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Abstract

Artificial intelligence has garnered significant interest since its inception due to its
vast potential benefits and applications. However, numerous cases have put into
question the ethics of artificial intelligence, with topics of privacy, data protec-
tion, bias, and even safety becoming more and more prevalent in regards to this
technology. To address these issues, many authors believe that we must place a
larger focus on responsible artificial intelligence in order to ensure a safer future;
in other words, artificial intelligence that is ethical and, therefore, trustworthy.
Despite their proven accuracy, the models that are currently most prevalent (such
as neural networks), are inherently black boxes. In order to preserve the accuracy
of these models while maintaining the transparency and, thus, the trustworthi-
ness of simpler models such as decision trees, the field of explainable artificial
intelligence was created.

One of the most cited explainable artificial intelligence models is LIME (Local
Interpretable Model-agnostic Explanations). However, its non-deterministic na-
ture signifies that explanations regarding the same instance may vary. This may
lead to some tension in sensitive areas of application such as medicine, where the
end-users do not understand the underlying technology and, thus, may doubt
its efficiency. The authors of DLIME (Deterministic Local Interpretable Model-
agnostic Explanations) hoped to assuage this issue by creating a deterministic
model based on LIME. While the authors of DLIME provided a comparison be-
tween their model and LIME, there is still scope for experimentation and, hope-
fully, improvement within the framework.

The goal of this thesis is twofold. Firstly, it aims to introduce a novel explainable
artificial intelligence model that integrates active learning into the DLIME frame-
work: Active Learning-based Deterministic Local Interpretable Model-agnostic
Explanations (AL-DLIME). Secondly, it aims to perform a detailed comparison of
LIME, DLIME, and AL-DLIME for medical diagnosis applications, with a focus
on assessing the impact of DLIME and AL-DLIME’s deterministic behavior on
their overall performance.

For the purposes of this study, four datasets were selected within some of the
areas of medicine that are considered to have the least accuracy in terms of di-
agnosis, oncology and cardiovascular diseases. In terms of the underlying black
box model, random forest was selected due to its popularity and overall good
performance. The decision tree model was also selected to address the accuracy-
explainability tradeoff, more specifically, if the use of a black box model is strictly
necessary. The performance of each model was evaluated using several metrics,
including accuracy and F1-score for both the machine learning and explainable
artificial intelligence models. Regarding solely the explainable artificial intelli-
gence models, the metrics of faithfulness to the black box model, stability of the
model through Jaccard’s distance, and single and incremental deletion were se-
lected.

The results show AL-DLIME outperformed random forest on several occasions,
achieving the best overall results for accuracy and F1-score among the explain-
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able artificial intelligence models. However, LIME obtained the overall highest
scores of faithfulness to random forest, with results consistently above 60%. Fi-
nally, random forest outperformed decision tree on accounts of both accuracy and
F1-score across both experiments, with its highest score of accuracy, 99%, being
on par with other state of the art machine learning models. The study provides in-
sights into the strengths and weaknesses of each explainable artificial intelligence
model and their suitability for medical diagnosis applications. Further research
may expand upon these findings by evaluating the models with a larger array of
metrics, as well as through the use of other machine learning models.

Keywords

Local interpretability, Local explainability, Active learning, LIME, DLIME, XAI
metrics, Trustworthiness, Faithfulness, Accuracy, Random Forest, XAI, Medicine

xiv



Resumo

A inteligência artificial tem suscitado um interesse significativo desde a sua cri-
ação devido aos seus vastos potenciais benefícios e aplicações. Contudo, múlti-
plos acontecimentos acabam por colocar em causa a ética da inteligência arti-
ficial, com tópicos de privacidade, proteção de dados, bias, e até segurança a
tornarem-se cada vez mais prevalentes em relação a esta tecnologia. Para abordar
estas questões, muitos autores defendem que se deve dar maior ênfase a uma in-
teligência artificial responsável de forma a garantir-se um futuro mais seguro; ou
seja, uma inteligência artificial éticamente correta e, consequentemente, confiável.
Apesar da sua comprovada accuracy, os modelos que atualmente são mais preva-
lentes (como, por exemplo, redes neuronais) são fundamentalmente caixas pretas.
Assim, de modo a preservar a accuracy destes modelos sem perder a transparên-
cia, e por isso, também a confiabilidade de modelos mais simples, como árvores
de decisão, foi criada a área de inteligência artifical explicável.

Um dos modelos de inteligência artificial explicável mais citados é o LIME. No
entanto, a sua natureza não-determinística significa que as explicações sobre uma
mesma instância podem variar. Isto pode gerar alguma tensão em áreas de apli-
cação mais sensíveis, como a medicina, onde os utilizadores não têm necessari-
amente que compreender a tecnologia subjacente e, portanto, podem duvidar
do seu desempenho. Os autores do DLIME esperavam resolver este problema
ao criar um modelo determinístico com base no LIME. Apesar deste autores
fornecerem uma comparação entre o seu modelo e o LIME, existe, contudo, a
possibilidade de melhoria dentro do sistema.

O objetivo desta tese é duplo. Em primeiro lugar, pretende introduzir um novo
modelo de inteligência artificial explicável, chamado AL-DLIME, que integra apren-
dizagem ativa no sistema DLIME. Em segundo lugar, visa realizar uma compara-
ção detalhada entre LIME, DLIME e AL-DLIME em aplicações de diagnóstico
médico, com foco na avaliação do impacto do comportamento determinístico de
DLIME e de AL-DLIME no seu desempenho geral.

Para efeitos deste estudo, foram selecionados quatro datasets dentro de algumas
das áreas da medicina consideradas de menor precisão em termos de diagnós-
tico: oncologia e doenças cardiovasculares. Em termos do modelo de caixa preta
subjacente, o random forest foi selecionado devido à sua popularidade e bom de-
sempenho geral. O modelo árvore de decisão também foi selecionado de modo
a abordar o compromisso entre accuracy e explicabilidade, mais especificamente,
averiguar se o uso de um modelo de caixa preta é estritamente necessário. O
desempenho de cada modelo foi avaliado usando várias métricas, incluindo ac-
curacy e F1-score para ambos os modelos de aprendizagem computacional e de
inteligência artificial explicável. Para os modelos de inteligência artificial ex-
plicável, foram selecionadas as métricas de fidelidade ao modelo de caixa preta,
a estabilidade do modelo, e exclusão única e incremental.

Os resultados mostram que o AL-DLIME obteve melhor desempenho que o ran-
dom forest em várias ocasiões, alcançando os melhores valores gerais para accu-
racy e F1-score entre os modelos de inteligência artificial explicável. No entanto,
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o LIME obteve os maiores valores gerais de fidelidade comparativamente ao ran-
dom forest, com resultados consistentemente acima de 60%. Por fim, o random
forest superou a árvore de decisão em termos de accuracy e F1-score em ambos os
testes experimentais, atingindo o resultado mais alto de 99% para accuracy e es-
tando assim ao mesmo nível de outros modelos de aprendizagem computacional
de última geração. Este estudo fornece informação sobre os pontos fortes e fracos
de cada modelo de inteligência artificial explicável e a sua adequação para apli-
cações no âmbito de diagnóstico médico. Futuros estudos podem complementar
estes resultados ao avaliar os modelos com uma maior seleção de métricas, bem
como por meio do uso de outros modelos de aprendizagem computacional.

Palavras-Chave

Interpretabilidade local, Explicabilidade local, Aprendizagem ativa, LIME, DLIME,
Métricas de inteligência artificial explicável, Confiabilidade, Fidelidade, Accu-
racy, Random Forest, Inteligência artificial explicável, Medicina
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Chapter 1

Introduction

In this chapter, Section 1.1 will detail the overall motivation behind this thesis,
as well as the context surrounding it. Following this, Section 1.2 will explore
the main goals. Section 1.3 will detail the approach this thesis had in order to
achieve the main goals, with Section 1.4 providing a list of the contributions this
work has made. Finally, Section 1.5 will provide an outline of the structure of this
document.

1.1 Motivation and Context

In recent years, the field of Artificial Intelligence (AI) has evolved tremendously,
garnering significant interest and expanding to include numerous subfields, such
as Machine Learning (ML), deep learning, natural language processing, and many
more [1] [pp. 16-29]. From autonomous cars, search and recommendation algo-
rithms, chatbots, and resumé screening for employment, to the integration of AI
in the process of medical diagnoses, there seems to be no lack of imagination in
regards to how this technology can be used in day-to-day life. Nevertheless, as
with any other facet of technology, it is of utmost importance to put into question
the consequences AI may have on society, whatever its application may be [2].

Many concerns have been raised over the ethics of AI, especially when consid-
ering its most sensitive areas of application [2–4]. Some of these concerns, such
as those related to privacy, data protection, bias, and safety, are rooted in real-
life events that have shown the potential danger of AI, while others, such as the
“awakening” of AI, are issues that some authors fear may come to pass in the
near future [2–7]. While it is possible that these issues may derive from a flaw in
the overall AI design, or from biased data, in other cases, the problem may not
be so apparent, warranting a more exhaustive investigation [8]. Whatever the
cause, it has become most evident that if we are to continue with this pace in AI
evolution, there is a large need for AI regulation.

Reliability, accountability, and traceability are all topics of interest when it comes
to discussions of how AI could be regulated. The common thread among all of
these core concepts is transparency, and through transparency, there is hope to
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achieve trust in AI [8]. In a study published in 2019 by the High Level Expert
Group on AI (AI HLEG) [8], they determined that in order to achieve trustwor-
thy AI, the technology should follow four ethical principles: respect for human
autonomy, prevention of harm, fairness, and explicability. While the first three
are self-explanatory, serving as a clear reflection of fundamental human rights,
the final concept is something more inherent to AI. When it comes to applications
that may have catastrophic consequences given a single instance of misclassifica-
tion, or a flaw in the algorithm’s overall design, it is of utmost importance that
we understand the origin of any potential issues. Given the current popularity
of algorithms which are, for all intents and purposes, black boxes, this issue be-
comes more complex. Therefore, explainability has been proposed to mitigate
these concerns, and thus, the subfield of eXplainable Artificial Intelligence (XAI)
has formed around it.

There are many different fields where XAI would be an important asset, however,
one of the most critical areas of application is perhaps in medicine, where any
single mistake may cost the life of a patient [9]. Despite the potential benefits of AI
in healthcare being vast, good performance is insufficient in regards to garnering
approval for use in real life scenarios – or, more specifically, trust [10–13]. Thus,
the potential explainability could offer to such areas is unparalleled.

1.2 Research Problem, Aims, Objectives, and Ques-
tions

One of the most cited XAI models is LIME [14], due to its impressive perfor-
mance and faithfulness to the underlying black box model. However, despite
its prevalence, the non-deterministic nature of the algorithm means that there
may be differences between explanations regarding the same instance. For ap-
plications such as medical diagnoses, where the end-users have no obligation to
understand how these algorithms work, this may cause tension and, therefore,
a loss of trust. It is for this reason that Zafar and Khan proposed DLIME [15],
a deterministic model based on LIME. In their original paper [16], they demon-
strated the stability of their proposed model through the use of Jaccard’s distance
among a select array of medical-based datasets. However, the lack of evalua-
tion metrics in their original paper limited the comparison between DLIME and
LIME. To address this gap, they published a more comprehensive comparison,
which showed DLIME outperforming LIME in terms of stability and classifica-
tion quality. However, LIME performed better in terms of faithfulness. There is
still scope for experimentation within the DLIME framework, however, and de-
spite a lack of metrics to assess the quality of explanations, DLIME’s potential for
improving medical diagnoses should not be dismissed. As such, in this thesis I
propose AL-DLIME, a novel XAI model that implements Active Learning (AL)
within the DLIME framework. By proposing and evaluating AL-DLIME in this
study, I hope to contribute to the development of XAI models that may be applied
in sensitive and critical domains, such as medicine, with improved performance
and transparency.
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While DLIME is a modified version of LIME that avoids non-determinism and
thereby promotes a more stable generation of explanations, AL-DLIME is, in
turn, a modified DLIME. With the AL-DLIME algorithm, the clustering stage of
the original DLIME is substituted by an AL stage, thereby selecting the most in-
formative instances to train the surrogate model (ridge linear regression in this
case). Thus, AL-DLIME not only offers the benefit of determinism, an important
feature for critical domains such as medicine, but also the possibility of training
the surrogate model with a limited number of instances, specifically those that
provide the most valuable information. The latter property, in particular, is also
of extreme importance in domains where data exists in large quantities, though
it is mostly, if not completely, unlabeled, as is the case with medicine.

In order to evaluate AL-DLIME, the following metrics were selected: the faithful-
ness metric from Ribeiro et al. [14], the metric of stability from Zafar and Khan
[15], the single deletion metric, and the incremental deletion metric [17–20]. These
measures provide a comprehensive evaluation of the quality of the explanations
generated by both XAI models, including their accuracy, consistency, and faith-
fulness. The results obtained with these metrics by AL-DLIME in four datasets
from the field of medicine are confronted with those of the XAI models of LIME
and DLIME.

Having defined the research problem and summarise the research aims and ob-
jectives, this thesis attempts to answer the following research question:

Can XAI models be developed and applied in sensitive and critical domains, such as
medicine, with improved performance, stability, and transparency, while requiring less
data for training?

This research question can then be split into the following sub-research questions:

1. Can LIME-like XAI models be trained with less data while not losing perfor-
mance (while not losing the quality of the generated explanations, including
their accuracy, consistency, and faithfulness)?

2. Can a deterministic modified version of LIME be developed while not los-
ing the quality of the generated explanations, including their accuracy, con-
sistency, and faithfulness?

3. Can such deterministic modified version of LIME be applied to critical do-
mains such as medicine, while not losing the quality of the generated expla-
nations, including their accuracy, consistency, and faithfulness?

1.3 Approach

The answer to the aforementioned questions rely strongly on the proposal of AL-
DLIME, as well as on a comprehensive comparison between the XAI models of
LIME, DLIME, and AL-DLIME for use in the medical field.

In short, the rationale for AL-DLIME is twofold: (i) avoiding the non-determinism
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of LIME, and thus ensuring a more stable generation of explanations, and (ii)
training the surrogate model with a restricted selection of instances, which is es-
pecially helpful in domains where the labelled data is scarce.

In order to achieve the aforementioned goals, I have selected four publicly avail-
able datasets, three of which are related to the classification of different types of
cancer1 2 3, and the last, to heart disease classification4.

Two experiments are performed for the purposes of this study: the first, with
standardized versions of the dataset, and the second, with non-standardized data.
The necessity for these two experiments stems from the use of the ridge linear re-
gression classifier in both the LIME and DLIME frameworks, which works best
with standardized data [21][p.82].

Several metrics are used for the purposes of comparing not only LIME, DLIME,
and AL-DLIME, but also Random Forest (RF) and Decision Tree (DT). These met-
rics include: accuracy, F1-score, faithfulness to the black box model from Ribeiro
et al. [14], single and incremental deletion, and stability of the model using Jac-
card’s distance from Zafar and Khan [15].

1.4 Contributions

The expected contributions of this thesis are the following:

• AL-DLIME, a deterministic modified version of LIME which maintains the
quality of the generated explanations, including their accuracy, consistency,
and faithfulness;

• Providing a more comprehensive comparison between DLIME and LIME,
and also AL-DLIME, in regards to the performance of the models them-
selves, as well as their faithfulness to the underlying black box models;

• A novel XAI model which utilizes AL for training the surrogate model;

• A study of the application of XAI models to critical domains such as medicine

• Application of several different XAI metrics

• Focus on improving the trustworthiness of XAI models, by enhancing their
determinism

Additionally, from this thesis resulted an article [22] which has been accepted for
publication and for presentation at the 1st World Conference on XAI: S. Holm and
L. Macedo, “The accuracy and faithfulness of AL-DLIME - Active Learning-based

1https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
2https://data.mendeley.com/datasets/th7fztbrv9
3https://www.kaggle.com/datasets/johnjdavisiv/urinary-biomarkers-for-pancreatic-cancer
4https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction
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Deterministic Local Interpretable Model-Agnostic Explanations: a comparison
with LIME and DLIME in medicine.” Proceedings of the 1st World Conference
on Explainable Artificial Intelligence, July 2023.

1.5 Document Structure

This document is organized as it follows:

• Chapter 2 presents background information related to AI, the ethical dilem-
mas related to its current use, XAI, and medical knowledge related to the
selected datasets

• Chapter 3 showcases studies related to the current paper, as well as a more
in-depth analysis of LIME and DLIME, and the evaluation metrics that were
chosen for this thesis

• Chapter 4 describes the methods employed throughout this study, includ-
ing pre-processing of all datasets and the process of model optimization, as
well as the materials selected, such as the datasets, ML and XAI models,
and evaluation metrics

• Chapter 5 explores the results obtained throughout this study, and provides
an in-depth discussion of them

• Chapter 6 presents the final conclusions of this thesis

• Chapter 7 addresses possible topics of interest for future work within the
same frame of work
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Background Knowledge

In this chapter, Section 2.1 includes an overview of the topic of AI, a discussion
of the fields of ML and AL, as well as a short description of the ML models, DT
and RF, which will be of special focus in this study. Some of the ethical concerns
related to AI will be detailed in Section 2.2, followed by a description of what
trustworthy AI should consist of. In Section 2.3, XAI will be explored in greater
detail. All aspects regarding medical knowledge that will be relevant during this
thesis are discussed in Section 2.4. Finally, Section 2.5 will deliver a short sum-
mary of all topics covered throughout this chapter.

2.1 Artificial Intelligence

There is something to be said about the boundless imagination of mankind, and
how it leads to the birth of great inventions, how it drives us to act, to create,
to innovate. We dreamed of flight, and so came the first planes; we dreamed
of space, and set foot on the moon. What separates us from other living beings
has long since been defined as our degree of intelligence and, in some cases, our
sentience. As far as we know, there is no other form of intelligent life in the
universe, which begs the question: what if we were to create something new,
something that does not occur naturally and yet possesses the same cognitive
abilities as humans?

In 1921, author Karel Čapek introduced the term “robot” in his play R.U.R.
(Rossum’s Universal Robots) in order to to describe artificial people created from
inorganic flesh and blood by the titular character, Rossum [23]. They are used as
workers in Rossum’s factory and, despite their initial happiness, they end up re-
volting and ultimately cause the downfall of mankind. While this idea of “robot”
diverges from the concept we are familiar with, instead lending itself to what we
would describe as an “android”, it is an important milestone in the journey of
what we conceptualize AI as.

Nearly two decades later, Isaac Asimov would introduce the “Three Laws of
Robotics”, which serve to prevent any harm robots may cause to their creators,
and humans in general. His short story Runaround [24], published in 1942, was
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the first to explicitly state these rules:

1. A robot may not injure a human being or, through inaction, allow a human
being to come to harm.

2. A robot must obey the orders given it by human beings except where such
orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not
conflict with the First or Second Laws.

Though R.U.R and Runaround are two works of fiction which predate the in-
troduction of AI in real-life settings, it is interesting to note that they both echo
concerns related to the ethics of AI which remain relevant even today. This topic,
alongside the concept of trustworthy AI, will be explored in detail in Section 2.2.

Čapek, Asimov, and many others explored the nuances and possibilities related
to artificial, intelligent life in their stories. However, the prospect of AI existing
outside the realm of fiction would not be explored until 1943, when the first in-
stance of an AI model was proposed by Warren McCulloch and Walter Pitts: a
network composed of artificial neurons, of which each single neuron could turn
“on” or “off” according to stimuli received by neighboring neurons [25]. The first
computer with neural network logic would be built seven years later, in 1950, by
students Marvin Minsky and Dean Edmonds [1] [p.16]. In that same year, Alan
Turing published his paper “Computing Machinery and Intelligence” [26].

Can machines think? It is this question which Turing explored in his 1950 paper
[26], with the proposal of the now famous Turing Test. Initially, we are asked
to consider a scenario consisting of three participants: a man (A) and a woman
(B) who are in separate rooms, and an interrogator (C). The function of C is to
ask a series of questions through a computer (or, as Turing initially suggested, a
teleprompter), during which they will attempt to correctly identify which of the
players is the man and the woman, as they are known to C only as X and Y, re-
spectively. However, as an added twist, A must pretend to be the woman. Turing
then proposed the substitution of the human A for a machine, or, an artificially
intelligent agent. The objective, therefore, shifts to the agent’s ability to convince
the judge that it is, indeed, player B. Thus, if successful, can it then think, as
Turing questioned? According to Hoffman [27], perhaps not.

Despite its fame and large presence in the world of AI, the Turing Test is not
without fault. Hoffman [27] raises the question of what the Turing Test actually
seeks to evaluate, and settles on humanity, in lieu of intelligence. It stands to
reason that certain questions are nigh impossible for a human to answer quickly,
such as complicated calculations, or complex world issues, while an AI agent
may take only a fraction of a second. Therefore, in order to truly pass the Turing
Test, the machine must emulate how we think, and the faults that may bring.

In the time between its birth and now, AI as a whole has experienced many break-
throughs, with the field expanding with concepts such as machine learning, deep
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Table 2.1: The four categories of AI classifications. Adapted from [1][p.2][27].

Rationality-Based Human-Based
Thinking-Based Systems that think rationally Systems that think like humans
Behaviour-Based Systems that behave rationally Systems that behave like humans

learning, natural language processing, and many more. Thus, it comes as no sur-
prise that AI remains without a definition that is universally agreed upon [28].
Russel and Norvig [1] [p.1-5] found that, in general, AI has historically been de-
fined along two dimensions: the first concerns itself with whether or not the ob-
jective is to approximate rationality, or humanity, while the second focuses on the
goals of thought processes and reasoning versus behavior. Table 2.1 demonstrates
the four quadrants that may be derived from the aforementioned dimensions. For
the purposes of this study, I consider AI belongs to the category of “thinking ra-
tionally”, and put forth the definition from Kaplan and Haenlein [29] as a good
representation of this line of reasoning:

[Artificial Intelligence is] a system’s ability to interpret external data
correctly, to learn from such data, and to use those learnings to achieve
specific goals and tasks through flexible adaptation.

Following the definition of AI, it is equally important to explore some of the core
concepts that will be dealt with and discussed throughout this work. These con-
cepts are ML, AL, DTs, and RF classifiers.

2.1.1 Machine Learning

In a general sense, ML is a subfield of AI in which the algorithms focus on the task
of learning, whether that be from examples, definitions, behaviors, or from being
told [30; 31]. ML permits the iterative analysis of extensive datasets, which, often-
times, reveal complex patterns and insights that otherwise would remain hidden
for humans. As such, ML algorithms are apt for tasks such as dimensionality
reduction, regression, clustering, prediction, and, of course, classification.

2.1.2 Active Learning

Active learning is a subfield of ML that focuses on minimizing the amount of
labeled instances that is necessary to achieve a good performance [32]. It does so
by first selecting the most informative instances according to the model’s current
state of knowledge, followed by a query to a human oracle or a pre-existing,
labeled dataset for the correct labels. This is especially appealing for fields in
which there is a higher cost related to labeling data, as is the case for the areas of
speech recognition, for example, or any specialized area with a reduced number
of specialists.

There are three main scenarios for the queries made by the AL models: mem-
bership query synthesis, stream-based selective sampling, and pool-based AL

9



Chapter 2

Figure 2.1: Diagram illustrating the three main AL scenarios. Adapted from [32].

[32]. These scenarios are depicted in Figure 2.1. In membership query synthe-
sis, the learner generates its own instances from the underlying dataset in order
to query the oracle of its contents (e.g., for a dataset with pictures of dogs and
cats, the learner could clip an image around an appendage and query the oracle
of whether that appendage belongs to a dog or a cat). As for stream-based selec-
tive sampling, the learner decides whether or not to query unlabeled instances
while drawing them one at a time. This process is aided through the use of, for
example, an “informative measure”, “query strategy”, or even the computation
of an “explicit region of uncertainty” . Finally, pool-based AL utilizes the en-
tire pool of unlabeled instances, as opposed to stream-based selective sampling.
Then, in a similar fashion to the previous scenario, some measure is utilized to
find the most informative instance for the learner to query.

There are a variety of query strategies that may be used in AL, such as query-
by-committee, expected model change, and so forth. However, for the purposes
of this thesis, it is perhaps more pertinent to focus on uncertainty sampling. The
idea behind this measure is simple: query the instances where the learner is most
uncertain on how to label them. For probabilistic models in binary settings, this
approach is quite straightforward, as the learner may focus on instances which
present a probability of 50% of belonging to a determined class. Other uses of
this strategy may rely on measures such as entropy, for example, or the measure
of least confidence.

2.1.3 Decision Trees

A DT reaches its outputs through a series of tests related to the dataset’s features
[33–35]. These tests (or nodes, as they are most commonly called) may be thought
of as questions, as they query each input relative to the possible values of a certain
feature. The node then branches into two outcomes, a positive and a negative,
and the process repeats until a classification is reached, or, in other terminology,
a leaf (also known as decision node, or terminal node). In the case of categorical
features, the nodes are composed of ‘yes’ or ‘no’ questions, while nodes which
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utilize numeric features are based on a threshold, for example, “Is the value >k?”
[34; 35].

The structure of a DT forms a hierarchy which is highly intuitive for humans to
understand [33]. This is why DTs may also be categorized as white box models,
for their internal decision making processes, in most cases, are simple to under-
stand. However, this level of simplicity in understanding may also come at a cost
in accuracy; most commonly, DTs are outperformed by other, more complex algo-
rithms, such as ensemble methods [36; 37]. These models take the collective out-
put of numerous DTs and combine them to reach a classification, thereby achiev-
ing increased predictive performance and decreased risk of overfitting [37; 38].

2.1.4 Random Forest

Bootstrap aggregating (also known as bagging) is one of the three most com-
monly used ensemble techniques, with RF serving as its main representative
[34; 37; 38]. The construction of each DT within the RF model is achieved through
the use of bootstrap samples taken from the original training data. These sam-
ples are selected randomly, and utilize approximately two-thirds, or 64%, of the
dataset. Upon reaching an output, the DTs then perform a majority vote in or-
der to decide which label to use for the classification, with each tree entitled to
one vote. In other words, the label with the most votes will then be used as the
classification for that instance.

While DTs are intuitive for most people, this may not be the case for RF models.
The quantity of DTs that go into each RF model create a process that is much more
difficult to follow. Thus, while DTs may be considered as “white box” models,
RF are “black box” due to their more complicated nature, and inaccessibility to
laymen. Therefore, despite an increase in accuracy, this opaqueness has, in turn,
generated some distrust with end-users. With AI gaining more and more popu-
larity throughout the years, this topic, as well as many others, have been raised,
leading the way for many discussions surrounding the ethics of AI.

2.2 Ethics and AI

As the field of AI grows and develops, so do the concerns over how this tech-
nology can be used, as well as the many possible consequences its use may im-
ply. As many as thirty-nine of these issues were proposed by Stahl [2], ranging
from questions regarding privacy and data protection, which have already been
breached by AI, to scenarios that may occur in the near future, such as the “awak-
ening” of AI. The most common ethical concerns related to AI that are raised,
however, reveal a vast array of different topics that must be addressed if AI is
ever to be commonplace and widespread.

11



Chapter 2

2.2.1 Privacy and Data Protection

In the digital era, it has become increasingly difficult to guarantee the protection
of personal data [3; 4]. With the introduction of AI, the matter becomes even
more complex. A popular example of the infringement on privacy through the
use of AI is facial recognition, whether it be from pictures or videos [3]. While the
technology may have certain benefits, such as the identification of someone who
has committed a serious crime, it nonetheless remains a topic of serious concern
regarding the right to privacy [4; 5].

The continuous collection of data is facilitated by our online habits – for instance,
social media. Even in situations where this information may seem, for all intents
and purposes, harmless, AI possesses the unique ability to identify patterns that
may breach rights to privacy and data protection [2; 4]. Moreover, it may even be
used to manipulate our behavior through the use of advertisements, or political
propaganda [3].

Reliability is, therefore, a vital question to be addressed when considering the
threat AI may pose to privacy and data protection [2]. Without reliability, how
can individuals trust that the integrity of their personal data will be maintained?

2.2.2 Bias

Like with any other facet of technology, AI was created by humans, and thus
bears the capacity to echo our biases, whether intentionally, or inadvertently
[2; 4]. Several real-life instances may be cited, such as the Correctional Offender
Management Profiling for Alternative Sanctions system, an algorithm which pre-
dicts the probability a given defendant has of re-offending given a wide array of
features pertaining to the individual, as well as their past criminal record [4; 6].
While none of the features included information about the defendants’ race, the
system nonetheless was found to generate a higher number of false positives
and lower number of false negatives in the case of black individuals, contrary to
white individuals [6]. Other examples include Amazon’s recruitment tool, which
skewed heavily in favor of male applicants, as well as popular image databases,
which often propagate old-fashioned ideals of women commonly being in the
kitchen, or men being found hunting [3; 4].

Thus, in much the same way privacy concerns beg the need for reliability, issues
regarding bias require transparency [2–4]. Accountability can only be achieved
through transparency – it is an absolute necessity to know why these issues occur,
whether due to historical bias present in datasets, or bias from the developer.
Elsewise, they will remain ingrained in AI, leading to discrimination as well as
unfairness.
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2.2.3 Safety

For any application of AI in the physical world, safety is usually a point of con-
cern. In the case of autonomous vehicles, this seems obvious: ceding all control
of a powerful machine to an algorithm may not be the best course of action, if the
algorithm has not been tested vigorously. However, although there have been
incidents involving autonomous vehicles1 (including at least one fatal crash in
20182), it is necessary to highlight the fact that the most common causes of ve-
hicular accidents are due to driving over the speed limit, not keeping a safe dis-
tance, and many other examples of reckless driving [3]. Thus, it is not incorrect
to assume that, given autonomous vehicles are programmed to follow the rules
already stipulated in existing driving laws, there should at least be a reduction in
human-caused accidents.

Another common example of issues regarding safety is AI applied to healthcare,
more specifically, the case of misdiagnosis [2; 7]. The matter of black box models
only exacerbates the issue, and thus, while the proposed models may perform
well, this barrier complicates the integration of AI into healthcare [10–13].

When discussing safety, reliability and traceability are both necessary. Individu-
als need to feel that the AI is reliable, in the sense that they are reassured it will
perform its duties safely. At the same time, traceability is crucial in order to hold
the responsible parties accountable, for example, in the case of a malfunction.

In light of these concerns, as well as many others, the focus shifts to how they
may be assuaged. Reliability and traceability are two possible avenues of interest,
though the question of how they might be reinforced remains. This matter is
addressed in a 2019 paper published from the AI HLEG [8], wherein they propose
a number of guidelines for the development of trustworthy AI.

2.2.4 Trustworthy AI

Before advancing to a more detailed description of the guidelines, it is important
to broach the topic of trust, and why so many deem it imperative going forward
for the development of AI. There is no single definition for trust, as it is a concept
dealt with in several different subjects, such as sociology, philosophy, psychology,
and even economics [39]. In general, however, it can be thought of as a bidirec-
tional relationship between two parties, A and B, wherein A believes B will act
in A’s best interest, thereby accepting vulnerability to B’s actions [40]. Should B
fail to meet A’s expectations, A may feel betrayed. However, the status of “trust-
worthy” does not signify an inherent trust in the subject, while trust may also
be placed in someone who is not “trustworthy”. Additionally, there is the argu-
ment that AI should and cannot be trusted, but rather relied upon [40; 41]. Ulti-
mately, and to reiterate the point made at the beginning of Section 2.2, the most
vital aspect at this point in time is to ensure that any ethical issues are addressed

1https://www.nytimes.com/2022/06/15/business/self-driving-car-nhtsa-crash-data.html
2https://www.nytimes.com/2020/09/15/technology/uber-autonomous-crash-driver-

charged.html
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throughout the entire developmental process – including deployment and, af-
terwards, maintenance. Transparency must also be provided for accountability,
should it ever be needed. Thus, whether the term used be reliability or trustwor-
thiness, we as humans will most certainly have less resistance to accepting AI
into our lives if these conditions are met.

According to the AI HLEG [8], a trustworthy AI consists of three components,
all of which should preferably work in harmony: law, ethics, and robustness. In
other words, a trustworthy AI must follow all laws and regulations in an ethical
manner, while guaranteeing it maintains its integrity on both a technological and
social standpoint. However, the application of all three components may not
always be viable; for instance, in the case of facial recognition used to identify a
high-profile criminal through CCTV footage, the individual’s right to privacy –
an ethical principle – should be overridden in favor of their apprehension [5; 8].
Moreover, while there are several ethical values that are universal, oftentimes
ethics is a subjective topic, prone to change and evolve throughout time and even
between cultures, and thus, this component may sometimes be difficult to define
[42].

The basis of these core components should be fostered upon four ethical princi-
ples: respect for human autonomy, prevention of harm, fairness, and explicability
[8]. Despite differences in opinion over what might constitute as ethical or moral,
the AI HLEG [8] have defined these principles as a reflection of the fundamental
rights that we, as human beings, must always be afforded. Such rights include
respect for human dignity, freedom, equality, non-discrimination, and solidar-
ity. They also refer to respect for democracy, justice, and the rule of law, which
encompasses citizens’ rights, though this point is mentioned separately.

Human autonomy is, indisputably, a core value for human dignity and freedom.
Despite many different definitions, Prunkl [43] defends that autonomy can be
thought of as two aspects: authenticity, and agency. In the context of AI, the
preservation of authenticity implies humans must not be subject to “external ma-
nipulation or distorting influences” on behalf of AI, meaning any and all deci-
sions made by humans are authentic to themselves. Respect for agency, on the
other hand, signifies AI must allow humans full control over decisions, guaran-
teeing that they are able to act “on the beliefs and values they hold”. Both of these
definitions are in line with what the AI HLEG describes, and thus this principle
intends to safeguard humans’ place in the world, with AI serving to “augment,
complement and empower human cognitive, social and cultural skills”.

The second principle is perhaps less ambiguous, with a clear link to the issue of
safety that was explored previously. As a general guidance, the AI HLEG states
that no harm should be inflicted upon any living beings, or the natural environ-
ment on behalf of AI systems; in the specific case of humans, they include both the
mental and physical aspect of harm for this definition. Beyond this, they stress
the need for robust AI, in the sense of maintaining technical integrity against po-
tential malicious use. Finally, special care should be taken for applications of AI
regarding more vulnerable people, such as the elderly, as well as situations in
which power imbalances might be present (as examples, they suggest “between
employers and employees, businesses and consumers or governments and citi-
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zens”).

Fairness, akin to autonomy, is a somewhat nebulous concept, with numerous in-
terpretations that may not always coincide. In the case of the AI HLEG, they
consider fairness to be composed of two facets: substantive, and procedural. The
first involves the development of AI systems without bias, discrimination, or stig-
matisation through an “equal and just distribution of both benefits and costs”.
However, this definition may still be seen as relatively superficial; what may be
considered as “just distribution”? Moreover, there is an overlap with the first
principle, in that substantive fairness is also equated to the absence of manip-
ulation or coercion. Procedural fairness addresses the need for accountability,
seeing as how it encapsulates an individual’s right to appeal “decisions made by
AI systems and by the humans operating them”. Beyond accountability, it is here
that the AI HLEG introduces a new concept: explicability, or, in other words, an
explanation of the decision-making processes of AI systems.

Thus, we are led to the final principle, which is also one of the core concepts of
this thesis. To enhance the general description mentioned previously, explicabil-
ity, or explainability, is fundamental for building trust between humans and AI.
For many algorithms (more specifically, those we call “black box”), the process
between input and output is, to all intents and purposes, an enigma for those
who have little to no knowledge regarding the area of AI. They are therefore less
likely to trust, or rely on, these results – especially in the case of high risk appli-
cations, such as hospitals. This topic will be broached in further depth in Section
2.3.

While these principles provide further context as to what the AI HLEG believes
a trustworthy AI should act like, they remain nebulous. It is for that exact reason
that they establish seven requirements regarding how to implement these same
principles. They are as follow:

1. Human agency and oversight: Before an AI system’s development, it should
be assessed for any possible infringement upon humans’ fundamental rights.
During development, human autonomy should be taken into consideration
for each step. Finally, there should be some level of involvement on behalf
of humans regarding the decision-making process, whether it be mandatory
for each decision, or optional.

2. Technical robustness and safety: AI systems should primarily be techni-
cally robust, as aforementioned. However, in the event of a security breach,
there should be plans already in place to circumvent these issues. Addition-
ally, AI should be accurate, reliable, and reproducible. In this context, the
AI HLEG describes a reliable AI as “one that works properly with a range
of inputs and in a range of situations”.

3. Privacy and data governance: All data provided to AI, as well as any data
that may be generated, should be protected and remain private, save for a
select number of official and qualified personnel. The quality of this data
should also be verified, and its integrity maintained.
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4. Transparency: AI should be traceable, in the sense that all decisions and
functionalities should be well documented to improve accountability. AI
should also be explainable. Moreover, users should have the choice to
choose whether or not they interact with AI in place of humans, and thus,
AI agents should be labeled as such in order to prevent deception.

5. Diversity, non-discrimination and fairness: All biases should be avoided
through careful consideration of the datasets that are being used, as well as
further requirements and assessments regarding the developmental process
of the system. The use of AI systems should also be intuitive and accessi-
ble to all users. Finally, stakeholders should solicit feedback for the entire
duration of the AI life-cycle.

6. Societal and environmental well being: The impact of AI on society, the
environment, and democracy must be monitored closely. Though not ex-
plored, another ethical issue related to the use of AI is its environmental
impact, be it due to large consumption of energy, or waste generated due to
an increase in demand of electronic goods.

7. Accountability: Internal and external audits of AI should be performed,
with the results being made available for consultation. This is especially
important in the event of negative impacts, which should be well docu-
mented and shared for the purpose of avoiding similar incidents in the fu-
ture. Those affected by such events should also be fairly compensated.

The manner in which these requirements are linked to the four ethical principles
can be explored through Figure 2.2.

While all of the listed requirements broach important topics for building and
maintaining trust in AI, explainability will henceforth be the focus of this thesis.
Namely, explainability as a means to ease the integration of AI in healthcare.

2.3 Explainable AI

When discussing the topic of XAI, the concepts of interpretability and explain-
ability tend to be of interest. There are conflicting opinions concerning how to
define these notions; while some authors consider them to be interchangeable
[44; 45], others defend that this is not the case [46–48], which is the stance of this
thesis. Gilpin et al. [46], for example, argue that explainability is an improvement
upon interpretability – a next step towards the ultimate goal of trustworthy AI.
In this context, they define interpretability as the ability to “describe the internals
of a system in a way that is understandable to humans”. The success of inter-
pretability should therefore be judged on the ability of a system to make use of
vocabulary that is meaningful to the user in order to produce a description that
is simple to understand. However, they pose that an interpretable system alone
is lacking. Explainability, on the other hand, would provide a means to not only
answer questions from users, but also defend outputs, as well as permit auditabil-
ity. Thus, Gilpin et al. defend that explainability may be seen as a subcategory
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Figure 2.2: Diagram illustrating how the four core ethical principles relate to the
seven requirements defined by the AI HLEG.

of interpretability – while the description of explainability implies an inherent
interpretability, a model that is interpretable is not necessarily explainable.

Linardatos et al. [47], on the other hand, propose that interpretability is linked to
the outputs of an AI system, while explainability focuses on the internal work-
ings of the system. Therefore, an interpretable system is defined by its ability to
allow users to understand the relationship between an AI system’s inputs and
outputs, while an explainable system permits a better understanding of the inter-
nal workings of the system. Contrary to the definitions put forth by Gilpin et al.,
this implies no correlation between either concept.

As a third point of view, Barredo Arrieta et al. [48] view interpretability and
explainability as passive and active characteristics of AI systems, respectively.
In other words, a system that is inherently understandable to the user is inter-
pretable, while one that actively provides clarification regarding actions or pro-
cedures is explainable.

Why is explainability so sought after, however? From the previous definitions,
we may conclude that XAI will permit a better understanding of how AI algo-
rithms work. Thus, the question evolves: should we not already know how these
algorithms reach their outputs? In the case of many current AI models, such as
deep neural networks and random forest, high accuracy comes at a price: an el-
evated complexity which causes the inner workings to become opaque. This is
commonly referred to as the black box problem, and arguably the primary cata-
lyst for the origin of XAI. After all, and to reiterate a point made in Section 2.2,
we as humans are less likely to trust something we cannot understand – espe-
cially when applied to high-risk areas. However, building trust is merely one
of the reasons given for those in favor of XAI. The ability to explain unexpected
decisions allows for auditability, as well as the ability to enforce some degree of
fairness in systems such as these [48; 49], both of which have been discussed in
Section 2.2 as desirable characteristics for trustworthy AI. Furthermore, other au-
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Table 2.2: Some of the many available definitions of interpretability and explain-
ability applied to the area of XAI.

Author(s) Definition of
Interpretability

Definition of
Explainability

Gilpin et al. [46]

A system’s ability to describe
its internal workings in a way
that is understandable to
humans

A system’s ability to answer
questions from users, defend
outputs, and permit
auditability

Linardatos
et al. [47]

A system’s ability to allow
users to identify the cause-
-and-effect relationships
within the system’s inputs
and outputs

A system’s ability to allow
users to understand the
internal procedures that
take place while the system
is training or making a
decision

Barredo Arrieta
et al. [48]

A passive characteristic of a
model referring to the level
at which a given model
makes sense for a human
observer

An active characteristic
of a model, denoting any
action or procedure taken
by a model with the intent
of clarifying or detailing
its internal functions

thors defend that XAI will also facilitate the improvement of these same models:
as our understanding of the model and its decision-making processes increases,
our ability to detect possible flaws within it increases as well [44; 45; 49]. Follow-
ing this reasoning, XAI may also permit a more thorough maintenance of black
box models, thereby preventing errors or flaws which otherwise may not have
been caught [44; 49]. The ability to detect causal relationships between data (or,
in other words, causality) is another common goal for XAI, as well as an example
of just how these models may help us learn [44; 48]. Finally, there is the issue of
accessibility for the end users who do not have in-depth knowledge of this area,
and how XAI may ease this barrier [48].

The challenge of constructing explanations is not restricted solely to translating
complex computational processes to something that the user can understand,
however. It stands to reason that different users may have varying degrees of ex-
pertise and, therefore, require explanations of varying complexity [49–52]. Thus,
though an explanation may be technically correct (or, in other words, complete),
that does not guarantee that it is understandable to the user and, consequently,
may not be considered a “good” explanation [46; 53]. Gilpin et al. [46] note that
the tradeoff between these two concepts must be done with some caution. The
risk of creating a system that is understandable to users, but over-simplified, may
be considered unethical in the sense that it is sacrificing a better understanding
of the algorithm in order to be trusted. Thus, that trust, rather than be earned, is
fabricated through manipulation.

In a comprehensive article, Miller [45] draws on theories from the social sciences
in order to delineate a clearer idea of what a good explanation consists of. Firstly,
he found that contrastive explanations are considered more insightful. In other
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words, an explanation of “Why did event P happen instead of event Q?” is prefer-
able over “Why did event P happen?”. This leads us to Miller’s second finding:
explanations are selected. An exhaustive list of all the causes that may have led
to the presented output is unappealing and oftentimes overwhelming to the user.
Explanations that are simpler (those that present fewer causes) and more general
(those that may be applied to more events) are far more preferable. As Miller
states, “Humans are adept at selecting one or two causes from a sometimes in-
finite number of causes to be the explanation”. However, this selection is not
without its biases; explanations that align with a user’s prior beliefs are far more
likely to be accepted than ones that do not. Miller also found that explanations
based solely on probabilities are unsatisfying to users, with the use of concrete
causes rather than statistical relationships regarded as more desirable.

From these criteria, and per Miller’s own conclusions, we can safely assume ex-
planations are heavily influenced by context. Thus, for now there is no consensus
as to what a “good” explanation consists of. The analysis of inherently trans-
parent models (or glass box models), however, may be of some interest for the
construction of explainable models.

Presently, three levels of transparency may be used to describe glass box models:
simulatability, decomposability, and algorithmic transparency [48; 54]. Simulati-
bility characterizes the ability for the user to understand the entire model at once,
including all parameters and calculations made to reach the output. This implies
that the model must be simple, as the user must be able to understand the en-
tire process, from input to output, in a short amount of time. The second level
of transparency describes models which present an intuitive explanation for each
of its parts (input, parameter, and output), without the need for the user to be
able to contemplate the entire model at once. Finally, algorithmic transparency
centers on the explainability of a system’s learning algorithm. These three levels
may also be thought of as a hierarchy, as demonstrated in Figure 2.3, in the sense
that a simulatable model is both decomposable and algorithmically transparent,
however, a model that is only algorithmically transparent is neither simulatable
nor decomposable.

In juxtaposition with inherent transparency, there is post-hoc explainability, or,
in other words, XAI models. Currently, they may be characterized along two
broad dimensions [49; 55]: the scope of the explanations, and the scope of the
model itself. As for the scope of explanations, there are two subcategories [44; 47;
49; 55]: global explainability, with the objective of making the general process of
the underlying black box model understandable, and local explainability, which
focuses instead on explaining each individual prediction. Similarly, there are two
subcategories regarding the scope of the model [47; 49; 55]: model-specific, which
may only be applied to a specific class of AI, and model-agnostic, which may be
applied to any class of AI.

As the field evolves, so too will the approaches to constructing XAI models. At
this stage, however, it is not erroneous to believe that there is a promising fu-
ture for the integration of XAI in healthcare. A diagnosis that is missed, delayed,
or wrong may have deadly consequences; nonetheless, these errors are always a
possibility that primary care physicians face when dealing with their patients [9].
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Figure 2.3: Diagram illustrating the hierarchy between the three levels of trans-
parency.

Figure 2.4: Diagram illustrating the general pipeline of intrinsic and post-hoc XAI
models.

Uncertainty on behalf of healthcare professionals, high patient volume, symp-
toms which may appear benign in early stages of disease, and rare diseases may
all impact the accuracy and timeliness of a diagnosis, thereby causing diagnostic
errors. In an attempt to diminish the occurrence of such errors, Singh et al. [9]
proposed several potential improvements relative to system-based (i.e., the di-
agnostic process) and cognitive-based dimensions. Among these improvements,
the authors point to information technology as a possible source of support, for
example, through the use of algorithms. Indeed, countless AI models have been
made over the years for this very purpose [56–60], with the vast majority able to
reach an accuracy of over 80%. However, good performance alone, particularly
in the presence of issues surrounding privacy, data protection, bias, and secu-
rity, is insufficient to foster trust among healthcare professionals [10–13]. It is for
this reason that the potential of XAI to mitigate such concerns is recognized as
fundamental if we are to continue using AI in such applications [10; 11].
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2.4 Medical Knowledge

Non-Communicable Diseases (NCDs) may be divided into five main groups:
Cardiovascular Diseases (CVDs), cancers, respiratory diseases, diabetes, and, most
recently, mental disorders [61]. These physical and mental conditions share amongst
themselves several common threads, the most relevant being the fact that they are
not caused by infectious agents, thus the term “non-communicable” [61]. How-
ever, some cancers and CVDs have been known to occur due to either viral or
bacterial infections [62–64]. Furthermore, some may also find the description of
NCDs too restrictive, owing to the fact that it does not include other disorders
and diseases which may also be considered non-communicable, such as visual
and hearing disorders, and musculoskeletal diseases [64].

Beyond the link of non-communicability, NCDs also share several risk factors,
the most common being tobacco, alcohol, obesity, lack of physical activity, and
an unhealthy diet. Due to the nature of these risk factors, NCDs also present a
high degree of preventability [61; 64; 65]. In fact, the World Health Organization
(WHO) released an action plan in 2016 which stated that approximately 80% of
all cases of heart disease, stroke and diabetes, as well as 40% of cancers could be
prevented, given an appropriate approach to tackling the main risk factors [65].

Adding to this, most NCDs are also chronic, meaning that they either develop
over a long period of time due to sustained exposure to the aforementioned risk
factors, or the nature of the disease is persistent and long-lasting. Moreover, the
presence of two or more chronic conditions in the same individual (or, in other
words, multimorbidity) is especially common for those of whom have been diag-
nosed with a NCD [61].

According to WHO, in 2016 around 71% of all deaths globally (41 million) were
caused by NCDs, making it the leading cause of death worldwide, and therefore
a great cause of concern [63]. Of these deaths, CVDs were responsible for about
43.6% (17.9 million), and cancer, for 21.9% (9.0 million deaths) [63]. With such a
high mortality rate, it stands to reason that the decrease in incidence of these two
groups are of special interest, especially in regards to ensuring the healthy aging
of the global population. It is due to this reason that the datasets for this paper
concern three different types of cancer, as well as CVDs.

2.4.1 Cancer

The term “cancer” is used to describe a large group of diseases which are char-
acterized by their ability to trigger the rapid proliferation of abnormal cells any-
where in the body [63; 66; 67]. By metastasizing, the cancerous cells may spread
to other organs and tissues, a process through which it becomes an invasive tu-
mor, or, in other words, malignant. If the abnormal cells remain in the tissue
wherein they were created, it is considered in situ cancer, or benign [66; 67]. Ei-
ther case is the result of genetic or environmental factors influencing cells during
their development, and thus leading to the acquisition of various aberrant char-
acteristics (such as evasion of apoptosis, tissue invasion and metastasis, for exam-
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ple) [68]. However, most commonly it is the metastases which pose the biggest
threat to cancer patients’ lives; while a benign tumor remains in the same place,
the spread of malignant tumors throughout the body further complicates their
removal [66; 67]. This, in conjunction with the fact that there are over 600 types of
cancer, causes this disease to require a wide variety of different, and often unique,
forms of diagnostic procedures and treatments [63].

While the world progresses towards better conditions for the decline of mortal-
ity from infectious diseases, as well as for the prevention of CVDs, cancer re-
mains a cause for concern. According to the WHO Report on Cancer published in
2020, the year 2018 marked 18.1 million new cases of cancer, as well as 9.6 million
deaths [63]. They estimated that by 2040, we will see these numbers nearly dou-
ble, and, in fact, in 2020 there was a 6.2% increase for new cases (19.3 million), as
well as a 4% increase in the number of deaths (10 million) [63; 69]. Furthermore,
the World Cancer Report published by the International Agency for Research on
Cancer (IARC) in 2020 named cancer as a leading threat to healthy aging due to
its role in regards to premature death, or, in other words, death between the ages
30 to 69 [62]. Out of 183 countries, cancer is listed as the first or second leading
cause of premature death in 134, and the third or fourth cause in an additional 45
[62]. Figures 2.5 and 2.6 offer a more detailed view on the incidence and mortality
rates of the top 10 most common cancers in 2020.

As aforementioned, cancer is a NCD, and therefore may be preventable in nearly
half of the cases. There are several groups of risk factors to be considered, all of
which can be seen depicted in Figure 2.7. Among these groups, tobacco, alcohol
consumption, and obesity are widely recognized as the major global risk factors
[62; 63]. Moreover, the IARC has identified over 100 carcinogens throughout the
years, providing further knowledge on how best to reduce the risk of developing
cancer [62]. Be that as it may, however, it is important to note that there are
other underlying factors which take part in the trends of cancer prevalence and
mortality, most importantly, perhaps, being socioeconomic differences between
and within countries [63].

Later stages of cancer mark a bigger development or spread of the tumors, which,
in turn, leads to a worse prognosis. In other words, a low long-term survival rate.
Furthermore, cancer is a very complex disease, oftentimes requiring a careful
approach to treatment which frequently surpasses the intricacy of other disease
management [62; 63]. Thus, in the many cases where cancer is non-preventable,
screening and early detection may be the next best option [63]. Screening con-
cerns programs, oftentimes headed by public health sectors, that focus on the
target groups are the most likely to develop some specific form of cancer [63].
Therefore, the goal is to detect the disease at a pre-invasive state through precan-
cerous lesions, or at an already invasive state, in which the patient has not yet
suffered symptom onset (i.e., pre-clinical or asymptomatic cancer).

In regards to early detection, the target population is symptomatic people in the
early stages of invasive cancer. Through early detection, the main objective is
to diagnose cancer at a stage where it has most likely not grown, metastasized,
or developed, consequently increasing the patient’s long-term survival rate, and
even quality of life [63]. However, for this approach to be successful it is neces-
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Figure 2.5: Distribution of cases for the top 10 most common cancers in 2020 for
both sexes. For each sex, the area of the pie chart reflects the proportion of the to-
tal number of cases; non-melanoma skin cancers (excluding basal cell carcinoma
for incidence) are included in the “other” category. Adapted from [69].

sary for not only health care providers to recognize early signs and symptoms of
cancer, but also the general public. Moreover, delays amid the healthcare pipeline
may further hinder the earliest possible diagnosis, as well as lack of financing for
pathology and diagnostic capacity [63]. Thus, there is room – and urgency – for
improvement, which AI may come to provide, as mentioned in Section 2.3.

For the purposes of this study, three of the four selected datasets concern cancer
of the breast, ovaries, and pancreas. Both breast and pancreatic cancer are among
the deadliest types, as pictured in Figure 2.6, with breast cancer accounting for
around 6,9% of total deaths in 2020, and pancreatic cancer, 4,7% [69]. In other
words, they are the fifth and seventh deadliest cancers, respectively. Moreover,
breast cancer was the most prevalent type of cancer in 2020, corresponding to
11,7% of all registered cases. Finally, despite ovarian cancer only corresponding
to approximately 1,6% of cases in 2020, it is no less lethal – of those cases, approx-
imately 66,0% resulted in death [69]. Thus, due to the impact of all three types, in
both prevalence and mortality, I found it apt to include datasets regarding them.
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Figure 2.6: Distribution of deaths for the top 10 most common cancers in 2020 for
both sexes. For each sex, the area of the pie chart reflects the proportion of the
total number of deaths; non-melanoma skin cancers (excluding basal cell carci-
noma for incidence) are included in the “other” category. Adapted from [69].

2.4.2 Cardiovascular Diseases

The umbrella term of CVD encompasses all afflictions concerning the heart, vas-
culature of the brain, and blood circulatory system [70] [p.13] [71]. Many CVDs
are caused by atherosclerosis, including cerebrovascular disease, peripheral vas-
cular disease, and coronary artery disease (otherwise known as ischaemic heart
disease, or simply heart attack) [72]. Other types of CVD include heart failure,
congenital heart disease, rheumatic heart disease, arrhythmias, cardiac valvu-
lopathies, and cardiac myopathies [70][p.13][71]. Thus, much like cancer, CVDs
describe a vast array of diseases, all of which are deadly in their capacity to cause
complications in the event of ineffective treatment.

According to a study published by Roth et al. [73], in 2019, there was a total
number of 523 million cases of CVDs worldwide - an increase of nearly 100%
since 1990. CVDs were also responsible for 12.6 million deaths globally, which
marked yet another increase in comparison to the statistics given by WHO for
2016. Ischemic heart disease was by far the most lethal CVD in 2019, accounting
for the majority of deaths (49.2%), followed by ischemic stroke (17.7%), intracere-
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Figure 2.7: Risk factors associated to the development of cancer. Adapted from
[63].

Figure 2.8: Diagram depicting the pipeline of screening in comparison to early
diagnosis. Adapted from [63].

bral hemorrhage (15.5%), and hypertensive heart disease (6.2%) (Figure 2.9).

As aforementioned, prevention of CVDs is achievable due to the nature of their
most impactful risk factors [70] [p.8,18,26-43] [65; 71; 74]. Use of tobacco, over-
consumption of alcohol, physical inactivity, and an unhealthy diet (for example,
excessive intake of sodium and saturated fats) are all behavioral factors that result
in alterations at a metabolic level, namely raised blood pressure, LDL cholesterol,
blood sugar, and obesity. In turn, these metabolic risk factors accelerate the pro-
cess of atherosclerosis. Thus, the first line of prevention for CVDs should rely on
the control of these risk factors - especially for those at high risk, such as people
with diabetes, people above a certain age, and so forth. Additionally, there are
non-modifiable factors, such as air pollution, genetic predisposition, gender, age,
and infections. Alcohol consumption and poor nutrition during pregnancy may
also result in congenital heart defects of the infant.

Similarly to the process of selecting datasets for various cancer types, the choice
of a dataset for classifying a specific CVD was guided by the consideration of
prevalence and mortality rates associated with these diseases. Thus, a dataset re-
garding ischemic heart disease was chosen, due to the extremely high proportion
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Figure 2.9: Proportion of CVD deaths by cause in 2019. Adapted from [73].

of deaths in comparison to other CVDs.

Early detection is key to improving the longevity and quality of life of both CVDs
and cancer. However, human error, whether on behalf of the patient, or the physi-
cian, has proven to be one of several difficult obstacles to overcome. Hopefully,
with the introduction of XAI models, there will be a greater possibility of forming
trust between medical professionals and AI models, thus creating a harmonious
relationship which may permit many benefits, including, of course, the global
quality of life.

2.5 Summary

In this chapter, the topics of AI, ethics related to AI, XAI, cancer, and CVDs were
explored.

2.5.1 Artificial Intelligence

The concept of AI has been explored in both fiction and reality since as early as
1921, with concerns about its ethical implications raised early on [23; 24]. Despite
significant breakthroughs in AI throughout the years, there is still no universally
agreed-upon definition [28]. However, Russel and Norvig [1][p.1-5] found that AI
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Figure 2.10: Risk factors associated to the development of CVDs. Adapted from
[70].

may be categorized based on its objective of approximating rationality or human-
ity, as well as the goals of thought processes and reasoning versus behavior. This
study adopts the definition proposed by Kaplan and Haenlein [29], which em-
phasizes the system’s ability to interpret external data, learn from it, and achieve
specific goals through flexible adaptation.

Related to AI, and within the realm of this thesis, there are the concepts of ML,
AL, and DT and RF classifiers.

ML is a subfield of AI that focuses on learning from examples, definitions, be-
haviors, or being told [30; 31]. AL, in turn, is a subfield of ML that minimizes
the need for labeled instances by selecting informative examples based on the
model’s current knowledge [32]. AL utilizes query scenarios like membership
query synthesis, stream-based selective sampling, and pool-based AL. Related
to stream-based selective sampling and pool-based AL there is the use of a deter-
mined query strategy. In the case of this thesis, uncertainty sampling was chosen.
This involves the learner selecting the instances it is most uncertain about, which
may be achieved through different measures.

DTs use tests related to the dataset’s features in order to reach its outputs [33–35].
The tests may be thought of as questions with two possible answers, resulting in
different branches of the tree. While DTs are intuitive, “white box” models, they
have been known to be outperformed by more complex algorithms like ensem-
ble methods [36; 37]. RF, for instance, is a popular ensemble technique where
multiple DTs are combined, resulting in a model that, overall, performs better
than a single DT [34; 37; 38]. However, this performance comes at a cost of larger
complexity and, therefore, less accessibility for laymen. The opaqueness of RF
and other black box models has sparked discussions on the ethics of AI, namely
regarding trust in the models.
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2.5.2 Ethics and AI

With the development of the field of AI, concerns about the potential conse-
quences from its use have been raised. Some of the most common ethical con-
cerns which also align with the topic of this thesis are: privacy and data protec-
tion, bias, and safety [2; 4].

From these concerns, stems the topic of trust in AI. In order for AI to continue
to be applied in real-life situations, trustworthiness is an essential trait moving
forward if we wish to circumvent the issues posed previously. In response to this
issue, the AI HLEG proposed four ethical principles to guide the development of
trustworthy AI: respect for human autonomy, prevention of harm, fairness, and
explicability [8]. Furthermore, the AI HLEG also defined seven requirements as
a means of providing more concrete guidelines on how to implement an AI that
follows the previously stated ethical principles. These requirements are: human
agency and oversight; technical robustness and safety; privacy and data gov-
ernance; transparency; diversity, non-discrimination and fairness; societal and
environmental well-being; accountability.

Explainability, the focus of this thesis, plays a vital role in building trust in AI,
particularly in healthcare integration.

2.5.3 Explainable AI

The black box problem motivates the need for XAI: complex AI models can be
opaque, which may compromise the trust of those who do not understand their
inner workings. In this sense, the goal of XAI is to offer a solution by making AI
algorithms understandable to laymen, which, in turn, will lead to trust, auditabil-
ity, and fairness [48; 49]. However, constructing explanations must balance tech-
nical correctness and understandability, as different users will require varying
levels of complexity [49–52].

White box models may also be referred to as intrinsic XAI models. XAI models
that are applied to black box models, however, may also be called Post-Hoc XAI
models [49; 55]. These models may be defined along the scope of their explana-
tions (whether they explain the black box model’s entire process, or individual
predictions), and the scope of the model (whether they may only be applied to a
single class of black box models, or multiple).

XAI models in healthcare have a promising future as the field evolves [9]. Diag-
nostic errors pose significant risks, and primary care physicians constantly face
the possibility of missed, delayed, or incorrect diagnoses. Factors such as un-
certainty, high patient volume, benign early-stage symptoms, and rare diseases
contribute to diagnostic errors. Despite numerous AI models with good per-
formance having been developed for diagnostic purposes over the years, trust
among healthcare professionals requires more than just good performance. This
is due to concerns surrounding privacy, data protection, bias, and security. Rec-
ognizing XAI’s potential to mitigate these concerns is crucial for the continued
use of AI in healthcare applications [10; 11].
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2.5.4 Medical Knowledge

NCDs encompass cardiovascular diseases, cancers, respiratory diseases, diabetes,
and mental disorders [61]. In 2016, NCDs accounted for 71% of global deaths,
with cardiovascular diseases causing 43.6% and cancer causing 21.9% of these
deaths [63]. The high mortality rates highlight the need to reduce the incidence of
these diseases, particularly to ensure the healthy aging of the global population.

The term “cancer” refers to a group of diseases characterized by the rapid pro-
liferation of abnormal cells throughout the body [63; 66; 67]. Genetic and envi-
ronmental factors contribute to the development of cancer, which presents a sig-
nificant challenge due to its various forms and diagnostic and treatment require-
ments. Globally, cancer is a major concern, with millions of new cases and deaths
each year, and its incidence is projected to increase substantially. Risk factors such
as tobacco, alcohol, and obesity play a significant role in cancer prevention, as
well as socioeconomic disparities between and within countries. Early detection
through screening programs and public awareness is crucial for improving long-
term survival rates. The complexity of cancer necessitates advanced approaches,
including AI, to aid in diagnosis and treatment.

CVDs encompass various conditions affecting the heart, brain vasculature, and
blood circulatory system [70] [p.13] [71]. In 2019, there were 523 million cases of
CVDs globally, resulting in 12.6 million deaths, with ischemic heart disease being
the most lethal form [73]. Prevention of CVDs involves addressing behavioral fac-
tors like tobacco use, excessive alcohol consumption, physical inactivity, and un-
healthy diet [70] [p.8,18,26-43] [65; 71; 74]. Non-modifiable factors like genetics,
age, and pollution also contribute. Similarly to cancer, early detection is crucial
for improving outcomes, and the introduction of XAI models holds promise in
enhancing trust and collaboration between healthcare professionals and AI sys-
tems to benefit global quality of life.
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State of the Art

This chapter provides an overview of the current state of the art in AI and XAI
applied to medicine. Firstly, the current state of AI classifiers in medicine will
be explored in section 3.1, followed by a discussion of the innerworkings of the
most relevant XAI models involved in this study, LIME and DLIME, in section
3.2. Thereafter, section 3.3 involves a review of XAI evaluation metrics, includ-
ing those which were selected for this thesis. Finally, section 3.4 includes a brief
summary of the topics discussed in this chapter.

3.1 AI and Healthcare

With the ability to detect and exploit underlying relationships in vast amounts
of data that would otherwise go unnoticed by the human eye, AI is an excellent
candidate to be applied to the area of medicine. This becomes especially clear
in time-sensitive cases such as cancer and CVDs, where even the smallest details
may count towards the survival of the patient. As such, many ML models have
been developed over the years with the goal of aiding in the diagnostic process.
Considering the ML models chosen for this thesis in conjunction with the selected
datasets, this section will focus on DT and RF classifiers applied to one of the
following areas: cancer of the breast, ovaries, and pancreas, as well as CVDs.

Lu et al. [75] chose DT for the prediction of ovarian cancer due to the model’s
simplicity and ease of interpretability, as well as its adeptness to the authors’
dataset, with its ability to process both categorical and numerical data. Further-
more, ROMA, a mathematical algorithm built for calculating the probability of
ovarian cancer, as well as Logistic Regression (LR), were utilized for compari-
son. The authors found that the DT model outperformed both ROMA and the LR
model, with an accuracy, sensitivity, and specificity of 0.921, 1, and 0.899, respec-
tively, on the testing data.

In a study done by Setiawan et al. [76], LR and DT were yet again compared, this
time in the context of pancreatic cancer diagnosis. In this study, the DT model
outperformed LR once more in all evaluation metrics, which were accuracy, sen-
sitivity, recall, F1-score, specificity, and balanced accuracy.
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When discussing AI models for the purpose of classification, white-box models
are, in general, thought of as less powerful than black-box models, as discussed
in Section 2.3. This is one of the justifications used for XAI, as there would be
no need to explain these complex models if they performed similarly, or even
underperformed, in comparison to white-box models. However, in some cases,
this may occur. Osmanović et al. [77], for example, compared two different DT
models with a multilayer perceptron for the purpose of ovarian cancer detection.
The DT models used in this paper, J48 and LMT, were selected from the WEKA
tool. As the authors explain, this is a data mining tool which encompasses a wide
variety of ML algorithms. Despite being unable to achieve an accuracy of over
80%, both DTs were still able to outperform the multilayer perceptron. For future
improvement of performance, Osmanović et al. proposed the collection of more
data.

Kawakami et al. [78] employed seven different ML algorithms for ovarian can-
cer classification: gradient boosting machine, Support Vector Machine (SVM), RF,
conditional RF, naïve bayes, neural network, and elastic net. Overall, they found
that the ensemble methods (RF and conditional RF) performed best, with RF ob-
taining the best overall results out of all the models.

Hassan et al. [79] also compared several ML models, among them being LR, k-
Nearest Neighbors (kNN), XGBoost, SVM, stochastic gradient boosted tree, naïve
bayes, neural network, DT, radial bias function, RF, and multi-layer perceptron.
The objective of this study was CVD detection or, more specifically, coronary
heart disease detection. Among all of the utilized models, RF achieved the best
performance, obtaining a score of 0.960 for accuracy.

Shan et al. [80] explored the use of DT, artificial neural networks, SVM, and RF
models for the diagnosis of breast cancer. In this study, RF outperformed the DT
algorithm, while the SVM achieved a higher value for area under the curve.

Shekar and Dagnew [81] selected five datasets related to ovarian cancer, as well as
implementing the grid search method in order to optimize their selected model,
RF. They achieved an accuracy of over 0.970 on all datasets.

Rustam et al. [82] compared both LR and RF on a dataset pertaining to pancreatic
cancer. Of the two, RF achieved the highest score of accuracy, managing 0.994 in
comparison to the LR’s best value of 0.965.

Simegn et al. [83] also included RF among a select few models for the purpose of
developing their web-based application intent on aiding CVD diagnosis. Their
platform is devised of three modules: the first, for processing ECG data, the sec-
ond for predicting heart disease, and, lastly, a multiclassification module for the
different types of CVD. With it, Simegn et al. demonstrate how AI could be inte-
grated into the area of healthcare in a user-friendly manner. Furthermore, such a
platform could just as easily integrate some form of explainability alongside the
prediction results.

Of the two classification modules, RF managed to outperform all other selected
ML models, with these being a convolutional neural network, and XGBoost.

DT, SVM, and XGBoost were once again compared against RF in a paper pub-
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lished by Ahamad et al. [84], alongside other models, such as LR, gradient boost-
ing machine, and light gradient boosting machine. The authors employed the use
of three different datasets, over which they concluded all classifiers performed
well, with the RF, gradient boosting machine, and light gradient boosting ma-
chine achieving the best results for accuracy, sensitivity, and area under the curve.
Moreover, it is interesting to note the calculation of feature importance on behalf
of the authors for each of the ML models. Despite the article not being labeled as
such, this may be viewed as a kind of global explainability, as it permits an over-
all look at one of the most important aspects the ML algorithms used to reach
their predictions.

In a similar manner, Massafra et al. [85] also focused on feature importance.
However, as opposed to Ahamad et al., three different models (RF, SVM recursive
feature elimination, and neighborhood component analysis) were used before the
task of classification in order to identify which features would be most useful. In
doing so, the authors were able to extract different sets of features from each fea-
ture importance model, to then be used to train and test the selected ML models
for classification. Of these, Massafra et al. chose RF, SVM, and naïve bayes.

The objective of their paper was the prediction of breast cancer recession amid
two scopes: within 5 years, or 10 years. In both situations, the authors found that
the RF model performed the best overall.

These articles all demonstrate a common thread of promising results for the appli-
cation of AI in healthcare, and a general comparison between them may be found
in Table 3.1. However, only the work of Ahamad et al. presented an approxima-
tion of explainability. Furthermore, despite all algorithms having been created
for the purpose of clinical support, none of the authors attempted to evaluate
their models in terms of their target audience: healthcare professionals. Thus, it
remains uncertain whether or not such solutions would be welcome in their focus
area. From the concerns explored in Section 2.2 and Section 2.3, it would would
perhaps be more prudent to assume otherwise.

3.2 Explainable AI

Many different XAI models have been proposed along the years. As discussed
in Section 2.3, they may be categorized along two different axes: in relation to
which models they may be applied to, and in relation to the application of their
explanations. For the purpose of this thesis, the focus lays solely on post-hoc,
model-agnostic and locally explainable models. In other words, XAI algorithms
which may be applied to any existent ML model, and whose explanations fo-
cus on the individual outputs of the underlying model, in place of explaining
the global behaviour. Within this category, several different models may be of
interest, such as SHAP [86], Anchors [87], LIME [14], and so forth.

To the best of my knowledge, there is currently only one other AL-based XAI
model that is both model agnostic and locally explainable, the UnRAvEL (Uncer-
tainty driven Robust Active Learning Based Locally Faithful Explanations) model
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Table 3.1: General comparison between the articles explored in Section 3.1

Author(s) Dataset(s) Focus Model(s) Used Overall Best
Model(s)

Accuracy for
Best Model(s)

Lu et al. [75] Ovarian cancer DT, LR, ROMA DT 0.872
Setiawan et al. [76] Pancreatic cancer DT, LR DT 0.100

Osmanović et al. [77] Ovarian cancer J48 (DT), LMT (DT),
Multilayer Perceptron J48, LMT 0.772

Kawakami et al. [78] Ovarian cancer

Gradient Boosting Machine,
SVM, RF, Conditional RF,
Naive Bayes, Neural Net,
Elastic Net

RF 0.924

Hassan et al. [79] CVD

LR, kNN, XGBoost, SVM,
Stochastic Gradient Boosted
Tree, Naive Bayes, Neural
Network, Radial Bias Function,
RF, DT, Multilayer Perceptron

RF 0.960

Shan et al. [80] Breast cancer DT, Artificial Neural Networks,
SVM, RF RF 0.785

Shekar and Dagnew [81] Ovarian cancer RF RF >0.970
Rustam et al. [82] Pancreatic cancer RF, LR RF 0.994

Simegn et al. [83] CVD RF, Convolutional Neural
Network, XGBoost RF >0.933

Ahamad et al. [84] Ovarian cancer

DT, SVM, RF, XGBoost, LR,
Gradient Boosting Machine,
Light Gradient Boosting
Machine

RF >0.880

Massafra et al. [85] Breast cancer RF, SVM, Naive Bayes RF >0.775

from Saini and Prasad [88]. As the authors of this algorithm describe, it gener-
ates surrogate data through uncertainty sampling, as well as gaussian process
regression. They compared their model against LIME [14] and BayLIME [89] (a
Bayesian extension of the LIME model) using a select few metrics, with these
being uncertainty regarding explanations, and the stability of explanations. Un-
RAvEL was able to outperform LIME and BayLIME in both categories, demon-
strating stable explanations as well as less uncertainty. However, it may be of in-
terest in the future to implement other features, such as, for example, faithfulness
to the underlying black box model, in order to achieve a more comprehensive
comparison.

3.2.1 LIME

With the overall purpose of facilitating trust between humans and black box al-
gorithms, Ribeiro et. al [14] proposed the novel explanation technique of LIME
and its extension, SP-LIME. In their article, they tackled two issues: the first being
trust in individual explanations, of which LIME aimed to address as a locally ex-
plainable model, and the second, trust in individual black box models as a whole,
which was provided to be the goal of SP-LIME, a globally explainable algorithm.
Beyond this, both methods are model agnostic, and provide support for text and
image-based datasets, therefore providing a large realm of application.

Ribeiro et. al denote the model being explained as f : IRd → IR, with x ∈ IRd
serving as the representation of an instance to be explained. However, as the
authors defend, oftentimes the features that are used in datasets are not under-
standable, or graspable, to humans, with word embeddings given as an example.
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Therefore, they proposed a binary representation of such features, which may
denote the “presence or absence” of a word, in the case of text-based datasets,

or of a super-pixel, in the case of image-based datasets. Thus, x′ ∈ {0, 1}d
′

was
put forward to serve as a binary vector for an interpretable representation of x.
In other words, for a given instance x to be explained, there is, consequently, a
corresponding instance of x′.

The explanation model, with a domain of {0, 1}d
′
, is described through g ∈ G,

wherein G represents a collection of possible XAI models. As a means to measure
the complexity of an explanation generated through g, Ribeiro et. al define Ω(g).

The model samples instances around x′ uniformly at random, which are denoted

by z′ ∈ {0, 1}d
′
. From these perturbed instances, the original values of z ∈ Rd are

obtained, which are then used to determine f (z), the probability of that instance
belonging to a certain class. These samples are weighted by πx(z), which serves
as a measure of the proximity between the original instance, x, and the sampled
one, z. Through these perturbations, the model aims to observe changes in pre-
diction and, consequently, determine which attributes contribute the most to the
model’s classifications.

The objective, therefore, becomes the minimization of the measure L( f , g, πx),
which serves to assess g’s unfaithfulness in approximating f in the locality de-
fined by πx, while maintaining a value of Ω(g) that is low enough so that g may
be interpretable. This is described through Formula 3.1.

ξ(x) = arg min
g∈G
L( f , g, πx) + Ω(g) (3.1)

This general framework provides leeway for future authors to try different ap-
proaches. For example, regarding the explanation families, fidelity functions, or
complexity measures. In the case of LIME, the authors chose the family of sparse
linear models for their explanations, with g(z′) = wg · z′. For the proximity mea-
sure, we have, therefore, πx(z) = exp(−D(x, z)2/σ2), wherein D represents a
generic distance function, and σ, the width. For text-based datasets, the authors
appoint the cosine distance for D, and for images, the L2 distance. Finally, the
authors assign Formula 3.2 to the measure of complexity, with K existing to rep-
resent a limit upon the number of words or superpixels used in the explanation.

Ω(g) = ∞1[∥wg∥0 > K] (3.2)

Since its proposal, LIME has gained a vast popularity among the XAI landscape.
However, there is, of course, room for improvement. Such is the case of their
choice of G, which, as they explain, cannot boast high faithfulness for models
which are highly non-linear, even in the locality of the prediction. Moreover, a
poor choice in parameters may lead to a model that is unable to isolate the most
important features [90].
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3.2.2 DLIME

Despite LIME’s far reach in success and popularity, it is necessary to evaluate
how it might be perceived in different situations. Namely, for the purpose of
this work, in a medical setting. Due to its non-deterministic nature, in the sense
that the surrogate model is trained on randomly perturbed data points, there is
always the possibility that LIME may present different explanations for the same
instance. This, of course, could place the relationship between the XAI model and
health professionals in a precarious situation, as consistency is key to any well-
grounded explanation. It is due to this reason that Zafar and Khan [15] proposed
DLIME, a deterministic approach to the LIME model.

There are two main differences between the LIME and DLIME frameworks, the
first being that, initially, DLIME utilizes Agglomerative Hierarchical Clustering
(AHC) to partition the training dataset into clusters. Originally, all data points
correspond to distinct clusters; then, each of these N clusters are merged un-
til only a C number of clusters remain, with C corresponding to the number of
classes the original dataset presents (i.e., for a binary dataset, C = 2).

Subsequently, instead of selecting samples in the local proximity to the test in-
stance, x, through random perturbations, DLIME uses the kNN algorithm. In
other words, the euclidean distance between x and the surrounding instances is
computed, from which the k-nearest instances are selected. Of the instances that
are selected, the DLIME algorithm then determines the most prevalent cluster
among them, and the samples with the majority cluster label are used to train the
chosen regression model. In this case, the authors chose linear regression.

Once the selection of samples has been completed, LIME and DLIME follow
the same path of weighting the samples and training the interpretable surrogate
model on those same weighted samples.

3.3 Evaluation Metrics

From the topics addressed in Section 2.3, we may assume that there is still much
to be explored in the field of XAI, namely, evaluation metrics. To reiterate one of
the points made previously, the “goodness” of an explanation is highly subjective,
which lends itself to an equally high difficulty in determining how to evaluate
such constructs. Thus, as of yet, there is no gold standard for evaluation metrics
regarding XAI models [91–94]. Recent strides have been taken to formulate some
semblance of a baseline for such purposes, however.

As a more popular example, we have the proposal put forth by Doshi-Velez and
Kim [92]. In their article, they define three possible avenues through which
XAI evaluation may take place: application-grounded, human-grounded, and
functionally-grounded. For application-grounded approaches, the main goal is
to utilize a domain expert to determine the quality of an explanation. In other
words, these experts are requested to perform some experiment which encom-
passes the end-task of the XAI model (e.g., the diagnosis of cancer), while having
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at their disposal XAI-generated explanations. Thus, if the explanations are able
to aid the experts in any way, whether that be through “identification of errors,
new facts, or less discrimination”, it becomes easier to determine whether or not
they may be considered “good”. Furthermore, Doshi-Velez and Kim stress that
the impact of human-formulated explanations in the same context should be con-
sidered as a baseline for the evaluation of XAI models.

While both application-grounded and human-grounded approaches are centered
on the use of human subjects, human-grounded evaluations involve laymen,
rather than domain experts. These experiments should serve as a more gen-
eral evaluation of the quality of the explanations, regardless of whether or not
the output is correct. For such, Doshi-Velez and Kim provide three examples:
binary forced choice, wherein the human must choose which explanation they
prefer over a series of options; forced simulation/prediction, wherein the human
is tasked with correctly simulating the model’s output while only being given the
input and the output’s explanation; counterfactual simulation, wherein the hu-
man is tasked with perturbing the input so as to alter the output, with the input,
output and explanation at their disposal. Furthermore, the use of laymen, rather
than domain experts, allows for more ease in obtaining a larger sample size.

Overall, while human-grounded approaches appear to be more appealing to those
with less resources, both categories involving humans will always be costly. This
may show through tangible expenses to compensate for their involvement, or
time spent explaining the experiments, as well as time spent performing them. As
a result, Doshi-Velez and Kim propose their third and final category, functionally-
grounded. These evaluation metrics base themselves on formal definitions of
explainability, with the ultimate goal of approximating various characteristics
through proxies in order to evaluate them. For example, the simplicity of an
explanation may be approximated through the number of rules, or even features,
used to reach the output.

In a similar vein, Murdoch et al. [94] present the Predictive, Descriptive and
Relevant (PDR) framework. Likewise to Doshi-Velez and Kim, this framework
presents three categories – predictive accuracy, descriptive accuracy, and rele-
vancy – through which XAI models may be evaluated. Furthermore, the PDR
framework serves also as a guide for the selection and construction of such mod-
els.

Predictive accuracy is described as a measure of faithfulness for the approxima-
tion of underlying data relationships with a black box model. In this sense, the
objective is to evaluate how well the base algorithm performs, before it is used
for the purpose of XAI. If its performance is lacking, then, consequently, any ex-
planation derived from it cannot be considered trustworthy.

The PDR framework’s second category, descriptive accuracy, aims to gauge how
well the XAI model is able to approximate the base model. Thus, it is most apt to
evaluate post-hoc methods.

Finally, Murdoch et al. introduce relevancy as their third and final desiderata for
XAI. In this case, relevancy refers to the information presented in the model’s ex-
planation – thus, its purpose lies in determining how well-suited the explanations
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Table 3.2: The Co-12 explanation quality properties, grouped by their most
prominent dimension. Adapted from [95].

Dimension Name Description
Correctness Faithfulness of the explanation to the black box

Completeness How much of the black box’s behavior is included
in the explanation

Consistency How deterministic and implementation-invariant
the explanation method is

Continuity How continuous/generalizable the explanation
function is

Contrastivity How discriminative the explanation is with other
events or targets

Content

Covariate
Complexity How complex the features in the explanation are

Compactness The size of the explanation
Compositionality The format and organization of the explanationPresentation

Confidence The presence and accuracy of probability
information in the explanation

Context How relevant the explanation is to the user and
their needs

Coherence How accordant the explanation is with prior
knowledge and beliefsUser

Controllability How interactive or controllable an explanation is
for a user

are to their application. Similarly to Doshi-Velez and Kim’s application-grounded
and human-grounded approaches, Murdoch et al. defend that relevancy may
only be evaluated through human involvement.

A comprehensive survey published by Nauta et al. [95] provides an in-depth
view of quantitative evaluation metrics. As a result of an extensive review of 361
papers, the authors define 12 categories for XAI evaluation metrics, which they
denominate as the Co-12 properties. The articles surveyed either introduced a
new XAI method or evaluated an existing model, and were all published between
2014 and 2020. Of the proposed categories, Nauta et al. align them along three
different dimensions, these being content, presentation, and user. However, it is
important to emphasize that the authors recognize that trade-offs may have to
be realized, as some categories oppose one another. Therefore, not unlike other
dimensions of XAI, researchers must carefully consider what aspects are most
important to the end-goal of their models, and evaluate them appropriately. All
Co-12 properties may be viewed in Table 3.2, alongside a general description of
them.

As for concrete metrics, those proposed by the authors of LIME and DLIME are
perhaps of most interest. Thus, they will now be explained in-depth.
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3.3.1 LIME Evaluation Metrics

In order to evaluate their newly proposed model, Ribeiro et al. [14] implemented
both human and functionally-grounded evaluation metrics.

Faithfulness to the Model: In the case of surrogate models such as LIME and
DLIME, the question of faithfulness to the black box model becomes necessary to
address. Any explanation that is generated becomes meaningless if the instance
it is explaining has no correlation to the original classifier. Thus, Ribeiro et al. [14]
proposed their own metric for this purpose.

By training an interpretable classifier (such as, for example, a DT, or sparse linear
regression algorithm) with a maximum of 10 features to be used for any individ-
ual instance, the authors are left with a gold standard of features for that model.
After applying LIME on the test set, they compute the fraction of gold standard
features that are used in the XAI model’s explanations.

F1 of Trustworthiness: For this metric, Ribeiro et al. first perform a random
selection of 25% of the dataset’s features to be deemed untrustworthy, with the
presumption that users can also identify them as such. If, by removing all “un-
trustworthy” features, the model’s classification changes, then the trustworthi-
ness oracle will consider the prediction as untrustworthy. This is accomplished
through the use of the F1-score, with the original set of predictions used as the
ground truth.

Model Selection with Simulated Users: In order to simulate a situation wherein
a user must choose between two models with similar values of accuracy and val-
idation data, Ribeiro et al. introduced 10 artificially noisy features in the test,
training and validation datasets. However, these features were only applied to
20% of instances of one class, and 10% of the other class for training and valida-
tion data, while for testing data, the features were applied equally in both classes,
at 10%. Thus, introducing a scenario where the model will use both features with
meaning, as well as purposefully noisy features.

Using the validation data, the simulated users must then choose the more trust-
worthy explanation between both models, thereby choosing the overall better
model.

Model Selection with Real Users: For this experiment, Ribeiro et al. employed
real humans from Amazon Mechanical Turk in order to see whether or not an
explanation would facilitate the process of choosing the better model between
two options. To achieve this, they first trained the same classifier on two dif-
ferent datasets: one that had been altered manually to include only the most
relevant features (the “cleaned” version), and the other, unaltered (the original
version). In their example, the “cleaned” dataset performed better overall, how-
ever, it demonstrated lower accuracy on the test data. Thus, if one were to base a
decision solely off of accuracy, the chosen classifier might not be the best one.

Given these conditions, the human subjects are then asked to choose the best
model, with the prediction, explanation, and raw data used for the classification
at their disposal. By previously identifying the best classifier, Ribeiro et al. are

39



Chapter 3

therefore able to discern the percentage of correct choices made by the users, and,
in doing so, may then gauge whether or not the explanations were at all helpful.

Improving the Classifier: Using the classifier deemed worse from the previous
experiment, Ribeiro et al. asked the users to eliminate the features they consid-
ered to be least useful to the classifier, with the overall objective of improving
its accuracy. This experiment was carried out through three rounds of interac-
tion, beginning with 10 subjects in the first round, then 5 for the second and third
rounds, and resulting in a total of 250 versions of improved classifiers (one for
each subject across the three rounds). Finally, the accuracy is averaged over all
versions of the final, improved classifier. It is interesting to note, as well, that this
may be considered an example of one of the experiments proposed by Doshi-
Velez and Kim for their human-grounded metrics.

Insightfulness: Oftentimes, models identify erroneous correlations present in the
underlying relationships from the data they are trained on. This may be difficult
to identify solely through the predictions and raw data, as Ribeiro et al. defend,
and thus this experiment serves to judge whether or not an explanation may help
such issues.

First and foremost, Ribeiro et al. purposefully introduce incorrect correlations
through a carefully selected dataset. In this case, the classifier was made to clas-
sify images of wolves and huskies, where all instances of wolf images used dur-
ing training had snow in the background. In doing so, the model was trained to
classify any image as “wolf”, granted there was snow present in the background.

Graduate students with a minimum amount of knowledge in ML were then pre-
sented with a balanced set of 10 predictions, without explanations. Of these pre-
dictions, 2 were selected to induce an incorrect prediction: one image contained
a husky with a snowy background, while the other contained a wolf with a dif-
ferent colored background. The students were then asked to answer three ques-
tions: firstly, if they trusted the algorithm; secondly, why or why not; thirdly,
how they think the algorithm distinguishes between classes. After collecting the
responses, the students were then presented with the same images, their corre-
sponding predictions, and LIME’s accompanying explanation, and were asked
the same questions as previously.

3.3.2 DLIME Evaluation Metrics

With the aim of measuring the stability of their model, Zafar and Khan [15] used
Jaccard’s distance. This metric quantifies the similarity between two finite sets
of data points, S1 and S2. Jaccard’s coefficient, shown in Formula 3.3, describes
the fraction between the intersection of S1 and S2 and their union. Thus, a result
of J(S1, S2) = 1 would imply high similarity between S1 and S2, while a result
of J(S1, S2) = 0 would imply the exact opposite, meaning no similarities may be
found between the sets.

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

(3.3)
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From Jaccard’s coefficient we may reach Jaccard’s distance, shown in Formula 3.4.
Based on the previous metric, we may extrapolate that the higher the distance,
the more dissimilar S1 and S2 are. Therefore, in the case of DLIME, the objective
lies in achieving a result of Jdistance = 0 for explanations surrounding the same
instance.

Jdistance = 1− J(S1, S2) (3.4)

Beyond Jaccard’s distance, the authors of DLIME also employed the use of a
metric of faithfulness of the XAI algorithm to the underlying black box model.
Contrary to Ribeiro et al., Zafar and Khan first obtain a set of true predictions
(e = [e1, e2, ..., eN]) from their baseline model (linear regression), then compute the
cosine similarity score between these predictions, and the predictions obtained
from the XAI model (e′ = [e′1, e′2, ..., e′N]), shown in Formula 3.5. The final quality
score, qs, is obtained through the average of all cosine similarity scores (Formula
3.6).

qi =
ei · e′i

||ei|| · ||e′i||
(3.5)

qs =
1
n

n

∑
i=1

qi (3.6)

As for the quality of DLIME’s classifications, Zafar and Khan used precision, re-
call, F1-Score, accuracy, and balanced accuracy. Beyond this, the authors also
aimed to provide a comprehensive justification for the use of AHC, kNN, and lin-
ear regression in their model. Therefore, they constructed several models based
on the DLIME framework: DLIME-KM, which uses k-means in place of AHC,
thereby demonstrating the superiority of AHC in finding local subspaces; DLIME-
NN, which forgoes the use of AHC, in order to once again prove the usefulness
of AHC; DLIME-Tree, which utilizes tree regression in place of linear regression
in an attempt to compare their ability of generating explanations.

3.4 Summary

This chapter discussed some of the most relevant AI models in healthcare related
to the topics dealt with in this thesis, as well as providing a more in-depth expla-
nation of how LIME and DLIME function. Some of the most relevant evaluation
metrics were also explored, with a special focus on those used by the authors of
LIME and DLIME.
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3.4.1 AI and Healthcare

There are a wide number of existent ML methods used in the areas of breast
cancer, ovarian cancer, pancreatic cancer, and CVD diagnosis. Of those discussed
in this section, it was shown that RF consistently outperformed other ML models,
including DT. However, when isolated, DT also proved to be robust. Moreover,
the lack of human involvement in all of the presented studies was notable.

3.4.2 Explainable AI

LIME is a post-hoc, model agnostic, locally explainable model. By randomly per-
turbing data points, it views the underlying model’s differences in prediction in
order to determine feature importance. Once the model has chosen a set of sam-
ples, these are then weighted, and then used to train the surrogate model. Then,
for each explanation, the surrogate model performs feature selection to determine
the most important features used for that determined classification, and generates
an interpretable representation.

DLIME was created in order to explore the possibility of a deterministic version
of LIME. It differs from LIME in two aspects: firstly, it partitions data into clus-
ters using AHC, leaving as many clusters as there are classes in the dataset; sec-
ondly, in place of random perturbation, it uses kNN in order to determine the
k-nearest neighbors to a determined instance, and the neighbors with the cluster
label corresponding to the most prevalent cluster within the vicinity are selected.
Following this, it proceeds in much the same way as LIME.

3.4.3 Evaluation Metrics

As of yet, there is no “gold standard” when selecting metrics to evaluate XAI
models. However, several authors have attempted to define some guidelines for
this purpose. Doshi-Velez and Kim, for example, proposed three different cate-
gories of metrics: application-grounded, which uses domain experts in order to
evaluate the XAI models; human-ground, which uses laymen, or humans with
simple knowledge regarding the subject manner; functionally-grounded, which
implements proxies of formal definitions regarding explanations.

Murdoch et al. proposed the PDR framework, which consists of: predictive accu-
racy, which aims to evaluate the faithfulness of the XAI model in approximating
the underlying data relationships the black box has formed with its classifica-
tions; descriptive accuracy, which aims to evaluate the faithfulness to the under-
lying model; relevancy, which aims to evaluate the information presented in the
XAI model’s explanations.

Nauta et al. performed a survey of XAI models, and constructed their Co-12
framework. Their objective was to provide a more comprehensive categorization
of XAI evaluation metrics, from which they derived twelve different categories.
Moreover, these categories may be grouped along three different dimensions:
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content, presentation, and user.

The authors of LIME defined several different metrics for the purpose of evalu-
ating their model. Of these metrics, they included both human and functionally-
grounded approaches. They evaluated several different characteristics of their
model, including: its faithfulness to the underlying black box model; its trust-
worthiness in regards to its behaviour among untrustworthy features; the ease
through which users could select the better model between two choices; the ease
through which users could improve the model; the ease through which users
could identify errors in the model.

In contrast, DLIME was evaluated solely through functionally-grounded metrics.
Of these, the authors proposed Jaccard’s distance in order to measure explana-
tion stability. Furthermore, Zafar and Khan also applied a metric to evaluate the
faithfulness of the model to the underlying black box model, precision, recall,
F1-score, accuracy, and balanced accuracy.
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Material and Methods

This chapter serves to provide a description of the steps taken for the develop-
ment of the XAI pipeline. First, an overview of the general pipeline is presented
in Section 4.1, followed by a description of all datasets used for the purpose of this
thesis in Section 4.2, and the methods involved in the pre-processing of such data
in Section 4.3. Thereafter, the choice of XAI and ML models is explored in Section
4.4, and the process of ML model optimization in Section 4.4.4. The metrics cho-
sen to evaluate both types of models will be explained in Section 4.5, followed by
a description of the general methodology undertaken during this thesis in Section
4.6. Finally a summary of this chapter may be found in Section 4.7.

4.1 Pipeline Overview

A standard ML framework typically includes stages such as data extraction, data
pre-processing, classification, and performance evaluation. In addition to these
steps, this thesis also includes model optimization and the application of the post-
hoc models LIME, DLIME, and AL-DLIME to the RF algorithm, as well as an
evaluation of their performance. Moreover, two experiments were conducted in
this thesis: the first involved the standardization of each dataset, which permitted
the addition of two evaluation metrics (single and incremental deletion); as for
the second, there was no process of standardization in the pre-processing stage,
which, therefore, left only accuracy, F1-score, faithfulness, and Jaccard’s distance
for evaluation metrics.

Figure 4.1 presents a flowchart which illustrates the pipeline of this thesis in
greater detail.

Summarily, ensuing the selection of datasets, the steps for either experiment may
be described as follows:

• Pre-processing: Improvement of the quality of the data;

• Model Optimization: Selection of the optimal set of hyperparameters for
both the RF and DT models;
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Figure 4.1: Flowchart which depicts the general pipeline of this study.

• Classification: Training and testing the optimized ML models;

• Explanation: Application of LIME, DLIME, and AL-DLIME on the RF model;

• Evaluation: Application of evaluation metrics to gauge the performance of
the ML and XAI models.

The subsequent sections of this chapter will provide a more thorough explanation
of each step.

4.2 Datasets

Once the problem definition was completed for this thesis, it was necessary to
choose which datasets would be most apt. Owing to the high mortality and mis-
diagnosis rate of both cancer and CVDs, I thought it best to procure datasets re-
lated to either group. For this purpose, I used the online platform of Kaggle. This
platform allows users to publish datasets, as well as vote on the quality of others.
Furthermore, once published, Kaggle will calculate a metric of “usability”, which
exists on a scale of 0 to 10. For a dataset to achieve a high “usability” rating, it
must comply with a series of requirements defined along three categories: com-
pleteness, which relates to whether or not the user has provided a subtitle, cover
image, tag, or description regarding the published dataset; credibility, which in-
cludes whether or not the user has provided a source for the data, if the dataset
is public or not, and the frequency in updates to the data; compatibility, which
relates to the license information of the data, the file (or files) format, and whether
or not the user has provided a description of the files, and of the columns (which,
in this context, would correspond to the features).

Given these criteria, I applied the search term of “cancer classification” and se-
lected the highest rated datasets which also presented a high “usability” score.
For CVDs, I applied the terms of “heart failure classification”, “cardiovascular
disease classification”, and “heart disease classification”, and used the same se-
lection criteria as I had previously with the cancer datasets. Beyond this, I prior-
itized larger datasets in order to avoid overfitting, in addition to removing any
image-based datasets, as DLIME is currently only capable of working with tab-
ular datasets. This left four datasets: three related to cancer, and one, to CVDs.
They will now be discussed in greater detail, with Table 4.1 providing a general
comparison between them.
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Table 4.1: General comparison between the datasets utilized in this study.

Dataset Type Instances Features Classes Class
Labels

Class
Distribution

Breast
Cancer Tabular 569 30 2 0: Benign

1: Malignant
0: 63%
1: 37%

Ovarian
Cancer Tabular 349 47 2 0: Benign

1: Malignant
0: 49%
1: 51%

Pancreatic
Cancer Tabular 590 12 3

1: Healthy
2: Benign

3: Malignant

1: 31%
2: 35%
3: 34%

Heart
Disease Tabular 918 11 2 0: Healthy

1: Heart Disease
0: 45%
1: 55%

4.2.1 Breast Cancer Dataset

The Wisconsin breast cancer dataset is commonly used for the purpose of evalu-
ating ML classifiers. Available through the UCI ML repository1, it comprises 569
instances and 30 features, with a binary target (benign, or malignant). As shown
in Table 4.1, this is the most unbalanced dataset, with a class distribution of 63%
to 37% for the benign and malignant classes, respectively. This is addressed in
Section 4.3, which details the steps taken during pre-processing.

A fine needle aspirate was taken of a breast mass, from which the authors com-
puted 10 core features from each cell nucleus present in the digitized image.
These core features are the radius, texture, perimeter, area, smoothness, compact-
ness, concavity, concave points, symmetry, and fractal dimension. Following this,
the authors then calculated the mean, standard error, and worst of each core fea-
ture, resulting in a total of 30 features. In other words, for each core feature, there
exists three different variations (for example, there is a mean radius, standard
error radius, and worst radius). For further details, refer to Table A.1.

4.2.2 Ovarian Cancer Dataset

This dataset2, published alongside the study carried out by Lu et al. [96], was
constructed with the purpose of ovarian cancer classification, and has a total of
349 instances and 47 features.

There are five files provided by Lu et al., titled “Supplementary Data” 1 through
5. Among these files, we may find the entirety of the raw data, a description of
each feature, all raw training data with the exception of the biomarker CA72-4,
and a division of data for the purpose of training and testing, with the former
containing 235 instances, and the latter, 114.

The majority of features consist of biomarkers, with the addition of demographic
information, such as age, and whether or not the patient has gone through menopause.
Once again, the dataset is binary, with classes differentiating between benign

1https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
2https://data.mendeley.com/datasets/th7fztbrv9
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ovarian tumors, and malignant ones. More in-depth details may be found in
Table A.2.

4.2.3 Pancreatic Cancer Dataset

Debernardi et al. [97] collected samples from multiple sources3 (more specifically,
from Barts Pancreas Tissue Bank, the University College London, the University
of Liverpool, the Spanish National Cancer Research Center, Cambridge Univer-
sity Hospital, and the University of Belgrade), resulting in a dataset containing
590 instances and 12 features. Similarly to the previous dataset, several demo-
graphic features are included, such as age and sex, with the remaining features
corresponding to various biomarkers (such as, for example, creatinine).

This is the sole multiclass dataset, with three classes to consider: healthy pa-
tients, patients with non-cancerous pancreatic conditions (such as pancreatitis),
and, finally, patients with pancreatic cancer, (more specifically, pancreatic duc-
tal adenocarcinoma). In Table A.3, further details regarding this dataset may be
found.

4.2.4 Heart Failure Dataset

Finally, I selected the following dataset for CVD classification4, or, heart disease
classification. It is composed of five different heart disease datasets that have
been published in the UCI ML repository (all avaliable under the index of heart
disease datasets5), with a total of 918 unique instances, and 11 features.

The data includes categorical and continuous values, with demographic informa-
tion regarding the patients, such as age and sex, as well as information resulting
from routine tests, such as chest pain type, resting blood pressure, cholesterol,
fasting blood sugar, resting ECG results, maximum heart rate, exercise-induced
angina, ST segment measurement, and ST segment slope type. Once more, the
dataset is binary, with a class for healthy individuals, while the other serves to
describe patients with some sort of heart disease. A more detailed view of this
dataset may be found in Table A.4.

4.3 Data Pre-Processing

After selecting the datasets, pre-processing was necessary in order to ensure the
data was ready to be applied to the ML models. As the majority of the data
had been used previously in scientific studies, only minimal pre-processing was
required.

3https://www.kaggle.com/datasets/johnjdavisiv/urinary-biomarkers-for-pancreatic-cancer
4https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction
5https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/

48



Material and Methods

Firstly, each dataset was analyzed for the purpose of identifying missing values.
This proved to be the case for the ovarian cancer dataset (henceforth referred to
as the OCD), as well as the pancreatic cancer dataset (henceforth referred to as
the PCD). Regarding the OCD, several features (more specifically, the biomarkers
AFP, CA125, CA19-9, CA72-4, and CEA) had multiple missing values. In order to
preserve the number of instances, these features were excluded from the dataset.
Thereafter, all patients with missing values were also removed, thus leaving the
OCD with 212 instances, and 44 features. With respect to the PCD, four features
were found to contain a majority of null values: the biomarkers plasma CA19-9
and REG1A, stage, and benign sample diagnosis. Considering the fact that each
of these features contained information regarding solely to one class, I found it
pertinent to remove them, thus leaving the dataset with eight features.

In terms of data cleaning, it was necessary to convert categorical values into nu-
merical values for the PCD, the breast cancer dataset (henceforth referred to as
the BCD), and the heart disease dataset (henceforth referred to as the HDD). For
such, I attributed different integers for each unique category, beginning with a
scale of one. As an example, we have the feature of sex, in which female would
be attributed to 1, and male, to 2.

Data balancing was another point of interest during this stage. Before altering
the datasets in any way, it was necessary to first verify whether or not they were
reasonably balanced. As we may observe through Table 4.1, and as has previ-
ously been mentioned, the largest disparity between classes was observed with
the BCD, which corresponded to a difference of around 26% between class 0 and
class 1. On the other hand, among all datasets, the OCD and the PCD were the
most balanced, with disparities no larger than 5% between each class. However,
due to the fact that instances were removed from the OCD, it was necessary to
verify if the data had become skewed, which was not the case.

Each dataset was then split into sets for training and testing the ML models that
would be used posteriorly. For such, the standard split of 80-20 was chosen for
training and testing, respectively, for all datasets. Following this, a copy of the
processed datasets were saved, and should be henceforth known as the non-
standardized datasets. Afterwards, another copy of the datasets was made, with
these copies then undergoing the process of standardization (or, normalization)
for use in the first experiment. For such, the StandardScaler class from the sklearn
library6 was used, which conducts a simple process of standardization. In other
words, for each data point, the mean is subtracted, and consequently divided by
the standard deviation. This is necessary for some models which perform best on
data that behaves like standard normally distributed data, as is the case for ridge
regression [21] [p.82].

6https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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4.4 Models

Beyond datasets, the selection of appropriate models is a crucial aspect in attain-
ing optimal performance in any analysis. For the purpose of this thesis, with its
main focus relying on explainability in the area of medicine, it was necessary to
not only select an underlying black box model, but also a XAI model. In this
case, I have opted to conduct a thorough comparison between two existing XAI
models, as well as propose a novel model.

4.4.1 AL-DLIME

One of the main contributions of this study is the proposal of AL-DLIME. As
aforementioned in Chapter 1, this model is based on the DLIME framework,
with one key difference: the use of AL in place of AHC and kNN. This alteration
preserves the original model’s determinism while exploring an entirely different
branch of AI, one which I hope will improve the transparency and interpretabil-
ity of complex ML models or, at the very least, lend some interest towards future
research involving the same concepts.

As mentioned in Section 2.1.2, AL focuses on minimizing the amount of labeled
instances that is necessary to achieve a good performance [32]. In the case of the
area of medicine, where there is a common problem of large datasets being mostly
(or completely) unlabeled due to the medical professionals’ lack of time [98; 99],
AL could plausibly present a more attractive choice over other ML models.

For the purposes of AL-DLIME, pool-based sampling was selected due to its pop-
ularity [100]. However, in cases of limited memory or processing power, stream-
based or membership synthesis scenarios are the more preferable options [32]. As
for the query strategy, uncertainty sampling was selected.

The basis of AL-DLIME, therefore, is quite simple. Firstly, a logistic regression
model is trained on a small set of labeled data. Following this, the probabilities
for class distribution are obtained on a larger, unlabeled set of data through the
LR model. A range of uncertainty is selected, which may vary depending on
how strict the process of sampling is determined to be. In the case of this thesis, a
range of 47% to 53% was used, as I believed it to be an acceptable representation
of the degree of uncertainty I wished to explore. All instances from the previously
collected set of probabilities which belonged to this range were then selected as
the most informative instances. This process may be viewed in Algorithm 1.

Once AL-DLIME has selected a set of instances with the highest level of uncer-
tainty, it proceeds in much the same way as DLIME and LIME (Figure 4.2). These
instances are then weighted and labeled using the chosen black box model (in
this case, RF), thereafter being used to train a weighted and interpretable white
box model, the surrogate model (in the case of this study, ridge linear regression).
Feature selection is then achieved through the newly trained white box model,
and an interpretable representation is generated.
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Algorithm 1 Selection of the Most Informative Instances

Input: Dataset Dtrain, Dataset Dtest, Labels Ltest
1: Initialize S← {}
2: Initialize Slabels ← {}
3: Initialize ind← {}
4: Clr = Create new Logistic Regression model
5: Train Clr with Dtest
6: y = Probabilities regarding all instances from Dtrain to belong to class 0
7: p = 0.47 (uncertainty interval from 0.47 to 0.53)
8: for i from 0 to (number of rows in Dtrain)-1 do
9: if instance i from y is between p and (1− p) inclusive then

10: indi ← {i}
11: end if
12: end for
13: S← Get instances from Dtrain with indices ind
14: Slabels ← Get instances from Ltrain with indices ind
15: return S, Slabels

4.4.2 Baseline Explainable Models

For this thesis, I first selected LIME [14] as a model for explainability due to its
robustness and high popularity in the area of XAI. However, to reiterate a point
made in Section 3.2.2, Zafar and Khan [15] highlighted the non-deterministic na-
ture of LIME as a XAI model. Given one of the main objectives of this thesis,
which is to evaluate the performance of XAI in the medical field, it is imperative
to have a deterministic approach in order to maintain the trust of medical profes-
sionals. Therefore, I have also employed DLIME to allow for a more comprehen-
sive comparison between the two models, in addition to the metric of stability
used in the original paper by Zafar and Khan [15].

4.4.3 Baseline Black and White Box Models

The choice of ML model was made after careful consideration of the limitations
of the procured datasets – namely, their size. Algorithms such as neural net-
works were deemed unfeasible, as they require substantial amounts of data in or-
der to perform effectively. Furthermore, it is important to note that image-based
datasets are commonly larger than tabular datasets; however, due to the fact that
DLIME currently only supports tabular data, my selection was restricted. Ad-
ditionally, while selecting the datasets for this thesis, I prioritized quality over
size. This resulted in datasets that, while acceptable in size, could not feasibly be
expected to lead to good performance with neural networks, for example.

The RF algorithm was selected primarily due to its superior performance against
different models in a number of different articles, as discussed in Section 3.1, as
well as its ability to achieve such results with smaller datasets. Additionally, a
DT model was utilized as a control for the black box model. Specifically, the DT
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Figure 4.2: Flowchart which depicts the general pipeline of all XAI models used
in this study, and how they relate to one another.

model serves to verify the necessity of utilizing a black box model, by comparing
its performance against the RF model with the evaluation metrics which will be
discussed in Section 4.5.

4.4.4 Model Optimization

During the construction of ML models, it is vital to take into account the impact
each hyperparameter may have on model performance, and adjust them accord-
ingly. The process of adjusting hyperparameters in order to optimize the perfor-
mance of the model is known as model optimization [101] [p.98-99] [102]. One of
the most widely used methods is the Grid Search method, which determines the
optimal set of hyperparameters through an exhaustive search, or, in other words,
brute force. More specifically, the Grid Search method constructs a model for
every possible combination of hyperparameters within a given grid of hyperpa-
rameters to test, and compares them against each other with a certain metric, such
as accuracy. This process can be time-consuming and computationally intensive,
depending on the number of combinations to consider.
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Figure 4.3: Flowchart which depicts the general pipeline of the grid search
method.

In the case of this thesis, the Grid Search method was used to find the optimal set
of hyperparameters for both the RF and DT models, in relation to both the stan-
dardized and non-standardized datasets. A comprehensive list of all parameters
that were tested may be found in Table 4.2, and the final set of parameters that
were selected for both versions of the datasets in Tables 4.3 and 4.4.

Table 4.2: Hyperparameter values considered during the Grid Search method.

Algorithm Parameters Values
n_estimators [5, 10, 15, ..., 100]
criterion [gini, entropy]
min_samples_leaf [1, 2, 3]
min_samples_split [2, 3, 4, 5, 6, 7]

Random
Forest

max_features [sqrt, log2]
criterion [gini, entropy]
min_samples_leaf [1, 2, 3]
min_samples_split [2, 3, 4, 5, 6, 7]

Decision
Tree

max_features [sqrt, log2]

4.5 Evaluation Metrics

In order to evaluate an XAI algorithm, we need to consider not only the perfor-
mance of the underlying model, but also the quality of the explanation. This has
proven to be difficult to achieve, for reasons explored in Section 3.3. However,
although there may not currently exist a gold set of metrics used to evaluate XAI,
there is also no lack of proposed metrics to choose from.

The performance of the DT and RF algorithms was evaluated through accuracy
and F1-score. Both metrics rely on the concepts derived from confusion matri-
ces: true positives (TP), which are the number of positive instances (class 1) cor-
rectly predicted; true negatives (TN), which are the number of negative instances
(class 0) correctly predicted; false positives (FP), which are the number of posi-
tive instances incorrectly predicted; false negatives (FN), which are the number
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Table 4.3: Optimized hyperparameters for RF and DT on the standardized
datasets.

Parameters
Model Dataset nEstimators criterion minSamplesLeaf minSamplesSplit maxFeatures

BCD 20 gini 1 3 sqrt
OCD 95 gini 1 4 sqrt
PCD 90 entropy 2 3 log2

Random
Forest

HDD 85 entropy 2 6 log2
BCD - entropy 2 6 log2
OCD - entropy 3 3 sqrt
PCD - entropy 1 3 log2

Decision
Tree

HDD - gini 1 6 sqrt

Table 4.4: Optimized hyperparameters for RF and DT on the non-standardized
datasets.

Parameters
Model Dataset nEstimators criterion minSamplesLeaf minSamplesSplit maxFeatures

BCD 40 gini 1 3 sqrt
OCD 15 gini 1 7 sqrt
PCD 55 entropy 3 6 log2

Random
Forest

HDD 75 gini 2 4 log2
BCD - entropy 1 5 sqrt
OCD - entropy 3 5 sqrt
PCD - entropy 1 6 sqrt

Decision
Tree

HDD - gini 1 4 sqrt

of negative instances incorrectly predicted. It is important to note, however, that
the aforementioned descriptions are accurate only in the case of binary datasets.
In the case of multiclass datasets, such as the PCD, the positive instances afore-
mentioned refer to the class you are currently considering, while the negative
instances refer to all other classes.

Accuracy (Formula 4.1) is the percentage of correct predictions achieved by an
algorithm. In and of itself, oftentimes it is not sufficient to properly gauge per-
formance. This is due to the fact that, for unbalanced datasets, it may depict
algorithms in an unfaithful manner. For example, a model trained on a dataset
which is composed 80% of class 0 need only predict each instance as class 0 in
order to achieve an accuracy of 80%. Therefore, despite the fact that all selected
datasets are reasonably balanced, to overcome this limitation I have chosen to use
the F1-score measure in conjunction with accuracy.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

Unlike accuracy, F1-score (Formula 4.3) represents the harmonic mean between
precision (Formula 4.1), a measure that depicts the amount of positive predictions
that were correct, and recall (Formula 4.2), a measure that depicts the amount of
true positive instances that were correctly predicted. By considering both preci-
sion and recall, the F1-score is able to provide a more accurate perspective of the
algorithm’s performance, regardless of the imbalance in the dataset.
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Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

F1−Score =
2× Precision× Recall

Precision + Recall
(4.4)

Beyond the evaluation of the DT and RF classifiers, I found it pertinent to measure
LIME and DLIME’s performances with the same metrics. Due to the nature of
both LIME and DLIME as post-hoc models, it is important to determine if the
surrogate models are comparable to the RF algorithm. Thus, through the use
of accuracy and F1-score, it is possible to assess the effectiveness of LIME and
DLIME in approximating the RF classifier.

To evaluate the quality of the explanations provided by the XAI models, sev-
eral metrics were employed, including: the faithfulness metric from Ribeiro et
al. [14], the metric of stability from Zafar and Khan [15], and the single and in-
cremental deletion metrics. These measures provide a comprehensive evaluation
of the quality of the explanations generated by both XAI models, including their
consistency and faithfulness.

In regards to faithfulness, Ribeiro et al. [14] originally suggested using a max-
imum of ten features for the gold set. This was possible for all datasets except
the PCD, which, as previously stated, had only eight features following pre-
processing of the data. Thus, in this instance, I set the number of gold standard
features to six.

The single deletion metric [17; 18] aims to evaluate the accuracy of an XAI algo-
rithm’s approximation of a black box model. This metric works by removing a
feature in order to see the degree of perturbation caused in the algorithm’s classi-
fication, and replacing it into the dataset in order to remove another feature. Gen-
erally, the features that are deemed most important by the black box model have
priority, meaning that the most important feature is removed and then replaced,
followed by the second most important feature, and so forth. If the predictions
made by the XAI algorithm change drastically as a result, it can be assumed that
the approximation is faithful to the original algorithm. Additionally, this metric
may also begin with removing the least important features, with the objective be-
ing that there should be no change in the predictions made by the XAI model.
In this study, I have elected to remove the most important features first; further-
more, the features are removed two at a time in order to preserve computational
power.

Juxtaposed to the single deletion metric, there is incremental deletion [19; 20;
103; 104]. The basis of this metric is very similar to single deletion, in that it
involves the removal of features in order to determine how the XAI model reacts.
However, in this case, the removal of features is successive. In other words, once
a feature has been removed, it will not be replaced. This would normally imply
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an even larger perturbation in the resulting classifications. Once again, if the XAI
model demonstrates this behavior, it may be deemed faithful to the black box.
Similarly to the single deletion metric, the most important features are removed
first, and the removal is made with two features at a time.

Finally, it is important to address the lack of both application and human-grounded
metrics, despite the very real need for the involvement of humans in an applica-
tion such as medicine. Unfortunately, due to a lack of monetary resources, as well
as a difficulty in procuring medical professionals with time and interest for such
experiments, the evaluation of the XAI models in this thesis relied primarily on
functionality-grounded metrics.

4.6 Experimental Methodology

Following the optimization of the ML models on both the standardized and non-
standardized datasets, both experiments were carried out in a similar manner,
with the exception of the single and incremental deletion metrics. Furthermore,
either experiment was repeated across the four datasets, with the following order:
BCD, OCD, PCD, and, finally, the HDD.

The first experiment included the standardized datasets, beginning with the train-
ing of the ML models. From the trained RF, ten features were extracted based on
their order of importance to the model, thus constructing the “gold set” to be
used posteriorly for the faithfulness metric. In the case of the PCD, only six “gold
set” features were selected due to its limited size. The trained models were then
evaluated on the test set, obtaining the scores for accuracy and F1-score for RF
and DT.

Once the evaluation metrics for the ML models were obtained, AL-DLIME, DLIME,
and LIME were all constructed and trained on the training set. During the clas-
sification phase, all XAI models were programmed to only utilize the number of
features contained in the “gold set” determined by the RF.

In order to obtain the metric of stability, which utilizes Jaccard’s distance, a ran-
dom instance (or, patient) was chosen across all datasets. Following this, the fea-
tures used during the classification of this instance were extracted from all XAI
models across ten iterations. Confusion matrices were then computed from the
resulting stability scores.

Classifications for all instances were then obtained for the ML and XAI algo-
rithms, in addition to the set of features used to reach each classification. This
data – more specifically, the information regarding each model’s classifications
– was then used to calculate the accuracy and F1-score. Faithfulness was mea-
sured using the sets of features used across the classifications of all instances, in
comparison to the “gold set” determined previously through RF.

In relation to the second experiment, the procedure was nearly identical to the
first, with the exception of the additional metrics of single and incremental dele-
tion. For these metrics, it was necessary to create additional copies of the current
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datasets, as aforementioned.

Both the single and incremental deletion metrics were carried out across five
rounds, due to the removal of two features at a time, as well as the pre-determined
number of features to be used during classification, which was ten. In regards to
the PCD, only three rounds were possible due to the restricted amount of six fea-
tures. Following the removal of features, all models, be them ML or XAI, were
retrained on the smaller datasets. Then, classifications for all instances were ob-
tained. Once all rounds had been concluded, the similarity score between the
classifications obtained during each round and the original set of classifications
obtained previously was computed.

4.7 Summary

This chapter explored all aspects related to the methodology of this thesis, as well
the the materials that were employed.

4.7.1 Pipeline Overview

This thesis employed the standard ML framework, including steps of data collec-
tion, data pre-processing, model optimization, classification, and evaluation. In
addition to this, there is also the use of XAI models, which signifies an additional
step of explanation, as well as evaluation of their performance.

4.7.2 Datasets

As the focus of this thesis is the medical domain, it was important to consider
which areas would be most relevant to apply AI. I elected to consider datasets
related to cancer and CVDs, as they are both diseases with a high amount of
misdiagnoses.

Four publicly available datasets were selected, with three involving a different
type of cancer, and one related to CVDs. They are all tabular due to DLIME’s
restrictions, and all except one are binary, with the final dataset containing three
classes.

4.7.3 Data Pre-Processing

Following the selection of datasets, I proceeded with the step of pre-processing.
Minimal processing was required due to the selected datasets being previously
used in other scientific studies.

Data balancing was required for two datasets, with the removal of features with
excessive missing data. Data cleaning was also required, in this case to convert
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categorical information into numerical information. All datasets were split into
sets for training and testing using the standard 80-20 split. Finally, copies of the
datasets were made in order to be standardized for use in one of the two experi-
ments conducted in this study. The original copies, or the non-standardized data,
would be used for the other experiment.

4.7.4 Models

This thesis proposes a novel XAI model, AL-DLIME, which utilizes the basic
framework of DLIME. The main difference is the implementation of AL in place
of AHC and kNN. This model uses pool-based sampling and uncertainty sam-
pling in regards to its AL component. Once the most uncertain samples are
selected, the AL-DLIME algorithm behaves in the same manner as LIME and
DLIME.

As for the baseline XAI models, I selected LIME due to its popularity, followed by
DLIME due to LIME’s non-deterministic nature. The chosen baseline black box
model, which would serve as the underlying black box model for the XAI algo-
rithms, was RF due to its good performance and popularity. Finally, DT was cho-
sen in order to compare RF to a white box model, and address the explainability-
accuracy trade-off.

The selected ML were optimized on both sets of datasets, using the grid search
method.

4.7.5 Evaluation Metrics

In order to evaluate the performance of the ML models, the metrics of accuracy
and F1-score were selected. The F1-score in particular was selected due to the fact
that results of accuracy may be biased in cases of unbalanced datasets.

As for the XAI evaluation metrics, accuracy and F1-score were selected in order to
evaluate the approximation of the XAI models’ surrogate model to RF. In regards
to the quality of the explanations, Ribeiro et al.’s metric of faithfulness, Zafar and
Khan’s metric of stability, and the metrics of single and incremental deletion were
selected.

4.7.6 Experimental Methodology

Two experiments were carried out for this thesis. Both involved training the ML
models, and extracting ten “gold features” from the trained RF. The ML models
were then evaluated using accuracy and F1-score.

The features used to reach the classification across ten rounds for each XAI model
were compiled in order to calculate the stability metric. As for the faithfulness
metric, the features used to reach classifications of all instances were obtained
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across all XAI models. For accuracy and F1-score, the classifications of all in-
stances in the test set were used.

The second experiment included the addition of the single and incremental dele-
tion metrics, which involved the removal of features and, thus, re-training all
algorithms on the reduced datasets. The similarity score was computed from the
classifications obtained across all rounds of feature removal.
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Results and Discussion

In this chapter, the results of this thesis will be presented alongside their inter-
pretative analysis and discussion. Section 5.1 will focus on the results obtained
through the standardized datasets, Section 5.2 on the results obtained through
the non-standardized datasets, and Section 5.3 will provide a comparative analy-
sis between both sets of results. Finally, Section 5.4 will summarize the contents
of this chapter.

5.1 Standardized Datasets

As explained in Section 4.3, this first experiment involved an additional step in
pre-processing, standardization. Each dataset was then applied to the optimized
RF and DT models, as well as the XAI models of LIME, DLIME, and AL-DLIME.
Results regarding accuracy and F1-Score are compiled in Table 5.1, while results
regarding XAI-specific performance may be found in Tables 5.2, 5.3 and 5.4. Fig-
ure 5.1 shows examples of the confusion matrices generated through the scores
of Jaccard’s distance for a random instance of the BCD.

Table 5.1: Accuracy and F1-Score results for all models on the standardized
datasets. Best results for accuracy and F1-Score for each dataset are highlighted
through bold text.

Accuracy F1-Score
Model BCD OCD PCD HDD BCD OCD PCD HDD

RF 0.982 0.767 0.576 0.870 0.977 0.722 0.574 0.896
DT 0.982 0.558 0.534 0.766 0.929 0.537 0.517 0.804

LIME 0.956 0.767 0.492 0.647 0.940 0.737 0.415 0.775
DLIME 0.947 0.767 0.576 0.870 0.977 0.762 0.574 0.896

AL-DLIME 0.982 0.791 0.576 0.875 0.977 0.780 0.574 0.900

Beginning with the results of accuracy and F1-Score shown in Table 5.1, it is clear,
first and foremost, that AL-DLIME performed the best on each dataset across all
models, including RF. In fact, AL-DLIME even outperformed RF in both accu-
racy and F1-score with the OCD and HDD. However, it is necessary to state that

61



Chapter 5

both instances were only small improvements upon the black box model’s per-
formance. In contrast, DLIME performed slightly better than RF on only one ac-
count, the F1-score obtained with the OCD. Finally, LIME proved to be the least
faithful to RF in terms of classifier performance, obtaining the highest discrep-
ancy between results through the PCD and HDD, with the largest difference be-
ing the value of accuracy with the HDD (0.869 for RF, and 0.647 for LIME). LIME’s
performance was most similar to the RF model on two accounts: the BCD, and
the OCD. Results of accuracy and F1-score of LIME did not differ beyond 0.040
in comparison to the values obtained by RF, in these instances. Moreover, LIME
even outperformed RF in the case of the F1-score on the OCD dataset, albeit a
slight difference (0.722 for RF, and 0.737 for LIME).

Additionally, the RF classifier outperformed the DT model in all accounts, across
each dataset. The greatest difference in performance was observed in the case of
the OCD, where the accuracy and F1-Score of the RF model were 0.767 and 0.722,
respectively, while those of the DT model were 0.558 and 0.536. However, the
worst results in performance were noted on the PCD, with neither model able to
achieve accuracy of F1-Score values above 0.600. On the contrary, both models
performed exceptionally well on the BCD, scoring above 0.900 in accuracy and
F1-Score.

Overall, the XAI models all performed most similarly to RF through the BCD.
Moreover, RF outperformed DT on all accounts across all datasets, which was to
be expected.

Table 5.2: Faithfulness of the XAI models on the standardized datasets. Best re-
sults for each dataset are highlighted through bold text.

Faithfulness
Model BCD OCD PCD HDD
LIME 0.600 0.700 0.833 0.900

DLIME 0.272 0.300 0.667 0.900
AL-DLIME 0.349 0.219 0.668 0.935

As aforementioned, Table 5.2 shows the results of faithfulness between each XAI
model, and the RF classifier. In general, LIME boasts the best results, with all val-
ues being above 0.600. It is especially interesting to note that LIME performed the
best with the PCD and HDD, with its best result being 0.900 with the HDD. This
trend is reflected with DLIME and AL-DLIME, though in terms of the BCD and
OCD, they performed significantly worse than LIME, with all values below 0.400.
Between the two, DLIME obtained the worst results, though it performed equally
to LIME with the HDD. Additionally, AL-DLIME also obtained its best result of
faithfulness with the HDD, which also accounts for the best result regarding this
metric among all XAI models, 0.935.

In Table 5.3, the results for the single deletion metric are shown. As for the PCD,
there are no results for rounds 4 and 5 due to the reduced number of features
available, compounded with the fact that two features were removed at a time.
From all models, LIME obtained the overall best results, consistently across round
1 of removal. To reiterate a previous point, low results for similarity are more
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Table 5.3: Results for single deletion across all five rounds. Lowest values across
all rounds for each dataset are highlighted through bold text.

Model Dataset Round 1 Round 2 Round 3 Round 4 Round 5
BCD 0.991 0.991 0.982 0.969 0.991
OCD 0.930 0.930 0.930 0.930 0.860
PCD 0.873 0.763 0.780 - -RF

HDD 0.902 0.967 0.967 0.973 0.973
BCD 1.000 0.991 0.991 0.991 0.982
OCD 0.721 0.884 0.930 0.907 0.884
PCD 0.508 0.797 0.669 - -LIME

HDD 0.446 0.984 0.598 1.000 0.951
BCD 0.991 0.991 0.982 0.965 0.982
OCD 0.930 0.930 0.930 0.930 0.860
PCD 0.873 0.763 0.780 - -DLIME

HDD 0.902 0.967 0.967 0.973 0.973
BCD 0.991 0.991 0.982 0.965 0.982
OCD 0.930 0.907 0.930 0.930 0.860
PCD 0.873 0.763 0.780 - -

AL-
-DLIME

HDD 0.886 0.973 0.973 0.967 0.967

Table 5.4: Results for incremental deletion across all five rounds. Lowest values
across all rounds for each dataset are highlighted through bold text.

Model Dataset Round 1 Round 2 Round 3 Round 4 Round 5
BCD 0.965 0.982 0.991 0.965 0.956
OCD 0.884 0.744 0.884 0.884 0.674
PCD 0.907 0.500 0.619 - -RF

HDD 0.891 0.625 0.690 0.821 0.054
BCD 0.982 0.991 1.000 1.000 0.991
OCD 0.721 0.721 0.791 0.791 0.721
PCD 0.788 0.449 0.407 - -LIME

HDD 0.495 0.435 0.500 0.582 0.582
BCD 0.965 0.982 0.991 0.965 0.947
OCD 0.884 0.744 0.884 0.884 0.674
PCD 0.907 0.441 0.619 - -DLIME

HDD 0.891 0.625 0.690 0.821 0.054
BCD 0.965 0.982 0.991 0.965 0.947
OCD 0.651 0.907 0.860 0.860 0.721
PCD 0.907 0.441 0.619 - -

AL-
-DLIME

HDD 0.875 0.625 0.690 0.804 0.065
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desirable, as that would signify the model is faithful to the choice of the most
important features. As I began with removing the most important features, it was
to be expected that the lowest results would be found in round 1. However, LIME
was the only model which obtained values below 0.600. In fact, the results from
RF are nearly all above 0.900, with the exception of the values obtained through
the PCD, which range from 0.780 to 0.873, and a single instance obtained through
the OCD, with a value of 0.860. Both DLIME and AL-DLIME performed similarly
to RF, with the lowest results of similarity being through the PCD. However,
DLIME and AL-DLIME also achieved the lowest value in regards to the BCD,
despite this result being relatively high, regardless (0.965).

Finally, Table 5.4 shows the results for the incremental deletion metric. Once
again, there are no results for the PCD for rounds 4 and 5 due to the reduced
number of features Overall, it appears that DLIME and AL-DLIME both achieved
the lowest results for two datasets (BCD and HDD, and BCD and OCD, respec-
tively), while LIME and RF achieved the lowest results for the PCD and HDD,
respectively. Furthermore, there was further variability between results, which
was to be expected to the nature of the metric – successively removing features
from the datasets. However, as for the BCD, no value below 0.940 was achieved
across all rounds, from all models. Finally, the lowest results that were obtained
were nearly all from round 5, which further aligns with the predicted behaviour.

For this first experiment, the results for accuracy and F1-score from the ML mod-
els were satisfactory, with the exception of those obtained with the PCD. As afore-
mentioned, RF outperformed DT on every occasion which was consistent with
the findings in Section 3.1. This provides a more robust defense for the use of
black box models in this area of application, though a more comprehensive study
may be executed in the future, with a larger array of both black box and white
box models. Within the scope of this paper, the results of the model optimiza-
tion through the grid search method lead me to believe that RF is preferable over
DT among the selected datasets. When compared to performance of AL-DLIME,
however, the question remains: are black box algorithms strictly necessary? De-
spite the the fact that the instances in which AL-DLIME outperformed RF were
merely slight improvements, the fact remains that its performance exceeded RF.
This could be another potential avenue for future research.

In terms of faithfulness to the black box model, the results for both DLIME and
AL-DLIME were surprisingly low, though all XAI models performed well on the
HDD. Beyond this, there is an especially interesting correlation between the re-
sults of accuracy and F1-score, and faithfulness. All models performed the best
in terms of accuracy and F1-score on the BCD and OCD, while, in stark contrast,
obtaining their worst results in regards to faithfulness. Moreover, LIME’s results
of accuracy and F1-score showed the biggest discrepancy to those of RF through
the HDD, while it obtained its best result for faithfulness on that same dataset.
This would seem to suggest that a higher faithfulness to the black box model
comes at a cost of performance. However, in the case of AL-DLIME, the opposite
occurred: on the HDD, not only did it outperform RF, it also obtained the best
result for faithfulness out of all XAI models, from all utilized datasets.

The trend of high results for similarity regarding the single deletion metric was
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(a) DLIME (b) AL-DLIME (c) LIME

Figure 5.1: Results for Jaccard’s distance across ten iterations on a single, random
instace from the standardized BCD, presented in confusion matrices.

yet another point of interest. It is important to note that the overall lowest results
were obtained through the PCD, the dataset with the smallest amount of features
and, thus, the smallest “gold set”, consisting of only six features. The removal
of two out of six of these features would, in theory, have a greater impact, which
could explain the low results. As for the results of the incremental deletion met-
ric, a larger discrepancy was noted, though still less than expected. The lowest
results for similarity were obtained through the PCD, as well as the HDD, while
the results for the BCD were overall the highest. Once again, this outcome may
be due to the difference in terms of number of features among the datasets. The
BCD and OCD, with the largest amount of features, are more likely to have mul-
tiple features with similar values of importance, than the PCD and HDD, both
of which contain under fifteen features. However, despite the results not being
in accordance with what was expected, it should be emphasized that, overall, all
XAI models performed closely to RF, with DLIME and AL-DLIME obtaining the
closest results to the black box model.

In regards to the values obtained for Jaccard’s distance, through Figure 5.1 we
may see the results regarding a random instance from the BCD. The results of
Jaccard’s distance are represented through confusion matrices, from which we
may view the variety of values through their color representation, depicted in
the color bars on the right side of each matrix. Therefore, DLIME and AL-DLIME,
whose matrices (Figures 5.1a and 5.1b, respectively) are solid colors depicting the
value 0, demonstrate the utmost stability. In contrast, LIME’s confusion matrix
(Figure 5.1c) depicts a wide variety of different values, which translates into less
stability. Further examples may be found in Figures B.1, B.3, and B.5.

5.2 Non-Standardized Datasets

For the second experiment, the process of standardization was omitted, thus re-
sulting in the exclusion of the single and incremental deletion metrics. The re-
maining process, as explained in section 4.6, was much the same. Table 5.5 pro-
vides the results of accuracy and F1-score obtained for the ML and XAI models,
while Table 5.6 displays the results of faithfulness of the XAI models. Finally, Fig-
ure 5.2 shows the confusion matrices generated from the Jaccard’s distance scores
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of the XAI models on a random instance of the BCD.

Table 5.5: Accuracy and F1-Score results for all models on the non-standardized
datasets. Best results for accuracy and F1-Score for each dataset are highlighted
through bold text.

Accuracy F1-Score
Model BCD OCD PCD HDD BCD OCD PCD HDD

RF 0.991 0.767 0.703 0.870 0.989 0.762 0.707 0.897
DT 0.956 0.698 0.585 0.804 0.943 0.629 0.589 0.830

LIME 0.982 0.767 0.644 0.864 0.976 0.737 0.644 0.893
DLIME 0.982 0.767 0.712 0.870 0.977 0.762 0.716 0.897

AL-DLIME 0.982 0.791 0.703 0.870 0.977 0.780 0.707 0.897

From Table 5.5, we may find the results of accuracy and F1-Score obtained for the
ML and XAI models in this experiment. Once again, AL-DLIME demonstrated a
strong performance, although it did not dominate as in the previous experiment.
In fact, the performance of DLIME and AL-DLIME was similar, with both models
managing once again to outperform RF. DLIME, however, performed in the most
similar manner to RF, with the biggest discrepancy in terms of accuracy and F1-
score being 0.011. Comparatively, LIME was the least faithful to RF in regards to
these metrics, with the biggest discrepancy between both models’ values being
0.063. Beyond this, it is worth noting that the datasets with which these models
performed most similarly to RF were the OCD and HDD, in regards to LIME and
DLIME, and the PCD and HDD for AL-DLIME.

Additionally, the results show that RF outperformed DT, with particularly re-
markable results in accuracy for the BCD (0.991) that is in line with many state
of the art models, some of which are mentioned in section 3.1. Overall, RF per-
formed well, with results in both accuracy and F1-score consistently above 0.700.
In contrast, DT also achieved acceptable results, with the exception of those ob-
tained through the PCD, which were notably worse.

Table 5.6: Faithfulness of the XAI models on the non-standardized datasets. Best
results for each dataset are highlighted through bold text.

Faithfulness
Model BCD OCD PCD HDD
LIME 0.800 0.600 0.833 1.000

DLIME 0.344 0.272 0.667 0.929
AL-DLIME 0.379 0.237 0.667 0.955

Regarding faithfulness, which may be viewed in Table 5.6, LIME once again
demonstrated the strongest performance. In fact, LIME achieved the overall high-
est faithfulness score (1.000) among all XAI models, which was attained through
the HDD. While the remaining models performed similarly, AL-DLIME outper-
formed DLIME marginally across all datasets. Moreover, it is worth noting that
all models obtained their highest scores with the HDD, while their lowest scores
were obtained with the OCD. This is most certainly due to the difference be-
tween the amount of features present in either dataset: while the OCD contains
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(a) DLIME (b) AL-DLIME (c) LIME

Figure 5.2: Results for Jaccard’s distance across ten iterations on a single, random
instace from the non-standardized BCD, presented in confusion matrices.

the largest amount at 47 features, the HDD only contains 11, of which 10 were
selected for classification. Following this logic, it is unsurprising that the second
highest scores were obtained with the PCD, which only contains 8 features, 6
of which were used at any point in time for classification. Despite this, there is
a considerable difference between the results of faithfulness from the PCD be-
tween LIME, and both DLIME and AL-DLIME, which, in addition to LIME’s
overall high scores, suggests that LIME is a better candidate when considering
the aspect of faithfulness to the underlying black box model.

In spite of the high scores of faithfulness, in combination to the close performance
to RF of the XAI models regarding accuracy and F1-score, through the HDD, it is
necessary to highlight the effect of the dataset’s small size of features. Instead, it
is perhaps more productive to consider the relation between the scores attained
through the PCD: all models performed closely to RF, in terms of accuracy and
F1-score, while at the same time obtaining their lowest overall scores for faithful-
ness.

Finally, DLIME and AL-DLIME once again outperform LIME in regards to the
stability of their explanations, as shown by Figure 5.2. As demonstrated by the
lighter colors, moreover, we may conclude that in this instance, LIME demon-
strated even further instability than the previous example with the standardized
data. Of course, it is important to stress once again that these are only random,
singular instances from one of the four selected datasets. However, the stability
of DLIME and AL-DLIME in comparison to LIME remains undeniable. Further
examples may be found in Figures B.2, B.4, and B.6.

5.3 Comparative Analysis

In both experiments, RF outperformed DT by a significant enough margin to jus-
tify its use over the transparent model, especially when one considers the scores
from the standardized OCD, and the non-standardized PCD. Beyond this, the
scores themselves were satisfactory for the area of application in question. More-
over, it is noteworthy to mention that there was a noticeable improvement in re-
sults with the use of the non-standardized datasets. In fact, as aforementioned, RF
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managed an impressive score of 0.991 in accuracy with the BCD, which is on par
with many state of the art models mentioned in 3.2. This dataset is very widely
used, and an important benchmark for training and testing many ML algorithms;
thus, attaining such a score is not only testament to an optimized model, but also
a well constructed dataset.

One of the main arguments for XAI is the perceived superiority of black box mod-
els over white box models. The results of the experiments conducted in this thesis
in regards to RF and DT initially appear to support this claim. However, it was
observed on several occasions that both DLIME and AL-DLIME achieved higher
accuracy and F1-score than RF in both experiments, albeit with small margins.
Future research could investigate a wider range of both black box and white box
models to reach a consensus on this issue. Nonetheless, given the results of this
work, it may be more advantageous to use a simpler, more explainable model
such as ridge linear regression, which is the surrogate model used in the selected
XAI models, instead of a more complicated model such as RF.

Regarding the performance of the XAI models, the results showed that DLIME
and AL-DLIME consistently outperformed LIME in relation to accuracy and F1-
score across both experiments. Moreover, on several instances, AL-DLIME per-
formed slightly better than its predecessor, though the difference was negligible.
When viewing these results from the perspective of the scores for faithfulness,
however, a trend was noted. The scores of accuracy and F1-score that are the
closest to those of RF correlate with the XAI model’s lowest results in faithful-
ness. As explained before, the fact that 10 out of 11 features were used for the
classification of the HDD skewed the results of faithfulness for this dataset, and
thus should not be considered. In addition to this, it is important to note that
LIME performed significantly better than the remaining XAI models in terms of
faithfulness. As a result, one must question what is most important in the selec-
tion of a XAI model. Though DLIME and AL-DLIME perform most closely to RF,
in terms of faithfulness to the black box, they are lacking. On the contrary, LIME
offers a generally faithful representation of what the selected black box model
deems as important, however, there is a larger discrepancy when considering ac-
curacy and F1-score. A possible explanation for LIME’s greater faithfulness to
the black box model may be due to its method of selecting instances that are used
to train the surrogate model. By performing a random selection (as opposed to
selecting the most informative instances, in the case of AL-DLIME), it is possible
that LIME rids itself of any bias towards the data, thus approximating a more
faithful representation.

Given the origin of XAI is based on the value of trust, we would propose that
faithfulness should be viewed above accuracy and F1-score; additionally, the dis-
crepancy noted never surpassed 0.250 across both experiments, and therefore
may still be considered as acceptable. However, the fact remains that the sta-
bility of DLIME and AL-DLIME is undeniable in comparison to the explanations
generated through LIME.
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5.4 Summary

In this chapter, the results from the thesis were presented, followed by a discus-
sion surrounding them, as well as a comparative analysis between both experi-
ments.

5.4.1 Standardized Datasets

In terms of accuracy and F1-score, AL-DLIME performed the best. Both AL-
DLIME and its predecessor performed very closely to RF, even outperforming
the ML model on select instances. As expected, RF outperformed DT.

LIME was the best XAI model in terms of faithfulness, though AL-DLIME per-
formed the best on the HDD.

In terms of the single and incremental deletion metrics, not as much perturbation
was registered as was expected. LIME registered the largest perturbations in re-
gards to the single deletion metric, while the performance of the XAI models was
more balanced on the incremental deletion metric.

Finally, AL-DLIME and DLIME clearly outperformed LIME in terms of stability.

5.4.2 Non-Standardized Datasets

AL-DLIME and DLIME performed similarly in terms of accuracy and F1-score,
both in relation to each other, as well as to RF. LIME once again performed the
worst out of all XAI models. However, in terms of faithfulness, LIME outper-
formed AL-DLIME and DLIME across all datasets.

In this experiment, the stability of AL-DLIME and DLIME was once again supe-
rior to that of LIME.

5.4.3 Comparative Analysis

There was an improvement in terms of accuracy, F1-score, and faithfulness in
the second experiment. RF outperformed DT across both experiments, however,
the XAI models were also able to outperform RF, in spite of those improvements
being slight. AL-DLIME was especially robust in regards to these metrics.

LIME sucessively outperformed AL-DLIME and DLIME in regards to faithful-
ness. This may be due to its non-deterministic nature of randomly perturbing
data points reducing the risk of bias towards data.

A trend between the results of accuracy and F1-score, and faithfulness: the closer
the XAI models performed to RF in terms of classifications, the lower their results
of faithfulness. This may enforce the idea of the explainability-accuracy tradeoff.
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Conclusion

The present thesis served, first and foremost, to present a novel XAI model based
on the DLIME framework. This was achieved through the use of AL, apply-
ing pool-based sampling and an uncertainty sampling query strategy in order to
select the most informative examples. Beyond this, I aimed to provide a com-
prehensive comparison between the proposed model, AL-DLIME, and DLIME
and LIME, across four datasets related to medicine. Thus, several metrics were
selected, including faithfulness to the black box model from Ribeiro et al. [14],
Jaccard’s distance to measure stability of the explanations proposed by Zafar and
Khan [15], single and incremental deletion, and, finally, accuracy and F1-score.
Due to the nature of the white box model used in the XAI models, ridge linear
regression, it was necessary to perform two experiments: the first which involved
standardized versions of the selected datasets, and the second, non-standardized
data.

The proposed model obtained satisfactory results in terms of accuracy and F1-
Score, managing to outperform RF on several instances in both experiments.
DLIME performed similarly to AL-DLIME in regards to accuracy and F1-Score,
though AL-DLIME managed to outperform its predecessor ever so slightly. How-
ever, despite their strong performance related to classifications, AL-DLIME and
DLIME’s scores of faithfulness were lacking on both the BCD and OCD when
compared to LIME through either experiment, with results as low as 0.219. This
may be due to their deterministic nature – in the case of AL-DLIME, for example,
by using uncertainty sampling for the selection of instances to use to train the sur-
rogate model, bias may be introduced into the model and, thus, interfere with its
ability to faithfully approximate the underlying black box model. LIME, on the
other hand, randomly selects instances, which may reduce the risk of introducing
bias.

Furthermore, it is important to reiterate the finding made in Section 5.3: regarding
the XAI models, the higher the scores for accuracy and F1-score, the lower the
scores for faithfulness.

As for the single and incremental deletion metrics, there was not as much pertur-
bation as expected, including the scores from RF. LIME, overall, obtained the best
results for these metrics, in the sense that the model showed the most perturba-
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tion from the removal of features that were deemed the most important by the RF
model. However, despite this, it is necessary to stress the fact that RF itself did
not present much perturbation. Therefore, as the ultimate goal is to gauge how
faithful the XAI models are to approximating their underlying black box model’s
behaviour, it is important to note that AL-DLIME and DLIME performed the most
similarly to RF regarding these metrics.

Finally, AL-DLIME and DLIME both received perfect scores of stability, as demon-
strated through the Jaccard’s distance scores, while LIME’s explanations proved a
considerable degree of instability, especially in the case of the second experiment.

Overall, the results are satisfying, as well as exciting, due to the plethora of possi-
bilities for future research. In particular, the aspect of AL in the proposed model
allows for many different avenues of research, including different sampling sce-
narios and query strategies.
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Future Work

It is important to stress the lack of human-based metrics, which is especially im-
portant in this area of application. While monetary and time-related constraints
impeded the inclusion of such metrics in the current work, a questionnaire was
prepared in the event that an available medical professional could answer. This
questionnaire may be found in Figures C.1 to C.12, and remains as a potential av-
enue of research for the future. Beyond this, the application of other XAI-related
evaluation metrics could be another point of interest, as it is an ever-expanding
topic for this field. In fact, as stated previously, experts are yet to agree upon a
“gold set” of metrics to evaluate XAI models. Finally, it is important to acknowl-
edge the lack of other relevant metrics, such as specificity and sensibility, that are
widely used to evaluate classification models applied to the medical field. While
the focus of this thesis was the comparison of XAI models through metrics that
may accurately evaluate, for example, the quality of an explanation, it is also nec-
essary to consider other relevant metrics.

The implementation of other black box models, such as SVMs, or neural net-
works, in order to provide a more comprehensive comparison between the accu-
racy and F1-Score of AL-DLIME and other models may also be of interest going
forward.

In terms of the proposed model, there are several possible variations that remain
to be explored. Future research could implement different sampling scenarios, as
well as query strategies. Furthermore, it is important to acknowledge the pos-
sibility of the selected query strategy being unable to determine sufficiently un-
certain instances. In other words, instances that belong within the determined
interval of 47% to 53%. For this case, two possible avenues may be explored: 1)
the interval of uncertainty may be widened, which, in the case of the same issue
occurring once more, leads to 2) the AL-DLIME algorithm proceeds to function
as the DLIME algorithm, utilizing AHC and kNN to select samples.

Lastly, another point of interest that was identified was that DLIME and, by ex-
tension, AL-DLIME could support image-based datasets in the future. Many
datasets used in the medical field are image-based, and thus I view this goal as
being vital for the continued use of AL-DLIME and DLIME in such domains.
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Datasets

Table A.1: All features pertaining to the BCD, including a brief description of
them.

Id Name Type Description
1 radius_mean Linear Mean radius of lobes
2 texture_mean Linear Mean of surface texture
3 perimeter_mean Linear Mean outer perimeter of lobes
4 area_mean Linear Mean area of lobes
5 smoothness_mean Linear Mean of smoothness levels
6 compactness_mean Linear Mean of compactness
7 concavity_mean Linear Mean of concavity
8 concave points_mean Linear Mean of concave points
9 symmetry_mean Linear Mean of symmetry

10 fractal_dimension_mean Linear Mean of fractal dimension
11 radius_se Linear Standard error of radius of lobes
12 texture_se Linear Standard error of surface texture
13 perimeter_se Linear Standard error of outer perimeter of lobes
14 area_se Linear Standard error of area of lobes
15 smoothness_se Linear Standard error of smoothness levels
16 compactness_se Linear Standard error of compactness
17 concavity_se Linear Standard error of concavity
18 concave points_se Linear Standard error of concave points
19 symmetry_se Linear Standard error of symmetry
20 fractal_dimension_se Linear Standard error of fractal dimension
21 radius_worst Linear Worst of radius of lobes
22 texture_worst Linear Worst of surface texture
23 perimeter_worst Linear Worst of outer perimeter of lobes
24 area_worst Linear Worst of area of lobes
25 smoothness_worst Linear Worst of smoothness levels
26 compactness_worst Linear Worst of compactness
27 concavity_worst Linear Worst of concavity
28 concave points_worst Linear Worst of concave points
29 symmetry_worst Linear Worst of symmetry
30 fractal_dimension_worst Linear Worst of fractal dimension
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Table A.2: All features pertaining to the OCD, including a brief description of
them.

Id Name Type Description
1 MPV Linear Mean platelet volume
2 BASO# Linear Basophil cell count
3 PHOS Linear Phosphorus
4 GLU Linear Glucose
5 CA72-4 Linear Carbohydrate antigen 72-4
6 K Linear Kalium
7 AST Linear Aspartate aminotransferase
8 BASO% Linear Basophil cell ratio
9 Mg Linear Magnesium
10 CL Linear Chlorine
11 CEA Linear Carcinoembryonic antigen
12 EO# Linear Eosinophil count
13 CA19-9 Linear Carbohydrate antigen 19-9
14 ALB Linear Albumin
15 IBIL Linear Indirect bilirubin
16 GGT Linear Gama glutamyltransferasey
17 MCH Linear Mean corpuscular hemoglobin
18 GLO Linear Globulin
19 ALT Linear Alanine aminotransferase
20 DBIL Linear Direct bilirubin
21 RDW Linear Red blood cell distribution width
22 PDW Linear Platelet distribution width
23 CREA Linear Creatinine
24 AFP Linear Alpha-fetoprotein
25 HGB Linear Hemoglobin
26 Na Linear Natrium
27 HE4 Linear Human epididymis protein 4
28 LYM# Linear Lymphocyte count
29 CA125 Linear Carbohydrate antigen 125
30 BUN Linear Blood urea nitrogen
31 LYM% Linear Lymphocyte ratio
32 Ca Linear Calcium
33 AG Linear Anion gap
34 MONO# Linear Mononuclear cell count
35 PLT Linear Platelet count
36 NEU Linear Neutrophil ratio
37 EO% Linear Eosinophil ratio
38 TP Linear Total protein
39 UA Linear Urie acid
40 RBC Linear Red blood cell count
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Datasets

Table A.2: Continued.

Id Name Type Description
41 PCT Linear Thrombocytocrit
42 CO2CP Linear Carbon dioxide-combining power
43 TBIL Linear Total bilirubin
44 HCT Linear Hematocrit
45 MONO% Linear Monocyte ratio
46 MCV Linear Mean corpuscular volume
47 ALP Linear Alkaline phosphatase
48 Age Linear Age of the patient

49 Menopause Categorical Whether the patient has had
menopause (0) or not (1)

Table A.3: All features pertaining to the PCD, including a brief description of
them.

Id Name Type Description
1 Age Linear Age of the patient

2 Sex Categorical Sex of the patient
(M = Male, F = Female)

3 Plasma_CA19_19 Linear Blood plasma levels of the CA19-19
monoclonal antibody

4 Creatinine Linear Urinary biomarker
5 CA72-4 Linear Carbohydrate antigen 72-4

6 LYVE1 Linear Urinary leveles of the protein lymphatic
vessel endothelieal hyaluronan

7 REG1B Linear Urinary levels of the protein regenerating
family member 1 beta

8 TFF1 Linear Urinary levels of trefoil factor

9 REG1A Linear Urinary levels of the protein regenerating
family member 1 alpha

10 patient_cohort Categorical Cohort from which the patient belonged to
(Cohort1, Cohort2)

11 sample_origin Categorical

Origin of the sample
(BPTB: Barts Pancreas Tissue Bank,

ESP: Spanish National Cancer Research
Centre)

12 benign_sample_diagnosis Categorical
The diagnosis for those with a benign,

non-cancerous diagnosis
(Pancreatitis, Other)
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Table A.4: All features pertaining to the HDD, including a brief description of
them.

Id Name Type Description
1 Age Linear Age of the patient

2 Sex Categorical Sex of the patient
(M = Male, F = Female)

3 ChestPainType Categorical Type of chest pain the patient exhibits
(ASY, NAP, or Other)

4 RestingBP Linear Resting blood pressure
5 Cholesterol Linear Serum cholesterol
6 FastingBS Linear Fasting blood sugar

7 RestingECG Categorical Resting electrocardiogram results
(Normal, LVH, or Other)

8 MaxHR Linear Maximum heart rate achieved

9 ExerciseAngina Categorical
Whether or not exercise induced angina

was achieved
(Y = Yes, N = No)

10 Oldpeak Linear Value of the peak exercise ST segment

11 ST-Slope Categorical The slope of the peak exercise ST segment
(Flat, Up, or Other)
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Results

(a) DLIME (b) AL-DLIME (c) LIME

Figure B.1: Results for Jaccard’s distance across ten iterations on a single, random
instace from the standardized OCD, presented in confusion matrices.

(a) DLIME (b) AL-DLIME (c) LIME

Figure B.2: Results for Jaccard’s distance across ten iterations on a single, random
instace from the non-standardized OCD, presented in confusion matrices.
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(a) DLIME (b) AL-DLIME (c) LIME

Figure B.3: Results for Jaccard’s distance across ten iterations on a single, random
instace from the standardized PCD, presented in confusion matrices.

(a) DLIME (b) AL-DLIME (c) LIME

Figure B.4: Results for Jaccard’s distance across ten iterations on a single, random
instace from the non-standardized PCD, presented in confusion matrices.

(a) DLIME (b) AL-DLIME (c) LIME

Figure B.5: Results for Jaccard’s distance across ten iterations on a single, random
instace from the standardized HDD, presented in confusion matrices.

(a) DLIME (b) AL-DLIME (c) LIME

Figure B.6: Results for Jaccard’s distance across ten iterations on a single, random
instace from the non-standardized HDD, presented in confusion matrices.
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Future Work

Figure C.1: Introduction to the questionnaire. This section has the objective of
explaining the core concepts of the experiment so that the medical professionals
filling out the questionnaire have some context regarding the following questions.
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Figure C.2: Introduction to the first section. The goal of this section is to collect a
general first impression from the medical professionals regarding their preference
between LIME and DLIME, given some further context.
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Future Work

Figure C.3: The first and second questions from the first section. The first aims to
collect a preference from the medical professionals, with an explanation for that
choice required in the second question.

93



Appendix C

Figure C.4: Introduction to the second section. The goal of this section is to collect
a more informed decision from the medical professionals, through a demonstra-
tion of the stability of explanations from DLIME and LIME.
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Future Work

Figure C.5: Examples of DLIME’s explanations regarding the same instance
across three different rounds, intended to demonstrate DLIME’s stability.
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Figure C.6: Examples of LIME’s explanations regarding the same instance across
three different rounds, intended to demonstrate the lack of LIME’s stability.
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Future Work

Figure C.7: The first and second question from the second section. Intended to
gauge whether or not the previous demonstrations of the models’ stability would
change the medical professionals’ previously established opinion. They are then
requested to provide an explation regarding their choice.

Figure C.8: Introduction to the third section.
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Figure C.9: An example of one of the three questions from the third section. The
objective of these questions is to gauge how well the medical professionals taking
this questionnaire have come to understand how DLIME functions, while simul-
taneously evaluating DLIME’s ability to present information in an understand-
able manner. The second and third questions are presented in the same manner,
with the exception of the initial figure, which depict explanations from DLIME of
different instances.

Figure C.10: Introduction to the fourth section.
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Future Work

Figure C.11: An example of one of the three questions from the fourth section.
The objective of these questions is to gauge how well the medical professionals
taking this questionnaire have come to understand how LIME functions, while si-
multaneously evaluating LIME’s ability to present information in an understand-
able manner. The second and third questions are presented in the same manner,
with the exception of the initial figure, which depict explanations from LIME of
different instances.
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Figure C.12: The fifth and final section of the questionnaire, which aims to col-
lect any and all suggestions the medical professionals have on how to improve
DLIME and, by extension, AL-DLIME.
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