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Abstract

The retina can be used as a window to the brain and is accessible through optical

methods. As such, the analysis of changes detected in retinal images allows for the non-

invasive diagnosis of neurodegenerative diseases, which remains complex and challenging.

Advanced medical image analysis processes, such as deep learning (DL), are growing

rapidly and have enabled the development of various retinal segmentation methods.

However, these solutions are created based on a specific type of data and/or acquisition

system. The creation of a flexible and versatile segmentation model that is capable of

segmenting images of retinas from different disease models and acquisition systems is

important, especially for applications such as the individual analysis of retinal layers and

the measurement of their thickness, which help in the diagnosis and monitoring of various

diseases.

The aim of the work proposed here is to segment optical coherence tomography (OCT)

images for application in the retinas of multiple animal models of neurodegenerative

diseases and multiple acquisition systems, using DL algorithms.

For this purpose, two convolution neural networks were created, the Attention-Res-U-

Net and the Teacher-Student Generative Adversarial Network (GAN), which were trained

on a set of B-scans obtained in mice, controls and models of Alzheimer’s disease, with the

Phoenix OCT imaging system.

In the test set, with the same types of controls and disease models, a mean absolute

error (MAE) of 0.88 µm with an interquartile range (IQR) of 0.42 µm was achieved for

the Attention-Res-U-Net and an MAE of 0.54 µm with an IQR of 0.29 µm for the Teacher-

Student GAN, these values being the distances between the automatic segmentation and
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the previously existing segmentations. Due to resource management, the remaining tests

were only carried out with the Attention-Res-U-Net. Thus, another test was carried out,

this time with a dataset of animal models of diabetes, where the network achieved an

MAE of 5.09 µm with an IQR of 4.38 µm. In the last phase, transfer learning was applied

to the trained Attention-Res-U-Net model, with the goal of applying it to systems other

than the one used for training, in this case, the Bioptigen. This new model was also tested

with B-scans obtained from the new system, and successfully segmented the intended

layers, according to expert evaluation.

In general, the developed segmentation algorithm was able to successfully segment the

retinal layers in the images of the different animal models, in both acquisition systems.

Keywords: Machine Learning, Optical Coherence Tomography, Segmentation, Retina,

Central Nervous System.



Resumo

A retina pode ser utilizada como uma janela para o cérebro e é acesśıvel através de

métodos óticos. Como tal, a análise de alterações detetadas em imagens da retina permite

o diagnóstico não invasivo de doenças neurodegenerativas, o qual continua a ser complexo

e desafiante. Processos avançados de análise de imagens médicas, como o deep learning

(DL), estão em franco crescimento e têm permitido o desenvolvimento de diversos métodos

de segmentação da retina. No entanto, estas soluções são criadas com base num tipo

espećıfico de dados e/ou sistema de aquisição. A criação de um modelo de segmentação

flex́ıvel e versátil que seja capaz de segmentar imagens de retinas de diferentes modelos

de doença e sistemas de aquisição, é importante, especialmente para aplicações como a

análise individual das camadas da retina e a medição da sua espessura, que ajudam no

diagnóstico e monitorizaçáo de diversas doenças.

O trabalho aqui proposto tem como finalidade a segmentação de imagens de tomografia

de coerência ótica (OCT) para aplicação em retinas de múltiplos modelos animais de

doenças neurodegenerativa e múltiplos sistemas de aquisição, através algoritmos DL.

Para tal, foram criadas duas redes neuronais de convolução, a Attention-Res-U-Net e a

Teacher-Student Generative Adversarial Network, as quais foram treinadas num conjunto

de B-scans obtidos em murganhos, controlos e modelos da doença de Alzheimer, com o

sistema de imagem Phoenix OCT.

No conjunto de teste, com os mesmos tipos de controlos e modelos de doença, foi

atingido um mean absolute error (MAE) de 0.88 µm com uma interquartile range (IQR)

de 0.42 µm para a Attention-Res-U-Net e um MAE de 0.54 µm com uma IQR de 0.29

µm para a Teacher-Student GAN, sendo estes valores as distâncias entre a segmentação
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automática e as segmentações previamente existentes. Devido a uma gestão de recursos,

os restantes testes foram realizados apenas com a Attention-Res-U-Net. Assim, outro

teste foi realizado, desta vez com um dataset de modelo animal diabético, onde a rede

atingiu um MAE de 5.09 µm com uma IQR de 4.38 µm. Numa última fase, foi aplicado

transfer learning ao modelo Attention-Res-U-Net treinado, com vista à sua aplicação

a sistemas distintos do usado no treino, neste caso o Bioptigen. Este novo modelo foi

também testado com B-scans obtidos no novo sistema, tendo segmentado com sucesso as

camadas pretendidas, de acordo com avaliação de experts.

Em geral, o algoritmo de segmentação desenvolvido foi capaz de segmentar com sucesso

as camadas da retina nas imagens dos diferentes modelos animais, em ambos os sistemas

de aquisição.

Palavras-chave: Machine Learning, Tomografia de Coerência Ótica, Segmentação,

Retina, Sistema Nervoso Central.
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Chapter 1

Introduction

1.1 Context and Motivation

Acquiring images of the central nervous system (CNS) has allowed us to expand our

knowledge regarding the changes that occur in the CNS, not only in disease but also in

healthy aging.

The retina, being part of the central nervous system, can be used as a window to the

brain. The analysis of changes detected in images of the retina provides information about

the central nervous system [1]. Currently, retinal imaging allows obtaining optical images

through non-invasive methods of the CNS, which is not the case for the brain [2].

Therefore, one of the potential applications of examining the retina to spot changes in

the CNS is the non-invasive diagnosis of neurodegenerative diseases.

Nowadays, the diagnosis of neurodegenerative diseases such as Alzheimer’s disease,

remains complex and challenging. In fact, diagnosing CNS diseases using traditional

methods only detects symptoms when the condition is already in an advanced stage.

According to the World Health Organization (WHO), more than 55 million people are

currently living with dementia, with approximately 10 million new cases every year. The

most common form of dementia is Alzheimer’s disease, accounting for 60-70% of cases [3].

1



Chapter 1. Introduction 2

As a result, it is crucial to seek early diagnosis methods that enable the identification

of neuropathologies at the onset of the disease and the tracking of its progression. This

may allow interventional measures to be taken in the time window when intervention

could have a significant impact on delaying or even stopping the progression of the disease.

Several neurodegenerative diseases affect the retina. Therefore, examining the retina

as a model for studying the central nervous system constitutes an excellent non-invasive

alternative diagnostic method, as several studies have already demonstrated [4, 5]. This

approach can potentially enhance our understanding of the CNS and the treatment of

diseases by expanding the diagnosis and reaching a larger population.

One of the imaging techniques that have been increasingly used is the Optical Coherence

Tomography (OCT). OCT is a crucial tool in clinical diagnosis as it enables the detailed

visualization of the retina layered structure [2].

The OCT technique involves low-coherence light backscattering. It allows the acqui-

sition of high-resolution retinal structural representations and easy access to detailed

information about the microstructure of the retina. Additionally, it is extremely sensitive

to any variations in the content and organization of its structures [6].

Recently, the Coimbra Institute for Biomedical Imaging and Translational Research

(CIBIT) research center acquired a new imaging system, the Bioptigen OCT [7], with

enhanced features, better resolution, and higher sampling per unit area than the existing

Phoenix OCT system [8].

The analysis of medical images has been playing an increasingly important role in the

healthcare sector and is on the rise [9]. Recent advances in medical image segmentation

have enabled the development of new intelligent diagnostics. Machine learning, specifically

deep learning (neural networks) has been applied to developing artificial intelligence

(AI)-based diagnostic tools for medical images because it has demonstrated the ability to

achieve high-accuracy diagnostic results [10, 11].



3 1.2. Objectives

However, much of the research in this field has primarily concentrated on tackling

segmentation within particular datasets, each associated with a single acquisition system.

Consequently, it is essential to investigate segmentation techniques capable of delivering

consistent performance across various disease models and acquisition systems.

The work herein was conducted to successfully segment OCT images from the retina

of various animal models of disease and various imaging acquisition systems with different

characteristics. In this context, it was crucial to optimize the segmentation process but,

more importantly, to ensure that the system could be applied to a variety of disease

models and different image acquisition systems. This issue is still open, to the best of

our knowledge because, although there are image segmentation solutions for established

data groups (images/animals), the problem under study has not yet been addressed and

remains unresolved.

The work was carried out at the Institute of Applied Nuclear Sciences for Health

(ICNAS) facilities. The project was overseen by Professor Doctor Rui Bernardes (CIBIT,

ICNAS, FMUC) and Doctor Pedro Guimarães (CIBIT, ICNAS, UC).

1.2 Objectives

The project focuses on the segmentation of different layers of the neuroretina in B-scan

images obtained by OCT.

With this objective in mind, the intention was to create and train a convolutional

neural network whose output was segmenting the intended neuroretinal layers from B-scan
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images collected from control mice (wild-type mice) and mice models of diseases, such as

Alzheimer’s and diabetes.

Data acquisition was carried out at the Coimbra Institute for Clinical and Biomedical

Research (iCBR) and the Coimbra Institute for Biomedical Imaging and Translational

Research (CIBIT) using two different imaging acquisition systems, respectively the Phoenix

OCT and the Bioptigen. The collected data contains information from three groups of rats

and mice: neurodegenerative disease models of Alzheimer’s disease (3×Tg-AD), diabetes

(type 1), and wild-type (WT) animals.

To overcome the limitations of the database, such as the lack of data variability and

representativeness, processes for artificially increasing the quantity and diversity of data

(data augmentation) were implemented. By introducing new variations of the existing

images, the model will be forced to generalize, mitigating potential overfitting.

Subsequently, segmentation was achieved by implementing a convolutional neural

network (CNN), whose architecture was also a subject of study. All neural networks were

built, trained, and evaluated in Python.

Ensuring the correct segmentation of B-scan images and a solid ability to discriminate

between the interfaces of the various layers is a crucial factor, as the primary purpose is

the individual analysis of each neuroretinal layer.

Simultaneously, the knowledge gained after solving the proposed problem, i.e., the

constructed neural network, should ideally allow for its successful application to future

datasets. It will be of greater importance that the algorithm’s architecture is flexible and

capable of segmenting images from different instruments, various animal models of disease,

and wild-type animals.



5 1.3. Requisite Analysis

1.3 Requisite Analysis

1.3.1 Functional Requisites

The built system will have as its main function the segmentation of the following layers

of the retina in OCT B-scan images of rats and mice using convolutional neural networks:

• RNFL and GCL (RNF-GCL): Retinal Nerve Fiber Layer and Ganglion Cell Layer1;

• IPL: inner plexiform layer;

• INL: inner nuclear layer;

• OPL: outer plexiform layer;

• ONL: outer nuclear layer;

• ILS: photoreceptor inner segments;

• OLS: photoreceptor outer segments;

• RPE: retinal pigment epithelium.

1.3.2 Non-Functional Requisites

In terms of non-functional requirements, the following specifications have been defined

to consider in the design and implementation of the system to be developed:

• Average error for any interface less than 2 micrometers per B-scan;

• Maximum error in any A-scan interface less than 10 micrometers;

• Applicable to wild-type (WT) rats and mice;

1The discrimination between the two is not possible for all animal groups considered in the present
study
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• Applicable to mice models of Alzheimer’s disease (type 3×Tg-AD);

• Applicable to rats models of diabetes (type 1);

• Applicable to images obtained for ages ranging from 1 to 4 months;

• Development based on data obtained from the Phoenix OCT imaging system;

• Application of transfer learning methods for use on data obtained from the Bioptigen

imaging system.

1.4 Document Outline

The document’s structure is divided into six chapters. The organization of information

in the remaining chapters will follow the following structure:

• Chapter 1 established the context, motivation, and primary objectives as well as

the requisite analysis and document outline;

• Chapter 2 will delve into concepts related to retinal imaging and provide a brief

overview of the structure of the retina. Furthermore, it will delve into the theory of

neural networks, with a particular focus on convolutional neural networks;

• In Chapter 3 various methods and techniques that are applied to the problem of

segmentation of retinal layers are going to be briefly analyzed;

• In Chapter 4 the development of the algorithm will be explained in detail, as well

as all the methods used and stages that it underwent;

• Chapter 5 will present the achieved results and their discussion.

• Finally, Chapter 6 will present conclusions and recommendations for future work.



Chapter 2

Fundamental Concepts

2.1 Retina

The retina is a thin, delicate tissue sensitive to light, located at the back of the

eye. This tissue structure is part of the central nervous system and contains millions of

photosensitive cells that respond to the light, capturing and converting it into electrical

signals that are transmitted to the brain through the fibers of the optic nerve. These

signals are processed and interpreted in the brain as visual images, making the retina

essential to human vision as it plays a pivotal role in the visual process [12].

Visually, the retina has a layered structure, as shown in Figure 2.1. Listed from the

innermost layer to the outermost layer, the main layers are [13]:

• Retinal nerve fiber layer (RNFL or NFL): This layer comprises the bundled

axons of ganglion cells, forming the optic nerve;

• Ganglion cell layer (GCL): The ganglion cell layer is composed exclusively of

ganglion cells, which are the output neurons of the retina;

• Inner plexiform layer (IPL): In the inner plexiform layer, bipolar cells transmit

information from cones and rods to ganglion cells;

7



Chapter 2. Fundamental Concepts 8

• Inner nuclear layer (INL): The inner nuclear layer contains cells that provide

feedback regulation for cones and rods;

• Outer plexiform layer (OPL): In the outer plexiform layer, photoreceptor cells

relay information to the extensions of nerve cells;

• Outer nuclear layer (ONL): The outer nuclear layer houses the cell bodies of

rods and cones;

• Photoreceptor layer: The photoreceptor layer encompasses the inner segments

(ILS or PIS) and outer segments (OLS or POS) responsible for converting light

into electrical signals;

• Retinal pigment epithelium (RPE): The retinal pigment epithelium, located at

the outermost layer of the retina, between the choroid and the photoreceptor cells,

provides nourishment to the photoreceptor cells and aids in waste removal.

Figure 2.1: Histological cross-section of the human retina [13]. The basic retinal structure
is arranged in different layers, from retinal nerve fiber layer (NFL), ganglion cell layer
(GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer
(OPL), outer nuclear layer (ONL), external limiting membrane (ELM), photoreceptor
inner segments (PIS), photoreceptor outer segments (POS), and retinal pigment epithelium
(RPE).

Various diseases and conditions can affect the retina, rendering its structure susceptible

to alterations. As previously indicated, the evaluation of the retina can serve as a valuable

diagnostic tool for a range of pathologies. Healthcare professionals often use techniques
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such as retinal imaging and examinations to gather critical insights into a patient’s overall

health, through the detailed visualization of the retina’s structure [2].

2.2 Retinal Imaging: Optical Coherence Tomography

Retinal imaging techniques encompass a wide range of advanced methods that enable

the visualization and analysis of the retina’s intricate structures and functions. In the field

of ophthalmology, these techniques play a crucial role in diagnosing various conditions,

monitoring disease progression, and guiding treatment decisions [14, 5, 4].

Several types of imaging technologies allow the observation and capture of images of the

retina. Such methods include optical coherence tomography (OCT), OCT angiography,

fundus photography, fluorescein angiography, indocyanine green angiography, retinal

scanning laser polarimetry, and more. This study specifically focuses on OCT.

Optical Coherence Tomography (OCT)

Optical coherence tomography [6] is a non-invasive imaging exam of biological tissues,

allowing the in-vivo collection of cross-sectional images of the tissues, most notably the

eye’s retinal layers. This technique enables the detection and analysis of subtle changes in

retinal thickness, morphology, and fluid accumulation before symptoms become clinically

apparent.

OCT is based on the principle of low-coherence interferometry [15]. It involves emitting

a beam of low-coherence near-infrared light that is split into a sample beam, which interacts

with the tissue of interest, and a reference beam, which follows a known path length. When

the sample beam interacts with the tissue, it is partially backscattered. The backscattered

light waves travel from different optical path lengths, depending on the depth within the

tissue from which they are backscattered. The reference beam interferes with the reflected

light waves, where they are combined, creating interference patterns that are measured by

a detector.
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By analyzing these interference patterns, OCT can provide depth information about

the eye’s internal structures, if the studied tissue is the eye. When two light beams are

combined, they add constructively or destructively. For high-bandwidth, low-coherence

light, constructive interference occurs only when the difference between the optical paths

is less than the coherence of the light. By changing the length of the reference beam OCT

can scan the sample (A-scan).

In the Spectral Domain OCT (SD-OCT) [16], which is the most commonly used OCT

technique, a spectrometer is used in place of the detector, to disperse the interference

spectrum (combined light) into its constituent wavelengths and the intensity of light at

a specific wavelength is detected, which is then analyzed in the frequency domain. The

main advantage is that the reference mirror is fixed. Since there are no moving parts

acquisition time is much faster. This process involves applying a Fourier transformation

to the measured spectral interference data, converting the spectral information from the

frequency domain into the depth or spatial domain. The position of spectral peaks in

the resulting interference spectrum corresponds to a different optical path length (depth)

within the sample. With this, depth-resolved information about the sample is extracted,

representing the reflectivity or scattering intensity of light as a function of the sample’s

depth [17]. This depth-resolved information is used to construct cross-sectional images

(B-scans) of the sample. Each of the depth profiles obtained (A-scans) corresponds to a

single column in a cross-sectional image (B-scan).

Each B-scan represents a single lateral slice of the tissue, showing the internal struc-

tures and layers at different depths. To create a 3D representation of the tissue, multiple

B-scans are acquired rapidly in succession at adjacent lateral positions, allowing for the

construction of volumetric images (3D OCT) that provide a more comprehensive view of

the tissue.

With the evolution of SD-OCT systems [18], these devices can image the retina at

a high speed, with reported axial resolutions of 4 to 7µm [19, 20, 21], enabling the

visualization of intricate retinal structures. It is one of the most popular supplementary
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exams used in the diagnosis of retinal pathologies, not only for its high resolution and

speed but also for its simplicity and non-invasiveness [11]. Figure 2.2 represents a B-scan

with segmented retinal layers.

Figure 2.2: Retinal layers’ interfaces on a B-scan of a mouse retina [22]. From top to
bottom: retinal nerve fiber layer - ganglion cell layer (RNFL-GCL), inner plexiform layer
(IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL),
photoreceptor inner segments (ILS), photoreceptor outer segments (OLS), and retinal
pigment epithelium (RPE).

2.3 Deep Learning: Artificial Neural Networks

Artificial neural networks (ANNs) represent a computational paradigm inspired by the

intricate neural connections within the human brain [23]. Given the recent advancements

in computer technology and the expansion of databases, these networks have gained

immense popularity in the field of artificial intelligence, particularly in the context of deep

learning, due to their remarkable ability to learn patterns, make predictions, and other

complex tasks, such as automatic speech recognition, visual object identification, and

object detection [24].

Deep learning, a subset of machine learning, revolves around employing deep archi-

tectures, characterized by multiple layers of processing. Learning can be supervised or

unsupervised.

Supervised learning involves the use of an external ”supervisor”, that provides the

desired response (target) to the neural network (NN) for a given input. In this case,

learning occurs through the refinement of a model based on a set of examples rather than

relying on rigid rule sets. The initial model undergoes successive updates as it learns from
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evaluated instances, gradually achieving optimal performance in addressing the specific

problem.

On the other hand, unsupervised training does not involve a target output. Hence,

the network itself must be able to extract relevant features from the inputs and categorize

them without the need for explicitly provided target labels or output information [25].

Another important machine learning concept is transfer learning where a pre-trained

model is adapted or tuned for a related yet distinct task. The goal is to use the model’s

existing knowledge in an alternate domain to enhance its learning and generalization

capabilities. This can be achieved by taking the pre-trained model and retraining it with

a new dataset that is suitable for solving the new problem.

As mentioned, Neural Networks originated from the attempts to artificially model

neural processes. From a computational perspective, it can be said that a neuron

processes one or, often, multiple inputs to generate an output. The neuron is considered a

fundamental unit for information processing. The artificial neuron is a logical-mathematical

structure that seeks to simulate the form, behavior, and functions of a biological neuron,

representing the elementary component of a neural network. When combined, these units

form structures called layers which in turn construct the neural network.

A biological neuron receives an impulse via its dendrites and transmits a signal along

its axon. Each neuron’s axon possesses branches that interconnect with the dendrites of

other neurons through synapses.

Roughly speaking, according to the artificial neuron model [26], as shown in Figure

2.3, the dendrites are the inputs (xi), and their connections to the artificial cell body

are established through communication channels associated with specific weights (wi -

simulating synaptic strengths), which are multiplied by the inputs. The stimuli received by

the inputs are multiplied by each corresponding synaptic weight and then processed by the

sum function, through a weighted sum, generating a certain level of activity. If this level

of activity exceeds a certain threshold, the processing unit will produce a specific response

as an output (yi), simulating the axon. The firing threshold of the biological neuron is

replaced by the activation function. Mathematically, this model can be represented as
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y(x) = h(w0 +
n∑

i=1

wixi) , (2.1)

where yi is the output, xi the inputs from the other neurons, wi is the weight of the

connection (input) xi, h is the activation function, and w0 is the bias.

Besides the network inputs or outputs from other neurons, each neuron is stimulated

by a constant polarization called bias, w0 or b.

Figure 2.3: Artificial neuron model where inputs are acted upon by weights and summed
to bias and lastly passes through an activation function to produce the final output [27].

During the learning process of the network, the training data is then used to adjust the

learnable parameters, the weights w and bias w0, so that the resulting function presents

the best performance for the task at hand.

The figure above is an example of a Perceptron or Single Layer Perceptron (SLP) [28].

A SLP consists of only the input layer, the net sum and the activation function, and the

output layer. This makes it suitable for solving linearly separable problems but limits its

ability to handle more complex patterns that require hierarchical representations, which

are typically addressed by multi-layer perceptrons (MLPs) [29].

Figure 2.4: Diagram of a multi-layer perception [30].
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In an MLP (Figure 2.4), there are hidden layers between the input and output layers.

With the concept of the artificial neuron model in mind, the output y(x), but also the set

of transformed inputs ϕ1(x), ..., ϕm(x) that form a hidden layer can be defined as

ϕi(x) = h1(w
(1)
i0 +

l∑
j=1

w
(1)
ij xj) and y(x) = h2(w

(2)
0 +

m∑
i=1

w
(2)
i ϕi(x)) , (2.2)

where the superscripts represent the layer number, w
(1)
i0 represents the bias term for the

i-th neuron in the hidden layer (layer 1), w
(1)
ij represents the weight of the connection

between the j-th input neuron and the i-th neuron in the hidden layer, w
(2)
0 represents

the bias term for the output neuron, in layer 2, and w
(2)
i represents the weight of the

connection between the i-th neuron in the hidden layer and the output neuron. The

number of neurons in the hidden layer is m and the number of input features in the input

layer is l.

If the number of hidden layers is 1 we have a shallow NN, whereas if we have more

than 1 hidden layer we have a deep NN. It is a feedforward network meaning the current

layer is fed only by the previous layer. The number of neurons on the output layer depends

on the number of intended outputs for each specific problem. For a classification task, the

number of output neurons is the number of classes.

Network Training

To optimize the output over time, the model has to be trained to modify the network’s

learnable parameters, weights and biases. This training phase can start after the model’s

architecture has been defined and the initial set of weights and biases has been selected.

The network architecture defines, among other parameters, the type of training the

network will undergo, enabling it to solve the intended problem.

The training of a neural network is usually performed using the backpropagation

algorithm, which consists of a forward pass and a backward pass. In the forward pass, the

output values are calculated and compared with the expected output, and the error is

calculated. In the backward pass, this error is used to adjust the network’s parameters

with the aim of minimizing its value. This adjustment process continues by repeating
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these steps until the error is minimized or at a reasonable value for the user, at which

point the network is deemed to have acquired knowledge and is considered trained [31].

Starting from the basic objective of a neural network, which is to learn a non-linear

function that relates N input-output vector pairs (xk,yk), such that the following equation

holds true

yk = h(xk), k = 1, 2, ..., n , (2.3)

where k corresponds to a specific data sample and n is the total number of data samples.

However, regardless of the application, most of the time the NN performs an approximation:

ỹk = h(xk) ≈ yk (2.4)

The smaller the error resulting from the approximation in Equation (2.4), the better

the network will map the problem. Consequently, the network’s objective is to minimize

the error for all input-output pairs, through a potential error function, the cost or loss

function (L) that will optimize the approximation.

Let the vector w denote the set of the weights of the network. The loss function will

be the expected value of the error εk between the real output y and the network’s output

ỹ for each pair (xk,yk):

L(w) = E (εk) = E
{
∥ỹ − y∥2

}
, (2.5)

where εk is given as the squared Euclidean distance between outputs. However, different

problems and situations may require different error calculations or loss functions.

We can determine the optimal weights that minimize the loss function. One way of

proceeding with this minimization is considering the gradient descent (GD) optimizer

[32]. From an initial guess in the weight space, we take a small step in the direction of

maximum decrease; i.e. from step τ to τ + 1, likewise

w(τ+1) = w(τ) − η∇L
(
w(τ)

)
(2.6)



Chapter 2. Fundamental Concepts 16

∆w = −η
∂L(w)

∂w
(2.7)

where η > 0 is the learning rate and ∂L(w)
∂w

is the gradient of the loss with respect to the

weights. The GD method is useful with a sequential method, where we update w for each

training event or iteration.

The learning rate is a hyperparameter that determines the step size at which a model’s

parameters are updated during training. A small learning rate results in slow convergence

because the model takes small steps and may require a large number of iterations to reach

the optimal or near-optimal solution. However, it is less likely to overshoot the minimum

of the loss function. A large learning rate can lead to faster convergence, but it’s also

more likely to overshoot the optimal solution and may fail to converge or even diverge.

This can lead to unstable training [33].

To compute all the derivatives required for the gradient descent minimization, to solve

Equation (2.8), we use an algorithm called Error Backpropagation or ”backprop” [31, 34],

where the derivatives of the errors are propagated backward through the network. As

seen, according to Figure 2.4, in a forward pass, the output can be written y(x) = h(u(x))

where

u(x) =
m∑
i=0

w
(2)
1i ϕi(x) and ϕi(x) = h(

l∑
j=0

w
(1)
ij xj) , (2.8)

where the superscripts represent the layer number, w
(2)
1i represents the weight of the

connection between the i-th neuron in the hidden layer and the output neuron, w
(1)
ij

represents the weight of the connection between the j-th input neuron and the i-th neuron

in the hidden layer. The number of neurons in the hidden layer is m and the number of

input features in the input layer is l. Also ϕ0 = x0 = 1. The sums are written over the

nodes in the preceding layers starting from 0 to include the offsets (biases) which allow

the network to learn them.

To evaluate the derivative of the loss function L with respect to the weight w
(2)
1i , the

chain rule can be applied
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∂L

∂w
(2)
1i

=
∂L

∂u(x)
· ∂u(x)

∂ϕi(x)
· ∂ϕi(x)

∂w
(2)
1i

, (2.9)

where the first term is the derivative of the loss with respect to the network output u(x)

and depends on the choice of the loss function, the second term is the derivative of u(x)

with respect to the hidden neuron activation ϕi(x), and the third term is the derivative of

ϕi(x) with respect to the weight.

Depending on the choice of activation and loss functions, these derivatives will be

computed, and the result will be used in the weight update step of the GD optimization

algorithm (Equation (2.8)).

Equations (2.8) and (2.9) consider weights associated with the connections between

the second layer and the first layer, w
(2)
1i . In practice, the backpropagation algorithm

starts from the end of the network and recursively applies this same chain rule and

thought process along the network backward, to determine all the gradients and update

the weights until the input layer is reached. Furthermore, although this algorithm has

been exemplified on an MLP with one hidden layer for simplicity, it works the same way

for larger networks with L hidden layers, from layer L+1 to L, and so on.

Loss Functions

Loss functions, also known as cost functions or objective functions, play a pivotal

role in training and optimizing machine learning models. They evaluate the model’s

predictions by quantifying the disparity between the predicted values and the actual target

values. By tuning the model’s parameters, the objective is to minimize this function, thus

guiding the learning process toward improving the model’s performance.

In classification tasks, a loss function can be written as a sum, over all classes, of an

error defined for each class i separately:

L(w) =
m∑
i=1

Li(w) , (2.10)

where w is a vector of weights.
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For taking average loss instead of the sum, Equation (2.6) can be divided by the

number of samples in the training dataset [34].

Commonly used loss functions for classification problems include:

• Categorical Cross-Entropy Loss (CE):

The Categorical Cross-Entropy (CE) loss or Softmax loss measures the difference

between predicted class probabilities and the true class labels for each data point as

follows:

CE Loss = −
n∑

j=1

m∑
i=1

yji · log (ỹji) (2.11)

where y represents the true class labels in one-hot encoded form, ỹ represents the

predicted class probabilities for all classes, log denotes the natural logarithm, m is

the number of classes, and n the number of training samples.

The categorical cross-entropy loss encourages the model to assign high probabilities

to the true class labels while minimizing probabilities for incorrect classes. It’s

suitable for scenarios where each input data point belongs to exactly one class out

of multiple classes [35, 36].

The categorical cross-entropy loss is widely used in NNs in conjunction with the

softmax activation function in the output layer of neural networks (NNs) for multi-

class classification tasks [37].

• Binary Cross-Entropy Loss (BCE):

Applied to binary classification problems, this approach involves input data being

categorized into one of two predefined classes by the model, being a special case of CE

loss for a number of classes equal to 2. It measures the difference between predicted

class probabilities and the true binary labels for each data point. Mathematically

[36]:

BCE Loss = −
n∑

j=1

(yj · log (ỹj) + (1 − yj) · log (1 − ỹj) (2.12)
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where y represents the true class labels, ỹ represents the predicted class probabilities

for both classes, log denotes the natural logarithm, and n is the number of training

samples.

The choice of a loss function depends on the nature of the task and the characteristics

of the data. Picking an appropriate loss function is crucial for guiding the learning and

optimization process and achieving the desired model performance since the backpropaga-

tion will be computed on this function and the resulting gradients are used to perform

the parameters update.

Activation Functions

Activation or transfer functions introduce non-linearity to the model’s transformations

and determine whether a neuron should be activated or not based on the weighted sum of

its inputs. Without activation functions, the network would be limited to linear operations,

severely restricting its capacity to learn complex patterns or parameters within data.

Given this, they enable neural networks to generalize across diverse datasets and model a

wide range of functions, making them capable of approximating both linear and nonlinear

relationships between inputs and outputs [38, 39, 40].

These functions are usually monotonic and differentiable and restrict the amplitude of

the neuron’s output signal. There are several types of activation functions, with some of

the most frequently employed being:

• Sigmoid or Logistic:

The sigmoid function is a smooth and continuous function that maps any real input

value to a value between 0 and 1. With an input of x, the formula for the sigmoid

function is [39]:

f(x) =
1

1 + e−x
(2.13)

Its output can be interpreted as a probability of belonging to a certain class based

on some input features, so this function is especially used for models where the
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intended output is a probability. It has been widely used for binary classification

tasks, where the expected prediction is a probability for a binary output (0 or 1).

However, this type of function tends to saturate at 0 or 1 as the input becomes very

large or very small. This results in gradients that are extremely small, a phenomenon

known as vanishing gradients, which can interfere with the learning process during

backpropagation. This can slow down the training process and make it challenging

for neural networks to learn effectively, particularly in deep networks with numerous

layers.

• Hyperbolic Tangent (tanh):

The hyperbolic tangent function is also a continuous function that maps any real

input value to a value between -1 and 1 [39], according to the following formula, for

an input of x:

f(x) =
ex − e−x

ex + e−x
=

2

1 + e−2x
− 1 (2.14)

Similarly to the sigmoid function, the tanh function is also used in binary classification

tasks, with the advantage of being zero-centered, meaning that the average output

is close to zero, making it well-suited for optimization algorithms that rely on

symmetric gradients. This might help with the convergence of the neural network

during training.

Additionally, it can model stronger non-linearities, since this function allows for

negative correlation in comparison to the sigmoid, which only gives varying degrees

of positive correlation. Nevertheless, the tanh function also suffers from the problem

of vanishing gradients for large input values.

• Rectified Linear Unit (ReLU):

The Rectified Linear Unit function maps any negative input to zero and leaves any

positive or zero inputs unchanged, having a range of [0,+∞[ [39]. The mathematical

expression representing the ReLU function, for an input x, is as follows:
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f(x) = max(0, x) (2.15)

Due to its mathematical straightforwardness, it becomes more computationally

efficient within deep learning architectures, since its simpler operations improve

the convergence, resulting in faster learning. This function has gained widespread

popularity in recent times, specifically in hidden layers of large-scale neural networks

[41].

Another benefit of the ReLU function is that it is less susceptible to the vanishing

gradient issue when dealing with positive input values. However, it can suffer

from the problem of dead neurons, where negative inputs that output zero fail to

contribute to the learning process. This occurs as the resulting graph does not map

these negative values appropriately. Consequently, this phenomenon can lead to a

reduction in model performance, given that its ability to fit or train the data will be

decreased. This issue can be fixed using a proper learning rate.

• Leaky ReLu:

The Leaky ReLU function [42] is a variant of the ReLU function that addresses the

problem of the dying ReLU. It introduces a small negative slope for negative input

values (leak), instead of setting them immediately to zero, increasing its range to

]−∞,+∞[. The formula for the Leaky ReLU function, for an input of x, is:

f(x) =

 x x > 0

ax otherwise
(2.16)

where a is a small positive constant, usually set to 0.01 when it’s not randomized or

0.2.

• Softmax:

The Softmax function is commonly used as the final activation function in the output

layer of NNs for multi-class classification tasks, where the goal is to predict the



Chapter 2. Fundamental Concepts 22

probability or likelihood of each class given some input features [43]. This function

maps a vector of real scores (logits) to a probability distribution across the different

classes, like a vector of probabilities that add up to one. It can be represented

mathematically as follows, for a vector of logits z:

f(zi) =
ezi∑m
j=1 e

zj
(2.17)

where zi is the i-th element of the input logit vector z for all classes, m is the number

of classes, and f(zi) is the output probability of belonging to class i. It can also be

applied for a logit matrix.

The softmax function magnifies the differences between logits, making the class

with the highest score stand out more distinctly. In situations like training a neural

network for image classification, the softmax function enables the network to make

confident predictions by selecting the class with the highest probability.

Optimizers

As mentioned previously, optimizers are algorithms used during the training phase to

update the model’s learnable parameters, by finding the optimal set of parameters that

minimize the loss function. There are several optimization algorithms available in deep

learning, each with its own advantages and disadvantages:

• Stochastic Gradient Descent (SGD):

The stochastic gradient descent (SGD) [44] is a widely used optimization algorithm

that, similarly to the GD, updates the model parameters based on the gradient of

the loss function with respect to the parameters (Equation (2.6)).

It is also an iterative method. However, unlike gradient descent, it estimates the

error regarding a single random example of the training set. The weights are updated

after each iteration, meaning that the loss function is tested on a training sample

and the model is updated.
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In the regular GD method, the weights are updated based on a gradient computed

over the entire training set, which slows down the process. It also requires a large

amount of memory to store this temporary data, making it a resource-hungry

process.

The SGD addresses both memory constraints and the high time cost of running the

backpropagation algorithm over the entire training set, but it still doesn’t suffice,

since the error estimate with respect to only one training example at a time won’t

provide reliable approximations. The frequent updates result in convergence to the

minimum in less time, but it comes at the cost of increased variance that can make

the model overshoot the required position.

Addressing this issue, the mini-batch gradient descent [45] uses a fixed size subset

(mini-batch) of the training data to estimate the gradient and compute the error.

Usually, the term SGD is also used for this last batch-based algorithm. Formally,

both algorithms can be written as:

w(τ+1) = w(τ) − η∇Lj

(
w(τ)

)
, (2.18)

where τ is the iteration, and j = 1, 2,... , n is the data point j (in the case of SGD)

or the mini-batch j (in the case of mini-batch gradient descent).

Therefore, this last optimizer will update the weights every iteration, but with

respect to a batch of samples instead of only one data point. The batch size is a

hyperparameter of the NN. The mini-batch GD benefits from the stochasticity of

the SGD while being less noisy due to the averaging of gradients over the batch,

leading to a more stable and efficient training.

• Adaptive Gradient Algorithm (Adagrad):

Based on the previous method, the Adagrad is an adaptive learning rate optimization

algorithm that adapts the learning rate to the individual parameters of the model

based on the historical information of gradients [46].
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It accumulates the squared gradients for each parameter and divides the learning

rate by the square root of the sum of the gradients, decaying the learning rate in

proportion to the updated history of the gradients, as such:

wt+1,i = wt,i −
η√

Gt,i + ϵ
∇wL (wi) (2.19)

where i is the index for the elements in w, Gt,i is a diagonal matrix with the non-zero

elements equal to the sum of squares of the previous gradients of w up to the time

point t, and ϵ is the smoothing term, usually between 1 × 10−4 and 1 × 10−8, that

prevents zero division.

Thus, parameters associated with larger accumulated gradients have smaller effective

learning rates, while those with smaller accumulated gradients have larger effective

learning rates. If the parameters change frequently (higher variance), the learning

rate, too, changes frequently.

This optimizer is particularly effective for handling sparse data, where some features

may have much larger gradients than others, and dealing with features with different

scales, since it alters the learning rates according to the input provided. Features

with larger gradients will have smaller accumulated squared gradients over time and

vice versa.

Even though the Adagrad can converge faster, a disadvantage of this approach is

that the learning rate decays excessively and after some time it approaches zero.

This may cause the model to stop learning, which is a bigger concern for deeper

networks.

• Adaptive Moment Estimation (Adam)

Adam [47] is another adaptive learning rate optimization algorithm based on the

Adagrad and Root Mean Square Propagation (RMSProp) [48] optimizers.

The introduction of this improvement aimed to overcome issues of the Adagrad like

vanishing or exploding gradients, reducing the aggressiveness of the learning rate,
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while keeping the adaptive learning rate feature intact.

Adam introduces a form of momentum-like updates into the optimization process, in

which the gradient only directly affects the velocity. It adds a term that increases the

velocity in directions with consistent gradients, which results in faster convergence.

However, this method uses an exponentially decaying average of the first and second

moments of the gradients, the mean, and uncentered variance, respectively, for each

parameter, to adjust the learning rate. It stores these estimates for the moving

average of the past gradients, mt, and the past squared gradients, vt. Parameters β1

and β2 control the decay rates of these moving averages, like so:

mt = β1mt−1 + (1 − β1)∇wL (w)

vt = β2vt−1 + (1 − β2)∇wL (w)2
(2.20)

where β1 is the exponential decay rate for the first moment estimate and β2 the

exponential decay rate for the second moment estimate, with recommended values

of β1 = 0.9 and β2 = 0.99. Using the physics momentum analogy, here β2vt−1 is the

momentum term, vt is the updated velocity, and vt−1 is the prior velocity.

Besides this, the Adam optimizer also introduces bias correction during the initial

iterations to correct any bias introduced by the estimates of the first and second

moments, which may bias β1 and β2 towards zero:

m̂t =
mt

1 − βt
1

v̂t =
vt

1 − βt
2

(2.21)

This correction is especially important when the optimization starts with small

learning rates. Finally, these are then used to perform the weight updates as shown:

wt+1 = wt −
η√

v̂t + ϵ
m̂t, (2.22)
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The Adam optimizer has consistently demonstrated exceptional performance when

compared to other adaptive learning algorithms. As a result, it is frequently

recommended as one of the default choices for optimizing machine learning models

[49].

Overfitting

One of the most important obstacles to consider when training a network is overfitting

[50]. It occurs when the model learns to perform exceptionally well on the data used

to create it but fails to generalize effectively on unseen data, resulting in a low error

rate (high accuracy) on the training data, but a high error rate on independent test data

samples.

It can occur when a network becomes too complex (e.g. more nodes/layers) or is

trained for too long (overtraining) and starts to memorize the training data instead of

learning the underlying patterns. When building deeper models, as a network grows in

layers, its decision boundary becomes increasingly more flexible, but the classifier may

conform too closely to the training points.

The overfitted model will “learn beyond the concept”, capturing and learning from

data noise (irregularities caused by sampling errors). Being overly adjusted to the training

data makes it so the model cannot generalize or adapt well to variations or different data

distributions.

This problem is trackable: if the fraction of misclassified events for test and training

samples is monitored, by plotting the training and validation loss, as depicted in Figure

2.5, it will usually decrease for both as the boundary is made more flexible. When the

error rate for the test sample starts to increase, with respect to the one for the training

sample, we will observe overtraining. A gap between the training and validation will start

to appear and it reflects the amount of overfitting. The flexibility of the boundary is

optimum at the minimum of the error rate for the test sample, just before its loss starts

to increase. The training can be stopped at this point (early stopping).
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Figure 2.5: Example plot of training and validation loss monitoring per epoch. The
green curve represents the training loss and the red curve represents the validation loss.
After several epochs, the validation loss starts to increase while the training loss is still
decreasing. The blue line represents the optimal loss minimum for the validation sample
where early stopping should be performed [51].

Therefore, addressing overfitting is crucial for building robust models and preventing

this issue. A way of doing this is by applying regularization techniques such as dropout.

Dropout

Regularization methods consist on adding a penalty or constraint in the model’s

training process. These constraints discourage the model from learning complex features

that are only relevant towards the training data.

Dropout [52] is a regularization technique commonly used in deep neural networks

to prevent overfitting and improve generalization, by reducing the reliance on specific

neurons or features.

Through this strategy, random nodes inside the model’s layers are temporarily removed

during training or ”dropped out”, meaning the output of those particular nodes is set

to zero for that specific training iteration. Therefore, it results in the training of a

distinct sub-network using the standard backpropagation algorithm, during each training

step. Each subnetwork corresponds to a different combination of active and deactivated

neurons and by averaging the predictions of these subnetworks during inference, dropout

approximates the ensemble effect, which can lead to improved generalization.
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The fraction of deactivated nodes in each layer is the dropout rate hyperparameter set

usually between 0.2 and 0.5.

This technique helps prevent overfitting, by forcing the model towards learning more

robust features that don’t depend on the specific nodes that are active during training,

which may belong to noisy or small datasets. Besides this, dropout can make the model

less sensitive to hyperparameter choices like the learning rate. Below is a scheme for the

dropout method (Figure 2.6).

Figure 2.6: An example of the application of dropout [52]. The image to the left represents
a standard neural network and the image to the right represents the same neural network
with dropout.

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) can be formally defined as a class of neural

network architectures that employs convolutional operations in at least one of their layers,

contrasting with the conventional matrix multiplication approach [24].

These types of networks are specifically designed for tasks involving grid-like data,

such as images and video. CNNs have been increasingly used for pattern recognition,

image classification, object detection, image segmentation, semantic segmentation, and

other analogous tasks driven by their promising results and the potential to improve the

accuracy and efficiency of algorithms developed for those purposes [53, 54].

The overall behavior of a Convolutional Neural Network (CNN) closely resembles

that of a standard NN. Therefore, many of the components and working principles

discussed throughout this chapter regarding Neural Networks remain applicable to a CNN.
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Nevertheless, there are notable distinctions, mainly in its structure, worth emphasizing in

this subsection.

Figure 2.7 depicts a schematic of a typical CNN.

Figure 2.7: Scheme for a typical convolutional neural network architecture [55].

The input to a CNN is typically a 2D image, translated to an array of size (width,

height, number of color channels). The network is trained on a preferably extensive dataset

of images for which the labels, the ground truth, from various images are known. Ground

truth is information about the images that is known to be real or true. During the training

process, the algorithm learns to extract increasingly complex features (parameters) from

the images, in the convolution layers, and ultimately predicts class scores or probabilities

using those learned features in its fully connected layers. CNNs have a hierarchical

structure for this feature extraction to learn the spatial relationships and patterns (edges,

textures, shapes, ...) of the images.

Essentially, the basic pipeline for a CNN involves performing convolution on the input

image, accompanied by an activation layer to allow non-linearity, to get an activation

map. An activation map refers to the result of applying an activation function to a feature

map, which refers to the output of a specific layer in a CNN, commonly a convolutional

operation. They are enhanced versions of feature maps, as they emphasize which parts of

the feature map are activated (have non-zero values) and which are not. Then, a pooling

layer is applied to make the model more robust. Finally, the outputs from this last layer

are passed to a fully connected layer, that will provide a probability map for each intended

class. This process is repeated until the trained weights are well-defined and all features

detected [24, 56].
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Convolution Layer

In convolution layers, a set of learnable filters (kernels), which are smaller-sized weight

matrices, is applied to the input data. In the forward pass of a convolutional operation,

each filter traverses across the input volume, computing dot products at each position.

Specifically, the pixels within a local region (receptive field), around the position (x, y),

are multiplied element-wise by the filter’s weights. The resulting elements are summed up

to compute the output value. This convolution process between the filter and the image

pixel values is done for each spatial location across the input volume. Mathematically,

this operation can be written as:

(I ∗K)(x, y) =
a∑

s=−a

b∑
t=−b

I(x− i, y − j).K(i, j) (2.23)

where (I ∗K)(x, y) is the output of the convolved image at position (x,y), I is the input

image, K is the convolutional kernel (filter), and i and j are the indices used for the

summation, which typically range over the filter’s dimensions.

After each filter is applied, the result of the 3D input is a 2D feature map, that

combined with the other filters’ outputs form the 3D final output to the convolution layer.

Hence, a feature map represents the response of one particular filter to the input data,

capturing the specific patterns of features [24, 56]. Figure 2.8 represents an example of

the convolution operation.

Figure 2.8: Pictorial example of the convolution operation with a kernel size of 3×3. The
kernel and an equal size image sub-matrix is extracted. The dot product of the matrices
is saved in the output matrix. The filter then moves by the number of pixels according to
a defined stride and the dot product calculation is repeated [57].
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The dimensions of the filter matrix represent a hyperparameter of the CNN, determining

how many pixels or elements the filter covers in each dimension of the input. The receptive

field’s size will evidently be the same as the kernel’s defined size. Common filter sizes

are 3×3, 5×5, and 7×7. Besides this, another hyperparameter is the number of filters

used. In the initial convolutional layer(s), it often starts relatively low (e.g. 32, 64) and

gradually increases in deeper layers (e.g. 128, 256). The number of filters can be increased

depending on the complexity of the data or task if it involves capturing more complex

features.

The weights in the filter matrix are updated every time backpropagation is performed

during the learning process, in each learning iteration over the training set.

Finally, an activation function is applied element-wise to introduce non-linearity into

the model. This enables the network to learn complex, non-linear relationships within the

data. Effectively, the convolution layer will capture the local patterns and features in the

image data, and trying to learn from them (feature extraction).

It’s important to highlight an optional hyperparameter employed in CNNs: the stride.

The stride denotes the pixel-wise step size at which the convolutional filter (kernel) slides

across the input data during the convolution operation. For example, a stride equal to 2

halves the dimensions (downsampling). Larger strides have the effect of diminishing the

spatial dimensions of the output feature map as the filter covers a smaller area with each

step [24, 56].

Padding

Padding is an important operation that affects the spatial dimensions of the output

feature maps that can also be used in convolutional layers.

Padding refers to the process of adding extra values, usually zero (Zero-Padding),

around the border of the input matrix before applying a convolution operation. It can be

employed to control the size of the output feature maps produced by convolutional layers.

Zero-Padding or same padding keeps the size constant, so the input and output have the

same dimensions after the convolution, to preserve the input volume’s size.
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This operation impacts the output feature map’s size in the following manner:

output size =
N + 2P − F

S
+ 1 (2.24)

where N is the input size, S is the stride, and F is the filter size and P the amount of

padding (in pixels) [24, 56].

Pooling Layer

Pooling layers reduce the spatial dimensions (width and height) of the feature maps,

which helps reduce the computational load and control overfitting by focusing and retaining

important features. It is applied to each feature map independently, meaning that the depth

dimension remains unchanged. A consistent depth simplifies the network’s architecture

and makes it easier to transition from one type of layer to another. There are various

pooling methods, such as max pooling, average pooling, and global pooling.

The most widely used pooling technique is max pooling. When a max pooling filter is

applied, a small square or rectangular window slides over the input feature map. At each

position of the window, the maximum value (strongest activation) within it is selected

and retained in the output feature map.

This layer is usually applied in between convolutional layers and takes two hyperpa-

rameters: size, which determines the window area of every pool (often 2×2, 3×3), and

stride. The output size is given by:

output size =
N − F

S
+ 1 (2.25)

where N is the input size, S is the stride, and F is the filter size [24, 56]. The

image below provides a visual representation of the max pooling process for a better

understanding of the concept (Figure 2.9).
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Figure 2.9: Pictorial example of the max-pooling operation with a kernel size of 2×2 and
stride of 2 [58].

Fully-connected Layer

Fully connected (FC) layers (Figure 2.10) are traditional neural network layers where

each neuron is connected to every neuron in the previous layers (dense connectivity) and

subsequent layers, if any, as they are frequently used as the final layers of CNNs. They

aggregate and interpret the features extracted by earlier layers by making predictions

based on these high-level features.

Figure 2.10: Diagram illustrating a fully-connected layer, where each output neuron is
”fully connected” to all the input neurons [59].

An FC layer consists of a collection of neurons or units that have associated weights for

each of its connections to the previous activation units. Each neuron applies an activation

function to the weighted sum of its inputs, according to Equation (2.1). When using

this type of layer as the final network layer, the associated activation function may differ

from the others throughout the network. As explained in the last subsection, selecting

an activation function depends on the task in question. Usually, in FC layers, the final

activation function for multi-class classification is the Softmax function, while Sigmoid
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activation is used for binary classification.

Thus, the output of a fully connected layer is a set of values (activations), one for each

output neuron in the layer, and can be thought of as the learned features or representations

of the input data. The number of neurons in the final FC layer typically corresponds to

the number of classes in a classification task [24, 56].

A few key characteristics of Convolutional Neural Networks were demonstrated through-

out this subsection. Firstly, even though convolution limits the connectivity between

neurons in space through the use of kernels, this constraint is held over the entire depth

of the input volume (depth-wise connectivity), allowing it to cover all parts of the input

considering information and capturing features across all channels or sections in the input

volume.

Furthermore, in CNNs, each neuron in a convolution layer is connected only to a small

local region of the previous layer (sparse connectivity), defined by the size of the receptive

field of the kernel. Therefore, a local input has an impact only on that local’s output.

This attribute of the CNNs allows for the hierarchical feature learning from input data.

In parallel, the sparse connections allow the network to focus on local patterns and

features, making it robust to changes in object position within the image. This consistency

is achieved by sharing weights (parameters) across the local connections. As a result,

they are able to achieve translation invariance with respect to the classification output,

meaning that regardless of the exact position of an object the classification should be the

same.

In traditional neural network layers, all inputs have an impact on all outputs, since

dense connectivity is dominant across all layers. This dense connectivity results in a large

number of parameters of the network and an excessive computational burden, especially

as the network grows in size. On the contrary, the sparsity in CNNs reduces the number

of weights (weight sharing) and computations required in the network, making them

computationally efficient and the most appropriate tool for handling image datasets

[24, 56].
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Methods for Retinal Layer

Segmentation

Retinal layer segmentation identifies and separates the different retinal layers in medi-

cal images and is used in OCT analysis tasks. It is a necessary process as it allows the

detection and monitoring of various conditions [9].

Consequently, various systems have been developed over the years to find increasingly

better solutions to automate the segmentation of retinal layers. In this respect, different

attempts have resulted in a wide range of techniques, which will be analyzed below. The

various methods developed to segment the retinal layers in medical images can be broadly

divided into two categories:

(A) Traditional Approaches

These techniques are primarily based on traditional models of retinal boundary

segmentation, taking into account the anatomical information and optical charac-

teristics of each retinal layer. According to the principles on which they are based,

this approach can be divided into the following sub-categories: pixel classification

(thresholding) [60, 61], active contours [62, 63, 64, 65, 66], and 3D graph search

[67, 68, 69, 70, 71, 72, 73, 74].

35
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(B) Machine Learning Approaches

In addition to the above interpretations of the segmentation problem, artificial

intelligence approaches (machine learning algorithms), such as pattern recognition

techniques, can also be applied. Recently, the most widely used segmentation

approaches are based on deep learning techniques such as convolutional neural

networks.

Since this study is closely related to deep learning, as it proposes the development

of a convolutional neural network for retinal layer segmentation, this chapter will focus

on machine-learning approaches, particularly deep-learning approaches, to the retinal

layer segmentation problem. Thus, traditional retinal segmentation will not be further

addressed in this work.

3.1 Traditional Machine Learning Methods

Various machine learning methods based on artificial intelligence can be used to per-

form segmentation procedures on structures identified in medical images, by recognizing

their patterns. These classification models can be supervised, where manually segmented

training data is required and used as a reference to automate new cases, such as support

vector machine (SVM) algorithms [75]. On the other hand, classification algorithms can

also be unsupervised, where they don’t need training data, but rather initial parameters

to perform segmentation, like clustering techniques such as the fuzzy c-means (FCM)

algorithm [76, 77].

Support vector machine algorithms aim to find the optimal hyperplane that maximizes

the distance between data points in different classes. This hyperplane is chosen to minimize

classification errors. Support vector machines (SVMs) use support vectors, which are

the data points closest to the decision boundary, to determine the hyperplane that best

separates classes [78].
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Fuller et al. [75] used a multi-resolution hierarchical support vector machine method

to build a semi-automatic segmentation system that considered scalar intensity, gradient,

spatial location, neighborhood mean, and variance over multiple resolutions, allowing it to

deal with noise. It also considers a voxel’s mean value. The proposed SVM classifier was

able to segment healthy and diseased retinas. However, the method requires the clinician

or user to color the areas of interest in the volume, which are used as the training data

for the method. As more regions are painted by the user, the dataset grows and the SVM

also becomes more complex, resulting in an increasingly longer runtime that precludes

its application. It was reported that 68% of the thickness differences between the SVM

segmentation and the ground truth was under six voxel units.

The FCM algorithm is a powerful clustering technique. FCM assigns data points to

clusters with degrees of membership, allowing for more flexible and nuanced clustering

solutions. It calculates membership values for each data point, quantifying the degree to

which it belongs to each cluster. By iteratively refining cluster centroids based on these

fuzzy memberships, FCM efficiently handles data with overlapping or uncertain cluster

assignments [79].

In 2008, Mayer et al. [76] proposed an automatic clustering technique using the FCM

algorithm to calculate the thickness of the RNFL layer in B-scans of healthy retinas and

retinas of eyes diagnosed with glaucoma. The proposed FCM algorithm clusters the data

into multiple categories and identifies and separates the RNFL from the other layers

according to pixel intensity values. Geometry corrections were also considered to deal

with any geometric distortions in OCT images to avoid errors when calculating thickness

values. The authors reported that 97% of the upper and 74% of the lower RNFL layer

boundaries were within two pixels of the ground truth on the test dataset.

More recently, traditional machine learning methods, such as SVM and FCM, allowed

for a segmentation accuracy of up to 2 pixels [80].
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3.2 Deep Learning Methods

Recently, advances in deep learning have given rise to increasingly efficient methods

for tackling image segmentation. Mechanisms such as convolutional neural networks are

robust tools that automatically learn complex representations from large amounts of

data. They have been increasingly utilized for segmenting layers of the retina due to their

promising results and potential to enhance the precision and effectiveness of algorithms

[10].

CNNs are the most extensively used networks in image classification tasks, particu-

larly for retinal layer segmentation challenges. They originated in 1980 with Kunihiko

Fukushima’s proposal of the Neocognitron [81] and have been continuously refined since.

There are now a significant number of systems and effective learning methods available,

enabling the problem at hand to be tackled from multiple angles.

One of the initial studies to present the possibilities of utilizing CNNs for solving

intraretinal segmentation problems occurred in 2017, by Fang et al. [55]. The authors

suggested a structure that merges a convolution neural network with the graph search

method (CNN-GS) to automate the segmentation of nine retinal layer boundaries and

thus eight retinal layers (RNFL, GCL + IPL, INL, OPL, ONL, inner segment ellipsoid

(ISE), OS, and RPE and drusen complex (RPEDC)) in OCT images of patients diagnosed

with age-related macular degeneration (AMD).

For this purpose, a modified CNN (Figure 3.1) for the Cifar database (Cifar-CNN)

[82, 83] was used to extract features of each specific retinal boundary and train a classifier

to generate class labels and probability maps, where a graph search method [69] was

applied. In this last step, the final boundaries of the retinal layers in the OCT images

were derived from the generated probability maps.
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Figure 3.1: CNN architecture for the Cifar database [55].

Although this method manages to automate the segmentation of nine retinal layer

boundaries to a certain extent, given that it obtains satisfactory results of a mean absolute

error in segmentation between the manual and automated gradings of 1.26 pixels, it is

sensitive to the position of the boundaries in the OCT images and the computational

burden is quite high.

Among the many state-of-the-art CNNs that have been developed, ResNet, DenseNet,

U-Net, and RelayNet are a few worth highlighting. Over the years, these networks

have been applied in various ways to solve the problem of retinal layer segmentation.

Throughout this subsection, some of the contributions and work developed based on these

models will be explored, as well as the models’ characteristics.

ResNet

A ResNet (Residual Network) [84] is a CNN that has residual blocks as a fundamental

architectural component. In these blocks (Figure 3.2), the final output, f(x), that is fed

into the activation function will be the sum of the output from the convolutions and the

input (identity function x ). This introduces the residual learning concept where the layers

inside the residual block will try to learn during the training a residual function R(x) =

f(x) - x instead of the output f(x) directly, as regular CNNs do.
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Figure 3.2: Residual block [84].

In 2019, Liu et al.[85] used a ResNet, as depicted in Figure 3.3, and an optimized

structured random forest classifier [86, 87] to automate the segmentation of different

retinal layers in OCT images.

Feature information was extracted by training the ResNet on the OCT images. These

features were then used to optimize the structured random forest and accurately classify

the different layers, predicting their boundaries by generating probability maps for each

one.

Figure 3.3: ResNet architecture used in Liu et al. [85].

The results obtained for this algorithm showed to be satisfactory, with a mean absolute

error of 1.215 pixels and an F1-score of 0.885. The F1-Score ranges from 0 to 1, where

a higher F1 score indicates better model performance (these metrics will be defined in
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Chapter 4).

DenseNet

The DenseNet network [88] is similar to the ResNet architecture. However, its

architecture comprises dense blocks, each containing several layers that will be connected

to all the previous layers. Within a dense block, the output feature maps of each layer L

are concatenated with the feature maps of all previous layers, according to:

fL = HL([f0, f1, ..., fL−1]) (3.1)

where fL is the feature map of layer L, [f0, f1, ..., fL−1] is the concatenation of the feature

maps generated in layers 0, ..., L− 1, and HL is the activation function applied to layer L.

This implies that for L layers in a dense block, the output of each block will comprise

L sets of feature maps concatenated together. Thus, for a typical network with L layers,

there are L connections between the layers, while in a DenseNet with L layers, there will

be about L(L + 1)/2 direct connections. Figure 3.4 is a depiction of the DenseNet.

Figure 3.4: DenseNet architecture [88].

In Pekala al.[89], the authors present a deep learning approach to automatically seg-

ment retinal OCT images into the following retinal layers: pre-retinal space and NFL

complex, NFL-GCL, IPL-INL, OPL-ONL, and Bruch’s Membrane (BM) to Choriocap-

illaris complex. To accomplish this, they resort to a DenseNet (Figure 3.5) to segment

pixels composing the layer.
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Figure 3.5: DenseNet architecture used in Pekala et al. [89].

The authors evaluate their method’s performance by calculating the surface estimation

accuracy, after which the DenseNet obtained a mean absolute error of 1.06 pixels.

A major problem in applying deep convolutional neural networks to medical image

segmentation problems is the lack of labeled training data, which is a time-consuming

and expensive process. In the approach taken by Sedai et al.[90], a semi-supervised

uncertainty-guided student-teacher learning method is studied for the segmentation of

eight retinal layers (RNFL, GCL+IPL, INL, OPL, ONL, IS, OS, RPE).

This model, U-SLS (Figure 3.6), has two segmentation networks of DenseNet architec-

ture: the student network, responsible for learning an adequate representation of the data

and the main segmentation task, and the teacher network, which controls the learning of

the first network and models the unreliability of the segmentation predictions.

The training set for the segmentation network consists of a limited number of classified

samples and a considerable number of unclassified images. First, the teacher model is

trained with the labels using Bayesian deep learning [91]. The output is a segmentation

map and an uncertainty map. The uncertainties, which correspond to the confidence

values of the segmentation output of the teacher network, guide the selection of additional

data to be annotated and incorporated into the training process of the student network.

This iterative process continues until the model’s performance reaches a satisfactory level.
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The goal is to make the most effective use of the classified data to achieve accurate

segmentation results.

According to the results, this U-SLS framework achieved, on average, a dice coefficient,

which indicates the similarity between the obtained segmentation and the real segmentation,

of 0.82 ± 0.07, being 1 the greatest similarity (metric defined in Chapter 4).

Figure 3.6: U-SLS architecture [90].

U-Net

The U-Net or U-Shape architecture, proposed by Ronneberger et al. [92], is a very

popular type of CNN and the basis of many networks currently in use. It consists of two

main parts: the encoder (contracting path), which consists of a series of convolution and

max-pooling layers, reducing the spatial resolution of the input image and extracting the

features, and a decoder (expanding path), which consists of transposed convolution layers

that perform up-sampling on the previous representation to get the original resolution,

mapping the extracted features in the output image. Thus, the encoders are used to

learn a hierarchy of contextual features, and decoders are used to perform semantic

segmentation, which is the process of assigning a label to each pixel in an image to indicate

its class/category.

Connecting the encoder and decoder are skip connections that perform concatenation

operations between the encoder’s feature maps and the corresponding decoder layers,

allowing the expanding path to access the representation of features at different resolu-

tions/scales, thus preserving the fine details in the image.
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The final layer of the U-Net is a 1×1 convolution layer used to adjust the format of the

network’s output, by matching the channels at the end of the decoder with the number

of classes. In general, this last layer maps the final feature vector to the desired number

of classes for classification tasks, transforming the learned features into the appropriate

format for the final output segmentation map. For semantic segmentation, the output

is a probability map of the same size as the original image, indicating the likelihood of

the presence or absence of each object in the image, performing the final segmentation

operation. Figure 3.7 represents the U-Net architecture.

Figure 3.7: U-Net architecture [92].

Man et al. [93] explored the potential of the U-Net architecture for the segmentation

of retinal layers in OCT images. The segmentation was carried out for nine boundaries,

thus eight retinal layers (ILM, NFL, GCL, IPL, INL, ELM, IS/OS complex, RPE, and

BM). The implemented model was used to classify each pixel and it is identical to the

U-Net proposed by Ronneberger [92].

After performance evaluation, the segmentation results were found to have, on average,

a boundary mean absolute error of 1.144 pixels.

ReLayNet

The ReLayNet architecture was proposed by Roy et al. [94] to address the segmentation

of the retina. The authors proposed this new framework to segment the retina into eight

layers (ILM, NFL-IFL, INL, OPL, ONL-Inner Segment Myeloid (ONL-ISM), ISE, and



45 3.2. Deep Learning Methods

OS-RPE).

Regarding RelayNet (Figure 3.9), the developed algorithm has an encoder-decoder

architecture with skip connections, as it is inspired by the U-Net and the DeconvNet [95].

However, unpooling layers were introduced on the decoder, as previous work had shown

that they optimize the spatial consistency of the segmentation [95]. Unpooling is a CNN

operation used in parallel with the pooling process. The goal of the pooling operation is to

reduce the spatial dimensions of the input tensor by retaining the maximum (max-pooling)

or average (average pooling) values within a specific neighborhood. The purpose of the

unpooling operation is to reverse the process and restore the spatial information lost

during the pooling. The authors used max-pooling layers on the encoder as to perform

pooling. During this operation, the location of the retained maximum values was stored.

Then, when unpooling was applied on the decoder, the current values were restored to

their original locations before the pooling operation, while the rest of the values were set

to zero. Figure 3.8 shows a diagram that illustrates an example of the max-pooling and

unpooling process.

Figure 3.8: Max-pooling and unpooling operations [96].

Besides unpooling, batch normalization layers were also added. Batch normalization

is a technique commonly used in deep neural networks to address the issue of internal

covariate shift [97], which is related to the unavoidable shift in the distribution of layer

inputs as the network parameters are updated. During the training process, the model

undergoes layer-by-layer backward updates while assuming that the weights in the layers

preceding the current layer are fixed. However, in reality, all layers are modified during
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an update, and this update process constantly tries to catch up with a moving target.

The batch normalization layers scale the output of each layer, standardizing the

activations of every input variable across the network, enforcing a Gaussian distribution

for the inputs, with a mean that approximates zero and a standard deviation that

approximates one.

Consequently, the assumptions made by subsequent layers regarding the distribution

of inputs during weight updates will remain relatively consistent, experiencing only minor

changes. Extensive research [97] has demonstrated that batch normalization substantially

stabilizes and accelerates the training process while enhancing the network’s robustness,

particularly when dealing with poorly initialized weights.

Figure 3.9: RelayNet architecture [94].

The entire eight-layer segmentation procedure was carried out using the algorithm

described for semantic segmentation of the different layers, and there was no processing

before or after segmentation.

The network was tested, and its performance was evaluated according to the estimation

of the thickness of the nine spatial zones of the retina. ReLayNet showed exceptional per-

formance in retinal segmentation with thickness errors in identifying the regions between

0.151 and 0.34 pixels.
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Finally, Table 3.1 shows the different networks and their performances.

Table 3.1: Summary of the mentioned approaches, comparing the OCT systems, the error
ranges, and the type of data used.

Network Reference Error (px) System Data Type

CNN-GS Fang et al.[55] 1.260 Spectralis HRA + OCT device human, age-related macular degeneration
ResNet Liu et al.[85] 1.215 Spectralis OCT human, diabetic macular edema

DenseNet Pekala et al.[89] 1.060 Spectralis OCT human, non-proliferative diabetic retinopathy
U-Net Man et al.[93] 1.144 Spectralis OCT human, normal

RelayNet Roy et al.[94] 0.151 to 0.340 Spectralis OCT human, diabetic macular edema

Even though the different algorithms were not used to segment the same layers, the

segmentation potential of the U-Net and its derivative RelayNet is clear. Indeed, U-Net

inspired networks have been increasingly used to address the retinal layer segmentation

problem, using concepts such as residual and dense blocks to supplement the base U-Net

architecture. [98, 93]. The same thought process was implemented when developing this

study’s algorithms, which will be further explored in Chapter 4.

It is also worth noticing that, while the DenseNet may demonstrate a slightly better

performance than the ResNet, dense blocks use concatenation, which makes the DenseNet

more memory-intensive than the ResNet. Therefore, using it when dealing with smaller

data sets is better. Besides this, due to their vast use of connections, besides raising

the number of parameters and the computational burden, they are also more prone to

overfitting. The direct access of the feature maps to all previous layers may lead to

overfitting if the network starts to rely too heavily on redundant or noisy features. Even

though residual blocks have a similar concept, in DenseNets, these direct connections are

much more frequent along the architecture.
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Chapter 4

Materials and Methods

The project aims to develop a system for the automatic segmentation of retinal layers

in OCT B-scans using a convolutional neural network. To achieve this goal, the research

was mainly focused on the architecture of the proposed network and its flexibility and

ability to correctly segment the retina when fed new data.

In this chapter, the materials used, along with the methodologies and procedures

implemented, are presented. Additionally, it will cover the different stages of network

development and provide a comprehensive description of the model and all the implicit

essential components, which include the loss function, type of layers, and hyperparameters.

4.1 Problem Definition and Workflow

The segmentation of any image involves dividing it into meaningful structures or regions.

Consequently, this process can be thought of as the classification of each individual pixel

into one of these regions (pixel-level classification). The proposed CNN should receive as

inputs OCT B-scans, of a predefined size, classify each pixel into one of the 10 classes

49
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(Vitreum, RNFL-GCL, IPL, INL, OPL, ONL, ILS, OLS, RPE, and Choroid), and output

a stack of 10 images of the same size of the input one. The output images’ pixel values

will represent the probability of each pixel belonging to the class. The problem can be

formulated as a semantic segmentation task since each pixel will be assigned a class label.

An appropriate approach to this image classification problem is usually training the

developed algorithm based on the dataset with pre-labeled images (supervised learning).

Once the problem of image segmentation was defined and framed, a typical implemen-

tation workflow of the deep learning model was followed, which includes the following

general outline of steps:

• Data Pre-processing: Gathering the dataset composed of the OCT B-scans,

labeled and unlabeled examples. Pre-processing steps will be performed on these

data;

• Model Selection: Selection of an appropriate deep-learning model architecture for

the segmentation task at hand;

• Model Training: Training the selected model, by feeding it the training set (labeled

data). The model’s progress is monitored, and overfitting is prevented by validating

it using a validation set;

• Hyperparameter Tuning: Adjustment, by trial and error, of the multiple hyper-

parameters such as learning rate, batch size, and epochs to optimize the model’s

performance;

• Post-Processing: Application of post-processing techniques to refine and enhance

achieved results;

• Model Evaluation: Evaluation of the trained model by making predictions on a

separate test set of images to assess its performance through several metrics;

• Fine-tuning and Optimization: Fine-tuning the model if necessary by incorpo-

rating additional techniques such as transfer learning. Optimization of the model’s
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performance by experimenting with different optimization algorithms and regular-

ization methods.

4.2 Materials

4.2.1 Hardware

Regarding the materials used throughout the study, two computers were used to

develop and implement the mentioned methodologies and perform the experiments. The

platforms had the following specifications:

Computer 1:

• Operative System: Linux Ubuntu 20.04.3 LTS;

• Processor: 2× Intel Xeon(R) CPU X5660 2.80GHz (24 cores in total);

• RAM: 94.4 GiB;

• Graphics: NVIDIA Corporation TU104 [GeForce RTX 2080 SUPER 8 GB].

Computer 2:

• Operative System: Linux Ubuntu 22.04.2 LTS;

• Processor: AMD Ryzen 9 3900X 12-Core Processor x 12;

• RAM: 64.0 GiB;

• Graphics: NVIDIA Corporation GA106 [GeForce RTX 3060 12 GB].
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4.2.2 Software

Python

Python is a popular high-level programming language that finds applications in

computer vision, data analysis, machine learning, and many other related fields. Known

for its simplicity, readability, and intuitive syntax, Python’s versatility extends to different

platforms, including Windows, macOS, and Linux. In addition, as an open-source

language, it offers a comprehensive standard library and a vast collection of third-party

packages readily available online. This rich ecosystem and extensive documentation

provide developers with a wide range of powerful tools and functionalities to tackle diverse

programming tasks effectively.

For these reasons, throughout the development of this research, all neural networks

were built, trained, and evaluated using Python 3.10 on PyCharm Professional Edition,

an integrated development environment (IDE) used for programming in Python.

Keras

Compatible with Python 3.5 or higher, Keras is a high-level deep learning library

tightly integrated with TensorFlow’s deep learning framework that supports convolutional

and recurrent networks. With Keras, it’s possible to quickly design and train complex

neural networks by stacking layers and configuring their parameters through a wide range

of built-in layers, activation functions, loss functions, and optimizers.

Keras excels in its straightforwardness, modularity, and easy extensibility, allowing for

efficient experimentation and iterative model improvement. Owing to this, it was decided

to work on top of the Tensorflow graph flow processing library.
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4.2.3 Data

The data used for this study was acquired in the Coimbra Institute for Clinical and

Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra and the Coimbra

Institute for Biomedical Imaging and Translational Research (CIBIT), using two different

systems: the Phoenix OCT and the Bioptigen.

Phoenix OCT

Mice retinas were imaged using the Micron IV OCT System (Phoenix Technol-

ogy Group, Pleasanton, CA, USA) to capture 1024×512 pixels B-scans, saved as non-

compressed TIFF files. The imaging system offers a depth scanning of up to 1.4 mm

and a depth resolution of 3 µm. These characteristics are determined by the bandwidth

and central wavelength of the superluminescent diode, which are 160 nm and 830 nm,

respectively.

All scans were captured in the same retinal region by the same operator. The optic

disc was utilized as a reference point for alignment, ensuring that scans were horizontally

centered and positioned vertically above it.

This OCT system was used to collect the main dataset (dataset 1 - DS1) for training

the network, which comprised image data from 57 triple transgenic animal models of

Alzheimer’s disease (3×Tg-AD) and 57 wild-type (WT) mice. The data consisted of

3000 labeled OCT B-scans acquired for both eyes, at 1, 2, 3, and 4 months of age.

Labeling was accomplished through a semi-automatic process, where an expert iteratively

corrected the systems segmentation over time and layers were aggregated to create a

manual segmentation. This dataset was divided into training, validation, and testing as

explained in the next section (Section 4.3). In Figure 4.1, an example B-scan from dataset

DS1 is shown, along with its label.

Besides DS1, additional OCT B-scans collected with the same acquisition system

and method were provided (dataset 2 - DS2), containing samples from both eyes of

rats from WT and type 1 diabetes, at 1, 2, and 4 weeks after diabetes onset. Type-1

diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ; 65
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mg/kg; Sigma-Aldrich, Merck KGaA, Darmstadt, Germany). The same labeling process

used for DS1 was also used to obtain these labels. These images included 21 labeled

B-scans and they were only used for testing. In Figure 4.2, a B-scan from dataset DS2

and its label are displayed.

(a) (b)

Figure 4.1: An OCT B-scan example (a) and the corresponding manual segmentation (b),
from dataset 1 - DS1.

(a) (b)

Figure 4.2: An OCT B-scan example (a) and the corresponding manual segmentation (b),
from dataset 2 - DS2.
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Bioptigen

Aiming to test the proposed solution on data gathered by a distinct acquisition system,

additional B-scans, collected by a Bioptigen OCT system were gathered (dataset 3 - DS3).

This imaging system captures 1024×512 pixels B-scans and provides a depth resolution of

4.5 µm.

Recalling that the final requisite consisted of applying transfer learning methods to

data from the Bioptigen system, a manual segmentation process was required to create the

target images needed. Using the GIMP application, 60 B-scans were randomly selected

from 3 mice and manually segmented, 30 from the left eye and 30 from the right eye, to

prompt variability. Ideally, a larger quantity of labeled data would be preferable, but

manual segmentation requires significant time and effort, and the process is slow and

resource-intensive. The 60 B-scans and their associated masks were split into training

and validation sets as explained in the next section (Section 4.3). All segmentations were

verified before the network underwent training by Professor Doctor Rui Bernardes. For

testing, another 109 B-scans were selected randomly from several Bioptigen’s volumes,

corresponding to 5 mice, 62 from the left eye and 47 from the right eye. Below is a B-scan

belonging to DS3 (Figure 4.3).

Figure 4.3: An OCT B-scan example from dataset 3 - DS3.
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4.3 Pre-Processing

As mentioned above, both the DS1 dataset and the DS3 dataset had to be divided

into subsets for the two different training phases, the main training procedure, and the

transfer learning.

Dataset 1, containing 3000 labeled B-scans, was randomly divided into training,

validation, and test groups per animal in a proportion of 80/20/20, meaning that a first

split into training+validation and test sets was performed with a ratio of 80 and 20%,

respectively, followed by a second split of the former into training and validation sets also

with a ratio of 80 and 20%, respectively.

As for dataset 3, the 60 labeled B-scans were split into training and validation sets, 80

and 20% ratio, respectively.

All data splits are performed on the animal IDs and the B-scans from each animal are

assigned to the resulting set. Thus, all B-scans from a given animal are part of either the

train, test, or validation sets.

Normalization was applied to all OCT images. Normalizing the dataset involves

transforming the pixel range of the image data to a new standardized scale. The goal is

to bring all features or variables to a similar range.

Normalizing inputs ensures that the pixel values have similar scales and distributions,

thus mitigating possible biases due to different pixel value ranges in the images, ensuring

that each input image contributes equally to the learning process. It also improves the

speed of convergence during training, potentially optimizing the efficiency and performance

of the model. In addition, it reduces the variation between images and becomes easier to

compare and interpret the data.
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Two of the most commonly employed techniques for this procedure are z-score nor-

malization and min-max normalization. Min-max normalization involves scaling the

values according to the minimum and maximum values of the sample. Herein, z-score

normalization was used to standardize the image data. For each image in the dataset, the

mean, µ, and standard deviation, σ, were calculated, and then the following equation was

applied to every image pixel:

Z =
x− µ

σ
⇒ imgstandardized =

img − ¯img

simg

, (4.1)

where x is the original data point, µ is the mean of all values in the image, σ is the

standard deviation, and z is the standardized value for x.

Simultaneously, recalling the multi-label classification task at hand, the output classes

resulting from the model classification will be eight retinal layers plus the Vitreum and

Choroid regions, which means there will be 10 different classes.

To handle this kind of categorical labels, it’s necessary to extract each layer separately

from the manually segmented image, which together will compose the target images for

the machine learning algorithm.

Consequently, the next stage consisted of performing one-hot-encoding on each manu-

ally segmented image, resulting in a stack of 10 images, one for each class, as shown in

Figure 4.4.
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(a)

(b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 4.4: Manually segmented image (a) from DS1 and each layer image after the
one-hot-encoding process implementation: (b), (c), (d), (e), (f), (g), (h).

Finally, all training and validation data underwent data augmentation, prior to each

training stage. This technique was applied to ensure that the developed network had

access to a substantial amount of diverse data.

Therefore, it aimed to mitigate overfitting and enhance the model’s ability to make

accurate predictions on new images, ultimately improving its generalization capabilities.



59 4.3. Pre-Processing

Hence, the following geometric transformations were randomly applied:

• Rotations: Consists of randomly rotating the original image according to a desired

angle. Rotations of up to 15◦ were applied;

• Reflections (Flipping): Involves randomly flipping images along an axis of

symmetry horizontally or vertically. Only horizontal flips were performed.

In these transformations, padding is applied according to the value of the nearest pixel.

These transformations have been found to significantly enhance deep learning algorithms’

performances while keeping a reasonably fast computational speed (convergence velocity)

[99, 100].

Data Resizing

The goal of this work envisions a flexible approach for multiple animal models and

systems. Input size is different between systems and the proposed approach must account

for it. The standard input size for the network was set based on the main dataset as

768×512 pixels. Thus, a protocol was then defined to pad/crop irregular inputs before

pre-processing.

To accomplish this, a function was created to crop input images according to their

respective regions of interest and specific output size.

Initially, the function reads the image in grayscale mode and ensures pixel values are

rescaled within the range of 0 to 255. Then, it sets a minimum intensity threshold for

the region of interest (ROI) at 50, to facilitate its determination. The threshold value

was empirically set at 50, but its applicability to different datasets is not invalidated,

as all images are initially set between 0 and 255, and this process is applied before the

B-scans are standardized. The rationale of this approach is the high reflectivity found

in the RPE. Utilizing the Opencv library, the perimeter of the ROI is identified, and its

center is calculated. Finally, the procedure resorts to the PIL library to crop the original

image, ensuring the crop centers around the calculated center while spanning specific

dimensions—a width of 512 pixels and a height of 768 pixels.
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4.4 Model Architecture

Two main architectures were implemented: an Attention-Res-U-Net and a teacher-

student generative adversarial network, teacher-student GAN . The thought process

behind these choices will be explained throughout this section. All the layers that composed

each framework were defined using Keras.

4.4.1 Attention-Res-U-Net

The Attention-Res-U-Net or Att-Res-U-Net is a U-Net based architecture.

U-Net

The U-Net architecture is widely used for semantic segmentation. This network is

composed of double convolution blocks with the ReLU activation function, as shown in

Figure 4.5.

Figure 4.5: U-Net architecture [92] (adapted scheme).

Accordingly, for both the down-sampling path and the up-sampling path, 3×3 convo-

lution layers with a stride of 1 were used, followed by ReLU units. At the end of each
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encoder block, 2×2 max-pooling layers were also applied, with a 2×2 kernel and a stride

of 2. Each encoder block is followed by a skip connection that concatenates the block’s

output feature maps to the respective decoder block. The decoder culminates with a

final 1×1 convolution layer with a Softmax activation function since this task involves

multi-class segmentation, to match the number of channels to the number of classes.

Due to memory resources, eight down-sampling blocks and eight up-sampling blocks

were used. Additionally, a batch normalization layer is placed after every convolution

layer, before the activation function. As for regularization, a dropout layer was applied at

the end of the network, just before the last convolution layer, with a dropout probability

of 0.3.

Res-U-Net

Effectively, the segmentation requires a deep model given that it needs to be able to

learn all the different structures the retina layers may present. However, with a deeper

U-Net, the gradients along the layers decrease during backpropagation. The values of

the gradients may reach such small values (near zero) that the updates on the weights

will be almost insignificant (vanishing gradient). Thus, the learning process of the model

becomes very hard and slow (low convergence speed).

Facing this issue, the solution is substituting the standard U-Net blocks with residual

convolution blocks [84], which leads us to a Res-U-Net framework.

The shortcuts for the identity function x introduced by the residual blocks, as shown

in Figure 3.2, allow the propagation of gradients to the initial layers, which mitigates the

vanishing gradient issue and the degradation of the network’s performance. In addition,

the forward propagation velocity also increases.

Attention-Res-U-Net

Finally, an attention mechanism was added, originating the definitive Attention-

Res-U-Net.

Looking back at the skip connections along the U-Net framework, they concatenate

the encoder’s feature maps with the corresponding decoder layers, making it possible to
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retain good spatial information along the network.

However, the received featured maps in the decoder won’t have a feature representation

as significant and useful as the one from objects in deeper layers. As the data is processed

through the multiple layers, the model extracts increasingly complex features but it also

becomes more difficult for it to identify the most relevant information.

The proposed attention mechanism (Figure 4.6) helps the model focus on the most

relevant parts of the image, by assigning weights to individual pixels according to their

relevance. During the training process, higher weights are allocated to pixels belonging

to significant regions, while lower weights are assigned to pixels in less important areas.

The significance of each pixel, thus region, is learned throughout the training process and

can be increased or decreased. As a result, the model progressively learns to selectively

”pay attention” to specific parts of the input, ideally, the target regions, when making

predictions.

Figure 4.6: Attention U-Net (bottom) and attention mechanism process (top) [101].

Two inputs are received at the attention gate: the gating signal, g, from the previous

layer and x from the skip connection, where g will have a better feature representation

(deeper layer) and x better spatial information (earlier layer). The product of x with the

calculated weights is returned, taking into account the g map, and forwarded to the next

layer.

Implementing this attention mechanism, combining both components g and x in the
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skip connections, allows a flow of spatial information along the network with a more

significant and localized feature representation.

A detailed scheme of the architecture can be found in Appendix A.

Loss Function

A categorical cross-entropy (CE) loss was used. This function is widely used in

segmentation tasks with multiple classes, such is the case.

However, the dataset is unbalanced, given that the retinal layers have different thick-

nesses. Therefore, to improve performance in underrepresented layers or classes, it’s

necessary to define weights for each one. These weights were calculated to be inversely

proportional to class frequency.

A weighted categorical cross-entropy (WCE) loss was then implemented, which is

basically the former categorical cross-entropy loss function pondered with class weights.

It can be defined by the following expression, where wi is the weight associated with a

class (layer):

WCE = −
m∑
i

yi × log(ŷi) × wi (4.2)

However, this loss function was still not sufficiently optimized to allow the correct

adjustment to the layer boundaries. Even though the layer segmentation may be valid,

the boundaries obtained were flat and inaccurate. The main issue is that the critical

regions are when two classes border one another. Nevertheless, the WCE loss function

weights every pixel of a given class the same. A loss function that considered the pixel

distance to these boundaries was needed to emphasize and enhance the influence of pixels

located in regions closer to them.

To obtain this boundary distance component, the function euclidean distance transform

was built to calculate the inverse of the Euclidean distance transform and output an image

that contains pixel weights (from 0 to 1). The pixels closest to the boundaries have the

largest weights and as the pixels get further from the edges, their weights get progressively

smaller. Once the distance from the boundary exceeds a threshold distance of 5 pixels,
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the weights become constant at a value wmin.

This new map of weights, dtrue, was multiplied point-by-point by the already-defined

loss that considered the layer (class) weights:

loss = −
m∑
i

yi × log(ŷi) × wi × dtrue (4.3)

Finally, a new term (1 − pt)
γ was introduced, where pt is the probability of a pixel

belonging to a class predicted by the model (ŷi) and γ an adjustable focus parameter:

weighted focal loss = −
m∑
i

yi × log(ŷi) × wi × dtrue × (1 − ŷi)
γ (4.4)

This term is characteristic of the focal loss [102], which is an extension of the cross-

entropy loss, and its purpose is to focus the model on hard-to-classify examples. The loss

for well-classified samples, when the model predicts the correct class with pt > 0.5, is

reduced, and the loss for hard-to-classify samples, when the model predicts the correct

class with pt < 0.5, is increased, as shown in the graph below (Figure 4.7). The γ

parameter was adjusted manually through several experiments, and it was found that

γ = 2.0 worked the best.

Figure 4.7: Focal loss vs. predicted model probability function for a class [103].

Consequently, it not only reduces the class imbalance, improving the minority classes’

(thinner layers) performance but also enhances the performance relative to the classification

of hard-to-classify pixels inside each class.
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Hyperparameters

Besides the topological structure of the network and the loss function, additional

hyperparameters had to be defined when projecting this CNN.

After several adjustments by trial and error, manually, some essential hyperparameters

were specified as presented in table 4.1, as they were found to work best throughout the

experiments.

Hyperparameter Value
Dropout 0.3
Optimizer Adam

Learning Rate 0.0001
Batch Size 4
Epochs 250

Steps per Epoch
nimages

batchsize

Table 4.1: Defined hyperparameters for training the Attention-Res-U-Net model.

4.4.2 Teacher-Student GAN

A generative adversarial network (GAN) was also put into practice. Recently, the

potential of GANs has been in evidence [90, 104].

This type of architecture is formed by two sub-models (Figure 4.8): the generator

(student), which generates the target images, and the discriminator (teacher), which

classifies them as true images or generated ones. As the name indicates these models are

adversarial, i.e., their objectives oppose. The generator is trying to ’fool’ the discriminator

while the discriminator attempts to ’punish’ the generator.

Given that the GAN frameworks can be used as a form of data augmentation, this is

also one of the appeals of these networks: the production of more training data than the

provided input. GANs can generate realistic samples and increasingly improve the data

quality by comparing it to similar data and making corrections.

The following logic scheme translates the projected network’s information flow:
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Figure 4.8: Diagram of the information flow of the proposed GAN algorithm.

For the most part, this network’s architecture was based on the Pix2Pix GAN proposed

in [105]. For the generator, the Attention-Res-U-Net framework was used, while for the

discriminator, a more straightforward CNN architecture was used: 5 blocks of 4×4

convolution layers with a stride of 2, followed by batch normalization layers (except in

the first block) and LeakyReLU units, with an alpha of 0.2. The final layers are a 4×4

convolution layer, followed by a Sigmoid activation unit.

A particularity of the discriminator relates to the fact that the probability is evaluated

on an image region or patch instead of the image as a whole, in this case, a 48×32 sized

patch, since the last convolution layer has a 4 × 4 kernel size and the images are of size

768 × 512 pixels. This is called a PatchGAN model. A scheme of the PatchGAN model

can be found in Appendix A.

Loss Function

Regarding the choice of loss functions, distinct functions were employed for each of the

two models. Specifically, for the generator the preferred loss function was the weighted

categorical loss, due to memory constraints. For the discriminator, a binary cross-entropy

loss was used. This loss quantifies the disparity between predicted probabilities and labels

due to its straightforwardness and capacity to adeptly direct the discriminator’s learning

process.
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Hyperparameters

Discriminator and generator parameters were adjusted similarly to the ones from the

standalone Attention-Res-U-Net and are summarized in Table 4.2.

Table 4.2: Defined hyperparameters for training the Teacher-Student model.

Attention-Res-U-Net PatchGAN

Dropout 0.3 -
Optimizer Adam Adam

Learning Rate 0.0001 0.001
Batch Size 4
Epochs 100

Steps per Epoch
nimages

batchsize

GANs tend to not converge or converge very slowly. Furthermore, the discriminator

may become too successful in its task, leading to gradient vanishing problems. For these

reasons, parameterization should be carefully considered. Hence, mismatched learning

rates between the generator and discriminator help strike a balance in the training process.

The generator benefits from a lower learning rate because this allows it to make gradual

updates and converge slowly toward generating realistic samples. On the other hand, a

faster learning discriminator (higher learning rate) ensures a dynamic and competitive

training process. This speed prevents the discriminator from failing to provide the feedback

needed for effective generator training, thereby continuously challenging the generator to

improve its sample generation [106].

Adjusting the learning rates was done empirically through experimentation, and

resulted in 0.0001 for the Attention-Res-U-Net (generator) and 0.001 for the PatchGAN

(discriminator).

Network Training

After the architectures, loss functions, and hyperparameters were defined, the network

training phase succeeded. It was performed on both the Attention-Res-U-Net and the

Teacher-Student GAN. Results from this stage can be found in the next chapter. During

training, accuracy and loss were monitored for the Attention-Res-U-Net, while for the
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Teacher-Student GAN loss was monitored along with visual evaluation of the quality of

the generated images. Periodically throughout the training procedure, the student model

would make some predictions and display them. This form of monitoring was implemented

to know when to stop the training process.

Overall, two models were trained and saved using DS1, one for each network, and a third

one was also trained during the transfer learning step for DS3, using the already-trained

Attention-Res-U-Net model.

This last training phase consisted of the application of a transfer learning method,

where a new model using the Attention-Res-U-Net architecture was trained. The initial

weights for this new model were set as the concluding weights obtained from the previously

trained Attention-Res-U-Net model.

It’s also worth noting that besides changing the number of training epochs to 50, the

Adam optimizer was set with a learning rate of 0.001 for this training.

4.5 Post-Processing

After generating the predicted segmentations (probability maps) from the network,

post-processing was applied to refine and enhance the obtained results and produce the

final interfaces that limit each layer.

This can involve a wide range of techniques and algorithms to improve the visual

quality, correct imperfections, enhance details, or transform the image in some way.

It is worth noting that, since the network outputs 10 images of the 10 classes, the

same interface will be predicted in more than one image (Ex: In the 2nd layer image, the

upper boundary will coincide with the lower boundary of the 1st layer image.). Therefore,

all pairs of interface predictions were considered and averaged. To do this, an image of all

the layers summed up below the interface and an image of all the layers summed up above

the interface were generated, as depicted in Figure 4.9, for all interfaces. For the sake of

simplicity, the post-processing steps will refer to the boundary extraction per image.
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(a) (b)

Figure 4.9: Depiction of an example of each pair of images generated for boundary
detection.

The method to extract the layer interfaces consisted of the following steps:

• Interface Refinement and Detection: Interface identification on the image, with

previous manipulation to make them sharper and easier to detect.

First, to use the library destined for this procedure, OpenCV, each image had to be

scaled from [0, 1] to [0, 255]. Initially, to slightly enhance the boundary, a binary

threshold is set, where pixels above the threshold are set to white (255) and pixels

below the threshold are set to black (0). The threshold was determined empirically

to be 255/2.5, but this does not compromise the application of this method to other

types of data, since all images have the same range, at this point, and variations of

the threshold do little to no difference in the final result.

Afterward, to make sure small artifacts or noise were removed from the image,

some basic morphological operations of erosion and dilation were employed. Erosion

allows the corrosion of a region’s boundaries, considering a kernel with a certain

connectivity (number of neighboring pixels). Each pixel of the original binary

image is considered 1 if every pixel in its connectivity is also 1. Dilation does the

exact reverse, broadening the region’s boundaries. Each pixel of the original binary
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image is considered 1 if at least one pixel in its connectivity is also 1. This was

performed using the function morphologyEx with an elliptical-shaped kernel of 7×7.

An example of a resulting image from this refinement process can be shown below

(Figure 4.10).

Figure 4.10: Final product generated from the refinement of the boundary image.

Finally, the detection of the boundaries is performed using the Canny edge detection

algorithm, through the use of cv2.Canny.

• Boundary Coordinates Filtering: Location of boundary pixel coordinates and

screening of coordinates to obtain a single vector of x and y values.

Following the interface detection process, a final step is required to ensure that the

resulting interface consists of a single set of x values, each uniquely paired with

a single corresponding y value. This step involves locating the boundary pixels’

coordinates (x,y) and filtering them, by screening the coordinates of the detected

edge to eliminate any redundancy or ambiguity of the boundary location.

Hence, the positions of pixels with an intensity equal to 255 were located and through

several loops, the coordinates were screened for possible multiple y coordinates. If

there was in fact more than one y value for an x coordinate, an average for all the y

values was done, like so:

(x, y)final = (x, ȳ) = (x,
ŷ1 + ŷ2 + ... + ŷn

n
) (4.5)
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Thus, the final output after applying this post-processing stage to the network’s

predictions is nine sets of coordinates for each layer interface.

Ultimately, these coordinates were drawn onto the corresponding test B-scan, resulting

in images of 768×512 pixels with the delineated layer interfaces. An example of a resulting

image with the interfaces can be observed in Figure 4.11.

Figure 4.11: B-scan with the delineated layer interfaces generated from the post-processing
of the network output.

4.6 Performance Indicators

In the context of semantic segmentation, the evaluation metrics must assess pixel-level

classification performance. Thus, to evaluate the developed models, the following metrics

were used as performance indicators:

• Accuracy: given as the ratio between the number of correctly classified pixels and

the total number of pixels:

Accuracy =
number of correctly classified pixels

total number of pixels
(4.6)

• Recall (Sensitivity): given as the ratio between the number of correctly classified
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pixels and the total number of pixels in the ground truth that ractually belong to

the class:

Recall =
number of correctly classified pixels

total number of ground truth instances of class
(4.7)

• Precision: given as the ratio between the number of correctly classified pixels and

the total number of pixels that the model predicted as belonging to the class:

Precision =
number of correctly classified pixels

total number of predicted instances of class
(4.8)

• F1-score: given as a harmonic mean between recall and precision. Its values can

range from 0 to 1, with 1 being the maximum value of precision:

F1 = 2 · Precision ·Recall

Precision + Recall
(4.9)

• Dice Coefficient: given as twice the area of overlap divided by the total number

of pixels in both the ground truth and predicted images. It ranges from 0 to 1, with

0 being no overlap and 1 signifying the greatest similarity between ground truth

and predicted (Figure 4.12);

Figure 4.12: Illustration of the dice coefficient [107].

• IoU (Intersect over Union): given as the area of overlap between the predicted

segmentation and the ground truth divided by the area of union between the

predicted segmentation and the ground truth. It ranges from 0 to 1, with 0 being

no overlap and 1 signifying perfectly overlapping segmentation (Figure 4.13).
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Figure 4.13: Intersect over Union calculation visualized [108].

Model evaluation through these metrics is carried out directly on the network output,

before the post-processing, since these metrics are related to the pixel-level classification

ability of the algorithm.

After the post-processing stage, the boundary prediction error is evaluated. Thus, the

following error distance metrics are also calculated for each interface:

• Mean Error (ME): average of the distance between the predicted (ỹi) and the

original/true (yi) values:

ME =
1

n

n∑
i=1

(yi − ỹi) (4.10)

• Mean Absolute Error (MAE): average of the absolute distance between the

predicted (ỹi) and the original/true (yi) values:

MAE =
1

n

n∑
i=1

|yi − ỹi| (4.11)

• Mean Squared Error (MSE): square average of the distance between the predicted

(ỹi) and true (yi) values:

MSE =
1

n

n∑
i=1

(yi − ỹi)
2 (4.12)
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Chapter 5

Results and Discussion

5.1 Phoenix OCT

5.1.1 Dataset 1 - DS1

In this subsection, the segmentation results of the DS1 dataset encompassing WT and

3×Tg-AD mice OCT images obtained from the Phoenix OCT system, will be presented

and discussed. These results were obtained using the developed networks, Attention-

Res-U-Net and Teacher-Student GAN. Additional segmentation results can be found in

Appendix A.

Attention-Res-U-Net

The training duration for this model was 20 hours and 49.8 minutes, spanning 250

epochs. Graphs illustrating the progression of loss and accuracy can be found in Appendix

A for both the training and validation stages. As the model learned, the loss decreased

while accuracy progressively improved, stabilizing at a value and maintaining that level

for the remaining training duration.

75



Chapter 5. Results and Discussion 76

(a)

(b)
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(c)

(d)

Figure 5.1: Selection of predicted layer interfaces by the Attention-Res-U-Net, correspond-
ing ground truth segmentations, and original B-scans for the DS1 test set.
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Table 5.1: Performance metrics for the classification into layers of the DS1 test set using
the Attention-Res-U-Net model, along with the average and weighted average. The
weighted average is pondered using the class weights, wi.

F1-Score Dice Coefficient Recall
Median Q1 Q3 Median Q1 Q3 Median Q1 Q3

Vitreous 0.998 0.997 0.998 0.997 0.996 0.998 0.995 0.994 0.997
RNFL-GCL 0.960 0.944 0.969 0.938 0.919 0.947 0.995 0.990 0.998

IPL 0.989 0.985 0.990 0.976 0.970 0.979 0.981 0.974 0.985
INL 0.978 0.972 0.982 0.940 0.928 0.946 0.985 0.979 0.988
OPL 0.969 0.961 0.974 0.883 0.870 0.891 0.991 0.987 0.994
ONL 0.990 0.988 0.992 0.961 0.957 0.963 0.982 0.977 0.985
ILS 0.968 0.963 0.971 0.857 0.847 0.864 0.992 0.989 0.995
OLS 0.975 0.968 0.980 0.888 0.875 0.895 0.985 0.980 0.989
RPE 0.966 0.955 0.973 0.899 0.884 0.908 0.979 0.974 0.984

Choroid 0.996 0.995 0.997 0.991 0.988 0.993 0.993 0.990 0.995
Average 0.979 0.973 0.983 0.933 0.923 0.938 0.988 0.983 0.991

Weighted Average 0.980 0.974 0.983 0.936 0.927 0.941 0.988 0.983 0.991

Precision Accuracy Intersect over Union
Median Q1 Q3 Median Q1 Q3 Median Q1 Q3

Vitreous 1.000 1.000 1.000 0.995 0.994 0.997 0.994 0.992 0.995
RNFL-GCL 0.930 0.903 0.948 0.995 0.990 0.998 0.883 0.850 0.900

IPL 0.997 0.995 0.998 0.981 0.974 0.985 0.953 0.943 0.958
INL 0.972 0.962 0.979 0.985 0.979 0.988 0.886 0.865 0.898
OPL 0.948 0.936 0.956 0.991 0.987 0.994 0.790 0.770 0.803
ONL 1.000 0.999 1.000 0.982 0.977 0.985 0.925 0.917 0.929
ILS 0.945 0.937 0.951 0.992 0.989 0.995 0.750 0.735 0.760
OLS 0.965 0.957 0.972 0.985 0.980 0.989 0.798 0.778 0.810
RPE 0.955 0.937 0.965 0.979 0.974 0.984 0.816 0.793 0.832

Choroid 1.000 1.000 1.000 0.993 0.99 0.995 0.982 0.977 0.986
Average 0.971 0.963 0.977 0.986 0.983 0.991 0.878 0.862 0.887

Weighted Average 0.973 0.965 0.978 0.986 0.983 0.991 0.883 0.868 0.892

RNFL-GCL: Retinal Nerve Fiber Layer-Ganglion Cell Layer; IPL: Inner Plexiform Layer;
INL: Inner Nuclear Layer; OPL: Outer Plexiform Layer; ONL: Outer Nuclear Layer;
ILS: Photoreceptor Inner Segments; OLS: Photoreceptor Outer Segments; RPE: Retinal
Pigment Epithelium.

Table 5.2: Distance errors per interface for the predicted segmentation by the Attention-
Res-U-Net model of the DS1 test set.

Mean Squared Error (µm) Mean Absolute Error (µm) Mean Error (µm)
Median Q1 Q3 Median Q1 Q3 Median Q1 Q3

Vitreous-RNFL 1.559 1.063 2.354 1.045 0.819 1.312 -1.018 -1.298 -0.778
GCL-IPL 0.988 0.653 1.718 0.676 0.522 0.962 0.295 0.066 0.688
IPL-INL 1.762 1.225 2.604 1.014 0.823 1.260 -0.840 -1.165 -0.498
INL-OPL 0.848 0.688 1.129 0.664 0.583 0.771 -0.219 -0.437 -0.013
OPL-ONL 1.457 1.005 2.464 0.916 0.732 1.219 0.756 0.489 1.141
ONL-ISL 1.244 1.021 1.647 0.896 0.791 1.025 -0.875 -1.008 -0.759
ILS-OLS 0.500 0.426 0.606 0.463 0.404 0.527 0.033 -0.091 0.162
OLS-RPE 0.721 0.541 1.011 0.604 0.490 0.743 0.447 0.249 0.624

RPE-Choroid 4.537 2.849 9.977 1.676 1.289 2.422 1.486 1.062 2.194
Average (µm) 1.513 1.052 2.612 0.884 0.717 1.138 0.007 -0.237 0.307
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Figure 5.2: Box-plot of the mean absolute error distribution for each interface generated
by the Attention-Res-U-Net model with the DS1 test set. The median, first, and third
quartiles are shown. Whiskers at each quartile plus 1.5 times the interquartile range.
Outliers are shown as diamonds.

Figure 5.3: Box-plot of the mean squared error distribution for each interface generated
by the Attention-Res-U-Net model with the DS1 test set. The median, first, and third
quartiles are shown. Whiskers at each quartile plus 1.5 times the interquartile range.
Outliers are shown as diamonds.
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After analyzing the resulting segmentations and the obtained metrics, the algorithm’s

segmentation capability is noticeable. Figures 5.1 (a) and 5.1 (b) were picked to show the

typical segmentation achieved by the model. Additional segmentations are showcased in

Appendix A.

The proposed Attention-Res-U-Net achieved an average classification accuracy of 0.986

and an MAE of 0.884 µm. Hence, its capability to segment is evident not only visually,

but also in quantitative terms, as the errors demonstrate satisfactory performance (as

outlined in Table 5.2 and 5.1). The algorithm effectively achieves precise segmentation of

the intended layers on the DS1 test set.

However, there are cases where the model presents weaknesses in its prediction ability,

demonstrated in the selection of segmentations above (Figure 5.1 (c), (d)).

Firstly, it’s clear that the RPE-Choroid boundary has the largest MAE, of 1.676 µm,

as it’s the boundary that presents the most faults when predicted, as depicted in Figure

5.1 (c) and Figure 5.1 (d), while the others present tighter MAE distributions (Figure

5.2).

Furthermore, there are occurrences of manual segmentations on the dataset with

unpredictable and random behavior, as shown in Figure 5.1(d). Given that most of the

labels on the dataset follow a pattern, the model will make predictions based on what

was learned through those regular labels. Therefore, the generated results will evidently

differ from these sporadic manual labels. In addition, these labels may be inducing the

algorithm in errors that can reflect in its performance.
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Teacher-Student GAN

The training duration for this model was 36 hours and 7.73 minutes, spanning 100

epochs. Graphs illustrating the progression of loss can be found in Appendix A.

As the model underwent training, the loss consistently decreased. Eventually, it

reached a stable value and approximately maintained this level throughout the remaining

training period.

Even though a certain balance between the training tasks of the discriminator and

generator was achieved, by considering different learning rates for each network, GANs

are notorious for having unstable training dynamics. Achieving fast convergence can

be challenging since they are always prone to diminished gradients, which slows down

training, hence the longer training time.

(a)
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(b)

(c)

(d)

Figure 5.4: Selection of predicted layer interfaces by the Teacher-Student GAN, corre-
sponding ground truth segmentations, and original B-scans for the DS1 test set.
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Table 5.3: Performance metrics for the classification into layers of the DS1 test set using
the Teacher-Student GAN model, along with the average and weighted average. The
weighted average is pondered using the class weights, wi.

F1-Score Dice Coefficient Recall
Median Q1 Q3 Median Q1 Q3 Median Q1 Q3

Vitreous 0.996 0.995 0.997 0.997 0.996 0.998 0.994 0.992 0.995
RNFL-GCL 0.973 0.961 0.980 0.973 0.961 0.980 0.987 0.978 0.992

IPL 0.992 0.989 0.993 0.990 0.988 0.992 0.990 0.985 0.992
INL 0.982 0.978 0.985 0.981 0.977 0.984 0.983 0.978 0.987
OPL 0.977 0.972 0.981 0.977 0.972 0.981 0.984 0.978 0.988
ONL 0.990 0.989 0.991 0.992 0.991 0.993 0.993 0.990 0.994
ILS 0.981 0.977 0.983 0.980 0.977 0.983 0.987 0.982 0.991
OLS 0.982 0.978 0.985 0.982 0.978 0.984 0.983 0.978 0.986
RPE 0.977 0.968 0.982 0.976 0.968 0.981 0.985 0.974 0.990

Choroid 0.998 0.996 0.998 0.998 0.996 0.998 0.997 0.995 0.998
Average 0.985 0.980 0.988 0.985 0.980 0.987 0.988 0.983 0.991

Weighted Average 0.985 0.981 0.988 0.985 0.981 0.988 0.989 0.983 0.991

Precision Accuracy Intersect over Union
Median Q1 Q3 Median Q1 Q3 Median Q1 Q3

Vitreous 1.000 0.999 1.000 0.994 0.992 0.995 0.994 0.992 0.996
RNFL-GCL 0.963 0.941 0.974 0.987 0.978 0.992 0.948 0.925 0.960

IPL 0.994 0.992 0.996 0.990 0.985 0.992 0.981 0.977 0.984
INL 0.982 0.976 0.986 0.983 0.978 0.987 0.962 0.954 0.968
OPL 0.972 0.965 0.976 0.984 0.978 0.988 0.955 0.945 0.962
ONL 0.988 0.987 0.989 0.993 0.990 0.994 0.984 0.982 0.986
ILS 0.976 0.970 0.979 0.987 0.982 0.991 0.962 0.954 0.966
OLS 0.982 0.977 0.985 0.983 0.978 0.986 0.964 0.957 0.969
RPE 0.974 0.964 0.981 0.985 0.974 0.99 0.953 0.938 0.963

Choroid 0.999 0.997 1.000 0.997 0.995 0.998 0.995 0.993 0.997
Average 0.983 0.977 0.987 0.988 0.983 0.991 0.970 0.962 0.975

Weighted Average 0.984 0.978 0.987 0.989 0.983 0.991 0.971 0.963 0.976

RNFL-GCL: Retinal Nerve Fiber Layer-Ganglion Cell Layer; IPL: Inner Plexiform Layer;
INL: Inner Nuclear Layer; OPL: Outer Plexiform Layer; ONL: Outer Nuclear Layer;
ILS: Photoreceptor Inner Segments; OLS: Photoreceptor Outer Segments; RPE: Retinal
Pigment Epithelium.

Table 5.4: Distance errors per interface for the predicted segmentation by the Teacher-
Student GAN model of the DS1 test set.

Mean Squared Error (µm) Mean Absolute Error (µm) Mean Error (µm)
Median Q1 Q3 Median Q1 Q3 Median Q1 Q3

Vitreous-RNFL 0.623 0.446 1.055 0.549 0.418 0.737 -0.375 -0.606 -0.157
GCL-IPL 0.559 0.392 1.097 0.484 0.362 0.689 0.135 -0.072 0.366
IPL-INL 0.949 0.694 1.359 0.688 0.575 0.854 -0.230 -0.467 0.032
INL-OPL 0.566 0.447 0.766 0.498 0.416 0.612 -0.168 -0.354 0.028
OPL-ONL 0.662 0.506 0.932 0.553 0.452 0.694 0.096 -0.099 0.391
ONL-ISL 0.414 0.348 0.538 0.398 0.338 0.488 -0.303 -0.410 -0.219
ILS-OLS 0.301 0.253 0.380 0.297 0.25 0.354 -0.078 -0.169 0.002
OLS-RPE 0.355 0.287 0.464 0.344 0.284 0.425 -0.053 -0.179 0.062

RPE-Choroid 2.287 1.293 5.474 1.045 0.784 1.617 0.281 -0.203 0.739
Average (µm) 0.746 0.518 1.341 0.540 0.431 0.719 -0.077 -0.284 0.138
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Figure 5.5: Box-plot of the mean absolute error distribution for each interface generated
by the Teacher-Student GAN model with the DS1 test set. The median, first, and third
quartiles are shown. Whiskers at each quartile plus 1.5 times the interquartile range.
Outliers are shown as diamonds.

Figure 5.6: Box-plot of the mean squared error distribution for each interface generated
by the Teacher-Student GAN model with the DS1 test set. The median, first, and third
quartiles are shown. Whiskers at each quartile plus 1.5 times the interquartile range.
Outliers are shown as diamonds.



85 5.1. Phoenix OCT

The final segmentations and the computed metrics show that this model also accurately

segments the provided B-Scans. Figures 5.4 (a) and 5.4 (b) were selected to illustrate the

model’s typical segmentation performance. More examples of segmentations are presented

in Appendix A.

The Teacher-GAN network achieved an average classification accuracy of 0.989 and an

MAE of 0.540 µm. Comparing Table 5.3 and 5.1, all classification metrics were improved.

In addition, all the MAEs obtained were lower when compared to the previous model (as

indicated in Table 5.4). This suggests the performance was improved (0.986 vs. 0.989 and

0.884 vs. 0.540 µm).

Similarly, the same inherent issues present in the Attention-Res-U-Net model are also

observed in this current model, which is evidenced by the segmentations chosen above

(Figure 5.4 (c), (d)).

However, the precision of the RPE-Choroid boundary was improved (Figure 5.4 (c),

decreasing by 37.6% its MAE to 1.045 µm.

Generally, the results were more precise, which was reflected in all performance

indicators, with particular reference to the IoU, which increased to 0.971, and the mean

absolute errors of the boundaries which improved up to 71%.

Despite this, the challenges posed by the irregular hand-labeled ground truth images

still persist, leading to the same segmentation inaccuracies, as depicted in Figure 5.4 (d).
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Attention-Res-U-Net vs. Teacher-Student GAN

To compare the models, the Kolmogorov Smirnov (KS) test was first used to evaluate

the normality of MAE distributions for each layer-to-layer interface.

This statistical method is used to assess the similarity between the sample distribution

and the reference distribution, in this case, a normal distribution. It produced a test

statistic, often denoted as ”D” or ”KS statistic”, along with the p-value. Table 5.5 shows

the obtained results.

Table 5.5: Kolmogorov–Smirnov statistic and p-values for the KS test performed at every
boundary regarding their mean absolute error distribution for each model.

Model

Attention-Res-U-Net Teacher-Student GAN

Boundary p-value K-S statistic p-value K-S statistic

Vitreous-RNFL 2.1251 ×10−238 0.6063 1.9956 ×10−198 0.5580
GCL-IPL 1.0764 ×10−208 0.5710 8.2786 ×10−194 0.5520
IPL-INL 9.7276 ×10−256 0.6255 9.3669 ×10−217 0.5809
INL-OPL 1.1208 ×10−231 0.5986 7.1951 ×10−199 0.5586
OPL-ONL 3.1504 ×10−246 0.6151 1.0447 ×10−208 0.5710
ONL-ILS 1.2966 ×10−270 0.6413 1.7307 ×10−193 0.5516
ILS-OLS 4.4511 ×10−209 0.5715 2.6482 ×10−180 0.5339
OLS-RPE 1.0485 ×10−210 0.5735 1.0959 ×10−184 0.5399

RPE-Choroid 1.2000 ×10−322 0.6916 3.9112 ×10−239 0.6071
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Figure 5.7: Distribution of the interfaces’ mean absolute errors for each proposed model.

The chosen significance level, α, was 0.05. As registered above, all the p-values are

below this value.

In parallel, the distribution graphs from Figure 5.7 visually accentuate this conclusion,

as they all present a positive skew (right-skewed distribution).

Given the fact that all of the normality tests yielded statistically significant differences,

the Wilcoxon test was selected to statistically compare both models. This non-parametric

statistical method is used to compare two paired samples and determine if there is a

significant difference between their distributions. In this case, the test was made for each

interface under the following hypothesis:

 H0 : medTS−GAN ≥ medAtt−Res−U−Net

Ha : medTS−GAN < medAtt−Res−U−Net,
(5.1)

where med is the median, MAETS−GAN = medTS−GAN and MAEAtt−Res−U−Net =

medAtt−Res−U−Net.

Table 5.6 shows the obtained results.
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Table 5.6: W statistic and p-values for the Wilcoxon test performed between the models
at every boundary.

Boundary p-value W Statistic

Vitreous-RNFL 1.6035 ×10−105 3665.0
GCL-IPL 2.9992 ×10−74 21479.5
IPL-INL 5.4203 ×10−86 14415.0
INL-OPL 3.3013×10−81 17405.5
OPL-ONL 1.9107 ×10−103 4591.0
ONL-ILS 4.3381 ×10−106 3362.0
ILS-OLS 3.9189 ×10−101 5938.5
OLS-RPE 1.6244 ×10−100 6275.5

RPE-Choroid 3.0976 ×10−77 19729.5

Based on the outcomes, with a selected α of 0.05, it is evident all the p-values fall

below this threshold. Therefore, the null hypothesis H0 can be rejected, and this can

be interpreted as evidence that there is a significant difference between the compared

distributions, in this case, that MAETS−GAN < MAEAtt−Res−U−Net.

In spite of the significant improvement achieved by the GAN model, training the

generator and discriminator gave rise to convergence challenges, and attaining optimal

solutions was not straightforward. Moreover, the memory usage of this model is notably

higher, and the training and testing duration is much larger when compared to that

of the standalone Attention-Res-U-Net. In fact, the testing time per B-scan is 1.47 s

for the Attention-Res-U-Net and 2.13 s for the Teacher-Student GAN. Due to the time

constraints associated with a master’s thesis, time was an important factor to consider.

Furthermore, the clinical significance of the improvement is arguable. The difference in

mean absolute error was only about 0.34 µm, a value below the axial resolution of the

system. Thus, the Attention-Res-U-Net model was selected as the main model and only

the Attention-Res-U-Net model was used for datasets 2 and 3.
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5.1.2 Dataset 2 - DS2

This sub-section focuses on showcasing and analyzing the segmentation results achieved

using the Attention-Res-U-Net on the DS2 dataset, composed of WT and type 1 diabetes

rats B-scans. Once again, additional segmentations are showcased in Appendix A.

In DS2, the retinas of type 1 diabetes rats were imaged. Since the retinas are from

a different animal (mice vs. rat) and model of disease, their structure will be visually

different in the collected B-scans. Because of this, there are interfaces in the DS2 dataset

that cannot be identified in the DS1 dataset used for training the network, as can be seen

in Figure 5.9. In this evaluation, only the common interfaces between the two datasets

were considered. Interfaces ONL-ILS and OLS-RPE were removed.

(a) (b)

Figure 5.8: A B-scan example from the DS1 dataset (a) and a B-scan example from the
DS2 dataset (b).

Figure 5.9: A segmentation from the DS1 dataset (a) and a segmentation from the DS2
dataset (b). The common interfaces are connected in red between both B-scans.
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Presented below is a selection of segmentation outputs alongside their corresponding

ground truth. Additionally, tables are supplied to summarize classification errors and

boundary distance errors, supplemented by visual plots, allowing a detailed examination

of the results.

(a)

(b)
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(c)

Figure 5.10: Selection of predicted layer interfaces by the Attention-Res-U-Net, corre-
sponding ground truth segmentations, and original B-scans for the DS2 test set.

Table 5.7: Performance metrics for the classification into layers of the DS2 test set using
the Attention-Res-U-Net model, along with the average and weighted average. The
weighted average is pondered using the class weights, wi.

F1-Score Dice Coefficient Recall
Median Q1 Q3 Median Q1 Q3 Median Q1 Q3

Vitreous 0.987 0.978 0.99 0.987 0.979 0.990 0.975 0.968 0.984
RNFL-GCL 0.753 0.616 0.806 0.722 0.611 0.797 0.833 0.728 0.867

IPL 0.949 0.924 0.958 0.938 0.917 0.949 0.963 0.949 0.974
INL 0.882 0.825 0.907 0.855 0.812 0.879 0.813 0.781 0.871
OPL 0.788 0.754 0.823 0.711 0.651 0.755 0.950 0.900 0.967

Choroid 0.965 0.936 0.982 0.949 0.924 0.960 0.974 0.928 0.994
Average 0.887 0.839 0.911 0.860 0.816 0.888 0.918 0.876 0.943

Weighted Average 0.887 0.840 0.911 0.860 0.817 0.889 0.919 0.876 0.943

Precision Accuracy Intersect over Union
Median Q1 Q3 Median Q1 Q3 Median Q1 Q3

Vitreous 1.000 1.000 1.000 0.975 0.968 0.984 0.975 0.958 0.980
RNFL-GCL 0.675 0.501 0.784 0.833 0.728 0.867 0.565 0.440 0.662

IPL 0.929 0.885 0.954 0.963 0.949 0.974 0.884 0.846 0.902
INL 0.953 0.910 0.961 0.813 0.781 0.871 0.747 0.684 0.785
OPL 0.686 0.628 0.722 0.950 0.900 0.967 0.552 0.483 0.606

Choroid 0.978 0.962 0.998 0.974 0.928 0.994 0.903 0.859 0.924
Average 0.870 0.814 0.903 0.918 0.876 0.943 0.771 0.712 0.810

Weighted Average 0.871 0.815 0.903 0.918 0.876 0.943 0.772 0.713 0.811

RNFL-GCL: Retinal Nerve Fiber Layer-Ganglion Cell Layer; IPL: Inner Plexiform Layer;
INL: Inner Nuclear Layer; OPL: Outer Plexiform Layer; RPE: Retinal Pigment Epithelium.
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Table 5.8: Distance errors per interface for the predicted segmentation by the Attention-
Res-U-Net model of the DS2 test set.

Mean Squared Error (µm) Mean Absolute Error (µm) Mean Error (µm)

Median Q1 Q3 Median Q1 Q3 Median Q1 Q3

Vitreous-RNFL 54.356 34.789 126.236 7.023 5.092 10.818 -6.074 -8.947 -4.551
GCL-IPL 24.186 20.436 46.648 4.209 3.699 6.455 -3.441 -4.773 -0.404
IPL-INL 21.160 8.986 40.115 3.656 2.406 5.828 0.342 -1.625 2.293
INL-OPL 24.754 13.139 48.764 4.008 3.139 6.279 -3.145 -6.047 -1.660
OPL-ONL 38.346 11.889 46.697 4.555 2.844 6.084 3.326 0.844 5.813
ILS-OLS 25.192 9.805 43.723 4.111 2.732 6.231 1.664 -0.109 3.967

RPE-Choroid 82.035 45.879 250.516 8.094 5.627 14.520 -2.936 -7.861 4.356

Average (µm) 38.576 20.703 86.100 5.094 3.648 8.031 -1.466 -4.074 1.402

Figure 5.11: Box-plot of the mean absolute error distribution for each interface generated
by the Attention-Res-U-Net model with the DS2 test set. The median, first, and third
quartiles are shown. Whiskers at each quartile plus 1.5 times the interquartile range.
Outliers are shown as diamonds.
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Figure 5.12: Box-plot of the mean squared error distribution for each interface generated
by the Attention-Res-U-Net model with the DS2 test set. The median, first, and third
quartiles are shown. Whiskers at each quartile plus 1.5 times the interquartile range.
Outliers are shown as diamonds.

After analyzing the resulting segmentations and the obtained metrics, the algorithm

does not perform as well in this dataset. Figures 5.10 (a), 5.10 (b), and 5.10 (c) show the

typical segmentation achieved by the model.

The proposed Attention-Res-U-Net achieved an average classification accuracy of 0.918

and an MAE of 5.094 µm. A direct comparison with the averages from DS1 is not possible

because the same interfaces were not considered. Nevertheless, the difference suggests

that the model performs worst on DS2 (an accuracy of 0.986 vs. 0.918 and MAE of 0.884

vs. 5.094 µm). A direct comparison per layer is possible. For all individual layers and

interfaces considered, classification accuracy is lower (Table 5.7), and the mean absolute

errors are higher than in DS1, as demonstrated in Table 5.8, indicating the model performs

worst on DS2 compared to DS1. These results are expected since the latter was completely
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independent. The animal model was different, as was the imaging protocol and the expert

responsible for the manual segmentation. However, these results are extremely important

because they are representative of real-world performance. In fact, even two different

human experts given a similar segmentation task will disagree on the exact location of

the interfaces [109].

Visually (Figure 5.10), the proposed approach appears to correctly predict the interfaces

in the majority of the cases. However, it is possible that it could benefit from transfer

learning when considering a new animal model. This is not without drawbacks. Transfer

learning implies retraining with all its caveats. Most importantly, manual segmentation is

needed to create a new ground truth.

It is worth noting that the RPE-Choroid interface exhibits the largest error in both

DS2 and DS1 for the Attention-Res-U-Net and Teacher-Student GAN networks. This

could be attributed to the high reflectivity of the RPE layer in the B-scans, which may

cause the transition between the RPE and the choroid to be less clear and more ambiguous

in certain cases (Figure 5.1 (c)).

5.2 Bioptigen Dataset 3 - DS3

In this subsection, the segmentation results of the dataset obtained from the Bioptigen

system, DS3, will be presented and analyzed.

Attention-Res-Unet was retrained by transfer leaning for 50 epochs (8 minutes and 16

seconds). Displayed below is a selection of B-scans overlayed with the predicted interfaces.

No ground truth existed for the test set. Thus, no quantitative results are shown.
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(a)

(b)
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(c)

(d)

Figure 5.13: Selection of predicted layer interfaces by the retrained Attention-Res-U-Net
model (right) and corresponding B-scan (left) for the DS3 test set.
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After a visual examination of the results, supplemented by expert assessment, it is

noteworthy that while there are no specific metrics available for comparison with the

ground truth labels, the algorithm appears to correctly segment B-scans from the Bioptigen

system. This can be seen in Figure 5.13 (a) and Figure 5.13 (b).

Nonetheless, there are segmentation flaws related to defects located on the limits of

the OPL layer, as shown in Figure 5.13 (d).

Besides this, in the Vitreous-RNFL boundary, there are segmentation errors due to

the presence of noise above the RNFL-GCL layer in some of the scans, as depicted in

Figure 5.13 (c).

Most likely, these issues could be mitigated if a more extensive, diverse, and higher-

quality training dataset were to be used in the transfer learning process, that allowed the

model to learn above the noise.
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Conclusion and Future Work

The main focus of this study was the segmentation of retinal layers in B-scans collected

from various animal models of disease and imaging acquisition systems. In the literature,

research in this field has predominantly focused on addressing segmentation challenges

within specific datasets, each using a single acquisition system. Therefore, it is essential

to develop segmentation methods that can perform in a set of eyes from distinct wild-type

and animal models of disease and acquisition systems. This dissertation attempted to

provide a deep-learning solution for this issue.

The objectives defined at the beginning of this paper were achieved. To accomplish

them, two convolutional neural networks were developed to segment retinal layers: the

Attention-Res-U-Net and the Teacher-Student GAN. Each architecture was studied to

create flexible models capable of correctly segmenting the intended layers in a diversity of

B-scans, each presenting different characteristics.

The introduction of the attention mechanism and the weighted focal loss function

were crucial, as they mitigated the class imbalance issue, improving the segmentation

performance on thinner layers and, mostly, helped the models to focus equally on every

layer and the most relevant regions of the layers, particularly the interfaces, towards a

more accurate segmentation.

As for the results, the system performed well on DS1, collected on the Phoenix OCT

system. The Attention-Res-U-Net model got an MAE between the predicted and actual

99
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interfaces of 0.88 µm with an interquartile range (IQR) of 0.42 µm and the Teacher-

Student GAN an MAE of 0.54 µm with an IQR of 0.29 µm. Here, the Teacher Student

GAN outperformed the Attention-Res-U-Net. The PatchGAN (discriminator) essentially

refined the generator’s performance, which was Attention-Res-U-Net based, by providing

constant feedback on the generated predictions on a patch level.

For the DS2 dataset, also collected from the Phoenix OCT, the Attention-Res-U-Net

obtained an average MAE of 5.09 µm with an IQR of 4.38 µm, which was considerably

higher. Even with a more significant error, the algorithm was able to segment the B-scan

to some extent.

Finally, even though no metrics were associated, an expert assessed the achieved results

to conclude that the Attention-Res-U-Net also showed satisfactory segmentation results

on the Bioptigen dataset (DS3).

Overall, the algorithm demonstrated adaptable segmentation capabilities when pre-

sented with new data from different models of disease, specifically Alzheimer’s disease and

diabetes, from other acquisition systems, including the Phoenix OCT and the Bioptigen.

This work contributed to flexible retinal segmentation methods that can be applied to

various models of disease (mice and rats) and OCT acquisition systems.

However, there are some hurdles and limitations to the proposed solution. First, the

memory constraints made experimenting and, above all, training the models challenging.

Using the entire training dataset proved difficult, even with the GPUs at hand. This issue

was overcome by loading the dataset in subsets instead of the whole dataset simultaneously,

reducing the memory requirement. At the same time, training CNNs is a demanding

process that requires experimentation and a significant time investment.

Furthermore, it was shown that CNNs segmentations may differ from the ground truth

segmentations. This does not indicate a poor performance. Indeed, manual segmentations

are subjective and can vary among annotators.

As for future improvements, a more robust hyperparameter tuning process may be

added to optimize the hyperparameters, such as a grid search. Furthermore, a transfer

learning approach using a more extensive and diverse training dataset could have boosted
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the model’s performance for the Bioptigen system but also for different animal models

of disease. Providing the model with more diverse training data would perhaps enhance

its segmentation flexibility and generalization capability. Also, it will be interesting to

investigate further the potential of the generative adversarial network.
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A.1 Architecture Diagrams

Figure A.2: Attention Res-U-Net architecture.



119 A.1. Architecture Diagrams

Figure A.3: PatchGAN architecture.
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A.2 Monitoring Plots

Figure A.4: Loss during training and validation vs. the number of epochs for the Att-Res-
U-Net.

Figure A.5: Accuracy during training and validation vs. the number of epochs for the
Att-Res-U-Net.
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Figure A.6: Loss during training vs. the number of epochs for the Teacher-Student GAN.
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A.3 Additional Segmentations

A.3.1 Dataset 1 w/ Attention Res-U-Net

(a)

(b)
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(c)

(d)

Figure A.7: Predicted layer interfaces by the Attention Res-U-Net, corresponding ground
truth segmentations, and original B-scans for the DS1 test set.
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A.3.2 Dataset 1 w/ Teacher-Student GAN

(a)

(b)
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(c)

(d)

Figure A.8: Predicted layer interfaces by the Teacher-Student GAN, corresponding ground
truth segmentations, and original B-scans for the DS1 test set.
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A.3.3 Dataset 2

(a)

(b)
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(c)

(d)

Figure A.9: Predicted layer interfaces by the Attention-Res-U-Net, corresponding ground
truth segmentations, and original B-scans for the DS2 test set.
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A.3.4 Dataset 3

(a)

(b)
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(c)

(d)

Figure A.10: Predicted layer interfaces by the Attention Res-U-Net (right) and corre-
sponding B-scan (left) for the DS3 test set.
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