

João Alexandre Santos Cruz

Analytics - Customized dashboards

representing a descriptive analysis and

diagnosis of business and operational

information

Internship Report in the context of the Master in Informatics

Engineering, specialization in Software Engineering, advised by

Célio Gomes de Abreu and presented to the Department of

Informatics Engineering of the Faculty of Sciences and Technology of

the University of Coimbra.

July of 2023

This page is intentionally left blank.

DEPARTMENT OF INFORMATICS ENGINEERING

João Alexandre Santos Cruz

Analytics - Customized dashboards
representing a descriptive analysis

and diagnosis of business and
operational information

Internship Report in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Célio Gomes de Abreu and

presented to the Department of Informatics Engineering of the Faculty of
Sciences and Technology of the University of Coimbra.

July 2023

This page is intentionally left blank.

Acknowledgements

I would like to express my sincere gratitude to Filipa Ferreira and Célio Abreu
for their invaluable help, advice, support, and encouragement throughout the
duration of my internship. Their guidance was instrumental in shaping my un-
derstanding and enhancing my skills. I would also like to extend my appreciation
to Professor Filipe Araújo for his assistance during our meetings and his contri-
butions to the report.

I am immensely grateful to the entire AlticeLabs ABC team for providing me
with the necessary feedback and tools that significantly contributed to the im-
provement of my project.

Furthermore, I want to acknowledge my parents and brother for their unwaver-
ing support, allowing me to reach where I am today. I am truly thankful to my
girlfriend for her invaluable assistance and for standing by me despite all the
challenges. Lastly, I would like to express my heartfelt appreciation to all my
friends who have accompanied me on this journey over the past five years.

v

This page is intentionally left blank.

Abstract

In the realm of unified communications, a substantial amount of data is gener-
ated, and service operators seek to monitor their communication networks for
various purposes. The challenge lies in presenting this data in an easily com-
prehensible manner that facilitates actionable insights. AlticeLabs addresses this
challenge through their Unified Communication as a Service, called Advanced
Business Communications, by providing users with a static dashboard. However,
this dashboard fails to cater to the diverse needs of different teams. To address
this issue, AlticeLabs aims to develop a dynamic dashboard creation tool that al-
lows users to easily customize widgets according to their specific requirements,
using an intuitive and user-friendly interface. This internship involved research-
ing existing dashboard creation tools and ABC competition to verify best features
to add to the application, exploring best practices for dashboard design in order
to give the users an easy to use and easy to design dashboard creation tool that
won’t allow to create wrong or misleading dashboards, identifying functional
and non-functional requirements through the use of personas, and designing the
architecture, followed by the development of a full-stack application and testing
it as well as conducting usability testing. The expected outcome of this project is
to empower users with a flexible and accessible tool to monitor their communi-
cation networks effectively and easily and make informed decisions.

Keywords

Dynamic Dashboard, Analytics, Unified Communications, Widgets, Usability,
User Experience

vii

This page is intentionally left blank.

Resumo

No domínio das comunicações unificadas, é gerada uma quantidade substancial
de dados e os operadores de serviços procuram monitorizar as suas redes de
comunicações para vários fins. O desafio reside na apresentação destes dados
de uma forma facilmente compreensível, que facilite a obtenção de conhecimen-
tos accionáveis. A AlticeLabs aborda este desafio através da sua Comunicação
Unificada como Serviço, denominada Comunicações Empresariais Avançadas,
fornecendo aos utilizadores um painel de controlo estático. No entanto, este
painel não consegue satisfazer as diversas necessidades das diferentes equipas.
Para resolver este problema, a AlticeLabs pretende desenvolver uma ferramenta
de criação de dashboards dinâmicos que permita aos utilizadores personalizar
facilmente as métricas de acordo com os seus requisitos específicos, utilizando
uma interface intuitiva e de fácil utilização. Este estágio envolveu a pesquisa de
ferramentas de criação de dashboards existentes e a competição ABC para veri-
ficar as melhores características a adicionar à aplicação, explorando as melhores
práticas para o design de dashboards de forma a dar aos utilizadores uma ferra-
menta de criação de dashboards fácil de usar e fácil de desenhar que não permita
criar dashboards errados ou enganadores, identificando requisitos funcionais e
não funcionais através da utilização de personnas, e desenhando a arquitetura,
seguida do desenvolvimento de uma aplicação full-stack e testando-a, bem como
realizando testes de usabilidade. O resultado esperado deste projeto é dotar os
utilizadores de uma ferramenta flexível e acessível para monitorizar as suas redes
de comunicação de forma eficaz e fácil e tomar decisões informadas.

Palavras-Chave

Dashboards Dinâmicos, Análise, Comunicações Unificadas, Widgets, Usabilidade,
Experiencia de Utilizador

ix

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Results . 3
1.5 Document Structure . 4

2 Work Plan 7
2.1 First Semester . 7
2.2 Second Semester . 8
2.3 Risk Assessment . 10

2.3.1 Threshold of Success . 10
2.3.2 Risks . 11

3 Background and State of the Art 15
3.1 Dashboard . 15

3.1.1 Effective Dashboards . 16
3.1.2 Dynamic vs Static . 16

3.2 Roles of Dashboards . 17
3.2.1 Strategy . 18
3.2.2 Tactical . 19
3.2.3 Operation . 19
3.2.4 Social . 20
3.2.5 Audience . 21

3.3 Clusters of Dashboards . 22
3.3.1 Features and Semantics of Dashboards 24
3.3.2 Dashboards for Decision-Making 24
3.3.3 Static dashboards for Awareness 24
3.3.4 Motivation and Learning . 25

3.4 Dashboard Patterns . 25
3.4.1 Content Patterns . 26
3.4.2 Composition . 27

3.5 Dashboard Tradeoffs . 29
3.6 Dashboard Display . 29

3.6.1 Icons . 30
3.6.2 Text . 30
3.6.3 Visualization . 30

3.7 Usability . 33

xi

3.7.1 Ease of Use . 34
3.7.2 Elegance and Clarity . 36

3.8 Charts . 39
3.8.1 Types of Charts . 39
3.8.2 Integrity of Charts . 41
3.8.3 Automatic Visualization Recommendations 43

3.9 Key Performance Indicators . 44
3.9.1 Waiting Queues . 45
3.9.2 Communications . 45

3.10 Business Intelligence Tools . 45
3.10.1 PowerBI . 45
3.10.2 Tableau . 46
3.10.3 Looker . 47
3.10.4 Datapine . 48

3.11 Analytics in Unified Communications as a Service Tools 49
3.11.1 8x8 . 49
3.11.2 Ring Central . 51
3.11.3 Dialpad . 52
3.11.4 ABC . 53

3.12 Technologies . 54
3.12.1 Front-End . 54
3.12.2 Back-End . 57

4 Architectural Drivers 59
4.1 Personas . 59
4.2 Functional Requirements . 62

4.2.1 Use Case Diagram . 62
4.2.2 Use Case Priority . 65

4.3 Non-Functional Requirements . 67
4.4 Restrictions . 70
4.5 C4 Model . 71

4.5.1 Context Diagram . 72
4.5.2 Container Diagram . 73
4.5.3 Component Diagram . 74

4.6 Mockups . 75
4.6.1 Altice Guideline . 76
4.6.2 User Experience . 77
4.6.3 Mockup Design and Explanation 78

4.7 Database Conceptual Diagram . 84

5 Implementation 87
5.1 Methodology . 87
5.2 Version Control . 89
5.3 Deployment . 89
5.4 API Development . 90

5.4.1 API Schema . 90
5.4.2 Authentication . 92
5.4.3 Endpoints . 93

xii

5.4.4 API Framework and Organization 96
5.5 Front End . 97

5.5.1 Project Structure . 97
5.5.2 Components . 100
5.5.3 Pages . 109

6 Tests 113
6.1 API Testing . 113
6.2 Frontend Testing . 116

6.2.1 Functionality Testing . 116
6.2.2 Usability Testing . 120

7 Conclusion 125
7.1 Final Status . 125
7.2 Problems . 126
7.3 Future Work . 126

7.3.1 Additional Features . 127
7.3.2 Tests . 128

7.4 Final Thoughts . 129

Appendix A Use Case Specification 139

Appendix B Mockups 157

Appendix C Frontend Documentation 161

Appendix D API Testing 171

Appendix E Frontend Testing 177

xiii

This page is intentionally left blank.

Acronyms

ABC Advanced Business Communications.

AI Artificial Intelligence.

BI Business Intelligence.

DDI Direct Dial-In.

ECS Enterprise Collaboration Solution.

EIS Executive Information Systems.

FUD Fear, Uncertainty, Doubt.

ISO International Organization for Standardization.

IVR Interactive Voice Response.

JWT JSON Web Tokens.

MCV Multiple Coordinated View.

MoSCoW Must have, Should have, Could have and Won’t have.

MVP Minimum Viable Product.

SaaS Software as a service.

SDR Service Detail Record.

SUS System Usability Scale.

SVN Subversion.

UC Unified Communications.

UCaaS Unified Communications as a Service.

UI User Interface.

UX User Experience.

xv

This page is intentionally left blank.

List of Figures

1.1 Example of dashboard, taken from Geckodasboard 2

2.1 Gantt chart with the planned schedule for the first semester 7
2.2 Gantt chart with the actual schedule for the first semester 8
2.3 Gantt chart with the planned schedule for the second semester . . . 9
2.4 Gantt chart with the actual schedule for the second semester 10
2.5 5x5 Risk Matrix . 12

3.1 Example of a strategy dashboard from a SaaS company [16] 18
3.2 Example of a tactical dashboard from an Energy Power Plant Com-

pany [16] . 19
3.3 Example of an operational dashboard from a Customer Service

Team [16] . 20
3.4 Example of a Social Workout dashboard [56] 21
3.5 Dashboard Tradeoffs [9] . 29
3.6 Examples of each icon sub-categories 30
3.7 Different degrees of visual emphasis based on regions [26] 32
3.8 Distorted Chart representing the fuel economy standards per year

[65] . 41
3.9 Accurate chart representing the fuel economy standards per year

[65], sourced from a print of the original book due to unavailability
of a higher quality image. 41

3.10 Shrinking doctor effect [65], sourced from a print of the original
book due to unavailability of a higher quality image. 42

3.11 Example of design variation [65] . 43
3.12 Example of creation of a new dashboard in PowerBI. Image taken

from a dashboard created by me in PowerBI. 46
3.13 Example of creating a new chart in Tableau. Image taken from a

Tableau tutorial [62] . 47
3.14 Example of loading data to create a new chart in Looker. Image

taken from a video by Looker [41] 48
3.15 Creating a new filter in Datapine. Image taken from a Datapine

video [21] . 49
3.16 Creating alerts in 8x8 dashboard. Image taken from [3] 50
3.17 Creating a custom metric. Image taken from [3] 50
3.18 Example of a dashboard page in 8x8. Image taken from [3] 51
3.19 Creating new widget in RingCentral. Image taken from [66] 52
3.20 Creating table widget in RingCentral. Image taken from [66] 52

xvii

3.21 Example of a performance dashboard page in RingCentral. Image
taken from [66] . 52

3.22 Example of a dashboard page in Dialpad. Image taken from [22] . . 53
3.23 Example of some of the charts available in ABC current static dash-

board . 54
3.24 Filtering on ABC dashboards . 54
3.25 Example of Chart.js chart . 57

4.1 Carlos Santos Persona . 60
4.2 Ana Vasconcelos Persona . 61
4.3 Marco Tomás Persona . 62
4.4 Use Case Diagram . 63
4.5 Context Diagram of the C4 Model 72
4.6 Container Diagram of the C4 Model 73
4.7 Component Diagram of the C4 Model 75
4.8 Primary palette . 76
4.9 Secondary palette . 77
4.10 Mockup of the Main Page . 78
4.11 Mockup of Creating a new Widget 80
4.12 Mockup of Creating a new Widget part 2 80
4.13 Mockup of Creating a new Widget part 3 81
4.14 Mockup of the Widget on the Dashboard 81
4.15 Mockup of Sharing the Dashboard 82
4.16 Mockup of the Dashboard on Viewer Mode 83
4.17 Mockup of the Settings Page . 83
4.18 Database conceptual diagram . 84

5.1 Iterative and incremental development 87
5.2 Example of endpoint documentation, screenshoted from OpenAPI 92
5.3 JWT authentication diagram, from [30] 92
5.4 Folder Tree of the API Project . 96
5.5 Folder Tree of the Front End Project 98
5.6 Interface of Route Mapping . 99
5.7 Button Component Example . 100
5.8 PopUp Component Example . 101
5.9 FAB Component Props Example . 101
5.10 Side Bar Component Example . 102
5.11 Toolbar Component Props Example 103
5.12 Dashboard Card Component Example 103
5.13 Widget Card Component Props and Example 104
5.14 Draggable Component Example . 105
5.15 Dropzone Component Props Example 105
5.16 Dropdown Component Example . 106
5.17 Filter Card Component Example . 106
5.18 Filter Card Date Example . 107
5.19 Filter Card Recurrence Example . 107
5.20 Button Component Props and Example 108
5.21 Print-screen of the Main Page of the web application 109
5.22 Print-screen of the Dashboard Page of the web app 110

xviii

5.23 Print-screen of the three toolbars open 111
5.24 Print-screen of the Settings Page . 111
5.25 Screen-shots of parts of the walktrough tutorial 112

6.1 Example of a Jest test code . 114
6.2 Tests done . 115
6.3 Code Coverage . 116

B.1 Login Page . 157
B.2 Navbar on the left . 158
B.3 Dashboard with tabs on the left . 158
B.4 Creation of an inverted axis widget 159
B.5 Creation of a line-column widget . 159
B.6 Creation of a no axis widget . 160

D.1 Tests done to the analytics endpoints 171
D.2 Tests done to the API health endpoint 171
D.3 Tests done to the authorization endpoint 172
D.4 Tests done to the color endpoint . 172
D.5 Tests done to the authorization endpoint - First Part 172
D.6 Tests done to the authorization endpoint - Second Part 173
D.7 Tests done to the statistic endpoint 174
D.8 Tests done to the user endpoint . 174
D.9 Tests done to the widget endpoint 175

xix

This page is intentionally left blank.

List of Tables

2.1 Comparison of the different dashboard types 12

3.1 Comparison of the different dashboard types 18
3.2 Observed characteristics for each cluster of coded dashboards. Y

indicates presence, N indicates the opposite, and - indicates that
no conclusion could be reached. O represents organizational audi-
ences, I individual, and P public. L, M, and H indicate the level of
literacy, respectively low, medium, and high. Taken from [56] . . . 23

3.3 React.Js vs Angular.Js . 55
3.4 Chart Library Features . 56

4.1 Scenario 1 of Usability . 68
4.2 Scenario 2 of Usability . 68
4.3 Scenario 3 of Usability . 68
4.4 Scenario 1 of Maintainability . 69
4.5 Scenario 2 of Maintainability . 69
4.6 Scenario 3 of Maintainability . 70

6.1 Authentication Manual Tests . 117
6.2 Settings Manual Tests . 118
6.3 Results of the SUS . 122
6.4 Means of the times and number of errors for each task 122

A.1 FR01: Creating Dashboard . 140
A.2 FR02: Edit Dashboard . 140
A.3 FR03: Delete Dashboard . 141
A.4 FR04: Create Widget . 142
A.5 FR05: Edit Widget . 143
A.6 FR06: Delete Widget . 144
A.7 FR07: Filtering . 145
A.8 FR08: Global Filters . 146
A.9 FR09: Share Dashboard . 147
A.10 FR10: Specific charts for widgets 148
A.11 FR11: Default mode . 148
A.12 FR12: Table Widget . 149
A.13 FR13: Interactive filtering . 149
A.14 FR14: Drilldowns . 150
A.15 FR15: Moving widgets . 151
A.16 FR16: Resizing widgets . 151
A.17 FR17: Importing Widget . 152

xxi

A.18 FR18: Exporting Widget . 153
A.19 FR19: Importing Dashboard . 153
A.20 FR20: Exporting Dashboard . 154
A.21 FR21: Email Reports . 155

E.1 Dashboard Test Cases . 179
E.2 Widget Test Cases . 185

xxii

Chapter 1

Introduction

This report is part of a curricular internship in Software Engineering special-
ization of the Master’s Degree in Informatics Engineering, from the Faculty of
Sciences and Technology, at the University of Coimbra, under the orientation of
Célio Abreu and Filipa Ferreira of AlticeLabs and Professor Doutor Filipe Araújo,
in the curricular year 2022/2023. A grant was provided by Inova-Ria program
called Genius, to finance the internship and cover the expenses of trips to Altice-
Labs.

1.1 Context

To thrive in the ever-changing business landscape, enterprises must embrace
adaptation and evolution. The need for tools that support collaborative work
increased with the COVID-19 pandemic [59]. Enterprise Collaboration Solution
(ECS) are seen as a critical enabler of the digital workspace [59], as they have been
linked to increased employee productivity [23], improved collaboration, lower
costs, and greater flexibility. ECS can also promote better engagement, as employ-
ees can participate from multiple platforms. Unified Communications (UC) is the
foundation of ECS. According to Picot et al. [5], UC refers to the integration and
management of communication methods such as messaging, voice, audio, web
and video conferencing, and non-real-time communication services, in order to
enhance the user experience [23]. UC platforms offer a consolidated solution that
combines the advantages of Interactive Voice Response (IVR), call routing and
multiple more additional features. These platforms provide unified messaging,
enabling users to access various communication channels from a single interface.
They also offer presence and availability features to facilitate seamless collabora-
tion.

AlticeLabs’ Advanced Business Communications (ABC) offers telecom operators,
like MEO, an analytics feature for effective management of their hosted Commu-
nications Platform. Operators can monitor waiting queues, analyze user behav-

1

Chapter 1

ior, and gain insights into service usage patterns. This empowers operators to
optimize performance, enhance customer satisfaction, and make data-driven de-
cisions.

1.2 Motivation

Dashboards are an efficient way to track and consolidate data from multiple
sources, providing a visual representation of the data through widgets. A wid-
get is composed of a chart, filters and more features that allow the user to have
a better experience visualizing his/her data. Dashboards offer a comprehensive
overview promoting transparency and providing a single source of truth. Real-
time monitoring reduces the time spent on analysis and eliminates long lines of
communication that can hinder business performance. Figure 1.1 is an example
of a dashboard with five widgets.

Figure 1.1: Example of dashboard, taken from Geckodasboard

Currently, the ABC platform offers a static dashboard where all the widgets are
created and mantained by the ABC team, meaning that operators cannot modify
them or tailor them to their specific needs. By adopting dynamic dashboards that
can be customized for different scenarios and situations, the ABC will give op-
erators the flexibility to create different dashboards for each team and personnel,
that have different requirements and needs. This customization capability allows
operators to address individual concerns and preferences, offering a more per-
sonalized and effective solution.

2

Introduction

1.3 Objectives

This internship aims to design, develop and implement a dynamic dashboard
tool that enhances the functionality and user experience of the ABC platform and
that is easy to use. The tool will empower users to create custom dashboards and
enable them to monitor and analyze different aspects of their data in a more effi-
cient and intuitive way.

The team conducted a thorough evaluation of different options to achieve this
goal. After considering various alternatives, such as using a Software as a service
(SaaS) Business Intelligence (BI) tool with a REST API integration, it was decided
to adopt a full stack development approach. This approach will involve creating
both the front-end application and the REST API from scratch. The rationale be-
hind this decision is that this approach will provide more flexibility and control
over the final product, and will also be more cost-effective, as the costs associated
with using a SaaS BI tool were deemed too high for the number of users required.

The goal of this internship is to deliver a Minimum Viable Product (MVP) that
features the core functionalities of a dashboard creation platform focused on us-
ability in order to meet the needs of the users and improve the ABC platform’s
functionality and experience. These functionalities include the ability to create
custom dashboards, add and customize widgets and filter data. This MVP will
be used as the foundation for future development and will be used as a reference
for the final product that will have all the functionalities of the MVP as well as
the rest of the not implemented requirements specified.

1.4 Results

At the end of the internship these were the results obtained:

• Research on the state of the art of dashboards and analysis of ABC com-
petitors. A comprehensive review of existing dashboard solutions and an
examination of competitors’ offerings were conducted;

• A detailed requirements list was created, including personas, use cases, and
non-functional requirements;

• Architechtural drivers that allow for future development;

• All must-have and should-have functional requirements were implemented,
documented, reviewed and tested;

• A usability questionnaire was designed and administered to measure the
usability of the application;

3

Chapter 1

• The developed application was successfully deployed, making it accessible
for testing and evaluation.

The internship culminated in the development of a MVP that successfully meets
the specified requirements and adheres to the defined constraints. This includes
the implementation of an API to facilitate communication with the frontend ap-
plication, which was also developed as part of the internship.

The MVP not only encompasses all the required functionalities but also incorpo-
rates additional features that were categorized as should-haves.

While the developed application meets the immediate needs and objectives of
the project, it is acknowledged that more extensive testing could have been con-
ducted to ensure its robustness and reliability. Furthermore, there is room for fu-
ture work and improvements on the application. Areas such as performance op-
timization, user interface enhancements and additional features can be explored
and developed in subsequent iterations. The internship has laid the foundation
for future development, and the identified areas for improvement provide a clear
roadmap for further enhancing the application’s functionality and user experi-
ence.

1.5 Document Structure

The structure of this report is divided into the following chapters:

• Chapter 2 focuses on the work plan for the project. It provides charts and
descriptions of the schedule for the first semester and expectations for the
second semester. This chapter also conducts a risk analysis to document
potential obstacles to the project;

• Chapter 3 is dedicated to the state of the art and background. It begins with
a brief clarification of the concepts relevant to the project. After conduct-
ing an extensive analysis of UCaaS platforms and dashboards, the selected
technologies are presented with an explanation of why they were chosen;

• The introduction of architectural drivers is done in Chapter 4. It presents
and explains functional and non-functional requirements, use cases and C4
models;

• Chapter 5 of the report provides a detailed explanation of the implemen-
tation process and the methodology followed throughout the project. This
chapter not only presents the methodology used but also describes all the
endpoints that were developed for the API, as well as the components and
pages that were developed for the frontend of the application. It serves as a

4

Introduction

comprehensive guide to understanding the technical aspects and the func-
tionality of the implemented system;

• Chapter 6 of the report presents an overview of the tests conducted on both
the API and the frontend of the application. This chapter provides detailed
information about the test scenarios, test cases, and test results for both the
API endpoints and the frontend components. Chapter 6 also presents the
results of the usability questionnaire that was conducted. The chapter in-
cludes an analysis of the questionnaire responses and provides insights into
the usability of the application based on the participants’ feedback;

• Chapter 7 of the report serves as the conclusion, providing a comprehensive
summary of the internship experience, including an analysis of what went
well and what did not meet expectations. This chapter offers an opportunity
for reflection and a discussion of the lessons learned during the internship.
This chapter also explores the future work and potential improvements that
could be made to the project.

5

This page is intentionally left blank.

Chapter 2

Work Plan

In this section, the proposed work plan for both semesters is presented and ex-
plained.

2.1 First Semester

This chapter presents and discusses the expected planning and the actual plan
for the first semester.

Planned Schedule

The planning for the first semester was done by the supervisors at AlticeLabs.
The first semester was a part-time with 16 hours scheduled per week. The orig-
inal plan included researching the state of the art, followed by the requirements
and system architecture, and finally writing the mid-term report. In the figure 2.1
the gantt chart for the planned work plan is showed .

Figure 2.1: Gantt chart with the planned schedule for the first semester

7

Chapter 2

Actual Schedule

The actual schedule underwent significant changes compared to the initially ex-
pected timeline. In the first semester, regular feedback received during team
meetings played a vital role in shaping the project’s direction. These meetings
provided valuable opportunities for discussions, particularly regarding the inte-
gration of a BI SaaS tool with a backend application. As depicted in Figure 2.2,
additional time was dedicated to research, resulting in delays for other planned
activities. To mitigate potential risks, the database design phase was also post-
poned.

Figure 2.2: Gantt chart with the actual schedule for the first semester

2.2 Second Semester

This chapter presents an overview of the planned timeline the projected schedule
for the second semester.

Planned Schedule

Following the mid-term delivery, the planning for the second semester was un-
dertaken by the supervisors at AlticeLabs, as depicted in Figure 2.3. The pro-
posed approach was to follow a waterfall methodology, encompassing the com-
pletion of requirements, development of APIs, and subsequent frontend devel-
opment. The indicated development time includes not only the coding phase but
also documentation and review processes. A testing phase, along with an accom-
panying bug fixing phase, was also incorporated into the planned timeline.

8

Work Plan

Figure 2.3: Gantt chart with the planned schedule for the second semester

Actual Schedule

The second semester witnessed even more changes to the schedule, as showed
in figure 2.4. A shift in methodology occurred, transitioning from the waterfall
approach to the iterative and incremental methodology. Moreover, more features
were developed than initially anticipated. Consequently, the database design,
API schema, and mockups were not fully defined at the project’s inception, and
these elements underwent modifications during each increment.

The increased scope of development and the introduction of new features ne-
cessitated additional development time. Furthermore, several challenges arose,
which will be discussed in chapter 7. Testing and bug fixing commenced not only
at the end of each increment instead of only at the end.

9

Chapter 2

Figure 2.4: Gantt chart with the actual schedule for the second semester

2.3 Risk Assessment

Risk analysis is an important part of any project, as it helps to identify and eval-
uate potential risks that may impact the project’s success. By understanding the
potential risks it’s possible to take proactive measures to mitigate or eliminate
them, increasing the likelihood of project success. In this section, the risks identi-
fied in this project are going to be defined.

2.3.1 Threshold of Success

The threshold of success defines what’s considered as an accomplished project, if
any goal of this threshold is not accomplished then the project should be consid-
ered as a failure. These goals were defined as a team.

10

Work Plan

• The Must Have functional requirements specified should be developed, re-
viewed, documented, tested and be ready to deploy for production;

• The developed system must comply with the non-functional requirements
specified;

• The developed system must comply with the restrictions.

To evaluate the success threshold and determine the achievement of objectives,
clear objectives were set. The requirements were divided into tasks, and upon
completing each task, a team member reviewed it. The team agreed that the doc-
umentation should include details about each endpoint as well as each frontend
component.

Regarding the tests, it was determined that API testing should adhere to the non-
functional requirement, as specified. On the other hand, frontend testing would
solely involve manual testing, with a focus on the integration with the API. For
further information regarding the tests, please refer to Chapter 6.

2.3.2 Risks

The risks identified where:

1. As the platform cannot be completely defined, the database will undergo
changes during development. Since the database is being developed in col-
laboration with another team at AlticeLabs, any necessary changes will de-
lay the development process;

2. The proposed mockups may be impossible to replicate, requiring changes
to the front-end design that will need to be reevaluated by the team, causing
delays

3. Since I don’t have experience on front-end development, it is possible that
front-end development may take longer than expected

4. Since I don’t have any experience using automated testing tools, testing
may take longer than expected

To determine the level of risk for each identified risk, the 5x5 risk matrix was used.
The 5x5 risk matrix is a tool that helps to evaluate and prioritize risks based on
their likelihood and impact. It is easy to use and understand, and can be easily
incorporated into the project management process. This tool allows to focus on
the most significant risks and allocate resources accordingly, the matrix is display
in 2.5.

Table 2.1 presents the mitigation plan as well as the severity, likelihood and risk
level of the risks mentioned above.

11

Chapter 2

Figure 2.5: 5x5 Risk Matrix

Risk Mitigation Plan Severity Likelihood Risk
Level

1

To reduce the number of times
changes are required, the
database design should be
delayed until most of the details
are documented

4 5 20

2
To ensure the feasibility of the
mockups, observe how other
similar tools are designed

2 3 6

3 and
4

Use the beginning of the
semester to watch tutorials and
the trips to AlticeLabs to learn
from experienced personnel

3 5 15

Table 2.1: Comparison of the different dashboard types

Regarding the first risk, it was not possible to completely mitigate it. The database
did undergo changes with each increment, resulting in delays during each itera-
tion.

Risk two was successfully mitigated. The implemented screens faithfully fol-
lowed the mockups, indicating that the mitigation plan of using similar tools for
inspiration was effective.

Risk three can be considered mitigated. Although the initial work did not progress
at the expected pace, the subsequent tasks compensated for the initial delay. In
fact, additional tasks were even accomplished that were not initially planned.

12

Work Plan

Risk four was successfully mitigated by conducting automated testing on the API
as expected. However, it should be noted that the risk also encompassed the need
for automated tests on the frontend, which was not carried out in compliance
with AlticeLabs QA guidelines, more details are showed on chapter 6.

13

This page is intentionally left blank.

Chapter 3

Background and State of the Art

Dashboards have become an integral part of modern business operations, provid-
ing a real-time view of key performance indicators and enabling organizations to
quickly make data-driven decisions [6]. As technology has advanced, so too have
dashboards, becoming increasingly sophisticated and user-friendly. This chapter
delves deeper into the state of the art and background of dashboard systems,
exploring the current trends, innovations, and challenges in the field. By gain-
ing a comprehensive understanding of these aspects, it’s possible to design and
develop a dynamic dashboard tool that effectively meets the needs of the ABC
platform and allows its users to create good and effective dashboards.

3.1 Dashboard

Dashboards have been utilized by businesses to analyze and interpret data since
the 1970s. With the growth of big data, dashboards have evolved to become more
user-friendly [26]. The development of dashboards can be traced back to Execu-
tive Information Systems (EIS), which were initially designed for executive offices
and showed only a limited number of crucial financial metrics through a straight-
forward interface for easy understanding. In the 1990s, Robert Kaplan and David
Norton [47] introduced the Balanced Scoreboard, which marked a change in ap-
proach by utilizing KPIs for the first time. The Enron scandal in 2001 [40] was
a turning point for dashboards, as corporations needed to demonstrate to their
shareholders their ability to closely monitor performance.

According to Few [26], dashboards are predominantly visual information dis-
plays that people use to quickly monitor current conditions that require a timely
response to fulfill a specific role, later Few also added that dashboard should be
"consolidated and arranged on a single screen so the information can be moni-
tored at a glance" [27]. Wexler et al. [73] offers a broader definition: "a visual dis-
play of data used to monitor conditions and/or facilitate understanding", which
means that in addition to conventional dashboard displays, there is the possibil-
ity of incorporating infographic elements or narrative visualizations.

15

Chapter 3

This section delves into the types of dashboards, the role of audience in dash-
board design, the selection of appropriate graphs for various data, and the tools
utilized by BI teams for dashboard creation.

3.1.1 Effective Dashboards

When creating a dashboard, it’s important to first determine what questions the
dashboard should answer. Based on this, effective visual encodings should be
chosen for graphical features such as position, size, shape, and color [37]. The
aim of visualization is to enhance understanding of data by leveraging the hu-
man visual system, which is excellent at detecting patterns, identifying trends,
and uncovering outliers.

Although Business Intelligence vendors have advanced in the gathering, trans-
forming, and storing of data, there have been limited advancements in the proper
utilization of this information. As will be discussed later, an effective dashboard
results from effective communication [26] rather than just good data. As R. Barth
and M. Peters [10] point out a dashboard without good visual information is of
no use:

Dashboards and visualization are cognitive tools that improve your
"span of control" over a lot of business data. These tools help people
visually identify trends, patterns and anomalies, reason about what
they see and help guide them toward effective decisions. As such,
these tools need to leverage people’s visual capabilities. With the
prevalence of scorecards, dashboards and other visualization tools now
widely available for business users to review their data, the issue of vi-
sual information design is more important than ever.

3.1.2 Dynamic vs Static

Bach et al. [9] classified dashboards into six genres, with two of them being the
most common: static and dynamic (or analytic). Static dashboards are uniform
and unchanging for all viewers, with data being displayed consistently. These
dashboards generally offer limited interaction options for the user and the data
updates automatically. On the other hand, dynamic dashboards can be tailored to
individual user preferences, allowing them to choose the KPIs to view and how
they want to view them, and providing features such as drill-downs 1 and inter-
active filters. While static dashboards are still commonly used, there is a growing

1Technique or functionality that allows users to explore detailed or granular information by
progressively navigating from a high-level summary view to a more specific or detailed level of
data.

16

Background and State of the Art

trend towards dynamic dashboards as the importance of User Experience (UX)
increases in clients’ search for tools.

Dynamic Dashboards

Dynamic Dashboards have evolved from Multiple Coordinated View (MCV). J.
C. Roberts defined MCV [54] as "computer systems that simultaneously display
and manipulate multiple perspectives of the same data, information, or objects."
MCV offers a more comprehensive understanding of the data by allowing users
to view and analyze it from different angles using advanced visualization and
interaction techniques. However, MCV requires all views to be linked and does
not support real-time data or customization. Dynamic Dashboards merge the
strengths of MCV with the ability to handle real-time data and offer customiza-
tion options.

J.C. Roberts also introduced the concept of linked views in his work [54], which
connects multiple views in a way that any changes to one view are reflected in the
others. This concept is commonly referred to as interactive filtering in dynamic
dashboards. M. Frose and M. Tory [29] further divided this technique into two
parts: brushing and linking. Brushing refers to the ability to select data directly
from a visual representation, and the linked charts, these are charts with com-
mon data, are then automatically highlighted based on the selected data. This
allows the user to manipulate the data directly and visualize the information of
interest. Another common feature found on dynamic dashboards is the ability to
drill-down allowing the user to gain a deeper understanding of the data and to
identify patterns and relationships at different levels of detail.

Other features commonly present on dynamic dashboards have evolved from
MCV. For example, dynamic queries [58, 11], which allow users to modify queries
on the fly via sliders or buttons, which allows customization of colors, chart types,
and other aspects of the display such as zooms and focus[49].

3.2 Roles of Dashboards

The intended use of a dashboard determines the visual design and functional
requirements of the dashboard. Dashboards are no longer just decision-support
tools [56]. Both Few [26] and Eckerson [24] among others divide dashboards into
four roles, each of which differing from the others in terms of the amount of tem-
poral lead and lag in decision time, the type of data presented, and the intended
audience. These differences are described in the following table, table 3.1, and
further explained in the following subsections.

17

Chapter 3

Type of Dash-
board Level of Seniority Time Application Complexity of Data

Strategic Senior Management Long-Term High
Tactical Middle Management Medium-Term Medium
Operational Junior Management Daily Simple
Social Not Aplicable

Table 3.1: Comparison of the different dashboard types

3.2.1 Strategy

A strategy dashboard monitors the long-term company strategy and displays
critical success KPIs.

These dashboards are challenging to develop and provide insight into the impact
of the enterprise community on the business. They are primarily utilized by se-
nior management and often provide an overview of performance over specific
periods of time, such as quarters or years. These dashboards benefit from the
inclusion of contextual information and are not meant for interaction.

Figure 3.1: Example of a strategy dashboard from a SaaS company [16]

Figure 3.1 shows an example of a strategy dashboard for any SaaS company, with
sections displaying data on customers, revenue, and costs. The left side of the
dashboard shows customer gains and losses over the course of a year, enabling
management to see if new strategies were successful and if defined targets were
met. The right side of the dashboard displays monthly revenue, which is the most
critical KPI and is given more space to make it more visible to managers.

18

Background and State of the Art

3.2.2 Tactical

Tactical dashboards, also referred to as analytical dashboards, serve as a valuable
tool for monitoring the processes that contribute to an organization’s strategic ini-
tiatives and aiding in the decision-making process. They bridge the gap between
operational and strategic dashboards by providing a comprehensive display of
both real-time and historical data, offering detailed insights. These dashboards
enhance interactivity through features like drill-downs and global filters, empow-
ering analysts to swiftly modify all charts based on specific filters of their choice.

Figure 3.2: Example of a tactical dashboard from an Energy Power Plant Com-
pany [16]

Figure 3.2 shows an example of a tactical dashboard for an energy power plant
company, providing management with data on total sales, consumption by sec-
tor, and production costs per source type. This allows management to see the
overall performance of the company and how many clients are interested in dif-
ferent energy sources, helping them to decide where to invest more. The sales
and consumption data by sector also enables management to know where to fo-
cus their marketing efforts and identify areas where the product may be lacking.

3.2.3 Operation

An operational dashboard is a visual display of metrics in real-time or from the
recent past that can be tied to specific responsible entities and allow for immedi-
ate action in case of problems. It is designed to provide a quick overview of the

19

Chapter 3

day-to-day operations of a business.

Operational dashboards are typically used by team managers and analytic teams
and display data that is contextualized for each department, rather than the en-
tire enterprise, allowing them to take the appropriate approach with their team
members. These dashboards often offer the ability to receive daily email reports
with snapshots of the dashboard, allowing managers to compare performances
and access more detailed information.

Figure 3.3: Example of an operational dashboard from a Customer Service Team
[16]

Figure 3.3 shows an example of an operational dashboard for a customer service
team, displaying daily and monthly performance data, including the number of
calls. The dashboard is divided into two parts to allow the manager to focus on
the relevant data at any given time, and the response time data by weekday al-
lows the manager to see if more staff are needed on certain days.

3.2.4 Social

A social dashboard is a type of dashboard that is focused on informing and com-
municating with the reader, rather than on decision-making. This type of dash-
board is particularly useful for readers who may not have the necessary context
to understand the data being presented.

20

Background and State of the Art

Figure 3.4: Example of a Social Workout dashboard [56]

Figure 3.4 shows an example of a social dashboard for tracking workouts, pro-
viding the user with data to help them understand the context of their workout
data.

3.2.5 Audience

The intended audience of a dashboard plays a crucial role in determining its vi-
sual and functional aspects. When assessing the audience, two key parameters
come into play: circulation and literacy.

Circulation

Circulation refers to the type of audience that the dashboard will be displayed to.
A. Sarikaya et al. [56] identified four groups: public, social, organizational, and
individual. Each group requires a different level of data context.

Public dashboards are intended for general consumption and are often used for
advertising or providing information. The data presented should require no con-
text as it needs to be general knowledge. An example of a public dashboard is one
that displays crime rates by state and type. Social dashboards provide visualiza-
tions of a user’s personal information, which can be shared with individuals of
the user’s choosing and therefore requires context from the user themselves. An
example of a social dashboard is a fantasy league dashboard for a user’s team,

21

Chapter 3

with stats for each player. Organizational dashboards are intended for use by
multiple individuals with a common goal, such as a dashboard exploring the
customer relationship with a business, with visualizations of states, vehicles, etc.
Individual dashboards display data specific to an individual, such as a dashboard
showing a user’s home energy usage.

Required Visualization Literacy

The more complex a dashboard is, the more literacy it requires, as it needs to
be comprehensible to the user. Low literacy dashboards are easy to see and un-
derstand, and typically use bar, line, or pie charts to display data. This makes
the data easy to interpret. Medium literacy dashboards introduce more complex
charts such as heatmaps, dual axes, and scatter plots, which may be more diffi-
cult to read. High literacy dashboards are intended for specialized analysts or
students and may include error bars, treemaps, and other complex charts such as
networks or custom charts. These dashboards require a higher level of literacy to
interpret and understand the data.

3.3 Clusters of Dashboards

A. Sarikaya et al. [56] created a collection of dashboards from various sources
and encoded each design decision as a character string. They used the Ham-
ming Distance to calculate the distance between dashboards and created clusters
of similar dashboards. They found 7 clusters with different goals, based on the
types of decisions they supported and the visual and functional features of their
design. With this they intended to provide a guideline of what features each
cluster should have, dependent on audience and purpose, creating a more con-
cise framework for dashboard creation.

The following table, 3.2, provides a summary of each cluster with a more detailed
explanation provided in the following subsections.

22

Background
and

State
ofthe

A
rt

Purpose Audience Features Semantics

Goal Cluster St
ra

te
gi

c

Ta
ct

ic
al

O
pe

ra
ti

on
al

So
ci

al

A
ud

ie
nc

e

Li
te

ra
cy

D
om

ai
n

Ex
pe

rt
is

e

C
on

st
ru

ct
io

n

In
te

ra
ct

iv
it

y

M
od

if
y

D
at

a

H
ig

hl
ig

ht
in

g

A
re

as
of

W
or

k

A
le

rt
s

Be
nc

hm
ar

ks

U
pd

at
ab

ili
ty

Strategic
Decision-Making Y Y - N O - - - Y N N Y - - Y

Decision
Making

Operational
Decision–Making N Y Y N O - - - Y N N Y - Y Y

Static
Operational N N Y N O L - - - N N N - Y Y

Awarness Static
Organizational - - N N O M - N N N - N N - Y

Quantified
Self N N Y N I H N N Y N - Y - - YMotivation and

Learning Communication - - - Y P M N N - N - - N N Y
Dashboards

Evolved - - - - P H - - - - - - - - Y

Table 3.2: Observed characteristics for each cluster of coded dashboards. Y indicates presence, N indicates the opposite, and - indicates
that no conclusion could be reached. O represents organizational audiences, I individual, and P public. L, M, and H indicate the level
of literacy, respectively low, medium, and high. Taken from [56]

By analyzing these clusters, its possible to insight into the common goals and objectives users have when creating dashboards, en-
abling the platform to offer the necessary tools and features to support different types of intents. This will help ensure that users can
effectively and efficiently create dashboards that meet their specific needs and requirements.

23

Chapter 3

3.3.1 Features and Semantics of Dashboards

Before explaining each cluster, it is necessary to provide a brief introduction to
the common features and semantics found in the dashboards. This introduction
will build upon the purpose and audience that were explained in the previous
section.

• Construction and Composition → This functionality allows the user to se-
lect the metrics to be visualized, choose the type of charts to use, and resize
and move the chart to the desired location on the dashboard;

• Areas of Work → By having multiple areas of work, users can quickly
switch between dashboards to access the necessary information or context;

• Interactivity → Interactivity between charts may involve filters, slicers, global
filters, and drill-downs, allowing users to focus their analysis on the rele-
vant data;

• Annotations → Annotations allow users to highlight their opinions of a par-
ticular chart, allowing other users to examine them and facilitating collabo-
ration;

• Alerts → In real-time data dashboards, users can set thresholds on specific
charts that, when met, trigger notifications so the user can take immediate
action to address the issue at hand;

• Updatability → Real-time dashboards are constantly or frequently updated
with the latest data stored. This feature is not applicable to historical dash-
boards.

3.3.2 Dashboards for Decision-Making

These dashboards support either strategic or operational decision-making and
are typically targeted at organizations. They allow for interaction to obtain and
focus on relevant data for the users and often have a benchmark setting that pro-
vides visual alerts for areas of concern. These are the typical business dashboards
used to understand sales in real-time (for operational purposes) or over a defined
period (for strategic purposes).

3.3.3 Static dashboards for Awareness

These types of dashboards are targeted at increasing general awareness and there-
fore do not include interactive elements. Static operational dashboards provide
real-time data from sensors or metrics and require a higher level of domain knowl-
edge due to the additional context needed to understand the data. Static organi-
zational dashboards are meant to be quickly consumed, such as those sent in
emails.

24

Background and State of the Art

3.3.4 Motivation and Learning

This cluster contains two types of dashboards. The first type is focused on indi-
viduals and is primarily used for tactical and operational decision-making, with
interactive interfaces and alerting capabilities. These typically deal with personal
matters such as finance. The second type is intended for the general public and
is designed to communicate and educate the consumer.

3.4 Dashboard Patterns

B. Bach et al. extended the work of Sariakaya et al. [56], Card and Mackinlay
[17], Chen [18], He et al. [33], Schulz et al. [32] and Sedig et al. [60], as all of these
works focused on the intentions behind each dashboard but not on their structure
and visual design. Starting with the 80 dashboards analyzed by Sariakaya et al.,
they added an additional 64 dashboards from various sources such as health,
fitness, and IT websites and personal applications. B. Bach et al. employed a
comparative method [31] to independently code the dashboards and identified
42 design patterns grouped into eight categories, divided into two groups:

• Content → focused on how the data is abstracted, meta information and
visual representations used;

• Composition → page layout, information fitting, screenspace and overall
structure of the dashboard.

Prior to delving into the patterns, it was necessary to establish a guideline. Draw-
ing from previous studies [75, 26, 50, 56, 36], the following criteria were defined
for the dashboards:

• Avoid overwhelming users [75].

• Steer clear of clutter [26].

• Eliminate poor visual design [50].

• Incorporate both visual and functional features [75].

• Maintain consistency with an optimal level of complexity [56].

• Enable separation of charts [36].

An analysis of these patterns can provide insight into the necessary tools and
features that a platform should offer to enable users to create effective dashboards
with good content and component creation capabilities.

25

Chapter 3

3.4.1 Content Patterns

In the content group, there are three categories which are the main components
of the dashboard. These categories determine what is visualized and how it is
visualized.

Data Information

Data information identifies types of information presented:

• Individual values: represent specific data points in a data set;

• Derived values: information from datasets or KPIs;

• Filtered data: shows detailed data;

• Thresholds: judges a data point based on thresholds made by the user;

• Aggregated data: results from the junction of various data sets into a new
concise data point;

• Detailed datasets: offer a more complete representation of data with a nu-
merous of qualities and information.

Meta Information

Meta information captures additional information used to provide context and
explanation to the visualization:

• Data Source: involves identifying the sources of data and understanding
the methods used for its collection;

• Disclaimer: indicates what assumptions have been done to the data, serves
as the context for the chart or widget;

• Description: high-level description of what the dashboard is supposed to
show;

• Update Information: information of when the data was updated;

• Annotations: notes added by the dashboard author to highlight points or
changes on the data.

26

Background and State of the Art

Visual Representations

Finally, visual representations describes what solutions are used to present the
information in the dashboards:

• Numbers: individual numbers placed to indicate a single key value;

• Trend-arrows: small arrows that indicate the direction of change of data
values;

• Pictograms: symbols that illustrate concepts in the data, used to represent
data or designate the type of the data;

• Progress bar: used to represent ranges of values, divided into thresholds;

• Signature charts: smaller visualizations with no context or description, used
to give a quick understanding of smaller and precise values;

• Detailed charts: charts with enough details to read and understand precise
values;

• Text Lists: lists of information by text.

3.4.2 Composition

The composition of a dashboard is every component that allows to change the
display of the dashboard itself.

Layout Patterns

Layout patterns identify how the widgets are organized into the dashboard [35,
7]:

• Open Layouts: widgets laid out with no rules, user may select size and
position of every widget as he pleases;

• Table Layouts: widgets aligned in columns and rows;

• Stratified Layouts: give a top-down ordering of widgets;

• Grouped Layouts: Group widgets by relation.

27

Chapter 3

Screenspace

Screenspace represents the available space that can be consumed by the ammount
of the data:

• Screenfit: dashboard is fully visibale on screen with all information shown
at all times, doesn’t provide any type interaction;

• Overflow: allows dashboard to have data off-screen that can be revealed
trough scrolls, allowing a single page to be used for the whole dashboard;

• Detail-on-demand: information is represented once the user interacts on the
available charts to get more details;

• Parameterized: users contol that content is showed on screen;

• Multipage: dashboard composed of various widgets distributed in various
screens available trough pages, that can be accessed trough tabs.

Structure

Structure describes how the information, in case of using multiple pages, is rep-
resented among pages and influence the navigation of users:

• Hierarchical: multiple pages organized in a hierarchy that implies relation-
ship between pages;

• Parallel: no levels and no relationship between pages;

• Semantic: relationships determined by the semantics of the information.

Interaction

Interaction approaches highlights common roles interaction plays in dashboard
use through specific user interface components, defined broadly to identify gen-
eral usage patterns and their implementation in dashboard designs:

• Exploration: interactions allow users to explore data relationships, includes
brushing and linking and detail-on-demand interactions;

• Navigation: interactions that allow the users to navigate trough different
information sources, can be trough different dashboards, scrolling, buttons
or tabs that link different pages;

• Personalization: users can configure and define the dashboard;

• Filter and Focus: searching trough data visualizations.

28

Background and State of the Art

3.5 Dashboard Tradeoffs

B. Bach highlighted the trade-offs that a user must consider when designing a
new dashboard [9]. These trade-offs are depicted in figure 3.5. By analyzing these
tradeoffs, it’s possible to understand the various considerations that a user must
make when designing a dashboard. This knowledge will allow the platform to
provide all the necessary tools and features to meet the diverse needs of users.

Figure 3.5: Dashboard Tradeoffs [9]

The goal is to minimize every parameter such task, however is impossible. To
show all the information at a glance without any interaction, some parameters
must be compromised in order for others to improve. As showed in figure 3.5 B.
Bach identified four main parameters: available screen space, number of pages
where the information is distributed, visual abstraction, and the level of interac-
tivity provided to the user.

As the platform will be used on a computer screen, the amount of interactivity
needs to increase to compensate, therefore the dynamic dashboard approach is
necessary. The abstraction and number of pages are left to the user to decide as
the platform will need to support both high and low levels of these parameters.

3.6 Dashboard Display

In this section, we will explore the different methods of display used in dash-
boards and common errors and pitfalls that occur. To effectively communicate
data information to users, it’s crucial to consider the display methods and be

29

Chapter 3

aware of the common mistakes in order to give the platform the necessary tools
to minimize the chance of users creating misleading or ineffective dashboards.

3.6.1 Icons

Icons are a powerful tool in dashboard design, as they allow for quick and easy
visualization of data and information. By utilizing icons, users can efficiently and
effectively communicate data insights to others. Few divides icons intro three
sub-categories shown in 3.6:

(a) Example on off icons (b) Example of alert icons

(c) Example of arrow icons

Figure 3.6: Examples of each icon sub-categories

Alerts typically use a traffic light approach, as depicted in Figure 3.6b. However,
as Few pointed out in [26], there is no need to indicate anything if all the data
is fine. Alerts should only appear in situations where the icon can provide ad-
ditional information to the user. Up and down icons (Figure 3.6c) indicate if a
particular data point has increased or decreased compared to the past or a spe-
cific target. On and off icons serve solely as flags to differentiate between items
or data and can have a variety of different icons (Figure 3.6a).

3.6.2 Text

This display includes all non-visual information in the dashboard that is neces-
sary for it to make sense, such as widget names, filters, and other types of infor-
mation.

3.6.3 Visualization

In order to effectively communicate information through visualizations in a dash-
board, it’s important to understand the different elements that make up a chart:
color, form, spatial position and motion [72]. One of the most important elements

30

Background and State of the Art

is the use of color, which can impact how users perceive the data. Position and
form can also play a crucial role in communicating information, as well as the
use of motion for animated charts. In this section, we will dive into these ele-
ments and explore how they can be used to effectively communicate data in a
dashboard.

Color

Color is a crucial element in data visualization and can have a significant impact
on the effectiveness of a chart. As stated by Tufte [64], "avoiding catastrophe be-
comes the first principle in bringing color to information: Above all, do no harm."
Color consists of three attributes: hue, saturation, and lightness [26]. Hue refers
to the name of the color itself (e.g., blue, yellow, etc.). Saturation represents the
purity of the color, with higher saturation indicating a more vivid color. Light-
ness refers to the brightness of the color, ranging from dark to light.

An effective color design presents information in a way that is easy for the reader
to understand the relationship between all the displayed elements. Using the
same color for related items is an easy way to label and group them. M. Stone
advises in [61] to use between two and three hues and create palettes by varying
the saturation of these hues.

To ensure correct color selection, Few in [28] proposed some rules to follow. First,
the background color should be consistent and contrast with the chart colors. This
means avoiding gradients and selecting colors that are easily visible on top of the
background color. Colors should only be used to communicate information and
not for styling the chart. Different colors should only be used to display differ-
ences in the data. For sequential data, a single hue with varying intensity should
be used, while quantitative values should be represented using a dual-ordered
palette (a palette with two colors).

However, many color selection tools provide limited control over color value [61],
so it is important to have a clear understanding of color in order to select the right
colors. In order to facilitate the selection of colors by the user, the application will
provide a selection of color ranges instead of individual colors. To start there will
be available three sequential ranges: bluescale, greenscale, and redscale these
were selected as its easy to differentiate easily low from high numbers and are
the three main colors of computing systems. One quantitative range from red to
blue. Additionally, a qualitative range formed by random colors. These ranges
were selected based on their suitability for different data types and visualization
purposes.

31

Chapter 3

Position

Position is a key factor in effectively communicating information through a dash-
board. According to Few [26] the top-left and center sections of a dashboard are
the areas that provide the greatest emphasis. This is due to reading conventions,
which sequence words on a page from left to right and top to bottom, and vi-
sual perception, which is drawn to the center of the screen. However, placing
information in the center of the dashboard is effective only when it is set apart
from its surroundings, such as through the use of white space. Understanding
the emphasizing effect of different regions of the dashboard is crucial in making
informed decisions about where to place dashboard elements to ensure that they
are noticed and effectively convey the desired information to the user, this can be
better visualized in figure 3.7.

In user interface design, it is crucial to prioritize the most important elements,
which should be positioned at the center and top-left corner of the screen. These
areas attract the user’s attention and are commonly utilized for primary buttons,
critical information, or important features. On the other hand, secondary buttons,
labels, or less crucial elements are typically placed in the bottom-right corner.
This positioning helps maintain a clear visual hierarchy and assists users in easily
locating and interacting with the essential components of the interface.

Figure 3.7: Different degrees of visual emphasis based on regions [26]

Motion

Objects in motion, should be used sparingly according to Few [26]. These moving
elements can be distracting to users and should only be utilized for real-time data
where chart updates or immediate action is required.

32

Background and State of the Art

3.7 Usability

Usability plays a crucial role in dashboard design as it directly impacts how ef-
fectively and efficiently users can achieve their goals and navigate the interface.
The evolution of dashboard development now emphasizes the creation of not
only functional dashboards but also ones that are user-friendly and effective. Un-
fortunately, despite its significance, usability is often overlooked in dashboard
design [43].

According to Nielsen, usability is assessed based on five key components [46]:

• Learnability: How easy is it for users to accomplish basic tasks during first
use?

• Efficiency: Once users have learned the design, how quickly can they per-
form tasks?

• Memorability: When users return to the design after a period of not using
it, how easily can they re-establish proficiency?

• Errors: How many errors are made, how severe are these errors, and how
easy is it to recover from the errors?

• Satisfaction: How pleasant is the interface?

The International Organization for Standardization (ISO) defines usability as the
extent to which a product can be used by specified users to achieve specific goals
with effectiveness, efficiency, and satisfaction in a given context of use [4]. This
definition not only takes into account the user and their context but also empha-
sizes the importance of achieving the desired goals. However, assessing user
goals and their fulfillment poses empirical challenges.

According to C. Burnay et al. [14], effective dashboards should enable users
to achieve their goals quickly and effortlessly by maintaining an organized and
structured presentation of information within a contextual framework. In addi-
tion, dashboards should offer a clear content organization that allows users to
navigate with ease and a flexible interface that caters to individual user prefer-
ences and control [15]. It is also crucial to provide users with adequate support
through features such as a help function, error avoidance, and recovery mech-
anisms [15]. By incorporating these elements, users can easily understand the
dashboard’s functionality and recover from errors if they occur. Furthermore, a
well-designed dashboard enhances memorability, allowing users to quickly recall
how to perform tasks during subsequent visits [15].

33

Chapter 3

3.7.1 Ease of Use

In "Usable Usabilty Simple Steps for Making Stuff Better" by Eric Reiss [52] de-
fines ease of use as the physical properties of usability "It does what I want it to
do". Reiss further categorizes ease of use into five key aspects:

• Functional - Users expect the product to work as intended, with buttons
and links performing the expected actions;

• Responsive - Users should receive feedback that confirms the system is
working and indicates its current state;

• Ergonomic - The interface should be designed in a way that allows users to
easily interact with it, including clear visibility, intuitive clicking, poking,
twisting, and turning;

• Convenient - The product should provide users with easy access to the fea-
tures and information they need, with everything conveniently located and
organized;

• Foolproof - Designers should anticipate potential mistakes or errors users
may make and implement safeguards or guidance to prevent or mitigate
them.

Functionality

Reiss emphasizes three essential keys to ensuring functionality in a product. First,
buttons and links should reliably perform their intended actions when clicked
or activated. Second, the navigation system should be responsive and enable
users to move through the product smoothly. Lastly, the speed of the product’s
response should meet user expectations, providing acceptable performance.

A crucial aspect of ease of use is the simplicity and intuitiveness of navigation.
Users should be able to navigate through the product effortlessly, quickly finding
the information or features they are seeking. Eric Reiss highlights the significance
of clear labeling for navigation elements, utilizing familiar terms, and maintain-
ing consistent placement across the site or application.

Responsive

A responsive user interface employs various techniques to enhance user interac-
tion. One such technique is the use of transitional effects, where visual responses
occur in direct correlation to user actions. For example, when a user hovers over
an interactive button, the cursor changes to a hand icon, or when a link changes
color upon being highlighted. These transitional effects provide immediate feed-
back to the user, reinforcing the connection between their actions and the system’s
response.

34

Background and State of the Art

Another essential aspect of a responsive UI is the implementation of responsive
mechanisms, which serve as "receipts" from the interface to the user. These mech-
anisms inform users that their actions have triggered a specific outcome or pro-
cess. For instance, displaying a popup dialog that dims the rest of the screen
creates a clear visual indication of a response, or zooming in or out during a spe-
cific operation provides a tangible feedback mechanism.

Conversely, a poorly designed responsive UI can lead to feelings of Fear, Uncer-
tainty, Doubt (FUD) among users. When users lack confidence in their actions
and fear breaking the system or making unintended mistakes, they become hes-
itant and uncertain about using the application. This uncertainty arises when
users believe that any choice they make may result in negative consequences.

The key takeaway is that, similar to a conversation, incorporating response mech-
anisms that provide sensory feedback can help alleviate FUD. By ensuring that
users receive clear and immediate feedback for their actions, designers can en-
hance user confidence, streamline interactions, and eliminate unnecessary hesi-
tation.

Ergonomic

Ergonomics encompasses the study of designing devices and systems that align
with the physical and psychological capabilities of users. It aims to optimize user
experience, comfort, and efficiency by considering human abilities and limita-
tions. When designing interfaces, it is essential to regard the cursor as an exten-
sion of the user’s fingers. Similar to the fingers, there are certain actions that the
user can perform effectively, and others that may pose challenges.

One crucial principle in ergonomics is Fitts’s Law [52], which provides insights
into the relationship between movement time, target distance, and target size.
According to Fitts’s Law, the time required to move rapidly to a target area de-
pends on two factors: the distance to the target and the size of the target.

Convenient

When venturing into unfamiliar domains or exploring new territory, individu-
als often gravitate towards their comfort zones. This inclination arises from our
innate desire for familiarity and the reassurance that comes with established rou-
tines and patterns. However, it is crucial to recognize the importance of seeking
input from diverse sources to avoid the pitfall of solely addressing our own needs
while overlooking the needs of other users.

35

Chapter 3

One effective approach to broaden our understanding and consider different per-
spectives is through the use of personas. Personas allow us to empathize with
and gain a deeper understanding of the motivations, goals, and behaviors of var-
ious user types. This enables us to design experiences that cater to the diverse
needs of our target audience, leading to more inclusive and user-centered solu-
tions.

Foolproof

Creating a foolproof interface requires implementing certain strategies to guide
and assist users throughout their interactions. One key aspect is to provide clear
reminders when something may be missing or incomplete, ensuring that users
are alerted to any necessary actions before proceeding. By eliminating unavail-
able options and providing informative error messages, the interface enhances
usability and empowers users to take the correct course of action promptly.

Alerts serve as effective means of notifying users about errors, changes in system
state, or any other important information that requires their attention. However,
it is essential to strike a balance between alerting users without overwhelming
them or triggering a "boy who cried wolf" syndrome, where users start ignoring
important alerts due to excessive or irrelevant notifications.

To prevent users from making mistakes, certain techniques can be employed,
such as removing or disabling options that are not applicable or currently un-
available. For instance, graying out disabled options or hiding them from view
can be used. However, it is important to provide proper context and reason-
ing for the disabled or hidden options to avoid confusion. Users need to under-
stand why certain options are not accessible or have disappeared, otherwise, they
may continue attempting to access them without realizing the conditions for their
availability.

Additionally, users often expect similar abilities and functionalities to transcend
across different environments or applications. Therefore, when building appli-
cations with similar functionality, it should be avoided unnecessarily deviating
from established conventions and creating unfamiliar or unusual ways to accom-
plish the same tasks. Consistency in design and interaction patterns helps users
leverage their existing knowledge and reduces the learning curve, leading to a
more intuitive and user-friendly experience.

3.7.2 Elegance and Clarity

On the same book E. Reiss [52] highlights the psychological properties of usabil-
ity, namely elegance and clarity, which encompass users’ expectations of how a

36

Background and State of the Art

system should behave. He further categorizes these properties into five key as-
pects:

• Visible - Users should be able to perceive and visually understand the ele-
ments and information presented to them;

• Understandable - Users should have a clear comprehension of what they
are looking at and how the system functions;

• Logical - The elements and procedures within the system should make log-
ical sense, ensuring a coherent and rational user experience;

• Consistent - Users expect the system to adhere to consistent rules and pat-
terns, avoiding unexpected changes or surprises in its behavior;

• Predictable - Users should have a clear sense of what will happen next when
they perform an action, allowing them to anticipate the system’s response.

Visible

Upon entering a page, users expect to find the most important functions promi-
nently displayed, right where they can easily locate them. To ensure optimal
usability, it is crucial to eliminate any irrelevant elements that may distract users
from the essential features. In essence, the visibility of an item depends on several
factors: its placement within the user’s focus area, the absence of obstructions, its
recognizability, and its existence in the interface.

Understandable

This category encompasses both text and icons within the interface. In terms of
text, it is essential to ensure clarity and conciseness, as users may interpret in-
formation differently based on their backgrounds and perspectives. Clear and
straightforward language helps minimize confusion and facilitates comprehen-
sion for a diverse user base.

When it comes to icons, using familiar and recognizable icons from established
platforms like Microsoft, Apple, or Google is recommended. Leveraging com-
monly used icons enhances user experience by leveraging existing knowledge
and familiarity across applications. By utilizing familiar icons, users can easily
associate them with their respective functions, promoting ease of use and reduc-
ing the learning curve.

Logical

The logical category in usability involves different forms of reasoning to facilitate
understanding and decision-making. Deductive reasoning follows a logical se-

37

Chapter 3

quence, where if certain statements are true, then their logical implications must
also be true. Inductive reasoning, on the other hand, relies on past observations
and suggests the probability of something being true based on those observa-
tions. It involves making judgments based on evidence but does not guarantee
absolute truth.

Retroductive inference involves learning from one situation and applying that
knowledge to similar but new situations. It is akin to understanding how to nav-
igate an unfamiliar airport based on previous experiences with airports. This
form of inference allows users to transfer their knowledge and skills to new con-
texts.

These forms of reasoning play a role in creating usable interfaces by guiding the
design of logical and intuitive workflows, ensuring that users can make informed
decisions and predict the outcome of their actions.

Consistent

In the context of interfaces, consistency entails using the same words, labels, and
design elements consistently throughout the system. It ensures that users can
rely on their prior knowledge and experiences to understand and interact with
the interface effectively.

Consistency is crucial in button labels, where using different words or phrases
to convey the same function can lead to confusion. For example, if "Submit" is
consistently used as a button label, suddenly changing it to "Send" or "Accept"
can create uncertainty for users. Similarly, consistency should be maintained in
signage within public facilities to provide standardized information.

Predictable

Predictability is a key aspect of usability that focuses on ensuring that interfaces
and interactions behave in a consistent and expected manner. When something
is predictable, it performs as users anticipate, reducing confusion and enhancing
user experience.

Informing users about what to expect before they reach a certain point or perform
an action helps set their expectations and reduces surprises. Clearly communi-
cating expectations to users regarding their role or responsibilities in a process
fosters predictability and enables smoother interactions.

Providing information about the number of steps in a multi-step process en-

38

Background and State of the Art

hances predictability by giving users an understanding of the overall workflow
and allowing them to plan accordingly. Ensuring that users understand the de-
sired outcome of the process they are currently engaged in further contributes to
predictability.

Placing elements and features in locations where users naturally expect to find
them aligns with their mental models, making interactions more intuitive and
predictable. Additionally, incorporating visible signals that alert users to invis-
ible conditions or potential issues helps them anticipate and respond appropri-
ately.

3.8 Charts

Charts are the key component of every dashboard. In this section, the various
types of charts available, their uses, and common errors and pitfalls to avoid
will be presented. It will also be discussed the importance of choosing the right
type of chart for the data being presented. By understanding the basics of charts
and the role they play in a dashboard, we can ensure that the charts available
in the platform as well as their features are the best for the users to create their
dashboards.

3.8.1 Types of Charts

For the initial version of the application, the AlticeLabs team has chosen a set of
charts, which includes line, scatter, pie, vertical and horizontal bar, stacked, and
a column-line chart. Extensive research has been conducted on these charts to
offer users the most effective tools for creating and managing them. The research
draws upon the valuable resources of the Data Viz project [25], The Data Visual-
ization Catalogue [53], and the Financial Times visual vocabulary guide [63].

Line Chart

The line chart is the standard method for visualizing a changing time series or
continuous series. It allows for easy interpretation of slopes, with upward slopes
indicating increases and downward slopes indicating decreases in values. Line
charts are effective in identifying patterns that reveal trends. They can be used
in conjunction with other data series to facilitate comparisons, but it is important
to limit the number of visible series to avoid cluttering the chart. It is generally
recommended to display no more than five data series simultaneously.

39

Chapter 3

Scatter Plot

A scatter plot is a commonly used method to visualize the relationship or corre-
lation between two variables, each represented on its respective axis. It allows
for the identification of positive patterns (when both variables increase together),
negative patterns (when one variable increases as the other decreases), or null
patterns (no relationship). To aid analysis, lines or curves can be added to the
chart, such as a best fit or trend line, which enables estimation through interpola-
tion.

Bar Chart

The most common way to present discrete and numerical comparisons across dif-
ferent categories, particularly qualitative ones, is through bar charts. The bars can
be arranged in any order, but it is advisable to order them logically to facilitate
comparison. Bar charts can be displayed either vertically or horizontally, with the
orientation determining the placement of the axis. Horizontal bars have the ad-
vantage of accommodating more readable labels, making them suitable for larger
datasets or narrow layouts. It is important to ensure that the axis always starts at
zero to maintain accurate representation.

Pie Chart

The pie chart is the easiest chart to read and provides an ideal representation of
the proportional distribution of data in a part-to-whole relationship. However, it
also has several limitations. It is recommended to have no more than six to eight
categories in a pie chart because as the number of categories increases, the size of
each segment becomes smaller and it becomes more challenging for the reader to
accurately compare the sizes. The reader’s ability to distinguish the sizes via area
becomes less accurate when compared to via length, like the bar chart does.

Stacked Chart

Stacked charts are particularly effective in visually representing both the size
and proportion of data simultaneously. In a stacked chart, multiple datasets are
stacked on top of each other, enabling comparisons among the smaller subcat-
egories that form the larger category. The total value of the bar is obtained by
summing all the segment values. This type of chart is ideal for comparing the
overall amounts across each segmented bar. However, it is important to note that
as more segments are added, the stacked chart can become increasingly challeng-
ing to read and comprehend.

40

Background and State of the Art

Column-line Chart

This chart includes both bars and line chart, each with a correspondent y axis.
Showcases the relationship between an amount (columns) and a rate (line).

3.8.2 Integrity of Charts

A chart is considered to be distorted if it fails to accurately reflect the numerical
representation it is supposed to depict [65]. E. Tufte developed a metric to mea-
sure this distortion, known as the Lie Factor [65]. The Lie Factor is calculated as
the ratio between the size of the effect displayed in the graph and the actual size
of the effect. A larger Lie Factor indicates a higher degree of distortion. As seen
in Figure 3.8, a chart with a high Lie Factor can be misleading, as the increase in
size of each line does not accurately reflect the corresponding increase in value.
In contrast, Figure 3.9 shows a well-designed chart that accurately and effectively
conveys the relevant information without distorting the data.

Figure 3.8: Distorted Chart representing the fuel economy standards per year [65]

Figure 3.9: Accurate chart representing the fuel economy standards per year [65],
sourced from a print of the original book due to unavailability of a higher quality
image.

41

Chapter 3

Another common mistake arises from human’s tendency to underestimate differ-
ences in 2-D areas, and therefore it is important to be mindful when using 2-D
areas of varying sizes to encode quantitative values, especially in a dashboard
where quick interpretation is essential [26]. This mistake has been referred to as
the "Shrinking Doctor" effect by Tufte and can be seen in Figure 3.10. The exam-
ple demonstrates how the smaller images appear much smaller in size than the
actual decrease in percentage, making it difficult for the average viewer to detect
the true reduction.

Figure 3.10: Shrinking doctor effect [65], sourced from a print of the original book
due to unavailability of a higher quality image.

Dashboards should also focus on showcasing variations in data, not variations in
design. Figure 3.11 provides an example of how an irregular scale (with the last
metric only covering 4 years instead of 10) can be utilized to deceive viewers into
perceiving a decline that is actually smaller than depicted.

42

Background and State of the Art

Figure 3.11: Example of design variation [65]

Lastly, it’s important to provide context when presenting data, as data without
context is meaningless and can often lead to misinterpretation or misquotation.
If a chart doesn’t answer the question "Compared to what?" then it lacks context
and needs to be framed accordingly.

3.8.3 Automatic Visualization Recommendations

The design of charts depends on the user’s skill and the context of the data to be
visualized [38]. Since not all users of the platform will have the necessary skills,
one way to simplify the process is by automatically selecting an appropriate chart
or offering a set of chart options that best represent the data. Although this topic
is not the main focus of the current work, it will be briefly discussed and should
be better explored in future works.

In the work of P. Kaur and M. Owonibi [38], a visual mapping method through
rules is introduced. This method analyzes the data and applies a set of rules to se-
lect the correct visual mark, scale, and channel. This method is used in Tableau’s
Show Me [42], Voyager [74], and Manyeys [69].

VizDeck [39] proposes a method that only considers the input data and learns

43

Chapter 3

from the user’s choices over time. However, this method requires the user to
have some experience as if the users makes wrong choices the system will also
suggest them wrong choices.

VISO [70] is a context-aware and knowledge-assisted approach for the recom-
mendation of visualization components. It has the capability to annotate both
data sources and visualization components. Using VISO, M. Voigt et al. [71]
added a layer of rankings and rules to provide recommendations based on the
suitability for the current context of the dashboard.

Recently, the use of neural networks has become popular in the field of visualiza-
tion recommendations. Systems like VizML [34] and Data2Vis [67] are training
their models using information from knowledgeable communities, like the Plotly
community, to learn how different visualizations were created for different data
sets. By using this information, they can generate outputs that can even include
the correct axis placement for each variable.

3.9 Key Performance Indicators

The ABC records and stores various parameters and metrics. This section aims
to provide a brief overview of the specific data and fields that will be available to
chart on the first version of the platform. The descriptions of all these fields are
taken directly from the "Service Detail Record (SDR) Table Specification," which
is incomplete, and because of that, some of the fields cannot be fully explained.

The ABC’s KPIs are organized into six distinct database views: Communications
or Calls and SMS, Hunt Group, Waiting Queues, Pre-Answer, IVR Menu, and
End-Causes. All of the parameters are recorded in a single table named "SDRs"
This data is then transformed and loaded into eighteen different views. These
views correspond to the six groups of parameters, each of which is further di-
vided into three subgroups based on the time intervals of the data collected (15
minutes, hourly, or daily). Each of these subgroups contains different fields that
provide valuable insights into the data collected. For the first version of the plat-
form, the decision was made as a team to focus on the data from the Waiting
Queues and Communications KPIs, as they were deemed the most critical of the
group.

Even though most of the fields of each group view are different, some are shared
between all. These are the date of record, the customer ID, the Direct Dial-In
(DDI) that identifies the origin of the call and the number of events.

44

Background and State of the Art

3.9.1 Waiting Queues

As the name suggests, the Waiting Queues KPI tracks all the statistics related to
the customers who are waiting for their calls to be answered by an agent.

This KPI tracks how long the customer waited on the queue and the call duration,
as well as the minimum, maximum, and average of every waiting queue and
call. It also provides information on the party that ended the call and why, an
indication of whether the service is active or not, if the call was answered or not,
and if there was a forwarding of calls or not (which can lead to a further waiting
queue). The ID of the waiting queue is also registered.

3.9.2 Communications

This KPI saves all the metrics of the user during communication with an agent.

It stores the agent identifier, the AS cluster node, the ID of the access used and
terminal used by the agent, the type of call, location, and transaction made by
the customer, as well as the ring times and call duration and whether or not the
customer’s call was answered.

3.10 Business Intelligence Tools

Now that dashboards, the types of dashboards, and how to design a dashboard
are defined, this section will examine some tools created by major players in the
BI industry for creating and managing dashboards. It will also assess the features
and design of these tools. Most BI tools nowadays offer similar features, with
differences mainly in data connection types, prices, and key focus points.

3.10.1 PowerBI

Microsoft PowerBI is a widely used BI tool for end-to-end analytics, providing
users with multiple ways to connect and analyze their data. PowerBI focuses on:

• Quick information breakdown: It facilitates access to data exploration, help-
ing users make quick informed decisions;

• Refreshing data: Not all data sources support live querying, so PowerBI
offers automatic refresh for dashboards, which can be set for a specific time
of day;

• Cross-platform: It supports embedded web applications, Android, and iOS;

• Ease of use: PowerBI has a low learning curve and good UX.

45

Chapter 3

However, chart customization is largely limited, which can be frustrating if a
specific requirement cannot be met. Figure 3.12 shows a screenshot of the creation
of a widget on PowerBI.

Figure 3.12: Example of creation of a new dashboard in PowerBI. Image taken
from a dashboard created by me in PowerBI.

3.10.2 Tableau

Tableau distinguishes itself from other BI tools with its unique aesthetics, which
are powered by Pixar artists, while still offering reliable performance. It stands
out for the user experience it offers to users, being one of the easiest platforms to
use for BI.

• Visualisation capabilities: Tableau converts most data into interactive, com-
prehensive, and functional results in every possible way;

• High performance: Tableau is unique for its robust and reliable perfor-
mance, being fast even for large datasets;

• Cross-platform: Supports both android and IOS.

Figure 3.13 shows the drag and drop mechanism used by tableau to create a new
chart.

46

Background and State of the Art

Figure 3.13: Example of creating a new chart in Tableau. Image taken from a
Tableau tutorial [62]

3.10.3 Looker

Looker is Google’s new product for the BI market. It goes beyond BI and in-
tegrates seamlessly into business workflows, embedding into many third-party
systems and enabling companies to build their own data applications.

• Collaboration: Offers layers where analysts can define business logic and
communicate with other users;

• Cloud-based: As a newer platform takes advantage of the cloud scalability
and performance because this doesn’t rely on stale data, allowing for real
real-time data charts;

However, Looker has a steep learning curve for users, as many of its features are
new for this type of tool. The figure 3.14 shows an example of creation of a chart
using the database query mode on looker.

47

Chapter 3

Figure 3.14: Example of loading data to create a new chart in Looker. Image taken
from a video by Looker [41]

3.10.4 Datapine

Datapine allows for the creation of powerful dashboards with customized dash-
boards and alerts. It also allows users to create custom metrics using its query
tool. It has a low learning curve, with most tasks involving drag-and-drop, mak-
ing it easy to create dashboards.

• Easy predictive analytics: It includes a predictive system based on a forecast
engine. The user only needs to select an indicator, data points, and model
quality;

• Report options: It allows for embedding and emailing reports;

• Alarms: It offers multiple options for alarms, including growth, drivers, or
even conditional scenarios.

Figure 3.15 shows how to apply filters on dashboard created by datapine.

48

Background and State of the Art

Figure 3.15: Creating a new filter in Datapine. Image taken from a Datapine video
[21]

3.11 Analytics in Unified Communications as a Ser-
vice Tools

Big data analytics for unified communications is becoming increasingly impor-
tant for entrepreneurs, with more and more billions of dollars being invested
in software development every year [1]. Unified Communications as a Service
(UCaaS) is a cloud-based communication and collaboration solutions that inte-
grates all of UC benefits into a single platform. Analytics in UCaaS empowers
enterprises to gain valuable insights into their communication patterns, usage
trends, and user behaviors. In the following section it will be explored how
UCaaS implement their analytic platforms in order to get a better insight on what
features to add to ABC analytics system. Please note that as these tools are be-
hind paywalls, not every detail and functionality of the system was able to be
documented.

3.11.1 8x8

8x8 is the largest UCaaS platform today, listed multiple times as a leader in Gart-
ner’s Magic Quadrant for UCaaS [45].

According to 8x8, their analytics offer "highly-visual and intuitive dashboards,
giving an instant understanding of your contact center performance" [2]. 8x8
analytics focuses more on providing users with pre-defined dashboards with all
the data they need, while still providing the necessary tools to create a custom

49

Chapter 3

one. Their key features are:

• Creation of custom widgets;

• Pre-defined dashboards;

• Historical data allowing the creation of visual data charts with historical
information;

• Real-time data providing the visualization of indicators for queues and agents
in short time intervals;

• Email reports with snapshots of the dashboard;

• Custom Metrics.

Some of these features can be found in figures 3.16 and 3.17 and a dashboard page
is showed in figure 3.18.

Figure 3.16: Creating alerts in
8x8 dashboard. Image taken
from [3]

Figure 3.17: Creating a custom
metric. Image taken from [3]

50

Background and State of the Art

Figure 3.18: Example of a dashboard page in 8x8. Image taken from [3]

As for KPIs 8x8 has a vast list of available KPIs for their charts like interactions
by agents and status about queues and agents.

3.11.2 Ring Central

RingCentral is another major player in UCaaS, competing with 8x8 every year
for the top spot. RingCentral uses call center metrics to understand workforce or
customer behavior patterns, allowing businesses to make the most effective use
of their business phone system. RingCentral’s key focus points are:

• A variety of KPIs available for agents, calls, web calls, and even rooms,
which allows enterprises to focus more on strategy;

• The variety of KPIs allows for a more complex and defined report system;

• Monitoring of device health, allowing their clients to know when any device
starts to malfunction.

Although RingCentral offers a wide range of key performance indicators (KPIs),
their dashboard customization options are somewhat limited. Users are restricted
to three types of widgets: KPI number, table, and trend. Figure 3.19 demonstrates
the process of creating a widget, while figure 3.20 showcases an example of a table
widget. Furthermore, figure 3.21 displays a RingCentral dashboard.

51

Chapter 3

Figure 3.19: Creating new wid-
get in RingCentral. Image taken
from [66]

Figure 3.20: Creating table widget in RingCentral. Image taken
from [66]

Figure 3.21: Example of a performance dashboard page in RingCentral. Image
taken from [66]

3.11.3 Dialpad

Dialpad is a newer platform that is quickly rising in Gartner’s Magic Quadrant
for UCaaS [45]. Dialpad analytics is more focused on contact center KPIs, gather-
ing data that covers the performance of every aspect of their client’s operations,
such as call volume and call duration. Dialpad’s key features are:

• Widget customization:

52

Background and State of the Art

• The tool has a lot of customization and chart types available, including the
only one that offers heat maps;

• Real-time transcriptions: These allow for analytics to analyze client calls
and identify areas for improvement;

• IVR analytics

Although Dialpad lacks some features, such as forecasting and scheduling, new
updates are made consistently to make the tool as complete as possible. Figure
3.22 shows a dashboard from dialpad.

Figure 3.22: Example of a dashboard page in Dialpad. Image taken from [22]

3.11.4 ABC

ABC, as mentioned before, is AlticeLabs’ product for UCaaS. Currently, ABC’s
analytics still have a lot of catching up to do when compared to the major players
in the market. Their dashboards are still considered static, with users having no
control over which KPIs are displayed and how they are displayed. This project
aims to bring ABC’s analytics solution closer to industry standards.

Figures 3.23 and 3.24 illustrate the predetermined nature of the charts and the
filtering functionality of the ABC system.

53

Chapter 3

Figure 3.23: Example of some of the charts available in ABC current static dash-
board

Figure 3.24: Filtering on ABC dashboards

3.12 Technologies

This section presents the research on technologies that was conducted to select
the ones to use during the development of the project.

3.12.1 Front-End

Framework

JavaScript frameworks offer numerous advantages when developing a large-scale
application:

54

Background and State of the Art

• They are relatively easier to learn and use, with a huge amount of docu-
mentation and third-party libraries;

• Single page applications (SPAs) are more efficient in terms of processing,
as they require less back and forth between the application and the server.
SPAs download everything upfront, only updating the necessary compo-
nents when needed;

• Better User Interface (UI), as keeping the state of the app in sync with the UI
is harder in JavaScript. Every change in the state requires an update in the
UI, which can reduce performance with a lot of user interaction. JavaScript
frameworks can implement UIs that are guaranteed to be in sync with the
internal state of the application;

• JavaScript frameworks have more users, therefore there are better industry
standards that promote healthy coding practices.

At AlticeLabs, both Angular.js and React.js are the widely used, so they were the
only options considered in this project. The following table compares different
parameters between them [51].

Parameters Angular.Js React.Js
Technology
Type Full-fledged MVC framework JavaScript library (View in

MVC)

Concept
Brings JavaScript into HTML
Works with real DOM Client-
side rendering

Brings HTML into JavaScript
Works with the virtual DOM
Server-side rendering

Data Binding Two-way data binding One-way data binding
Learning Curve Steep Moderate

Best Suited For Highly active and interactive
web apps

Larger apps with recurrent vari-
able data

App Structure Fixes and complicated MVC Flexible component-based view
Performance High High

Table 3.3: React.Js vs Angular.Js

The main parameters taken into account were the Learning Curve and the Best
Suited For. Not only is React.js easier to learn, but the Software Engineering
Course also includes a class on it, making the transition to the technology eas-
ier and faster. Additionally, React.js excels in areas such as widget updates and
component sharing, which will be beneficial for the application.

Chart Library

When selecting the library, it was important to consider various parameters. The
first choice was what level of abstraction provided by the library to use. A low

55

Chapter 3

abstraction level library like D3.js or a high-level library that abstracts away com-
plexities by providing pre-built components.

While D3.js offers unparalleled customization options and flexibility in creating
charts, it comes with a steep learning curve and a huge level of expertise required
to work with the library effectively. Starting and maintaining code with D3.js is
extremely challenging and time-consuming, making it less accessible for devel-
opers who are accustomed to working with high-level libraries.

Considering Alticelabs’ preference for high-level libraries, the decision to stick
with them aligns with the priority of code maintainability. High-level libraries
abstract away much of the underlying complexity, providing developers with
pre-built components and intuitive APIs. Additionally, high-level libraries often
have comprehensive documentation and a supportive community, facilitating ef-
ficient development and reducing maintenance overhead.

The next step was choosing what library to use for the charts. The libraries mostly
used in the market were selected and compared to each other. The following
parameters were taken into consideration:

Parameters Ngx-
Charts

Ngx-
Echarts

Angular-
Plotly.js Recharts Victory VISX Chart.js High

Charts
Apex
Charts

Animation
Responsivity
Big Com-
munity
Client-Side
Rendering
Free
Appealing
charts
design

Table 3.4: Chart Library Features

• Animation and Responsivity → These parameters measure if the chart can
be interacted with by the user. Zooms, dragging, and other types of inter-
activity are available if the parameter is checked;

• Large Community → A large community means that there are more discus-
sions available and better-defined coding patterns, making it easier to build
quality code and fix bugs;

• Client-Side Rendering → There are two types of rendering, client-side or
server-side. Client-side rendering, although it has worse performance, has
a lower load on the server and is preferred by AlticeLabs;

56

Background and State of the Art

• Free → Some libraries only offer a free trial of their features;

• Appealing charts design → As a dashboard tool, charts need to be visually
appealing to the user, as they are the most important part of the dashboard.

Based on the evaluation of the defined parameters, Chart.js emerged as the most
suitable choice for developing the dashboard charts. It offers a comprehensive
set of features, aligning well with the requirements outlined in the table. One
notable advantage of Chart.js is its flexibility in creating custom charts using the
tools provided by the library. This allows for the possibility of introducing new
chart types in future development, catering to evolving needs and expanding vi-
sualization capabilities. Furthermore, Chart.js supports custom plugins, enabling
users to contribute and build new features independently without relying solely
on library developers. This extensibility fosters a vibrant community around the
library, promoting collaboration and the sharing of innovative charting solutions.

Figure 3.25: Example of Chart.js chart

3.12.2 Back-End

Database

Even though multiple databases are available to use, the one selected was Post-
greSQL, as Altice used Postgres based databases, like timescaledb.

57

Chapter 3

REST API

There are several technologies available for the REST API, including Python (Django
or Flask), Java (SpringBoot) and Node.js (ExpressJS), which are all used at Altice-
Labs and are among the most popular in the world.

Web applications require high concurrency. Node.js, unlike Java, is single-threaded,
with a dedicated thread for each request. As the load on the server increases, us-
ing multiple threads becomes expensive, as the operating system spends more
and more time switching between them. With Node.js, even at full CPU load, the
operating system will not break down, and the entire CPU time will be used to
service the request. Using a single thread per client will ensure smooth perfor-
mance, especially in enterprise application development.

ExpressJS, compared to Spring and Django, has a non-blocking, asynchronous
I/O model, which allows for better performance while still using a single thread.
As ExpressJS is written on JavaScript, it can use the Google v8 engine, which
provides better performance without any lag.

Another advantage of using Node.js is that both the front-end and back-end ap-
plications will be developed in the same language, reducing the time needed to
adapt and the learning curve. Therefore, Node.js will be used for back-end de-
velopment.

58

Chapter 4

Architectural Drivers

In this section, the architectural drivers that influenced the design and develop-
ment of our project will be presented. Architectural drivers are factors that shape
and guide the overall architecture of a system.

Understanding the architectural drivers of a project is important as they help to
define the constraints and requirements that the system must meet. They also
help to ensure that the system is aligned with the needs and goals of the organi-
zation, and that it is able to adapt to changing requirements and environments.

4.1 Personas

The following subchapter provides an overview of the personas associated with
our application. These personas represent different user types and their specific
goals and needs. By understanding our target audience, we can design the appli-
cation to meet their requirements and deliver a tailored user experience.

In figure 4.1 Carlos Santos is represented. Carlos, as a junior analyst, seeks a
straightforward dashboard creation process and intuitive visualization options.
By simplifying the workflow and offering an intuitive interface it empowers Car-
los to navigate the realm of data analysis and visualization with ease. This en-
ables him to contribute valuable insights to his team and supports his profes-
sional growth in the field.

59

Chapter 4

Figure 4.1: Carlos Santos Persona

The persona depicted in Figure 4.2 is Ana Vasconcelos, who seeks comprehen-
sive analytics and customizable dashboards to track communication metrics and
drive process improvements. Ana’s frustrations stem from the lack of visibility
into UCaaS performance and the difficulties in utilizing data insights to enhance
communication systems. By utilizing the capabilities of the platform tool, Ana
can streamline workflows, improve collaboration, and effectively demonstrate
tangible improvements to stakeholders. This empowers her to drive operational
excellence within the organization and make data-driven decisions for process
optimization.

60

Architectural Drivers

Figure 4.2: Ana Vasconcelos Persona

The figure represented in Figure 4.3 portrays Marco Tomás, an IT Manager at
Meo. The platform offers more than just real-time monitoring and analytics ca-
pabilities for Marco. It effectively addresses his needs for proactive issue detec-
tion and resolution, as well as the frustrations stemming from limited visibility
and control over the UCaaS service. By providing customizable dashboards and
widgets, Marco gains the ability to identify potential issues promptly and take
necessary action. This ensures that the ISP’s customers are consistently satisfied
and have an exceptional communication experience.

61

Chapter 4

Figure 4.3: Marco Tomás Persona

4.2 Functional Requirements

The section that follows presents a comprehensive examination of the functional
requirements for the dashboard platform. These requirements were determined
through a collaborative effort, with myself leading the process and working closely
with the team to establish the specific functionalities and their corresponding pri-
ority levels. Every use-case is clearly outlined and cross-referenced in Appendix
A, providing a clear and organized framework for the analysis of the dashboard
platform’s functionalities. In order to write the use cases, a combination of the
shortened one-column style and the two-column style for the main flow was uti-
lized, following Cockburn’s guidelines [20].

4.2.1 Use Case Diagram

This section presents the use case diagram for the dynamic dashboard applica-
tion. Figure 4.4 showcases the connections between the use cases. It provides a
visual representation of how different functionalities and features interact within
the application, offering a comprehensive overview of the system’s behavior and

62

Architectural Drivers

functionality.

Figure 4.4: Use Case Diagram

Dashboard

Users have the ability to create customized dashboards, allowing them to tailor
the dashboard to their specific needs. This caters to different requirements such
as real-time monitoring for Marco, analytics for Ana, or practice and learning
for Carlos. Additionally, users can modify and customize existing dashboards,
empowering them to refine their dashboards to suit their preferences. This is par-
ticularly beneficial for Marco and Ana, who can adapt the dashboards to track
performance and make informed decisions, and for Carlos, who can experiment
and learn by modifying existing dashboards. Furthermore, users have the op-
tion to remove unwanted or outdated dashboards, providing flexibility in man-
aging their dashboard inventory and keeping it organized. Although not explic-
itly mentioned as a need for any persona, the ability to delete dashboards benefits
all users by enabling efficient management of their dashboard collection.

Users can apply global filters that impact all widgets on a dashboard, providing

63

Chapter 4

a holistic view of the data. This feature allows Marco to analyze the impact of
each filter on service performance, Ana to evaluate overall communication met-
rics across the organization, and Carlos to explore the effects of different filters
on multiple widgets for comprehensive analysis.

Furthermore, users can share their dashboards with others, which is particu-
larly relevant for Marco and Ana. Marco can share dashboards with clients to
showcase service performance, while Ana can collaborate with stakeholders and
demonstrate the impact of communication improvements. This sharing capabil-
ity facilitates effective communication and collaboration within and outside the
organization.

The option to set a default mode during dashboard creation establishes a pre-
ferred starting point for analysis or presentation. This benefits all personas, es-
pecially Marco and Ana, who can focus on specific metrics or views, and Carlos,
who can use it as a guide to create new widgets and dashboards. Generating and
sending automated email reports from dashboards allows users to schedule and
share regular reports with stakeholders. This is advantageous for all personas,
particularly Marco and Ana, who may need to share performance metrics and
analysis with clients or stakeholders, enhancing communication and providing
updated insights.

These additional features (default mode and email reports) provide users with
enhanced capabilities and convenience, contributing to a more efficient and ef-
fective user experience.

Widget

When creating a widget, users have the flexibility to select desired metrics by
dragging and dropping them onto the appropriate axis based on the chosen chart
type. This feature caters to the different needs of each persona, as different chart
types have specific requirements. Additionally, users can choose from a range of
pre-defined colors for their widgets, simplifying the process and enhancing us-
ability.

After widget creation, users can modify and customize them on their dashboards.
This functionality enables users to fine-tune the widgets, displaying relevant in-
formation and metrics based on their specific needs. Marco can customize wid-
gets to monitor services, Ana can analyze communication metrics, and Carlos
can experiment with different visualization options. Users also have the ability
to delete widgets, providing them with flexibility in managing their dashboard
content.

Applying filters to analyze specific subsets of data is essential for all personas.

64

Architectural Drivers

Marco can troubleshoot service disruptions, Ana can identify areas for improve-
ment in communication processes, and Carlos can practice analyzing data subsets
to extract valuable insights. Users can apply filters by dragging metrics onto the
filter dropzone or interactively by clicking on values within widgets. This use
case benefits Carlos in particular, as it supports his hands-on learning experience
by allowing him to dynamically adjust filters and observe the resulting data in-
sights.

During widget editing, users can move and resize widgets, optimizing the visual
layout of their dashboards and improving their overall experience with the appli-
cation. This feature allows users to arrange widgets in a manner that suits their
preferences, ensuring a more efficient and intuitive dashboard design.

Users can drill down into detailed information from summary views, enabling
more in-depth analysis and identification of specific insights. This use case is
valuable for all personas, as it facilitates thorough investigation and understand-
ing of communication data, empowering users to make more informed decisions.

The ability to add table-based widgets to dashboards provides a structured and
organized representation of data. Users can compare values, track trends, and
perform detailed analysis using tables. This use case benefits all personas, allow-
ing them to examine specific data points in a tabular format, enhancing their data
exploration capabilities.

4.2.2 Use Case Priority

Through collaborative discussions with the team, all of the use cases were care-
fully prioritized using the Must have, Should have, Could have and Won’t have
(MoSCoW) method. During the prioritization process, the "Must Have" function-
alities were identified as the highest priority, ensuring that they are essential for
the successful implementation and usability of the dashboard platform in the first
deployment of the application.

Must Have:

The must-have use cases are essential and directly address the core needs and
frustrations of all three personas. These use cases provide the foundation for
customizing and analyzing data, enabling all personas to monitor, analyze, and
troubleshoot the ABC services effectively. These are:

• FR01: Create Dashboard

• FR02: Edit Dashboard

• FR03: Delete Dashboard

65

Chapter 4

• FR04: Create Widget

• FR05: Edit Widget

• FR06: Delete Widget

• FR07: Filtering

• FR08: Global Filters

Should Have:

The should-have use cases enhance the personas’ experience and provide addi-
tional value without compromising the core functionality. These use cases con-
tribute to collaboration, hands-on learning, and improved visual presentation of
data, benefiting the personas in their respective roles. They are:

• FR09: Share Dashboard

• FR13: Interactive filtering

• FR15: Moving Widget

• FR16: Resizing Widget

Could Have:

The could-have use cases offer additional flexibility and customization options to
further enhance the user experience. These use cases allow for more specialized
data visualization, personalized starting points, and deeper data exploration,
providing added value for users who require advanced analysis and presenta-
tion capabilities. They are:

• FR10: Specific charts for widgets

• FR11: Default mode

• FR12: Table Widget

• FR14: Drilldowns

• FR21: Email Reports

Won’t Have:

The won’t-have use cases are deemed less critical and have been excluded from
the prioritization. While these features may offer convenience for data transfer or
backup purposes, they are not essential for the personas’ immediate needs and
can be considered as potential future enhancements. They are:

• FR17: Importing Widget

66

Architectural Drivers

• FR18: Exporting Widget

• FR19: Importing Dashboard

• FR20: Exporting Dashboard

4.3 Non-Functional Requirements

In this section, we will discuss the non-functional requirements of this project.
These requirements are critical to the success of the project as they ensure the
quality and reliability of the system. Non-functional requirements include as-
pects such as performance, security, usability, and maintainability, among others.
For each quality attribute a scenario was created with the following characteris-
tics, following the Quality Attribute Scenario [48]:

• Stimulus: Condition to be considered when it arrives at the system;

• Source: Entity generating the stimulus;

• Environment: Circumstances under which the stimulus occurs e.g. normal
operation, stress conditions, fault etc;

• Artifact: Part of the system that is stimulated;

• Response: System activity undertaken as a result of the stimulus arriving;

• Measure: How well the response should satisfy the requirement.

In order to prioritize essential qualities for the application, two key attributes
were identified as priority: usability and maintainability. Given that the dash-
board application caters to a diverse user base with varying levels of experience,
usability takes precedence to ensure an intuitive and user-friendly interface. Ad-
ditionally, with the objective of facilitating future development beyond the in-
ternship period, emphasis is placed on maintainability to enable smooth code
comprehension and adoption by new developers. These priorities ensure an ac-
cessible and sustainable application throughout its life cycle.

Usability

Three scenarios were defined for usability:

67

Chapter 4

Source of Stimulus User

Stimulus User needs to perform a specific task
within the application efficiently.

Environment Normal operation
Artifact Dashboard Tool

Response Intuitive and streamlined user inter-
face

Response Measure
The user completes a list of tasks on
the application in less than 2 minutes
each, with at least a 85% accuracy rate

Table 4.1: Scenario 1 of Usability

Source of Stimulus User

Stimulus

Novice user wants to learn the basic
features and functionalities of the ap-
plication and navigate through the in-
terface

Environment Normal operation
Artifact Dashboard Tool

Response

Provide a guided tour or tutorial that
introduces the key features, naviga-
tion elements, and basic operations of
the application

Response Measure

The user successfully completes the
guided tour with an average comple-
tion time of less than 5 minutes and is
able to reproduce it with at least 95%
success rate

Table 4.2: Scenario 2 of Usability

Source of Stimulus User

Stimulus
User wants to personalize the appli-
cation based on their preferences and
workflow

Environment Normal operation
Artifact Dashboard Tool

Response Enable users to customize the inter-
face layout

Response Measure Customization of UI and widgets
takes less than 3-clicks

Table 4.3: Scenario 3 of Usability

Table 4.1, 4.2 and 4.3 define the usability scenarios. During normal operation the
user must be able to learn and use the application efficiently and customize it to

68

Architectural Drivers

his needs. In order to measure if these goals were obtained a System Usability
Scale (SUS) was done. The results and more information about SUS is found in
chapter 6 .

Maintainability

For maintainability 3 scenarios were defined:

Source of Stimulus Developer

Stimulus
Developers want to create modular
and reusable code components for ef-
ficient maintenance

Environment Normal development environment
Artifact Codebase of the application

Response

Design and implement code with a
modular architecture, separating con-
cerns and creating reusable compo-
nents or libraries.

Response Measure

The fontend codebase should have
a modular structure, with at least
80% of code components identified as
reusable

Table 4.4: Scenario 1 of Maintainability

Source of Stimulus Developer

Stimulus Developers want to write tests easily
and effectively for code maintenance

Environment Normal development environment
Artifact Codebase of the application

Response
Design code with clear separation of
concerns and proper decoupling to fa-
cilitate unit testing

Response Measure The API codebase should have a line
coverage of at least 80%

Table 4.5: Scenario 2 of Maintainability

69

Chapter 4

Source of Stimulus Developer

Stimulus
Developers want to have comprehen-
sive and up-to-date documentation
for code maintenance

Environment Normal development environment
Artifact Codebase of the application

Response
Document code with clear comments,
API documentation, and high-level
architectural documentation

Response Measure
Every component prop and endpoint
response and request body needs to
be documented

Table 4.6: Scenario 3 of Maintainability

The three scenarios above 4.4, 4.5 and 4.6 scenarios emphasize three key attributes
of maintainability in software development: modularity and reusability, testabil-
ity, and documentation. These attributes enable efficient maintenance by facili-
tating code updates, reducing bugs through testing, and enhancing code under-
standing.

4.4 Restrictions

The following section provides an overview of the restrictions that have been im-
posed on the project. Project restrictions refer to any limitations, constraints or
factors that have been placed on the project and its objectives, goals, and deliver-
ables.

Business restrictions

Business restrictions may not directly affect the architecture of the project, how-
ever, they can still have an impact on it. One example of this is a reduction in the
time allocated for architectural definition. The business restrictions identified for
the project and internship include:

• BR1 - Development time
– Rational: The development time of the system should not exceed the du-
ration of the internship;
– Flexibility points: Extensions to the duration of the internship;
– Viable alternatives: None.

70

Architectural Drivers

Technical restrictions

Technical restrictions can have a greater impact on the architecture of the project
than business restrictions as they can limit the choices for technologies, protocols,
programming languages, etc. The technical restrictions identified for the project
include:

• TR1 - ABC Authentication
– Rational: The authentication should be done via ABC platform;
– Flexibility points: None;
– Viable alternatives: Use 3 hardcoded logins as a temporary solution due
to the unavailability of necessary endpoints for ABC platform authentica-
tion.

• TR2 - The system must contain a RESTful API
– Rational: The front end application needs a REST API in order to commu-
nicate with the database;
– Flexibility points: None;
– Viable alternatives: None.

• BR2 - Internationalization
– Rational: The application should be easily translated to various languages
via a JSON file;
– Flexibility points: None;
– Viable alternatives: None.

4.5 C4 Model

In this section, we will introduce the C4 model for software architecture. The C4
model is a visual notation for representing the structural and behavioral aspects
of software systems in a clear and concise manner.

The C4 model consists of four levels of abstraction, each representing a different
aspect of the system: Context, Container, Component, and Code [13].
The Code Diagram was not done as such a low level of detail is not needed for
this project.

In the following sections, we will explore each of the levels of the C4 model in
more detail, and how they can be used to understand and communicate the ar-
chitecture of a software system. The full architecture of the system is displayed,
even if some features will end up not being developed in the context of this thesis,
for example, the mobile portability.

71

Chapter 4

4.5.1 Context Diagram

In this section the components of the Context diagram are presented and ex-
plained.

A Context diagram is typically the highest level of abstraction in a software ar-
chitecture model, and it provides a broad overview of the system and its place
within the larger context. It is used to communicate the overall goals and objec-
tives of the system, and to identify the key actors and external dependencies that
shape its behavior and functionality.

The figure below, figure 4.5, illustrates the intended use of the dashboard appli-
cation by its users and the supporting role of a backend application in enabling
the desired features.

Figure 4.5: Context Diagram of the C4 Model

72

Architectural Drivers

4.5.2 Container Diagram

In this section the components of the Container Diagram are presented and ex-
plained.

A Container diagram is a level of abstraction below the Context diagram, and
it provides a more detailed view of the system’s deployment environment. It
is used to communicate the physical and logical components that make up the
system’s runtime environment, and to show the relationships and dependencies
between these components.

Figure 4.6: Container Diagram of the C4 Model

73

Chapter 4

Figure 4.6 illustrates the composition of the dashboard system, which consists
of four containers: a server-side web application, a client-side single-page appli-
cation (SPA), a server-side API application, and a database. The web application
serves static content for the SPA, which is built using React.JS and utilizes Chart.js
as an external container to display charts. The SPA uses a JSON/HTTP API de-
veloped in Node.js to communicate with the ABC authentication system for login
and the ETL system to obtain KPIs data. All data from the API is stored in the
database.

4.5.3 Component Diagram

In this section the component diagram is presented and explained.

The Component diagram is a visual representation of the high-level components
that make up a system and the relationships between them. These components
can include modules, libraries, frameworks, and other logical units of functional-
ity that are used to implement the system’s functionality.

A Component diagram is a level of abstraction below the Container diagram, and
it provides a more detailed view of the system’s functional components. It is used
to communicate the overall structure and organization of the system, and to show
how the components are related and interact with one another.

Figure 4.7 illustrates the components comprising the REST API. The Authentica-
tion Controller plays a crucial role in user authentication, ensuring the security of
the API by preventing unauthorized access. It leverages the ABC authentication
system for user login and utilizes JSON Web Tokens (JWT) for query authentica-
tion.

The Dashboard Controller serves as a central hub for managing dashboards, uti-
lizing the Statistic Controller to retrieve a comprehensive list of available KPIs.
Additionally, it interacts with the Widget Controller to handle widget manage-
ment within specific dashboards. The Widget Controller, in turn, relies on the
Color Controller, which facilitates the listing of available color ranges for use in
widgets. Furthermore, the Analytics Controller plays a crucial role by loading
and transforming data into a format compatible with the Chart.JS library, en-
abling the smooth visualization of data in charts.

This component-based architecture ensures the effective and secure operation
of the REST API, allowing for seamless authentication, dashboard management,
widget customization, and data visualization functionalities.

74

Architectural Drivers

Figure 4.7: Component Diagram of the C4 Model

4.6 Mockups

The following section presents an overview of the main prototypes developed for
the platform, offering visual representations of the platform’s design and func-
tionality. These prototypes serve as tangible examples of the user interface, user
experience, and key features outlined in previous sections. The showcased pro-
totypes highlight the essential elements and functionalities of the platform, pro-
viding readers with a comprehensive understanding of its design and usability.
For additional mockups, please refer to Appendix B. The mockups were created

75

Chapter 4

using Figma, adhering to the Altice brand design guidelines.

4.6.1 Altice Guideline

The following subsection provides a detailed exploration of the Altice brand
guidelines that were followed during the design and development of the plat-
form. These brand guidelines serve as a framework to ensure consistency in vi-
sual identity and user experience across all Altice products and services. By ad-
hering to these guidelines, the platform aligns seamlessly with the Altice brand
and creates a cohesive and recognizable user experience.

The brand guidelines encompass various aspects, starting with the guidelines for
the logo. The guidelines specify the options for using a horizontal or vertical
logo, ensuring a designated space around the logo, and defining the minimum
and maximum sizes. Additionally, the guidelines stipulate that the logo should
be used on white or black backgrounds, which has been implemented accord-
ingly, particularly in the platform’s sidebar.

Typography is another critical aspect covered in the brand guidelines. The guide-
lines mandate the use of the "Altice" font family and specify "Montserrat" as the
designated font for web applications. Thus, the chosen font for the platform is
the Montserrat family. Furthermore, in adherence to the guidelines, the font color
used throughout the platform is exclusively black or white.

The brand guidelines also provide a defined color palette for the application. The
primary and secondary palettes are depicted in Figure 4.8 and Figure 4.9, respec-
tively.

Figure 4.8: Primary palette

76

Architectural Drivers

Figure 4.9: Secondary palette

4.6.2 User Experience

As highlighted in Section 3.4, there are various approaches to designing a dash-
board. After discussing with the team, it was determined that the application
would incorporate an open layout feature, enabling users to freely select the size
and position of their widgets, as this design decision aligns with Fitts’s Law. By
allowing users to customize the size and position of widgets, the platform en-
hances the overall user experience and enables personalized interface configura-
tions.

The introduction of a multipage system in the dashboard offers several advan-
tages. Firstly, it improves navigation within the widgets by providing users with
the ability to divide and organize their content across multiple pages. This en-
hances the overall usability and organization of the dashboard, particularly for
users with a large number of widgets. Additionally, the multipage system con-
tributes to the performance optimization of the dashboard, as it avoids loading
all widgets simultaneously. This ensures a smoother user experience, with faster
loading times and improved responsiveness. Furthermore, the multipage system
benefits the readers of the dashboard, as they can focus on specific pages and
analyze the content without being overwhelmed by a large number of widgets
simultaneously.

Although the MVP currently consists of a single page, the underlying architec-
ture and design of the application are capable of accommodating multiple pages.
This scalability allows for future expansion and the addition of more pages as
the platform evolves, providing flexibility and adaptability to meet evolving user
needs and requirements.

77

Chapter 4

4.6.3 Mockup Design and Explanation

In this subsection a detailed explanation of the mockups will be provided, accom-
panied by an explanation of the design choices.

Main Page

The main page of the application is depicted in Figure 4.10. It features a well-
designed layout comprising two primary sections. The first section is a collapsi-
ble sidebar that expands upon hovering and contracts when not in use. The sec-
ond section is the main content area, which occupies the majority of the screen.
This layout optimizes the space available for content while maintaining an aes-
thetically pleasing interface.

One notable aspect of this design is the flexibility it offers to users. They have
the option to choose the placement of the sidebar based on their preferences. Fig-
ure B.2 illustrates the mockup with the navbar positioned on the left side. This
concept was inspired by a Dribbble dashboard mockup created by Eugenie Ru-
miantseva [55]. The overall goal of this layout is to provide a visually appealing
and customizable user experience.

On this page, users have the ability to create a new dashboard by hovering over
the "+" button and selecting the "new" option. Their created and shared dash-
boards will be presented in a grid format, organized based on the order of cre-
ation. Users can then open, edit, and delete their created dashboards as needed.

Figure 4.10: Mockup of the Main Page

78

Architectural Drivers

Creating a Widget

The provided mockups (Figures 4.11, 4.12, and 4.13) illustrate the process of creat-
ing a new widget within the application. These images showcase the dashboard
area, which consists of a background where the widgets will be displayed, as well
as three tabs. The tabs offer users the ability to create, edit, and filter their wid-
gets. It’s worth noting that the position of these tabs can be customized through
the settings, as shown in Figure B.3, allowing users to personalize their experi-
ence.

The inclusion of these tabs aligns with the approach taken by various other dash-
board BI tools, such as PowerBI, to provide users with a familiar and consistent
user experience. Each tab serves a distinct purpose: one for listing Key Perfor-
mance Indicators (KPIs) and their associated metrics, another for creating and
editing widgets. In the widget creation tab, users can select the desired chart
type and utilize a drag-and-drop functionality to add their desired metrics to the
corresponding axes.

Figure 4.13 showcases the configuration of a regular axis widget, such as a line
chart or bar chart. On the other hand, Figure B.4 demonstrates the creation of a
horizontal bar chart with an inverted axis display. Additionally, Figure B.5 ex-
hibits the creation of a line-column axis widget, where separate axes are utilized
for the bar and line elements. Lastly, Figure B.6 presents the creation of a pie
chart, allowing users to select the desired value to display and specify how the
pie should be divided. Furthermore, users have the option to choose a color range
for their widgets.

In the third tab, users can leverage drag-and-drop functionality to add both global
filters and widget-specific filters (applicable only when creating or selecting a
widget). By dragging the desired metric from the KPI section, users can define
the filtering criteria based on specific values. The global filter section provides
additional filtering options, such as start and end date filters, along with a recur-
rence filter that determines the data’s periodicity.

In Figure 4.14, the displayed widget on the dashboard demonstrates various user
actions that can be performed on it. The user has the flexibility to resize the wid-
get according to their preference and relocate it to their desired position on the
dashboard. Additionally, the widget offers options to apply filters, edit its con-
tents, and delete it altogether. These functionalities empower users to customize
their dashboard layout and interact with the widgets in a dynamic and personal-
ized manner.

79

Chapter 4

Figure 4.11: Mockup of Creating a new Widget

Figure 4.12: Mockup of Creating a new Widget part 2

80

Architectural Drivers

Figure 4.13: Mockup of Creating a new Widget part 3

Figure 4.14: Mockup of the Widget on the Dashboard

Sharing a Dashboard

Users have the ability to share their dashboard with other users and manage the
roles of previously shared individuals. Figure 4.15 shows the interface of this

81

Chapter 4

menu which draws significant inspiration from Google Drive’s sharing method,
providing a familiar and intuitive experience. When initiating the sharing pro-
cess, a popup appears, dimming the rest of the screen to bring focus to the task
at hand. Once the user has shared with a new user or finished updating existing
sharing settings, the popup closes, allowing the user to seamlessly continue their
workflow. This approach ensures a user-friendly and efficient sharing experience
within the application, promoting collaboration and accessibility.

Figure 4.15: Mockup of Sharing the Dashboard

Viewer Mode

When a user is granted viewer access to a dashboard, certain actions such as
creating, editing, resizing, or moving widgets are restricted. However, they retain
the ability to apply filters to the widgets, enabling them to visualize the data with
different filtering options. To indicate that the dashboard is in viewer mode, a
label is added next to the title, providing clear visibility of the user’s access level.
This distinction helps users understand their permissions and ensures they are
aware of their role within the dashboard environment. In Figure 4.16, all of the
aforementioned remarks and functionalities can be observed visually.

82

Architectural Drivers

Figure 4.16: Mockup of the Dashboard on Viewer Mode

Settings

Figure 4.17 illustrates the settings menu, which currently allows users to change
the display side of the tabs and sidebar. By separating the settings menu onto
a different page, future development can accommodate additional options as
needed.

Figure 4.17: Mockup of the Settings Page

83

C
hapter

4

4.7 Database Conceptual Diagram

This section provides a presentation and explanation of the database conceptual diagram presented in figure 4.18.

Figure 4.18: Database conceptual diagram

84

Architectural Drivers

The database is divided into two sections: the statistics part and the dashboard
part. The statistics part includes entities such as statistics, field, field_value,
field_type, and data_type. The dashboard part comprises all the remaining enti-
ties.

In the statistics entities, data is pre-filled before deployment, and users only have
read access to these tables. The statistic entity stores the names of KPIs, with each
statistic having associated fields. These fields have types indicating whether they
are metrics or dimensions, data types (such as string, number, or timestamp), and
some fields may have predetermined values that are also filled.

A dashboard is associated with an owner, a name, and includes additional at-
tributes like report datetime and recurrence, which will be utilized for future de-
velopment of emailing reports. Dashboards can also be shared with other users.
As mentioned earlier, a dashboard can have multiple pages, with each page con-
taining widgets. The global_filter entity stores the filters applied to the dash-
board, consisting of a field and the user-selected value.

A widget encompasses attributes such as chart type, color range, position, size,
title, and data recurrence. Each widget can have filters applied to it. The xaxis
and yaxis entities store the corresponding fields for each axis within the widget.
Both xaxis and yaxis entities have an additional field to store extra information
about the axis. In cases where multiple fields exist on the same axis, they indicate
whether a particular field is the main one or not. The yaxis entity also includes a
combo_options attribute to store information when the widget is a combination
of other types, such as the line-column chart.

85

This page is intentionally left blank.

Chapter 5

Implementation

This chapter offers an overview of the development process and technical aspects
involved in bringing the application to life. It covers the methodology employed
for API and frontend development, the integration of these components, version
control practices, and deployment procedures. Through an in-depth exploration
of the implementation process, this chapter aims to provide a comprehensive
understanding of the technical intricacies, decision-making processes, and chal-
lenges encountered during the development of the full-stack application.

5.1 Methodology

The development of the product followed an Iterative and Incremental Devel-
opment methodology, as described in Chapter 2. Figure 5.1 illustrates how this
methodology works.

Figure 5.1: Iterative and incremental development

87

Chapter 5

During the initial planning phase, the functional and non-functional require-
ments were defined and prioritized. Each level of prioritization marked the be-
ginning of an iterative cycle.

For each cycle, the planning stage involved making changes to the architectural
drivers. In the first cycle, an API schema was designed, specifying the names,
request bodies, and response formats of each endpoint. This schema was revised
and updated in subsequent cycles to accommodate new functionalities. Mockups
also underwent changes in each cycle to reflect the evolving features. Addition-
ally, the database structure was modified to incorporate new fields and entities
required for these functionalities.

Following the planning phase and architectural adjustments, the implementation
process began. API development was tackled first, followed by frontend devel-
opment, and finally the integration of both components. This approach allowed
for focused attention on one aspect at a time while ensuring sufficient time was
allocated to develop each functionality.

Once the implementation phase was complete, the testing phase commenced.
Tests were conducted for both the API and the frontend, with any discovered
bugs promptly addressed before the start of a new cycle. Code reviews were per-
formed by other team members to evaluate the quality of the code.

Throughout the development process, bi-weekly team meetings were held to
present and explain the work accomplished, as well as to gather feedback from
team members. These meetings served as an opportunity to discuss progress, ad-
dress any concerns, and ensure alignment within the team.

The chosen methodology provided enhanced organization and focus by break-
ing down the development process into smaller tasks with clear deadlines. This
approach facilitated a better understanding of task progress and identified any
potential delays in the development timeline. Furthermore, the methodology
fostered a culture of continuous improvement across various aspects, including
development, planning, and architecture. This iterative approach allowed for
ongoing refinement and optimization, resulting in a more efficient and effective
development process.

In order to effectively track and manage the issues and tasks related to each devel-
opment increment, Jira was used. The team manager was responsible for creating
and assigning the relevant issues in Jira. These issues encompassed the different
requirements, enhancements, and bug fixes associated with each development
increment.

Fisheye, a code review tool, was utilized to facilitate code reviews and enhance

88

Implementation

collaboration among team members. Fisheye provides a platform for team mem-
bers to review and provide feedback on the codebase, ensuring code quality, iden-
tifying potential issues, and promoting knowledge sharing within the team. Team
members could easily access the code repository and view the changes made in
each commit or branch. They had the ability to leave comments, suggest im-
provements, and address any concerns directly on the code. This interactive
feedback process helped in identifying areas for improvement, promoting code
consistency, and ensuring adherence to best practices.

5.2 Version Control

At AlticeLabs, the chosen VCS tool is Subversion (SVN), developed by Apache.

The SVN repository is integrated with Fisheye and Jira. This integration allows
team members to easily track which code versions were associated with specific
issues and provides an efficient way to review code changes using Fisheye. This
integration enhances the overall development workflow and promotes code qual-
ity through code reviews.

Overall, the use of SVN, along with its integration with Fisheye and Jira, enhances
the development process at AlticeLabs by providing version control, collabora-
tion capabilities, and code review functionality.

5.3 Deployment

Deployment is a crucial step in the software development lifecycle, as it involves
transitioning a web application from the development environment to a pro-
duction environment where it can be accessed by end-users through their web
browsers. This process entails packaging the application and configuring it to
run on a production server.

For this project, the deployment was accomplished using Nginx, a popular web
server software that can efficiently handle high traffic and serve web applications.

However, the deployment process deviated from the initial plan of continuous
deployments after each increment. Due to compatibility issues with the Node
version used in both projects, the deployment had to be postponed until the end
of the timeline until a team member updated the machine to support the required
Node version.

To deploy the application, the build command was executed in both projects to

89

Chapter 5

generate the production-ready code. The resulting build artifacts were then trans-
ferred to the deployment machine using FTP, following the specific procedures
set by AlticeLabs.

To enhance flexibility and maintainability, the application utilized the dotenv
package to store configuration variables in environment files. This approach al-
lowed for easy modification of various settings, such as the database URL, fron-
tend and API URLs for CORS, without the need to recompile the code with each
change.

5.4 API Development

This section provides an overview of the planning and development process in-
volved in creating the backend API. By delving into the details, we can gain a
comprehensive understanding of how the API was developed.

5.4.1 API Schema

The development of the API embraced an API-first approach, where the API’s
contract, outlining its expected behavior, was defined prior to implementing its
actual functionality. This methodology ensured that each endpoint followed a
coherent and logical pattern, and provided an opportunity to review and vali-
date each endpoint before development commenced. Leveraging an iterative de-
velopment process, this API-first approach facilitated incremental enhancements
and seamless iteration across different components without disrupting the over-
all system architecture. It also fostered improved collaboration and facilitated
integration, as team members could readily review the API design. The compre-
hensive schema encompassed detailed information for each endpoint, including
available responses, request bodies, parameters, and queries. Figure 5.2 illus-
trates an example of one endpoint within the schema.

90

Implementation

91

Chapter 5

Figure 5.2: Example of endpoint documentation, screenshoted from OpenAPI

5.4.2 Authentication

To authenticate users, the API utilizes JWT. JWTs are encoded JSON data with a
cryptographic signature appended at the end. A JWT comprises three parts: the
header, the payload, and the signature. In the payload, user information such as
the user’s ID and email is included.

Figure 5.3: JWT authentication diagram, from [30]

Figure 5.3 illustrates the authentication process with JWT. Upon successful login,
the API generates and returns a JWT, which the browser stores in local storage or

92

Implementation

cookies. Subsequently, when the user makes an API call, the JWT is added to the
request header, and the system verifies its validity. Each endpoint then verifies
if the user making the API request corresponds to the user specified in the JWT
payload. This prevents unauthorized users from interfering with or accessing
other users’ information.

To enhance the security of the JWT, a timeout of 15 minutes has been imple-
mented. After this period, the JWT becomes invalid. However, alongside the
JWT, a refresh token is sent to the browser and stored. When the JWT expires, an
automated API call is triggered to a designated endpoint responsible for refresh-
ing the JWT. Along with the refreshed JWT, a new refresh token is issued.

The API leverages JWT-based authentication along with these supplementary
security measures to establish robust user authentication and safeguard sensi-
tive user data against unauthorized access. Additionally, JWT enables a stateless
server architecture, eliminating the need to maintain user-related state informa-
tion and enhancing scalability. By adopting JWT, a token-based authentication
approach, it lays the foundation for future development of a single sign-on (SSO)
functionality. This enables users to authenticate once and gain access to multiple
applications or services seamlessly. Thus, JWT-based authentication not only en-
sures security and scalability but also offers potential for convenient and stream-
lined user experience.

5.4.3 Endpoints

The API endpoints at AlticeLabs are designed and implemented using best prac-
tices to ensure consistency, standardization, ease of use, and seamless integration.
Adhering to these practices enables scalability, extensibility, and optimal perfor-
mance. It also enhances security, access control, and collaboration among devel-
opers. By following best practices, the APIs become future-proof, compatible,
and provide an excellent developer experience [68].

Some of these best practices include [19]:

• Using JSON for data transmission: JSON enhances data readability, enjoys
wide support across applications, is easily parsed by various technologies,
and is more cache-friendly.

• Utilizing nouns instead of verbs in endpoint naming: RESTful Uniform
Resource Identifier (URI) refer to a resource, a thing, therefore it should be
a noun that is capable of having properties;

• Properly utilizing HTTP status codes: Adhering to the correct meaning of
HTTP status codes aids developers in handling errors or unexpected suc-
cess scenarios.

93

Chapter 5

• Using nested endpoints to indicate relationships: When endpoints are in-
terconnected, nesting them logically reflects their relationship, making it
easier to understand and navigate the API structure.

• Implementing filters and pagination for data retrieval: To improve pro-
cessing times, utilizing filters and pagination allows developers to retrieve
specific data, avoiding unnecessary overhead and speeding up response
times.

• Providing accurate and comprehensive API documentation: Documenta-
tion should encompass all endpoints, their specifications, and relevant sta-
tus messages.

With this in mind, the endpoints all follow the same naming convention:

api/<collection_name>/<endpoint_name>

The endpoints developed are:

• General: /

– GET healthcheck/: This endpoint indicates the health of the API, re-
turning a 200 if everything is ok or a specific error code to indicate
what’s wrong.

• Authentication: auth/

– POST login/: Checks if the user exists and, if successful, returns the
JWT and refresh token.

– POST refresh/: When called, if the refresh token has not expired, will
return a new set of JWT and refresh token.

– GET token-up-to-date/: Checks if the token is up to date or has ex-
pired.

• User: user/

– GET preferences/: Gets all of the user’s UI preferences.

– PUT preferences/: Updates the user’s preferences.

• User: color/

– GET /: Gets all of the color ranges for widget creation available.

• Dashboard: dashboard/

– GET /: Gets all of the user’s dashboards (created by and shared with).

– POST /: Creates a new dashboard on the user’s account.

– PUT /{dashboardId}: Updates the dashboard with the ID dashboardId.

– DELETE /{dashboardId}: Deletes the dashboard with ID dashboardId.

94

Implementation

– GET /{dashboardId}: Gets all the information about a specific dash-
board.

– GET /{dashboardId}/page/{pageId}: Gets all the widgets created on
the specific dashboard page.

– GET /{dashboardId}/share: Gets all the shared users of the dashboard.

– POST /{dashboardId}/share: Shares the dashboard with a new user.

– PUT /{dashboardId}/share: Updates the user’s role on the dashboard.

– DELETE /{dashboardId}/share: Unshares the dashboard with a new
user.

– Widget: dashboard/page/{pageId}/widget/

* POST /: Creates a new widget on the specific page of the dash-
board.

* PUT /{widgetId}: Updates the widget configurations.

* DELETE /{widgetId}: Deletes the widget.

• Statistics: statistics/

– GET /: Gets the list of all KPIs and their metrics and values.

• Analytics: analytics/

– POST /: Transforms widget configuration into data that can be given
to the chart builder.

– GET /labels: Lists all of the KPIs labels to use on the frontend applica-
tion for translation.

– GET /filter-values: Gets a list of all available values to filter by.

In order to ensure consistent responses across all endpoints, the following re-
sponse codes were defined:

• Ok-200: This response indicates that the endpoint has successfully pro-
cessed the request. Along with this response, a response body is sent, which
may vary depending on the specific endpoint;

• Bad Request-400: If the provided request body does not match the expected
format or contains invalid data, a 400 error code is returned to the user;

• Unauthorized-401: If the user attempting to access the resource lacks the
necessary permissions or fails to provide valid authentication credentials, a
401 error code is returned;

• Forbidden-403: If the user has been explicitly excluded from accessing the
resource or lacks sufficient permissions, a 403 error code is sent as a re-
sponse;

• URL not Found-404: When a request is made to a non-existing URL, a 404
error code is returned, indicating that the requested resource could not be
found;

95

Chapter 5

• ID not Found-404: If the user includes an ID in the request body or as a
parameter that does not correspond to an existing resource, a 404 error code
is returned along with a message indicating which field contains the non-
existing ID;

• Method Not Allowed-405: When the user makes a request using an HTTP
method that is not supported or allowed for the specific endpoint, a 405
error code is returned;

• Internal Server Error-500: In the event of an unexpected server failure or
error, a 500 error code is returned to indicate that there are problems on the
server side.

By defining these standardized response codes, users interacting with the API
can expect consistent and meaningful feedback based on the outcome of their
requests.

5.4.4 API Framework and Organization

The API development was undertaken using Express.js as the chosen framework.
To make the code more mantainable the structure was made taking into account
similar projects at AlticeLabs and Express.js best practices [44]. Figure 5.4 dis-
plays the tree of the project.

Figure 5.4: Folder Tree of the API Project

The project consists of two main folders: "src" and "assets" The "src" folder houses
all the project files, while the "assets" folder contains the OpenAPI documentation
file.

The "prisma" folder contains the entity models for the database. Prisma, as an
Object-Relational Mapping (ORM) tool, acts as a bridge between the application
and the database. It maps the entities onto objects, facilitating seamless inter-
action and providing an abstraction layer for SQL queries. Prisma simplifies
the learning curve by allowing developers to use easy-to-understand and code

96

Implementation

CRUD (Create, Read, Update, Delete) methods. Additionally, Prisma helps en-
sure code maintainability by providing accurate error messages when there are
updates to the database schema that could potentially break the existing code.

Within the "src" folder, the "utils" directory contains methods and functions needed
across the application. The "config.ts" file loads environment configurations, such
as the database connection and frontend URL for CORS (Cross-Origin Resource
Sharing). Logging within the project is implemented using Pino, allowing for
message logging throughout. The logging behavior varies based on the envi-
ronment, providing different information depending on whether the project is
in development or deployment. The "schemas.ts" and "types.ts" files define the
request and response bodies for the endpoints, while "responses.ts" contains boil-
erplate code to ensure consistency across all responses.

The "controller" folder contains the logical implementation of the endpoints, tak-
ing in requests and transforming them into responses.

The "routes" folder houses the logical setup for routing.

The "services" folder contains the business logic, such as the authentication mech-
anism.

By organizing the project’s files into these distinct folders, the codebase is struc-
tured in a way that separates concerns, enhances code organization, and im-
proves maintainability.

5.5 Front End

This section provides an overview of how the front-end code is organized, the
different components that make up the user interface, and the specific pages that
define the user experience. By understanding the project structure, components,
and pages, it becomes easier to grasp the overall architecture and functionality of
the front-end system.

5.5.1 Project Structure

Figure 5.5 shows the structure of the front-end project, which follows a consistent
pattern used in other AlticeLabs front-end projects. The goal was to make the
code accessible for future work and maintainable by other team members

97

Chapter 5

Figure 5.5: Folder Tree of the Front End Project

In the "public" folder, the translations JSON files are located. These files are used
for internationalization (i18n), allowing for easy translation of labels and texts
into different languages in the future.

The "src" folder contains all the code for the project. Within the "src" folder, the
"assets" folder stores images and ".scss" files. In this project, Tailwind and Sass are
used for styling customization. Tailwind provides pre-defined classes for quick
and consistent styling, while Sass introduces variables and nesting for enhanced
organization and reusability of styles. This combination allows for efficient de-
velopment, cleaner code, improved productivity, and easier maintenance.

The "util" folder includes helper functions that support various aspects of the
project. For example, the "api.ts" file handles HTTP requests and provides meth-
ods for CRUD operations. The "cookie.ts" file utilizes the "universal-cookie" pack-
age to store and retrieve cookies from the browser, specifically storing the JWT
and refresh token. The "windowSize.ts" file determines the current window size
of the user’s browser for responsive UI design. The "i18n.ts" file connects the
translations from the "public" folder to the project.

In the "config" folder, you can find the configuration files. The "config.ts" file
reads configurations from the environment and makes them accessible to other
files. The "logger.ts" file enables logging of information and messages, facilitating
the debugging process.

The "route" folder consists of files that map the web application routes. By or-
ganizing routes in a separate folder, it becomes easier to add new endpoints or

98

Implementation

modify existing ones. Figure 5.6 illustrates how the route mapping works, with
each route having a path, name (used for translation), layout (container for com-
ponents), and an optional middleware function for user authentication.

Figure 5.6: Interface of Route Mapping

The "middleware" folder contains files with functions that are called before ren-
dering a page. For example, the "ProtectedRoute.tsx" function verifies if the user
is authenticated before redirecting to the appropriate page.

The "layouts" folder contains the layout components used in the project. Layouts
act as containers for components that are shared across multiple pages, ensuring
consistent rendering. Each layout receives a page component as a child and ren-
ders it accordingly.

The "Components" folder includes reusable building blocks that can be used in
different pages, making it easier to manage the interface and update components
consistently.

The "pages" folder contains all the web application pages. These pages are built
using components and include their own internal logic. Each page is responsible
for rendering a specific part of the application based on the defined routing. The
next subsection will present and explain all the pages in detail.

The "styleguide" folder contains the configuration for the documentation tool
called "Styleguidist." This tool plays a crucial role in documenting all the com-
ponents used in the project. It provides examples of component usage and docu-
ments the available props for each component. By leveraging Styleguidist, future
developers can quickly understand how to use components and gain insights into
their functionality. This approach enhances maintainability by promoting a clear
understanding of the components’ purpose and usage.

99

Chapter 5

5.5.2 Components

This subsection presents all the components along with their props, offering in-
sight into the development process. It serves as a comprehensive overview of
the components used in the project, allowing for a deeper understanding of their
purpose and usage. All of this examples are taken from the documentation done
to the components, that can be found in appendix C.

To evaluate the reusability of components, a metric was employed. The number
of reusable components was divided by the total number of components and then
multiplied by 100. This calculation yielded a reusability rate of 84.6%, indicating
that the non-functional requirement for component reusability has been met.

Button

By creating a button component, we can ensure consistent styling and provide a
seamless user experience across the web application. This versatile component
caters to various button functionalities based on the props passed to it. Whether
it’s a normal button, a form submit button, or a return button, the button com-
ponent can adapt accordingly. Additionally, the component supports a disabled
state, ensuring it covers all the necessary use cases for a button.

Figure 5.7: Button Component Example

PopUp

Figure 5.20 illustrates the properties and provides an example of a popup com-
ponent. The popup component is highly versatile and can be easily adapted to
various use cases by utilizing the "children" prop, which allows for dynamic con-
tent rendering. Although not explicitly demonstrated in this example, when the
popup is displayed, the background is dimmed to draw attention to the popup
itself. Additionally, the popup component offers customization options for defin-
ing the behavior when the popup is closed, providing flexibility for different sce-
narios.

100

Implementation

Figure 5.8: PopUp Component Example

FAB

The floating action button (FAB) serves as a convenient means of accessing pri-
mary or frequently used actions within the application without occupying exces-
sive space. When the FAB is hovered, additional buttons, referred to as action
buttons, appear. The FAB adjusts its position based on the user’s chosen UI lay-
out. Figure 5.9 presents an example of the FAB component.

Figure 5.9: FAB Component Props Example

Side Bar

The sidebar component, depicted in Figure 5.10, serves as a navigation hub for
users to access different pages within the application. When the sidebar is hov-
ered over, it expands to reveal its contents, allowing users to easily navigate be-
tween pages. Conversely, when the mouse pointer is no longer hovering over
the sidebar, it automatically collapses, freeing up space within the application in-
terface. This behavior optimizes the available screen real estate, providing users
with a larger workspace while still offering convenient access to the application’s
pages.

101

Chapter 5

Figure 5.10: Side Bar Component Example

Toolbar

The toolbar component, showcased in Figure 5.23, offers a versatile and adapt-
able toolbar feature. It can be toggled open or closed, allowing users to control
its visibility as needed. The toolbar component is designed to support multiple
instances within the same parent page, providing the flexibility to incorporate
multiple toolbars throughout the application. By accepting React "children" com-
ponents, it enables seamless reuse and customization, empowering developers to
add various elements and functionalities to the toolbar. This modularity and con-
figurability make the toolbar component a valuable asset for enhancing the user
experience and providing convenient access to essential actions and features.

102

Implementation

Figure 5.11: Toolbar Component Props Example

Dashboard Card

The dashboard card component, illustrated in Figure 5.12, empowers users to in-
teract with their dashboards efficiently. It offers essential functionality such as
opening, editing, and deleting dashboards. The card prominently displays the
name of the dashboard, providing users with clear identification and easy navi-
gation. Additionally, the dashboard card includes relevant information about the
user’s role or permissions associated with the dashboard, ensuring proper con-
text and facilitating appropriate actions. With its intuitive design and compre-
hensive features, the dashboard card component enhances the user experience
and streamlines dashboard management within the application.

Figure 5.12: Dashboard Card Component Example

103

Chapter 5

Widget Card

The widget card component, presented in Figure 5.13, serves as a versatile tool
for users to interact with charts effectively. It offers a range of interactive features,
including the ability to move, resize, and zoom the chart. Users can also interact
with the chart by clicking on it to apply interactive filters or perform specific ac-
tions.

This component is designed to facilitate easy editing and deletion of the widget,
providing users with control over their chart customization. By utilizing the Re-
act RnD library, the widget card component offers a seamless and intuitive user
experience. The React RnD library is renowned for its capabilities in enabling
draggable, resizable, and interactive components, making it an ideal choice for
creating this widget card.

The integration of the React RnD library enhances the usability and flexibility of
the widget card component. It empowers users to customize their charts effort-
lessly while maintaining a smooth and intuitive interface. The combination of
the widget card component and the React RnD library ensures a seamless and
efficient user experience when working with charts within the application.

Figure 5.13: Widget Card Component Props and Example

Draggable and Dropzone

The draggable and dropzone components, displayed in figure 5.14 and figure
5.15, work hand in hand to provide essential functionality within the application.
These components were developed using the React DnD library, which stream-
lines the process of implementing drag and drop functionality.

The draggable component allows users to select and drag desired metrics from

104

Implementation

a designated area. This functionality is particularly useful when creating a new
widget, as users can easily drag and drop metrics onto the desired axis for visu-
alization. By leveraging the React DnD library, the draggable component offers a
seamless and intuitive drag experience.

On the other hand, the dropzone component serves as the target area where users
can drop the draggable metrics. In the context of widget creation, the dropzone
component enables users to add selected metrics to the chart’s axis or apply them
as filters. The React DnD library seamlessly handles the integration of the drop-
zone component, making it effortless for users to drop their metrics into the de-
sired location.

Figure 5.14: Draggable Component Example

Figure 5.15: Dropzone Component Props Example

Dropdown

The dropdown component, as shown in Figure 5.16, provides a user-friendly way
to present a list of elements. This component is highly customizable, allowing for
the display of a large number of elements while providing a convenient scrollbar
when the list exceeds a defined number of items.

With the dropdown component, users can easily access and select items from the
list by expanding the dropdown menu. The component offers flexibility in terms
of styling and behavior, enabling developers to tailor it to their specific needs.

105

Chapter 5

Figure 5.16: Dropdown Component Example

Filter Card

Filter cards are essential components that facilitate the creation and management
of filters within an application. These components, as depicted in Figure 5.17,
can be expanded or collapsed to optimize screen space. They offer built-in search
functionality, enabling users to easily find specific values associated with the fil-
ter. Additionally, pagination is implemented to display only a specified number
of elements at a time, preventing overwhelming the user with excessive informa-
tion.

In contrast to the standard filter cards, the date and recurrence filters have their
own dedicated components. Figure 5.18 showcases the date filter component,
which allows users to edit the start and end dates by simply clicking on the cor-
responding text fields. This intuitive interface streamlines the process of select-
ing date ranges for filtering purposes. On the other hand, Figure 5.19 presents
the available options for data collection recurrence. This specialized component
offers a clear and concise representation of different recurrence options, enabling
users to specify how data should be collected.

Figure 5.17: Filter Card Component Example

106

Implementation

Figure 5.18: Filter Card Date Example

Figure 5.19: Filter Card Recurrence Example

Palette Choice

The palette picker component functions similarly to a dropdown mechanism but
with a specific focus on selecting color ranges. Instead of presenting a list of
items, the palette picker provides users with a range of color options to choose
from. This feature allows users to select the desired color range to apply to their
widget.

By utilizing the palette picker, users can easily customize the visual appearance of
their widgets by selecting color schemes that best suit their preferences or align
with their branding requirements. This component streamlines the process of
color selection and ensures consistency throughout the application by offering
predefined color ranges for users to choose from.

The palette picker enhances the user experience by providing an intuitive and
convenient way to incorporate visually appealing color schemes into their wid-
gets, contributing to a more visually engaging and cohesive interface.

107

Chapter 5

Figure 5.20: Button Component Props and Example

Charts

The Chart.js library played a crucial role in building the charts for this project.
Known for its simplicity and maintainability, Chart.js provided the necessary
tools for interactive chart creation and customization.

To prepare the data from the KPIs for charting, it needed to be transformed into
a specific format that Chart.js could read. This transformation was facilitated by
the "analytics/" endpoint, which returned the data in a JSON object format with
"labels" and "datasets" keys. The "labels" represented the x-axis values, while the
"datasets" contained the corresponding y-axis values. Each dataset within the
"datasets" list had customizable properties, such as color, border color, and inter-
polation method for calculating click distances on the chart.

Chart.js also allowed for chart interactivity. While this functionality was not pro-
vided by default, it could be implemented through custom code. Two interactive
features were incorporated: dataset hiding and global filtering. In charts with
multiple datasets, users could hide all other datasets by clicking on either the
dataset label or the specific dataset on the chart. This enabled users to focus on
a particular dataset with a simple button click. Additionally, users could add
global filters by clicking on specific values within the dataset on the chart.

Furthermore, plugins were utilized to enhance the charting experience. Zooming
and panning functionality allowed users to focus on specific sections of the chart,
enabling a closer examination of the desired data.

108

Implementation

5.5.3 Pages

This chapter provides an overview of the various pages that make up the web
application. As the functionality and user experience have been extensively dis-
cussed during the presentation of mockups and the implementation process, only
a concise explanation of each page is given.

Main Page

Figure 5.21: Print-screen of the Main Page of the web application

Figure 5.21 showcases a screenshot captured directly from the web application,
displaying the main page. The layout consists of a side bar and a black bar posi-
tioned at the corners of the screen. The main content of the page is loaded in the
center.

The main page utilizes the dashboard cards component, allowing users to inter-
act with their dashboards. These cards provide functionality such as opening,
editing, and deleting dashboards. Additionally, the floating action button (FAB)
is available for users to create new dashboards, providing a convenient and quick
way to initiate the creation process.

The main page serves as a central hub for users to manage and access their dash-
boards, facilitating a seamless and intuitive experience. By leveraging the dash-
board cards component and the FAB, users can efficiently navigate and interact
with their personalized dashboards.

109

Chapter 5

Dashboard Page

The page depicted in Figure 5.22 showcases a dynamic and versatile layout de-
signed to accommodate various components and functionalities. Composed of
three toolbar components, as illustrated in Figure 5.23, the page offers a range of
tools and options to enhance the user experience.

Each toolbar component incorporates dropdown components, which provide users
with access to additional features and settings. The dropdowns consist of drag-
gable components, allowing users to effortlessly select and manipulate elements.
The dropzone serves as a designated area for placing axis and filter components,
facilitating the creation and customization of widgets.

The filter cards, as mentioned earlier, play a crucial role in enabling users to re-
fine and narrow down data based on specific criteria. The palette picker, situated
within one of the toolbars, offers a selection of color ranges, empowering users to
customize the visual representation of their widgets.

The central focus of the page lies in the widget cards component. Positioned
prominently in the center, these cards serve as the primary elements for display-
ing data and facilitating user interaction. Users have the freedom to arrange and
configure the widget cards according to their preferences and requirements.

Figure 5.22: Print-screen of the Dashboard Page of the web app

110

Implementation

Figure 5.23: Print-screen of the three toolbars open

Settings Page

Figure 5.24 showcases the settings page, which provides users with the ability
to customize the layout of the web application. The page consists of two selec-
tors, as depicted in the figure, allowing users to make personalized choices and
adjustments.

Figure 5.24: Print-screen of the Settings Page

111

Chapter 5

Tutorial

To facilitate the learning process for users, a tutorial feature was implemented
within the web application. This tutorial utilizes the React Joyride package, which
allows for interactive walkthroughs to guide users through the various steps and
functionalities of the application.

Figure 5.25 showcases three examples of the walkthrough process. The tuto-
rial systematically guides users through each step involved in creating a widget,
starting with the creation and management of a dashboard. Users are provided
with clear instructions on how to navigate the dashboard page and perform ac-
tions such as adding metrics to the axis and applying filters.

The tutorial also emphasizes the interactive nature of the application by demon-
strating how users can interact with the charts within the widget. It highlights the
ability to resize and move widget cards to customize their placement on the page.

By incorporating the tutorial feature, the web application aims to ensure that
users can quickly familiarize themselves with the functionalities and workflow
of the platform. The interactive walkthroughs provide step-by-step guidance,
empowering users to efficiently navigate and utilize the various features offered
by the application.

(a) (b)

(c)

Figure 5.25: Screen-shots of parts of the walktrough tutorial

112

Chapter 6

Tests

Testing is an essential aspect of software development to ensure the quality, func-
tionality, and usability of the application. In the case of this web application,
various types of tests were performed, including unit tests and usability tests.

Unit tests were conducted to verify the correctness and functionality of individ-
ual units or components of the application. These tests focused on testing isolated
endpoints to ensure that they behaved as expected. Unit tests helped to identify
and fix any bugs or errors in the code early in the development process, promot-
ing code reliability and maintainability.

Usability tests were also conducted to evaluate the user experience and interface
design of the web application. These tests involved real users performing tasks
and providing feedback on the usability, intuitiveness, and effectiveness of the
application. Usability tests helped to identify any usability issues, navigation
problems, or areas of improvement in the user interface.

6.1 API Testing

To validate the functionality and accuracy of the API endpoints, a black box test-
ing method was employed. This approach involved testing the API without de-
tailed knowledge of its internal workings, focusing solely on the inputs and out-
puts.

For each endpoint, the output generated by the API was compared against the
expected outcome. This comparison served as a means to verify that the API was
functioning correctly and producing the desired results.

The API development followed an API-first approach, meaning that the antic-
ipated output format was predetermined during the creation of the endpoints.

113

Chapter 6

This streamlined the testing process, allowing for a comparison between the ex-
pected and actual outputs.

To automate the testing procedure, Jest was utilized as the testing framework.
Jest is a popular JavaScript testing framework that offers a straightforward and
effective way to create tests.

Figure 6.1 illustrates an example of a test case. The test case involves sending a
request to a specific API endpoint and comparing the response with the expected
result. The response can be examined for the correct status code, data format,
and content. The Jest framework provides various assertion methods to facilitate
these comparisons.

Figure 6.1: Example of a Jest test code

To simplify testing, a separate database was employed, and a bash script was
generated to populate the database with test data prior to executing the test pro-
cedures. Once the tests were completed, the script would clean up and remove
all the test data from the database, ensuring a pristine and consistent testing en-
vironment for each test run. The structure was as followed:

• Initial setup: A bash script was responsible for creating the necessary re-
sources to facilitate the tests;

• Pass parameters to request: The tests were designed to utilize the resources
created in the initial setup. The built-in fetch method was used to make the
requests, and a specific token, which does not expire, was generated solely
for testing purposes;

• Asserting body of response: The response body was compared to the ex-
pected outcome using Jest’s methods, such as "toHave";

• Asserting data: In addition to the response body, the data itself needed
to be validated to ensure the correct processing. Jest’s "toBe" method was
employed for this purpose.

114

Tests

Strategy

To ensure consistency and reliability in the testing process, a testing strategy was
followed. This strategy included the following key aspects:

• Test authentication: Tests were performed to verify if it was possible to
access the endpoints without proper authentication. Requests without a
valid token or with an invalid token were made to ensure that unauthorized
access was properly restricted;

• Test authorization: Tests were conducted to validate if users with insuf-
ficient permissions were prevented from accessing or modifying the re-
sources. This ensured that the access control mechanisms were correctly
implemented;

• Test expected behavior: The tests focused on verifying that the API end-
points produced the expected results. This involved comparing the actual
output with the expected output, such as checking the correctness of re-
turned data, response status codes, and data formats;

• Test invalid requests: Tests were designed to ensure that the API responded
correctly to invalid requests. This involved checking if the API returned the
appropriate error codes and error messages for various scenarios, such as
missing parameters or invalid input.

To streamline the development of tests, the test files were organized into eight
test suites, with each suite corresponding to a specific group of endpoints. This
division aided in the management and organization of the testing process.

Results

A comprehensive total of 117 tests were executed on all endpoints, utilizing the
described strategy. Figure 6.2 provides an overview of these tests, demonstrat-
ing that all test suites passed successfully. This outcome indicates that the tests
verified the expected response bodies and data for each endpoint. However, it
is important to note that passing tests does not guarantee a bug-free program; it
solely affirms that the program is functioning as intended according to the pro-
vided test cases. The tests conducted, along with their corresponding labels, are
documented in Appendix D.

Figure 6.2: Tests done

Figure 6.3 provides an overview of the code coverage for all the API tests. Code
coverage is a white-box technique that measures the extent to which the source

115

Chapter 6

code of a program is exercised by the tests. It helps identify areas of the code that
have not been adequately tested, including functions, branches, and lines.

In the image, the "%Smts" represents the percentage of covered statements during
the test execution. "%Branch" indicates the percentage of tested branches, which
measures the decision-making statements followed by the tests. "%Funcs" repre-
sents the percentage of functions tested, while "%Lines" indicates the percentage
of covered lines in the code.

Based on the obtained results, it can be observed that the percentage of covered
lines and statements exceeds the expected threshold of 80%. The percentage of
tested functions is also approaching the desired level. However, the coverage
for branches is lower than expected, indicating that more thorough testing of
decision-making statements is needed in the future of the project.

Figure 6.3: Code Coverage

6.2 Frontend Testing

In this section, we will present and explain the testing conducted on the frontend
as well as the usability tests.

6.2.1 Functionality Testing

To adhere to AlticeLabs QA team guidelines, only manual tests were conducted
for this version of the project. The decision to prioritize manual testing was made
to ensure that the most essential features were thoroughly tested before moving
on to automated testing. It was agreed that for future versions, the QA team
would begin writing and implementing automated tests.

The manual tests were define in a csv in order to import it to XRay. Xray is a test
management application that integrates with Jira and SVN and allows to easly
create issues in case of bugs occuring. This way tests are ready to follow for the
next stage, that will be conducted by the QA team.

These initial tests focused on identifying any issues related to the integration of
each page’s functionalities with their respective endpoints. The primary objective
was to ensure that the functionalities implemented in the frontend pages were ef-
fectively integrated with the designated API endpoints. This allowed for early

116

Tests

identification and resolution of any issues that could hinder the proper function-
ing of the system as a whole.

Authentication

Four tests were defined to ensure the authentication process functions correctly
in the web application. The tests are described below, in table 6.2, along with
their expected results:

Test Case # Name Steps Expected Result Result

1 Login Page 1. Clear cache
2. Open Web App Login page should ap-

pear
Pass

2 Login
1. Open Web App
2. Insert valid login
details

Redirect to main page Pass

3 Invalid Login
1. Open Web App
2. Insert invalid login
details

Stay on login page and
warn user about incorrect
login

Pass

4 Logout
1. Be logged in
2. Click on the logout
button

Redirect to login page Pass

Table 6.1: Authentication Manual Tests

These tests ensure that users cannot access the website without proper authoriza-
tion, and when entering the application for the first time or after logging out, they
are redirected to the login page. Additionally, the platform correctly warns the
user when incorrect login details are provided.

Settings

The settings page was tested to verify if the changes made by users resulted in
the expected UI modifications. Specifically, the side bar and the tabs of the dash-
board were tested to ensure proper functionality and visual updates based on
user settings:

Test Case # Name Steps Expected Result Result

1 Change side bar
to right side

1. Open Web App
2. Click on Settings
button on the navbar
3. Select "Right" on
the dropdown selec-
tion for the navbar

Navbar should change to
the right side along with
all the complementary
buttons changing to the
left

Pass

117

Chapter 6

2 Change side bar
to left side

1. Open Web App
2. Click on Settings
button on the navbar
3. Select "Left" on
the dropdown selec-
tion for the navbar

Navbar should change to
the left side along with all
the complementary but-
tons changing to the right

Pass

3
Change dash-
board tabs to
the right side

1. Open Web App
2. Click on Settings
button on the navbar
3. Select "Right" on
the dropdown selec-
tion for the tabs

Dashboard tabs should
change to the right side
along with all the comple-
mentary buttons chang-
ing to the left

Pass

4
Change dash-
board tabs to
the left side

1. Open Web App
2. Click on Settings
button on the navbar
3. Select "Left" on
the dropdown selec-
tion for the tabs

Dashboard tabs should
change to the left side
along with all the comple-
mentary buttons chang-
ing to the rle

Pass

Table 6.2: Settings Manual Tests

Dashboard

A series of tests were conducted to ensure the proper functionality of the dashboard-
related features. The detailed test cases can be found in Table E.1 in Appendix E.
This section provides an overview of the testing performed, including additional
context and information. All of the tests done were passed.

The tests encompassed various aspects of dashboard management and function-
ality, such as creating a new dashboard, editing existing dashboards, and deleting
dashboards. These tests focused on validating the system’s response to different
scenarios, such as empty dashboard names during creation and editing processes.

Furthermore, the tests examined the behavior of dashboards when accessed by
different user roles, including authors, readers, and editors. The goal was to en-
sure that the appropriate permissions and functionality were granted to users
based on their assigned roles.

The sharing functionality of dashboards was also thoroughly tested. This in-
volved sharing dashboards with other users in different roles, such as sharing
in "Editor" mode, where the shared user could access and edit the dashboard,
and sharing in "Viewer" mode, where the shared user could only access and ap-
ply filters to the dashboard without editing the widgets.

Additional tests were conducted to assess the effectiveness of applying filters and
modifying dashboard settings. These tests examined the ability to change the

118

Tests

start and end dates for widgets, modify recurrence data to display data on dif-
ferent time intervals, and add global filters to restrict the data displayed by the
widgets.

Overall, the tests aimed to ensure the proper functionality, usability, and security
of the dashboard features, providing a robust and reliable experience for users.

Widget

A series of tests were conducted to ensure the proper functionality of widget-
related features. The detailed test cases can be found in Table E.2 in Appendix E.
This section provides an overview of the testing performed, including additional
context and information.

The tests focused on various aspects of widget management and functionality,
such as creating different types of widgets, editing widget properties, and per-
forming actions like moving, resizing, and filtering widgets.

The creation of each widget type was thoroughly tested following the standard
creation process. It was verified whether the widgets were successfully created
and displayed correctly on the dashboard. Additionally, the system’s ability to
handle invalid inputs during widget creation was also tested, ensuring that ap-
propriate error messages were triggered.

Widget editing capabilities were evaluated through tests involving actions like
moving and resizing widgets. The expected result was that the widgets would
maintain their new positions and sizes even after a refresh, ensuring the persis-
tence of changes.

Furthermore, tests were conducted to validate the functionality of adding filters
to widgets. The aim was to ensure that the widgets would display data specific
to the selected users, while removing filters should result in the widget showing
all available data.

The ability to edit various widget properties, such as the title, color range, and
axis, was also thoroughly tested. The expected result was that changes made to
these properties would be successfully reflected in the widgets on the dashboard.

To assess the deletion of widgets, tests were performed to verify that widgets
could be successfully removed from the dashboard, ensuring proper clean-up
and management of widgets.

119

Chapter 6

Tests were also conducted to evaluate the effectiveness of the search functionality,
both for data and filters on the dashboard. The expected result was that searching
for specific terms would display the relevant fields containing the search term.

Overall, the tests aimed to ensure the proper functionality, usability, and consis-
tency of widget features, providing users with a reliable and intuitive experience
when creating, editing, and managing widgets on the dashboard.

6.2.2 Usability Testing

To assess the usability of the system, the System Usability Scale was utilized. The
SUS is a subjective measure of usability, consisting of 10 questions with five re-
sponse options each, following the Likert response format. It was developed by
John Brooke [12]. While the SUS does not guarantee usability, it provides a quick
and simple way to evaluate it and offers valuable insights.

The ten questions used in the SUS are as follows:

• I think that I would like to use this system frequently;

• I found the system unnecessarily complex;

• I thought the system was easy to use;

• I think that I would need the support of a technical person to be able to use
this system;

• I found the various functions in this system were well integrated;

• I thought there was too much inconsistency in this system;

• I would imagine that most people would learn to use this system very
quickly;

• I found the system very cumbersome to use;

• I felt very confident using the system;

• I needed to learn a lot of things before I could get going with this system.

The testers were given a short time frame of five seconds to provide their answers,
ensuring that the responses were based on intuition and initial impressions of the
application.

After collecting the responses, a score ranging from 0 to 100 was calculated.
Following the standards set by Bangor et al. [8], a score of 85 indicates excep-
tional usability, while anything below 70 is considered unacceptable. The scoring
methodology is as follows:

120

Tests

• Each item response is values from 0 to 4;

• Odd numbered questions values is the scale position minus 1;

• Even numbered questions is 5 minus the scale position;

• The sum of the scores is multiplied by 2.5.

In addition to the questionnaire, a set of tasks was defined to further evaluate the
system. These tasks included:

• 1- Follow the walktrough tutorial;

• 2- Create a new dashboard and open it;

• 3- Create a widget;

• 4- Edit the widget created;

• 5- Filter a widget;

• 6- Edit settings.

The time taken to complete each task as well as the number of errors was recorded
to analyze task performance.

The usability test was conducted with 5 participants, all of whom were members
of AlticeLabs and had no prior knowledge or information about the project. This
approach ensured that the testers had a genuine first-time experience with the
platform, providing valuable insights into its usability. One of the advantages of
using the SUS is that even with a small number of testers, such as 5 participants,
it is possible to obtain meaningful results for an early-phase usability study [57].

Results

The results of the questionnaire provided by each tester are presented in Table
6.3.

User Total Score
1 82.5
2 90
3 80
4 75
5 87.5

Mean 83

121

Chapter 6

Table 6.3: Results of the SUS

Upon observing the results, it is evident that the average score surpasses the
threshold of 70, indicating a high level of usability for the tested system. This
outcome suggests that the majority of users perceived the system as user-friendly,
intuitive, and easy to navigate. These results are a testament to the successful im-
plementation of a usability-focused approach during the design phase.

While it is important to note that the SUS scores alone may not serve as the sole
determinant of overall usability, it serves as a valuable starting point for measur-
ing user satisfaction. By achieving a noteworthy average score, it is clear that the
system’s design considerations effectively contributed to a positive user experi-
ence.

In Table 6.4, the average time taken by users to complete each task and the cor-
responding percentage of errors committed are presented. An error is defined as
an unintentional action performed by the user while attempting to carry out the
correct task, such as clicking the wrong button or dragging an item to the wrong
location. The percentage was calculated by the number of wrong actions divided
by the total of actions multiplied by 100.

Task Mean Time (Minutes:Seconds) Mean Percentage of Errors
1 03:25 0%
2 00:26 7%
3 01:27 13%
4 00:23 8%
5 00:38 9%
6 00:30 0%

Table 6.4: Means of the times and number of errors for each task

The complete tutorial had an average duration of 3 minutes and 25 seconds,
which is below the specified requirement of 5 minutes outlined in the non-functional
requirements. Additionally, following the tutorial, all users successfully com-
pleted the assigned tasks, resulting in a 100% success rate.

Furthermore, each task exhibited a mean execution time of under two minute,
aligning with the other defined non-functional requirement.

As anticipated, the creation and filtration of widgets emerged as the most time-
consuming tasks. This outcome was expected due to the inherent complexity
associated with these core functionalities of the platform. However, it is note-
worthy that all testers were able to create various types of widgets with different

122

Tests

attributes, such as colors, titles, types, and charts. This indicates that even users
with limited experience can easily navigate and utilize the application after un-
dergoing the tutorial.

The UI customization process required an average of three clicks. This signifies
that the customization feature is as user-friendly and easily identifiable as in-
tended, aligning with the planned design considerations.

Although the number of users involved in the testing process was limited, it is
possible to conclude that the application has demonstrated promising usability
characteristics, as it adheres to usability-focused development principles. How-
ever, further user testing with a larger and more diverse group of participants
will provide more comprehensive insights to further refine and enhance the ap-
plication’s usability.

123

This page is intentionally left blank.

Chapter 7

Conclusion

7.1 Final Status

To determine the overall success of the project, it is crucial to refer to the defined
threshold of success outlined in Chapter 2.

Upon evaluation, it can be concluded that the project has met the threshold of
success for the following reasons:

• The Must Have functionalities, as well as the Should Have functionalities,
were successfully developed, reviewed, documented, tested, and deployed.
This accomplishment fulfills the first point of the threshold;

• As displayed in section 6 the users had over the 85% accuracy rate on the
tasks given to them and completed them all under/over a minute each.
The tutorial took on average X minutes and had a 100% success rate. The
customziation had the expected 3 clicks. This means that the usability non-
functional requirements all passed;

• The non-functional requirements for maintainability were fully satisfied.
The frontend demonstrates a reusability rate of 84.6%, surpassing the de-
fined threshold of 80%. Additionally, the line coverage rate stands at 85.30%,
exceeding the minimum requirement of 80%, the documentation of the fron-
tend components can be found in appendices C, an excerpt of the API doc-
umentation can be found in figure 5.2;

• All the restrictions were followed.

With the evidence presented, it is possible to confidently conclude that the project
was indeed a resounding success. Not only were all the objectives and milestones
successfully achieved, but the results surpassed expectations.

125

Chapter 7

7.2 Problems

This section describes the problems faced that slowed down the development of
the project.

Hardware and Software

The development process at AlticeLabs was significantly impeded by the out-
dated and slow computer provided for internal use. The slow performance of
the computer, including a slow Integrated Development Environment (IDE) and
lengthy compiling times, hindering the productivity.

Moreover, accessing the AlticeLabs network required the use of a VPN (Virtual
Private Network). Unfortunately, this VPN encountered connectivity issues, of-
ten disconnecting unexpectedly as a result, time was wasted daily while attempt-
ing to establish and maintain a connection to the network. Furthermore, it was
incompatible with the eduroam network.

Communication

Communication within the team members proved to be efficient and prompt, fa-
cilitating smooth collaboration. However, when it came to communication with
members from other teams, delays were experienced, resulting in significant chal-
lenges.

Specifically, meetings with other teams were required for tasks such as database
redesign or confirming KPIs and mockups. Unfortunately, these meetings en-
countered delays, which subsequently impacted the development process.

Deployment

In addition to the deployment issues mentioned earlier, such as the unprepared
deployment machine for the applications, there was a lack of an automated pipeline.
This meant that after the initial deployment was ready, subsequent deployments
required manual creation of build files and their transfer to the machine via FTP.

7.3 Future Work

This section focuses on the future work that can be done with the project as it will
continue to be develop by other AlticeLabs team members.

126

Conclusion

7.3.1 Additional Features

The application developed represents only an MVP (Minimum Viable Product)
of the final product, implying that there is ample room for further improvements
and feature development.

Could Have Requirements

The upcoming implementations can focus on incorporating the "Could Have"
features outlined in the defined requirements.

One important step would be implementing a pagination system for the dash-
board. The groundwork for this feature has already been laid, with both the
database and API being prepared to handle the necessary information.

One significant enhancement would be the addition of specific charts based on
user-selected metrics, as this would greatly enhance usability. Many similar plat-
forms have already implemented this feature into their systems. Additionally,
enabling email reports for the dashboard would allow users to set thresholds and
receive alerts when these thresholds are surpassed. This feature would greatly
benefit users and their monitoring needs.

One major feature to consider is the ability to drag and drop metrics onto the
axes, ensuring that they do not cause any conflicts. This involves leveraging the
existing database division of metrics and dimensions to determine the suitable
placement of each metric and dimension on the chart’s axes.

Furthermore, introducing drilldown functionality would provide users with a
deeper level of interaction with the system, thereby enhancing the user experi-
ence and ease of use.

Annotations

The ability for dashboard users to create annotations serves as a valuable feature
that facilitates idea generation and collaboration. However, there is potential for
further enhancements to maximize the value and utility of annotations within the
dashboard.

Future implementations can focus on expanding the functionality of annotations
to foster increased information sharing and collaboration among users. This
could include features such as the ability to mention and notify specific users
or teams within annotations, allowing them to receive notifications and actively

127

Chapter 7

participate in the discussions or provide further insights.

Additional Chart Types

The inclusion of additional types of charts in the dashboard will offer future users
a wider range of options for creating their widgets. This expansion of chart types
contributes to improved usability and opens up new possibilities for various use
cases.

By introducing diverse chart types, users will have the flexibility to visualize data
in different ways, catering to their specific needs and preferences.

These additional chart options not only enhance the visual appeal of the dash-
board but also offer more comprehensive and nuanced data representations. Users
can select the most suitable chart type based on the nature of their data and the
insights they wish to convey.

Artificial Intelligence

Considering the rapidly evolving nature of the dashboard market, new features
will continuously become available. One potential future addition could be the
implementation of Artificial Intelligence (AI) capabilities. This would enable the
AI to generate widgets based solely on user-provided descriptions, adding a level
of automation and customization to the application.

7.3.2 Tests

There is significant room for improvement in the testing phase. Firstly, the fron-
tend would benefit from the implementation of automated tests to provide more
thorough bug confirmation. Additionally, the API should undergo a more rigor-
ous testing process, extending beyond black box unit tests. Conducting load and
performance testing in the future is essential to ensure scalability for increased
user numbers.

While the SUS method provides a good indicator of usability, it alone is not suf-
ficient. Further usability tests should be conducted with a larger pool of users,
including potential buyers of the application. This is the most effective way to en-
sure that the application truly delivers a high level of usability. By incorporating
feedback from diverse users, it becomes possible to identify areas for improve-
ment and make the necessary refinements to enhance the overall user experience.

128

Conclusion

Bug Fixing

The application requires further bug fixing to ensure its smooth functionality. A
comprehensive list of known bugs has already been shared with the development
team to provide clarity on the necessary changes. The identified issues encom-
pass several areas that need attention.

Optimization

Once performance testing on the API is completed, it is recommended to focus
on optimizing the less efficient modules of the code. This optimization can be
achieved by enhancing the performance of database queries and optimizing func-
tions that access and manipulate data.

In addition to code optimizations, implementing a better caching system within
the database can bring further performance improvements. By implementing
an effective caching mechanism, the application can retrieve data more quickly,
resulting in faster response times for accessing, editing, or creating new charts.

7.4 Final Thoughts

I consider the internship to be a resounding success and a highly positive experi-
ence. All the expected functionalities were successfully implemented, surpassing
initial expectations and leaving the system in an excellent state, despite the future
work that still lies ahead.

From a technical perspective, I have acquired a wealth of knowledge through-
out the internship. Even though it was a solo project, being part of a real-world
enterprise team has provided invaluable insights into how teams collaborate and
communicate effectively. I have deepened my understanding of developing APIs,
learning the importance of designing and architecting an API properly. Moreover,
I have fulfilled my long-standing aspiration to work with React, expanding my
skill set in front-end development. Additionally, I took my first steps into the
realm of automated testing, gaining valuable experience in this critical aspect of
software development.

The feedback received from both team members and non-team members has been
instrumental in my professional growth. This constructive feedback has not only
honed my technical skills but has also contributed to my personal development
as an individual.

Overall, this internship has been a remarkable journey of learning, growth, and

129

Chapter 7

accomplishment. It has provided me with invaluable practical experience in a
professional setting, fostering a deeper understanding of teamwork, technical im-
plementation, and the iterative nature of software development. I am immensely
grateful for the opportunity and look forward to applying the knowledge and
skills acquired during this internship to future endeavors.

130

References

[1] The investment in ucaas will reach 96,000 million dol-
lars in 2023?, 2017. URL https://enreach.es/en/blog/
the-investment-in-ucaas-will-reach-96000-million-dollars-in-2023/.
[Last accessed 23/11/2022].

[2] About 8x8 contact center dashboards, 2022. URL https://docs.8x8.com/
8x8WebHelp/8x8Analytics/Content/8x8Analytics/Dashboards.htm. [Last
accessed 23/11/2022].

[3] 8x8. Create a dashboard using widgets. URL https://docs.8x8.com/
8x8WebHelp/8x8Analytics/Content/8x8Analytics/Create_Dashboards.
htm. [Last accessed 08/06/2023].

[4] ISO 9241-11:2018. Ergonomics of human-system interaction — Part 11: Usability:
Definitions and concepts. 2018.

[5] S. Taing A. Picot, K. Riemer. Unified communications. 2008.

[6] Albright, S.C., Winston, W., and Zappe. Data Analysis and Decision Making.
Cengage Learning, 2010.

[7] B. Bach, Z. Wang, M. Farinella, D. Murray-Rust, and N. Henry Riche. Design
patterns for data comics. pages 1–12, 2018.

[8] Kortum P. Miller J.A Bangor, A. The system usability scale (sus): An empir-
ical evaluation. 2008.

[9] Alfie Abdul-Rahman Cagatay Turkay Saiful Khan Yulei Fan Benjamin Bach,
Euan Freeman and Min Chen. Dashboard design patterns. 2022.

[10] Richard Brath and Michael Peters. Dashboard design: Why design is impor-
tant. 2004.

[11] D. Brodbeck and L. Girardin. Design study: Using multiple coordinated
views to analyze geo-referenced highdimensional datasets. pages 104–111,
2003.

[12] John Brooke. Sus: A quick and dirty usability scale. 1995.

[13] Simon Brown. The C4 model for visualising software architecture. 2022.

131

https://enreach.es/en/blog/the-investment-in-ucaas-will-reach-96000-million-dollars-in-2023/
https://enreach.es/en/blog/the-investment-in-ucaas-will-reach-96000-million-dollars-in-2023/
https://docs.8x8.com/8x8WebHelp/8x8Analytics/Content/8x8Analytics/Dashboards.htm
https://docs.8x8.com/8x8WebHelp/8x8Analytics/Content/8x8Analytics/Dashboards.htm
https://docs.8x8.com/8x8WebHelp/8x8Analytics/Content/8x8Analytics/Create_Dashboards.htm
https://docs.8x8.com/8x8WebHelp/8x8Analytics/Content/8x8Analytics/Create_Dashboards.htm
https://docs.8x8.com/8x8WebHelp/8x8Analytics/Content/8x8Analytics/Create_Dashboards.htm

Chapter 7

[14] S. Faulkner C. Burnay, S. Bouraga and I. Jureta. User-experience in business
intelligence - a quality construct and model to design supportive bi dash-
boards. 2020.

[15] J. Van Biljon C. Jooste and J. Mentz. Usability evaluation for business intelli-
gence applications: A user support perspective. 2014.

[16] Bernardita Calzon. Make sure you know the differ-
ence between strategic, analytical, operational and tactical
dashboards, 2021. URL https://www.datapine.com/blog/
strategic-operational-analytical-tactical-dashboards. [Last ac-
cessed 06/02/2023].

[17] S. Card and J. Mackinlay. The structure of the information visualization de-
sign space. pages 92–99, 1997.

[18] H. Chen. Toward design patterns for dynamic analytical data visualization.
5295:75–86, 2004.

[19] Kolade Chris. Rest api best practices – rest endpoint de-
sign examples. URL https://www.freecodecamp.org/news/
rest-api-best-practices-rest-endpoint-design-examples/. [Last
accessed 17/06/2023].

[20] Alistair Cockburn. Writing Effective Use Cases. 2000.

[21] Datapine. How to use dashboard filters | datapine. URL https://www.
youtube.com/watch?v=z8relzC_Tqc. [Last accessed 08/06/2023].

[22] DialPad. Call analytics. URL https://www.dialpad.com/features/
call-analytics/. [Last accessed 08/06/2023].

[23] A. Djurovic. What uc is and isn’t, 2021. URL https://www.techtarget.com/
searchunifiedcommunications/definition/unified-communications.
[Last accessed 16/10/2022].

[24] W. W. Eckerson. Performance dashboards: measuring, monitoring, and managing
your business. John Wiley & Sons, 2010.

[25] Ferdio. Data viz project. URL https://datavizproject.com/. [Last ac-
cessed 08/06/2023].

[26] S. Few. Information Dashboard Design: The Effective Visual Communication of
Data. 2006.

[27] Stephen Few. Dashboard confusion. 2004.

[28] Stephen Few. Practical rules for using color in charts. 2008.

[29] Maria-Elena Froese and Melanie Tory. Lessons learned from designing visu-
alization dashboards. 36(2):83–89, 2016.

132

https://www.datapine.com/blog/strategic-operational-analytical-tactical-dashboards
https://www.datapine.com/blog/strategic-operational-analytical-tactical-dashboards
https://www.freecodecamp.org/news/rest-api-best-practices-rest-endpoint-design-examples/
https://www.freecodecamp.org/news/rest-api-best-practices-rest-endpoint-design-examples/
https://www.youtube.com/watch?v=z8relzC_Tqc
https://www.youtube.com/watch?v=z8relzC_Tqc
https://www.dialpad.com/features/call-analytics/
https://www.dialpad.com/features/call-analytics/
https://www.techtarget.com/searchunifiedcommunications/definition/unified-communications
https://www.techtarget.com/searchunifiedcommunications/definition/unified-communications
https://datavizproject.com/

References

[30] Sherya Gate. Using session cookies vs. jwt for
authentication. URL https://hackernoon.com/
using-session-cookies-vs-jwt-for-authentication-sd2v3vci. [Last
accessed 17/06/2023].

[31] B. G. Glaser and A. L. Strauss. The discovery of grounded theory: Strategies
for qualitative research. 2017.

[32] M. Heitzler H.-J. Schulz, T. Nocke and H. Schumann. A design space of
visualization tasks. 19(12):2366–2375, 2013.

[33] S. He and E. Adar. Vizitcards: A card-based toolkit for infovis design edu-
cation. 1:561–570, 2017.

[34] Bakker M.A. Li S. Kraska T. Hidalgo C. Hu, K. Vizml: a machine learning
approach to visualization recommendation. page 128.

[35] J. Hullman and B. Bach. Picturing science: Design patterns in graphical
abstracts. pages 183–200, 2018.

[36] J. Kohlhammer J. Bernard, D. Sessler and R. A. Ruddle. Using dashboard
networks to visualize multiple patient histories: a design study on post-
operative prostate cancer. 25(3):1615–1628, 2018.

[37] Michael Bostock Jeffrey Heer and Vadim Ogievetsky. A tour through the
visualization zoo. 2010.

[38] P. Kaur and M. Owonibi. A review on visualization recommendation strate-
gies. 2017.

[39] Howe B. Perry D. Aragon C. Key, A. Vizdeck: self-organizing dashboards
for visual analytics. pages 681–684.

[40] Yuhao Li. The case analysis of the scandal of enron. 5(10), 2010.

[41] Looker. Using sql runner to create derived tables. URL https://cloud.
google.com/looker/docs/sql-runner-create-derived-tables. [Last ac-
cessed 08/06/2023].

[42] Hanrahan P. Stolte C. Mackinlay, J. Show me: automatic presentation for
visual analysis. 6(13):1137–1144, 2007.

[43] S. M. Magnus and A. Rudra. Operationally Intuitive Logistics Dashboards
for Supply Chain Management in Oil and Gas Based on Human Cognition, vol-
ume 20. Nov. 2019.

[44] Geshan Manandhar. Organizing your express.js project structure
for better productivity, 2022. URL https://blog.logrocket.com/
organizing-express-js-project-structure-better-productivity/.
[Last accessed 17/06/2023].

133

https://hackernoon.com/using-session-cookies-vs-jwt-for-authentication-sd2v3vci
https://hackernoon.com/using-session-cookies-vs-jwt-for-authentication-sd2v3vci
https://cloud.google.com/looker/docs/sql-runner-create-derived-tables
https://cloud.google.com/looker/docs/sql-runner-create-derived-tables
https://blog.logrocket.com/organizing-express-js-project-structure-better-productivity/
https://blog.logrocket.com/organizing-express-js-project-structure-better-productivity/

Chapter 7

[45] Gina Narcisi. Gartner ucaas magic quadrant: The top 12 ven-
dors in 2019 as at&t, verizon and others are dropped from re-
port, 2019. URL https://www.crn.com/slide-shows/networking/
gartner-ucaas-magic-quadrant-the-top-12-vendors-in-2019-as-at-t-verizon-and-others-are-dropped-from-report/
6. [Last accessed 23/11/2022].

[46] J. Nielsen. Usability engineering. 1994.

[47] David P. Norton and Robert Kaplan. The Balanced Scorecard: Translating Strat-
egy into Action. 1997.

[48] University of New Brunswick. Understanding quality attributes.
URL https://www.cs.unb.ca/~wdu/cs6075w10/sa2.htm. [Last accessed
11/06/2023].

[49] M. Plumlee and C. Ware. Integrating multiple 3d views through frame-of-
reference interaction. pages 34–43, 2003.

[50] A. A. Rahman, Y. B. Adamu, and P. Harun. Review on dashboard application
from managerial perspective. pages 1–5, 2017.

[51] Nihar Raval. React vs angular: Which js framework to pick for front-end de-
velopment?, 2019. URL https://radixweb.com/blog/react-vs-angular#
advantages. [Last accessed 17/11/2022].

[52] Eric Reiss. Usable Usabilty Simple Steps for Making Stuff Better. 2012.

[53] Severino Ribecca. The data visualisation catalogue. URL https://
datavizcatalogue.com. [Last accessed 08/06/2023].

[54] J. C. Roberts. State of the art: Coordinated & multiple views in exploratory
visualization. pages 61–71, 2007.

[55] Eugenie Rumiantseva. Analytical dashboard. URL https://dribbble.com/
shots/17580449-Analytical-dashboard. [Last accessed 13/06/2023].

[56] A. Sarikaya, M. Correll, L. Bartram, M. Tory, and D. Fisher. What do we talk
about when we talk about dashboards? 25(1), 2019.

[57] Jeff Sauro. 10 things to know about the system usability scale (sus),
2013. URL https://measuringu.com/10-things-sus/. [Last accessed
22/06/2023].

[58] B. Schneiderman. Dynamic queries for visual information seeking. 11:70–77,
1994.

[59] P. Schubert and J. H. Glitsch. Use cases and collaboration scenarios: How
employees use socially-enabled enterprise collaboration systems (ecs). 4(2),
2016.

[60] K. Sedig and P. Parsons. Design of visualizations for human-information
interaction: A pattern-based framework. 4(1):1–185.

[61] Maureen Stone. Choosing colors for data visualization. 2006.

134

https://www.crn.com/slide-shows/networking/gartner-ucaas-magic-quadrant-the-top-12-vendors-in-2019-as-at-t-verizon-and-others-are-dropped-from-report/6
https://www.crn.com/slide-shows/networking/gartner-ucaas-magic-quadrant-the-top-12-vendors-in-2019-as-at-t-verizon-and-others-are-dropped-from-report/6
https://www.crn.com/slide-shows/networking/gartner-ucaas-magic-quadrant-the-top-12-vendors-in-2019-as-at-t-verizon-and-others-are-dropped-from-report/6
https://www.cs.unb.ca/~wdu/cs6075w10/sa2.htm
https://radixweb.com/blog/react-vs-angular#advantages
https://radixweb.com/blog/react-vs-angular#advantages
https://datavizcatalogue.com
https://datavizcatalogue.com
https://dribbble.com/shots/17580449-Analytical-dashboard
https://dribbble.com/shots/17580449-Analytical-dashboard
https://measuringu.com/10-things-sus/

References

[62] Tableau. Build a basic view to explore your data. URL https:
//help.tableau.com/current/pro/desktop/pt-br/getstarted_
buildmanual_ex1basic.htm. [Last accessed 08/06/2023].

[63] The Financial Times. Financial times visual vocabulary. URL
https://ft-interactive.github.io/visual-vocabulary/. [Last accessed
08/06/2023].

[64] Edward Tufte. Envisioning information. 1990.

[65] Edward R. Tufte. The Visual Display of Quantitive Information. Graphics Press,
1983.

[66] RingCentral UK. A guide to user analytics | ringcentral office demo.
URL https://www.youtube.com/watch?v=1TCBRoiu0Sg. [Last accessed
08/06/2023].

[67] C. Demiralp V. Dibia. Data2vis: automatic generation of data visualizations
using sequence to sequence recurrent neural networks. (39):33–46, 2019.

[68] Keshav Vasudevan. The importance of standardized
api design. URL https://swagger.io/blog/api-design/
the-importance-of-standardized-api-design/. [Last accessed
17/06/2023].

[69] Wattenberg M. Van Ham F. Kriss J. McKeon M. Viegas, F.B. Manyeyes: a site
for visualization at internet scale. 6(13):1121–1128, 2007.

[70] M. Voigt and J. Polowinski. Towards a unifying visualization ontology. 2011.

[71] Pietschmann S. Grammel L. Meißner K. Voigt, M. Context-aware recommen-
dation of visualization components. pages 101–109, 2012.

[72] Colin Ware. Information Visualization: Perception for Design. Morgan Kauf-
mann, 1999.

[73] S. Wexler, J. Shaffer, and A. Cotgreave. The big book of dashboards: Visual-
izing your data using real-world business scenarios. 2017.

[74] Moritz D. Anand A. Mackinlay J. Howe B. Heer J. Wongsuphasawat, K. Voy-
ager: exploratory analysis via faceted browsing of visualization recommen-
dations. 1(22):649–658, 2015.

[75] O. M. Yigitbasioglu and O. Velcu. A review of dashboards in performance
management: Implications for design and research. 13(1):41–59, 2012.

135

https://help.tableau.com/current/pro/desktop/pt-br/getstarted_buildmanual_ex1basic.htm
https://help.tableau.com/current/pro/desktop/pt-br/getstarted_buildmanual_ex1basic.htm
https://help.tableau.com/current/pro/desktop/pt-br/getstarted_buildmanual_ex1basic.htm
https://ft-interactive.github.io/visual-vocabulary/
https://www.youtube.com/watch?v=1TCBRoiu0Sg
https://swagger.io/blog/api-design/the-importance-of-standardized-api-design/
https://swagger.io/blog/api-design/the-importance-of-standardized-api-design/

This page is intentionally left blank.

Appendices

137

Appendix A

Use Case Specification

Use Case Specification for the Dynamic Dashboard:

FR01: Create Dashboard

FR02: Edit Dashboard

FR03: Delete Dashboard

FR04: Create Widget

FR05: Edit Widget

FR06: Delete Widget

FR07: Filtering

FR08: Global Filters

FR09: Share Dashboard

FR10: Specific charts for widgets

FR11: Default mode

FR12: Table Widget

FR13: Interactive filtering

FR14: Drilldowns

FR15: Moving Widget

FR16: Resizing Widget

FR17: Importing Widget

FR18: Exporting Widget

FR19: Importing Dashboard

139

Appendix A

FR20: Exporting Dashboard

FR21: Email Reports

FR22: Tutorial mode

Table A.1: FR01: Creating Dashboard

Use Case 1 Creating Dashboard
Level Sea
Priority Must Have
Actor User

Stakeholder & Interests

Using visual elements like charts, wid-
gets provide an accessible way to see
and understand trends, outliers, and
patterns in data. It provides an ex-
cellent way to present data to non-
technical audiences and is way easier
and quicker than analyzing the raw
data

Trigger Clicking on “Create new Dashboard”
Pre-Conditions Logged into platform
Post-Conditions Dashboard created in user account

Main Scenario
Actor System
1-Selects ‘Create Dashboard’

2-Presents form to insert name
3-Inserts name for dashboard

4-Validates the name
5-Creates and saves dashboard in user
profile

Alternative Flow None

Extension Points

4a. Invalid Name
4a1. Warning message to inform

that name is invalid

Table A.2: FR02: Edit Dashboard

Use Case 2 Edit Dashboard
Level Sea
Priority Must Have
Actor User

140

Use Case Specification

Stakeholder & Interests

The user wants to modify the name
of an existing dashboard to provide
a more descriptive or up-to-date title.
They require a simple method to edit
the dashboard name without affecting
the dashboard’s content or configura-
tion.

Trigger User selects the dashboard to be edited

Pre-Conditions Dashboard created by user exists in the
user’s account

Post-Conditions Dashboard name is successfully up-
dated

Main Scenario
Actor System
1-User selects the dashboard to be
edited

2-Displays the current name of the se-
lected dashboard

3-User modifies the dashboard name
4-Validates the modified name

5-User saves the changes
6-Updates the dashboard name

Alternative Flows None

Extension Points

4a. Invalid name modification
4a1. Displays an error message

indicating the specific issue with the
name modification

Table A.3: FR03: Delete Dashboard

Use Case 3 Delete Dashboard
Level Sea
Priority Must Have
Actor User

Stakeholder & Interests

The user wants to remove an entire
dashboard that is no longer needed
or relevant. They require a straight-
forward method to delete the dash-
board without affecting other dash-
boards or causing unintended conse-
quences. Additionally, they desire
confirmation prompts or safeguards to
prevent accidental deletion.

141

Appendix A

Trigger User selects the dashboard to be
deleted

Pre-Conditions Dashboard exists in the user’s account

Post-Conditions Dashboard is successfully deleted
from the user’s account

Main Scenario
Actor System
1-User selects the dashboard to be
deleted

2-Displays a confirmation prompt to
ensure the user’s intent to delete

3-User confirms the deletion
4-Deletes the selected dashboard from
the user’s account

Alternative Flows None
Extension Points None

Table A.4: FR04: Create Widget

Use Case 4 Create Widget
Level Sea
Priority Must Have
Actor User

Stakeholder & Interests

The user wants to create accurate and
visually appealing charts to effectively
analyze and communicate data. They
require a user-friendly interface and
intuitive controls for creating and cus-
tomizing the charts. Additionally, they
desire flexibility in selecting and con-
figuring axis labels, data series, and
other relevant options for each chart
type.

Trigger User selects the option to create a new
widget

Pre-Conditions Have dashboard created and be on the
dashboard page

Post-Conditions Widget created and available for user
to see and costumize

Main Scenario
Actor System
1-Opens middle toolbar

142

Use Case Specification

2-Makes available the dropzone for the
metrics and widget filter, chart selec-
tor, color range selector and form for
the widget title

3-Selects the line chart, bar chart or
scatter plot
4-Drags desired KPI metrics onto the
axis dropzone

5-Verifies if the metrics can be used on
the dropped axis

8-Adds title for the widget
9-Selects color range
10-Drags desired filters onto filter
dropzone
11-Clicks "Done" button

12-Verifies data and inserts widget
onto the middle of the screen

Alternative Flow None

Extension Points

5a. Metric cannot be used on axis
5a1. Message warning user that

he needs to select other metric
5a. Invalid number of metrics on axis

5a1. Message warning user that
he needs to addremove metrics on the
axis
12a. Invalid information

12a1. Message warning user with
what is wrong

Table A.5: FR05: Edit Widget

Use Case 5 Edit Widget
Level Sea
Priority Must Have
Actor User

143

Appendix A

Stakeholder & Interests

The user wants to modify the exist-
ing widgets on the dashboard to re-
flect updated data or changes in the vi-
sual representation. They require an
intuitive interface to edit the widget’s
properties, such as metrics, title, col-
ors, and filters. Additionally, they de-
sire flexibility in modifying the widget
without affecting other components on
the dashboard.

Trigger User selects the widget to be edited

Pre-Conditions Dashboard with existing widgets is
available

Post-Conditions Widget is updated with the user’s
modifications

Main Scenario
Actor System
1- User selects the widget to be edited

2- Displays the current properties of
the selected widget, including metrics,
title, colors, and filters

3- User modifies the desired properties
of the widget

4- Validates the modifications made by
the user

5- User saves the changes
6- Updates the widget with the user’s
modifications

Alternative Flows

1a. User clicks on top of the widget to
initiate the edit mode

1a1. System activates the edit
mode and proceeds to step 2
1b. User clicks on the widget edit but-
ton to initiate the edit mode

1b1. System activates the edit
mode and proceeds to step 2

1d1. System goes to step 6

Extension Points

4a. Invalid modifications
4a1. Displays an error message

indicating the specific issue with the
modifications

Table A.6: FR06: Delete Widget

144

Use Case Specification

Use Case 6 Delete Widget
Level Sea
Priority Must Have
Actor User

Stakeholder & Interests

The user wants to remove unnecessary
or outdated widgets from the dash-
board. They require a straightforward
method to delete widgets without af-
fecting other components or causing
unintended consequences. Addition-
ally, they desire confirmation prompts
or safeguards to prevent accidental
deletion.

Trigger User selects the widget to be deleted

Pre-Conditions Dashboard with existing widgets is
available

Post-Conditions Widget is successfully removed from
the dashboard

Main Scenario
Actor System
1-User selects the widget to be deleted

2-Displays a confirmation prompt to
ensure the user’s intent to delete

3-User confirms the deletion
4-Removes the widget from the dash-
board

Alternative Flow None
Extension Points None

Table A.7: FR07: Filtering

Use Case 7 Filtering
Level Sea
Priority Must Have
Actor User
Trigger Clicking on widget filter button

Stakeholders Interests

Users want to make quick analysis of
the data they have displayed over a
certain time period or between other
metrics, filtering enables them to do
so without the need to create another
widget

Pre-Conditions Have widget created
Post-Conditions Widget displaying only data filtered

145

Appendix A

Main Scenario
Actor System
1-Clicks ‘Filter’ button

2-Lists metrics available for filtering
and shows dropzone for widget filter

3-Drags desired metric and drops onto
widget filter dropzone

4-Obtains all the values available to fil-
ter

5-Selects desired values
6-Displays the data on the same wid-
get

Alternative Flows

1a. User clicks on top of the widget to
initiate filter mode

1a1. System activates the filter
mode and proceeds to step 2

Extension Points None

Table A.8: FR08: Global Filters

Use Case 8 Global Filters
Level Sea
Priority Must Have
Actor User
Trigger Dropping filter onto global filter zone

Stakeholders Interests

Users want to make quick analysis of
the data they have displayed over a
certain time period or between depart-
ments, global filtering enables them to
do so quickly without the need for mor
widgets or waste of time

Pre-Conditions Have widgets created
Post-Conditions Widgets displaying only data filtered

Main Scenario
Actor System
1-Opens filter tab

2-Displays start and end date selector,
recurrence selector, other selected fil-
ters and dropzone too add more filters

3-Selects desired filters
4-Updates data on all widgets

Alternative Flows None

146

Use Case Specification

Extension Points 4a. No data on widget
4a1. Display empty chart

Table A.9: FR09: Share Dashboard

Use Case 9 Share Dashboard
Level Sea
Priority Should Have
Actor User
Trigger User clicks on share button

Stakeholders Interests

Users want to restrict usage of their
dashboard so only their designated
users can update his created dash-
board, while the other users only need
to read the dashboards he created and
not become overwhelmed with learn-
ing another tool

Pre-Conditions Having dashboard created

Post-Conditions Users can create or read shared dash-
board based on role given

Main Scenario
Actor System
1-Selects options menu
2-Selects “Share with”

3-Show popup window with form to
share new user and previosly shared
users

4-Enters user’s email
5-Selects role

6-Verifies user and adds dashboard to
user shared

Alternative Flows

4a. Wants to edit previously shared
user role

4a1. User selects user to edit role
and selects new role, the system will
update the role

Extension Points

6a. User doesn’t exist
6a1. Warning message indicating

that shared user doesnt exist
6b. User already shared

6b1. Warning message indicating
that the user has already been shared

147

Appendix A

Table A.10: FR10: Specific charts for widgets

Use Case 10 Specific charts for widgets
Level Fish
Priority Could Have
Actor User
Trigger Creating a new Widget

Stakeholders Interests

The user doesn’t want to lose time set-
ting up a chart in a widget that won’t
make sense when displayed in the fi-
nal dashboard

Pre-Conditions Have the metrics selected
Post-Conditions Selection of charts available

Main Scenario
Actor System
1-Selects KPI metrics

2-Checks what data is used in the KPIs
3-Selects charts that the data can be
displayed with
4-Presents the user with the charts
available

Alternative Flow

3.a. System can’t detect what charts
can’t be used for the selected data

3.a.1. All charts are available for
the user to select

Extension Points None

Table A.11: FR11: Default mode

Use Case 11 Default mode
Level Sea
Priority Could Have
Actor User
Trigger Selecting the Default Mode button

Stakeholders Interests
The user has a quick dashboard made
while having no work done so he can
analyse the KPIs fast if he needs to

Pre-Conditions Having a blank dashboard
Post-Conditions Widgets with the data selected

Main Scenario
Actor System
1-Selects default mode

2-Presents KPIs available
3-Selects KPIs for dashboard

148

Use Case Specification

4-Generates widgets for the selected
KPI metrics

Alternative Flows None

Extension Points

1a. Dashboard not empty
4a1. Message warning user that

if he continues all the widgets will be
deleted

Table A.12: FR12: Table Widget

Use Case 12 Table Widget
Level Sea
Priority Could Have
Actor User
Trigger Selecting Table option in widget

Stakeholders Interests

The user wants to get all the info he has
access to, in the form of a table so he
can see all the details he wouldn’t oth-
erwise

Pre-Conditions Have a widget created

Post-Conditions Popup with widget data listed in a ta-
ble

Main Scenario
Actor System
1-Selects Widget that he wants to dis-
play
2-Selects table button

3-Selects data from database
4-Presents data in table format

Alternative Flow None
Extension Points None

Table A.13: FR13: Interactive filtering

Use Case 13 Interactive filtering
Level Fish
Priority Should Have
Actor User
Trigger Clicking on a value in a widget

149

Appendix A

Stakeholders Interests

The user has an easier time apply-
ing filters and absorbing information
when all he is a click away from apply-
ing filters to the whole dashboard

Pre-Conditions Dashboard with widgets

Post-Conditions Global filter settings update based on
the value the user selected

Main Scenario
Actor System
1-Clicks on widget dataset value

2-Adds value to the global filters
3-Updates data on all widgets

Alternative Flows None

Extension Points 4a. No data on widget
4a1. Display empty chart

Table A.14: FR14: Drilldowns

Use Case 14 Drilldowns
Level Sea
Priority Could Have
Actor User
Trigger Double-Clicking on a value in a widget

Stakeholders Interests

User has access to the information eas-
ier, since he doesn’t have to create an-
other widget and can see more infor-
mation with the use of only one

Pre-Conditions Having a widget created in the dash-
board

Post-Conditions Widget shows more info about the
value selected

Main Scenario
Actor System

1- When creating a widget, avail-
able drilldowns will be automatically
added to the widget

2-Right clicks on specific value from
widget

3-Displays, on same widget and same
chart, more information about the
value selected

Alternative Flows None

150

Use Case Specification

Extension Points

1a. Widget doesnt have any drilldown
possible

1a1. Informs user that the widget
doesnt have any possible drilldown

Table A.15: FR15: Moving widgets

Use Case 15 Moving widgets
Level Sea
Priority Should Have
Actor User
Trigger Dragging Widget

Stakeholders Interests

The user can move the widgets to put
the most important ones in the mid-
dle where they will get more atten-
tion when looking at first glance at the
dashboard

Pre-Conditions Having a widget created

Post-Conditions Widget on the position defined by the
user

Main Scenario
Actor System
1-Selects widget
2-Drags widget to desired position

3-Saves new position and puts widget
on the top layer

Alternative Flows None
Extension Points None

Table A.16: FR16: Resizing widgets

Use Case 16 Resizing widgets
Level Sea
Priority Should Have
Actor User
Trigger Selecting and Dragging Widget

151

Appendix A

Stakeholders Interests

User wants to make the most impor-
tant widgets bigger in order to high-
light it and the less important ones
smaller so more widgets can be put on
the screen without the need to scroll up
and down

Pre-Conditions Have widget created

Post-Conditions Widget changes to size defined by the
user

Main Scenario
Actor System
1-Selects corner of widget and resizes
to preferred size

2- Saves new widget size and puts
widget on the top layer

Alternative Flows None
Extension Points None

Table A.17: FR17: Importing Widget

Use Case 17 Importing Widget
Level Sea
Priority Won’t Have
Actor User
Trigger Adding Widget

Stakeholders Interests

User wants to add to his dashboard a
widget that a coworker made that dis-
plays the information he needs with-
out having to rebuild it from the
ground up

Pre-Conditions Have a dashboard created
Post-Conditions Widget displayed in user dashboard

Main Scenario
Actor System
1-Creates a new widget
2-Selects import widget

3-Popup window appears where user
can insert file path

4-Inserts file path
5-Reads file
6-Loads widget configuration and
then loads data from database
7-Inserts widget into dashboard

Alternative Flows None

152

Use Case Specification

Extension Points

5.a Link or file corrupted
5.a.1 Warns user about corrup-

tion and doesn’t add widget
6.a Can’t load data used in the widget
from database

6.a.1 Reconnects to database and
warns user about wait time bigger
than usual

Table A.18: FR18: Exporting Widget

Use Case 18 Exporting Widget
Level Sea
Priority Won’t Have
Actor User
Trigger Selecting share option on widget

Stakeholders Interests

User wants to share a widget created
by him to his coworker in order to
share the information provided by the
widget without having to write down
how he built the widget

Pre-Conditions Have a widget created
Post-Conditions File created with widget configuration

Main Scenario
Actor System
1-Selects widget to export
2-User selects sharing option

3-Detects what chart, filter and data is
used on widget
4-Writes to and downloads file

Alternative Flows None
Extension Points None

Table A.19: FR19: Importing Dashboard

Use Case 19 Importing Dashboard
Level Sea
Priority Won’t Have
Actor User
Trigger Creating a new dashboard

153

Appendix A

Stakeholders Interests

User wants to add all the widgets and
filters made by a coworker since it
has all the info he needs to track and
doesn’t want to rebuild it from scratch

Pre-Conditions Being logged into the platform

Post-Conditions Dashboard imported into user plat-
form

Main Scenario
Actor System
1-Creates a new dashboard
2-Selects option to import dashboard
3-Inserts file path

4-Reads file
5-Loads data used in all widgets
loaded
6-Creates widgets layout
7-Creates widgets filters and drill-
downs
8-Apply current filters to widgets

Alternative Flows None

Extension Points

5.a Link or file corrupted
5.a.1 Warns user about corrup-

tion and doesn’t add widget
6.a Can’t load data used in the widget
from database

6.a.1 Reconnects to database and
warns user about wait time bigger
than usual
8.a Filters or drilldowns cannot be ap-
plied

8.a.1 Creates only the widgets
without applying them and sends
warning to user

Table A.20: FR20: Exporting Dashboard

Use Case 20 Exporting Dashboard
Level Sea
Priority Won’t Have
Actor User

Description and Goal
Users can export their current dash-
board, along with all the widgets they
made, to other users via a link or file

Trigger Selecting download dashboard

154

Use Case Specification

Environment Dashboard

Stakeholders Interests

User wants to share all widgets, fil-
ters and drilldowns created by him
to his coworker in order to share the
information provided by the dash-
board,without having to write down
how he built all the widgets

Pre-Conditions Having a dashboard with at least one
widget

Post-Conditions Creates file to send to other users
Main Scenario

Actor System
1-Selects options in dashboard
2-Clicks export button

3-Detects what charts, filter and data
are used for every widget in the dash-
board
4-Writes to and downloads file

Extension Points None
Alternative Flows None

Table A.21: FR21: Email Reports

Use Case 21 Email Reports
Level Sea
Priority Could Have
Actor User
Trigger Selecting report option

Stakeholders Interests

User wants to receive updates on their
dashboards as a way to be updated
constantly on all the dashboards they
deem important

Pre-Conditions Having a dashboard created with wid-
gets

Post-Conditions Snapshot of dashboard sent to email at
the time asked

Main Scenario
Actor System
1-Selects options and Snapshot Sched-
ule

2-Opens popup to user selected date
and occurrence

3-Selects what day to start and occur-
rence

155

Appendix A

4-At the given time and schedule
sends email with dashboard snapshot

Alternative Flows None

Extension Points 4.a Problems while sending email
4.a.1 Report is not sent

156

Appendix B

Mockups

The rest of the mockups:

Figure B.1: Login Page

157

Appendix B

Figure B.2: Navbar on the left

Figure B.3: Dashboard with tabs on the left

158

Mockups

Figure B.4: Creation of an inverted axis widget

Figure B.5: Creation of a line-column widget

159

Appendix B

Figure B.6: Creation of a no axis widget

160

Appendix C

Frontend Documentation

161

162

163

164

165

166

167

168

169

This page is intentionally left blank.

Appendix D

API Testing

Figure D.1: Tests done to the analytics endpoints

Figure D.2: Tests done to the API health endpoint

171

Appendix D

Figure D.3: Tests done to the authorization endpoint

Figure D.4: Tests done to the color endpoint

Figure D.5: Tests done to the authorization endpoint - First Part

172

API Testing

Figure D.6: Tests done to the authorization endpoint - Second Part

173

Appendix D

Figure D.7: Tests done to the statistic endpoint

Figure D.8: Tests done to the user endpoint

174

API Testing

Figure D.9: Tests done to the widget endpoint

175

This page is intentionally left blank.

Appendix E

Frontend Testing

Test Case # Name Steps Expected Result Result

1 Create Dash-
board

1. Open Web App
2. Login
3. Hover the "+" but-
ton
4. Click on the "add"
button
5. Insert dashboard
name "Dashboard
Test"
6. Click on the submit
button

Creates the new dash-
board "Dashboard Test"
and redirects to the dash-
board page

Pass

2
Create Dash-
board | Empty
name

1. Open Web App
2. Login
3. Hover the "+" but-
ton
4. Click on the "add"
button
5. Insert blank dash-
board name
6. Click on the submit
button

Warns user that name
cannot be empty Pass

3 Edit Dashboard

1. Open Web App
2. Login
3. Click on Dashboard
"Edit" button
4. Insert dashboard
new name "Dashboard
Edit"
6. Click on submit but-
ton

Changes dashboard name
to "Dashboard Edit" but
stays on the main page

Pass

4 Edit Dashboard
| Empty Name

1. Open Web App
2. Login
3. Click on Dashboard
"Edit" button
4. Insert blank dash-
board name
6. Click on submit but-
ton

Warns user that name
cannot be empty Pass

177

Appendix E

Test Case # Name Steps Expected Result Result

5 Delete Dash-
board

1. Open Web App
2. Login
3. Click on Dashboard
"Delete" button
4. Confirm Deletion

Deletes dashboard and
stays on the main page Pass

6 Open Dash-
board | Author

1. Open Web App
2. Login
3. Click on Dashboard
name

Redirect to dashboard
page where the user
will have all the permis-
sions to create/edit/filter
widgets and share the
dashboard

Pass

7 Open Dash-
board | Reader

1. Open Web App
2. Login
3. Click on Dashboard
name

Redirect to dashboard
page where the user will
have all the permissions
to filter widgets

Pass

8 Open Dash-
board | Editor

1. Open Web App
2. Login
3. Click on Dashboard
name

Redirect to dashboard
page where the user
will have all the permis-
sions to create/edit/filter
widgets

Pass

9
Share Dash-
board | Editor
Mode

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Hover settings but-
ton
5. Click "share" button
6. Select "Editor" in the
dropdown
7. Add user email
8. Click "Done" button

User can access and edit
dashboard Pass

10
Share Dash-
board | Viewer
Mode

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Hover settings but-
ton
5. Click "share" button
6. Select "Viewer" in
the dropdown
7. Add user email
8. Click "Done" button

User can access and only
apply filters on the dash-
board

Pass

11 Change shared
user permission

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Hover settings but-
ton
5. Click "share" button
6. Select user drop-
down
7. Change shared op-
tion

User can still access the
dashboard but their priv-
ileges were increased or
decreased

Pass

178

Frontend Testing

Test Case # Name Steps Expected Result Result

12
Change dash-
board start
date

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select "Filter" tab
5. Click "Date" filter
card
6. Select Start Date
7. Change to
"12/12/2022 12:00"

All the widgets on the
dashboard should start
at that date and the
displayed date should
change to "12/12/2022
12:00"

Pass

13
Change dash-
board end
date

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select "Filter" tab
5. Click "Date" filter
card
6. Select "End Date"
7. Change to
"22/05/2023 22:00"

All the widgets on the
dashboard should end
at that date and the
displayed date should
change to "22/05/2023
22:00"

Pass

14

Change dash-
board recur-
rence data to
hour

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select "Filter" tab
5. Click "Recurrence"
filter card
6. Click on "hour"

The widgets should dis-
play hourly data Pass

15

Change dash-
board recur-
rence data to
day

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select "Filter" tab
5. Click "Recurrence"
filter card
6. Click on "day"

The widgets should dis-
play daily data Pass

16

Change dash-
board recur-
rence data to
mins

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select "Filter" tab
5. Click "Recurrence"
filter card
6. Click on "15 mins"

The widgets should dis-
play data from every 15
mins

Pass

17
Add global
filter to dash-
board

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select "Filter" tab
5. Select "Data" tab
6. Drag data field
7. Drop onto "Global
Filter" area
8. Select filter values

The widgets only display
data based on the filters
applied

Pass

Table E.1: Dashboard Test Cases

179

Appendix E

Test Case # Name Steps Expected Result Result

1 Create Widget -
Line

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select "Visualiza-
tion" Tab
5. Select line chart icon
6. Insert title
7. Select "Data" title
8. Drag "Average Call
Duration"
9. Drop on "Y Axis"
dropzone
10. Drag "Time"
11. Drop on "X Axis"
dropzone
12. Select "bluescale"
color
13. Click on "Done"

New widget with a line
chart and blue color cre-
ated on the dashboard

Pass

2 Create Widget -
Vertical Bars

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select "Visualiza-
tion" Tab
5. Select vertical bar
chart icon
6. Insert title
7. Select "Data" title
8. Drag "Average Call
Duration"
9. Drop on "Y Axis"
dropzone
10. Drag "Time"
11. Drop on "X Axis"
dropzone
12. Select "bluescale"
color
13. Click on "Done"

New widget with a ver-
tical bars chart and blue
color created on the dash-
board

Pass

180

Frontend Testing

3 Create Widget -
Horizontal Bars

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select "Visualiza-
tion" Tab
5. Select horizontal
bar chart icon
6. Insert title
7. Select "Data" title
8. Drag "Average Call
Duration"
9. Drop on "Y Axis"
dropzone
10. Drag "Time"
11. Drop on "X Axis"
dropzone
12. Select "bluescale"
color
13. Click on "Done"

New widget with a hori-
zontal bars chart and blue
color created on the dash-
board

Pass

4 Create Widget -
Scatter Chart

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select "Visualiza-
tion" Tab
5. Select scatter chart
icon
6. Insert title
7. Select "Data" title
8. Drag "Average Call
Duration"
9. Drop on "Y Axis"
dropzone
10. Drag "Time"
11. Drop on "X Axis"
dropzone
12. Select "bluescale"
color
13. Click on "Done"

New widget with a scat-
ter chart and blue color
created on the dashboard

Pass

181

Appendix E

5 Create Widget -
Pie Chart

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select "Visualiza-
tion" Tab
5. Select pie chart icon
6. Insert title
7. Select "Data" title
8. Drag "Average Call
Duration"
9. Drop on "Values"
dropzone
10. Drag "Time"
11. Drop on "Details"
dropzone
12. Select "bluescale"
color
13. Click on "Done"

New widget with a pie
chart and blue color range
created on the dashboard

Pass

6 Create Widget -
Stacked Chart

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select "Visualiza-
tion" Tab
5. Select Stacked Chart
icon
6. Insert title
7. Select "Data" title
8. Drag "Average Call
Duration"
9. Drop on "Y Axis"
dropzone
10. Drag "Average
Ring Time"
11. Drop on "Y Axis"
dropzone
12. Drag "Time"
13. Drop on "X Axis"
dropzone
14. Select "bluescale"
color
15. Click on "Done"

New widget with a
stacked chart and blue
color created on the
dashboard

Pass

182

Frontend Testing

7 Create Widget -
Combo Chart

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select "Visualiza-
tion" Tab
5. Select Combo Chart
icon
6. Insert title
7. Select "Data" title
8. Drag "Average Call
Duration"
9. Drop on "Bar Y
Axis" dropzone
10. Drag "Average
Ring Time"
11. Drop on "Line Y
Axis" dropzone
12. Drag "Time"
13. Drop on "X Axis"
dropzone
14. Select "bluescale"
color
15. Click on "Done"

New widget with a
Combo chart and blue
color range created on the
dashboard

Pass

8 Create Widget -
No Title

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select "Visualiza-
tion" Tab
5. Select scatter chart
icon
6. Select "Data" title
7. Drag "Average Call
Duration"
8. Drop on "Bar Y
Axis" dropzone
9. Drag "Average Ring
Time"
10. Drop on "Line Y
Axis" dropzone
11. Drag "Time"
12. Drop on "X Axis"
dropzone
13. Select "bluescale"
color
14. Click on "Done"

Error warning user that
title cannot be empty Pass

9 Move Widget

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select widget
5. Drag widget to dif-
ferent position

Widget maintains new
position even on refresh Pass

183

Appendix E

10 Resize Widget
1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select widget corner
5. Drag widget corner

Widget maintains new
size even on refresh Pass

11 Add filter to
widget

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select widget or
click on "Filter" button
5. Select "Data" tab
6. Drag field "User ID"
7. Drop onto "Filters
on Widget" dropzone
8. Click filter card
9. Select users

Widget should only show
data from the users se-
lected

Pass

12 Remove Filter
from widget

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select widget
5. Click on "User ID"
filter card
6. Click on "Trash"
icon

Filter removed from wid-
get shows all the data Pass

13 Edit Widget -
Title

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select widget or
click on "Edit" button
5. Change title to "Up-
date Widget"
6. Click "Update" but-
ton

Widget title changed to
"Update Widget" Pass

14 Edit Widget -
Color Range

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select widget or
click on "Edit" button
5. Change to "red-
scale" color
6. Click "Update" but-
ton

Widget color range
changed to redscale Pass

184

Frontend Testing

15 Edit Widget -
Axis

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select widget or
click on "Edit" button
5. Clicks on "x" on the
fields on the axis
6. Select "Data" tab
7. Drag "Total Events"
8. Drop on "Y Axis"
dropzone
9. Drag "Call Type"
10. Drop on "X Axis"
dropzone
11. Click "Update"
button

Widget on the same chart
type but different data Pass

16 Delete Widget

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select widget
5. Click "Trash" button
6. Confirm deletion

Widget deleted from
dashboard Pass

17 Search Data

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select "Data" tab
5. Search for "Aver-
age"

Display all the fields
that have average in the
name: "Average Ring
Time", "Average Waiting
Queue", "Average Call
Duration"

Pass

18 Search Filter

1. Open Web App
2. Login
3. Click on Dashboard
name
4. Select widget or
click on "Filter" button
5. Select "Data" tab
6. Drag field "User ID"
7. Drop onto "Filters
on Widget" dropzone
8. Click filter card
9. Select users

Display all the fields that
have average in the name.
"External"

Pass

Table E.2: Widget Test Cases

185

	Introduction
	Context
	Motivation
	Objectives
	Results
	Document Structure

	Work Plan
	First Semester
	Second Semester
	Risk Assessment
	Threshold of Success
	Risks

	Background and State of the Art
	Dashboard
	Effective Dashboards
	Dynamic vs Static

	Roles of Dashboards
	Strategy
	Tactical
	Operation
	Social
	Audience

	Clusters of Dashboards
	Features and Semantics of Dashboards
	Dashboards for Decision-Making
	Static dashboards for Awareness
	Motivation and Learning

	Dashboard Patterns
	Content Patterns
	Composition

	Dashboard Tradeoffs
	Dashboard Display
	Icons
	Text
	Visualization

	Usability
	Ease of Use
	Elegance and Clarity

	Charts
	Types of Charts
	Integrity of Charts
	Automatic Visualization Recommendations

	Key Performance Indicators
	Waiting Queues
	Communications

	Business Intelligence Tools
	PowerBI
	Tableau
	Looker
	Datapine

	Analytics in Unified Communications as a Service Tools
	8x8
	Ring Central
	Dialpad
	ABC

	Technologies
	Front-End
	Back-End

	Architectural Drivers
	Personas
	Functional Requirements
	Use Case Diagram
	Use Case Priority

	Non-Functional Requirements
	Restrictions
	C4 Model
	Context Diagram
	Container Diagram
	Component Diagram

	Mockups
	Altice Guideline
	User Experience
	Mockup Design and Explanation

	Database Conceptual Diagram

	Implementation
	Methodology
	Version Control
	Deployment
	API Development
	API Schema
	Authentication
	Endpoints
	API Framework and Organization

	Front End
	Project Structure
	Components
	Pages

	Tests
	API Testing
	Frontend Testing
	Functionality Testing
	Usability Testing

	Conclusion
	Final Status
	Problems
	Future Work
	Additional Features
	Tests

	Final Thoughts

	Appendix Use Case Specification
	Appendix Mockups
	Appendix Frontend Documentation
	Appendix API Testing
	Appendix Frontend Testing

