuring, cleaning, and filtering the area
of the mold and by its attributes (e.g., number of cavities, number of parts and
specific part types) we believe that it is possible to achieve a semi-structured or
even structured processes that can be automated.

In this work, the Prom4Prod platform is enhanced by incorporating a new fea-
ture. The primary purpose of this addition is to automate the scheduling of mul-
tiple manufacturing processes in mold production. To achieve this, the system
considers various factors such as the context of each process, the resource occu-
pancy, and the historical workflow data gathered through the implementation of
Process Mining (PM) algorithms. The integration of these elements aim to op-
timize the overall manufacturing workflow and improve the efficiency of mold
manufacturing processes.

With this approach, production engineers are provided with real-time support in
making decisions, including suggested activities for the molds being produced
and the allocation of appropriate resources. This approach proves to be more
flexible and adaptable than the commonly used manual scheduling method in
this industry. Since the system can adapt to the production floor, which makes it
a better way to schedule work.
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Furthermore, by using this approach, production engineers can optimize the al-
location of resources and improve the overall workflow efficiency in mold man-
ufacturing. The system’s ability to adapt to changing conditions allows for better
resource management and timely decision-making. This, in turn, contributes to a
more streamlined and effective production process, leading to improved produc-
tivity and customer satisfaction.

1.4 Document Structure

The remainder of this report is structured as follows:

• Background: Addresses the key concepts, problem description, and previ-
ous work developed in the research areas related to the project;

• State of the Art: Describes the state of the art by providing an overview of
prior research on scheduling processes and the use of PM techniques within
the context of the mold industry.

• Research and Development Methodologies: A description of the method-
ologies used in the research and development process is provided, includ-
ing their procedures and implementation;

• Development: The solution is explained by first introducing an explanation
of the project requirements. Subsequently, it introduces the chosen archi-
tecture and the steps involved, along with a description of the developed
genetic algorithm.

• Results and Discussion: The results of validation, comparative, and per-
formance tests are presented, followed by a discussion of the advantages
and limitations of the work;

• Conclusion and Future Work: A final balance of this work’s results and
achievements, in relation with the previously established objectives. Fur-
thermore, potential approaches for future research and development are
outlined.
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Background

This chapter provides an overview of the project’s key aspects. These include the
mold industry’s business context, the application of Process Mining (PM), the dif-
ferentiation between structured and unstructured processes, and the challenges
associated with their activities scheduling.

2.1 Mold Industry

The mold industry holds a significant position within the manufacturing sector,
as molds are indispensable tools used in a wide range of manufacturing pro-
cesses. Molds serve a crucial role in transforming basic materials, such as plastic,
metal, or glass, into the precise shapes required for mass production. Molds are
widely used in industries such as automotive, electronics, packaging, and con-
sumer goods, allowing the manufacture of products with complex geometry with
notable precision and repeatability, thereby ensuring consistent product quality.

Our work focuses on the domain of plastic injection molding. This specific focus
originates from the availability of data acquired from the Prom4Prod initiative,
which includes organizations of the plastics injection molds industry. Injection
molds are used for injecting molten materials, such as plastic or metal, into a mold
cavity to create a desired product shape. These molds consist of two halves, the
core and one or more cavities, which are designed to create the desired product
geometry.

The Portuguese mold industry has established a standard for classifications and
designations for various parts of molds used in the production of plastic materi-
als [Silva, 2015]. To assist the learning and training in this industry, a dedicated
website has been created, providing an introduction to mold manufacturing1.
This training manual not only covers the classification of mold components, but
also the typical machines found on factory floors and their functions. By getting
familiar with these vital parts and machines, we intend to establish a contextual
understanding of the provided data.

1http://formacao.training.pt/
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Within our work, we have directed our attention to two crucial components:
bushings and cavities. Cavities play a vital role in mold production, as they
shape and form plastic materials into desired shapes, influencing the final prod-
uct. They are a distinct entity within the mold structure. On the other hand, bush-
ings are separate components that guide the movement of mold components, en-
suring precise alignment and smooth operation. They facilitate material flow and
contribute to the mold’s proper functioning during production.

This focus is primarily driven by the abundance of data available, as these two
parts are the most frequently produced for any mold. In the standardized classi-
fication, cavities are assigned the code 100, while bushings are assigned the code
200. Any other components not explicitly defined in the standard are classified
under the group of parts labeled as 900.

2.1.1 Machinery

Throughout the manufacturing process of a part, a wide range of machines are
available to fulfill various operations. These machines play a vital role in shaping
and fine-tuning the parts to meet specific requirements. Based on the available
data, there are several common groups of machines that are frequently found on
factory floors within the mold industry:

• CNC Machines: Machines controlled by pre-programmed code, such as
grinders, lathes, and turning mills, all of which are used to cut, shape, and
create different parts out of a steel workpiece;

• Milling Machines: Machines designed to cut pieces of the most varied ge-
ometric shapes. Usually use rotating tools (e.g., milling cutters or drills),
which cuts the material fixed in a clamping device;

• Grinding Machines: Designed to remove excess material from workpieces,
creating smooth surfaces with precise dimensions;

• Electrical Discharge Machines: Machines which use controlled electrical
discharges to shape and refine materials with more precision, making them
well-suited for complex cuts;

• Wire Electrical Discharge Machines: Machines which employ a thin metal
wire as an electrode, which is guided through the workpiece, useful for
materials that are difficult to machine using conventional methods.

Some additional processes in the mold industry involve a more manual approach,
where workers rely on a workbench to perform tasks such as polishing, fine-
tuning, and assembly of the individual mold components. These manual opera-
tions require human expertise and attention to detail to ensure the desired quality
and finish of the pieces.
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2.1.2 Production Process of a Mold

The production process of a mold typically encompasses six primary stages:

1. Budget Agreement: This initial stage involves reaching an agreement on
the budget for the mold production, ensuring that cost considerations are
aligned with the customer’s requirements;

2. Preliminary Design: In this stage, a preliminary design is developed, tak-
ing into account factors such as desired specifications and functionality.
This phase serves as the foundation for the subsequent development pro-
cess;

3. Development: The development stage incorporates various activities, in-
cluding rheological studies to analyze the flow characteristics of the ma-
terials, planning the desired mold structure, and identifying specific parts
required for the mold assembly;

4. Production: The production stage involves the actual manufacturing of
each mold component and the subsequent assembly of the mold itself. Skilled
technicians and specialized machinery are employed to ensure precision
and quality during this phase;

5. Testing: Once the mold is completed, testing is conducted to assess its qual-
ity (i.e., its performance, functionality, and durability). These tests help
identifying any potential issues or areas for improvement before the final
product is delivered to the customer;

6. Expedition: In the final stage, the mold is packaged and shipped to the
customer, ready for use in their mold injection processes.

2.1.3 The Scheduling Problem

In the context of our case study involving a consortium of companies in the mold
industry, it has become evident, that the scheduling of mold manufacturing pro-
cesses on the factory floor is inefficient and faces significant labor costs.

This inefficiency results from the need for an expert with both technical expertise
and an in-depth knowledge of the business dynamics. This person must be ca-
pable of determining which parts should be prioritized, identifying appropriate
resources, and overseeing ongoing processes while considering factors such as
customer context and prioritization.

Furthermore, the scheduling process is currently handled manually, undertaken
from a broad perspective on a weekly basis. Unfortunately, this method is prone
to errors due to its lack of granularity, and given the current circumstances, this
manual method remains the only approach they know and use. This process is
costly in terms of time, resulting in less frequent scheduling.
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Consequently, the current situation resembles a cycle where poor scheduling cre-
ates room for ad hoc processes, which in turn leads to even less accurate schedul-
ing. The ideal solution would be to establish more frequent and accurate sched-
ules. Thus, the primary objective of this work is to automate the scheduling pro-
cess.

This automation also aims to relieve the scheduler from this duty, allowing them
to focus on other responsibilities, but also achieving more complex and optimal
schedules. Among the primary challenges within the scheduling process is the
integration of quality control into the manufacturing workflow. This integration
renders significant process variability, as activities may need to be repeated until
the component aligns with the quality standards set by the operator.

In essence, the mold industry faces complex scheduling challenges due to the
need for expertise consolidation, coupled with the variability in manufacturing
processes, and the fundamental goal of acquiring a more refined scheduling tech-
nique. As a vital component of the manufacturing sector, the mold industry en-
ables the production of precise molds for large-scale manufacturing of diverse
products.

Through our focused study on plastic mold injection, we have gathered data from
the Prom4Prod project to gain insights into the classification and designation of
mold components, placing particular emphasis on bushings and cavities. This
study has also involved an examination of commonly used machines and the
overall existing process in mold manufacturing. By comprehending these critical
components and their associated data, we have cultivated a contextual under-
standing of the mold manufacturing process.

2.2 Process Mining

Over the past decade, PM has grown and became an independent field of re-
search. In conventional Business Process Management (BPM), workshops and
interviews are used to provide an idealized representation of a business process
(a process model). The PM approach, on the other hand, employs existing data
from corporate information systems to expose the actual business processes in an
automated fashion while also incorporating techniques for their discovery, mon-
itoring, and enhancement [Corallo et al., 2020; Lamghari, 2022].

Unlike Business Intelligence tools, PM digs inside historical data by using event
logs to check for casual dependencies, bottlenecks and deviations. Event logs in-
clude important details like the time and date of an event, its actual description,
and the resources that were used. These can originate from all kinds of systems,
ranging from embedded systems in automobiles or machines to Enterprise Infor-
mation Systems from organizations such as hospitals or factories.

Process Mining is a set of analytical techniques that uses the data stored in the
event logs. These approaches assume that it is possible to extract a sequence
such that each event corresponds to an activity (i.e., one of the steps in a business
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process that specifies a particular action to be carried out) and is related to a par-
ticular case (i.e., an instance of the process representational model). This makes it
possible to provide organizations with more information about what is actually
happening.

In the case of the molds industry, PM helps decision makers understand the pro-
cesses on the factory floors not only by displaying them and their deviations, but
also by enabling the checking of conformance between expected and real work-
flows. This allows for the identification of not only existing bottlenecks and prob-
lems, but also potential ones that the factory floors may face [Trzcionkowska and
Brzychczy, 2018].

We can consider that there are three basic types of process mining techniques
[van der Aalst, 2016]:

• Process Discovery: Usage of event data to develop realistic process models.
These can be expanded to demonstrate bottlenecks and outlier behavior;

• Conformance Checking: Check whether the observed processes correspond
to the modeled (ideal) processes and vice-versa;

• Enhancement: Extend or enhance an existing process model by integrating
information from the actual process event log, to improve the following
executions of the process.

Focusing on Process Discovery, there are multiple PM algorithms integrated into
this topic, the first ever developed being the α-algorithm (also known as alpha
miner).

The α-algorithm extracts various relations between the activities occurring in the
event log. These relations are used to generate a Petri net that reflects the process.
Although the α-algorithm is fairly simple, it provides a good introduction to the
topic, since it represented the basis for the development of other algorithms (e.g.,
heuristics miner) [van der Aalst et al., 2004].

Other popular process discovery algorithms include the heuristics miner and the
inductive miner.

The heuristics miner identifies the underlying process flow by applying a set of
heuristics, or rules, to the event log data. It can handle event logs with a high
level of noise and incompleteness, making it a popular option for real-world ap-
plications where data may not be perfect [Weijters et al., 2006].

The inductive miner is another process discovery algorithm used to extract pro-
cess models from event logs. It identifies patterns in the event log data and dis-
covers the underlying process flow using statistical analysis and machine learn-
ing techniques. The inductive miner can deal with large and complex event logs,
and it can detect both control-flow and data-flow dependencies. However, it is
sensitive to noise and thus, it may need a significant amount of data to produce
accurate results [van der Aalst, 2016].
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2.2.1 Key Software Tools

There are several commonly used software tools that allow the usage of PM algo-
rithms.

ProM (The Process Mining Toolkit)2 is among the most widely used tools for PM.
ProM is a Java-based, open-source application that supports a number of PM
methods and approaches. Because it is open-source, several plugins have been
integrated into it, allowing it to handle a wide range of input and output formats.

Disco3 is a popular commercial process mining software tool, famous for its sim-
plicity and fast results. It offers a range of features for process discovery, process
conformance, and process improvement.

Celonis4 is another commercial process mining tool that specializes in analyz-
ing data from various systems, such as Entreprise Resource Planning (ERP) and
Customer Relationship Management (CRM) systems. It can discover bottlenecks,
inefficiencies, and improvement opportunities in real-time by having the ability
to extract data from a variety of databases types. Which makes it a versatile tool
that can be used in different industries.

Another option is PM4Py (Process Mining for Python)5, which is an open-source
library for Python. It provides a wide range of options, covering all the three
basic types of PM techniques and offers the advantage of customization and the
ability to create plugins, similar to ProM.

Overall, each of these four most well-known PM tools have their own advantages
and disadvantages. Some are commercial products, while others are limited by
the programming language in which they are built in. Nevertheless, they all pro-
vide users with a range of capabilities for analyzing business processes and im-
proving their efficiency and effectiveness.

2.2.2 Process Representation

In the field of process mining, there is a range of methods to depict the work-
flows extracted from the analyzed processes. These graphical representations
are effective instruments for comprehending the elaborate flux of activities, de-
cisions, and dependencies within a process. Some of the common ways to rep-
resent these workflows include Business Process Model and Notations (BPMNs),
Directly-Follows Graphs (DFGs), and Petri nets.

BPMN is a widely-used standard for modeling business processes. It uses simple
symbols and graphical components to represent different types of tasks, events,
gateways, and flows. BPMN diagrams provide a clear overview of process ac-
tivities and their sequences, which makes them an excellent choice for depicting

2https://promtools.org
3https://fluxicon.com
4https://celonis.com
5https://pm4py.fit.fraunhofer.de
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process structures [White, 2004].

DFGs provide an informative yet simplified view of process sequences. They pri-
oritize portraying direct relationships between activities, highlighting their fre-
quency and order of incidence. DFGs are especially helpful for identifying com-
mon paths and obstacles within a process.

In this study, we focus on the representation of process workflows using Petri
nets. Petri nets are formal models that excel at representing processes’ complex
relationships, parallelism, and conditional behavior. They consist of places, tran-
sitions, tokens, and arcs that collectively represent the flow of activities and deci-
sions. Petri nets offer a significant advantage over other techniques of represen-
tation as they can not only provide a clear visualization of the process structure,
particularly in detecting simultaneous execution of activities, but also have the
possibility to include performance and frequency metrics.

Figure 2.1: Example of a Petri net adapted from [Fraunhofer Institute, 2021].

A simple Petri net generated from the synthetic event log "running-example.csv"
from the PM4Py framework is displayed in Figure 2.1.

Petri nets are structured diagrams consisting of places (depicted as circles) and
transitions (represented as rectangles) interconnected by arcs (depicted as lines
forming the relations). The diagram begins with a start place and concludes with
an end place, forming the foundation for illustrating process workflow.

Each place in this diagram is only connected to transitions, while transitions are
only connected to places. This structural arrangement assures the logical consis-
tency of the representation.

Silent transitions, denoted by the black rectangles, play a unique role in the Petri
net. Unlike standard transitions linked to events in the event log, silent transi-
tions are absent of direct connections to the event log. Instead, they serve as vital
routing mechanisms, allowing the flow of tokens (i.e., symbols representing the
process of work between places and transitions).

Now, we shall analyze the particular features highlighted by this Petri net. The
initial task executed is the "register request". Following this, the parallel execu-
tion of two workflows emerges. This parallel execution is visualized through
the silent transition that diverges into two branches. Notice that the place pre-
ceding "examine casually" and "examine thoroughly" contains two connections,
denoting an "OR" relationship. This indicates that only one of these relations can
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be "active" at any given time within the process, reflecting a workflow decision
point.

Overall, this visualization contributes in comprehending the dynamics of the un-
derlying process and offers valuable insights into the execution of activities and
their relationships.

2.3 Structured and Unstructured Processes

The use of PM techniques in various fields revealed a distinction between two
kinds of existing processes: structured processes, also known as Lasagna Processes,
and unstructured processes, also known as Spaghetti Processes. We may also dis-
tinguish an intermediate form, known as "semi-structured" processes [van der
Aalst, 2011; van der Aalst and Gunther, 2007].

Lasagna Processes are predictable and well-defined (like a lasagna, for which we
can immediately identify each layer, as well as its structure as a whole), allowing
a major portion of them to be automated.

In Figure 2.1 presented in the previous section, we can observe an example of a
Lasagna Process, drawn from a small sample of event logs.

In "semi-structured" processes, it is possible to recognize its activities, yet certain
activities may deviate from the main sequence based on the observed situation,
necessitating human review for their interpretation.

Finally, the Spaghetti Processes are highly difficult to define since most of their
cases have their own deviations, making it impossible to scope the primary se-
quence in them. These are human-driven processes and, because there are usu-
ally only suggested guidelines, the processes are affected by their intuition, expe-
rience, or “trial-and-error” methods, making it difficult to achieve a meaningful
analysis. However, by carefully filtering the data and focusing on a particular
portion of the process, it is possible to uncover hidden patterns that hold the po-
tential to enhance the overall process.

An example of a Spaghetti Process generated using real data can be seen in Figure
2.2.
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Figure 2.2: Example of a Spaghetti Process.

Even though Spaghetti Processes are more difficult to analyze than Lasagna Pro-
cesses, they still provide valuable insights and have significant room for enhance-
ment.

Event logs do not accurately portray the entire environment, e.g. they can only
transmit example behavior [van der Aalst and Gunther, 2007], since they record
just a fraction of the possible paths. Therefore, process discovery becomes diffi-
cult since it is impossible to forecast alternative patterns. As Wil van der Aalst, the
father of process mining, stated [van der Aalst, 2011]:

“The fact that something does not happen in an event log does not mean that
it cannot happen.”

In case of the molds industry, a mold’s production may have certain features
similar to other molds, but the method by which each kind of mold is built can be
entirely different. In other words, while dealing with mold industry data without
any form of filtering or focusing on specific sections of the mold-making process,
we are presented with Spaghetti Processes.
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2.4 Job-shop Scheduling Problem

Various industries, including manufacturing, production planning, computer de-
sign, logistics, and communication, experience machine scheduling issues [Cheng
et al., 1996].

The Job-shop Scheduling Problem (JSP) is considered one of the existing intractable
numerical problems, also known as NP-hard problems, and is one of the most im-
portant and challenging in the field of operations management [Manne, 1960].

The generic JSP problem is defined by a set of jobs and a set of machines. Each job
consists of a group of operations that must be carried out in a certain time frame
on a particular machine without interruption. Each machine is only capable of
doing one operation at a time. A schedule is the assignment of operations to
machines at a predetermined time period. The purpose of this challenge is to
determine the least amount of time required to schedule all existing jobs.

As one of the most difficult combinatorial optimization problems, it features a
vast search space of possible solutions, which makes the use of heuristic proce-
dures appealing [Zhang et al., 2017]. The adoption of stochastic search methods
such as Tabu Search, Simulated Annealing (SA), Genetic Algorithm (GA) and
Swarm Intelligence algorithms, seem to have a high success rate in identifying
good-fitting solutions.

Tabu search employs local search techniques similar to those used in mathemati-
cal optimization to identify a probable solution and explore the neighborhood for
its optimization [Glover, 1986].

SA is a stochastic technique for approximating the global optimum of a given
function. In the case of JSP, this function consists of the solution search space and
its fitness [Brabazon et al., 2016].

GA is based on natural selection and consists of using adaptive and global stochas-
tic search algorithms in a space of candidate solutions while also being directed
by an objective function in order to find the best fitting solution [Brabazon et al.,
2016]. To achieve this, a GA exhibits four distinctive characteristics:

1. Initialization of a Population: The process begins with the creation of an
initial population, each representing a potential solution to the problem.
Typically, these individuals are generated through a random or heuristic
process, resulting in a diverse set of candidate solutions;

2. Selection of Individuals as Parents: A subset of the current population
is chosen to serve as parents for the next generation during the selection
phase. The selection procedure gets influenced by each individual’s fitness,
as determined by the objective function. Individuals with higher fitness
levels are more likely to be chosen, similar to the concept of "survival of the
fittest" [Brabazon et al., 2016].

3. Genetic Operators: Responsible for creating new candidate solutions from
existing ones. These operators mimic biological processes such as crossover
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and mutation. In the crossover operation, genetic material from two parent
solutions is combined to produce one or more offspring who might acquire
beneficial traits from their parents. Mutation introduces random changes to
the individual’s genes, promoting the exploration of novel solution spaces
and enabling the emergence of novel traits.

4. Replacement of the Population: The new generation of individuals, con-
sisting of parents, children resulting from crossover, and individuals sub-
jected to mutation, replaces some or all of the individuals in the current
population. This replacement procedure assures the constant evolution and
adaptation of the population over successive generations.

By iteratively applying these principles, Genetic Algorithms (GAs) explore the
solution space, adapt to changing conditions, and seek the optimal solution based
on the provided objective function.

Swarm intelligence employs the same ideas as a conventional GA but depends on
decentralized, self-organizing individuals to discover solutions to the problems
[Brabazon et al., 2016]. It consists of nature-inspired particle swarm optimization
algorithms, with three main variations of swarm models:

• Flocking behavior of birds or the sociological behavior of a group of hu-
mans;

• Food foraging behavior;
• Social behavior of insects (as for example, ant colonies).

2.5 Conclusion

In conclusion, this chapter has provided foundations for our subsequent work.
We have determined the crucial position of the mold industry in manufacturing,
exposing both its significance and the challenges it faces. In addition, we intro-
duced Process Mining as an effective technique for examining processes. Lastly,
we described the complexities surrounding the Job-shop Scheduling Problem, a
challenge that underpins much of our study.

Having established this foundational understanding, we proceed with a detailed
exploration of the work that has been undertaken in the upcoming chapters, start-
ing by delving into the state of the art in these research areas.
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State of the Art

The goal of this chapter is to describe the state of the art by providing an overview
of prior research on scheduling processes and the use of PM techniques within the
context of the mold industry. This includes a discussion of relevant work that has
been conducted in this field. By reviewing this previous research, we can gain
a better understanding of the context of the study and identify current gaps and
acknowledged opportunities for further investigation.

3.1 Search Strategy

For the search on related work , we used Google Scholar and Research Rabbit as our
preferred search engines to find the best fitting scientific articles. We used a set
of keywords to search for information, such as ’"process mining" AND "mold man-
ufacturing"’, ’"scheduling" AND "mold industry"’, ’"process mining" AND "schedul-
ing"’ and ’"process mining" AND "scheduling" AND "mold industry"’. These key-
words allowed us to find a set of articles that fit completely or partially inside the
context of our work.

Table 3.1 presents a classification of related articles by the main research areas sur-
rounding this work. The ones that we found relevant to classify were: 1) Process
Mining, if the work references the use of process mining techniques or outcomes
resulting from those techniques; 2) Scheduling, whether it covers the scheduling
of processes or simply JSP, which is split into four categories: Genetic Algorithm
(GA), Simulated Annealing (SA), Swarm Intelligence (SI), or Others; 3) Mold In-
dustry, if the study relates to the mold industry or mold manufacturing.
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Table 3.1: Table of related work articles classified by the area of work.

Article
Process
Mining

Scheduling Mold
IndustryGA SA SI Other

[Park and Choi, 2006] X
[Wu et al., 2009] X X X
[Liu et al., 2010] X X

[Tamilarasi and Anantha, 2010] X X
[Gomes et al., 2013] X X

[Caballero-Villalobos et al., 2013] X X X
[Mourtzis and Vlachou, 2018] X X

[Fu et al., 2019a] X X
[Fu et al., 2019b] X X
[Jong et al., 2020] X X X
[Lee et al., 2020] X X

[Choueiri and Santos, 2021] X X

An integration of process planning and job shop scheduling using a genetic al-
gorithm is explored by Park and Choi [2006]. The researchers adapted a GA
previously developed by them to address the specific constraints encountered in
process planning. The approach was tested using several benchmark cases, but
it was not applied to real-world problems. Nonetheless, it proved to be a con-
siderable performing approach where it could produce an optimal or improved
solution for the JSP, meaning they could meet the due dates demanded by cus-
tomers.

The use of Petri nets to solve a Resource-Constrained Multiple Project Schedul-
ing Problem (RCMPSP) is approached by Wu et al. [2009]. Petri nets, being the
product of Process Mining algorithms, have the benefit of being able to simulate
dynamic, concurrent, and asynchronous activities compared to other modeling
tools. This behavior helps in the solving of the RCMPSP, as we have a more
realistic view of the processes. In this work, Time Colored Petri nets (TCPNs)
are used, enabling a more compact and concise view on the process flow, since
by introducing "colors" we are able to distinguish different entities and have ad-
ditional logic inside the Petri nets. To test the suggested approach, the authors
conducted a case study using simulated data to mimic the mold manufacturing
business. The results show that using TCPNs is not only feasible but also effec-
tive. Additionally, it was found that the current algorithm is very CPU-inefficient
and its optimization is one of the objectives in future research.

Another approach using Petri nets is described in Caballero-Villalobos et al. [2013]
to compute the scheduling of complex manufacturing systems. This case study
focuses on plastic injection molds and provides improvements to a prior research
that employed Petri nets and Genetic Algorithms (GAs) to handle complex pro-
duction scheduling problems. The key contributions of this study are the ability
to model a broad range of manufacturing systems without modifying the net
structure or the solutions representation (chromosome) and the optimization of
the method used to generate the initial population of solutions. These have im-
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proved the quality of the results compared to the previous tested methods. Future
research is expected to focus on reducing the consequences of redundant repre-
sentations in an individual’s chromosome through the use of other approaches in
the discovery of sequence transitions in Petri nets.

Liu et al. [2010] explores the development of a GA with the objective of solving
mold enterprise’s JSP. They focused on mold production constraints with the goal
of making the processing completion time of all work items the shortest possible,
although the due date is not mentioned as a constraint in their processes. In
their study, they made the GA account for the time required for each working
procedure, the transit durations between each machine, and the preparation time
for each machine to provide a schedule that is more representative of the actual
process.

The work of Tamilarasi and Anantha [2010] reflects the possibility of using a hy-
bridization of GA with SA to solve the NP-hard JSP. While not in the context
of the mold’s industry, it has an extensive practical description on how to con-
duct this hybridization. The experimental results obtained indicate that it is an
optimization comparing the use of a GA alone, and claims that a hybrid solu-
tion narrows the search space and accelerates the rate of convergence during the
optimization process, improving search effectiveness while still allowing the al-
gorithm to escape from local minima.

Gomes et al. [2013] focuses on a mathematical programming approach to reactive
scheduling in a make-to-order job shop with re-entrant processes and assembly.
The research was based on actual data from a mold manufacturing corporation.
Reactive scheduling allows a rapid response to unanticipated events in an indus-
trial environment, such as processing delays, machine malfunctions, the delivery
of new orders, or material shortage. Their future work discusses the necessity to
account for the temporary unavailability of machines, changes in deadlines, or
the necessity for rework due to product defects, all of which are typical in mold
manufacturing.
In the scope of our study, we intend to focus simply on process scheduling using
PM, although we recognize the importance of other approaches to the same issue,
and especially if they comprise similar real-world scenarios.

A cloud-based cyber-physical system is presented in Mourtzis and Vlachou [2018]
for adaptive shop-floor scheduling and condition-based maintenance. They demon-
strate that it is possible to develop a Software-as-a-Service (SaaS) infrastructure
that uses dependable real-time data for processing and analysis of shop floor data
at a low cost. This infrastructure is capable of performing adaptive scheduling
by generating alternatives based on a set of inputs that include demand, order-
model, resource-task appropriateness, and the task sequence required. Then, us-
ing a set of criteria and weights assigned to each alternative, the utility value of
each alternative is computed, and the alternative with the highest utility is se-
lected.

Still focusing on scheduling processes in the context of this industry, Fu et al.
[2019a] proposed a multi-objective pigeon inspired optimization for a Fuzzy Pro-
duction Scheduling Problem considering Mould Maintenance (FPSP-MM). Us-
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ing an algorithm inspired by the behavior of pigeons, the scheduling solutions
compete to be the flock leader (also known as pigeon leader), and a particular
crowding distance is applied to assure a decent distribution of solutions across
the search space. The results show that this is a good approach to FPSP-MM
compared to other approaches mentioned in the article. This research makes no
mention of information gathering or, in this instance, any process mining tech-
niques.

The same authors of the prior study, developed a three-level particle swarm
optimization with variable neighborhood search algorithm for the Production
Scheduling Problem with Mold Maintenance (PS-MM) [Fu et al., 2019b], referred
to as TLPSO-VNS. PS-MM is a single-operation scheduling problem with numer-
ous simultaneous machines, meaning each job has only one operation, and each
workshop has several machines. It is divided into three subproblems: produc-
tion scheduling, machine maintenance, and mold maintenance. Even though the
TLPSO-VNS algorithm is an optimization method that is adapted to solve these
subproblems, it has a high time complexity and may not be efficient for larger
problems. It is mentioned that future work will focus on improving the efficiency
and adaptability of the algorithm.

Jong et al. [2020] chose to integrate a combination of a First In First Out and Earliest
Due Date heuristics for the scheduling in the production lines of a mold manufac-
turing shop floor. A GA was developed first with the objective of finding better
scheduling sequences, and after that, an Ant Colony Optimization was imple-
mented, so it could optimize the results obtained. In order to add complexity
to the set of GAs, actual mold instances with four-layer components were used
in this research, since the components of the lower layers cannot be constructed
until the components of the layers above are complete. This approach saved 10%
more time than the Earliest Due Date based scheduling (sorting tasks by estimated
due time). Future research will incorporate multi-objective optimization and ex-
pand it to a multi-agent system, as this has been proven to be an effective method
for overcoming dynamic scheduling issues by prior research.

Lee et al. [2020] approached the problem by using deep reinforcement learning,
more specifically the Q-network algorithm, for the scheduling in injection mold
production. The deep Q-network learned by analyzing multiple iterations of the
problem of scheduling molds. After the training was complete, the performance
of the proposed algorithm was evaluated using rules that minimized the overall
weighted tardiness. The results show a lower total weighted tardiness than other
rule-based methods.

The work of Choueiri and Santos [2021] is not related to the mold industry, but
rather to multi-product scheduling via process mining. They describe a frame-
work created with the purpose of extracting processes from event logs and ex-
ploiting the dependencies collected in the data to automate the scheduling of a
particular product and its components using the resources found. Inspired by the
work of Jung-Ug Kim and Yeong-Dae Kim [1996], a GA with Random Keys was
used for the scheduling method. They emphasize the development of a bisection
decoding approach in their study to optimize the GA from the traditional O(n)
decoding to O(log n).
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3.2 Conclusion

In conclusion, the related work in the scheduling of molds’ manufacturing pro-
cesses demonstrates that there has been relatively few prior studies which cover
the use of PM techniques to collect data for scheduling in the context of mold
manufacturing. The majority of studies focus on the different approaches for the
scheduling of mold’s manufacturing or maintenance processes, without account-
ing for the use of PM as a way to gather real process flows and the duration of
each activity.

The work of Choueiri and Santos [2021], provides a good foundation to the ex-
traction of dependencies from a Petri net and the subsequent schedule, although
not relating it to the mold industry nor to its constraints. The works of Wu et al.
[2009] and Caballero-Villalobos et al. [2013], also offer promising approaches, but
both have their limitations. None of these articles take the factory’s activity into
account, meaning that each schedule solely focuses on allocating the necessary
jobs to the correspondent feasible machines, regardless of whether those ma-
chines are currently occupied by other manually or automatically scheduled jobs.

Given this context, we chose to build upon the work of Choueiri and Santos. This
decision was influenced by a preliminary prototype that demonstrated the trans-
ferability of their techniques and ability to adapt to the operational challenges
and restrictions specific to the mold industry and the Prom4Prod project. This
topic is covered in more detail in future sections, specifically in Chapter 5, in
which we describe the project requirements.
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Research and Development
Methodologies

This chapter presents the established methodologies employed in this work. Firstly,
the research methodology is presented, followed by the software development
methodology, outlining the techniques used to design and implement the solu-
tion.

4.1 Research Methodology

Given that the outcome of this work is a software solution that involves the
use of real data, including data cleaning and standardization, we employed an
adaptation of the Cross Industry Standard Process for Data Mining (CRISP-DM)
methodology.

CRISP-DM is a widely-used methodology for data mining and process improve-
ment projects, designed to guide organizations through the process of extracting
value from data [Chapman et al., 2000]. It has been demonstrated to be effective
in a variety of industries, including manufacturing [Gellrich et al., 2019].

As illustrated in Figure 4.11, the CRISP-DM methodology consists of six main
phases, each of which are critical to the project’s success. In this work, we fol-
lowed the methodology as outlined below. The detailed explanation of the de-
velopment of our approach can be found further in the document (Chapter 5).

1. Business understanding: Consulted with a key partner from the Prom4Prod
project, an expert in the mold industry, to comprehend industry constraints,
business logic, challenges in mold manufacturing, customer demands in the
field, as well as identifying the problem and its relevant context (e.g., what
is the problem, why it is important, and who it affects);

2. Data understanding: Addressed data recorded on production floors, in or-
der to understand its structure, content, and any problems that could exist;

1Designed using images from Flaticon.com.

23

https://www.flaticon.com


Chapter 4

3. Data preparation: Consisted on preprocessing the data gathered, in order
to tackle challenges like data cleaning, filtering, and standardization to gain
insights into the necessary data transformations for the project. Addition-
ally, the Inductive Miner Infrequent PM algorithm was used to extract pro-
cess knowledge from specific parts used in the mold families, resulting in a
detailed understanding of the individual processes involved in the produc-
tion of different mold parts;

4. Modeling: Included the development of a recursive algorithm for sequence
extraction, another algorithm to clean this sequence, the manipulation of
the data gathered from the event logs, and the implementation of a GA for
generating schedules;

5. Evaluation: Consisted in the assessment of the sequence extraction method
and the GA to verify their functionality and feasibility in accordance with
the data;

6. Deployment: Integration of this work results into the Prom4Prod platform,
along with the execution of any required modifications to align with the
application’s business logic.

Figure 4.1: Phases of CRISP-DM Model adapted from [Chapman et al., 2000].

The stages of the CRISP-DM methodology were not strictly linear in this work, as
some steps underwent revision as we explored different approaches to extract the
desired data, or even adapted the process based on the evolving understanding
of the data and the industry context. The iterative nature of the project allowed
us to learn more about the data and the specific nuances of the industry, leading
to valuable insights that influenced the way certain steps were conducted.
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4.2 Software Development Methodology

As a software development methodology, we have chosen to use Kanban which
is an Agile method for software development that enhances project management
by providing a visual representation of the work via a "Kanban Board" [Alaidaros
et al., 2021]. Typically, a Kanban board consists of columns such as To-do, Doing,
and Done, although it can be tailored to align with the specific workflow states
of the team. This choice allows us to effectively track and manage the progress of
our tasks.

The main rationale behind the choice of this methodology was to achieve flex-
ibility in our development process. By adopting an iterative development, we
intended to continually refine and improve our solution. To ensure an effective
communication, we scheduled weekly meetings where the Kanban methodology
played a crucial role in displaying the current project status, showcasing small
demos, and discussing potential changes.

Figure 4.2: Trello Kanban board in 4th week of development.

To implement our Kanban methodology, we used Trello2 as our preferred Kanban
board platform, as shown in Figure 4.2. Our Trello board consisted of six columns,
namely: Planning/Notes, Backlog, To Do, In Progress, Review, and Done. This
setup allowed us to effectively manage and track our tasks throughout their life-
cycle, from initial planning and prioritization to completion and review. The clear
categorization provided by these columns enabled us to visualize the progress of
each task and streamline our workflow accordingly.

2https://trello.com
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Development

In this chapter, we begin by describing the main functional and non-functional
software requirements and the Prom4Prod platform’s general software architec-
ture, as well as our solution’s particular architecture, known as the Process Schedul-
ing module. We define each individual stages that comprise this module and
provide an insight into the tasks performed at each stage.

For a better understanding of the solutions’ workflow, we intend to use a series
of examples to better convey this explanation.

5.1 Requirements

Functional and non-functional requirements are essential to align our work with
the current objectives (Section 1.3). These specifications form the basis of our
work, which aims to produce a solution that assists mold manufacturing compa-
nies increasing the efficiency and efficacy of their scheduling processes.

The primary objective of this project is to develop a feature for the Prom4Prod
project that automates the schedule of mold manufacturing processes in the mold
industry using PM to gather a more realistic business process (compared to con-
ventional approaches in Business Process Management (BPM)). To guide the de-
velopment of this feature, a set of objectives were established and converted into
functional requirements.

Functional requirements are an important part of software specification, as they
help to describe the functionalities that are expected. In addition to functional
requirements, non-functional requirements should also be taken into account, as
they specify the constraints and qualities of the desired solution.

In the following sections, we describe the decisions made and the defined re-
quirements.
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5.1.1 Functional Requirements

At the start of the design process for the Prom4Prod project, a set of objectives
were established, namely:

1. The system should allow users to input mold manufacturing data, such as
the characteristics of the molds parts to be produced, and the available time
frame;

2. The system must be able to access event log data retrieved from the factory
floors in order to discover business processes executed;

3. The system should generate optimal schedules for the activities belonging
to the production processes of the molds, taking into account the available
resources (e.g., machines used) found in previous business processes and
time frame given by the user;

4. The system should provide visualizations of the calculated schedules (i.e.,
Gantt charts or other graphical representations);

5. The system should allow users to modify the input data and re-calculate
schedules as needed;

6. The system should take into account prior schedules made in the factory
floor, meaning that machines can be already occupied in the given time
frame;

7. Each process activity must be appointed to an available feasible machine,
meaning that each part can only be scheduled to a machine where it can be
executed;

8. All process activities must comply to the proper production sequence.

9. Each machine can only carry out a single process activity at a time.

10. If a process activity is delayed, the dependent activities in the production
sequence must wait.

5.1.2 Non-functional Requirements

As the Prom4Prod project involves a large number of participants, non-functional
requirements were not formally defined in its initial stages. However, it is pos-
sible to infer a number of non-functional requirements based on the needs of the
solution:

1. To ensure data integrity and security, access to the application should be
restricted. Thus, only users who are authenticated and authorized in the
system database should have access to the platform and the information
contained within it. Any unauthorized users should be denied access to the
platform and its data to maintain data confidentiality and prevent potential
security breaches.
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2. The optimization solution must be maintainable, with access to clear doc-
umentation and a well-designed architecture that allows for easy updates
and future expansions. This report, along with the technical report of the
Prom4Prod project, serves as the documentation for the system’s design and
development.

3. The solution must be developed using Python, since it is adopted by the
Prom4Prod project;

Having covered the functional and non-functional requirements, we can now
turn our attention to the description of both the Prom4Prod architecture and the
solution architecture.

5.2 Architecture

The Prom4Prod project has been developed as a decision support system specif-
ically tailored for the plastics injection mold industry. Its primary objective is to
provide analytical insights, identify bottlenecks and deviations in the processes,
and support decision-making regarding resource allocation within engineer-to-
order processes in the factory floors. With a focus on using PM, the Prom4Prod
project seeks to help stakeholders make more informed decisions.

Our contribution comes in the form of the Process Scheduling module. This mod-
ule integrates our work into the existing project framework. In the following sec-
tions, we look at the architectural aspects of both the Prom4Prod project and the
Process Scheduling module, as well as the design decisions and components that
incorporate the solution.

5.2.1 Prom4Prod architecture

The Prom4Prod platform has been designed with a three layer architecture, as
depicted in Figure 5.1. The presentation layer acts as the user interface, allowing
users to interact with the system. The business logic layer, located beneath the
presentation layer, incorporates an Application Programming Interface (API) to
facilitate communication with external applications, which processes the input
provided by the presentation layer, and consumes the collected data through IoT
sensors, API or other third-party applications. This layer applies various algo-
rithms and techniques, with Process Mining (PM) as its main resource for anal-
ysis and decision-making. Additionally, it communicates with the Local Data
Collector, OnFlow, to transmit IoT data for Key Performance Indicators (KPIs)
and raw data management. Lastly, the data access layer is responsible for storing
and managing PM results, ensuring its integrity and availability.
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Figure 5.1: Prom4Prod 3-layer architecture.

5.2.2 Process Scheduling module architecture

The Process Schedule module depicted in Figure 5.1 is incorporated into the
Prom4Prod platform via an interface page within the presentation layer that al-
lows the user to input the required information to schedule the desired mold
pieces. The backend of the module is incorporated into the Business Logic Layer
and shares an API entrypoint access with the backend of the platform, allowing
for the communication between the system layers.

Figure 5.2: Process Scheduling module architecture.

Figure 5.2 provides an overview of the module’s architecture. The Presenta-
tion Layer serves as the bridge between user interaction and the Business Logic
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Layer, relaying information from the input forms. Inside the Business Logic
Layer, a process named "Parallel Data Extraction" retrieves metrics from both the
database and the Inductive Miner Infrequent algorithm. Once the necessary data
for scheduling the required parts is extracted, it is transformed into a Genetic Al-
gorithm (GA) problem format. Following this, the GA is executed. The schedules
are then communicated to the frontend for display. Further sections will cover the
specifics of each step of this process, how the GA is executed and what schedules
are outputted.

5.3 Parallel Data Extraction

The parallel data part extraction process plays a crucial role in gathering the nec-
essary information and requirements for scheduling parts of a mold.

As previously explained in Section 2.1, the mold industry is characterized by un-
predictable processes due to the unique nature of each manufacturing process.
A single mold part can undergo multiple stages, such as CNC machining, pol-
ishing, or erosion, before progressing further in the manufacturing process. This
iterative loop continues until the part meets the required specifications.

To extract meaningful data from the event logs, we employed a filtering approach
based on "family molds". This involved identifying molds within the same pro-
duction area, possessing the same number of cavities, exhibiting similar weight
characteristics or number of parts, and, if necessary, matching specific customer
requirements.

For instance, when scheduling a part for a mold that produces car pedals, we
extract the necessary information from the car pedal mold family to obtain precise
details, including durations, machines used, and activities performed.

The parallel data extraction process involves a sequential execution of multiple
steps. These sequential processes for each part can be carried out in parallel. For
instance, if there are multiple parts to be scheduled, the data extraction process
for each part can be performed concurrently, allowing for efficient and paral-
lelized data extraction, as visually indicated in gray in Figure 5.2.

5.3.1 Data Extraction

In order to extract the necessary data, we gather the required inputs from the
frontend (i.e., presentation layer components). This includes part requirements
(such as part code, due date, and schedule priority), mold information (includ-
ing mold identification and its family), and the time intervals during which the
machines on the factory floor are occupied.

Once this data is collected (either by retrieving it from a CSV file or a database),
we initiate a data cleaning process consisting in data standardization and event
log simplification. Event logs are generated based on the activation of machinery
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sensors when a process is executed. Upon scrutinizing the data, a recurring pat-
tern emerged: multiple event logs often originated for the same process, each log
spanning seconds or minutes and featuring overlapping time intervals. To tackle
this issue, a two-fold approach was adopted.

First, event logs were sorted by beginning and ending times. Subsequently, logs
with corresponding criteria, such as the same mold, machine, and activity, were
subsequently merged. By aggregating the logs, the concatenated versions in-
cluded the entire duration of the mining process, with the earliest start date and
the latest end date encapsulated within each log.

Table 5.1 and Table 5.2 present an example of a final version of the event log for
parts 100 and 200 of molds, respectively. These tables showcase specific instances
of event logs extracted from the factory floor, filtered based on the corresponding
mold family (e.g., Car Pedals) and part identification. The columns in these tables
provide the following information: Part ID indicates the identification number of
the part, Mold ID represents the identification number of the mold associated with
the part, Activity denotes the specific activity or operation performed on the part,
Machine ID corresponds to the identification number of the machine involved in
the activity, Start corresponds to the start date and time of the activity, and End
denotes the end date and time of the activity.

Table 5.1: Event log fragments for part 100.

Part ID Mold ID Activity Machine ID Start End
100 350 CNC m1 15/05/2023 08:10 15/05/2023 08:24
100 350 Erosion m4 15/05/2023 08:25 15/05/2023 08:30
100 350 Polishing m6 15/05/2023 08:32 15/05/2023 08:40
100 350 Erosion m5 15/05/2023 08:43 15/05/2023 08:58
100 350 Polishing m6 15/05/2023 09:05 15/05/2023 09:17
100 477 Electrodes m3 15/05/2023 08:05 15/05/2023 08:10
100 477 Erosion m6 15/05/2023 08:12 15/05/2023 08:22
100 477 Polishing m6 15/05/2023 08:22 15/05/2023 08:30
100 399 CNC m2 15/05/2023 08:10 15/05/2023 08:26
100 399 Erosion m5 15/05/2023 08:29 15/05/2023 08:39
100 399 Polishing m7 15/05/2023 08:40 15/05/2023 08:50

Table 5.2: Event log fragments for part 200.

Part ID Mold ID Activity Machine ID Start End
200 1012 CNC m2 15/05/2023 14:00 15/05/2023 14:18
200 1012 Erosion m4 15/05/2023 14:20 15/05/2023 14:25
200 1012 CNC m1 15/05/2023 14:26 15/05/2023 14:48
200 1012 Erosion m5 15/05/2023 14:50 15/05/2023 14:55
200 1012 Polishing m6 15/05/2023 14:56 15/05/2023 15:10
200 880 Electrodes m3 15/05/2023 14:00 15/05/2023 14:15
200 880 Erosion m6 15/05/2023 14:16 15/05/2023 14:21
200 880 Polishing m7 15/05/2023 14:24 15/05/2023 14:40

This data frame is passed on to the subsequent steps of the sequence, so the de-
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sired metrics can be used. These metrics include the resources that were pre-
viously used, the durations of the activities, and the sequence of activities per-
formed.

5.3.2 Inductive Infrequent Miner

The Inductive Miner is a process discovery algorithm used in PM employed to
extract infrequent patterns from process event logs [Leemans et al., 2015].

A crucial feature of the Inductive Infrequent Miner is the ability to interact with
the noise threshold. By adjusting the noise threshold, users can control the amount
of noise generated within the Petri net, thus gaining greater control over the min-
ing process [Leemans et al., 2013]. Consequently, we have chosen to use this
particular variant of the Inductive Miner, as it empowers end-users to simplify or
increase the complexity of the resulting Petri net.

Our purpose is to use this Petri net to be able to understand what are the possible
paths of the process to be scheduled. We can also visualize the frequency of ac-
tivities in the Petri net itself and use this information to later find a relevant path,
as discussed in the following section.

Figure 5.3: Petri net model of part 100 manufacturing processes.

Figure 5.4: Petri net model of part 200 manufacturing processes.

Taking reference from the event log fragments provided in Table 5.1 and Table
5.2, corresponding Petri nets representing the processes of part 100 and part 200
can be observed in Figures 5.3 and 5.4, respectively. The analysis of the Petri nets
reveals that certain activities, such as "Erosion" in Part 200, are optional and/or
can be replicated, while others are essential for the completion of the process, like
"Polishing" in Part 200.
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5.3.3 Sequence Extraction

To conduct a sequence extraction from the Petri net, we decorate it with frequency
information, making it possible to visualize and retrieve data from the frequency
of transitions within the system. In Figure 5.5 we can observe an example of the
Part 200 processes Petri net decorated with frequency information.

Figure 5.5: Frequency of part 200 processes.

Our objective is to extract a meaningful and feasible path from the Petri net while
avoiding infinite loops. To achieve this, we explore the Petri net by searching for
each possible option after every transition, using a recursive approach.

For instance, let us consider the probabilities of activities in the Petri net of Fig-
ure 5.5. "CNC Machining" may have a probability of 2

3 of being selected, while
"Electrode Machining" has a probability of 1

3 . Once an activity is chosen to be
part of the sequence, we initiate the search again, starting from that transition.
However, to discourage excessive repetition, we penalize the probability of the
selected activity by reducing it by half.

By applying this penalty, we decrease the likelihood of repeatedly selecting the
same activity in subsequent iterations. This promotes a more diverse and varied
sequence by discouraging excessive repetition of activities.

This method is particularly useful when dealing with a Petri net derived from a
large event log, such as a log containing information about the completion of 100
registered parts. In such cases, there may be a significant amount of activity rep-
etition. If we were to select only the most common activities, we would overlook
the less frequently performed ones, which are still crucial for the overall process.
Taking the "Erosion" activity as an example, even if it was less frequently ob-
served in the event log, it would still play a vital role in the process. Therefore, by
incorporating randomness into the selection process based on assigned probabil-
ities, we ensure that even the less common but essential activities have a chance
of being included in the resulting sequence.

Examples of the possible sequences extracted from the Petri nets for parts 100 and
200 can be observed in Figures 5.6 and 5.7. These sequences can then be used as
a foundation for scheduling these parts.
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Figure 5.6: Sequence extracted for part 100.

Figure 5.7: Sequence extracted for part 200.

Furthermore, this sequence extraction approach can meet scenarios with parallel
activities. The method maintains a neutral stance, allowing for the possibility of
activities that can be executed in parallel. This flexibility aligns with real-world
scenarios observed by the PM algorithms, where certain activities can occur si-
multaneously. The approach considers the probabilities assigned to each transi-
tion, regardless of their potential parallel execution, resulting in a comprehensive
and adaptable sequence extraction process.
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5.3.4 Assignment of Feasible Machines and Durations

With the retrieved sequence, we can use the corresponding data frame to extract
relevant metrics that will be used in scheduling. For instance, we can determine
the feasible machines available for each activity. This information allows us to
understand which machines are suitable for executing a particular task.

In addition, we extract the processing times (i.e., durations) associated with each
activity from the data frame. These durations reflect the time required to com-
plete each task. By employing confidence intervals, we can estimate values for
pessimistic, realistic, and optimistic scenarios based on the extracted durations.
Confidence intervals allow us to quantify the variability and uncertainty associ-
ated with each activity’s duration, providing a more comprehensive understand-
ing of the time required for process completion.

The usage of confidence intervals to estimate different scenario values are further
clarified in the next section, where we explore how these metrics contribute to
effective scheduling strategies.

Table 5.3: Metrics for the activities in the sequence for part 100.

Activity Feasible Machines Durations (minutes)
CNC Machining m1, m2 14, 16

Electrode Machining m3 5
Erosion m4, m5, m6 5, 10, 10, 15

Polishing m6, m7 8, 8, 10, 12

Table 5.4: Metrics for the activities in the sequence for part 200.

Activity Feasible Machines Duration (min)
CNC Machining m1, m2 18, 22

Erosion m4, m5, m6 5, 5, 5
Polishing m6, m7 14, 16

Table 5.3 shows metrics for activities in the sequence for part 100. It lists feasi-
ble machines and their corresponding durations in minutes. For example, "CNC
Machining" works on machines m1 and m2 for 14 and 16 minutes respectively.
"Electrode Machining" uses m3 for 5 minutes. "Erosion" involves using m4, m5,
and m6 with durations of 5, 10, and 15 minutes. "Polishing" happens on m6 and
m7 for 8 and 12 minutes.

Table 5.4 displays metrics for activities in the sequence for part 200. Similar to
the previous table, it lists feasible machines and durations. "CNC Machining"
uses m1 and m2 for 18 and 22 minutes. "Erosion" involves m4, m5, and m6 for 5
minutes each. "Polishing" is done on m6 and m7 for 14 and 16 minutes.

These tables provide an overview of the extracted metrics from the data frame
for each sequence. It is important to note that there are fewer unique machines
compared to durations, given that machines can be used multiple times across
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the event logs. Additionally, each duration corresponds to the time extracted
from individual captured logs. For instance, in the case of the "Erosion" activity
in Table 5.3, machine m5 is used twice, resulting in two separate duration entries
for that specific machine and activity.

5.3.5 Confidence Intervals

By retrieving the durations for each activity of each part from the data frame,
we can then follow the approach of Choueiri and Santos [2021]. This approach
involves generating three processing times based on the collected durations for
each activity, an optimistic, a realistic and a pessimistic scenario. This allows
industrial managers to be better equipped and make more informed decisions.
For instance, when discussing due dates with clients, managers can rely on the
pessimistic scenario, providing a safe delivery estimate. On the other hand, when
dealing with suppliers, the optimistic scenario can be used. This has the potential
to assist in planning material orders and potentially reducing the risk of produc-
tion delays that might arise from material shortages.

The scheduling process relies on confidence intervals derived from the retrieved
durations. The optimistic scenario is built with the shortest feasible processing
times by using the lower values of the confidence intervals. For the realistic sce-
nario, the mean of the processing times are employed, reflecting the most prob-
able durations. In the pessimistic scenario, all devices operate at the maximum
feasible time, therefore the upper value of the intervals is used. Depending on
the characteristics of the collected data, the method used to obtain these values
could be either a mean confidence interval or a bootstrap interval [Efron, 1979;
Lilja, 2000].

Figure 5.8 illustrates a decision chart adapted from the original paper [Choueiri
and Santos, 2021], illustrating the process of selecting an appropriate method for
generating a confidence interval. The flowchart evaluates the necessary assump-
tions for conducting a confidence interval. The first decision point, indicated by
"n > 70", takes into account the Central Limit Theorem, which states that the sum
of n independent and identically distributed random variables approximates a
normal distribution. The chosen threshold of 70 cases aligns with the approach
of Choueiri and Santos [2021], as it strikes a balance between a sufficiently large
sample size and practical considerations.

If this assumption is not satisfied, the normality of the data is evaluated using the
Shapiro-Wilk test [Shapiro and Wilk, 1965]. The null hypothesis (H0) of the test is
that the sample is drawn from a normal distribution. By examining the resulting
p-value, if the p-value is greater than 0.05 (α > 0.05), it suggests that the data can
be reasonably assumed to follow a normal distribution, and a confidence interval
can be generated using traditional methods. However, if the p-value is less than
or equal to 0.05, indicating a significant departure from normality, the bootstrap
interval will be employed as an alternative approach.
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Figure 5.8: Decision flow for the usage of confidence intervals.

The mean confidence intervals states that (1 − α)% of the durations would fall on
the interval. The α is set as 5% as usual. Since we do not know the population
mean µ nor the variance σ2, the interval is constructed according to the t-student
distribution [Lilja, 2000]:

(x̄ − t1−α/2;n−1
S√
n

, x̄ + t1−α/2;n−1
S√
n
)

where x̄ is the sample mean, t1−α/2;n−1 is the critical value from the t distribution
with n − 1 degrees of freedom, such that it leaves an area of t1−α/2 in the tails
on each side of the distribution, α is the significance level which determines the
confidence level of the interval (e.g., for a 95% confidence interval, α = 0.05). S is
the sample standard deviation and n is the sample size.

If the assumptions necessary to construct the parametric confidence interval are
not met, we use the bootstrap confidence interval [Efron, 1979]. The bootstrap
interval relies on resampling techniques to estimate the sampling distribution
and construct the confidence interval, making it suitable for non-normal data.
The first stage is to generate multiple samples of the same size (with replacement)
from the collected durations. Each new resample has a mean value, denoted
by X̄∗. To construct the confidence interval, we must determine how much the
distribution of X̄ deviates from µ:

δ = X̄ − µ
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The bootstrap principle states that we can approximate δ by:

δ∗ = X̄∗ − X̄

Therefore, it is possible to compute all resampled valued of δ∗ , and sort them in
non-decreasing order. The bootstrap confidence interval is then:

[X̄ − δ∗a , X̄ + δ∗b ]

where a and b are percentiles of the collected δ∗ values. For example, if we want a
90% confidence interval, we look at the 5th percentile (a) and the 95th percentile
(b). The value at the 5th percentile, δ∗a , represents the lower boundary of our
confidence interval, and the value at the 95th percentile, δ∗b represents the upper
boundary.

Furthermore, in order to gather the processing times for all three scenarios, we
must determine whether the data contains more than three observations. In in-
stances when the data size is less than three, we use the average of the available
data as a substitute for all three processing times. However, it is important to note
that a warning will be issued to the user, indicating that the processing times were
generated based on the average value.

Additionally, if the number of cases is less than 10, the sample size may be insuf-
ficient to generate precise confidence intervals. Therefore, a warning message is
provided to the user, emphasizing that the available data may not yield highly
accurate confidence intervals due to the limited sample size.

Table 5.5: Processing times gathered for the scenarios.

Scenarios Bootstrap CI CI
optimistic x̄ − δ∗a x̄ − t1−α/2;n−1

S√
n

realistic x̄ x̄
pessimistic x̄ + δ∗b x̄ + t1−α/2;n−1

S√
n

Table 5.5 provides a summary of the processing times gathered for the scenarios
using both confidence interval formulas. The table distinguishes between the op-
timistic, realistic, and pessimistic scenarios. In the optimistic scenario, the lower
value of the confidence interval represents the lowest duration that an activity
can take with 95% certainty. The realistic scenario is defined by the mean du-
ration found in the activity, representing the most "probable" processing time.
On the other hand, the pessimistic scenario is characterized by the upper value
of the confidence interval, indicating the highest duration the activity can have
with 95% certainty.

Once the processing times for each scenario are calculated, the resulting data is
then used in a Genetic Algorithm (GA) problem. The GA problem and its explo-
ration is discussed in more detail in the next section.
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5.4 Genetic Algorithm

The purpose of this section is to provide thorough understanding about the GA
used in this study, including its functionality, operation, and output. We begin
by describing the problem that serves as input to the GA. Following that, we
look into the structure of the individuals, showcasing the genotype and pheno-
type conversion processes, the variation operators used, the selection of parents,
fitness evaluation, and other pertinent aspects.

By exploring these elements, we aim to provide a detailed insight into the func-
tionality, operation, and output of the GA employed in this research.

5.4.1 Setup of the Genetic Algorithm Problem

The objective of the GA is to obtain an optimal and feasible solution to a given
problem. Consequently, it is crucial to construct the problem by providing the
necessary context and resources. This enables the creation of a population that
can effectively search for and converge towards the desired solution.

Therefore, the problem is constructed by specifying several key elements. These
include the total number of machines present on the factory floor, the intervals
during which these machines are occupied, the parts that need to be scheduled,
the desired sequence in which these parts should be manufactured, and the ac-
tivities within this sequence. Additionally, for each activity, a list of feasible ma-
chines is provided, along with the corresponding processing times for each sce-
nario. By defining these parameters, the problem is effectively set up to facilitate
the implementation of the GA.

Furthermore, it is important to note that the GA is executed three times, once
for each scenario. This approach allows for the exploration and optimization of
solutions specific to each scenario, thereby providing a comprehensive analysis
of the problem.

5.4.2 Population Initialization

The population of the GA is randomly initialized by creating a specified num-
ber of individuals. Each individual is composed of a chromosome and an initial
fitness value, representing a potential solution.

The initialization process involves generating a chromosome for each individual
in the population. For each order (i.e., the parts ordered for scheduling), a se-
quence of activities is created. The machine for each activity is randomly chosen
from the feasible options, ensuring randomness and exploration. Additionally,
the priority for each activity is assigned a random value within a specified range,
taking into account the part’s priority.

Random initialization helps ensure diversity within the population. By assigning
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random values to genes, different combinations are explored, searching a wide
range of potential solutions and discovering different regions. It also prevents
bias by starting with a randomly generated initial population, increasing the like-
lihood of finding better solutions [Eiben and Smith, 2015].

5.4.3 Individuals Representation

The representation of individuals in our GA takes the form of a structured entity
known as a genotype. This genotype operates as a structure for each individual,
enabling their evaluation within the algorithm. Similar to what is observed in
nature, the genotype of an individual corresponds to its phenotype. In the context
of our project, the phenotype is manifested as a potential schedule.

Within each individual’s genotype, there exists a set of chromosomes, where the
count of chromosomes matches the number of parts to be scheduled. Each of
these chromosomes contains a specific number of genes, mirroring the total count
of activities each part needs to undergo.

The genotype is implemented using a random keys approach [Gonçalves and
Resende, 2018]. Each activity (i.e., each gene) is defined by the machine ID where
the activity will be processed and a randomly assigned value ranging from 0 to
1, which determines its prioritization within the machine. Taking the data from
the examples of previous steps (Figures 5.6 and 5.7 and Tables 5.3 and 5.4), an
example of the individual genotype is presented in Figure 5.9.

Figure 5.9: Example of an individual’s genotype.

Genotype to Phenotype Mapping

The genotype to phenotype mapping is a crucial step in the GA, as it involves
converting the genetic information in the individual’s genotype (chromosomes)
into a meaningful representation known as the phenotype (our schedule). In our
approach, this transformation is achieved through the allocation of activities from
the genotype to the corresponding machine queues based on their machine IDs
and priorities.

To illustrate this process, let us consider the example of an individual’s genotype
shown in Figure 5.9.
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To convert this genotype into a phenotype, we start by mapping the activities to
their respective machine queues. Each machine has its own queue, and activities
are placed in the queues based on their machine ID and priority values. Higher
priority activities are positioned at the front of the queue. An example of this
mapping can be seen in Figure 5.10.

Figure 5.10: Machine queues from the genotype conversion.

For instance, let us consider the activity for part 100 in the genotype: The first
activity is assigned to machine m1 with a priority of 0.43. We locate machine m1’s
queue and insert this activity with its corresponding priority into the queue. The
same process is repeated for all activities in the genotype until all parts are placed
in their respective machine queues.

Once the mapping is completed, each queue is iterated, and the activities are
scheduled according to their priority order, while considering if their parent ac-
tivities have already been scheduled. If a parent activity has not yet been sched-
uled, the activity is skipped during the iteration. This process allows for par-
allel executions, where activities can have multiple children and parents. Con-
sequently, it creates a scenario where parts compete for their scheduling while
maintaining the feasibility of their respective sequences.

The result of this conversion is a schedule where the two parts to be scheduled
are accommodated simultaneously whenever possible, sometimes competing for
the same resources. An example can be seen in Figure 5.11, where this schedule
is recreated for the realistic scenario where the time for each activity is computed
using the average processing time, as mentioned in Section 5.3.5.

In our scheduling process, we employ timeslots as a mechanism to discretize
time, converting dates and durations into fixed time intervals. Each timeslot cor-
responds to a distinct timeframe, enabling us to break down time into manage-
able units. This simplifies the process of translating genetic information between
the genotype and phenotype representations and streamline the insertion of oc-
cupied machines into the GA. In the context of our example, we have set the time
slot granularity to 1 minute, in order to provide a detailed view of the scheduling
process and the relative timings of activities. However, as a default approach, we
employ a 5-minute granularity for our timeslots. This choice was guided by our
analysis of real activity durations within the database, which informed us of the
most suitable granularity for our purposes.
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Figure 5.11: Example of the generated schedule.

In this schedule, we observe that parts 100 and 200 are scheduled concurrently
at certain time slots. As a result, they may compete for the same machines or
resources during those time intervals. The competition allows the GA to explore
various possibilities and discover the best allocation of resources for optimal pro-
duction.

The parallel scheduling of activities in the phenotype ensures efficient resource
usage and potentially reduces the overall production time by taking advantage
of overlapping operations. However, it also demands careful consideration of
resource availability and possible conflicts to maintain the feasibility of the man-
ufacturing process.

Avoidance of Occupied Machines

The concept of occupied machines comes into play through user input, where
machine identification and corresponding intervals of occupancy are provided.
By considering the start date of the schedule as timeslot 0, these intervals are
then transformed into timeslots, forming a structured representation.

As activities are scheduled during the process of converting the genotype to phe-
notype, the availability of the machines is a crucial factor. For each activity, the
correspondent machine’s activity line is analyzed to identify feasible intervals
where this new activity can be accommodated. The feasibility assessment takes
into account the end date of the parent activity, which serves as the feasible start
date, and searches for the first interval with a duration equal or greater than the
activity being scheduled. If the activity lacks a parent, the feasible start timeslot
defaults to 0.

This process can be observed through an example depicted in Figure 5.12. Sup-
pose activity A is already scheduled on machine m1, and we are focusing on
scheduling the subsequent activity, activity B, on machine m2. Activity B will be
inserted in the first available slot following the end date of activity A.
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Figure 5.12: Example of scheduling considering a machine with occupied inter-
vals.

5.4.4 Fitness Evaluation

Fitness evaluation is a crucial aspect of the GA as it represents the requirements
the population should adapt to meet. It forms the basis for selection, and so it
facilitates improvements. More accurately, it defines what improvement means
[Eiben and Smith, 2015].

In this context, the goal is to minimize the fitness value, as lower values indicate
better schedules. The fitness function is responsible for assigning a fitness score
to each individual in the population based on specific criteria.

The fitness evaluation process includes the following components:

1. Due Date Penalization: If an activity finishes after its due date, the indi-
vidual (schedule) is penalized. The penalty is proportional to the num-
ber of time slots that have passed since the due date, with a weight fac-
tor (WDueDatePenalization) to adjust the penalty’s impact on the overall fitness
score.

2. Machine Penalty: The fitness function penalizes individuals that use more
machines than necessary. Using additional machines can lead to inefficient
resource usage. The penalty is based on the number of unique machines
used in the schedule, multiplied by a weight factor (WMachinePenalization) to
adjust the penalty’s influence. The penalty is purposefully maintained small
in order to differentiate between two individuals who have the same end
date schedule but employ different quantities of machines. This encour-
ages the algorithm to find solutions that make more efficient use of ma-
chines while achieving the same end date, promoting optimal scheduling
strategies.

3. Interval Calculation: To ensure that schedules are feasible, the fitness func-
tion calculates the interval covered by the schedule. This is the time span
from the earliest start slot to the latest end slot for all activities in the sched-
ule.
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Given the fitness evaluation components previously described, the formula for
the fitness evaluation can be summarized as follows:

Fitness = (MaxEndSlot − MinStartSlot)

+ ∑ TimeslotsFromDueDateactivity · WDueDatePenalization

+ MachinesUsed · WMachinePenalization,

where:

• MaxEndSlot: The latest timeslot at which any activity finishes;

• MinStartSlot: The earliest timeslot at which any activity starts in the sched-
ule;

• ∑ TimeslotsFromDueDateactivity: The sum of timeslots that have passed since
the established due dates for each activity that finishes after its due date;

• MachinesUsed: The total number of unique machines used in the schedule;

5.4.5 Genetic Operators

The primary objective of genetic operators is to generate new individuals from
existing ones. In the corresponding phenotype space, this translates to the cre-
ation of new candidate solutions [Eiben and Smith, 2015].

To achieve this, genetic operators are classified into two types: Mutation and
Crossover (also known as Recombination).

For this research, we opted to use the two-point crossover and a custom mutation
operator. These specific operators were chosen to introduce diversity and explore
different potential solutions in the Genetic Algorithms (GAs) search process.

Two-point Crossover

The two-point crossover is a popular genetic operator used in GAs for creating
new individuals through recombination. It involves selecting two parent indi-
viduals from the population and randomly choosing two points along their chro-
mosomes. The genetic information between these two points is then exchanged
between the parents, producing two offsprings [Brabazon et al., 2016].

In the context of this work, the two-point crossover is applied by first randomly
selecting a part from the individuals to be changed. Subsequently, two points are
randomly selected within the activity list of those individuals. Since all individu-
als have the same set of parts to be scheduled, and consequently, the same list of
activities to be processed, there are no issues in selecting these two points as the
sequences are equal. Figure 5.13 illustrates an example of this crossover, where
the interval between the two points in the parent individuals is modified, thereby
creating two new individuals.
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Figure 5.13: Example of the two-point crossover.

Mutation operator

The mutation operator is essential in the GA as it keeps the search process going.
In each iteration of the algorithm, mutation can find useful new solutions. On the
other hand, if we rely solely on crossover to diversify the population, it will stop
producing new solutions once all individuals become similar [Brabazon et al.,
2016].

In our approach, the mutation process involves regenerating the resources asso-
ciated with an activity. It is important to note that we cannot change the order of
activities within a part chromosome.

When an individual has multiple feasible machines for an activity, we use a ran-
dom process to determine the mutation. There is an equal probability (i.e., a 50%
chance) of either changing the machine to which the activity is allocated or alter-
ing the priority of the activity in the machine queue. However, if there’s only one
feasible machine for the activity, we will focus on changing its priority.

Figure 5.14 depicts a basic example of the mutation process. As illustrated, part
200’s sequence activity "Erosion" is mutated, resulting in a change in its assigned
machine from m6 to m4.
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Figure 5.14: Example of the mutation operator.

5.4.6 Parent Selection

Parent selection is a technique inspired by natural selection, where individuals
from a population are chosen to be parents for the next generation. They con-
tribute their traits to create offspring, making the algorithm explore and exploit
the search space effectively. The method used to choose parents determines the
selection pressure, which affects how strongly higher-fitness individuals are fa-
vored. If the pressure is too low, good traits spread slowly, leading to inefficiency.
If it is too high, the population may get stuck in a local optimum due to reduced
genetic diversity. Finding the right balance is crucial for an effective optimization
process [Brabazon et al., 2016].

In our approach, we employed a specific parent selection method known as "tour-
nament selection". Tournament selection is a probabilistic which involves ran-
domly selecting a group of individuals from the population, and the best-performing
individual among them becomes a parent for the next generation [Brabazon et al.,
2016].

For instance, if we set the tournament size as k = 3, three individuals are ran-
domly chosen from the population, and the one with the highest fitness is se-
lected for reproduction. As a result, the fittest individual in this small group
becomes the tournament winner and a parent for the next generation. It is worth
noting that the higher the value of k, the higher the selective pressure, as larger
tournaments favor the selection of fitter individuals.

The tournament selection process is repeated n times, where n represents the pop-
ulation size. Each iteration selects a new parent, and this process continues until
the required number of parents for the next generation is obtained. This strat-
egy allows for individual diversity and competition, thereby contributing to the
evolutionary process in genetic algorithms.
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5.4.7 Elitism

In our approach, we adopted the Elitism strategy, which is a Fitness-Based re-
placement strategy that guarantees that the fittest members of the current popu-
lation will always survive into the next generation [Brabazon et al., 2016].

The main purpose of elitism is to preserve the currently fittest individuals in the
population. By preserving these top-performing individuals from one genera-
tion to the next, we ensure that their valuable traits and characteristics remain
throughout evolution.

While Elitism primarily focuses on exploiting the solution space and concentrat-
ing on a local optimum, it also serves as a safety net in case that the algorithm
cannot discover better solutions. By preserving the best individuals from each
iteration, elitism ensures that the algorithm retains the most effective solutions
discovered to date. This safeguard provides a valuable foundation in the search
process, preventing the risk of losing the most promising solutions and sustain-
ing progress even when other techniques, such as tournament selection, may not
produce superior results.

The level of elitism can be modified using a percentage parameter. This parame-
ter determines the proportion of the fittest individuals in the population that will
be preserved for future generations. Changing this proportion influences the rate
at which the population converges on the optimal solutions found, by permit-
ting a flexible balance between exploration and exploitation in the evolutionary
process.

5.5 Frontend Implementation and Workflow

In order to integrate the Process Scheduling module with the Prom4Prod project,
a new dedicated page was added to the existing frontend. This additional page
serves as the interface through which users can communicate and exchange in-
formation related to the parts to be scheduled. In this section, we provide an
overview of the first stable version of this added module, showcasing the pri-
mary page as seen in Figure 5.15.

Within the frontend, users can initiate the scheduling process by clicking on "In-
sert Part", which opens a stepper form. In this form, users can input crucial data
such as production deadlines, part, and mold specifications, as depicted in Fig-
ure 5.16. Additionally, the user has the option to modify the noise threshold of
the Inductive Miner algorithm, offering more control over the generated Petri net
and impacting the discovered sequence accordingly (Figure 5.17).
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Figure 5.15: Initial Page of the Process Scheduling module.

Figure 5.16: Data Input form of the frontend software module.
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Figure 5.17: Generated Petri net with the noise threshold option.

Once the sequence is generated, the user can review it and make adjustments if
needed, ensuring it aligns with the specific requirements of the part being sched-
uled (Figure 5.18). In future versions of the frontend, we aim to provide users
with the ability to further manipulate the sequence, such as removing or reorder-
ing activities, granting even more manual control over the suggested sequence.

Figure 5.18: Suggested sequence to be scheduled.

Additionally, users have the option to include resource availability by clicking
on "Add Machines", as illustrated in Figure 5.19. This functionality allows users
to specify occupied time intervals for the existing machines on the factory floor,
providing the respective machine IDs. By doing so, these time intervals will be
considered as reserved, influencing the scheduling process by preventing activi-
ties from occupying those locked timeslots during the specified intervals.
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Figure 5.19: Set up of an occupied time interval.

Figure 5.20: Generate schedules button.

Finally, the user can initiate the scheduling process by clicking on the "Gener-
ate Schedules" button, as depicted in Figure 5.20. Once activated, the frontend
transmits all the essential data to the backend, where the genetic algorithm is be
executed three times, corresponding to each scenario (optimistic, realistic, and
pessimistic).
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Figure 5.21: Result of the optimistic scenario.

Figure 5.22: Result of the realistic scenario.
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Figure 5.23: Result of the pessimistic scenario.

Figure 5.21, 5.22 and 5.23 display the completed output, which consists of three
distinct Gantt charts, each representing a different scenario. These Gantt charts
offer a visual representation of the allocated activities and whether the estab-
lished due dates were met for each scenario. For instance, Figure 5.22 and 5.23
illustrate instances where the due dates were not met, indicating delays in the
production process. Furthermore, the schedules in these figures clearly reflect
any occupied time intervals specified for the machine with ID "08-11".

This output enables users to evaluate the effectiveness of the scheduling process
under various conditions, thus enabling informed decision-making and produc-
tion process optimization.

By developing this solution, we have successfully fulfilled the current require-
ments outlined in this document, specifically in Section 5.1. We have demon-
strated its implementation by showcasing the frontend, providing factory man-
agers and workers with a user-friendly approach to scheduling the production of
required mold parts.

In the following chapter, we will evaluate the functionality and performance of
this solution using real-world scenarios through testing and validation. Then, we
will engage in an in-depth discussion of the overall work, including its limita-
tions, thus further aligning our work with its original objectives.
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Results and Discussion

In this chapter, we discuss the effectiveness of our approach, showcasing its per-
formance, and engage in a discussion about the overall study. We begin by val-
idating the approach using real-world data and comparing the Process Mining
(PM) output with the achieved schedules.

After completing the approach validation, our focus shifts to the comparative
testing phase. This involves a direct comparison between the approach’s sched-
ule solution and an actual mold part produced on the factory floor. Finally, we
delve into the performance testing, where we evaluate the system’s performance
under various conditions by varying the quantity of parts to be scheduled in dif-
ferent scenarios.

Throughout the discussion segment, we look into the results obtained from both
the approach validation and performance assessment, including the outcomes of
the comparative testing. We examine the strengths and limitations of this ap-
proach, highlighting its practical significance for the mold industry.

6.1 Approach Validation

In our validation testing, we intended to confirm the relation between the resul-
tant schedules and the sequences found in the Petri net, while ensuring that these
sequences are logically compatible.

To achieve this, we analyzed whether the schedules made use of feasible re-
sources, avoided activity overlaps on the machines, and conformed to the already
occupied timeslots. By confirming these criteria, we can confidently assert that
our approach is logically sound.

The validation test described starts on the 22th of July 2023, at 20:30. During
this test, two specific parts, Part 100 and Part 200, commonly referred to as a
cavity and a bushing, respectively, were selected from the pedals mold family to
be scheduled. This mold family is represented in the real dataset we possess and
serves as the target for scheduling. As part of the evaluation process, we designed
a scenario where two machines have occupied intervals to test the schedule’s
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(a) Machine "07-07" (b) Machine "08-11"

Figure 6.1: Occupied intervals in the machines.

ability to adapt to previously allocated resources.

Throughout the entire validation process, we compared the obtained results with
the event logs from the mold family and the Petri net derived through PM.

The occupied time intervals for machines "07-07" and "08-11" are shown in Fig-
ure 6.1. Machine "07-07" is initially free for 4 hours, then occupied for 4 hours,
followed by a 1-hour free interval before becoming occupied again for an addi-
tional 2 hours. Machine "08-11" is occupied for the first 2 hours, then has a 1-hour
and 30-minute free interval before becoming occupied for 2 more hours. These
intervals serve as a crucial test to examine the schedule’s capacity to efficiently
allocate resources without conflicts with pre-existing schedules.

Figure 6.2: Petri net representing part 100 (cavity) in the "Pedals" mold family.

Figure 6.3: Petri net representing part 200 (bushing) in the "Pedals" mold Family.

The Petri net representing part 100 (cavity) process can be seen in Figure 6.2,
which was created using the Inductive Miner Infrequent algorithm with a noise
threshold of 0.1, allowing for a small degree of noise in the observed processes.
Additionally, in Figure 6.3, we have a Petri net representing part 200 (bushing)
process, which was generated using the same algorithm but with a noise thresh-
old of 0, indicating no limitation on the noise seen in the processes. Both of these
parts were scheduled for a fictional mold with ID 2300.
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Table 6.1: Resources used by activities from Part 100 and Part 200.

Activity
Machines

Part 100 Part 200

CAM 08-11 08-11
CNC 08-11, 08-12 08-10, 08-11, 08-12

Countertop Work - BANC08
Electrode Design 08-11 08-11

Electrode Machining 08-13 08-13
Erosion 09-05, 09-06, 09-07 09-05, 09-06, 09-07
Milling 07-07 07-07

Polishing BANC14, BANC15 BANC14, BANC15
Rectification 03-05 03-04, 03-05

Wire 13-03 13-03

Due to the extensive size of the event log, it is impractical to present it in its
entirety. As an alternative, Table 6.1 showcases the resources used by each activity
in Part 100 (cavity) and Part 200 (bushing) from the Pedals Mold Family.

Figure 6.4: Sequence generated for Part 100 (cavity).
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Figure 6.5: Sequence generated for Part 200 (bushing).

Figures 6.4 and 6.5 illustrate the sequences generated by the recursive algorithm.
To establish a dependency between activities, a unique ID is assigned to each
activity.

Figures 6.2 and 6.3 display the corresponding Petri nets derived from the se-
quences, providing better clarity and understanding. Through careful analysis,
we can observe that these sequences can be originally constructed from the Petri
nets extracted using the Inductive Miner Infrequent algorithm.

Figure 6.6: Sequence extracted for part 100 (cavity) in form of a Petri net.

Figure 6.7: Sequence generated for part 200 (bushing) in form of a Petri net.

With the sequence validated, our focus shifts to validating the schedule. This step
involves verifying whether the allocated resources are feasible, ensuring that the
schedules match the dependencies identified in the sequence, and confirming
that the activities do not overlap with each other or with occupied intervals.
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By running the GA, we obtain three schedules for the three scenarios, represented
in Figures 6.8, 6.9, and 6.10, respectively. By comparing with the sequences and
with the feasible machines in Table 6.1, we can see that the schedules respect the
previous stated requirements.

It is worth noting that due to the limitations of the library used for the Gantt
charts, the visualization might be challenging. However, a useful feature is pro-
vided, whereupon hovering the mouse over each activity, we can view the exact
start and end times for better insight into the scheduling details, making it possi-
ble to validate this information.

Figure 6.8: Validation of the optimistic schedule.

Figure 6.9: Validation of the realistic schedule.
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Figure 6.10: Validation of the pessimistic schedule.

With the validation test completed, we can now move to the comparative test.

6.2 Comparative Test

In conducting the comparative tests, we devised two distinct experiments. The
initial experiment replicated the actual process involving a mold on the factory
floor, in particular, we chose to isolate the production of Part 100, which corre-
sponds to a cavity within Mold 3056, a mold from the coffee machine mold fam-
ily. This involved employing the same resources and timeframes as those used
in the real-life scenario, with the primary objective of analyzing the feasibility of
executing the same process at an earlier time. This assessment aimed to iden-
tify any potential scheduling errors or human oversights that might have led to
suboptimal timelines.

For the second experiment, we adopted an alternative approach by leveraging in-
sights from the broader coffee machine mold family. Knowing the durations and
machines used in other production processes for the Part 100, we aimed to deter-
mine if using other feasible resources could accelerate the production process for
Part 100 of the Mold 3056.

Testing with the actual process

To conduct this experiment, we began by extracting all relevant logs associated
with the production of Part 100 from the database. Following this data extraction,
we proceeded to adjust the activity names to ensure non-repetition and generate
a Petri net with the Inductive Miner algorithm. This resulted in a Petri net config-
uration with straightforward relationships between 20 activities. Our intention
was to replicate the exact process that occurred in the factory. These activities,
their respective times and resources can be observed in Figure 6.11.
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Following this initial extraction, we used the start time (11th of December 2017,
at 20:08) and end time (2nd of February 2018, at 09:26) of the part 100 production
process. This information was then employed to retrieve all event logs within
that specific time frame from the database. By doing so, we were able to simulate
the activities performed on the factory floor during that period. We subsequently
proceeded with the data cleaning process, involving the concatenation of logs, a
procedure elaborated upon in Section 5.3.1. These time intervals extracted from
the event logs were then transformed into timeslots, establishing them as occu-
pied intervals for further analysis.

Figure 6.11: Activity data for part 100 of Mold 3056.

Given that we are examining a single process workflow without variations in
resource combinations or diversity, both the sequence extraction and the GA op-
erate deterministically. As there are no resource combinations or variations in this
context, all individuals within the GA are identical, resulting in a static output,
which can be observed in Figure 6.12. It can be observed the overall factory floor
activity; in orange we can see the activities corresponding to the part that we are
comparing.

Considering the complexity of understanding the suggested process times for
Part 100, the visualization can be improved by hiding the occupied slots. Figure
6.13 illustrates the activities associated with Part 100 for a clearer perspective.
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Figure 6.12: Big picture of the suggested schedule.

Figure 6.13: Suggested schedule for part 100.

Figure 6.14: Suggested schedule end date.

In Figure 6.14, the schedule is zoomed in on the final activity "Maquinação 7",
which is predicted to conclude on the 16th of January 2018, at 06:53 AM. This
prediction anticipates completion by 17 days compared to the actual process. The
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actual production spanned 52 days, 13 hours, 18 minutes, and 11 seconds, while
the proposed schedule spanned 35 days and 25 minutes. Thus, observing that the
suggested schedule achieved a 32.6% improvement over the real production time
in this case study.

Testing with different resources

For our second experiment, we used the same data extracted in the previous ex-
periment. However, instead of restricting the resources based solely on those
employed in the production of Part 100 for Mold 3056, we broadened the scope.
This time, we collected event logs associated with the production of Part 100
across various molds within the coffee machine mold family. By incorporating
this data, we aimed to cover a more diverse range of available resources and their
associated timeframes. This approach allowed us to explore alternative machin-
ery options and potential duration adjustments, thus providing opportunities to
optimize the Part 100 manufacturing process.

These event logs provided useful information, particularly regarding the feasibil-
ity of using different machines and the corresponding time durations for part 100
production. This resource extraction is documented in Section 5.3.1.

Given the range of available resources in comparison to the first experiment,
where each activity was tied to a specific machine, the role of the GA becomes
crucial in generating an optimal outcome.

After conducting 30 independent runs for each scenario (i.e., the optimistic, re-
alistic, and pessimistic scenarios), we consistently observed the same end time
across all runs within each scenario. However, there was evident variability in
the usage of resources. This variability comes from the fact that, while certain
machines may present faster processing times, their efficiency becomes restricted
by subsequent intervals already occupied.

Figure 6.15 showcases a possible outcome for the optimistic schedule using dif-
ferent machines than in the real process. In Figure 6.16, it is observed the schedule
of Part 100 with the occupied machines hidden, allowing a better visualization of
the process. A comparison with Figure 6.17 reveals shorter activity durations, as
we are using the most favorable estimated duration for each activity.
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Figure 6.15: Big picture of the suggested optimistic schedule.

Figure 6.16: Suggested optimistic schedule.

Figure 6.17: Suggested optimistic schedule end date.

In Figure 6.17, the schedule’s end date is displayed. These results are better than
those of the first experiment, because they result in a schedule concluding on the
14th of January 2018, at 02:08 AM, which is 2 days, 4 hours, and 45 minutes earlier
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than the first experiment’s conclusion (equivalent to a performance increase of
approximately 6.3%). Moreover, this results in a substantial advancement of 19
days, 7 hours, and 18 minutes compared to the actual end date, corresponding to
an increase of approximately 37.5%.

Turning to the realistic and pessimistic scenarios, the outcomes were not as favor-
able. In contrast to the optimistic scenario, where the schedule concluded ahead
of the actual end date, the results for both the realistic and pessimistic scenar-
ios revealed that the schedule extended beyond the real end date. This implies
that the durations estimated for the actual process are shorter than the predicted
durations for the realistic and pessimistic scenarios.

Figure 6.18: Suggested realistic schedule.

Figure 6.19: Suggested pessimistic schedule.

In analyzing the results depicted in Figures 6.18 and 6.19, it becomes evident
that the outcomes for the realistic and pessimistic scenarios were influenced by
inherent limitations beyond the scope of the GA.

In both the optimistic and pessimistic scenarios, the unfeasibility of executing
the schedules within the specified timeframes is mainly due to resource occu-
pancy constraints on the factory floor. In essence, the GA operated within the
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constraints of these real-world resource limitations, which significantly impacted
the scheduling and operational efficiency of the production processes.

For instance, in the realistic scenario, the schedule ended on 5th of March 2018 at
18:33, resulting in a performance decrease of approximately 59.7% compared to
the actual end date. Similarly, in the pessimistic scenario, the schedule ended on
10th of April 2018 at 18:58, corresponding to a performance decrease of approx-
imately 128.2% compared to the actual end date. These outcomes underscore
the significant impact of resource availability on the scheduling and efficiency of
production processes.

In conclusion, the comparative tests show the potential of this scheduling ap-
proach to enhance production efficiency. In the context of the two experiments,
the results offer distinct perspectives. The first experiment showcased the poten-
tial for an improved scheduling, as the scheduled scenario featured an earlier end
date.

However, the second experiment, with its multiple scenarios, introduced a dif-
ferent perspective. While the optimistic scenario proposed a shorter schedule,
even surpassing the first experiment’s performance, the realistic and pessimistic
scenarios presented a different challenge. These scenarios illustrated schedules
that extended beyond the actual end date, highlighting the practical challenges
associated with resource limitations and real-world manufacturing constraints.

This discrepancy can be attributed to the fact that the actual durations of activ-
ities in the production process were consistently shorter than the average dura-
tions captured in the limited dataset from the molds family. It is essential to note
that the molds family dataset comprises only three molds, representing three dis-
tinct production processes of part 100. This limited dataset influenced the pre-
dicted durations, highlighting the need for a more extensive and diverse dataset
to achieve accurate scheduling outcomes.

6.3 Performance Testing

For the performance testing of our approach, we designed five distinct problems
to assess its behavior and efficiency when dealing with increased complexity. The
focus of this testing was on the approach itself, rather than the entire architecture.
Therefore, we concentrated on executing only the backend code and, as a result,
the occupied time intervals were inputted in time slots using a default value of
5 minutes instead of real data. The frontend would later convert these dates to
corresponding time slots.

The occupied time intervals for three machines, namely "07-07", "08-11", and "08-
13", were defined as follows:

• Machine "07-07": [(70, 80), (120, 170)]

• Machine "08-11": [(10, 30), (50, 75)]
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• Machine "08-13": [(0, 15), (100, 110)]

To determine the approach’s performance, we constructed five different problem
sets:

• Problem 1: Involves scheduling 1 part;

• Problem 2: Involves scheduling 5 parts;

• Problem 3: Involves scheduling 10 parts;

• Problem 4: Involves scheduling 15 parts;

• Problem 5: Involves scheduling 20 parts;

By varying the number of parts to be scheduled and introducing different oc-
cupied timeslots for the machines, we can observe how the approach handles
increasing complexity. This performance testing provides valuable insights into
its scalability and effectiveness in dealing with more demanding scenarios.

After conducting a series of preliminary experiments, we explored various com-
binations of parameterizations using the Optuna Framework1, a Python library
for hyperparameter optimization. Here are the results obtained from these exper-
iments:

• Number of Generations: 62

• Population Size: 172

• Probability of Crossover: 0.5109

• Probability of Mutation: 0.4195

• K-way tournament selection: 5

• Elitism Percentage: 0.0265

To ensure the robustness of the results and eliminate any potential patterns, each
problem was executed 30 times using different seeds.

Table 6.2 presents the average duration in seconds taken by the algorithm to solve
the predefined scheduling problems with different numbers of parts to be sched-
uled. Additionally, the table includes the corresponding deviations, making it
possible to understand the variability of the algorithm’s performance across these
scenarios. The results seem to show that the duration grows linearly with the
number of parts.

The specifications of the machine used for conducting these tests are provided in
Table 6.3.

1https://optuna.org
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Moreover, the algorithm demonstrated a good performance, even when dealing
with problems consisting of 20 parts, with an average duration of approximately
140 seconds.

Table 6.2: Problem durations.

Parts to be Scheduled Average Durations (Seconds) Deviation
1 3.529 0.139
5 32.979 1.325

10 46.626 1.968
15 101.627 2.17
20 140.321 7.08

Table 6.3: PC Hardware Specifications used for testing.

Component Specification

CPU AMD Ryzen 7 5800H
GPU NVIDIA GeForce RTX 3060 Laptop
RAM 16 GB DDR4
Storage 500 GB NVMe SSD
Operative System Windows 11

6.4 Discussion

This work presents an adaptation ofChoueiri and Santos [2021] approach to the
mold industry. While Choueiri and Santos’ work primarily dealt with scheduling
identical products, our adaptation addresses the unique challenges posed by the
mold industry, where each mold is distinct.

Therefore, by leveraging the concept of mold families and using various multiple
filtering criteria such as the number of cavities, weight, cost, and parts used, we
are able to identify similar molds. This allows us to analyze the production pro-
cesses of these molds and extract valuable insights from the corresponding Petri
net representations. Making it then possible to generate a schedule with the data
acquired using a Genetic Algorithm (GA).

One of the most significant advantages of this approach is its reliance on real
data from actual past processes for scheduling, rather than being based solely on
engineers’ assumptions about the process. This data-driven approach, facilitated
by PM, ensures that the scheduling decisions are grounded in actual observed
behavior, making the algorithm more accurate and capable of addressing real-
world complexities of the processes.

The mold industry has traditionally relied on manual ad hoc planning, where in-
dividuals with extensive business and technical knowledge create schedules for
use. However, by automating this process, scheduling can be performed in real-
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time, and the factory floor can be prepared with prior notice, leading to increased
efficiency and responsiveness.

Drawing upon the fundamental idea of Choueiri and Santos, the implementa-
tion of three scenarios, optimistic, realistic, and pessimistic, offers more flexi-
bility in decision-making within the factory. For example, by considering the
pessimistic scenario, clients can be informed about a due date that may not be
achievable beforehand, enabling better communication and managing expecta-
tions. On the other hand, adopting an optimistic scenario allows the factory to
proactively manage raw materials used in mold parts, even contacting suppliers
before exhausting the last resources, further streamlining operations.

Overall, the automation of scheduling and the use of scenario-based decision-
making provide the mold industry with valuable tools to optimize production
processes, enhance client communication, and effectively manage resources. These
advancements can significantly contribute to increased productivity and opera-
tional excellence within the factory.

6.5 Limitations

One of the primary limitations of this approach is its lack of generality for other
industries, or even within different companies in the mold industry. Since the
processes involved are factory-specific, it becomes challenging to directly apply
the same scheduling solution to other contexts without extensive customization.

While leveraging PM to base scheduling decisions on past data is advantageous,
it also introduces certain limitations. For instance, the approach may struggle
to detect new resources that have been introduced on the factory floor or pro-
cesses (e.g., specific mold parts) that were not previously created regularly. This
scarcity of event logs related to such newly introduced elements may result in in-
sufficient knowledge about the resources capable of executing certain activities.
Consequently, the metrics derived from limited data may not be precise enough
to generate a fully reliable schedule.

Overfitting is a critical concern in the context of having low data and relying on
historical information for scheduling decisions.

In the case of low data, the algorithm may have fewer process examples to extract
meaningful sequences from. With limited event logs and historical records, the al-
gorithm might excessively rely on these few data points, capturing idiosyncrasies
or noise that are not indicative of the overall process behavior. Consequently, the
resulting schedule may not accurately reflect the true processes and could be un-
suitable for handling novel situations or changes in factory resources.

Moreover, overfitting can lead to overly optimistic schedules since the extracted
sequences are based on limited available data. When confronted with real-world
scenarios beyond the scope of the gathered data, these schedules may not accu-
rately represent the actual process dynamics. To minimize this risk, users have
the option to edit the suggested sequences, allowing for manual adjustments and
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ensuring greater alignment with the specific real-world requirements and con-
straints.

Another concern involves the potential of having poor quality data, which may
result in invalid indications of available resources or inaccurate timestamps for
activity execution. As a result, the Petri net returned by the PM algorithm may
be incorrect, resulting in the provision of inaccurate information. For instance, in
one of tests carried out in the application, the algorithm suggested activities exe-
cuted in parallel based on the real data used, even though such parallel execution
may not be feasible in real-life scenarios.

This problem increases the complexity of data cleansing and standardization or
uniformization. It is a challenging task to ensure data quality, consistency, and
compatibility across several sources.
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Conclusion and Future Work

The primary objective of this work was to establish the feasibility of employing
Process Mining as a means to extract real data and gain insights into how the
mold industry’s manufacturing processes are executed. Our aim was to leverage
this knowledge to enhance the scheduling of activities in the mold manufacturing
industry using an adapted approach based on Choueiri and Santos [2021]. By
integrating Process Mining techniques with a Genetic Algorithm, we wanted to
generate more accurate schedules that effectively allocate resources, leading to
improved resource usage and overall operational efficiency.

For the development of our approach, we began by gaining an in-depth under-
standing of how the processes on the production floors and within the overall
business operate. This understanding allowed us to standardize and clean the
event logs, as well as concatenate them, since event logs are generated when ma-
chinery sensors activate during a process execution.

Following this, the data was organized into mold families, which represent molds
with similar purposes and functions within the same industry area (e.g., families
for coffee machines, automobile pedals, automobile top covers, and others). By
filtering the data based on attributes such as the number of cavities, the number of
parts, and specific part types, we were able to identify more structured processes.
Using the Inductive Miner Infrequent algorithm, we considered the frequency of
each activity, detected deviations from expected processes, and understand the
various ways molds can be manufactured.

With this knowledge, we developed an algorithm to extract a feasible sequence
from the Petri net generated by the Process Mining algorithm. This algorithm
was designed to generate a stochastic output, considering that processes on the
production floor are non-deterministic. It was also prepared to accommodate the
possibility of activities being executed in parallel and featuring more complex
conditions. Given the variability in factory processes, we aimed for a neutral
and generic approach, making it adaptable for use in other factories within the
industry.

Subsequently, the feasible machines and their corresponding durations were as-
signed to this sequence to determine the optimal schedule for a part of a mold.
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These durations were then converted into confidence intervals, enabling the cre-
ation of three scheduling scenarios, an optimistic, a realistic, and a pessimistic
scenario by using the margins of the confidence intervals, with the average serv-
ing as the basis for the realistic scenario.

Finally, the sequence and its aggregated data is translated into a problem tailored
for a Genetic Algorithm. This Genetic Algorithm is designed with the capabil-
ity to schedule multiple sequences concurrently, taking into account unique due
dates for each part and considering machine intervals already occupied by ongo-
ing processes. It aimed to determine the best optimal schedule for each scenario
while complying to the provided sequences, resource constraints, and durations.

This approach was integrated into the Prom4Prod project, offering factory man-
agers and workers access to a dedicated frontend page. They can select spe-
cific parts, along with their respective molds and mold families, to obtain the
three scheduling scenarios. This empowers users to evaluate the effectiveness
of the scheduling process under various conditions, enabling informed decision-
making and production process optimization.

The conducted tests, including validation with real data, a case study comparing
a part previously manufactured in the factory, and a performance test assessing
the system’s ability to schedule multiple parts simultaneously, revealed the po-
tential of generating viable and competitive schedules using the Petri net output
of the Process Mining algorithm.

7.1 Future work

Our approach shows promising potential to significantly aid decision-making in
the mold industry, particularly due to its applicability in manual and ad hoc pro-
cesses. However, further development and exploration are necessary to fully har-
ness its benefits.

One approach for future work involves incorporating additional domain knowl-
edge into the sequence extraction process. Leveraging the business understand-
ing and expertise of workers, we can enrich the input data to the genetic algo-
rithm and fine-tune the sequence extraction approach.

Refining the rules and constraints used in the sequence extraction process with
additional domain knowledge will enable us to derive more meaningful sequences
from the process mining data. By incorporating worker expertise, we can better
capture the intricacies and nuances of actual production processes, resulting in
more accurate and realistic sequences for scheduling.

Another promising direction for future research lies in exploring the application
of machine learning techniques to enhance the sequence extraction process. In-
stead of solely relying on probabilities of activity frequencies, machine learning
could help capture the common order of activities found in the process min-
ing data. This approach could potentially lead to more realistic and reliable se-
quences, contributing to improved scheduling outcomes.
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Furthermore, the adaptability of our approach offers exciting opportunities to ex-
plore alternative metaheuristic algorithms beyond the Genetic Algorithm for ob-
taining the fittest schedule. Experimentation with other optimization techniques
could shed light on new and potentially more efficient ways of finding optimal
schedules based on the extracted sequence.

Through these enhancements, we can further strengthen the performance and
adaptability of our approach, unlocking even more significant potential for aid-
ing decision-making and improving scheduling outcomes in the mold industry.

As the mold industry continues to evolve, additional efforts can be devoted to
test and validate various approaches that leverage process mining and consider
unique production constraints and requirements. Continuous research and de-
velopment in this domain hold the potential to revolutionize scheduling prac-
tices, driving productivity, efficiency, and competitiveness in the mold manufac-
turing sector.

In conclusion, this study highlights the significant value of using Process Mining
as a powerful tool to obtain critical information for scheduling processes in the
mold industry. The approach removes the more ad hoc technique of manually per-
forming schedules for parts to be manufactured, enabling the industry to make
informed decisions based on real data-driven insights. Through the adoption of
Process Mining and advanced optimization techniques, the mold industry can
achieve enhanced efficiency, resource allocation, and overall productivity, ulti-
mately fostering its continued growth and competitiveness in the manufacturing
sector.
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