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Resumo

As estrelas de neutrões (NS)s destacam-se como objetos astrofísicos excecionalmente enriquece-

dores para a compreensão e restrição da Equação de Estado (EoS) da matéria nuclear. Estes objetos,

sujeitos a condições extremas, oferecem uma oportunidade única para explorar territórios descon-

hecidos no diagrama de fases da Cromodinâmica Quântica. No entanto, persiste o desafio de traduzir

as observações das NSs em informação pertinente sobre a sua composição e a correspondente EoS.

A natureza limitada e incerta das observações disponíveis piora ainda mais este mapeamento. Para

resolver este problema crucial, é necessária uma ferramenta capaz de mapear diretamente as obser-

vações de NSs para a EoS, tendo em conta as incertezas inerentes aos dados. Durante este trabalho,

pretendemos atingir este objetivo através da aplicação de redes neuronais bayesianas(BNN)s. Em-

bora as metodologias de aprendizagem computacional, e mais ainda as redes neuronais, se tenham

aventurado anteriormente a abordar a tarefa de mapear as observações para a EoS, tem faltado um

aspeto crítico: a capacidade de captar a incerteza. É aqui que as BNNs surgem como uma solução in-

ovadora, capaz não só de estabelecer ligações entre as observações e a EoS, mas também de encapsu-

lar as incertezas tanto no modelo como no conjunto de dados. Para atingir este objetivo, treinamos os

nossos modelos das BNNs utilizando um conjunto de dados abrangente que engloba 25 000 EoS nu-

cleares no âmbito do Campo Médio Relativístico (RMF). Este conjunto de dados é construído através

de inferência Bayesiana, limitado por restrições mínimas a baixa densidade. Abrangendo observáveis

de NSs como o raio, a massa e a deformabilidade das maré, este conjunto de dados contém a fração

de protões e a velocidade do som nestes interiores enigmáticos.

Com o intuito de reproduzir observações reais, introduzimos modificações no conjunto de da-

dos utilizado, incorporando ruído no vetor de entrada do nosso modelo. Isto foi feito de quatro

formas diferentes para os conjuntos de dados de treino e de teste. Os nossos resultados demon-

stram que os modelos das rede neuronais bayesianas correlacionam com precisão as observações

com as propriedades intrínsecas das NSs, ao mesmo tempo que fornecem uma medida quantificável

da incerteza. Este resultado mantém-se consistente mesmo quando o modelo é testado com dados

simulados do conjunto de dados DD2, uma classe que também pertence aos modelo do RMF mas

com acoplamentos dependentes da densidade, utilizado para gerar as EoS que serviram para testar o

modelo das BNNs.

Palavras-chave: Estrelas de Neutrões, Redes Neuronais Bayesianas, Quantificação de Incerteza,

Equação de Estado
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Abstract

Neutron Star (NS)s stand out as uniquely compelling astrophysical objects for comprehending and

constraining the Equation of State (EoS) of nuclear matter. These objects, subjected to extreme con-

ditions, offer a unique opportunity to explore uncharted territories within the Quantum Chromody-

namics phase diagram. However, the challenge persists in translating observations of NSs into mean-

ingful insights about their composition and the corresponding EoS. The limited and uncertain nature

of available observations further compounds this issue. Addressing this crucial problem necessitates

a tool capable of directly mapping NS observations to the EoS while being aware of inherent data

uncertainties. Herein, we aim to achieve this objective through the application of Bayesian Neural

Network (BNN)s. While machine learning methodologies, even more so neural networks, have previ-

ously ventured into addressing the task of mapping observations to the EoS, a critical aspect has been

missing: the ability to capture uncertainty. This is where BNNs emerge as a groundbreaking solution,

capable of not only establishing connections between observations and the EoS but also encapsulat-

ing uncertainties within both the model and the dataset.

In pursuit of this goal, we train our BNN models using a comprehensive dataset encompassing 25,000

nuclear EoS within the Relativistic Mean Field (RMF) framework. This dataset is constructed through

Bayesian inference, constrained by minimal low-density constraints. Spanning NS observables such

as radius, mass, and tidal deformability, this dataset gives insights into the proton fraction and sound

speed within these enigmatic interiors. To replicate real-world observations, we’ve introduced mod-

ifications to the dataset employed by incorporating noise into the input vector of our model. This

was done in four different ways for both the training and testing datasets. Our results demonstrate

the BNN models accurately correlate observations with the intrinsic properties of NSs, all while pro-

viding a quantifiable measure of the uncertainty. This achievement remains consistent even when

the model is tested with simulated data from the DD2 dataset, a class that also belongs to the RMF

models but with density-dependent couplings, used to generate the EoS used to test the BNN model.

Keywords: Neutron Stars, Bayesian Neural Networks, Uncertainty Quantification, Equation of

state
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1 Introduction

1.1 Motivation

Neutron Star (NS)s, which are the second most compact objects in the universe, possess a matter, at

T = 0, with a composition very similar to the idealized matter found in the interior of atomic nuclei

since they exhibit key characteristics such as baryon composition and densities, differing by merely

one order of magnitude or less, in comparison to the matter typically encountered in atomic nuclei.

However, the extreme matter present within NSs cannot be replicated in terrestrial laboratories, since

heavy-ion collisions involve high temperatures when compressing nuclear matter to very high den-

sities. Also in numerical methods, lattice Quantum Chromodynamics (QCD) calculations work well

for zero density however in the finite-density region they don’t, because of the sign problem. Conse-

quently, the EoS governing dense and asymmetric nuclear matter within NSs remains an intriguing

and elusive quantity. The EoS plays a crucial role in describing the thermodynamic relationship be-

tween energy density and pressure. In order to obtain the model independent EoS, one must solve

for QCD, the fundamental theory of strong interactions, the phase diagram is represented in Fig.

1.1. From a theoretical standpoint, the description of nuclear matter and the EoS poses challenges

at different density regimes. Chiral effective field theory, an ab initio method [1], for instance, is a

powerful framework applicable at low densities, 1−2n0 (n0 = 0.16 fm−3 for the saturation density).

On the other hand, perturbative QCD, (for a review [2]) provides a reliable description at extremely

high densities, n ≥ 50n0. However, in the intermediate density regime, the EoS still lacks trustable

predictions. In order to bridge this gap, the EoS still relies on phenomenological approaches using

many-body methods and effective interactions such as RMF theory.

However, significant progress has been made in constraining NS matter through observations.

For instance, measurements of the Shapiro delay in pulsars1 observations, such as those obtained

from PSR J1614-2230 [4, 5, 6] with a mass of 1.908± 0.016M⊙, PSR J0348 - 0432 [7] with a mass of

2.01±0.04M⊙, PSR J0740+6620 [8] with a mass of 2.08±0.07M⊙, and J1810+1714 [9] with a mass of

2.13±0.04M⊙, have provided valuable constraints on NS properties. Additionally, observations of qui-

escent low-mass X-ray binary systems and thermonuclear burst sources have also contributed to our

knowledge of NS physics [10, 11]. Recent results from the NICER (Neutron star Interior Composition

Explorer) mission have provided even more accurate X-ray spectral timing results, further constrain-

ing the masses of pulsars like PSR J0030+045 [12, 13] and the radius of PSR J0740+6620 [14, 15, 16].

1Rotation-powered NSs.
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Figure 1.1: Schematic QCD phase diagram and the applications of ML in three domains, taken from

[3].

The detection of gravitational waves from compact binary coalescence events, such as GW170817 [17]

and GW190425 [18], by the LIGO2/Virgo collaboration has also played a significant role in constrain-

ing the EoS of NS matter. These events provide valuable information about the merger process and

the resulting post-merger remnant, giving insights into the properties of dense matter. Future obser-

vations from upcoming experiments like the enhanced X-ray Timing and Polarimetry mission (eXTP)

[19, 20], the Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X)

[21], and the Square Kilometer Array (SKA) telescope [22] hold great promise for further improving

our understanding of NSs. These missions will enable more precise measurements of NS radii and

masses, with uncertainties reduced to a few percent. Typical NS observables are mass, radius, mo-

ment of inertia (I), quadrupole moment (Q), dimensionless Tidal Deformability (TD), compactness,

also the last three observables can also be connected in I-Love-Q which relates I, k2 and Q [23].

Having these observables, how can we construct the most adequate EoS?

Various numerical and statistical methods have been explored. Bayesian inference has been

utilized [24, 25], allowing for probabilistic reasoning and estimation of model parameters. Non-

parametric methods, such as Gaussian processes [26], have also been employed to capture complex

relationships without relying on explicit functional forms. However, these methods possess certain

drawbacks that should be considered. Some of the limitations include the computational complexity

and the need for well-defined priors and assumptions in Bayesian inference, while Gaussian pro-

cesses may face challenges in handling large datasets and scaling to higher dimensions.

In recent years, the application of Neural Network (NN)s in physics has gained significant attention

as evidenced by the recent review [3], which highlights the use of NNs in various physics applications.

NNs offer the advantage of a flexible function approximation and efficient training on large datasets.

Building upon these advancements, our first motivation is to develop an artificial NN model that di-

rectly maps the observational properties of NS to the EoS. Specifically, our focus is on predicting the

2Laser Interferometer Gravitational-Wave Observatory
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speed of sound and proton fraction by training and testing the model using a dataset generated from

a RMF approach [25].

The use of artificial NNs in the realm of the dense matter EoS of NS has already been extensively

explored in the literature. Several studies have investigated this topic, including the works by Fuji-

moto et al. [27, 28, 29], Soma et al. [30, 31], Chatterjee et al. [32], Morawski et al. [33], Ferreira et al.

[34, 35], Krastev [36, 37] among others [38, 39]. Within these studies, our attention will be primarily

directed towards articles that center on elucidating the mapping process from observed properties,

like mass-radius or TD, to the underlying EoSs. Notably, we will delve into the works authored by Fu-

jimoto et al. [28, 29, 27]. In this context, the final article serves as a culmination of the preceding two.

Its core essence revolves around the intricate process of inverting the mapping, translating observ-

ables back into the EoS, facilitated through the utilization of a deep NN. The base dataset consists of

an agnostic model made of polytropic EoS, where they simulate the observations by choosing 14 M-R

pairs and applying a Gaussian noise 3, so they input to the model
[
Mi ,Ri ,σM ,i ,σR,i

]
and the output

is five values of the speed of sound squared. In order to obtain a better performance they implement

data augmentation4 and also compare their deep learning approach with polynomial regression, pro-

viding the robustness of their deep NN method. In order to quantify the output uncertainty they im-

plement two methods, one based on the root-mean-square deviation for the validation dataset, and

the other one based on an ensemble method. However, these aren’t real uncertainties and only statis-

tical estimations, which need to be better quantified. The same problem is found in the other articles

aforementioned, as an example in [36, 37] that uses deep NNs to determine the properties of nuclear

matter from either M-R or M-Λ, concludes once again, in both articles, that the uncertainty quantifi-

cation is a big must do in future work, even more, to enhance the performance of the models. The

ability to answer questions such as How confident is a model about its predictions? remains a crucial

aspect to be addressed.

But how can we quantify the unpredictability of our model?

To tackle this challenge, we propose the implementation of a promising approach called BNN

[40]. BNNs have gained attention in various fields of physics, such as [41, 42], and have shown

promise in providing uncertainty quantification. Hence, our second motivation is to develop an infer-

ence framework that provides prediction uncertainties for any model prediction. By utilizing BNNs,

we can capture and quantify the uncertainty associated with the predictions made by our model. This

capability is crucial for decision-making processes that require a clear understanding of the confi-

dence and reliability of the model’s outputs. The study done on this work should be regarded as a

proof-of-concept study realistic application regarding the true values of the observations are left for

future work.

3This methodology is similar to the one we will use that is present in chapter 4.
4Technique used to artificially increase the dataset size.
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1.2 Objective that leads to dissertation outline

In summary, the primary objective of this thesis is to establish a mapping from observational data

of NS mass-radius and TD to the properties of the EoS, specifically focusing on predicting the speed

of sound squared and proton fraction. Our approach involves employing BNNs as our modelling

framework, allowing us to account for inherent uncertainties in the model as well as uncertainties

in the observed data. By utilizing BNNs, we aim to gain a more comprehensive understanding of

the predictive uncertainties involved in mapping observations to the EoS properties. Unlike many

previous ML studies that use generic and agnostic parametrizations of the EoS, we adopt a specific

family of nuclear models, the RMF model, to construct a set of possible EoSs. This microscopically

motivated approach allows us to explore the density dependence of all degrees of freedom inside NSs,

including the proton fraction.

To achieve the objectives set forth in this thesis, Chapter 2 will delve into the intricate proper-

ties of NSs, offering a comprehensive explanation of their key characteristics. A pivotal aspect of this

chapter involves introducing the RMF model, which lays the foundation for the dataset we will em-

ploy. Moreover, we offer a succinct overview of the macroscopic attributes of NSs and elucidate the

significance of the inverse mapping, which is the central topic of our research. Moving on to Chapter

3, we will introduce NNs, focusing specifically on the functioning of BNN. Chapter 4 will begin by

presenting the base dataset created in a previous study [25]. Subsequently, we will discuss the adap-

tation of this dataset to suit our specific model, where is going to be used a similar approach as the

one in [28, 29, 27]. In order to describe the model that we have employed in our study Chapter 5 will

provide a comprehensive explanation of the architecture employed and the training process. Hav-

ing established a solid foundation through theoretical insights and dataset description, we will delve

into the heart of our findings in Chapter 6. Here, we will investigate the implications of introduc-

ing various forms of uncertainty into the input, while also evaluating the impact of the TD. Also, we

will decompose the obtained uncertainty into the one acquired from the data and from the model.

Furthermore, we will rigorously assess whether our model can successfully predict the DD2 EoS gen-

erated with a microscopic framework different from the one used to generate the EoS used to train

the BNN model. Finally, in Chapter 7, we will provide a synthesis of the entire spectrum of results

obtained throughout our study and discuss potential avenues for future research and the trajectory

this field might undertake.
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2 Bridging the Gap: Connecting Nu-

clear Models to Neutron Star Ob-

servations

In this chapter, we begin with an introductory exploration of NSs in Section 2.1. Moving forward,

we delve into the computation of their composition within the framework of nonlinear relativistic

nuclear field theory. We study the Lagrangian and the corresponding RMF approximation in Section

2.2, ultimately deriving the EoS. Subsequently, Section 2.3 delves into the macroscopic attributes that

emerge from observing these stellar entities. We introduce the distinct macroscopic properties that

arise when observing NSs, along with the central problem that this thesis seeks to address.

2.1 Neutron stars in a nutshell

Neutron Star (NS)s stand out as captivating cosmic laboratories for investigating fundamental physics.

First detected in 1967 by Jocelyn Bell and Anthony Hewish these celestial objects possess a fascinat-

ing combination of characteristics, with a remarkably small radius of about 10 to 15 km (approxi-

mately 10−5R⊙) and an immense mass ranging from 1 ∼ 2M⊙, making them incredibly dense. In fact,

they rank as the second densest objects in the universe, surpassed only by black holes. True to their

name, NSs primarily consist of neutrons, although they also contain a smaller proportion of protons,

electrons, muons and possibly also other particles, such as hyperons, kaon or pion condensates, or

deconfined quarks. The relative abundance of these particles is determined by the requirements of

charge neutrality and beta stability, defined in Section 2.1.4. Some NSs possess an immensely power-

ful magnetic field, known as magnetars, with strengths reaching approximately B ∼ 1015 Gauss at the

surface. Additionally, certain NSs exhibit rapid rotational periods in the millisecond range, earning

them the name pulsars, the faster one to date spins at about 716Hz. They are considered stable ob-

jects due to the delicate equilibrium between gravity and the pressure generated by matter, stemming

from the Pauli exclusion principle and the strong nuclear force, the fact that these stars are held by

gravity is contrary to what happens in the nucleus.
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2.1.1 How neutron stars are born?

If a star has a mass of approximately ∼ 8−30M⊙, normally called the red Supergiant, when it even-

tually dies, since they are more massive than most of the other stars, it has a very violent death as it

explodes into a supernova of Type-II, Ib or Ic as is described in 2.1.
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Figure 2.1: Visual representation showcasing the evolutionary progression of supernova cores, trans-

forming from massive stars into compact objects, where NS stands for a Neutron Star remnant and

BH for a Black Hole.

In essence, the process of a supernova commences when a star begins to fuse iron elements in its

core. This leads to the gravitational collapse of the iron core, where the central region becomes highly

compressed, effectively trapping neutrinos due to intense interactions within the extremely hot and

dense matter. Subsequently, a shockwave is initiated as the central core rebounds off matter near the

nuclear saturation density. If the shock wave propagates successfully by accreting the outer layers of

the Fe-core, it leads to the supernova explosion and the birth of a NS; if it fails, it collapses into a black

hole, a more detailed description can be found in [43].

Once the supernova explosion is over, the newly formed NS cools rapidly through the emission

of neutrinos, where this mechanism is known as the direct Urca process, we will talk more about this

process later. NSs can also be formed by the merger of two existing NSs. In such mergers, gravitational

forces play a crucial role, and the collision can lead to the formation of either a black hole or a more

massive NS.

2.1.2 The composition of highly compact stars

Since NSs are very dense objects, they can reach many times the nuclear saturation density, n0 = 0.16

fm−3 , inside the star. They can therefore be divided into 5 main regions, considering the atmosphere,

as shown in the scheme in Fig. 2.2. In each of these regions, they are described as:

➜ Atmosphere – It’s a very thin region. Where the composition can be mainly hydrogen or heavier

elements such as iron depending on when the star was formed.

➜ Outer crust – Solid region composed of heavy nuclei forming a coulomb lattice embedded in
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Figure 2.2: Illustration depicting the layered composition of NS, highlighting various potential con-

figurations for the inner core matter.

a relativistic degenerate gas of electrons. The thickness of this layer is about several hundred

meters. As the density increases, the energy of the electrons becomes high enough for inverse

beta decay, leading to an increase in neutron-rich nuclei via electron capture. This continues

until the neutron drip density is reached when neutrons begin to leave the nuclei.

➜ Inner crust – Highly neutron rich nuclei are immersed in a neutron gas in a superfluid state.

The nuclear pasta phase is hypothesised to be in the end part of this region.

➜ Outer core – In this region of the star the composition of the star is mainly uniform nuclear

matter mostly composed of neutrons and with a smaller portion of protons and electrons, to

satisfy charge neutrality. When moving for the innermost layers at a certain density threshold

muons µ star to appear. This matter defined frequently named npeµ matter, must also satisfy

the condition of equilibrium with respect to weak interactions, namely beta equilibrium.

➜ Inner core – The innermost region of a NS remains one of the most mysterious and least under-

stood regions. Scientists have proposed various possibilities for the composition of this region.

Fig. 2.2 illustrates three potential scenarios: a quark core composed solely of quarks, a nu-

cleonic core consisting of protons and neutrons, and a hyperon core with hadrons containing

strange quarks. Additionally, also other propositions such as Kaon condensates, hybrid stars,

dark matter and so on.

2.1.3 The connection to nuclear matter

Having understood the composition of NSs, significant parallels can be drawn between the matter

within these compact objects and the idealized nuclear matter found in atomic nuclei. Extensive re-
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search has been dedicated to comprehending the behavior of dense nuclear matter across a broad

spectrum of densities and asymmetries. The EoS, which describes the relationship between pres-

sure and energy density P (ε), or pressure/energy density and density (P (n) and ε(n)), plays a crucial

role in characterizing such matter. Due to their nature as remarkably compact entities composed

of baryons, NSs offer exceptional opportunities to constrain the EoS of nuclear matter across a vast

range of densities. The extreme conditions within these celestial bodies provide valuable insights into

the properties of nuclear matter under extreme densities that are otherwise unachievable in terres-

trial laboratories.

What is nuclear matter ?

Nuclear matter is a theoretical concept used to represent a hypothetical form of strongly interacting

matter. It is often characterized as an idealized system comprising an infinite and homogeneously

symmetric distributed collection of nucleons, with infinite atomic mass number A →∞, where the

effects of Coulomb interaction are disregarded. This simplification is beneficial as it reduces the influ-

ence of surface effects, which become negligible when considering an infinite radius approximation.

The unique nature of NSs makes them particularly suitable for investigating nuclear matter. With typ-

ical radii of approximately 10 km and an approximate amount of number of nucleons A = M⊙/mN ∼
1057, NSs offer a natural environment to study matter at extreme densities. In contrast, atomic nuclei

have sizes on the order of 10−18 m, which is significantly smaller compared to the scale of NSs. Con-

sequently, NSs provide a valuable opportunity to explore and study the properties of nuclear matter

under conditions that are unattainable in terrestrial experiments.

What about the properties of nuclear matter?

The binding energy per nucleon, B
A , can be calculated through the energy density, ε(n) as

B

A
= ε

n
−m̄N , (2.1)

m̄N = mn
(
1− yp

)+mp yp ≡ m, where yp = np /n is the proton fraction and mn and mp represent

the mass of neutron and proton, respectively. In a crude approximation, this is considered to be the

average of the nucleon mass. The minimum of these values is in the saturation density n0.

The EoS can be decomposed to a good approximation into a symmetric and asymmetric part:

ε

n
(n,δ)−m ≡ ϵ(n,δ) ≈ ϵSN M (n)+Es ym(n)δ2 +·· · , (2.2)

ϵ is the binding energy per nucleon, n = nn +np is the baryon density that is the sum of neutron

density nn and proton density np , δ = (
nn −np

)
/n = (

1−2yp
)

is the isospin asymmetry parameter,

ϵSN M (n) = ϵ(n,δ = 0) represents the binding energy per nucleon of symmetric nuclear matter and

Es ym(n) is the symmetry energy, which basically represents the cost of how much energy is needed to

convert symmetric nuclear matter into pure neutron matter

Es ym(n) = ∂2ϵ (n,δ)

2∂δ2

∣∣∣∣
δ=0

. (2.3)
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Expanding both terms Es ym(n) and ϵSN M (n) for Eq. 2.2 in a Taylor series around the saturation

density n0 until fourth order and considering x = n−n0
3n0

it’s obtained:

ϵ(n,δ) ≈ ϵ0 + K0

2
x2 + Q0

6
x3 + Z0

4!
x4︸ ︷︷ ︸

ϵSN M (n)

+
(

Js ym +Ls ym x + Ks ym

2
x2 + Qs ym

6
x3 + Zs ym

4!
x4

)
︸ ︷︷ ︸

Es ym (n)

δ2 +·· · . (2.4)

The coefficient terms of the expansion are for the zero order ϵ0 = ϵSN M (n0) the binding energy

per particle at saturation density for symmetric nuclear matter, and Js ym = Es ym(n0), the symmetry

energy at saturation density, the other terms for the symmetric nuclear matter come from:

X (k)
0 = (3n0)k ∂kϵ(n,0)

∂nk

∣∣∣∣∣
n0

, k = 2,3,4 . (2.5)

The parameters X 2
0 = K0, X 3

0 =Q0, and X 4
0 = Z0 represent the incompressibility coefficient, skew-

ness, and kurtosis, respectively, for symmetric nuclear matter. Regarding the remaining components

within the symmetry energy expression,

X (k)
s ym = (3n0)k ∂k Es ym(n)

∂nk

∣∣∣∣∣
n0

, k = 1,2,3,4. (2.6)

Where X 1
s ym = Ls ym , X 2

s ym = Ks ym , X 3
s ym = Qs ym , X 4

s ym = Zs ym , are the slope, curvature, skewness

and kurtosis of symmetry energy at saturation density respectively. Exploring these quantities offers

deeper insights into the behavior of nuclear matter. For a more detailed examination of these param-

eters, including asymmetric parameters in Eq. 2.2 with higher-order effects, see [44].

2.1.4 Neutron stars in β-equilibrium

Once we have grasped the properties of nuclear matter in the context of isospin asymmetric nuclei

as observed in NSs, it is crucial to consider two essential conditions that the matter inside NSs must

satisfy: charge neutrality and β-equilibrium. When considering the cooling of NSs, the dominant

process is often the direct Urca process. This mechanism involves the rapid conversion of a neutron

into a proton (β-decay) accompanied by the emission of an electron and an electron antineutrino

and then the capture of electrons by protons (electron capture)

n → p + e− + ν̄e , p + e− → n + νe .

However, due to momentum conservation, the direct Urca process, [45] can only occur when the

proton fraction (the ratio of protons to baryons) exceeds a critical value. In cases where this condition

is not met, a modified Urca process takes place instead. The modified Urca process involves the

interaction between nucleons, resulting in a slower cooling mechanism.

Muons are only present when the Fermi energy of the electron exceeds the rest energy of the

muons (mµc2 ∼ 105.7MeV),

e− → µ + νe + ν̄µ .
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Neutrinos and antineutrinos, which are the main cooling agents of the nascent proto-NS, gener-

ally escape the NS, and their chemical potentials can be effectively considered zero. The direct Urca

process leads the nucleons into β-equilibrium. β-equilibrium arises from weak interactions within

the NS. It dictates that the different species of particles, such as protons, neutrons, electrons, and

muons, are in equilibrium with respect to weak decay and capture processes mediated by the weak

force. In β-equilibrium, the rates of processes involving the conversion of neutrons into protons (β-

decay) and the capture of electrons by protons (electron capture) are balanced, resulting in a stable

equilibrium state, where the chemical potentials, defined as µ j = ∂ε
∂n j

, thus satisfy for the β-decay:

µn =µp +µe , (2.7)

and for the unset of muons we have

µµ =µe . (2.8)

Furthermore, charge neutrality ensures that the overall charge of the NS matter, counting for pro-

tons, neutrons, electrons and muons 1 is balanced and neutral. This requires:

∑
b=p,n

qbnb +
∑

l=e−,µ−
ql nl = 0 , (2.9)

np = ne +nµ .

An intriguing study conducted by Ferreira et al.[35] employs deep NNs to establish a mapping

between β-equilibrium NS matter and the corresponding properties of nuclear matter. This interplay

between the properties of NS matter and nuclear matter is an avenue that promises valuable insights.

2.2 Microscopic neutron star properties

Having developed an understanding of the internal composition of NSs, the natural progression is to

address the question: how can we then obtain the EoS? This involves utilizing a phenomenological

approach. This could be non-relativistic, such as skyrme interactions, or it could take a relativistic

approach, as seen in RMF models. Of these options, RMF models are often preferred due to their

capability to account for the relativistic effects in dense matter scenarios. The forthcoming schematic

illustration outlines the method employed to obtain the EoS:

 

Lagrangian density Equations of motion Relativistic Mean 

Field approximation 
Energy values 

Energy momentum 

tensor 

Equation of 

state 
Scalar and Vector 

density 

Figure 2.3: Illustration outlining the procedural steps involved in deriving the EoS.

1Specifications of the particles are in Table 1.
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In this scheme, the first step is to define the Lagrangian density that governs the interactions

of nucleons and mesons in nuclear matter. However, when one attempts to solve the equations of

motion derived from the Lagrangian, they become highly complex and challenging to solve exactly.

To make progress, the RMF approximation is applied. Under the RMF approximation, the energy

spectrum of the system can be determined, allowing for the calculation of the vector and scalar den-

sities. Once the values of the vector and scalar densities are obtained, the meson fields can be deter-

mined. With the values of the meson fields obtained, we can then calculate the EoS from the energy-

momentum tensor, which relates to the RMF Lagrangian.

2.2.1 Lagrangian density

To describe the nuclear matter inside NSs, an advanced version of Walecka’s original Quantum Hadro-

dynamics (QHD) model [46] is employed. This model postulates that nucleons interact with each

other through the exchange of mesons. The Lagrangian of the model incorporates nucleonic fields

Ψ, which interact via the exchange of three mesons: two isoscalar mesons, the scalar meson σ repre-

sented by a fieldϕ, and the vector mesonω and one vector-isovector meson, the ρ meson represented

by ϱ. The ϕ meson gives rise to the strong attractive force, while the ω mesons cause the strong re-

pulsive force between the nucleons. The inclusion of the ϱ meson is also particularly important for

accounting for the asymmetry of NSs, as it interacts differently with protons and neutrons due to their

different isospin properties.

To account for β-equilibrium, free lepton fieldsΨl , describing the electrons and the muons must also

be added to the model, ensuring that NSs maintain charge neutrality. The particle specifications for

the nucleons, mesons, and leptons involved in the model are summarized in Table 1. The Lagrangian

density is then given by

L =LN +LM +LN L +Llep , (2.10)

where LN describes the interaction of the nucleons through the mesons, LM represents the self-

interactions of the meson fields, LN L represents the non-linear interactions and the cross interac-

tions of the mesons and Llep represents the leptons. Opening each of the defined Lagrangian densi-

ties gives

LN =Ψ̄(x)
[(

iγµ∂
µ− gωγµω

µ(x)− gϱγµt ·ϱµ(x)
)− (

m − gϕϕ(x)
)]
Ψ(x) ,

LM =1

2

[
∂µϕ(x)∂µϕ(x)−m2

ϕϕ
2(x)

]
− 1

4
F (ω)
µν (x)F (ω)µν(x)+ 1

2
m2
ωωµ(x)ωµ(x)−

1

4
F (ϱ)
µν(x) ·F (ϱ)µν(x)+ 1

2
m2
ϱϱµ(x) ·ϱµ(x) ,

LN L =− 1

3
b m g 3

ϕϕ
3(x)− 1

4
cg 4

ϕϕ
4(x)+ ξ

4!
g 4
ω(ωµ(x)ωµ(x))2 +Λωg 2

ϱϱµ(x) ·ϱµ(x)g 2
ωωµ(x)ωµ(x) ,

Llep =∑
l
Ψ̄l (x)

(
iγµ∂

µ−ml
)
Ψl (x) .

The masses of the meson fields are defined as mi where i = ϕ,ω,ϱ, additionally, the vacuum

masses for the proton and neutron have an average value m, and ml represents the mass of each

12



lepton. The vector meson tensors are defined as F (ω)
µν (x) = ∂µων(x)−∂νωµ(x) and F (ϱ)

µν(x) = ∂µϱν(x)−
∂νϱµ(x)2. The isovector meson has three isospin componentsϱµ = (ϱµ1 ,ϱµ2 ,ϱµ3 ) with respective charges,

ϱ
µ
q (q = ±1,0) represented as ϱµ0 = ϱ

µ
3 and ϱ

µ
± = 1p

2

(
ϱ
µ
1 ± iϱµ2

)
. The operator t represents the isospin

operator. We are considering Ψ as a 8×1 spinor since it describes the nucleon doublet, while Ψl is

a 4×1 spinor 3. The gω, gϱ and gϕ are the coupling constants, which represent how strongly the nu-

cleons interact with the mesons, they can also be considered density dependent as discussed in [47].

J. Boguta and A.R. Bodmer proposed an extension to the QHD Lagrangian density, which includes

self-couplings of the scalar meson field σ. This is achieved by introducing terms such as ϕ3 and ϕ4

into the Lagrangian, with couplings b and c respectively (which came from [48]), allowing for addi-

tional interactions involving the scalar meson. Similarly, a self-interaction term for the vector meson

ω, with coupling ξ term, introduced in [49], is included which is mainly responsible for how soft is the

EoS at high densities. This addition provides a valuable tool to control the softness of the high-density

EoS. For the Λω coupling is characterizing the interaction between the vector meson fields ω and ϱ

interfering with the density dependence of the symmetry energy.

2.2.2 The equations of motion

Once the Lagrangian density is defined, one can derive a set of field equations by using the Euler-

Lagrange equation:

∂µ
∂L

∂(∂µφ(x))
= ∂L

∂φ(x)
, (2.11)

whereφ stands for the different fields involved in the theory. All the details about the calculations can

be found in Appendix A. The fermions are described by the Dirac equation of the form:

[
iγµ∂µ−ml

]
Ψl (x) = 0 , (2.12)[

γµ
(
i∂µ− gωωµ(x)− gϱt ·ϱµ(x)

)
− (

m − gϕϕ(x)
)]
Ψ(x) = 0 . (2.13)

For the meson filed with spin 0, it’s described by the Klein-Gordon equation

∂µ∂
µϕ(x)+m2

ϕϕ(x)+bmg 3
ϕϕ

2(x)+ cg 4
ϕϕ

3(x) = gϕΨ̄(x)Ψ(x) . (2.14)

For the meson fields with spin 1 they are described by the Proca equations:

∂aF (ϱ)ab(x)+2Λωg 2
ϱϱ

b(x)g 2
ωωµ(x)ωµ(x)+m2

ϱϱ
b(x) = Ψ̄(x)γb gϱtΨ(x) ,

(2.15)

∂aF (ω)ab(x)+m2
ωω

b(x)+ ξ

3!
g 4
ω(ωµ(x)ωµ(x))ωb(x)+2Λωg 2

ϱϱµ(x) ·ϱµ(x)g 2
ωω

b(x) = gωΨ̄(x)γbΨ(x) .

(2.16)

2Here for the rho meson it should be F
(ϱ)
µν (x) = ∂µϱν(x)−∂νϱµ(x)−gϱ

(
ϱµ(x)×ϱν(x)

)
however since we are implementing

the RMF approximation the cross product can be ignored.
3While γµ is a 8×8 matrix (γµ⊗12×2) forΨ, forΨl is a 4×4 matrix but for the sake of simplicity we use the same notation.
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These field equations are non-linear coupled equations making them challenging to solve ex-

actly. However, to facilitate computations, these equations can be simplified by employing the RMF

approximation.

2.2.3 Relativistic mean field approximation

The RMF approximation considers a system in its ground state, characterized by static and uniform

matter. Within this approximation, the fields and sources lose their space-time dependence and be-

come constant. This is justified by assuming translational invariance in infinite nuclear matter. For

the vector mesons, the spacial components vanish due to rotational symmetry. Also for the isovector

meson, ϱ, only the third component of isospin has a nonvanishing value because of charge conserva-

tion, more explanation can be found in [43].

ϕ(x) →〈ϕ〉→ 〈ϕ〉 ≡ϕ and Ψ̄(x)Ψ(x) →〈Ψ̄Ψ〉 = 〈Ψ̄Ψ〉 ,

ωµ(x) →〈ωµ〉→ 〈ω0〉 ≡ω0 and Ψ̄(x)γµΨ(x) →〈Ψ̄γ0Ψ〉 = 〈Ψ†Ψ〉 ,

ϱµ(x) →〈ϱµ〉→ 〈ϱ03〉 ≡ ϱ03 and Ψ̄(x)γµtΨ(x) →〈Ψ̄γ0t3Ψ〉 = 〈Ψ†t3Ψ〉 .

The equations of motion in the RMF approximation for the mesons then become:

2Λωg 2
ϱϱ03g 2

ωω
2
0 +m2

ϱϱ03 = gϱ〈Ψ†t3Ψ〉 , (2.17)

m2
ωω0 + ξ

3!
g 4
ω(ω0)3 +2Λωg 2

ϱϱ
2
03g 2

ωω0 = gω〈Ψ†Ψ〉 , (2.18)

m2
ϕϕ+bmg 3

ϕϕ
2 + cg 4

ϕϕ
3 = gϕ〈Ψ̄Ψ〉 . (2.19)

The Lagrangian density reduces its form to:

LRMF =−1

2
m2
ϕϕ

2 − 1

3
b m g 3

ϕϕ
3 − 1

4
cg 4

ϕϕ
4 + ξ

4!
g 4
ωω

4
0 +

1

2
m2
ωω

2
0 +

1

2
m2
ϱϱ

2
03 +Λωg 2

ϱϱ
2
03g 2

ωω
2
0 . (2.20)

2.2.4 The energy values

In order to compute the energy spectrum of the Dirac fields, we describe the fields as plane waves

given by:

Ψ(x) =Ψ(k)e−i k·x . (2.21)

Substituting this into Eq. 2.13 yields

[
γµkµ−m + gϕϕ(x)+ gσγµω

µ(x)− gϱγµt ·ϱµ(x)
]
Ψ(k) = 0 . (2.22)

Applying the methodology used in [43], we introduce the following substitutions:

K µ = kµ− gσω
µ− gϱt ·ϱµ , (2.23)

m∗ = m − gϕϕ(x) . (2.24)
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Here m∗ is the effective mass. With these substitutions, Eq. 2.22 can be rewritten as:[
γµK µ−m∗]

Ψ(K ) = 0 . (2.25)

Rationalizing the Dirac operator by multiplying Eq. 2.25 with (γµK µ+m∗) gives:(
γµK µ+m∗)(

γµK µ−m∗)= γµK µγνK ν−m∗γνK ν+m∗γµK µ−m∗2 ,

= γµK µγνK ν−m∗2 ,

= γµK µγνK ν+γµK µγνK ν

2
−m∗2 ,

= K µK ν
γµγν+γµγν

2
−m∗2 ,

= K µK ν
2gµν

2
−m∗2 ,

= K µKµ−m∗2 . (2.26)

Where the properties of the gamma matrices {γµ,γν} = 2gµν were utilized. This leads to the rewriting

of Eq. 2.25 as: [
K µKµ−m∗2]Ψ(K ) = 0 . (2.27)

As a result, given that the operator now represents a number that, when multiplied by Ψ(K ), yields

zero, this numerical value must be zero as well. Consequently,

K µKµ−m∗2 = 0 ,

K 2
0 −K 2

i −m∗2 = 0 ,

K 2
0 = K 2

i +m∗2 . (2.28)

Since within the RMF approximation only the terms ϕ, ω0, and ϱ03 remain, Eq.2.28 becomes:

(
k0 − gωω0 − gϱI3bϱ03

)2 −k2
i −m∗2 = 0 ,(

k0 − gωω0 − gϱI3bϱ03
)2 = k2

i +m∗2 ,

k0 = gωω0 + gϱI3bϱ03 ±
√

k2
i +m∗2 . (2.29)

This enables us to express the energy values as

Eb(k) = gωω0 + gϱI3bϱ03 +
√

k2 +m∗2 , b = n, p . (2.30)

So the energy values for the particle and antiparticle are respectively:

Eb(k) = gωω0 + gϱI3bϱ03 +
√

k2 +m∗2 , (2.31)

Ēb(k) =−gωω0 − gϱ Ī3bϱ03 +
√

k2 +m∗2 , b = n, p . (2.32)

For the leptons, by using the same procedure we obtain

El (k) =
√

k2 +m∗2
l , l = e−,µ− . (2.33)
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2.2.5 Scalar and vector density

In order to calculate the expectation values of the sources for the baryon fields, Eqs. 2.17, 2.18 and

2.19, is going to be used the method introduced in [43]. This basically consists of when the expecta-

tion value of an operator Γ with respect to the ground state in the many-body system can be written

as the continuum summation of the single-particle expectation value,
(
Ψ̄ΓΨ

)
k ,k , k is the momentum

and k is the spin-isospin state of the single-particle

〈Ψ̄ΓΨ〉 =∑
k

∫
dk

(2π)3

(
Ψ̄ΓΨ

)
k ,kΘ

(
µb −E(k)

)
. (2.34)

The sum over k is the sum over the spin states of the occupied momentum states, µb is the chem-

ical potential, andΘ
(
µb −E(k)

)
is a step function defined as:

Θ
(
µb −E(k)

)=
1 if |k | ≤ kF,b

0 if |k | > kF,b

.

The main goal is that all the information about Γ is found in the Baryon Dirac Hamilton, HD , so

in order to obtain it we need to find k0 present in Eq. 2.13

[
γµ(kµ− gωω

µ− gϱt ·ϱµ)−m∗]
Ψ(k) = 0 ,[

γ0(k0 − gωω
0 − gϱt3ϱ

0
3)−γi k i −m∗

]
Ψ(k) = 0 ,[

γ0(gωω
0 + gϱt3ϱ

0
3)+γi k i +m∗

]
Ψ(k) = γ0k0Ψ(k) ,

γ0

[
γ0(gωω

0 + gϱt3ϱ
0
3)+γi k i +m∗

]
Ψ(k) = γ0γ0k0Ψ(k) ,[

gωω
0 + gϱt3ϱ

0
3 +γ0(γi k i +m∗)

]
Ψ(k) = k0Ψ(k) ,

HDΨ(k) = E(k)Ψ(k) . (2.35)

It’s then possible to obtain the Hamiltonian

HD = gωω
0 + gϱt3ϱ

0
3 +αi k i +βm∗ , (2.36)

where the terms αi and β are defined in the Chapter Notation. Now, let’s proceed to calculate the

expected value of the Dirac Hamiltonian for a single-particle momentum state:

(
Ψ†HDΨ

)
k ,k

=
(
Ψ†E(k)Ψ

)
k ,k

= E(k)
(
Ψ†Ψ

)
k ,k

. (2.37)

We first analyze the derivative of the expected value of the Dirac Hamiltonian with respect to a ran-
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dom variable ζ:

∂

∂ζ

(
Ψ†HDΨ

)
k ,k

=
(
∂Ψ†

∂ζ
HDΨ

)
k ,k

+
(
Ψ† ∂HD

∂ζ
Ψ

)
k ,k

+
(
Ψ†HD

∂Ψ

∂ζ

)
k ,k

,

=
(
Ψ† ∂HD

∂ζ
Ψ

)
k ,k

+E(k)

(
∂Ψ†

∂ζ
Ψ

)
k ,k

+E(k)

(
Ψ† ∂Ψ

∂ζ

)
k ,k

,

=
(
Ψ† ∂HD

∂ζ
Ψ

)
k ,k

+E(k)
∂

∂ζ

(
Ψ†Ψ

)
k ,k

,

=
(
Ψ† ∂HD

∂ζ
Ψ

)
k ,k

+E(k)
∂

∂ζ

(
Ψ†Ψ

)
k ,k︸ ︷︷ ︸

=0

,

=
(
Ψ† ∂HD

∂ζ
Ψ

)
k ,k

. (2.38)

In the last step, the second term went to zero since Ψ(k) is an eigenfunction. Combining this

result with Eq.2.37, we obtain:

(
Ψ† ∂HD

∂ζ
Ψ

)
k ,k

= ∂

∂ζ
E(k) . (2.39)

Now in order to obtain the normalization condition of the wave function it’s going to be used Eq.2.39

where the derivative is going to be taken with respect to ω0 of Eq.2.36

(
Ψ† ∂HD

∂ω0
Ψ

)
k ,k

= ∂

∂ω0
E(k) ,

gω
(
γ0

)2
(
Ψ†Ψ

)
k ,k

= ∂

∂ω0

(
gωω0 +

√
k2 +m∗2

)
,

gω
(
Ψ†Ψ

)
k ,k

= gω .

It was used the condition
(
γ0

)2 = I . From this we are able to see that for the condition to be

satisfied
(
Ψ†Ψ

)
k ,k = 1. Having obtained the normalization condition we are now able to calculate the

vector baryon density, 〈Ψ†Ψ〉, using Eq.2.34 :

〈Ψ†Ψ〉 =∑
k

∫
dk

(2π)3

(
Ψ†

pΨp

)
k ,k
Θ

(
µp −Ep (k)

)+∑
k

∫
dk

(2π)3

(
Ψ†

nΨn

)
k ,k
Θ

(
µn −En(k)

)
,

= (2JB +1)
∫

dk

(2π)3

(
Ψ†

pΨp

)
k ,k
Θ

(
µp −Ep (k)

)+ (2JB +1)
∫

dk

(2π)3

(
Ψ†

nΨn

)
k ,k
Θ

(
µn −En(k)

)
,

= (2JB +1)
∫

dk

(2π)3Θ
(
µp −Ep (k)

)+ (2JB +1)
∫

dk

(2π)3Θ
(
µn −En(k)

)
,

= (2JB +1)
∫ kF,p

0

4πk2dk

(2π)3 + (2JB +1)
∫ kF,n

0

4πk2dk

(2π)3 ,

=
k3

F,p

3π2 +
k3

F,n

3π2 ,

= np +nn = n . (2.40)

The Fermi momenta for protons and neutrons denoted as kF,p and kF,n respectively, are indicative

of the momentum at the Fermi surface for each nucleon type. These values are directly linked to the

vector density of the respective particles. The factor (2JB + 1) represents the particle’s degeneracy,
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where JB signifies its spin quantum number. The final outcome deduced from Eq. 2.40 corresponds to

the baryonic density, symbolized as n. To derive 〈Ψ̄Ψ〉, it is essential to initially compute the expected

value for a single particle, using Eq. 2.39:

(
Ψ̄pΨp

)
k ,k =

(
Ψ†

pγ0Ψp

)
k ,k

=
(
Ψ†

p
∂HD

∂m∗Ψp

)
k ,k

= ∂

∂m∗ Ep (k) = m∗
p

k2 +m∗2
, (2.41)

(
Ψ̄nΨn

)
k ,k =

(
Ψ†

nγ0Ψn

)
k ,k

=
(
Ψ†

n
∂HD

∂m∗Ψn

)
k ,k

= ∂

∂m∗ En(k) = m∗
p

k2 +m∗2
. (2.42)

Subsequently, employing Eqs. 2.41 and 2.34:

〈Ψ̄Ψ〉 =∑
k

∫
dk

(2π)3

(
Ψ̄pΨp

)
k ,kΘ

(
µp −Ep (k)

)+∑
k

∫
dk

(2π)3

(
Ψ̄nΨn

)
k ,kΘ

(
µn −En(k)

)
,

= (2JB +1)
∫

dk

(2π)3

(
Ψ̄pΨp

)
k ,kΘ

(
µp −Ep (k)

)+ (2JB +1)
∫

dk

(2π)3

(
Ψ̄nΨn

)
k ,kΘ

(
µn −En(k)

)
,

= 1

π2

∫ kF,p

0
dk

k2m∗
p

k2 +m∗ + 1

π2

∫ kF,n

0
dk

k2m∗
p

k2 +m∗ ,

= ns
p +ns

n = ns . (2.43)

Here ns stands for scalar baryonic density. Then calculating for 〈Ψ†t3Ψ〉:

〈Ψ†t3Ψ〉 =∑
k

∫
dk

(2π)3

(
Ψ†

p t3Ψp

)
k ,k
Θ

(
µp −Ep (k)

)+∑
k

∫
dk

(2π)3

(
Ψ†

n t3Ψn

)
k ,k
Θ

(
µn −En(k)

)
,

= (2JB +1)
∫

dk

(2π)3

(
Ψ†

p t3Ψp

)
k ,k
Θ

(
µp −Ep (k)

)+ (2JB +1)
∫

dk

(2π)3

(
Ψ†

n t3Ψn

)
k ,k
Θ

(
µn −En(k)

)
,

= (2JB +1)
∫

dk

(2π)3 I3,p

(
Ψ†

pΨp

)
k ,k

+ (2JB +1)
∫

dk

(2π)3 I3,n

(
Ψ†

nΨn

)
k ,k

,

=
I3,p k3

F,p

3π2 +
I3,nk3

F,n

3π2 = I3,p np + I3,nnn .

(2.44)

In this context, I3,(p,n) denotes the isospin of the proton and neutron, which are 1
2 and −1

2 respectively.

Consequently, the equations of motion can now be expressed as:

m2
ϕϕ+bmg 3

ϕϕ
2 + cg 4

ϕϕ
3 = gϕ

(
ns

p +ns
n

)
, (2.45)

m2
ωω0 + ξ

3!
g 4
ω(ω0)3 +2Λωg 2

ϱϱ
2
03g 2

ωω0 = gω
(
np +nn

)
, (2.46)

2Λωg 2
ϱϱ03g 2

ωω
2
0 +m2

ϱϱ03 = gϱ
(
I3,p np + I3,nnn

)
. (2.47)

2.2.6 Equation of state

In order to obtain the EoS, the energy-momentum tensor T µν comes into play, which is defined as :

T µν =
(

∂L

∂
(
∂µφi (x)

))
∂νφi (x)− gµνL , (2.48)
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where gµν is the metric tensor and φi stands for the each field of the Lagrangian.

For an ideal fluid, characterized by the absence of shear forces and heat flux, the off-diagonal

elements are null. Assuming isotropy in matter, the spatial diagonal elements in the rest frame are

equal, implying equal pressure across the three directions. In this context, the energy-momentum

tensor for an ideal fluid at rest takes the form

T µν =


ϵ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 . (2.49)

Here, ϵ represents the energy density of the system and P is the pressure. So in order to obtain the

energy density and pressure, we calculated the expected value of the energy tensor:

ε= 〈T 00〉 = ∑
j=b,l

〈(
∂L

∂
(
∂0Ψ j

))
∂0Ψ j

〉
−〈

g 00L
〉

,

= ∑
j=b,l

〈
Ψ̄ jγ0i∂0Ψ j

〉−〈L 〉 ,

= ∑
j=b,l

〈
Ψ̄ jγ0k0Ψ j

〉−LRMF . (2.50)

The term LRMF has already been computed in Eq.2.20, yet
〈
Ψ̄γ0k0Ψ

〉
is missing. Using the relation

present in Eq.2.37, the following is obtained:

∑
j=b,l

〈Ψ̄ jγ0k0Ψ j 〉 =
∑

j=b,l

∑
k j

∫
dk

(2π)3

(
Ψ†

j k0Ψ j

)
k ,k j

Θ
(
µ j −E j (k)

)
, b = p,n , l = e−,µ− ,

= ∑
j=p,n

(2J j +1)
∫ kF, j

0

dk

(2π)3

(
gωω0 + gϱI3 jϱ03 +

√
k2 +m∗2

j

)
+ ∑

j=e−,µ−
(2J j +1)

∫ kF, j

0

dk

(2π)3

(√
k2 +m2

j

)
,

= ∑
j=p,n

[
gωω0n j + gϱϱ03I3 j n j +

(2J j +1)

2π2

∫ kF, j

0

(
k2

√
k2 +m∗2

j

)
dk

]

+ ∑
j=e−,µ−

(2J j +1)

2π2

∫ kF, j

0
dk

(
k2

√
k2 +m2

j

)
,

= ∑
j=p,n

[
(2J j +1)

2π2

∫ kF, j

0

(
k2

√
k2 +m∗2

j

)
dk

]
+m2

ωω
2
0 +

ξ

3!
g 4
ωω

4
0 +2Λωg 2
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. (2.51)

In the last step the equations of motion present in Eqs. 2.46 and 2.47 were used. The leptons’ degen-

eracy is the same as for the protons and neutrons, and the isospin of both leptons is −1/2 as described

in Table 1. Consequently, the energy density is given by:
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For the pressure, where (g nn =−3), we have:

P = 〈T nn〉 = 1

3

∑
j=b,l

〈(
∂L

∂
(
∂nΨ j

))
∂nΨ j

〉
− 1

3

〈
g nnL

〉
,

= 1

3

∑
j=b,l

〈(
∂L

∂
(
∂nΨ j

))
∂nΨ j

〉
+LRMF ,

= 1

3

∑
j=b,l

〈Ψ̄ jγnknΨ j 〉+LRMF . (2.53)

Once again it is missing the value for 〈Ψ̄γnknΨ〉. Using the same procedure as before for the energy

density:

(
Ψ̄γi k iΨ

)
k ,k

=(
Ψ̄ γ ·k Ψ

)
k ,k =

(
Ψ† α ·k Ψ

)
k ,k

=
(
Ψ† ∂HD

∂k
Ψ

)
k ,k

·k ,

=∂E(k)

∂k
·k . (2.54)

It is then possible to obtain:

∑
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∑
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The pressure can be determined by combining Eq.2.20 with Eq.2.55:
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To compute the symmetry energy present in Eq.2.3, a derivation is outlined in Appendix A.2, resulting

in the following expression:

Es ym(n) = 1

8

(
gϱ

)2 n

2Λωg 2
ϱg 2

ωω
2
0 +m2

ϱ

+ 1

6
k2

F

 1√
k2

F +m∗2

 . (2.57)

2.3 Macroscopic neutron star properties

Once the EoS is obtained, one may wonder how to derive the macroscopic properties of the NS from

the EoS, such as mass, radius and TD in the context of star mergers. The process of establishing the

connection from the EoS to mass radius is when the Tolman-Oppenheimer-Volkoff (TOV) equations

come into play. Gravitational wave signals from binary NS mergers allow us to probe an additional

parameter predicted by theoretical models, namely the TD. TheTD quantifies the deformations in-

duced in a NS by the tidal gravitational field of its companion in a binary system.

2.3.1 Tolman-Oppenheimer-Volkoff equations

The TOV equation, first derived by Tolman, Oppenheimer, and Volkoff in 1939 [50, 51], is a funda-

mental equation derived from Einstein’s field equations. It characterizes the structure of spherically

symmetric and static relativistic stars in hydrostatic equilibrium consisting of an ideal and isotropic

fluid. The TOV equation arises from the interplay between the pressure exerted by matter within the

star and the gravitational force acting on it. In hydrostatic equilibrium, the pressure acting on an

area A counterbalances the inward gravitational force generated by the star’s mass. This equilibrium

condition ensures that the star remains stable and does not collapse under its own gravity

dP (r )

dr
=ε(r )m(r )

r 2

[
1+ P (r )

ε(r )

][
1+ 4πr 3P (r )

m(r )

][
1− 2m(r )

r

]−1

. (2.58)

For the mass equation in its differential form

dm(r )

dr
=4πr 2ε(r ) . (2.59)

This first equation represents the net force acting outward on the surface of a thin shell of matter,

caused by the pressure difference dP (r ) between the inner and outer edges of the shell. On the right

side of the equation, the first factor corresponds to the attractive Newtonian gravitational force ex-

erted by the mass enclosed within the shell. The remaining three factors account for the precise

corrections introduced by general relativity. In addition to the TOV equation, the mass continuity

equation is also crucial. It determines the mass contained within each shell of matter. By combining

these equations, one can establish the balance at each radius (r ) between the internal pressure and

the gravitational attraction of the mass within that region. Collectively, these equations govern the

hydrostatic equilibrium in the context of general relativity.
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In order to solve the coupled equations, two essential ingredients are required: an EoS and ap-

propriate boundary conditions:

➜ Central condition of the star – mass is m(r = 0) = 0 and pressure P (r = 0) = P0, where the

central pressure is typically specified as the initial condition.

➜ Surface conditions of the star – P (r = R) = 0 and m(r = R) = M , where M is the total mass of

the star.

2.3.2 Tidal deformability

When discussing the formation of NSs in Section 2.1.1, we mentioned that one possible scenario is the

merger of two NSs. In such binary systems, the dimensionless TD, Λ and its associated Love number

k2 play a crucial role. These quantities measure the degree of deformation experienced by a NS as a

result of the tidal forces exerted by its companion in the binary system. This quantity is defined by

Λ= 2

3
k2(C )−5 , (2.60)

where C = M/R is the compactness of the star. As evident, Λ is related to the love number initially

proposed by Augustus Love in 1909 [52] based on Newtonian theory. The relativistic theory of tidal

effects was deduced in 2009 [53, 54], leading to the computation of Love numbers for NSs to become

a field of intense investigation. The second order Love number is then defined as

k2 =8C 5

5
(1−2C )2 [

2+2C
(
yR −1

)− yR
]

{2C
[
6−3yR +3C

(
5yR −8

)]
+4C 3 [

13−11yR +C
(
3yR −2

)+2C 2 (
1+ yR

)]
(2.61)

+3(1−2C )2 [
2− yR +2C

(
yR −1

)]
ln(1−2C )}−1 ,

the boundary value of y(r ) at the surface, denoted as yR ≡ y(r = R) arises from the following first-

order differential equation

d y(r )

dr
=− y(r )2

r
− y(r )

r
F (r )− rQ(r ) (2.62)

where F (r ) and Q(r ) being functionals of ε(r ), P (r ), and m(r ), are represented as

F (r ) = (
1−4πr 2 [ε(r )−P (r )]

)[
1− 2m(r )

r

]−1

, (2.63)

Q(r ) = 4π

[
5ε(r )+9P (r )+ ε(r )+P (r )

v2
s (r )

− 6

r 2

][
1− 2m(r )

r

]−1

− 4m2(r )

r 4

[
1+ 4πr 3P (r )

m(r )

]2 [
1− 2m(r )

r

]−2

.

(2.64)

These equations can be solved numerically simultaneously with the TOV Eqs. 2.58 and 2.59, also

taking into account y(r = 0) = 2, as shown in [36], along with the conditions for the center of the star.

By doing so, the value of yR can be determined and subsequently substituted into the Love number,

Eq.2.61, to obtain the TD (Λ) using Eq.2.60.
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2.3.3 The inverse mapping

The process of solving the TOV equation, coupled with the Love number calculation, can be regarded

as a mapping from the functional space of the EoS onto the functional space of the mass-radius (M −
R) and mass-TD (M −Λ) relations. This mapping can be defined as:

fcur ve : (EoS) → (M ,R ,Λ) . (2.65)

While this mapping is one-to-one and invertible when the complete mass-radius and mass-TD curves

are available, the challenge arises from the fact that observations cannot provide the entire continu-

ous curves. This is even more evident if one wants to obtain also the TD curve.

The inverse mapping from observational data is a critical aspect that needs to be addressed, and it

can be expressed as:

f −1
d at a : (M R ,R , MΛ,Λ)d at a → (EoS) . (2.66)

This encompasses various types of observations, including electromagnetic data denoted by M R −R

pairs and gravitational wave events identified by MΛ-Λ. Fig.2.4 illustrates this inverse mapping.
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Figure 2.4: Schematic representation of the TOV and Love number mappings illustrated as fcur ve ,

along with an illustration of the inverse mapping directly from observations denoted as f −1
d at a .

Challenges in capturing this inverse mapping include:

➜ Lack of observations – The M −R data obtained from observations does not form a contin-

uous curve. Each NS observation contributes only a single point on the M −R curve. Conse-

quently, the available data is limited, providing only partial insights into the overall M−R curve.

Even with a significant number of observed NSs, crucial information about potentially unstable

branches of the M −R curve—regions where NSs cannot exist—remains absent. This problem

becomes even more pronounced when considering TD, as observations for this parameter are

scarcer, making its accurate mapping even more challenging.
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➜ Uncertainties in observations – Observations are represented as distributions rather than sin-

gle points that reflect the range of potential values. These distributions arise from the chal-

lenges of accurately collecting data from such remote objects. When considering properties

like the mass-radius M −R relation, each data point is accompanied by a set of observational

uncertainties, visualized through credibility distributions. However, it’s important to recognise

that the central peak position of these distributions does not necessarily correspond exactly to

the true underlying M −R relationship. The same conclusion can be drawn for the TD in the

realm of NS mergers.

The complexity and uncertainties inherent in this problem emphasize the need to not only ac-

complish the inverse mapping but also accurately account for the associated uncertainties. Our goal

is to infer the most probable EoS from observations while accounting for the uncertainties introduced

by the f −1
d at a mapping. The central focus of this dissertation revolves around finding an approach ca-

pable of adeptly handling these observational uncertainties while conducting the mapping itself. This

naturally leads to the question

But how can we achieve this?
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3 Uncertainty Aware Neural Networks

As established in the preceding chapter, the challenge at hand involves finding a tool for the f −1
d at a

mapping, connecting observations to NSs EoS. To effectively tackle this challenge, we will harness

the power of BNNs. BNNs introduce a distinct approach to NNs by representing weights not as point

estimates but as distributions. To fully comprehend the significance of this approach, it is essential to

provide contextualization. This can be achieved by first introducing Bayes rule in Section 3.1, next in

Section 3.2 we will delve into the concept of NNs. Building upon this understanding, Section 3.3 will

introduce the probabilistic view of NNs. In Section 3.4, we will arrive at the core topic of BNNs and

finally in Section 3.5 we will illustrate the types of uncertainty with an example.

3.1 Bayesian statistics

In order to understand BNN it is necessary to first understand Bayes’ Theorem, first described by

Thomas Bayes in 1763. This theorem states that the posterior distribution is represented by Eq. 3.1,

where D stands for some dataset, and θ for the model parameters

Posterior ← P (θ|D) =

Prior︷︸︸︷
P (θ)

Likelihood︷ ︸︸ ︷
P (D|θ)

P (D)︸ ︷︷ ︸
Evidence

= P (θ)P (D|θ)∫
θP (D|θ′)P (θ′)dθ′

. (3.1)

Each component of the equation carries distinct significance:

➜ Prior – Prior knowledge about the model before seeing the data.

➜ Likelihood – Represents how likely it is the data given the parameters. It returns a single scalar

representing the probability of drawing the dataset, given the model parameters.

➜ Evidence – Also known as Marginal likelihood, is interpreted as a normalizing constant ensur-

ing that the likelihood times the prior sums to one over the domain of θ.

3.2 Neural networks in a nutshell

NNs have become a buzzword in physics recently. These come from a broader field named ML, which

also came from Artificial intelligence. NNs were first proposed in 1944 by Warren McCullough and

Walter Pitts, then in 1957 Rosenblatt came and gave birth to the perceptron, and in 1969 surged the
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XOR problem (AI winter). In 1986, Dr.Geoffrey Hinton and his colleagues developed the backpropa-

gation algorithm to train a multilayer NN. In 1987, was the first application of High energy physics

with NNs [55].

Deep learning is often categorized into three distinct branches supervised, unsupervised and re-

inforcement learning. Supervised learning is task driven and characterized by architectures like Con-

volutional NNs and Recurrent NNs. Unsupervised learning is data-driven, encompassing models

such as Variational Autoencoders and Generative Adversarial Networks and reinforcement learning

involves interacting with the environment. Within these categories, we encounter discriminative and

generative models, where the first one aims to reconstruct a target variable y given some observation

x, and the last one aims to generate new data samples that resemble the training data.

Throughout this chapter, our focus remains exclusively on supervised regression tasks, as they pro-

vide the foundational framework for addressing our specific problem.

3.2.1 How it works

A NN, such as a feedforward network, consists of interconnected neurons organized into layers, in-

cluding input s = 0, hidden s = 1, ...,S − 1 and output layers, s = S, so S + 1 is the total number of

layers. A set of input-output vectors is given by D = {(x (i ), y (i ))}Di=1, where D is the number of sam-

ples of each pair. The input vector is denoted as x (i ) = {x(i )
q }Q

q=1, and resides in x (i ) ∈ RQ , while the

output vector is represented by y (i ) = {y (i )
k }K

k=1 and belongs to y (i ) ∈ RK . Each layer is composed

of neurons, and these neurons are connected to neurons in adjacent layers through weights, de-

noted as the matrix W and with W as elements. Additionally, each neuron has a bias term, de-

noted as b, which serves as a threshold. The network output is defined as ŷ = fθ(x), where we de-

fine the model parameters θ defined as θ = {(W [s],b[s])}S
s=1. The computation within each neuron

involves multiplying the weights with the corresponding neurons from the previous layer and sum-

ming these products for each hidden unit. The bias term is also added to the sum, giving a result of

Σn =∑Q
q=1 Wnq xq +bn , where n represents the nth forward neuron. Subsequently, a non-linear func-

tion named activation function, denoted as φ(·), is applied to each neuron, both in the hidden layers

and the output layer. This activation function essentially defines the neuron’s behaviour or how active

it becomes. The final result for the nth neuron is then defined as an =φ(Σn). A schematic representa-

tion of this process is provided in Fig. 3.1. The most frequently used activation functions are present

in the following multicolumn of equations, with the respective graphical representation in Fig. 3.2

Softplus :φ(x) = log(1+ex ), (3.2) Hyperbolic Tangent (Tanh) :φ(x) = ex −e−x

ex +e−x , (3.3)

Sigmoid :φ(x) = 1

1+e−x , (3.4) ReLU :φ(x) = max(0, x) . (3.5)
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Figure 3.1: Sketch of a multilayer perceptron, depicting its diverse layers including input, hidden, and

output layers. The diagram illustrates the arrangement of hidden units within the layers, displaying

the fundamental components of a single perceptron.
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Figure 3.2: Active functions softplus, Eq. 3.2, and sigmoid, Eq. 3.4, are present in the left plot while

hyperbolic tangent (Tanh), Eq. 3.3, and ReLU, Eq. 3.5 are in the right plot.

For the first hidden layer the hidden units would be represented as
a(i )

11
...

a(i )
n1

=φ[1]




W [1]
11 · · · W [1]

1q
...

. . .
...

W [1]
n1 · · · W [1]

nq




x(i )
1
...

x(i )
q

+


b[1]

1
...

b[1]
n


 . (3.6)

Passing through all layers, the final result is calculated as

fθ(x) =φ[S]

W [S]φ[S−1] (· · ·φ[1] (W [1]x +b[1]) · · ·)︸ ︷︷ ︸
aS−1

+b[S]

 , (3.7)
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in matrix form, this becomes
ŷ (i )

1
...

ŷ (i )
k

=φ[S]




W [S]
11 · · · W [S]

1h
...

. . .
...

W [S]
k1 · · · W [S]

kh




a(i )
1S−1

...

a(i )
hS−1

+


b[S]

1
...

b[S]
k


 . (3.8)

Data spliting

When aiming to determine the optimal hyperparameters for both the model architecture and the

training process, the ultimate goal is to create a model that not only fits the observed data but also

demonstrates robust generalization. Achieving this objective involves addressing an optimization

problem dedicated to finding the values of the most suitable hyperparameters. In NNs, this process

involves a training set and a testing set, each serving a distinct purpose. The training set is utilized

to fine-tune the model’s parameters, while the testing set evaluates the model’s performance using

the optimized parameters obtained during training. In order to enable the model to quantify the

discrepancy between the training data and the unseen data, thereby preventing overfitting, the train

set is going to be divided into two sets, one for training and another for validation. The precise ratio

of samples for training, validation and test subsets must be chosen based on the nature of the model

and the available data samples.

3.2.2 How it trains

The primary objective during training is to minimize a designated loss function by optimizing the

model’s parameters, denoted as θ, in order to attain the lowest value of the loss

θ∗ = argmin
θ

L(θ) . (3.9)

To achieve this, the backpropagation method is employed, comprising two core phases: the forward

pass and the backward pass as defined in [56]. In the forward pass, the loss function is computed,

estimating the error between the known output and the predicted one

L(θ) = 1

D

D∑
i=1

l
(

y (i ), fθ(x (i ))
)

, (3.10)

the choice of the loss function varies depending on the task, for regression one possible choice can

be the mean square error

lmse =
(

y (i ) − fθ(x (i ))
)2

, (3.11)

or cross-entropy 1 for classification. The backward pass calculates derivatives of the loss function with

respect to each parameter in the NN. These derivatives are then subtracted from the corresponding

1l =−
[

y (i ) ln( fθ(x(i )))+ (1− y (i )) ln(1− fθ(x(i )))
]
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parameter values to update them

∂L(θ)

∂θ
= 1

D

D∑
i=1

∂l (y (i ), fθ(x (i )))

∂θ
, (3.12)

θ′′′ = θ−η∂L(θ)

∂θ
. (3.13)

Here η representes the learning rate, a hyperparameter that governs the step size during parameter

updates. The derivatives are computed using the chain rule:

∂l (y (i ), fθ(x (i )))

∂θ
= ∂l (y (i ), fθ(x (i )))

∂ fθ(x (i ))

∂ fθ(x (i ))

∂φ[S]

∂φ[S]

∂θ
. (3.14)

This entire procedure is iteratively applied to update each parameter within the NN during the train-

ing process 

W ′′′[1]

...

W ′′′[S]

b′′′[1]

...

b′′′[S]


=



W [1]

...

W [S]

b[1]

...

b[S]


−η



∂l (y (i ), fθ(x (i )))
∂W [1]

...
∂l (y (i ), fθ(x (i )))

∂W [S]

∂l (y (i ), fθ(x (i )))
∂b[1]

...
∂l (y (i ), fθ(x (i )))

∂b[S]


. (3.15)

Weight updates in NNs are commonly accomplished through three distinct methods: stochastic

gradient descent, minibatch gradient descent and batch gradient descent. Stochastic gradient de-

scent, is where the weights are updated for each individual data point. While this can lead to rapid

updates, it tends to be computationally expensive due to frequent weight adjustments. Minibatch

gradient descent, on the other hand, is the most used method it involves segmenting the dataset into

smaller mini-batches, with the batch size determining the number of data points used to update the

weights in each iteration. This method offers a strike balance between accurate optimizations and

computation efficiency. Batch gradient descent only updates the weights after processing the entire

dataset, even though this approach can lead to more stable weight updates, it might require longer

training times. An epoch is then when all the training dataset has been used.

When using minibatch gradient descent, the process can be described as follows:


a(1)

11 · · · a
( D

B )
11

... · · · ...

a(1)
n1 · · · a

( D
B )

n1

=φ[1]




W [1]
11 · · · W [1]

1q
...

. . .
...

W [1]
n1 · · · W [1]

nq




x(1)
1 · · · x

( D
B )

1
... · · · ...

x(1)
q · · · x

( D
B )

q

+


b[1]

1 · · · b[1]
1

... · · · ...

b[1]
n · · · b[1]

n


 . (3.16)

When minimising the loss function, the optimization process can encounter challenges like be-

coming stuck in local minimums or saddle points. Even when utilizing minibatch gradient descent,

convergence to the global minimum can be prolonged. To address this issue, enhancements to the

optimization methods are often employed. These improvements include the incorporation of mo-

mentum, which helps accelerate convergence, or the utilization of optimization algorithms such as

the Adagrad [57] or Adam [58] methods. These strategies help to navigate the optimization landscape

more effectively and facilitate convergence to the optimal solution.
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3.2.3 How it improves

In the process of training a model, there’s a risk of it learning the training data too well and becoming

inflexible when faced with new unseen data. This is called overfitting. To strike a balance between

making accurate predictions and avoiding overfitting, regularization techniques come into play.

One common regularizer is the L2 regularizer, which aims to keep the weights of the model as small

as possible. It’s added to the optimization process and is represented as:

L(θ) = 1

D

D∑
i=1

l (y (i ), fθ(x (i )))+λ||W ||2 . (3.17)

Here, λ, a hyperparameter, controls the amount of regularization applied, and it encourages the

model to have smaller weights. And ||W || represents the norm of the weight vector.

Another approach is the L1 regularizer, also known as Lasso, which aims to eliminate the weights of

the least important features. It performs a kind of feature selection, where some features contribute

less to the model’s performance and are effectively removed. It’s represented as

L(θ) = 1

D

D∑
i=1

l (y (i ), fθ(x (i )))+λ||W || . (3.18)

There are more methods two of them being: dropout and early stopping. Dropout involves randomly

"dropping out" or deactivating certain neurons during training to prevent the model from relying

too heavily on specific features. Early stopping on the other hand, involves monitoring the model’s

performance on a validation dataset during training. If the performance on the validation data starts

getting worse, training is stopped early.

3.3 Exploring uncertainty quantification using neural networks

Once we have completed the review of traditional NNs, we will progress to introduce the probabilistic

view of NNs. This viewpoint allows us to explore the incorporation of uncertainty into the weights and

outputs of NNs. In the realm of uncertainty quantification, we encounter two distinct types: aleatoric

and epistemic uncertainty (more information can be found [59]). Aleatoric uncertainty arises from

the inherent uncertainty present in the data itself, while epistemic uncertainty relates to the uncer-

tainty surrounding the model or network. It is important to note that while epistemic uncertainty can

be mitigated by gathering more data or refining the model, aleatoric uncertainty remains unaffected

by these measures. However, NNs can still effectively quantify aleatoric uncertainty, but epistemic

uncertainty is obtained via BNNs, as will be explained in Section 3.4. Within aleatoric uncertainty,

we can further differentiate between two types, discussed in [60]: homoscedastic, Section 3.3.1, and

heteroscedastic, Section 3.3.2 uncertainty. Homoscedastic uncertainty refers to situations where the

level of uncertainty is constant across all data points. Conversely, heteroscedastic uncertainty indi-

cates that the level of uncertainty varies across different data points. By recognizing and understand-

ing these distinct types of uncertainty, we gain valuable insights into the behaviour and limitations of

NNs. This knowledge facilitates more informed decision-making and allows us to address different

sources of uncertainty appropriately.
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3.3.1 Homoscedastic aleatoric uncertainty

Homoscedastic regression is designed to account for constant noise in the target values, denoted as

y , across all input points x(i ). Consequently, the output of the NN results in a distribution character-

ized by a constant σ̂. Assuming that the dataset adheres to the principles of being independent and

identically distributed (i.i.d.), the likelihood function is defined as follows:

P (y |x,θ, σ̂2) =
D∏

i=1
N (y(x(i ))| fθ(x (i )), σ̂2) . (3.19)

Here, σ̂2 acts as a hyperparameter. In contrast to the optimization process described in Section

3.2.2, our current objective is to maximize the likelihood of our data. This is equivalent to seeking the

maximum log-likelihood of our data. We employ the logarithm because it is a monotonically increas-

ing function and simplifies computational complexity when dealing with summation as opposed to

multiplication. Equivalently, we aim to minimize the negative log-likelihood

θMLE = argmax
θ

log(P (y |x,θ, σ̂2)) = argmax
θ

l (θ) ,

= argmin
θ

− log(P (y |x,θ, σ̂2)) ,

= argmin
θ

D∑
i=1

− log

(
1p

2πσ̂2

)
+ [y(x(i ))− µ̂(i )]2

2σ̂2 ,

∝ argmin
θ

1

2σ̂2

D∑
i=1

[y(x(i ))− µ̂(i )]2, µ̂(i ) = fθ(x (i )) . (3.20)

Where L(θ) = l (θ)/D. In this context, µ̂(i ) denotes the predicted mean for the output y
(
x(i )

)
. Now,

the loss function being minimized simplifies to mean squared error since sigma is considered a con-

stant. When you introduce a regularize to your NN model, it’s like imposing a prior distribution on

your parameters, which can be represented as P (θ) =N (θ|0,α−11) = α
2π

1
2 exp

(
−αθTθ

2

)
. In the context

of Bayes’ rule, this corresponds to shifting the objective from merely maximizing the likelihood to

maximizing the log posterior, often referred to as the Maximum A Posteriori (MAP) estimation

θM AP = argmax
θ

log(P (y |x,θ, σ̂2))+ log(P (θ)) ,

∝ argmin
θ

1

2σ̂2

D∑
i=1

[y(x(i ))− µ̂(i )]2 + α

2
θTθ , (3.21)

which is equivalent to Eq. 3.17. Some intuition on this uncertainty is present in Fig. 3.3b.

3.3.2 Heteroscedastic aleatoric uncertainty

Heteroscedastic aleatoric uncertainty allows us to quantitatively assess the variability inherent in the

data. This type of uncertainty allows one to capture the natural fluctuations in the output, taking into
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account the influence of the input as well. Mathematically, the probability distribution of the output

y given an input x and the model parameters θ can be expressed as:

P (y |x,θ) =N (y(x(i ))|µ̂(i ), σ̂(i )2) . (3.22)

Here, µ̂(i ) represents the predicted mean and σ̂(i )2 represents the predicted variance for the output

y corresponding to the input x(i ). The optimization changes slightly for heteroscedastic aleatoric

uncertainty. The parameters θ are optimized to minimize the negative log-likelihood, since we are

considering the variance terms

θMLE = argmin
θ

lN LL(θ) = argmin
θ

D∑
i=1

− log

(
1p

2πσ̂(i )2

)
+ [y(x(i ))− µ̂(i )]2

2σ̂(i )2
. (3.23)

Where once again LN LL(θ) = lN LL(θ)/D. The intuition in this uncertainty is given in Fig. 3.3a. When

doing backpropagation the derivatives with respect to the standard deviation and the mean will be

different:

∇µlN LL(θ) =
D∑

i=1

[
y(x(i ))− µ̂(i )

]
σ̂(i )2

and ∇σlN LL(θ) =
D∑

i=1
− 1

σ̂(i )
+

[
y(x(i ))− µ̂(i )

]2

σ̂(i )3
. (3.24)
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Figure 3.3: Intuition on how aleatoric uncertainty is represented in the realm of homoscedastic and

heteroscedastic uncertainty quantification. This is intended to emphasize that homoscedasticity as-

sumes uniform uncertainty across all inputs, regardless of variations in noise levels. 2

However, the parameters of the NN still represent point predictions. To capture epistemic uncer-

tainty, which amounts from uncertainty in the model’s parameters, we are going to introduce BNN.

3.4 Bayesian neural networks

BNNs where first introduced in 1992 by David McKay [40]. In [61], a broader review on BNNs is shown,

here we will focus more on the Variational Inference (VI) method to train the network, more specifi-

cally with Bayes by backprop. BNNs simulate multiple possible NNs models by introducing stochas-

tic weights. These networks operate by first choosing a functional model, i.e., a network architecture,

2The dataset used to illustrate the uncertainties was created using Eq. 3.44.
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and then the stochastic model, i.e., the probability distributions for the weights. Bayesian inference

is then required to train the network by defining the likelihood function of the observed data, P (D|θ),

and the prior probability distribution over the model parameters, P (θ). It is then possible to employ

Bayes theorem and obtain the posterior probability distribution, i.e. the probability of the model

parameters given the data. Having a distribution on the weights, the prediction of these BNNs will

become a Bayesian model average, the probability distribution of some unknown y∗ given an input

x∗ is:

P (y∗|x∗,D) =
∫
θ

P (y∗|x∗,θ)P (θ|D)dθ. (3.25)

P (y∗|x∗,θ) is considered to be the likelihood of our data, the distribution that comes out of the

network and captures the noise present in our data, and P (θ|D) is the posterior distribution of our

weights, that brings up the uncertainty on the model. Another advantage of using these networks is

that they capture two types of uncertainty, aleatoric uncertainty, uncertainty on the data, and epis-

temic uncertainty, uncertainty on the model estimation defined as P (y∗|x∗,θ) and P (θ|D) respec-

tively. However, solving Eq. 3.25 poses a significant challenge due to the complexity introduced by

the posterior P (θ|D) is a high dimensional and highly nonconvex probability distribution that also

depends on the evidence P (D) = ∫
θ′ P (D|θ′)P (θ′)dθ′, which is a non-analytic expression that requires

marginalizing over all model parameters.

 

Classical Methods 

(HMC, NUTS), 
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… 
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Monte Carlo-Dropout, 
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… 

 

MCMC Variational inference 

Figure 3.4: Framework adapted from [61], illustrating the step-by-step workflow for a) designing, b)

training, and c) testing the BNN model, where is emphasised the different kinds of inference proce-

dures.

In order to track the posterior distribution, there are two main approaches:Markov Chain Monte

Carlo (MCMC) and VI. MCMC directly samples from the true posterior distribution by construct-

ing a Markov chain that converges to the desired distribution. It is a powerful technique but can be

computationally expensive and may require a large number of samples to obtain accurate estimates

of the posterior. On the other hand, VI aims to approximate the true posterior distribution with a

simpler distribution that is easier to work with. It involves finding the best approximation within a

predefined family of distributions, such as Gaussian distributions. VI optimizes the parameters of

this approximating distribution to minimize the divergence between the true posterior and the ap-
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proximate distribution. While VI provides a computationally efficient approach, the quality of the

approximation depends on the chosen family of distributions and the optimization algorithm used.

Fig. 3.4 illustrates the workflow of a BNN, highlighting its three main stages: design, training, and

prediction. In the design stage (a), the stochastic model is determined, which includes specifying the

prior distribution for the model parameters, defining the likelihood function, and optionally select-

ing a variational posterior distribution. The training stage (b) involves approximating the posterior

distribution using either MCMC or VI. This step aims to learn the model parameters based on the

available data. Finally, in the prediction stage (c), with the posterior obtained during training and

given some input, Bayesian model averaging can be performed to calculate predictions that take into

account the uncertainty inherent in the model.

3.4.1 Variational inference

The VI method aims to approximate a variational posterior, qφ(θ), φ = (µφ,σφ), to the real poste-

rior, P (θ|D), by minimizing the KL divergence between the two distributions. The KL divergence is

a measure of dissimilarity between probability distributions. It quantifies the information lost when

one distribution is used to approximate another. The KL divergence is asymmetric3 and provides a

weighted measure of the distance between the variational posterior and the true posterior. Specifi-

cally, it approaches zero when the variational posterior and the true posterior are identical, indicating

a close match between the two distributions and is positive otherwise. Fundamentally, the objective

is to find the variational posterior that minimizes the KL divergence with the true posterior. This min-

imization process seeks to find the best approximation of the true posterior within the chosen family

of distributions parameterized byφ. By optimizing the variational parameters, the goal is to make the

variational posterior as close as possible to the true posterior

qφ∗ = argmin
qφ

KL(qφ(θ)||P (θ|D)) , (3.26)

where the KL divergence is defined as

KL(qφ(θ)||P (θ|D)) = Eqφ(θ)

[
log

(
qφ(θ)

P (θ|D)

)]
,

=
∫
θ

qφ(θ) log

(
qφ(θ)

P (θ|D)

)
dθ . (3.27)

In order for the dependence on the true posterior to disappear, the last equation can be rewritten

with the help of Bayes rule, Eq. 3.1, as

KL(qφ(θ)||P (θ|D)) =
∫
θ

qφ(θ) log

(
qφ(θ)P (D)

P (D|θ)P (θ)

)
dθ ,

=KL(qφ(θ)||P (θ))−Eqφ(θ)(logP (D|θ))+ logP (D) ,

= F (D,φ)+ logP (D)

=const ant

, (3.28)

where F (D,φ) = KL(qφ(θ)||P (θ))−Eqφ(θ)(logP (D|θ)) is called the variational free energy. Ignoring the

last term which is the logarithm of the evidence, since it is constant (the probability of the dataset

3KL(q||p) ̸= KL(p||q)
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doesn’t change with the variational posterior) it does not affect the optimization process. So we can

confidently say minimizing KL(qφ(θ)||P (θ|D)) with respect to φ is the same as minimizing F (D,φ). Is

going to be considered the Evidence Lower BOund (ELBO), which was originally derived in the liter-

ature through Jensen’s inequality (more information can be found in Appendix B.4 ) and it is defined

as ELBO =−F (D,φ). Eq. 3.28 can then be rewritten as

KL(qφ(θ)||P (θ|D)) =−ELBO+ logP (D) , (3.29)

with the ELBO being

ELBO =−KL(qφ(θ)||P (θ))+Eqφ(θ)(logP (D|θ)) . (3.30)

The ELBO, as the name suggests, is the lower bound of the evidence, meaning since the KL diver-

gence is always positive, KL(qφ(θ)||P (θ|D)) ≥ 0, and logP (D) is always negative, the ELBO will have

to be always negative and smaller than the logP (D). Since the last term logP (D) is ignored Eq. 3.28

can then be rewritten as just equal to the −ELBO. To give some intuition on the ELBO interpretation,

the Eqφ(θ)(logP (D|θ)) is responsible for the data fit since it maximizes the expected log-likelihood of

the data and the second, KL(qφ(θ)||P (θ)) serves as a complexity regularizer by punishing unnecessary

divergence of the approximate posterior from the prior.

Having said that, our goal is now to maximize the ELBO:

qφ∗ = argmin
qφ

KL(qφ(θ)||P (θ|D)) ,

= argmax
qφ

ELBO = argmin
qφ

F (D,φ) ,

= argmin
qφ

[
KL(qφ(θ)||P (θ))−Eqφ(θ)(logP (D|θ))

]
. (3.31)

The final loss function we are trying to minimize uses Monte Carlo sampling to obtain the expected

values, where θn is being sampled from the variational posterior, qφ(θ),

F (D,φ) ≈K L(qφ(θ)||P (θ))− 1

N

N∑
n=1

logP (D|θn) , (3.32)

where N represents the number of samples taken from the variational posterior for each value of

the dataset. The KL divergence can either be considered exact if the two distributions are solvable,

Appendix B.1 shows the example for two multivariate gaussian, or once again a Monte Carlo sampling

approximation can be done. As was mentioned in Fig. 3.4, there are multiple methods of doing VI the

method, that we are going to go into more detail about here is Bayes by backprop, but Monte Carlo

dropout is also an interesting method as is like a simplification of VI, it was first introduced in [62], and

one application in physics can be found in [63]. BNN are considered discriminate models, although

they can also appear in generative models, those are not going to be mentioned here.

3.4.2 Bayes by backprop

When dealing with a Gaussian distribution without correlation for the variational posterior, a nat-

ural question arises: How do you perform backpropagation when the weights are a distribution? In
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the article by Blundell et al. [64], a backpropagation algorithm is introduced, utilizing a generalized

reparametrization trick designed for the weights. The algorithm is outlined as follows:

1. Sample ϵ∼N (0,1);

2. Compute θ =µφ+log(1+exp(ρ))◦ϵ, whereφ= (µφ,σφ = log(1+exp(ρ))) defines the variational

parameters and qφ(θ) =N (θ|µφ,σφ2);

3. Calculate the gradients of the loss f (D,φ) = K L(qφ(θ)||P (θ))− logP (D|θ):

∇µφ =
∂ f (D,φ)

∂θ
+ ∂ f (D,φ)

∂µφ
,

∇ρ = ∂ f (D,φ)

∂θ

ϵ

1+exp(−ρ)
+ ∂ f (D,φ)

∂ρ
;

4. Update the parameters:

µ′
φ←µφ−η∇µφ ,

ρ′ ←ρ−η∇ρ .

Here, ◦ represents element-wise multiplication. To ensure the positivity of σ, the softplus function,

Eq. 3.2, present in Fig. 3.2 is employed for σφ, preventing it from becoming negative. The use of

log(1+exp(ρ)) ensures numerical stability during training by avoiding potential issues with negative

values. It’s important to note that only a single sample of the loss function is used as mentioned in

[61], leading to a potentially noisy loss function and gradients in comparison to classical backprop-

agation. However, when using the mini-batch method for the gradients that are already stochastic

in nature, the Monte Carlo error only adds additional noise to an already noisy estimate. While the

stochasticity of gradients might be perceived as a drawback in some cases, particularly in mini-batch

optimization, it can actually assist in escaping local minima and achieving improved convergence.

This reparametrization trick is derived from proposition 1 in the article by Blundell et al. [64].

3.4.3 Delving into the implications of correlated parameters

When considering correlation among the weights, the model’s complexity increases substantially due

to the significant expansion in the number of parameters. In such cases, the variational posterior

qφ(θ) is represented by a vector of means µφ and a covariance matrix Σφ. To factorize the covariance

matrix, the Cholesky decomposition is employed, as exemplified in Eq. 3.33 for a n ×n matrix

A = LLT =


L11 (0)

...
. . .

Ln1 · · · Lnn




L11 · · · Ln1

. . .
...

(0) Lnn

=


L2

11 (s ymmetr i c)
...

. . .

Ln1L11 · · · ∑n
i=1 L2

ni

 . (3.33)
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The softplus function, Eq. 3.2 ( present in Fig. 3.2) is applied to the diagonal elements of the

factorized matrix L, resulting in LS , and then the covariance matrix is

Σ= LS LT
S =


log(1+exp(L11))2 (s ymmetr i c)

...
. . .

Ln1 log(1+exp(L11)) · · · ∑n−1
i=1 L2

ni + log(1+exp(Lnn))2

 ,

≡


Cov(1,1) (s ymmetr i c)

...
. . .

Cov(n,1) · · · Cov(n,n)

 ,

(3.34)

where Cov(r,n) =
∑N

i (ri−r̄ )(ni−n̄)
N is the covariance for each term. Notably, it’s crucial to highlight that

we are describing the adopted methodology implemented by TensorFlow [65] when employing the

DenseVariational Layers. Now, let’s shift our focus to the parameters. We can distinguish between

parameters related to the mean and covariance matrix. For the mean of the weights and bias, the

number of parameters is n×q+n, where is considered q the size of the input vector and n the number

of hidden units per layer. These are represented as follows:
µW [1]

11
· · · µW [1]

1q

...
. . .

...

µW [1]
n1

· · · µW [1]
nq

 and


µb[1]

1
...

µb[1]
n

 . (3.35)

In the case of the covariance matrix, the parameters being updated are contained within the L matrix.

This matrix includes all the weights and bias parameters and thus has a total of (n×q+n)× ((n×q+n)+1)
2

parameters. The matrix is represented as:

L =



LW [1]
11 W [1]

11
· · · 0 0 · · · 0

...
. . .

...
...

. . .
...

LW [1]
nq W [1]

11
· · · LW [1]

nq W [1]
nq

0 · · · 0

Lb[1]
1 W [1]

11
· · · Lb[1]

1 W [1]
nq

Lb[1]
1 b[1]

1
· · · 0

...
. . .

...
...

. . .
...

Lb[1]
n W [1]

11
· · · Lb[1]

n W [1]
nq

Lb[1]
n b[1]

1
· · · Lb[1]

n b[1]
n


(n×q+n)(n×q+n)

. (3.36)

Thus, the total number of parameters for the mean and the L matrix is (n ×q +n)
(
1+ ((n×q+n)+1)

2

)
.

This substantial number of parameters naturally leads to significantly longer training times. The pro-

cess of updating all these parameters demands more computational resources compared to a con-

ventional NN, where the number of parameters per layer is typically n ×q +n
W [1]

11 · · · W [1]
1q

...
. . .

...

W [1]
n1 · · · W [1]

nq

 and


b[1]

1
...

b[1]
n

 . (3.37)

An important note is that is only being consider the weights per Layer, so this would become even

more challenging when considering an increase of the hidden layers, exacerbating the computational
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complexity.

Upon incorporating the precise value of the KL divergence for a variational posterior with a covari-

ance matrix, along with a prior characterized by a mean of zero and a covariance matrix equal to

the identity (as outlined in Appendix B), and utilizing the mini-batch gradient descent method (also

detailed in the same appendix), the obtained loss function takes the following form:

F (D,φ) = 1

2D

[(− logdet(Σφ)
)−Sc + tr

(
Σφ

)+ (µφ)T (µφ)
]− 1

B

B∑
i=1

1

N

N∑
n=1

logP (y (i )|x(i ),θn) , (3.38)

where B is the number of points in each mini-batch, N is the number of samples taken from the

variational posterior, D is the number of rows of the training dataset and Sc is the dimension of the

correlation matrix. The backpropagation algorithm continues to adhere to the previously explained

reparametrization trick. However, the substitution of the vector σφ with the matrix L necessitates the

incorporation of certain adjustments in the optimization procedure and results in an expansion of

the number of parameters that require being updated.

3.4.4 Prediction

Once the network is trained and the best variational parameters are obtained for the distribution of

the posterior, Eq. 3.25 becomes solvable and predictions are obtained using Monte Carlo estimations

P (y∗|x∗,D) =
∫
θ

P (y∗|x∗,θ)qφ(θ)dθ ,

= 1

N

N∑
n=1

P (y∗|x∗,θn), θn ∼ qφ(θ). (3.39)

The mean µ̂ and variance σ̂2 vectors of the predicting distribution P (y∗|x∗,D) can be calculated, for

a fixed x∗, by applying the law of total expectation

E[y∗|x∗,D] = Eqφ(θ)
[
E[y∗|x∗,θ]

]
, (3.40)

µ̂= 1

N

N∑
n=1

µ̂θn , (3.41)

and law of total variance (demonstrated in Appendix B.3),

Var[y∗|x∗,D] =Eqφ(θ)
[
Var[y∗|x∗,θ]

]−Var qφ(θ)
[
E[y∗|x∗,θ]

]
, (3.42)

σ̂2 = 1

N

N∑
n=1

σ̂2
θn︸ ︷︷ ︸

Aleatoric uncertainty

+ 1

N

N∑
n=1

(µ̂θn − µ̂)◦ (µ̂θn − µ̂)︸ ︷︷ ︸
Epistemic uncertainty

. (3.43)

The predicted variance captures both epistemic and aleatoric uncertainties [66]. E[y∗|x∗,θ] and

Var[y∗|x∗,θ] are respectively the mean and variance of y∗ according to P (y∗|x∗,θ). The term Eqφ(θ)
[
Var[y∗|x∗,θ]

]
represents the average value of Var[y∗|x∗,θ] when θ ∼ qφ(θ), and Var qφ(θ)

[
E[y∗|x∗,θ]

]
is the variance

of E[y∗|x∗,θ] when θ ∼ qφ(θ). This is being illustrated in Fig. 3.5.
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Figure 3.5: Intuitive illustration showcasing the predicted uncertainty quantification provided by the

optimized BNN model.

3.5 Illustration of the types of uncertainties

To gain a clearer insight into the mentioned types of uncertainties, we will illustrate their behavior

using a simple regression model as an example. We selected a model with two hidden layers, em-

ploying sigmoid (Eq. 3.4) and ReLU (Eq. 3.5) activation functions respectively, and each hidden layer

containing six hidden units. The training dataset was generated according to the equation:

y = sin(x)+x(1+0.1ϵ(x)) , ϵ(x) ∼N (0,1) . (3.44)

Here, ϵ(x) represents the source of the noise. For the training process, we synthesized 1000 data points

within the interval x ∈ [0.9,12] while during the prediction phase, we employed 500 data points within

the range x ∈ [−2,16]. Our exploration began by training a NN with a distribution as the output,

effectively capturing the inherent uncertainty present in the data - known as aleatoric uncertainty.

This is visually illustrated in Fig.3.6a. Subsequently, we introduced uncertainty solely to the weights,

as shown in Fig. 3.6b - known as epistemic uncertainty. Notably, the uncertainty grows significantly

in data-scarce regions.

Finally, we combined both types of uncertainty, resulting in the model depicted in Fig. 3.6c. In this

combined approach, the model exhibited heightened uncertainty in the low x region beyond the

training data, while still effectively capturing the inherent uncertainty within the training region. By

visually examining these prototype and simplistic models, we can develop a more intuitive grasp of

aleatoric and epistemic uncertainties and their influence on predictions.
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Figure 3.6: Illustration representing the discussed types of uncertainty. The grey band indicates the

training dataset interval, while the points symbolize the test dataset. Beginning with aleatory uncer-

tainty, the mean and standard deviation of a single prediction are depicted. Subsequently, epistemic

uncertainty is illustrated through an ensemble of 30 predictions for only the mean. Lastly, a combina-

tion of epistemic and aleatoric uncertainty is shown for an ensemble of 30 predictions for the mean

and the standard deviation of the dataset.
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4 In-Depth Analysis of the Dataset

In this chapter, we explore the dataset construction and its behavior to align precisely with our re-

quirements and objectives. The foundational raw data comes from the work of Malik et al. [25], a

framework outlined in Section 4.1. Subsequently, we adapt this raw data to our unique problem, as

detailed in Section 4.2. Within this section, we delve deep into the properties of the dataset’s specifi-

cations that will significantly shape our forthcoming analyses and insights.

4.1 Unveiling the dataset source

In the article [25], a field theoretical approach is adopted to construct a dataset of nuclear EoSs us-

ing the RMF approximation. This approach incorporates self-interactions and mixed meson terms,

which are crucial in determining the behavior of the EoS, as thoroughly detailed in chapter 2.2. The

authors calculated the masses and radii of NSs using the TOV equations, as described in Section 2.3.1,

and the TD using the method outlined in Section 2.3.2. The EoS is described by a set of coupling con-

stants denoted byΘ= {gϕ, gω, gϱ,ξ,b,c,η,Λω}, which govern the interactions of nucleons and mesons

within the RMF framework. To obtain realistic values for these coupling constants, a Bayesian infer-

ence technique is employed. The Bayesian setup involves estimating the Θ parameters in a way that

satisfies various constraints imposed by a selection of nuclear saturation properties described in Sec-

tion 2.1.3. These constrains include the saturation density n0, the binding energy per nucleon of

symmetric nuclear matter ϵ0, the symmetry energy Es ym and the incompressibility K0, all of which

are evaluated at saturation density. Moreover, the NS maximum mass, the positive behaviour of the

pure neutron matter pressure derivative with respect to the density and the low-density pure neutron

matter EoS obtained from an accurate N3LO calculation in chiral effective field theory are also taken

into account as constraints.

Within this Bayesian framework, the Θ parameters are systematically sampled to explore the pa-

rameter space effectively while adhering to the minimal constraints listed in Table 4.2.

But how does the mechanism of the Bayesian set up truly work?

Based on the constraints imposed by the fitted data, the authors define a prior belief on the pa-

rameters of the equations. This prior belief is then updated using Bayes theorem, introduced in Sec-

tion 3.1, to obtain the posterior distribution. In order to establish a Bayesian parameter optimization
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system, they specified four key components: the prior, the fit data, the likelihood function and the

sampler, since they do not consider the evidence.

The Prior - The prior domain is determined using a Latin hypercube sampling method from a

uniform prior distributions specified in Table 4.1. This way is then possible to cover a broad range of

nuclear matter saturation properties for the underlying RMF model.

Table 4.1: Uniform prior, U [min,max], range for the coupling constantes represented as Θ, of the

RMF models. Specifically, B and C are b ×103 and c ×103, respectively.

Nº Parameters (Θ) min max

1 gσ 6.5 15.5

2 gω 6.5 15.5

3 gϱ 6.5 16.5

4 B 0.5 9.0

5 C -5.0 5.0

6 ξ 0.0 0.04

7 Λω 0.0 0.12

The Fit Data - The fit data provided in Table 4.2 consists of important nuclear saturation prop-

erties, n0, ϵ0, K0, and Jsym,0, all evaluated at n0 and considered to be gaussian distributions with the

respective parameters. In addition to the saturation properties, the pressure of pure neutron matter

at specific densities (0.08, 0.12, and 0.16 fm−3) obtained from N3LO calculations in chiral effective

field theory [1], is incorporated. To account for the associated uncertainties in these calculations,

they consider 2× N3LO data uncertainty. Even more two important step function probabilities are

considered, the maximum mass of a NS must exceed 2.0 M⊙ and the derivative of the pressure with

respect to density must always be greater than zero.

The Log-Likelihood - For the different parameters of the fit data present in Table 4.2 it’s used the

log-likelihood in Eq. 4.1 as a cost function for the nuclear saturation properties, taking into account

the uncertainties σ j associated with each data point j . For the pressure values in pure neutron mat-

ter from chiral effective field theory they used a box function probability present in Eq. 4.2, and for

the maximum mass of NSs and the condition that the pure neutron matter pressure needs to be an

increasing function of the density it’s used a step function probability defined as Eq. 4.3.

Log (LN SP ) =−0.5×∑
j

{(
d j −m j (Θ)

σ j

)2

+Log (2πσ2
j )

}
, j = ρ0,ϵ0,K0, Js ym,0 , (4.1)

Log (LP ) = Log

∏
j

1

2σ j

1

exp
( |d j−m j (Θ)|−σ j

0.015

)
+1

 , j = P (0.08),P (0.12),P (0.16) , (4.2)

LM =

1 if Mmax > 2

0 otherwise
, LdP =

1 if dP
dρ > 0

0 otherwise
. (4.3)
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So the final Likelihood would be

Ltot al = LdP ×LM ×Log (LN SP )×Log (LP ) . (4.4)

The Sampler - To explore the seven-dimensional posterior, the nested sampling algorithm, ini-

tially proposed in [67], was employed. Specifically, the PyMultinest sampler [68, 69] was utilized due

to its efficiency in handling low-dimensional problems. The sampling process began with four thou-

sand "n-live" points, representing an initial ensemble of live points in the parameter space. The EoS

dataset for further analyses was generated using the full posterior, resulting in a collection of 25287

EoS.

Table 4.2: The fit data used consists of the constraints on various quantities with the Bayesian infer-

ence method to generate the model sets. These constraints include the binding energy per nucleon

ϵ0, incompressibility K0, and symmetry energy Jsym,0 at the nuclear saturation density n0, each with

a 1σ uncertainty. Additionally, the pressure of pure neutron matter is considered at specific densi-

ties, obtained from a chiral effective field theory calculation [1], and incorporated into the likelihood

with a 2× N3LO uncertainty, which increases with density. Moreover, the maximum mass of NSs is

constrained to be above 2M⊙.

Quantity Value/Band Ref

NMP

[fm−3] n0 0.153±0.005 [70]

ϵ0 −16.1±0.2 [71]

[MeV] K0 230±40 [72, 73]

Jsym,0 32.5±1.8 [74]

PNM
[MeV fm−3] P (n) 2× N3LO [1]

dP/dn > 0
NS mass

[M⊙] Mmax > 2.0 [8]

This approach allows for a comprehensive study of nuclear matter and provides a rich dataset

containing NS observables, including mass, radii and TD curves for each of the respective EoS. More-

over, it encompasses additional parameters such as the particle fraction in the system and the nuclear

matter properties, obtained from rearranging the EoS as present in Eq. 2.4. For further insights and

a visual representation of the posterior distribution of the parameters, we recommend the reader to

examine Fig. 1 in the article by Malik et al. [25], for Set 0, which is the one we are employing from the

article.
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4.2 Navigating into the dataset reconstruction

Having understood how the underlying dataset for our study was created, let’s proceed to explore

our chosen output variable, as outlined in Section 4.2.1, and delve into the meticulous adaptation

process to our unique objectives, detailed in Section 4.2.2. Subsequently, we detail the construction

of "mock" observations for the input, Section 4.2.3. Finally, we delve into the correlations within the

dataset in Section 4.2.4.

4.2.1 Key elements in neutron star understanding

Our central pursuit within this study revolves around the comprehensive examination of two key as-

pects: the speed of sound and the proton fraction. The determination of the speed of sound involves

a direct calculation by evaluating the derivative of pressure with respect to energy density

v2
s

c2 = ∂P

∂ε
. (4.5)

However, it’s essential to emphasise the significance of two critical considerations: thermodynamic

stability and causality. The pressure must exhibit a monotonically non-decreasing relationship with

the energy density. Additionally, the speed of sound, denoted as vs , must satisfy causality1. Recalling

the definition of partial derivatives and applying it to the pressure with respect to the baryonic density

we express it as

∂P

∂n
= lim

h→0

P (n +h)−P (n)

h
= lim

(ni+1−ni )→0

P (ni+1)−P (ni )

ni+1 −ni
, (4.6)

where ni stands for the ith segment of the baryonic density, and where we realized a change of vari-

ables of (n+h)−n → ni+1−ni . Applying the same methodology to the energy density, we approximate

Eq. 4.5 as

v2
s (ni )

c2 = ∂P

∂ε
= P (ni+1)−P (ni )

ε(ni+1)−ε(ni )
. (4.7)

The speed of sound is an important and open question that is being the target of a lot of studies lately.

Having the speed of sound squared one can understand how does the pressure is varying with the

energy density. Machine learning methods have also tried to obtain this quantity such as once again

in the works by Fujimote et al. [28, 29, 27]. Also in a more recent work by Soma et al. [30], they

reconstruct the speed of sound from the obtained EoS, and some conclusions are drawn such as that

the speed of sound is extremely valuable in determining NS composition. With this quantity is also

easier to capture oscillation in the EoS of the NS.

The proton fraction, denoted as yp = np

n , is directly acquired from the coupled equations defined

in Chapter 2 within the framework outlined in the article explained in Section 4.1. This quantity

quantifies the asymmetry of nuclear matter within these compact objects and plays a crucial role

in determining the possibility of the direct Urca process. Notably, it remains a relatively uncharted

1vs < c
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territory within the landscape of ML EoS construction methodologies. This distinctiveness arises

from the fact that conventional ML methods often rely on agnostic models such as polytropes to

formulate EoS datasets. In contrast, our approach stands apart by utilizing a specific nuclear model

family to generate a comprehensive array of possible EoS.

The motivation behind exploring the proton fraction and the speed of sound is further enhanced

by the use of the dataset established in [25] since the findings of earlier studies. Notably, previous

attempts to reconstruct the EoS using meta-models or restricted models have revealed the inherent

challenges in extracting nuclear matter properties solely from the β-equilibrium EoS without consid-

ering compositions (or symmetry energy at high densities) [44, 75].

Hence, the dataset we’re relying on, originating from an RMF approach, holds significant impor-

tance in training our BNN model to accurately link NS observables with the EoS. Precisely, when

predicting the squared speed of sound and the proton fraction. A few key aspects of this dataset

should be highlighted. It’s exclusively derived from a RMF approach, focusing on the core of NS and

considering only hadronic matter. It takes into account constraints from observations and ensures

that the matter is in beta equilibrium.

4.2.2 Unpacking input and output components

Our work aims to take simulated observations of NSs (referred to as the set X ) and input them into

a BNN model, P (Y |X ,θ). Here, θ represents parameters sampled from a posterior distribution. The

ultimate goal is then to create a probability distribution for the output space, which we refer to as the

set Y . This set provides insights into various properties of NS matter, including vital parameters like

the speed of sound, v2
s (n), and the proton fraction, yp (n). Each of these sets, Y and X , comprises

D rows of vectors y and x , respectively, D is the dataset size we are using . In simpler terms, Y is

represented as Y = {y (i )}Di=1 and X is represented as X = {x (i )}Di=1. To effectively capture the properties

of NS, we’ve chosen to evaluate each element of Y , at 15 specific baryonic densities denoted as nk ,

where K = 15 is the size of the output vector, e.g., y (i ) ≡ {y (i )
p (nk )}15

k=1 = [y (i )
p (n1), y (i )

p (n2), · · · , y (i )
p (n15)]

for the proton fraction and the same analogy for the speed of sound. These density points are evenly

distributed between n1 = 0.15 fm−3 and n15 = 1.0 fm−3, as outlined in Table 4.3. To better understand

how we discretise the output space elements for v2
s (n) and yp (n), we refer to Fig. 4.1.

Table 4.3: Equally spaced values of the baryonic density used throughout the dissertation and respec-

tive designation.

Notation n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15

nk [fm−3] 0.15 0.21 0.27 0.33 0.39 0.45 0.51 0.57 0.64 0.70 0.76 0.82 0.88 0.94 1.00

Next, we construct two distinct types of datasets, each sharing the same structure for the output

space Y but differing in the input space X . These structures are defined as follows:

x = [M1, · · · , M5,R1, · · · ,R5] ,

x ′′′ = [M1, · · · , M5,R1, · · · ,R5, M
′
1, · · · , M

′
5,Λ1, · · · ,Λ5] .
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Figure 4.1: Visual representation of the output vector for v2
s (n) and yp (n) from left to right coming

from the same two EoSs: each EoS is represented in our datasets by the 15 points of the baryonic

density. The light grey area shows the range of minimum and maximum (100%) values in the training

dataset, while the darker grey area represents 90% of the training dataset for both plots.

The first structure denoted as x , consists of 10 values, x (i ) = {x(i )
q }10

q=1, each representing five mea-

surements of mass (M) and radius (R), and the second structure, denoted x ′′′, contains 20 values,

x ′′′(i ) = {x(i )
q }20

q=1, covering five M j (R j ) and five Λ j (M
′
j ) observations. These different input structures

enable us to evaluate the significance of including TD (Λ) measurements in our model predictions.

Regarding dataset size, we randomly split the total number of EoS into two sets: a training set,

denoted as X and Y , which includes 80% of the data (D =22 758 EoS), and a test set, denoted as

XT and YT , comprising the remaining 20% (DT =2 529 EoS). In a nutshell, our output elements

are 15-dimensional vectors which we denote as y (i ) = {y (i )
k }15

k=1 ≡ {y (i )
p (nk )}15

k=1 or y (i ) = {y (i )
k }15

k=1 ≡
{v2(i )

s (nk )}15
k=1 for the speed of sound and have a total amount of training and test data denoted as

Y = {y (i )}22758
i=1 and YT = {y (i )}2529

i=1 respectively. For the input space, we offer two variations. For the

10-dimensional option, x (i ) = {x(i )
q }10

q=1 ≡ {(M (i )
j ,R(i )

j )}5
j=1, both the training and test data are denoted

as X = {x (i )}22758
i=1 and XT = {x (i )}2529

i=1 . For the 20-dimensional structure,

x ′′′(i ) = {x(i )
q }20

q=1 ≡ {(M (i )
j ,R(i )

j ), (M ′(i )
j ,Λ(i )

j )}5
j=1, the training and test data are denoted as X ′′′ = {x ′′′(i )}22758

i=1

and X ′′′
T = {x ′′′(i )}2529

i=1 . The selection between these options depends on the specific dataset we are

working with.

Now, let’s delve into how we created these synthetic observational datasets in the next section.

4.2.3 Simulating realistic mock data

The statistical procedure for generating the synthetic observational datasets is executed as follows:

1. For each EoS, we randomly select 5 NS mass values, denoted as M 〈0〉
j , from a uniform distribu-

tion ranging between 1.0M⊙ and Mmax.

2. Subsequently, the NS radius R j is sampled from a Gaussian distribution centered at the TOV

solution, indicated as R(M 〈0〉
j ), with a standard deviation of σR .
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3. Finally, the ultimate NS mass is sampled from a Gaussian distribution centered at M 〈0〉
j with a

standard deviation of σM .

This process is summarized by the following equations:

M 〈0〉
j ∼U [1, Mmax] (in units of M⊙) , (4.8)

R j ∼N
(
R

(
M 〈0〉

j

)
,σ2

R

)
, (4.9)

M j ∼N
(
M 〈0〉

j ,σ2
M

)
, j = 1, · · · ,5 . (4.10)

From these equations it is then possible to construct the first input structure x = [M1, · · · , M5,R1, · · · ,R5],

where each pair (M j ,R j ) is a possible realisation (observation) that characterises the M(R) diagram

of the specific EoS. This procedure is similar to that used in [27], where a Gaussian noise was ap-

plied to 15 values of the M(R) curve and then shifted from the original mass-radius curve: M j =
M 〈0〉

j +N
(
0,σ2

M

)
and R j = R

(
M 〈0〉

j

)
+N

(
0,σ2

R

)
, for j = 1, · · · ,15.

To create the second structure, x ′′′ = [M1, · · · , M5,R1, · · · ,R5, M
′
1, · · · , M

′
5,Λ1, · · · ,Λ5], we repeat the 3

steps defined previously, but now add additional steps to implement the mass and TD pairs

M
′
j ∼U [1, Mmax] (in units of M⊙) , (4.11)

Λ j ∼N
(
Λ(M

′
j ),σ2

Λ(M
′
j )

)
, j = 1, · · · ,5, (4.12)

whereΛ(M
′
j ) is given by theΛ(M) relation of the specific EoS andσΛ(M

′
j ) describes an overall disper-

sion around the mean value. The way we set upσΛ(M
′
j ) should mirror our expectation of how the un-

certainty in TD observations depends on the NS mass. In our study, we chose
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Figure 4.2: Standard deviation of

Λ(M) for the set of EoS.

σΛ(M
′
j ) to be represented as σΛ(M

′
j ) = constant × σ̂(M

′
j ). In

this representation, the constant speaks for the magnitude of

dispersion of the dataset and is multiplied by σ̂(M
′
j ), where

σ̂(M
′
j ) represents how much the values ofΛ(M) vary in the EoSs

dataset, as shown in Fig. 4.2.

In order to obtain multiple sets of observations for each EoS, we

are going to repeat the aforementioned processes for the same

EoS ns times, where we define ns as the number of times we

resample the input vector, x , for the same EoS. Consequently,

the dataset is structured as X = {Xi }ns

i=1 and Y = {Yi }ns

i=1. This

approach expands our dataset to a size of D = ns ×D, where D

denotes the original dataset size for the number of EoSs. To illustrate, if we selected ns = 20, this

implies running the above procedures 20 times for each EoS (20 observations), and thus obtaining

X= {Xi }20
i=1 = {X1, X2, · · · , X20} and the output Y= {Yi }20

i=1 = {Y ,Y , · · · ,Y }. This formalism is applied to

both the training and testing sets, resulting in the generation of four datasets with distinct properties,

as outlined in Table 4.4.

Regarding Table 4.4, Sets 1 and 2 exclusively contain information about NS radii (input vector x

is 10-dimensional), while sets 3 and 4 also incorporate TD data (input vector x ′′′ is 20-dimensional).
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Analyzing sets 1 and 2 helps us comprehend how reducing the spread of observations around the

TOV solution impacts predictions and uncertainties. Similarly, sets 3 and 4 allow us to investigate the

potential effects on model predictions resulting from an increased scattering of observations around

the mean value of TD.

For our training sets, we employ 60 observations, denoted as ns = 60 so X = {Xi }60
i=1 and Y =

{Yi }60
i=1, for each specific EoS. In contrast, for the test sets, we use ns = 1 leading to XT = {XT,i }10

i=1 and

YT = {YT,i }10
i=1. This distinction seeks to simulate a real-world scenario where we only have access to

a single observation of the true EoS. Here, by single observation, we mean ns = 1 that corresponds to

five M j (R j ) observations (sets 1 and 2) or five M j (R j ) observations and fiveΛ j (M ′
j ) observations (sets

3 and 4).

To illustrate the process of dataset generation, Fig. 4.3 displays 60 observations for two distinct

EoSs that belong to the generated datasets. Note that, for each EoS, there are a total of 300 points in

the M(R) diagram, resulting from 60 EoS observations, each with 5 NS observations. The difference

in σR between dataset 1 and dataset 2 is evident, highlighting the distinctions between these two

datasets. Additionally, Fig. 4.3 shows the TD values for datasets 3 and 4 on the left side.

Table 4.4: Generation parameters for each dataset. σ̂(M j ) denotes the standard deviation of Λ(M)

calculated on the train set.

Dataset σM [M⊙] σR [km] σΛ(M j )

1 0.05 0.15 —

2 0.1 0.3 —

3 0.1 0.3 0.5σ̂(M j )

4 0.1 0.3 2σ̂(M j )
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Figure 4.3: The ns = 60 observations generated for two EoSs in the context of the M(R) pairs contain

dataset 1 (left) and dataset 2 (right), and in the case of theΛ(M) pairs plots dataset 3 (left) and dataset

4 (right). The grey area represents the extremes (100%) of our EoS dataset ( M-R and M-Λ curves

without the noise). The two EoS coincide with the ones used in Fig. 4.1.

The description of the four datasets for the input is described in Appendix C, on the Tables C.1,

and C.2. For the output the Tables are C.3.
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One may ask but why did you choose the number of features to be 5 for each of the M, R,Λ elements

and 15 for the output?

For the features, specifically the M-Λ pairs, we can say that is for future real data purposes, mean-

ing, we know that we still don’t have available five TD observations, still, we are hoping that in the

near future, these will be discovered by the LIGO/Virgo/KAGRA2 gravitational wave detectors, and

from the next generation gravitational wave ground-based (e.g., Einstein Telescope and the Cosmic

Explorer) and space-borne (e.g., LISA3) observatories.

When accounting for the M-R pairs, it is worth noting that in the case of BNNs, expanding the

number of input pairs introduces a greater increase in the model parameters compared to traditional

architectures, which is why we used a smaller amount of input pairs compared with previous arti-

cles using conventional NNs, as demonstrated in studies like [27] and related articles. Specifically,

when increasing one pair of observations ( 2 neurons in the input layer), while a standard architec-

ture, would only involve an increase of 2×n parameters, two weights multiplied by the number of

forward neurons, n, the BNN architecture incurs an increase of 2n2q + 4n2 + 3n parameters, as is

better explained in Section 3.4.3.

Now, let’s turn our attention to the output. In assessing the optimal number of data points for

our EoS, we employ a time-efficient yet robust method. We will focus solely on the speed of sound,

although the same approach can be applied to the proton fraction. We begin by selecting a random
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Figure 4.4: Residuals representa-

tion for Eq. 4.13.

EoS from our dataset and proceed to extract data points rang-

ing from 3 to 22, denoted as Nout = [3, · · · ,22]. These points

are evenly spaced along the baryonic density axis, always falling

within the range of [0.15,1.00] fm−3. Consequently, our output

vector takes the form y = {v2
s (nk )}Nout

k=1 , with its size varying ac-

cording to Nout . We perform linear interpolation to construct

the v2
s (n) curve, and assess the sum of residuals - the differences

between our dataset and the real EoS curve - at 1000 equally

spaced baryonic density points, as illustrated in Fig. 4.4. The

corresponding equation is defined as:

Resi dual s =
1000∑

t

v2
s (nt )− v̂2

s (nt )

1000
. (4.13)

Here, v̂2
s (nt ) represents the actual curve, while v2

s (nt ) corresponds to the interpolated curve from our

dataset. We decided that the best option that balances better the trade-off between accuracy and

computational time consumption is for the 15 points of the output.

2Kamioka Gravitational Wave Detector
3Laser Interferometer Space Antenna
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4.2.4 Correlation in neutron star data

To gain insight into the relationship between the input and output of our model, we present the Pear-

son correlation coefficient between v2
s (n) and R(M) (left panel) as well asΛ(M) (right panel), depicted

in Fig. 4.5, for specific NS masses( indicated by different colors), along with the average value within

the range M/M⊙ ∈ [1,2.2], represented in black squares. Similarly, we perform the same analysis for

the proton fraction, as shown in Fig. 4.6. The Pearson correlation coefficient is calculated with

4Corr(a,b) =
∑D

i=1(a(i ) −a)(b(i ) −b)√∑D
i=1(a(i ) −a)2

√∑D
i=1(b(i ) −b)2

, (4.14)

where a comprises v2
s (n) and yp (n), and b represents R and Λ. It is important to note that this cor-

relation measure is primarily sensitive to linear dependencies, potentially overlooking higher-order

relationships.

Speed of sound

Examining the speed of sound, we can discern some notable patterns in Fig. 4.5. In the left panel, the

speed of sound exhibits a more substantial correlation with radius, especially up to approximately

four times the saturation density. Beyond this point, the correlation gradually diminishes, with the

smallest correlation observed for lower masses. It’s important to emphasize that our primary focus

here isn’t on how the correlation varies with mass within our dataset. This is due to the introduction

of noise into the input vector, which shifts our attention more towards the mean correlation value in-

dicated by the black squares. Turning our attention to the right panel, we encounter a similar pattern.

Here, we again observe a stronger correlation, particularly up to approximately 0.4 fm−3, followed by

a declining trend. This behavior closely mirrors what we observed in the left panel.

For in-depth exploration of how the speed of sound correlates with radius and TD for different

mass values, we recommend reading the work by Ferreira et al.[76]. They’ve covered the same re-

sults as us regarding how the speed of sound behaves with respect to the two NS observables we’ve

considered, and its response to increasing baryonic density.

Proton fraction

Let’s dive into the proton fraction analysis as depicted in Fig. 4.6. When we compare the left panel

with the one obtained for the speed of sound, we observe that the correlation is weaker, and the

highest correlation occurs earlier, specifically at the third density point. As we move to higher density

values, this correlation progressively diminishes, eventually approaching zero.

In the right panel, we notice that the proton fraction exhibits an overall low correlation with the

TD. Initially, this correlation is negative, but it transitions to a positive trend, reaching its approximate

peak at around four times the saturation density. Subsequently, it gradually decreases towards zero

values.

4We refer to this value as being big when between 0.8 ≲ |Corr(a,b)| ≤ 1, as being medium when 0.4 ≲ |Corr(a,b)|≲ 0.8

and low for 0 < |Corr(a,b)|≲ 0.4.
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Figure 4.5: Correlation between v2
s (n) and R(M) (left) or Λ(M) (right) for fixed mass values. In black

squares we show the mean correlation value for M/M⊙ ∈ [1,2.2].

Another study, described in [77], indirectly investigates the proton fraction and supports our find-

ings. In this study, they look at how different nuclear matter parameters correlate with NS observ-

ables. Since the proton fraction correlates strongly with the symmetry energy in Eq. 2.3, the correla-

tions between the symmetry energy, its slope, and curvature at saturation density with the radius and

TD for varying mass values directly mirror the proton fraction behavior. In addition, how the proton

fraction correlates with nuclear matter properties has been directly analysed in the study in [78].
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Figure 4.6: Correlation between yp (n) and R(M) (left) or Λ(M) (right) for fixed mass values. In black

squares we show the mean correlation value for M/M⊙ ∈ [1,2.2].
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5 Tuning Model Parameters

To assess how BNNs respond to varying levels of input noises and different output targets, we carried

out a sequence of experiments involving the training of diverse functional and stochastic models.

The details of these experiments are explained in Section 5.1. Furthermore, Section 5.2 discusses the

determination of the optimal number of samples to be used during prediction.

5.1 Training procedure

To investigate the response of BNNs to varying input noises and output targets, we conducted a series

of experiments involving the training of diverse functional and stochastic models, as elaborated in

Section 3.4. The BNN models were trained using distinct datasets generated following the guidelines

provided in Section 4.2. During the training stage, a portion of the training data was randomly cho-

sen as a validation set. Specifically, we split the training data into an 80% portion for actual training

and a 20% portion for validation. To ensure effective training, we normalized the input data for each

of these subsets using the standardscaler1 method available in the Python library Scikit-learn. This

approach involves scaling the data to have a mean of zero and a standard deviation of one for each

input feature. We chose this normalization technique because the range of values for each feature

when using TD can differ significantly. By standardizing the data, the model can better comprehend

the underlying data patterns, resulting in improved training efficiency. It’s worth noting that the mean

(µ) and standard deviation (σ) used for standardization in the training set were also applied to the test

set, ensuring consistency in the normalization process [79]. This normalization strategy aligns with

the practice of initializing weights close to zero, facilitating learning in the model as parameters will

have a mean close to zero. The models were trained using the training subsets, and the validation set

allowed us to independently assess whether the model was prone to overfitting.

5.1.1 The stochastic model

Regarding the stochastic model, we adopt a Gaussian prior with mean zero and standard deviation

of one, which is not trainable, as mentioned in Section 3.4. While this prior choice lacks a specific

theoretical justification, it serves as a reasonable default prior, as discussed in [61]. Future research

could delve further into investigating the impact of prior parameters, similar to the approach taken

1z = x−µ
σ , where µ stands for the mean of the training dataset and σ is the standard deviation of the training dataset.
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in reference [41]. Additionally, we select a multivariate normal distribution as the variational pos-

terior as explained in Section 3.4, initialized with mean 0 and a diagonal covariance matrix, where

the standard deviation is equal to log(1+exp0) = 0.693. Furthermore, we have a probabilistic output

with a diagonal covariance matrix to capture aleatory heteroscedastic uncertainty, as this has shown

better results in our experiments. All BNNs models were coded using TensorFlow library [65], more

specifically we use Keras [80], an high-level API2 of the TensorFlow.

5.1.2 The functional model

Defining the functional models involves adjusting the number of neurons, layers, and activation func-

tions. For the hidden layers, we explore hyperbolic tangent, softplus, and sigmoid activation func-

tions (Eqs. 3.3, 3.2 and 3.4 respectively), while utilizing a linear activation function for the output

layer. As the input vector sizes differ (10 for sets 1 and 2, and 20 for sets 3 and 4), we employ more

neurons per layer for larger input spaces. This is due to the increased complexity demanded by a

greater number of parameters. Specifically, we use 15 and 10 neurons for sets 1 and 2, and 20 and 25

neurons for sets 3 and 4, respectively. The output layer consistently contains 30 neurons, with 15 rep-

resenting the mean and 15 representing the standard deviation of the output probability distribution

function. It is worth noting that we deliberately excluded the use of correlation in the output layer

due to the inferior performance observed when attempting to incorporate it. As a result, the output

layer is solely focused on capturing the mean and standard deviation information of the output dis-

tribution. The architecture employed in this study involved utilizing two to three hidden layers. The

number of neurons within each hidden layer remained consistent, but it varied depending on the

size of the input vector, as explained earlier. During the best model search process, we systematically

explored four different architectures for each output. However, we narrowed our focus to datasets 1

and 3, as we specifically aimed to identify the most suitable architecture for the two different input

sizes. The best outcomes are obtained by employing sigmoid as the activation function in the hidden

layers, ensuring minimal loss and preventing divergence. Across all eight dataset configurations, i.e.,

two outputs (v2
s (n) and yp (n)) and four datasets, see Table 4.4, it was found that the optimal number

of hidden layers is two. For sets 1 and 2, the best performance was achieved with 15 neurons in each

hidden layer, while for sets 3 and 4, 25 neurons were utilized in each hidden layer, as can be seen in

the heatmaps for v2
s (n) and yp (n), Figs. 5.1 and 5.2 respectively, the validation loss is smaller for those

architectures.

The final best architectures are then defined in Table 5.1 for the two output variables. During

training, we employ a learning rate of 0.001 and utilize the ADAM optimizer [58] with the AMSgrad

improvement [81]. The models are trained for 4000 epochs, with a mini-batch size of 768.

2Application Programming Interface
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Figure 5.1: Tuning the hyperparameters of our model to find the most appropriate architecture from

the four we defined for set 1 above and set 3 below for v2
s (n).

0 1 2 3
Label for hidden units

sig
m

oi
d

Ac
tiv

e 
fu

nc
tio

n

-53.4357 -53.4282 -53.5406 -53.4986
Label for hidden units:
0 - [10, 10]
1 - [10, 10, 10]
2 - [15, 15]
3 - [15, 15, 15]

53.54

53.52

53.50

53.48

53.46

53.44

0 1 2 3
Label for hidden units

sig
m

oi
d

Ac
tiv

e 
fu

nc
tio

n

-52.8015 -52.7318 -52.8118 -52.7472
Label for hidden units:
0 - [20, 20]
1 - [20, 20, 20]
2 - [25, 25]
3 - [25, 25, 25]

52.80

52.78

52.76

52.74

Figure 5.2: Tuning the hyperparameters of our model to find the most appropriate architecture from

the four we defined for set 1 above and set 3 below for yp (n).

Table 5.1: Structures of the final BNN models. The v2
s (n) and yp (n) models have the same structure.

Layers Activation
Neurons

Datasets 1 & 2 Datasets 3 & 4

Input N/A 10 20

Hidden Layer 1 Sigmoid 15 25

Hidden Layer 2 Sigmoid 15 25

Output Linear 30 30
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A closer look into the loss function

To illustrate the usual pattern of our employed loss function, given by Eq. 3.38, over the course of 4000

epochs for our eight models, we provide a single example. This behavior remains consistent across

the other models, with only variations in the value scale. For illustration, we have selected set 1 and

shown the loss function curve for the proton fraction in Fig. 5.3.
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55

50

45

40

35

30

25

20

15

lo
ss

Validation
Train

2000 2500 3000 3500 4000

53.6

53.5

53.4

53.3

0 1000 2000 3000 4000
epoch

10 4

10 3

KL
Train
Validation

Figure 5.3: Evolution of a loss function of a BNN as a function of epochs during training for one of the

sets of the model, the left plot shows the total loss and the right plot shows the KL divergence, where

the y-axis is in logarithmic scale.

When analyzing the loss function, it’s noticeable that the scale of the KL divergence part is sig-

nificantly smaller than that of the total loss. This observation implies that the contribution of the KL

term to the overall loss is minimal. Moreover, it’s noticeable that the KL loss increases as the epochs

progress, a behavior expected as it starts equal to the prior and then diverges from it. This trend even-

tually stabilizes and approaches a plateau, suggesting that the posterior distribution is reaching an

optimal configuration. An important observation is the absence of overfitting, as evidenced by the

close alignment of the validation and training curves. This indicates that the model is generalizing

well and not merely memorizing the training data.

5.2 Bayesian neural network prediction trade-offs

When choosing the number of samples we would utilize in Eqs. 3.41 and 3.43, we wanted to strike a

balance between time consumption and precision in future predictions. To understand how different

sample sizes affect the convergence of our predictions, we conducted a brief experiment, for just

one EoS of the test dataset, with up to 100 000 model, e.g., samples from the variational posterior

θn ∼ qφ(θ). It’s important to note that this study focused on examining sample behavior for a specific

set (set 2) and a particular output (v2
s ). Figure 5.4 displays the results, showing the relative error of

the expected value computed for the 15 mean values within the output distribution, based on the

number of samples we used. The computation of the discrepancy between the number of samples

was executed using the subsequent equation
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S(Li ) = µ̂mean(Li )− µ̂mean(Li+1)

µ̂mean(Li )
×100 , (5.1)

where µ̂mean = 1
15

∑15
k=1 µ̂(nk ) is representing the mean of the 15 mean values in the output vector and

Li ≡ N corresponds to the number of samples we take from the variational posterior, more explicitly

samples taken from Eq. 3.41.

Li is the ith term in a set of elements described as L = {10i + j ×10i |i ∈ {2,3,4}, j ∈ [0,9]}∪ {105} 3
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1e 2 v2
s  for set 2

Li = 10000

Figure 5.4: Visualization of the quantity S(Li ) in

Eq. 4.13, aimed at determining the optimal output

size.

this notation means that L includes values start-

ing from 100, increasing by 100 until it reaches

900, then jumping to 1000 and increasing by

1000 until it reaches 9000, and so on, until it

reaches 100 000. Analysing the obtained results

shown in Fig. 5.4, we marked a key point with

a black star, that indicates the point at which

it is present the range of Li =10 000 to Li+1=20

000 samples. Beyond this threshold, the predic-

tions consistently converged towards zero val-

ues. Based on this analysis, we determined

that employing 10 000 samples struck an opti-

mal balance between computational efficiency

and prediction accuracy for our experimental

requirements.

Our study predominantly emphasizes qualitative exploration rather than extensive quantitative

analysis. Therefore, we did not delve deeply into quantitative aspects, as our primary objective was

to extract qualitative insights rather than conduct an exhaustive quantitative investigation.

3L = {100, · · · ,900,1000, · · · ,9000,10000, · · · ,90000,100000}
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6 Results and Discussion

With a solid foundation in the theories outlined in the previous Chapters 2 and 3, as well as an under-

standing of our dataset creation and model structure Chapters 4 and 5, we are now ready to unveil the

outcomes of our study. This section will provide a comprehensive overview of the results obtained for

both the speed of sound squared (v2
s (n)) and the proton fraction (yp (n)).

We will initiate our exploration by conducting a comprehensive analysis of the predicted distri-

butions for an individual EoS within the test set, followed by an examination of the trends exhibited

by the entire test set, Section 6.1. Subsequently, we will delve deeper into the uncertainty decom-

position, Section 6.2. Lastly, we will investigate the performance of our model when faced with data

generated from a distinct microscopic framework, Section 6.3.

Note: For the sake of simplicity, whenever we want to distinguish the different 8 BNNs models,

we will, hereafter, refer to their training (data)sets, 1 to 4, and predicting quantity, v2
s (n) or yp (n). For

instance, when we say the results of dataset 2 for yp (n), we mean the BNN model trained on dataset

2 that has the proton fraction as the target quantity.

6.1 Overall study of the predicted distributions

6.1.1 Speed of sound

Let’s delve into the distinct predictions made by our BNNs model for the speed of sound squared

using a randomly selected EoS from the test set. The results are presented in Fig. 6.1. In the left panel,

you can observe predictions from sets 1 (blue) and 2 (pink) in Fig. 6.1a, while the right panel displays

predictions for sets 3 (purple) and 4 (green) in Fig. 6.1b. These predictions are generated using Eq.

3.25, and we visualize the mean values (solid lines) along with the 2σ regions (colored areas).

The left plot clearly illustrates that the prediction uncertainty, represented by the standard de-

viation of the distribution σ, is smaller in set 1 than in set 2. Moreover, the predicted mean values

are closer to the actual values for set 1. The same pattern is observed in the right figure, where set 3

exhibits lower prediction variance than set 4.

Although a comprehensive understanding of the overall behavior requires analyzing the entire

test set, Fig. 6.1 already suggests that the BNN models are capable of capturing the characteristics

of different datasets (as detailed in Table 4.4). Specifically, the increased spread of NS observations

around their true values results in more significant uncertainty when inferring the corresponding
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properties of the EoS.
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(a) Trained on datasets 1 (blue) and 2 (pink).
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Figure 6.1: The BNNs predictions for v2
s (n) using one EoS of the test. The prediction mean values

(solid lines) and 2σ confidence intervals are shown. The true values are shown in black dots and the

range of v2
s (n) from the train set is indicated by the grey region.

In order to investigate the models predictions over the entire test set, we defined the normalized

residuals’ predictions as Γ(nk ), the model residuals δ(nk ) and the dispersion by Σ(nk ) at each of the

prediction densities, i.e., k = 1, ...,15,

Γ(nk ) = (
v2

s (nk )− v2
s (nk )true)/σ(nk ) , (6.1)

δ(nk ) = v2
s (nk )− v2

s (nk )true , (6.2)

Σ(nk ) =σ(nk ) . (6.3)

A summary statistics of both quantities over all EoS of the test set is shown in Fig. 6.2.
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Figure 6.2: Median (solid line), 95.4% confidence interval (dashed and dotted lines), and extreme

values (region) for Γ(n) (left), δ(n) (center) and Σ(n) (right) for each dataset.

The distribution of Γ(n), as shown in the left panel across all four datasets, exhibits interesting

properties. Approximately 50% of the values (indicated by the solid line) are clustered near zero,
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suggesting that the median of the prediction values is unbiased. Additionally, when we examine the

distribution at the 2.3% and 97.7% cumulative percentiles, we find that it falls within the range of -

2σ and 2σ, respectively. This indicates that the prediction mean deviates from the true value by less

than 2σ in 95.4% of the cases. What’s particularly noteworthy is that the distribution characteristics

of Γ(n) remain consistent across all datasets and are independent of the density. This observation

highlights that the BNN models accurately capture the dispersion of predictions while considering

the corresponding mean residuals at each density value.

When examining the distribution of δ(n) (middle panel), it becomes evident that the median re-

mains closely centered around zero as the density increases. However, the distribution becomes sig-

nificantly wider for the 95.4% of the values. This phenomenon is directly linked to the behaviour

observed in Σ(n) (right panel) that also gets broader with the increase of density. This behavior is a

direct reflection of the statistics present in the training dataset, since the EoS dataset was generated

through Bayesian inference, where saturation properties were imposed, leading to a wider uncer-

tainty at higher densities while low density regions are strongly constrained.

Upon examining the values of Σ(n) (right panel), a noticeable shift to lower values is observed

in the entire distribution of the BNN model trained on set 1( indicated by the blue line) specifically

on 2.3% and 50% of the values, showing that there is a considerable decrease in uncertainty when

the dispersion of NS observations is reduced by a factor of two, from (σM = 0.1M⊙,σR = 0.3 km) to

(σM = 0.05M⊙,σR = 0.15 km) (see Table 4.4).

To assess the overall performance of the various BNN models, we’ve calculated their coverage

probabilities, as illustrated in Fig. 6.3. Coverage probability serves as a metric to account for how ef-

fectively each model captures the data distribution. It does this by examining whether the percentage

of values falling within 1σ of the output distribution – which is the number of values within a specific

interval divided by the total number of values times one hundred percent – corresponds to 68.3% of

the total number of values in the test set. This same evaluation is repeated for 2σ (95.4%) and 3σ

(99.7%) intervals. We applied this procedure independently to each of the 15 output values, resulting

in coverage probabilities relative to the output densities (as shown in Fig. 6.3 on the right). We then

calculated the mean of these 15 coverage probabilities for each of the 4 sets, as depicted in Fig. 6.3

on the left. For the left plot the bars are closely aligned with the three specified percentages (68.3%,

95.4%, and 99.7%). However, a slight fluctuation is noticeable in the 68.3% region, where all four sets

tend to overestimate the result uncertainties. This suggests that the models predict a percentage of

data greater than 68.3% within the 1σ model interval. This overestimation is more pronounced in set

3. Examining the coverage probabilities for each density point, it becomes evident that uniformity

is not consistently maintained across all densities. This non-uniform behavior is particularly pro-

nounced at low densities, more specifically for the density points {n1,n3,n4,n5}, indicating that the

model tends to slightly overestimate the uncertainty. This discrepancy, can possibly be attributed to

the significant variation in standard deviation with increasing density, as evident in Table C.3, where

the standard deviation ranges from approximately 0.005 c2 to 0.06 c2. The model, it seems, struggles

to adequately reduce the standard deviation at lower densities. In summary, the results indicate that

the model accurately estimates the data distribution above the 95.4% results.
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Figure 6.3: Coverage probability calculated on the test set of the v2
s (n) BNNs models for the individual

densities (right) and for the mean of these densities (left).

To quantify how the increase in the observational scattering of (M ,R,Λ) affects the model predic-

tion uncertainties, let us define the following quantity

η [a,b] (nk ) = 1

TE

(
TE∑

i=1

σa
i (nk )−σb

i (nk )

σb
i (nk )

)
×100, (6.4)

where TE is the total number of EoS in the test set, and k = 1, ...,15. This quantity defines the percent-

age uncertainty deviation between models b and a at density nk . Figure 6.4 shows the results, where

we plotted 4 different comparisons.

Let’s take a closer look at the results for η(2,1) (in cyan). We observe that the prediction uncer-

tainty increases when we consider the BNN model from dataset 1 compared to the one from dataset

2. Moreover, η(2,1) reaches its maximum value of 20% at n4 = 0.33 fm−3. In simpler terms, when

the synthetic observational data scattering doubles, going from (σM = 0.05M⊙,σR = 0.15 km) to

(σM = 0.1M⊙,σR = 0.3 km), the uncertainty increases by approximately 4.9-20%. This increase is

most prominent at densities where there is a strong correlation between the NS radius, R(M), and the

squared speed of sound, v2
s (n). More detailed information on this correlation is present in Fig. 4.5

and ref. [76].

The second major conclusion concerns the impact of includingΛ information into the inference pro-

cess. This becomes evident when we analyze the behavior and values of η [3,2] (where the only dif-

ference between datasets 2 and 3 is the inclusion of tidal deformability information, as indicated in

Table 4.4). The negative values signify that prediction uncertainty decreases when tidal information

is added to the training process, as tidal deformability provides informative insights into v2
s (n) for

NS matter. The maximum reduction in uncertainty is 7%, occurring at n6 = 0.45 fm−3. Considering

η [4,2] (blue), we once again observe negative values, indicating a reduction in uncertainty compared

to dataset 2. However, beyond the seventh density, both values converge closely, suggesting that in-

troducing more dispersion in the tidal deformability data does not provide significant additional in-
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formation. Comparing η [4,3] with η [2,1], we notice that initially, they differ very little. However, as

we move to higher densities, η [2,1] consistently becomes more than 5 times larger. It’s important to

note a key factor here: the proportion of input values that have been altered. Dataset 3 and 4 involve

changing the uncertainty of only 5 out of the 20 input values, essentially modifying a quarter of our

input vector. In contrast, datasets 1 and 2 have modifications across all input values. This implies

that the dispersion of the mass-radius pairs has a more significant impact on the model than the

mass-tidal deformability pairs. Recognizing this difference in the proportion of altered input values

provides valuable insights into how the model responds to changes in dispersion.

0.2 0.4 0.6 0.8 1.0
n [fm 3]

10

5

0

5

10

15

20

(a
,b

)[
%

] (2, 1)
(3, 2)
(4, 2)
(4, 3)

Figure 6.4: Prediction uncertainty deviation η [a,b] between the v2
s (n) BNN models a and b (see text

for details).

6.1.2 Proton fraction

Now, let’s delve into the model’s predictions for the proton fraction,yp (n). To illustrate, we’ve selected

a specific EoS from the test dataset. In Fig. 6.5, we present the model’s predictions for each dataset:

Fig. 6.5a displays sets 1 (blue) and 2 (pink), while the right panel showcases sets 3 (purple) and 4

(green). The grey region represents the range of yp (n) values from the training set, and the dashed

grey line corresponds to the 99.9% probability line. It’s essential to note that the upper region, be-

tween the 99.9% probability and the maximum boundary lines, is influenced by the presence of a

single "extreme" EoS.

The observations from Fig. 6.5 mirror the findings from the v2
s (n) predictions ( Fig. 6.1). Specifically,

dataset 1 exhibits the narrowest prediction uncertainty, while dataset 2 shows a substantial increase

in uncertainty. Predictions for datasets 3 and 4 yield similar uncertainty levels. However, to draw

definitive conclusions, we need to perform a statistical analysis across the entire test set.

In Figure 6.6, we examine the same parameters as in the analysis of the speed of sound but fo-

cusing on the proton fraction (yp (n)) across the four datasets. These parameters include the model

residuals (δ(nk )) displayed on the left side, calculated using Eq. 6.2, the standard deviation (Σ(nk ))

61



0.2 0.4 0.6 0.8 1.0
n [fm 3]

0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225

y p
Predicted 
True value
2
99.9%

(a) Trained on datasets 1 (blue) and 2 (pink).
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(b) Trained on datasets 3 (purple) and 4(green).

Figure 6.5: The BNNs predictions for yp (n) using one EoS of the test. The models trained on datasets

1 (blue) and 2 (orange) are in the left figure while datasets 3 (purple) and 4 (green) models are in the

right figure. The predicted mean values (solid lines) and 2σ confidence intervals are shown. The true

values are shown in black dots.

shown in the center, computed as per Eq. 6.3, and the normalized model residuals (Γ(nk )) presented

on the right side, following the calculation outlined in Eq. 6.1.

The results reveal that the model exhibits a wider spread of residuals, particularly in the region around

0.4-0.5 fm−3. However, this increased spread is counteracted by larger standard deviation values in

the same region. In essence, this indicates that the model adeptly captures and represents data statis-

tics. Specifically, the BNN models effectively account for increased prediction uncertainties in regions

where the proton fraction (yp (n)) displays a higher degree of dispersion, as anticipated.

The quality of the models’ predictions is exemplified by the consistent Γ(n) statistics (right panel),

where the models’ residuals fall within 2σ approximately 95.4% of the time, irrespective of density.

For further insights into these statistics, we refer to Chapter 4, specifically Fig. 4.1, which provides an

interpretation of δ(n) and, notably, Σ(n) behaviors. This analysis reveals that the standard deviation

σ(n) of the training set exhibits a non-monotonic pattern, peaking at approximately 0.5 fm−3 and

decreasing for lower and higher densities.

Examining the coverage probability shown in Fig. 6.7, we can see that the results for each set, as

presented in the left plot, accurately represent the output distribution. Further analysis of the individ-

ual densities, as shown in the right plot, reveals minimal oscillation, which is even less pronounced

than what was observed for the speed of sound. This demonstrates the model’s consistent ability to

predict uncertainty as the density values increase, supporting our findings for the Γ(n) quantity in

Fig. 6.6.

We are now going to analyse the percentage uncertainty deviation between the models withη [a,b] (n)

(see Eq. 6.4) displayed in Fig. 6.8. Firstly, we observe that η [2,1] follows a pattern quite similar to

that of v2
s (n). However, it attains its maximum value earlier at n3. This observation aligns precisely

with the point where we’ve previously noted the highest correlation between R(M) and yp (n), as dis-
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(left), Σ(n) (center), and Γ(n) (right).
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Figure 6.7: Coverage probability calculated on the test set of the yp (n) BNNs models for the individual

densities (right) and for the mean of these densities (left).

cussed in Section 4.2.4. Now, when we compare η[2,1] with η[4,3], we find that the behavior mirrors

what we’ve seen in the speed of sound dataset. However, this time, the relationship is even more

pronounced. This pronounced behavior circles back to the correlation, which is nearly zero forΛ(M)

and yp (n).This observation raises the possibility thatΛmay not contribute significantly to the model,

especially since, this time, the ratio between η[4,3] and η[2,1] deviates even further from the expected

one-quarter proportion due to the change in the input vector, compared to what we observed in the

case of v2
s (n). Increasing the model’s complexity without adding substantial information can lead

to heightened confusion and greater uncertainty. This phenomenon is evident in η[3,2] and η[4,2],

where both cases show positive η values. These positive values indicate higher uncertainty for sets 3

and 4 when compared to set 2.
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Figure 6.8: Prediction uncertainty deviation η [a,b] between the yp (n) BNN models a and b (see text

for details).

6.2 Understanding uncertainty components

In this section, we will delve deeper into understanding the inherent uncertainty within our predic-

tions. Let’s take a closer look at how the prediction uncertainty of BNNs is characterized, breaking

down its distinct components [82]. As mentioned in Eq. 3.43 of Section 3.4, the prediction variance

σ̂2 is composed of two distinct terms:

σ̂2 = σ̂2
alea + σ̂2

epist,

Here, the aleatoric uncertainty σ̂2
alea signifies the average variance across the ensemble of models,

while the epistemic uncertainty σ̂2
epist denotes the dispersion of ensemble models around the ensem-

ble mean µ̂. Epistemic uncertainty emerges from limited information or data and is encapsulated

within the posterior probability P (θ|D), reflecting the distribution of the model. On the other hand,

aleatoric uncertainty emerges due to the inherent randomness of the dataset and is encoded within

the data likelihood P (y∗|x∗,θ). While epistemic uncertainty diminishes with an increased amount of

available data, aleatoric uncertainty remains constant as it stems from the intrinsic randomness of

the data generation process itself.

6.2.1 Speed of sound

Let’s take a closer look at how our model interprets the two types of uncertainty in the context of

speed of sound predictions, as depicted in Fig. 6.9. Starting with Fig. 6.9a, it’s important to note that

the epistemic uncertainty is consistently around one order of magnitude smaller than the aleatoric

uncertainty. Both aleatoric and epistemic uncertainties follow a similar pattern across various density

points. In the case of aleatoric uncertainty, it’s behaviour mirrors the dataset’s characteristics, which

is expected since it’s tied to the inherent randomness of the data itself.
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To gain a deeper insight into the behavior of epistemic uncertainty, we calculate the epistemic

percentage. This metric helps us analyze the proportions of both types of uncertainty within the total

prediction variance. The epistemic percentage, denoted as fepist, is computed as fepist = (σ̂2
epist/σ̂

2)×
100%, as shown in Fig. 6.9c. What this figure reveals is that although epistemic uncertainty increases

with higher baryonic density, it’s essential to contextualize this increase within the scale of the overall

uncertainty. Notably, the highest percentage of epistemic uncertainty occurs at density points where

there’s a stronger correlation between NS radius (R(M)) and the squared speed of sound (v2
s (n)) as

demonstrated in Fig. 4.5. This can be duo to the fact that when constructing the predicting ensemble,

P (y∗|x∗,D) = 1
N

∑N
n=1 P (y∗|x∗,θn), by sampling from the variational posterior, θn ∼ qφ(θ), the density

points nk with larger correlation with v2
s (n) are much more sensitive to model sampling than other

density points where correlations are much smaller.

An intriguing observation in Fig. 6.9a is that epistemic uncertainty consistently tends to be greater

for sets 3 and 4, in contrast to aleatoric uncertainty, which is more pronounced for sets 1 and 2. This

suggests that the inclusion of TD measurements adds valuable information to the dataset, although

it doesn’t significantly impact the functional aspects of the model. Moreover, the trend in epistemic

uncertainty is a reduction from set 1 to set 2 and another decrease from set 3 to set 4. This pattern

implies that as aleatoric uncertainty captures the uncertainty inherent in the data and increases with

it, epistemic uncertainty decreases. This phenomenon might be attributed to the model’s ability to

better capture the functional aspects when provided with more sparsely distributed input data points.

Now, turning our attention to Fig. 6.9b, we focus solely on the aleatoric component to provide a

clearer view of how aleatoric uncertainty changes with each set. One essential aspect to note here is

that the scale of η is considerably larger because we are dealing with variance. If not for this scaling,

it would roughly share the same scale as the overall uncertainty depicted in Fig. 6.4. Upon closer

examination, it becomes evident that aleatoric uncertainty in η essentially follows the same behavior

observed in the overall uncertainty in Fig. 6.4.

65



0.2 0.4 0.6 0.8 1.0
n [fm 3]

10 7

10 6

10 5

10 4

10 3
2

[c
4 ]

aleatoric
set 1
set 2
set 3
set 4

(a) Epistemic (squares) and aleatoric (circles) un-

certainty representation, where the y axis is in log-

arithmic scale, for the mean of the EoSs in the test

set.

0.2 0.4 0.6 0.8 1.0
n [fm 3]

20

10

0

10

20

30

40

50

(a
,b

)[
%

]

(2, 1)
(3, 2)
(4, 2)
(4, 3)

(b) Prediction for only the aleatoric uncertainty of

η[a,b], Eq. 6.4, but using σ2
al ea , so variance in-

stead of standard deviation.

0.2 0.4 0.6 0.8 1.0
n [fm 3]

0
2
4
6
8

10
12
14
16

f e
pi

s
[%

]

68.3%68.3%

set 2
set 3

(c) The distribution of fepist = (σ̂2
epist/σ̂

2)× 100%

in sets 2 and 3 for mean values (dashed lines) and

the 68.3% confidence interval regions (colored ar-

eas) of the EoS set.

Figure 6.9: Studying the aleatoric and epistemic uncertainty for v2
S(n), more details are given in the

text.

6.2.2 Proton fraction

Analyzing the behavior of the proton fraction, as depicted in Fig. 6.10, we observe that the epistemic

uncertainty is notably smaller than the aleatoric uncertainty, even more so for this particular quantity.

The ranking of sets in terms of epistemic uncertainty follows the same order as that observed for the

speed of sound. Therefore, similar conclusions can be drawn: uncertainty decreases with increasing

input uncertainty. Additionally, as seen before, epistemic uncertainty increases with the incorpora-

tion of the TD, but so does aleatoric uncertainty. The behavior of aleatoric uncertainty mirrors the
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dataset statistics, once again as expected.

Turning our attention to Fig. 6.11, which focuses solely on aleatoric uncertainty (with variance as

the scale), we observe a behavior closely aligned with that seen in the overall uncertainty in Fig. 6.8.

Utilizing the BNN models for yp (n), we present in the left panel of Fig. 6.12 both the mean values

(dashed lines) and the 68.3% confidence interval regions (colored areas) for fepist across the entire

test sets (sets 2 and 3). This plot leads to a notable conclusion: the prediction variance σ̂2 is primarily

composed of aleatoric uncertainty (left panel), accounting for roughly 97% of the total uncertainty.

This amount of aleatoric uncertainty is a consequence of the already substantial number of observa-

tions (ns = 60), although it is comparatively smaller for the speed of sound. Furthermore, we observe

that fepist is lower for set 2 (depicted in orange) than for set 3 (in purple). This variation in epistemic

uncertainty can be attributed to the increase in input dimensions, rising from 10 to 20, a change

that has a noticeable impact on the variational posterior q(θ). Lastly once again as was seen for the

speed of sound the percentage of epistemic uncertainty is larger at densities 0.2 – 0.4 fm −3 duo to the

correlation as previously explained: density points nk that exhibit stronger correlations with yp (n)

are significantly more influenced by model sampling than other density points where correlations

are substantially weaker. The right panel of Fig. 6.12 provides insight into fepist using BNN models

trained on set 1 while varying the number of mock observations: ns = 5, ns = 20, and the value em-

ployed in this study, ns = 60. It’s evident that as we decrease the number of observations, represented

by ns , and consequently, the overall number of training points, the epistemic uncertainty increases

as anticipated. It’s essential to recognize that the epistemic uncertainty tends to approach zero as the

data points approach infinity, a concept discussed in more detail in [60].
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6.3 Model performance under a different framework

For our final test, we want to see if our BNN model, previously trained on set 1 (refer to Table 4.4),

is able to correctly estimate the results of a nuclear model with different properties from the ones

used to train, in particular, obtained within a different microscopic description of nuclear matter.

Specifically, we employed the DD2 model, a generalized RMF model featuring density-dependent

couplings, and not containing the non-linear terms present in Eq. 2.10, [83].

Two significant distinctions set the DD2 model apart from the RMF family we employed to gen-

erate the set of EoS. Firstly, the DD2 model exhibits distinct high-density behavior in the symmetry

energy. In the DD2 model, the coupling to the ρ-meson, which defines the isovector channel of the

EoS, diminishes at sufficiently high densities. This behavior promotes the existence of highly asym-

metric matter and has a notable consequence: the DD2 model does not predict nucleonic direct Urca

processes inside NSs [84, 85]. Secondly, another notable difference lies in the behavior of the speed of

sound with density between the DD2 class of models and the model class employed to train the BNN.

In DD2-like models, the speed of sound consistently increases with density but remains well below

the speed of light (c). In contrast, the class of models used for BNN training exhibits a different trend:

the speed of sound flattens or even decreases beyond approximately three times nuclear saturation

density (n0). These two distinctions are expected to influence the performance of the BNN model.

Once the DD2 EoS was selected, we applied the statistical procedure outlined in Section 4 to gen-

erate a single observation (ns = 1) using the properties of dataset 1. This dataset has lower σR and

lacks information aboutΛ. In Fig. 6.13, it’s possible to see the BNN model’s predictions for the speed
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of sound (left panel) and proton fraction (right panel). Although the DD2 EoS lies outside the training

data range (grey region) for the speed of sound, the model’s prediction uncertainty extends beyond

the training maximum values and almost entirely encompasses the DD2 results. The prediction for

yp (n) is quite accurate, with the mean value prediction closely matching the actual values. It is worth

noting that this accuracy may be higher as the actual value falls within the trained region. While the

results are indeed promising, it’s important to highlight some key considerations. In the test phase

mentioned above, we generated only one observation (ns = 1) from the DD2 M(R) curve, simulating

a scenario with very limited access to NS observations. The process of generating a single observation

(ns = 1), which consists of five Mi (Ri ) values, is inherently random. As a result, different samples will

yield different predictions. It’s worth noting that v2
s (n) is more sensitive to this variability than yp (n),

primarily because the DD2 target, for the last quantity, falls entirely within the training values region.

This variation in predictions is somewhat expected because we are attempting to characterize

the entire M(R) curve with only five randomly selected (M ,R) values. While one sample may provide

sufficient information about the general behavior of the M(R) curve, others might be less informative,

such as a sample where all five observations Mi (Ri ) cluster around the same M value. This challenge

is a fundamental issue when inferring the EoS from a very limited number of NS observations, and it

applies regardless of the inference model or framework used. The reliability of the BNN’s performance

assessment for the DD2 EoS would significantly improve with an increase in the number of points

Mi (Ri ) comprising each observation (currently 5 in our work). With more data points, a random

sample would become much more informative about the true M(R) curve.
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Figure 6.13: The BNN model predictions, v2
s (n) (left) and yp (n) (right), for one observation (ns = 1) of

the DD2 EoS, the blue area represents the 95.4% confidence interval, and the solid line the mean.
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7 Conclusion and Future Work

7.1 Main conclusions

Throughout this study, we delved into the potentiality of BNNs, a probabilistic approach within the

realm of ML, to predict essential parameters such as proton fraction and the squared of the speed of

sound from a set of NS mock observations. Unlike conventional NNs, BNNs offer the unique advan-

tage of providing uncertainty estimates alongside their predictions.

Our dataset for the EoS was constructed from a RMF approach using a Bayesian framework, in-

corporating constraints from both nuclear matter properties and NS observations. This approach

resulted in a dataset of 25 287 different EoS. From this repository, we generated four different mock

observational datasets, each simulating different scenarios of observational uncertainty. Two of these

datasets included only simulated mass radius M(R) observations, while the remaining two included

additional information with TD Λ(M) measurements. This resulted in the training of four different

BNNs models to predict v2
s (n) for each of the four datasets, and the same for the yp (n).

At the core of our investigation lay a fundamental question: How can we establish a reverse map-

ping from NS observations to the underlying EoS? Our BNN-based approach successfully accom-

plished this task. We mapped from either five NS mass and radius measurements or, in an expanded

scope, with five mass-TD measurements to the speed of sound squared or the proton fraction across

fifteen fixed values of baryonic density. Importantly, this methodology accounted not only for dataset

uncertainties but also for inherent model uncertainty, a unique achievement in this field.

We conducted experiments to explore the influence of TD on model predictions, as well as the

impact of augmented input uncertainty on output prediction uncertainties for both speed of sound

and proton fraction. We assessed the model’s behavior for individual EoS within the test data and

extended our analysis to cover all EoS in the test dataset. We introduced quantitative metrics, such as

Γ, δ, Σ, and η, to evaluate model calibration and uncertainty. Our results highlighted that the uncer-

tainty predicted is highly sensitive to the precision of observational data, especially when correlations

with calculated properties exist, notably for the speed of sound at densities below three times satura-

tion density, as extensively discussed in [76].

We discovered that augmenting our synthetic TD data with lower uncertainty significantly re-

duces prediction uncertainty for the speed of sound. However, this reduction in uncertainty doesn’t

extend to the proton fraction. The boost in predictive accuracy for the speed of sound can be at-

tributed to the strong correlation between TD and the speed of sound, particularly evident near den-
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sities approximately twice the saturation density. In contrast, the proton fraction demonstrates a

higher sensitivity around the saturation density, particularly influenced by uncertainties in radius

measurements, stemming from the correlation with the radii of low-mass stars.

Our analysis also included the decomposition of uncertainty into its epistemic and aleatoric com-

ponents. We found that aleatoric uncertainty dominated in both speed of sound and proton fraction

predictions. Furthermore, the decomposition of uncertainty revealed that the inclusion of tidal de-

formability had varying effects on the types of uncertainty, depending on the model’s output. These

findings align with our observations regarding total uncertainty. Additionally, we examined how an

increase in dataset size influenced epistemic uncertainty, observing that it decreased as expected.

To validate the robustness of our BNN model, we tested it with mock measurements from the DD2

EoS, generated using a different microscopic framework than our training data. This test confirmed

the model’s versatility and generalizability, reaffirming its predictive capabilities beyond the specific

training data.

7.2 Limitations and future work

Throughout this study, we encountered several noteworthy challenges while working with BNNs. One

of the most prominent challenges came from the considerable demands placed on computational

resources. Despite having access to a computer with 64 cores, we encountered limitations due to

the resource-intensive nature of the BNN model. For instance, we attempted to establish mappings

between ’mock’ observations and pressure as well as energy density. However, these efforts proved

to be impractical due to the large amount of computing time and memory required. These param-

eters, while currently challenging, hold significant promise for future research directions. Another

intriguing avenue for exploration lies in investigating the symmetry energy, as explored in Krastev’s

recent work [37]. Furthermore, the dataset utilized from this article [25] offers valuable insights, but

the dataset including hyperons, from the same article, presents an equally enticing opportunity for

future investigations.

The results obtained from the DD2 model highlight the potential benefits of expanding the input

with more observable pairs, similar to the approach taken by Fujimoto et al. [27] and similar studies.

Nonetheless, it’s crucial to recognize that implementing such an approach, as elucidated in Section

4.2.3, necessitates substantial computational resources and time. While this presents a challenge, it’s

a limitation worth analyzing in future work.

In the realm of future research, an intriguing path involves subjecting the model to increased

uncertainty beyond its original training scope. This exploration could offer valuable insights into

the model’s ability to effectively capture noise and variations in the input data. For the functional

model, an exhaustive examination of the hyperparameter space presents a promising opportunity to

enhance model performance. This may entail conducting a series of systematic tests, including the

exploration of different optimizers, activation functions, and the utilization of grid search method-

ologies to optimize the number of layers and neurons, among other possibilities. Furthermore, in the

case of the stochastic model, an exploration of the potential impact of prior parameters, as demon-
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strated in Bollweg’s work [41], could significantly enhance model performance and robustness. Ad-

ditionally, the investigation of alternative distributions for the variational posterior is a path worth

pursuing.

Moreover, within the context of the output distribution,it may be worthwhile to explore different dis-

tributions or embrace the intriguing approach known as quantile regression [86]. Quantile regression

diverges from traditional distribution learning as it concentrates on learning the quantiles of the data

rather than attempting to define an entire probability distribution for the output.

By this point, the reader may wonder: Why didn’t we incorporate observational data?

For datasets 1 and 2, incorporating observational data could substantially enhance our analysis,

drawing parallels with methodologies demonstrated in [29] and [30]. Nevertheless, the existing ob-

servations still require further refinement to more effectively constrain the EoS. In response to this

challenge, we have taken a conservative approach when incorporating uncertainties associated with

mock observations. This approach strikes a balance, preserving a degree of uncertainty while deliv-

ering sufficient constraint to encapsulate the behavior of the EoS. Looking forward, advancements in

observatory capabilities, exemplified by projects like STROBE-X [21] and eXTP [19], may potentially

yield radius measurements with uncertainties as low as 2%-5%. This anticipated progress, as demon-

strated in our current study, holds the promise of significantly enhancing the predictive accuracy.

It’s essential to recognize that both of the fields we are studying are continually evolving, so the

possibilities for future work are boundless given adequate resources.

7.3 Final remarks

As a final remark, while the potential for further advancement in this field remains substantial, our

contributions have aimed to propel its evolution. Specifically, we have successfully addressed the two

primary questions posed in the introduction: constructing the EoS from observables and quantifying

the unpredictability inherent in our model and our dataset. This dissertation’s key findings have been

successfully published in article [87].

Neutron Star (NS)s, as objects of study, hold immense appeal for researchers in the fields of Nu-

clear physics and ML. This appeal is attributable not only to the proliferation of observations coming

ahead, resulting in rich and varied data sets, but also, and even more significantly, to the captivating

questions that the study of these celestial objects promises to answer.
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Appendix A

Exploring the Equations of Motion and the

Symmetry Energy in Nuclear Models

A.1 Equations of motion

The Lagrangian density we used is

L =LN +LM +LN L +Llep , (A.1)

where each term is represented as

LN =Ψ̄(x)
[(

iγµ∂
µ− gωω

µ(x)− gϱt ·ϱµ(x)
)− (

m − gϕϕ(x)
)]
Ψ(x) ,

LM =1

2

[
∂µϕ(x)∂µϕ(x)−m2

ϕϕ
2(x)

]
− 1

4
F (ω)
µν (x)F (ω)µν(x)+ 1

2
m2
ωωµ(x)ωµ(x)−

1

4
F (ϱ)
µν(x) ·F (ϱ)µν(x)+ 1

2
m2
ϱϱµ(x) ·ϱµ(x) ,

LN L =− 1

3
b m g 3

ϕϕ
3(x)− 1

4
cg 4

ϕϕ
4(x)+ ξ

4!
g 4
ω(ωµ(x)ωµ(x))2 +Λωg 2

ϱϱµ(x) ·ϱµ(x)g 2
ωωµ(x)ωµ(x) ,

Llep =∑
l
Ψ̄l (x)

(
iγµ∂

µ−ml
)
Ψl (x) .

In order to obtain the equations of motion for a general fieldφ, one needs to solve the Euler-Lagrange

equation:

∂µ
∂L

∂(∂µφ(x))︸ ︷︷ ︸
1.

= ∂L

∂φ(x)︸ ︷︷ ︸
2.

. (A.2)

We are then going to show how to solve this equation for the five fields being used ϕ(x), ωµ(x), ϱµ(x),

Ψ(x) andΨl (x), calculating the two parts 1. and 2. and then combining them.
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A.1.1 Scalar-isoscalar meson fieldϕ(x)

1.

∂a
∂L

∂(∂aϕ(x))
= 1

2
∂a

[
∂
(
∂µϕ(x)

)
∂(∂aϕ(x))

∂µϕ(x)+∂µϕ(x)
∂
(
∂µϕ(x)

)
∂(∂aϕ(x))

]
,

= 1

2

[
∂aδ

µ
a∂

µϕ(x)+∂a∂µϕ(x)gµa]= 1

2

(
∂µ∂

µϕ(x)+∂µ∂µϕ(x)
)= ∂µ∂µϕ(x) . (A.3)

2.

∂L

∂ϕ(x)
= ∂

∂ϕ(x)

(
gϕϕ(x)Ψ̄(x)Ψ(x)− 1

2
m2
ϕϕ(x)2 − 1

3
bg 3

ϕϕ(x)3 − 1

4
cg 4

ϕϕ(x)4
)

,

= gϕΨ̄(x)Ψ(x)−m2
ϕϕ(x)−bmg 3

ϕϕ(x)2 − cg 4
ϕϕ

3(x) . (A.4)

The equation of motion is then

∂µ∂
µϕ(x)+m2

ϕϕ(x)+bmg 3
ϕϕ

2(x)+ cg 4
ϕϕ

3(x) = gϕΨ̄(x)Ψ(x) . (A.5)

A.1.2 Vector-isoscalar meson fieldωµ(x)

1.

∂a
∂L

∂(∂aωb(x))
=−1

4
∂a

[
∂F (ω)

µν (x)

∂(∂aωb(x))
F (ω)µν(x)+F (ω)

µν (x)
∂F (ω)µν(x)

∂(∂aωb(x))

]
,

=−1

4
∂a

[
∂
(
∂µωv −∂vωµ

)
∂(∂aωb)

F (ω)µν(x)+F (ω)
µν (x)gµl gνk ∂ (∂lωk −∂kωl )

∂(∂aωb)

]
,

=−1

4
∂a

[(
δµaδνb −δνaδµb

)
F (ω)µν(x)+F (ω)lk (x)

(
δl aδkb −δkaδlb

)]
,

=−1

4
∂a

[(
F (ω)ab(x)−F (ω)ba(x)

)
+

(
F (ω)ab(x)−F (ω)ba(x)

)]
=−∂aF (ω)ab(x) . (A.6)

2.

∂L

∂ωb(x)
= ∂

∂ωb(x)

(
−gωΨ̄(x)γµωµ(x)Ψ(x)+ 1

2
m2
ωωµ(x)ωµ(x)+ ξ

4!
g 4
ω(ωµ(x)ωµ(x))2

+Λωg 2
ϱϱµ(x) ·ϱµ(x)g 2

ωωµ(x)ωµ(x)

)
,

=−gωΨ̄(x)γbΨ(x)+ 1

2
m2
ω

(
δµbωµ(x)+ωµ(x)gµb

)
+ ξ

12
g 4
ω(ωµ(x)ωµ(x))

(
δµbωµ(x)+ωµ(x)gµb

)
+Λωg 2

ϱϱµ(x) ·ϱµ(x)g 2
ω

(
δµbωµ(x)+ωµ(x)gµb

)
,

=−gωΨ̄(x)γbΨ(x)+m2
ωω

b(x)+ ξ

3!
g 4
ω(ωµ(x)ωµ(x))ωb(x)+2Λωg 2

ϱϱµ(x) ·ϱµ(x)g 2
ωω

b(x) .

(A.7)

The equation of motion becomes

∂aF (ω)ab(x)+m2
ωω

b(x)+ ξ

3!
g 4
ω(ωµ(x)ωµ(x))ωb(x)+2Λωg 2

ϱϱµ(x) ·ϱµ(x)g 2
ωω

b(x) = gωΨ̄(x)γbΨ(x) .

(A.8)
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A.1.3 Vector-isovector meson field ϱµ(x)

1.

∂a
∂L

∂(∂aϱλb(x))
=−∂aF (ϱ)ab(x) . (A.9)

2.

∂L

∂ϱλb(x)
= ∂

∂ϱλb(x)

(
Ψ̄(x)γµgρ tλϱλµ(x)Ψ(x)+Λωg 2

ϱϱλµ(x)ϱµ
λ

(x)g 2
ωωµω

µ+ 1

2
m2
ρϱλµ(x)ϱµ

λ

)
(x) ,

= Ψ̄(x)γb gρ tλΨ(x)+Λωg 2
ϱ

(
δ
µ

bϱ
µ

λ
(x)+ϱλµ(x)g bµ

)
g 2
ωωµ(x)ωµ(x)+ 1

2
m2
ρ

(
δ
µ

bϱ
µ

λ
(x)+ϱλµ(x)g bµ

)
,

= Ψ̄(x)γb gρ tλΨ(x)+2Λωg 2
ϱϱ

b
λ(x)g 2

ωωµ(x)ωµ(x)+ 1

2
m2
ρϱ

b
λ(x) . (A.10)

The equation of motion is then expressed as follows

∂aF (ϱ)ab(x)+2Λωg 2
ϱϱ

b(x)g 2
ωωµ(x)ωµ(x)+m2

ρϱ
b(x) = Ψ̄(x)γb gρtΨ(x) . (A.11)

A.1.4 Nucleonic fieldΨ(x)

1.

∂a
∂L

∂(∂aΨ†(x))
= 0 . (A.12)

2.

∂L

∂Ψ†(x)
= ∂

∂Ψ†(x)

[
Ψ†(x)γ0

[
γµ

(
i∂µ− gωωµ(x)− gϱt ·ϱµ(x)

)
− (

m − gϕϕ(x)
)]
Ψ(x)

]
,

= γ0
[
γµ

(
i∂µ− gωωµ(x)− gϱt ·ϱµ(x)

)
− (

m − gϕϕ(x)
)]
Ψ(x) . (A.13)

The equation of motion can then be described by the following equation[
γµ

(
i∂µ− gωωµ(x)− gϱt ·ϱµ(x)

)
− (

m − gϕϕ(x)
)]
Ψ(x) = 0 . (A.14)

A.1.5 Leptonic fieldΨl (x)

1.

∂a
∂L

∂(∂aΨ
†
l (x))

= 0 . (A.15)

2.

∂L

∂Ψ†
l (x)

= ∂

∂Ψ†
l (x)

[
Ψ†

l (x)γ0
[
γµi∂µ−ml

]
Ψl (x)

]
,

= γ0
[

iγµ∂µ−ml

]
Ψl (x) . (A.16)

One can then describe the equation of motion as[
iγµ∂µ−ml

]
Ψl (x) = 0 . (A.17)
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A.2 Symmetry energy

In order to calculate the Symmetry energy we are going to start with the definition of the energy den-

sity previously calculated:

ε= ∑
j=p,n

[
gωω0n j + gρϱ03I3 j n j +

(2J j +1)

2π2

∫ kF, j

0

(
k2

√
k2 +m∗2

j

)
dk

]

+ ∑
j=e−,µ−

(2J j +1)

2π2

∫ kF, j

0
dk

(
k2

√
k2 +m2

j

)
−

[
−1

2
m2
ϕϕ

2 − 1

3
b m g 3

ϕϕ
3 − 1

4
cg 4

ϕϕ
4 + ξ

4!
g 4
ωω

4
0 +

1

2
m2
ωω

2
0 +

1

2
m2
ϱϱ

2
03 +Λωg 2

ϱϱ
2
03g 2

ωω
2
0

]
. (A.18)

Separating the nucleonic εb and the leptonic εl part

ε=εb +εl , (A.19)

the nucleonic part stays

εb = ∑
j=p,n

[
gωω0n j + gρϱ03I3 j n j +

(2J j +1)

2π2

∫ kF, j

0

(
k2

√
k2 +m∗2

j

)
dk

]
−

[
−1

2
m2
ϕϕ

2 − 1

3
b m g 3

ϕϕ
3 − 1

4
cg 4

ϕϕ
4 + ξ

4!
g 4
ωω

4
0 +

1

2
m2
ωω

2
0 +

1

2
m2
ϱϱ

2
03 +Λωg 2

ϱϱ
2
03g 2

ωω
2
0

]
. (A.20)

Defining the fermi momentum as

kF =
(

3π2n

2

) 1
3

. (A.21)

The fermi momentum for the proton and neutron can be expressed in terms of the isospin asymmetry

parameter δ= nn−np

n as

kF,n = kF (1+δ)
1
3 , (A.22)

kF,p = kF (1−δ)
1
3 . (A.23)

Replacing the fermi momentums in the energy density it becomes
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εb = ∑
j=p,n

[
gωω0n j + gρϱ03I3 j n j

]+ 1

π2

∫ kF (1−δ)
1
3

0

(
k2

√
k2 +m∗2

)
dk + 1

π2

∫ kF (1+δ)
1
3

0

(
k2

√
k2 +m∗2

)
dk

−
[
−1

2
m2
ϕϕ

2 − 1

3
b m g 3

ϕϕ
3 − 1

4
cg 4

ϕϕ
4 + ξ

4!
g 4
ωω

4
0 +

1

2
m2
ωω

2
0 +

1

2
m2
ϱϱ

2
03 +Λωg 2

ϱϱ
2
03g 2

ωω
2
0

]
,

= ∑
j=p,n

[
gρϱ03I3 j n j

]− 1

2
m2
ϱϱ

2
03 −Λωg 2

ϱϱ
2
03g 2

ωω
2
0 +

1

π2

∫ kF (1−δ)
1
3

0

(
k2

√
k2 +m∗2

)
dk

+ 1

π2

∫ kF (1+δ)
1
3

0

(
k2

√
k2 +m∗2

)
dk + gωω0n + 1

2
m2
ϕϕ

2 + 1

3
b m g 3

ϕϕ
3 + 1

4
cg 4

ϕϕ
4 − ξ

4!
g 4
ωω

4
0 −

1

2
m2
ωω

2
0 ,

=1

2

∑
j=p,n

[
gρϱ03I3 j n j

]+ 1

π2

∫ kF (1−δ)
1
3

0

(
k2

√
k2 +m∗2

)
dk + 1

π2

∫ kF (1+δ)
1
3

0

(
k2

√
k2 +m∗2

)
dk

+ gωω0n + 1

2
m2
ϕϕ

2 + 1

3
b m g 3

ϕϕ
3 + 1

4
cg 4

ϕϕ
4 − ξ

4!
g 4
ωω

4
0 −

1

2
m2
ωω

2
0 . (A.24)

Now we can expand the nucleonic component of the energy density per density in a symmetric and

asymmetric part:

εb

n
(n,δ)−m ≡ ϵ(n,δ) = ϵSN M (n)+Es ym(n)δ2 ,ϵSN M (n) ≡ ϵ(n,δ= 0) . (A.25)

The symmetry energy is defined as:

Es ym(n) = ∂2ϵ (n,δ)

2∂δ2

∣∣∣∣
δ=0

. (A.26)

Calculating then the second derivative of the binding energy per nucleon with respect to the isospin

asymmetry parameter one obtains

Es ym(n) =1

2

(
∂2

∂δ2

(
1

8

(
gρ

)2 nδ2

2Λωg 2
ϱg 2

ωω
2
0 +m2

ρ

+ 1

nπ2

∫ kF (1+δ)1/3

0

(
k2

√
k2 +m∗2

)
dk + 1

nπ2

∫ kF (1−δ)1/3

0

(
k2

√
k2 +m∗2

)
dk

))
,

=1

2

1

4

(
gρ

)2 n

2Λωg 2
ϱg 2

ωω
2
0 +m2

ρ

+ ∂2

∂δ2

[
1

nπ2

(∫ kF (1+δ)1/3

0

(
k2

√
k2 +m∗2

)
dk +

∫ kF (1−δ)1/3

0

(
k2

√
k2 +m∗2

)
dk

)]
︸ ︷︷ ︸

D

 ,

(A.27)

where the derivative of the second term, denominated by D gives
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D = ∂

∂δ

[(
1

nπ2

)
∂
(
kF (1−δ)1/3)

∂δ

∂

∂
(
kF (1−δ)1/3) ∫ kF (1−δ)1/3

0

(
k2

√
k2 +m∗2

)
dk

+
(

1

nπ2

)
∂
(
kF (1+δ)1/3)

∂δ

∂

∂
(
kF (1+δ)1/3) ∫ kF (1+δ)1/3

0

(
k2

√
k2 +m∗2

)
dk

]
,

= ∂

∂δ

[(
1

nπ2

)(
−1

3
k3

F

)(√
k2

F (1−δ)
2
3 +m∗2

)
+

(
1

nπ2

)(
1

3
k3

F

)(√
k2

F (1+δ)
2
3 +m∗2

)]
,

=
(

1

nπ2

)(
1

3
k3

F

)[
−1

2

(
k2

F (1−δ)
2
3 +m∗2

)−1/2
(−2k2

F

3

)
(1−δ)−1/3 + 1

2

(
k2

F (1+δ)
2
3 +m∗2

)−1/2
(

2k2
F

3

)
(1+δ)−1/3

]
,

=
(

1

nπ2

)(
1

9
k5

F

) (1−δ)−1/3√
k2

F (1−δ)
2
3 +m∗2

+ (1+δ)−1/3√
k2

F (1+δ)
2
3 +m∗2

 ,

=
(

3��π
2

2k3
F��π

2

)(
1

9
k5

F

) (1−δ)−1/3√
k2

F (1−δ)
2
3 +m∗2

+ (1+δ)−1/3√
k2

F (1+δ)
2
3 +m∗2

 ,

=1

6
k2

F

 (1−δ)−1/3√
k2

F (1−δ)
2
3 +m∗2

+ (1+δ)−1/3√
k2

F (1+δ)
2
3 +m∗2

 . (A.28)

Substituing the result obtained for D in Eq. A.27 gives

Es ym =1

2

1

4

(
gρ

)2 n

2Λωg 2
ϱg 2

ωω
2
0 +m2

ρ

+ 1

6
k2

F

 (1−δ)−1/3√
k2

F (1−δ)
2
3 +m∗2

+ (1+δ)−1/3√
k2

F (1+δ)
2
3 +m∗2



δ=0

,

=1

2

1

4

(
gρ

)2 n

2Λωg 2
ϱg 2

ωω
2
0 +m2

ρ

+ 1

6
k2

F

 1√
k2

F +m∗2
+ 1√

k2
F +m∗2



δ=0

,

=1

8

(
gρ

)2 n

2Λωg 2
ϱg 2

ωω
2
0 +m2

ρ

+ 1

6
k2

F

 1√
k2

F +m∗2

 ,

= 2k3
F

(3π2)8

(
gρ

)2

2Λωg 2
ϱg 2

ωω
2
0 +m2

ρ

+ 1

6

 k2
F√

k2
F +m∗2

= k3
F

12π2

(
gρ

)2

2Λωg 2
ϱg 2

ωω
2
0 +m2

ρ

+ 1

6

 k2
F√

k2
F +m∗2

 .

(A.29)

Then the symmetry energy becomes:

Es ym(n) = 1

8

(
gϱ

)2 n

2Λωg 2
ϱg 2

ωω
2
0 +m2

ρ

+ 1

6
k2

F

 1√
k2

F +m∗2

 . (A.30)

And the binding energy per nucleon for symmetric nuclear matter

ϵSN M (n) = 1

n

[
1

2
m2
ϕϕ

2 + 1

3
b m g 3

ϕϕ
3 + 1

4
cg 4

ϕϕ
4 − ξ

4!
g 4
ωω

4
0 −

1

2
m2
ωω

2
0 + gωω0n + 2

π2

∫ kF

0

(
k2

√
k2 +m∗2

)
dk

]
−m .

(A.31)
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Appendix B

Bayesian Neural Networks : Demonstrations

and Theoretical Insights

B.1 Kullback-Leibler divergence

If the two distributions being calculated are two multivariate normal distributions with correlation

such as q(θ) =N (µq ,Σq ) and P (θ) =N (µp ,Σp ) then :

KL(q(θ)||P (θ)) =
∫
θ

q(θ) log

(
q(θ)

P (θ)

)
dθ ,

=
∫
θ

q(θ) log
(
q(θ)

)−q(θ) log(P (θ))dθ ,

= Eq
1

2

[
log

det(Σp )

det(Σq )
− (x−µq )TΣ−1

q (x−µq )+ (x−µp )TΣ−1
p (x−µp )

]
,

= 1

2

[
Eq

(
log

det(Σp )

det(Σq )

)
−Eq (x−µq )TΣ−1

q (x−µq )+Eq (x−µp )TΣ−1
p (x−µp )

]
,

= 1

2


(
log

det(Σp )

det(Σq )

)
︸ ︷︷ ︸

1

−Eq (x−µq )TΣ−1
q (x−µq )︸ ︷︷ ︸

2

+Eq (x−µp )TΣ−1
p (x−µp )︸ ︷︷ ︸

3

 . (B.1)

For the term 2 and 3, since it is a scalar ∈ R so it’s possible to say that tr(X ) = X leading to tr(ABC ) =
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tr(BC A) as it is present in [88]:

KL(q(θ)||P (θ)) = 1

2

[(
log

det(Σp )

det(Σq )

)
−Eq tr

(
Σ−1

q (x−µq )(x−µq )T
)
+Eq tr

(
Σ−1

p (x−µp )(x−µp )T
)]

,

= 1

2

[(
log

det(Σp )

det(Σq )

)
− tr

(
Σ−1

q Eq (x−µq )(x−µq )T
)
+ tr

(
Σ−1

p Eq (xxT −2µp xT +µpµ
T
p )

)]
,

= 1

2

[(
log

det(Σp )

det(Σq )

)
− tr

(
Σ−1

q Σq

)
+ tr

(
Σ−1

p Eq (xxT −2µp xT +µpµ
T
p )

)]
,

= 1

2

[(
log

det(Σp )

det(Σq )

)
− tr

(
1Sc

)+ tr
(
Σ−1

p {Eq (xxT )−Eq (2µp xT )+Eq (µpµ
T
p )}

)]
,

= 1

2

[(
log

det(Σp )

det(Σq )

)
−Sc + tr

(
Σ−1

p {Σq +µqµ
T
q −2µpµ

T
q +µpµ

T
p }

)]
,

= 1

2

[(
log

det(Σp )

det(Σq )

)
−Sc + tr

(
Σ−1

p Σq

)
+ tr

(
Σ−1

p {µqµ
T
q −2µpµ

T
q +µpµ

T
p }

)]
,

= 1

2

[(
log

det(Σp )

det(Σq )

)
−Sc + tr

(
Σ−1

p Σq

)
+ tr

(
Σ−1

p {(µq −µp )(µq −µp )T }
)]

,

= 1

2

[(
log

det(Σp )

det(Σq )

)
−Sc + tr

(
Σ−1

p Σq

)
+ tr

(
(µq −µp )TΣ−1

p (µq −µp )
)]

,

= 1

2

[(
log

det(Σp )

det(Σq )

)
−Sc + tr

(
Σ−1

p Σq

)
+ (µq −µp )TΣ−1

p (µq −µp )

]
, (B.2)

Sc is the dimension of the correlation matrix. For a prior equal to P (θ) = N (0,1), the expression

becomes:

KL(q(θ)||P (θ)) = 1

2

[(− logdet(Σq )
)−Sc + tr

(
Σq

)+ (µq )T (µq )
]

. (B.3)

Note: During the dissertation, we use a different notation for the parameters of the variational poste-

rior: q(θ) =N (µφ,Σφ).

B.2 Loss function for mini-batch

The loss function considering a mini-batch gets:

F (D,φ) ≈K L(qφ(θ)||P (θ))− 1

N

N∑
n=1

logP (D|θn) ,

=K L(qφ(θ)||P (θ))−
D∑

i=1

1

N

N∑
n=1

logP (y (i )|x(i ),θn) ,

=K L(qφ(θ)||P (θ))− D

B

B∑
i=1

1

N

N∑
n=1

logP (y (i )|x(i ),θn) . (B.4)

Here D is the training size, N is the number of Monte Carlo samples, and B is the batch size. The

loss function is normally divided by the number of samples of the training dataset. This way the sum

turns into an average :

F (D,φ) = 1

D
K L(qφ(θ)||P (θ))− 1

B

B∑
i=1

1

N

N∑
n=1

logP (y (i )|x(i ),θn) . (B.5)

Note: By default, when TensorFlow calculates the loss function, it averages over the mini-batch,

hence, the factor 1
B is already being used, however, the first term is not, by default, divided by D.
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B.3 Law of total variance

The law of total expectation is formulated as:

E[Y ] = E [E[Y |X ]] , (B.6)

where Y and X are two random variables. Similarly, the law of total variance is expressed as

Var[Y ] = E[Var[Y |X ]]+Var[E[Y |X ]] . (B.7)

The variance of a random variable Y is defined as Var[Y ] = E[Y 2]− (E[Y ])2. Here, we will illustrate

how to deduce this formula using the law of total variance:

E[Var[Y |X ]] =E[E[Y 2|X ]− (E[Y |X ])2] , (B.8)

=E[E[Y 2|X ]]−E([E[Y |X ])2] , (B.9)

=E[Y 2]−E[(E[Y |X ])2] . (B.10)

In Eq.B.8, we use the definition of variance, and in Eq.B.10, we utilize the law of total expectation.

Similarly, for the term Var[E[Y |X ]]:

Var[E[Y |X ]] =E[(E[Y |X ])2]− (E[E[Y |X ]])2 , (B.11)

=E[(E[Y |X ])2]− (E[Y ])2 . (B.12)

Again, in Eq.B.11, we apply the variance definition, and in the right term of Eq.B.12, we use the law of

total expectation. Combining both terms:

Var[E[Y |X ]]+E[Var[Y |X ]] =E[(E[Y |X ])2]− (E[Y ])2 +E[Y 2]−E[(E[Y |X ])2] ,

=E[Y 2]− (E[Y ])2 = Var[Y ] ,

we arrive at the definition of the variance from the law of total variance.

B.4 Evidence lower bound

To gain a clearer understanding of the Evidence Lower Bound (ELBO), we can derive it using Jensen’s

inequality [89]. Jensen’s inequality states that if g () is concave, then g (E[X ]) ≥ E[g (X )]. Applied to

the logarithm, the inequality takes the form: Jensen’s inequality tells you that if g () is concave then

g (E[X ]) ≥ E[g (X )], so for the logarithm:

logE[X ] ≥ E[log X ] . (B.13)

Now, let’s explore the derivation of the ELBO using Jensen’s inequality. Starting with the expression

for the logarithm of the data likelihood:

log p(x) = log
∫

p(x, z)d z ,

= log
∫

p(x, z)
q(z)

q(z)
d z ,

= log Eq

[
p(x, z)

q(z)

]
. (B.14)
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By applying Jensen’s inequality from Eq.B.13:

log p(x) = log Eq

[
p(x, z)

q(z)

]
,

log p(x) ≥ Eq

[
log

p(x, z)

q(z)

]
. (B.15)

This is where the term "Evidence Lower Bound" originates. Moving forward, let’s derive the expres-

sion for the ELBO Eq.3.30 :

ELBO = Eq

[
log

p(x, z)

q(z)

]
,

= Eq
[
log p(x, z)− log q(z)

]
,

= Eq
[
log p(z, x)

]−Eq
[
log q(z)

]
,

= Eq
[
log p(x|z)p(z)

]−Eq
[
log q(z)

]
,

= Eq
[
log p(x|z)

]+Eq
[
log p(z)− log q(z)

]
,

= Eq
[
log p(x|z)

]+Eq

[
log p(z)

log q(z)

]
,

= Eq
[
log p(x|z)

]−K L(q(z)||p(z)) . (B.16)
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Appendix C

Deep Dive Into the Dataset

Table C.1: Description for input of dataset 1 and 2 sampled with standard deviation present in Table

4.4.

Dataset 1

Features mean σ min max

M1 (M⊙) 1.553 0.320 1.000 2.372

M2 (M⊙) 1.553 0.320 1.000 2.363

M3 (M⊙) 1.553 0.320 1.000 2.347

M4 (M⊙) 1.553 0.320 1.000 2.378

M5 (M⊙) 1.553 0.320 1.000 2.371

R1 (Km) 12.405 0.375 10.489 13.767

R2 (Km) 12.405 0.375 10.602 13.788

R3 (Km) 12.405 0.376 10.468 13.820

R4 (Km) 12.405 0.374 10.612 13.830

R5 (Km) 12.406 0.375 10.482 13.788

Dataset 2

Features mean σ min max

M1 (M⊙) 1.552 0.317 1.000 2.381

M2 (M⊙) 1.553 0.317 1.000 2.371

M3 (M⊙) 1.553 0.317 1.000 2.370

M4 (M⊙) 1.553 0.317 1.000 2.386

M5 (M⊙) 1.553 0.317 1.000 2.378

R1 (Km) 12.406 0.456 10.053 14.301

R2 (Km) 12.405 0.456 10.247 14.458

R3 (Km) 12.406 0.457 9.847 14.386

R4 (Km) 12.404 0.456 9.777 14.221

R5 (Km) 12.405 0.456 10.133 14.335
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Table C.2: Description for input of dataset 3 and 4 sampled with standard deviation present in Table

4.4.

Dataset 3

Features mean σ min max

M1 (M⊙) 1.553 0.317 1.000 2.379

M2 (M⊙) 1.553 0.317 1.000 2.379

M3 (M⊙) 1.553 0.317 1.000 2.373

M4 (M⊙) 1.552 0.317 1.000 2.374

M5 (M⊙) 1.553 0.317 1.000 2.359

R1 (Km) 12.405 0.456 10.121 14.347

R2 (Km) 12.405 0.456 10.148 14.223

R3 (Km) 12.405 0.456 10.060 14.079

R4 (Km) 12.406 0.455 9.995 14.346

R5 (Km) 12.405 0.456 10.184 14.340

M1(0) (M⊙) 1.553 0.322 1.000 2.384

M2(0) (M⊙) 1.554 0.322 1.000 2.374

M3(0) (M⊙) 1.553 0.321 1.000 2.383

M4(0) (M⊙) 1.553 0.322 1.000 2.380

M5(0) (M⊙) 1.553 0.322 1.000 2.385

Λ1 574.87 728.76 2.034 5131.28

Λ2 574.57 728.27 0.008 5124.69

Λ3 574.86 728.84 1.234 4710.00

Λ4 576.31 729.39 1.269 4831.33

Λ5 576.16 729.50 1.345 4690.01

Dataset 4

Features mean σ min max

M1 (M⊙) 1.553 0.317 1.000 2.379

M2 (M⊙) 1.553 0.317 1.000 2.379

M3 (M⊙) 1.553 0.317 1.000 2.373

M4 (M⊙) 1.552 0.317 1.000 2.374

M5 (M⊙) 1.553 0.317 1.000 2.359

R1 (Km) 12.405 0.455 10.128 14.347

R2 (Km) 12.406 0.456 10.148 14.270

R3 (Km) 12.406 0.456 10.060 14.129

R4 (Km) 12.406 0.455 9.995 14.346

R5 (Km) 12.405 0.456 10.184 14.340

M1(0) (M⊙) 1.553 0.322 1.000 2.384

M2(0) (M⊙) 1.554 0.322 1.000 2.374

M3(0) (M⊙) 1.553 0.321 1.000 2.383

M4(0) (M⊙) 1.553 0.322 1.000 2.380

M5(0) (M⊙) 1.553 0.322 1.000 2.385

Λ1 575.41 748.32 0 5303.05

Λ2 574.18 746.84 0 5701.24

Λ3 575.22 748.13 0.001 5511.38

Λ4 576.38 748.89 0.001 5223.20

Λ5 576.56 749.45 0.001 5723.07
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Table C.3: Description of the two outputs we used the speed of sound squared and the proton fraction.

v2
s [c2]

Features mean σ min max

v2
s (n1) 0.044 0.005 0.031 0.076

v2
s (n2) 0.105 0.008 0.082 0.144

v2
s (n3) 0.177 0.012 0.143 0.244

v2
s (n4) 0.250 0.017 0.204 0.348

v2
s (n5) 0.318 0.022 0.268 0.439

v2
s (n6) 0.377 0.028 0.322 0.524

v2
s (n7) 0.425 0.034 0.359 0.586

v2
s (n8) 0.462 0.039 0.381 0.634

v2
s (n9) 0.490 0.043 0.396 0.668

v2
s (n10) 0.511 0.047 0.408 0.695

v2
s (n11) 0.525 0.050 0.415 0.719

v2
s (n12) 0.535 0.053 0.421 0.739

v2
s (n13) 0.542 0.056 0.424 0.754

v2
s (n14) 0.546 0.058 0.426 0.767

v2
s (n15) 0.549 0.060 0.428 0.778

yp

Features mean σ min max

yp (n1) 0.060 0.0078 0.031 0.093

yp (n2) 0.069 0.0065 0.045 0.100

yp (n3) 0.077 0.0073 0.054 0.128

yp (n4) 0.085 0.0081 0.062 0.152

yp (n5) 0.094 0.0086 0.071 0.170

yp (n6) 0.102 0.0088 0.080 0.185

yp (n7) 0.109 0.0088 0.087 0.196

yp (n8) 0.115 0.0086 0.094 0.204

yp (n9) 0.121 0.0083 0.100 0.211

yp (n10) 0.125 0.0079 0.105 0.216

yp (n11) 0.128 0.0076 0.109 0.220

yp (n12) 0.131 0.0072 0.113 0.223

yp (n13) 0.134 0.0068 0.117 0.226

yp (n14) 0.136 0.0065 0.120 0.228

yp (n15) 0.138 0.0062 0.122 0.230
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