

João Filipe Carnide de Jesus Nunes

DATA PROCESSING AND VISUALISATION IN

REPUTATION SYSTEMS FOR ENTITIES IN IOT

Dissertation in the context of the Master in Informatics Engineering,
specialisation in Software Engineering, advised by Professor Bruno Sousa

and presented to the Department of Informatics Engineering of the Faculty of
Sciences and Technology of the University of Coimbra.

September of 2023

DEPARTMENT OF INFORMATICS ENGINEERING

João Filipe Carnide de Jesus Nunes

Data Processing and Visualisation
in Reputation Systems for Entities

in IoT

Dissertation in the context of the Master in Informatics Engineering,
specialisation in Software Engineering, advised by Prof. Bruno Sousa and
presented to the Department of Informatics Engineering of the Faculty of

Sciences and Technology of the University of Coimbra.

September 2023

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

João Filipe Carnide de Jesus Nunes

Processamento e Visualização de
Dados em Sistemas de Reputação

para Entidades em IoT

Dissertação no âmbito do Mestrado em Engenharia Informática, especialização
em Engenharia de Software, orientada pelo Professor Doutor Bruno Sousa e
apresentada ao Departamento de Engenharia Informática da Faculdade de

Ciências e Tecnologia da Universidade de Coimbra.

Setembro 2023

Acknowledgements

The work presented would not be possible without the commitment and support
of several people. Therefore, I would like to thank everyone who helped me
during this dissertation, directly or indirectly.

First and foremost, I would like to thank my advisor, Professor Bruno Sousa, for
his patience, trust and assertiveness. Having had the chance to collaborate with
him was genuinely delightful. For his understanding when there was a problem
in the project and it was not solved immediately, and for his dedication in always
being available when any doubt arose, no matter how small. Undoubtedly, this
work would not be possible without the support of Professor Bruno.

This work was supported by the ARCADIAN-IoT project, which has received
funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 101020259. I would also like to thank some
members of this project who helped me throughout this work, namely André
Melo and Tomás Caçoete, for their help with the data visualisation platform and
Professor Luís Paquete for his advice on reputation models.

Next, I would like to thank my colleagues and friends Diogo Dória, Alexandre
Tapadinhas, Duarte Meneses, Mariana Paulino, Rafael Baptista, Oleksandr Yarot-
skyi, Patrícia Costa and Eduardo Nunes for their tremendous help in the usability
tests. Their collaboration helped to develop a cleaner product.

To NEI/AAC for helping me become more organised, selfless and responsible
over the last three years. To the many dedicated people I’ve met during this jour-
ney who work towards making DEI a better place for students, a sincere thank
you.

To Projeto TAU and its members who have helped me become a better person,
for reminding me that there is more beyond work by making our Friday night
meetings an escape from the hustle and bustle of my life.

I want to name a few people, some of them already mentioned above, who dur-
ing this year were an asset in supporting me, whether to motivate me or to make
me take a break from work. A huge thank you to Dinis Carvalho, João Cruz,
Bernardo Graça, Eva Filipe, Pedro Gil, José Henrique, Jaime Marques, Marta San-
tos, Mariana Loreto, Bernardo Arzileiro, Ana Sofia Santos, Mariana Silva, Lucas
Anjo, Maria Mansilha, Sara Panão, Daniel Diogo and Sofia Bidarra.

Finally, to my family, who always believed in me and gave me unconditional sup-
port in my endeavours despite having little or no understanding of the subject.

vii

Abstract

In today’s age, reputation systems are becoming increasingly important to mea-
sure entities’ trustworthiness and reliability in various contexts, including on-
line marketplaces, social media platforms, and Peer-to-Peer networks. Moreover,
modern reputation systems often distribute one of their critical features. As a re-
sult, decentralised networks like blockchain technology build them rather than a
single entity or organisation controlling them.

There are several methods for determining the reputation of entities (e.g., people
or objects). These methods include using ratings and reviews and analysing data
from the entity’s previous behaviour.

One of the critical challenges in implementing and maintaining a reputation sys-
tem is the need to visualise the collected data effectively. The visualisation helps
users understand the reputation of a particular entity at a glance and helps to
identify trends and patterns in the data that may be useful for making decisions
about trust and reliability. Different approaches to visualising reputation data
include graphs, charts, and other visual aids.

The main goals of this work are to validate several reputation models for the sys-
tem’s entities - people, applications/services and objects -, integrate these models
into a reputation system component, and evaluate their performance. Addition-
ally, we developed a data visualisation platform to make it easier to understand
and interpret the reputation information of all the entities present in the system.

It is necessary to consider particular elements when building a reputation system
to achieve these goals. This work presents these considerations. Additionally, we
discuss the implementation and testing of the developed components. We aim to
contribute to the field of reputation systems and provide a valuable resource for
those interested in understanding and utilising these systems.

Keywords

Reputation Systems, Data Visualisation, Trust, Distributed Systems, Entity.

ix

Resumo

Atualmente, os sistemas de reputação tornam-se cada vez mais importantes para
medir a confiabilidade e fiabilidade das entidades em vários contextos, incluindo
mercados online, plataformas de redes sociais, e redes Peer-to-Peer. Além disso, os
sistemas de reputação modernos distribuem frequentemente uma das suas carac-
terísticas críticas. Como resultado, redes descentralizadas como a tecnologia de
blockchain constroem-nas em vez de uma única entidade ou organização que as
controla.

Existem vários métodos para determinar a reputação das entidades (p.e., pessoas
ou objetos). Estes métodos incluem a utilização de classificações e avaliações e a
análise de dados do comportamento anterior da entidade.

Um dos desafios cruciais na implementação e manutenção de um sistema de rep-
utação é a necessidade de visualizar eficazmente os dados recolhidos. A visu-
alização ajuda os utilizadores a compreender a reputação de uma determinada
entidade num relance e ajuda a identificar tendências e padrões nos dados que
podem ser úteis para a tomada de decisões sobre confiança e fiabilidade. Existem
muitas abordagens diferentes à visualização de dados de reputação, incluindo
gráficos, diagramas, e outros auxílios visuais.

Os principais objetivos deste trabalho são validar vários modelos de reputação
para as diferentes entidades do sistema - pessoas, aplicações/serviços e objetos -,
integrar estes modelos numa componente de sistema de reputação, e avaliar o seu
desempenho. Adicionalmente, foi desenvolvida uma plataforma de visualização
de dados para facilitar a compreensão e interpretação da informação de reputação
de todas as entidades apresentadas no sistema.

É necessário considerar elementos particulares na construção de um sistema de
reputação para alcançar estes objetivos. Este trabalho apresenta estas consider-
ações. Além disso, é discutida a implementação e teste dos componentes desen-
volvidos. Pretende-se que este trabalho contribua para o campo dos sistemas de
reputação e forneça um recurso valioso para os interessados em compreender e
utilizar estes sistemas.

Palavras-Chave

Sistemas de Reputação, Visualização de Dados, Confiança, Sistemas Distribuídos,
Entidade.

xi

Contents

1 Introduction 1
1.1 Main Objectives . 2
1.2 Contribution . 3
1.3 Document Structure . 4

2 Background & Related Work 5
2.1 ARCADIAN-IoT . 5
2.2 Reputation System . 6

2.2.1 Trust, Risks and Reputation 7
2.2.2 Reputation Models . 7
2.2.3 Reputation Systems Dimensions 9
2.2.4 Reputation Network Architecture 14
2.2.5 Reputation Measurements . 17

2.3 Visualisation of Data . 26
2.3.1 Data Visualisation in Reputation Systems 27
2.3.2 Data Visualisation Frameworks 29

2.4 Summary . 33

3 Research Objectives & Approach 37
3.1 Objectives . 37
3.2 Approach . 38

3.2.1 Research & Development Methodology 39
3.2.2 Planning . 39
3.2.3 Risks . 43

4 Requirements Elicitation 47
4.1 Domains’ Description . 47

4.1.1 Domain A: Emergency and vigilance using drones and IoT . 47
4.1.2 Domain B: Medical IoT . 48

4.2 Functional Requirements . 49
4.3 Non-Functional Requirements . 55
4.4 Requirements Listing . 56
4.5 Use Cases . 58

4.5.1 Use Cases based on Domain A 58
4.5.2 Use Cases based on Domain B 67

4.6 Data Visualisation Platform Mockups 75
4.6.1 Homepage . 75
4.6.2 Entity Page . 76
4.6.3 Statistics Page . 78

xiii

Chapter 0

5 Project Architecture 79
5.1 C1 Context Diagram . 80
5.2 C2 Container Diagram . 81
5.3 C3 Component Diagram . 83

6 Implementation 85
6.1 Alpha-Beta Model . 85

6.1.1 Obtain Reputation Score . 86
6.1.2 Reputation Score Update . 86

6.2 Project Partners Events Reception . 86
6.3 Reputation Data Analysis & Calculation 87
6.4 Policies Used for Reputation . 89
6.5 Data Visualisation Platform Development 91

6.5.1 Frontend Implementation . 91
6.5.2 Display of Information in Platform 94

7 Feature Testing & Validation 97
7.1 Alpha-Beta Model Testing . 97

7.1.1 Testing the Model . 97
7.1.2 Analysis of the Model . 98
7.1.3 Conclusions of the Analysis 99
7.1.4 Changes Made to the Model 99

7.2 RabbitMQ & Reputation Information Testing 100
7.3 Quality Attributes . 101

7.3.1 Reliability . 101
7.3.2 Scalability . 102
7.3.3 Security . 105
7.3.4 Usability . 106

8 Conclusion 111
8.1 Future Work . 112

Appendix A Alpha-Beta Model Validation Tests 121
A.1 Ten negative events with an ageing factor of 0.5 122
A.2 Ten negative events with an ageing factor of 0.2 123
A.3 Ten negative events with an ageing factor of 0.8 124
A.4 Ten positive events with an ageing factor of 0.5 125
A.5 Ten positive events with an ageing factor of 0.2 126
A.6 Ten positive events with an ageing factor of 0.8 127
A.7 Four positive and three negative events with an ageing factor of 0.5 128
A.8 20 random events with an ageing factor of 0.5 129

Appendix B List of Exchanges in the Reputation System 131
B.1 Network Flow Monitor Exchange . 131
B.2 Device Behaviour Monitor Exchange 132
B.3 Remote Attestation Exchange . 133
B.4 Network Authorisation Exchange . 133
B.5 Biometrics Exchange . 134
B.6 Self-Sovereign Identity Exchange . 135

xiv

Contents

B.7 Middleware Exchange . 135
B.8 Self-Aware Data Privacy Exchange 136

Appendix C Data Visualisation Platform Full UI Presentation 137

xv

Acronyms

AI Artificial Intelligence.

API Application Programming Interface.

CERT Computer Emergency Response Team.

CORE Community Reputation Mechanism.

CSIRT Computer Security Incident Response Team.

CSV Comma-Separated Values.

CTI Cyber Threat Intelligence.

D3 Data-Driven Documents.

DAG Directed Acyclic Graph.

DDoS Distributed Denial of Service.

DEI Department of Informatics Engineering.

DGA Drone Guard Angel.

DRBR Dominance Relationship-Based Reputation.

DTRMS Distributed Trust and Reputation Management Systems.

EC European Commission.

eUICC embedded Universal Integrated Circuit Card.

FIRE Fair, Incentivised, Reputable, and Engaging.

GDPR General Data Protection Regulation.

HTTPS Hypertext Transfer Protocol Secure.

IoT Internet of Things.

JSON JavaScript Object Notation.

LOS Line of Sight.

MIoT Medical IoT.

xvii

Chapter 0

MITM Man-in-the-Middle.

ML Machine Learning.

P2P Peer-to-Peer.

REGRET Reputation Mechanism for Generalised Trustworthiness Evaluation.

RoT Root of Trust.

SSI Self-Sovereign Identity.

SSL Secure Sockets Layer.

TOTP Time-Based One-Time Password.

UC University of Coimbra.

xviii

List of Figures

2.1 Reference Model for Reputation Context 8
2.2 Reference Model for Reputation Systems 9
2.3 Visual representation of the taxonomy 11
2.4 General framework for a centralised reputation system 15
2.5 General framework for a distributed reputation system 16
2.6 Directed Acyclic Graph Example . 19
2.7 Parallel coordinates visualisation of flower data example 28

3.1 Gantt Diagram of the first semester 41
3.2 Gantt Diagram expected for the second semester 42
3.3 Gantt Diagram of the second semester 42

4.1 DGA entities involved . 48
4.2 MIoT entities involved . 49
4.3 Data Visualisation Platform Homepage 76
4.4 List of entities in the system, search and filtering 76
4.5 Entity Page - Parallel Coordinates . 77
4.6 Entity Page - Events Additional Information 77
4.7 Entity Page - Reputation Score History 78
4.8 Statistics of the Reputation System Page 78

5.1 C1 architectural diagram - Context 80
5.2 C2 architectural diagram - Container 81
5.3 C3 architectural diagram - Component 83

6.1 Flow diagram of the data analysis and calculation in the reputation
system . 88

6.2 Table with all the entities in the reputation system 92
6.3 Parallel coordinate chart with brushed events 92
6.4 Additional information of an entity’s events 93
6.5 Chart with the reputation history of an entity in the reputation sys-

tem . 93
6.6 Page with the statistics of the reputation system 94

7.1 Logarithmic rise of the beta value of an entity 98
7.2 Logarithmic growth of mean when received positive events 99
7.3 Producer sending JSON objects to Consumer in RabbitMQ 101
7.4 Clients connected to Redis before (red) and after (blue) system shut-

down . 101
7.5 System importing back the entities from Redis 102

xix

Chapter 0

7.6 Comparison of an entity’s reputation growth according to the dif-
ferent models . 104

7.7 Comparison of reputation score with different severity factor 105
7.8 Commands demonstrating the validity of the SSL certificate 105
7.9 Data visualisation platform with HTTPS 106
7.10 Valid time taken for each task - blue in valid time and orange invalid108
7.11 Graphics depicting the opinion of the testers regarding several plat-

form functionalities . 109

A.1 Graphics of the model’s behaviour with ten negative events with
AGING_FACTOR=0.5 . 122

A.2 Graphics of the model’s behaviour with ten negative events with
AGING_FACTOR=0.2 . 123

A.3 Graphics of the model’s behaviour with ten negative events with
AGING_FACTOR=0.8 . 124

A.4 Graphics of the model’s behaviour with ten positive events with
AGING_FACTOR=0.5 . 125

A.5 Graphics of the model’s behaviour with ten positive events with
AGING_FACTOR=0.2 . 126

A.6 Graphics of the model’s behaviour with ten positive events with
AGING_FACTOR=0.8 . 127

A.7 Graphics of the model’s behaviour with four positive and three
negative events with AGING_FACTOR=0.5 128

A.8 Graphics of the model’s behaviour with 20 random events with
AGING_FACTOR=0.5 . 130

C.1 Login page . 137
C.2 Homepage welcome screen . 138
C.3 Table with all the entities in the reputation system 138
C.4 Parallel coordinate chart with all of an entity’s events 139
C.5 Parallel coordinate chart with brushed events 139
C.6 Additional information of an entity’s events 140
C.7 Graphic with the reputation history of an entity 140
C.8 Page with the statistics of the reputation system 140

xx

List of Tables

2.1 Reputation measurements summary 26
2.2 Data visualisation framework summary 33
2.3 Related work summary . 35

3.1 Risk classification caption . 44
3.2 Risk Identification . 44

4.1 Reputation System Requirements Listing 57
4.2 Data Visualisation Platform Requirements Listing 58

6.1 Summary table for the important information from each exchange . 89

7.1 Information on the messages generated for each exchange in one test103
7.2 Time measurements in the different tests, in milliseconds 103

A.1 10 negative events with AGING_FACTOR=0.5 122
A.2 10 negative events with AGING_FACTOR=0.2 123
A.3 10 negative events with AGING_FACTOR=0.8 124
A.4 10 positive events with AGING_FACTOR=0.5 125
A.5 10 positive events with AGING_FACTOR=0.2 126
A.6 10 positive events with AGING_FACTOR=0.8 127
A.7 4 positive and 3 negative events with AGING_FACTOR=0.5 128
A.8 20 random events with AGING_FACTOR=0.5 129

xxi

Chapter 1

Introduction

Reputation systems include information on certain levels of trust between two
entities that may be strange to each other. For example, the web widely uses
evolved reputation systems, electronic transaction sites like eBay, and social net-
works.

Solutions to build reputation models can be based on devices’ interactions with
each other and in which hashing mechanisms assure that the data is kept with
integrity. Some models, though seemingly basic, like counters and accumulators,
are sophisticated versions of reputation primitives [8]. Their simplicity doesn’t
undermine their utility, as variations of the following models are widely preva-
lent online:

• Favourites-and-Flags - provide the community with tools to recognise and
highlight items that are either exceptionally good or exceptionally poor in
quality;

• Voting - allows community members to vote on the usefulness, accuracy, or
appeal of something;

• Ratings-and-Reviews - a user rates a target with scores and adds freeform
text opinions, which collectively contribute to a community average;

• Karma - the reputation of users can be assessed through models that eval-
uate both the extent of their participation and the quality of their contribu-
tions.

Many website operators initially find these straightforward models highly suit-
able for their requirements.

Additional tools use Machine Learning (ML) techniques to distinguish benign
from malignant nodes, where ML models reduce learning time by distributing
reputation information using different data sources to guide the learning pro-
cess. For example, if a particular data source has a high reputation, the model
might trust the data from that source more. Conversely, if a data source has a low
reputation, the model might place less trust in that data and possibly exclude it
from the training process.

1

Chapter 1

The reputation calculation should also consider the type of entity in question or
even the information they gave, for example, when people rate a service on a 5-
star scale. In this case, dominance models that aggregate the data from several
evaluations can help determine reputation.

Users of a Distributed Trust and Reputation Management Systems (DTRMS) can
rate and review one another based on past interactions. Users rate and check each
other based on past interactions. This information calculates the user’s reputation
score in a stored decentralised platform like blockchain. People can use DTRMS
in various contexts, including online marketplaces like those mentioned above,
with eBay or Amazon.

One key benefit of DTRMS is that it can provide a more accurate and trustworthy
representation of a user’s reputation. The decentralised nature of the platform
makes it more difficult for a single entity to manipulate the reputation of an indi-
vidual. Additionally, DTRMS can help to increase accountability and reduce the
risk of fraud or malicious behaviour. Users are more likely to behave responsibly
if they know their actions will be recorded and used to calculate their reputation
score.

One of the main challenges online communities face is the problem of accurately
assessing the reputation of their members. Reputation systems are designed to
address this problem by allowing community members to rate and evaluate each
other based on their contributions and behaviour. Unfortunately, most reputa-
tion systems can only use one way to measure reputation, which may only work
well for some groups or communities with unique needs. For example, in online
forums, a reputation model based on the number of posts and likes may not ac-
curately reflect a user’s reputation. This project aims to address this limitation
by implementing a reputation system that is more flexible and adaptable to the
specific requirements of different communities.

This project aims to provide a more effective solution to the problem of reputation
assessment in online communities.

1.1 Main Objectives

This dissertation has two main objectives.

The first objective is to process and analyse the reputation data received from dif-
ferent components, each with distinct functions. The analysis is done by selecting
the essential information from an entity’s events and applying a reputation model
to calculate the reputation of an entity. Additionally, this project’s innovative as-
pect lies in using the most appropriate reputation model to accurately determine
the reputation of diverse entities and adapt the model more favourably given ad-
ditional factors (e.g., the alpha-beta model adapted to include a severity factor).

The second objective is to develop a visualisation platform, facilitating data anal-
ysis and providing a clear and intuitive representation of the results.

2

Introduction

Further information about the objectives of this project is featured in Section 3.1.

1.2 Contribution

This dissertation is inserted in the ARCADIAN-IoT project1, a research and in-
novation project funded by the European Commission (EC). The project aims
to develop a trust, security, and privacy management framework for Internet of
Things (IoT) systems. This framework aims to accelerate the development of de-
centralised, transparent, and user-controllable privacy in IoT systems, focusing
on three real-world use cases, two of which are included in this dissertation in
Chapter 4. Furthermore, the project aims to make this framework available to
various contexts and applications.

Therefore, the main contributions of this dissertation are the following:

1. Research and analysis of technologies for reputation measurement (see
Section 2.2.5). By understanding the technologies and methods that are
available for measuring reputation, it is possible to select the most appro-
priate approach for a given context or application and to design and imple-
ment IoT systems that are secure, reliable, and trustworthy.

2. Investigation of technologies to visualise reputation information (see Sec-
tion 2.3.1). Data visualisation can improve the transparency and account-
ability of reputation systems. By providing a clear and easily understood
representation of the data, data visualisation can make reputation systems
more transparent and open to scrutiny, enhancing trust and confidence in
these systems.

3. Implementation of a reputation manager for the different entities of the
system. With the identification of adequate reputation measurement mod-
els, we apply these models in the project to calculate the reputation of each
entity and manage all the received events.

4. Evaluation of the reputation models. Upon implementation of the reputa-
tion models in the project, a thorough validation was conducted to assess
the suitability of these models for calculating the reputation of the system’s
entities.

5. Development of a data visualisation platform. We created a data visual-
isation platform to help users quickly see all the reputation information of
the different entities in the system. This platform makes it easier for users
to decide how trustworthy a specific entity is during its stay in the system.

6. Writing a scientific article. The work compiled also allows us to write a
scientific article regarding data processing and visualisation in reputation
systems by organising the information and results of the project clearly and
concisely and presenting it in an engaging and informative way.

1ARCADIAN-IoT: https://www.arcadian-iot.eu/

3

https://www.arcadian-iot.eu/

Chapter 1

1.3 Document Structure

The remainder of the document consists of the following chapters.

Chapter 2 introduces the environment and related work with the fundamental
concepts necessary to understand this work. It shows the definition of a dis-
tributed reputation system, the different dimensions we can get a value of the
reputation of a system and the other existing solutions of specific platforms. It
also provides existing solutions for visualising data and, respectively, a way of
getting the reputation information of certain entities in a system.

Chapter 3 explains the motivation behind this dissertation and the main goals to
achieve. Furthermore, this chapter presents the research and development ap-
proach, the documentation of the main issues, and how we will handle them.

Chapter 4 contains requirements artefacts produced, such as use cases, non-
functional requirements, mockups of the visualisation platform, and a require-
ment listing that establishes the scope of our work.

Chapter 5 provides a detailed description and analysis of the project’s architec-
ture, including its components, design, and functionality.

Chapter 6 delves into the implementation of the reputation system and the data
visualisation platform, which provides valuable insights into the performance
and activity of the entities present in the system.

Chapter 7 covers the testing and validation of the models implemented in the
project. It involves the development of appropriate test cases and scenarios, the
execution of the tests, and analysis of the results to determine the accuracy, relia-
bility, and effectiveness of the models.

Chapter 8 provides the closing remarks summarising this work’s outcome and
providing content for future work regarding the project’s scope.

Appendix A documents all the tests to validate the alpha-beta model.

Appendix B documents all the exchanges that the reputation system analyses to
calculate the reputation score.

Appendix C presents all the pages and functionalities of the data visualisation
platform.

4

Chapter 2

Background & Related Work

This chapter covers the fundamental concepts necessary to understand our work.
Section 2.2 the definitions and reasons behind the need for a Reputation System
in a specific platform, along with different dimensions of taxonomy and ways of
calculating an entity’s reputation. Section 2.3 explains the various forms of imple-
menting the data visualisation platform, including the mechanisms for making
graphs with reputation information.

For the reader to understand the whole project, Section 2.1 presents the ARCA-
DIAN-IoT project, its different domains, and the role of University of Coimbra
(UC) in this project.

2.1 ARCADIAN-IoT

The ARCADIAN-IoT project is an initiative that aims to address the trust, se-
curity, and privacy challenges that arise when implementing IoT systems. The
project aims to develop a framework to accelerate the development of IoT sys-
tems that prioritise decentralised, transparent, and user-controllable privacy. The
project aims to demonstrate the framework’s effectiveness through three real-
world use cases.

The European Commission has funded the project, focusing on Autonomous
trust, security and privacy management, which means the framework is designed
to work independently, seamlessly integrate into various contexts, and manage
the trust, security and privacy of the IoT system.

The ARCADIAN-IoT framework is evaluated in three realistic domains, two pre-
sented in further detail in Section 4.1.

• Emergency and vigilance using drones and IoT. This domain was cho-
sen due to the significance of IoT in digital services for emergency and
vigilance within the business model of LOAD. However, robust solutions
must address trust, security, and privacy aspects. The implementation of
ARCADIAN-IoT will address these issues and improve the data privacy

5

Chapter 2

compliance, such as General Data Protection Regulation (GDPR), of the pri-
mary operational platform of LOAD, which includes drones equipped with
IoT devices for emergency and vigilance scenarios.

• Secured early monitoring of grid infrastructures. This domain was chosen
given the relevance of IoT in Industrial Control Systems for public infras-
tructures and factories. ARCADIAN-IoT will innovate the rapid deploy-
ment, secured and efficient solution for early monitoring of industrial and
public (e.g. smart cities) grid primary circuits.

• Medical IoT. This domain has been selected in light of the growing trend
towards utilising IoT solutions for telemedicine applications. Providers of
these devices must be equipped with reliable and secure solutions.

The University of Coimbra is responsible for implementing the reputation sys-
tem to provide a trust model for various entities, including objects, individuals,
and applications/services. This component will model reputation based on the
trust properties of the ARCADIAN-IoT trust plane, which will consider the in-
teractions between entities of the same type and different types. The reputation
system component will establish a trust model by considering the behaviour of
devices, social interactions between entities, the mobility of nodes/objects, and
the resources of IoT devices. This will ensure a secure and trustworthy model to
evaluate the reputation of diverse entities in the ARCADIAN-IoT ecosystem.

2.2 Reputation System

The need for reputation systems can only grow in importance as the world be-
comes increasingly interconnected. The main goal of a reputation system is to fa-
cilitate trust between two or more entities who might have never interacted with
each other. Social networks and e-commerce are perfect examples of platforms
that might benefit from a reputation for the different entities involved [16].

The term reputation has several definitions. According to the Cambridge English
Dictionary1, reputation is "the opinion that people, in general, have about some-
one or something, or how much respect or admiration someone or something
receives, based on past behaviour or character". On the other hand, some articles
describe reputation as the "perception that an agent creates through past actions
about its intentions and norms" [24].

Reputation systems collect, distribute, and aggregate feedback about partici-
pants’ past behaviour [30], seeking to establish the shadow of the future of each
transaction by creating an expectation that other people will look back on. The
idea is that referring to the reputation data will help people decide whom to trust,
encourage trustworthy behaviour and deter participation by unskilled or dishon-
est people.

1Cambridge Dictionary: https://dictionary.cambridge.org/

6

https://dictionary.cambridge.org/

Background & Related Work

The system can also use reputation to describe a group or an individual. The
system can compute a group’s reputation in many ways, such as considering the
average of all the members’ reputations or how the exterior perceives them.

These systems have three challenging operating phases: eliciting, distributing,
and aggregating feedback. We encounter three related problems regarding this
feedback elicitation: people might need to be more bothered to provide input,
and it is difficult to elicit negative feedback and ensure direct reports.

2.2.1 Trust, Risks and Reputation

Defining reputation and trust can be complicated [25], as they are often used as
synonyms, even though their meaning is distinctly different.

Every person’s opinion differs, making reputation a highly personal and subjec-
tive quantity [32]. Therefore, reputation is not what character someone has but
rather what character other thinks someone has.

In terms of trust, Jøsang et al. [15] define trust as "the extent to which one party is
willing to depend on something or somebody in a given situation with a feeling
of relative security, even though negative consequences are possible". The key
concepts in this definition are dependence and reliability, which are measured
partially through a person’s reputation. We can build that trust through an en-
tity’s reputation, and a better reputation can potentially lead to more considerable
trust.

Risk can be seen as a situation where the outcome of a particular transaction
can be crucial to someone, but there is a possibility of failure. Considering the
concepts referred above of reputation and trust, they can be related: the amount
of risk a party is willing to tolerate is directly proportional to the amount of trust
the party has in the other party [12].

The reputation systems aim to support the establishment of trust between
unknown entities and, according to Dellarocas [7], "generate sufficient trust
among buyers to persuade them to assume the risk of transacting with complete
strangers".

2.2.2 Reputation Models

Understanding the different available reputation models is essential for design-
ing and implementing effective reputation systems. Other models may be more
suitable for different contexts and offer additional benefits and limitations. By ex-
amining the various reputation models, we can better understand how they can
be used to support decision-making processes and how they can be improved.
By considering the different available reputation models, we can choose the most
appropriate for a given context and use it to measure and represent reputation
accurately.

A taxonomy and commercial reputation systems are presented in [12]. To index

7

Chapter 2

reputation systems consistently and meaningfully, two reference models were
developed.

Figure 2.1: Reference Model for Reputation Context

Figure 2.1 depicts a reference model for the reputation context to present differ-
ent contexts in which we could retrieve reputation (described in [12] as Contex-
tual Attributes). These Contextual Attributes will help us reach a more accurate
reputation score. This model, starting from the innermost ring, represents the
various contexts that go from personal (who), professional (what), organisational
(which/membership) and societal (where).

Most online reputation systems focus only on a person’s reputation, whilst sev-
eral real-world situations deal with non-personal aspects, such as the person’s
professional and organisational membership.

Defining all the entities involved and their potential interactions is essential in
reputation systems. Figure 2.2 presents this idea and aims to generalise the model
for reputation systems approaches.

The entities presented in this model are the Trustor, the Trustee and the Recom-
mender. The Trustor is the entity that wants to trust and interact with a target
entity, the Trustee. To decide whether to trust the Trustee, the Trustor must eval-
uate the Trustee’s reputation [18]. This evaluation is done by first consulting its
reputation information. However, suppose there were no previous interactions
between the Trustor and Trustee. In that case, the Trustor will then query 1 or n
Recommenders that may have had previous interactions or observed an interac-
tion with the Trustee for their opinion.

A Recommender may be an entity that provides information from its history of
transactions or a system that observes the interaction between two entities or col-
lects data from other sources. With the appropriate information, a Recommender
may reply with a recommendation (also called feedback). Using this reputation
information, the Trustor can decide to trust the Trustee. The roles of the three

8

Background & Related Work

Figure 2.2: Reference Model for Reputation Systems

entities in the model may be interchangeable [19]. If the transaction proceeds,
both entities will have their reputation information that may be available to other
parties making equivalent decisions.

2.2.3 Reputation Systems Dimensions

Reputation systems evaluate and measure individuals or entities’ trustworthi-
ness, reliability, and credibility in a given context. According to [12], several di-
mensions can be used to evaluate the effectiveness of a reputation system. In this
section, we discuss these dimensions in detail and examine how they impact the
functioning of reputation systems.

Understanding the various dimensions of reputation systems is crucial for de-
signing and implementing effective systems that accurately reflect the reputa-
tion of individuals or entities. These dimensions can also help us understand the
strengths and limitations of different reputation systems and how they can be
improved. By examining these dimensions, we can better understand how rep-
utation systems operate and how they can support decision-making processes in
various contexts.

Firstly, [12] presents a taxonomy for reputation systems that distinguishes im-
plicit from explicit reputation.

Implicit reputation mechanisms represent systems that have not defined a repu-
tation system, have little to no structure, and are used to ensure that participants
remain honest. Recent platforms such as Facebook or LinkedIn use this type of
reputation where entities extract some degree of trust through friends of friends
or connections of connections.

9

Chapter 2

Explicit reputation systems are the ones whose implementation is purposeful to
facilitate the estimation of trust between members of an environment and rely on
interactions with diverse members. This type of reputation has a set of dimen-
sions, some of which are used more commonly than others.

Figure 2.3 presents a visual representation of all the dimensions in this section
and their different types.

Common Dimensions

1. History

A user’s history is classified as the stored information recording their past
interactions and outcomes. This history helps determine the likely outcome
of current or future transactions and is crucial for reputation.

• Personal: Personal history is created and maintained using directly
collected or observed information, leading to a unique view of other
entities.

• Global: Global history is created and maintained from information
shared by other members interacting with the system, leading to a con-
sistent, broad view of every entity in the system.

2. Context

Contextual information can give a lot of meaning to data by describing var-
ious details regarding interactions occurring [2]. Therefore, as mentioned in
Section 2.2.2, we adopt contextual attributes to discuss and categorise rep-
utation systems that utilise fine-grained and transaction-specific contextual
information.

• Single: A single context is assumed or maintained within the context
of the system.

• Multiple: The system maintains one or more contexts.

• Attribute: The system maintains contextual attributes, called multi-
faced, dimensional, or attribute-based.

3. Collection

For a reputation system to demonstrate trust, it is necessary to capture the
behavioural information of entities.

• Direct: Information is generated explicitly from an individual’s inter-
actions or observing others’ transactions.

• Indirect: Obtaining information from other entities based on transac-
tions that the querying entity was not privy - witness information.

• Derived: Information is obtained from a source not explicitly designed
to be used as a reputable source in the current context.

10

Background & Related Work

Figure 2.3: Visual representation of the taxonomy

11

Chapter 2

4. Representation

The format selected to describe, exchange and interpret reputation data. It
has different types of information used.

• Binary: Information is stored using boolean values.

• Discrete: Information is stored using discrete integer values.

• Continuous: Information is stored as a floating point number.

• String: Information is stored in a textual form, allowing a wide range
of data to be maintained.

• Vector: Information provided by multiple sources or explicitly sepa-
rated for individual use.

5. Aggregation

Describes how a reputation score for an entity is computed. The simplest
form of aggregating reputation is the summation of all the positive and neg-
ative ratings for an entity. A slightly improved approach is to average all the
ratings to produce a single rating for each entity. These methods, like sum-
mation, averaging, weighting and normalisation, are aggregation methods
that fall into a single class of simple computation called counting. We can
classify different types of aggregation methods:

• Counting: Reputation is calculated by either summing positive and
negative ratings or average ratings.

• Discrete: Reputation is computed by converting discrete rating values
using look-up tables.

• Probabilistic: Ratings are fitted into a probability model and used to
predict the likelihood of a hypothesis being correct, often taking the
shape of “Is entity x trustworthy?”.

• Fuzzy: Fuzzy logic is used to process or compute ratings, allowing
these systems to work with a degree of uncertainty.

• Flow: Reputation is computed by examining the flow of transitive trust
- a two-way relationship created between the two entities involved.

Uncommon Dimensions

6. Entities

Entities are the main focus or target of a reputation system. A reputation
system’s targets are typically people or resources (for example, books or
electronic products), and both are typical system, first-class members.

• Individual: These systems focus on people or specific resources

• Group: These systems are focused on groups rather than individuals,
possibly both formal and informal, with the former assuming some of
the characteristics of an organisation.

12

Background & Related Work

7. Presence

Describes how closely a reputation is tied to its underlying reputation sys-
tem.

• Online: Those systems that require the continuous presence of author-
ity to distribute reputation information.

• Partial: Those systems that do not require the continuous presence of
authority to be able to distribute reputation information.

• Offline: Those systems that do not require the presence of authority to
be able to distribute reputation information.

8. Governance

Reputation systems are volatile environments with entities and informa-
tion changing frequently. Therefore, some level of authority is required for
the system to work correctly. Governance describes how the system is con-
trolled and is described in Section 2.2.4.

• Centralised: The system is organised by a central group or organisa-
tion. Most commercial reputation systems use this centralised gover-
nance where the underlying architecture may be distributed, but the
management is most likely by a single organisation.

• Distributed: Multiple entities working together, frequently with no
centralised management. Most current Peer-to-Peer systems display
distributed governance.

9. Fabric

Describes how the nodes of the reputation system are organised to allow
the systems to be easily categorised and differentiated between them.

• Structured: New nodes are assigned a location and a set of neighbours
in an organised way when connecting to a network [22].

• Unstructured: Allows new nodes to connect randomly, without organ-
isation [22].

10. Interoperability

Describes the fundamental principles by which the system operates and
shares information. Nowadays, with restricted control of the reputation
system, the information presented is not shared with any third parties.

• Open: Entities freely access and utilise the reputation data in a system
using data standards.

• Closed: Reputation information is proprietary and not often shared
outside the system.

11. Control

Expressing how a reputation system motivates and controls entities to act
in a desired manner is essential to implementation.

13

Chapter 2

• Rules: An entity is obligated or limited to act restrictedly.

• Incentives/Disincentives: An entity is motivated or guided using re-
wards and punishments to obtain appropriate behaviours.

12. Evaluation

In terms of evaluation, the reputation system can provide two different
views of past transactions when obtaining or viewing the available repu-
tation information of the trustee.

• Atomistic: A detailed transaction-based view that potentially shows
all of the trustee’s interactions.

• Holistic: All of an entity’s interactions are considered and weighted to
provide a single, overall view of the trustee to the trustor.

13. Data Filtering

• None: There is no limit or filter for the data in the system.

• Subset: The data is limited by the application of data filtering, where
the trustor may only use a subset of all the available history of the
trustee.

14. Data Ageing

It is helpful to reduce confidence in information as time passes and more in-
formation is collected. This decay of information allows entities to distance
themselves from historical behaviour.

• None: Reputation information is retained indefinitely.

• Decay: Reduces the confidence and granularity of older reputation in-
formation as time passes.

• Death: An extension of decay allowing older reputation information
to be discarded [38]. This discard of information is based on age or a
manual selection.

2.2.4 Reputation Network Architecture

The network architecture determines how ratings and reputation scores are used
between entities of a reputation system [14]. The two fundamental types of archi-
tecture are centralised and distributed.

Centralised Reputation Systems

In centralised reputation systems, information about a particular entity is col-
lected as ratings from other members in the system who have had direct expe-
rience with that entity. The central authority (reputation centre) that contains
all the ratings typically derives a reputation score for every entity, making every

14

Background & Related Work

(a) Past (b) Present

Figure 2.4: General framework for a centralised reputation system

score available to the public. Transactions with reputable participants will likely
result in better outcomes than transactions with disreputable participants.

As shown in Figure 2.4, A and B represent transaction partners with a history of
past transactions who consider transacting with one another in the future.

When a transaction occurs, the entities provide ratings about each other’s trans-
action performance, and the reputation centre will then collect the ratings, updat-
ing the reputation score of each entity. There are two main aspects of centralised
reputation systems:

a) Centralised communication protocols allow entities to provide ratings
about the transaction partners to the central authority and obtain reputa-
tion scores of potential transaction partners from the reputation centre.

b) The reputation centre uses a reputation computation engine to manage
reputation scores for each entity based on the ratings received and other
possible information.

Distributed Reputation Systems

There are domains where distributed reputation systems, i.e. without any cen-
tralised functions, are much better suited than centralised ones. In these systems,
there are no central locations for the rating or reputation score submissions. As
a replacement, there can be distributed stores where ratings can be submitted, or
the entities can register their opinion about their experience with other system
members, providing information on request from relying parties. For example,
to get information from the trustees that a certain trustor is willing to do a trans-
action with, the trustor must find the distribute stores or try to obtain ratings
from as many members of the system as possible who have had previous direct
experience with the trustee, as seen in Figure 2.5.

15

Chapter 2

(a) Past (b) Present

Figure 2.5: General framework for a distributed reputation system

The relying party calculates the reputation score based on the ratings it receives.
Considering a direct experience between the trustor and trustee in the past, that
can be considered private information. There are two main aspects of distributed
reputation systems:

a) A distributed communication protocol allows participants to obtain rat-
ings from other entities present in the system.

b) Each agent uses a reputation computation method to derive the reputation
scores of target parties based on received ratings and additional possible
information.

Peer-to-Peer (P2P) networks represent an environment well-suited for distributed
reputation management. In these networks, every node of the system plays the
client and server role, also called servent, allowing users to overcome their pas-
sive role typical of web navigation and engage in an active role, providing their
resources. The P2P networks have two phases:

1. The search phase involves locating the servent where the requested re-
sources reside. In some P2P networks, this phase relies on centralised func-
tions. One example of this implementation is Napster [27], which uses a
resource directory server. With a purely distributed P2P network, Gnutella
[10] and Freenet are good examples.

2. The download phase follows the search phase, where the requested re-
sources have been located, which consists of transferring the help from the
exporting to the requesting servent.

P2P networks have a range of security threats, as users can use them to spread
malicious software, such as viruses and Trojan horses, and easily bypass fire-
walls. These networks also have confirmation that they suffer from free-riding
[3] - someone who wants others to pay for the public good but plans to use it
themselves. The purpose of a reputation system in P2P networks is to determine
the following:

16

Background & Related Work

a) The number of servents that are most reliable at offering the best quality
resources and

b) Whichever servents provide the most reliable information concerning soft
security.

Participants in a distributed environment are responsible for collecting and com-
bining ratings from other members. Ratings resulting from all interactions with
an agent may be impossible or too expensive in some cases. Users can also use
ratings from the relying party’s neighbours to calculate the reputation score.

The project will adopt a distributed approach due to its advantages over cen-
tralised systems. This approach is deemed more secure, scalable, and fair, pro-
viding a refined architecture. The utilisation of a distributed reputation system,
as opposed to a centralised one, offers increased security through decentralisation
and reduces the risk of a single point of failure. This decentralisation is achieved
by implementing various components of the reputation system across multiple
nodes with distinct roles within the system.

2.2.5 Reputation Measurements

Reputation calculation is determining the reputation of an individual, organisa-
tion, or other entity based on various factors. Reputation is a subjective measure
of an entity’s perceived quality, trustworthiness, or other characteristics, and it
can significantly impact an entity’s success and influence.

Many different methods and approaches can be used to calculate reputation, and
the specific method used will depend on the calculation’s context and purpose.
Some common approaches to reputation calculation include using feedback or
ratings from other entities, analysing an entity’s past behaviour or performance,
and comparing an entity’s characteristics or attributes to those of other entities.

Regardless of the approach used, reputation calculation provides a quantifiable
measure of an entity’s reputation that a certain trustor can use to evaluate its
quality or trustworthiness. System members can then use this measure for vari-
ous purposes, such as determining an entity’s eligibility for specific opportunities
or privileges or as a factor in decision-making processes.

Ultimately, at the end of this section, a summary of all the reputation measure-
ment techniques is presented to provide the reader with a comprehensive under-
standing of the criteria that informed our selection of the appropriate measure-
ment for our reputation system.

Dominance Relationship Based Reputation Measurement

The Dominance Relationship-Based Reputation (DRBR) method uses a ranking
of services derived from ordinal preferences to measure the reputations quali-
tatively rather than use numbers with intensity (like averaging the ratings) [9].

17

Chapter 2

Rank indicates how two services are related such that, for any two services
ranked adjacently, the first dominates the second based on the dominance con-
ditions.

The three main steps for the ranking construction are as follows.

1. Determine the dominance relationship of each pair of services with given
rules.

This step identifies the relative importance or influence within a given sys-
tem. It can help understand how different services interact with one another
and how they contribute to the overall reputation of the system.

There are several ways of determining service dominance, including:

• Network analysis involves using techniques from network science to
analyse the structure of the relationships between different services
within a system. This analysis can help identify patterns and trends in
how services interact and can be used to infer the relative importance
of other services.

• User feedback: By collecting feedback from users about their services,
it is possible to determine which services are most important to them
and how they rank different services in terms of their overall reputa-
tion.

• Expert evaluations: Members can ask experts in a particular field or
domain to evaluate their work and the relative importance or influence
of different services within a system. Users of the system can use their
opinions to weigh the reputation scores of various services accordingly.

A dominance relationship exists between two services if one service can
complete a task that the other cannot. For example, if service A can com-
plete a task that service B cannot, then A is considered dominant over B.

2. Construct a Directed Acyclic Graph (DAG) based on the dominant rela-
tionships of service pairs.

The DAG represents the hierarchy of services, with the more dominant ser-
vices at higher and the less dominant services at lower levels.

Following identifying dominance relationships, the DAG is constructed by
creating a vertex for each service and adding directed edges between pairs
of services based on the dominance relationships. For example, if A is dom-
inant over B, a directed edge would be added from A to B in the DAG.

The resulting DAG represents the hierarchy of services, with the more dom-
inant services at higher levels and the less dominant ones at lower levels.
Users of the system can use this hierarchy to measure the reputation of each
service based on the services it dominates and those that dominate it.

3. Find a total order of vertices from the DAG and use the order of vertices
as the eventual ranking of services.

18

Background & Related Work

One approach is to use a topological sort algorithm to find the total order of
the vertices in a DAG. A topological sort is an algorithm that takes a DAG
as input and produces an entire order of its vertices as output.

The basic idea behind a topological sort is to choose a vertex with no incom-
ing edges and add it to the total order. Then, remove the vertex and all its
outgoing edges from the DAG. Repeat this process until there are no more
vertices left in the DAG.

For example, suppose we have a DAG with the following vertices and
edges:

Figure 2.6: Directed Acyclic Graph Example

We can find the total order of the vertices in this DAG using the following
steps:

(a) Choose a vertex with no incoming edges, which is A. Then, add it to
the total order and remove it from the DAG.

(b) Choose the next vertex with no incoming edges, B in this case. Then,
add it to the total order and remove it from the DAG.

(c) Choose the next vertex with no incoming edges, which is C. Then, add
it to the total order and remove it from the DAG.

(d) Choose the next vertex with no incoming edges, which is E. Then, add
it to the total order and remove it from the DAG.

(e) Choose the next vertex with no incoming edges, which in this case is F.
Then, add it to the total order and remove it from the DAG.

(f) Choose the next vertex with no incoming edges, which in this case is
D. Add it to the total order and remove it from the DAG.

The resulting total order is A, B, C, E, F, and D.

The total order of vertices in the DAG can be used as the eventual ranking
of services. Services that appear earlier in the total order have higher repu-
tations than those that appear later. In the example of Figure 2.6 using the
topological sort, we conclude that A has the highest reputation and D has
the least.

19

Chapter 2

Alpha-Beta Model

The reputation model can rely on approaches previously implemented in a rele-
vant project, such as PoSeID-on [29], which considers the Beta distribution [15].
The beta distribution assumes two parameters, α and β. The events have two
possible outcomes: {x, y}, r and s are the numbers of observations of the outcome
x and y, respectively.

α = r + 1 and β = s + 1,
where r, s ≥ 0 and r and s represent positive and negative feedback, respectively.

The beta distribution function (f (p|αβ)) is expressed as follows:

f (p|αβ) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1 − p)β+1, (2.1)

where 0 ≤ p ≤ 1, α > 0, β > 0.

As a result, the probability expectation value is as follows:

E(p) =
α

α + β
. (2.2)

Therefore, the beta reputation provides a probabilistic value for the reputation.

We chose this model for the project’s implementation, and Section 7.1 describes
its validation process.

CORE

Community Reputation Mechanism (CORE) [23] is a decentralised reputation
system that allows users to rate and review other users in a community, such
as a peer-to-peer marketplace or social networking platform. Users can use it to
assess other users’ trustworthiness and reliability within a community, helping
to build trust and facilitate more successful interactions.

In a CORE system, users can rate and review other users based on their expe-
riences with them. These ratings and reviews are then aggregated and used to
calculate a reputation score for each user, which trustors can use to assess the
user’s trustworthiness and reliability. Users with higher reputation scores are
generally seen as more trustworthy, while trustors may view those with lower
scores more cautiously.

Implementing CORE systems can be done using blockchain technology, which
allows them to be decentralised and resistant to tampering or censorship. In ad-
dition, this blockchain implementation can help ensure the integrity and reliabil-
ity of the reputation scores, making it more difficult for users to manipulate their
ratings.

Overall, CORE helps build trust and facilitate successful interactions within on-
line communities. We can apply it to a variety of different types of platforms and
markets.

20

Background & Related Work

EigenTrust

EigenTrust [17] is a reputation mechanism to help establish trust among nodes
in a P2P network. It was developed to ensure that nodes in a P2P network are
behaving correctly and are not participating in malicious activities such as dis-
tributing spam or distributing copyrighted materials without permission.

In the EigenTrust system, each node maintains a reputation score that reflects the
node’s trustworthiness. This reputation score is calculated based on the ratings
other nodes in the network have given the node in question. Nodes can provide
positive or negative ratings to different nodes based on their observations of the
node’s behaviour.

The EigenTrust system uses an iterative process to calculate the reputation scores
of nodes in the network. This process involves taking the ratings from other
nodes and using them to compute a new reputation score for each node. This
process is repeated until the reputation scores of the nodes stabilise.

One of the critical features of the EigenTrust system is that it allows nodes to
give more weight to the ratings of specific other nodes based on their reputa-
tion scores. This allows the system to consider the relative trustworthiness of
the nodes providing ratings, which can help ensure that the reputation scores are
accurate and reliable.

The EigenTrust reputation mechanism is designed to help ensure that nodes in a
P2P network behave trustworthy and provide a way for nodes to make informed
decisions about which nodes they can trust.

REGRET

Reputation Mechanism for Generalised Trustworthiness Evaluation (REGRET)
[32] is a decentralised reputation system that aims to measure the trustworthiness
of entities (such as individuals, organisations, or machines) on the Internet. It is
designed to be a flexible and scalable solution that members of the system can
use in various contexts, including online marketplaces, peer-to-peer networks,
and other decentralised systems.

The REGRET system is based on a decentralised network of nodes that collec-
tively maintain a global reputation database. Each node in the network is re-
sponsible for maintaining a local copy of the database and participating in the
consensus process that determines the reputation scores of entities.

In the REGRET system, reputation scores are calculated based on the feedback
and interactions that entities have with other entities in the network. This feed-
back can be positive, negative, or neutral and is used to update the reputation
scores of the entities involved. For example, if two entities engage in a successful
transaction, their reputation scores may be increased. On the other hand, if an
entity engages in fraudulent or malicious behaviour, its reputation score may be
decreased.

21

Chapter 2

The REGRET system also includes mechanisms for dispute resolution, such as a
mediator system or a reputation court, to help resolve conflicts and ensure that
reputation scores are accurate and fair.

The REGRET reputation mechanism is intended to provide a decentralised and
transparent way to evaluate the trustworthiness of entities on the Internet, en-
abling users to make informed decisions about who they interact with and trans-
act with online.

FIRE

The Fair, Incentivised, Reputable, and Engaging (FIRE) [13] reputation mecha-
nism, an extension of REGRET, is a system for evaluating the reputation of en-
tities within a community or network. It is designed to encourage positive be-
haviour and discourage negative behaviour within the community.

In a system with a FIRE reputation mechanism, users can earn reputation points
for contributing positively to the community by posting helpful content or par-
ticipating in discussions. However, they can also lose reputation points for en-
gaging in harmful behaviour, such as spamming or harassing others. The repu-
tation points determine a user’s overall reputation within the community. The
system can use this reputation to assess their access to certain features or privi-
leges within the community.

The FIRE reputation mechanism is often used in online communities, such as fo-
rums or social networks, to help maintain a positive and respectful environment.
However, it can also be used in other contexts, such as P2P networks or decen-
tralised systems.

P-Grid

P-Grid [1] is a decentralised P2P system for distributing and sharing data in a
distributed network. It allows users to search efficiently and access data within
the network without needing a central server or index.

One key feature of P-Grid is its reputation mechanism, which is used to maintain
the integrity and reliability of the network. "Reputation points" are the basis of
the reputation mechanism, assigned to each peer in the network based on their
behaviour. Peers who contribute valid data or resources to the network and be-
have responsibly are rewarded with high reputation points. At the same time,
those who engage in malicious or disruptive behaviour are punished with low
reputation points.

The reputation points are used to determine the trustworthiness and reliability
of a peer, and they play a crucial role in routing data within the P-Grid network.
Peers with high reputation points are likelier to be selected as intermediaries in
routing data. In contrast, those with low reputation points may be excluded from
the routing process. This helps to ensure that data is routed through reliable and
trustworthy peers, improving the overall reliability and integrity of the network.

22

Background & Related Work

In addition to the reputation mechanism, P-Grid also uses other tools to maintain
the integrity of the network, such as digital signatures and encryption. These
measures help to prevent tampering with data and ensure that the data transmit-
ted within the network is accurate and trustworthy.

PeerTrust

PeerTrust [37] is a reputation mechanism used to assess nodes’ trustworthiness
in a P2P network. It is based on the idea that a node’s reputation is determined
by the trustworthiness of the nodes it chooses to connect with and the trustwor-
thiness of the nodes that connect with it.

In a P2P network, nodes may have different roles and responsibilities and may
be more or less trustworthy depending on their behaviour. PeerTrust uses a rep-
utation score to assess a node’s trustworthiness based on its past behaviour and
the other nodes with which it interacts. Other nodes in the network can use the
reputation score of a node to decide whether to trust the node and engage in
transactions or other exchanges with it.

There are various ways in which PeerTrust can be implemented, but one com-
mon approach is to use a decentralised database to store and update the reputa-
tion scores of nodes in the network. Other nodes in the network can access this
database to retrieve the reputation scores of nodes they consider interacting with.

PeerTrust is a helpful tool for ensuring the integrity and reliability of a P2P net-
work. It can help reduce the risk of fraud and other malicious behaviour by
encouraging nodes to act trustworthy to maintain their reputation.

RateWeb

RateWeb [21] is a reputation mechanism that was proposed as a way to establish
trust among web services. It is based on using a network of trusted agents to
assess the reputation of web services and provide this information to users.

In the RateWeb system, web services are rated by trusted agents based on vari-
ous factors such as their reliability, security, and performance. These ratings are
then aggregated and used to calculate the overall reputation of the web service.
Users can access this reputation information when choosing which web services
to use, helping them to make more informed decisions about which services are
trustworthy and reliable.

RateWeb was designed to address the problem of establishing trust in distributed
systems, where it can be difficult for users to determine the trustworthiness of a
particular service. By relying on a network of trusted agents to assess the repu-
tation of web services, RateWeb aims to provide a more reliable and transparent
method for establishing trust among web services.

23

Chapter 2

Travos

Travos [35] is a proposed reputation mechanism that addresses the problem of
inaccurate information sources on the internet. It is based on using trust and rep-
utation scores to evaluate the quality and reliability of information sources. Sim-
ilarly to Beta, Travos implements a probabilistic approach using the beta proba-
bility density function, as shown in Section 2.2.5.

The Travos reputation mechanism assigns a reputation score to each informa-
tion source based on its history of providing accurate or inaccurate information.
This reputation score is then used to determine the source’s trustworthiness, with
higher scores indicating a higher level of trust.

Travos uses a combination of explicit feedback from users and automatic evalua-
tions of the accuracy of the information provided by the source to calculate rep-
utation scores. Precise feedback can come in the form of ratings or reviews users
provide. At the same time, the automatic evaluations can be based on factors
such as the source’s history of providing accurate information and the credibility
of the sources it cites.

Travos is intended to be used in various contexts, including social media, news
websites, and online forums, where the quality and reliability of information can
be challenging to determine. It is designed to be a scalable and flexible solution
that can adapt to the changing nature of the internet and the constantly evolving
landscape of information sources.

XRep

The XRep [6] reputation mechanism is a method for evaluating the reliability of
resources in a P2P network. It is based on using reputation scores to determine
the trustworthiness of resources.

In the XRep system, each node maintains a reputation score for each resource it
has encountered. The reputation score is updated based on the node’s experience
with the resource and the reputation scores of other nodes interacting with the
resource.

The XRep system uses a distributed algorithm to calculate reputation scores,
which allows it to operate in a decentralised manner without the need for a cen-
tral authority. This makes it well-suited for P2P networks, where there may need
to be a central authority to regulate resource reliability.

The XRep reputation mechanism is designed to help nodes in a P2P network
make informed decisions about which resources to use by providing a way to
assess the trustworthiness of those resources based on the collective experiences
of other nodes.

24

Background & Related Work

Summary

This section provides a comprehensive overview of the reputation measurement
techniques discussed thus far. Table 2.1 presents the measurement’s name, its
advantages, and the entities that most benefit from its use. This table summarises
the information presented previously and aims to provide the reader with a clear
and concise understanding of the available options for reputation measurement.

Name Advantages Entities

Dominance
Relationship

Consider the relationships between entities in the
system, making it more reflective of the social con-
text of the system, allowing for a more accurate rep-
resentation of an entity’s reputation.

People

Alpha-Beta

Adapt the reputation based on the new information
coming in and can be updated dynamically over
time, allowing for a reputation measurement that
adjusts to the entity’s behaviour over time

Services,
People,
Objects

CORE

Allows for a transparent and fair evaluation of an
entity’s reputation by providing a clear and well-
defined set of criteria that are used to determine the
entity’s reputation.

People,
Objects

EigenTrust

Uses transitive trust, which is derived from the
trust of others, to calculate an entity’s reputation,
allowing a more accurate representation of an en-
tity’s reputation as it captures how others perceive
the entity in the community.

Services

REGRET

Uses reference trust, derived from the trust of a se-
lected group of reference entities, to calculate an en-
tity’s reputation, allowing for a more accurate rep-
resentation of an entity’s reputation, as it captures
how a specific group of trusted entities in the com-
munity perceives it.

Services,
People

FIRE

Integration of fairness and incentives into the repu-
tation management process, using a combination of
explicit and implicit feedback mechanisms, aims to
ensure that reputation values are fair and unbiased
while providing incentives to agents to participate
in the reputation management process and to pro-
vide accurate and honest feedback.

Services,
People

P-Grid

Provides a scalable, self-organising, fault-tolerant,
and efficient way to manage and search for data in
P2P networks, where reputation-based trust man-
agement and high availability, fault-tolerance, and
load balancing are the key features to make it ro-
bust.

Services,
People

25

Chapter 2

PeerTrust

Is a lightweight, flexible, scalable and privacy-
preserving reputation management system that al-
lows peers to make trust decisions based on the
reputation of other peers and is suitable for the dy-
namic environment of P2P networks.

Services,
People

RateWeb

Allows for a comprehensive, real-time, privacy-
preserving web service reputation measurement. It
supports multiple reputation dimensions and al-
lows for a more detailed and nuanced view of the
trustworthiness of a web service.

Services

Travos

Addresses the issue of uncertain and unreliable in-
formation sources by using probabilistic models
and belief functions. It provides personalised rep-
utation, multiple dimensions support, and scalabil-
ity by using distributed computation, which makes
it suitable for large-scale systems with uncertain
and unreliable sources of information.

Services,
People

XRep

Allows for the selection of reliable resources by
assessing the reputation of the peers that provide
those resources. It is a self-organising, scalable,
flexible and privacy-preserving system that can be
adapted to different applications with customisable
trust models.

Services

Table 2.1: Reputation measurements summary

2.3 Visualisation of Data

Data visualisation creates graphical representations of data sets to facilitate data
analysis and comprehension of trends in data. We can use visualisation in var-
ious fields, including business, science, and engineering. It is advantageous in
reputation systems as it allows stakeholders to see patterns and trends in data
that might not immediately appear from raw numbers.

Various frameworks and tools are available to visualise data, including bar charts,
line graphs, scatter plots, and heat maps. These visualisations can represent dif-
ferent data types and highlight various aspects of the data set. For example, we
might use a bar chart to compare the reputation of other entities, while a scatter
plot could show the relationship between different variables.

In reputation systems, members can use data visualisation to track the reputation
of individuals or organisations over time, identify patterns and trends in reputa-
tion data, and make informed decisions based on the data.

By visualisations, stakeholders can better understand how reputation is affected
by different factors, such as the quality of products or services, customer satisfac-
tion, and the overall reputation of the company or organisation.

26

Background & Related Work

Many other frameworks and tools are available for data visualisation, includ-
ing open-source options like Matplotlib2 and Seaborn3 and proprietary tools like
Tableau4 and Qlik5. Each of these tools has its strengths and limitations, and the
right choice will depend on the specific needs and goals of the reputation system.

2.3.1 Data Visualisation in Reputation Systems

There are many ways to implement data visualisation in a reputation system. In
[34], an approach that serves as a generic mechanism adapted to specific applica-
tion areas is proposed, giving an example of how the system can be implemented
in an eCommerce data set from eBay6.

Visualisation-based approach

The visualisation-based approach describes two building blocks: “models” and
“visualisation and interaction techniques”. For each block in the system, a unique
conceptual design is proposed and created, which is not influenced or impacted
by the raw data supplied to evaluate the block’s reputation.

1. Models

It is important to remember that reputation is context-dependent because
referrals are created in a specific situation bound to a specific transaction.
Consequently, a single referral that might be provided as a uni-variate rat-
ing (e.g. r = {−1, 0, 1}) only reflects an opinion conceived in a specific
situation by a particular entity. Each referral is modelled in a multidimen-
sional referral space S, where multiple context attributes C = {c1, c2, . . . , cn}
are considered, where each element ci takes the value of the related set of
context attributes. The multidimensional referral space S is then defined
where each dimension matches a relevant context attribute:

S = C1 · C2 · ... · Cn (2.3)

2. Visualisation and interaction techniques

Depending on the raw data and application case, various techniques are
conceivable. One example of a good technique for illustrating multidimen-
sional data sets is parallel coordinates, where n axes can represent n dimen-
sions, as seen in Figure 2.7.

2Matplotlib: https://matplotlib.org/
3Seaborn: https://seaborn.pydata.org/
4Tableau: https://www.tableau.com/
5Qlik: https://www.qlik.com/us/
6eBay: https://www.ebay.com/

27

https://matplotlib.org/
https://seaborn.pydata.org/
https://www.tableau.com/
https://www.qlik.com/us/
https://www.ebay.com/

Chapter 2

Figure 2.7: Parallel coordinates visualisation of flower data example

This technique can also explore correlations between single measurements
and can be effectively supported through brushing, allowing the focus on a
subset of the data visualised by highlighting the subset [11].

This project uses this approach for the data visualisation platform, for which the
mockups are included in Section 4.6. We chose this approach for the project be-
cause of its scalability, interactivity and the ability to compare the values of differ-
ent dimensions simultaneously, making it easier to understand their relationship.

Implementation with the eBay example

Now that we have defined the visualisation-based approach in Section 2.3.1, it
can be implemented in real-world scenarios, in this case, using the eBay Germany
data set [34].

The first step is to develop a model based on the raw data. Analysing and identi-
fying the data set of a specific entity resulted in four context attribute sets C:

• Rating (C1): The rating is the general seller evaluation the buyer conducted
after a transaction. In this case, it can be a positive, neutral or negative
rating.

• Time (C2): The time describes the date the users gave the ratings. This is an
essential context because old ratings might not be as relevant for the entity’s
reputation as newer ones.

• Price (C3): The price describes the purchase price a transaction was coming
off. This context is the leading example of the value imbalance problem, as a
seller can build a high reputation by selling cheap products while cheating
on expensive ones.

28

Background & Related Work

• Product category (C4): The category a sold product was classified in (e.g.
art, technology, music, etc.).

The result of the final referral S will be as follows: S = C1 · C2 · C3 · C4 We can
use the brushing technique to get a better glimpse of the reputation of a partic-
ular entity. For example, a seller can appear to have many positive ratings and
is trustworthy at first sight. However, after using the brushing technique to de-
note negative ratings, we can verify that the seller presents many negative ratings
when prices are higher, with these transactions occurring more recently than the
ones with positive ratings. We have an example of the case previously mentioned
where an entity takes advantage of having a better reputation with cheaper prod-
ucts but then presents terrible ratings on the more expensive ones.

2.3.2 Data Visualisation Frameworks

Data visualisation is integral to data analysis and helps understand and interpret
data more effectively. It allows us to see patterns, trends, and relationships in
the data that might take time to appear from looking at raw numbers. There are
many different approaches to data visualisation, and choosing the right tool or
framework depends on your project’s specific needs and goals.

D3.js

Data-Driven Documents (D3) [5] is a JavaScript library commonly used to create
dynamic, interactive data visualisations. It is particularly well-suited for working
with large data sets, as it is designed to be efficient and scalable.

One of the critical features of D3.js is its data-driven approach, which means that
the visualisations are generated based on data rather than being hardcoded. This
makes it easy to update visualisations as the underlying data changes and allows
users to create custom visualisations from scratch.

D3.js is also highly customisable, which means that users have a lot of control
over the look and feel of their visualisations. It is compatible with modern web
browsers and can be used with other libraries and frameworks, such as React7

and Angular8.

However, D3.js can be challenging to learn, especially for users with no previous
experience with web development or data visualisation. It is also a complex tool,
requiring a lot of code to create even simple visualisations.

Additionally, depending on the complexity of the visualisation and the amount of
data being processed, D3.js visualisations can be resource-efficient and perform
well on devices with limited resources.

7React: https://reactjs.org/
8Angular: https://angular.io/

29

https://reactjs.org/
https://angular.io/

Chapter 2

Grafana

Grafana [33] is an open-source data visualisation and monitoring platform that
allows users to create, visualise, and analyse data from various sources. It is
primarily used for creating dashboards and visualising time series data, such as
server, application, and device metrics. Some key features of Grafana include:

• Compatibility with various data sources: Grafana can connect to many data
sources, including databases, cloud services, and APIs.

• Customisation: Grafana allows users to create custom dashboards and vi-
sualisations and offers a variety of customisable options, such as layout,
colours, and labels.

• Alerting: Grafana can be configured to send alerts when certain conditions
are met, such as when a metric exceeds a certain threshold.

• Collaboration: Grafana includes features that support collaboration, such
as the ability to share dashboards with other users and to collaborate on
dashboard design.

Grafana is widely used in monitoring and observability and is particularly popu-
lar for monitoring cloud infrastructure and applications. It is a powerful tool for
visualising and analysing data, but it may have a steep learning curve for users
new to data visualisation.

Plotly

Plotly9 is a data visualisation library for creating interactive charts and graphs.
It is available in several programming languages, including Python, R, and
JavaScript. One of the main benefits of using Plotly is that it can generate visually
appealing and interactive charts and plots with relatively little code.

Some of the features of Plotly include:

• A wide variety of chart types, including line plots, scatter plots, bar charts,
pie charts, and more.

• The ability to add custom hover text and annotations to charts.

• The ability to zoom, pan, and hover over data points to see more detailed
information.

• The ability to create interactive dashboards and reports.

• The ability to integrate with other libraries, such as NumPy and Pandas, for
data manipulation and analysis.

9Plotly: https://plotly.com/

30

https://plotly.com/

Background & Related Work

Plotly is often used for visualisations for scientific publications and presentations
and for creating dashboards and reports for businesses and organisations. It is
a valuable tool for anyone who needs to create professional-quality charts and
graphs.

Tableau

Tableau [26] is a powerful data visualisation and business intelligence software
that enables users to create interactive charts, dashboards, and reports easily. It is
designed to help users quickly and easily visualise and understand their data to
make informed decisions.

Some of the features of Tableau include

• A wide variety of chart types, including bar charts, line charts, scatter plots,
maps, and more.

• Connecting to various data sources, including Excel, CSV, and databases.

• Manipulating and analysing data using drag-and-drop functionality and
built-in calculations.

• Creating interactive dashboards and reports that users can share with oth-
ers.

• Customising the appearance of charts and dashboards using various for-
matting options.

Businesses, organisations, and individuals often use Tableau to create visualisa-
tions for presentations, reports, and dashboards. It is a popular tool among data
analysts, business analysts, and data scientists.

React-vis

React-vis10 is a JavaScript data visualisation library for creating interactive charts
and graphs. It is built on top of the React library, a popular library for building
user interfaces in JavaScript.

Some of the features of React-vis include:

• A wide variety of chart types, including bar charts, line charts, scatter plots,
and more

• Customising the appearance of charts using a variety of styling options

• Adding custom hover text and annotations to charts

10React-vis: https://uber.github.io/react-vis/

31

https://uber.github.io/react-vis/

Chapter 2

• The ability to zoom, pan, and hover over data points to see more detailed
information

• Integration with other libraries, such as D3, for data manipulation and anal-
ysis

React-vis is often used for creating visualisations for web applications and web-
sites. It is a valuable tool for creating interactive and visually appealing charts
and graphs in JavaScript.

Approaches Comparison

This section presents a comprehensive overview of the data visualisation frame-
works discussed in the preceding sections. In addition, a table (Table 2.2) is also
provided, including the framework’s name, key features and advantages. This
summary aims to provide the reader with a clear and concise understanding of
the available options for data visualisation. Furthermore, it should aid in making
an informed decision regarding the appropriate framework for the particular use
case.

Name Features & Advantages

D3.js

Dynamic data binding; support for multiple data types, such
as CSV or JSON; large and growing ecosystem with multiple
plugins and libraries available. The main reasons why this
framework was chosen were its diverse capabilities of creat-
ing different types of charts and the ability to implement it
with other frameworks, in the case of this project, React (see
Section 5.2 for an explanation of the choice of this framework).

Grafana

Customisable dashboards, allowing various visualisation op-
tions, including graphs, tables, and gauges; massive amount
of plugins and community support; ability to import and ex-
port dashboards as JSON files. This platform was not selected
for the implementation of the data visualisation platform as
it could not create dashboards using parallel coordinates or
Sankey diagrams, despite having plugins for the database
and message queue utilised in the system (Cassandra and Rab-
bitMQ).

Plotly

Flexible, and easy to use, having the ability to support differ-
ent programming languages, such as Python and JavaScript.
This platform was not selected due to its inadequate perfor-
mance in managing and processing substantial amounts of
data.

Tableau

Easy to use, providing an intuitive drag-and-drop interface;
seamless integration with different data source types, such as
Excel, CSV or SQL. The primary factor that led to the decision
not to adopt this platform was its relatively high cost com-
pared to alternative frameworks.

32

Background & Related Work

React-vis

Flexible and customisable, having a wide range of visualisa-
tion types, including line charts, scatter plots, and area charts;
high-performance, able to handle huge amounts of data. The
primary factors that led to the decision not to adopt this li-
brary were the limited selection of chart types available and
its requirement for use within a React environment. While
the platform is being developed using React, a visualisation
framework change would also be necessary if issues arise or a
decision is made to transition away from React.

Table 2.2: Data visualisation framework summary

2.4 Summary

This section aims to summarise the background and related work chapter and
presents a synopsis of the articles read and analysed as part of this research
project. Table 2.3 lists the articles, briefly overview their main points and find-
ings and shows how valid certain documents were for this project. This sum-
mary aims to provide a concise overview of the key insights and conclusions
drawn from the articles and any notable differences or similarities between them
by presenting this information clearly and organised.

It is expected that this chapter will provide the reader with a strong foundation
of theoretical knowledge that will enable them to understand the context of the
subsequent chapters.

Description Keywords Year
Reputation System [30] Reputation systems enable
users to assess the trustworthiness and reliability of
other users, organisations, or systems to make in-
formed decisions about interactions. Challenges in
design include ensuring accuracy and fairness while
addressing privacy, security, and scalability.
This document has helped to give us an overview
of reputation systems and how we can build trust
through them.

Reputation,
Entities,
Feedback,
Trust, Be-
haviour

2000

33

Chapter 2

Reputation System: A survey and taxonomy [12] De-
sign and implementation of reputation systems must
consider challenges such as accuracy, fairness, pri-
vacy, security, and scalability. Evaluation methods
and metrics have been developed to assess their per-
formance and effectiveness.
This paper helped us to see how reputation systems
are used in real-life examples (e.g. eBay and Stack-
overflow) and the different dimensions we can use
for this type of system, such as the examples in this
project, entities, governance and data ageing.

Reputation
System,
Survey.
Taxonomy,
Feedback,
Dimensions,
Trustor,
Trustee, Rec-
ommender

2015

Trust and Reputation Systems [14] Trust and reputa-
tion systems facilitate online interactions by allowing
users to assess the trustworthiness and reliability of
others. Centralised systems use a single authority to
manage reputation information, while decentralised
systems use P2P networks. These systems must con-
sider accuracy, reliability, privacy, security, and scala-
bility.
This document helped us to get an overview of how
reputation system architecture works, allowing us to
see the advantages and disadvantages of each one and
choose the most suitable one for this project.

Reputation,
Trust, Cen-
tralised,
Distributed,
Peer-to-Peer

2007

Trust and Reputation Management [20] Trust and
reputation management systems aim to provide a way
for users to evaluate the trustworthiness and relia-
bility of other users, organisations, or systems to fa-
cilitate online interactions and transactions. Factors
affecting trust and reputation include the quality of
products or services, the system’s performance, and
user behaviour.

Rankings,
Trust, Rep-
utation,
Attack-
Resilient

2010

Reputation Measurement for Online Services Based
on Dominance Relationships [9] Dominance graph
represents relationships between users as nodes and
edges, with reputation determined by the position in
the graph. Factors that affect dominance relationships
include product or service quality, performance, and
behaviour.
This article helped us understand the dominance
model and how it can be used in reputation systems.

Reputation,
Dominance
Relation-
ships, Rank-
ing, Directed
Acyclic
Graph, On-
line Services

2021

34

Background & Related Work

A Privacy System to Consult Public Institutions
Records [16] Reputation and the notion of trust are
directly related as an entity can build trust based on
another’s reputation. Trusting an entity in an online
service is risky because no past interactions exist, and
the reputation aims to reduce this risk.
This master’s thesis helped us learn about different
reputation models and choose the most appropriate
one for this project - the Alpha-Beta model.

Reputation
Systems,
Trust, Risk,
Personal
Identifiable
Information,
Privacy

2020

Visualising Transaction Context in Trust and Repu-
tation System [34] The proposed approach uses a vi-
sual interface to display transaction context, including
relationships, history, and reputation ratings. It offers
improved understanding and accuracy for trust and
reputation systems.
This paper helped us choose the most suitable compo-
nents to implement in the visualisation platform, such
as parallel coordinate charts and brushing.

Reputation,
Transaction
Context,
Visual An-
alytics,
Visualisa-
tion, Parallel
Coordinates

2014

Visual framework for big data in d3.js [5] The frame-
work has three components: visual data model, repre-
sentation, and interaction. It represents data structure
and relationships, visualises data, and handles large
data sets. It is flexible and customisable for various
applications.
This document helped us understand how D3.js, the
project’s chosen tool for the graphical implementa-
tion of the visualisation platform, would handle large
amounts of data.

D3.js, Visual-
isation, Data
Warehouse

2014

Interactive Visual Analytics on Big Data: Tableau
vs D3.js [26] Comparison of Tableau and D3.js when
used extensively in data analysis. Different weak-
nesses and strengths of each framework, including
their capabilities, performance, and usability.

Big Data,
Big Data Vi-
sualisation,
Visualisa-
tion Tools,
Tableau,
D3.js.

2016

Table 2.3: Related work summary

35

Chapter 3

Research Objectives & Approach

This chapter provides a clear and concise description of the research objectives
and the approaches we will use to achieve these objectives. First, Section 3.1
outlines the dissertation’s specific goals or objectives. Then, in Section 3.2, we
discuss the plans to complete each goal and measures taken to handle obstacles
encountered.

3.1 Objectives

The primary objective of this dissertation is to investigate and understand the
factors contributing to the reputation of the various components/services in the
ARCADIAN-IoT project. We implement several methods and approaches to
achieve this objective, including streaming reputation information and develop-
ing a platform for visualising reputation data.

Streaming reputation information is essential to our research, allowing us to track
and monitor various entities’ reputations continuously. We can efficiently process
and analyse the incoming reputation data in real time using data streams. This
enables us to identify trends and patterns and calculate each event’s reputation
score.

In addition to streaming the reputation data, we will also implement a platform
for visualising the reputation data. This platform will allow us to present the data
clearly and meaningfully, enabling us to identify critical trends and patterns that
may not be immediately apparent from raw data alone through graphical analy-
sis. The platform will also provide valuable insights into the factors influencing
the reputation of the entities we are studying, helping us better understand the
underlying drivers of reputation.

To reach our main objective, we defined the following goals:

1. Research reputation measurement methods

Chapter 2, specifically Section 2.2.5, documents how we can determine a
reputation value for entities in a system and how the system can compare

37

Chapter 3

them to determine which has the highest reputation.

2. Research how users can visualise the reputation data and through which
frameworks

According to Section 2.3, it is possible to visually represent the reputation
of a specific system using a specified method. Therefore, we can use several
frameworks to implement the data visualisation platform to achieve this
objective.

3. Receive events from heterogeneous components with distinct functions

To effectively receive the events generated by the various partners involved
in the ARCADIAN-IoT project, we have designed the system to use a Rab-
bitMQ exchange for each component. This approach allows the system to
efficiently process and manage the incoming event data from each partner,
ensuring that it can track each partner’s reputation and status within the
ARCADIAN-IoT project.

4. Analyse the data received to calculate the reputation score

Upon receiving the data from the partners involved in the project, we utilise
data streams to calculate the reputation score for each event received. To
accurately determine the reputation score, we must identify the relevant
information that needs input into the model, such as whether the event has
a positive or negative rating. Once the system has calculated the reputation
score, using one or several reputation models based on the entity type, we
store all of the reputation information in the database for future reference
and analysis. Archiving the reputation information allows us to track the
reputation of each event over time and make informed decisions about how
to respond to it.

5. Implement the data visualisation platform

We must access the database and retrieve the required reputation informa-
tion to design the data visualisation platform. Getting the essential repu-
tation information allows us to comprehensively understand the data we
are working with and make informed decisions about visualising it mean-
ingfully and effectively. For more information on how we design the data
visualisation platform, please refer to Chapter 4, where we describe our ap-
proach and the specific tools and techniques we use.

3.2 Approach

This section presents an overview of the methodology employed, the decisions
made during the development process, any challenges encountered and the ap-
proach taken to address them.

38

Research Objectives & Approach

3.2.1 Research & Development Methodology

The purpose of this section is to outline the vision and approach we used for
researching and developing a management framework, including the methods
and systems we use.

Firstly, understanding state-of-the-art reputation systems, methods for calculat-
ing entity reputation within a system, and visualising reputation data was accom-
plished to gain insights into potential features and popular functionalities for our
work and implementation techniques. Then, with the use of search engines such
as ResearchGate, IEEE Xplore, and Mendeley, we searched for articles, books and
journal publications related to reputation systems (e.g., "reputation score calcula-
tion") and how to visualise their data (e.g., "reputation system visualisation").

We thoroughly evaluated each researched framework to determine the most suit-
able framework for implementing the data visualisation platform. This evalua-
tion included reviewing the documentation of each framework to assess its feasi-
bility for creating the desired platform and viewing tutorials that demonstrated
how to implement simpler platforms that were similar to the chosen venue, albeit
less complex. This analysis identified the best framework for implementing the
data visualisation platform.

After this documentation, we proposed a ranking system to define priorities in
the requirements to implement the reputation system and its data visualisation
platform. This ranking followed the MoSCoW method to assist us in finding
the top requirements that we prioritise. The requirements list was compiled by
gathering information from previous artefacts, e.g., the ARCADIAN-IoT project
deliveries.

After careful consideration, we decided the development methodology for this
project would be an iterative waterfall model, combining the structure and pre-
dictability of the traditional waterfall methodology with the flexibility and adapt-
ability of an iterative process. The project is divided into minor, distinct phases,
allowing for modification and adjustment based on feedback and results. This
approach enables us to respond to changing circumstances while maintaining a
clear roadmap for the project.

3.2.2 Planning

This section aims to present the plan and activities performed during the first
semester and document the following steps to take in the second semester.

We created a Gantt Diagram (Figures 3.1, 3.2, and 3.3) to aid us in defining dead-
lines and visualising the project’s timeline. Each time slot allows us to allocate a
certain amount of time towards a specific objective without causing the project to
fail.

For the first semester, the planning involved usual tasks for a dissertation and
specific tasks related to the project.

39

Chapter 3

1. Dissertation Plan Rewriting: The dissertation plan was revised to include
the development of a data visualisation platform.

2. Reputation Systems Research: We researched and gathered background
information on reputation systems, their various architectures, and meth-
ods for measuring members’ reputations within a system.

3. Data Visualisation Research: We conducted research and obtained back-
ground knowledge on data visualisation, methods for displaying the repu-
tation of system members, and various frameworks we can use to achieve
this.

4. Alpha-Beta Model Testing: Testing the alpha-beta model to check whether
this model fits the project and can calculate the reputation of the different
entities when receiving new events.

5. Project Events Analysis: Analysis of the events to verify which parameters
received by the project partners are relevant to calculating the reputation of
an entity.

6. RabbitMQ Testing: Testing of RabbitMQ to know how information be-
tween producer and consumer is sent and how streams can send reputation
information.

7. Mockups: The development of mockups for the data visualisation plat-
form.

8. Functional Requirements Gathering: Gathering functional requirements
for the reputation system and the data visualisation platform.

9. Non-Functional Requirements Gathering: Gathering non-functional re-
quirements for the reputation system and the data visualisation platform.

10. Use Cases: Realisation of the use cases in which we could use the reputation
system in real-life circumstances.

11. Risk Analysis: Analysis of possible risks for the project, creating a mitiga-
tion plan for the ones with higher severity.

12. Preliminary Architecture: Perform and document architectural diagrams
for a prior architecture.

13. Intermediate Report Writing: Aggregation of all the information gathered
to write the intermediate report.

14. Intermediate Defence Preparation: Preparation of the intermediate de-
fence with a presentation of the essential contents.

15. Reception of Partners’ Events: Implementation for receiving events from
different project partners. The performance of this task extends into the
second semester.

40

Research Objectives & Approach

Figure 3.1 visually depicts the interactions between each first-semester milestone.
The colour-coding system identifies the type of task, with purple representing
planning tasks, yellow representing background and related work, orange repre-
senting modelling tasks, red representing requirements elicitation, green repre-
senting the project architecture, grey representing report writing, and blue repre-
senting implementation tasks.

Figure 3.1: Gantt Diagram of the first semester

In the second semester, the planning focuses on implementing the reputation
system and the data visualisation platform, following the iterative waterfall
model. The reputation system and data visualisation platform are integral com-
ponents of the project, and careful planning and execution ensure their successful
implementation.

1. Document Corrections: Corrections of the intermediate report based on the
feedback provided in the intermediate defence.

2. Reception of Partners’ Events: As mentioned in the first-semester plan-
ning, the aim is to implement how to receive events from different project
partners.

3. Analysis of Reputation Data & Reputation Calculation: After receiving
events from the project partners, we can analyse the event’s data and check
which is vital for the following steps. When we gather all the essential infor-
mation for the reputation calculation, the score can be calculated according
to the entity in the data and stored in the database.

4. Platform Frontend Development: Implementation of the frontend of the
data visualisation platform.

5. Receive Events From Database and Display: When the frontend finishes
and the database has information on the system entity’s reputation, the data
visualisation platform displays this information.

41

Chapter 3

6. Quality Attributes Testing: After implementing the essential requirements
of the reputation system and the data visualisation platform, the quality
attributes presented in Section 4.3 are tested to verify that they meet the
proposed conditions.

7. Final Report Writing: Aggregate all the information gathered to write the
final report. This task also includes the parallel writing of the scientific
article mentioned previously in Section 1.2.

Figure 3.2: Gantt Diagram expected for the second semester

Figure 3.2 visually depicts the expected interactions between each second-
semester milestone. The colour-coding system, like in the first-semester figure,
identifies the type of task, with grey representing report writing and blue desig-
nating implementation tasks.

(a) First three months

(b) Remainder four months

Figure 3.3: Gantt Diagram of the second semester

As depicted in Figure 3.3, the Gantt Chart of the second semester of the project is
presented, wherein notable disparities about task deadlines become evident. The
divergence in task timelines is attributed to the manifestation of certain risks,

42

Research Objectives & Approach

elucidated comprehensively in Section 3.2.3. The colour-coding system is similar
to the one in Figure 3.2, only adding the tests of the qualities attributes in orange.

3.2.3 Risks

In this section, we present the identified risks for the project and provide a mitiga-
tion plan for those with higher severity. By identifying and proactively address-
ing risks, we can minimise their potential impact and increase the likelihood of
project success. For the risks with high seriousness, we outline the identified risks
and the steps we take to mitigate their effect on the project.

Table 3.2.3 presents the options for risk classification [31]. The formula used to
determine the risk severity is described below in Equation 3.1 below.

Severity = Impact · Likelihood (3.1)

Attributes Rating Description

Impact
1 A risk with a low impact that would have minimal or

minor consequences if it were to occur.

2 A risk with a medium impact that could have a mod-
erate effect on a project if it were to happen.

3 A risk with a high impact that could have a significant
or severe effect on a project if it were to happen.

Likelihood
1 A risk with a low probability and unlikely to happen.

2 A risk with a medium probability with a moderate
chance of happening.

3 A risk with a high likelihood that has a high probabil-
ity of occurring.

Severity
1-2

A low severity risk with a low possibility of happen-
ing and would have minimal or minor consequences
if it did happen. It may not significantly impact the
project’s timeline, budget, or overall success.

3-5

A risk with medium severity that has a moderate
chance of occurring and could have a moderate im-
pact on the project. It may require more attention
and resources than a low-severity risk but less than a
high-severity risk. This could include impacts on the
project timeline, budget, or overall success.

6-9

A risk with high severity that has a high likelihood of
occurring and could have a significant or severe im-
pact on the project if it did happen. Addressing and
mitigating the potential impact may require consider-
able attention and resources. The high severity impact
can potentially jeopardise the project timeline, budget,
or overall success. It is crucial to promptly identify
and address high-severity risks to minimise their po-
tential impact on the project.

43

Chapter 3

Table 3.1: Risk classification caption

ID Description Impact Likelihood Severity

R1
Development takes more than ex-
pected, which may affect the quality
or content of the final delivery

3 2 6

R2
Elements of the team will become de-
motivated or burned out, being less
productive

2 1 2

R3
The primary author isn’t an excellent
frontend developer, and the platform
isn’t intuitive enough

1 2 2

R4

The primary author does not have
a background in the different soft-
ware used on the project, such as Rab-
bitMQ and Java Spark

2 2 4

R5

The project partners don’t give the
needed information for the data
streaming in the required time, thus
delaying the analysis of data

3 1 3

R6
The framework development may not
meet the required specifications due
to poor architectural choices.

3 2 6

Table 3.2: Risk Identification

Table 3.2.3 presents the identified project risks, with those with a higher severity
indicated in red. The mitigation plan for these risks is defined as follows:

• R1: If the development takes longer than expected, the mitigation plan for
this risk relies on the requirement listing prioritisation using the MoSCoW
method, see Section 4.4. Using this classification, we should not consider
the less prioritised needs and focus on those with a must-have category.

• R6: If the architectural choices were poor (e.g., RabbitMQ is not scalable
enough), we should thoroughly review the options to identify any poten-
tial issues or areas for improvement, seeking advice from more experienced
professionals. Another plan we can consider is implementing a prototyp-
ing testing phase to identify any problems or areas for improvement before
proceeding with full development.

Occurred Risks

For the identified risks, R1, R4 and R5 occurred, but we only had a mitigation
plan for R1.

44

Research Objectives & Approach

Concerning risk R1, the prescribed mitigation plan was diligently executed. In
this context, an emphasis was placed on prioritising exigent requirements, specif-
ically within the ambit of the reputation system. Of particular significance were
the functions of event reception and reputation calculation. The deliberate de-
cision to extend the dissertation delivery timeline to September gave us an ex-
tended period to refine some requirements that had not been previously priori-
tised. Moreover, it identified and rectified issues pertinent to the reputation sys-
tem and the data visualisation platform.

Concerning risk R4, its materialisation transpired during the implementation
phase. Pertinent uncertainties emerged surrounding the feasibility of realising
specific functionalities via Java Spark. For instance, there was a notable inquiry
into how information derived from RabbitMQ could be effectively stored in Cas-
sandra after data analysis. This difficulty was further compounded by concerns
relating to security, particularly the integration of RabbitMQ.

In response to these challenges, a comprehensive and rigorous investigation was
conducted, directed at the domains where the issues were manifest. As a result of
this intensive research endeavour, a substantial proportion of the predicaments
encountered were systematically addressed and subsequently resolved.

Regarding risk R5, its occurrence was manifested during the intermediary phase
of implementation, namely in analysing events and calculating reputation. Some
data was missing from exchanges defined in the system, but there was no infor-
mation from the project partners about what data would be sent to these respec-
tive exchanges. In some cases, new exchanges emerged that had not been initially
defined.

To address this challenge, the solution was not to be dependent on sending the
information from the missing exchanges, as, fortunately, the system already had
support for several exchanges, and some partners sent the information as re-
quested. After analysing the already known exchanges, if there was some in-
formation on the missing exchanges’ data, then support for these was made in
the system.

45

Chapter 4

Requirements Elicitation

This chapter describes the requirements that need to be considered for the data
visualisation platform and reputation system. These include functional require-
ments, described in Section 4.2, which specify the specific actions and capabilities
that the platform and system should be able to perform, and non-functional re-
quirements, described in Section 4.3, which concern the overall quality and per-
formance of the platform and system.

The section then proceeds to list the requirements using the MoSCoW method
in Section 4.4, which allows them to be prioritised according to their importance
and relevance to the project. Next, the use cases, based on utilisation scenarios
presented by an ARCADIAN-IoT deliverable, and mockups of the platform are
presented in Sections 4.5 and 4.6, respectively, providing a visual representation
of how users will use them and how they will look and feel to the user.

To provide a clear and comprehensive understanding of the reputation system’s
functional requirements and use cases, Section 4.1 presents various fields to illus-
trate the diverse range of contexts and scenarios in which these components will
be used.

4.1 Domains’ Description

This section aims to describe overall stories related to the IoT domains to antici-
pate and introduce the context for the functional requirements of the reputation
system and the use cases specification. With its focus on business applications,
this description clearly explains the solutions’ functionalities and the security,
trust, and privacy management challenges they must address [36].

4.1.1 Domain A: Emergency and vigilance using drones and IoT

This domain focuses on using IoT devices, specifically drones, in citizen-centred
urban vigilance services.

47

Chapter 4

A high-level scenario can feature a young lady, Ana, going home after dinner
with friends. Using the ARCADIAN-IoT Drone Guard Angel (DGA) app on her
smartphone, Ana requests vigilance services to escort her home. The service is
available in her city. To be registered and recognised by the DGA, Ana has sup-
plied some personal data in the registration phase, like name, address and photos.
To request a service, she must provide the initial and final locations to guarantee
the service is available in both spots.

Figure 4.1: DGA entities involved

After receiving the service request with Ana’s data, such as her location and iden-
tification, a drone parker in a specific place in the neighbourhood lifts off and
arrives near her. The first thing it does is to validate the user through multi-
ple criteria, which include the recognition of Ana’s smartphone and her physical
characteristics. After successfully identifying her, the drone is ready to guard Ana
back home.

Ana starts walking home, and the DGA is following her, aware of the surround-
ings to detect any threat signal, such as rapid movements towards Ana, high-
speed vehicles or objects. Suppose the drone sees something abnormal, like a
robbery attempt. In that case, it can start an appropriate manoeuvre to scare
or demotivate the robbers (blinking lights, emitting sounds, etc.) while it calls
for rescue. A medical team is called to the place if the drone detects any injuries.
While the rescue team is on its way, some details can already be sent and collected
by the camera, microphone and appropriate sensors, like GPS, to give precise lo-
cations and provide the incident characteristics.

4.1.2 Domain B: Medical IoT

An example of a Medical IoT (MIoT) scenario is as follows: Maria, a 5-year-old
girl, had her tumour removed in Ecuador, and she is currently receiving treat-
ment in Madrid. It is a very rare cerebral sarcoma with a poor prognosis asso-
ciated with DICER, a rare genetic disorder predisposing individuals to multiple
cancer types. Pediatric radio-oncology uses proton medical devices that generate

48

Requirements Elicitation

intensive radiotherapy during the required sessions by sending large amounts
of proton to the brain tumour. As a result, almost all patients receive radiother-
apy and chemotherapy, but each undergoes different treatments and receives per-
sonal treatment.

Considering the demanding volume of treatment sessions, reducing the number
of consulting sessions to assess the patient’s well-being is very beneficial. For this
purpose, a telemonitoring system is well accepted by the medical staff, a team of
doctors and nurses, and the patients. Both see the solution as more comfortable
and able to automatically provide an evolutionary record of the patient’s status
and potentially get the medical staff’s attention to relevant readings.

Figure 4.2: MIoT entities involved

To be effective, MIoT needs to be able to monitor patients considering a treatment
protocol, such as reading frequency, medication, and other medical recommen-
dations. Therefore, it needs to collect, store, and present the evolution of vital
signs in the cardiac area, the heart rate, temperature, SpO2 (oxygen saturation
in the blood) and blood pressure, captured with the medical sensors and timely
provide alerts for medical decision support. In addition to these parameters, it
should be possible for the patient to enter perceived symptoms in a mobile app,
such as levels of fatigue, sweat, diarrhoea, or others that can describe symptom
intensity.

The solution for satisfying the requirement will utilise an MIoT kit, which in-
cludes medical sensors and a smartphone. The hospital provides this kit to pa-
tients. The answer will also have an MIoT middleware service to distribute pa-
tient data and securely generate health alerts. A monitoring tool for the medical
staff to check the patient’s well-being and alerts and change the monitoring pro-
tocol.

4.2 Functional Requirements

This section outlines the functional requirements for the reputation system and
the data visualisation platform. Each requirement will include a user story, the
related domains, the scope, any preconditions the system must meet, any post-
conditions must be satisfied, and the success scenario must be achieved. We can

49

Chapter 4

ensure that our system meets the necessary functionalities and operates effec-
tively by detailing these requirements clearly and thoroughly.

Reputation System Functional Requirements

RS1. Receive events from components of the project partners

• User Story: As an authorised member, I want to seamlessly receive
events for entities from the components of the project partners in the
reputation system so that I can have a comprehensive view of the enti-
ties’ events.

• Related Domains: Domains A and B

• Requirements Scope: Persons, IoT devices, Applications/Services

• Requirement preconditions: The project partners can send their enti-
ties’ events to the reputation system.

• Requirement post-conditions: The reputation system has access to all
the events’ information.

• Success Scenario:

(a) The components from project partners are provided with a mes-
sage queue endpoint (RabbitMQ) to submit events related to the
entities they are responsible for.

(b) The partners can authenticate themselves using credentials with a
connection through exchanges.

(c) The partners submit events to the reputation system in a specified
format (JSON objects) containing information about the event and
the entity it pertains to.

(d) The reputation system processes the incoming events and updates
the entities’ reputation scores accordingly.

(e) The partners can handle the errors or issues that may occur during
the event submission process, and they are notified of any errors
and the reason behind them.

RS2. Select essential information to be stored

• User Story: As an authorised member, I want the reputation system to
automatically select and store the essential information from the events
received in the database to have a clear and concise view of the entity’s
reputation.

• Related Domains: Domains A and B

• Requirements Scope: Persons, IoT devices, Applications/Services

• Requirement preconditions: The reputation system must have re-
ceived information about the events from the different components.

• Requirement post-conditions: N/A

• Success Scenario:

50

Requirements Elicitation

(a) Project partners send events with various data.
(b) The reputation system receives the events from the partners.
(c) The reputation system selects only the necessary information to

save.
(d) The reputation system stores the previously selected information

in the database.

RS3. Calculate the entity’s reputation score

• User Story: As an authorised member, I want the reputation system
to update an entity’s reputation score upon receiving a new event so
that I always have the most up-to-date reputation information. This
calculation should use the most appropriate reputation model for a
specific entity. This way, I’ll be able to quickly understand the impact
of new events on the entity’s reputation and make informed decisions
based on the most current data.

• Related Domains: Domains A and B

• Requirements Scope: Persons, IoT devices, Applications/Services

• Requirement preconditions: The reputation system has obtained in-
formation regarding the events from the various partners and has reg-
istered the corresponding entities.

• Requirement post-conditions: The reputation system will store the
reputation information of the entity that has calculated the reputation
score in the database.

• Success Scenario:

(a) The reputation system queries the database to check if the entity
already exists through the ID or name.

(b) If the entity does not exist, it initialises the values required for rep-
utation calculation.

(c) Reputation score is calculated/updated based on the received e-
vent rating using the reputation measurement model chosen for
the project.

(d) Storage of the new reputation data in the database.

RS4. Trustable Storage Mechanism

• User Story: As a project partner, I want the reputation system to have
robust and trustworthy mechanisms for storing the reputation of en-
tities and their associated events so that it guarantees no information
leaks.

• Related Domains: Domains A and B

• Requirements Scope: Persons, IoT devices, Applications/Services

• Requirement preconditions: A trustable storage mechanism is in
place and provides some Application Programming Interface (API) to
enable the storage of reputation information.

• Requirement post-conditions: N/A

51

Chapter 4

• Success Scenario:

(a) Choosing a secure storage solution that meets industry data en-
cryption and security standards.

(b) Implementing access controls ensures that only authorised person-
nel can access and update the stored data.

(c) Regularly backing up the stored data to ensure that it can be re-
covered in the event of a disaster or data loss.

(d) Continuously monitoring the storage system for any security
breaches or unauthorised access attempts and taking appropriate
action to address any issues.

(e) Conducting regular security audits and penetration testing to
identify and address any vulnerabilities in the storage system.

(f) Keeping the storage system and its software updated with the lat-
est security patches and upgrades.

Data Visualisation Platform Functional Requirements

VP1. Homepage Lists the Different Entities

• User Story: As a platform user, I want to see a list of all the entities from
which the homepage receives reputation information to understand
where the reputation information is coming from easily.

• Related Domains: Domains A and B

• Requirements Scope: Persons, IoT devices, Applications/Services

• Requirement preconditions: The data streams with the reputation in-
formation must be working for this information to appear on the plat-
form

• Requirement post-conditions: N/A

• Success Scenario:

(a) Creating a homepage that displays a list of entities, including the
ID/name, the entity type and the current reputation score for each
entity.

(b) Retrieving the reputation information for each entity from the rep-
utation system’s database and displaying it on the homepage in a
clear and easy-to-understand format.

(c) Implementing a pagination mechanism allows users to view a cer-
tain number of entities at a time on the homepage and navigate
through the pages.

(d) Continuously monitoring and updating the list of entities and their
reputation information to ensure that it remains accurate and up-
to-date.

VP2. Filtering of Entities

52

Requirements Elicitation

• User Story: As a user of the platform, I want to be able to see a list of all
the entities from which the homepage receives reputation information
and to filter them by reputation score, date of events received in the
reputation system and search for a specific type of entity, so that I can
easily understand where the reputation information is coming from
and quickly identify and assess the entities reputations that are most
relevant to me. Additionally, I want to be able to search for a specific
type of entity so that I can easily find the entities that are most relevant
to me.

• Related Domains: Domains A and B

• Requirements Scope: Persons, IoT devices, Applications/Services

• Requirement preconditions: The data streams with the reputation in-
formation must work for this information to appear on the platform.

• Requirement post-conditions: N/A

• Success Scenario:

(a) Implementing a filtering system on the homepage that allows
users to sort the entities by reputation score (highest to lowest or
lowest to highest) or by date of events received in the reputation
system (most recent or oldest).

(b) Developing a search bar on the homepage that allows users to
search for a specific entity type.

(c) Ensuring that the filtering and search options are user-friendly and
easy to use.

(d) Continuously monitoring and updating the filtering and search
functionality to ensure that it remains accurate and reliable.

VP3. Entity Page with the Entity’s History

• User Story: As a user of the platform, I want to be able to view de-
tailed reputation information for each entity on its page so that I can
fully understand the entity’s reputation. This should include informa-
tion on the type of events that have affected the entity’s reputation, the
variation of the reputation over time, and the current reputation score.

• Related Domains: Domains A and B

• Requirements Scope: Persons, IoT devices, Applications/Services

• Requirement preconditions: The data streams with the reputation in-
formation must work for this information to appear on the platform,
and the entity must interact with the system

• Requirement post-conditions: N/A

• Success Scenario:

(a) Creating an entity’s page for each entity in the reputation system
that displays the entity’s ID/name, type, and current reputation
score.

53

Chapter 4

(b) Retrieving the reputation information for the entity from the repu-
tation system’s database, including the type of events that have af-
fected the entity’s reputation, the variation of reputation over time,
and the current reputation score.

(c) Developing a user-friendly interface that displays reputation infor-
mation in a clear and easy-to-understand format using a parallel
coordinate chart.

(d) Continuously monitoring and updating the entity’s page to ensure
the reputation information remains accurate and up-to-date.

VP4. Entity Page with the Events Additional Information

• User Story: As a platform user, I want to view a list of justifications
for all the events received in the reputation system for each entity on
its page to understand the reasons behind its reputation. Each expla-
nation should include details such as the event’s severity, the type of
action taken, and any sub-actions involved.

• Related Domains: Domains A and B

• Requirements Scope: Persons, IoT devices, Applications/Services

• Requirement preconditions: The data streams with the reputation in-
formation must work for this information to appear on the platform,
and the entity must have had interaction with the system with negative
events

• Requirement post-conditions: N/A

• Success Scenario:

(a) Retrieving the reputation information for the entity from the rep-
utation system’s database, including the events that have affected
the entity’s reputation, with their justifications, such as the degree
of severity, type of action, sub-action, and other relevant informa-
tion.

(b) Developing a user-friendly interface that displays the reputation
information in a clear and easy-to-understand format, including a
list of the events that have affected the entity’s reputation and its
justifications.

(c) Continuously monitoring and updating the entity’s page to ensure
the reputation information remains accurate and up-to-date.

VP5. Entity Page with the Reputation History

• User Story: As a platform user, I want to view the reputation score
history for each entity on its page to see the changes in the entity’s
reputation over time. It should display the reputation score for each
month, with the ability to zoom in and see the reputation score for
each day of the selected month.

• Related Domains: Domains A and B

• Requirements Scope: Persons, IoT devices, Applications/Services

54

Requirements Elicitation

• Requirement preconditions: The data streams with the reputation in-
formation must work for this information to appear on the platform,
and the entity must have interacted with the system.

• Requirement post-conditions: N/A

• Success Scenario:

(a) The user navigates to the page of a specific entity on the website.
(b) Retrieving the reputation information for the entity from the repu-

tation system’s database, including the historical reputation score
data for each month.

(c) On the page, the user sees a graph that displays the reputation
score of the entity for each month in the past year.

(d) Upon clicking on a month, the graph updates to display the rep-
utation score of the entity on a day-by-day basis for that specific
month.

(e) The user can view the reputation score history for the entity on a
granular level and easily identify patterns or trends in the data.

(f) The user is satisfied with the level of detail provided and can make
informed decisions based on the reputation score history.

VP6. Statistics of the Reputation System

• User Story: I want to view the reputation system’s statistics on a single
page as a platform user. Among these statistics, I would like to view
the total number of entities in the system, total events processed, and
information regarding each type of entity, such as the average, mini-
mum and maximum reputation and the number of each type.

• Related Domains: Domains A and B

• Requirements Scope: Persons, IoT devices, Applications/Services

• Requirement preconditions: The system must be populated with sev-
eral entities and events to present their statistics.

• Requirement post-conditions: N/A

• Success Scenario:

(a) The user navigates to the page with the reputation system’s statis-
tics.

(b) The platform consults the database and provides all the needed
statistics for the web page.

(c) The user can view all the statistics of the reputation system and is
satisfied with the details provided by the web page.

4.3 Non-Functional Requirements

This section examines the quality attributes encompassed by the reputation sys-
tem and the data visualisation platform, providing a methodology for evaluating
these requirements.

55

Chapter 4

Reliability The reputation system can be more reliable and withstand failures,
providing a more consistent and trustworthy service to its users to ensure that all
entities are processed or stored if there has been a problem with the reputation
service. Simulations of system failures can evaluate the system’s reliability to
ensure that all events are processed correctly.

Scalability The system needs to be scalable to receive data from the different
components of the project partners, each with numerous entities and events. The
system’s scalability can be evaluated by determining the number of messages
processed per second by the message queue.

Security The reputation system must handle high traffic and data volume,
maintain confidentiality, integrity and availability, and only allow authorised ac-
cess to the database to ensure accurate and trustworthy reputation data is consis-
tently available for query and transmission. The system’s security can be assessed
by evaluating the effectiveness of the implemented encryption mechanisms.

Usability The reputation system data visualisation platform should have a sim-
ple and intuitive interface that is easy to understand for all users. The usability
of the data visualisation platform can be evaluated by administering a survey
to potential users to assess their perception of the platform’s intuitiveness and
simplicity.

4.4 Requirements Listing

In this section, we use the MoSCoW method1 to prioritise our project’s functional
requirements, explained in Section 4.2. This method allows us to classify the
requirements into four categories:

• Must Have: The requirement is non-negotiable. It must be present in the
final product to not compromise the success of the product.

• Should Have: The requirement is non-vital but dramatically increases the
product value.

• Could Have: These would be a "nice-to-have" requirement, but they are not
necessary to the core functionalities of the product. Leaving it out only has
a negligible impact on the product’s success.

• Won’t Have: Indicates requirements beyond the project’s scope. If included,
this requirement contributes to the complexity by increasing the project
scope.

1MoSCoW Method: https://www.productplan.com/glossary/moscow-prioritization/

56

https://www.productplan.com/glossary/moscow-prioritization/

Requirements Elicitation

Using the MoSCoW method, we can communicate the priorities of the require-
ments and ensure that the project stays focused on the most critical tasks. It also
helps us make informed decisions about what requirements can be deferred or
omitted if necessary. This allows us to effectively manage the project scope and
ensure that we deliver a high-quality product that meets the needs of all stake-
holders.

Table 4.1 and 4.2 represent the functional requirements listing using the MoSCoW
method for the reputation system (RS) and the data visualisation platform (VP),
respectively.

ID Name Description MoSCoW
Scale

RS1

Receive events
from the com-
ponents of the
project partners

The reputation system needs to re-
ceive the events of the entities from
the components of the project part-
ners in the reputation system.

Must have

RS2
Select essential
information to
be stored

The reputation system selects the es-
sential information from the events
received to be stored in the database.

Should have

RS3
Calculate the
entity’s reputa-
tion score

Upon receiving a new event from an
entity, the reputation system must
update that entity’s reputation score.

Must have

RS4 Trustable stor-
age mechanism

The reputation system requires
trustable mechanisms to store the
reputation of entities and their
events.

Should have

Table 4.1: Reputation System Requirements Listing

ID Name Description MoSCoW
Scale

VP1
Homepage
Lists the Differ-
ent Entities

The Homepage must list all the enti-
ties from which it gets the reputation
information.

Must have

VP2 Filtering of En-
tities

Filter the different entities on the
homepage and search for a particu-
lar entity type.

Could have

VP3
Entity Page
with the En-
tity’s History

Entity pages display various reputa-
tion dimensions. Must have

VP4

Entity Page
with the Events
Additional
Information

Entity pages presenting a list with
the justification for the events in the
reputation system.

Could have

VP5
Entity Page
with the Repu-
tation History

Entity pages should display a graph
with the monthly reputation score
history

Should have

57

Chapter 4

VP6
Statistics of the
Reputation Sys-
tem

Statistics page should display all the
relevant information of the entities
and events in the reputation system.

Should have

Table 4.2: Data Visualisation Platform Requirements Listing

4.5 Use Cases

In the use cases section, we present the different use cases for our project based
on the domains we identified in the previous section. A use case describes a set
of actions that a system performs to achieve a specific goal. It outlines a user’s
steps to accomplish a particular task and identifies the system’s requirements to
complete it successfully.

By presenting our project’s use cases, we can clearly understand how users utilise
the system and what it is expected to do. This helps stakeholders better under-
stand the project’s scope and the requirements that need to be met. It also helps to
identify any potential issues or challenges that may arise during the development
process.

The use cases in this section were reached based on previously identified real-
world scenarios in Section 4.1. This allows us to provide a comprehensive
overview of how users use the system and the different types of users it serves.
Furthermore, by presenting the use cases in this way, we can ensure that all stake-
holders clearly understand the project and can make informed decisions about its
development.

In each use case, we include the following elements: a name for the use case, ID,
a list of the actors involved, a description of the actions that take place in the use
case, a list of preconditions that must be met for the use case to be initiated, a list
of post-conditions that describe the state of the system after the use case is com-
pleted, a list of the entities of the system that are present in the use case, and an
example of the reputation system’s behaviour in specific events. The given use
cases are based on an ARCADIAN-IoT deliverable [36], and the main contribu-
tion of this work is demonstrated through examples that illustrate the behaviour
of reputation in specific events.

4.5.1 Use Cases based on Domain A

Use Case #1: Person registration at DGA service

• ID: A1

• Actors: Citizen/Person to guard

• Story

58

Requirements Elicitation

To register for the service, the user installs a compliant mobile app on their
smartphone and provides the necessary data (including biometric informa-
tion) for registration. The service offers the user trustworthiness and sets
up security, privacy monitoring, and recovery mechanisms in case of an
incident. The user’s device has hardened encryption, integrity attestation
mechanisms, and a decentralised identifier or verifiable credential. The
framework also ensures that the user controls where their data is used.

• Preconditions

1. DGA services are compliant with ARCADIAN-IoT

2. The user has a smartphone with eSIM, and the app is installed

3. Monitor user, personal device, and third-party service interactions to
trigger any security action needed and update the trusted knowledge.
This monitorisation may include dynamic reputation and authorisa-
tion changes of the parties involved.

• Post-conditions

1. In the system, the user is registered. It has at least three robust iden-
tification mechanisms configured, one of them decentralised, and the
Root of Trust (RoT) on their device has information for providing the
personal data encrypted. The user can securely log in and start using
the third-party services, the DGA services, with their sensitive data
privacy ensured.

2. The third party has the necessary data for providing its service.

• Entities: Person, IoT device and Services

• Example of reputation’s behaviour in events

– Person Registration

* When a specific user registers himself in the service, the system
gives the user a positive event.

* When a specific user installs the app and registers himself in the
DGA Service, providing all the fields in the form, a positive event
shall be given to the user, the service and the device the app was
installed.

* If the user provides miscellaneous information in the form fields,
a negative event shall be given to the user.

– Person registration - biometrics

* Upon obtaining consent from the user to utilise FaceID recogni-
tion, a positive event will be given to the user, the service, and the
device.

* When a user selects multiple images for successful FaceID recog-
nition, a positive event will be given to the user and the device.

* When a user provides a valid password for authentication, the per-
son and the device receive positive events.

59

Chapter 4

Use Case #2: Person authentication at DGA service

• ID: A2

• Actors: Citizen/Person to guard

• Story

After registering, users must authenticate themselves with multiple robust
identity mechanisms to access the DGA services, such as Two-Factor Au-
thentication and Time-Based One-Time Password (TOTP). The app will use
the identification mechanisms of new Self-Sovereign Identity (SSI) and cel-
lular network credentials. Trust models informed by monitoring and Cyber
Threat Intelligence (CTI) components will be in place to allow or deny the
user’s authentication.

• Preconditions

1. Use case A1.

2. Behaviour monitoring and CTI components monitor the interactions
of the user, personal device and third-party service to trigger any nec-
essary security actions and update the trusted knowledge. This may
include dynamic reputation and authorisation changes of the parties
involved.

• Post-conditions

1. The user can log in to the DGA and request a service.

• Entities: Person, IoT device and Services

• Example of reputation’s behaviour in events

– Person Authentication

* Upon successful authentication of a person in the service, a posi-
tive event shall be given to the user.

* A negative event is generated if a person cannot authenticate in
the DGA service after a specified number of attempts.

* A negative event is generated if persons can authenticate but the
DGA service is unavailable at their current location.

Use Case #3: Person retrieving and editing personal data

• ID: A3

• Actors: Citizen/Person to guard

• Story

The end-user can retrieve and edit their data using the DGA mobile app.
DGA services validate the user, device and app identity and trustworthi-
ness. If the entities are authorised and trustworthy, the data is retrieved,

60

Requirements Elicitation

encrypted and decrypted at the device, with private cryptographic material
kept secure at the hardware level for editing. After the intended edition, it is
encrypted with RoT information and sent to the DGA services. It maintains
encryption until the user authorises access (self-aware data privacy).

• Preconditions

1. Use cases A1 and A2.

2. Behaviour monitoring and CTI components monitor the interactions
of the user, personal device and third-party service to trigger any nec-
essary security actions and update the trusted knowledge. This may
include dynamic reputation and authorisation changes of the parties
involved.

• Post-conditions

1. Updated personal data encrypted and stored in DGA services

• Entities: Person, IoT device and Services

• Example of reputation’s behaviour in events

– Person retrieves personal data

* Upon requesting reputation information of the user, device and the
reputation, allowing the editing and secure updating of the DGA
app information, a positive event is generated and associated with
the person and device.

– Person edits personal data

* If the phone has an outdated version of the DGA which does
not support robust encryption mechanisms that protect against
various attacks, such as Man-in-the-Middle (MITM) attacks, and,
therefore, does not provide secure sending, a negative event is as-
sociated with the device, including the mobile app.

* Upon the DGA app receiving the information and successfully
editing it without any errors during the update process in the DGA
service, a positive event shall be associated with the person, ser-
vice, and device.

Use Case #4: User requesting a DGA service

• ID: A4

• Actors: Citizen/Person to guard

• Story

When the end-user requests a drone using the DGA mobile app, the app
sends the necessary personal data encrypted with RoT information to the
DGA service. After verifying the user’s identity and the trustworthiness of

61

Chapter 4

the site, app, and device, DGA selects a trustworthy drone from the avail-
able options based on its reputation information. The selected drone’s iden-
tity data is retrieved and attested to assure its trustworthiness before grant-
ing access to the user’s data. The DGA service then shares the encrypted
data with a trustworthy drone, which can decrypt it using RoT information
to meet the person and attest to its identity. The person is informed of the
drone’s location and identification and may be given the drone’s tag for vi-
sual identification upon its arrival at the service location. The person is also
made aware of the self-aware privacy measures in place.

• Preconditions

1. Use cases A1 and A2.

2. Behaviour monitoring and CTI components monitor the interactions
of the user, personal device and third-party service to trigger any nec-
essary security actions and update the trusted knowledge. This may
include dynamic reputation and authorisation changes of the parties
involved.

• Post-conditions

1. Use case A5.

• Entities: Person, IoT device and Services

• Example of reputation’s behaviour in events

– Person requests DGA service

* If a user requests a drone and provides accurate information such
as precise location, a positive event is associated with the person
and device.

* Upon the DGA service verifying a user’s identity and reputation,
a positive event is associated with the service.

* If the user deliberately places themselves in a zone with poor cov-
erage, leading to issues with accurate location determination for
the DGA app, and despite the app warning the user they do not
change their location, a negative event is associated with the user.

* If the user’s mobile device, where the service is requested, experi-
ences location-related issues such as GPS malfunction, a negative
event is assigned to the device.

* Upon the DGA service dispatching drones according to their rep-
utation, a positive event is associated with the drones.

* If a drone flies according to its planned route, a positive event is
associated with the drone.

Use Case #5: DGA service

• ID: A5

62

Requirements Elicitation

• Actors: Citizen/Person to guard

• Story

After receiving the necessary data, the selected drone needs to meet and
identify the person who requested it and begin the vigilance service. The
person is informed about the drone’s reputation and how to perform the
required biometric identification. When the person is near the drone, a mu-
tual authentication process occurs between the person, their device, and
the drone. All private data exchanged is encrypted and only accessible by
the targeted devices. The identification process involves three simultaneous
identifications of the person. The service begins if the process is successful
and the drone follows the person. Any user data sent by the drone to DGA
services, including from emergency or rescue situations, is encrypted and
only accessible by entities authorised by the user. When the service ends,
all user data is deleted from the drone, and any data needed by DGA ser-
vices about the user or the service is encrypted. The user is informed about
which data is kept in the service and can choose to have it deleted.

• Preconditions

1. Use case A4.

2. Behaviour monitoring and CTI components monitor the interactions
of the user, personal device and third-party service to trigger any nec-
essary security actions and update the trusted knowledge. This may
include dynamic reputation and authorisation changes of the parties
involved.

3. Processes of anonymisation of people near the user are in place.

• Post-conditions

1. If the service ends successfully, the drone returns to the base with no
other action needed.

2. If the service doesn’t end successfully for some, the behaviour moni-
toring and the CTI try to infer the reason and act accordingly. DGA
services perform the corrective measure considered needed (e.g., an
operator calls the user, or the services send another drone to the last
known location to continue the service or assess the situation).

• Entities: Person, IoT device and Services

• Example of reputation’s behaviour in events

– Drone in DGA service

* When a drone arrives at the location, and the user acknowledges
the drone’s arrival, a positive event shall be given to all entities.

* When a drone identifies the user through the DGA app, a positive
event shall be given to all entities.

63

Chapter 4

* When a person is not present in the location where they requested
the DGA service and the drone informs the DGA service that no
person has been found, a negative event shall be given to the per-
son.

* When a person receives a notification of drone arrival in the DGA
app and does not move to be identified within a certain time, a
negative event shall be given to the person and device.

* When a drone is not in the correct location, but the user is in the
correct location, a negative event shall be given to the service and
the drone.

– Drone in DGA service - recognise the person

* When a drone fails to identify a user due to using old photos or
other photos that do not allow for good identification, such as
those with masks or clothing covering the face, a negative event
shall be given to the person.

* When a drone sends a message to the DGA service requesting the
user to be in the Line of Sight (LOS), for example, to move away
from trees, and the user does not move after several warnings, a
negative event shall be given to the person.

* When the drone and the user’s device with the DGA app perform
mutual authentication, a positive event shall be given to all enti-
ties.

* When the drone and the user’s device with the DGA app fail
to perform mutual authentication due to timeout and several at-
tempts, such as if the user disconnects the interface providing the
connection to the DGA service, a negative event shall be given to
the device.

* When the user arrives at the final location and reports it according
to the DGA service policies, and the DGA service registers at the
end of the mission, a positive event shall be given to all entities.

* When the user arrives at the final location but does not report it to
the DGA service and the drone returns to the station after a certain
time, a negative event shall be given to the person.

* When the user rates the service provided by the drone, a positive
event shall be given to the service, device, and drone.

* When the drone receives the notification of the end of the mission
and performs the deletion of data that is not required, a positive
event shall be given to the drone.

Use Case #6: Drone security or privacy incident

• ID: A6

• Actors: Attacker(s)

• Story

64

Requirements Elicitation

A system has been implemented to monitor and detect potential threats
to protect against security and privacy incidents involving IoT devices
like drones. This system uses a CTI tool and a federated Artificial Intelli-
gence (AI) approach to train an AI model on distributed information while
maintaining data privacy and informing the device’s self-protection mech-
anisms. Data is encrypted to protect end-user privacy and undergoes a se-
curity assessment before being sent to the device. A dynamic reputation
system determines the device’s trustworthiness based on factors such as
previous behaviour. If a security incident is detected, the device’s inter-
net access is restricted to only those services necessary for recovery. If the
device is operational and cooperative, it will take action to recover from
the incident according to pre-defined procedures. The CTI tool also shares
threat information with other networks to increase awareness.

• Preconditions

1. The drone is compliant with ARCADIAN-IoT

2. Related framework components (e.g., reputation system, authorisa-
tion, self-protection, self-recovery) are operational

• Post-conditions

1. If the device is operational (e.g., didn’t get damaged), not stolen, and
cooperative, there has been a mitigation of the incident, and its security
and privacy are restored.

2. Anonymised data/trained models about the incident are shared with
Computer Security Incident Response Team (CSIRT) and Computer
Emergency Response Team (CERT)

• Entities: IoT device and Services

• Example of reputation’s behaviour in events

– Drone is stolen

* When the user reports that the drone did not arrive at the planned
time and the DGA service cannot retrieve the drone’s location, a
negative event shall be given to the service and drone.

* When the drone stops providing status messages, including loca-
tion, to the DGA service after a certain period of time, a negative
event shall be given to the drone.

* When the drone reports strange behaviour, such as information
from the accelerometer or other data sensors that may indicate a
malfunction or the impact of atmospheric conditions, a positive
event shall be given to the service and drone.

* When the drone reports strange behaviour, such as information
from other data sensors that may indicate malfunction or devia-
tion from the planned route, a positive event shall be given to the
service, and a negative event shall be given to the drone.

– Drone is stolen - the recovery process

65

Chapter 4

* If the person who attempts to capture the drone is the user, a neg-
ative event shall be given to the person, or the reputation may be
reset.

* When the drone reports malfunction triggers an alert to initiate
recovery, and the recovery is completed, leading to the restoration
of the drone, a positive event shall be given to the drone.

* When the drone reports malfunction triggers an alert to initiate re-
covery, and recovery is attempted but does not lead to a successful
restore due to the drone being captured illegally, a negative event
shall be given to the drone.

Use Case #7: Personal device security or privacy incident

• ID: A7

• Actors: Attacker(s)

• Story

To protect against security and privacy incidents involving personal devices
that access DGA services, a system has been created to collect and interpret
information about potential threats using a behaviour monitoring compo-
nent and a CTI tool. To protect end-user privacy, sensitive data on the device
is encrypted, and a dynamic reputation system is in place to determine the
device’s and app’s trustworthiness based on factors such as its behaviour.
If a security incident is detected, the device’s internet access is restricted
to only those services necessary for recovery. If the device is operational
and cooperative, it will take action to recover from the incident according
to pre-defined procedures. If the self-recovery processes are successful, the
device’s hardware and software will be restored to compliance, including
credentials recovery. The CTI tool also shares threat information with other
networks to increase awareness. Human intervention is minimised during
the recovery process.

• Preconditions

1. Persona device is compliant and integrated with the framework com-
ponent.

2. Related framework components (e.g., CTI, reputation system, authori-
sation, self-protection, self-recovery) are operational.

• Post-conditions

1. If the device is operating (e.g., didn’t get damaged) and not stolen, the
incident is mitigated, and its security and privacy are restored.

2. Threat information in the form of trained models is shared with CSIRT
and CERT networks to propagate threat awareness.

• Entities: Person, IoT device and Services

66

Requirements Elicitation

• Example of reputation’s behaviour in events

– Personal device security

* When the user informs the DGA service via the DGA service web-
site that their device has been stolen upon arriving home, the de-
vice’s reputation shall be reset.

* A negative event shall be given to the person and device for failing
to inform the DGA service about the loss of the device with the
DGA app, resulting in another user attempting to use the service
with multiple failed login attempts from outside the location of
previous missions.

* The user acknowledges the recovery of their device with the DGA
app, but the device has not attested properly, leading to a negative
event for the device.

4.5.2 Use Cases based on Domain B

Use Case #1: MIoT kit delivery - Patient registration and authentication

• ID: B1

• Actors: Patient and Medical Professional

• Story

A patient at a hospital is given an MIoT kit, including a smartphone with
a specific app installed and medical sensors, to be monitored at home. The
authorised medical professional asks the patient to register using the MIoT
app on the smartphone, free of any personal data from previous patients.
The app presents information about the service’s data security and privacy
procedures, and the security reputation of the MIoT entities is shown to the
patient. If the patient agrees, a personal "RoT" (eSIM) is generated and pro-
visioned to the smartphone, and cryptographic material is generated and
sent securely to the device RoT. The patient then fills out a form with per-
sonal data, part of which is used to create their SSI, and this data is en-
crypted and submitted to the MIoT services. The SSI is backed up in a per-
missioned blockchain and stored in the device RoT or a secure ID wallet.
The patient is informed that their new network credentials, associated with
the eSIM/RoT, will be used as a second secure identification/authentication
mechanism. The medical staff then confirms the delivery of the equipment
to the patient and provides any necessary explanations about its use.

• Preconditions

1. MIoT app and services are compliant.

2. Smartphone provided in the MIoT kit has embedded Universal Inte-
grated Circuit Card (eUICC).

3. Medical staff is registered in MIoT monitoring services with authenti-
cation and identification compliant

67

Chapter 4

4. Health sensors are securely paired with the smartphone (components
act in the smartphone for security)

• Post-conditions

1. Patient registration and authentication

2. Behaviour monitoring and CTI components start overseeing the de-
vice behaviour to trigger any necessary security actions and update
the related trust knowledge (which may include reputation and autho-
risation changes).

3. The patient can be made aware of where their data will start being sent,
authorisation since this moment specific doctors

• Entities: Person/IoT/Apps Services

• Example of reputation’s behaviour in events

– MIoT kit delivery - patient registration and authentication

* The user completes the registration process for the DGA service,
indicating a positive event for both the user/patient and the ser-
vice.

* The patient completes the registration process and is authenti-
cated, resulting in a positive event for the patient, service and de-
vice.

* The patient’s authentication attempt is unsuccessful, leading to a
negative event for the patient and the device used.

Use Case #2: MIoT capturing and sending vital signs and perceived health
status

• ID: B2

• Actors: Patient

• Story

The patient at home has sensors placed on their body and synced with a
smartphone, and the MIoT app starts collecting data from the sensors. If
necessary or according to the health monitoring plan, the patient also re-
ports their perceived health status through the app. The app on the smart-
phone encrypts the data from the sensors and the patient’s perceived health
status with RoT (eSIM) information and sends it to MIoT middleware ser-
vices. If there is no connectivity, the device stores the encrypted data locally
and sends it to MIoT services when communication is restored. With the pa-
tient’s permission, MIoT middleware forwards the data to compliant hospi-
tal monitoring tools, which can decrypt the data with the patient’s consent.
If the smartphone is turned off, the patient must re-authenticate in MIoT ser-
vices, and the app starts collecting sensor data again. A re-authentication
process may also be applied for security purposes.

68

Requirements Elicitation

• Preconditions

1. Use case B1.

2. Sensors are well placed (the app can help by informing when data
needs to be received).

3. Behaviour monitoring and CTI components oversee the interactions of
the IoT device (the IoT gateway) and services involved to trigger any
necessary security actions and update the trusted knowledge. This
may include dynamic reputation and authorisation changes for the
parties involved.

• Post-conditions

1. The MIoT app transmits encrypted data to the MIoT middleware, which
can be forwarded and encrypted to authorised IoT monitoring tools.

• Entities: Person/IoT/Apps Services

• Example of reputation’s behaviour in events

– MIoT capturing and sending vital signs and perceived health status

* The encrypted data is successfully transmitted to the hospital, rep-
resenting a positive event for the service and device.

* The individual completes the re-authentication process, which is a
positive event for both the patient and the device.

* The individual fails to complete the re-authentication process, re-
sulting in a negative event for both the patient and the device.

Use Case #3: Personal data processing towards health alarm triggering

• ID: B3

• Actors: Patient

• Story

This use case involves processing health data in the cloud to detect and trig-
ger alarms in a hospital monitoring tool. The data, which is encrypted when
it is received from the patient’s MIoT smartphone, needs to be decrypted to
detect any alarm conditions. The patient must authorise the processing of
their data for this purpose, and if they do, cryptographic material to in-
terpret the data is provided to the processing unit. If the patient revokes
authorisation, new cryptographic material is generated and distributed but
not offered to the team. To maintain patient privacy, decryption techniques
only decrypt the data payload and encrypt the patient’s identity. The pro-
cessing unit detects alarm conditions based on medical protocols or patterns
learned from other anonymous patients, and these alarms are encrypted
and merged with the patient’s encrypted identification. With the patient’s
authorisation, MIoT middleware forwards the encrypted data, including

69

Chapter 4

the warnings, to compliant hospital monitoring tools, which must have
strong identity and authentication mechanisms, allow security behaviour
monitoring, and authenticate in MIoT services to receive the cryptographic
material needed to decrypt the data. Decryption by medical staff only oc-
curs with the patient’s authorisation.

• Preconditions

1. Use case B2.

2. Behaviour monitoring and CTI components oversee the interactions
of the services involved to trigger any necessary security actions and
update the trusted knowledge. This may include dynamic reputation
and authorisation changes for the parties involved.

• Post-conditions

1. When relevant, patient health alarms are triggered and sent to the hos-
pital.

• Entities: Services

• Example of reputation’s behaviour in events

– Personal data processing towards health alarm triggering

* The patient consents to processing their data, which represents a
positive event for the service.

* Anomalous behaviour, such as a false health alarm, is reported for
the mobile device, which is a negative event for the device.

* Threats, like unauthorised access and Denial of Service attacks, are
reported regarding the MIoT service, representing a negative event
for the service.

Use Case #4: Monitor a patient and update the patient monitoring protocol

• ID: B4

• Actors: Medical Professional

• Story

Patient monitoring is a key use case for MIoT, and the system is designed
to monitor patients efficiently and securely while at home. Medical profes-
sionals log in to the MIoT hospital platform with strong multifactor authen-
tication. MIoT services validate the user and the app’s identity and assess
its reliability to grant access to the services. The medical professional can
select a patient to whom they have access or request access to a new patient.
They may also have a dashboard for monitoring multiple patients with au-
thorised access to their data. Patient data is encrypted until requested by
an authorised medical professional, who can decrypt it with cryptographic
material provided by self-aware data privacy and hardened encryption. If

70

Requirements Elicitation

the medical professional wants to change a patient’s monitoring protocol,
they request that MIoT services send commands to the patient’s MIoT app.
The MIoT hospital platform decrypts data sent by the patient app. It al-
lows the medical professional to edit it before sending it back, encrypted,
to the MIoT app on the patient’s smartphone. The smartphone must be
on, connected, and the patient securely authenticated with multiple factors
in MIoT middleware to receive the new commands, decrypted with RoT
(eSIM) information and executed if successful or discarded if not.

• Preconditions

1. Use case B1.
2. Medical professionals, the user of the MIoT hospital platform regis-

tered with an identification compliant with personal identification.
3. Medical professional authorised by a patient (or more) to decrypt his

health data for well-being monitoring purposes.
4. The MIoT hospital platform is provisioned with material for encrypt-

ing the commands sent.
5. Devices RoT (eSIM) provisioned with material for decrypting the com-

mands sent.
6. Behaviour monitoring and CTI components monitor the interactions

of the entities involved to trigger any security actions deemed neces-
sary and update the trusted knowledge. This may include dynamic
reputation and authorisation changes for the service.

• Post-conditions

1. Authorised medical staff can monitor a patient’s health and update the
medical protocol.

2. In the case of a medical protocol change, the MIoT kit has new infor-
mation to update the medical monitoring protocol.

• Entities: Person/IoT/Apps Services

• Example of reputation’s behaviour in events

– Monitoring a patient and updates to the patient monitoring protocol

* A medical professional successfully authenticates on the MIoT
hospital platform, representing a positive event for the medical
staff, service and the MIoT hospital platform.

* A medical professional successfully accesses patient data through
the MIoT hospital platform, representing a positive event for the
medical staff, service, and the MIoT hospital platform.

* A medical professional is unable to access patient data due to an
error, specifically, the MIoT hospital platform is unable to decrypt
the data. This represents a negative event for the MIoT hospital
platform.

* A medical professional is trying to access the data of a patient for
which it does not have permission, representing a negative event
for the medical staff.

71

Chapter 4

Use Case #5: Patient MIoT devices security or privacy incident

• ID: B5

• Actors: Attacker(s)

• Story

In this scenario, a security or privacy incident involves a patient’s MIoT
devices (smartphone/app and sensors). The system is designed to detect,
protect, and recover from such incidents through the use of components
like behaviour monitoring, flow monitoring, and a CTI tool, as well as a self-
protection component that infers threats based on data received and applies
rules to protect MIoT devices and the IoT network. To protect the patient’s
private information, the data collected by the smartphone is encrypted and
only sent to compliant, authorised, and trustworthy medical third parties.
The patient’s identity is composed of multiple factors, including network
credentials stored in the secure hardware element (eSIM/eUICC) and an
SSI stored securely in the secure element of the RoT or ID wallet. In the
event of a security incident, the smartphone’s trustworthiness reputation
is updated, and access authorisation enforcement is also updated to allow
the MIoT app to only access network services for recovery, not services that
may provide or request private data or cryptographic material. If the de-
vice/app is operational, it takes self-recovery and self-healing actions to
recover from the incident, potentially requiring access to ARCADIAN-IoT
services. If the device is not operational, a recovery process is initiated, po-
tentially requiring the patient to replace the device and restore their identity
and data.

• Preconditions

1. MIoT devices are compliant (being therefore integrated with the frame-
work components).

2. Related framework components (e.g., reputation system, authorisa-
tion, self-protection, self-recovery) are optional.

• Post-conditions

1. If the device is operational (e.g., not damaged) and not stolen, the in-
cident is mitigated, and privacy is restored with reduced human inter-
vention.

2. Threat information in the form of trained models is shared with CSIRT
and CERT.

• Entities: Person and IoT device

• Example of reputation’s behaviour in events

– Patient MIoT devices security or privacy incident

* A security incident, such as unauthorised access, is detected, rep-
resenting a negative event for the patient and the device.

72

Requirements Elicitation

* The self-recovery and self-healing processes are successfully im-
plemented, representing positive events for both the patient and
the device, culminating in the negative event previously given.

Use Case #6: MIoT Cloud services security or privacy incident

• ID: B6

• Actors: Attacker(s)

• Story

This use case describes a process for handling security or privacy incidents
involving MIoT Cloud services, such as a data processing unit for detect-
ing and triggering health alarm conditions. The service is prepared to de-
tect and respond to incidents and protect private data and identities. The
process includes using components for incident detection, protection, and
recovery, a self-protection component that infers threats and applies protec-
tion rules, and a dynamic reputation system that assesses the trustworthi-
ness of services. The service identity is protected with decentralised iden-
tifiers and attestation to prevent impersonation. In the event of a security
incident, the service’s reputation is updated, and access to certain services
may be restricted. The service can then take actions to recover from the in-
cident, including self-recovery and self-healing processes, and can recover
decentralised identifiers from the ARCADIAN-IoT blockchain component.
The self-healing component includes a decision manager and resource in-
ventory to guide recovery. The CTI tool shares relevant threat information
with CSIRT and CERT networks throughout the process.

• Preconditions

1. MIoT Cloud services are compliant (being therefore integrated with
the framework components).

2. Related framework components (e.g., behaviour monitoring, flow
monitoring, reputation system, authorisation, self-protection, and self-
recovery) are operational.

• Post-conditions

1. The incident is mitigated, and its security and privacy are restored,
with minimum or no human intervention.

2. Threat information in the form of trained models is shared with CSIRT
and CERT.

• Entities: Services

• Example of reputation’s behaviour in events

– MIoT services security or privacy incident

73

Chapter 4

* A security incident is detected, representing a negative service e-
vent.

* The self-recovery and self-healing processes are successfully im-
plemented, representing a positive event for the service.

Use Case #7: Medical third-party security or privacy incident

• ID: B7

• Actors: Attacker(s)

• Story

This use case involves a medical service that receives data from MIoT de-
vices to monitor patients’ health. The service is designed to protect patient’s
personal information by keeping the data encrypted until it is requested
by a trustworthy, authorised medical professional who has been properly
authenticated. The service also includes various components for detect-
ing, protecting against, and recovering from security and privacy incidents,
such as unauthorised access to data or manipulation of service functional-
ity. These components include behaviour and flow monitoring, a CTI tool,
and a dynamic reputation system that determines the trustworthiness of
medical services based on various factors. To protect the service’s identity,
each service is assigned a decentralised identifier and undergoes attestation
to prevent impersonation. If a security incident is detected, the service’s
reputation is updated, access authorisation is enforced, and self-recovery
and self-healing procedures are initiated to restore the service to a com-
pliant state. The self-healing component includes a decision manager and
resource inventory to determine how to repair the service without human
intervention. The CTI tool also shares threat information with other net-
works to increase awareness.

• Preconditions

1. The third-party medical platform is compliant (being therefore inte-
grated with the framework components).

2. Related framework components (e.g., behaviour monitoring, flow
monitoring, reputation system, authorisation, self-protection, and self-
recovery) are optional.

• Post-conditions

1. The incident is mitigated, and its security and privacy are restored,
with minimum or no human intervention.

2. Threat information in the form of trained models (not the actual data)
is shared with CSIRT and CERT.

• Entities: Services and person

• Example of reputation’s behaviour in events

74

Requirements Elicitation

– Medical third-party security or privacy incident

* A security incident is detected, representing a negative event for
the service and the MIoT hospital platform.

* The self-recovery and self-healing processes are successfully im-
plemented, representing a positive event for both the service and
the MIoT hospital platform.

4.6 Data Visualisation Platform Mockups

This section presents the various designs and layouts developed for the platform.
We intend for these designs and layouts to provide a comprehensive and user-
friendly interface for viewing and analysing data related to the reputation sys-
tem. The reputation system is the crucial component of our proposed approach,
designing the data visualisation platform in an intuitive, straightforward, and
easy way.

The mockups presented in this section aim to show how the platform will look
and function. The mockups were done using the Figma2 platform.

The data visualisation platform consists of a homepage, a page for each entity
in the system and a statistics page for the reputation system. In the following
Subsections, 4.6.1, 4.6.2 and 4.6.3, we detail each of these pages, examining their
features and functions. The homepage provides an overview of the reputation
system as a whole, the entity page focuses on the reputation of individual entities
within the system, while the statistics page offers all the essential statistics for the
reputation system.

4.6.1 Homepage

As mentioned, the homepage aims to provide an overview of the reputation sys-
tem and all the entities included. After logging in to the website, we can see a
welcome screen for the data visualisation platform, here named "Reputation Sys-
tem Analyser", as shown in Figure 4.3.

Next, if we scroll down, there is a list of all the entities incorporated in the system.
Each has a name, type (e.g. person, device and service), and reputation score in
the system, as seen in Figure 4.4. It is also possible on this page to search for a
particular entity or filter the entities based on some factors: the oldest or most
recent date the system received an event from the entity in the system and the
highest or lowest reputation score inside the system.

2Figma: https://www.figma.com/

75

https://www.figma.com/

Chapter 4

Figure 4.3: Data Visualisation Platform Homepage

Figure 4.4: List of entities in the system, search and filtering

Selecting an entity from the list on the homepage takes the user to the page of
that specific entity.

4.6.2 Entity Page

Users are presented with the entity’s name, type and reputation score when en-
tering the page selected on the homepage. Below it, we can see the parallel coor-
dinates graphic of all the entity’s interactions throughout the reputation system,
including the rating, date and action type (e.g., login, alert, transaction, etc.) of
each event, as seen in Figure 4.5.

76

Requirements Elicitation

Figure 4.5: Entity Page - Parallel Coordinates

If the entity has any events that require further explanation of the ratings re-
ceived, there is a section explaining these ratings given to the event, seen in Fig-
ure 4.6. The platform incorporates this explanation in a list of events with the
following information: event’s type, additional information about the event (e.g.,
if the event is alert, additional information can be a Distributed Denial of Service
(DDoS)) and the severity of the adverse event inside the system. It should be
noted that within the list provided, events in green signify positive events, while
red signifies negative events, as received by the system for the specific entity in
question.

Figure 4.6: Entity Page - Events Additional Information

Finally, at the end of the page, there is a graphic with the reputation score history
of the entity since its first interaction with the reputation system, as illustrated in

77

Chapter 4

Figure 4.7.

Figure 4.7: Entity Page - Reputation Score History

4.6.3 Statistics Page

As for the statistics page, the platform users are presented with the total number
of entities in the system and the total number of events processed by the reputa-
tion system.

Next, information is presented on each of the different types of entities. This
information highlights the number of entities in the system of each type (i.e.,
service, person) and the mean, minimum and maximum reputation of that type
of entity.

Figure 4.8: Statistics of the Reputation System Page

78

Chapter 5

Project Architecture

In this chapter, we delve into the design and structure of our reputation system
through architectural diagrams. These diagrams provide a visual representation
of the various components of our system and how they interact and function to-
gether to enable the reputation system. By presenting this detailed overview of
the system’s architecture, we aim to clearly understand how the reputation sys-
tem works and how we can use it to improve the quality and trustworthiness of
online interactions. Furthermore, this chapter provides a comprehensive under-
standing of the reputation system’s architecture in a preliminary phase, meaning
that some changes will occur based on feedback and the development process of
the final product.

We illustrate the architectural diagrams based on the C4 Model1 developed by Si-
mon Brown. The C4 Model is a hierarchical model that provides a standardised
way to visualise and communicate the structure and design of software systems.
It is a flexible model representing many architectures, from small to large, com-
plex systems. Using the C4 Model to create our diagrams, we aim to clearly and
consistently represent the reputation system’s architecture that facilitates under-
standing and communication among stakeholders.

The C4 Model consists of four diagrams that we can use to represent the architec-
ture of a software system. These levels are:

1. C1 - Context Diagram (Section 5.1): This high-level diagram shows the re-
lationships between the system and its external actors or stakeholders. It
provides a broad overview of the system and its environment, including its
boundaries, interfaces, and dependencies.

2. C2 - Container Diagram (Section 5.2): This diagram represents the system’s
logical organisation into containers, defined as deployable units that can
run on a host. Containers seek to describe components, services, or modules
that make up the system.

3. C3 - Component Diagram (Section 5.3): This diagram provides a detailed
view of the components and their relationships within a container. It shows

1C4 Model: https://c4model.com/

79

https://c4model.com/

Chapter 5

how the components are organised, communicate, and interact with exter-
nal systems or services.

4. C4 - Code Diagram: This is the most detailed level of the C4 Model, show-
ing the classes, their attributes, and the relationships between them. Class
diagrams can represent a system’s internal structure and design at a granu-
lar level.

5.1 C1 Context Diagram

The Context Diagram, represented by C1, provides a high-level overview of the
actors and software systems involved in the architecture.

Figure 5.1: C1 architectural diagram - Context

As depicted in Figure 5.1, the Context Diagram for this project includes the fol-
lowing elements:

• Partners [Person]: The Reputation System relies on input from several
project partners, who provide essential information regarding the events
of the entities that these are responsible for.

• Users [Person]: Represent all the users that can visit the data visualisation
platform to learn about critical information of every entity in the Reputation
System.

• Reputation System [Software System]: Represents the entire reputation
system and its different categories that manage the reputation of every en-
tity it includes.

80

Project Architecture

5.2 C2 Container Diagram

The Container Diagram, represented by C2, illustrates the relationships and de-
pendencies between the various software elements in the architecture.

Figure 5.2: C2 architectural diagram - Container

As shown in Figure 5.2, the Container Diagram for this project includes the fol-
lowing features:

• Message Queue [Container]: Using RabbitMQ2, the message queue re-
ceives the events sent by the project’s partners through different exchanges
in JavaScript Object Notation (JSON) format. The project partners authenti-
cate themselves using their RabbitMQ exchange credentials (username and
password). Each project partner will connect to a different message queue
exchange.

• Reputation System Manager [Container]: With the Java Spark frame-
work3, the system will receive information from the message queue and
analyse it, managing each entity’s reputation, such as updating its repu-
tation score, and storing the critical information in the database and the
in-memory cache.

2RabbitMQ: https://www.rabbitmq.com/
3Java Spark: https://sparkjava.com/

81

https://www.rabbitmq.com/
https://sparkjava.com/

Chapter 5

• Database [Container]: Stores all the events and reputation information
from every entity in the system. When the system receives an entity’s event,
it is necessary to store four essential pieces of information for the data visu-
alisation platform:

– Event type (positive or negative) - It is necessary for both the platform and
the reputation system to update the reputation value based on whether
the received event is positive or negative.

– Timestamp - Saved so that on the platform, it is possible to view the date
the reputation system received a particular event.

– Action type - Stored so that the platform can display the action a partic-
ular entity did for the event.

– Origin Exchange - It is important to know the exchange from which the
event was sent because the system can receive events of a certain entity
from different exchanges.

Regarding the reputation information, the database needs the following
topics to calculate the reputation score of each entity:

– Entity’s ID - It is necessary to have it in the database to have a compari-
son factor when more events are received through RabbitMQ from the
same entity to be able to update the reputation value.

– Type of entity - Stored mainly to facilitate the identification of the entity
on the entity data visualisation platform.

– Mean - Essential value, as the reputation value directly depends on this
value.

– Reputation values - It is also helpful to save the history of all the entity’s
reputation values in the database so that the visualisation platform has
a graphic with the reputation history of each entity.

– Reputation Model - Represents which model was used to calculate the
reputation score, e.g., if the model was the Alpha-Beta or Alpha-Beta
with a severity factor.

• Reputation System Analyser [Container]: Implemented in React with D3.js
for designing the visualisation of the reputation data. This analyser is the
data visualisation platform that reads all the needed reputation information
from the database and displays it on different web pages. Authorised users
of the reputation system visit this platform using Hypertext Transfer Proto-
col Secure (HTTPS). React was chosen for this project due to its intuitiveness
and familiarity.

• In-Memory Cache [Container]: The entities’ names and reputation infor-
mation, specifically the alpha and beta values, along with the reputation
policies existing within the reputation system, is stored utilising Redis4, an
in-memory cache. This utilisation facilitates reimporting all entities and

4Redis: https://redis.io/

82

https://redis.io/

Project Architecture

policies in case of a reputation system failure. Redis was chosen for this
functionality because it is a swift tool for optimised reading and writing
data in memory.

5.3 C3 Component Diagram

The C3 Component Diagram illustrates the relationships and dependencies be-
tween the various software components in the architecture.

Figure 5.3: C3 architectural diagram - Component

As shown in Figure 5.3, the Component Diagram for this project includes the
following details:

• Event Analyser [Component]: Implemented in Java Spark, the event anal-
yser receives the events from the message queue and analyses them to send
the essential reputation information to the Reputation Manager, sending the
event data to the Storage Manager.

• Reputation Manager [Component]: Implemented using Java Spark, is re-
sponsible for receiving reputation information and calculating the reputa-
tion score for each entity using the reputation models chosen for the cal-
culation (i.e., the Alpha-Beta Model). This component sends the estimated

83

Chapter 5

reputation score to the Storage Manager for storage and future reference.
It sends the entity name, reputation, and policies affecting the system to
the in-memory cache. The Reputation Manager plays a crucial role in the
overall reputation system, as it is responsible for accurately and efficiently
calculating reputation scores based on the received reputation information.

• Storage Manager [Component]: Implemented using Java Spark, it inter-
acts with the database to store and retrieve all relevant information from
the events and reputation data. It provides a secure and efficient means
of storing and accessing the data points used to calculate reputation scores
and inform system decisions. By utilising Java Spark, the Storage Manager
can manage the storage and retrieval of large volumes of data, ensuring
the smooth operation of the reputation system. Upon consultation with the
database, the Storage Manager shall also be utilised to confirm the existence
of an entity within the reputation system to furnish the Reputation Manager
with the current information of the specified entity to be updated upon re-
ceipt of a new event.

• Information Provider [Component]: Implemented using Node.js, serves as
the backend of the data visualisation platform. It retrieves reputation infor-
mation from the database and provides it to the Reputation System Anal-
yser container for display. Using Node.js, the Information Provider can re-
trieve and transmit large volumes of data, ensuring the Reputation System
Analyser can promptly display relevant information to users. Node.js was
chosen for this functionality due to its ease of learning, scalability and the
ability to handle several requests simultaneously.

84

Chapter 6

Implementation

This chapter delves into the technical details of our reputation system, including
components such as the reputation calculation mode, data visualisation platform,
and others. We discuss the database architecture and security measures to protect
sensitive data.

In the second semester, this chapter emphasises the development of the reputa-
tion system and the data visualisation platform. By providing thorough explana-
tions, it is expected that readers will gain a comprehensive understanding of the
reputation system’s mechanics.

6.1 Alpha-Beta Model

As previously said in Section 2.2.5, the model chosen by the project’s team was
the Alpha-Beta Model due to its ease of implementation and the fact that it is a
good model for any entity the system receives. We propose implementing the
Reputation Manager component, which is responsible for calculating the repu-
tation score in Java, utilising various Java libraries to facilitate the calculation
process. This approach allows us to take advantage of the functionality and effi-
ciency offered by these libraries.

The Reputation Manager has a HashMap attribute, with the key being a string
representing the name of the entity and the value being the BetaDistribution in-
formation for that entity. The system uses this information to calculate the repu-
tation of each entity using the Alpha-Beta Model, which utilises a beta probability
density function. Apache Commons’ BetaDistribution library1 assists with these
calculations, for example, by finding the numerical value of the mean of this dis-
tribution. A static attribute, known as the ageing factor, is also proposed at 0.5
since we wanted past events to have some effect on the reputation calculation but
not an excessive impact.

If a new entity introduces itself to the system, the Reputation Manager initialises
the HashMap attribute for that entity with an initial alpha and beta value of 1.0.

1BetaDistribution: https://bit.ly/3CeR8zH

85

https://bit.ly/3CeR8zH

Chapter 6

We give these initial values because when an entity is new to the system, we do
not have information about its reputation. As a result, we must assign it an initial
reputation value that reflects this need for more information. By setting the alpha
and beta values to 1.0, we give the entity a reputation value equally likely to be
either positive or negative, reflecting our uncertainty about its actual reputation.

6.1.1 Obtain Reputation Score

We base the reputation score for an entity on its numerical mean, which repre-
sents the average of all ratings received by the entity. To obtain this value, we
call the getNumericalMean() method from the BetaDistribution class. This method
calculates the numerical mean of the entity by taking into account the total num-
ber of ratings received and the sum of all ratings. Using this method, we can
accurately determine the reputation score for each entity based on its numerical
mean. It is important to remember that the ageing factor impacts the calculation
of reputation through the prior values of alpha or beta, depending on the type of
event.

6.1.2 Reputation Score Update

Updating the reputation score involves several input parameters, including the
stream’s name that contains the relevant information and an anomaly flag indi-
cating whether a negative event (anomaly=true) or positive event (anomaly=fal-
se) has occurred. It is important to note that an ageing factor directly influences
the updated reputation value, which considers the previous value when calculat-
ing the new value. The constant AGING_FACTOR represents the ageing factor
between 0.0 and 1.0. In other words, the more recent the event, the more heavily
it weighs in calculating the updated reputation score.

6.2 Project Partners Events Reception

Following the information presented in Chapter 5, it has been determined that
the reputation system shall facilitate the reception of events from various project
partners through a message queue. Specifically, the reputation system will em-
ploy the RabbitMQ tool for this purpose.

Under this system, the partners involved shall assume the role of producers,
while the reputation system shall act as the consumer for all messages trans-
mitted. The content of these messages may vary depending on the partner in
question. Each may possess unique insights and information about the entities
to be introduced or those existing within the reputation system. To facilitate the
transmission of these messages, each partner shall send a respective message to a
RabbitMQ exchange, which serves as a routing intermediary for a separate queue.

Each partner shall be held responsible for transmitting a JSON object containing

86

Implementation

all pertinent information relating to the relevant entity. The reputation system
shall filter the information contained within this object as necessary to facilitate
the calculation of the entity’s reputation, as discussed in Section 6.3. The repu-
tation system shall receive the messages as a byte array, which the system shall
subsequently convert to a JSON object for use in the reputation calculation.

6.3 Reputation Data Analysis & Calculation

Upon analysis of the received messages subject to filtering and the correspond-
ing reputation calculation, the system converts the data from an array of bytes
to a JSON object. The filtering process depends on the exchange from which the
message originates, as each partner, functioning as a producer, transmits a JSON
object containing specific information deemed relevant for updating the reputa-
tion value of an entity. Upon filtering the message by the exchange of origin, the
entity is suitably recorded in a ReputationManager object utilising the HashMap
outlined in section 6.1. This HashMap comprehends all entities within the sys-
tem, thereby facilitating the computation of reputation values.

For illustrative purposes, consider the following JSON object received from the
middleware_exchange, which serves as an instance of an event when a device suc-
cessfully establishes a connection with the service:

1 {
2 "Message: {
3 "ClientId": "q9f3qplqzq",
4 "Username": "q9f3qplqzq",
5 "Protocol": "V311",
6 "TimestampUTC": "2023 -06 -14 T19:55:14.2098888Z"
7 },
8 "ArcadianId": "api.box2m.io:b666ca65 -0faa -4e8b -a4bb",
9 "Type": "Connected"

10 }

Listing 6.1: JSON object example of event received in middleware_exchange

In this particular case, the relevant information required to perform the reputa-
tion calculation is the entity identifier (i.e., the ArcadianId) and the verification
that the device has connected to the service (as denoted by the "Type": "Con-
nected" attribute). The reputation calculation can be carried out considering the
successful connection of the device as a positive event. Therefore, the reputation
is updated based on the pre-existing information stored in the HashMap of the
ReputationManager type object.

Upon updating the entity’s reputation, the updated information regarding the
entity’s reputation is transmitted to an exchange (reputation_updates) to enable the
partners to access the updated information concerning the relevant entity from
which the message was sent. The transmitted data consists of the entity’s ID and
former and current scores, as indicated in the JSON object below.

87

Chapter 6

1 {
2 "entityID": "api.box2m.io:b666ca65 -0faa -4e8b -a4bb"
3 "previousScore": 0.5
4 "currentScore": 0.6
5 }

Listing 6.2: JSON object example of reputation information being sent to
reputation_updates exchange

Following the transmission of reputation data to the reputation_updates exchange,
the critical reputation data will require storage in a table within the Cassandra
database for later use in the data visualisation platform. Specifically, the data that
the system will store in the entity_reputation table of the Cassandra database will
comprise the alpha, beta, old and current value of the entity reputation, as well
as the entity ID (i.e., ArcadianId), the entity type, the type of each event (positive
or negative), and the model utilised to calculate the entity reputation.

Figure 6.1 represents a flow diagram summarising how the reputation system
behaves with the different messages, creating, analysing and calculating the rep-
utation of the different entities introduced into the system.

Figure 6.1: Flow diagram of the data analysis and calculation in the reputation
system

Table 6.1 presents a list of all the exchanges that the system can receive messages
from as well as the characteristics of each one, namely, which type of events are
sent to a particular exchange, the reputation model that the system used to cal-
culate the reputation of the entities and the type of entities are sent. Appendix B

88

Implementation

presents more information about all the exchanges.

Name Event Type Reputation
Model Entity Type

nfm_exchange Positive & Neg-
ative

Alpha-Beta
& Severity
Alpha-Beta

Not Specified

dbm_exchange Negative Alpha-Beta Devices

ra_exchange Positive & Neg-
ative Alpha-Beta Devices

naz_exchange Positive & Neg-
ative Alpha-Beta Not Specified

bio_exchange Positive & Neg-
ative Alpha-Beta Not Specified

ssi_exchange Initialisation of
Entity None Any

middleware_exchange Positive & Neg-
ative Alpha-Beta Not Specified

sadp_exchange Positive Alpha-Beta Devices

Table 6.1: Summary table for the important information from each exchange

6.4 Policies Used for Reputation

In conjunction with the reputation system and the methodology for determin-
ing entity reputation, an additional feature, namely the policy system, has been
implemented. This system allows for including one or more policies within an
entity. The primary objective of these policies is to establish a framework of pre-
defined rules and regulations for the operation of the reputation system. This
framework enhances overall consistency, ensures compliance with legal require-
ments, bolsters security measures, and promotes the adoption of best practices.

The reputation system’s mechanism of incorporating these policies is akin to han-
dling events about distinct entities accomplished through RabbitMQ exchanges.
Specifically, the reputation_policies exchange serves as the conduit for transmit-
ting such policies. To illustrate, an exemplar JSON object that initiates a policy
creation within the system can be exemplified as follows:

1 {
2 "createdBy": 1,
3 "aiotIDs": ["api.box2m.io:b666ca65 -0faa -4e8b -a4bb"],
4 "infoSIM": "None",
5 "action": 2,
6 "actionRatio": 10,
7 "minReputationScore": 0.2,
8 "maxReputationScore": 1,
9 "description": "test policy",

10 "id": 4,

89

Chapter 6

11 "direction": "both",
12 "event": "CREATE",
13 }

Listing 6.3: JSON object example of creation of a policy being sent to
reputation_policies exchange

The policies above are stored and preserved for subsequent retrieval and associa-
tion with diverse entities through an in-memory cache, namely Redis, employed
within the framework of this reputation system. Among the elements encom-
passed within the received JSON object, the following aspects merit particular
attention:

• aiotIDs: An array with IDs of the domain targeted by the policy that must
include the AIoT identifiers;

• infoSIM: information to SIM that have the possible values of None, Self-
Protection or Self-Recovery;

• action: integer value that action type value that can be either deny (1), throt-
tle (2) and accept (3);

• actionRatio: integer with the ratio to reduce bandwidth. For instance, to
reduce 10% of bandwidth;

• minReputationScore: float value representing the minimum reputation score
that an entity must have to be affected by that policy;

• maxReputationScore: float value representing the maximum reputation score
an entity must have to be affected by the policy.

The process of linking the information of a policy to a specific entity occurs upon
receiving an event from a designated exchange. Following the completion of the
reputation calculation, this association is established. To achieve this, a compar-
ison is made between the entity’s data and the policies stored in Redis. Specif-
ically, the process verifies if the entity’s ID is present within the array derived
from the IDs impacted by the policy and if the reputation score falls within the
specified range of minimum and maximum values. Provided that the entity ful-
fils all the conditions stipulated by the policy, its data is appended to the message
destined for transmission to the reputation_updates exchange. To illustrate, an
exemplar of the message dispatched to the exchange is as follows:

1 {
2 "currentScore":0.6,
3 "previousScore": 0.5,
4 "entityID": "api.box2m.io:b666ca65 -0faa -4e8b -a4bb",
5 "infoSIM": "None",
6 "action": 2,
7 "actionRatio": 10
8 }

90

Implementation

Listing 6.4: JSON object example of reputation information being sent to
reputation_updates exchange with policy information

6.5 Data Visualisation Platform Development

This section comprehensively explores the implementation aspects of our data
visualisation platform. The success of any data visualisation platform lies in its
ability to effectively present complex information in an intuitive and visually ap-
pealing manner. To achieve this, we focus on two crucial components: frontend
and backend implementation.

In the frontend implementation (Subsection 6.5.1), we discuss the strategies em-
ployed to create an engaging and user-friendly interface that enables users to
interact with the data effortlessly.

Additionally, in the backend implementation (Subsection 6.5.2), we delve into
the underlying architecture responsible for processing and organising the data,
ensuring seamless and efficient display on the platform.

6.5.1 Frontend Implementation

In implementing the frontend for the visualisation platform, various visualisa-
tion tools integrated with React were utilised to optimise the user experience and
enhance the platform’s intuitiveness. By leveraging these tools, diligent efforts
were made to ensure an interactive and user-friendly interface for seamless nav-
igation and efficient data exploration. In this Section, we will delve into the most
crucial frontend components of the platform, and figures of the entire platform
interface are presented in Appendix C.

To realise the implementation of the table encompassing all entities, along with
their corresponding type and reputation value, the react-data-table-component2 was
employed, as depicted in Figure 6.2. This component facilitated the organisation
of entity information into distinct columns, including name, type, and current
reputation value. Notably, it offered the ability to sort the entities based on these
three values and provided the functionality to search within the table by entity
name or type. Such features contributed to an enhanced user experience and
facilitated efficient data exploration within the table.

2react-data-table-component: https://react-data-table-component.netlify.app/

91

https://react-data-table-component.netlify.app/

Chapter 6

Figure 6.2: Table with all the entities in the reputation system

The implementation process of the parallel coordinate graph was accomplished
by leveraging the capabilities of D3.js. This implementation defined three distinct
axes: Rating, Action Type, and Date, with each axis representing the associated
information from individual events of a certain entity. To enhance visual clar-
ity and facilitate data exploration, brushing techniques were developed for each
axis using D3.js, as seen in Figure 6.3. These brushing techniques allowed users
to interactively select and focus on specific data ranges, rendering certain trends
about an entity more intuitively observable. Using D3.js and incorporating brush-
ing functionalities contributed to the graph’s effectiveness in conveying complex
data relationships and patterns through the polylines connecting the different
axes.

Figure 6.3: Parallel coordinate chart with brushed events

Analogous to the implementation approach adopted for the table containing all
entities within the reputation system, the react-data-table-component was also cho-

92

Implementation

sen for implementing the table with supplementary information about an entity’s
events. In this functionality, each row corresponds to an individual event. At the
same time, the columns encompass the type of action, the model utilised to up-
date the entity’s reputation, the origin exchange from which the event emanated,
and the date of occurrence, as noted in Figure 6.4. Notably, the date column was
thoughtfully sorted to enable users to discern the chronology of events, facili-
tating the identification of the oldest or most recent occurrences. Additionally,
users were empowered to perform event searches based on specific dates, further
enhancing their ability to access relevant data within the table.

Figure 6.4: Additional information of an entity’s events

To achieve the visualisation of the reputation score history since an entity’s incep-
tion into the system, the D3.js library was used. The graph construction entails a
continuous line delineating the evolution of the reputation score over time, with
the x-axis denoting the date and the y-axis representing the reputation score, as
depicted in Figure 6.5. Each event is represented as a distinct point on the line.
Upon hovering over a particular point, the user gains access to detailed informa-
tion, including the precise reputation score and the exact date of the correspond-
ing event. This interactive feature facilitates a comprehensive understanding of
the entity’s reputation trajectory, offering users an intuitive means to explore and
analyse historical data effectively.

Figure 6.5: Chart with the reputation history of an entity in the reputation system

93

Chapter 6

The development and integration of the statistics page within the reputation sys-
tem are represented by creating a straightforward webpage, which presents com-
prehensive data about the total count of entities and events received by the sys-
tem up to the present time, along with specific details concerning each entity
category, as seen in Figure 6.6. Said information comprises the number of entities
belonging to a given type and the mean, minimum, and maximum reputation
scores associated with entities of the corresponding type.

Figure 6.6: Page with the statistics of the reputation system

6.5.2 Display of Information in Platform

Concerning the backend of the data visualisation platform, various functionali-
ties were employed to acquire the desired information from the platform. These
functionalities encompassed both authentication procedures and data querying
operations about the reputation system.

In terms of user authentication, an implementation utilising Firebase3 authenti-
cation was employed. This tool facilitated the restriction of platform access to
specific individuals, such as partners and various project members, while ensur-
ing the segregation of paths for users lacking login privileges.

Regarding data querying operations directed towards the Cassandra database,
multiple queries were executed using Node to acquire the requisite information
for each visualisation component.

To construct the table containing all entities within the reputation system on the
homepage, it was imperative to gather the ID, type, and current reputation value
for each respective entity, which were then presented within the table.

3Firebase: https://firebase.google.com/

94

https://firebase.google.com/

Implementation

To acquire the comprehensive information required for presenting the parallel
coordinate graph, it was essential to retrieve the rating, date, and type of action
associated with each event from the database. Subsequently, the date was parsed
into month and year format to facilitate its presentation within the graph.

To populate the table containing additional information for each event, it was
imperative to retrieve specific data from the database from each entity. This in-
cluded the type of action, the reputation calculation model utilised, the originat-
ing exchange, and the date of occurrence for each event associated with a partic-
ular entity. Furthermore, the event reception date was parsed to provide precise
timestamp details for enhanced visualisation, encompassing year, month, day,
hour, minute, and second.

The date and reputation value of each event about a specific organisation were
gathered to construct the reputation history graph. Subsequently, these events
were sorted chronologically based on their dates to streamline their presentation
within the chart.

Each entity’s type and current reputation value were obtained to compile the
statistics information. A comprehensive count of all events and entities in the
database was also conducted. Subsequently, the entities were filtered to calculate
each entity type’s mean, maximum, and minimum reputation values. This pro-
cess facilitated the generation of meaningful insights regarding reputation met-
rics across different entity categories. In the simplified code example 6.5.2, we
can see how the different entity types’ minimum, maximum and mean reputation
values can be calculated. Note that the total_events, unique_types and all_entities
variables, although static in the example, result from analyses of the platform’s
database.

1 var total_events = 20; // total number of events processed
2 var unique_types = [’Person ’, ’Device ’];
3 var all_entities = [
4 {
5 name: ’joaonunes ’,
6 type: ’Person ’,
7 reputation_score: 0.65
8 },
9 {

10 name: ’mariasilva ’,
11 type: ’Person ’,
12 reputation_score: 0.4
13 },
14 {
15 name: ’drone01 ’,
16 type: ’Device ’,
17 reputation_score: 0.58
18 },
19 {
20 name: ’iPhone ’,
21 type: ’Device ’,
22 reputation_score: 0.8
23 }
24];
25 var info = []; // array with information to display in platform
26

95

Chapter 6

27 // Calculate min and max
28 for (var i = 0; i < unique_types.length; i++) {
29 var dic = {} // dictionary with info for each type
30 dic["type"] = unique_types[i];
31 dic["number"] = 0;
32 dic["mean"] = 0;
33 dic["min"] = 1;
34 dic["max"] = 0;
35 for (var j = 0; j < all_entities.length; j++) {
36 if (all_entities[j]["type"] === unique_types[i]) {
37 dic["number"]++;
38 dic["mean"] += all_entities[j]["reputation_score"];
39 if (dic["min"] > all_entities[j]["reputation_score"])
40 dic["min"] = all_entities[j]["reputation_score"];
41 if (dic["max"] < all_entities[j]["reputation_score"])
42 dic["max"] = all_entities[j]["reputation_score"];
43 }
44 }
45 info.push(dic);
46 }
47 // Calculate mean
48 for (var i = 0; i < info.length; i++) {
49 info[i]["mean"] /= info[i]["number"];
50 }
51 var n = {"entities": unique_types.length , "events": total_events };
52 info = [n, ... info];
53 /*
54 REQUEST OUTPUT
55 info = [
56 { entities: 2, events: 20 },
57 {
58 type: ’Person ’,
59 number: 2,
60 mean: 0.525 ,
61 min: 0.4,
62 max: 0.65
63 },
64 {
65 type: ’Device ’,
66 number: 2,
67 mean: 0.69,
68 min: 0.58,
69 max: 0.8
70 }
71]
72 */

Listing 6.5: Calculation of the statistical values of the reputation system

96

Chapter 7

Feature Testing & Validation

In the following chapter, we focus on testing and validating the features imple-
mented in this project, previously referenced in Chapter 6, developed as part of
this research. Testing and validation are essential in the software development
process, as it helps ensure that the software is of high quality and meets the users’
needs.

To conduct the testing and validation, we design a comprehensive set of test cases
covering various scenarios and use cases. These test cases include input and ex-
pected output data, which we use to verify that the software or system functions
correctly. We also look for any defects or issues with the software or system and
document these if they are found.

7.1 Alpha-Beta Model Testing

This section aims to explain the analysis of the alpha-beta model, previously
introduced in Chapter 2 and the implementation described in Chapter 6. This
model assists in the calculation of the reputation of a particular entity after the
reception of a new event, affecting the entity’s reputation positively or negatively.

7.1.1 Testing the Model

A small script was made in Java to verify if the model is adequate to calculate and
update the reputation value to test the alpha-beta model. With this, several tests
were conducted where the value of the ageing factor was varied, a low, medium
and high value, to see the influence of this factor in the reputation calculation.
Next, random events (positive and negative) were created to determine the trend
of alpha and beta values. Finally, with this information, the results were added to
a Comma-Separated Values (CSV) file to be able to evaluate the alpha, beta, and
mean values.

The tests done to verify the model were as follows:

97

Chapter 7

• Ten negative events with an ageing factor of 0.5, to have an intermediate
value of the effect of past events in the calculation of reputation;

• Ten negative events with an ageing factor of 0.2, a low value, meaning that
the influence of the previous events is retained to a greater extent;

• Ten negative events with an ageing factor of 0.8, a high value, meaning that
the previous value heavily influences the new value;

• Ten positive events with an ageing factor of 0.5;

• Ten positive events with an ageing factor of 0.2;

• Ten positive events with an ageing factor of 0.8;

• Four positive and three negative events with an ageing factor of 0.5;

• 20 random events with an ageing factor of 0.5.

7.1.2 Analysis of the Model

After testing the model and analysing the data, a few conclusions were reached.

Firstly, it was realised that, upon creation, the value of alpha and beta is al-
ways 1.0, with alpha representing positive events and beta representing negative
events. When a positive or negative event is received, the growth of alpha and
beta is logarithmic, respectively, despite the ageing factor value, as seen in Figure
7.1.

Figure 7.1: Logarithmic rise of the beta value of an entity

In terms of the ageing factor, this value affects alpha and beta values, meaning
that growth is always the value of the age factor from the previous development.
So, for example, if the ageing factor is 0.5, first it grows 0.5, then 0.25, then 0.125,
and so on.

98

Feature Testing & Validation

Finally, the mean goes down when it receives negative events and increases when
positive ones are received. When negative events are received, the mean presents
values closer to 0 and closer to 1 when positive events are received, as shown
in Figure 7.2 with a logarithmic increase when successive positive events are re-
ceived.

Figure 7.2: Logarithmic growth of mean when received positive events

Further information on the tests made with all graphics and tables are presented
in Appendix A.

7.1.3 Conclusions of the Analysis

The alpha-beta model helps to calculate the reputation of entities in a system
because it presents advantages, such as having access to the previous reputation
value through the ageing factor. However, there should be a differentiation factor
for reputation calculation, especially in negative events. For example, a person
failing to log in on a system should not have the same impact as an attack attempt
such as an SQL Injection, which, despite being both negative events, should not
have the same effect on reputation calculation.

7.1.4 Changes Made to the Model

As stated in the preceding section, the binary assessment utilised in event pro-
cessing and the consequent calculation of reputation is deemed inadequate ow-
ing to varying degrees of negative occurrences, some of which may have a more
pronounced effect than others.

Therefore, the reputation update procedure of the Alpha-Beta model (referenced
in 6.1.2) has been modified to address the unequal assessment of negative events.
This technique will include a severity factor as an extra parameter, which must be
included in the message transmitted by project partners, enabling the update of

99

Chapter 7

the respective entity’s reputation. The approach is similar to the previous method
of updating reputation scores, except for updating the beta value in cases of neg-
ative events with a severity value instead of 1, as evidenced by equation 7.1.

βi = (βi−1 ∗ A) + S, (7.1)

where A represents the ageing factor value between 0.0 and 1.0, and S is an inte-
ger value between 1 and 3 representing the event’s severity.

The severity range between 1 and 3 was based on Atlassian’s incident impact
measures [4]. According to these measures, there can be three levels of severity
for a given incident, where an incident with severity 1 is the most severe and an
event with severity 3 is the least. For this model, we consider this measure, but
it is applied in a reverse way, i.e. negative events with severity 3 are considered
incidents with a very high impact (e.g., stolen phone) and negative events with
severity 1 are considered incidents with a lower impact (e.g., incorrect password),
similar to the negative events calculated through the Alpha-Beta model.

It is important to note that this particular methodology will solely be utilised to
revise the standing of an entity if the event partners submit the message data
indicating the event’s severity. Without any indication of severity, the previously
described approach should be employed without factoring in severity.

7.2 RabbitMQ & Reputation Information Testing

Following the testing section of the alpha-beta model, Section 7.1, it was neces-
sary to test RabbitMQ and check how it was possible to take advantage of its fea-
tures to send an entity’s reputation information to calculate the reputation score
later.

In a producer-consumer relationship, the producer is responsible for generating
and sending data, while the consumer is responsible for receiving and processing
that data. In the context of RabbitMQ, the producer is a Python script that reads
a CSV file and sends JSON objects to the consumer using the Pika library1. In a
dictionary, these JSON objects contain information such as the event, alpha, beta,
variance, and mean associated with the respective values, each representing an
entity’s event.

In this case, the consumer receives the JSON objects and analyses their informa-
tion. Using this information, the consumer can calculate a reputation score. This
score is calculated based on the data collected in the JSON objects and is used to
assess the reliability or trustworthiness of a particular event or source of informa-
tion.

The producer-consumer relationship in RabbitMQ enables high flexibility and
scalability in data processing. By decoupling the production and consumption
of data, it is possible to add additional consumers as needed to handle data pro-

1Pika: https://pika.readthedocs.io/en/stable/

100

https://pika.readthedocs.io/en/stable/

Feature Testing & Validation

cessing. In this project, adding new consumers is viable if the partners provide
a wide range of event information. This would allow each consumer to analyse
the events from each partner and determine the best method for calculating the
reputation score.

(a) Producer (b) Consumer

Figure 7.3: Producer sending JSON objects to Consumer in RabbitMQ

7.3 Quality Attributes

This section thoroughly examines the various tests conducted to evaluate the
quality attributes of the software system under examination. Each subsection
concentrates on a particular quality attribute and delves into the testing method-
ologies and techniques employed to guarantee the desired performance level of
the reputation system. The reputation system underwent tests to assess its relia-
bility, scalability, and security, while the data visualisation platform was subjected
to security and usability evaluations.

7.3.1 Reliability

A comprehensive set of tests was undertaken to ascertain the reliability of the rep-
utation system. Among these tests, a fundamental procedure entails temporarily
ceasing the reputation system’s operations, as Figure 7.4 depicts the number of
connected clients to Redis. This simulation aims to mimic a scenario wherein the
system experiences an offline state or encounters a period of dormancy. Through-
out this designated period, the reputation information about the entities is dili-
gently and securely stored within Redis, ensuring the preservation of data in-
tegrity and confidentiality.

Figure 7.4: Clients connected to Redis before (red) and after (blue) system shut-
down

101

Chapter 7

Upon restarting the reputation system, a critical procedure is executed wherein
all entities are systematically imported back into the designated HashMap that
houses the repository of reputation information. This meticulous process guar-
antees the preservation of data integrity and mitigates the risk of data loss that
may have occurred during the system shutdown phase. The system diligently
reads the stored data from Redis, meticulously verifying and validating the ac-
curacy of each reputation record. The seamless restoration of reputation records
can be observed through the reputation system command line interface, as exem-
plified in Figure 7.5. By implementing such a robust mechanism, the reputation
system ensures the reliable restoration of reputation data, instilling confidence in
the system’s ability to deliver accurate and consistent information.

By subjecting the reputation system to these tests, it can be guaranteed to with-
stand outages, recover, and resume normal operations without problems. These
tests demonstrate that the system can remain stable and robust, preserve data
integrity and provide consistent and reliable information to its users.

Figure 7.5: System importing back the entities from Redis

7.3.2 Scalability

A series of diverse experiments were conducted regarding scalability assessments
of the reputation system. Initially, an evaluation assessed the system’s response
to a substantial influx of events emanating from multiple exchanges. The primary
objective was to ascertain the system’s capacity to efficiently process these incom-
ing messages within a temporal threshold of one second, concurrently identify-
ing the system’s bottleneck. Subsequently, a comprehensive examination was
executed to gauge how the reputation system computes reputation scores across
distinct reputation models that have been implemented. This evaluation investi-
gated the variability of reputation outcomes across the different models operating
within an identical environment.

For the first set of tests, a producer was created in Python that generated mes-
sages to be sent to four different RabbitMQ exchanges, in this case, the middle-
ware_exchange, dbm_exchange, bio_exchange and naz_exchange. In the reputa-
tion system, each message’s processing time was counted, and the total time it

102

Feature Testing & Validation

took the system to process all the messages sent per test was checked. The time
it took the system to read all entities and their reputation data in Redis was also
counted to assess possible bottlenecks.

Table 7.1 shows the important information generated in the events of each of the
exchanges for each test, showing the number of events generated per exchange,
whether the exchange introduces new entities into the system whether the events
generated are random or deterministic and what type they are.

middleware dbm bio naz
Number of Events 25 25 25 25
Adds New Enti-
ties No Yes No No

Generated Events Random Deterministic Random Random
Type of Gener-
ated Events

Positive or
Negative Negative Positive or

Negative
Positive or
Negative

Table 7.1: Information on the messages generated for each exchange in one test

The way these tests were carried out was first to restart the reputation system to
import the data from Redis. Then 25 messages were sent from each exchange
simultaneously, and the time it took the system to process the messages was
counted in milliseconds. This process was done five times with the same parame-
ters in each test, causing the number of entities present in Redis and the system’s
HashMap to increase, and the processing time is expected to increase in the next
iteration.

Test #1 Test #2 Test #3 Test #4 Test #5
Total Processing
Time 438 538 528 643 731

Redis Processing
Time 62 90 111 128 131

Processing Time
Without Redis 376 448 417 515 600

Processing Event
Time Mean 4.38 5.38 5.28 6.43 7.31

Processing Event
Time Mean With-
out Redis

3.76 4.48 4.17 5.15 6

Table 7.2: Time measurements in the different tests, in milliseconds

As delineated in Table 7.2, it becomes apparent that the system has demonstrated
the capacity to efficiently process all events within a punctual timeframe, pre-
cisely, within a duration of less than one second. Another inference that can be
drawn pertains to the bottleneck inherent in retrieving entities through reading
and subsequent reintegration into the system. This is exacerbated by the intrin-
sic characteristics of Redis, wherein an increase in the number of stored entities

103

Chapter 7

directly correlates with an elongation in the processing interval. It is worth ac-
knowledging that additional variables, such as querying the system’s HashMap,
wield a consequential impact on the temporal aspects of processing. Conse-
quently, the processing duration devoid of Redis queries does not maintain a
state of absolute constancy.

In the context of the second series of examinations, conducted to assess the impact
of distinct reputation models, specifically the Alpha-Beta model and the Alpha-
Beta model incorporating Severity considerations, a series of tests akin to those
delineated in Section 7.1 were executed. The aim was to discern the fluctuations
in reputation across the various models under scrutiny.

As illustrated in Figure 7.6, it is discernible that the severity model imposes a
markedly augmented penalty concerning negative events. In the specific context
of the tests conducted, events designated as negative with a severity factor of 2
were considered.

(a) 10 negative events (b) 20 random events

Figure 7.6: Comparison of an entity’s reputation growth according to the different
models

The instance portrayed in Figure 7.6b offers an illustrative case wherein half of
the events have a positive connotation while the remaining half embodies a neg-
ative one. By the Alpha-Beta model’s anticipatory outcome, such an equilibrium
would typically culminate in a reputation value of 0.5. Nonetheless, integrating
a severity factor introduces a significant divergence, whereby negative events ac-
quire a substantially amplified influence compared to their positive counterparts.
Consequently, the reputation derived from a severity-modulated perspective is
less than 0.5.

A comparative analysis of these two reputation models can also be conducted
by testing if a particular entity is trustworthy or not, depending on the different
reputation models used to calculate its reputation.

Let us examine an illustrative scenario in which the system presents a sequence
of events consisting of 4 positive occurrences followed by two negative incidents
originating from a specific entity. It is noteworthy that the negative occurrences
have different severity values. As seen in Figure 7.7, it becomes evident that
the system’s imposition of penalties against the Alpha-Beta model incorporating
Severity is significantly augmented. Furthermore, in alignment with the anal-

104

Feature Testing & Validation

ysis of trustworthy entities, and under the premise that entities boasting repu-
tation scores surpassing 0.5 are deemed trustworthy, while those below 0.5 are
classified as untrustworthy, the entity subjected to reputation assessment via the
Alpha-Beta model attains a status of trustworthiness (final reputation score of
0.5254). In stark contrast, the other two entities that used the Alpha-Beta model
with Severity garnered an untrustworthy reputation status (final reputation score
of 0.3735 with severity 2 and 0.2897 with severity 3).

Figure 7.7: Comparison of reputation score with different severity factor

7.3.3 Security

Numerous security mechanisms were employed to uphold a degree of security
within both the reputation system and the data visualisation platform.

Regarding the reputation system, it was intricately connected to RabbitMQ, Cas-
sandra, and Redis – esteemed technological components integral to its function-
ing. A stringent authentication process was enforced to establish a secure con-
nection, requiring the system to authenticate via username and password in each
service. In conjunction with the authentication process, certification for access-
ing the Cassandra and Redis services was effectuated by utilising a valid certifi-
cate issued by the Helpdesk of Department of Informatics Engineering (DEI), as
depicted in Figure 7.8. Concerning the RabbitMQ certification, despite incorpo-
rating provisions for secure communication, the actual testing with the system
could not be carried out due to the production environment’s non-utilisation of
secure connections.

Figure 7.8: Commands demonstrating the validity of the SSL certificate

Two measures were implemented to enhance the security aspects of the data vi-
sualisation platform to enhance its overall security. As described in Section 6.5.2,
the initial measure involved the incorporation of Firebase authentication. This
method ensures that only users with appropriate permissions can access the plat-
form. The assignment of these permissions is the responsibility of the platform

105

Chapter 7

administrators, who are tasked with creating unique email and password authen-
tications for each project partner seeking access to the platform. These credentials
are managed through the Firebase console.

By employing this authentication mechanism, the platform can restrict access
to various pages containing sensitive information, thus providing an additional
layer of confidentiality. This measure aims to safeguard the data and ensure it
remains accessible solely to authorised personnel.

The second pivotal security measure entailed the integration of an Secure Sock-
ets Layer (SSL) certificate to facilitate HTTPS support for the data visualisation
platform. The consensus was reached to utilise the same certificate employed for
the certification of Cassandra and Redis, as earlier stipulated. Figure 7.9 demon-
strates the successful implementation of this security component, accomplished
through uncomplicated commands in the deployed platform configuration file.

Figure 7.9: Data visualisation platform with HTTPS

The deployment involved configuring the platform to listen to port 443 and in-
corporating the parameters ssl_certificate and ssl_certificate_key to identify the cer-
tificate and key, respectively. These adjustments were reiterated as necessary to
ensure the effective activation of the SSL certificate functionality. By incorpo-
rating SSL, the platform’s data transmission over the network is encrypted, bol-
stering the overall security posture and safeguarding sensitive information from
potential threats.

7.3.4 Usability

To test the usability of the data visualisation platform, usability tests were car-
ried out on different people to verify the quality of the developed product. The
way these tests were carried out was iterative, that is, two to three usability tests
were performed, and, according to the problems and suggestions pointed out by
the testers, these were changed so that the same issues were not pointed out by
the following testers again. This form of testing was used because, according to
Nielsen [28], as we test with the same prototype, the level of redundancy will
increase because the same problems will be pointed out. In this way, we can also
achieve less expenditure of resources for elaborating the tests.

106

Feature Testing & Validation

In these tests, a questionnaire was conducted to verify the tester’s experience
when trying the platform. Initially, it was necessary to know the platform tester’s
previous knowledge of data visualisation and distributed or reputation systems.
Then, the testers were asked to do a set of tasks, for each of which the time taken
to do each task was timed and checked if it was done promptly, which was pre-
viously estimated. Finally, after completing all the tasks, the testers answered
questions expressing their opinions about their platform experience. These ques-
tions focused on the navigation and interface of the platform, the interaction and
perception of the graphics, and the best and worst aspects of the platform.

About the tasks executed by the platform testers, it was stipulated that prior login
was a prerequisite. The following tasks were proposed for their evaluation and
assessment:

• Task #1: Find the entity with the lowest reputation on the homepage.

• Task #2: On the homepage, search for the entity api.box2m.io:b666ca65-0faa-
4e8b-a4bb-b5db253dd878 and click on it.

• Task #3: On the entity page, check how many positive events of the connec-
tion type there are in June of 2023.

• Task #4: On the entity page, check the event type of the most recent event
received.

• Task #5: On the entity’s page, check the event type of June 5th, 2023 and its
reputation value through the reputation history graph.

• Task #6: Return to the homepage and look for the statistics of the reputation
system and see how many events the system has received to date.

Regarding the conducted tests, the individuals participating in the platform test-
ing encompassed a diverse group, ranging from bachelor’s to master’s students
in Informatics Engineering and Data Science and Engineering. The questions
asked before the tasks were carried out showed that the participants had good
visualisation knowledge and demonstrated a background in distributed systems.
However, in some cases, explaining the concept of reputation systems was neces-
sary. Concerning the outcomes derived from the testers’ performance evaluation,
as evident from the graphical representations in Figure 7.10, most users com-
pleted all assigned tasks within satisfactory timeframes. However, it is worth
noting that only a few testers exhibited relatively extended duration in tackling
the more intricate tasks, such as Task #3 and #5.

107

Chapter 7

(a) Task #1 (b) Task #2

(c) Task #3 (d) Task #4

(e) Task #5 (f) Task #6

Figure 7.10: Valid time taken for each task - blue in valid time and orange invalid

After completing the assigned tasks, the testers were invited to express their
viewpoints concerning their platform usage experience. As depicted in Figure
7.11, the feedback about the platform was predominantly positive, particularly
concerning aspects such as platform navigation and the interpretation of various
graphics.

Lastly, regarding the platform’s favourable and unfavourable attributes, the
testers have identified several positive aspects worth noting. Specifically, the in-
tuitive nature of the platform was commended, attributed to its systematic divi-
sion into well-defined sections, each serving a distinct purpose. Additionally, the
organisation and efficacy of graph and table filtering functionalities were high-
lighted as commendable features.

Regarding the negative aspects identified during the assessment, these critical
observations underscore the significance of effecting modifications to the plat-

108

Feature Testing & Validation

form. The concerns raised by various testers were diverse, necessitating a refined
and tailored approach to address each distinct issue comprehensively. Notably,
the intuitiveness of the date-filtering functionality on the entity’s page emerged
as an area warranting improvement. Furthermore, the comprehensibility of the
date representation on the reputation history graph was recognised as a point of
ambiguity. Lastly, the explicitness of the table sorting mechanism was cited as an
area of potential enhancement.

Implementing an iterative usability testing process was pivotal in the platform’s
refinement journey. By incorporating feedback from successive testers, adjust-
ments were made to tackle the identified problem areas effectively. Consequently,
subsequent rounds of testing revealed a discernible improvement, as the new
testers no longer highlighted the same issues previously encountered. This itera-
tive approach has proven instrumental in ensuring the platform evolves with user
requirements, ultimately enhancing its overall usability and user satisfaction.

(a) Platform navigation (b) Graphics and tables interaction

(c) Graphics perception (d) Platform interface

Figure 7.11: Graphics depicting the opinion of the testers regarding several plat-
form functionalities

109

Chapter 8

Conclusion

This chapter aims to reflect on the work done during the whole project, present-
ing the knowledge that the work provided, what was accomplished and the pos-
sible difficulties experienced during the year.

Throughout the first semester, we learned various frameworks that were new to
us, such as RabbitMQ. In addition, the research we conducted helped us gain a
deeper understanding of reputation systems, a topic that we had little knowledge
about before the start of the project.

As for the second semester, we had the opportunity to learn how Java Spark
works and how it interacts with other tools such as RabbitMQ, a Cassandra
database and Redis. There was also the opportunity to broaden our knowledge
of web development through tools such as React and Node.js and data visualisa-
tion through D3.js, allowing us to implement all the features listed for the data
visualisation platform.

As indicated throughout the document, the project encountered delays during
the execution phase of the reputation system, primarily attributable to the non-
adherence to specified deadlines. Nonetheless, the strategic decision to extend
the dissertation submission deadline to September proved instrumental in miti-
gating these setbacks, culminating in the realisation of a project of enhanced qual-
ity and heightened success.

The process of gathering requirements and designing the project architecture re-
lied heavily on research from past ARCADIAN-IoT project deliveries and other
projects that utilised similar components. This research allowed us to identify
best practices and potential challenges, enabling us to make informed decisions
and create a solid foundation for the project.

During the project, we encountered some difficulties. In investigating how the
reputation system’s architecture would work, it stands out how RabbitMQ could
receive events from multiple exchanges. To address this challenge, we conducted
thorough research on examples of how a multithreaded model could read from
various exchanges. This required considerable time and effort but ultimately al-
lowed us to successfully implement this aspect of the project.

111

Chapter 8

During the implementation phase, notable challenges within the context of the
reputation system pertain to specific functionalities of Java Spark, particularly
concerning tasks such as comprehensive data storage for events within the
database. Likewise, security-related concerns, encompassing the generation of
certificates for utilised tools, constitute an additional facet of these difficulties.

Concerning the complexities encountered within the data visualisation platform,
impediments were predominantly attributed to limited familiarity with the cho-
sen frameworks. This encompasses challenges in harnessing D3.js for the imple-
mentation of graphical representations and tabular displays, as well as navigating
the employment of Node.js for seamless interaction with the Cassandra database.

8.1 Future Work

This dissertation presents a wide range of future work for both the reputation
system and the data visualisation platform.

Regarding the reputation system, a pivotal area of prospective endeavour resides
in the forthcoming realisation of an optimised system upon the culmination of
the ARCADIAN-IoT project. For instance, a project partner initiates entities by
messaging ssi_exchange, while other exchanges manage events for these entities,
updating their reputation through event analysis.

An additional aspect for future work within the scope of the reputation system
involves incorporating a broader spectrum of reputation models into the existing
framework, such as the dominance model. Given that this constitutes a central
facet of innovation within the project, it will be essential to filter what kind of
model will be used to calculate the reputation of a particular entity. For instance,
the consideration might extend towards adopting a dominance model for persons
or integrating an Alpha-Beta model with Severity considerations for devices.

A notably ambitious trajectory for the prospective evolution of the reputation sys-
tem entails its potential to facilitate a dynamic selection mechanism for the con-
stituent elements employed in computing reputation scores, as communicated by
collaborating project partners. To elaborate, this would encompass the partners
sending an initial message detailing the specific factors deemed pertinent for the
reputation calculation. The system would subsequently preserve these identified
factors, thereby enabling the subsequent measure of the reputation during the
transmission of events by the salient factors outlined by the partners within the
initial message.

Regarding future work for the data visualisation platform, we can highlight some
suggestions brought up by the platform testers during the usability tests. No-
tably, these suggestions encompass enhancements such as the entity page pre-
senting the date filter of the table with additional information on the events in
the form of a calendar. Furthermore, the augmentation of graphical representa-
tions on the statistics page emerges as another significant proposition put forth
by the testers.

112

Conclusion

Finally, it is expected that the writing of the scientific article with the same theme
as this document will be completed, in which all the information and results ob-
tained on data processing and visualisation in reputation systems will be com-
piled concisely and informatively.

113

References

[1] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt. P-grid: a self-organizing structured p2p sys-
tem. ACM SiGMOD Record, 32(3):29–33, 2003.

[2] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles.
Towards a better understanding of context and context-awareness. In In-
ternational symposium on handheld and ubiquitous computing, pages 304–307.
Springer, 1999.

[3] E. Adar and B. A. Huberman. Free riding on gnutella. First monday, 2000.

[4] Atlassian. Understanding incident severity levels. https://www.atlassian.
com/incident-management/kpis/severity-levels, 2019. Accessed on Au-
gust 2023.

[5] F. Bao and J. Chen. Visual framework for big data in d3.js. In 2014 Ieee
Workshop on Electronics, Computer and Applications, pages 47–50. IEEE, 2014.

[6] E. Damiani, D. C. di Vimercati, S. Paraboschi, P. Samarati, and F. Violante.
A reputation-based approach for choosing reliable resources in peer-to-peer
networks. In Proceedings of the 9th ACM conference on Computer and communi-
cations security, pages 207–216, 2002.

[7] C. Dellarocas. The digitization of word of mouth: Promise and challenges of
online feedback mechanisms. Management science, 49(10):1407–1424, 2003.

[8] R. Farmer and B. Glass. Building web reputation systems. "O’Reilly Media,
Inc.", 2010.

[9] X. Fu, K. Yue, L. Liu, Y. Feng, and L. Liu. Reputation measurement for on-
line services based on dominance relationships. IEEE Transactions on Services
Computing, 14(4):1054–1067, 2018.

[10] Gnutella. Gnutella - a protocol for a revolution. https://rfc-gnutella.
sourceforge.net/, 2003.

[11] H. Hauser, F. Ledermann, and H. Doleisch. Angular brushing of extended
parallel coordinates. In IEEE Symposium on Information Visualization, 2002.
INFOVIS 2002., pages 127–130. IEEE, 2002.

[12] F. Hendrikx, K. Bubendorfer, and R. Chard. Reputation systems: A survey
and taxonomy. Journal of Parallel and Distributed Computing, 75:184–197, 2015.

115

https://www.atlassian.com/incident-management/kpis/severity-levels
https://www.atlassian.com/incident-management/kpis/severity-levels
https://rfc-gnutella.sourceforge.net/
https://rfc-gnutella.sourceforge.net/

Chapter 8

[13] T. D. Huynh, N. R. Jennings, and N. Shadbolt. Fire: An integrated trust and
reputation model for open multi-agent systems. 2004.

[14] A. Jøsang. Trust and reputation systems. In Foundations of security analysis
and design IV, pages 209–245. Springer, 2007.

[15] A. Josang and R. Ismail. The beta reputation system. In Proceedings of the
15th bled electronic commerce conference, volume 5, pages 2502–2511, 2002.

[16] C. A. S. Júnior. A privacy preserving system to consult public institutions
records. Master’s thesis, University of Coimbra, 2020.

[17] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algo-
rithm for reputation management in p2p networks. In Proceedings of the 12th
international conference on World Wide Web, pages 640–651, 2003.

[18] E. Koutrouli and A. Tsalgatidou. Reputation-based trust systems for p2p
applications: design issues and comparison framework. In International con-
ference on trust, privacy and security in digital business, pages 152–161. Springer,
2006.

[19] E. Koutrouli and A. Tsalgatidou. Taxonomy of attacks and defense mecha-
nisms in p2p reputation systems—lessons for reputation system designers.
Computer Science Review, 6(2-3):47–70, 2012.

[20] L. Liu and W. Shi. Trust and reputation management. IEEE Internet Comput-
ing, 14(5):10–13, 2010.

[21] Z. Malik and A. Bouguettaya. Rateweb: Reputation assessment for trust
establishment among web services. The VLDB Journal, 18(4):885–911, 2009.

[22] S. Marti and H. Garcia-Molina. Taxonomy of trust: Categorizing p2p repu-
tation systems. Computer Networks, 50(4):472–484, 2006.

[23] P. Michiardi and R. Molva. Core: a collaborative reputation mechanism to
enforce node cooperation in mobile ad hoc networks. In Advanced communi-
cations and multimedia security, pages 107–121. Springer, 2002.

[24] L. Mui, M. Mohtashemi, and A. Halberstadt. A computational model of trust
and reputation. In Proceedings of the 35th annual Hawaii international conference
on system sciences, pages 2431–2439. IEEE, 2002.

[25] L. Mui, M. Mohtashemi, and A. Halberstadt. Notions of reputation in multi-
agents systems: a review. In Proceedings of the first international joint conference
on Autonomous agents and multiagent systems: part 1, pages 280–287, 2002.

[26] L. Nair, S. Shetty, and S. Shetty. Interactive visual analytics on big data:
Tableau vs d3. js. Journal of e-Learning and Knowledge Society, 12(4), 2016.

[27] Napster. Napster: Music from every angle. https://www.napster.com/pt,
Nov 2022.

116

https://www.napster.com/pt

References

[28] J. Nielsen. Why you only need to test 5 users. https://www.nngroup.com/
articles/why-you-only-need-to-test-with-5-users/, 2000. Accessed on
July 2023.

[29] PoSeID-on. Protection and control of secured information by means of a pri-
vacy enhanced dashboard poseid-on. https://www.poseidon-h2020.eu/,
Jul 2019.

[30] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman. Reputation sys-
tems. Communications of the ACM, 43(12):45–48, 2000.

[31] M. Richards and N. Ford. Fundamentals of Software Architecture: An Engineer-
ing Approach. O’Reilly Media, 2020.

[32] J. Sabater and C. Sierra. Regret: reputation in gregarious societies. In Proceed-
ings of the fifth international conference on Autonomous agents, pages 194–195,
2001.

[33] E. Salituro. Learn Grafana 7.0: A beginner’s guide to getting well versed in ana-
lytics, interactive dashboards, and monitoring. Packt Publishing Ltd, 2020.

[34] J. Sänger and G. Pernul. Visualizing transaction context in trust and reputa-
tion systems. In 2014 Ninth International Conference on Availability, Reliability
and Security, pages 94–103. IEEE, 2014.

[35] W. Teacy, J. Patel, N. R. Jennings, and M. Luck. Travos: Trust and reputa-
tion in the context of inaccurate information sources. Autonomous Agents and
Multi-Agent Systems, 12(2):183–198, 2006.

[36] Truphone. Autonomous trust, security and privacy management framework
for iot - d2.2: Use case specification, 2021.

[37] L. Xiong and L. Liu. Peertrust: Supporting reputation-based trust for peer-
to-peer electronic communities. IEEE transactions on Knowledge and Data En-
gineering, 16(7):843–857, 2004.

[38] G. Zacharia, A. Moukas, and P. Maes. Collaborative reputation mechanisms
for electronic marketplaces. Decision support systems, 29(4):371–388, 2000.

117

https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.poseidon-h2020.eu/

Appendices

119

Appendix A

Alpha-Beta Model Validation Tests

This appendix presents the validation tests for implementing the Alpha-Beta
Model (explained in Section 7.1). This includes the tables and graphics used to
perform the analysis discussed in Subsection 7.1.2 for the alpha, beta, and mean
values.

121

Appendix A

A.1 Ten negative events with an ageing factor of 0.5

Event Alpha Beta Mean
negative 1.0 1.5 0.4
negative 1.0 1.75 0.3636363636
negative 1.0 1.875 0.347826087
negative 1.0 1.9375 0.3404255319
negative 1.0 1.96875 0.3368421053
negative 1.0 1.984375 0.335078534
negative 1.0 1.9921875 0.3342036554
negative 1.0 1.99609375 0.333767927
negative 1.0 1.998046875 0.3335504886
negative 1.0 1.999023438 0.3334418756

Table A.1: 10 negative events with AGING_FACTOR=0.5

(a) Beta

(b) Mean

Figure A.1: Graphics of the model’s behaviour with ten negative events with
AGING_FACTOR=0.5

122

Alpha-Beta Model Validation Tests

A.2 Ten negative events with an ageing factor of 0.2

Event Alpha Beta Mean
negative 1.0 1.2 0.4545454545
negative 1.0 1.24 0.4464285714
negative 1.0 1.248 0.4448398577
negative 1.0 1.2496 0.4445234708
negative 1.0 1.24992 0.4444602475
negative 1.0 1.249984 0.444447605
negative 1.0 1.2499968 0.4444450765
negative 1.0 1.24999936 0.4444445709
negative 1.0 1.249999872 0.4444444697
negative 1.0 1.249999974 0.4444444495

Table A.2: 10 negative events with AGING_FACTOR=0.2

(a) Beta

(b) Mean

Figure A.2: Graphics of the model’s behaviour with ten negative events with
AGING_FACTOR=0.2

123

Appendix A

A.3 Ten negative events with an ageing factor of 0.8

Event Alpha Beta Mean
negative 1.0 1.8 0.3571428571
negative 1.0 2.44 0.2906976744
negative 1.0 2.952 0.2530364372
negative 1.0 3.3616 0.229273661
negative 1.0 3.68928 0.2132523543
negative 1.0 3.951424 0.2019621022
negative 1.0 4.1611392 0.1937556732
negative 1.0 4.32891136 0.187655589
negative 1.0 4.463129088 0.1830452812
negative 1.0 4.57050327 0.1795169936

Table A.3: 10 negative events with AGING_FACTOR=0.8

(a) Beta

(b) Mean

Figure A.3: Graphics of the model’s behaviour with ten negative events with
AGING_FACTOR=0.8

124

Alpha-Beta Model Validation Tests

A.4 Ten positive events with an ageing factor of 0.5

Event Alpha Beta Mean
positive 1.5 1.0 0.6
positive 1.75 1.0 0.6363636364
positive 1.875 1.0 0.652173913
positive 1.9375 1.0 0.6595744681
positive 1.96875 1.0 0.6631578947
positive 1.984375 1.0 0.664921466
positive 1.9921875 1.0 0.6657963446
positive 1.99609375 1.0 0.666232073
positive 1.998046875 1.0 0.6664495114
positive 1.999023438 1.0 0.6665581244

Table A.4: 10 positive events with AGING_FACTOR=0.5

(a) Alpha

(b) Mean

Figure A.4: Graphics of the model’s behaviour with ten positive events with AG-
ING_FACTOR=0.5

125

Appendix A

A.5 Ten positive events with an ageing factor of 0.2

Event Alpha Beta Mean
positive 1.2 1.0 0.5454545455
positive 1.24 1.0 0.5535714286
positive 1.248 1.0 0.5551601423
positive 1.2496 1.0 0.5554765292
positive 1.24992 1.0 0.5555397525
positive 1.249984 1.0 0.555552395
positive 1.2499968 1.0 0.5555549235
positive 1.24999936 1.0 0.5555554291
positive 1.249999872 1.0 0.5555555303
positive 1.249999974 1.0 0.5555555505

Table A.5: 10 positive events with AGING_FACTOR=0.2

(a) Alpha

(b) Mean

Figure A.5: Graphics of the model’s behaviour with ten positive events with AG-
ING_FACTOR=0.2

126

Alpha-Beta Model Validation Tests

A.6 Ten positive events with an ageing factor of 0.8

Event Alpha Beta Mean
positive 1.8 1.0 0.6428571429
positive 2.44 1.0 0.7093023256
positive 2.952 1.0 0.7469635628
positive 3.3616 1.0 0.770726339
positive 3.68928 1.0 0.7867476457
positive 3.951424 1.0 0.7980378978
positive 4.1611392 1.0 0.8062443268
positive 4.32891136 1.0 0.812344411
positive 4.463129088 1.0 0.8169547188
positive 4.57050327 1.0 0.8204830064

Table A.6: 10 positive events with AGING_FACTOR=0.8

(a) Alpha

(b) Mean

Figure A.6: Graphics of the model’s behaviour with ten positive events with AG-
ING_FACTOR=0.8

127

Appendix A

A.7 Four positive and three negative events with an
ageing factor of 0.5

Event Alpha Beta Mean
positive 1.5 1.0 0.6
positive 1.75 1.0 0.6363636364
positive 1.875 1.0 0.652173913
positive 1.9375 1.0 0.6595744681
negative 1.9375 1.5 0.5636363636
negative 1.9375 1.75 0.5254237288
negative 1.9375 1.875 0.5081967213

Table A.7: 4 positive and 3 negative events with AGING_FACTOR=0.5

(a) Alpha and Beta

(b) Mean

Figure A.7: Graphics of the model’s behaviour with four positive and three neg-
ative events with AGING_FACTOR=0.5

128

Alpha-Beta Model Validation Tests

A.8 20 random events with an ageing factor of 0.5

Event Alpha Beta Mean
positive 1.5 1.0 0.6
positive 1.75 1.0 0.6363636364
negative 1.75 1.5 0.5384615385
positive 1.875 1.5 0.5555555556
negative 1.875 1.75 0.5172413793
positive 1.9375 1.75 0.5254237288
negative 1.9375 1.875 0.5081967213
positive 1.96875 1.875 0.512195122
negative 1.96875 1.9375 0.504
negative 1.96875 1.96875 0.5
positive 1.984375 1.96875 0.5019762846
positive 1.9921875 1.96875 0.5029585799
negative 1.9921875 1.984375 0.5009823183
positive 1.99609375 1.984375 0.5014720314
negative 1.99609375 1.9921875 0.500489716
negative 1.99609375 1.99609375 0.5
negative 1.99609375 1.998046875 0.4997555012
negative 1.99609375 1.999023438 0.4996333415
positive 1.998046875 1.999023438 0.4998778402
positive 1.999023438 1.999023438 0.5

Table A.8: 20 random events with AGING_FACTOR=0.5

129

Appendix A

(a) Alpha and Beta

(b) Mean

Figure A.8: Graphics of the model’s behaviour with 20 random events with AG-
ING_FACTOR=0.5

130

Appendix B

List of Exchanges in the Reputation
System

This appendix endeavours to comprehensively present all the information ob-
tained from various exchanges and elucidate the message parsing process. Its
primary purpose is to facilitate the reputation calculation and the storage of es-
sential data for the data visualisation platform.

B.1 Network Flow Monitor Exchange

1 {
2 "Resources": {
3 "flowResourceId": "D4D7BC93",
4 "parentResourceId": "E39B1DF2",
5 "encapsulationLayer": 2,
6 "encapsulationID1": "000029 CC",
7 "encapsulationID2": "00000001",
8 "encapsulationType1": "vxlan",
9 "encapsulationType2": "gtp",

10 "sense": "INGRESS",
11 "outMacSrc": "40:00:00:02:00:03",
12 "outMacDst": "40:00:00:02:00:05",
13 "srcIP": "10101100010100101101111011111110",
14 "dstIP": "10101100010100101101111000000100",
15 "outSrcIP": "00001010000000100000000000000110",
16 "outDstIP": "00001010000000100000000000001010",
17 "l4Proto": "1",
18 "tos": "192",
19 "resourceAbstractionLayer": "2",
20 "resourceId": "A0B91002",
21 "resourceType": "FLOW_SAMPLE",
22 "state": "ACTIVE",
23 "serviceInstanceResourceId": "16168 DAF",

131

Appendix B

24 "reportedTime": 1669221845510
25 },
26 "Alert": {
27 "alertName": "7",
28 "alertReasonId": "10000002",
29 "alertAssertionType": "NEGATIVE",
30 "alertImpact": 2,
31 "alertTime": 1669221844127,
32 "resourceId": "01 CEB72C",
33 "resourceType": "ALERT",
34 "state": "FIRED",
35 "serviceInstanceResourceId": "16168 DAF",
36 "reportedTime": 1669221845514
37 }
38 }

Listing B.1: JSON object example of reputation information being sent from
nfm_exchange exchange

From this information sent to the reputation system of this exchange, the impor-
tant factors for storage are the following:

• flowResourceId: In the reputation system it’s the ID of the entity;

• alertAssertionType: Being either "INFORMATIVE" or "NEGATIVE", it will
decide whether the event is positive or negative, respectively;

• alertImpact: Will function as the severity factor to calculate the reputation
score using the Alpha-Beta model with a severity factor.

B.2 Device Behaviour Monitor Exchange

1 {
2 "timestamp": "1677767901.81823",
3 "attack_start_date": 1677767898.168318,
4 "occurence_number": 11,
5 "sender": "behaviour_monitoring",
6 "device_id": "drone01",
7 "cause": "Xorg",
8 "process_id": 920
9 }

Listing B.2: JSON object example of reputation information being sent from
dbm_exchange exchange

From this information sent to the reputation system of this exchange, the impor-
tant factors for storage are the following:

132

List of Exchanges in the Reputation System

• device_id: In the reputation system it’s the ID of the entity;

• cause: It is the type of action of the event.

It is noted that, as agreed with the project partners, the events received from the
dbm_exchange will be solely negative events.

B.3 Remote Attestation Exchange

1 {
2 "id": "attester",
3 "appraisal_result": 1.0,
4 "trust_score": 1.0
5 }

Listing B.3: JSON object example of reputation information being sent from
ra_exchange exchange

From this information sent to the reputation system of this exchange, the impor-
tant factors for storage are the following:

• id: In the reputation system, it’s the ID of the entity;

• appraisal_result & trust_score: These two parameters are essential to check if
the event is positive or negative. If the appraisal_result is lower than 0.8 and
the trust_score lower than 0.9, then the event is classified as negative, else, it
is a positive one. These parameters will also be essential to know the type
of action, whether it has "trustable claims" or "low trustable claims".

B.4 Network Authorisation Exchange

1 {
2 "imsi": "204047795980920",
3 "rule": "allow"
4 }

Listing B.4: JSON object example of reputation information being sent from
naz_exchange exchange

From this information sent to the reputation system of this exchange, the impor-
tant factors for storage are the following:

• imsi: In the reputation system, it’s the ID of the entity;

• rule: Being either "allow" or "deny", it will decide whether the event is pos-
itive or negative, respectively, and it will also be the type of action.

133

Appendix B

B.5 Biometrics Exchange

1 {
2 "message": "User registered correctly",
3 "code": 0
4 }

Listing B.5: JSON object example of reputation information being sent from
bio_exchange exchange

To know the ID of the entity, which is encoded in base64 and the system is re-
sponsible for decoding it, and the action that was performed (register, update or
delete), these parameters are sent via the message’s routing key, which has the
following structure:

a.bio.cloud.arcadian_iot_ID.crud.__CRUD__.reply.__AIOT_ID__

From this information sent to the reputation system of this exchange, the impor-
tant factors for storage are the following:

• code: With the different values [0..10], the system will evaluate if the event
is positive or negative.

If the CRUD type is create:

– 0: User registered correctly

– 1: Error processing image - Face not detected

– 2: Error processing image - More than one face detected

– 3: Error processing image - Other error

– 4: ID already in the Database

– 10: Other error

If the CRUD type is update:

– 0: User updated correctly

– 1: Error processing image - Face not detected

– 2: Error processing image - More than one face detected

– 3: Error processing image - Other error

– 4: Error updating user – No user with that ID

– 5: User updated correctly - No changes made

– 10: Other error

If the CRUD type is delete:

– 0: User deleted correctly

– 1: Failed to delete user - No user with that ID

134

List of Exchanges in the Reputation System

B.6 Self-Sovereign Identity Exchange

1 {
2 "aiotID": "registeringEntity.net:b94a6585 -3efd -4765",
3 "type": "Service",
4 "info": {
5 "contactEmail": "test@mail.com",
6 "did": "did:test",
7 "domainURL": "https://test.com"
8 }
9 }

Listing B.6: JSON object example of reputation information being sent from
ssi_exchange exchange

From this information sent to the reputation system of this exchange, the impor-
tant factors for storage are the following:

• aiotID: In the reputation system it’s the ID of the entity;

• type: The type of entity, being either person, service or device.

It is noted that, as agreed with the project partners, the events received from the
ssi_exchange will be solely for initialisation purposes. When the reputation system
is fully implemented, all system entities will be initialised in this exchange.

When introducing a new entity, the system sends a message to ra_exchange con-
taining only the entity ID to make an attestation request.

B.7 Middleware Exchange

1 {
2 "Message": {
3 "ClientId": "l42nebnokl2",
4 "Username": "l42nebnokl2",
5 "TimestampUTC": "2023 -06 -14 T19:55:04.5989538Z",
6 "Reason": "invalid decryption key"
7 },
8 "ArcadianId": "api.box2m.io:b666ca65 -0faa -4e8b -a4bb",
9 "Type": "NotAuthorized"

10 }

Listing B.7: JSON object example of reputation information being sent from
middleware_exchange exchange

From this information sent to the reputation system of this exchange, the impor-
tant factors for storage are the following:

135

Appendix B

• ArcadianId: In the reputation system it’s the ID of the entity;

• Type: This type of message will define if the event is either positive or neg-
ative, also defining the type of the event.

B.8 Self-Aware Data Privacy Exchange

1 {
2 "DeviceId": "Alice ’s phone",
3 "User": "Alice",
4 "Method": "POST",
5 "Target URL": "/Alice/vitals",
6 "HEOp": "encrypt with Alice ’s policy"
7 }

Listing B.8: JSON object example of reputation information being sent from
sadp_exchange exchange

From this information sent to the reputation system of this exchange, the impor-
tant factors for storage are the following:

• DeviceId: In the reputation system it’s the ID of the entity;

• HEOp: It’s the type of action of the received event.

It is noted that, as agreed with the project partners, the events received from the
sadp_exchange will be solely positive events.

136

Appendix C

Data Visualisation Platform Full UI
Presentation

This appendix aims to provide a comprehensive overview of the interface for
the data visualisation platform, as described in Section 6.5. The interface is a vi-
tal platform component, enabling users to effectively explore and interpret data
through visual representations. With a wide range of features, tools, and func-
tionalities, the interface empowers users to interact with the platform’s exten-
sive data visualisations, offering valuable insights and facilitating data-driven
decision-making.

Figure C.1: Login page

137

Appendix C

Figure C.2: Homepage welcome screen

Figure C.3: Table with all the entities in the reputation system

138

Data Visualisation Platform Full UI Presentation

Figure C.4: Parallel coordinate chart with all of an entity’s events

Figure C.5: Parallel coordinate chart with brushed events

139

Appendix C

Figure C.6: Additional information of an entity’s events

Figure C.7: Graphic with the reputation history of an entity

Figure C.8: Page with the statistics of the reputation system

140

	Introduction
	Main Objectives
	Contribution
	Document Structure

	Background & Related Work
	ARCADIAN-IoT
	Reputation System
	Trust, Risks and Reputation
	Reputation Models
	Reputation Systems Dimensions
	Reputation Network Architecture
	Reputation Measurements

	Visualisation of Data
	Data Visualisation in Reputation Systems
	Data Visualisation Frameworks

	Summary

	Research Objectives & Approach
	Objectives
	Approach
	Research & Development Methodology
	Planning
	Risks

	Requirements Elicitation
	Domains' Description
	Domain A: Emergency and vigilance using drones and IoT
	Domain B: Medical IoT

	Functional Requirements
	Non-Functional Requirements
	Requirements Listing
	Use Cases
	Use Cases based on Domain A
	Use Cases based on Domain B

	Data Visualisation Platform Mockups
	Homepage
	Entity Page
	Statistics Page

	Project Architecture
	C1 Context Diagram
	C2 Container Diagram
	C3 Component Diagram

	Implementation
	Alpha-Beta Model
	Obtain Reputation Score
	Reputation Score Update

	Project Partners Events Reception
	Reputation Data Analysis & Calculation
	Policies Used for Reputation
	Data Visualisation Platform Development
	Frontend Implementation
	Display of Information in Platform

	Feature Testing & Validation
	Alpha-Beta Model Testing
	Testing the Model
	Analysis of the Model
	Conclusions of the Analysis
	Changes Made to the Model

	RabbitMQ & Reputation Information Testing
	Quality Attributes
	Reliability
	Scalability
	Security
	Usability

	Conclusion
	Future Work

	Appendix Alpha-Beta Model Validation Tests
	Ten negative events with an ageing factor of 0.5
	Ten negative events with an ageing factor of 0.2
	Ten negative events with an ageing factor of 0.8
	Ten positive events with an ageing factor of 0.5
	Ten positive events with an ageing factor of 0.2
	Ten positive events with an ageing factor of 0.8
	Four positive and three negative events with an ageing factor of 0.5
	20 random events with an ageing factor of 0.5

	Appendix List of Exchanges in the Reputation System
	Network Flow Monitor Exchange
	Device Behaviour Monitor Exchange
	Remote Attestation Exchange
	Network Authorisation Exchange
	Biometrics Exchange
	Self-Sovereign Identity Exchange
	Middleware Exchange
	Self-Aware Data Privacy Exchange

	Appendix Data Visualisation Platform Full UI Presentation

