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Abstract

With the increase of widely available digital streaming options for music, the
interest in the field of music emotion recognition has seen the same increasing
effect. This field is still dominated by classical approaches that use feature engi-
neering to classify the perceived emotion of a song. Furthermore, in recent years,
there has been a surge of deep learning approaches that use neural networks to
tackle this same problem. However, these approaches suffer from various prob-
lems such as the use of small, private, or low quality datasets, as well as the use
of features not designed for emotion classification, amongst others.

This work proposes a set of three new datasets, denominated Music Emotion
Recognition - Next Generation (MERGE), with three components: audio, lyrics
and bi-modal. These datasets are an extension of the previous 4QAED dataset
(Panda, 2019) and achieved F1-scores of 71% using the same feature set as 4QAED,
while having a much greater size.

Furthermore, in this work, we propose a set of new emotionally relevant features
to help tackle the problem aforementioned using techniques such as automatic
music transcription with tools such as Magenta MT3 (3.5.2). From this frame-
work, a set of features extracted from the outputted MIDI file are proposed.

Finally, using the percussion stem extracted from Demucs (3.6.3), a novel set of
features extracted from the percussion track is also proposed. A subset of this
novel set of features achieved an overall F1-Score of 74.1% on the MERGE_Bimodal_-
Complete dataset (See Section 4.1.2 for further details on the datasets).

Keywords

Music emotion recognition, Music information retrieval, Audio analysis, Feature
engineering, Music, Emotion
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Chapter 0

Resumo

Com o aumento das opções de streaming digital de música amplamente disponíveis,
o interesse no domínio do reconhecimento de emoções musicais tem registado o
mesmo efeito crescente. Este domínio ainda é dominado por abordagens clássicas
que utilizam a engenharia de características musicais para classificar a emoção
sentida de uma canção. Além disso, nos últimos anos, tem havido uma onda de
abordagens de deep learning que utilizam redes neurais para resolver este mesmo
problema. No entanto, estas abordagens sofrem de vários problemas, como a
utilização de conjuntos de dados pequenos, privados ou de baixa qualidade,
bem como a utilização de características não concebidas para a classificação de
emoções, entre outros.

Este trabalho propõe um conjunto de três novos conjuntos de dados, denomina-
dos Music Emotion Recognition - Next Generation (MERGE), com três compo-
nentes: áudio, letras e bimodal. Estes conjuntos de dados são uma extensão do
anterior conjunto de dados 4QAED (Panda, 2019) alcançaram F1-Scores de 71%
usando o mesmo conjunto de características do 4QAED, tendo no entanto um
tamanho muito maior.

Além disso, neste trabalho, propomos um conjunto de novas características emo-
cionalmente relevantes para ajudar a resolver o problema acima mencionado, uti-
lizando técnicas como a transcrição automática de música com ferramentas como
o Magenta MT3 (3.5.2). A partir desta framework, é proposto um conjunto de car-
acterísticas extraídas do ficheiro MIDI produzido.

Finalmente, utilizando a faixa de percussão extraída do Demucs (3.6.3), é também
proposto um novo conjunto de características extraídas da faixa de percussão.
Um subconjunto deste novo conjunto de características obteve uma pontuação
F1 global de 74,1% no conjunto de dados MERGE_Bimodal_Complete (ver Secção
4.1.2 para mais detalhes sobre os conjuntos de dados).

Palavras-Chave

Reconhecimento de Emoção em Música, Recuperação de Informação em Música;,
Análise de áudio, Criação de features, Música, Emoção
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Chapter 1

Introduction

Ever since the beginning of humanity, humans and music have always been an
inseparable duo. Humans have used music for many different purposes through-
out the years, from rituals, entertainment, connecting with other people, but most
important of all, expressing their emotions.

Music can convey a wide range of emotions, from sadness to happiness, anger
to peacefulness. In reality, one piece of music is able to convey a wide range
of different emotions. With music pieces having this kind of ability, being able
to understand what characteristics of a specific song or piece help convey these
emotions is paramount.

Before, while music might have been reserved for the select few that could, for
example, see it performed in theaters and orchestras, it rapidly became increas-
ingly common to have cassette tapes of your favorite artists and albums. Still,
this time period had the problem of listeners only having access to small sets of
the whole library of music available. Nowadays, music is universal and exists
in every part of society, moreover, every passing year having access to music is
getting increasingly easier.

These days, with the appearance of digital streaming, not having access to mu-
sic is no longer a problem. Any person is able to use any of the major digital
streaming services, such as Spotify or Apple Music (Variety, 2022), and instantly
get access to tens of millions of songs.

However, with the increase of the amount of available data, many problems
arose, such as finding ways to categorize this huge library of music. There are
many different possible types of classification, for example classifying based on
the music genre or what type of music piece it is, such as acoustic or not. One of
these types of classification is emotion classification.

The field of Music Emotion Recognition (MER) aims to tackle this problem, by
creating a set of tools involving machine learning (ML) techniques to classify the
emotion, or emotions, of a certain song. There are also subcategories of MER,
such as Static MER, which aims to identify the dominant emotion of the com-
plete song, as well as Music Emotion Variation Detection (MEVD), which aims to
identify the changes in emotion in a song.

1



Chapter 1

The field of MER has many practical uses, such as the automatic creation of
playlists based on emotion, music recommendation, amongst others.

1.1 Problem and motivation

As stated before, with the massive growth in the amount of available music in re-
cent years, there have been more and more efforts in the way of categorizing and
enabling filtering of this huge amount of data to make it possible to cater to ev-
ery person’s interests. This has been expressed in many ways, such as automatic
playlist generation, amongst others.

However, due to the nature of music, it is very hard to categorize songs, partly
due to the sheer amount of variables that can change from song to song, such
as singer, the number of instruments, notes, tempo, beats per minute, amongst
many other characteristics. Sometimes, even within the same song, there are sud-
den changes that make any classification, especially emotion classification, espe-
cially challenging for even humans, let alone automatic classification systems.

The lack of audio emotionally-relevant features in the MER field is also a problem.
Most approaches use a similar set of features that was originally proposed to
address other audio analysis problems (e.g. speech recognition) and often lack
emotional relevance (Panda et al., 2020a).

Furthermore, finding and creating datasets (particularly larger ones) with high
quality annotations has proven to be a very hard task, with most of the studies
being done on smaller datasets (less than a thousand songs). This also makes
testing other approaches such as Deep Learning (DL) that require a huge amount
of data practically impossible, with most studies having to resort to techniques
such as data augmentation in order to obtain sufficient results.

Moreover, since there is a degree of subjectivity in emotion perception, it is also
paramount that this is tackled properly. Efforts should be conducted to minimize
its impact, such as having a high rate of agreement between annotators of the
dataset.

This emotion classification problem has been tackled in many ways since 2003
(Feng et al., 2003), but even the simple task of solving basic emotion classifica-
tion (such as classifying one song within 5 possible categories) has proven im-
mensely difficult, with a “glass ceiling” of around 70% accuracy having been
reached (Panda et al., 2020a). This result was obtained in the Music Informa-
tion Retrieval eXchange (MIREX) task (a benchmark in the field), with this task
consisting of classifying songs onto five possible categories.

There has also been research conducted on more complex problems such as multi-
label classification or MEVD, with these approaches reporting even worse results
(around 20%). (Aljanaki et al., 2017; Wu et al., 2014).

Thus, it is important to tackle the aforementioned basic problems before aiming
to solve the complex ones. First, feature engineering and expansion/creation of
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datasets should be conducted. Afterwards, the next step is the exploration of
Static MER (3.4) using a low number of classes (e.g. four). Finally, the problem
of MEVD (A.1) should be addressed, building on the outcomes of the research
conducted in Static MER.

1.2 Objectives and approaches

Thus, the objectives of this thesis that aim to address the aforementioned prob-
lems can be summarized as such 1:

1. Create new audio features particularly in the category of musical texture,
using tools for melody transcription and instrument identification. Further-
more, create novel features using the isolated percussion stem of the track.

2. Update and enlarge current datasets, both for Static MER and also for MEVD.

Table 1.1 summarizes all the objectives ranked on a priority scale of High, Medium
and Low, representing their importance in regards to this work, with all possible
efforts being made to accomplish them. Objectives with low priority were not
possible to explore in this work, as time did not permit their exploration.

Objective Priority
Static MER - Research and development of audio analysis and

feature engineering approaches High

Update current Static MER and MEVD Datasets High
Static MER - Research and development of audio analysis and

feature engineering approaches involving DL Low

MEVD - Research and development of audio analysis and
feature engineering approaches involving DL Low

MEVD - Research and development of audio analysis and
feature engineering approaches Low

Table 1.1: Objectives of this work.

In order to better explain the scope of this work, fulfilling the project’s objectives
should answer the following questions:

• Are the newly created MERGE datasets viable for classical ML approaches
and DL approaches?

• Do the newly contributed features help in the problem of emotion classifi-
cation in Static MER?

1Two previous objectives were removed due to changes in the main focus of this work (Feature
Engineering for MEVD approaches and creating a web application for MER).
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1.3 Results and contributions

In this section, the main results obtained are presented, as well as the main con-
tributions and limitations found during this work.

The main results obtained were:

• Testing of the new datasets and achieving reasonable F1-Scores when com-
pared to 4QAED.

• Achieving 74.1% F1-Score in MERGE_Bimodal_Complete using 250 fea-
tures from MERGE_All feature set (See Section 4.1.2 for further details on
the datasets).

As for the main contributions made with this work:

• Validation of the new MERGE datasets, which achieved reasonable F1-scores
and thus provide a good option for future DL approaches;

• A new set of features extracted from the percussion track and MIDI files
that proved to be relevant for MER.

The main limitations found during this work are:

• There is much confusion between the third and fourth Russell’s emotion
quadrants (See Section 2.1.3), which is something classical ML approaches
are having a lot of difficulty solving.

1.4 Organization and planning

1.4.1 Experimental Environment

The presented experiments were mostly conducted on a Graphical Processing
Unit (GPU) server, shared with the team. Due to the very demanding nature of
most approaches experimented with, GPUs are required to properly develop and
evaluate these in reasonable time. The specifications of the server are:

• Intel Xeon Silver 4214 CPU @ 2.20GHz x 48

• 3x NVIDIA Quadro P5000 16GB

• 7x NVIDIA RTX A5000 24GB

• 320GB RAM
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However, this is a shared server with other students, which means that not all the
resources are available on demand. This also means that there might be heavier
and lighter loads in the server, changing the time it takes to complete the tasks.

The methodologies were mostly conducted in a Python 3.9.7 virtual environment
for replicability purposes. Libraries such as numpy and pandas were utilized for
data manipulation, as well librosa to manipulate audio signal data and scikit-learn
was utilized for calculating the relevant metrics for analyzing performance.

1.4.2 Organization

First semester

Due to personally already having experience with the topics that this work en-
compasses from working on various projects from 2019 to 2022, the literature
review for the creation of the State of the Art was planned to be done in the first
one and a half months of this semester. Afterwards, the main focus would be
expanding and updating the current datasets, while at the same time gathering
information in regards to more specific topics such as feature engineering and
audio analysis for both Static MER and MEVD datasets for the State of the Art.

After the objective of updating the current dataset had been completed, an evalu-
ation of the current algorithms based on classical feature engineering techniques
would be required to see the impact of the expansion of the datasets in the classi-
fication results.

This first semester went according to plan, with allowing not only for a deep dive
on the current literature, the current used features, but also allowing for initial
experimentation with tools and frameworks that will be used in the following
semester to create new features for the MER field.

Work was also conducted in looking at the current algorithms and current ways
to extract features, thus learning how they work so that in the second semester
the work of creating new features could begin straight away.

The work of expanding the datasets was also almost partially concluded. Re-
garding the Static MER dataset, data acquisition was completed and the annota-
tions are almost finalised. As for the MEVD dataset, data acquisition was also
completed. However, it is likely that the annotation process will not be finalised
during the course of this thesis, given the complexity of the manual annotation
process involved.

Second semester

In the second semester, the work regarding the expansion of the datasets was fi-
nalized. Furthermore, verifications were done in order to ensure that throughout
all the annotations and merging processes that everything had worked out cor-
rectly. Some minor rectifications had to be done (e.g. ensuring the right artist
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and song title were present in the metadata). Meanwhile while the annotation
process was being finalized, work was done starting to extract the features from
the percussion track and the MIDI files.

It also became clear that the expansion of the MEVD dataset would not be com-
plete during the time-frame of this work, and as such, the objective of creating
new features for MEVD was removed from the scope of this work. This also
meant that work exploring features related to form and chorus detection ap-
proaches was no longer pursued. Nonetheless, the work regarding this topic
can be found in Appendix A.

The overall planning was followed, albeit delayed a few months. The magni-
tude of this work proved a setback. There was also the setback of the removal of
the MEVD objective from this work. Furthermore, there was one thing that was
unaccounted for in the original planning, which was the time it would take to
do hyper-parameter optimization and result gathering. As it was chosen that for
each combination of features hyper-parameter optimization would be done, this
took several days.

Figures 1.1 and 1.2 respectively represent the Gantt charts for the first and second
semester, with the first figure containing both the estimated and the real effort for
the first semester and the second figure displaying the same information regard-
ing the second semester.

Overall, the timelines set in the beginning of the semester were accomplished,
minor a few setbacks due to the magnitude of this work. However, certain tasks
initially proposed in the Gantt chart were removed from the scope of this work,
and as such, there are tasks that do not have the real effort taken displayed in the
chart.
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Figure 1.1: Estimated and real effort for the first semester.
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Figure 1.2: Estimated and real effort for the second semester.
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1.5 Outline

The following chapter presents an introduction to important concepts for this
work, such as the concept of emotion (Section 2.1) and musical dimensions (Sec-
tion 2.2).

In the next chapter, a review of the state of the art of the MER field is presented,
particularly the most common used datasets for MER (Section 3.1), followed by
a review on the most commonly used features (Section 3.2). Furthermore, there
is a section regarding the proposal of new features for this work (Section 3.3).
Finally, the final two sections of the following chapter give a brief overview on
Automatic Music Transcription (AMT) frameworks (Section 3.5) as well as music
source separation frameworks (Section 3.6).

In Chapter 4, an overview of the methodology for the dataset expansion used in
this work is provided as well as the information regarding the final datasets.

Chapter 5 provides an explanation of used methodology in this work, from the
preliminary steps, from the first steps of audio pre-processing to the final classi-
fication and evaluation metrics.

Finally, in Chapter 6, a comparison with the 4QAED dataset is provided (Section
6.1) as well as testing the novel datasets with combinations of the new set of
features (Section 6.2).

Appendix A provides information regarding the state of the art MEVD approaches,
as well as information regarding possible new frameworks that might help in aid-
ing to solve the MEVD task. This is added as an appendix due to being removed
as one of the main focuses of this work.
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Chapter 2

Background concepts

In this chapter, an explanation of important background concepts for MER is pro-
vided. This explanation pertains to what is emotion, different types of emotion,
models to classify emotion, as well as introducing important musical concepts,
such as melody, percussion, amongst others.

2.1 Emotion

Grasping the concept of emotion has always been a challenge for humans. It
has been a concept debated for hundreds of years, and a consensus on a concrete
definition has not been reached yet (Dixon, 2012). In the following sections of this
work there will be a presentation related to emotion, such as the various types of
emotions as well as the various models that exist for classifying emotion.

2.1.1 Defining emotion

One way to try and understand the concept of emotion is by looking at the origin
of the word. Etymologically 1, emotion originates from the french word émotion
(to stir up) with this word coming from the Latin word emovere (move out, re-
move, agitate).

Emovere is composed by the form “ex” (out of, from) and “movere” (to move).
Emotion first entered the English vocabulary in the 16th century.

Ever since the article “What is an Emotion” by Wiliam James was published in
1884 (James, 1884), many attempts have been made at providing a concrete def-
inition for emotion, however, they all have the same problem. Emotion from a
literature standpoint is a very ambiguous concept, as Thomas Dixon stated: “the
problem is not that the term ‘emotion’ has no clear meaning, but that it has many
meanings”. (Dixon, 2012)

1https://www.etymonline.com/word/emotion
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In the Merriam-Webster dictionary 2, emotion is defined as:

1. • a: a conscious mental reaction (such as anger or fear) subjectively expe-
rienced as strong feeling usually directed toward a specific object and
typically accompanied by physiological and behavioral changes in the
body

• b: a state of feeling

• c: the affective aspect of consciousness

2. • a excitement

• b: (obsolete): disturbance

In the next sections, the different types of emotions are discussed as well the types
of models used in MER literature to categorize emotion.

2.1.2 Different types of emotion

In the MER field, emotions are usually divided into three categories: expressed,
perceived and felt (also called induced) emotions: (Gabrielsson, 2001)

• Expressed emotions: Refers to the emotion that the composer is trying to
convey in the piece.

• Perceived emotions: Refers to the emotion the listener apprehends from lis-
tening to the piece, which can be, and often is, different than the expressed
emotion.

• Felt/Induced emotions: As the name suggests, refers to the emotion that is
felt by the listener while listening to a specific piece.

Most of the time, the emotions expressed by a composer in the piece are also the
emotions that the listener identifies, however this is not the case for the induced
emotions. Since the induced emotions depend on the person’s characteristics
and personality, they might change from person to person and even the same
person in different circumstances of life might feel different emotions from the
same piece (Yang and Chen, 2012).

One example of this is described as the “paradox of negative emotion” whereby
“music described in terms of negative emotions (e.g. sadness, grief, despair) is
often judged as enjoyable.” (Pannese et al., 2016)

This also raises problems in terms of conducting studies in the MER field, as not
all studies deal with the same kind of emotion, and with induced emotions being
more subjective when compared to perceived emotions (Pannese et al., 2016), this
can lead to the creation of poor datasets. This requires that the people involved

2https://www.merriam-webster.com/dictionary/emotion
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in these studies are instructed to focus on perceived emotion rather than induced
emotion.

As such, most of the work on the MER field is focused on perceived emotion, as
that is the emotion that has the most agreement between the various listeners.
However, there is still subjectivity, so it is paramount that measures are taken in
the creation of the datasets in order to minimize this subjectivity (Section 3.1).

2.1.3 Models for emotion classification

Throughout the years, many models and new ways of classifying emotions have
been proposed. The models that are used to classify emotion can be split into
two categories: discrete models, in which emotions are represented by words or
groups of words, and dimensional models, in which emotions are classified in a
discrete or continuous multi-dimensional space.

Categorical models

The models in this category function on the premise that emotions are distinct
from one another and can be separated into categories, a concept first introduced
by (Ekman, 1992).

Ekman’s Model

This model classifies emotions into six categories: anger, disgust, fear, happiness,
sadness and surprise. These are considered the basic emotions from which all
the others derive from: “other non-basic emotions are combinations of the basic
emotions” (Ekman, 1992).

However, this model was not developed with musical studies in mind, but with
the intent of classifying different facial expressions. Thus, it is not as important in
the MER field as it is missing some of the emotions required for the MER studies
(e.g. calm) while having some that are not applicable (e.g. disgust, surprise).

Hevner’s Adjective Circle

(Hevner, 1936) developed a method of grouping similar emotions into various
groups. In total there are 67 adjectives, split into 8 groups of varying sizes dis-
played in a circular pattern, with the adjectives in the same group sharing close
meanings. Furthermore, groups next to each other have a higher similarity in
terms of emotion. Figure 2.1 showcases this circle.

However, this approach has a few problems, mainly the lack of balance in the
number of adjectives of each group and also the fact that this model was proposed
with classical music in mind, which may lead to some of the adjectives no longer
being associated with current music.

Over the years there have been a few proposed adjustments to the Hevner’s ad-
jective circle, such as (Farnsworth, 1954) and (Schubert, 2003).
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Figure 2.1: Hevner’s Adjective Circle (Hevner, 1936).

Dimensional models

In dimensional models, emotions are mapped onto a multi-dimensional space,
usually with 2 dimensions. This also enable judging the similarity between two
audio clips based on their distance in the plane.

The most famous model of this type, and one of the most influential in the MER
field (Laurier, 2011), is the model proposed by (Russell, 1980), known as the Rus-
sell Circumplex Model of Emotion. It has received support by several studies.
(Posner et al., 2005)

Russell’s Circumplex Model of Emotion

Russell proposed a two-dimensional model, in which the two proposed dimen-
sions are: valence, also known as pleasure-displeasure, and arousal. Valence rep-
resents how pleasurous an emotion is, and arousal represents the intensity of the
emotion.

The result, represented in Figure 2.2, is a two-dimensional plane (arousal-valence)
where the X-axis represents valence and the Y-axis represents arousal. The result-
ing four quadrants can be roughly defined as:

1. Q1 - Positive valence and positive arousal, referring to happy and energetic
emotions, such as happiness and delight.

2. Q2 - Negative valence and positive arousal, referring to frantic and ener-
getic emotions, such as anxiety or fear.

3. Q3 - Negative valence and negative arousal, referring to melancholic and
sad emotions, such as depression or sadness.
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Figure 2.2: Russell’s Circumplex Model of Emotion (Russell, 1980).

4. Q4 - Positive valence and negative arousal, referring to calm and positive
emotions, such as serenity.

One characteristic of this model, also showcased in Figure 2.2, is that emotions
are placed away from the center. This is because emotions close to the center
are often considered ambiguous and the emotions are not easily identifiable. The
description provided will be brief, with a more thorough analysis of the musical
dimensions being provided in (Benward and Saker, 2008; Laitz, 2007)).

2.2 Musical dimensions

In order to help understand how music and emotion are related, it is important
to have a better understanding of the fundamental music dimensions and how
they are organized, as described in this section.

Musical dimensions are organized mostly into eighth categories (Owen, 2000),
with each representing a concept. In this section a brief description of each of the
category will be provided, based on the current literature. These eight categories
are: melody, harmony, rhythm, dynamics, tone color (or timbre), expressivity,
musical texture and musical form.

It is noteworthy that the organization of these dimensions is not strict, meaning
that many of the musical features are connected and can interact and touch other
dimensions, and as such it can be hard to pinpoint to which musical category a
certain feature belongs.
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2.2.1 Melody

Melody refers to the horizontal progression of musical tones or pitches, perceived
as a singular musical entity. This idea is also supported by Johann Philipp Kirn-
berger, a student of Bach, who regarded melody as the essence and ultimate pur-
pose of music. Melody can be understood through multiple attributes, summa-
rized in Table 2.1.

Name Description
Melodic Arrangement How melodies are positioned, e.g., in se-

quence or counter-melodies.
Melodic Movement and Contour Patterns of notes in terms of pitch direction

and the shapes they create.
Pitch Perception of sound as “higher” or “lower”

related to frequency.
Pitch Range The range from the highest to lowest notes

in a melody.
Register Perceived “height” of a sound; classified as

high, middle, or low.
Melodic Features Features added to enrich the melody or

connect it to others.

Table 2.1: Summary of the melodic attributes of music.

2.2.2 Harmony

Harmony is the “vertical” dimension of music, contrasting with melody’s hori-
zontal aspect. It concerns the combination of different pitches (or notes) to cre-
ate chords. The term “harmony” has its roots in the Greek language, signifying
“agreement or concord of sounds” or a “combination of tones pleasing to the ear”
3.

Analyzing the harmony of a song involves the study of chords, made of several
notes played simultaneously, and of chord progressions, which are the sequences
of chords arranged together, as illustrated in Figure 2.3.

Figure 2.3: A 3-note chord in red and a chord progression of 6 chords in blue.
Chord names are displayed at the top using the Jazz notation system proposed
by Klaus Ignatzek.

Table 2.2 provides an overview of the harmonic characteristics of music.
3https://www.etymonline.com/word/harmony
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Name Description
Harmonic Rhythm or Harmonic Tempo Rate of chord changes relative to the

note rate.
Harmonic Progression Sequence of musical chords guiding

the melody’s direction.
Modulation Process of altering the key center in

a piece.
Harmonic Perception Relative roughness or smoothness

of a sound; consonant sounds are
pleasing while dissonant sounds are
not.

Table 2.2: Summary of the harmonic characteristics of music.

2.2.3 Rhythm

Rhythm can be described as the musical element representing “time”, involving
patterns of elongated and abbreviated sounds and periods of silence. Rhythm
embodies an organized sequence of contrasting elements. Multiple facets shape
rhythm, encompassing elements like tempo, duration, and meter.

Table 2.3 provides an overview of the rhythm attributes of music.

Name Description
Rhythm Types Can be simple or complex, regular or irregular.
Note Values and Rests Denotes note length or duration (e.g., semibreve, qua-

ver, semiquaver).
Rhythmic Devices Devices shaping the music, often hinting at its genre

(e.g., riff, repetition, syncopation).
Rhythmic Layers Grouping of instruments in a piece (e.g., instrumental

sets and vocals).
Duration Length a sound or silence persists.
Beat Consistent pulse in music; can be strong or weak.
Metre Organization of beats in an ordered sequence.
Tempo Speed of the beat; can vary from fast to slow or

change.

Table 2.3: Summary of the rhythmic attributes.

2.2.4 Dynamics

Dynamics in music refer to the range between the loudest and softest notes in
a composition. All elements linked to the relative volume or quietness in music
come under the overarching category of dynamics. Notable aspects of dynamics
encompass the varying degrees of loudness and softness, the contrast between
loudness levels, and the emphasis or accent placed on particular notes.

Dynamics annotations in musical scores are invariably relative. For instance, they
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might suggest a section should be played louder, but they do not stipulate a pre-
cise loudness level. Musicians leverage dynamic changes to maintain interest and
engage their audience.

Table 2.4 provides an overview of the main attributes tied to dynamics in music.

Name Description
Dynamic Levels Loudness levels in a piece (e.g.,

forte, piano).
Accents and Changes in Dynamic Levels Gradual shifts in dynamics (e.g.,

crescendo). Emphasis on particular
notes (e.g., sforzando).

Table 2.4: Summary of the attributes related with dynamics.

2.2.5 Tone Color or Timbre

Tone color, often termed as “timbre”, signifies the perceived quality or attributes
of a sound, such as a musical note. It is the distinctive tone color of a sound that
lets a listener discern between various sound sources. For instance, one could
differentiate between two instruments playing similar notes, separate one hu-
man voice from another, or even distinguish between instruments of the same
category, like telling apart a trumpet from a saxophone.

Table 2.4 provides a breakdown of the main primary attributes influencing tone
color in music.

Name Description
Instrument Materials Influence of material and shape on

sound (e.g., wood, metal, vocal).
Playing Methods Technique to elicit sound from the in-

strument (e.g., pluck, hit, blow).
Instruments’ and Voices’ Types Categorization of the sound source (e.g.,

strings or percussion; soprano or tenor).
Combinations and Types of Sounds Nature of instruments (acoustic or elec-

tronic) and their grouping in ensembles
(e.g., bands, orchestras, Jazz trio).

Table 2.5: Summary of the elements influencing tone color.

Drawing a parallel to visual arts, sounds are said to have a palette of tone col-
ors. Each musical instrument possesses a unique tone color on this spectrum.
Composers utilize and amalgamate these tone colors, forging contrasts and novel
combinations, in a manner akin to how an artist paints a scene.
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2.2.6 Expressivity

Expressive techniques pertain to the methods a performer employs to play a mu-
sical composition, especially the techniques used to articulate a unique style or
a particular interpretation of a style. Expressive techniques, combined with dy-
namics, provide “soul” or emotional depth to music.

Over time, various expressive techniques have emerged. These could be tech-
niques linked with instruments, vocals, ornamentations, pace alterations, or spe-
cific methods that tie successive notes. Coupled with other musical elements,
these techniques substantially influence musical styles, from classical Western
compositions to global genres like Indian ragas, African zouk, or Portuguese
fado. Each style has its hallmark expressive techniques and instruments.

Table 2.6 provides a summary of the primary attributes of expressive techniques:

Name Description
Tempo (changes) Speed of the music and its al-

terations to influence expres-
sive quality.

Stylistic Indications Terms guiding the manner of
performance (e.g., legato, ru-
bato).

Articulation Manner of playing specific
segments or notes (e.g., stac-
cato, slur).

Ornamentation Embellishing notes with spe-
cial features (e.g., glissando,
trills).

Instrumental, Vocal, and Electronic Techniques Methods to produce distinct
sounds for a style (e.g., vi-
brato) or electronic modifica-
tions (e.g., vocoders).

Table 2.6: List of expressive techniques attributes.

2.2.7 Musical Texture

Musical texture pertains to the manner in which rhythmic, melodic, and har-
monic elements produced by musical instruments and voices intermingle in a
musical composition. It primarily deals with how musical lines or layers (which
could be one or several instruments serving a similar function) in a song are com-
bined and related. A single musical layer can comprise several performers ad-
hering to the same melody.

The texture of music can be classified based on (Benward and Saker, 2008, p. 146):

1. Density - Ranging from thin (as in a song by a solo guitar) to thick (like in
an orchestral piece with multiple lines of melody, rhythm, and harmony).
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2. Range - The distance between the lowest and highest tones in the composi-
tion.

The musical texture can also be defined based on the count and relationship of
layers, with monophonic, homophonic, and polyphonic being common classifi-
cations. There’s often a correlation between different musical elements, like an
increase in layers (leading to a thicker texture) typically being accompanied by a
rise in dynamics.

Table 2.7 summarizes the attributes of musical texture.

Name Description
Number of Layers, Density, and Range Pertains to the count of musical lines,

their density (thin or thick), and their
range (narrow to wide).

Texture Types Different layer combinations, includ-
ing monophonic (single layer), ho-
mophonic (multiple layers with a
dominant melody), and polyphonic
(several independent melodies).

Table 2.7: Summary of the musical texture attributes.

2.2.8 Musical Form

Musical form, also known as musical structure, describes the layout or struc-
ture of a composition, typically divided into various sections (Brandt et al., 2011).
These sections in a musical piece are often distinguished by changes in rhythm
and texture. A uniform rhythm and texture make the listener perceive the mu-
sic as a singular section. However, noticeable changes in these elements mark
boundaries, transitioning the piece into a new section.

Individual song elements each have unique functions and placements in a com-
position. Common sections include verses (varying lyrics), chorus (repeated melody
and lyrics), introductions, bridges (linking verses and chorus), and outros. In
genres like pop/rock or blues, solo sections featuring melodic lines (often impro-
vised) are prevalent. Figure 2.4 showcases the typical pop song structure.

Table 2.8 summarizes the attributes of musical form.
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Figure 2.4: Typical pop song structure.

Name Description
Song Elements Different sections that constitute a musical piece, such

as the introduction, verse, chorus, and bridge.
Organization Levels Rough categorization of musical form into levels like

passage (related to musical phrases), piece (pertaining
to the whole composition), and cycle (for larger compo-
sitions).

Basic Musical Forms Combining sections results in various forms, e.g.,
through-composed (no repetition), strophic (verse-
repeating), and binary (two contrasting sections).

Table 2.8: Summary of features defining musical form.
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Chapter 3

State of the art

This chapter presents an overview of important state of the art concepts, such as
review both on the research already performed in this area and the tools used.
It also presents an overview of the most used features in MER, as well as the
datasets used.

3.1 Datasets used for MER

As previously mentioned, in the MER field there is a severe lack of quality and
sizable datasets due to the difficulty in creating them. Thus, it is very hard to
compare different approaches and studies due to most of them using different
datasets.

The datasets are difficult to create because every audio snippet (in the case of
Static MER) or song (in the case of MEVD) needs to be manually annotated.
This is a very time consuming task, especially for MEVD. Furthermore, in the
case of Static MER snippets of songs are used, typically with only a few dozens
of seconds (e.g: 30 seconds), but in the case of MEVD complete songs are an-
notated. First the whole song has to be split into segments, and only then can
those segments be annotated like in the Static MER approach. This is also a very
labor-intensive task as protocols needs to be considered as to what constitutes
a new segment, if segments such as verse/chorus are also separated, amongst
others. Moreover, due to emotion subjectivity leading to inter-listener variabil-
ity, the snippet cannot be annotated by a single person. Thus, in order to create
good quality datasets, snippets are annotated by various annotators and then
only the snippets that have high agreement between annotators (for example, be-
ing placed in the same quadrant), will be kept and the others will be removed. Fi-
nally, it is also important to have diversity in various characteristics of the dataset,
such as having a good genre distribution, different artists, songs from different
years/eras, amongst many others.

Moreover it is also important to deal with factors relating to emotion subjectivity.
Thus it is necessary that in the creation of the datasets a few preemptive steps are
taken to minimize this problem. These include selecting songs not in the center
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of the Russell plane and validating the AllMusic annotations, amongst others.

Due to all these factors, it is not uncommon to have a big set of songs for annota-
tion, and after all the annotation process described above, finishing with a sub-set
of the original set with only a small percentage of the songs being kept.

Moreover, some studies also focus on a specific type or genre of music (e.g. only
classical music) which makes using those approaches in other scenarios unreal-
istic. In addition, there is also the problem that, in some of the works, private
datasets are used (e.g. (Laurier, 2011)), which makes replicating and verifying
the results and approaches nearly impossible.

There is also the problem aforementioned, related to the size of the datasets em-
ployed, with some of the works using very small datasets. For example, in the
work (Malheiro, 2017), only 133 songs were used. Moreover, there is a problem of
the datasets used being low quality, having issues such as low agreement in the
annotations, as showcased in (Panda et al., 2020a). One final problem with MER
datasets is that, due to working with music fields, there are a lot of problems with
copyright infringement. Thus, some datasets will not provide the samples used
nor how to obtain them.

In the following sections, a description of the main datasets used for Static MER
and MEVD will be provided.

MIREX

This dataset, proposed to the Music Information Retrieval eXchange (MIREX)
in 2007 is a private dataset that is used by MIREX to compare various music
emotion recognition algorithms that are submitted by researcher for Static MER
approaches. With this being a private dataset, it cannot be used by researchers
and is only available to the MIREX leaders of this specific task.

It is comprised by 600 audio clips with 30 seconds in length in 22050 HZ mono
WAV format, manually annotated. It is also annotated in 5 clusters of 29 adjec-
tives.

Over the years there have been a few issues raised with the emotion taxonomy
used, mainly the fact that there is no support from psychology studies that back it
up, and the fact that there is acoustic and semantic between the different clusters.

CAL500exp

This dataset, proposed in (Wang et al., 2014), is an expansion of the successful
CAL500 dataset. It is comprised of 500 original music clips split into segments
ranging from 3 to 16 seconds in length. In order to create these segments, an al-
gorithm was used to divide the audio clips into segments based on their acoustic
content. These segments then are given emotion tags. Finally, 11 music experts
refined the tags given to each segment, with having the possibility of deleting
tags or adding new ones.

As is the case with the original CAL500 dataset, the audio clips are not publicly
available, however for CAL500exp they are available upon request to the authors
of the dataset. Furthermore, by giving the experts a set of tags as a baseline anno-
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tations for each segment, it is possible that the final annotations might have been
influenced.

Million Song Dataset

This dataset, proposed in (Bertin-Mahieux et al., 2011), was created with the pur-
pose of solving the problem of small datasets in the Music Information Retrieval
(MIR) field. It was created with data from many sources, but mostly from The
Echo Nest 1.

It is comprised of a million songs’ features and metadata, however, the tags for
each song are a byproduct of Last.fm 2 from where the songs were extracted,
which may not reflect in quality annotations.

There are also more problems with this dataset, such as it not containing the 30
second audio samples. This means that any attempt to get these samples does not
provide any guarantee that the sample extracted will provide the same features
as the one in the dataset, as there is no way to make sure the samples are the
same. Furthermore, there is also no guarantee that the sample extracted is the
same sample used when the listener was annotating it.

For example, one listener can annotate as song with the tag “love”, however there
is no way to tell if they love the song or if they are annotating that the song is
about love.

Bi-Modal

This dataset, proposed in (Malheiro et al., 2016), is a bi-modal dataset with both
lyrics and the corresponding audio. This allows for both studies in Static MER
with only the audio in mind, only lyrics, or both. To build this dataset 200 songs
(lyrics and corresponding 30-second audio clips) were selected with the following
criteria: “Several musical genres and eras; Songs distributed uniformly by the 4
quadrants of the Russell emotion model”. (Malheiro et al., 2016).

The annotations were done by a total of 39 annotators with different backgrounds,
with every person classifying either the audio of a lyric of a particular song. The
arousal and valence of each song was obtained by averaging the values of the
annotations of every subject, with songs having large standard deviation values
being discarded. This dataset also showcases strong agreement between annota-
tors, however, even though it is well constructed, it is very small in size.

In the end, three datasets were created. A lyrical dataset, containing 180 lyrics,
an audio dataset, containing 162 audio clips, and a bi-modal, containing 133 song
with both audio (30-second snippets) and lyrics.

DEAM

This dataset, proposed in (Aljanaki et al., 2017), consists of 1802 audio files with
no royalty, with these files being split into 58 full songs and 1744 snippets of 45

1The Echo Nest is a music intelligence and data platform for developers and media companies,
it began as a research spin-off from the MIT Media Lab to understand the audio and textual
content of recorded music and has since been acquired by Spotify.

2Last.fm is an online music service platform. Url: https://www.last.fm/home
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seconds with various genres. It is comprised of both static and dynamic annota-
tions in the Russell’s model, meaning it can be used both for MEVD and for Static
MER. In the dynamic annotations, there is an emotion label every 0.5 seconds.
This is a problem as it can possible lead to situations where that specific sample
does not represent the emotional sentiment of the song or that specific sample
does not have any sound.

Furthermore, there is also the issue of clips with noise (such as clapping, people
speaking). The dataset also has a very low agreement rate between annotators of
47% (Sá, 2021), which showcases even further the problems in this dataset.

4QAED

This dataset, proposed in (Panda, 2019), is a dataset comprising 900 music clips.
As the name suggests, 4 Quadrant Audio Emotion Dataset, these 900 music clips
(30-seconds in length), were mapped onto the Russell’s model. The clips were
gathered from the AllMusic 3 API with their respective mood tags, and then those
mood tags were mapped onto quadrants using Warriner’s list of arousal and va-
lence values (Warriner et al., 2013).

Post-processing was then done, such as discarding low quality clips (e.g. clips
with clapping, stand up comedy).

The result was a dataset of 900 songs, balanced with 225 songs per quadrant, with
considerations like maximizing genre distribution also being taken into account,
available for studies regarding Static MER.

In result of work of our group, this dataset has since been revised to be short-
ened to 893 songs, with the removing of a few duplicate songs and invalid songs.
However, as of writing, this updated version has not yet been published.

The 900 song dataset as well as the metadata is available for any researcher to test
their emotion detection algorithms.

All of these datasets share similar problems: they are either private, small or were
created based on poor sources (e.g. Million Song Dataset). This is why there is
a need for creating both high quality and large size datasets for Static MER and
MEVD, with this being one of the main objectives of this work.

3AllMusic is a music platform that has metadata for songs as well as professional annotations
for the songs. https://www.allmusic.com
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Databases Review
Name Type Emotion Taxon-

omy
Audio Duration Size Notes/Observations

MIREX Static MER 5 clusters of 29
adjectives

30 seconds 600 audio
clips

No psychology study
support for the emo-
tion taxonomy.

CAL500exp MEVD Based on the
tags of Cal500,
totaling 67 tags

3 to 16 seconds audio
clips

500 songs
divided
into seg-
ments

Million Song
Dataset

Static MER User submitted
emotional tags

30 seconds song clips 1 million
audio
clips

Annotations can
have poor quality
due to ambiguous
and uncontrolled
annotations.

Table 3.1: Review of the datasets used for Static MER and MEVD.
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Databases Review
Name Type Emotion Taxon-

omy
Audio Duration Size Notes/Observations

Bi-Modal Static MER Russell’s A/V
Model

30 seconds 162 au-
dio clips
and 133
bi-modal

The size of this
dataset is very small
even though the an-
notations were well
conducted.

DEAM Static MER and
MEVD

Russell’s A/V
Model

Static: 45 seconds
Dynamic: Full songs

1744 au-
dio clips
and 58 full
songs

Low agreement rate
between annotators,
clips with noise and
issues where specific
sample does not rep-
resent the dominant
emotion in the song.

4QAED Static MER Russell’s A/V
Model

30 seconds 900 audio
clips, later
revised to
893

Balanced between
quadrants.

Table 3.2: Continuation of the review of the datasets used for Static MER and MEVD.
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3.2 Feature engineering in MER

This section provides an overview on the most commonly used features, as well
as a review on the features that represent each of the eight musical dimensions
related to this work and finally a proposal of new features for this work.

3.2.1 Most commonly used features

In (Panda et al., 2020a) a thorough review of the current state of feature engineer-
ing on the MER field was conducted. This work showcased that of the eight mu-
sical dimensions (melody, harmony, rhythm, dynamics, tone color, expressivity,
texture and form) several are still underrepresented in the state of the art works,
while others are very dominant. Moreover, this work also proposed some meth-
ods and ideas for future feature engineering, with some of those ideas being the
basis for this work.

Table 3.3 summarizes the number of features per musical dimension. As can
be observed, there are musical dimensions that are severely underrepresented.
Moreover, there has been work that showcases that the underrepresented musi-
cal dimensions, particularly texture, are useful specially in identifying songs per-
taining to the first and second quadrant. (Panda et al., 2018) Thus, it is important
to create new features that represent these musical dimensions.

Musical Dimension Number of Features Percentage of total
Melody 9 10.60%
Harmony 10 11.80%
Rhythm 16 18.80%
Dynamics 12 14.10%
Tone Color 25 29.40%
Expressivity 6 7.10%
Texture 3 3.50%
Form 4 4.70%
Total 85 100%

Table 3.3: Number of features per musical dimension (Panda et al., 2020a).

The following sections provide an overview of the audio features that have been
proposed throughout the years for each of the aforementioned eight musical di-
mensions. Most of these features are extracted from sequential smaller snippets
of the audio tracks (commonly referred as windows), with the result being a se-
ries of data. These features extracted from the windows are then processed using
statistics such as mean, standard deviation, amongst other techniques, and are
then used on the machine learning algorithms.
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3.2.2 Melody features

Melody can be defined as a horizontal succession of pitches, which is perceived
by listeners as a single musical line. There are several features that have been
proposed in literature:

1. Pitch - Pitch represents the perceived fundamental frequency of a sound
(F0). Along with loudness and timbre, it constitutes one of the three major
auditory attribute of sound. As an audio feature, pitch usually refers to
the fundamental frequency of a monophonic signal (a signal with a single
melodic line). Pitch detection algorithms have as an output a sequence of
F0s values through time. Several frameworks implement different ways
of calculating pitch, such as the YIN algorithm (Cheveigné and Kawahara,
2002) or the algorithm proposed in (Camacho and Harris, 2008).

2. Pitch Salience - Pitch salience is a complex concept but it can be explained
as how noticeable is the pitch in a sound. Pure tones have an average pitch
salience value close to 0 while sounds with various harmonics in the spec-
trum have higher values of pitch salience.

3. Predominant Melody F0 - Finding the fundamental frequency of the pre-
dominant melody in both monophonic and polyphonic signal is still an
open research program, however there have been already a few approaches,
such as the MELODIA algorithm (Salamon and Gómez, 2012), an approach
proposed by Karin Dressler (Dressler, 2016), and more recently, deep learn-
ing approaches, such as (M et al., 2022).

4. Pitch content - (Tzanetakis, 2002) proposed a set of features extracted from
pitch histograms folded and unfolded (in the folded histograms all the notes
are mapped onto a single octave) to describe pitch information:

(a) FA0 - Amplitude of the maximum peak of the folded histogram.
(b) UP0 - Period of the maximum peak of the unfolded histogram.
(c) IP01 - Pitch interval between the two most prominent peaks of the

folded histogram.
(d) SUM - The overall sum of the histogram.

5. MIDI Note Number (MNN) Statistics - In (Panda et al., 2018), the sequence
of predominant melody F0 values were quantised into a sequence of MIDI
notes. Based on the MIDI note number of each note, 6 statistics were pro-
posed: textbfMIDIMean, i.e. the average MIDI note number of all the notes,
MIDIstd (standard), MIDIskew (skewnewss), MIDIkurt (kurtosis), MIDI-
max (maximum) and MIDImin (minimum).

These features are extracted from the melody transcription of the original
audio waveform. Several methods were employed to estimate the predom-
inant F0 values and pitch saliences, as well as methods to quantise F0 se-
quence into MIDI notes. Figure 3.1 showcases an example of this features
on a specific audio track.
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Figure 3.1: Excerpt from "S'posin" by Frank Sinatra, transformed from the audio
signal to midi notes using the Melodia plug-in (P1-P4) (Salamon and Gómez,
2012) and (Paiva et al., 2006) work (P5). P1: audio waveform, P2: pitch salience
function, P3: pitch contours, P4: extracted melody (in red) with the spectrogram
as background, P5: midi notes from (Panda, 2019).
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6. Register distribution - This set of features proposed in (Panda et al., 2018)
represents the distribution of the notes of the predominant melody across
the different pitch ranges: Soprano (C4-C6), Mezzo-soprano (A3-A5), Con-
tralto (F3-F5), Tenor (B2-A4), Baritone (G2-F4) and Bass (E2-E4). The result-
ing metrics are the percentage of the MIDI note numbers in the melody of
each of the pitch ranges, as well as the register distribution per second, with
this being calculated as the ratio of the sum of the duration of notes from a
specific range (e.g. Soprano) to the total duration of all the notes.

7. Note Smoothness (NS) statistics - (Panda et al., 2018) proposed also a note
smoothness feature that indicates how close consecutive notes are. To cal-
culate this, the difference between the MIDI numbers of consecutive notes
is calculated. The 6 statistics aforementioned are also calculated.

8. Ratios of Pitch Transitions - Using the MIDI note number, a sequence of the
transitions to higher, lower and equal notes is created (Panda et al., 2018).
This sequence is summarized by several metrics such as:

(a) Transitions to Higher Pitch Notes Ratio

(b) Transitions to Lower Pitch Notes Ratio

(c) Transitions to Equal Pitch Notes Ratio

In each of these metrics, the ratio of the number of specific transitions (i.e.,
from higher to lower) to the total number of transitions is computed.

3.2.3 Harmony features

If melody can be considered the horizontal part of the music, harmony refers to
the vertical part of the music, i.e. the sound produced by the combination of
various pitches in all the cords.

1. Inharmonicity - This feature is based on the number of partials that are
not multiples of the fundamental frequency F0. There are several ways to
calculate this feature, such as the one found in the timbre toolbox (Peeters
et al., 2011). Another implementation by MIR ToolBox calculated inhar-
monicity by measuring the amount of energy outside the ideal harmonic
series, which assumes that there is only one fundamental frequency (Lar-
tillot, 2018).

2. Chromagram - The chromagram is a feature used to estimate the energy
distribution between pitch classes. It consists of a vector with 12 dimen-
sions, one for each of the 12 semitone pitch classes (A to G#). The respective
intensity of each class is calculated based on spectral peaks of the waveform.

3. Chord Sequence - With extracting chords from an audio file being a com-
plex task, there are not yet any robust solutions to this problem. There have
been experimental methods proposed based on pitch class profiles (Gómez,
2006).
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4. Key Strength - Key strength is a value between either 0 to 1 or -1 to -1 that
represents for each key the strength of the possibility that the key is the key
of the given song. The algorithm to calculate this feature is based on the
cross-correlation of the chromagram (Gómez, 2006).

5. Key and Key Clarity - These two features provide an estimation of the of the
tonal centre positions and their respective clarity. This is achieved by peak
picking in the key strength curve. The best keys are calculated by getting
the peak abscissa value, and the key clarity is the key strength associated
with the best keys (Lartillot, 2018).

6. Tonal Centroid Vector (6 dimensions) - In MIR ToolBox, the tonal centroid
vector is represented by a vector with 6 dimensions corresponding to a pro-
jection of the chords along a circle of fifths, minor third and major thirds
(Harte et al., 2006). This is based on the Harmonic Network of Tonnetz,
which is a planar representation of the pitch relations. In this representa-
tion, pitch classes that have closer harmonic relations such as fifths, major
and minor thirds, have smaller Euclidean distances on this plane. The al-
gorithm is able to detect harmonic changes by calculating the Euclidean
distance between consecutive analysis frames of the tonal centroid vectors.

7. Harmonic Change Detection Function - (Harte et al., 2006) proposed a
method for detecting changes in the harmonic content of music audio sig-
nals. This feature can be interpreted as the flux of the tonal centroid, calcu-
lated as the distance between the harmonic regions of consecutive frames
(Harte et al., 2006).

8. Sharpness - Sharpness is a feature that measures on a subjective scale that
ranges from dull to sharp how sharp an audio signal is.

9. Modality - There are several algorithms that attempt to estimate modality,
i.e. major vs minor (Lartillot, 2018). The typical strategies employed to
estimate the strength of each key are:

(a) The difference between the strength of the strongest major and minor
keys

(b) The sum of all the differences between the strength of each minor/major
key pair.

3.2.4 Rhythm features

There have been several works that address the problem of rhythm analysis, lead-
ing to the many features being proposed, that will be explained in the following
list in more detail. In (Panda et al., 2018), an extra set of features was proposed
based on the MIDI notes, with those features being: note duration statistics, note
duration distribution and ratio of note duration transitions. The aforementioned
features can be described as:
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1. Beat Spectrum - Beat spectrum was proposed as a way to measure the
acoustic self-similarity as a function of time lag. To calculate this feature,
a similarity matrix is used, with this matrix being obtained by comparing
the spectral similarity between all possible pairs of frames in the original
audio signal (Foote et al., 2002).

2. Beat Location - The algorithms proposed to calculate this feature estimate
the beat location in an input signal in order to track the beat over the course
of the audio signal. Several frameworks implement different versions of
this principle.

3. Onset Time - An alternative away of determining tempo can be achieved
by computing an onset detection curve that shows the successive bursts of
energy that correspond to successive pulses. Afterwards, by performing
peak picking on the detection curve, the positions of the note onsets can be
estimated (i.e. the instants where each note starts).

4. Event Density - This feature present in MIR ToolBox estimates the “speed”
of a song based on the average number of events in a given time window,
i.e., the number of note onsets per second (Lartillot, 2018).

5. Average Duration of Events - One possible method to estimate the average
duration of events was proposed by (Peeters et al., 2011). This method con-
sists of detecting attack and release phases and then measuring the time in
seconds between them when the amplitude is at least 40% of the maximum.

6. Tempo - Tempo, usually indicated in Beats Per Minute (BPM), refers to the
speed of a musical piece. This feature is typically estimated by detecting the
periodicities using the onset detection curve (Lartillot, 2018).

7. Tempo Change - By computing the difference between successive values of
the tempo curve, it is possible to estimate an indicator of the tempo change
over time. This feature is computed from the ratio of tempo values between
consecutive frames (Lartillot, 2018).

8. Predominant Local Pulse (PLP) Novelty Curves - (Grosche and Müller,
2009) presented a mid-level representation aimed at capturing dominant
tempo and predominant local pulse even from musical pieces with weak
non-percussive note onsets and strongly fluctuating tempo. This PLP curve
does not represent high-level information but is used instead as a tool in
tasks such as tempo estimation and beat tracking, amongst others.

9. Harmonically Wrapped Peak Similarity (HWPS) - (Tzanetakis, 2002) pro-
posed a set of rhythmic features using beat histograms of a song that proved
useful in musical genre classification, with those features being:

(a) A0 and A1 - Relative amplitude of the first and second histogram peaks
(A0 and A1, respectively).

(b) RA - Ratio of the amplitude of the second peak divided by the ampli-
tude of the first peak.

(c) P1 and P2 - Period of the first and second peak in BPM.
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(d) SUM - Histogram sum (used as an indication of beat strength).

HWPS, a feature that follows similar principles has been implemented in
frameworks such as Marsyas to calculate harmonicity by using the spectral
information (Lagrange et al., 2008).

10. Pulse/Rhythmic Clarity - This feature estimates the “rhythmic clarity”, which
is an indicator of the strength and clarity found in the beats estimated by
tempo estimation algorithms.

11. Metrical Structure - This feature detects periodicities from the onset detec-
tion curve and tracks a broad set of metrical levels, thus providing a detailed
description of the metrical structure (Lartillot, 2018).

12. Metrical Centroid and Strength - These two features provide two descrip-
tors:

(a) Dynamic metrical centroid - Estimation of the metrical activity, based
on computing the centroid of the selected metrical level (Lartillot, 2018).

(b) Dynamic metrical strength - Indicator of the clarity and strength of
the pulsation. It estimates whether there is “clear and strong pulsa-
tion, or even a strong metrical hierarchy is present”, or if there is not:
“the pulsation is somewhat hidden, unclear” or a mixture of pulsations
(Lartillot, 2018).

13. Note Duration statistics - (Panda et al., 2018) proposed a set of note dura-
tion statistics based on the duration of each notes (the same ones proposed
for the melody section).

14. Note Duration Distribution - Furthermore, in (Panda et al., 2018) a set of
note distribution features was also proposed: Short Notes Ratio, Medium
Length Notes Ratio and Long Notes Ratio.

15. Ratios of Note Duration Transitions - Finally (Panda et al., 2018) also pro-
posed ratios of note duration transitions, such as: Transition to Longer
Notes Ratio,. Transition to Shorter Notes Ratio and Transition to Equal
Notes Ratio, a set of features similar to the melody dimension.

3.2.5 Dynamics features

In this section a description of the features found in literature that represent in-
formation related with dynamics and its components is presented.

1. Root-Mean Square (RMS) Energy - The RMS energy is used to measure
the power of a signal either globally or over a certain window. It is usually
calculated by taking the RMS (Tzanetakis, 2002). It is also roughly describes
the loudness of a specific audio signal.
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2. Low Energy Rate - This feature tracks the amount of frames that have less-
than-average energy (Tzanetakis, 2002). By estimating the temporal distri-
bution of energy in an audio clip, it allows for understanding if the energy
remains constant between frames or if there is contrast.

3. Sound Level - This descriptor, represented in decibel, corresponds to the
power sum of the spectrum in each time window. At a higher level it rep-
resents the unweighted sound pressure level of the signal in each of the
analysis windows (Cabrera et al., 2008).

4. Instantaneous Level, Frequency and Phase - These three features consist
in applying a Hilbert transform to the audio waveform, resulting in the
three different outputs. The Instantaneous level can represent as the sound
pressure level derived from the Hilbert transform (Cabrera et al., 2008).

5. Loudness - The loudness of a sound is a subjective metric that represents
how intense a sound is perceived to be. This metric is measured in sones,
where a doubling of the sones value represents to a doubling in the value of
loudness. Several metrics for loudness have been proposed in the literature
over the years and are available in the audio frameworks.

6. Timbral Width - Timbral Width was proposed by (Malloch, 1997) as one of
the six measures of timbre in a method called loudness distribution analysis.
This feature can be regarded as “a measure of the fraction of loudness that
lies outside of the loudest band, relative to the total loudness” (Malloch,
1997).

7. Volume - Volume represents the perceived “size” of a sound, or the audi-
tory volume of pure tones. (Cabrera, 1999) developed a computational vol-
ume model for arbitrary spectra, which was incorporated into audio frame-
works. In this work, two diotic volume models were proposed:

(a) The first model uses a weighted ratio between the binaural loudness
and sharpness, which corresponds to the specific loudness centroid in
the Bark scale.

(b) The second model, which performed better, uses a simpler centroid
to overcome limitations of the sharpness calculation method that the
authors used (Cabrera, 1999).

8. Sound Balance - This metric is used to understand how much the peak
(maximum amplitude) in a sound is off the center. In order to calculate this,
the ratio between the index of the maximum (or minimum) value of the
sound envelope of a signal and the total length of the sound envelope. If
this amplitude peak is found close to the start, this ratio will approach 0. A
ratio of 1 means the peak is close to the end and a value of 0.5 means that
the peak is closer to the middle (Shannon, 1948).

9. Note Intensity statistics - In (Panda et al., 2018), a set of 6 statistics was pro-
posed based on the median pitch salience of each note (this set of statistics
is the same as aforementioned set for the melodic features).
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10. Note Intensity Distribution - In (Panda et al., 2018), note intensity distribu-
tion features were also proposed. These features indicate how the notes of
the predominant melody are distributed across three intensity ranges (low,
medium and high intensity), leading to the following features:

• Low Intensity Notes Ratio

• Medium Intensity Notes Ratio

• High Intensity Notes Ratio

The same three features were also computed per second.

11. Ratios of Note Intensity Transitions - Also proposed in (Panda et al., 2018)
were features that capture information related to the ratios of note intensity
features, including Transitions to Higher Intensity Notes Ratio, Transitions
to Lower Intensity Notes Ratio and Transitions to Equal Intensity Notes Ra-
tio. Figure 3.4 showcases an example of these features.

Figure 3.2: Changes of intensity in consecutive notes, from (Panda, 2019), p. 188.

12. Crescendo and Decrescendo metrics - Finally, (Panda et al., 2018) proposed
a way of identifying notes as having crescendo or decrescendo based on the
intensity difference between the first half and the second half of the note.
Using this, the number of crescendo and decrescendo notes is computed
(both per note and per second). Afterwards, sequences of notes with both
increasing and decreasing intensity are computed, computing the number
of sequences for both cases (both per note and per second) and also the
length of the crescendo sequences in notes and seconds, using the 6 afore-
mentioned statistics.
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3.2.6 Tone Color features

In this section a description of the features found in literature that represent in-
formation related with tone color and its components is presented. This dimen-
sion is the most represented one out of all the eight musical dimensions. Most
of the features are low-level temporal features or spectral descriptors that are
employed in several audio analysis problems (e.g. zero-crossing rate, spectral
moments, amongst others). Furthermore, other common features include at-
tack/decay time, attack slope and leap, amongst others, which will be explained
in detail below.

1. Attack/Decay Time - One of the aspects that influences tone color is the
sound envelope of the audio clip. This sound envelope can be divided into
four parts: attack, decay, sustain and release. From this sound envelope
several descriptors can be extracted, with most of them being related to
the attack phase, i.e., from the starting point of the sound envelope until
the amplitude peak is reached. One of these descriptors is the attack time,
which consists in estimating the temporal duration of the various attack
phases in the audio signal. (Peeters et al., 2011).

2. Attack/Decay Slope - The attack slope is another descriptor that is extracted
from the attack/decay phase of the sound envelope (Peeters et al., 2011).
The attack slope consists on estimating the average slope of the entire at-
tack/decay phase, since its start until its peak/valley.

3. Attack/Decay Leap - This simple descriptor consists on estimating the am-
plitude difference between the beginning s(bottom/top) and the end (peak/valley)
of the attack/decay phase (Lartillot, 2018).

4. Zero Crossing Rate (ZCR) - Zero Crossing Rate represents the number of
times that the audio waveform changes sign in a window (e.g. crosses the
x-axis). This can be used as a simple indicator of frequency or noisiness.

5. Spectral Flatness - This feature indicates if the spectrum distribution is
smooth or spiky, i.e., estimate whether or not the frequencies in the spec-
trum are uniformly distributed (Lartillot, 2018).

6. Spectral Crest Factor (SCF) - The spectral crest factor (Allamanche, 2001) is
a measure of the “peakiness” of a spectrum and is thus inversely propor-
tional to the spectral flatness measure. It is commonly used to distinguish
noise-like sounds from tone-like sounds because of the different spectral
shapes, where noise-like sounds have lower spectral crests.

7. Irregularity - This feature, also known as spectral peaks variability, cor-
responds to the degree of variation of the amplitude values of successive
spectral peaks (Lartillot, 2018).

8. Tristimulus - The tristimulus feature (Peeters et al., 2011), quantifies the
relative energy of partial tones by parameters that measure the energy of
certain partials, as such:
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• Tristimulus1 - Corresponds to the energy of the first partial.

• Tristimulus2 - Corresponds to the energy of the second, third and
fourth partials.

• Tristimulus3 - Corresponds to the energy of the remaining partials.

9. Odd-to-even Harmonic Energy Ratio - The odd-to-even harmonic energy
ratio ““distinguishes sounds with predominant energy at odd harmonics
(such as clarinet sounds) from other sounds with smoother spectral en-
velopes (such as the trumpet)” (Peeters et al., 2011).

10. Spectral Moments: Centroid, Spread, Skewness and Kurtosis - The four
spectral moments (implemented in several frameworks) are metrics used
to measure spectral shape (Peeters et al., 2011). These moments can be de-
scribed as such:

• Spectral Centroid - The spectral centroid corresponds to the first mo-
ment (mean) of the magnitude spectrum of the Short-Time Fourier
Transform (STFT).

• Spectral Spread - The spectral spread represents the standard devia-
tion of the magnitude spectrum, and thus it is a measure of the disper-
sion (or spread) of the spectrum.

• Spectral Skewness - Spectral skewness is a measure of the symmetry
of the spectrum.

• Spectral Kurtosis - Spectral kurtosis captures information about the
existing outliers in the magnitude spectrum.

11. Spectral Entropy - Spectral entropy is a measure of the spectral power dis-
tribution, based on the Shannon entropy (Shannon, 1948) metric from the
information theory field.

12. Spectral Flux - Spectral flux measures the amount of spectral change in
the audio signal, i.e., the distance between the spectra of successive frames
(Tzanetakis, 2002). It has shown to be an important attribute in the charac-
terization of timber of musical instruments (Grey, 1975).

13. Spectral Rolloff - Spectral flux represents an indicator of the skewness of
the frequencies present in a window. According to (Tzanetakis, 2002), the
spectral rolloff is defined as the frequency R_t below which 85% of the
magnitude distribution is concentrated. This percentage varies between au-
thors, however 85% is the default value in most audio frameworks. Figure
3.3 showcases an example of spectral rolloff.

14. High-frequency Energy - Several algorithms have been proposed to try and
determine the amount of high-frequency energy in a signal. One of these is
algorithms is called brightness, in which a minimum frequency value is set
and the amount of energy above that value is measured (Lartillot, 2018).
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Figure 3.3: Spectral rolloff (Lartillot, 2018).

15. Cepstrum - Cepstrum is the result of taking the inverse Fourier transform
of the logarithm of the estimated spectrum of an audio signal (Bogert, 1963).
It can be described as a measure of the rate of change in different spectral
brands. Ceptral analysis is used in several areas such as pitch analysis, hu-
man speech processing, amongst others. It provides a simple way to to
separate formants from the vocal source.

16. Energy in Mel/Bark/ERB Bands - In order to better analyze an audio signal,
it is important to decompose the original audio signal into a series of audio
signals of different frequencies so that each channel can be studied inde-
pendently. There are several scales for splitting the frequencies into critical
bands, such as the Mel, Bark or the Equivalent Rectangular Bandwith (ERB)
scale (Harrington and Cassidy, 1999).

17. Mel-Frequency Cepstral Coefficients (MFCC) - MFCCs (Davis and Mer-
melstein, 1980) are another measure of spectral shape. The frequency bands
are positioned logarithmically on the Mel scale and cepstral coefficients are
then computed based on the Discrete Cosine Transform of the log magni-
tude spectrum. In most audio frameworks, only the 13 first coefficients are
returned. These 13 coefficients are used mostly for speech representation
however (Tzanetakis, 2002) states that “the first five coefficients are ade-
quate for music representation”.

18. Linear Predictive Coding Coefficients (LPCC) - Linear predictive coding is
used in speech research by a linear predictive model to represent the spec-
tral envelope of a digital speech signal in compressed form (El Ayadi et al.,
2011). LPCCs represent the ceptral coefficients derived from linear predic-
tion and are used in many areas regarding speech, such as speech analysis,
encoding, amongst others (El Ayadi et al., 2011).

19. Linear Spectral Pair (LSP) - Linear Spectral Pair (LSP) are an alternative
representation of Linear Prediction Coefficient (LPC) for transmission over
a channel. LSPs have many properties that make them superior to LPCs,
such as for example smaller sensitivity to quantization noise. Thus, LSPs
are useful in speech recognition and encoding (Zheng et al., 2000).
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20. Spectral Contrast - Spectral contrast is a feature proposed in (Jiang et al.,
2002a). It represents the spectral characteristics of the audio signal, spe-
cially the relative spectral distribution. According to the authors, this fea-
ture was tested in music type classification problems, demonstrating “bet-
ter discrimination among different music types than mel-frequency cepstral
coefficients (MFCC)s” (Jiang et al., 2002a), with MFCCs being one of the fea-
tures typically used in these types of problems.

21. Roughness (Sensory Dissonance) - Sensory dissonance, also known as rough-
ness, relates to the beating phenomenon whenever a pair of sinusoids are
close in frequency (Plomp and Levelt, 1965).

22. Spectral and Tonal Dissonance - Dissonance measures the harshness or
roughness of the acoustic spectrum (Cabrera et al., 2008). Dissonance gen-
erally implies a combination of notes that sound harsh or unpleasant to
people when played at the same time. The audio framework PsySound3
provides two descriptions of acoustic dissonance:

• Spectral Dissonance - Dissonance that uses all the Fourier compo-
nents.

• Tonal Dissonance - Dissonance that uses a peak extraction algorithm
before calculating dissonance.

3.2.7 Expressivity features

The amount of features that capture information related to the expressiveness of a
song is low, thus (Panda et al., 2018) proposed a set of new features to capture this
information, such as vibrato 4, tremolo 5, glissando 6 and legato 7. The features
related to expressiveness can be summed up as such:

1. Average Silence Ratio - This feature was proposed as an estimation of ar-
ticulation in (Feng et al., 2003). It is the ratio of silence frames to total frames
in time windows of one second. A lower ratio means that there are fewer
silence frames in the musical piece, meaning legato occurs (notes being
played “smoothly”). A higher ratio mean more silence frames in the mu-
sical piece, meaning staccato occurs (notes being short and detached from
each other).

2. Portamento metrics - Portamento refers to the smooth and monotonic de-
crease or increase in pitch on consecutive notes. Computational models to
calculate this feature were proposed using Hidden Markov Models in a flat-
tened out pitch curve (no vibrato) (Yang et al., 2016).

4Periodic changes in the pitch of a tone.
5Periodic changes in the intensity of a tone.
6Frequency slide in the attack of a note.
7Performing style where notes appear to be “connected” without any perceptible break be-

tween them.
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3. Articulation metrics - Articulation is a technique that affects the transition
or continuity between notes or sounds. In (Panda et al., 2018) an approach
to detect staccato and legato was proposed. The algorithm proposed classi-
fied all the transitions between notes in a music piece and from the transi-
tions several metrics were extracted such as the ratio of legato, staccato and
other transitions. The longest sequence of each articulation type was also
extracted.

Figure 3.4: Testing articulation extraction with different note durations and inter-
vals, from (Panda, 2019), p. 192.

4. Glissando metrics - Glissando is another type of articulation, consisting of
a glide from one note to another. It is used as an ornamentation, often to add
interest to a piece, and thus may be related to specific emotions. In (Panda
et al., 2018) an algorithm to detect glissando as proposed, and based on that
algorithm several features are extracted, such as glissando presence, extent,
duration, direction, slope and glissando to non-glissando ratio (i.e. the ratio
of notes containing glissando compared to the total number of notes.

5. Vibrato metrics - Vibrato is a technique used in both vocal and instrumental
musical that can be defined as regular oscillation of a pitch. There are two
main characteristics regarding vibrato: the amount of pitch variation (i.e.
the extent) and the velocity (i.e. the rate) of the pitch variation. In (Panda
et al., 2018) an algorithm was proposed to detect vibrato. This algorithm
analysis the F0 sequence of each note, and then extracts several features
such as vibrato presence, rate, extent, coverage, high-frequency coverage,
vibrato to non-vibrato ratio and the base frequency of the vibrato notes.
Figure 3.5 showcases an example of these metrics in two different excerpts.

6. Tremolo metrics - Tremolo is a trembling effect, similar to vibrato but re-
garding a change in amplitude, not pitch. It is noteworthy that in (Panda
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Figure 3.5: Illustration of glissando and vibrato. Top excerpt from Eliades Ochoa's
"Chan Chan" with glissando and bottom excerpt is a recording from opera singer
Eith with vibrato.

et al., 2020a) no relation was found between tremolo and emotion. Nonethe-
less, in (Panda et al., 2018) a tremolo detection algorithm was proposed,
similar to the vibrato detection algorithm, and a similar set of features was
extracted. In the algorithm, instead of using F0 note sequences, a sequence
of pitch saliences of each note is used, because tremolo represents a varia-
tion in the intensity or amplitude of a note.

3.2.8 Texture features

According to (Panda et al., 2020a), there were no audio features in the analyzed
audio frameworks that are related with musical texture. As such, in (Panda et al.,
2020a), a set of novel musical texture features was proposed. These features are
based on the sequencing of multiple frequency estimates that are employed to
measure the number of simultaneous layers in each of frame of the whole audio
signal. This led to the proposal of the following features:

1. Musical Layer Statistics - Based on the number of multiple predominant
melody fundamental frequency (F0) estimated from each of the frames of
the audio clip, 6 statistics are calculated regarding the distribution of the
number of musical layers across the frames. The number of layers in a frame
is defined as the number of multiple F0s in that frame.
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2. Musical Layer Distribution - The estimated number of F0s in one frame is
divided into four classes:

(a) No layers
(b) One layer
(c) Two layers
(d) Three or more layers

For each class the percentage of frames belonging to that class is calculated.

3. Ratio of Musical Layer Transitions - To capture information regarding changes
from one musical layer sequence to another, consecutive frames with differ-
ent number of estimated F0s are identified as transitions and the total value
of the length of the audio segment is normalized (in seconds). Furthermore,
the length in seconds of the longest segment for each musical layer is also
computed.

3.2.9 Form features

Despite the relevancy of musical form for emotion classification (Friberg et al.,
2014), there are few computational extractors for this group of features. This can
also be acquainted to the fact that extracting this information from the audio sig-
nal is harder compared to other lower level features (e.g. spectral statistics).

The most commonly used features for musical form are the following:

1. Structural Change. The amount of change of each of the basis features at
different time intervals, combined into a meta-feature, has correlation with
the human perception of complexity in music (Mauch and Levy, 2011). The
typical implementation of this feature uses chroma, rhythm and timbre in-
formation and aims to exclusively discover the amount of change in a song,
illustrating it with a visual audio flower pot (Mauch and Levy, 2011).

2. Similarity Matrix - Some approaches estimate the musical structure of a
song based on the similarity between adjacent segments or frames (Lartillot,
2018). These similarities can be represented by a inter-frame (or segment)
similarity matrix which shows the differences between all possible pairs
of frames of a given audio signal. To compute this matrix a set of frame
statistics (e.g. spectral features) is used with a distance function, to calculate
the proximity between different pairs of frames (Lartillot, 2018).

3. Novelty Curve - Based on the specific musical characteristics of a segment
or frame, a novelty curve can be obtained by comparing successive frames
to estimate the temporal changes in a song (Lartillot, 2018).

4. Higher Level (HL) Form Analysis - The best models combine higher-level
solutions with low-level features, statistics and machine learning to model
the fundamental aspects of musical sections in order to identify song ele-
ments in a song (e.g. intro, bridge, chorus). State of the art results in form
analysis have been obtained using deep learning models (Wang et al., 2022).
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3.3 Proposal of new features

As aforementioned, (Panda et al., 2020a) also proposes a few research directions
in order to create new features, and those are the basis of this work, being the
following:

1. Musical Texture - In terms of musical texture, research was conducted into
algorithms that do source and instrument separation for polyphonic music,
with the most relevant and most promising of them being MT3, which in
short, enables the extraction of the melody lines for each instrument present
in the song (Gardner et al., 2021) (See Section 3.5.2 for further information).
This framework will enable the extraction of features related to each instru-
ment.

2. Musical Melody - (Gardner et al., 2021) also provides a way of performing
melody transcription, with efforts already being made in the current phase
of this work to test the impact of using Magenta MT3 as the melody tran-
scriptor instead of the current solutions. Besides the transcription of main
melody channel, MT3 permits full music transcription, i.e., transcription of
all melodic lines. Features from these accompaniment melodic lines are also
exploited in this work.

3. Musical Rhythm - There is also ongoing work from our research group re-
garding rhythm, particularly in the percussion realm. Percussion features
are not yet used in the MER field, and are going to be explored in this
work, such as the existence of percussion, the various types of percussion,
amongst others.

Furthermore, with the recent development and performance increase in tools for
voice and accompaniment separation, in this work exploration such as extracting
features only from the isolated voice or isolated instruments will also be con-
ducted, as those aspects have not yet been fully explored in the MER field.

Thus, there are several possible new features that will be created and explored in
the realm of this work.

3.4 Static MER

This section provides an overview of approaches to solve the problem of emotion
classification in Static MER.

3.4.1 Classical approaches

With classical approaches in the MER field, the process has remained the same
for roughly 20 years. Firstly, a song is selected for annotation. Most of the time,
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an audio snippet of the song is picked. This audio snippet will be analyzed and
annotated by either professionals or people without experience based on an emo-
tional model (e.g. asking the listener to annotate a song with “happy” or “sad”).

Afterwards, a set of audio features is extracted from the samples and these fea-
tures are used by classifiers to try and classify the samples onto the correct cate-
gories (e.g. onto the correct quadrants) and then the classifiers deliver an outcome
on the form of a prediction. However, these audio features are picked by humans
that try and find patterns between the samples and the annotations, which means
that the ML models are only as good as the features given to them.

Moreover, this is not simply a problem of feeding as many features as possible
onto the models, as that can have the opposite effect and lead to even worse
results. Thus, finding adequate and high quality features is paramount, and this
has proven to be a very hard task as it requires a good amount of knowledge in
the music field.

Over the years, there have been many approaches to the emotion classification
problem, starting with (Feng et al., 2003). In this work, 223 songs of modern
popular music were extracted. Out of those 223 pieces, 200 were used for training
and 23 were used for testing. In terms of annotations, the songs were annotated
into four different emotions: happiness, sadness, anger and fear. The results, in
terms of classification accuracy, were good, varying from 75% in sadness, 83% for
anger, and 86% for happiness, however, fear only got 25% accuracy.

This can be explained by the small dataset in which there is not a balance be-
tween all the four classes, with mainly the fear class being poorly represented.
Moreover, only three features were extracted.

In another study, (Lu et al., 2006), the Russell’s model emotion taxonomy was
used. In this work, there was a total of 200 audio clips per quadrant, totalling
800 audio clips with a duration of 20 seconds. However, this dataset had the
problem of only being derived from 250 pieces of classical music, thus not being
representative of whole of the genres in music. Nonetheless, an accuracy of 86.3%
was obtained. Like (Feng et al., 2003), this approach also had the problem of
only extracting three features, with this becoming a recurring problem in MER
approaches.

In (Meyers, 2007), an approach was created using both features extracted from the
audio files and the lyrics in order to classify the emotional contents of the song
using Russell’s model. The approach uses 5 features: mode, harmony, tempo,
rhythm and loudness. First, a decision tree algorithm is used for preliminary
classification of the song followed by a K-nearest Neighbor (KNN) classification
algorithm that will classify the song into one of eight categories. To get the pre-
dicted global emotion of a song, the output of the KNN algorithm is combined
with the lyrics’ affective value. According to the author, good results were ob-
tained when comparing the obtained tags against the AllMusic expert tags. How-
ever, the authors do not provide a statistical way to analyze the performance of
the models.

In the approach proposed by (Panda et al., 2015), a balanced dataset of 903 songs
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was created with 30 seconds in length by mapping the AllMusic mood tags into
the five clusters emotion taxonomy used by MIREX, which has been criticized for
not having the support of psychological studies. The goal of this approach was
to try and combine standard and melodic features. In total, 351 features were
extracted. However, the best result, an f-measure value of 64%, was obtained
with only 11 features (9 melodic and 2 standard), using a Support Vector Ma-
chine (SVM) model. These top 11 features were obtained using the RelieF feature
selection algorithm (Robnik-Sikonja and Kononenko, 1997).

More recently, in the approach proposed by (Panda et al., 2020b), a balanced
dataset of 900 songs (the 4QAED dataset) was created, previously mentioned in
3.1. Moreover, a number of new acoustic features were created in conjunction
with using state of the art features. As previously conducted in (Panda et al.,
2015), feature ranking was performed using the RelieF algorithm and classifica-
tion was done using SVMs. An f1-score of 76.4% was obtained, which was a 9%
increase compared to the previous work. This improvement was mainly due to
the new proposed novel features, thus proving that there is a lack of emotion
relevant features in the MER field.

3.4.2 Deep Learning approaches

With the rise of deep learning approaches not only in the MER field, but in the
whole world of machine learning, combined with the stagnation that classical ap-
proaches had sustained in the MER field, more and more research has been done
with deep learning in the MER field. As aforementioned, deep learning requires
huge amount of data compared to classical approaches, which is a big problem in
the MER field as there do not exist quality datasets with big enough size that al-
low researchers to take full advantage of the capabilities of DL approaches, with
techniques such as data augmentation having to be employed in order to try and
improve the results obtained.

Furthermore, there is the problem of interpretability with deep learning models.
With the increasing usage of deep learning models so have the concerns over
interpreting the results of these models. It is not enough for a model to classify a
certain song with a certain emotion or place it inside a certain quadrant. Knowing
why it was classified as such is also important.

One of the advantages that deep learning models have versus the classical ap-
proaches is speed, as most of the classical approaches use frameworks for ex-
tracting audio features (e.g. Essentia, Marsyas, MIRtoolbox), and some of these
approaches are old and are built on older platforms like MATLAB, making the
feature extraction process very time consuming, sometimes taking tens of min-
utes per song.

In (Cañón et al., 2021), the idea of transfer learning in the MER field was explored.
Transfer learning, as the name suggests, takes advantage of trying to take knowl-
edge gained by a machine learning model in one domain and applying it to a dif-
ferent but related domain. This was explored in this work by using unsupervised
feature learning trained in speech from English and Mandarin and transferring
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that concept onto emotion classification with some fine tuning. The work was
conducted using the Russell model of emotion and the 4QAED database afore-
mentioned. The results obtained were around 48% f1-score, while not impressive,
do confirm that there is cross-domain transferability.

In another approach by (Grekow, 2021), RNNs were used for emotion detection.
These neural networks NN were used to predict continuous emotion values in
the Russell model. The training dataset consists of 324 6-second segments of dif-
ferent genres of music (classical, jazz, blues, country, disco, hip-hop, metal, pop,
reggae, and rock). The tracks were taken from the publicly available GTZAN
dataset (Tzanetakis and Cook, 2002). Five experts in music were asked to anotate
every clip in the dataset in the Russell model of emotion on a range of [-10,10] for
arousal and for valence. The final dataset has very good agreement between the
various annotators and is also publicly available.

The features for these NN were obtained using audio analysis and music informa-
tion retrieval tools for audio, such as Marsyas and Essentia. In total, 529 features
were extracted. The obtained results using the features from Marsyas achieved a
mean squared error of 0.67 and a Mean Absolute Error (MAE) of 0.12 for arousal.
For valence, the mean squared error was 0.17 and the obtained MAE was 0.12.
The results for Essentia are very similar, with only a few percentage points of
difference.

Moreover, another approach was tested using the Essentia features. The idea is
to use a pre-trained model to process the Essentia features in order to select the
most relevant features, and use the output of this model as input of the RNN. The
results obtained using this method were the best results, with a mean squared
error of 0.73 and MAE of 0.11 for arousal and 0.46 mean squared error and 0.12
MAE for valence.

One recent approach was done by (Louro, 2022), that tried various deep neural
networks, for example CNN and fully connected neural networks amongst other
architectures. Both mel-spectrograms and hand-crafted features were tested as
inputs. Due to the limited amount of data, data augmentation had to be done
in order to increase the dataset, with techniques such as tempo shifting being
employed. Furthermore, like in (Cañón et al., 2021), transfer learning from speech
emotion recognition was also tested. The tests were conducted on the 4QAED
dataset using the Russell model of emotion. The best results, an f1-score of 73.7%,
still fall short of the best results obtained using SVMs (76.4%). However, with
the increase in dataset a resulting increase in f1-score was observed, with this
also being one of the motivating factors for the expansions of the 4QAED dataset
conducted in this work (Section A.3).

There are other approaches that used various datasets, including the Million Song
Dataset. However, with the problems aforementioned with this particular dataset
(e.g. the poor annotation process) the results obtained on these datasets are very
lackluster, with very low classification scores compared to smaller but higher
quality datasets like the 4QAED. This also reinforces the need for creation of high
quality datasets, with this being one of the main objective of this work.
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Paper Approach Emotion
Taxonomy

Datasets Features
and Input

Models Results Notes/Observations

(Feng
et al.,
2003)

Classical
ML

Four emo-
tions:
Hap-
piness,
sadness,
anger and
fear

223 popu-
lar songs

5 features Feed-
forward
network

Accuracy val-
ues of 75% for
sadness, 83%
anger, 86%
happiness and
25% for fear

Unbalanced dataset - fear
class is poorly represented.
Only three features ex-
tracted.

(Lu et al.,
2006)

Classical
ML

Russell’s
A/V
Model

800 snip-
pets (20-
seconds)
of 250
classical
music
pieces

Standard
audio
features

Gaussian
mixture
model

0.863 accuracy The pieces used are all
of the same genre and
only three features were
extracted.

(Meyers,
2007)

Classical
ML

Russell’s
A/V
Model

372 songs 5 features Decision
Tree for
classifica-
tion and
KNN for
emotion
prediction

Good results
when com-
pared to All-
Music Tags

The authors do not pro-
vide a statistical way to an-
alyze performance of the
models.

(Panda
et al.,
2015)

Classical
ML

MIREX’s
task 5
clusters

903 songs 11 features
(9 melodic
and 2 stan-
dard)

SVM (top
result)

0.64 f-measure The emotional taxonomy
used does not have any
psychological support.

Table 3.4: Review of Static MER approaches.
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Paper Approach Emotion
Taxonomy

Datasets Features
and Input

Models Results Notes/Observations

(Panda
et al.,
2020b)

Classical
ML

Russell’s
A/V
Model

4QAED 100 fea-
tures (29
novel and
71 stan-
dard)

SVM 0.76 f-measure

(Cañón
et al.,
2021)

Deep
Learning

Russell’s
A/V
Model

4QAED Spectogram CNN 0.48 f1-score Results confirm that there
is cross-domain transfer-
ability .

(Grekow,
2021)

Deep
Learning

Russell’s
A/V
Model

324 6-
second
samples

529 fea-
tures

Modified
CNN and
RNN

MAE of 0.12 for
arousal and 0.11
for valence

(Louro,
2022)

Deep
Learning

Russell’s
A/V
Model

4QAED Hand
crafted
features
and spec-
togram

CNN
and fully
connected
neural
networks

0.737 f1-score Result lower than SVMs
however may increase
with bigger datasets.

Table 3.5: Continuation of the review of Static MER approaches.

50



State of the art

3.5 Automatic Music Transcription (AMT)

This section provides a brief overview of the current automatic music transcrip-
tion tools, as well as providing a description of Magenta MT3 (Gardner et al.,
2021) as it is one of the frameworks used in the scope of this work.

3.5.1 Limitations of current frameworks

In a survey conducted on AMT (Bhagwat et al., 2023), a few of the limitations
of the current AMT approaches were presented. The main limitation, which is
something that MT3 aims to help solve, is that most of the approaches are either
Instrument Music Transcription (IMT) or Instrument Specific Music Transcription
(ISMT), meaning that the tools have knowledge of which instruments are present
in the audio track. Furthermore, other approaches use source separation before
doing the music transcription, which adds another layer of complexity.

Finally, a lot of the approaches presented in (Bhagwat et al., 2023) suffer from
similar problems, such as small datasets, datasets with low variety (e.g. only
one type of instrument), or have poor results when there are many instruments
presented in the track.

MT3 (Gardner et al., 2021) aims to solve all of these problems, by being trained on
a mixture of various instrumental datasets, thus solving the problem of the small
datasets. These datasets also contain a lot of instrumental variety.

3.5.2 Magenta MT3

This tool, proposed in (Gardner et al., 2021), aims to help solve the problem of
Automatic Music Transcription (AMT). It was trained on a mixture of various
instrumental datasets and does implicit source separation, followed by instru-
ment classification and then transcription of the notes for each instrument, using
sequence-to-sequence transfer learning. Figure 3.6 shows the model architecture
and prediction on real 4-second audio clips.

The model was evaluated using a set of already existing metrics, particularly
Frame F1 (a binary metric on whether the predicted and final notes match), On-
set F1 (a metric that considers a prediction correct if it has the same pitch and is
within 50ms of the referenced onset) and finally Onset-Offset F1 (as the name sug-
gests, this metric combines the aforementioned metrics but now notes must also
have matching offsets). A final metric is also presented in (Gardner et al., 2021),
multi-instrument F1, which combined Onset-Offset F1 with the requirement that
the instrument predicted to play a certain note has to match the original instru-
ment of the reference note. This new proposed metric was only calculated for
(Gardner et al., 2021), as it was not possible to compute on previous approaches.

Table 3.6 shows the results obtained by MT3 compared to other state of the art
approaches.
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Figure 3.6: MT3 Model Architecture and prediction on real 4-second audio clips
(Gardner et al., 2021).

Model MAESTRO Cerberus4 GuitarSet MusicNet Slakh2100 URMP
Frame F1

(Hawthorne et al., 2021) 0.66 – – – – –
(Manilow et al., 2020) – 0.63 0.54 – – –
(Cheuk et al., 2021) – – – 0.48 – –
Melodyne 0.41 0.39 0.62 0.13 0.47 0.30
MT3 (single dataset) 0.88 0.85 0.82 0.60 0.78 0.49
MT3 (mixture) 0.86 0.87 0.89 0.68 0.79 0.83

Onset F1
(Hawthorne et al., 2021) 0.96 – – – – –
(Manilow et al., 2020) – 0.67 0.16 – – –
(Cheuk et al., 2021) – – – 0.29 – –
Melodyne 0.52 0.24 0.28 0.04 0.30 0.09
MT3 (single dataset) 0.96 0.89 0.83 0.39 0.76 0.40
MT3 (mixture) 0.95 0.92 0.90 0.50 0.76 0.77

Onset+Offset F1
(Hawthorne et al., 2021) 0.84 – – – – –
(Manilow et al., 2020) – 0.37 0.08 – – –
(Cheuk et al., 2021) – – – 0.11 – –
Melodyne 0.06 0.07 0.13 0.01 0.10 0.04
MT3 (single dataset) 0.84 0.76 0.65 0.21 0.57 0.16
MT3 (mixture) 0.80 0.80 0.78 0.33 0.57 0.58
Mixture (∆%) -5.3 +5.2 +19.5 +54.0 +0.1 +263

Table 3.6: Transcription F1 scores for Frame, Onset, and Onset+Offset metrics
defined previously. Across all metrics and all datasets, MT3 consistently outper-
forms the baseline systems we compare against. Percent increase over single-
dataset training for Onset+Offset F1 is shown in the last row. (Gardner et al.,
2021)
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The F1-scores obtained in the metrics mentioned are mostly contained in the
range of 80% to 95% in the various datasets used, with these F1-scores being
better than all the previous approaches as well as a professional-quality Digital
Signal Processor (DSP) for polyphonic pitch transcription, Melodyne 8 . Some
results on particular datasets show large improvements.

Due to the difficult nature of this task, the implementation for this model is very
complex. The authors do not provide a set of instructions on how to run this tool
locally, thus a lot of work had to be conducted in order to be able to run the tool
locally.

The output of the MT3 model is a MIDI file that contains the channel information
(for each of the instruments). It also follows the standard of reserving channel
10 for drum information. Each note has the information on whether or not it is
drums, the pitch of the note, and the start and end times of the note. MT3 follows
the standard 128 instrument representation for MIDI files as well as the standard
drum representation.

Table 3.7 provides a list of the instrument identifier and the represented instru-
ment. Furthermore, Table 3.8 provides a list of the different identifiers that repre-
sent each drum instrument.

Moreover, it was important for this work to classify the 128 instruments into
groups. There are several types of classification used in literature, with the most
common being the one proposed in (Sachs, 1914). This classification splits the in-
struments into 5 groups. A brief description of these groups can be summarized
as such:

1. Idiophones - Idiophones produce sound by means of the actual body of the
instrument vibrating, rather than a string.

2. Chordophones - Chordophones are simply a string or a set of strings and a
string bearer.

3. Membranophones - Membranophones primarily produce their sounds by
means of the vibration of a membrane. This group includes all drums and
kazoos.

4. Aerophones - Aerophones primarily produce their sounds by means of vi-
brating air, with the instrument itself not vibrating and not containg any
vibrating strings or membrane.

5. Electrophones - Electrophones are instruments that either have electric ac-
tion (e.g. pipe organ with electrically controlled air valves), have electric
amplification (e.g. modified piano with microphones inside it) or radioelec-
tric instruments, where the sound is produced by electrical means.

There a few instruments in the MIDI that do not fit into any of these groups (e.g.
Gunshot), so those were elements were assigned to the “Miscellaneous” group.

8https://www.celemony.com/
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However, in all the songs, none of these instruments were ever present, so this
group and the features related to it ended up being removed.

54



State
ofthe

art

ID Instrument ID Instrument ID Instrument ID Instrument
1 Acoustic Grand Piano 33 Acoustic Bass 65 Soprano Sax 97 FX 1 (rain)
2 Bright Acoustic Piano 34 Electric Bass (finger) 66 Alto Sax 98 FX 2 (soundtrack)
3 Electric Grand Piano 35 Electric Bass (pick) 67 Tenor Sax 99 FX 3 (crystal)
4 Honky-tonk Piano 36 Fretless Bass 68 Baritone Sax 100 FX 4 (atmosphere)
5 Electric Piano 1 37 Slap Bass 1 69 Oboe 101 FX 5 (brightness)
6 Electric Piano 2 38 Slap Bass 2 70 English Horn 102 FX 6 (goblins)
7 Harpsichord 39 Synth Bass 1 71 Bassoon 103 FX 7 (echoes)
8 Clavinet 40 Synth Bass 2 72 Clarinet 104 FX 8 (sci-fi)
9 Celesta 41 Violin 73 Piccolo 105 Sitar

10 Glockenspiel 42 Viola 74 Flute 106 Banjo
11 Music Box 43 Cello 75 Recorder 107 Shamisen
12 Vibraphone 44 Contrabass 76 Pan Flute 108 Koto
13 Marimba 45 Tremolo Strings 77 Blown Bottle 109 Kalimba
14 Xylophone 46 Pizzicato Strings 78 Shakuhachi 110 Bagpipe
15 Tubular Bells 47 Orchestral Harp 79 Whistle 111 Fiddle
16 Dulcimer 48 Timpani 80 Ocarina 112 Shanai
17 Drawbar Organ 49 String Ensemble 1 81 Lead 1 (square) 113 Tinkle Bell
18 Percussive Organ 50 String Ensemble 2 82 Lead 2 (sawtooth) 114 Agogo
19 Rock Organ 51 Synth Strings 1 83 Lead 3 (calliope) 115 Steel Drums
20 Church Organ 52 Synth Strings 2 84 Lead 4 (chiff) 116 Woodblock
21 Reed Organ 53 Choir Aahs 85 Lead 5 (charang) 117 Taiko Drum
22 Accordion 54 Voice Oohs 86 Lead 6 (voice) 118 Melodic Tom
23 Harmonica 55 Synth Choir 87 Lead 7 (fifths) 119 Synth Drum
24 Tango Accordion 56 Orchestra Hit 88 Lead 8 (bass + lead) 120 Reverse Cymbal
25 Acoustic Guitar (nylon) 57 Trumpet 89 Pad 1 (new age) 121 Guitar Fret Noise
26 Acoustic Guitar (steel) 58 Trombone 90 Pad 2 (warm) 122 Breath Noise
27 Electric Guitar (jazz) 59 Tuba 91 Pad 3 (polysynth) 123 Seashore
28 Electric Guitar (clean) 60 Muted Trumpet 92 Pad 4 (choir) 124 Bird Tweet
29 Electric Guitar (muted) 61 French Horn 93 Pad 5 (bowed) 125 Telephone Ring
30 Overdriven Guitar 62 Brass Section 94 Pad 6 (metallic) 126 Helicopter
31 Distortion Guitar 63 Synth Brass 1 95 Pad 7 (halo) 127 Applause
32 Guitar Harmonics 64 Synth Brass 2 96 Pad 8 (sweep) 128 Gunshot

Table 3.7: List of instruments using the standard MIDI classification.
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ID Drum type ID Drum type
35 Acoustic Bass Drum 58 Vibraslap
36 Bass Drum 1 59 Ride Cymbal 2
37 Side Stick 60 Hi Bongo
38 Acoustic Snare 61 Low Bongo
39 Hand Clap 62 Mute Hi Conga
40 Electric Snare 63 Open Hi Conga
41 Low Floor Tom 64 Low Conga
42 Closed Hi Hat 65 High Timbale
43 High Floor Tom 66 Low Timbale
44 Pedal Hi-Hat 67 High Agogo
45 Low Tom 68 Low Agogo
46 Open Hi-Hat 69 Cabasa
47 Low-Mid Tom 70 Maracas
48 Hi Mid Tom 71 Short Whistle
49 Crash Cymbal 1 72 Long Whistle
50 High Tom 73 Short Guiro
51 Ride Cymbal 1 74 Long Guiro
52 Chinese Cymbal 75 Claves
53 Ride Bell 76 Hi Wood Block
54 Tambourine 77 Low Wood Block
55 Splash Cymbal 78 Mute Cuica
56 Cowbell 79 Open Cuica
57 Crash Cymbal 2 80 Mute Triangle

81 Open Triangle

Table 3.8: List of percussion instruments using the standard MIDI classification.

Using MT3, several features were extracted, which were not possible to extract
before. While it was not possible to use MT3 as a melody extractor and test assess
impact of using it in place of the current extractors (due to it not having infor-
mation such as note velocity (i.e., intensity), amongst others), it still proved a
valuable tool to extract features such as detecting the presence of an instrument,
the amount of notes a certain instrument produces, amongst many others. A
comprehensive list of features can be found in Section 5.2.

3.6 Music Source Separation

This section provides a brief overview of the current state of the art results in mu-
sic source separation, as well as an overview of the two music source separation
tools used in this work, Spleeter (Hennequin et al., 2020) and Demucs (Rouard
et al., 2023).
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3.6.1 State of the art results

As Spleeter was the framework used in (Panda, 2019) to separate the vocal stem
of the audio tracks, Spleeter was once again re-used in this work in order to ex-
tract the same feature set on the new MERGE datasets and make a comparison
to 4QAED. However, since the release of Spleeter, several other frameworks have
appeared that have better results in source separation.

Musical source separation systems are typically evaluated according to four per-
formance metrics (Vincent et al., 2006), namely:

• Signal to Distortion Ratio (SDR): Measures the overall quality of the sepa-
rated source by taking into account both errors in filtering out other sources
(interference) and artifacts introduced by the separation process.

• Signal to Interference Ratio (SIR): This specifically measures the amount
of residual interference left from other sources in the separated source.

• Signal to Artifacts Ratio (SAR): This measures the amount of artifacts (or
distortions) introduced by the separation process itself. It captures how
much the algorithm has modified the original source during the separation,
without accounting for interference from other sources.

• Signal to Noise Ratio (SNR): This measures the amount of residual noise
in the separated source.

In the website papers with code, a list of the benchmarks for various datasets (e.g.
MUSDB18 (Rafii et al., 2017), MedleyDB (Bittner et al., 2014), amongst others) us-
ing different approaches is compiled (pap, 2023). For example, for the MUSDB18
dataset, the best performer is the Sparse HT Demucs approach (Rouard et al.,
2023), with an average Signal to Distortion Ratio (SDR) of 9.20.

Table 3.9 shows the top 10 approaches tested in the MUSDB18 dataset. Multiple
Demucs approaches are in the top 10, making it the state of the art framework for
source separation. Furthermore the Spleeter result is also included, in order to
give a frame of reference.

With Demucs obtaining state of the art results in source separation, it was de-
cided that an experiment would be conducted in this work pertaining to Spleeter
and Demucs. This experiment consisted of taking the same set of features that
was previously extracted (in (Panda, 2019)) using the vocal stem extracted from
Spleeter, but extracting them on the vocal stem now separated with the best De-
mucs approach in order to see if any improvement on the classification results
would happen by using Demucs.
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Rank Model SDR
(avg)

SDR
(vocals)

SDR
(drums)

SDR
(bass)

SDR
(other)

Paper

1 Sparse HT Demucs (fine
tuned)

9.20 9.37 10.83 10.47 6.41 (Rouard et al., 2023)

2 Hybrid Transformer De-
mucs (f.t.)

9.00 9.20 10.08 9.78 6.42 (Rouard et al., 2023)

3 Band-Split RNN (semi-
sup.)

8.97 10.47 10.15 8.16 7.08 (Luo and Yu, 2022)

4 TFC-TDF-UNet (v3) 8.34 9.59 8.44 8.45 6.86 (Kim et al., 2023)
5 Band-Split RNN 8.23 10.21 8.58 7.51 6.62 (Luo and Yu, 2022)
6 Hybrid Demucs 7.72 8.04 8.58 8.67 5.59 (Défossez, 2022)
7 KUIELab-MDX-Net 7.54 9.00 7.33 7.86 5.95 (Kim et al., 2021)
8 CDE-HTCN 6.89 7.37 7.33 7.92 4.92 (Hu et al., 2022)
9 Attentive-

MultiResUNet
6.81 8.57 7.63 5.88 5.14 (Sgouros et al., 2022)

10 DEMUCS (extra) 6.79 7.29 7.58 7.60 4.69 (Défossez et al., 2021)
18 Spleeter (MWF) 5.91 6.86 6.71 5.51 4.02 (Hennequin et al.,

2020)

Table 3.9: Top 10 source separation results in the MUSDB18 (Rafii et al., 2017) database, ranked by SDR. Spleeter (Hennequin et al.,
2020) is also included as a frame of reference (pap, 2023).
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3.6.2 Spleeter

Spleeter (Hennequin et al., 2020) is a source separation library that provides state
of the of art models that allow for the separation of the audio signal into certain
components, such as:

1. Vocals and Accompaniment (2 stems)

2. Vocals, drum, bass and the other components (4 stems)

3. Vocals, drum, bass, piano and the other components (5 stems)

Spleeter works by using a U-net, which is an encoder-decoder segmentation Con-
volutional Neural Network (CNN) with skip connections. The specific imple-
mentation used by Spleeter uses 12-layer U-nets (6 layers for encoding and 6
for decoding). A U-net is used to estimate a soft mask for each of the stems.
Training loss is a L1-norm, the sum of the absolute values of all the components
in a vector, between masked input mix spectrograms and source-target spectro-
grams. The training was done using Deezer’s 9 internal datasets. Finally, the
separation is done from the estimated source spectrograms using soft masking or
multi-channel Wiener filtering (Hennequin et al., 2020).

It has the advantage of being very fast when using a GPU device, as it is able
to separate into the 4 respective stems 100 seconds of stereo sound in 1 second
of processing time. The models were tested in the MUSDB18 dataset (Rafii et al.,
2017), which is a dataset consisting of 150 full length musical tracks from different
genres, as well as their isolated drums, bass, vocals and other stems.

In order to measure performance, four metrics from (Vincent et al., 2006) are used,
which are Signal to Distortion Ratio (SDR), Signal to Interference Ratio (SIR), Sig-
nal to Artifacts Ratio (SAR), Signal to Noise Ratio (SNR). Comparative results to
other frameworks can be found in Table 3.9. Is it noteworthy that all the top 10
approaches have come out since the release of Spleeter.

When compared to other state-of-the art frameworks, Spleeter obtained equiva-
lent or better results than any existing implementation at the time.

Spleeter was used in (Panda, 2019) to separate the vocal track from the accompa-
niment and then extract an extra set of features from the separated vocal track,
and was also used in this work in order to measure the impact of expanding the
datasets, as the same set of features previously extracted in (Panda, 2019) had to
be extracted.

3.6.3 Demucs

Demucs (Rouard et al., 2023), akin to Spleeter, is a music separation model, which
is capable of separating drums, bass, vocals from the rest of the accompaniment.
Demucs is based on a U-Net Convolutional architecture, much like Spleeter.

9https://deezer.io
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There have been many versions of Demucs throughout the years, and at the time
of writing the most recent and the best performing one is called Demucs v4,
where a hybrid spectrogram/waveform separation model is used using Trans-
formers.

This version is based on Hybrid Demucs (Demucs v3), which uses two U-nets,
one in the time domain (with temporal convolutions) and another in the spectro-
gram domain (with convolutions over the frequency axis). Each of the U-nets has
5 encoder layers and 5 decoder layers. The output of the spectral branch is trans-
formed to a waveform using the Inverse Short-Time Fourier Transform (ISFTF),
before being added with the output of the temporal branch, and this sum gives
the actual prediction of the model (Rouard et al., 2023).

Demucs v4 replaces the innermost convolutional layers with cross-domain trans-
former encoders, that uses self-attention and cross-attention to process spectral
and temporal informations. This allows treating in parallel the 2D signal from
the spectral branch and the 1D signal from the waveform branch. In Demucs v3,
precise tuning of the model parameters had to be conducted in order to properly
align the time and spectral representation (Short-Time Fourier Transform (STFT)
window, hop length, hop size, amongst others). On the other hand, the cross-
domain transformer encoder approach is able to work with heterogeneous data
shapes, making it a much more flexible architecture when compared to Demucs
v3 (Rouard et al., 2023). Figure 3.7 shows the Hybrid Transformer Demucs Archi-
tecture.

This model was trained the MUSDB18 (Rafii et al., 2017), as well as an extra pri-
vate dataset of 800 songs with stems from 200 artists from diverse music genres.
Pre-processing was done in order to remove ambiguous songs and songs that had
more than 30% silence.

It was then also tested in MUSDB18, in order to facilitate the comparison with
other state of the art models. Using Signal to Distortion Ratio (SDR) as the met-
ric, it obtained better results when compared to other state of the art approaches
in all stems except “other” and “vocals”. This means that it is better at separating
drums, bass and the overall stems than any of the state of the art models, includ-
ing Spleeter. Table 3.9 shows the results obtained in the MUSDB18 dataset when
compared to other state of the art approaches.

Due to this model being the state of the art model for source separation, it was
the model chosen to do the separation of the percussion track from our expanded
datasets, in order to enable the creation for features designed solely for percus-
sion. Furthermore, since Demucs also has the capability to separate the vocal
track and since it has obtained better results when compared to Spleeter, the pre-
vious features extracted from the vocal component with Spleeter were extracted
with the Demucs vocal track in order to compare the two approaches.
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Figure 3.7: Hybrid Transformer Demucs Architecture. (Rouard et al., 2023).
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Datasets

In this chapter, a discussion about the work currently done in the expansion of
the datasets will be presented, as well as a overview of two frameworks that will
be used in the next phase of this work.

4.1 Expansion of current datasets

4.1.1 Previously conducted expansions

In previous works by our group, such as (Malheiro, 2017), (Malheiro et al., 2018)
and (Panda, 2019), different databases were created for the respective works.
These datasets have also been rectified since their publication, with the removal
of a few songs that were repeated or were not valid (for example, songs that were
not totally in English).

Previous work has also been done to create a large bi-modal (audio and lyrics)
dataset. This work encompassed taking the datasets that only had one specific
type, for example, an audio dataset, acquiring the lyrics of the corresponding
songs from various websites such as Genius or lyrics.com, and then proceeding
with various annotation tasks. The same work was also done but in reverse, as
in having an already existing lyric dataset and grabbing the audio files from the
AllMusic platform. Moreover, there was already a small bi-modal dataset of 133
songs created in (Malheiro, 2017) for the respective work.

This expansion method raised a few problems that ultimately led to the need of
the expansion of the already existing datasets:

1. Since for the annotations of the dataset AllMusic tags are used, songs that
are not listed on AllMusic or that do not have any tags can not be considered
for the dataset.

2. Any song that is not totally in English, is an instrumental or does not have
lyrics available (old songs, mostly from the 1940’s until the 1960’s) can not
be considered for the dataset.
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3. Since this is a bi-modal dataset, if the songs do not have matching quad-
rants in the Russell model in the audio and the lyrical annotations, the song
is discarded, however, they can still be kept in the corresponding dataset
(audio or lyrical).

In Table 4.1 the amount of songs present in the dataset prior to the expansion
done for this work are shown, as well as their origin.

Dataset of origin Q1 Q2 Q3 Q4 Total Amount of songs in the
original dataset

(Malheiro, 2017) 37 37 30 29 133 133
4QAED (Panda, 2019) 100 129 103 72 404 900
(Malheiro et al., 2018) 160 170 146 100 576 771
Total 297 336 279 201 1113

Table 4.1: Amount of songs in the previous bi-modal dataset.

As we can see, due to the aforementioned problems, a lot of songs ended up being
removed from the bi-modal dataset, and with the goal of having 2000 bi-modal
songs, a new expansion had to be conducted.

Tables 4.2 and 4.3 show the amount of songs in the previous audio and lyrical
datasets respectively.

Dataset of origin Q1 Q2 Q3 Q4 Total Amount of songs in the
original dataset

(Malheiro, 2017) 51 45 30 34 160 133
4QAED (Panda, 2019) 223 225 221 224 893 900
(Malheiro et al., 2018) 160 170 146 100 576 771
Total 434 440 397 358 1629

Table 4.2: Amount of songs in the previous audio dataset.

Dataset of origin Q1 Q2 Q3 Q4 Total Amount of songs in the
original dataset

(Malheiro, 2017) 44 41 51 44 180 133
4QAED (Panda, 2019) 100 129 103 72 404 900
(Malheiro et al., 2018) 207 203 204 148 762 771
Total 351 373 358 264 1346

Table 4.3: Amount of songs in the previous lyrical dataset.

4.1.2 Expansions done in the scope of this work

To conduct this expansion in an organized manner, an updated version of a pre-
vious algorithm used by (Panda, 2019) was used. The algorithm used remains
almost the same, with only changing a step in order to decrease ambiguity be-
tween quadrants. Before, the emotional tags for each song were extracted from
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AllMusic and their arousal and valence values were calculated using the War-
riner framework (Warriner et al., 2013). Then the arousal and valence values were
converted into one of the four quadrants of the Russell model of emotion. The
quadrant where the most tags fell upon was chosen as the quadrant for the song,
which was then manually validated.

Now, after calculating the arousal and valence values using the Warriner frame-
work, songs that have valence or arousal values between -0.2 and 0.2 (meaning
they are close to the center of the plane) are removed.

Figure 4.1 shows the output of this step on this expansion, with songs that were
not considered going forward colored in red while songs that were kept are col-
ored in green, as well as a red square where the songs that are in it are removed
for easier visualization.

Figure 4.1: Russell’s plane with the output of the first step of the expansion.

Thus, the algorithm used to expand the dataset can be summarized as such (see
(Panda, 2019) for further details):

1. Gather songs and emotion data from AllMusic services.

1.1. Retrieve the list of 289 emotion tags, E, using the AllMusic API.

1.2. For each emotion tag gathered, Ei, query the API for the top 10000
songs related with it, Si.

2. Bridge the emotional data from AllMusic, based on an unvalidated emo-
tional taxonomy, with Warriner’s list.

2.1. For each emotion tag, Ei, retrieve the associated AVD (arousal, va-
lence and dominance) values from the Warriner’s dictionary of English
words. If the word is missing, remove it from the set of tags, E.
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2.2. Map each emotion tag, Ei, onto one of the four qudrants of the Russell
model of emotion using the AV values.

2.3. Attribute a quadrant to each song, Si, based on the quadrant where the
majority of the emotion tags, Ei, fall upon.

3. Data processing and filtering, to reduce the massive amount of gathered
data to a more balanced but still sizeable set.

3.1. Filter ambiguous songs, where a dominant emotional quadrant is not
present.

3.1.1. For all the songs in the set of songs Si, calculate the average arousal
and valence values of all the emotion tags gathered, Ei, and if
the average value of valence or arousal is contained in the range
[−0.2, 0.2] remove the song from the dataset.

3.2. Remove duplicated or very similar versions of the same songs by the
same artists (e.g., different albums) by using approximate string match-
ing against the combination of artist and title metadata.

3.3. Remove songs without genre information. This ensures that the algo-
rithms that ensure maximum genre diversity can function correctly.

3.4. Remove songs that do not have lyrics (instrumentals) or songs that do
not have available lyrics.

4. Generate a subset dataset maximizing genre variability in each quadrant.

5. Manually validate the audio dataset.

5.1. Distribute all the songs in the set Si for each of the members of the team
in an equal manner.

5.2. For each song, perform validation and annotation of the song accord-
ing to Russell’s model of emotion.

5.2.1. Verify that the song is valid (e.g. does not contain clapping or si-
lence) and that the emotion present in the song is not ambiguous.

5.2.2. If the quadrant annotated does not match with the quadrant calcu-
lated in step 2.2., remove the song from the bi-modal dataset, else,
keep the song.

6. Obtain the lyrics corresponding to the acquired audio clips from platforms
such as lyrics.com, ChartLyrics, MaxiLyrics or MusixMatch.

7. Manually validate the obtained song lyrics.

7.1. Distribute all the songs in the set Si for each of the members of the team
in an equal manner.

7.2. For each song, perform validation and annotation of the song accord-
ing to Russell’s model of emotion.

7.2.1. Verify that the lyrical file is well structured, belongs to the correct
audio clip, and that the emotion present in the file is not ambigu-
ous.
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7.2.2. If the quadrant annotated does not match with the quadrant calcu-
lated in step 2.2., remove the song from the bi-modal dataset and
add it only to the audio dataset. If it matches with the calculated
quadrant, add to both the audio and bi-modal dataset.

This approach, while still involving manual effort, is much lighter than manually
annotating every song. Since the base annotations are generated from AllMusic
tags which were created by experts, it is not required that there are multiple anno-
tators for each song. Thus, for each song (both audio and lyrics) only one person
is require to annotate and validate a song.

The audio annotations were done by 5 members of our group, while 8 members
participated in the lyrical annotations. The final datasets are referred to as Music
Emotion Recognition - Next Generation (MERGE) followed by the type (audio,
lyrics, and bi-modal), and finally by “complete” and “balanced”, in order to indi-
cate which type of dataset it is.

The tables below illustrate the final numbers after the expansion for the bi-modal,
audio and lyrical datasets, respectively.

Dataset of origin Q1 Q2 Q3 Q4 Total Amount of
songs in the
original dataset

(Malheiro, 2017) 37 37 30 29 133 133
4AQED (Panda, 2019) 100 129 103 72 404 900
(Malheiro et al., 2018) 160 170 146 100 576 771
Current expansion 228 337 221 317 1115
MERGE_Bimodal_Complete 525 673 500 518 2216

Table 4.4: Amount of songs in the bi-modal dataset after the expansion.

Dataset of origin Q1 Q2 Q3 Q4 Total Amount of
songs in the
original dataset

(Malheiro, 2017) 51 45 30 34 160 133
4QAED (Panda, 2019) 223 225 221 224 893 900
(Malheiro et al., 2018) 160 170 146 100 576 771
Current expansion 441 475 411 598 1925
MERGE_Audio_Complete 875 915 808 956 3554

Table 4.5: Amount of songs in the audio dataset after the final expansion.

With these expansions, the goal set for this work was reached and even sur-
passed. One important factor to consider is that due to the nature of how the
datasets were built straight from the start, with considerations in mind such as
balancing between quadrants, maximizing genre presence, it allowed for the cre-
ation of bigger datasets while keeping a high standard of quality.

Another important focus of this work was increasing the size of datasets while
keeping the question of quadrant balancing in mind, as having an imbalanced
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Dataset of origin Q1 Q2 Q3 Q4 Total Amount of
songs in the
original dataset

(Malheiro, 2017) 44 41 51 44 180 133
4QAED (Panda, 2019) 100 129 103 72 404 900
(Malheiro et al., 2018) 207 203 204 148 762 771
Current expansion 249 337 263 373 1222
MERGE_Lyrics_Complete 600 710 621 637 2568

Table 4.6: Amount of songs in the lyrical dataset after the final expansion.

can lead to the model becoming biased towards the majority class, thus failing to
adequately learn the minority class (He and Garcia, 2009).

Thus, Algorithm 4.2 of (Panda, 2019) (See Section 4.1.4 of (Panda, 2019) for further
details) was used to create a balanced set of songs for each quadrant. This algo-
rithm was devised to maintain maximum genre diversity in a new set of songs.
This led to the creation of datasets with 600 songs per quadrant for the lyrical
experiments and more than 800 per quadrant for the audio experiments which is
something that has not been possible before in the MER field. For reference, the
dataset used in (Panda, 2019), used 225 songs per quadrant totalling 900 songs.

Furthermore, the bi-modal dataset has also been expanded greatly, now totalling
2216 songs. Moreover, the balanced version of this dataset has 2000 songs in
total, with 500 songs per quadrant. Having a dataset of this size with both the au-
dio and lyrics components will allow for new bi-modal approaches to be tested,
mostly deep-learning techniques. These techniques were not feasible before ei-
ther due to the small dataset sizes available or due to their imbalance in the
amount of songs per quadrant, with these two factors being major factors taken
into consideration in the construction of this dataset.

From this expansion, three datasets were created: MERGE_Audio_Complete (the
full audio dataset), MERGE_Lyrics_Complete (the full lyrics dataset) and MERGE-
_Bimodal_Complete (the full bi-modal dataset). Furthermore, a balanced ver-
sion of these datasets was also created (meaning the number of songs per quad-
rant is equal). These datasets can be referred to as MERGE_Audio_Balanced,
MERGE_Lyrics_Balanced and MERGE_Bimodal_Balanced.

Table 4.7 shows the total amount of songs for each of the six aforementioned
datasets as well as the amount of songs per quadrant.
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Dataset Name Q1 Q2 Q3 Q4 Total
MERGE_Audio_Complete 875 915 808 956 3554
MERGE_Audio_Balanced 808 808 808 808 3232
MERGE_Lyrics_Complete 600 710 621 637 2568
MERGE_Lyrics_Balanced 600 600 600 600 2400

MERGE_Bimodal_Complete 525 673 500 518 2216
MERGE_Bimodal_Balanced 500 500 500 500 2000

Table 4.7: Number of songs in the novel MERGE datasets.
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Chapter 5

Methodology

In this chapter, an overview is provided of the methodology used in the whole
pipeline, from feature extraction to the final classification. Figure 5.1 provides an
overview of the whole pipeline, including the new additions done to the baseline
work.

Figure 5.1: Overview of the whole pipeline for emotion classification.

The overall pipeline for this work can be summarized as:

1. Standardize all the audio clips into a certain format - WAV PCM Format,
22050 HZ sampling rate, 16 bits quantization and mono-aural.

2. Extract all the baseline features using the various frameworks - MIR Toolbox
(Lartillot, 2018), Marsyas (Tzanetakis, 2002) and PsySound3 (Cabrera et al.,
2008).

3. Extract all the newly created features using MT3 and Demucs.

4. Reduce the feature dimensionality.

4.1. Remove features where no variation was found in all the extracted val-
ues.

4.2. Remove highly correlated pairs of features.

5. Perform feature selection.
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5.1. Use the RelieF (Robnik-Sikonja and Kononenko, 1997) algorithm to
compute the weight of features and rank them based on their weight
and select a set of the top features.

6. Perform SVM hyper-parameter optimization using a Bayesian search.

7. Perform SVM classification with the four quadrants from the Russell model
of emotion and extract metrics such as overall F1-Score.

5.1 Preliminary steps

As this work has (Panda, 2019) as basis, the employed methods are based upon
the original methods. In terms of feature extraction, there are a few steps that
have to be done to extract what is called the baseline features, meaning the fea-
tures used in (Panda, 2019).

Firstly, the songs are converted onto a standardized audio format using the FFm-
peg framework 1, with the following specifications: WAV PCM Format, 22050 HZ
sampling rate, 16 bits quantization and mono-aural. From here forward, all the
feature extraction steps and anything that uses the audio file is done using these
standardized versions.

Afterward this standardization is done, the stem separation of vocal track and the
remaining instrumental is done using Spleeter (Hennequin et al., 2020). Further-
more, once again, these audios are standardized to the aforementioned format.

The first step is to extract the melodic lines using the MELODIA framework (Sala-
mon and Gómez, 2012) and the Dressler framework (Dressler, 2016). This is done
for the full audio and also for the vocal only component.

After all of this is done, feature extraction can begin.

5.2 Feature engineering

The following section provides an overview of the whole feature engineering pro-
cess, containing the extracting of both the baseline and newly proposed features,
as well as methods used for feature dimensionality reduction and feature selec-
tion.

5.2.1 Features obtained from the MIDI file

Using MT3, the MIDI files with the notes for instrument were extracted. As MT3
was trained on files with no vocal track, it was needed that for the input an audio
track with no vocal track was given. While separating the vocal track, Demucs

1https://ffmpeg.org
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also outputs a file where the vocal track is removed from the rest of the track, so
those were files used as input for MT3.

In (Panda, 2019), a certain set of features were extracted. These features were
described in detail in Section 3.2. In (Panda, 2019) the transcription was only done
in the melodic channel of the audio track, and now, using MT3, the transcription
of the whole audio track is done. This enables the analysis for all the separated
melodic lines of a single track.

One example of this is the music layer information (explained in further detail in
Section 3.2.8). Previously, this information was extracted by estimating the num-
ber of fundamental frequency (F0) for each frame of the audio track. Now, using
the MIDI file outputted by MT3, we are able to estimate the layer information by
using the number of instruments playing in each frame. Furthermore, informa-
tion regarding note duration was also able to be extracted for each instrument,
which was something that was not able to be extracted before.

Besides the updated features, we propose the following novel features:

1. Instrument extent - Before, it was impossible to measure the presence or not
of a certain instrument in an audio track. Now, with the separation done by
MT3 this is possible. To encapsulate this, for each of the 128 instruments,
a feature was created that has the value of 1 if any note of that instrument
is played throughout the audio track and 0 if not. Furthermore, for each of
the five instrument groups, the total number of instruments of each specific
group that is present in the song is calculated. Finally, the total number
of melodic instruments present is also calculated, as well as the amount of
drum instruments.

2. Instrument notes - Another thing that was not possible before was being
able to measure the amount of notes that each instrument plays in a song.
Thus, a feature was created that represents the amount of notes that a spe-
cific instrument has in a song. The total amount of melodic notes, percus-
sion notes and total amount of notes for each of the five instrument groups
is also calculated.

3. Instrument duration percentage - As previously mentioned, information
regarding note duration is calculated. However one new feature that is cal-
culated for each instrument is the percentage of the song that contains that
instrument. For this, the sum of all the duration of all the notes of a certain
instrument is calculated. Then, that amount is divided by the length of the
song. Once again, this process was repeated for each of the five groups, as
well as for the group of percussion instruments and the group of melodic
instruments.

5.2.2 Features obtained from the percussion audio track

Using Demucs, the percussion component was separated from the rest of the
track, leaving us with two audio tracks: only the percussion component, and
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the rest of the track. As such, new features were created extracted from the per-
cussion track only, in order to represent the percussion track. These features were
extracted using Python, using the librosa 2 and scipy packages.

Prior to any of the features being extracted, the audio is loaded using the load
function from the librosa package, which returns the audio time series in a form
of an array, with that time series being used as the base for the extraction of the
percussion information. In all the features that involved having to pick a certain
frame length and hop size, the values of 1024 for the frame length and 128 for the
hop size were chosen, in order to maintain consistency with previously extracted
features in (Panda, 2019).

For the features that involved having to obtain statistics (e.g. volume informa-
tion), 6 statistics were extracted: mean, standard deviation, skewness, kurto-
sis, maximum and minimum. This was done in order to have consistency with
(Panda, 2019).

In the following the novel proposed features are described:

1. Drum Extent Percentage - In order to understand the amount of percussion
in a track, this feature aims to represent the amount of drums present in
the percussion track. First, the Root-Mean Square (RMS) for each frame is
computed, with RMS being used as a measure of the magnitude of the audio
signal, representing the energy of said signal. The RMS can be defined as:

RMS =

√√√√ 1
N

N

∑
i=1

x2
i (5.1)

where N is the number of samples in the frame, and xi is the ith sample
value.

After, the number of frames that are above a certain threshold is calculated.
The ratio between this number of frames and total amount of frames in
the song gives us the drum extent of the audio track. This threshold was
defined experimentally as 0.025.

To choose this threshold, 20 songs that were near silent to the listener were
chosen (5 from each quadrant), and 20 songs that had a high extent of drums
were also picked. Then, different thresholds were tested until the drum
extent calculated accurately represented the amount of drum that is audible
to the listener of the track.

It was chosen to not use decibels because using that approach led to situ-
ations where the track was near silent to the human ear but still had high
values of drum extent.

2. Amplitude and intensity information - Using the audio time series, am-
plitude and intensity was calculated. First, we start by taking the absolute

2Librosa is a python package for music and audio analysis. Url:
https://librosa.org/doc/latest/index.html.
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value of the audio time series, to get the amplitude of the signal. Then using
this amplitude, the six aforementioned statistics were computed.

For intensity, the frame based intensity is calculated, using the same method
for drum extent explained above. The usual six statistics were also com-
puted.

3. Spectral features - A set of spectral features was extracted from the signal.
For the features that return an array with information for each frame, the
same usual six statistics are computed. The spectral features extracted are:

(a) Spectral centroid - For each frame of the audio time series, the frame
is normalized and treated as a distribution over frequency bins, from
which the main (the centroid) is extracted per frame.
The centroid at frame t can be defined as (Klapuri and Davy, 2006):

Centroid[t] = ∑k S[k, t]× freq[k]
∑j S[j, t]

where S is a magnitude spectrogram, and freq is the array of frequen-
cies (e.g., FFT frequencies in Hz) of the rows of S.

(b) Spectral bandwidth - Bandwidth is the difference between the upper
and lower frequencies in a continuous band of frequencies.
The spectral bandwith at frame t can defined as (Klapuri and Davy,
2006):

Spectral Bandwidth[t] =

(
∑
k

S[k, t]× (freq[k, t]− Centroid[t])p

) 1
p

(c) Spectral contrast - First, the spectrogram is computed if none is pro-
vided. After, each frame of the spectrogram S, is divided into sub-
bands. For each sub-band, the energy contrast is estimated by com-
paring the average energy in the top quartile (peak energy) to the one
in the bottom quartile (valley energy). Having high energy contrast
values generally correspond to clear, narrow-band signals, while low
contrast values correspond to broad-band noise. (Jiang et al., 2002b)
The function returns an array where each row of spectral contrast val-
ues corresponds to a octave-based frequency. Afterwards, the six usual
statistics are extracted from this array.

(d) Spectral flatness - Spectral flatness (also referred as tonality coefficient)
is a measure to quantify how much noise-like a sound is, as opposed to
being tone-like (Dubnov, 2004). Having a high spectral flatness (closer
to 1) indicates the spectrum is similar to white noise. The formula for
spectral flatness can be summarized as (Dubnov, 2004):

SFM =

(
∏N−1

n=0 X[n]
)1/N

1
N ∑N−1

n=0 X[n]
Where:
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• X[n] is the power spectrum (or magnitude squared) at frequency
bin n.

• N is the number of frequency bins.
• ∏ is the product over all n.
• ∑ is the sum over all n.

(e) Spectral rolloff - The roll-off frequency is defined for each frame as the
center frequency for a spectrogram bin such that at least 85% percent
(by default) of the energy of the spectrum in this frame is contained
in this bin and the bins below (Tzanetakis, 2002). The exact percent-
age varies between authors but the majority of authors use 85%. The
formula can be summarized as (Tzanetakis, 2002):

R = fi where
i

∑
n=0

X[n] ≥ α
N−1

∑
n=0

X[n]

Where:

• R is the spectral rolloff frequency.
• fi is the frequency corresponding to the i-th bin.
• X[n] is the power or magnitude at frequency bin n.
• N is the total number of frequency bins.
• α is a threshold (e.g., 0.85)
• ∑ is the sum over all n.

(f) Spectral entropy - Spectral entropy is a measure that is used to charac-
terize the complexity or randomness of a signal in the frequency do-
main. A lower entropy value suggests a less complex signal while
higher values suggest a more complex signal.
First, the Power Spectral Density (PSD) is calculated. The PSD is given
by calculating the Short-Time Fourier Transform (STFT) of the audio
signal. Afterwards, the PSD values are normalized across frequency
bins for each frame, which ends up turning the values into probabili-
ties. This also makes it so that the sum of the values in all the values
equals 1, which is required for entropy calculation to be meaningful.
The spectral entropy is calculated for each frame using the formula for
Shannon entropy.
This entropy calculation results in an array of entropy values, one for
each frame. Then, the six usual statistics are computed.

4. Self-Similarity Matrix (SSM) features - Using Mel-Frequency Cepstral Co-
efficients (MFCC) derived from the audio signal, a set of features that aim
to capture information regarding the similarity between each pair of frames
in the audio signal are computed. First, the Mel-Frequency Cepstral Coef-
ficients (MFCC) are calculated, using the same hop size of 128. This will
produce a feature matrix that is used to generate the SSM. Then, the SSM is
computed using cosine similarity as the distance metric (Tzanetakis, 2002).
Finally, the SSM is thresholded to create a binary matrix:
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Thresholded_SSM =

{
1 if SSM > 0.5
0 otherwise

This SSM serves as a base from which the following features are proposed
and extracted:

(a) Total number of patterns - Corresponds to the total number of patterns
where there are similarities.

(b) Pattern duration - An array of pattern durations is computed, where
all the durations of the patterns that are repeated are kept. From this
array, the six normal statistics are computed.

(c) Total number of repetitions per second - The total number of repeti-
tions is divided by the total number of seconds in the song in order to
get the total number of repetitions per second.

As such, the process used to extract the new proposed features can be summa-
rized as:

1. Separate the vocal track and percussion track using Demucs (this will in
turn also create the non-vocal and non-percussion tracks).

1.1. Standardize the non-vocal track, the vocal track, the percussion track,
and the non-percussion track (called the melodic track) to the afore-
mentioned specifications.

2. Extract the proposed percussion features from the standardized percussion
track audio.

3. Extract the MIDI files using MT3 using the standardized non-vocal track.

3.1. Extract all the proposed features related to the MIDI file.

5.2.3 Baseline feature extraction

A summary of the features extracted for the baseline approach can be found in
Section 3.2. These features are extracted using various audio frameworks, such as
MIR Toolbox (Lartillot, 2018), Marsyas (Tzanetakis, 2002) and PsySound3 (Cabr-
era et al., 2008). The process of extracting these baseline features is not the main
focus on this work, and as such it will not be further detailed.

5.2.4 Feature dimensionality reduction

After this feature extraction is complete, there are over 4500 features. Since this
feature set will more than likely contain features that represent duplicate infor-
mation or that are heavily correlated, feature dimensionality reduction is used in
order to reduce the amount of features used by the classifier.
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In order to reduce the feature dimensionality, first, features where the standard
deviation of the observed data is zero are removed. Secondly, features that are
heavily correlated were removed. In order to accomplish this, the features were
ranked based on their importance using the RelieF algorithm (Robnik-Sikonja
and Kononenko, 1997). Afterwards, the outliers for each feature were computed.
Excluding these outliers, the correlation between every pair of features is com-
puted. If the correlation factor between two features is greater than a threshold
(set experimentally at 0.9), then the feature is removed.

After this step, from the original set of around 4500 features, only about 3500
remained.

5.2.5 Feature selection

For feature selection, once again the RelieF algorithm was used to order features
based on their importance. Here is where the methodology from this work di-
verges from the one used in (Panda, 2019). We take each set of top X features
ranked by the RelieF algorithm, where X is an integer that can have the values
5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900.
Afterwards, perform hyper parameter optimization on this set of features. This
ensures that for each of the datasets, the best possible F1-Score is obtained, as
hyper parameter optimization is done separately for each set of top features.

5.3 Hyper-parameter optimization

In order to achieve optimal performance, a Bayesian search was performed to
find the best hyper-parameters for the SVM, which included searching for the
optimal kernel type, as well as the optimal gamma, cost, and the degree of the
polynomial kernel (where applicable). For the cost and gamma values, the search
range consisted of values between 1e-6 and 100, and 1 through 5 for the degree of
the kernel. Finally, for the kernel type, Linear, Polynomial, Radial Basis Function
(RBF) and Sigmoid were the options considered (Brownlee, 2019).

To find these hyper-parameters, repeated stratified 10-fold cross validation (Duda
et al., 2001) was used (10 repetitions were applied), since, according to the litera-
ture, “there are more performance estimates, and the training set size is closer to
the full data size, thus increasing the possibility that any conclusion made about
the learning algorithm(s) under test will generalize to the case where all the data
is used to train the learning model” (Refaeilzadeh et al., 2009).

The Bayesian approach was chosen in detriment of the standard grid search ap-
proach used in (Panda, 2019) as it achieved either equal or comparable results
when compared to the grid search method while taking a fraction of the time to
find the an optimal set of parameters.
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5.4 Classification and evaluation metrics

For classification, an SVM was used as that is also the method used in (Panda,
2019). The SVM parameters used are the ones found in the previous step, and
then there are several metrics reported.

The first metric calculated is the average F1-Score obtained overall for all the
folds, and also for each quadrant. The standard deviation overall and for each
quadrant is also calculated.

The second metric calculated is the confusion matrix, but in percentage instead
of whole values. This means that for each fold and for each combination of true
and predicted values, the percentage of the correctly classified values for each
quadrant is calculated. Then, the average percentage for each cell of the confusion
matrix throughout all folds is calculated, as well as the standard deviation.

This provides a better understanding of the amount of songs that are being clas-
sified correctly throughout all folds.

After training and assessing the model, the postulated hypotheses are either con-
firmed or dis-proven based on inferential analysis of the F1-Scores determined
for each fold for the approach with baseline features and approaches with new
feature sets. This validation process involves a significance test, with a 5% confi-
dence interval. If the p-value, which is the outcome of the significance test, falls
below this interval, then the findings are considered statistically significant, and
the hypothesis is affirmed.
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Chapter 6

Results and discussion

In this chapter, an overview of the results obtained for all the experiments done
will be presented. In the scope of this work many extra experiments were done,
such as for example replacing the original features extracted from the vocal track
from Spleeter with the features extracted with the vocal track from Demucs in
order to measure the impact of using one framework versus the other.

6.1 Comparison with 4QAED

With the large increase in size in the three datasets (audio, lyrical and bi-modal), it
is paramount to replicate previously done experiments but applied to the bigger
datasets, in order to measure the expansion impact in the emotion classification
results. Only the audio and bi-modal dataset pertain to the scope of this work so
those were the two datasets tested.

Previously in (Panda, 2019), the best results obtained were an F1-score of 76.4%,
obtained using a SVM classifier approach using the top 100 features in the 4QAED
dataset, containing 900 songs. As (Panda, 2019) serves as foundation to this
work, it is paramount that the same approach is applied to the newly constructed
datasets in order to better measure the impact of the dataset expansions.

An explanation of the whole pipeline for emotion classification into the four
quadrants of the Russell model of emotion can be found in Chapter 5.

In order to test the impact of the expansion, the two main datasets considered are
MERGE_Audio_Complete, totalling 3554 songs, and MERGE_Bimodal_Complete
(only the audio component was considered), totalling 2216 songs. Furthermore,
the balanced by quadrant versions of the two aforementioned datasets were also
tested (MERGE_Audio_Balanced and MERGE_Bimodal_Balanced), totalling 3232
and 2000 songs, respectively.

The top 100 features for each dataset were used in the classification, in order to
obtain a comparison with the 4QAED dataset, as this was also the method used
in (Panda, 2019).
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6.1.1 Results

It is noteworthy that in (Panda, 2019) an overall F1-score of 76.4% was achieved,
but this was not able to be replicated using the newly extracted features. The
set of features extracted in (Panda, 2019) were extracted in certain circumstances
(e.g. certain Matlab or framework versions) that have been updated throughout
the years. This led to a result of 72.8% overall F1-score for 4QAED instead of the
76.4% obtained earlier. As this environment is the same one where the features
for the novel datasets are extracted, the comparisons done with 4QAED are done
with the newly obtained F1-score.

Table 6.1 shows the results obtained on the new datasets using the aforemen-
tioned algorithm, using the weighted F1-score metric. Furthermore, Table 6.2
shows the weighted F1-score metric obtained for each quadrant for the datasets.

Dataset Name Overall F1-Score
4QAED 72.7 ± 4.0

MERGE_Audio_Complete 71.0 ± 2.3
MERGE_Audio_Balanced 70.9 ± 2.3

MERGE_Bimodal_Complete 71.0 ± 2.6
MERGE_Bimodal_Balanced 71.0 ± 2.8

Table 6.1: Results obtained for all the tested datasets using the MERGE_Panda
feature set.

Dataset Name F1 Q1 F1 Q2 F1 Q3 F1 Q4
4QAED 74.4 ± 6.5 84.5 ± 5.9 65.9 ± 7.1 67.2 ± 7.3

MERGE_Audio_Complete 73.2 ± 3.2 86.6 ± 2.5 58.8 ± 4.1 63.9 ± 3.9
MERGE_Audio_Balanced 74.3 ± 3.1 86.4 ± 2.5 62.2 ± 4.7 60.9 ± 4.3

MERGE_Bimodal_Complete 73.4 ± 3.6 89.4 ± 2.7 58.4 ± 5.1 57.0 ± 5.1
MERGE_Bimodal_Balanced 74.4 ± 4.0 88.1 ± 3.1 63.1 ± 4.9 58.6 ± 5.4

Table 6.2: F1-score obtained for each quadrant for all the tested datasets using the
MERGE_Panda feature set.

The results show a drop between 2% and 3% in F1-Score for the various datasets.
Looking at the F1-Score per quadrant, we can see that the fourth and the third
quadrant are the ones where the results drop, with the other two quadrants
achieving equal or better results when compared to 4QAED. This can partly be
explained in the complete datasets due to the dataset imbalance, for example, in
MERGE_Bimodal_Complete, there are 673 2nd quadrant songs compared to only
500 3rd quadrant songs.

Furthermore, having a F1-score of 71% with a much larger dataset size proves that
the datasets constructed are still robust and can be used for future experiments.
As previously mentioned, having a dataset of this quality with almost 4 times the
size of previous dataset is very important for deep learning experiments, where
the amount of data required to get better results is very important.
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Finally, it is also important to look at the confusion matrix, in order to see which
of the quadrants is most affected by the expansion.

Predicted

Tr
ue

Q1 Q2 Q3 Q4
76.32 ± 5.22 10.45 ± 4.36 4.73 ± 3.02 8.50 ± 3.43
8.70 ± 3.36 89.51 ± 3.44 1.16 ± 1.23 0.64 ± 1.01
7.86 ± 3.41 2.76 ± 2.22 56.78 ± 6.36 32.60 ± 5.85

13.15 ± 4.71 0.68 ± 1.10 30.03 ± 6.48 56.15 ± 6.90

Table 6.3: Confusion matrix for MERGE_Bimodal_Complete using the
MERGE_Panda feature set.

As Table 6.3 shows, there is a lot of confusion between the third and fourth quad-
rant, which was also one of the problems found in (Panda, 2019). In sum, these
results show that the expansion was successful, even though the F1-score de-
creased. The outcome of the expansions are still robust datasets that can be used
in future experiments, mainly with the focus of deep learning.

6.2 Results obtained on novel MERGE datasets

In order to better understand the feature sets considered, a nomenclature is pro-
posed to each of the feature sets. Table 6.4 has an overview of all the proposed
feature sets and their names.
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Feature Set Name Feature set description Feature amount
MERGE_Panda Features originally extracted in (Panda, 2019). It consists of a set of features

extracted on the whole signal, as well as additional features extracted from
the vocal stem extracted by Spleeter.

2701

MERGE_Percussion Novel features extracted from solely the percussion track separated by De-
mucs, as described in 5.2.2.

57

MERGE_MIDI Novel features extracted from solely the MIDI files outputted by MT3, as
described in 5.2.1.

712

MERGE_MIDI_Percussion Combination of MERGE_Percussion and MERGE_MIDI. 769
MERGE_Panda_MIDI_Percussion Combination of MERGE_Panda and MERGE_MIDI_Percussion. 3470

MERGE_Panda_DMCS_Vocals Similar to MERGE_Panda, but now instead of having the features extracted
using the vocal stem separated by Spleeter, Demucs is used for the vocal
stem separation.

2701

MERGE_Panda_DMCS_Drums MERGE_Panda combined with the features extracted from the percussion
track separated by Demucs.

3244

MERGE_Panda_DMCS_NoDrums Similar to MERGE_Panda_DMCS_Drums but using the non drums stem of
the track separated by Demucs instead of the drum stem.

3244

MERGE_All Combination of MERGE_MIDI_Percussion with the extra features from
MERGE_Panda_DMCS_Drums and MERGE_Panda_DMCS_NoDrums.
Aimed to test all the new features.

4571

Table 6.4: Proposed feature set names for the proposed novel features.
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6.2.1 Novel features only

The first step taken was to go through the same process of feature extraction,
parameter optimization as previously, but now with only the newly extracted
features. Likewise, this process was repeated for only the percussion features, the
MIDI features, and for the combination of both in order to measure the impact of
each set of features individually.

Features extracted from the percussion audio signal only

The first test done was extracting solely the features based on the percussion au-
dio signal (this means that there are MT3 features related to percussion that are
not present here) and see what results could be achieved. Table 6.5 shows the re-
sults obtained for all the datasets tested. The feature set used was MERGE_Percussion.

Dataset Name Num. of Features F1-Score
MERGE_Audio_Complete 50 56.6 ± 2.4
MERGE_Audio_Balanced 40 55.8 ± 2.6

MERGE_Bimodal_Complete 40 58.7 ± 3.3
MERGE_Bimodal_Balanced 50 56.6 ± 3.6

Table 6.5: Results obtained using the MERGE_Percussion feature set.

As Table 6.6 shows, there is also a lot of confusion between the 3rd and 4th quad-
rants. However, there is also confusion between Q1 and Q2, with having just
these percussion features not being enough to distinguish well between the two
quadrants.

Predicted

Tr
ue

Q1 Q2 Q3 Q4
53.69 ± 6.54 24.12 ± 5.37 9.66 ± 4.15 12.53 ± 4.37
17.07 ± 4.69 78.61 ± 5.23 2.15 ± 1.73 2.17 ± 1.63
11.84 ± 4.94 4.70 ± 2.97 46.02 ± 6.32 37.44 ± 7.04
15.04 ± 5.15 3.22 ± 2.32 31.19 ± 7.02 50.55 ± 6.52

Table 6.6: Confusion matrix for MERGE_Bimodal_Complete with 40 features
from the MERGE_Percussion feature set.

Dataset Name F1 Q1 F1 Q2 F1 Q3 F1 Q4
MERGE_Audio_Complete 54.2 ± 4.1 74.4 ± 3.3 44.2 ± 4.8 52.8 ± 3.3
MERGE_Audio_Balanced 54.4 ± 4.1 72.9 ± 3.7 49.2 ± 4.4 47.0 ± 4.1

MERGE_Bimodal_Complete 53.2 ± 5.4 77.3 ± 3.6 48.1 ± 5.5 50.0 ± 5.4
MERGE_Bimodal_Balanced 55.5 ± 5.2 73.2 ± 5.0 49.8 ± 5.8 47.5 ± 5.6

Table 6.7: F1-score with standard deviation obtained for each quadrant for all the
tested datasets using SVM with features from the MERGE_Percussion feature set.

In Table 6.7 we can see that the F1-score obtained for Q2 is good, but for the
remaining quadrants is low when compared to the other set of features.
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Features extracted from the MIDI file only

The second test was following the same principle as before but now only consid-
ering the features extracted from the MIDI files. Table 6.8 shows the results ob-
tained from the novel features extracted from the MIDI files outputted by MT3.
The feature set used was MERGE_MIDI.

Dataset Name Num. of Features F1-Score
MERGE_Audio_Complete 300 62.2 ± 2.3
MERGE_Audio_Balanced 200 62.0 ± 2.6

MERGE_Bimodal_Complete 200 64.5 ± 2.6
MERGE_Bimodal_Balanced 200 61.5 ± 3.4

Table 6.8: Results obtained using only the MERGE_MIDI feature set.

Compared to the results obtained using only the features extracted from the per-
cussion track, we can see that there is less confusion between the first and second
quadrant as shown in Table 6.9, indicating that the features from the MIDI are
better at helping to distinguish between the two quadrants. Furthermore, the
problem of the confusion between the third and fourth quadrant is also present.

However, the F1-score obtained for the second quadrant is already in line with
the baseline approach, as can be seen in Table 6.10.

Predicted

Tr
ue

Q1 Q2 Q3 Q4
67.55 ± 5.03 15.96 ± 4.78 7.64 ± 3.35 8.85 ± 3.67
10.82 ± 3.94 84.28 ± 4.52 3.27 ± 2.00 1.63 ± 1.54
11.74 ± 4.33 3.96 ± 2.48 51.40 ± 6.60 32.90 ± 7.09
12.55 ± 4.40 2.80 ± 2.10 33.40 ± 6.53 51.26 ± 6.47

Table 6.9: Confusion matrix for MERGE_Bimodal_Complete with the top 200 fea-
tures from MERGE_MIDI feature set.

Dataset Name F1 Q1 F1 Q2 F1 Q3 F1 Q4
MERGE_Audio_Complete 65.7 ± 4.0 80.1 ± 3.0 43.8 ± 4.3 56.9 ± 3.7
MERGE_Audio_Balanced 65.8 ± 4.1 78.7 ± 3.4 50.2 ± 4.2 53.1 ± 4.3

MERGE_Bimodal_Complete 65.9 ± 4.1 83.5 ± 3.6 51.8 ± 4.9 52.8 ± 5.2
MERGE_Bimodal_Balanced 65.9 ± 4.8 79.2 ± 4.0 53.8 ± 5.6 48.1 ± 5.5

Table 6.10: F1-score with standard deviation obtained for each quadrant for all
the tested datasets using SVM with features from the MERGE_MIDI feature set.

All the new features combined

Finally, both sets of features were merged. In total, 769 features were extracted
when combining both sets of features, 57 from the percussion track, and 512 from
the MIDI file. The feature set used was MERGE_MIDI_Percussion.
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Dataset Name Num. of Features F1-Score
MERGE_Audio_Complete 300 63.4 ± 2.4
MERGE_Audio_Balanced 300 63.5 ± 2.4

MERGE_Bimodal_Complete 200 64.2 ± 3.0
MERGE_Bimodal_Balanced 200 62.6 ± 3.0

Table 6.11: Results obtained using the MERGE_MIDI_Percussion feature set.

When joining the two datasets together, the results are very similar to what was
previously obtained. As Table 6.11 shows, the results are either equal or only a
bit above the results obtained using only the MIDI files. Table 6.12 shows the top
10 features for the MERGE_Bimodal_Complete dataset.

Rank Feature Name
1 Drum Extent Percentage
2 Average Frame-Based Intensity
3 Average Amplitude
4 Standard Deviation of Amplitude
5 MIDI Drum Standard Deviation of Layers in a frame
6 Standard Deviation of Frame-Based Intensity
7 MIDI Drum Ratio of Transitions Musical Layers (0:1)
8 MIDI Drum Ratio of Transitions Musical Layers (1:0)
9 MIDI Melodic Ratio of Transitions Musical Layers (2:1)

10 Maximum Amplitude

Table 6.12: Ranked features and their names the MERGE_MIDI_Percussion fea-
ture set.

In the top 100 features, 22 of the features are from the percussion track, while the
other 78 belong to the MIDI file. For the top 200, there are 166 features originating
from the MIDI files and 34 from the percussion track. While this is the case, there
are a few percussion features at the top of the ranking, such as the Drum Extent
feature. Furthermore, 45 features related to the percussion track but originating
from the MIDI files are also in the top 100, signifying their importance.

6.2.2 Combination of old features with the newly extracted fea-
tures

Previously, a set of features using the audio track with all the stems was extracted,
as well as a set of features using the vocal track extracted by Spleeter. The goal
of this set of experiments is to measure the impact of adding the newly extracted
features with the old ones, and seeing the classification results obtained. Table
6.13 shows the results obtained for the four tested datasets. The feature set used
was MERGE_Panda_MIDI_Percussion.

When compared to the results obtained in Section 6.1.1 using only the baseline
features, we see a improvement across the board, particularly in the bimodal
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Dataset Name Num. of Features F1-Score
MERGE_Audio_Complete 700 72.7 ± 2.0
MERGE_Audio_Balanced 300 72.5 ± 2.4

MERGE_Bimodal_Complete 400 73.6 ± 2.9
MERGE_Bimodal_Balanced 500 72.3 ± 2.8

Table 6.13: Results obtained using the MERGE_Panda_MIDI_Percussion feature
set.

complete dataset, going from 70.6% to 73.6% F1-Score. However, looking at the
confusion matrix and the F1-scores obtained per quadrant, we can see that this
rise was mostly due to better classification of the first and second quadrants,
while the third and fourth quadrant remain with a much lower F1-Score when
compared to the other two. Table 6.14 shows the confusion matrix obtained for
MERGE_Bimodal_Complete.

Predicted

Tr
ue

Q1 Q2 Q3 Q4
78.49 ± 5.88 8.63 ± 3.90 4.29 ± 2.93 8.59 ± 3.56
6.99 ± 2.68 91.32 ± 2.87 1.38 ± 1.30 0.31 ± 0.61
7.84 ± 3.60 2.48 ± 2.21 59.86 ± 7.71 29.82 ± 6.86

10.64 ± 3.89 0.79 ± 1.19 28.55 ± 5.95 60.03 ± 5.67

Table 6.14: Confusion matrix for MERGE_Bimodal_Complete with the top 400
features from MERGE_Panda_MIDI_Percussion feature set.

Dataset Name F1 Q1 F1 Q2 F1 Q3 F1 Q4
MERGE_Audio_Complete 75.9 ± 2.6 87.6 ± 2.5 60.1 ± 4.4 65.9 ± 3.1
MERGE_Audio_Balanced 75.7 ± 3.5 87.4 ± 2.6 63.3 ± 4.1 63.8 ± 4.3

MERGE_Bimodal_Complete 76.4 ± 4.4 91.1 ± 2.7 61.1 ± 5.9 60.7 ± 4.7
MERGE_Bimodal_Balanced 76.5 ± 4.1 89.4 ± 2.9 63.9 ± 4.6 60.3 ± 5.2

Table 6.15: F1-score with standard deviation obtained for each quadrant for all
the tested datasets using SVM with features from the MERGE_Panda_MIDI-
_Percussion feature set.

As Table 6.15 shows, there is an improvement across the board on the F1-scores
obtained, even surpassing 91% for the Q2, thus proving that new proposed fea-
tures regarding percussion and song texture are important for MER problems.

Table 6.16 showcases the statistical significance test results when compared to
the baseline approach (MERGE_Panda), showcasing that the new features have
a statistical significance.

Finally, looking at the feature ranking for MERGE_Bimodal_Complete as this was
the one that obtained better results, we see that in the top 200, 32 are features orig-
inating from the MT3 MIDI file, and 7 are from the percussion track. However, 5
of these 7 are highly ranked, being located in positions 6, 9, 10, 20 and 31.
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Audio_Complete Audio_Balanced Bimodal_Complete Bimodal_Balanced

Significant Significant Significant Significant
(2.3756 × 10−8) (3.1317 × 10−6) (2.0067 × 10−11) (1.7170 × 10−4)

Table 6.16: Statistical Significance test against the MERGE_Panda feature set on
the new MERGE datasets using the MERGE_Panda_MIDI_Percussion feature set.

6.2.3 Replacing Spleeter features with Demucs

As previously mentioned, a set of features was previously extracted using the
vocal stem extracted by Spleeter. As Demucs boasted better results in source sep-
aration, tests were conducted in order to measure the impact of using Demucs to
separate the voice instead of Spleeter. The feature set used was MERGE_Panda_-
DMCS_Vocals.

As such, instead of using the old features extracted with Spleeter, those features
were replaced with the ones extracted from Demucs and the same process of
feature ranking, and hyper-parameter optimization were done. Table 6.17 shows
the results obtained.

Dataset Name Num. of Features F1-Score
MERGE_Audio_Complete 200 72.2 ± 2.4
MERGE_Audio_Balanced 200 71.4 ± 2.3

MERGE_Bimodal_Complete 200 72.6 ± 2.4
MERGE_Bimodal_Balanced 150 70.9 ± 2.9

Table 6.17: Results obtained using the MERGE_Panda_DMCS_Vocals feature set.

When compared to the other approaches, we do not see a huge increase in F1-
score when replacing Demucs with Spleeter. But analyzing the feature ranking
helps understand the results a lot better. In the baseline approach, the features
extracted solely for the voice signal were found to not be very important. In the
baseline features, for MERGE_Audio_Complete, there are 2 features related to
the voice in the top 100, and 9 in the top 200, with this being similar for the other
datasets.

Table 6.18 helps further prove this assumption, as two of the four datasets were
found to not have significant statistical differences when compared to the MERGE-
_Panda feature set.

Audio_Complete Audio_Balanced Bimodal_Complete Bimodal_Balanced

Significant Not Significant Significant Not Significant
0.0048 1.3577 × 10−6

Table 6.18: Statistical Significance test against the MERGE_Panda feature set on
the new MERGE datasets using the MERGE_Panda_DMCS_Vocals feature set.

When extracting this new set of features, in the top 100 features for MERGE_Audio-
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_Complete, we have two from Demucs, and in the top 200 we have 13. Thus,
effectively, the features being used for classification are in the grand majority just
the baseline features, thus explaining having such similar results when compared
to the baseline results.

6.2.4 Combination of old features with features extracted from
vocals and percussion tracks

As aforementioned, the previous feature set contained features extracted only
from the vocal track, and this same set of features was extracted but now using
the percussion track. The goal of this experiment is to see if there is any advantage
to using the percussion track for emotion classification. The feature set used was
MERGE_Panda_DMCS_Drums. Table 6.21 shows the best results obtained.

Dataset Name Num. of Features F1-Score
MERGE_Audio_Complete 200 72.2 ± 2.2
MERGE_Audio_Balanced 200 71.0 ± 2.0

MERGE_Bimodal_Complete 200 74.1 ± 2.6
MERGE_Bimodal_Balanced 150 72.1 ± 2.8

Table 6.19: Results obtained using the top features using the MERGE_Panda-
_DMCS_Drums feature set.

The results are still an improvement over baseline, but they are not as great as
other feature combinations. This can possibly be attributed to the fact that there
are already features that represent the same types of songs that the features ex-
tracted from the percussion signal do, meaning, that the main problem is as pre-
viously mentioned, to distinguish between the third and fourth quadrant, which
is a problem that also plagues this combination of features. Furthermore, there
are only 13 features from the percussion signal in the top 200 features.

Table 6.20 showcases the statistical significance results when compared to the
MERGE_Panda approach. Just like the MERGE_Panda_DMCS_Vocals approach,
extracting the old features in the new percussion track did not lead to drastically
best results when compared to the other approaches.

Audio_Complete Audio_Balanced Bimodal_Complete Bimodal_Balanced

Significant Not Significant Significant Significant
1.5260 × 10−4 1.9825 × 10−15 0.0015

Table 6.20: Statistical Significance test against the MERGE_Panda feature set on
the new MERGE datasets using the MERGE_Panda_DMCS_Drums feature set.
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6.2.5 Combination of old features with features extracted from
vocals and melodic tracks

Following the same principle as Section 6.2.4, a test was also done using the sep-
arated track with no drums, in it, keeping only the melodic part. The idea of
this experiment is to see if removing the drums aids in the emotion classification
results. The feature set used was MERGE_Panda_DMCS_NoDrums. Table 6.21
shows the results obtained using this feature set.

Dataset Name Num. of Features F1-Score
MERGE_Audio_Complete 200 72.4 ± 2.2
MERGE_Audio_Balanced 150 72.4 ± 2.5

MERGE_Bimodal_Complete 200 74.1 ± 2.5
MERGE_Bimodal_Balanced 200 72.1 ± 3.0

Table 6.21: Results obtained using the top features using the MERGE_Panda-
_DMCS_NoDrums feature set.

The results obtained do show an increase when compared to the baseline results,
achieving the best F1-score obtained in this work at 74.1%.

This indicates that the isolated melodic part of the track can be helpful in MER.
This is also helped by the fact that in the top 150 features, 22 are features extracted
from the isolated melodic signal.

This assumption is further cemented by the statistical significance test results
found in Table 6.22, where when compared to the baseline approach, the new
features proved to have significant statistical significance.

Audio_Complete Audio_Balanced Bimodal_Complete Bimodal_Balanced

Significant Significant Significant Significant
2.6725 × 10−6 1.4435 × 10−5 2.3236 × 10−16 0.0085

Table 6.22: Statistical Significance test against the MERGE_Panda feature set on
the new MERGE datasets using the MERGE_Panda_DMCS_NoDrums feature
set.

6.2.6 Combination of all the extracted features

Finally, an experiment was done were all the extracted features were combined.
These features include the previously extracted features from the vocal track,
percussion and non-melodic tracks. Finally, the newly extracted features from
the percussion track and the features extracted from the MIDI tracks are also in-
cluded. The combined feature set is called MERGE_All. Table 6.23 shows the
result obtained for each of the datasets.

As can be seen, the overall results show an improvement when compared to the
baseline approach across the board. Nonetheless, analysing the confusion matrix
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Dataset Name Num. of Features F1-Score
MERGE_Audio_Complete 250 72.6 ± 2.4
MERGE_Audio_Balanced 250 72.8 ± 2.6

MERGE_Bimodal_Complete 250 74.1 ± 2.5
MERGE_Bimodal_Balanced 300 72.2 ± 3.0

Table 6.23: Results obtained using the top features using the MERGE_All feature
set.

and the F1-score obtained per quadrant will allow us to further understand the
results.

Looking particularly MERGE_Bimodal_Complete, a graph consisting of the num-
ber of features on the X axis and the overall F1-score in the Y axis was done, in
order to understand how much the amount of features influenced the final re-
sult. As Figure 6.1 shows, the best result obtained was with 250 features, while
containing to add features led to worse results, except in a few cases where the
results rose a bit.

Figure 6.1: Graph showcasing the F1-score evolution based on the number of top
features chosen for MERGE_Bimodal_Complete using the MERGE_All feature
set.

In order to best understand the overall results, Table 6.24 and 6.25 show the confu-
sion matrix for MERGE_Bimodal_Complete using the baseline features (MERGE_-
Panda) and another confusion matrix using the MERGE_All feature set.

As we can see, across the board the values obtained increase when using the
MERGE_All feature set when compared to the baseline results. The major prob-
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Predicted

Tr
ue

Q1 Q2 Q3 Q4
76.32 ± 5.22 10.45 ± 4.36 4.73 ± 3.02 8.50 ± 3.43
8.70 ± 3.36 89.51 ± 3.44 1.16 ± 1.23 0.64 ± 1.01
7.86 ± 3.41 2.76 ± 2.22 56.78 ± 6.36 32.60 ± 5.85

13.15 ± 4.71 0.68 ± 1.10 30.03 ± 6.48 56.15 ± 6.90

Table 6.24: Confusion matrix for MERGE_Bimodal_Complete using the
MERGE_Panda feature set.

Predicted

Tr
ue

Q1 Q2 Q3 Q4
78.64 ± 5.92 8.31 ± 3.99 4.21 ± 2.31 8.84 ± 4.21
7.04 ± 2.80 91.47 ± 3.24 1.16 ± 1.29 0.33 ± 0.61
7.88 ± 3.65 3.32 ± 2.61 60.14 ± 6.14 28.66 ± 5.80

11.43 ± 4.04 0.52 ± 0.94 27.86 ± 6.14 60.19 ± 7.07

Table 6.25: Confusion matrix for MERGE_Bimodal_Complete with 300 features
from MERGE_All feature set.

lem still continues to be the confusion between Q3 and Q4, but the new features
helped lessen that confusion. The second major contributors of bad results is the
confusion between Q1 and Q4, and finally Q1 and Q2. These both got improved
with the new features, with the main improvement coming in the confusion be-
tween Q1 and Q2.

It is also important to take a look at the F1-score per quadrant obtained, shown
on Table 6.26.

Dataset Name F1 Q1 F1 Q2 F1 Q3 F1 Q4
MERGE_Audio_Complete 74.5 ± 3.0 87.2 ± 2.6 61.4 ± 4.1 66.3 ± 3.4
MERGE_Audio_Balanced 76.1 ± 3.1 87.1 ± 2.8 64.1 ± 4.7 64.0 ± 4.2

MERGE_Bimodal_Complete 76.2 ± 4.1 91.1 ± 2.6 61.7 ± 5.1 61.0 ± 5.0
MERGE_Bimodal_Balanced 75.9 ± 4.4 88.8 ± 2.9 64.5 ± 5.3 59.9 ± 5.0

Table 6.26: F1-score with standard deviation obtained for each quadrant for all
the tested datasets using SVM with features from the MERGE_All feature set.

Overall, using this new set of features shows improvement for almost all the
quadrants when compared to the baseline, as shown in Table 6.27. This table
shows the difference in F1-score between the MERGE_All feature sets and the
baseline results, for each quadrant for each of the four datasets. The F1-scores
that increased are colored in green, while the ones that decreased are colored in
red.

We can see that there is an increase across the board in all the quadrants, further
signifying that the newly proposed features are helpful for MER studies. The
quadrant with the biggest increases are the third and the fourth, as these were the
quadrants that previously had the most confusion. The second quadrant already
had very high results (between 87 and 89% F1-score) but now has risen even
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Dataset Name Q1 Q2 Q3 Q4
MERGE_Audio_Complete 1.3 0.6 2.6 2.4
MERGE_Audio_Balanced 1.8 0.7 1.9 3.1

MERGE_Bimodal_Complete 2.8 1.7 3.3 4
MERGE_Bimodal_Balanced 1.5 0.7 1.4 1.3

Table 6.27: Table with the difference in F1-Scores on MERGE_Bimodal_Complete
using the MERGE_Panda and MERGE_All feature sets.

more, albeit slightly than the other quadrants.

Audio_Complete Audio_Balanced Bimodal_Complete Bimodal_Balanced

Significant Significant Significant Significant
6.8288 × 10−7 1.9628 × 10−7 4.2534 × 10−12 0.0026

Table 6.28: Statistical Significance test against the MERGE_Panda feature set on
the new MERGE datasets using the MERGE_All feature set.

Furthermore, analyzing the results of the statistical significance tests will also
allow us to understand better if the new features are indeed helpful for MER.
Table 6.28 showcases the results obtained for the four datasets. With these results,
we can conclude that the new features are indeed helpful to aid in solving the
problem of MER.

Nonetheless, it is also important to analyze the features present in the top 200
features for MERGE_Bimodal_Complete in order to understand if the proposed
features are useful for MER. In Table 6.29, for each of the new feature set, the num-
ber of features present in the top 200 features for MERGE_Bimodal_Complete is
shown.

Feature origin Num. of Features
MERGE_MIDI 21

MERGE_Percussion 7
MERGE_Panda_DMCS_Drums (Only new) 14

MERGE_Panda_DMCS_NoDrums (Only new) 20

Table 6.29: Number of features from each of the corresponding newly proposed
feature sets in the top 200 of MERGE_Bimodal_Complete using the MERGE_All
feature set.

Table 6.30 and Table 6.31 showcase in the detail the novel features present in
the top 200. As the tables show, drum related features proved to be important in
MER. Furthermore, the features extracted from the MIDI files, particularly instru-
ment presence and layer information, also helped increase the results. Finally, in-
formation extracted from the melodic and percussion tracks extracted by Demucs
also proved important. Thus, in all the proposed feature sets, there were features
that contributed to improving the overall results.
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Overall, 62 of the top 200 features are novel features, which is a good representa-
tion and further indicates the usefulness of the features in MER problems.

In Table 6.30 and Table 6.31, features extracted from the percussion track are col-
ored in light blue, features related to Demucs drum information are colored in
light pink, features originated from the MIDI file are colored in green, and finally
features originating from the melodic track separated by Demucs are colored in
orange.

97



Chapter 6

H
Rank Feature Name

5 DEMUCS NODRUMS TEXTURE Musical Layers Mean
6 Drum Extent Percentage
7 DEMUCS NODRUMS TEXTURE ML3 Thicker Texture Percentage

10 Average Frame Based Intensity
12 Average Amplitude
13 DEMUCS DRUMS DYNAMICS Notes Intensity Mean
14 DEMUCS NODRUMS TEXTURE Musical Layers Std
20 DEMUCS DRUMS EXPRESSIVE TECHNIQUES Tremolo Salience Mean
23 Std Amplitude
25 DEMUCS DRUMS INTENSITY CONTOURS Intensity Contour Polynomial of

degree 1 coefficient 0
28 Std Frame Based Intensity
32 DEMUCS DRUMS DYNAMICS Notes Intensity Std
35 DEMUCS DRUMS EXPRESSIVE TECHNIQUES Tremolo Salience Max
36 MIDI MELODIC RATIO OF TRANSITIONS MUSICAL LAYERS THREE OR

MORE TO TWO
40 DEMUCS DRUMS DYNAMICS Notes Intensity Max
41 DEMUCS DRUMS INTENSITY CONTOURS Intensity Contour to Polynomial

degree 7 RMSE
58 Max Amplitude
61 MIDI MELODIC RATIO OF TRANSITIONS MUSICAL LAYERS TWO TO

THREE OR MORE
63 DEMUCS DRUMS EXPRESSIVE TECHNIQUES Tremolo Extent Weighted Mean
71 MIDI MELODIC RATIO OF TRANSITIONS MUSICAL LAYERS TWO TO ONE
73 Max Frame Based Intensity
81 DEMUCS DRUMS EXPRESSIVE TECHNIQUES Tremolo Salience Std
82 DEMUCS NODRUMS TEXTURE State Transitions ML2 ML3 Per Sec
93 DEMUCS NODRUMS TEXTURE State Transitions ML3 ML2 Per Sec

Table 6.30: Novel features in the top 100 of the MERGE Bimodal Complete dataset
using the MERGE All feature set. Features extracted from the percussion track are
colored in light blue, features related to Demucs drum information are colored
in light pink, features originated from the MIDI file are colored in green, and
features originating from the melodic track separated by Demucs are colored in
orange.
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Rank Feature Name
101 MIDI BASS DRUM 1 PERCUSSION INSTRUMENT PERCENTAGE NOTES
103 DEMUCS NODRUMS TEXTURE State Transitions ML1 ML2 Per Sec
106 MIDI BASS DRUM 1 PERCUSSION INSTRUMENT TOTAL NOTES
107 MIDI CLOSED HI HAT PERCUSSION INSTRUMENT TOTAL NOTES
108 DEMUCS DRUMS EXPRESSIVE TECHNIQUES Tremolo Salience Min
111 DEMUCS NODRUMS TEXTURE State Transitions ML2 ML1 Per Sec
113 MIDI MELODIC RATIO OF TRANSITIONS MUSICAL LAYERS ONE TO TWO
115 MIDI CLOSED HI HAT PERCUSSION INSTRUMENT PERCENTAGE NOTES
121 DEMUCS NODRUMS TEXTURE Musical Layers Max
123 MIDI CHINESE CYMBAL PERCUSSION INSTRUMENT PRESENT
124 DEMUCS NODRUMS EXPRESSIVE TECHNIQUES Vibrato Base Freq Std
128 DEMUCS NODRUMS TEXTURE ML1 Monophonic Texture Percentage
130 DEMUCS NODRUMS FRACTAL Fractal Dimension Global
136 DEMUCS NODRUMS EXPRESSIVE TECHNIQUES Vibrato Rate Std
142 DEMUCS DRUMS FRACTAL Fractal Dimension Max
143 DEMUCS NODRUMS VAT Number of Silence Sections
144 DEMUCS NODRUMS VAT Number of Voice Sections
147 DEMUCS NODRUMS VAT Voice Segments Per Interval Mean
149 DEMUCS NODRUMS VAT Voice Segments Per Second
150 MIDI CRASH CYMBAL 2 PERCUSSION INSTRUMENT PRESENT
155 DEMUCS DRUMS FRACTAL Fractal Dimension Std
156 MIDI PERCUSSION INSTRUMENT PERCENTAGE NOTES
160 PERCUSSION TOTAL NOTES
166 DEMUCS NODRUMS EXPRESSIVE TECHNIQUES Vibrato Extent Std
167 DEMUCS DRUMS EXPRESSIVE TECHNIQUES Tremolo Extent Max
168 MIDI CHORDOPHONE RATIO OF TRANSITIONS MUSICAL LAYERS THREE

OR MORE TO TWO
170 MIDI STRING ENSEMBLE 2 INSTRUMENT PRESENT
173 DEMUCS NODRUMS EXPRESSIVE TECHNIQUES Vibrato Rate Kurtosis
181 MIDI DRUM PERCENTAGE FRAMES WITH NO LAYER
182 MIDI DRUM AVERAGE LAYERS IN FRAME
183 MIDI DRUM PERCENTAGE FRAMES WITH ONE LAYER
186 MIDI SPLASH CYMBAL PERCUSSION INSTRUMENT PRESENT
187 DEMUCS NODRUMS EXPRESSIVE TECHNIQUES Vibrato Base Freq Kurtosis
191 MIDI DRUM RATIO OF TRANSITIONS MUSICAL LAYERS ZERO TO ONE
193 MIDI DRUM RATIO OF TRANSITIONS MUSICAL LAYERS ONE TO ZERO
195 DEMUCS DRUMS FRACTAL Fractal Dimension Skewness
197 MIDI ACOUSTIC BASS INSTRUMENT TOTAL NOTES
198 DEMUCS NODRUMS EXPRESSIVE TECHNIQUES Tremolo Notes in Cents Max
199 MIDI MEMBRANOPHONE RATIO OF TRANSITIONS MUSICAL LAYERS ONE

TO THREE OR MORE

Table 6.31: Novel features in the top 100 to 200 of the MERGE Bimodal Complete
dataset using the MERGE All feature set. Features extracted from the percussion
track are colored in light blue, features related to Demucs drum information are
colored in light pink, features originated from the MIDI file are colored in green,
and features originating from the melodic track separated by Demucs are colored
in orange.
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6.2.7 Results summary

Table 6.34 presents a summary of all the best results obtained. It contains for
each combination the dataset used, the feature set used, the number of top fea-
tures used (e.g. top 200) and the hyper parameters used to achieve that result.
Furthermore, it also contains the time in minutes that it took to train those hyper-
parameters, and finally, it also contains the overall F1-score obtained.
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Feature set origin Dataset Num.
of Fea-
tures

Cost Kernel Gamma Hyper pa-
rameter Opti-
mization Time
(Min)

Best Overall
F1-Score

MERGE Panda Merge Audio Com-
plete

100 2.299 rbf 0.01 47.82 71

MERGE Panda Merge Audio Bal-
anced

100 2.46 rbf 0.006 41.72 70.8

MERGE Panda Merge Bimodal
Complete

100 2.798 rbf 0.008 44.50 71.2

MERGE Panda Merge Bimodal Bal-
anced

100 2.574 rbf 0.009 33.08 71.1

MERGE MIDI Merge Audio Com-
plete

150 9.899 rbf 0.0004 171.90 62.2

MERGE MIDI Merge Audio Bal-
anced

150 1.026 rbf 0.006 170.98 62

MERGE MIDI Merge Bimodal
Complete

150 2.86 rbf 0.005 178.85 64.5

MERGE MIDI Merge Bimodal Bal-
anced

150 1.207 rbf 0.004 90.07 61.5

MERGE Percussion Merge Audio Com-
plete

50 33.286 rbf 0.003 154.50 56.6

MERGE Percussion Merge Audio Bal-
anced

50 100 rbf 0.002 160.58 55.8

MERGE Percussion Merge Bimodal
Complete

40 100 rbf 0.002 41.88 58.7

MERGE Percussion Merge Bimodal Bal-
anced

50 81.502 rbf 0.001 71.77 56.6

Table 6.32: Summary of the best results obtained.
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Feature set origin Dataset Num.
of Fea-
tures

Cost Kernel Gamma Hyper pa-
rameter Opti-
mization Time
(Min)

Best Overall
F1-Score

MERGE MIDI Per-
cussion

Merge Audio Com-
plete

150 9.129 rbf 0.0002 177.12 63.4

MERGE MIDI Per-
cussion

Merge Audio Bal-
anced

150 9.625 rbf 0.0004 156.15 63.5

MERGE MIDI Per-
cussion

Merge Bimodal
Complete

200 8.664 rbf 0.001 53.55 64.2

MERGE MIDI Per-
cussion

Merge Bimodal Bal-
anced

200 1.648 rbf 0.004 74.65 62.6

MERGE Panda
MIDI Percussion

Merge Audio Com-
plete

700 10.936 rbf 0.0002 183.23 72.7

MERGE Panda
MIDI Percussion

Merge Audio Bal-
anced

300 1.481 rbf 0.003 141.03 72.5

MERGE Panda
MIDI Percussion

Merge Bimodal
Complete

400 16.805 rbf 0.005 118.45 73.6

MERGE Panda
MIDI Percussion

Merge Bimodal Bal-
anced

500 2.444 rbf 0.002 66.75 72.3

MERGE Panda
DMCS Vocals

Merge Audio Com-
plete

200 1.916 rbf 0.003 112.12 72.2

MERGE Panda
DMCS Vocals

Merge Audio Bal-
anced

200 9.565 rbf 0.001 179.83 71.4

MERGE Panda
DMCS Vocals

Merge Bimodal
Complete

200 8.321 rbf 0.0001 192.38 72.6

MERGE Panda
DMCS Vocals

Merge Bimodal Bal-
anced

150 1.17 rbf 0.007 62.28 70.9

Table 6.33: Continuation of Summary of the best results obtained.
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Feature set origin Dataset Num.
of Fea-
tures

Cost Kernel Gamma Hyper pa-
rameter Opti-
mization Time
(Min)

Best Overall
F1-Score

MERGE Panda
DMCS NoDrums

Merge Audio Com-
plete

200 2.3 rbf 0.003 187.75 72.3

MERGE Panda
DMCS NoDrums

Merge Audio Bal-
anced

150 2.393 rbf 0.006 156.40 72.5

MERGE Panda
DMCS NoDrums

Merge Bimodal
Complete

200 2.157 rbf 0.008 97.80 74.1

MERGE Panda
DMCS NoDrums

Merge Bimodal Bal-
anced

200 1.547 rbf 0.006 80.33 71.9

MERGE Panda
DMCS Drums

Merge Audio Com-
plete

200 2.134 rbf 0.004 202.92 69.6

MERGE Panda
DMCS Drums

Merge Audio Bal-
anced

200 71.093 rbf 0.00008 177.30 71

MERGE Panda
DMCS Drums

Merge Bimodal
Complete

200 1.786 rbf 0.01 128.92 73.9

MERGE Panda
DMCS Drums

Merge Bimodal Bal-
anced

150 2.719 rbf 0.007 76.63 72.1

MERGE All Merge Audio Com-
plete

200 2.548 rbf 0.005 83.33 72.6

MERGE All Merge Audio Bal-
anced

200 1.803 rbf 0.01 79.30 72.7

MERGE All Merge Bimodal
Complete

250 1.677 rbf 0.006 31.31 74.1

MERGE All Merge Bimodal Bal-
anced

300 1.871 rbf 0.003 42.87 72.4

Table 6.34: Continuation of Summary of the best results obtained.
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6.2.8 Computational cost

In this subsection, an overview of time it takes to complete all the tasks that are
required to complete the emotion classification is given. It is noteworthy that
processes such as file moving amongst similar processes is not counted, only the
specific tasks are counted.

Feature Extraction

There are several feature extraction processes (vocal track only, drums track, no-
drums track), so an overview of the average for all three is presented. Thus, in
order to obtain the total time for feature extraction, the final time value should
be multiplied by three. There are also several types of features that need to be
extracted. A full breakdown is presented in Table 6.36.

Note: Dressler (Dressler, 2016) and Melodia (Salamon and Gómez, 2012) are two
frameworks used in (Panda, 2019) to estimate predominant fundamental frequen-
cies (F0) and saliences as explained in 3.2.2.

Name Time Per Song (seconds)
Standardization 0.491

Melodia Melodic lines 4.619
Dressler Melodic lines 6.549

Melodia Features 2.582
Dressler Features 0.494
Fractal Dimension 1.999

Voice analysis Toolkit 6.580
New Percussion Features based on audio 2.154

New Features based on MT3 1.072
Total 26.049

Table 6.35: Computational cost for feature extraction steps.

As Table 6.36 shows, it takes around 26 seconds to extract all the features for a
single 30-second audio track, multiplied by three for all the three types of tracks,
making it take around 75 seconds to extract all the 3 sets of features.

Source Separation

Table 6.36 provides an overview of the computational cost of separating the source
tracks.

All of this combined makes it so that it takes nearly two minutes to extract the
features for one 30-second song, which one of the main problems of classical ma-
chine learning approaches. In Deep Learning approaches, the training time for
the neural networks might be greater for the same amount of songs, but process-
ing new songs is almost instant, while in classical approaches all the features need
to be extracted, leading to major time losses.
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Name Time Per Song (seconds)
Separate tracks using Spleeter 13.315

Separate tracks using Demucs (Vocals) 23.733
Separate tracks using Demucs (Drums) 22.569

Total 59.617

Table 6.36: Computational cost for source separation steps.

Although this can be somewhat combated by using faster languages (e.g. C) in-
stead of slower languages, like MATLAB which is the language where majority
of the features are extracted, it will still take longer when compared to DL ap-
proaches. Having this huge processing time also makes it unfeasible to use clas-
sical machine learning approaches in commercial products to solve emotional
classification problems.
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Chapter 7

Conclusions and future work

This chapter summarizes the main contributions of this work, and proposes pos-
sible directions that might be promising for future work.

7.1 Conclusion

As mentioned in this work, the biggest bottleneck of current Deep Learning ap-
proaches is the lack of data, and that is something that also pertains to the MER
field. As (Louro, 2022) concludes in his thesis, “Beginning with the most pressing
matter that severely limits the performance of the presented methodologies, is
the lack of data in reasonable amounts to truly take advantage of DL.”.

In this work, a database expansion was proposed that takes the current database
and increases the size four-fold, as well as increasing by nearly ten-fold the size of
the bi-modal database. These databases will not only allow for the creation of DL
approaches for one specific type (e.g. audio) but also allow for the development
of networks that take both the audio and lyrics as input, as this is something
that can help solve the confusion between Q3 and Q4 using lyrics information
(Malheiro, 2017).

Furthermore, in this work, several novel features were proposed and frameworks
were explored. Overall, the newly proposed features helped increase the F1-
Score obtained, achieving the best result of F1-Score of 74.1% with 250 features
on MERGE_Bimodal_Complete with the MERGE_All feature set. The newly pro-
posed features helped mostly to decrease the confusion between the first and
fourth quadrants, while also helping to decrease, albeit less, the main problem of
current approaches, the confusion between the third and fourth quadrants.

Furthermore, with these newly built expanded datasets, Deep Learning approaches
should be attempted to improve the ceiling in MER, as these approaches are the
one that have shown the most promise. However, the frameworks used, mainly
MT3, proved useful for the MER problem, and are certainly worthy of being ex-
plored for other approaches in the area.

As such, in this work the viability of the dataset expansions done by our team was
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proved, with achieving reasonable F1-Scores when compared to 4QAED, while
having a much larger size. Finally, the viability of the proposed features for MER
problems was also demonstrated.

7.2 Future Work

In terms of future work, there a few directions that can still be explored. A sum-
mary of these options is presented:

• Use the previously explored Deep Learning approaches in the much larger
MERGE datasets, as the lack of data was one of the biggest drawback of
these approaches before;

• Test new Deep Learning approaches that were not possible to use before
due to the smaller dataset sizes;

• Explore bi-modal approaches, combining audio and lyrics. This is a promis-
ing approach to reduce the confusion between Q3 and Q4, since valence
information is mostly captured by the lyrics (Malheiro, 2017);

• Explore new features that were not able to be explored in the scope of this
work, for example pertaining to automatic time signature detection and fea-
tures related to expressivity.
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Appendix A

MEVD, MEVD Dataset expansion
and chorus detection approaches

One of the previous focuses of this work was in Music Emotion Variation Detec-
tion (MEVD). However, due to slow progress on the annotations for the MEVD
songs, it was not possible to conclude this work in the scope of this work. How-
ever, the following section provides a bit of insight on the existing approaches for
MEVD as well as approaches that might be useful for the creation of features for
the scope of MEVD. Furthermore, information regarding the status of the expan-
sion of our current MEVD dataset is provided.

A.1 MEVD

This section provides an overview of approaches to solve the problem of emotion
classification with MEVD.

A.1.1 Classical approaches

As stated before, compared to Static MER, MEVD has seen a considerable less
amount of research put into it, mainly due to the sheer difficulty in creating high
quality datasets.

One approach was conducted by (Schubert, 2004), in which using linear regres-
sion models, predictions for arousal and valence values were made for a song
using the Russell model. In total 5 features were used: melodic contour, tempo,
loudness, spectral centroid and texture. The dataset consisted of romantic songs
annotated by 67 annotators, for a total of four songs annotated every 1000 ms.
The results obtained showed that loudness and tempo variations had correla-
tions with changes in arousal, however none of the studied features showed any
correlation with valence. However, the dataset used in this dataset is very small
and all the songs are of the same genre (romantic).

Another approach was by (Panda and Paiva, 2011), in which supervised learning
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was used in an attempt to propose a solution for automatic mood tracking in au-
dio. The approach also used the Russell model. The training dataset comprised of
189 songs, with 25 seconds in length, annotated with arousal and valence values
by at least 10 volunteers. For testing, volunteers were asked to annotate changes
between quadrants in 57 full songs, with every song being annotated by two vol-
unteers. Only the songs that had 80% matching rate between both annotators
were selected for testing, shortening the testing set from 57 to 29 songs. The re-
sults obtained hovered around the 53% to 55% in terms of accuracy, mostly due
to the smaller size of the dataset, which is also a problem.

In (Markov and Matsui, 2015), an approach using Gaussian Process (GP) regres-
sion was proposed. The feature vectors were calculated in a window of 1000 ms,
with a total of 45 vectors per music clip. The results obtained were a value of
Kendal rank correlation coefficient of 0.51 for arousal and 0.32 for valence. This
approach was done for the MediaEval 2013 benchmark evaluation campaign, and
also used the Russell model of emotion.

A.1.2 Deep Learning approaches

One deep learning approach to tackle MEVD was proposed in (Malík et al., 2017)
where both convolutional neural networks (CNN) and recurrent neural networks
(RNN) were used for emotion recognition using the Russell model of emotion.
The dataset used for training was a sub-set of the DEAM dataset, previously men-
tioned in Section 3.1. The best performing system on this dataset used 65 features,
with these being the features fed to the DL model. Moreover, in an attempt to see
if the model would be able to achieve good classification results using just raw
data, another model was created but it was only trained using raw features.

A total of 431 audio samples with a duration of 45 seconds was used for training
the model. However, the first 15 seconds of each sample were used for the anno-
tators to get accustomed with the annotation process, so only the final 30 seconds
were used for training. This process resulted in 60 annotations for each of the
30 second samples, annotated every 500 ms with arousal and valence values in
the range of [-1,1]. The evaluation was conducted using 58 complete songs from
the MedleyDB dataset (Bittner et al., 2014) and from the music website Jamendo 1.
The system with the baseline features ended up achieving the best results (having
a Root Mean Squared Error (RMSE) of 0.202 for arousal and 0.268 for valence).

This approach outperformed the previously considered best systems, however it
has the problem of using long segments, which means that there is the possibility
of having more than one emotion present inside the same segment.

(Dong et al., 2019) proposed a new Bidirectional Convolutional Recurrent Sparse
Network (BCRSN) for emotion recognition in music using Russell’s model. This
model adaptively learns the Sequential-information-included Affect-salient Fea-
tures (SII-ASF) from the two-dimensional time-frequency representation (e.g. spec-
trogram) of music audio signals. This BCRSN combines feature extraction, affect-

1https://www.jamendo.com/
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salient feature selection and emotion prediction in order to achieve continuous
emotion prediction on audio files. To train this model a part of the DEAM dataset
was used, totalling 431 full songs. The evaluation set consists of 58 songs from
the same database. To test the capacity of the model to generalize, 240 pop songs
from the MTurk dataset 2 were also used for evaluation. These songs are anno-
tated in 15-second segments by 7 to 23 annotators.

The results obtained were very good, having an average RMSE of 0.101 for arousal
and 0.123 for valence in the DEAM dataset, and similar results in the MTurk
dataset. However, this approach is a very complex one, and even with the im-
plementation of new methods to reduce the training time of the model, it still
takes a long time to train.

(Orjesek et al., 2022) proposed a solution based on deep neural networks that
mines emotion-related features from the raw audio waveform. The datasets used
for training and evaluation were the same used in (Dong et al., 2019), and the
emotional taxonomy was also the Russell model of emotion. The results were
compared against other models from the latest edition of MediaEval’s “Emotion
In Music” benchmark, as well as the BCRSN model (Dong et al., 2019) using both
baseline features and spectogram as input possibilities. The model overall per-
formed better compared to other approaches, achieving a Pearson Correlation
Coefficient (PCC) of 0.66 for arousal and 0.637 for valence.

However, the RMSE scores are not always better when compared to other ap-
proaches, under-performing when compared to the BCRSN approach trained
with spectogram as input in arousal and the LSTM-RNN architecture in valence.

These approaches further example the need of a bigger and higher quality dataset,
with this objective being one of the main goals of this thesis.

2Dataset built using Amazon Mechanical Turk
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Table A.1: Review of MEVD approaches

Paper Approach Emotion
Taxonomy

Datasets Features
and Input

Models Results Notes/Observations

(Schubert,
2004)

Classical
ML

Russell’s
A/V
Model

4 romantic
songs,
annotated
every
1000ms

5 features Linear
regression
models

Detected
changes in
arousal but not
in valence

The dataset is very small
and all the songs are of the
same genre.

(Panda
and Paiva,
2011)

Classical
ML

Russell’s
A/V
Model

57 full
songs an-
notated in
25 second
intervals

Standard
audio
features

SVM 0.53 to 0.55 ac-
curacy

The dataset used is very
small.

(Markov
and Mat-
sui, 2015)

Classical
ML

Russell’s
A/V
Model

MediaEval
2014, an-
notated in
0.4 second
intervals

Standard
audio
features

Gaussian
Process
regression

Kendal rank
correlation co-
efficient of 0.51
for arousal and
0.32 for valence

(Malík
et al.,
2017)

Deep
Learning

Russell’s
A/V
Model

DEAM
431 sam-
ple sub-set
for train-
ing and 58
complete
songs for
evaluation

Standard
features or
spectro-
gram

CNN and
RNN

RMSE of 0.202
for arousal
and 0.268 for
valence

The size of the samples can
make it so that one sample
has more than one domi-
nant emotion.
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Table A.2: Review of MEVD approaches

Paper Approach Emotion
Taxonomy

Datasets Features
and Input

Models Results Notes/Observations

(Dong
et al.,
2019)

Deep
Learning

Russell’s
A/V
Model

DEAM
431 sam-
ple sub-set
for train-
ing and 58
complete
songs for
evaluation

Spectogram BCRSN RMSE of 0.101
for arousal
and 0.123 for
valence

Model is very complex
leading to a long time re-
quired for training.

(Orjesek
et al.,
2022)

Deep
Learning

Russell’s
A/V
Model

DEAM
431 sam-
ple sub-set
for train-
ing and 58
complete
songs for
evaluation

Standard
audio
features
and spec-
togram

Modified
CNN and
RNN

PCC of 0.66
for arousal
and 0.637 for
valence

The RMSE achieved un-
derperforms when com-
pared to a few other mod-
els.
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A.2 DeepChorus and chorus detection approaches

Due to the main focus of this work being working with Static MER (which is
made up of 30 second audio segments), using this tool did not prove useful in the
creation of form features. However, it is important to consider this framework
as a viable option for the creation of form features related to song structure for
MEVD studies, where the full song is used.

DeepChorus (He et al., 2022), is a model created to identify the chorus segment
in a given song. It is, at the time of writing, the state of the art model in cho-
rus detection, surpassing the approach proposed in (Wang et al., 2021) by a few
percentage points.

(Wang et al., 2021) was later applied in the whole context of song structure, in-
stead of only identifying the chorus. In (Wang et al., 2022), a model was proposed
to segment the most common parts of a song (e.g. verse, chorus, bridge, inter-
lude) and achieved state of the art results in this specific task, although using a
chorus detection model that had since been surpassed.

The DeepChorus model has two main structures: a multi-scale network that de-
termines preliminary representation of the chorus segments, and a self attention
convolution network that processes the features into probability curves that rep-
resents the presence of chorus. Finally, an adaptive threshold is applied in order
to get a binary value out of the original curve (chorus or non-chorus). An illus-
tration of the model can be seen in Figure A.1.

Figure A.1: Visualization of the DeepChorus Model (He et al., 2022).

This model was trained using 886 tracks from the HARMONIX dataset (Nieto
et al., 2019) and from an extra 102 songs from The Beatles and Michael Jackson
from the Isophonics dataset (Mauch et al., 2009). For testing, various datasets
were used, in particular: 100 songs from the RWC dataset (Goto et al., 2002), 210
songs with the “Popular” tag from SALAMI (Smith et al., 2011) and 198 songs
from the same dataset. There is also no overlap between both subsets of the
SALAMI dataset.

This model achieved F1-scores of 0.675, 0.611 and 0.501, respectively, on the three
aforementioned test datasets. These values are all higher than other approaches,
with an increase of over 14% on the SALAMI “Popular” dataset and 12% on the
SALAMI “Live” dataset over the at the time best approach.
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Since chorus detection is not the main focus of the thesis, a thorough review of
the state of the art was not conducted in this work, however throughout the years
there have been many attempts at automating the task of detecting the chorus of a
song, with various degrees of success. (Goto, 2006b) (Yeh et al., 2010) (Vyas et al.,
2014) (Goto, 2006a) (Rachman et al., 2020)

The model has also been modified to produce images to better showcase the re-
sults of the model, as well as outputting the timestamps for the start and finish of
each chorus section, instead of only reporting values such as F1-score and accu-
racy as is the case for the original model.

The image below shows an output for the song “Crown” by Seulgi, with the top
graph corresponding to the ground truth chorus, illustrated by the green sections,
and the below graph corresponding to the predicted chorus, illustrated by the red
sections.

Figure A.2: Output of the changed model of DeepChorus for Crown by Seulgi.

The early results are promising, but more research needs to be done to corroborate
the performance of the model. If it proves to be a reliable way of determining
the chorus, features related to amount of chorus sections in one song, chorus
length, and even the same types of features used previously (e.g. tempo, beats
per minute) could be extracted just for the chorus section and studied to see if
they would prove valuable for emotion classification. It would also provide a
way of decreasing the work required to create segments for annotation for MEVD
datasets.
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A.3 Expansion of the MEVD dataset

To further expand the current MEVD dataset, it was chosen that 500 songs would
be added onto the dataset. In order to facilitate the process, we started out by
picking 125 songs of each quadrant that were already in the Static MER dataset.
These songs were picked with maximizing genre distribution in mind.

Afterwards, since the Static MER only includes 30-second audio snippets, for
each version the full song had to be downloaded. The search for the songs was
conducted on YouTube with attention to pick songs from official channels, and
to pick official audio versions (where applicable) and to download them in the
highest quality possible.

Moreover, work has begun in annotating these songs in order to create the dataset.
In the Static MER snippets, only one emotion is present in the snippet. However
in the case of MEVD annotation, there is the possibility of a song having many
different emotions.
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