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Abstract

The first successful synthesis of graphene reported in 2004 spawned a new gold rush for
2D materials. This class of materials is of high interest due to their many envisioned
technological applications. One of these applications, that is studied in this thesis,
is their potential as superconductors. The work done for this thesis consisted of
determining the ideal parameters for a broad database search. This was only the first
step to effectively screen a database of 2D materials for potential superconductors. To
research the superconductivity in this 2D environment five new theoretical 2D materials
with a high electronic occupancy at the Fermi level were selected and studied with DFT.
Their critical transition temperatures were estimated based on the Migdal-Eliashberg
formalism. The obtained transition temperatures ranged from 0.4 K to 3.4 K.





Resumo

A primeira síntese bem-sucedida de grafeno, relatada em 2004, gerou uma nova procura
extensiva para materiais 2D. Esta classe de materiais é de grande interesse devido às
suas muitas características e aplicações tecnológicas. Uma dessas aplicações, que é
estudada nesta tese, é o seu potencial como supercondutores. A supercondutividade
tem sido pesquisada há mais de 100 anos, porém os supercondutores mais utilizados
atualmente são ainda compostos metálicos à base de nióbio descobertos na década de 60.
O trabalho realizado para esta tese consistiu em determinar os parâmetros ideais para
uma ampla pesquisa em bases de dados. Este foi apenas o primeiro passo para rastrear
efetivamente uma base de dados de materiais 2D para possíveis supercondutores.
Para pesquisar a supercondutividade neste ambiente 2D cinco novos materiais 2D
teóricos com alta ocupação eletrónica no nível de Fermi foram selecionados e estudados
com DFT. As suas temperaturas críticas de transição foram estimadas com base no
formalismo de Migdal-Eliashberg. As temperaturas de transição obtidas variaram entre
0,4 K e 3,4 K.
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Chapter 1

Motivation

Superconductivity continues to be one of the most researched topics in condensed
matter physics today despite the phenomenon itself being discovered more than 100
years ago [1]. The reasons for this are many, but four of them will be highlighted
here: 1) Many, but not all superconductors are well understood and described by
Bardeen-Cooper-Schrieffer (BCS) and Migdal-Eliashberg (ME) theories in terms of
their superconducting mechanism. Those that are not described by the electron-phonon
mechanism of BCS and ME are labelled unconventional superconductors. Many of
these do not yet have a concrete theoretical model to explain their superconductivity
and predict their transition temperature. Unconventional superconductivity came into
the limelight with the discovery of several high critical temperature (Tc) cuprate-class
(copper oxides) superconductors in the 80’s. More recently iron-based and carbon-
based superconductors have been researched. 2) The potential discovery of an ambient
temperature, low pressure, ductile and cheap superconductor would be extraordinarily
useful, allowing for efficient energy transportation, storage and use. This makes the
rewards for successful research in this field clear. Sadly, no single material discovered
so far has anywhere near all the properties mentioned above. The vast majority of
superconductors have low transition temperatures and a lot of the high Tc ones require
high pressures on the order of GPa or are very brittle which is problematic when
the goal is to make wires with them. In spite of decades of research the most used
superconductors today are still niobium based compounds discovered in the 50’s. 3)
Computationally predicting a material’s viability as a superconductor with a satisfactory
degree of confidence is slow and expensive. This problem is compounded by the fact
that there are many hundreds’ of thousands of materials yet to be tested. Methods
to predict a materials’ superconductive properties require computationally expensive
electron-phonon calculations. 4) Even if a material with a computationally obtained
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high Tc and small energy above convex hull is found, it may not be synthesizable in a
laboratory or have a economically viable use. The convex hull is an energy plot where
different phases of the same material are plotted. The formation energy of each is
represented by the y direction and the concentration of a particular element is shown in
the x direction. Stable phases of the compound are linked by straight lines. Metastable
or unstable phases of the compound lie above this line. In theory the smaller the
formation energy difference between a given phase and the point on the convex hull
directly below it the more likely it is that the phase is synthesizable.

The turn of the millennium yielded an explosion in scientific interest and research
into single-layer materials. The first successful synthesis of graphene and measurement
of it’s very high electrical conductivity and tensile strength [2] won Andrei Geim and
Konstantin Novoselov the 2010 Nobel prize in physics. Since then, research on this
class of materials has continued due to their potential applications as electronic devices,
photon detectors and solar cells [3]. This recent interest in 2D materials, the increase
in computational power available and the existence of accurate electronic structure
methods such as Density Functional Theory (DFT) make it now possible to create
large databases of thousands of stable 2D materials, as shown in [4] and [5].

Nowadays it is possible to accurately study the conventional superconductivity of a
material using DFT in an efficient manner. To this end, a number of materials were
selected and studied to better understand the optimal parameters for a broad database
search. Knowing the most optimal way of conducting this search will make it possible
to efficiently screen many databases of 2D materials for a good superconductors with
confidence that the obtained results are accurate.

This thesis is structured in six Chapters, this motivation being the first one. The
other five Chapters numbered 2 through 6 cover the following topics: Theoretical
overview of DFT with a discussion on exchange-correlation approximations and super-
conductivity; Review of 2D materials; Methodology used for the main work and the
first tests; Results and discussion; Conclusions and future work.



Chapter 2

Theoretical Overview of the
Many-body Problem in the Framework
of Density Functional Theory,
Exchange-Correlation Approximations
and Superconductivity

2.1 Many Body Schrödinger Equation

The non-relativistic many body Schrödinger equation describes a system of N electrons
and M nuclei with masses mI and charges ZI . The electron’s coordinates are ri while
those for the nuclei are RI . Writing the Hamiltonian in atomic units (ℏ = me =

e2

4πϵ0
=

1) we get,

H(r1, ..., rN,R1, ...,RM) = −
N∑
i=1

∇2
i

2
−

M∑
I=1

∇2
I

2mI

(2.1)

−
N,M∑
i,I=1

ZI

|ri −RI|
+

N∑
i,j=1&i<j

1

|ri − rj|
+

M∑
I,J=1&I<J

ZIZJ

|RI −RJ|
.

This can be simplified using the Born-Oppenheimer approximation [6]. This approxi-
mation takes advantage of the fact that the nuclei move much more slowly than the
electrons due to them being thousands of times more massive. Due to this, equation
(2.1) can then be separated into a electronic Hamiltonian and a nuclear Hamiltonian.
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In the first one the electronic wavefunction depends parametrically, not explicitly,
on the nuclear coordinates. This means that for different nuclear arrangements the
electronic function is a different function of the electronic coordinates. The total wave
function from the Schrödinger equation is separated.

Ψ(r1, ..., rN,R1, ...,RM) = Φelec(r1, ..., rN,R1, ...,RM)Φnucl(R1, ...,RM) (2.2)

We then get two separate equations, one for the electrons,

(
−

N∑
i=1

∇2
i

2
+

N∑
i,j=1&i<j

1

|ri − rj|
−

N,M∑
i,I=1

ZI

|ri −RI|

)
Φelec(r1, ..., rN, {R1, ...,RM}) (2.3)

= Eelec(R1, ...,RM)Φelec(r1, ..., rN, {R1, ...,RM})

and another for the nuclei,

(
−

M∑
I=1

∇2
I

2mI

+ Eelec(R1, ...,RM) +
M∑

I,J=1&I<J

ZIZJ

|RI −RJ|

)
Φnucl(R1, ...,RM) (2.4)

= EΦ(R1, ...,RM)

2.2 Density Functional Theory

In 1964, the year collectively considered to be the birth year of Density Functional
Theory (DFT), Pierre Hohenberg and Walter Kohn published a joint paper [7]. In
this seminal work, they formulated a new model to treat the problem of a gas of
interacting electrons in some external multiplicative potential ν(r). They showed that:
"For any N -electron system the external potential ν(r) is (to within a constant) a
unique functional of the ground state density ρ0(r); since, in turn, ν(r) fixes Ĥ we see
that the full many-particle Hamiltonian Ĥ is a unique functional of ρ0(r)." Meaning
that there is a one-to-one correspondence between the potential and the ground-state
electron density.

{ν} ←→ {Ψ} ←→ {ρ} (2.5)
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They also proved that "The energy functional Eν [ρ] =
∫
ν(r)ρ(r)dr+ F [ρ] assumes

it’s minimum for the ground state density ρ0(r)." Where F [ρ] is an universal functional
i.e., it’s the same functional for any N -electron system.

In the following year Walter Kohn and Lu Jeu Sham published a joint paper [8]
suggesting a method to yield a set of self-consistent equations for the ground-state
energy that can be computed iteratively. These equations we know today as the
Kohn-Sham equations, the basis of all DFT programs. Walter Kohn went on to win
the 1998 Nobel Prize in Chemistry for these equations.

2.3 Hohenberg-Kohn Theorem

For the system under study in this work, the N -electron non-relativistic time-independent
Hamiltonian is in standard notation,

Ĥ = T̂ + V̂ + Ŵ (2.6)

Let’s consider a set V of local one-electron external potentials V̂ for which Ĥ has a
non-degenerate ground state.

Ĥ |Ψ⟩ = (T̂ + V̂ + Ŵ ) |Ψ⟩ = Egs |Ψ⟩ V̂ ∈ V (2.7)

These ground states |Ψ⟩ can be condensed into another set Ψ, the set of all ground
states, creating the map

C : V → Ψ (2.8)

If we look at the electronic density of all the ground-state wavefunctions in Ψ :

ρ(r) = N
∑
α

∫
dx2 . . .

∫
dxN |Ψ (rα,x2, . . . ,xN)|2 (2.9)

where we are summing over both spins denominated by α this establishes another map,

D : Ψ→ N (2.10)

between the set of all ground-state wavefunctions and the set of all ground-state
densities.

We can easily see that the map DC V → N indicates a relation between external
potentials and ground-state densities. But is this a one-to-one relation?
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Proving that there is a one-to-one correspondence between the electron density and
the potential requires a proof of injectivity of the maps C and D.

Starting with map C, consider two states. The first, |Ψ⟩, is a ground state of V̂
and has energy Egs. The second |Ψ ′⟩, is a ground state of V̂ ′ and has energy E ′

gs. If
the potentials differ by more than a constant then,

V̂ ̸= V̂ ′ + Const (2.11)

(T̂ + V̂ + Ŵ ) |Ψ⟩ = Egs |Ψ⟩ (2.12)

(T̂ + V̂ ′ + Ŵ ) |Ψ ′⟩ = E ′
gs |Ψ ′⟩ (2.13)

If |Ψ⟩ = |Ψ ′⟩ then,

(V̂ − V̂ ′) |Ψ⟩ = (Egs − E ′
gs) |Ψ⟩ (2.14)

leading to, (V̂ − V̂ ′) = (Egs − E ′
gs), which contradicts equation (2.11). As we can see,

if two ground states are equal than this implies that their potentials only differ by a
constant at most. Therefore the map C is injective, there is a one-to-one correspondence
between the two sets of the map. For map D we need to show that different ground-
state wavefunctions |Ψ⟩ and |Ψ ′⟩, corresponding to ground-states for different external
potentials imply different densities ρ0(r) and ρ′0(r). Suppose that

Egs = ⟨Ψ | Ĥ |Ψ⟩ < ⟨Ψ ′| Ĥ |Ψ ′⟩ (2.15)

and by the Rayleigh-Ritz principle,

⟨Ψ ′| Ĥ |Ψ ′⟩ = ⟨Ψ ′| (Ĥ ′ + V̂ − V̂ ′) |Ψ ′⟩ = E ′
gs +

∫
ρ′0(r)[ν(r)− ν ′(r)]d3r (2.16)

Egs < E ′
gs +

∫
ρ′0(r)[ν(r)− ν ′(r)]d3r (2.17)

likewise for E ′
gs,

E ′
gs = ⟨Ψ ′| Ĥ ′ |Ψ ′⟩ < ⟨Ψ | Ĥ ′ |Ψ⟩ (2.18)
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⟨Ψ | Ĥ ′ |Ψ⟩ = ⟨Ψ | (Ĥ + V̂ ′ − V̂ ) |Ψ⟩ = Egs +

∫
ρ0(r)[ν

′(r)− ν(r)]d3r (2.19)

E ′
gs < Egs +

∫
ρ0(r)[ν

′(r)− ν(r)]d3r (2.20)

assuming that ρ0(r) = ρ′0(r) and combining equations (2.17) and equation (2.20) yields,

Egs + E ′
gs < Egs + E ′

gs. (2.21)

With this contradiction, it is shown that different ground states must have different
densities. Therefore the map D is bijective (it has a reversible one-to-one correspon-
dence).

D−1 : ρ0(r)→ |Ψ [ρ0]⟩ (2.22)

Now armed with this knowledge we can formulate the first statement of the theorem,
there is a one-to-one correspondence between the potential and the ground-state electron
density. The ground state expectation value of any observable Â is a unique functional
of the exact ground state density ρ.

⟨Ψ [ρ]| Â |Ψ [ρ]⟩ = A[ρ] (2.23)

The inverse of maps C and D is

(DC)−1 : ρ0(r)→ ν(r) (2.24)

and shows that the ground-state density ρ0 uniquely determines the external potential
ν(r).

Secondly, we must show the variational character of the Hamiltonian. Consider a
system with a ground state external potential V̂0 and a ground state density ρ0(r) with
energy Eν0 .

Eν0 [ρ0] = ⟨Ψ [ρ0]| (T̂ + V̂0 + Ŵ ) |Ψ [ρ0]⟩ (2.25)

This creates the universal (meaning that it is the same regardless of the N -electron
system considered) energy functional FHK [ρ],

FHK [ρ] = ⟨Ψ [ρ]| (T̂ + Ŵ ) |Ψ [ρ]⟩ (2.26)
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Eν0 [ρ] = FHK [ρ] +

∫
ν0(r)ρ(r)d

3r (2.27)

In 1982 the Hohenberg Theorem was expanded to include degenerate ground states
[9] [10].

As shown previously, the states Ψ [ρ] are generated with the inverse D map from
the set N . By the Rayleigh-Ritz principle,

E0 < Eν0 [ρ] for ρ ̸= ρ0 (2.28)

The exact ground-state energy functional E0(ρ) is minimized only when ρ = ρ0.

E0 = min
n∈N

Eν0 [ρ] (2.29)

since the D map relating the state’s set Ψ to the density’s set N does not depend on
the potential V̂0 of the system.

2.4 Kohn-Sham Equations

In the Kohn-Sham ansatz the problem of a system of N interacting electrons in a
static external potential is replaced by a system of N non-interacting electrons in an
effective potential. The fulcral hypothesis of the KS method is that for each ρ(r) of the
ground state of the system of interacting electrons, there is a system of non-interacting
electrons that has the same density in the ground state.

The ground state energy functional of a system of N electrons in an external
potential ν(r) can be written as,

Eν [ρ] = ⟨Ψ [ρ]|H |Ψ [ρ]⟩ = FHK [ρ] +

∫
ρ(r)ν(r)dr+ Enn (2.30)

where FHK [ρ] is a universal functional of the electron density. Searching for the ground
state energy E0 = min{ρ}Eν [ρ] is done by solving the Euler-Lagrange equations,

δ

δρ(r)

[
Eν [ρ(r)]− µ

(∫
ρ(r)dr−N

)]
=

δFHK [ρ(r)]

δρ(r)
+ ν(r)− µ = 0 (2.31)

where µ is a Lagrange multiplier imposing the conservation of the total number of
electrons. The state of a system of N non-interacting electrons subject to an external
potential νs(r) is the Slater determinant of the orbitals ϕi(r) that satisfy the equations,
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[
−1

2
∇2 + νs(r)

]
ϕi(r) = ϵiϕi(r) (2.32)

where the electron density is the sum of the square modulus of these orbitals,

ρ(r) =
N∑
i=1

|ϕi(r)|2 . (2.33)

The total energy of the system is given by,

Eνs [ρ(r)] = Ts[ρ(r)] +

∫
ρ(r)νs(r)dr , (2.34)

where the first term is the kinetic energy

Ts[ρ(r)] = −
1

2

N∑
i=1

∫
ϕ∗
i (r)∇2ϕi(r)d(r) . (2.35)

The ground state energy can then be obtained by minimizing this energy with
respect to the electron density.

δ

δρ(r)

[
Eνs [ρ(r)]− µs

(∫
ρ(r)dr−N

)]
=

δTs [ρ(r)]

δρ(r)
+ νs(r)− µs = 0 (2.36)

The functional FHK [ρ(r)] from before can then be rewritten as,

FHK [ρ(r)] = T + V +W = Ts + VHartree + (T − Ts + V − VHartree +W ) (2.37)

VHartree =
1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 (2.38)

FHK [ρ(r)] = Ts[ρ(r)] +
1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 + Exc[ρ(r)] (2.39)

calling the unknown terms in the parenthesis the exchange-correlation energy functional
Exc[ρ(r)]. This term accounts for the remaining energy. It cannot be derived and must
be approximated, the simplest of these approximations was proposed in [8], is the local
density approximation (LDA). From this exchange-correlation energy functional, the
exchange-correlation potential is defined as
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νxc([ρ(r)] ; r) =
δExc[ρ(r)]

δρ(r)
. (2.40)

The Euler-Lagrange equations of a system of interacting electrons in an external
potential ν(r) are rewritten as,

δ

δρ(r)

[
Eν [ρ(r)]− µ

∫
ρ(r)dr

]
=

δTs [ρ(r)]

δρ(r)
+ ν(r)+

+

∫
ρ(r)

|r− r′|
dr′ + νxc([ρ(r)] ; r)− µ = 0 (2.41)

and our new effective potential for the independent electron system is defined

νs(r) = ν(r) +

∫
ρ(r)

|r− r′|
dr′ + νxc([ρ(r)] ; r) . (2.42)

The electron density of the original interacting system is then obtained from[
−1

2
∇2 + ν(r) +

∫
ρ(r)

|r− r′|
dr′ + νxc([ρ] ; r)

]
ϕi(r) = ϵiϕi(r) (2.43)

ρ =
∑
i

|ϕi|2 (2.44)

and the total energy of the original interacting system is obtained

EKS [ρ(r)] = Ts [ρ(r)] +

∫
ρ(r)ν(r)dr+

+
1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 + Exc [ρ(r)] + Enn (2.45)

2.5 Exchange-Correlation Approximations

The form of the exchange correlation (xc) functional continues to be a hurdle for DFT.
Nonetheless progress has been steady throughout the years. In 2001 John Perdew
and Karla Schmidt published a paper [11] in which they describe a ladder, Jacob’s
ladder, where each rung represents a different family of xc approximations. These
approximations are ordered vertically in ascending order of accuracy, and are: local
spin density approximation; generalized gradient approximation; meta-generalized
gradient approximation; exact exchange and compatible correlation and lastly exact
exchange and exact partial correlation. This Jacob’s ladder serves as a representation
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of the progress to be done in the pursuit of an ever more accurate xc approximation.
In general each rung builds upon the previous one with more parameters. The last as
of yet to be included rung on this ladder would be the perfect approximation, able to
achieve "chemical accuracy" (1kcal/mol). In this brief overview we will stop at the
second rung since that was what was used in this work.

2.5.1 Local Density Approximation

The first xc functional, the local density approximation (LDA), was introduced by
Kohn and Sham in the same paper as the equations bearing their name [8]. This
simple approximation treats the electron system locally as an homogeneous electron
gas (HEG). This method is best applied to systems with slow-varying electron densities
since that is the assumption made in the approximation. This exchange correlation
energy is

ELDA
xc [ρ] =

∫
ρ(r)ϵxc(ρ)dr (2.46)

where ϵxc(ρ) is the exchange and correlation energy per electron of a uniform electron
gas with density ρ.

Like for all xc functionals, ϵxc(ρ) can be divided into an exchange contribution and
a correlation contribution,

ϵxc(ρ) = ϵx(ρ) + ϵc(ρ) (2.47)

with the exchange contribution already determined by Dirac [12]. This contribution is
as follows,

ϵx(ρ) = −
3

4

(
3

π

)1/3

ρ1/3(r) ≈ −0.7386ρ1/3(r) (2.48)

The correlation contribution does not have such a clean form, nonetheless several
parametrizations exist, which are fitted to accurate Monte-Carlo results [13]. An
examples of this is [14]. This was done by fitting a complex function for the correlation
energy to values obtained from quantum Monte Carlo simulations of a homogeneous
electron gas (HEG).
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2.5.2 Generalized Gradient Approximations

Generalized gradient approximations (GGA) make the exchange correlation energy
dependent on the gradient of the electron density in addition to the density itself. This
modification achieves more accurate total energies [15], atomization energies [15–17],
energy barriers and structural energy differences [18, 19]. This approximation was first
proposed by Ma and Brueckner [20] and considers a correlation energy that is given by,

ϵc =

∫
d3rρ(r)

[
eunifc (ρ(r)) + β(ρ(r))|∇ρ(r)|2 + ...

]
(2.49)

This β function that needs to be fitted is constructed from several considerations.
Namely: in the slow-varying limit it is given by its second-order gradient expansion; in
the fast-varying limit it reduces to the opposite of the LDA approximation.

PBE and PBEsol Approximation

In this work the approximation used for all the DFT calculations was the Perdew-Burke-
Ernzerhof Functional for solids (PBESol) [21]. PBESol is a different parametrization
on the PBE approximation, with both of them being generalized gradient approxima-
tions (GGA). In the original article for PBEsol [21] 18 solids were tested including
semiconductors, ionic solids, simple and transition metals. The tests showed that out
of LSDA, TPSS (meta-GGA), PBE, and PBEsol, PBEsol had the least absolute error
in 3 ouf the 4 categories of solids. The exception were the ionic solids for which LSDA
had the least mean error. For this reason PBEsol was chosen for this work.

2.6 Lattice Vibrations and Phonons

A crystal naturally has certain frequencies of motion at which it’s constituents oscillate
simultaneously in a periodic fashion, these are called the normal modes of the system.
This is the classical interpretation of this microscopic phenomenon. In quantum
mechanics this collective movement is called a phonon, a quasi-particle that represents
the quantization of the normal modes.

Let’s obtain these normal modes of a crystal system. The change in the energy of a
system when small changes in the nuclear positions occur allows for the calculation of
the vibrational properties of the system. Let’s consider a system where an atom κ at a
position Rκ, in a unit cell a at a position Ra, deviates from it’s equilibrium position
Ra

κ by a time-dependent amount ua
κ(t)
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Ra
κ(t) = Ra

κ + ua
κ(t) = (Ra +Rκ) + ua

κ(t) . (2.50)

Using a Taylor expansion we can write the energy of the system as a function of its
derivatives with respect to this perturbation,

E ({Rα
κ(t)}) ≈ E ({Rα

κ}) +
∑
ακα

(
∂E

∂ua
κα

)
ua
κα(t) (2.51)

+
∑
akα

∑
bk′β

1

2

(
∂2E

∂ua
καu

b
κ′β

)
ua
καu

b
k′β + . . .

Remembering that we consider the ions to be in their equilibrium position (i.e. in
a local minimum of the energy surface), the first derivative of the energy with respect
to these deviations is zero. Since u2 is small, u3 and other terms are considered to be
negligible. This is collectively referred to as the Harmonic approximation:

E ({Rα
κ(t)}) ≈ E ({Rα

κ}) +
∑
aκα

∑
bκ′β

1

2

(
∂2E

∂ua
καu

b
κ′β

)
ua
καu

b
κ′β (2.52)

The second derivatives of the energy form the interatomic force constant (IFC)
matrix in real space:

Cκα,κ′β(a, b) =

(
∂2E

∂ua
καu

b
κ′β

)
(2.53)

By the Bloch Theorem we can say that the absolute positions of cells a and b don’t
matter, only their relative distances matter so we can set one of them to 0 and another
to b− a.

∂2E

∂ua
κα∂u

b
κ′β

=
∂2E

∂u0
κα∂u

b−a
κ′β

(2.54)

By the definition of force,

Fa
κ = Mκa

a
κ = −∇Ra

κ
E = − ∂E

∂ua
κα

(2.55)

and the definition of acceleration,

aa
κ =

∂2Ra
κ(t)

dt2
=

∂2 (Ra
κ + ua

κ(t))

∂t2
=

∂2ua
κ(t)

∂t2
(2.56)

equation (2.55) becomes,
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− ∂E

∂ua
κα

= Mκ
∂2ua

κα

∂t2
(2.57)

After this step we can insert equation (2.52) into equation (2.57):

− ∂E

∂ua
κα

= −
∑
bκ′β

(
∂2E

∂ua
κα∂u

b
κ′β

)
ub
κ′β (2.58)

Mκ
∂2ua

κα

∂t2
= −

∑
bκ′β

(
∂2E

∂ua
κα∂u

b
κ′β

)
ub
κ′β (2.59)

To find an ansatz we will remember that all displacements have the same temporal
dependency of the form e−iωmt and obeys the Bloch Theorem. A valid ansatz is then,
in a normal mode,

ua
κα(t) = ηmq(κα)e

iq·Rae−iωmqt . (2.60)

Where each displacement is characterized by a wave vector q. Also, ηmq is the
displacement along α. Taking the first and second time derivatives,

∂ua
κα(t)

∂t
= (−iωmq) ηmq(κα)e

iq·Rae−iωmqt (2.61)

∂2ua
κα(t)

∂t2
= −ω2

mqηmq(κα)e
iq·Rae−iωmqt (2.62)

and inserting them into equation (2.59) yields,

−Mκω
2
mqηmq(κα)e

iq·Rae−iωmqt = −
∑
bκ′β

(
∂2E

∂ua
κα∂u

b
κ′β

)
ηmq (κ

′β) eiq·Rbe−iωmqt (2.63)

furthermore by multiplying both sides by eiωmqt,

Mκω
2
mqηmq(κα)e

iq·Ra =
∑
bκ′β

(
∂2E

∂ua
κα∂u

b
κ′β

)
ηmq (κ

′β) eiq·Rb (2.64)

reordering the sums and multiplying both sides by e−iq·Ra gives equation (2.65).

Mκω
2
mqηmq(κα) =

∑
κ′β

[∑
b

(
∂2E

∂ua
κα∂u

b
κ′β

)
eiq·(Rb−Ra)

]
ηmq (κ

′β) (2.65)
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Let’s use the IFC’s from now on. Then, the previous equation takes the form,

Mκω
2
mqηmq(κα) =

∑
κ′β

[∑
b

Cκα,κ′β(a, b)e
iq·(Rb−Ra)

]
ηmq (κ

′β) (2.66)

as we can see, the origin a does not matter anymore and we can set it to zero, since
the IFC’s depend only on the relative distances between the atoms.

Mκω
2
mqηmq(κα) =

∑
κ′β

[∑
b

Cκα,κ′β(0, b)e
iq·Rb

]
ηmq (κ

′β) (2.67)

The term in brackets in equation (2.67) is nothing else than the discrete Fourier
transform of the interatomic force constant in real space:

C̃κα,κ′β(q) =
1

N

∑
a,b

Cκα,κ′β(a, b)e
−iq·(Ra−Rb) (2.68)

=
∑
b

Cκα,κ′β(0, b)e
iq·Rb (2.69)

Therefore, the movement of the atoms can be defined in terms of the dynamical
equations,

Mκω
2
mqηmq(κα) =

∑
κ′β

C̃κα,κ′β(q)ηmq (κ
′β) (2.70)

1√
Mκ

γmq(κα) = ηmq(κα) (2.71)

ua
κα(t) =

1√
Mκ

γmq(κα)e
iq·Rae−iωmqt (2.72)

Redoing previous algebra,

Mκ
d2ua

κα(t)

dt2
= −ω2

mq

Mκ√
Mκ

γmq(κα)e
iq·Rae−iωmqt (2.73)

Mκ
d2ua

κα(t)

dt2
=
∑
b

∑
κ′β

Cκα,κ′β(a, b)ηmq(κ
′β)eiq·Rae−iωmqt (2.74)

ω2
mqγmq(κα)

√
Mκ =

∑
κ′β

C̃κα,κ′β(q)
1√
Mκ′

γmq(κ
′β) (2.75)
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ω2
mqγmq(κα) =

∑
κ′β

C̃κα,κ′β(q)√
MκMκ′

γmq (κ
′β) (2.76)

Now we define the dynamical matrix as,

D̃κα,κ′β(q) =
1√

MκMκ′
C̃κα,κ′β(q) (2.77)

so finally the dynamical equation reduces to,

∑
κ′β

D̃κα,κ′β(q)γmq (κ
′β) = ω2

mqγmq(κα) (2.78)

This is an eigenvalue equation and can be solved by setting,

det

∣∣∣∣∣ 1√
MiMj

C̃αβ
ij (q)− ω2(q)

∣∣∣∣∣ = 0 (2.79)

which allows us to obtain the normal modes of vibration (the periodic movement of
the system at a set frequency) as understood in classical mechanics.

2.7 Superconductivity

Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes [1] when upon
cooling a sample of mercury below 4.20K, it was observed that its electrical resistance
collapsed from 0.11 Ω to 10−5 Ω. This research along with the synthesis of liquid
helium won Onnes the 1913 Noble prize in physics. A graph from Onnes’ research notes
showing the observed superconducting phase transition can be seen in Figure 2.1. In
the years following this discovery of superconductivity in mercury many more elements
were found to also be superconducting. Research in the 1950’s lead scientists to the
discovery of many niobium based superconductors such as Nb3Sn [22] and NbTi [23]
still used today. In the 1980’s a new class of superconducting materials emerged, known
as the cuprates. These are unconventional (their superconducting mechanism cannot
be described in terms of electron-phonon interactions) superconductors formed by
layers of copper oxide and layers of other elements. Many materials in this class exhibit
very high transition temperatures, some even with Tc’s above 100K. The discovery of
LBCO in 1986 [24] won Georg Bednorz and Karl Alex Müller the 1987 Nobel prize in
Physics. In the last few decades a new hotly researched class of superconductors is the
high-pressure hydrides, materials with a lot of hydrogen that have very high transition
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temperatures at very high pressures (in the order of GPa). Superconductivity is a
phase transition and is classified in different ways: conventional or unconventional,
type I or type II, etc. In type I superconductors a magnetic field is completely repelled
by the Meissner effect. In type II superconductors the same field creates magnetic field
vortices allowing the phenomenon known as flux pinning where the field lines are fixed.
Superconductors are used nowadays as powerful electromagnets in magnetic resonance
imaging machines as well as beam steering devices in particle accelerators.
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Figure 2.1: Resistance plot as a function of temperature of a mercury sample cooled
with liquid helium. Plot taken from [1].
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2.7.1 Bardeen-Cooper-Schrieffer Theory

In 1957 J. Bardeen, L. N. Cooper and J. R. Schrieffer published a paper on a novel
microscopic description of superconductivity [25], that became known as BCS theory.
This established a new model to describe the phenomenon and its mechanism. It also
won them the 1972 Nobel Prize in Physics.

BCS theory is a way of describing superconductivity where electrons couple as
Cooper pairs consisting of two electrons with an attractive interaction in a lattice by
way of phonon mediation between them. This Cooper pair behaves as a boson when
the electrons in the pair have opposite spin and momentum.

In a crystal the interaction between electrons with wave vectors κ and κ′ and energies
ϵκ and ϵκ′ , respectively, suffers a correction when ion displacements are considered,
going from [26]

V eff
k,k′(k, k

′) =
4π

|k − k′|2
(2.80)

to

V eff
k,k′(k, k

′) =
4π

|k − k′|2 + k2
0

(
ω2

ω2 − ω2
q

)
. (2.81)

With k0 being the Thomas-Fermi wave vector, ω = |ϵκ − ϵκ′|/ℏ, q = k − k′ and ωq

being the frequency of a phonon with wave vector q. If the energy difference ℏω between
the two electron states is less than the phonon energy ℏωq an attractive interaction
occurs.

The most impressive feat of this model is that it arrives at an expression for the
critical transition temperature [25]:

Tc = 1.13 ωD exp

(
−1

N(EF)V

)
. (2.82)

Where ωD is the Debye frequency, N(EF ) is the occupancy at the Fermi level and
V is the effective coupling.

A full derivation of BCS and/or Migdal-Eliashberg theory will not be included in
this thesis. A full derivation of the Tc function from BCS theory is shown in [27] and
one for the Migdal-Eliashberg Tc function is available at [28].
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2.7.2 Migdal-Eliashberg Theory

The history of Migdal-Eliashberg theory is rather long, the model itself being tweaked
throughout the years. The initial Eliashberg theory [29] was presented in 1960 and
was tweaked in the following years by physicists such as Morel and Anderson [30] and
Mcmillan and Dynes [31, 32].

Migdal-Eliashberg theory takes into account considerations that were left out of
the BCS formalism. For instance the electron-ion interactions are no longer considered
to be instantaneous. The key quantity in this theory is the spectral function α2F (ω)

defined in equation (2.83) as a sum of the phonons frequencies and coupling constants
of mode ν and wave vector q = k − k′ which gives the electron-phonon interaction the
form of a spectral density.

α2F (ω) =
∑
qν

ωqνλqνδ(ω − ωqν) (2.83)

where λqν is the electron-phonon coupling constant for mode ν at wave vector q

and ωqν the frequency for mode ν at wave vector q. Integrating this function for all
frequencies gives the total coupling constant λ:

λ = 2

∫
α2F (ω)

ω
dω =

∑
qj

λqjw(q) . (2.84)

Migdal-Eliashberg theory, after many approximations, arrives at a similar function
for the critical transition temperature as BCS:

Tc = 1.13 ωD exp

(
− 1 + λ

λ− µ∗
c

)
. (2.85)

With a new parameter µ∗
c , the pseudo-Coulomb potential, that accounts for the

Coulomb interaction screening. McMillan [31] updated this formula with the use of
experimental data to,

Tc =
ωD

1.45
exp

(
− 1.04(1 + λ)

λ− µ∗
c(1 + 0.62λ)

)
(2.86)

where ωD is the same as in the BCS model. Dynes [32] further enhanced using even
more data for a better fit and a different frequency average. Leading to,

Tc =
ωlog

1.2
exp

(
− 1.04(1 + λ)

λ− µ∗
c(1 + 0.62λ)

)
(2.87)

where the term ωlog is the logarithmic average frequency.
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ωlog = exp

[
2

λ

∫
α2F (ω)

ω
log(ω)dω

]
(2.88)





Chapter 3

2D Materials

3.1 Introduction

Single- and Few-layer or 2D materials are compounds formed by an arrangement of
atoms in the shape of a flat surface. The unit cells of the crystal repeat in the x and y

directions but not in the z direction.
As mentioned in the motivation, the groundbreaking discoveries of the early 2000’s

relating to this class of materials led the way for a new wave of research into and
synthesis of new 2D materials. Many such materials have very remarkable characteristics
[33], the semimetal graphene for instance has been reported to serve as a metallic
field-effect transistor [2] and have very high thermal conductivity [34] as well as tensile
strength [35]. At very low temperatures and magic angle conditions, the twisted
bilayer arrangement of graphene presents many different phases such as a conductor,
a superconductor and a Mott insulator as shown in [36]. Molybdenum disulfide in
its 3D arrangement is heavily used in industry, as a lubricant, but in it’s monolayer
configuration it has been studied as a possible field-effect transistor, photodetector and
solar cell due to being a high gap semiconductor [37].

As also mentioned in the motivation, the recent proliferation of large databases
containing the structures and approximate properties of many compounds in this
material class call for a high-throughput mechanism of studying them in detail. Partic-
ularly studies like [38] aim at screening large databases of 2D materials for promising
superconductors. After a wide search, the highest Tc materials are further studied with
tighter convergence criteria.

2D materials come in a variety of shapes and sizes, Figures 3.1 to 3.7 show structures
of the most well known of these materials as shown in [33].
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Figure 3.1: C (Graphene). Figure 3.2: h-BN (Hexagonal Boron Ni-
tride).

Figure 3.3: CBN (Boron Carbon Nitride).Figure 3.4: MoS2 (Molybdenum Disulfide).

Figure 3.5: GaAs (Gallium Arsenide). Figure 3.6: MnO2 (Manganese Dioxide).

Figure 3.7: PbO (Lead Oxide).
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3.2 Special considerations for a 2D system

Special considerations have to be made when doing DFT calculations on such materials.
Planw-wave codes typically assume that the unit cell will infinitely repeat in all three
directions. This causes a problem since 2D materials do not infinitely repeat in the z

direction. To overcome this problem the height of the unit cell is increased until the
interaction between the layers is minimized. Quantum Espresso implements a special
module to treat 2D systems based on a truncated Coulomb interaction [39], allowing
for a smaller cell and less plane waves than what would be needed otherwise. This
ensures that the properties obtained by considering the system as an infinite 3D object
are analogous to those of a 2D compound.

3.3 Phonons in 2D Structures

The phonon modes are divided into two different categories: acoustic and optical, each
of which can also have either a longitudinal or a transverse motion. The four cases
arising from these combinations are then: Longitudinal Acoustic (LA) and Optical
(LO) as well as Transverse Acoustic (TA) and Optical (TO). Acoustic bands are the 3
bands that always start at a frequency of zero at Γ . Experimentally these phonons can
be measured with techniques such as Raman Spectroscopy. One important effect to
consider when viewing phonon spectrum plots is the LO-TO splitting in ionic crystals.
The LO phonons are associated with long range Coulomb interactions of dipoles caused
by the ion displacements. This does not occur in 2D materials as shown in [40].

Also, sometimes a material composed of very light and very heavy elements, (such as
one studied in this work and shown below), has a frequency gap in its phonon dispersion
plot. This frequency gap will exist between the low-frequency modes associated with
the heavy atoms and the high-frequency modes associated with the light atoms. Phonon
dispersion curves of 2D materials are slightly different than 3D ones. For 3D materials
the 3 acoustic bands have a linear relation with the k-path near Γ . However, for 2D
materials the flexural acoustic mode (ZA) of the z direction has a quadratic dependence
with the momentum [41] [42]. We can see this difference by comparing a 3D case shown
in Figure 3.8 with a 2D case shown in Figure 3.9.
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Figure 3.8: Diamond phonon spectrum taken from [43].

Figure 3.9: Graphene phonon spectrum taken from [44].



Chapter 4

Methodology and Test Cases

4.1 Methodology

To study the potential of single-layer materials as conventional superconductors, DFT
calculations with tightened convergence parameters are necessary. Firstly to arrive
at a relaxed geometry suitable for the chosen program and xc-functional, grid, etc.
Secondly to perform the necessary electron-phonon calculations to obtain λ and ωlog

necessary to estimate the compound’s critical transition temperature Tc following the
McMillan-Dynes formula of the Migdal-Eliashberg formalism. Presented here is a study
on the method of doing this by using the DFT code Quantum Espresso [45] and a
study of the optimal parameters to obtain fast but reliable calculations of the materials
phonon bands and expected transition temperatures.

In this section the objective is to test the different steps required to calculate the
superconducting critical temperature. We will be using as test targets 2 well known
systems, Nb3Sn and B2C. All calculations done in this thesis were made with the
PBEsol [21] approximation to the xc-functional, and using the norm-conserving, scalar
relativistic pseudo-potentials from PseudoDojo [46].

In order to obtain the superconducting transition temperature the following steps
are necessary:

• Optimize the atomic positions and the lattice vectors of the material at study;

• Calculate the electron-phonon coefficients and obtain the electron-phonon mass
enhancement parameter (λ) and the average phonon frequency (ωlog). We do
this by using a double grid method;
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• From these, we can obtain the superconducting critical temperature, Tc, using
the McMillan formula 2.87.

4.2 Test case for Nb3Sn

We start by performing calculations on Nb3Sn, one of the most important supercon-
ductors for technological applications. It is a widely studied material, which offers a
direct reference to validate our results. For this material, we will be calculating its
band structure, electronic density of states, and phonon spectrum.

This compound has a simple cubic crystal lattice with space group Pm3̄n and 8
atoms in the unit cell, 6 Niobium and 2 Tin atoms. The Brillouin zone and unit cell
are shown in Figure 4.1 and 4.2 respectively.

Figure 4.1: Nb3Sn Brillouin zone with high-symmetry points highlighted as shown by
ASE [47] documentation for Brillouin zone sampling.
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Figure 4.2: Nb3Sn Structure visualized with the program VESTA [48]. Niobium atoms
are in green and Tin atoms in grey.

We converged the k -grids and the energy cutoffs with respect to the total energy.
We considered that the values were converged when the differences in total energy
per atom were below 1 meV/atom. With the converged parameters, we optimized the
geometry and lattice vectors and calculate the band structure (BS) and density of
states (DOS), as shown in Figure 4.3.
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Figure 4.3: Nb3Sn band structure and DOS (states/Ry).



32 Methodology and Test Cases

This band structure and DOS are very similar to what is seen in the literature for
example in [49] and in the Materials Project [50]. After this step, we calculated the
phonon dispersion curves, which are shown in Figure 4.4.
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Figure 4.4: Nb3Sn phonon spectra.

This is also very similar to what is seen in the literature for example in [51]. With
this step completed a similar run on a 2D system was performed.

4.3 Test case for B2C

To apply this same method for a 2D case, the material B2C presented in a 2012 paper
by Dai et al. [52] was chosen. It was then attempted to replicate the results of this
paper. The material has a simple orthorhombic lattice with 2 boron and 1 carbon
atoms in the unit cell. The structure of this material is shown in Figure 4.6.
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Figure 4.5: B2C Brillouin zone with the high-symmetry points highlighted.

Figure 4.6: B2C structure viewed from x (top panel) and z (bottom panel) direction.
Boron atoms are shown in green whereas carbon atoms are shown in brown.

The geometry optimization step yielded the same structure as the reported one
with a variation in the very small buckling. This buckling of the atoms is very sensitive
to the parameters used and depending on what is used there may be no buckling at all.
The obtained buckling was approximately 0.02 Å, less than the 0.032 Å reported in
[52].
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Figure 4.7: B2C band structure and DOS (states/Ry).

The band structure and density of states obtained are again similar to the ones
in [52]. The final step is to calculate the phonon dispersion curves and calculate the
electron-phonon coefficients to obtain λ and ωlog parameters, which we then use to
estimate the superconducting critical transition temperature.
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Figure 4.8: B2C phonon spectra. The Eliashberg function α2F is shown in blue and
λ(ω) in red.
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As is clear from the phonon plot in Figure 4.8 there are imaginary phonon modes
present. Multiple runs were performed with different k -grids, different smearing
functions and smearing values for the smearing function and different pseudopotential.
However, all of them had these acoustic bands that dip significantly below zero. We
note that this is in contradiction with the results from [52], where the material was
found to be dynamically stable, even if a very soft phonon branch can already be seen.
However, those results were obtained with extremely dense k -points grids, which we did
not try due to the computational cost. The reason for this happening remains unclear,
but these results seem to indicate that the material may be close to a dynamical
instability in the conditions considered (zero pressure).

With these imaginary frequencies, the calculated electron-phonon coefficients are
probably unreliable. Nonetheless, for the sake of completeness, we calculated λ and
ωlog considering only positive frequencies, and obtained λ = 1.02 and ωlog = 268.4 K,
which compares to 0.92 and 314.8, respectively, from [52]. The obtained Tc = 19.2

K is, coincidentally, the same as in [52] (considering the same µ∗
c = 0.1). The fact

that the values obtained ignoring the negative frequencies are close to the results from
[52] suggests that this phonon branch may not couple strongly to the electrons and,
therefore, does not contribute significantly to λ.

4.4 Summary

In this Chapter, we tested and validated the workflow needed to calculate the super-
conducting critical temperature against two well known materials. Our results are, for
the most part, in good agreement with the reported literature. The only exception is
the presence of an imaginary phonon mode in B2C, not documented in the literature.
This was present regardless of the multiple calculation parameters tested.

With respect to the energy cutoff, we verified that the obtained converged values
shown in Figures 4.9 and 4.10 were on top of the recommended values from PseudoDojo
[46], indicating that those values can be safely used without further convergence tests.
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Figure 4.9: Nb3Sn energy cutoff convergence test.
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Figure 4.10: B2C energy cutoff convergence test.



Chapter 5

Results

5.1 Materials

In this work, we selected five different materials from the 2D materials database of [5].
These were chosen from among the most symmetric, with largest density of states at
the Fermi level, and fewest atoms of the materials in the database. This choice saved
computing time while still allowing diverse materials to be selected. Furthermore the
decision to study materials with a high occupancy at the Fermi level was deliberate
to increase the chances of finding materials with higher transition temperatures (see
equation 2.82).

As previously mentioned, the 2D nature of these materials requires a large inter-layer
distance. Therefore the c vector of each unit cell was set to values ∼ 18 Å. Of these
five materials three were binary (H2Pd, Tl2Pb and NiS) and two were ternary (TiTeS
and CuAgTe2). Of these five materials, three have three atoms in the unit cell (H2Pd,
Tl2Pb and TiTeS) and two have four atoms in the unit cell (NiS and CuAgTe2). To
study these materials’ potential as superconductors the same methodology as in the
test cases of B2C and Nb3Sn was performed.

However, as the goal is to automatize the workflow for hundreds of materials,
we can’t simply select the k- and q-grids by hand. As such, we used the function
from pymatgen [53] to automatically define the initial k-grid for a given k-points per
reciprocal atom density (kppa). This kppa measure was used so as to have a comparison
to the 3D case. In order to converge this quantity we ran the same calculation for
different kppa values, namely 500, 1000, 1500 and 3000. The grids were subsequently
rounded up to even values in the kx and ky directions. We doubled the k-grid for the
fine self-consistent field (scf) calculation, and used half for the q-point grid.
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The energy cutoff for the wavefunctions was set to the maximum of PseudoDojo’s
[46] high precision hint of the elements in a given material. The values used were 98,
114, 100, 116 and 120 (in Ry) for H2Pd, TiTeS, Tl2Pb, NiS and CuAgTe2 respectively.
For each material, we used the high-symmetry path recommendation from the ASE
documentation "Brillouin zone sampling" [47].

5.2 H2Pd

The material H2Pd crystallizes in a monoclinic cell, as shown in Figure 5.1. Lattice
vectors a and b have equal length (2.82 Å) and form an angle of 60º. Its structure
is shown in Figure 5.3 where the pink atoms are the elements of hydrogen and the
gray atoms represent palladium. The hydrogen atoms lay 0.81 Å above and below
the palladium atoms. These hydrogen atoms orient themselves around the palladium
atoms in triangles offset by an angle of 60º so that when seen from above a hexagonal
pattern forms.

Lastly, the obtained phonon dispersion curves for the different choice of k-point
densities is shown in Figure 5.5. We also show the Eliashberg spectral function and λ

for the 3000 kppa case.
The results for the different values of λ, ωlog and consequently Tc, for different

k-grids of this and all other materials discussed are shown in Table 1.

Figure 5.1: Monoclinic crystal system unit cell.
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Figure 5.2: H2Pd Brillouin zone with the path along high-symmetry points highlighted.

Figure 5.3: H2Pd material visualized from the z (top panel) and x (bottom panel)
directions respectively.
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Figure 5.4: Electronic band structure and density of states (DOS) of H2Pd.
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Figure 5.5: H2Pd phonon spectra for 4 different values of k-point densities, namely
500, 1000, 1500 and 3000. The Eliashberg spectral function, α2F (in blue), and λ (in
red) are shown for the 1500 case.
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5.3 TiTeS

This material composed of titanium, tellurium and sulfur belongs to the hexagonal
crystal system shown in Figure 5.6 with a lattice parameter of 3.52 Å. The crystal
structure is shown in Figure 5.8 where the yellow, blue and brown atoms represent the
sulfur, titanium and tellurium elements respectively. The atoms arrange themselves in
three planes with the sulfur atoms 1.23 Å above the titanium ones. The tellurium atoms
are the lowest plane, 1.89 Å below the middle titanium plane. The band structure
and density of states can be seen in Figure 5.9. The obtained phonon frequencies, the
Eliashberg spectral function (in blue) and the integrated coupling constant λ (in red)
for a kppa of 3000 is shown in Figure 5.10. The obtained λ, ωlog and consequently Tc

are shown in Table 5.1.

Figure 5.6: Hexagonal crystal system unit cell.
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Figure 5.7: TiTeS Brillouin zone with the path along high-symmetry points highlighted.

Figure 5.8: TiTeS material visualized from the z (top panel) and x (bottom panel)
directions respectively.
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Figure 5.9: Electronic band structure and density of states (DOS) of TiTeS.
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Figure 5.10: TiTeS phonon spectra for 4 different values of k-point densities, namely
500, 1000, 1500 and 3000. The Eliashberg spectral function, α2F (in blue), and λ (in
red) are shown for the 1500 case.
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5.4 Tl2Pb

The Tl2Pb cell is of the monoclinic type with lattice parameters a of 4.69 Å and b

6.71 Å, and forming an angle of 135◦.
The material’s structure can be seen in Figure 5.13 where the grey atoms are lead

while the beige ones represent the thallium atoms. In this material the thallium atoms’
plane sits 2.61 Å above and below the lead plane. From this arrangement of the
atoms the band structure and density of states obtained can be seen in Figure 5.14
and the phonon dispersion curves with the Eliashberg spectral function (in blue) and
the integrated coupling constant λ (in red) are shown in Figure 5.15. This material
took the longest to run calculations on, this can be explained by the massive atoms
with many electrons present in its structure as well as the low symmetry of it’s unit
cell compared to the other materials.

Figure 5.11: Monoclinic crystal system unit cell.
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Figure 5.12: Tl2Pb Brillouin zone with the path along high-symmetry points high-
lighted.

Figure 5.13: Tl2Pb material visualized from the z (top panel) and x (bottom panel)
directions respectively.
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Figure 5.14: Electronic band structure and density of states (DOS) of Tl2Pb.
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Figure 5.15: Tl2Pb phonon spectrum for 4 different kppa values of 500, 1000 and 1500.
The spectral function α2F and λ shown are for the kppa=1500 case.
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5.5 NiS

This material forms an hexagonal unit cell with vector a lattice parameter a of length
3.55 Å containing two nickel and two sulfur atoms inside it. In Figure 5.18 the yellow
atoms are sulfur and the grey ones are nickel. These atoms arrange themselves in two
hexagons with alternating nickel and sulfur atoms. These two hexagons are stacked on
top of each other at a distance of 2.20 Å, with the alternating nickel and sulfur atoms
of each layer having a height difference of 0.71 Å. The Brillouin zone in Figure 5.17
shows the reciprocal vectors and the path considered when making the band structure
and density of states plot shown in Figure 5.20 as well as the phonon frequencies with
the Eliashberg spectral function (in blue) and the integrated coupling constant λ (in
red) in Figure 5.20.

Figure 5.16: Hexagonal crystal system unit cell.
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Figure 5.17: NiS Brillouin zone with the path along high-symmetry points highlighted.

Figure 5.18: NiS material visualized from the z (top panel) and x (bottom panel)
directions respectively.
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Figure 5.19: Electronic band structure and density of states (DOS) of NiS.
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Figure 5.20: NiS phonon spectrum for 4 different kppa values of 500, 1000, 1500 and
3000. The spectral function α2F and λ shown are for the kppa=1500 case.
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5.6 CuAgTe2

This material forms in an orthorhombic lattice shown in Figure 5.21 with four atoms
in its unit cell. In this unit cell the lattice parameter a has a length of 3.14 Å while
the b lattice parameter has length 4.15 Å. In the structure shown in Figure 5.23 the
grey atoms represent silver while the blue ones represent copper and the beige atoms
tellurium. This structure can be viewed as two layers, a top layer with alternating
copper and tellurium atoms with a height difference of 1.62 Å between them and a
bottom layer with alternating silver and tellurium atoms with a height difference of
1.74 Å between them. Both layers are separated by a distance of 2.42 Å. The obtained
band structure and density of states is shown in Figure 5.24. The phonon spectrum
with the Eliashberg spectral function (in blue) and the integrated coupling constant λ
(in red) in shown in Figure 5.25. From this plot we can see the presence of multiple
imaginary modes, indicating that it is not dynamically stable. These imaginary modes
were obtained in all runs regardless of the grid, and other parameters used.

Figure 5.21: Orthorhombic crystal system unit cell.
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Figure 5.22: CuAgTe2 Brillouin zone with the path along high-symmetry points
highlighted.

Figure 5.23: CuAgTe2 material visualized from the z (top panel) and x (bottom panel)
directions respectively.
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Figure 5.24: Electronic band structure and density of states (DOS) of CuAgTe2.
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Figure 5.25: CuAgTe2 phonon spectrum for 4 different kppa values of 500, 1000, 1500
and 3000. The spectral function α2F and λ shown are for the kppa=1500 case.
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5.7 Discussion

From the results of Table 5.1 we can see that four materials belong to the weak coupling
regime λ ∼ 0.4 with Tl2Pb being the exception (λ ∼ 0.9). Also noticeable is the fact
that some materials’ parameters (λ and ωlog) and Tc converge rather rapidly (for
example TiTeS and NiS) while for other materials the values oscillate more. For most
of the studied materials we see that the obtained transition temperature converges at
a kppa value of 1500. The transition temperatures for different kppa values of each
material oscillate on average 30% with respect to the last performed run (kppa=3000).
Due to the low transition temperatures obtained these oscillations amount mostly
to less than 1K. Mostly even with a kppa of 1000, we already get values close to
the converged value. However, as the materials chosen all have relatively low Tc’s,
this conclusion may not be general, and further tests are needed. Sadly, all these
materials studied here have very low transition temperatures and do not show promise
as practical superconductors.
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Material Kppa k-grid λ ωlog(K) Tc(K)
H2Pd 500 10x10x1 0.44 623.1 4.5
H2Pd 1000 12x12x2 0.42 450.9 2.6
H2Pd 1500 14x14x2 0.51 367.7 4.8
H2Pd 3000 18x18x4 0.44 483.7 3.4
TiTeS 500 10x10x1 0.35 187.2 0.3
TiTeS 1000 12x12x2 0.34 206.0 0.3
TiTeS 1500 14x14x2 0.35 200.2 0.3
TiTeS 3000 18x18x4 0.35 203.0 0.4
Tl2Pb 500 12x8x1 1.03 39.8 2.9
Tl2Pb 1000 14x10x2 0.9 45.8 2.7
Tl2Pb 1500 16x12x2 0.87 46.0 2.5
Tl2Pb 3000 20x14x4 0.82 50.3 2.5
Ni2S2 500 8x8x1 0.41 221.0 1.0
Ni2S2 1000 10x10x2 0.45 193.1 1.5
Ni2S2 1500 12x12x2 0.44 209.7 1.4
Ni2S2 3000 16x16x4 0.43 224.1 1.4
CuAgTe2 500 10x8x1 0.56 49.2 0.9
CuAgTe2 1000 12x10x2 0.44 43.5 0.3
CuAgTe2 1500 14x10x2 0.43 57.1 0.4
CuAgTe2 3000 18x14x2 0.44 53.4 0.4

Table 5.1: Table of results listing from left to right the material, k-points per reciprocal
atom (kppa), the corresponding grid of k points used, the superconducting coupling
parameters λ, ωlog and finally the critical transition temperature obtained with equation
2.87.



Chapter 6

Conclusions and Future Work

In this work the band structure, density of states, phonon’s frequency spectrum with
the density of states, electron-phonon coupling constant, logarithmic frequency average
and critical temperature to transition to a superconductor were obtained for five novel
2D materials. From this work we can conclude that relatively small kppa values are
enough to screen a 2D material’s electron-phonon coupling constants and obtain a
good estimate for its critical transition temperature.

These grids give a good estimate for the λ and ωlog and are sufficient to obtain good
results, doing so more quickly than larger grids. The five novel materials approached in
this work show transition temperatures between 0.4K and 3K. Of these five materials,
three belonged to the weak coupling regime (λ ∼ 0.4) with the material Tl2Pb having
the highest value. In the CuAgTe2 case, all the runs performed show imaginary
frequencies, which indicates that it is not dynamically stable.

As aforementioned, in the motivation, this whole process can be scripted thus
allowing an automated and hands-off search for novel 2D superconductors.
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