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Abstract 

Music possesses the ability to evoke a wide spectrum of human emotions, making it a 

valuable tool for emotional regulation. Therefore, understanding the neural foundations of 

music-induced emotions is crucial for the development of innovative, personalized neuro-

rehabilitative music-based therapy approaches for disorders that lead to an impairment of 

emotional regulation. 

In this study, we employed computational models to identify neural activity patterns 

associated with perceived emotions while participants listened to diverse musical excerpts. 

Fifteen participants underwent functional magnetic resonance imaging (fMRI) scans while 

listening to 96 musical pieces classified by valence and arousal levels (positive or negative), 

based on a pre-established dimensional model for the categorisation of emotions. The 

participants also provided their subjective emotional assessments of the music. 

We explored different feature selection methods and sets of labels as the classification 

targets and used multivariate pattern analysis (MVPA) to decode the four emotional 

quadrants, achieving an average accuracy of 62%±15% in the testing set of the best model. Our 

findings highlighted the involvement of several neocortical regions (including the auditory 

cortex, cingulate cortex, somatosensory, motor, and premotor cortices, as well as some visual 

areas) as important for generating and modulating feeling states. 

 

Keywords: Neuroscience; Music; Emotion; Multivariate Pattern Analysis; Functional 

Magnetic Resonance Imaging;  

 

  



 

 

iv 

 

  



 

 

v 

Resumo 

A música possui a capacidade de evocar um amplo espectro de emoções humanas, 

tornando-se uma ferramenta valiosa para a regulação emocional. Deste modo, compreender 

as bases neurais das emoções induzidas pela música é crucial para o desenvolvimento de 

abordagens inovadoras e personalizadas de terapias neuro-reabilitativas baseadas em música 

para distúrbios que resultam em comprometimento da regulação emocional. 

Neste estudo, utilizamos modelos computacionais para identificar padrões de 

atividade neural associados a emoções percecionadas enquanto os participantes ouviam 

diversas peças musicais. Quinze participantes foram submetidos Imagiologia por 

Ressonância Magnética Funcional (IRMf) enquanto ouviam excertos de 96 músicas 

classificados consoante os seus níveis de valência e ativação/energia (positivos ou negativos) 

com base num modelo dimensional preestabelecido para a categorização de emoções. 

Posteriormente, os participantes forneceram as suas avaliações subjetivas do conteúdo 

emocional das músicas ouvidas. 

Explorando diferentes métodos de seleção de features e alvos de classificação, 

utilizamos a análise multivariada de padrões (AMVP) para classificar os quatro quadrantes 

emocionais, alcançando uma precisão média de 62%±15% no conjunto de testes do melhor 

modelo obtido. Os nossos resultados destacaram o envolvimento de várias regiões 

neocorticais (incluindo os córtices auditivo, cingulado, somatossensorial, motor e pré-motor, 

bem como algumas áreas visuais) como importantes para a geração e modulação dos estados 

emocionais. 

 

Palavras-chave: Neurociência; Música; Emoção; Análise Multivariada de Padrões; 

Imagiologia por Ressonância Magnética Funcional; 
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1  

Introduction 

 

In this Chapter, we present the context and motivation for this study in Section .  and 

the expected goals and contributions in Section . . Lastly, the outline of the document can be 

found in Section . . 

 

. .  Context and motivation 

Research by anthropologists and ethnomusicologists suggests that music has been 

present in multiple cultures as a characteristic of the human condition throughout centuries, 

becoming a fundamental aspect of human nature since ancient times [ ]. 

Music's profound impact extends beyond cultural boundaries, permeating the lives of 

individuals from all walks of life. From the most knowledgeable music experts to the everyday 

person, music can remarkably be perceived and enjoyed by all. However, amidst this shared 

experience, questions arise: How does music elicit specific emotions? Why do the same songs 

have the power to evoke a wide array of sensations in different individuals, or even within the 

same person, depending on mood state? 

The benefits of music are well-documented across various domains, encompassing 

physical health, social bonding, cognitive development, and emotional regulation. Engaging in 

musical activities has been shown to positively affect physical rehabilitation, pain 

management, stress reduction, immune function, and cognitive skills enhancement [ ].  

Additionally, it is a powerful tool for emotional regulation, enabling individuals to cope with 

and alleviate negative feelings such as anxiety, loneliness, and stress while cultivating positive 

moods such as relaxation or arousal [ ]. 

Given its profound influence on human emotions and well-being, it is essential to delve 

into the underlying mechanisms by which music facilitates emotional regulation. This 



Chapter 1. Introduction 

 

2 

includes a comprehensive understanding of the neural correlates of music-evoked emotions, 

which will contribute to developing neuro-rehabilitative music-based therapeutic 

approaches particularly for disorders characterized by impaired emotional regulation [ ]. 

As a multidimensional phenomenon, music exhibits various characteristics, including 

arousal properties, emotional and valence qualities, and structural features such as tempo, 

tonality, pitch range, timbre, and rhythmicity. These characteristics give rise to functional and 

neurochemical effects, mediated by mechanisms such as the brain's reward and arousal 

systems, impacting pleasure, motivation, stress modulation, and arousal levels [ ]. 

Nevertheless, different frameworks highlight the relevance of additional mechanisms such as 

evaluative conditioning, contagion, rhythmic entrainment, visual imagery, episodic memory, 

expectancy, and aesthetic judgment. Collectively, these mechanisms contribute to the 

subjective emotional experience of music [ ], [ ]. 

 

. .  Research Goals 

The present work aims to explore the brain underpinnings of music-evoked emotions 

and how they relate to the music’s characteristics. 

In the last decades, non-invasive neuroimaging techniques, such as functional 

magnetic resonance (fMRI), have become crucial neuroscience tools as they allow the 

investigation of brain activity and its underlying functional and structural organisation in vivo, 

enabling a better understanding of neural processes and their relation to various cognitive, 

affective, and behavioural phenomena.  

To this extent, multivariate pattern analysis (MVPA) represents an important tool to 

identify distributed patterns of activity associated with specific music excerpts, and to analyse 

how different subjects perceive the emotional content of song clips with the same 

characteristics.  

The main objective is to develop computational models, i.e., classifiers, and evaluate 

their decoding ability regarding the type of emotional content of musical excerpts. Ultimately, 

we aim to establish a model of the neural correlates of music-evoked emotion in music. 
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The significant contributions expected of this research project are to answer the 

following questions: 

- Does the analysis of fMRI patterns during the listening of different auditory stimuli 

allow us to predict: 

● The type of auditory stimuli (music vs. other stimuli such as white noise)? 

● What is the valence level (positive or negative) of a specific music excerpt? 

● What is the arousal level (positive or negative) of a specific music excerpt? 

● What are, simultaneously, both the valence and arousal levels of a specific 

music excerpt? 

- Does the subjective perception of a participant regarding the emotional content 

(valence and arousal levels) of a song affect the performance of a computational model 

attempting to decode the characteristics of the listened stimuli? 

- Which brain areas most contribute to our decoding model to identify the specific 

emotional content of a musical stimulus? 

- What is the influence that different approaches to the feature selection (i.e., data and 

hypothesis driven approaches) have in the decoding ability of the models? 

 

. .  Outline 

This document is composed of seven chapters and is structured as follows. Chapter 2 

presents the background on emotions in the brain, fMRI analysis and classification using 

machine learning (ML), which are key to comprehending the research project's motivational 

and methodological aspects. The literature's state-of-the-art and most important scientific 

contributions to this work are summarised in Chapter 3. In Chapter 4, we present the 

experimental protocol and the methods used for data acquisition, processing, classification, 

and results analysis. Finally, in Chapters 5 and 6, the results are presented and discussed; in 

Chapter 7, the conclusions and significance of the research findings are assessed.   
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2  

Background 

 

This Chapter introduces the background concepts necessary to understand 

methodological details used in the present work to classify music-evoked emotions using 

fMRI images. Section 2.1 presents an overview of some models that can be used to classify 

emotions. The fundamentals of fMRI imaging technique are present in Section 2.2, and, 

finally, in Section 2.3, the background concepts of machine learning and supervised 

classification are addressed. 

 

. .  Emotions in the brain 

According to Mauss et al. (2005) [ ], emotions consist of cognitive, subjective, 

physiological, and motor changes that arise when an individual consciously or 

unconsciously determines whether a stimulus has a positive or negative value in a given 

context. These changes establish a pattern formed by the chemical and neuronal responses 

that occur in the brain. They are often reflected in a specific behaviour reaction that can be 

perceived by surrounding people (through body and facial responses) [ ]. 

Pursuing a greater understanding of human emotions has led to different emotional 

theories or models, each offering unique perspectives on the comprehension of affective 

experiences. Some of the most commonly used models for conceptualizing emotions are the 

Russell’s circumplex model of affect [ ], the Geneva Emotional Music Scales (GEMS)) [ ], 

the Thayer’s two-dimension model [ ] and the Hevner’s affective ring.   

A brief description of each model is provided in the next section. We will focus 

particularly on the Russell’s model as it represents a key component of the experimental 

protocol in this study. 
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. . . Emotion models 

 

Russell (1980) [ ]  proposed the circumplex model of affect. According to this model, 

emotions can be described using an unpleasantness/pleasantness dimension (valence) and 

a high/low arousal dimension (activation).  

Russell asked participants to sort 28 emotion words into categories based on 

perceived similarity and defined a two-dimensional plane based on positive correlations. 

The multidimensional scaling analysis revealed the two bipolar, orthogonal dimensions, 

valence and activation/arousal.  

A linear combination of these two dimensions, or different intensities of both valence 

and arousal, can be used to conceptualise each emotion. For instance, joy may be described 

as the combination of strong activation in the brain systems linked to positive valence or 

pleasure and moderate activity in the neural systems related to arousal. According to this 

model, all affective states are observable in these two dimensions, but the levels in each 

dimension vary. 

Similarly to Russell’s model of emotions, Thayer [ ]also defined emotions in a two-

dimension model. The author considers energy and stress as the basic dimensions of 

emotions. In the energy-stress design, contentment is positioned in low energy/low stress, 

exuberance in high energy/low stress, anxious/frantic in high energy, high stress, and 

depression in low energy/high stress correspondingly. The model proposes that mood is a 

result of the interaction between two neurophysiological systems: the activation system and 

the inhibition system [13]. 

Hevner’s affective ring [ ] resulted from a series of experiments unveiling eight 

distinct clusters of affective adjectives arranged in a circular manner. Adjectives within each 

cluster shared similarities, and the meaning of adjacent clusters within the circle varied in a 

cumulative way, reaching a contrast in the opposite position. 

The Geneva Emotional Music Scales (GEMS) [ ], were developed to address the 

complexity not satisfied in simpler models like Russell’s circumplex. The authors defined 

aesthetic emotions to better describe the complexity of the emotional states induced by an 
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individual’s experience while listening to music. Through four interconnected studies [ ], 

participants listed emotion terms during a music listening task. The authors used factor 

analysis to define a nine-dimensional structure of musically induced emotions. Researchers 

confirmed its generalizability by replicating this structure with different samples and music 

genres. The resulting taxonomy of musically induced emotions includes the terms: wonder, 

nostalgia, transcendence, tenderness, peacefulness, power, joy, sadness, and tension. 

Other models that aimed to describe emotional states and their rationale can be 

found in [ ]. 

 

. . Imaging Techniques 

While the categorisation of emotions plays a pivotal role in comprehending music-

evoked emotions, it is equally crucial to delve deeper into the neural processes underlying 

these emotional experiences. In this pursuit, various neuroimaging techniques have been 

employed to explore the dynamic activation patterns of brain regions associated with 

emotions during different tasks and stimuli. Techniques such as Functional Magnetic 

Resonance Imaging (fMRI), Electroencephalography (EEG), Magnetoencephalography 

(MEG), Positron Emission Tomography (PET), and Functional Near-Infrared Spectroscopy 

(fNIRS) have each played essential roles in shedding light on emotional neural responses. 

In the current work, fMRI was the technique chosen to analyse the interplay between 

music, emotions, and the brain. Therefore, the forthcoming sections will explore the details 

of fMRI technique and analysis methodology. 
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. . . Functional Magnetic Resonance Imaging 

Since its discovery in 1990, fMRI has become one of the most powerful techniques for 

evaluating brain function in clinical and research contexts. FMRI, unlike other imaging 

methods such as EEG or fNIRS,  provides a high compromise between temporal and spatial 

resolution, with whole-brain coverage. 

This technique is based on magnetic resonance imaging (MRI), which creates 

structural images based on the principle that different tissues' structures present specific 

magnetic properties. 

The critical component of the MRI framework is a strong magnetic field (B0) created 

by a superconductive magnet. Certain nuclei widely present in biological samples, like 

hydrogen (protons), have a magnetic moment due to their spin. When the protons are placed 

in the B0 magnetic field, the spin of these elements starts rotating around the B0. If we 

consider a large sample of protons, let us say a biological tissue (water molecules), the net 

magnetic moment of a small percentage of hydrogen nuclei (proportional to the water 

content of the tissue) aligns with the main magnetic field vector B0. 

When a radiofrequency (RF) pulse at a specific frequency (dependent on the element 

and B0 strength) is added, the nuclei resonate and change their orientation. After the RF is 

turned off, the nuclei return to their original alignment (relaxation or realignment of the net 

magnetization vector) in a process that involves two main time components: T1 (spin-lattice 

relaxation time) and T2 (transverse relaxation time) and returns to its previous, resting state 

causing a signal in the form of a radio wave to be emitted and detectable in a surrounding 

electrical circuit (by a suitable antenna or coil). 

Each tissue type possesses unique characteristics, resulting in distinct signal 

intensities that depend on the local magnetic properties and interactions.  

 The images created by MRI can incorporate different types of contrast, such as T1 

(enhances the signal of the fatty tissue and suppresses the signal of the water), T2 weighting 
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(enhances the signal of the water), as well as T2* (time constant of transversal decay when 

local field inhomogeneities are present) [ ]. 

FMRI extends the information from the static structural images provided by MRI, 

allowing the characterization of functional changes in the brain. The fundamental basis is to 

detect neural activity-related changes in blood flow and oxygenation. This detection is done 

based on the differences in the magnetic properties between arterial and venous blood, 

which originate  the  blood-oxygen-level- dependent signal (BOLD) [ ], [ ] . 

When a brain region increases its activity (engaged in a task or behaviour), the 

additional neural firing results in up-regulated cerebral metabolic rate of oxygen (CMRO2) 

due to a local increase in energy requirements. Consequently, the oxygen transport 

molecule, haemoglobin, becomes deoxygenated, and its magnetic properties change [ ].  

These changes in the haemoglobin properties allow information retrieval by 

changing the T2* parameter. The extent of these inhomogeneities depends on the 

physiological state (and, as such, on the composition of the local blood supply). Since the 

neuronal activity relies on the physiological state, T2* can be considered an indirect indicator 

of brain activity and is, therefore, the main parameter used in fMRI to create the BOLD 

contrast  [ ].  

The brain’s reaction to a stimulus/behaviour over time, i.e., the temporal response 

function of the BOLD signal, can be described by an approximation called the hemodynamic 

response function (HRF). The HRF has been widely studied before, and heterogeneities 

across the cortex of an individual, between individuals, and across different sensory, motor, 

and cognitive tasks have been reported. 

The BOLD HRF has three phases: the signal intensity increases about two seconds 

after the stimulus, rises to a peak 6 to 9 seconds later, and then decreases to baseline. It is 

also common to visualise a post-stimulus undershoot (Figure 1).  
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Figure 1.Hemodynamic response following a short stimulus (adapted from [21]) 

 

2.2.1.1.  fMRI images preprocessing  

In addition to the neuronal signal previously described, the fMRI signal is also 

composed of non-neuronal components that include head motion, physiological 

contributions, tissues that are not of interest, and MRI-induced artefacts. These non-

neuronal components limit our ability to interpret the underlying mechanism of brain 

function and should be addressed. The data quality is also highly dependent on the image 

acquisition parameters and their influence on the range of intensity values, matrix sizes, and 

orientations. Therefore, preprocessing steps for fMRI images are required to address these 

issues. 

 The most common preprocessing steps are described in Figure 2 and briefly 

discussed in this section [ ]. 
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Figure 2. The fMRI data processing pipeline illustrates the steps involved in a standard fMRI 
experiment (adapted from [23]) 

 

Slice-timing correction 

One of the principal assumptions while analysing fMRI images is that the whole brain 

image was acquired in a single shot. However, the complete image is based on a sequentially 

slice-by-slice reconstruction and, therefore, similar time courses for different slices will be 

shifted from one another in time. 

 If this is not corrected, subsequent statistical analyses will present suboptimal 

results and, therefore, using either interpolation or the Fourier shift theorem, each volume 

needs to undergo a slice-timing correction to shift each voxel's time course. Interpolation or 

the Fourier shift theorem can be used to account for variations in acquisition times [ ]. 

 

Motion Correction 

 When performing an fMRI experiment, minor displacements occur frequently, even 

if all the precautions and recommendations to minimize head movements are followed. If 

this motion is not mitigated (or if the subject is not removed from the study, which can 

happen if the disruptions are too severe), it can constitute a considerable source of errors 

and ultimately render the data useless. 

 Usually, the first or the mean functional image is selected as a target image, and a 

rigid body transformation considering six parameters (three translation directions and 



Chapter 2. Background  

 

12 

three rotation types) is used to find the best possible alignment between the target and the 

other volumes. This matching procedure is carried out by minimising a cost function (such 

as sums of squared differences) that evaluates how similar the two images are. Lastly, the 

corresponding transformation, minimising the estimated displacement, is applied to each 

brain volume [ ].  

 

Co-registration 

 The acquisition of fMRI images is often carried out together with the acquisition of 

an initial anatomical image (T1 or T2 weighted) that allows a map between what is seen in the 

lower-resolution functional images and the actual anatomical structures they correspond 

to, as well as to guide the normalisation of the functional images. This mapping procedure is 

done by computational algorithms that use either a rigid body (6 parameters) or an affine (12 

parameters) transformation together with minimising a cost function [ ], [ ]. 

  

Normalisation 

Normalisation aim is to register each subject’s images to a standard stereotaxic 

space defined by a template brain (the Talairach and Montreal Neurological Institute and 

Hospital (MNI) spaces are the most widely used) to mitigate the anatomical differences 

between subjects, e.g., brains of different sizes or variations in sulci or gyri. The use of a 

common standard, combining data across individuals in multi-subject studies allows the 

comparison of spatial patterns [ ], [ ]. 

 

Spatial Smoothing 

 Spatial smoothing is standard in the fMRI preprocessing pipeline, replacing the 

signal at each voxel with a weighted average of that voxel’s neighbour’s signals. Even though 

the smoothing of the images may decrease their resolution and blur the image, this 

procedure provides a cancellation of the noise present in the image and a consequent 

enhancement of the overall signal, and it may overcome residual anatomical differences that 

remain and improve inter-subject registration. 
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 Smoothing typically involves the convolution of the images with a Gaussian filter, 

often described by its specific Full Width at Half Maximum (FWHM) [ ], [ ].  

 

Temporal Filtering 

Due to scanner instability and physiological noise, the signal in fMRI often drifts 

slowly over time and, as a result, the low-frequency part of the signal has the most power. 

These drifts significantly diminish the analytical ability of statistical data when they are not 

taken into consideration and may additionally disprove event-related averaging, which 

relies on time courses that are assumed to be stationary and have a constant signal intensity. 

These variations are eliminated by applying a high-pass filter to each voxel’s time 

course to eliminate variations below a specific frequency cutoff, consequently erasing the 

impacts of drift [ ], [ ].  

 

2.2.1.2. fMRI Analysis 

After preprocessing, functional data allows us to probe mechanisms, explore 

temporal and spatial patterns, and ultimately confirm apriori hypotheses/theories regarding 

brain function. There are two main approaches to functional data analysis – univariate and 

multivariate methods. 

 

2.2.1.2.1. Univariate Analysis 

 

The General Linear Model 

When testing hypotheses about spatially constrained, specific effects in 

neuroimaging data, statistical parametric mapping (i.e., Spatially extended statistical 

processes) is the most common approach. 

In particular, the general linear model (GLM) is an extension of a simple linear 

regression, and it has been widely used for analysing task-based fMRI images. The method 

considers an univariate dependent variable, the time course of each voxel, in which a 
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separate statistical analysis is performed. Therefore, the GLM representation of an fMRI 

experiment follows a simple linear equation given by: 

 

Equation 1. General Linear Model equation 
 

𝑌 = 𝑋𝛽 +  𝜀, 

 

where Y corresponds to the fMRI signal from each voxel ( D vector with n time points), X 

specifies the linear model to be evaluated, with m columns of length n, reflecting each 

specific factor/regressor hypothesized to influence the dependent variable of the system and 

the β parameter indicating the amplitude (relative contribution) of each model factor. The 

final term,𝜀, corresponds to an error estimate.  

The regressors matrix X may include both regressors of interest, also known as task 

predictors, or nuisance regressors. The task predictors consist of predictions of what the 

hemodynamic response function (HRF) should look like if a voxel of interest is active as a 

consequence of a task or stimulus (convolution of the estimated HRF with the design 

task/stimulus function). Nuisance regressors, account for experimental factors such as head 

motion or signal drifts that may induce confounds in the analysis. Usually, these confounds 

are either empirically determined (e.g., retrieved from the preprocessing head motion step) 

or estimated by modelling a function. 
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Figure . Depiction of the General Linear Model (GLM) for a voxel with time-series Y predicted by a 

design matrix X (including seven nuisance regressors – e.g., six motion parameters and one linear 

drift). The calculated weighting factors (β  − βp) corresponding to each regressor are placed in 

amplitude vector β while column vector ε contains calculated error terms (εi) for the model 

corresponding to each time point i. (retrieved from [ ]. ) 

 

Beta-series modulation 

The parameters of the GLM are estimated using a cost-function (least-squares error) 

that minimises the squared error between the time series recorded in each voxel and the 

predicted time series. [ ]  

The beta coefficients obtained as an output of the model reflect how much of each 

voxel’s activity can be attributed to the individual stages of a task (i.e., the cue, delay, and 

probe phases). In fMRI analysis, these coefficients may be arranged in a matrix format and 

turned into statistical parametric maps of brain activity that are known as beta series (or beta 

maps).  

There are different approaches to create these beta maps that take into 

consideration the known trial onsets, assumptions about the shape of the BOLD impulse 

response, and assumptions about noise in the fMRI data [ ]:  
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i) Least-Squares All (LSA) 

Each trial of each condition is modelled as a separate regressor in the GLM. This 

method accounts for variability across different trials of the same type, thus minimising the 

squared error across all regressors (hence the name least-squares all) [ ]. The 

corresponding design matrix will contain a single regressor for each trial in the run, where 

each regressor is an impulse function convolved with the hemodynamic response function. 

 This approach is usually used when there are more brain volumes than trials (i.e., the 

stimulus onset asynchrony is longer than the TR) because, since every event has its own 

regressor, in fast event-related designs (e.g., designs where the events occur between -  

seconds apart on average) there would be an overlap of regressors [ ]. 

 

ii) Least Squares Separate (LSS) 

Runs a distinct GLM for every trial, modelling each trial as the relevant regressor 

while combining all other trials into a single nuisance regressor. The design matrices have 

two regressors: one for the trial of interest and another that simultaneously models all other 

trials. 

When analysing responses to individual trials, the decision between using LSA or LSS 

should rely on the ratio of trial variability to scan noise: Abdulrahman and Henson ( ) 

demonstrated that, even in fast designs, when scan noise is higher than trial variability, the 

LSS model will do better [ ], [ ]. 

 

iii) Least Squares Unitary (LSU) 

This is the most typical way of modelling the GLM and does not distinguish between 

different trials of the same type therefore all trials are collapsed in one single regressor. This 

method fails in runs with higher inter-trial variability as this variability is relegated to the 

GLM error but can be used to estimate the mean response for each trial-type [ ]. 
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Figure 4. Design matrices for (A) LSA (Least Squares-All), (B) LSS (Least Squares-Separate) and (C) LSU 
(Least Squares-Unitary). T(number) = Trial number (Retrieved from [24]). 

 

. . . . . Multivariate Pattern Analysis (MVPA) 

GLM’s is a powerful, intuitive, and highly flexible tool for analysing brain images and, 

as an univariate method, it assumes that each voxel is independent. However, brain 

mechanisms often present multivariate, synchronous activity with nonlinear connections 

between multiple brain regions. In this sense, multivariate methods are particularly 

interesting to accommodate fMRI data analysis and may offer advantages compared to 

univariate approaches [ ]. 

Previous research has established that specific mental states depend on spatially 

distributed patterns. Univariate methods limit our ability to understand these 

spatiotemporal patterns. In this sense, two voxels may encode information through their 

joint activity even though they do not appear to be connected to an experimental variable 

when examined independently. These dependencies are ignored by univariate analysis. 

Moreover, the constant increase in the spatial resolution of fMRI provides better access to 

representational information contained in fine-grained activity patterns in unsmoothed 

fMRI data [ ]. 
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Feature Selection in MVPA 

 The multivariate analysis aim is to assess multiple variables (also known in the ML 

literature as features) measured under different circumstances (or classes) and identify how 

certain combinations of features are related to specific classes. When looking at fMRI data, 

MVPA usually considers the different experimental conditions as the classes. In the most 

straightforward scenario, features are single-trial BOLD signal levels in various voxels or 

estimations of a GLM's parameters (i.e., beta-maps) [ ]. 

MVPA involves searching for highly reproducible spatial patterns of activity that 

differentiate across experimental conditions. To this end, the definition of spatiotemporal 

features that the pattern analysis algorithm should use is critical.  

 

In summary, MVPA is a powerful approach to explore the neural underpinnings of 

emotions in the brain. By transcending the limitations of univariate methods, MVPA enables 

the capture of distributed brain activity patterns associated with different emotional states. 

Since the foundation of this technique relies on classification tasks, in the forthcoming 

sections we will delve into the fundamental concepts of machine learning and classification, 

and feature selection. 

 

. . Classification 

. . . Machine Learning 

The term machine learning describes the set of techniques and methods that allow 

machines to improve their performance on a task through experience, both by learning from 

examples and by identifying patterns in data. ML aims to build models that can automatically 

detect patterns in data, make predictions or decisions based on those patterns, and 

continuously improve their performance over time. 
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Within neuroscience and fMRI analysis context, these models have been used to 

train classifiers on decoding stimuli, mental states, behaviours, and other variables of 

interest. The characterisation and interpretation of these models allow for uncovering 

patterns and relationships that could not be immediately apparent through other methods 

[ ]. 

Depending on how the learning process was conduced, ML models can have a 

supervised or unsupervised learning. Unsupervised learning aims to find patterns within 

the data without being explicitly informed on the class of each sample, often through 

techniques such as compression, dimensionality reduction, and clustering. On the opposite, 

in supervised learning, the input (or training) data have labels assigned a priori. The model 

aims to understand the relationship between the labels and the data so that when an 

unknown data sample (feature vector) is given, it can predict its label [ ], [ , Ch. ]. 

Since the work presented here focuses on a supervised learning classifier, we further 

detail this model type. 

In brief, supervised classification has two main stages, training and testing. To 

prevent the inflation of classification results, the input data is usually divided into two sets, 

one for each stage. Data split should consider the amount of available data, leakage (for 

example, using two samples of a temporal feature close to each other in different sets may 

ease the classification problem if autocorrelation is high), etc. The split of the data is 

addressed in the next section. 

The training phase corresponds to the learning stage, in which we aim to create an 

informed decision function based on the training set. Then, the trained model takes the 

values that various features (independent variables) have in a specific context or example 

and based on the previously defined decision function, predicts the class to which that 

example belongs. Overfitting can happen when the created model is too complex and highly 

adjusted to the training set. This means that the model learns very specific relationships 

between the training input set of data, and the training labels sometimes related to noise or 

other irrelevant features, thus performing really well in the training stage, but leading to a 

deficient capacity of generalisation for new data (i.e., in the testing set). Conversely, if the 
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model is too simple or does not have enough features, it can fail to capture intrinsic patterns 

between the data, also leading to poor performance in the testing data. This is called 

underfitting [ ]. Therefore, to prevent these phenomena both the choice of the features and 

the model implemented are crucial factors that one must consider when performing a 

classification task. Finally, the metric used to determine how well it is performing must also 

be considered attentively. 

 

. . . Training, testing and validation split 

When developing a classification model, the main goal is to perform well in unknown 

data. To achieve this, the datasets may be divided into two groups: one for training and 

validation, and the other for testing. The first group contains part of the data, and it is given 

to the model along with the correct label of each input, being used to train the classifier to 

learn the patterns underlying each type of label. The validation set is used to keep track of 

how well the model is doing as it learns, providing an estimate of the model’s performance. 

Finally, to ensure that the model learns these patterns well and its performance is 

generalisable to new data, the classifier uses the remaining data (i.e., testing set) is used by 

the classifier to make predictions about what class each input corresponds to. These 

predictions are then compared to the known labels, and a performance measure gives 

information about how well the model performed. However, instead of separating the 

training and validation data into only two groups, a common approach is to do cross-

validation by splitting the data into multiple folds and then using each fold as a validation set 

while the rest are used for training. This is repeated until all folds were considered as a 

validation set (Figure 5). 
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Figure 5. Cross-validation scheme (adapted from [32]) 
 

 

Frequently, the data is first separated in two sets: training and testing sets, and the 

cross-validation is then performed only in the training set as a way of optimizing the model’s 

hyperparameters. The optimal parameters are then used to retrain the whole training set 

and the remaining data that was not used to train the model is again used alone to test the 

final classifier’s performance. A common classification pipeline is presented in Figure 6. 

 

 

Figure 6. Common classification pipeline (Retrieved from [32]) 
 

This method makes a better use of the available data when compared to a two-group 

separation alone. It is very efficient in preventing and reducing overfitting, reducing bias as 

well as in providing a more reliable estimate of the performance of the classifier as it is 

evaluated on multiple times during training[ ], [ ] 
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. . . Feature Selection 

In ML, when working with high dimensional data, as the number of features or 

dimensions relative to the number of samples available for analysis increases, the amount of 

data required to explore and model the space effectively grows exponentially. This is 

commonly referred to as the curse of dimensionality in ML and can cause problems such as 

increased computational complexity, sparse data distribution, overfitting, and decreased 

generalisation performance. It is important to note that these methods should be based on 

the training set.  

Therefore, feature selection (i.e., the reduction of dimensionality of the data, 

optimising the number of features given as input to the classifier, keeping only a subset of 

particular interest for the classification problem, is one of the fundamental steps to alleviate 

these challenges, extract meaningful patterns and insights from the data and obtain good 

classification results. 

Generally, feature selection has three main approaches: filter, wrapper, and 

embedded-based methods. Filter (or scoring) methods perform statistical tests to assess the 

relevance of each feature and rank them based on some criteria, such as correlation with the 

target variable or variance, selecting the top-ranked features to be used in the model.  

Wrapper methods start with a subset of features and train the model using them. Based on 

their impact on the classifier more features are either added or removed. Lastly, embedded 

methods combine characteristics of the previous two [ ], [ ]. 

 

2.3.3.1. Feature selection in fMRI images 

The features in fMRI-based classification studies are derived from the BOLD values 

of each voxel, and therefore the number of available features is always extremely superior to 

the number of samples. This imbalance increases even more the need for an adequate 

feature selection. However, in this context, the features are often selected using methods 
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based on practical experience and observation rather than formal theory. Feature selection 

is usually done following one of the three approaches: 

 

i) Use of voxel data from the whole brain 

 Using all available voxels in the feature set maximises the information in the dataset. 

A potential limitation of this feature set is a dimensionality problem as the number of voxels 

is highly superior to the number of samples (i.e., time points). The discrepancy between the 

number of dimensions and samples may lead to an inflated correlation between the activity 

in many voxels and the labels.  

This limitation can be mitigated using different feature engineering techniques. One 

approach to overcome this problem is preprocessing the data using a principal component 

analysis (PCA) and setting a feature set with fewer voxels/features. In PCA, the data is linearly 

transformed into a new coordinate system that uses fewer dimensions than the initial data 

to describe its variation, thus enhancing the interpretability of data while preserving the 

maximum amount of information [ ]. 

 

ii) Use of voxel data from a region of interest defined anatomically or localizer-

based 

Apriori information regarding brain regions of interest represents a possible 

alternative to whole-brain analysis. The rationale is to use functional or anatomical masks to 

reduce the spatial search area, reducing the feature set dimension. This directs the analysis 

to specific clusters of interest known to be associated with the specific task/behaviour and 

reduces the computational requirements as the algorithm uses smaller feature sets [ ].  

When the ROI is defined based on anatomical criteria, a mask is drawn on structural 

images collected during the MRI session and specific anatomical landmarks, relying only on 

the expectations about the participation of certain brain areas in a task, hence not needing 

any functional activity map and providing an unbiased estimate of activity at a given brain 

area. 
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 On the contrary, functional ROIs include voxels activated by a particular stimulus 

(the spatial masks are based on the statistical activation map derived from functional data).  

 

Additionally, it is possible to constrain even more the selected voxels so they provide 

the most valuable amount of information. Therefore, within either a whole brain or a ROI 

analysis, voxels may be chosen in different manners: based on their activity in at least one 

condition compared to a control-task baseline, rating each voxel according to the difference 

in mean activity level between condition and baseline as determined by a t-test (activity-

based methods), by scoring them accordingly to how accurately a Gaussian Bayesian 

classifier can predict the condition of each example in the training set (accuracy method), 

considering either single voxel’s data or data from a voxel and its adjacent neighbours in 

three dimensions to train the classifier (searchlight). Another method is to use an ANOVA 

statistical test to identify voxels with significant differences in mean values across 

conditions. Finally, the stability method selects voxels that consistently show the same 

activation pattern across the different conditions in the training set, every time these 

conditions are presented [ ]. 

 

iii) Searchlight method 

 The searchlight method considers a small group of voxels centred on a brain voxel, 

typically a sphere of a given radius, where the centre voxel is moved through the brain so that 

one pattern analysis is performed for each possible location. Contrary to whole-brain and 

region-of-interest analyses, which result in a single value, the searchlight analysis gives one 

value for each centre voxel location. A classification result can be attributed to each centre 

voxel to form a statistical map of local multivariate effects. For this reason, searchlight 

analysis is also referred to as mass-multivariate analysis [ ]. 

 

Creation of feature vectors 

We have previously described how features can be created based on fMRI data, either 

the BOLD signal values or GLM parameter estimates. These data are then reorganized into 
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feature vector through the concatenation of multiple voxels into a voxel activation vector  (x= 

x + x +…+xp, with p voxels), each feature vector associated with specific experimental 

condition (i.e., target or label). It is possible to interpret the elements of these vectors x as 

coordinates in a high-dimensional voxel activation space. Clusters of data points arise in this 

space due to the similarity of multivariate responses within a condition and the contrast 

between conditions, which the pattern analysis algorithm can distinguish. In Figure 7 it is 

shown an example of the definition of voxel activation space with only two dimensions. 

 

 

Figure 7. Definition of voxel activation space with two dimensions. (Retrieved from [35]) 
 

 

. . . Support vector machines (SVM) 

Support vector machines (SVM) is a popular supervised classification method that 

maps the input data into a high-dimensional feature space and then finds the hyperplane 

that separates the data points into different classes. The name of this method is given by the 

data points that lie closest to the hyperplane (or decision surface), called support vectors, 

which are the most difficult to classify and have a direct bearing on the optimum location of 

the decision surface. 

The optimisation problem is the maximisation of the distance between the closest 

data points of different classes and minimisation of the classification errors. 

When there are only two classes and the data is linearly separable, the hyperplane 

can be defined by: 
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Equation 2. Hyperplane Equation in a linearly separable problem 
 

𝑤 𝑋 + 𝑏 = 0 , 

 

where 𝑤 is the weight vector, normal to the hyperplane thus determining its 

orientation, 𝑏 is a bias term (determines the position of the hyperplane relative to the origin 

by shifting it along  𝑤 by a distance of 𝑏 units) and 𝑋 = [𝑥 , 𝑥 , 𝑥 … 𝑥 ] is the training dataset 

with n points that may belong to each class 𝑦  (𝑦 = {−1,1} ). [ ] The classification of the data 

points is made according to: 

 

𝑦 = 1 𝑖𝑓 𝑤 𝑋 − 𝑏 ≥ 1  

 

𝑦 = −1 𝑖𝑓 𝑤 𝑋 − 𝑏 ≤ −1 

 

 

Figure 8. Maximum-margin hyperplane and margins for a linearly-separable SVM trained with 
samples from two classes.(Retrieved from [37] ) 

 

In more complex contexts, usually there are more than two labels to attribute to the 

data. In these situations, the two main multi-class classification methods are:  

 One-vs-all: N binary classifier models are generated for each of the N class 

labels of the dataset. Each classifier is trained considering all the examples of 
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the 𝑖th class with a positive label and all the other with a negative label. In the 

prediction phase, the data is considered as input for all generated classifiers 

and the decision function of each one is evaluated. The classifier that 

provides the highest output value determines the final predicted class [ ], 

[ ]. 

 One-vs-One:  N(N-1)/2 binary classifiers are generated for each pair of N 

classes. The input data is then classified by all models that predict one label. 

The labels predicted by each classifier are counted and the final output is 

given by the class with the highest count [ ], [ ]. 

 

Additionally, in most real-life situations, the input data is not linearly separable, 

leading to a classification problem that needs to address nonlinearity. One of the approaches 

is to allow for some points to be misclassified by introducing a "slack variable" that allows 

some training examples to be on the wrong side of the hyperplane and tries to find a 

hyperplane that separates the data with the smallest possible number of errors. This is called 

the soft margin approach and is helpful when handling noisy or overlapping data. 

This “slack variable” is often referred to as the C parameter and determines the 

penalty for misclassifications. Therefore, a smaller value of C allows for a larger number of 

misclassifications and a wider margin, producing a simpler model but with higher 

generalisation ability. In comparison, a larger value of C penalises misclassifications more 

heavily, leading to a narrower margin and a more complex model. 

The choice of the C parameter depends on the specific dataset and problem at hand 

and should be done when setting the model’s hyperparameters. It is typically determined 

using techniques like cross-validation or grid search, where different values of C are 

evaluated, and the one that results in the best performance on a validation set is selected 

[ ]. 

SVM also implements the kernel trick: a kernel function transforms the input 

features into a higher-dimensional space, the feature space, where the data becomes 

linearly separable (Figure ). The data are still nonlinear in the input space while a linear SVC 
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can be created in the feature space to separate them.  A map 𝜙: ℛ ⟼ ℋ is chosen, where the 

dimensionality of ℋ  is greater than 𝑛.  

 

 

 

Figure . Kernel transformation of non-linearly separable data.( Adapted from [ ]) 

 

This is done using kernel functions with the form 𝜅 𝑥 , 𝑥 =  𝜙(𝑥 ) ⋅ 𝜙(𝑥 ) to 

transform the data. 

 The most used kernel functions are summarized in Table  [ ]. 

 

Table 1. Different Kernel Functions Often Used for Nonlinear Data Classifications Using a SVC 

Kernel Function Type of Classifier 

𝜿 𝒙𝒊, 𝒙𝒋 = (𝒙𝒊
𝑻𝒙𝒋) 𝝆 Linear 

𝜿 𝒙𝒊, 𝒙𝒋 = (𝒙𝒊
𝑻𝒙𝒋 + 𝟏) 𝝆 Complete polynomial of degree 𝜌 

𝜿 𝒙𝒊, 𝒙𝒋 =  𝐭𝐚𝐧𝐡(𝜸 𝒙𝒊
𝑻𝒙𝒋 +  𝝁) Multilayer Perceptron 

𝜿 𝒙𝒊, 𝒙𝒋 =  𝒆
 

𝒙𝒊  𝒙𝒋
𝟐

𝟐𝝈𝟐  Gaussian Radial Basis Function (RBF) 

𝜿 𝒙𝒊, 𝒙𝒋 = 𝐭𝐚𝐧𝐡(𝜶 (𝒙𝒊 ⋅ 𝒙𝒊) + 𝝑) Sigmoid 
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. . . Other supervised classifiers 

Besides SVMs, there is a large number of other commonly used supervised 

classifiers. 

For example, K-Nearest Neighbours assigns a new data point to the class most 

commonly found among its K nearest neighbours, based on a chosen distance metric [ ], 

[ ]. 

 Additionally, decision trees learn a hierarchy of informative if/else tests that form a 

binary tree, allowing for decisions to be made based on the most valuable features at each 

step, determined by entropy and impurity measurements, resulting in an interpretable and 

effective algorithm for classification and regression tasks [ ], [ ]. 

A Naïve Bayes classifier looks at each feature individually and estimates a class 

membership probability, always assuming naively that the values of the different features do 

not affect each other. It then uses those probabilities to predict to which class a new input is 

most likely to belong to [ ], [ ]. 

Neural networks are complex interconnected models inspired by the structure and 

function of the human brain's neurons, capable of performing complex tasks by processing 

input data through weighted connections, activation functions, and multiple layers [ ], 

[ ]. 

More detailed information about all these classifiers can be consulted in the 

mentioned references.  

 

. . . Performance Metrics 

Performance metrics play a crucial role in evaluating the effectiveness of ML models 

by providing quantitative measures to assess their performance. These metrics are essential 

to compare different models or algorithms, understand how well a model performs, and 

generalise on unseen data.  
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The selection of appropriate evaluation metrics depends on various factors, such as 

the problem domain, the data, and the desired outcome. 

Some commonly used performance metrics include: 

 

Accuracy 

The accuracy of a classification algorithm measures the number of correct 

predictions made as a ratio of all predictions made. 

Considering a set with a total of samples to be classified of 𝑛 , 𝑦  the predicted 

value of the 𝑖-th sample and 𝑦  the corresponding true value, then the accuracy is given by: 

 

Equation 3. Accuracy Calculation 
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, 𝑦) =
1

𝑛
(𝑦 = 𝑦 ) 

 

Precision  

In a binary classification task, precision is the ability of the classifier not to label as 

positive a sample that is negative. Considering TP as the true positives, FP as the false 

positives, we have: 

 

Equation 4. Precision calculation for binary classification 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
 

 

Recall 

Recall, sensitivity, or true positive rate (TPR) is the ability, considering a binary 

problem, of the classifier to find all the positive samples. Considering FN as the false 

negatives, recall can be calculated with: 
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Equation 5. Recall calculation for binary classification 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

False Positive Rate 

The false positive rate (FPR) is a metric that measures a classifier's ability to identify 

negative samples correctly within the set of all the samples labelled as negative. It represents 

the ratio of negative instances erroneously classified as positive and the total number of 

actual negative events.  Considering TN as the true negatives and FP as the false positives, we 

have: 

 

Equation 6. FPR calculation for binary classification 
 

𝐹𝑃𝑅 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

 

F -score 

The F -score metric is the harmonic mean of precision and recall, presenting a good 

balance between both measures.  

A high F -score symbolizes a high precision as well as high recall. As it is a measure 

more sensitive to data distribution, it is often use on imbalanced classification problems. 

 

Equation 7. F1-Score calculation 
 

𝐹 =  
2

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑟𝑒𝑐𝑎𝑙𝑙

 

 

However, the precision, recall and F -score formulas only work for binary classifiers. 

When performing multi-class classification, each measure is calculated per class in a one-
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vs-rest manner, i.e., each class’s success is rated separately, as if there are distinct classifiers 

for each class. 

There are then two main methods used to access the value of the overall classifier: 

 

i) Macro-Averaging: division of the measure value of each individual class by 

the number of total classes, c 

 

Equation 8. Calculation of performance measures in multiclass problems with macro-averaging 
 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
∑ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖)

𝑐
 

 

ii) Weighted-Averaging 

The weighted-averaged score is calculated by taking the mean of all per-class scores 

while considering the proportion (weight) of the number of occurrences (𝑛 ) of each 

individual class, c, relative to the total number of predictions, N. 

 This is usually the go to evaluation method when the classes are not evenly 

distributed. 

 

Equation 9. Calculation of performance measures in multiclass problems with weighted averaging 
 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
𝑛

𝑁
𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖) 



 

  

State of the art 

 

Music is often considered an abstract pleasure with aesthetic value and, therefore, 

the benefits that come from listening to it and how these emerge may not always be as 

obvious or easy to comprehend as the ones provided by food or socialising, well known by 

their role in adaptive evolution.  As already mentioned, understanding these mechanisms 

offers great value for both research and therapeutic endings, having become a popular area 

of investigation among scientists.  

In the following sections, a review will be presented on how and where these effects 

emerge and the possible benefits of emotional regulation through music. 

In Section 3.1 the mechanisms through which music elicits emotions are explored. 

Research on the brain areas involved in the emotional response to music is reviewed in 

Section 3.2 and the relationship between specific musical features and emotions is explored 

in Section 3.3. Finally, in Section 3.4 we examine how music can be used as a therapeutical 

tool. 

 

. .  How does music elicit emotions? 

Understanding how music elicits emotions combines i. exploring specific emotions 

linked to musical pieces and ii. the underlying mechanisms through which they are evoked.  

We here highlight the BRECVEMA model, initially proposed by Juslin and Västfjäl in 

2008 [44], as it includes six interconnected mechanisms through which music may induce 

emotions: brain stem reflexes, evaluative conditioning, emotional contagion, visual imagery, 

episodic memory, and musical expectancy (Figure 10). Later, in 2013, Juslin [ ] revised this 
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theory and included two additional dimensions: Rhythmic Entrainment and aesthetic 

judgment. 

 The brain stem (B) is an evolutionarily ancient brain structure responsible for 

various functions, including auditory perception, attention, emotional arousal, heart rate, 

breathing, and movement. It plays a role in arousal-mediated mechanisms triggered by basic 

acoustic events like sudden loudness or fast rhythms. These events cause physiological 

arousal, leading to changes in heart rate, blood pressure, and skin conductance due to the 

release of stress hormones. This reaction can be interpreted as a response rooted in primal 

instincts relevant for survival [ ]. 

Evaluative conditioning (E) is described by the authors as a type of classical 

conditioning that involves the repeated association of an initially neutral stimulus (i.e., 

music) with an affectively valenced stimulus. The initially neutral music acquires the ability 

to evoke the same affective state as the valenced stimuli in the perceiver. It seems to depend 

on unconscious, unintentional and effortless processes that involve subcortical brain 

regions (such as the amygdala) and the cerebellum [ ]. 

Emotional contagion (C) refers to the phenomenon where music evokes an affective 

reaction that mirrors its own expressive character, either through peripheral feedback from 

muscles or a more direct activation of the relevant emotional representations in the brain - 

it elicits an emotional echo in the listener. This process involves the mirror neuron system, 

located primarily in the premotor cortex, which is thought to simulate an emotional state in 

the listener by linking perceptual and behavioural representations of a stimulus during the 

perception of emotionally arousing music [ ] and is also influenced by individual 

characteristics of the listener [ ], [ ]. 

Episodic memories (E) are similar to emotional conditioning in the sense of both 

evoking emotions associated with a certain moment or situation but, in episodic memories, 

there is a conscious recall of a past event in time, that preserves the contextual information. 

Next, the effect of visual imagery (V) is explained as the process through which a listener 

experiences a feeling because of visual imagery while listening to music. The interplay 

between the music and the images closely influences the emotions experienced and is very 
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common in a music-therapy context. There is a possible connection with episodic memories, 

but these two mechanisms should be distinguished as emotions may emerge from a visual 

imagery of a thing that was never experienced. 

Musical expectancy (M) refers to the anticipation of upcoming musical events, such 

as a particular melody or rhythm, and the subsequent satisfaction or surprise when those 

events are met or not met, involving the reward brain network to arise to feelings of anxiety 

/frustration and surprise. [ ] It is essential to differentiate between the surprise elicited by 

brainstem mechanisms, which represent a reflexive response to unexpected and potentially 

threatening stimuli, and the non-fulfilment of expectancies, which involves a cognitive 

process of predicting subsequent musical events based on previous experiences and 

knowledge of musical structure [ ], [ ]. 

The two additional mechanisms proposed by the authors (2013) [ ] are aesthetic 

judgment and rhythmic entrainment. The first one is assumed to rely more on higher 

cognitive functions, domain-relevant knowledge, and a fluid, individualised process that 

may change across time and context (involves the subjective evaluation and perception of a 

musical piece's beauty or artistic merit). Rhythmic entrainment is a mechanism through 

which body movements synchronise with the beat of the music, allowing for individuals to 

move along with the music. It involves neural processes that allow perceiving and 

anticipating rhythmic patterns in music and physically engaging with it.  

 

 

Figure 10. Six main mechanisms through which music is able to elicit emotions. 
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. . The brain while listening to music 

There are many brain regions working together to shape our emotional experiences. 

Understanding the interplay between these regions provides valuable insights into the 

complex nature of music's emotional impact on our brains. 

 In particular, the brain's reward system has been frequently pointed out as 

comprising a crucial group of regions and structures involved in the processing of music 

evoked emotions. 

In fact, a metanalysis conducted in 2020 by Stefan Koelsch [ ] on emotions elicited 

by music identified clusters along the whole reward network as relevant to these processes. 

 

. . . Reward Network 

The reward system of the brain is a complex network of brain regions and neural 

pathways, responsible for processing rewarding or pleasurable experiences and reinforcing 

behaviours associated with positive outcomes (Figure 11). 

This network relies primarily on the dopaminergic neurons located in the midbrain, 

particularly the ventral tegmental area (VTA), and their projections to key areas, operating 

through two main pathways: the mesolimbic and the mesocortical pathways [50]. 

The mesolimbic dopamine pathway starts with the production and release of 

dopamine in the VTA and projects mainly to the nucleus accumbens (NAcc) in the ventral 

striatum, an area associated with motivation, but also into the amygdala and lateral 

hypothalamus.  

The mesocortical pathway connects the VTA to the prefrontal cortex (PFC), also 

including the orbitofrontal cortex (OFC), a key area involved in cognitive processes, such as 

decision making and memory [ ], [ ]. 
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Figure 11. Reward pathways. VTA, ventral tegmental area; NA, nucleus accumbens; H, hypothalamus; 
PFC, prefrontal cortex; OFC, orbitofrontal cortex; A, Amygdala; ACC, anterior cingulate cortex; S, 

striatum. (Retrieved from [50] ) 
 

The hippocampus 

The hippocampus is commonly known for its involvement in cognitive functions like 

memory, learning, and spatial orientation [ ]. However, recent research has shed light on 

its contribution to emotional processing, extending to the realm of music. In fact, the Koelsch 

(2020) meta-analysis revealed significant clusters in the anterior hippocampus, with a 

prominent right laterization, relevant in music-evoked emotions. 

Notably, studies investigating the effects of pleasant and unpleasant music in the 

brain have shown that the hippocampus is activated during the perception of unpleasant 

songs and deactivated during the listening of pleasant songs [ ], [ ]. This activation 

pattern suggests that the hippocampus plays indeed a crucial role in processing emotional 

content associated with music, particularly with negative valence. 

Consequently, these findings strongly suggest that the activation of the hippocampus 

in response to music stimuli is not solely limited to cognitive processes but also plays a 

significant role in the processing of emotions.  
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The ventral striatum and the nucleus accumbens 

The NAcc is a key component of the brain's reward system, located in the ventral 

striatum and plays a vital role in motivation, pleasure, reinforcement, and addiction [ ]. 

As a matter of fact, the NAcc was pointed in various studies as a fundamental 

structure related, in particular, to the rewarding nature of music ([ ], [ ], [ ]). It has been 

reported that it is highly activated in response to pleasant music, a behaviour connected with 

an increase of the dopamine availability in the ventral striatum and that is not seen in people 

with musical anhedonia (i.e., the inability to experience pleasure from normally pleasant 

stimuli even if there is still an ability to perceive and understand music on a cognitive level) 

[ ].  Additionally, the NAcc is also activated during musical prediction errors or during 

some unexpected moments in a song, highlighting a role in the processing of unexpected 

and novel music stimuli [ ]. 

 

The amygdala 

The amygdala is a major component of the limbic system, considered the integrative 

centre for emotions, emotional behaviour, and motivation of the brain [ ]. 

Results show an important role of the amygdala in processing emotions elicited by 

music, evidenced by the large clusters in this area found in the meta-analysis conducted by 

Koelsch [4]. These clusters were present despite the type of emotions evoked, i.e., either 

positive or negative. In particular, similarly to what was found in the hippocampus, a study 

revealed a strong deactivation of the amygdala during the listening of pleasant songs, 

contrasting  with a hyper-activation during unpleasant musical stimuli [ ]. 

 

. . . The cerebellum 

The cerebellum is usually associated to motor behaviour and the control of balance, 

but recent studies have suggested its involvement in cognitive and emotional processing, 
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including music processing [ ], as well as in processes related with the reward systems of 

the brain [ ]. 

The cerebellum is involved in processes related to pitch discrimination ([ ], [ ]), 

rhythm and beat interval discrimination, as well as in discriminating time intervals in 

general and in music perception.  

Additionally, impairments in the cerebellum have been used to probe its role in 

emotion processing, in particular with musical stimuli [ ], [ ]. These studies revealed a 

correlation between the damages in this structure and a poor ability to recognise the 

emotional content of songs thus demonstrating its relevance. 

Finally, research on the neural correlates of music-evoked emotions has also 

identified clusters in the cerebellum relevant for the discrimination of emotions such as fear 

and joy during the listening of musical stimuli music [ ], [ ]. 

 

. . . Decoding Studies 

Despite the undeniable importance of structures within the limbic and paralimbic 

system and, in particular, within the brain's reward network in the processing of music-

evoked emotions, the studies that identify the role of these structures are primarily 

univariate, using GLM contrasts. However, when using multivariate pattern analysis to 

decode the emotional content of musical stimuli, the results frequently do not include the 

presence of subcortical structures.  

In this section, we present the results of some recent studies that performed MVPA 

with different methods of classification and feature selection and were able to decode the 

emotional content of music clips successfully. 

 

Neural decoding of emotions based on music listening tasks 

Koelsch, S. et.al (2021) [ ] recorded the BOLD signal of participants listening to 

music clips to evoke feelings from two different categories: joy and fear. The joy stimuli were 

excerpts taken from CD-recorded pieces from various styles (soul, jazz, Irish jigs, classical, 

South American, and Balkan music) and the fear stimuli were excerpts from soundtracks of 
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suspense movies and video games. The researchers then used the searchlight method (a 

spherical searchlight with a radius of 3 voxels) with a linear SVM classifier to analyse the 

brain activation patterns and decode what type of musical stimuli each participant was 

listening to in a specific moment. They found that the decoding accuracy was higher for joy 

than fear clips and for feelings evoked by musical features related to rhythm and harmony 

than those related to melody and timbre. Additionally, a positive correlation between the 

subjective ratings of the stimuli and accuracy, and between decoding accuracy and musical 

training was also revealed.  

The researchers identified voxels with significant above-chance information for the 

classification task in multiple neocortical regions: auditory cortex, primary and secondary 

somatosensory cortex, premotor cortex, frontal operculum. Some significant clusters in the 

granular insula and cingulate cortex were also found. 

A similar study conducted by Putkinen, V. et al (2021) [ ] in a large sample of 

participants (n=102) aimed to explore music evoked emotions using musical clips associated 

with different emotions: sadness, happiness, fear and tenderness. The music labels were 

attributed to each excerpt based on their ability to reliably induce the target emotions, as 

determined by behavioural ratings from participants in a previous study [69]. Additionally, 

to map neural circuits governing non-musical emotions, the participants also viewed film 

clips with positive, negative, and neutral emotional content (the emotional ratings were 

obtained by a separate sample of subjects that viewed the clips and rated the intensity of 

positive and negative emotions observed). 

The MVPA was performed using a SVM with RBF kernel classifier both in whole-brain 

data and within a subset of the regions of interest (ROIs) where emotion classification has 

been successful in previous studies (amygdala, hippocampus, thalamus, anterior and 

posterior cingulate, SMA, precentral and postcentral gyri, precuneus, frontal pole, auditory 

cortex). 

In the whole-brain MVPA, each musical emotion was classified significantly above 

chance level. In particular, the classification accuracy for happiness and tenderness was 

slightly lower than for fear and sadness. In the ROI-level MVPA, the classification accuracy 
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for all four emotions was above chance level for the auditory cortex and reached significance 

in the precentral gyrus. 

Furthermore, in a GLM analysis, the emotions evoked by music were found to 

consistently engage a network of auditory cortical areas and regions supporting motor 

control, somatosensorial, and interoceptive processing (pre- and postcentral gyri, SMA, 

cerebellum, ACC, insula and precuneus). However, contrary to what was verified for non-

musical emotions, music did not strongly activate limbic and medial prefrontal regions. This 

important result suggests that the neural circuits governing non-musical emotions are 

different from those governing music-induced emotions.  

 

The authors of these studies have identified key regions for the decoding task in the 

auditory cortex (Heschl’s gyrus, superior temporal gyrus (STG)), in the middle temporal 

gyrus (MTG), superior temporal sulcus, planum polare, planum temporale), in regions 

associated with motor control (in particular the precentral gyrus: the site of the primary 

motor cortex, and the supplementary motor area) and in somatosensory areas (postcentral 

gyrus, which is the location of the primary somatosensory cortex. The insula, in particular 

the posterior insula, which is associated with interoceptive functions was also frequently 

pointed as containing information for the decoding of the emotional content of different 

auditory stimuli [ ], [ ], [ ]–[ ]. 

 

Brain regions encoding musical features  

In addition to the decoding of music-evoked emotions, researchers have applied 

similar multivariate analysis techniques to investigate how specific musical features are 

represented in the brain.  

Michael Casey (2022) [79] used spherical searchlight regression analysis to predict 

brain activity patterns in response to features like melody and harmony across a wide array 

of cortical areas. The prediction-accuracy maps indicated significant clusters of brain 

activity in regions spanning the temporal, frontal, parietal, and occipital lobes, as well as the 

parahippocampal gyrus and cerebellum. Moreover, the study identified specialised regions 
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responsible for encoding tonal music details in terms of relative pitch representations. This 

research sheds light on how the brain's architecture processes and represents various 

fundamental musical features. 

  

. . Music information retrieval 

Music Information Retrieval (MIR) is a multidisciplinary research field that focuses 

on the development of information extraction tools from music for multiple purposes 

including automated labelling, automated annotation, estimation of properties such as 

rhythm, tempo, etc. Ultimately, this research field aims to make music more accessible, 

easier to create and describe and analysable. 

 

Music Emotion Recognition 

Music emotion recognition (MER) is a subfield of MIR referring to the process of 

extracting and analysing music features, defining the relationship between music features 

and a specific emotion space, thus allowing the recognition of the emotional content that a 

music expresses [ ]. The emotion space itself may be defined according to different 

proposed models such as Hevner’s affective ring, Russell’s circumplex model of affect [ ], 

the GEMSs [ ] or Thayer’s two-dimension model [ ]. Several audio features have been 

widely studied and used in MER applications (Table 2) 

 

Table 2. Musical features relevant to MER* 

Features  Examples  
Timing Tempo, tempo, variation, duration, contrast. 

Dynamics Overall level, crescendo/decrescendo, accents. 
Articulation Overall (staccato, legato), variability. 

Timbre Spectral richness, harmonic richness. 
Pitch High or low. 

Interval Small or large. 
Melody Range (small or large), direction (up or down). 

Tonality Chromatic-atonal, key-oriented. 
Rhythm Regular, irregular, smooth, firm, flowing, rough. 

Mode Major or minor. 
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Loudness High or low. 
Musical form Complexity, repetition, disruption. 

Vibrato Extent, range, speed. 

*(adapted from [ ])) 

 

Depending on the authors, musical attributes may be divided into four to eight 

(rhythm, dynamics, expressive techniques, melody, harmony, tone colour, musical texture 

and musical form) different categories to facilitate the identification of where features 

related to emotion belong as well as to identify which categories may lack computational 

models to extract features relevant to emotion from music. A detailed table with multiple 

examples and descriptions of features that from each of these categories can be consulted in 

[ ]). 

Panda et. al (2020) [ ] proposed a novel set of emotionally relevant features. To 

evaluate this feature set, the authors created a dataset including 900 song entries, tagged 

with emotion labels given by the website from where the songs were retrieved. These tags 

were posteriorly mapped into Russell’s valence and arousal quadrants using Warriners’s 

adjectives list [75] and, finally, the music clips were manually annotated by different subjects 

in terms of Russel’s quadrants to validate the mapping between the labels given by the 

website.  

 

Figure 12. Graphical representation of the circumplex model of affect (adapted from [76]) 
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The authors used multiple musical features to decode the quadrant to which a music 

excerpt belonged to. The classification results from Q1 and Q2 excerpts presented higher 

accuracies compared to excerpts from Q3 and Q4. Considering the labels proposed by the 

authors, the results suggest that music clips with higher arousal are easier to differentiate. 

Conversely, the lowest performance in Q3 and Q4 reflect a higher ambiguity for valence in 

songs with low arousal. Furthermore, certain compositions within these quadrants exhibit 

similar musical features that correspond to divergent emotional elements. For instance, 

some songs may possess a cheerful melody or accompaniment coupled with melancholic 

vocals or lyrics.  

The best classification results were obtained using 29 novel features and 71 baseline 

features. The authors provide a detailed description of these features and algorithms to 

compute them. 

 

. .  Music as a therapy approach 

The ability to use music to evoke specific emotions makes it an extremely powerful 

therapeutic tool.  

It has been demonstrated that, in clinical contexts, patients receiving physical and 

psychologically challenging treatments, may benefit if they receive the treatment while 

listening to music [ ]. 

If these improvements in well-being can be implemented in a controlled way, 

individually adjusting the music interface to generate specific emotions, we will ultimately 

optimize the control loop and achieve best possible outcomes. 

Currently, neurofeedback is becoming a very popular method to self-regulate brain 

function by measuring the brain activity of an individual with common neuroimaging tools 

such as such fMRI, fNIRS, EEG , etc, and then presenting it to the subject (feedback) [ ]. The 

main goal is to volitionally or non-volitionally control either the activity in a particular brain 

region or the functional connections between various brain regions. 
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Numerous studies have consistently reported the activation of brain regions 

associated with emotion-evoking mechanisms, particularly those involved in reward and 

valence pathways [ ]. Building upon this knowledge, Direito et al. (2021) [ ] conducted a 

neurofeedback experiment aiming to modulate the activity of a specific brain region and 

investigate the effects of explicit positive and negative valence feedback stimuli on the 

reward and saliency networks. The findings revealed that positive feedback resulted in 

increased activity in the ventral striatum, while negative feedback led to increased activity in 

the anterior insula, two regions previously found to be activated by music in other studies 

[ ], [ ]. 

These observations are particularly significant considering the well-established 

links between these brain regions and psychiatric disorders such as addiction, depression, 

and anxiety, as well as the demonstrated ability of music to engage these regions. Therefore, 

these findings shed light on the therapeutic potential of using neurofeedback interventions 

targeting the reward and saliency networks, especially in the context of leveraging music's 

influence on these systems.  

 In fact, the feasibility of using music in combination with real-time fMRI 

neurofeedback to up-regulate emotions have already been described by Lorenzetti et al. 

(2018) [ ]. The authors used a combination of music and real-time fMRI neurofeedback to 

up-regulate tenderness and anguish, which engaged specific brain regions previously 

implicated in positive affiliative emotions (such as the septo-hypothalamic region, medial 

frontal cortex, temporal pole, and precuneus) and negative affect (the amygdala, dorsolateral 

prefrontal cortex (DLPFC), and others), respectively. 

These collective findings highlight the promising potential of utilizing 

neurofeedback techniques, particularly when combined with music, as a therapeutic 

approach for modulating emotions. Further exploration of this therapeutic field holds 

promise for addressing various psychiatric conditions associated with emotional 

dysregulation. 
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4  

Methods 

 

. . Participants 

Fifteen individuals (9 females, 6 male; age range 22–41 years, M=31.7, SD=6.27) took 

part in the experiment. All participants gave written informed consent. The study was 

conducted in accordance with the declaration of Helsinki and approved by the Comissão de 

Ética e Deontologia da Investigação da Faculdade de Psicologia e Ciências de Educação da 

Universidade de Coimbra.  

All the volunteers filled a “Profile of Mood States” (POMS) questionnaire prior to the 

tasks and reported to have normal hearing, without permanent or current temporary 

impairments and with no known history of neurological disorders.  

 

. . Data acquisition 

MR acquisition was performed in a 3 T Siemens Magnetom Prisma scanner with a 20-

channel head coil at the Institute of Nuclear Sciences Applied to Health (ICNAS), Coimbra. 

First, a high-resolution (1 × 1 × 1 mm) T1-weighted anatomical reference image was acquired 

from each participant using MPRAGE sequence [82]. Four identical fMRI measurements 

were performed using Simultaneous MultiSlice (SMS) imaging, with six simultaneous slices, 

a flip angle of 68 degrees, an Echo Time (TE) of 37 ms, and a Repetition Time (RT) of 1000 ms. 

The matrix obtained was 110x110 voxels with a field of view of 220 mm, resulting in an in-

plane resolution of 2mm. The slice thickness was 2mm (66 slices were acquired in each RT). 

To later correct for susceptibility distortion, field maps spin-echo images were acquired 

before and between functional runs 2 and 3. 
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. . Stimuli  

Nine hundred musical excerpts previously classified into four categories, defined 

according to Russell's circumplex (labelled as Q1 (positive valence, high arousal), Q2 

(negative valence, high arousal), Q3 (negative valence, low arousal), and Q4 (positive valence, 

low arousal) [10]) were used as the stimuli database in this study [74] . 

For each participant, ninety-six musical stimuli of 11.5 seconds were randomly 

selected: twenty-four stimuli for each quadrant. Within each run, participants listened to 24 

stimuli, 6 of each quadrant grouped into two sets of 3 stimuli (each block lasted 36 seconds - 

11.5 seconds per stimuli and 0.5 seconds interval between stimuli). Inter-stimuli intervals 

(ISI) blocks consisted of a 12 seconds component without any sound (excepting the ambient 

sound inherent to a MRI scanner), followed by 12 seconds with white noise, and ended with a 

second 12 seconds component with only the ambient sound. The run structure was based on 

the randomized presentation of Quadrants (two trials) interleaved with ISI blocks. Within 

each block, all stimuli were presented in pseudo-randomized order so that the second pass 

of a Quadrant occurred only after the first presentation of all Quadrants. The total duration 

of each run was 600 seconds.  

Participants were asked to perform four music listening runs and were instructed to 

close their eyes during the runs. 

The visual representation of the organization of each trial can be seen in Figure 13. 

 
Figure 13. Visual representation of the organisation of one trial of the experiment. 
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After scanning, the participants were asked to classify each song excerpts listened to 

in terms of arousal and valence, localising them within Russel’s circumplex model. 

Participants were explicitly instructed to assess how they felt. This assessment aimed to 

obtain a personal perception of the emotional content of each music. The characterisation 

was defined using a mouse click on a two-dimensional plane –participants were informed 

that the distance to the centre of the circumplex (neutral valence and arousal) was also 

important to characterise each music excerpt.  

 

. . Data Analysis  

. . . Preprocessing 

 Acquired functional data were preprocessed by members of the research group 

using fMRIPrep [83]. The fMRIPrep preprocessing pipeline included slice timing correction, 

motion correction, susceptibility distortion correction using fieldmap images, registration of 

fMRI data from subject space to template MNI, and estimation of confound signals (CSF, 

white matter, and grey matter mean time series, framewise displacement, physiological 

regressors, and six motion parameters). 

Data associated to the baseline (ambient sound) blocks was removed. The rationale 

for removing the baseline was to minimise the impact of auditory primary sensory areas. 

Since we are exploring the emotional content of music, we define the white noise condition 

as our within-subject control condition. Then, the data were converted to z-scores.  

 

. . . Feature Selection 

MVPA involves the definition of features that characterize and allow the 

discrimination of the different classes in our classification framework, the classification 

algorithm, and assessment measures. 
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Different approaches to feature selection were tested in the initial phase of the work 

and some of the preliminary results may be consulted in the Supplementary Material 

(Chapter I – Initial feature selection approaches). 

4.4.2.1. Temporal definition of features      

Given the duration of our stimuli (each music excerpt lasts 11.5 seconds), we were 

interested in maximising the emotional response to the stimulus. To isolate the neural 

instantiation of each music excerpt, the preprocessed voxel activation levels were averaged 

in a window 6 s after stimulus onset until the end of it (i.e., whole-brain volumes 6 to 12). This 

choice of the window considered the delay in the hemodynamic response. 

 

4.4.2.2. Spatial definition of features 

Finally, regarding the spatial masking, i.e., the spatial definition of the feature set, two 

methods were chosen to analyse the fMRI images: a data-driven method and a hypothesis-

driven method. 

 

Data-driven method: Voxel stability masks 

Voxel stability consists of determining the most stable voxels within the training set 

of each participant and then using those stable voxels as a mask in both the training and the 

remaining test set (in this work we used the 1000 most stable). 

The most stable voxels in the brain are defined as voxels presenting a stable 

activation profile across the multiple presentations of a set of labels. 

Let us consider a 4-class problem defined by the quadrants of the Russell circumplex 

(i.e., Q1, Q2, Q3 and Q4). The stability of each voxel was computed as the mean pair-wise 

correlation between its 4 z-scored activation profiles across all pairwise combinations of the 

multiple presentations in the training data.  

Here, the trial-type activation profile of a voxel for a particular presentation refers to 

the vector of 4 responses of that voxel to each trial type during that presentation. A stable 

voxel is thus one that responds similarly to the different stimuli set each time the set is 
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presented. A representative scheme of the calculation of a single voxel’s stability is presented 

in Figure 14. 

 

 
 

Figure 14. Schematic representation of a single voxel's stability calculation. 
 

The pairwise correlation is given by Equation 10, where 𝑅  is the correlation 

coefficient matrix, with values always between -1 and 1, and C is the covariance matrix.  

 

Equation 10. Correlation Coefficient. 
 

𝑅  =  
𝐶  

𝐶  𝐶  

  

 

Hypothesis driven method: Meta-analysis mask 

The second method for spatial constraining of the feature set is a mask defined in a 

recent meta-analysis by Koelsch et al. (2020) [4] on the neural correlates of music evoked 

emotions. The meta-analysis examined neuroimaging studies on emotions evoked 

specifically by music to identify consistent patterns of brain activity across studies. The 

analysis included 47 studies and found that music-evoked emotions consistently activate a 

network of brain regions involved in auditory, emotional, and reward processing. 
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Specifically, the analysis identified consistent activations in the amygdala, hippocampus, 

anterior cingulate cortex, insula, and ventral striatum/nucleus accumbens.    

The statistical image provided by the authors was then converted into a binary mask 

and applied to all the preprocessed fMRI images. The binary mask obtained is present in 

Figure 15. 

 

 

Figure 15. Mask obtained from the results of the Koelsch's (2020) meta-analysis. 
 

 

. . . Class definition 

The class definition (i.e., the quadrant to which each music excerpt belonged) was 

made based on two sets of labels:  

i) the original labels associated with each musical clip as defined by Panda et al. 

(2020) in their MER study, henceforth referred as PRED labels (predefined 

labels). 

ii) the labels attributed by the participants to each music clip when they were 

asked to classify the excerpts after the fMRI experiment, henceforth referred 

as PART labels (classes attributed by the participants). 
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. . . Training and testing set splits and class imbalance 

Data was split into two subsets, training and testing sets. 70% of the data were used 

in the training set and used to optimise the classification method and the remaining 30% was 

used to evaluate the model ability to classify the data correctly. 

Class definition based on participants labelling often did not match the original 

labels. This mismatch resulted in a class imbalance where the number of music excerpts in 

one class could be significantly higher than others. To address this class imbalance, we tested 

two solutions: to maintain the class balance, limiting the training set to the number of 

samples with the class with the least data points and to oversample the class with the least 

data points. 

Limiting the training set and restricting the number of data points resulted in poor 

training performance for the classifiers due to the limited number of samples.  

The oversample of the classes with a lower number of data points was used in the 

training set to ensure that all participants had at least 12 data samples of each trial type. 

Oversampling is a method used to increase the number of samples in the minority 

class to match a desired number of samples. In this case, the Synthetic Minority Over-

sampling Technique (SMOTE) [84] was utilized. SMOTE generates synthetic samples for the 

minority class by linearly interpolating between existing samples and their k-nearest 

neighbours. 

Using the SMOTE algorithm, a new synthetic sample, 𝑥 , is generated by 

interpolating between an existing sample, 𝑥 , and one of its k nearest-neighbours, 𝑥  ), using 

a random number λ within the range [0, 1]: 

 

Equation 11. Generation of a new sample with SMOTE. 
 

𝑥 =  𝑥 +  𝜆 × (𝑥  −  𝑥 ) 

 

 

 



Chapter 4. Methods 

 

54 

 

. . . Decoding analyses 

 Linear-kernel support vector machine classifiers were trained to perform four 

different decoding analyses:  

● music vs. noise 

● positive vs negative valence level  

● positive vs negative arousal level  

● Both the valence and arousal levels of a specific music excerpt 

simultaneously, i.e. Q1, Q2, Q3, Q4. 

The first 3 classifiers represent binary classification problems, while the last is a 

multi-class problem. In the multi-class problem, the solution is obtained in a ‘one-vs-all’ 

approach (for each class, a classifier if fitted against all the other classes). All classifiers were 

trained in a training set to find the optimal number of voxels to use in the stability mask and 

to optimize the margin-parameter, C, in a grid-search 5-fold cross validation. After training, 

the optimal parameters were used to do predictions on the last 30% of the data (test set). 

 

4.4.5.1. Kernel selection 

The choice of the classifier considered SVM’s with both RBF and linear kernels, 

according to examples from the literature ([74] and [65], [85], respectively). Since in the 

preliminary tests there was no significant difference between the performance of the 

classifiers when using both types of kernels (for the preliminary results, please refer to the 

Chapter 2 of the Supplementary Material - Comparison of SVM classifier with linear vs RBF 

kernel), the linear kernel was chosen. This also allowed us to obtain the features contribution 

to the classification problem and explore the main brain areas relevant for the classification 

of each type of stimuli. 
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4.4.5.2. Feature set and class definition 

Additionally, the classifiers were trained using both the PRED and the PART labels, 

resulting in eight classifiers for each of the two feature selection methods. In total, sixteen 

classification models were created and the combinations between feature selection method, 

labelling strategy and decoding analysis are presented in  Figure 16. 

 

 

Figure 16. Characteristics of each of the sixteen classification models created. 
 

All analysis scripts were developed in Python 3.9.12, utilising the Anaconda 

distribution, and executed and documented using Jupyter Notebooks. 

 

. . . Statistical Significance 

Permutation Tests 

To assess whether the results provided by each of the classifiers were statistically 

significant, permutation tests (i.e., randomly permuting the labels of the dataset while 

keeping the features unchanged and then calculating a score metric) with 1000 
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permutations were employed in the test sets to compare the obtained results to a null 

distribution and assess their significance. The permutation tests were performed 

considering the accuracy as the performance metric. 

An empirical value,  p,  is then calculated as the proportion of permutations for which 

the score obtained is equal or greater than the score obtained using the original data [86], 

[87]. 

In this specific case, a threshold of 0.05 was for p was used to determine statistical 

significance, which means that if the p<0.05, it suggests that the observed accuracy is 

unlikely to occur by chance alone, and the null hypothesis of no dependency between 

features and labels can be rejected, i.e.: there is evidence of a relationship between features 

and labels and the performance of the classifiers can be considered statistically significant.  

 

Exploring differences between approaches 

We also explored the best configuration of features selection methods and 

classification pipeline, comparing the results between different approaches and 

determining the statistical significance.  

To assess if the data followed a normal distribution, we used the Shapiro-Wilk test 

due to its widespread usage and higher statistical power, particularly for small sample sizes 

(N<50) [88]. For details about the implementation of this method please refer to the original 

paper, [89]. 

To compare the classification results, when these followed a normal distribution, a 

paired student t-test was used. This is the most common parametric method and compares 

the means of two different sets of data to determine if they are equal; if they are, then no 

difference exists between the sets. When the data did not follow a normal distribution, the 

non-parametric equivalent to the student t-test, the Wilcoxon signed rank test that analysis 

the median of the two populations [90]. 
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. . . Identifying brain areas contributing for the decoding 

After classification, the brain areas that were the most relevant for the classification 

process were determined. 

To do this, we first performed an inversion of the SVC coefficients obtained in the 

classification step, recreating a statistical image for each classifier and each of the 

participants. The final statistical images were the result of the combination of the 100 most 

significant voxels of each participant for each of the four decoding models (in the multiclass 

problem, a statistical image for each of the four quadrants was obtained and the 

contributions of the voxels to each of the classes were combined in a single image). 

The coordinates of the statistical clusters were then obtained in the MNI 152 space. 

Finally, the identification of the brain areas that corresponded to each of the found 

clusters was done utilising an adapted python script by Astrid Olave of the original MATLAB 

code from Xu Cui (https://www.alivelearn.net/?p=1456). 

This script utilises the Automatic Anatomical Labelling (AAL) atlas to identify the 

anatomical structures that corresponded to the provided coordinates. 

 

 



 

 

 

 



 

 

5  

Results 

 

This chapter presents the results obtained in the present work. Section 5.1 shows the 

results of the behavioural task and differences between labels according to the two strategies 

considered (PRED labels and PART labels), Section 5.2 evaluates the influence of labelling 

strategy on feature selection and 5.3 details the results on the four decoding analyses. 

 

. . Behavioural categorisation task 

To illustrate the differences between the two labelling strategies, we present the 

confusion matrix considering the two types of labels in Figure 17. 

We found a high discrepancy between the two labelling approaches.  

 

 

Figure 17. Confusion Matrix comparing the PRED labels with the PART labels. 
 

There were 360 music clips from each quadrant in total. The confusion matrix shows 

that participants preferentially labelled musical excerpts as having both positive valence and 
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arousal, i.e., as belonging to the first quadrant, Q1, over the other categories (the participants 

attributed the label ‘Q1’ to a total of 471 music clips, contrasting with a mean of 323 

attributions to each of the other labels).  

Additionally, the overall mismatch between the tags attributed considering the two 

types of labelling is particularly evident in the quadrants Q3 and Q4, which are often re-

labelled.  

 

. . Preprocessing and feature selection 

We defined two approaches to select voxels subsets, to address the potential issues 

associated with the curse of dimensionality. We next present the results of the stability 

measure. 

 

. . . Stability Masks 

The stability masks were determined according to the method presented in 4.4.2.2. 

The following results show an example of the obtained masks for a single participant 

in all four possible situations (in the two labelling strategies considering both five and four 

classes in the creation of the stability mask). 

Figure 18.A presents an example of the voxel stability map for the 5 class model (Q1, 

Q2, Q3, Q4 and noise) and PRED labels of one single participant, and Figure 18.B presents the 

voxel stability map for the 5 class model with the PART selection of labels of the same 

participant. 

 
Figure 18. Stability masks with 5 classes of participant SUB-07. (A) Mask created considering PRED 

labels. (B) Mask created considering the PART labels. 
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The masks obtained using the participants’ and predefined labels exhibited 

consistent results for the 5 classes situation, indicating that the most stable voxels were 

located in comparable brain regions, particularly around the auditory cortex, regardless of 

how the stimuli were subjectively perceived.  

 

Figure 19.A presents the voxel stability map for the 4-class model (Q1, Q2, Q3, Q4) and 

PRED labels, and Figure 19.B presents the voxel stability map for the 4-class model with 

individual selection of labels (PART). 

 

 
Figure 19. Stability masks with 4 classes of participant SUB-07. (A) Mask created considering PRED 

labels. (B) Mask created considering PART defined labels. 
 

 

When considering the voxels’ activation profiles for the four quadrants only, without 

noise, the consistent pattern around auditory areas verified before was replaced by a noisy 

random distribution of voxels. 

 

. . Decoding Analysis 

In this section, we present the results for the four different classification pipelines 

(two labelling strategies (predefined and tagged by the participants) and two feature 

selection masking strategies (stability masks and the mask retrieved from Koelsch et al. 

(2020) meta-analysis). 

The performance was assessed considering the training score of the best classifier 

(i.e., the mean accuracy across all cross-validation folds with the best model parameters), its 
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overall accuracy in the testing set, and the value of p that resulted from the permutation tests 

performed for each model to determine the statistical significance of the results. We define 

as lower threshold for the significance of a classification model, as one that present 

statistically significant results (p<0.05) for at least 50% of the participants. 

The detailed classification results for each participant can be consulted in the 

Supplementary Material (3. Discriminated results for each individual label). 

The plot bars present the results for the mean performance across all participants. 

 

. . .  Predicting music and noise 

The first objective was to assess the ability of decoding periods of listening to musical 

excerpts and periods of listening to white noise. The results of this task are presented in 

Figure 20. 

 

 
Figure 20. Performance of the model classifying music and noise 

 

The results show that when considering either the PRED labels or the PART labels, the 

classifier successfully distinguished between the two types of stimuli despite the feature 

selection method used. The permutation tests conducted on the data showed that the 

classification performance was statistically significant (p<0.05) for all participants in the four 
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situations. This indicates that the classifier could differentiate between the auditory 

experience of listening to song excerpts and white noise. 

No significant difference was found when comparing the two sets of labels (original 

vs. participant-provided) using the Wilcoxon Rank test (p>0.05).  

 Moreover, when using the meta-analysis mask, there is a small decrease in the 

performances for both types of labels. 

 

In the forthcoming results, since the classification model did not include the 

decoding of Noise volumes, the considered stability mask is always the one created with 4-

classes only. 

 

. . . Predicting positive and negative valence 

Our second objective was to decode the valence of musical stimuli: classify music 

clips with positive valence (Q1 and Q4) and clips with negative valence (Q2 and Q3). The 

performance results when using the two feature selection methods and both types of labels 

are presented in Figure 21. 

 

Figure 21. Performance of the valence decoding model. 
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When considering the PRED labels in the data masked with the stability mask, the 

results (74%±13% accuracy in the test set) are substantially superior to the chance level (50% 

for a balanced dataset). Similarly, to what was verified by the music vs. noise classifier, the 

performance is always superior using stability masks over the meta-analysis mask. Even 

within the training sets, there is an even more evident discrepancy between the mean 

accuracies. Moreover, the results suggest some overfitting, particularly in the stability 

masking strategy (for both sets of labels), as the results using the training set are far superior 

to those obtained in the testing set. In this sense, the data demonstrate that the classifier can 

correctly identify patterns in the features with these masks but has poor generalization 

ability.  

Training results using the meta-analysis mask are close to the chance level, 

suggesting that the model cannot learn a decision function able to separate the two classes. 

 Additionally, when comparing the utilization of the two types of labels as targets of 

the classification, there is a significant difference (p<0.05) between the PRED and the PART 

(58%±10% accuracy in the test set) labels with the stability masks.  

However, this difference between the test results for the two types of labels is not 

verified when the meta-analysis mask is used (overall accuracies in the test sets of 53%±11% 

and 55%±16% considering the PRED and the PART labels, respectively, and p>0.05).  This 

result is not interpretable due to the poor performance of the classification model. 

Finally, it is important to consider the permutation test results. Notably, the 

classification results for the combination of the PRED labels with the stability masks were 

significant, contrasting with a lack of significance in all the other classification models, not 

allowing for an interpretation of those results. 

 

. . .  Predicting positive and negative arousal 

The third model’s aim was to decode arousal. In this sense, the classification problem 

was separating between data points referring to music with high (Q1 and Q2) and low arousal 

(Q3 and Q4). Similarly, to the previous models, the performance results in terms of mean 
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accuracies for all possible combinations of feature selection and targets in training and 

testing are presented in Figure 22. 

 

 

Figure 22. Performance of the arousal decoding model. 
 

 

The best results were obtained with the stability masking strategy and PRED labels 

(71%±18% accuracy in the testing set). When considering the PART labels (60%±10%), there is 

a significant decrease (p<0.05 for the paired t-test between the two sets of labels) in the 

performance of the model.  

As in the previous analysis, when the meta-analysis mask is used, the results in the 

training and test (60%±16% with the PRED and 59%±11% using the PART labels) sets are very 

similar for both types of labels. This result is not interpretable due to the poor performance 

of the classification model. 

 

. . .  Predicting each individual quadrant 

The final model objective was to identify each of the four quadrants, a multi-class 

problem. Chance level in this multiclass problem is 25% in the predefined label selection (the 

individual selection of labels introduces some variability). The results for both types of labels 

and feature selection approaches are presented in Figure 23. 
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Figure 23. Performance of the individual quadrants decoding model 
 

The best results were obtained using the stability mask as feature selection strategy 

and PRED labels (testing set accuracy of 62%±15%). When comparing the two feature 

selection approaches, the use of the stability masks revealed, once again, a significantly 

higher performance (p<0.05) than the meta-analysis mask (accuracy in the test sets of 

35%±11% and 30%±8% considering the PRED and the PART labels, respectively)  

 

Confusion Matrices 

To further characterise the prediction pattern of this model, we present the 

normalised confusion matrices (the values represent the percentage of correct 

classifications for a specific class), associated with each of the four possible combinations 

between masks and targets used. 

First, we show the matrix for the stability mask feature set (Figure 24). 
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Figure 24. Confusion Matrices when stability masks were used as feature selection method for both 
types of classification labels. 

 

 

The results show that the model with the predefined labels tend to correctly identify 

the target label and no pattern emerge regarding the false negative. Considering the 

participant’s labelling confusion matrix, the results show a decrease across all classes. Again, 

no particular pattern arises from the data regarding missed predictions. 

 

Figure 25 shows the meta-analysis masking strategy results.  

 

 

Figure 25. Confusion matrices when the meta-analysis mask was used as a feature selection method 
for both types of classification labels. 
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 The results show that the model with the predefined labels tend to correctly identify 

the target label (inferior results compared to the previous feature selection strategy) and no 

pattern emerge regarding the false negative distribution. The classifier using PART labels as 

targets together with a meta-analysis mask shows a clear bias to predict Q1.  

 

. . . Significant brain regions for decoding 

To further characterize the successful models, we detail the results for the 

combination of PRED labels as targets of the classification and the stability masks as the 

feature selection method (as the other models presented poor training results, and therefore 

their interpretability is limited). To this end, we defined masks of interest based on 

combining each participant's 100 most significant voxels for each decoding model. We then 

present the histogram of the number of clusters found in the ten cortical and subcortical 

regions with the highest number of clusters. 

 

5.3.5.1. Music vs Noise  

The location of the most significant voxels used by the model to distinguish between 

music and noise are presented in Figure 26 and the number of clusters found in each area is 

shown in Figure 27. 

 

 
Figure 26. Location of the most significant voxels in the music vs noise classifier.  

Voxel values  correspond to the combination of the SVC coefficient values of that voxel. 
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Figure 27. Distribution of the significant clusters for the decoding of music and noise across the top 10 
regions with the highest number of clusters. STG: superior temporal gyrus; MTG: middle temporal 
gyrus; SFG: superior frontal gyrus; DLPFC: dorsolateral prefrontal cortex; R: right lobe; L: left lobe 

 

The significant voxels for decoding music and noise were distributed across the 

entire region outlined by the stability mask created using the 5 classes. The majority of these 

voxels were situated within the auditory cortex, particularly across the STG and transverse 

gyrus (the cluster coordinates in the Rolandic operculum correspond to the auditory cortex 

according to [91]. Additionally, a few smaller clusters were identified in the frontal (DLPFC 

and precentral gyrus) and in the parietal (supramarginal gyrus) lobes. 

 

5.3.5.2. Positive vs negative valence 

In Figure 28 and in Figure 29 the distribution of significant clusters across the brain 

for the decoding of positive and negative valence is presented.  
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Figure 28. Location of the most significant voxels in the positive vs negative valence classifier. 

Voxel values correspond to the combination of the SVC coefficient values of that voxel. 
 

 

 

 
Figure 29. Distribution of the significant clusters for the decoding of positive and negative valence 

across the top 10 regions with the highest number of clusters. DLPFC: dorsolateral prefrontal cortex; 
MTG: middle temporal gyrus; MFG: middle frontal gyrus; SFG: superior frontal gyrus; STG: superior 
temporal gyrus; MOG: middle occipital gyrus; SPG: superior parietal gyrus; R: right lobe; L: left lobe 

 

 

5.3.5.3. Positive vs negative arousal 

The significant clusters for the decoding of positive and negative arousal are shown 

in Figure 30 with the correspondent distribution of the number of clusters found in each area 

presented in Figure 31. 
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Figure 30. Location of the most significant voxels in the positive vs negative arousal classifier. 

Voxel values correspond to the combination of the SVC coefficient values of that voxel. 
 

 

 

 
Figure 31. Distribution of the significant clusters for the decoding of positive and negative arousal 

across the top 10 regions with the highest number of clusters. DLPFC: dorsolateral prefrontal cortex; 
MTG: middle temporal gyrus; MFG: middle frontal gyrus; SFG: superior frontal gyrus; ITG: inferior 

temporal gyrus; MOG: middle occipital gyrus; R: right lobe; L: left lobe 
 

 

5.3.5.4. Q1 vs Q2 vs Q3 vs Q4 

Finally, we present the distribution of voxels with significant information for 

classification of each individual quadrant in figures Figure 32 and Figure 33. 
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Figure 32.  Location of the most significant voxels in the classifier decoding each quadrant 

individually. Voxel values correspond to the combination of the SVC coefficient values of that voxel. 
 

 

 

 
Figure 33. Distribution of the significant clusters for the decoding of each individual quadrant across 

the top 10 regions with the highest number of clusters.. MTG: middle temporal gyrus; MFG: middle 
frontal gyrus; ITG: inferior temporal gyrus; DLPFC: dorsolateral prefrontal cortex; STG: superior 

temporal gyrus; R: right lobe; L: left lobe 
 

The distribution of the voxels containing significant decoding information when 

using stability masks created only from the voxel activation patterns in response to 4 classes 

replicates the noisy patterns observed in these masks, with small clusters distributed across 

the whole brain. The results are very similar for all the three classification models.  

Regarding the information in the histograms, the majority of the decoding 

information was located in neocortical regions. The results meet previous research using 

MVPA to decode feeling states, where neocortical regions were identified as encoding 

emotional information in the brain [67], [68], [70]–[72]. 
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Most of the clusters were found bilaterally in the auditory cortex (STG and Heschel’s 

gyrus), in visual areas in the temporal (MTG, inferior temporal gyrus (ITG)) and occipital lobe, 

as well as is in prefrontal cortex (DLPFC, ventromedial prefrontal cortex (VMPFC), middle 

frontal gyrus (MFG)) and across the occipital, parietal (precuneus) and temporal lobes 

(fusiform gyrus, MTG), as well as in the primary somatosensory cortex (postcentral gyrus).  

Additionally, some clusters were found in a smaller number in premotor areas 

(precentral gyrus), parietal regions (precuneus, superior parietal gyrus, SPG) and in the 

cingulate cortex. 

Also, although the voxels with significant information for the decoding were mainly 

identified in cortical areas, some subcortical regions were also found in less number. In 

particular, the hippocampus, the amygdala and the insula revealed to contain important in 

decoding information. These regions are known to be involved in emotional processing and 

have been identified in multiple studies as relevant for the processing of specifically music-

evoked emotions [4], [67], [68]. 

However, contrarily to other decoding studies, no significant voxels were identified 

in the parietal operculum, more specifically, on the secondary somatosensory cortex. This 

area has been shown to be engaged during multiple experiences of perceived emotions and, 

in particular, to take an important role in music-evoked emotions [67], [68]. 
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6  

Discussion 

 

. . Defining the decoding target 

The behavioural categorisation task results evidenced a discrepancy between the 

different attribution of labels. This mismatch was particularly evident in the labels from Q3 

and Q4 which were often relabelled for each other, revealing increased inter-individual 

variations in the definition of positive and negative valence for low arousal stimuli compared 

to the PRED labels. 

 This relabelling pattern concurs with what was verified by Panda et al. (2020) [74]. In 

their study, where the predefined labels were set: their participants also manifested more 

difficulties in classifying low arousal music, which can explain the differences in the labelling 

present in our confusion matrix. 

 

. . Exploring the optimal feature set and model 

parameters 

The present work aimed to create models that identified brain patterns in fMRI 

images, allowing them to distinguish between: music and noise, positive and negative 

valence, positive and negative arousal and between each of the individual Russell’s 

quadrants simultaneously.  

All models trained to decode music vs. noise achieved high accuracy and statistically 

significant results. As this is a binary classification problem (all music excerpts belong to the 

same class, i.e., music), the labelling strategy does not influence the model training. 

Considering the feature selection method, both methods achieved high accuracy. In this 
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sense, for the music vs. noise problem, the specific constraining of voxels within the two 

different masks does not influence the performance of the classifiers. These results may be 

related to the fact that both the stability masks and the meta-analysis mask included voxels 

in temporal regions across the STG. Discriminative patterns for music were found to be 

widely distributed bilaterally in these areas in a study decoding multiple sound categories 

[72]. 

On average, the decoding of positive and negative valence was above chance level 

(considering 50% for a balanced dataset) for all the pipeline combinations. However, only the 

combination of stability masks with the PRED labels presented results above the significance 

threshold. Therefore, we can consider that it was possible to decode the valence level of a 

music excerpt by finding patterns in the fMRI images using that model. The results for all the 

other models are not interpretable due to the lack of significance. 

The results of the arousal classification, even though they were also above chance 

level for all the models, were not statistically significant for any of them (did not surpass the 

considered significance threshold), suggesting that their performances may have been a 

result of random attribution of labels instead of the correct generalisation of the patterns 

learnt in the training phase.  

Notably, in the decoding of both valence and arousal, there was an overfitting of the 

data solely when the stability masks were used, evidencing that the models found problems 

only in the generalisation of the learnt patterns to unknown data. The masking of the data 

with the meta-analysis mask supressed the learning of patterns even in the training phase. 

  Regarding the multi-class models, the best significant results were again obtained 

when using the PRED labels as targets of the classification with the stability masks as the 

feature selection method (accuracy of 62%±15% in the testing set).  

 The false predictions were distributed across all classes, not following a specific 

pattern, contrarily to what was verified in other studies. In particular, Panda et al (2020) [74], 

(that used musical features of the same stimuli dataset to decode each quadrant), verified  

music from certain quadrants was more often misclassified as belonging to other quadrant 

in specific. This suggests that the link between the musical features associated with certain 
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emotions may not correlate with the neural activation patterns associated with those same 

emotions, these being highly dependent on the context and on the individual perception of 

the stimuli. 

 

. . Feature selection methods 

The stability masks provided better classification results in all the decoding tasks. 

Even in the models with lower accuracy in the testing set, the classifiers presented high 

accuracies in the training set, indicating that they were able to learn patterns in the data 

despite the lower generalisation ability (this is particularly interesting since the performance 

in the training set was assessed using cross-validation). Conversely, when the meta-analysis 

mask was applied, the models could only discern between music and noise. For all other 

decoding tasks, they exhibited an inability to acquire meaningful patterns from the training 

dataset or to extrapolate knowledge to unfamiliar data points. The fact that the meta-analysis 

mask allowed to classify music and noise, suggests that this selection of voxels is enough to 

distinguish a musical auditory stimulus from a non-musical, but it does not identify the 

specificity of its emotional content. 

This indicates that, while the regions encompassed by the meta-analysis may be 

indicative of broad emotional processes, they might not capture the individual and context-

dependent neural signatures that distinguish music evoked emotions as effectively as the 

stability masks, which are tailored to each individual participants' brain activation patterns.  

Furthermore, the stability masks were generated using training sets comprising 

volumes from various music clips associated with the same emotional quadrant, without 

repetition across functional runs. This approach allowed the classifiers to learn patterns 

related to general valence and arousal levels, rather than specific songs. As a result, the 

models exhibited enhanced generalisation capabilities, as they did not focus on the 

idiosyncrasies of individual songs. 

On the contrary, many of the studies used to create the meta-analysis mask 

concentrated on a limited range of emotional labels, (e.g., joy and fear), and employed a 
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relatively small stimuli dataset. This narrower scope could potentially limit the ability of the 

meta-analysis to capture the full diversity of music-induced emotional experiences. 

In fact, the poor performance of the models when considering the meta-analysis 

mask correlates with the current decoding studies that either did not find voxels with 

significant information for the decoding of emotions within these regions [67], [68], [71], or 

obtained poor classification performances across them [92]. 

This might highlight the inherent variability in how different individuals' brains 

encode emotional states and the limitations of generalising from meta-analytic findings to 

individual-level emotion classification tasks. 

 

. . Class definition methods  

The PRED labels originated better results compared to the PART labels when the 

stability masks were used as feature selection method. However, when the meta-analysis 

mask was used, no significant difference was found between the use of each labelling 

strategy. Nonetheless, the absence of differences between the class definition methods 

results is not interpretable for this second type of masking due to the poor performance and 

significance of these models. 

It is possible that, when the stability masks were used, the differences between the 

types of labels used as targets of the classification were a consequence of the imbalance 

introduced by the relabelling of the dataset. This imbalance was addressed by increasing the 

number of points of the classes with least data points in the training set so all the classes 

would have the same number of points. However, in order to preserve the optimal 

representation of a real-life problem, this oversampling step was performed only in the 

training set, resulting in uneven testing sets. In particular for the multi-class problem, when 

the labels attributed by the participants were used, there were situations where a participant 

had only one or two points of a certain quadrant and more than ten of the others. As 

consequence, in these situations, if the classifier failed to classify a single point, that would 

cause a large decrease in the performance of the model when classifying that class. 



Chapter 6. Discussion 

 

79 

The fact that the differences in the results between both types of labels are only 

present in the testing sets (where the number of points of each label is very discrepant) 

corroborates the idea that this might be a consequence of the imbalanced and limited test 

sets and not a reflection the subjective perception and interpretation of the stimuli influence 

in the individual brain-patterns that arise from music-evoked emotions. 

 

. . Brain regions with significant voxels for the 

decoding 

The results observed when stability masks were used are comparable to the results 

of previous decoding studies regarding music-evoked emotions, where neocortical regions 

were able to predict the emotional content of a song but the limbic regions were not able to 

reveal emotion-specific activity patterns.  

Regarding the information found in the temporal lobe of the brain, the auditory 

cortex (i.e.: STG and Heschel’s gyrus) is known to have anatomical connections with multiple 

limbic and paralimbic structures involved in the generation of affective activity, such as the 

amygdala, the orbitofrontal and the cingulate cortices [93]–[95]. Therefore, it has been 

previously associated with functions beyond the mere perception of auditory stimuli: it has 

been identified in both decoding ([68], [70]–[72], [96]–[98]) and contrast studies ([54], [66], 

[99]) as a crucial region for the processing of the emotional content of auditory stimuli and 

of non-musical emotions [92]. Similarly, the temporal poles are highly interconnected with 

both the amygdala and orbital frontal cortex and have been linked to various functions 

related with emotion and social cognition, in particular with the emotional processing of 

auditory stimuli [100]. In fact, an hyperactivation of the TPs when a subject is listening to 

unpleasant music, contrasting with a deactivation when the individual is listening to music 

with a positive valence has been shown [54].  

Nevertheless, we cannot exclude the possibility that the contributions of voxels in the 

auditory cortex were driven, at least in part, by acoustical differences between stimuli. 
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Furthermore, somatosensory and motor regions such as the premotor cortex, the 

SMA and the pre- and postcentral gyri (primary motor and somatosensory cortices, 

respectively) have been proposed to constitute an interconnected neural circuit with 

auditory areas, crucial for the perception of music [101] and the presence of significant voxels 

in these areas correlates with previous studies where these regions also provided above-

chance classification accuracies of music-evoked emotions [68], [96].  

The involvement of these motor areas in the perception of music might be explained 

by music's rhythmic entrainment, which refers to the synchronisation of neural activity with 

the music's tempo, activating motor areas. That is, even in the absence of overt movement, it 

seems to exist a perception-movement coupling. This also relates with the concept of motor 

imagery, which refers to the mental simulation of a movement without any actual execution 

of the movement [102]. Moreover, the pre-SMA area, in particular, is known to be involved in 

the inhibition of movement in certain contexts, which may happen when the participants go 

against the urge to move while in the fMRI scanning process. Considering that the urge to 

move may vary according to the type of musical stimuli being present, this brain region may 

provide significant information about the emotional content of a song. 

Additionally, clusters were also found in both brain hemispheres in the DLPFC, both 

in the pars triangularis and in the pars orbitalis of the IFG, and in the VMPFC, (in the medial, 

posterior and anterior orbital gyri of the orbitofrontal cortex).  

These results are consistent with the critical role of the PFC in the reward network of 

the brain and in the generation and regulation of emotions [103] as evidenced in previous 

studies, including music-evoked emotions studies [67], [68], [104], [105]. 

In particular, the VMPFC is often recruited during the processing of self-related 

information and autobiographical memories [106], [107], as well as introspection [108] and 

mind wandering [109], which are processes often related to the arising of emotions. In regard 

to music, specifically, it has been associated with the subjective perception of the valence of 

songs[107] and, in particular with high valence and low arousal music) [110] as well as with 

the emotive processing of unexpected musical chords [111].    
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Furthermore, the VLPFC and the DLPFC are also involved in the regulation of 

emotional experiences in terms of valence and arousal [112]. The dorsal medial prefrontal 

cortex (DMPFC), which is adjacent to the DLPFC, is involved in associating music with 

memories, particularly emotionally salient episodic memories, suggesting a role of the 

DLPFC in the encoding and retrieval of music-evoked autobiographical memories [107]. 

Additionally, activations in the VLPFC were associated with aversive and dissonant music 

[105] and therefore this area may be used to distinguish between some of the quadrants with  

negative valence (usually associated with dissonant music). 

Furthermore, the presence of significant voxels in visual regions spanning the entire 

occipital lobe (including the middle, superior, and inferior occipital gyrus, as well as the 

lingual gyrus and the calcarine fissure with its surrounding visual cortex), in conjunction 

with temporal regions such as the fusiform gyrus and the MTG, as well as in the precuneus, 

corroborates earlier findings ([96], [110], [114], [115]). These observations can be explained by 

visual imagery serving as a mechanism through which music can stir emotions.  

In particular, sad music (usually associated with both low arousal and low valence, 

quadrant Q3 of the Russell’s Circumplex) has been demonstrated to be associated with 

stronger mind wandering through visual imagery in comparison with happy music (high 

arousal and valence, quadrat Q1 of the Russell’s Circumplex), which suggests a role of these 

visual areas in distinguishing between these quadrants during classification tasks [115]. 

Additionally, the presence of significant voxels in the precuneus might not only signify its 

involvement in visual imagery but also underscore its role in episodic memory. This region 

is intricately linked not only to the creation of mental visual scenarios but also to the retrieval 

of personal experiences. [116] Furthermore, the parietal lobe unveiled additional clusters 

within memory-related regions, particularly in the inferior parietal gyrus encompassing 

both the angular and supramarginal gyrus. 

Notably, the left angular gyrus has a key role in episodic memory [117], in particular, 

in the processing of semantic musical memory (the ability to recognise familiar songs or 

melodies by their tune, without necessarily remembering the specific context in which they 

were heard) [118].  
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Considering the subcortical regions, the amygdala and the hippocampus are central 

hubs of emotion processing and key elements of the reward network of the brain, 

interconnected with multiple other regions involved in the processing of feeling states, 

including  the NAcc, the PFC and the auditory cortex. [105] This centrality has been reflected 

in many studies showing activations in these area during the listening of music with 

emotional content.  

 

Moreover, whilst the relevance of specific brain regions in the processing of 

emotions, particularly in the context of music-induced emotions, cannot be understated, it 

is essential to consider that the presence of voxels across the entire brain, especially within 

the three models that decoded the emotional content of music clips, may diminish the 

significance of specific regions. It is ambitious to claim that one region holds more 

importance than another in the classification of emotional states. 

   

. . Limitations and future work 

The present work allowed to successfully achieve the proposed goals: to decode the 

emotional content of music clips in terms of their valence and arousal levels separately and 

simultaneously (i.e., to decode each individual quadrant). Nevertheless, there are some 

factors that should be considered and implemented in the future to allow an improvement 

of the results and of the generalization ability of decoding models regarding music-evoked 

emotions. 

Foremost, it is relevant to notice that the analyses were performed with spatial 

smoothing of the fMRI data, and computed in the normalized MNI-space, so significant 

voxels may have “smeared” from one region into another adjacent region by the smoothing 

procedure, leading to imprecise interpretations of certain regions being relevant for the 

decoding tasks. 

Additionally, the clusters identified as containing significant information were 

always very small and dispersed. This was a result of the noisy stability masks used for the 
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decoding of valence, arousal and of each of the four quadrants individually, that comprised 

dispersed voxels across the whole brain. Future work may include clustering techniques in 

the stability masks as a way of condensing the regions that may be used by the classifiers to 

perform the decoding.  

Also, the stability masks used were highly tailored to the neural correlates of each 

participant while listening to the songs. Whilst this allows for training the models beyond the 

characteristics of specific songs in inter-subject approach, it might limit the extrapolation 

power of the classifiers to external groups of subjects. Henceforth, the next step might 

include the creation of group stability masks in a leave-one-out approach by using the 

activation levels of all of the participants excepting one and testing on that one.  

Furthermore, when the PART labels were used as targets, the small sample size of the 

testing set and its imbalance in the number of points of each class might be, as hypothesised, 

the explanation for the discrepancy of results between the two types of labels. Accordingly, 

an increase of the sample size (i.e., the number of data points of each class) could be 

considered, though this may lead to a necessity of increase the experimental time, which 

may cause discomfort to the participants and should be pondered attentively. 

Regarding the contributions of voxels in the auditory cortex, further work should 

include a control condition to account for the contribution of acoustical differences between 

stimuli and explore the contribution of the musical features of each excerpt to the evoked 

emotions and classification model performance. This would allow to assess if the obtained 

results are a consequence of the processing of the emotional content of the music excerpts 

and not merely of the differences in the auditory processing due to different music features 

across the four quadrants. 

Also, an approach to reduce the possible irrelevant variations between different 

music excerpts of the same quadrant might include averaging the fMRI images over music 

clips of the same category (instead of doing solely an average of brain volumes within the 

same music clip) hence increasing the proportion of signals relevant to emotion 

categorisation. 
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Additionally, the discrete classification of the music excerpts in only four classes may 

be a limiting factor since, even if two music excerpts are situated within the same quadrant, 

they might have different absolute values of valence and arousal. Therefore, considering the 

participants ratings in terms of the specific distance to the valence and arousal axis pointed 

by them when asked to situate the heard excerpts in the Russell’s circumplex after the fMRI 

scanner, instead of solely in terms of the quadrant, may provide a better insight of the 

subjective perception of the emotional content of the musical clips. 

Finally, the assessment of the influence of mood states in the perception and 

processing of the emotional content of music could be done by integrating the results of the 

POMS questionnaire answered by the participants and to correlate them with both the 

behavioural and neural correlates findings.  

 

 

.  
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Conclusions 

The main objective of this work was to define a classification model able to decode 

the emotional content of a music clip by analysing the fMRI patterns during the listening of 

different auditory stimuli. Additionally, we aimed to identify the neural correlates of music 

evoked emotions.  

These goals were achieved, with the best decoding results obtained when 

considering the PRED labels as targets of the classification and stability masks as the feature 

selection method. 

Regarding the optimal model, the most significant regions for the decoding analysis 

were found in neocortical regions across the whole brain, particularly within the auditory 

cortex, in the prefrontal cortex, in somatosensory and motor areas as well as across multiple 

visual areas.  Additionally, some clusters were found in less number in some subcortical 

areas and in the cingulate cortex. These results highlight the role of mechanisms such as 

rhythmic entrainment, mental imagery and episodic memory as fundamental ways through 

which music is able to elicit emotions in humans. 

The present work provides a valuable framework for the decoding of music evoked 

emotions, extending previous research by including a larger set of music capable of evoking 

emotions comprising different categories. 

The ability to decode the emotional content of such a broad set of musical stimuli in 

terms of valence and arousal levels supports its promising use to modulate emotional 

responses and, ultimately, to guide music-based neurofeedback therapies.  
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The supplementary material can be consulted in: 
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