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Em primeiro lugar, quero agradecer aos meus orientadores. Ao professor Lúıs Almeida,
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Aos meus amigos d’Os Cruzados, o João, a Mari, a Castela, o Tomé, a Rita, o Caramelo, o
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Às três farmacêuticas que conheci em Bologna e que desde áı não larguei, Ana Marçal,

Sara e Matilde, obrigada. Levo a vossa amizade no coração. Para a Ana, um agradecimento

v



Agradecimentos

especial, por me ajudares a crescer e superar os meus medos, pelas conversas longas enquanto

cozinhamos um ”piatto di pasta”.

Aos meus amigos do secundário, Princesas e Anões, obrigada por termos crescido juntos e

por nos continuarmos a apoiar uns aos outros.
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Abstract

Machado Joseph disease (MJD) or Spinocerebellar Ataxia Type 3 (SCA3) is a neurode-

generative disorder characterised by an expansion of a CAG repeat in the coding region of the

MJD1 gene. This abnormal expansion translates into a toxic gain of function of the ataxin-3

protein, which triggers multiple pathogenic mechanisms leading to neurodegeneration in several

brain regions. The absence of available treatment for MJD encourages further investigation

towards possible therapeutic approaches.

This study aimed to develop a semi-automated system and to expand the insights on

behaviour assessment studies in video recordings of mouse models of MJD in pre-clinical research.

For that purpose, we exploited two behaviour tracking methods that presented two distinct

approaches to our problem. Firstly, we constructed a low-cost setup specific to open field

assessment tests. For analysis of the recorded tests, we used Bonsai RX to be able to track the

centre of mass of the animal under study. For our second approach, we used an already existing

tracking system, DeepLabCut, based on pose estimation algorithms that specialise in body

part prediction. Thus, a significant part of this dissertation was directed at the identification

of optimal parameter values for the tracking algorithm. Both approaches proved suitable to

automatically track mice in an open field test setting and calculate our customised measurements.

In summary, this work contributes to MJD investigation through the implementation of two

semi-automated tracking approaches for animal behaviour studies which mitigates researchers’

excess work related to test data analysis. Moreover, these developed pipelines are not restricted

to MJD related investigation and may be applied to other SCAs research.

Keywords: animal tracking, MJD YAC mouse model, Bonsai RX, convolutional neural net-

works, DeepLabCut, neuroscience, open field test, Machado Joseph disease, Spinocerebellar

Ataxia Type 3
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Resumo

A doença de Machado Joseph (DMJ) ou ataxia espinocerebelosa do tipo 3 (SCA3) é uma

doença neurodegenerativa caracterizada por uma expansão anómala de uma repetição de tri-

nuclet́ıdeos CAG na região codificadora do gene MJD1. Esta expansão anormal traduz-se num

ganho de função tóxico da protéına ataxina-3, que desencadeia múltiplos mecanismos patogénicos

que levam à neurodegeneração em várias regiões do cérebro. A ausência de tratamento dispońıvel

para a DMJ incentiva a investigação de posśıveis abordagens terapêuticas.

Este estudo teve como objetivo expandir os conhecimentos sobre estudos de avaliação do

comportamento de modelos de murganho, em gravações de v́ıdeos, assim como desenvolver um

sistema semi-automatizado para a monitorização do comportamento em modelos de murganho

da DMJ.

Para esse efeito, explorámos dois métodos de rastreio do comportamento que apresentam

duas abordagens distintas ao nosso problema. Em primeiro lugar, constrúımos uma instalação de

baixo custo espećıfica para testes de avaliação em campo aberto (open field). Para a análise dos

testes recolhidos, utilizámos o programa Bonsai RX para conseguir localizar o centro de massa

do animal em estudo. Para a nossa segunda abordagem, utilizámos um sistema de detecção

já existente, o DeepLabCut, baseado em algoritmos de estimação de pose, especializados na

predição de partes do corpo. Assim, uma parte significativa desta dissertação foi direccionada

para a identificação dos valores óptimos dos parâmetros do algoritmo de seguimento. Ambas as

abordagens provaram ser adequadas para seguir automaticamente murganhos num ambiente de

teste em campo aberto e calcular as nossas medições espećıficas.

Em resumo, este trabalho contribui para a investigação da DMJ através da implementação

de duas abordagens de rastreio semi-automatizadas, para estudos de comportamento animal, que

atenuam o excesso de trabalho dos investigadores relacionado com a análise de dados de testes.

Além disso, estas metodologias desenvolvidas não se restringem à investigação relacionada com

a DMJ e podem ser aplicadas a outras investigações relacionadas com outras doenças de ataxias

espinocerebelares (SCA).

Palavras-chave: rastreamento de animais, modelo de murganho DMJ YAC, Bonsai RX,

redes neuronais convolucionais, DeepLabCut, neurociência, teste de campo aberto, doença de

Machado Joseph, ataxia espinocerebelosa do tipo 3
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1

Introduction

1.1 Context and Motivation

Machado Joseph disease (MJD), also known as Spinocerebellar Ataxia Type 3 (SCA3), is

a neurodegenerative hereditary disorder that affects 1.5 individuals in every 100 000 worldwide

[Orphanet, 2022]. In Portugal, it presents a higher prevalence, particularly in the Azores, where

the highest incidence per capita is reported [Bettencourt and Lima, 2011]. It is an extremely

debilitating condition, characterized by progressive cerebellar dysfunction. This degeneration

causes a spectrum of problems affecting gait, balance, speech, eye movements, among other

manifestations [Taroni and DiDonato, 2004].

At present, there is no cure or effective treatment to prevent symptom progression. Ex-

tensive research efforts have been devoted into developing therapies for this disease. Part of

research studies in this domain incorporate pre-clinical investigations, which entail the use of

animal testing to analyse the effects of therapeutic strategies. Particularly, mouse models are

commonly used due to their physiological similarities with humans. In cases where behaviour

assessment is involved, the tests conducted are often recorded for posterior analysis. Analysing

behaviour data is a laborious and time-consuming task often burdening researchers. Manual

scoring, up to now a common approach, presents several additional drawbacks, including inter-

rater variability, dependence on rater’s experience and on human detectable behaviours. Despite

the availability of various proprietary software to address these issues, they are often expensive,

closed source and rarely disease specific, making their use somewhat limited.

Open source solutions emerged to mitigate this gap by permitting researchers to customise

the software to meet to their specific requirements. Additionally, these systems grant researchers

greater control over design and coordination of their experiments [Siegle et al., 2017, Lopes

et al., 2015]. Subsequent advances in the field of deep learning and video monitoring technology

led to the development of alternatives that generated meaningful outcomes, such as animal

tracking, keypoint extraction and pose estimation, some even capable of outperforming closed

source commercial systems [Sturman et al., 2020]. In fact, deep learning algorithms are the most

powerful among pose estimation algorithms [Toshev and Szegedy, 2014, Insafutdinov et al., 2016].

Such tools originate new possibilities in the neuroscience rodent research. Current animal pose

estimation packages provide tools for the researcher to generate and train tailored networks to

1



1. Introduction

user-focused needs. This generally involves an initial frame labelling stage, a training/testing

stage in which a neural network is optimized to predict poses from images it is fed, followed by

performance evaluation and network refinement.

The extraction of novel behavioural measurements from pre-existing videos has the po-

tential to add information to the already collected data. However, managing these open source

packages is a complex process, especially for neuroscientists and researchers in this field who may

lack programming skills. In fact, our primary motivation for this work was to make behavioural

analyses easier and faster for researchers at our research centre.

1.2 Objectives

The main goal of this project was to assess the applicability of open source methods for

analysing mouse behaviour in experimental studies of MJD. The various aims our project hoped

to achieve are delineated bellow:

• Establish two working pipelines to analyse the open field behaviour test, from acquisition

to result extraction and analysis, creating a more cost-effective experimentally oriented

way to conduct mouse behaviour testing in MJD research.

• Extract meaningful behavioural data from the open field test, increasing the level of con-

fidence in the results and broadening the test’s utility.

• Create a functional end-to-end framework for behaviour testing with the open field assay

to be used in the future in MJD studies at our investigation centre.

Furthermore, we intend to make a meaningful contribution to MJD related research by

proposing an alternative approach to quantify behaviour function. We envision this thesis as

a comprehensive guide, offering detailed information about the toolboxes used, parameters se-

lected, calculated metrics and all the steps taken for the sake of clarity and reproducibility.

1.3 Document Structure

This document is structured as follows:

Chapter 2 provides a simple introduction to Machado Joseph disease, followed by an

overview of the disease’s transgenic animal models and a description of the mouse model utilised,

the Yeast Artificial Chromosome (YAC) mouse model.

Chapter 3 describes the state of the art for behavioural video tracking analysis.

Chapter 4 introduces the theoretical background behind deep learning methods, the back-

bone of keypoint tracking and pose estimation algorithms described in the previous chapter.

Chapter 5 thoroughly describes the tools and the methodology used in the various steps of

this study.
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Chapter 6 presents the results obtained and discusses them through comparative and in-

terpretive analysis.

Chapter 7 provides a conclusion and outlines potential directions for future work.

1.4 Scientific Dissemination

The work developed during this project resulted the following scientific contributions:

• A. Silva*, L. Angeja*, G.L. Gabriel*, C. Henriques, L.S. Gaspar, L. Pereira de Almeida,

R.J. Nobre. ”Motor performance in mouse models of Spinocerebellar ataxia type 3: a

meta-analysis”, 2023. (*) these authors contributed as co-first authors. [Silva* et al.,

2023]. Submitted to ”Journal of Translational Medicine” for publication.

• Repository with our established pipeline available in [Angeja, 2023].
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2

Machado-Joseph Disease

This chapter aims to outline the main concepts required to develop this work. Firstly,

Section 2.1 introduces some pivotal concepts related to the disease at study, MJD. Section 2.2

presents the mouse models generated thus far, taking special attention to the transgenic model

selected to conduct this thesis research, in Subsection 2.2.2.

2.1 Brief Description and Historical Context

Machado Joseph disease (MJD) or Spinocerebellar Ataxia Type 3 (SCA3) is an incur-

able autosomal dominant ataxia that belongs to the group of Polyglutamine Diseases (polyQ),

which includes Huntington’s disease (HD), Dentatorubral–Pallidoluysian Atrophy (DRPLA),

Spinal–Bulbar Muscular Atrophy (SPMA) and other forms of Spinocerebellar Ataxia (SCA).

These diseases are triggered by the expansion of an unstable CAG repeat located in the coding

region of the respective causative gene, which is responsible for the clinical and neuropathological

similarities observed [Schöls et al., 2004, Katsuno et al., 2008].

MJD is considered the most common subtype of dominant inherited spinocerebellar ataxias

worldwide [Schöls et al., 2004]. This neurodegenerative disorder was named after two families of

Azorean ancestry, who migrated to the USA as of the first descriptions of the disease. Since then,

MJD has been identified in many families worldwide, both of Portuguese and non-Portuguese

ancestry [Sakai et al., 1983, Livingstone and Sequeiros, 1984, Eto et al., 1990, Ogun et al., 2015].

The disease’s relative frequency is variable depending on the region, being highest in Brazil,

Portugal (particularly in Azores islands), Singapore and China [Bettencourt and Lima, 2011,

Lima and Coutinho, 1980].

The genetic cause of MJD is characterized by the pathological expansion of CAG trinu-

cleotide repeats in the coding region of the causative gene, which is identified as MJD1 gene

[Kawaguchi et al., 1994]. As a result, the expansion of CAG repeats translates into an abnor-

mally long polyQ tract in the causative gene conferring a toxic gain of function to the ataxin-3

protein [Ikeda et al., 1996].
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2. Machado-Joseph Disease

2.1.1 Disease: MJD1 Gene and Ataxin-3 Protein

In 1993, the causative gene, MJD1, locus was assigned to the long arm of chromosome 14

(14q24.3-q32) [Takiyama et al., 1993]. The following year, it was discovered that this mutation-

causing gene resulted from an anomalous expansion of trinucleotide CAG repeats in the coding

region (exon 10) of the MJD1 gene [Kawaguchi et al., 1994].

Ataxin-3, a polyubiquitin-binding protein with a physiological role associated with ubiquitin-

mediated proteolysis [Burnett et al., 2003] is encoded by the MJD1 gene. Mutant ataxin-3

protein exhibits a long polyglutamine tract at the C-terminus due to CAG expansion in the

causative gene [Ikeda et al., 1996]. Contrary to healthy individuals exhibiting a CAG tract

spanning from 10 to 51 repeats, MJD patients have a trinucleotide repeat expansion extending

above a critical threshold of 55 repetitions (from 55 to 87) [Gu et al., 2004, Maciel et al., 2001].

Larger repeat expansions have been strongly correlated with earlier disease onset and increased

severity in clinical manifestations [Schöls et al., 2004, Maciel et al., 1995].

2.1.2 Symptomatology

MJD is a multissystem neurodegenerative disorder predominantly affecting:

• the cerebellum, that plays an important role in motor control;

• the pyramidal and extrapyramidal tracts, responsible for coordinating conscious controlled

face and body movement and regulating posture and involuntary motor functions control

of muscles, respectively;

• the oculomotor system, responsible for maintaining control of eye movement and visual

stability.

Prevalent clinical manifestations of MJD include ataxia, i.e. impaired coordination of vol-

untary movement that impacts gait, balance, speech and gaze [Taroni and DiDonato, 2004].

Progressively over time, patients exhibit nystagmus, dysarthria and dysphagia [Paulson, 2012].

Furthermore, external progressive ophthalmoplegia, dystonia, intention fasciculation-like move-

ments of facial and lingual muscles, and bulging eyes, pertain to moderately infrequent mani-

festations of the disease [Bettencourt and Lima, 2011]. In advanced disease stages, patients are

bound to a wheelchair and have aggravated symptoms.

The mean age of disease onset is at around 40 years although it may be widely variable, with

extremes as low as 4 and as high as 70 years old. The variability is a reflection of differences

caused by the size of the mutant CAG repeat, as aforementioned in Subsection 2.1.1, which

also accounts for severity discrepancies of MJD phenotype [Bettencourt and Lima, 2011, Maciel

et al., 1995]. Due to clinical heterogeneity, MJD was divided into four phenotypical subtypes

with different ages of onset (types I, II, III or IV), with a fifth additional one (type V) proposed

later on [Lysenko et al., 2010]. Among the subtypes, MJD type I has the earliest onset, 5 to 30

years of age. MJD type II is the most common, with an onset of around 36 years of age. The

second most common is type III, with a later onset age of around 50 years old. MJD type IV
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age of onset is described as 38 to 47 years, and it occurs in patients with fewer CAG repeats

expansions. This classification might not apply to the totality of MJD patients, and in some

cases a patient can evolve from one type to the other [Nóbrega and de Almeida, 2012]. Mean

survival time following disease onset is 21 years, reviewed in [Bettencourt and Lima, 2011].

2.1.3 Neuropatology

MJD’s typical neurodegenerative profile reveals neuronal loss across selective regions of

the Central Nervous System, these include cerebellum (spinocerebellar pathways and dentate

nucleus), spinal cord, substantia nigra, thalamus, striatum, brainstem (pons and medulla oblon-

gata) and cranial nerves, as Figure 2.1 portrays [Durr et al., 1996, Scherzed et al., 2012]. Brains

of MJD patients appear, in many cases, to be considerably reduced in weight in comparison to

those of individuals without history of neuropathological or psychiatric diseases [Iwabuchi et al.,

1999].

Striatum

Thalamus

Substantia nigra

Cerebellum

Pons

Medulla 
Oblongata

Dentate nucleus

Spinal cord

Figure 2.1: Schematic representation of distribution of neuronal loss in the CNS of MJD
patients.

2.2 Animal Models of Machado-Joseph Disease

The development of cellular and animal disease models has proved to shed insight on the

underlying mechanisms involved and helped in the testing of therapeutic strategies. Considering

a disease such as MJD, using animal models presents the possibility of analysing pathogenic

mechanisms and aspects with a late onset and during various disease stages, which is unable to
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be conducted in human patients. Furthermore, animal models allow the assessment of possible

treatments at a pre-clinical stage.

Despite the advantages of the existing models, each one presents its own drawbacks. It

is an on-going challenge to create a model that simulates disease features the most faithfully.

Organisms such as the fruit fly (Drosophila melanogaster) and the roundworm (Caenorhabditis

elegans) have successfully been used to study several aspects of MJD [Schmidt and Schmidt,

2018]. However, the mouse (Mus Musculus) model is the most commonly used, due to their

physiological similarities with humans [Ellenbroek and Youn, 2016].

2.2.1 Mouse Models

Transgenic animals expressing mutant human ataxin-3 comprise the majority of MJD

mouse models. The transgene frequently consists of a complementary DNA (cDNA) encod-

ing for a particular isoform and controlled by a specific promoter. These models differ in terms

of CAG number, promoter selection, the number of integrated transgene copies, and the trans-

gene itself, which may be the full-length or truncated Ataxin 3 protein (ATXN3) as discussed

in [do Carmo Costa and Paulson, 2012].

Ikeda and collaborators developed the first mouse model for Machado Joseph disease in

1996, which has proved to imitate disease late stages while being cost and time effective [Ikeda

et al., 1996]. Nonetheless, the model holds some limitations. Protein expression is restricted

to a specific brain region, contrasting with the human condition, in which neuronal failure is

observed across multiple brain regions. Furthermore, the model’s high symptom severity and

early onset might pose an obstacle to certain therapeutic approaches.

In an attempt to more accurately recreate the human disease features, Cemal and colleagues

developed a novel mouse model, the YAC model. This model expresses the entire human ATXN3

coding sequence, exhibiting a moderate phenotype with tremors, wide gait, difficulties regarding

body positioning and reduced weight gain. Ultimately, a model able to mimic and correlate

numerous characteristics observed in human patients [Cemal et al., 2002].

As observable in Table 2.1, multiple alternative mouse models have been produced whilst

exploiting different promoters and different transcript variants of ATXN3 expressions. In gen-

eral, every model has contributed to advances in the understanding of MJD. Similar to what

is observed in humans, the number of CAG repetitions is suggested to be correlated with the

severity of the disease [Bichelmeier et al., 2007, Silva-Fernandes et al., 2010, Silva-Fernandes

et al., 2014].

Truncated forms of the gene are more toxic, associated with earlier onset and more severe

phenotype. This found toxicity, in addition to being related to the C-terminal truncated forms, is

linked to an ATXN3 N-terminal fragment that promotes neurodegeneration, behavioural issues

and early death [Hübener et al., 2011].

Aside from the transgenic mouse models of MJD, lentiviral-based mouse models have also

been developed and have had an impact on disease pathogenesis study. Lentiviral-based mouse
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models overexpress full-length human mut-ATXN3 allowing rapid testing of treatment strategies

and quantitative analysis of neuropathological impairments. The fact that this model requires

invasive procedures to produce a localized overexpression of the disease protein comprises its

main drawback [Alves et al., 2008, Alves et al., 2010, Nóbrega et al., 2014, Simoes et al., 2012].

Table 2.1: Mouse Models of Machado Joseph Disease.

Transgene Promoter/

Expression

Neuropathology Motor

Phenotype

Reference

Truncated and full

length Human

ATXN3 CDS with

79 CAGs

L7 promoter:

expression in

cerebellar Purkinje

cells

Cerebellar atrophy Ataxia Gait

disturbances (4

weeks)

[Ikeda et al., 1996]

Full length human

ATXN3 gene with

48 / 84 CAGs

Endogenous

human promoter

in YAC system –

Ubiquitous

expression

Intranuclear

inclusions in

Purkinje cells,

pontine and dentate

neurons;

Neurodegeneration

Motor deficits (4

weeks)

[Cemal et al., 2002]

Full length

ATXN3 CDS with

71 CAGs

Mouse prion

promoter

–Expression in

several brain

regions

NIIs in cerebellar

nuclei and spinal

cord. Abundant

mutATXN3

fragments

Motor deficits,

weight loss,

premature death

[Goti et al., 2004,

Gould et al., 2007]

Full length

ATXN3 CDS with

70/ 148 CAGs

with or without

NLS and NES

Mouse prion

promoter –

Expression in

several brain

regions

Degeneration of

Purkinje cells,

reduced turnover of

dopamine and

serotonin.

Tremor, reduced

activity,

premature death.

[Bichelmeier et al.,

2007]

Full length

ATXN3 CDS with

79 CAGs

Mouse prion

promoter -

Expression in

several brain

regions

NIIs in pontine and

dentate neurons,

substantia nigra.

Downregulated gene

expression

Reduced motor

coordination,

ataxic gait (5-6

months) and

weight loss

[Chou et al., 2008]

Truncated ATXN3

CDS with 69

CAGs

L7 promoter -

expression in

cerebellar Purkinje

cells

Severe cerebellar

atrophy with defects

in Purkinje cells

synaptic

transmission

Severe ataxia [Torashima et al.,

2008, Oue et al.,

2009]

Full length

ATXN3 CDS with

77 CAGs under

control of Tet-Off

system

Hamster protein

promoter -

expression in

several brain

regions

NIIs in cerebellar

cortex Neuronal

dysfunction in the

cerebellum

Reduced motor

coordination, Gait

ataxia (2 months)

[Boy et al., 2009]

Full length

ATXN3 CDS with

148 CAGs

Rat huntingtin

promoter (brain)

NIIs in pons and

cerebellum,

Degeneration in

Purkinje

Hyperactivity,

Motor deficits (1

year)

[Boy et al., 2010]
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Full length

ATXN3 CDS with

94 CAGs

CMV promoter -

Ubiquitous

expression

Neuronal atrophy

and astrogliosis, no

inclusions

Motor

coordination

impairments (4

months)

[Silva-Fernandes

et al., 2010]

Truncated

N-terminal

ATXN3 CDS

Endogenous mouse

ATXN3 promoter

- expression in

several brain

regions

Neuronal

cytoplasmic

inclusions, impaired

endoplasmic

reticulummediated

unfolded response

Premature death,

tremor, clasping,

gait ataxia, weight

loss

[Hübener et al.,

2011]

Full length

ATXN3 CDS with

135 CAGs

CMV promoter -

ubiquitous

expression

Neuronal loss in

pontine nuclei

Motor deficits (16

weeks), Weight

reduction

[Silva-Fernandes

et al., 2014]

Full length

humanized

ATXN3 CDS with

91 CAGs and

small portion of

human 3’UTR

region

Endogenous mouse

ATXN3 promoter

– Ubiquitous

expression

Inclusions in the

cerebellum, cortex

and hippocampus,

neuroinflammation,

cerebellar

neurodegeneration

Mild motor

coordination

impairment (90

weeks)

[Switonski et al.,

2015]

Full lentgh mouse

ATXN3 gene with

82 CAGs

Endogenous mouse

ATXN3 promoter

- ubiquitous

expression

Abundant nuclear

inclusions

No behavioural

alterations

[Ramani et al.,

2015]

2.2.2 MJD YAC Mouse Model - Phenotypical Profile

As described in Section 2.2.1, the YAC mouse model is recognized for its capacity to

replicate certain characteristics witnessed in human MJD patients. Thus, it has emerged as the

animal model that has incited our investigative interest within the context of the current study.

Cemal and colleagues developed several transgenic lines of YAC expressing the full length

human mut-ATXN3 gene with expanded CAG repeats ranging in size from 48 to 84 repeat units.

Five hemizygous transmitting lines of the transgenic founder mice were originated, namely

MJD15.4, MJD72.1, MJD67.2, MJD22.1/84.1 and MJD84.2. Of the five transmitting lines,

MJD84.2 mice exhibit the most evident functional and behavioural abnormalities.

The YAC mouse model can be designated as homozygous or hemizygous for MJD/SCA3,

depending on their Copy Number Variation (CNV). Hemizygous mice carry two copies of the

YAC-transgene and two endogenous genes. Homozygous mice, on the other hand, are ob-

tained through breeding between hemizygous mice and thus have four copies of the transgene.

Hence, crosses between MJD84.2 mice result in MJD84.2/84.2 homozygous mice, respecting the

Mendelian inheritance ratios.

In order to phenotypically characterize their newly developed animal models, behavioural

studies were conducted based on the SHIRPA protocol. In general, Cemal et al. observed that

the mutated MJD1 gene in YAC mice was associated with lower body weight in comparison to
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wild-type littermates [Cemal et al., 2002]. Other characteristics include limb clasping, reduced

grip strength, tremor, abnormal gait, hypoactivity, an inability to correct geotaxis, and abnormal

toe pinch responses. These may vary from mild to prominent phenotypic expression depending

on copy number, which is consistent with the cerebellar neurodegeneration observed in MJD

patients.

In fact, hemizygous MJD84.2 mice present abnormalities in gait and pelvic elevation from

4-6 weeks of age, also showing limb clasping from 24 weeks in forelimbs [Shakkottai et al., 2011,

Cemal et al., 2002]. Signs of weakening in the limbs and/or lack of coordination were noticeable

from 56 weeks. Cemal and colleagues further demonstrated that homozygous MJD84.2/84.2 mice

portray more frequent limb clasping in both hind and forelimbs than hemizygous mice, noticeable

by 16 weeks of age. They also observed these mice depict muscle weakness and inability to correct

geotaxis from 12 weeks on, showing also excessive grooming. When compared to homozygous

mice, all the hemizygous YAC transgenic lines exhibit less pronounced gait abnormalities and

lower weight deficit [Cemal et al., 2002]. Moreover, in comparison to each other, hemizygous

lines with larger repeat lengths have more prominent behavioural and functional abnormalities.

Hence, mice with a higher gene dosage and expanded CAG repeats have earlier disease onset and

exhibit more severe symptoms [Cemal et al., 2002]. This observation confirmed the impact of

repeat expansions and dosage on disease severity in human patients. Since initially characterized

by Cemal and colleagues, several studies have corroborated that MJD84.2 mice, both hemizigous

and homozygous, show reduced weight gain compared to wild-type littermates [Shakkottai et al.,

2011, do Carmo Costa et al., 2013]. Other findings further report hemizygous MJD84.2 mice

display a mild gait abnormalities phenotype and homozygous MJD84.2 mice portay an early

decrease in locomotor and exploratory activity on the open field test [do Carmo Costa et al.,

2013],

We conducted a meta analysis review of mouse models of MJD which confirmed the YAC

mouse model exhibits progressive motor dysfunction. Our investigation was focused on motor

performance analysis, evaluated using the accelerating rotarod and footprint tests. In the accel-

erated rotarod test, lower latency to fall is an indicator of motor dysfunction. Whereas in the

footprint test, stride length is evaluated aiming to depict gait abnormalites which are associated

with MJD.

Our observations indicated that 10 week-old and 18-week-old YAC mice did not exhibit

significant distinctions from wild-type mice in terms of accelerating rotarod performance and

footprint stride length, respectively. However, it is noteworthy that 18-week-old YAC mice

demonstrated a diminished latency to fall from the accelerating rotarod, while mice aged 23 to

24 weeks displayed a reduction in stride length during footprint analysis [Silva* et al., 2023].

These results strongly suggest that phenotypic alterations in the YAC MJD84.2 model

have a representative phenotype from approximately 18 weeks on. Furthermore, we denoted

that motor abnormalities in YAC mice might not manifest consistently in individuals younger

than 10 weeks old. Our meta analysis review description of the MJD84.2 line corroborates the

later onset of this model.
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Henceforth, the model developed by Cemal and his colleagues has become a valuable tool

for the investigation of therapeutic strategies through facilitating a comprehensive assessment

of the genotypical and phenotypical characteristics of Machado Joseph disease.
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Automation of Behaviour Analysis

In this chapter, we introduce a brief explanation of behaviour and its importance for neu-

roscience research, particularly in MJD. We present an overview of the current tools available

for behaviour testing and analysis automation.

3.1 Animal Behaviour Tracking

Behaviour is the aggregate of the responses made by the organism in any given situation.

It is how animals act, whether they are being constrained or moving freely in an environment.

Neuroscience strives to understand brain function, its success is not merely in discovering the

underlying mechanisms of the brain, but in connecting them to brain function - behaviour.

Effective quantification of animal behaviour is of extreme relevance to the study of neu-

rodegenerative diseases, such as MJD. The relationship between cerebellar neurodegeneration

and motor impairments is widely known and is object of intensive investigation.

It is possible to separate behaviour study into two distinct approaches. On the one hand,

observation of behaviour in natural environments, with the purpose of understanding innate

behaviour of individuals and common rules of interaction of the animals among each other. On

the other hand, behaviour can be studied in a more controlled environment which is the case of

laboratory settings. This second approach aims to reduce variability through settings’ control

to induce a particular outcome or to provoke a particular behaviour response.

In laboratory settings, to quantify the change in animal behaviour we must register their

interactions and reactions to the environment. Technology for acquiring records of these oc-

currences (videography, photography, audiography, and others) made this registration possible.

Taking advantage of advances in technology, researchers began to use enhanced tools that pro-

vided information beyond the reach of the naked human eye, such as infrared illumination and

high-speed video. A more common practice in animal experiments, due to their complexity, con-

sisted in marking each individual with sensors, some examples are GPS, accelerometers or RFID

tags that transmit information over extended periods of time [Gomez-Marin et al., 2014, Peleh

et al., 2019].

Our work will primarily focus on markerless approaches for behaviour tracking due to

their advantages such as minimal preparation or extensive equipment required and minimal

13



3. Automation of Behaviour Analysis

interference with the subjects.

3.2 Behavioural Video Tracking Analysis

Videography is extremely popular among researchers for behavioural analysis as it allows

for postliminary analysis. Recorded files entail the examination and extraction of meaningful

information to study and draw conclusions from the animal’s behaviour. In the past, researchers

would often conduct data collection manually, which involved labour-intensive processes such as

watching video playback, annotating animal movement times and locations, visually recogniz-

ing behavioural patterns, and manually scoring the collected data for events of interest. This

approach is not only time-consuming but also prone to human error and subjectivity. Manual

scoring and analysing parameters might vary across laboratories and even suffer changes when

conducted by the same expert researcher at different points in time. Furthermore, such analysis

requires expert knowledge about the species, disease, and experimental design at study. These

methods regularly result in laboratories examining only a small subset of the sets of videos

recorded during the experiment and storing substantial amounts of unused data. The described

challenges associated with low reproducibility of research and its manual costs have had an im-

pact on the field, with a vast number of scientists resorting to more easy-to-use measures in their

experiments [Luxem et al., 2023]. These inherent constraints limit the potential of investigations

to improve our comprehension of the intricate relationship between brain and behaviour.

In response to the aforementioned issues of heavy amounts of data for manual analysis and

user bias, many advancements in the behaviour analysis field have arisen with several degrees

of complexity and adaptability to laboratory settings.

Some scientific experiments require processing data of heterogeneous nature, such as video

cameras, microphones, and electrodes that must simultaneously record data. Various tools to aid

in data acquisition are available nowadays: open-source data collection systems such as Bonsai

RX [Lopes et al., 2015], custom-written programs using well known libraries such as OpenCV

[Bradski, 2000] and video recording software provided by video capture boards (eg. loopbio

Motif). Subsequently, video recordings can be subjected to analysis using a range of tools.

Commercial products for automated annotation and tracking behaviour appeared (eg.

Ethovision by Noldus, ANY-Maze by Stoelting), followed by open-source software tools (eg.

JAABA, VSAMBR, Optimouse) both aiming to address the new era of behaviour analysis. Op-

posed to commercial software, open source software holds the advantage of making customisable

modifications to the tool’s algorithm according to the research or experiment specific purpose.

The available open source tools vary in the type of analysis conducted, either concentrating

in ‘centre of mass’ tracking, in pose estimation or in extracting features for behaviour detection

and subsequent quantification. This greatly influences the algorithm used, which might be deep

learning based or non-neural network machine learning based. In this work, we will focus mainly

on pose estimation algorithms based on deep learning. These concepts will be further explained

in Chapter 4.
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3.2.1 Experiment Control Systems

Taking a step back from post-experiment analysis, many experiments require tight control

of laboratory settings in order to induce the desired behavioural outcome from the subject being

tested. To attend to the needs of neuroscience behavioural research, hardware and software

experiment control systems, both commercial and open-source technologies, have been developed

to this extent. For defining complex state dependent tasks (where the current state determines

how the task responds to events) and for simplifying the construction of complex experiment

setups, open source systems (pyControl [Akam et al., 2022], Bpod [Sanworks LLC, nd] have

been made available. Different approaches such as Bonsai address experimental control in a

very different form, as it functions through processing various data types in parallel.

3.2.1.1 Data Collection System - Bonsai

Bonsai RX was developed to solve the problem of monitoring several parallel data streams

for one experiment in an efficient way, including video tracking of behaviour [Lopes et al., 2015].

It is a visual programming language, developed in a way that a researcher with little to no

experience in programming is able to use it. This tool can be adapted to several different

experimental scenarios that the researcher can build and combine with the Bonsai framework.

Through a Graphical Use Interface (GUI) the Bonsai framework uses observable sequences

to represent asynchronous streams of data. An observable sequence is a data stream of elements

that follow one another, such as a sequence of frames in a video recording. The sequences of data

are manipulated and analysed as they arrive, through the graphic dataflow representation. Each

node in the dataflow represents an observable sequence. Nodes can be sources of observable data

or combinators, handling raw data streams or multiple sequences of data, respectively. Based

on the manipulation of their inputs, combinators can be grouped into transformers, sinks or

operator types. Bonsai incorporates visualizers to aid the debugging and inspection of data

elements in the workflow. Essentially, this represents a graphical and adaptable approach for

working with observable sequences in behaviour tracking [Lopes et al., 2015].

3.2.2 2D Pose Estimation and Tracking

Pose tracking techniques aim to derive positional data from the body parts of a moving

animal, i.e. the algorithms can be understood as a function that decodes the frames from record-

ings to coordinates of various body parts [Mathis et al., 2020]. The body parts are represented

as a list of keypoints, and these normally have a semantic meaning attached, e.g. nose, left

ear, tail base, or tail tip (Figure 3.1). The algorithms might also group the keypoints, called

part grouping, for the case of multiple animals, so that these can be extracted simultaneously.

The coordinates of each body part are estimated through finding the pixel with the highest

probability [Luxem et al., 2023, Isik and Unal, 2023, Mathis et al., 2020].

Deep learning algorithms, although others have been introduced, have proved to be the

most powerful for the task of pose estimation [Moeslund et al., 2006, Poppe, 2007]. One can

describe pose estimation as a system of an encoder that extracts relevant features from an image
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Figure 3.1: Schematic Overview of Markerless Motion Capture.
The pixel representation of an image or a sequence of images (left) is converted into a list of keypoints (right).

Semantic information associated to the object and kepoints are linked to the predictions.

or frame, which a decoder will then use to predict the points of interest (body parts) together

with the coordinates in said frame. Tools based on deep neural networks optimized for pose

estimation tasks name the encoder the backbone and the decoder as the output head.

Machine learning systems consist of a dataset, model, loss function and an optimization

algorithm [Goodfellow et al., 2016]. The dataset assigns a particular pose (output) from a

particular image (input), defining the desired input-output relationship, that is then used to

train the model. Parameters of the model or weights are iteratively updated by the optimizer

in order to bring the loss function to its minimum. Hence, the loss function is the measure of

quality of the predicted poses, when compared to the ground truth data (manual annotations

of body parts).

3.2.2.1 Current Deep Learning Tools

The overall procedure for pose estimation in computer vision research follows a similar

strategy. However, researcher-oriented toolboxes differ from one another by providing code

to run inference and train on an architecture, for one’s specific datasets. Nonetheless, these

two crucial characteristics alone are insufficient to generate suitable neural network toolboxes

for a neuroscience laboratory or researcher. Current packages explore different state-of-the-

art architectures whilst providing a comprehensive pipeline, accommodating functionalities for

labelling a customised dataset, generating the train and test fractions, data augmentation and

loaders, neural architectures, performance evaluation code, running video inference and post-

processing tools for easy interpretation of obtained outputs. Here, we highlight five state-of-

the-art open source toolboxes that are mice specific or species agnostic and concentrate their

efforts on usability as well as achieving near human accuracy in pose estimation, as summarized

in Table 3.1.

DeepLabCut

Through exploiting a state-of-the-art neural network method for multi-human pose estima-

tion, Mathis and his collaborators generated a pose estimation toolbox targeting animal body

parts detection in laboratory settings [Mathis et al., 2018]. To develop DeepLabCut, the fea-

tures detectors of DeeperCut, a pose estimation algorithm with distinguished performance, were
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Table 3.1: Overview of Popular Deep Learning Tools for Animal Motion Capture. Adapted
from [Mathis et al., 2020].

Any Species Multi-Animal Training Code Full GUI Example Data PT-NNs Release Date

DeepLabCut yes yes yes yes yes many 2018
LEAP yes no no no no no 2018
DeepPoseKit yes no yes partial yes no 2019
SLEAP yes yes yes no no yes 2022
B-KinD no yes no no no self supervised 2022

Here, we indicate whether each tool may be used to build customized networks or if it only offers tools for

specific animals. Only when pre-trained neural networks (PT-NNs) that go beyond humans are accessible, did

we highlight them. We include the code’s release date. Note that SLEAP has replaced and deprecated LEAP.

used [Pishchulin et al., 2016, Insafutdinov et al., 2016]. This was made feasible through transfer

learning, as the feature detectors were built upon extremely deep neural networks pretrained

on ImageNet, a large-scale dataset widely used for benchmarking object recognition algorithms

[Deng et al., 2009].

DeepLabCut (DLC) is a deep convolutional network that combines the strengths of pre-

trained ResNets and deconvolutional layers, two components of object recognition and semantic

segmentation algorithms. The default network architecture comprises modified ResNets, origi-

nally trained on the ImageNet dataset [Deng et al., 2009]. DeepLabCut leverages deconvolutional

layers to up-sample visual information in order to generate spatial probability densities, rather

than delivering the classification layer output of the ResNet. Spatial probability densities indi-

cate the likelihood of body parts in a particular location. For it to be fine-tuned to a specific task,

the network’s weights are adjusted through iterative training on labelled data. During training,

the weights are readjusted so that annotated keypoints (body parts or other objects present in

the frame) are allocated high probabilities in detriment of unannotated keypoints. Through this

method, the network is able to acquire feature detectors specific to labelled keypoints [Mathis

et al., 2018].

Later, Mathis and his colleagues introduced structural changes to DeeperCut’s feature

detector, which had not been done in the original DLC implementation [Mathis et al., 2021].

Different types of backbone networks were added, MobileNets and EfficientNets, however for the

scope of this thesis only the original ResNet backbone was leveraged.

Social LEAP and LEAP

The deep learning-based framework SLEAP (Social SLEAP) is inspired by the earlier

method LEAP (LEAP Estimates Animal Pose), which focused on single animal pose estimation

[Pereira et al., 2019, Pereira et al., 2022]. The previous LEAP method consisted of a fully

convolutional neural network, that consisted of 15-layers of repeated convolutions and pooling.

SLEAP is able to employ several fully convolutional neural network configurations, the default

architecture type is a version UNet. Described as a simple encoder-decoder framework, it uses

repeated convolutional and pooling layers that produce a set of probability distributions for the

location of each body part in an image. To estimate the confidence maps of the keypoints’

locations during training, the model makes use of up-sampling or deconvolutional layers. Addi-
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tionally, SLEAP allows the use of fixed network architectures (ResNet, MobileNets and others)

as the backbone of the encoder of the model, connecting intermediate-layer activations with the

decoder portion, thus enabling transfer learning.

DeepPoseKit

DeepPoseKit’s model is a novel implementation of fully convolutional DenseNet or FC-

DenseNet [Jégou et al., 2017] inspired by stacked hourglass network [Newell et al., 2016], named

Stacked DenseNet. While also using the encoder-decoder design through convolutional layers

downsampling the input, this model adds intermediate supervision at the output of each network.

Intermediate supervision involves additional auxiliary loss functions at intermediate layers of

the network, aiming for these layers to learn more distinctive features to improve the overall

performance of the network [Graving et al., 2019].

B-KinD

Other approaches such as Behavioural Keypoint Discovery (B-KinD) [Sun et al., 2022]

utilise self-supervised learning to decrease the burden of labelling frames, inherent to all deep

learning methods. This method also uses an encoder-decoder setup. However, instead of fo-

cusing on image reconstruction, it investigates a reconstruction target around spatiotemporal

differences. In behavioural recordings, the background is usually static, and the objects of in-

terest are the only ones moving, e.g. a mouse moving around in an open field arena. Taking

advantage of the objects of interest providing the only source of movement, Sun et al. infer

location and movement through the spatiotemporal differences [Sun et al., 2022]. However,

occlusions in video recordings might pose a challenge for this method and similar.
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Deep Learning Methods

4.1 Machine Learning

The field of Machine Learning (ML) is a subfield of Artificial Intelligence. This method

utilizes mathematical models of data to facilitate computer learning without explicit instruc-

tion [IBM, 2020]. It involves the development of statistical models and algorithms that enable

computers to increase their performance related to a specific task through past experience. In

simpler terms, the computer learns and improves in a way that mimics human reasoning.

Machine learning can be categorised based on learning nature in supervised learning, un-

supervised learning and reinforcement learning [Azure, nd].

• In Supervised Learning, the models are designed to learn through examples. Models

are trained with labelled data, i.e. each input corresponding to a paired output. During

training, the model adjusts its weights until an appropriate mapping function is achieved.

The model is then used to classify data or predict outcomes. Neural networks, random for-

est and support vector machine (SVM) are among some of the methods used in supervised

learning.

• In Unsupervised Learning, the algorithm aims to discover patterns or similarities in

the input data without a human previous labelling or categorising them. The model has

the ability to categorise data according to its features, without a ‘correct’ answer for

comparison. It is used to association and clustering type problems. Some methods include

k-means clustering and k-nearest neighbour algorithms.

• Reinforcement learning algorithms learn through trial and error. The model is rein-

forced with a system of rewards and punishments in response to the model’s performance.

The model aims to maximize its rewards.

4.2 Deep Learning

Deep learning is a ML branch based on Artifical Neural Networks (ANN), which are algo-

rithms inspired by the structure of the brain’s neurons. Neural networks have existed for decades,

its recent resurgence is attributed to the era of Big Data, an era of exponential growth of in-

formation available worldwide, accompanied by advancements in hardware and software that
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meet the requirements of these algorithms, large amounts of data and lots of computational

power. Unlike traditional machine learning methods where feature extraction must be explicitly

programmed, deep learning algorithms can learn to extract features related to a particular task.

Tasks such as object detection, where manual feature extraction is challenging, have been

made easier by the automatic feature extraction process. As a result, deep learning has become

the state-of-the-art in several tasks, including pose estimation which falls under object detec-

tion, with exceptional results that are equivalent to or might occasionally outperform human

performance [He et al., 2015, Mathis et al., 2018]. We must first comprehend the concept of

artificial neural networks in order to fully comprehend what deep learning is.

An Artificial Neural Network (ANN) is a model developed to mimic the human brain.

Analogous to synapses propagating signals in the brain, ANNs are composed of units resembling

neurons, and connections resembling synapses. The fundamental building block of every neural

network is the Perceptron, a single neuron or unit [Rosenblatt, 1958]. A perceptron has internal

parameters: a set of weights, applied to its inputs and a bias, which is a constant value. The

perceptron takes M amount of inputs and linearly combines them with the respective weights,

adds the bias, and finally applies an activation layer to the weighted sum. Weights are employed

to give certain inputs greater importance, and the bias shifts the activation function. Weights are

used to give more importance to certain inputs for the final decision, and the bias value shifts the

activation function. The activation function introduces non-linearity to the decision boundary

and approaches the result to complex functions [Amini, 2023]. The scheme and calculation are

depicted in Figure 4.1 and Equation 4.1, respectively.
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Figure 4.1: Representation of a perceptron.

y = h(

n∑
i=0

xi ∗ wi + b) (4.1)

Perceptrons can be organised together and added in layers where, within the same layer,

all the units are connected to all the inputs. If we add several layers of units with connections

to each other, we create a multi-layer neural network capable of solving complex non-linearly

separable problems. Layers between the input and output are designated hidden layers, and the
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Figure 4.2: Representation of an Artificial Neural Network, with the input layer (yellow), the
hidden layers (green) and output layer (red).

number of hidden layers of a network defines its depth (Figure 4.2). The term deep learning

refers to the usage of deep artificial neural networks, which in turn are named after their large

number of hidden layers.

During training, a network’s performance is improved through backpropagation, a process

defined by an optimization algorithm steers the loss function to its minimum. The loss is

minimized using a gradient descent algorithm and propagated by moving backward through the

layers and their units. The gradient of the units is calculated, and their weights are updated.

There are several types of neural network, such as Recurrent Neural Networks, Feedforward

Neural Networks and and Convolutional Neural Network (CNN)s. The latter are primarily

employed for tasks involving images.

4.2.1 Convolutional Neural Network

Convolutional Neural Networks, also known as ConvNets or CNNs, are a deep learning

architecture used for multidimensional data, such as image recognition and classification prob-

lems. A CNN is able learn the features of an image and assign different importance to various

elements within the image, generating weights used for the final classification. They are able

to extract features through convolution and pooling operations [LeCun et al., 2015, Wu et al.,

2020].

A typical CNN architecture is structuted with three types of layers: convolutional, pooling

and fully connected layers.

The first layer, the convolutional layer, is composed of filters, or kernels, that ”slide”

over the input image and apply a convolution operation to generate a feature map. The kernels

may vary in size, but are usually smaller that the input image.

The pooling layer is applied in order to reduce the input image dimensionality. Similar

to convolutional operations, in pooling operations a filter is used to sweep the input image.

However, unlike convolutional layer’s filters, these do not contain weights. Instead, the filter

calculates either the maximum value (max pooling) or the average value (average pooling) from

the image portion in the receptive field, i.e. the region covered by the filter. Despite some
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information being lost in this operation, pooling layers are crucial because they help the CNN

reduce the complexity and increase training efficiency.

Multiple layers of convolutional and pooling layers can be repeated and mixed in various

combinations along the network. As the data passes through the layers, it becomes increasingly

complex which allows the detection of more complicated features. The final layer of a CNN is

a fully connected layer, where a unit is connected to all the units of the previous layer. The

features extracted in these past layers are used as inputs to make decisions such as classification.

Several CNN architectures have been developed and gained popularity in the scientific

community for image classification, including VGG [Simonyan and Zisserman, 2014], AlexNet

[Krizhevsky et al., 2012], ResNet [He et al., 2016] and MobileNet [Howard et al., 2017]. In

fact, these models have been trained on very large generic datasets, such as ImageNet [Deng

et al., 2009]. A common approach in deep computer consists of using these pre-trained CNNs

by reusing their weights for the task at hand, through transfer learning techniques. In fact, pose

estimation algorithms in neuroscience tipically use pre-trained CNNs, such as MobileNetV2s

[Sandler et al., 2018] , ResNets [He et al., 2016], DenseNets [Huang et al., 2017] or EfficientNets

[Tan and Le, 2019].

ResNet

ResNet, short for Residual Neural Network, is part of a family of deep CNNs developed

to address a common problem in very deep networks, the issue of vanishing gradients. The

underlying idea of ResNets consists of incorporating residual blocks that allow for the propa-

gation of gradients through the network. Instead of learning the whole mapping, the network

can learn residual functions that represent the difference between the convolutional layers’ input

and output [He et al., 2016]. There are different ResNet models composed of multiple residual

blocks, such as ResNet50, ResNet101 and ResNet152. For instance, ResNet50 has fifty layers

using these blocks.

4.3 Transfer Learning

Transfer learning is a machine learning technique where an already trained model is re-

purposed for a novel task. Its basic concept relies on the idea that the knowledge a model has

learned may be exploited in order to solve a new but related problem. This capability proves

useful in scenarios where data availability for training a model from scratch is limited, as well

as when we are confronted with a new task closely aligned with the original one where the

pre-trained model can be reused to new task with minimal modifications.

Transfer learning strives to transfer as much knowledge as possible from the prior task on

which the model was trained to the new task at hand. Depending on the problem and the data,

this knowledge might take numerous forms. For example, the animal pose estimation toolbox

DeepLabCut (Mathis et al., 2018) modified DeeperCut [Insafutdinov et al., 2016], which was

built with a ResNet backbone network but modified stride the by dilated convolutions [Chen
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et al., 2017] to retain a higher spatial resolution.

When compared to training a model from the ground up, transfer learning normally di-

minishes convergence time [Arac et al., 2019, He et al., 2019, Mathis et al., 2021] and increases

robustness [Mathis et al., 2021].
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Methodology

The methodology adopted to conduct this project is outlined in this chapter. Firstly, we

provide details of the dataset, including the animals used (Sections 5.1 and 5.3). In Section

5.2, we briefly describe the open field behaviour assay. Section 5.4 provides a description of

the experimental setup for dataset acquisition, the hardware and software used for this work.

The following Section 5.5, goes through the preprocessing necessary in all our recordings. The

subsequent Section 5.6 delineates the overall experimental settings employed in our analyses.

Lastly, Section 5.7 outlines our developed analysis systems, firstly describing the Bonsai RX

pipeline, followed by the training of the network model using the DeepLabCut toolbox.

5.1 Mice

Twelve MJD84.2 homozygous YAC transgenic mice [Cemal et al., 2002] and 4 wild-type

littermates were used to perform open field test, at 36 weeks of age (9 months), as demonstrated

in Table 5.1. Out of the twelve YAC MJD mice, half of them were treated with Phosphate-

buffered saline (PBS), while the remaining half underwent prior gene therapy treatment to assess

therapeutic efficacy. We decided to employ the term ”MJD Homo YAC mouse” or ”Homo YAC

mouse” when referring to the MJD84.2 homozygous YAC mice in this experiment.

Table 5.1: Number of animals divided by condition.

Mouse Group n

WT 4
Homo YAC PBS 6
Homo YAC Treated 6

Total 16

All animals were housed in a temperature-controlled room maintained on a 12 h light/12 h

dark cycle during the study. Food and water were provided ad libitum. The experiments involv-

ing mice were previously approved by the Responsible Organization for the Animals Welfare of

the Faculty of Medicine and Centre for Neuroscience and Cell Biology of the University of Coim-

bra, (ORBEA and FMUC/CNC, Coimbra, Portugal), and were carried out in accordance with

the European Community directive (86/609/ EEC) for the care and use of laboratory animals.

All efforts were made to minimize suffering.
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The wild-type mice acted as a healthy control group due to their unaltered genotype or

phenotype. Additionally, a separate control group consisted of YAC transgenic mice, which were

treated with Phosphate-buffered saline (PBS). Members of this control group received a placebo

treatment (PBS), which helped us assess the specific impact of the administrated therapy on

the experimental group of YAC transgenic mice.

5.2 Behavioural Test: Open Field Test

The mice performed a one time open field behavioural test at 36 weeks old, before they

were euthanized. It is one of the most basic tests to assess locomotor and exploratory activity

which consists of observing and documenting the animal’s movements in an open arena.

When placed in the centre of an open space, a mouse tends to head towards the walls on

the edge and then navigate its way around the arena, maintaining proximity to the wall. As

time progresses and the mouse familiarizes with the new surroundings, anxiety reduces, leading

the mouse to venture into the central parts of the arena before returning to the edges. This

characteristic behaviour is the foundation for investigating mice’s activity in the open field.

These experiments usually involve recording the observations so they can later be examined

for a number of activities, including mouse trajectory, time spent near the edges or the central

parts, time spent exploring or resting, as well as registering measures, e.g. distanced travelled

and velocity.

5.3 Dataset

The first step of this work was to collect images for video analysis and inference. The

dataset is composed of one video recording of open field test experiments per animal with a

duration of approximately 30 minutes. The videos were conducted at a single time point, where

mice were recorded during their active period, in an adapted dark room illuminated with red

light.

The same resolution, encoding and sharpness were used, however we captured some of the

videos with different frame rates. They were recorded in RGB with a resolution of 480x640

pixels.

5.4 Video Acquisition

5.4.1 Experimental Setup for Video Acquisition

Experiments were performed utilising a simple experimental setup that was assembled for

the purpose, as presented in Figure 5.1. Reutilising a damaged and inoperable Panlab 50 x

50 cm open field arena, we covered the box’s floor with white vinyl paper to create a more

noticeable contrast between the animal’s dark fur and the white background. A C920 PRO HD

Webcam connected to a Windows computer was placed approximately 60cm above the arena.
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The webcam was secured by a tripod stand, adjustable in height.

(a) (b)

Figure 5.1: (a) Setup for video acquisition of open field test and (b) Schematic of behaviour
testing acquisition.

5.4.2 Hardware Tools for Video Acquisition and Analysis

Video acquisition and analysis was performed in an ASUS TUF Dash F15 computer with

8GB of RAM, installed with Windows 11 Pro. The computer’s processor is an 11th generation

Intel(R) Core (TM) i7-11370H @ 3.30GHz 3.30 GHz. We also integrated the NVIDIA card

drivers, CUDA and TensorFlow. Due to its many dependencies that might have conflicted

with several versions of software installed for several non-related needs, we created a Conda

(Anaconda) virtual environment specific for DeepLabCut toolbox installation.

5.4.3 Software Tools for Video Acquisition

Recordings were conducted using the modular programming framework Bonsai RX, with

a simple custom script that allowed us to initiate the recording through keyboard pressing and

save the videos in compressed AVI file format.

After connecting the webcam to the computer, the node Camera Capture starts generating

a sequence of images from the camera. Applying a sequence of nodes, we were able to start

and enable the recording by pressing a specified computer key. Using the Video Writer node,

we could select a specific frame rate for out data collection, which would then be saved into a

compressed AVI file in the desired folder.

5.5 Preprocessing - Ffmpeg

FFmpeg is an open source software project designed to handle video and audio processing.

Through FFmpeg, we are able to encode, decode, transcode, mux, demux, filter, stream and

play most video and audio file types [FFmpeg, nd].
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We used FFmpeg to convert the videos from AVI format to MP4 to ensure no there was

quality compromise. The AVI to MP4 conversion was necessary due to a problem that emerged

when we first started to run the AVI format videos in the Bonsai framework and persisted

when running the video analysis using DLC functionalities. The problem consisted in the videos

stopping to run at seemingly random times, making it impossible to run the videos until the

end as these were somehow corrupted. After all the files were converted to MP4 format, we no

longer experienced any issues with the video analysis.

After a quick installation, we chose the specifications for the conversion in such a way that

the converted video suffered from minimal quality loss.

For the video files, we used the following command:

ffmpeg -i input.avi -c:v libx264 -preset slow -crf 19 –r 30 output.mp4

-c:v libx264: sets the video codec, we decided to keep the codec in the conversion

-preset slow: specifies the encoding preset as “slow”. The trade-off between encoding

speed and output file size is determined by the presets. Slower presets provide better compression

efficiency.

-crf 19: is the constant rate factor that controls the output video quality. In this case is

set to 19, normally ranges from 18 to 52. Lower values produce higher quality outputs but large

file sizes.

-r 30: sets the desired frame rate for the output video. This value might be influenced

by other factors such as the codecs or the input video properties. In our work, this value was

specified to maintain the frame rate of the video files, which resulted in all the videos keeping

their frame rates.

5.6 General Settings

In both Bonsai and DeepLabCut, we had to set several parameters to be used throughout

the experiments, we will call these types of parameters, the experimental settings. These settings

influence the metrics calculation and need to be adjusted according to each video properties and

experimental setup. Furthermore, these parameters can easily be adjusted to extrapolate the

customised code for different types of videos and experimental tests. They are as described

bellow:

• Video Frame Rate - This is a setting that depends on the video file properties and must

be adjusted accordingly.

• Conversion Ratio - During the assessment of velocity, distance traveled, and resting time of

mice in the open field test, the calculations were performed using pixel-based measurements

due to the camera’s inherent pixel-based image capturing capability. Consequently, it

became necessary to convert the outcomes of these metrics into our preferred measurement

systems for meaningful assessment and interpretation. Hence, a conversion ratio of 0.11
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was employed, taking into consideration the width of the arena in centimeters and its

width in pixels.

• Movement Threshold - For the scope of our problem, we had to define a value for deter-

mining whether the mouse was moving. The value set for this movement threshold was

2 cm/s, which for example translates in 0.2 cm per frame, considering a frame rate of 10

frames per second. To determine the equivalent value in pixels, we further need to divide

this value by the calculated Conversion Ratio.

• Time Bins and their duration - In the open field test and other behaviour assays, it is com-

mon practice to separate and categorize them in stages, through dividing the experiments

into specific time intervals, often referred to as time bins, with the purpose of grouping

certain events or observe patterns. In the open field test, the testing session is divided into

intervals of equal duration. As such, it is possible to analyse and compare the mouse’s

behaviour within each interval. Also, this interval division allows for the examination of

changes in activity levels and temporal patterns. Hence, we define if there will be time

bin analysis or if the parameters will be evaluated for the whole video and if time bins are

chosen, their duration. We decided to, if time bins were enabled, split the test into three

time bins of ten minutes each, as the testing sessions were of approximately 30 minutes.

5.7 Development of Video Tracking Analysis System

5.7.1 Protocol Optimization for Bonsai Tracking

Our first approach consisted in analysing all the videos through Bonsai RX 2.7.2 [Lopes

et al., 2015]. We leveraged an already existing script, kindly provided by a fellow researcher,

Pedro Costa (Peça Lab, CNC-UC), with minimal changes adapted to our problem’s needs. With

the Bonsai framework, we were tracking the one moving object in the camera’s field of view.

To create the data processing timeline, Bonsai’s node based framework was used, connecting

different nodes to define the flow of the data, and the changes applied at each step.

For this purpose, the videos were processed through a sequence of nodes, including pre-

processing nodes (such as applying a gray scale filter). Then a node was applied to extract

the binary region properties (in our case, the mouse body) and a subsequent node was used to

extract the centroid properties that were then used to calculate the desired parameters. Python

Transform nodes are used to transform the elements that arrive sequentially, hence, in our work,

were used to calculate the distance travelled, average instant speed and time spent still (or

resting time).

The resulting output from the nodes was then aggregated, also utilising Python Transform

nodes, to be then passed through a Text Writer node, in order to be organized and stored into

a text file containing the information calculated in the sequence.
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5.7.2 Protocol Optimization for DeepLabCut Tracking

Prior to choosing this tool for analysis, we followed the extensive protocol and pipeline

made available by the authors in the tool’s GitHub repository and website [Nath* et al., 2019].

This step allowed us to familiarize with the tool and rapidly attest its utility for our purpose.

The following step in our approach was to construct a pipeline adequate for our domain. The

subsequent sections provide a more thorough explanation of the labelling and DeepLabCut

parameters.

In order to fine-tune the CNN’s parameters, we selected 6 videos of 6 individuals from the

dataset, 2 of each experiment group. The remaining videos were used for analysis. No image

pre-processing was applied to the videos or images, as DLC is able to receive these without

pre-treatment. Lastly, DLC output analysis was performed using custom Python scripts.

5.7.2.1 Pipeline

The implemented DLC pipeline navigates the processes shown in Figure 5.2, beginning with

the video frames being extracted from the input videos and manually labelling selected frames

as source dataset. Then, several DeepLabCut functions were exploited to train and analyse the

neural network, to generate the output from a video. The final output data consisted of the

location of tracked body parts in each image (x and y coordinates) and the degree of confidence

of the trained network’s identification. We were also able to extract a labelled video where the

featured body parts are graphically represented.
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Train & Test error 
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Figure 5.2: Adopted Pipeline for DeepLabCut Network Training and Video Analysis.

The first stage in the entire process, was to select a portion of the video files and extract

video frames to create the training dataset. We decided to select six videos, which represent six
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individuals, two from each group, i.e. two transgenic animals, two healthy control animals and

two treated transgenic animals. The frames were extracted with k-means clustering function of

the toolbox. Through k-means clustering method, n frames are assigned to K clusters. Frames

from different clusters are then selected, assuring that the frames represent different postures.

Hence, our training dataset was composed of 260 images, with 60 images from one of the video

files and 40 from each of the remaining five.

The next step consisted of manually labelling the frames. This task was carried out using

the Python Napari plugin package for keypoint annotation with DeepLabCut. This stage also

entailed the visual verification of the labelling output, with the appropriate DLC function.

The third step was creating the training dataset that was then fed into DLC’s training

function. For the totality of the trained models, the images in the dataset were randomly

divided into train and test datasets, with sizes of 70% and 30%, respectively. Six training

datasets were created, in which both training and testing images were shuffled to introduce

further randomness and diversity in the learning process. After network training, the output

was presented in a form of so called “snapshots” of the iterations’ checkpoints, containing the

weights of the trained CNN.

We then performed the network’s evaluation, through examining the train and test error,

with and without p-cutoff. The train and test errors were generated for every saved snapshot

from the previous step. This is measure was helpful to draw conclusions on the CNNs error

variation throughout the training process.

The video analysis and creation of an annotated video constituted the fifth step. Here,

we chose the snapshot with better results, i.e., with smaller train and test errors, and used the

weighted CNN from that snapshot to analyse an entire video. A file with the x, y locations and

probability of each tracked point was created. With this file, we were able to build an annotated

video enabling visual analysis.

The final assignment of the pipeline involved the validation of the labelling accuracy of

the CNN, comparing unseen labelled images and the DLC predictions. In this process, we were

validating the final output produced in the previous step.

We were able to configure the parameters of the described pipeline through the configuration

files made available upon the project creation, using the DLC toolbox. The sections bellow

provide more information on the set of parameters and their corresponding values.

5.7.2.2 DeepLabCut Parameters

In this Section, we go through the fundamental parameters for DLC configuration. Nat-

urally, certain factors have greater influence on the outcomes than others. Finding a good set

of values for these parameters that performs best in the task at hand is the challenge of most

CNNs. We chose to test different values for only a small number of parameters in the con-

figuration files, designated parameters of interest in [Nath* et al., 2019]. In addition to the

recommended parameters of interest, we decided to further test the value for batch size, due to
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the substantial impact of this parameter in CNNs.

Network Architecture

The available network configuration allows us to select between alternative configurations.

The initial weights used for training belong to the variant of ResNet50 model from DeepLab-

Cut, previously trained on the popular dataset for image recognition, ImageNet. The pre-trained

ResNet50 network was selected as it has proven to be sufficient for studies alike [Lang et al.,

2020], with deeper ResNet networks, with 101 and 152 layers, showing merely subtle decreases

in the training and testing errors [Mathis et al., 2020]. Available MobileNets have been ad-

vised when a GPU is unavailable or a GPU with little memory. EfficientNets require careful

handling, such as parameter tuning, and the Resnets have been benchmarked for these types of

studies [Mathis et al., 2021]. The parameter init weights (a file containing the specific network

weights and layout) must be set. We decided to use the pre-trained ResNet50 supported by the

aforementioned literature findings.

Batch Size

The batch size is a hyperparameter that specifies the number of samples that must be anal-

ysed before the internal model parameters are updated. The default batch size is 1, Stochastic

Gradient Descent. As demonstrated in [Mathis and Warren, 2018], batch processing should

improve inference speed. Hence, we decided to test batch sizes of 1, 2, 4, 8 and 16, in order

to benchmark the conclusion made by Mathis and his colleagues. However due to hardware

constraints, we were unable to train networks with batch sizes beyond a size of 4. As a result

and after training the viable batch sizes, we chose a batch size of 2 (demonstrated in Appendix

Section A.1).

Global Scale

Before being processed by the CNN, every image in the dataset is re-scaled by a scaling

factor, global scale. The values assigned to the parameter global scale range between 0 and 1,

with 0.8 as the default value. Since the image is being re-scaled, its resolution is being re-

defined, and higher resolution images are slower to analyse. This parameter aims to keep the

CNN fast while still maintaining a reasonably high image resolution, so that the performance

of the network is uncompromised. As such, we tried to maximize this value to obtain the best

results possible. Considering we are using standard definition videos (640x480 pixels), we tested

the values of 0.8 and of 0.9 and subsequently analysed the result, as depicted in Appendix

Section A.2.

Data Augmentation

Data augmentation is used to, as the name implies, augmenting the dataset when obtaining

more data is not possible. With this process, we are artificially expanding the training set

by varying the images’ scale, through cropping or mirroring them. Several methods for data
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augmentation are able to be implemented in the DeepLabCut pipeline.

The default augmentator is imgaug, which we chose to keep because it has previously shown

good results. Imgaug randomly varies the scale of images, and also randomly mirrors and crops

them. The resolution of the images fed to the CNN is defined by the global scale parameter

above. However, on each iteration, the actual scale used on the images is changed according

to parameters scale jitter lo and scale jitter up. The training function scales the images by the

factor global scale randomly modified by a factor between the values of the two parameters.

The default values for these parameters are 0.5 and 1.25 respectively.

To configure the mirroring behaviour, we have parameter mirror, which is a boolean pa-

rameter that allows DeepLabCut to invert (or not) the symmetry of images in the vertical axes.

In our case, the focus of the tracking is a mouse, that itself is symmetric around the vertical

axis. Hence, in theory, we should set this parameter to TRUE. However, we need to remember

that the mouse is moving during the video in all directions. So, we already have a high level of

symmetry of the mouse included in the training sets.

We also identified left-side and right-side features (ears, hips and side body) in our videos.

For this reason, we wanted to avoid interference in the results that may be introduced by this

process. We then set this parameter to FALSE.

The boolean parameter crop defines the application of a cropping mechanism applied during

training, and the associated crop ratio parameter defines the size ratio of cropped images. We

are able to define the boundaries of the cropping in the configuration file with the parameters

leftwidth, rightwidth, bottomheight, topheight. The parameter minsize determines the minimum

size of the cropped image, excluding from training all smaller images. The images are randomly

cropped within these boundaries.

The max input size parameter ensures that images larger that this value are not used for

training, which prevents training from crashing with out of memory exception for very large

images.

In our trials, thoroughly explained in Appendix Section A.3, we tested the network with

parameter cropping for both TRUE and FALSE values. We determined that it did not have a

beneficial effect on the results, and therefore set this parameter to FALSE.

Iterations

The parameter display iters is used to exhibit the training iterations and respective loss,

throughout the training process. It is a helpful tool to assess whether the training is progressing

without errors and at a normal rate. At first, we set this parameter to 100, allowing us to inspect

the training iterations. It was then changed to 1000 for the training process of all the videos,

since we could trust all was running smoothly.

The network’s weights are stored every N iteration, with the N value being set in the

save iters parameter. The parameter sets the periodicity with which the snapshots (containing
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the weights) are stored in a separate file. This allows us to resume training from each saved

snapshot. Unfortunately, these snapshots are of considerable size (> 80 MB) meaning saving

too many might pose a drawback. We altered this parameter for different training sessions.

Ultimately, as we decided to train every CNN for around 200 000 iterations, we set this value

to 50 000.

Associated with this parameter, is the max snapshots to keep, existing to ensure that not

all the saved snapshots are kept, to tackle the possible lack of space problem. Although not the

case for the totality of the cases, this parameter was set to 4, establishing that only the last 4

snapshots would be stored, independent of the iterations value when the training was stopped.

Hence, for the most of our cases, when running 200 000 iterations we had 4 snapshots for

evaluation and comparison analysis, in order to select the best one.

Distance Threshold

The feature detectors consider all locations that fall within this pixel distance threshold

as positive training samples. Setting this value too high, would cause many errors to be fed to

the detector phase. Similarly, setting a too low value to the parameter, would mean too few

images being accepted. Based on the discussion presented in [Mathis et al., 2018], we decided

to subscribe to the default value of 17 pixels.

Likelihood Threshold - p-cutoff

DeepLabCut’s output data consists of the coordinates estimated by the network for the

location of the labelled body parts accompanied by its confidence of that estimate. This value

is denominated the likelihood of a point corresponding to that assigned body part, ranging from

0 to 1.

During training, the likelihood value is compared to the p-cutoff parameter. P-cutoff

determines the threshold of which the likelihood will be considered, aiding in distinguishing

uncertain body parts from likely body parts. As a default, p-cutoff is set to 0.1, which results

in all labels with a value lower than 0.1 being discarded as good predictions (displayed as circles

in a visual output), whilst labels with a likelihood equal to or higher than 0.1 being taken into

consideration (visually displayed as dots). Assigning a p-cutoff to the network leads to a CNN

rejecting the uncertain body parts when forming a labelled video.

Within the scientific community, there seems to have yet been established an acceptable

error value. Typically, a commonly adopted criterion is an error rate of 5% or 0.05, which

translates to a likelihood of 0.95 in our specific context. However, the default value set by

DeepLabCut is 0.1, a drastically distant value from 0.95 for this criterion. Given the absence

of consensus and substantial disparities observed among distinct cases, it became imperative to

compare results obtained using different likelihood values. As our problem does not pose as an

excessively challenging problem for the network and we still intend to obtain reliable results, we

decided to test p-cutoff value of 0.8. In comparison to the default value (0.1), we found that
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the network performed slightly better, as demonstrated in Appendix Section A.4.

5.7.2.3 Frame Labelling

As a result of transfer learning, this tool requires little labelled data. Taking advantage

of that, we decided to work with a small dataset of 260 images. Using the Napari plugin for

DeepLabCut, we annotated eleven body parts across all images: nose, left and right ear, left side,

right side and centre of the body, left and right hip, and tail base, centre and tip, as depicted in

Figure 5.3. The choice for these particular body parts was made in light of the behaviour test

we decided to address, the open field test, and the surrounding conditions. We are filming the

arena from above which entails impeded visibility of the mouse’s paws, a helpful measure of gait

posture. Therefore, through labelling the animal’s hips and body’s sides and centre, we intend

to extract similar or equally significant measurements for gait analysis.

When occluded in the image, body parts were not annotated but were instead left missing,

e.g. when the animal was grooming and facing down, the nose keypoint was left unannotated.

Missing labels were reported to be nearly insignificant in corrupting the accuracy of keypoint

prediction of the network [Mathis et al., 2020].

Figure 5.3: Schematic Representation of Mouse Labelled Points.

5.7.2.4 Human Labelling Error

We also investigated the impact of human labelling on introducing errors in the process. To

assess this, we labelled the same set of frames twice. Subsequently, we calculated the Euclidean

distance for each pair of points. This enabled us to calculate the mean of the Euclidean distances,

which we can refer to as the Mean Average Euclidean Error. We chose to execute this error

evaluation as this is same evaluation method the DeepLabCut toolbox utilises. This analysis
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helped us estimate the amount of error that human variability may introduce into the network

training procedure.

This was accomplished by having a colleague label the same set of frames. For this eval-

uation, we decided to label twice 120 frames from 3 separate videos. Table 5.2 displays the

computed values for the x and y axis differences and the mean average Euclidean error. This

establishes a lower boundary for what a CNN can be expected to achieve in order to match

human-level accuracy (4.49 pixels).

Table 5.2: Human Labelling Average Error in pixels.

pixels

∆X 2.94
∆Y 2.79
MAE 4.49

The Mean Average Euclidean Error (MAE) of our selected snapshot, further explained in

Appendix A, had a training error with p-cutoff of 1.65 pixels and a testing error of 2.94 pixels.

These error values provide confidence in the predictions of our trained model, as we believe it

has achieved a performance comparable to human standards.

5.7.2.5 Validation

In order to validate our selected parameters’ values we had to take several factors into

consideration. Firstly, to evaluate our trained network and before using it in a whole unlabelled

video, we decided to perform an evaluation feeding a novel set of labelled yet unseen images to

the trained model. In such a way, we were able to investigate how the network would behave

before unseen data, while still having the ability to inspect the individual frame and obtaining

the euclidean error for this dataset.

The output of each analysed video is the x and y coordinates of each feature accompanied

by the likelihood of the label, for each frame. Thus, we can look at the likelihood of the network’s

predictions as a validation method. We can analyse the average likelihood of each feature and

consider that all values above our training likelihood of 0.8 are a success. If a feature’s average

likelihood has a value lower than that, we can remove that feature from analysis. The average

likelihood of all the features within the video can also be calculated, enabling the extrapolation

of the videos’ global average likelihood. We used this method in order to confirm our results

were extracted with good likelihood values, instilling confidence to proceed with these results

for further investigation.
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Results and Discussion

This dissertation was conducted with the main objective of developing a functional open

source pipeline. Our intention was for it to be used as a new strategy for mouse behaviour

analysis that takes part in experimental studies of MJD. Two open source approaches were

tested and evaluated for their performance as well as compared for their benefits regarding our

particular usage, Bonsai RX and DeepLabCut.

This chapter presents all the results obtained within the scope of this thesis, accompanied

by their analysis and discussion. On Section 6.1, we examine the results of using our Bonsai

RX based workflow for the desired measurements’ extraction. In Section 6.2, we then present

the results obtained through our DeepLabCut based pipeline, including our parameter selection

during CNN training and fine tuning. Using a CNN allowed us to perform a more in-depth

analysis on our recorded animals, as presented in Section 6.3. Finally, we analyse our outcomes

and discuss them as a way to provide a global evaluation of this entire methodology.

6.1 Bonsai Tracking

As part of our research, we conducted an analysis of the open field test using the Bonsai

system. The primary aim of this analysis was to assess the suitability of this method for our

research objectives. In doing so, we extracted three critical measures related to locomotor and

exploratory activity: total traveled distance, mean velocity and resting time.

A comprehensive assessment of all recorded open field experiments was conducted. The

videos were batch analysed via the custom Bonsai script, enabling the extraction of valuable

insights from mice’s locomotor and exploratory behaviour, as illustrated in Figure 6.1a. Con-

sequently, TXT files were generated, containing the metrics of interest measured during the

recorded test. As explained in further detail in Chapter 5, the videos were processed through

a sequence of nodes, displayed in Figure 6.1c, and could be monitored through each node’s

Visualizer, as illustrated in Figure 6.1b.

As previously stated in the Methods chapter, in this manuscript, we will use the term

”MJD Homo YAC mouse” or solely ”Homo YAC” to describe the homozygous YAC MJD84.2

line that was used.

In Figure 6.2 we present our outcomes. Wild-type mice travelled longer distances when
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Figure 6.1: Workflow diagram for first strategy, Bonsai RX. (a) Scheme of data analysis using
Bonsai, (b) Different stages of video processing on mice identification and arena segmentation
in the open field video and (c) Snippet of Bonsai node-like script visualization.

compared to both Homo YAC PBS and Homo YAC Treated mice, respectively. In fact, a

statistically significant difference was detected in the distance travelled between WT and Homo

YAC PBS groups (11646.7 ± 3315.6 cm vs. 5015.1 ± 1157.9 cm). The Homo YAC Treated group

travelled a mean of 6820.4 ± 4001.7 cm. Regarding the average speed of the mice throughout

the open field session, no pronounced variations were observed amongst the three mice groups.

Their average velocities were 6.87 ± 0.73, 5.91 ± 0.64, 6,32 ± 0.83 cm/s for wild-type, Homo

YAC PBS mice and Homo YAC Treated mice, respectively. Although the average resting time

was smaller in wild-type mice than in Homo YAC PBS and Homo YAC Treated groups (6.04 ±
3.02 vs 12.82 ± 2.05 vs 12.70 ± 5.17 min), this difference was not statistically significant.

These results show that wild-types travelled longer distances, the Homo YAC PBS mice

performed worse, expectedly due to the recognized gait impairments, and Homo YAC Treated

mice had a slightly, but not significant, better performance, which we may attribute to a positive

impact of the treatment.
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Figure 6.2: Open field test performance measured using Bonsai. Comparison of pheno-
typic features in wild-type, Homo YAC PBS and Homo YAC Treated groups. Locomotor activity
was analysed by measuring: (a) total distance travelled (cm), (b) average velocity (cm/s) and
(c) resting time (min). The data are presented as the mean ± SD. Statistical analysis was
performed using the ANOVA test, *p<0.05.

Categorising the animals by gender and conducting gender-specific analysis revealed a

discrepancy. Male subjects exhibited greater mobility compared to their female counterparts

(WT - males: 14933 ± 84 cm vs. females: 8360 ± 613 cm, Homo YAC PBS - males: 5504 ±
1007 cm vs. females: 4525 ± 1080 cm and Homo YAC Treated - males: 9404 ± 4069 cm vs.

females: 4236 ± 1453 cm) as detailed in Appendix Figure B.1. Additionally, a focused statistical

analysis aimed at comparing only the wild-type and Homo YAC PBS mice revealed significant

differences in distance travelled and resting time within our experimental dataset. We applied

the Unpaired t-test for this comparison, yielding the results presented in Appendix Figure B.2.

6.2 DeepLabCut Tracking

6.2.1 Parameter Selection

After conducting comprehensive testing and analysis, we decided on the most suitable

hyperparameters for training our CNN, which led to the best results for our task. In Appendix

A, we provide the reasoning for the values used from this point onward. The chosen parameters,

outlined in Table 6.1, were as follows: batch size of 2, p-cutoff of 0.8, cropping parameter set to

FALSE, and global scale set to 0.8. These specific values showed superior performance, offering

a good balance between efficiency and accuracy in our image processing tasks. Our evaluations

proved the efficacy of this parameter configuration, which we integrated into our CNN model

for our research.
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Table 6.1: Selected Values for DeepLabCut Hyperparameter Comparison.

Hyperparameters Batch Size P-Cutoff Crop Global Scale

Values 2 0.8 False 0.8

6.2.2 Workflow and Results

While the Bonsai framework had previously conveyed satisfactory results, we opted to also

explore the DeepLabCut tool hoping for a more comprehensive and precise tracking of mice

during open field tests. Given this tool was specifically designed for estimating animal posture

and tracking specific points, we were confident this pipeline would yield a promising choice for

our research requirements.
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Figure 6.3: Workflow diagram for second strategy, DeepLabCut. (a) Scheme of data analysis
using DeepLabCut, (b) DeepLabCut’s point estimation predictions and (c) Trajectory plot of
all keypoints a YAC female mouse during an open field test.

A concise summary of our extensively optimized pipeline, which encapsulates the key steps

we undertook, is presented in Figure 6.3a. Our initial steps involved the extraction of video

frames from the input videos, and manually labelling the points of interest to create our training

dataset. Subsequently, DeepLabCut’s functions were applied to train and validate the neural

network with the carefully selected parameters. Once the network was effectively trained, it was

applied to all our video dataset analysis, which culminated in an output, for each video, of body

part coordinates and their respective likelihood. A more detailed explanation of these processes
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is provided in Section 5.7.2.

In addition to the output file containing the coordinates and likelihood of every frame

for each video, we also generated additional outputs, as a labelled video which enabled us to

visualize the tracked keypoints and trajectory plots (Figures 6.3b and 6.3c). To assess the

animal’s performance, we employed custom scripts (available in our repository [Angeja, 2023])

to compute identical metrics as those derived from the Bonsai experiment. These encompass the

animal’s total distance travelled, average velocity and resting time throughout the test period.
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Figure 6.4: Open field test performance measured using DeepLabCut of bodycentre
tracked point. Comparison of phenotypic features in wild-type, Homo YAC PBS and Homo
YAC Treated groups. Locomotor activity was analysed by measuring: (a) total distance travelled
in cm, (b) average velocity in cm/s and (c) resting time in min. The data are presented as the
mean ± SD. Statistical analysis was performed using the ANOVA test, *p<0.05.

Analogous to the results obtained through Bonsai analysis, Figure 6.4 presents three graph-

ical representations illustrating the values derived from DeepLabCut’s outputs and their sub-

sequent processing using our script. Bonsai exclusively extracts the mouse’s centre of mass.

Hence, for a more accurate comparison between the two approaches, we decided to use the body

centre keypoint predictions to formulate these graphs.

Wild-type mice exhibited significantly greater travel distances than both transgenic groups.

Specifically, the Homo YAC PBS group covered an average distance of 5570.1 ± 1342.5 cm, while

wild-type mice traveled a 12872.6 ± 3591.4 cm and Homo YAC Treated mice covered 7581.8

± 4195 cm. There were no substantial variations in average velocity across the three groups

(wild-type: 6.58 ± 1.45 cm/s, Homo YAC PBS: 5.41 ± 0.55 cm/s, Homo YAC Treated: 5.94 ±
0.41 cm/s). It is worth noting that wild-type mice had a shorter average resting time (9.80 ±
4.25 min) compared to the Homo YAC PBS (15.03 ± 2.98 min) and Homo YAC Treated mice

(14.26 ± 4.98 min), although this difference did not reach statistical significance.

When we segmented the groups based on gender and conducted separate analyses for males

and females, a notable gender-based disparity became evident. Males exhibited overall higher
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levels of locomotion in comparison to females, as detailed in Appendix Figure C.1.

Furthermore, when we exclusively compared the wild-type and Homo YAC PBS mice,

we identified disparities between these two groups concerning movement distance within our

experimental dataset. Unpaired t-test statistical test was used for this analysis, leading to the

outcomes depicted in Figure 6.8, in the following Section.

6.3 Leveraging Keypoint Tracking in DeepLabCut

In order to fully capitalize on the coordinates’ output generated by DeepLabCut, we decided

to undertake a comprehensive examination of the body parts individually. In a first approach,

we proceeded to analyse two mice, a wild-type and a Homo YAC PBS mouse, hoping to identify

clear differences in body part tracking. We then repeated our measurement analysis for the

complete test duration for the relevant body parts for wild-type and Homo YAC PBS mice

groups.

Despite having labelled and tracked a total of eleven body parts with our DeepLabCut

pipeline, here we focus on three (nose, body centre and tail centre) that we found most interesting

for our purpose. The nose was selected due to mice’s exploratory nature. As we well know, mice

often use their noses to explore and be aware of their surroundings. Hence, we decided to further

inspect this body part, expecting to see a slightly bigger travel distance for it, at least in the

wild-type animal who should be curious and exploratory. In order to have a central measure

for the mouse’s trajectory and behaviour, we decided to select the body centre point. Finally,

the tail centre was chosen in an effort to investigate whether the tail would behave differently

from the rest of the body, namely from the body centre point. Some conditions might provoke

shaking in some animals, which might be reflected in the tail. As such, we decided to investigate

if the tail might be reflective of the condition present in the YAC mouse model. Tail centre

was selected in detriment of tail tip due the difficulty in tail tip tracking. Tails are inherently

difficult to track due to being very slim and therefore susceptible to being confused with the

background. Our behaviour open field test was conducted during mice’s active cycle, hence it

was filmed in a dark room using a red light. Adding to the camera’s not optimal resolution, this

difficulty is enhanced because of harsh lighting. These constraints led us to prefer using the tail

centre point rather than the tail tip.

We have decided to employ this form of representation to illustrate the behaviour of two

mice, a wild-type and a Homo YAC PBS injected. In doing so, we have separated the data

by body part and divided it into 10-minute intervals. This approach was adopted as we con-

sider it yields potential value in investigations concerning a comprehensive examination of their

exploratory behaviour throughout the test.

6.3.1 Wild-type Animal

Represented in the trajectory plots of Figure 6.5 is a wild-type animal that spent 30 minutes

in an open field arena. As it is typical for wild-type mice, it presents a heightened exploratory
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Figure 6.5: Point tracking trajectory of three tracked body parts of a wild-type mouse. Tra-
jectories of nose, body centre, and tail centre, from top to bottom, respectively.

activity, exploring and occupying nearly every space of the arena for the duration of the test. The

plots in Appendix Figure D.1 represent the average speed, resting time and distance travelled

divided per body part in the open field test for a wild-type mouse for the time bins duration.

Dividing the behaviour test into three time bins of 10 minutes each gives us the opportunity to

analyse how each body part behaved throughout the test duration.

6.3.2 Homo YAC PBS Animal

We repeated the procedure with the DeepLabCut output file of a YAC female mouse treated

with PBS. The results for the trajectory plots are as shown in Figure 6.6. This particular animal

was very affected in its movements due to the progression of its condition. It exhibits little

movement in the centre of the arena, which might be caused by limb impairments as wells as

43



6. Results and Discussion

Figure 6.6: Point tracking trajectory of three tracked body parts of a Homo YAC PBS mouse.
Trajectories of nose, body centre, and tail centre, from top to bottom, respectively.

anxiety. The graphs presented in Appendix Figure D.2 illustrate the traveled distance, mean

speed and resting time for each body part during an open field test conducted on a Homo YAC

PBS mouse.

As anticipated, the Homo YAC PBS mouse displayed a notable reduction in both distance

traveled and average velocity compared to the wild-type mouse, while exhibiting higher resting

time values. Despite the lower average velocity for individual body parts in the Homo YAC PBS

mouse, with most values around 4 cm/s as opposed to approximately 5 cm/s in the wild-type

mouse, the overall average speed for all tracked points remained relatively consistent, similar to

the observed in Appendix Figure D.1 for the wild-type mouse.
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6.3.3 Body Parts Keypoint Tracking

As previously explained, we thought it would be insightful to explore the differences in

activity between nose, body centre and tail centre. Our results are revealed in Figures 6.7, 6.8

and 6.9. In Appendix D we summarized the results pertaining to these keypoints in Tables D.1

and D.2. Interestingly, both the WT and Homo PBS YAC groups exhibit similar patterns of

behaviour across all three body parts.

In the analysis of Figure 6.7 it is visible that wild-type mice exhibited greater distances

covered by their nose (18 488 ± 4570 cm) than the Homo YAC PBS mice group (9035 ± 1554

cm). The average velocities were recorded as 8.98 ± 2.66 cm/s for wild-type mice and as 5.84 ±
0.52 cm/s for Homo YAC PBS mice. Regarding resting times, wild-type mice displayed a mean

value of 3.42 ± 1.86 min, while Homo YAC PBS mice showed resting times of 5.84 ± 1.72 min.

Figure 6.7: Open field test performance of nose point across Wild-Type and Homo
YAC PBS using DeepLabCut. Comparison of phenotypic features in wild-type and Homo
YAC PBS. Locomotor activity was analysed by measuring: (a) total distance travelled in cm,
(b) average velocity in cm/s and (c) resting time in min. The data are presented as the mean ±
SD. Statistical analysis was performed using the unpaired Student’s t-test, *p<0.05, **p<0.01.

Figure 6.8 presents the measurements for the body centre keypoint, that we have discussed

in Section 6.2. For the purpose of the present section, our focus was on isolating and comparing

the wild-type group and the Homo YAC PBS group. The wild-types traveled a mean distance

of 12972 ± 3591 cm as opposed to 9035 ± 1554 cm traveled by the Homo YAC PBS. As for the

mean velocity, the wild-type and the Homo YAC PBS group showed values of 6.58 ± 1.46 cm/s

and 5.41 ± 0.54 cm/s, respectively. Lastly, the wild-types exhibited a resting time of 9.8 ± 4.26

min, while the Homo YAC PBS reported 15.02 ± 2.99 min for the body centre.
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Figure 6.8: Open field test performance of body centre point across Wild-Type and
Homo YAC PBS using DeepLabCut. Comparison of phenotypic features in wild-type and
Homo YAC PBS. Locomotor activity was analysed by measuring: (a) total distance travelled
(cm), (b) average velocity (cm/s) and (c) resting time (min). The data are presented as the
mean ± SD. Statistical analysis was performed using unpaired Student’s t-test, **p<0.01.

In Figure 6.9, the wild-type group traveled an average distance of 18 921 ± 5118 cm,

whereas the Homo YAC PBS group covered a distance of 8238 ± 1625 cm. In terms of mean

velocity, the wild-type group exhibited a value of 9.54 ± 2.64 cm/s, while the Homo YAC PBS

group had a mean velocity of 7.41 ± 0.62 cm/s. Finally, the resting time was 8.91 ± 3.59 min

and 12.63 ± 2.19 min for the wild-type and the Homo YAC PBS groups, respectively.

Figure 6.9: Open field test performance of tail centre point across Wild-Type and
Homo YAC PBS using DeepLabCut. Comparison of phenotypic features in Wild-type and
Homo YAC PBS. Locomotor activity was analysed by measuring: (a) total distance travelled
in cm, (b) average velocity in cm/s and (c) resting time in min. The data are presented as the
mean ± SD. Statistical analysis was performed using the unpaired Student’s t-test, **p<0.01.
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6.4 Final Discussion

To conclude this chapter, we examine and compare our findings from the two employed

strategies. Moreover, we believe it is crucial to delve into the validity of our results in comparison

to those reported in the existing literature, as well as some of the limitations we considered this

work has encountered.

Comparing the two strategies

Our analyses yielded congruent results between the Bonsai and DeepLabCut tracking meth-

ods. Following this dissertation, the question arises regarding which tool is better suited for our

purposes. Both tools have their distinct advantages and disadvantages. The choice between

them largely depends on the analysis’ specific objectives.

Bonsai RX may be the preferred option when the main focus revolves around obtaining

overall measurements (such as distance travelled, velocity and resting time) pertaining to the

entire mouse’s behaviour without the need for specific body part tracking.

Conversely, DeepLabCut is particularly valuable when a more detailed analysis is required.

An additional drawback of DeepLabCut, and of most pose estimation algorithms, is they typi-

cally require high-quality recordings to effectively capture the mouse’s body parts and therefore

poses. Our behaviour assessment took place in a dark room illuminated with red light, which un-

deniably had an impact on the quality of our video recordings. This, in turn, may have affected

our model estimations. Concerning both approaches, a significant advantage is the flexibility to

adapt the measures and customize novel ones to be extracted, using the existing workflows.

In summary, these tools facilitate the investigator’s work and provide greater control over

their experiments, which ultimately leads to more informed decision-making.

Benchmarking against existing literature

Locomotor and exploratory activity is commonly assessed through an open field behaviour

test. However, the conditions and criterion employed in the analysis of such activity vary

considerably across different studies. Some commercially available systems divide the arena into

quadrants using photobeams and count the number of times the mouse breaks them (e.g. San

Diego Instruments). This approach provides a qualitative analysis representing the total distance

covered by the mouse [Tsimpanouli et al., 2022, Bushart et al., 2021, do Carmo Costa et al.,

2013]. In contrast, other apparatuses operate through video tracking and provide quantitative

measurements of distances and velocities. Another variable factor is the duration of the test,

with some researchers opting for a 30-minute test [Tsimpanouli et al., 2022, Bushart et al., 2021,

do Carmo Costa et al., 2013], while others prefer 1, 5 or 10 minutes [Li et al., 2018, Lin et al.,

2022, Wu et al., 2022, Rajamani et al., 2017]. Furthermore, the time points chosen for behaviour

assessments vary widely among studies, as highlighted in our meta-analysis research [Silva*
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et al., 2023]. These discrepancies in testing protocols contribute to challenges in comparing our

research findings.

Consequently, we found it challenging to identify articles that conducted the open field

test on YAC transgenic mice under similar conditions for meaningful comparisons. Notably,

the measurement of mouse distance travelled was particularly difficult due to prevalence of

qualitative analyses in articles employing 30-minute tests, such as the number of beam breaks.

Only a few articles provided information on mouse speed and we found none that quantified

resting time. To calculate locomotor activity, it is essential to select a movement threshold,

which represents the minimum amount of movement required for the animal the be considered

”in motion”. As previously mentioned, we adopted a specific movement threshold of 2cm/s. The

threshold value is seldom shared in the existing literature. Instances with movement below this

threshold were excluded from velocity calculations, and distance travelled was not accumulated.

Accordingly, resting time was added when the mouse’s movement fell bellow this threshold.

To ensure that we were quantifying movement consistently and capturing slower movements

as well, we purposefully decided on the value of 2cm/s. However, it is crucial to remember this

value deeply influences our results and any alteration to this threshold would lead to modifica-

tions in our quantified result findings.

Despite a lack of consensus regarding the specific assessment criteria for the locomotor func-

tion tests, a recurring conclusion emerges: YAC transgenic mice manifest diminished locomotor

and exploratory activity at an early stage when compared to wild-type littermates performance

[Tsimpanouli et al., 2022, Bushart et al., 2021, do Carmo Costa et al., 2013, Li et al., 2018, Lin

et al., 2022, Wu et al., 2022, Rajamani et al., 2017].
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Conclusion

The present study demonstrates that both tested open source approaches, Bonsai RX and

DeepLabCut, may be used as a viable replacement for the existing commercial approach in the

evaluation of the open field behaviour assay related to MJD research or other SCAs.

Our work commenced with the utilization of a pre-established script for open field created

with Bonsai RX. In addition to adapting and optimizing it to our experimental specifications, we

sought to enrich the insights on the open field assay and introduce pose estimation capabilities

into our workflow. To achieve this, we employed the DeepLabCut pose estimation toolbox, which

involved image labelling and refinement, network evaluation and parameter selection in order

to train a CNN tailored for within our context. From a general standpoint, the performance of

both utilised strategies presented reliable results. We believe this thesis constitutes an elaborate

explanation of this entire process, including the toolboxes used, parameter selection, calculated

metrics and the steps undertaken, which we hope may be used as an initial framework for further

behaviour tests automation. We have also created a repository with all the detailed information

concerning our work, hoping we contribute to the relative standardization of behaviour analysis

in mouse research [Angeja, 2023].

Within the scope of our work, we conducted a meta-analysis research that provided valu-

able insights into the motor abnormalities observed in the YAC84.2 mouse model of Machado

Joseph disease [Silva* et al., 2023]. Our findings contribute to our understanding of the disease

and emphasise the critical importance of careful experimental design and the importance of

standardised assessment protocols.

Regarding the systems we employed, one clear advantage of the Bonsai workflow is that

is does not involve frame labelling, a step that can be time-consuming. Conversely, as previ-

ously explained, DeepLabCut operates on the foundation of pre-trained networks, making this

step relatively expeditious. Even though both approaches oblige a certain degree coding and

programming knowledge, they benefit from active and supportive communities to facilitate the

resolution of questions and challenges that may arise, mitigating this particular concern.

One of our initial objectives was to expand upon our existing metrics within the open field

assessment. We successfully extracted measurements of the nose, body, and tail centres, which

represented an advancement in the test’s analysis. Nevertheless, it is important to recognize

that it remains much to be exploited within this test. For future research, we recommend the
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implementation of a camera under the arena to record the open field test from bellow and use

a transparent arena. This setup would allow the recording of paw movements and hence the

calculation of stride length, overlap and velocity. These inclusions would further extend the

utility of the open field test.

Although not the primary focus of this study, our workflow has the capability of segmenting

the extracted measurements into time slots, potentially offering insights into mouse activity

patterns. Furthermore, we divided the arena into different regions of interest, yet we did not

have the opportunity to explore the segmented data thoroughly. As part of future work, we

suggest the exploration of these data regions.

It is worth emphasizing that the outcomes and insights presented within this thesis are not

confined to the specific study of the open field test. Rather, they represent a versatile body

of work that offers insights and methodologies applicable to a diverse spectrum of behavioural

assessment tests. Hence, for future projects, we believe it would be interesting to extend the work

to embrace the beam walking test. For instance, this behaviour test holds substantial relevancy

in assessing locomotor function in MJD mice, and its current methodology still involves arduous

manual calculations and scoring by researchers. In the beam walking test, the mouse traverses a

beam and measurements such as latency to cross and number of slips on the beam are scored by

hand. In our opinion it would be valuable to explore the possibility of training a neural network

using DeepLabCut to automate and expedite these measurements.

Lastly, an aspect we were unable to explore was real-time tracking or pose estimation. In

fact, there is a project that allows the two tools to be brought together, where Bonsai acts as

an interface for DeepLabCut enabling real-time markerless pose estimation using pre-trained

models. Therefore, we propose the integration of the model trained within this thesis, tailored

for the open field test, with the Bonsai RX custom script. This would generate a workflow with

enhanced user-friendliness, ultimately benefiting investigators in their research endeavors.

Thus, we conclude that the present study provides insights into the automation of be-

havioural analysis and serves as a foundation for the continuation of work in the field. Ulti-

mately, we aspire for this thesis to have created a valuable and practical tool to be used in

investigations at our research centre.
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[Schöls et al., 2004] Schöls, L., Bauer, P., Schmidt, T., Schulte, T., and Riess, O. (2004). Auto-

somal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. The Lancet

Neurology, 3(5):291–304.

[Shakkottai et al., 2011] Shakkottai, V. G., do Carmo Costa, M., Dell’Orco, J. M., Sankara-

narayanan, A., Wulff, H., and Paulson, H. L. (2011). Early changes in cerebellar physiology

accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3.

Journal of Neuroscience, 31(36):13002–13014.
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A

DeepLabCut Parameter Comparison

This appendix provides an in-depth comparison of CNN parameter values, demonstrating

their impact on the outcomes. To reduce the search domain, we ran comparisons by modifying

only one selected parameter while maintaining all other parameters configured with the initial

values, considered as an appropriate starting point. These are referred to as the standard values,

illustrated in Table A.1. We expected that, by doing so, we could reduce the variability of the

comparisons and provide more objective results.

Table A.1: Standard Values for DeepLabCut Hyperparameter Comparison.

Hyperparameters Batch Size P-Cutoff Crop Global Scale

Values 2 0.1 False 0.8

A.1 Batch Size

The overall difference between the train errors across the networks with different batch

sizes is observable in the graph bellow (Figure A.1). It is most observable in iterations 100 000

and 150 000 although still being less than a pixel’s difference. Regarding the test errors of the

different batch sizes, they are very close together occasionally with even less than 0.5 pixels of

variation between them.

At iteration number 200 000, the test and train errors for all batch size networks were nearly

identical. While some minor differences of up to 1.5 pixels were observable in the snapshots, these

findings suggest that batch sizes ranging from 1 to 4 do not significantly impact the network’s

inference model.

Although not significant, we can see that the difference between train and test error is

slightly larger for the batch size 4 network, when compared to the remaining two. It is also

noticeable that the test and novel set errors for this network appear nearly coincidental, which

suggests this network works very well when fed novel data, despite the bigger error difference

for the train error. Because these error variations are occurring within the same range for all

the tested networks, ranging between a minimum of 1.65 and a maximum of 4.20 pixel errors,

we decided either one of them offered a good option for implementation.

Furthermore, at iteration number 200 000, we can see that the three different training sets
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A. DeepLabCut Parameter Comparison

Figure A.1: Comparison of Train and Test error of Batch Size 1, 2 and 4.

obtain nearly identical values for the training error, as well as for the novel set error. The same

results can be observed for the test errors, with a slight deviation of the network with batch size

4. These findings inspire confidence in all three networks.

Bigger batch sizes were not able to be tested due to hardware limitations, i.e. the computer

GPU’s 8GB dedicated memory was not able to withstand larger batch sizes. Furthermore,

we noticed the training time was incrementing very significantly with the batch size increase,

presumably for the same reason. For example, training 200 000 iterations with a batch size of 1

took approximately 3.5 hours and 6 hours for the same number of iterations with a batch size

of 2. For a batch size a 4, the network took around 12 hours to reach 200 000 iterations.

Considering all the above, we decided to move forward with the network of batch size 2,

choosing the weights of iteration 150 000, as this was the snapshot, of all the saved snapshots,

that obtained the best results, as we can see in the graph. Although the network with a batch

size of 1 was the fastest to train until a stable plateau, we decided to use the batch size of

2 network due to yielding slightly better error values in training, testing and the novel set.

Having said that, we consider that using the default batch size of 1 would be a good decision

for a problem such as ours, if time for testing this parameter is a constraint.

A.2 Global Scale

We initially set the global scale (GS) parameter to the default value of 0.8. However, given

the significance of understanding the behaviour of our CNN and considering the resolution of our

images, we sought to explore alternative values for the global scale. Consequently, we conducted

tests with a value of 0.9 for this parameter, aiming to take full advantage of our video resolution,
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A. DeepLabCut Parameter Comparison

Figure A.2: Comparison of Train and Test error of Global Scale = 0.8 and Global Scale = 0.9.

which is not excessively high.

Upon analysis, we observed that adjusting the global scale parameter did not lead to a

substantial impact on the network or its training time. Nevertheless, there was a minor increase

in both the train and test errors associated with the modified value (Figure A.2).

After carefully considering the results, we ultimately decided to revert to the default value

of 0.8 for the global scale parameter. This choice was made to ensure optimal performance and

stability in our CNN, aligning it more effectively with the specific requirements of our work.

A.3 Data Augmentation - Cropped Images

We conducted training on two different networks, one with the cropping parameter set to

TRUE and the other with the parameter set to FALSE (Figure A.3.

Remarkably, we found that both the train and test errors exhibited remarkably similar

patterns for the CNN, regardless of whether the cropping parameter was set to TRUE or FALSE.

However, when the cropping parameter was set to FALSE, the error exhibited a more rapid

decline, continuing to decrease throughout the iterations until reaching 150 000. However, at

iteration 200 000, we observed a slight increase in the error, suggesting potential overfitting of

the CNN.

Conversely, for the CNN with the cropping parameter set to TRUE, the error stabilization

occurred at a slightly higher value with the increment of the iterations.

Based on our comprehensive analysis, we concluded that, within the scope of our problem,
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A. DeepLabCut Parameter Comparison

Figure A.3: Comparison of Train and Test error of Crop = TRUE and Crop = FALSE.

the cropping parameter did not play a fundamental role. Consequently, we made the decision

to retain the parameter setting as FALSE.

A.4 Likelihood Threshold - p-cutoff

In our CNN training process, we adjusted the p-cutoff parameter, which controls the

confidence level of our network’s predictions. The default value for the parameter p-cutoff was

0.1, indicating that body parts with a likelihood above 0.1 were considered for video labeling.

We experimented with setting this value to 0.8, meaning that only body parts with a high

confidence level (above 0.8) in each frame were used in constructing the labeled video.

When comparing the two training sessions (0.1 and 0.8), we observed only a small increase

in the testing error with the higher p-cutoff (Figures A.4 and A.5). Additionally, in both training

sessions, the discrepancy between the network’s train and test errors, both with and without the

defined p-cutoff, was minimal. The differences were nearly imperceptible in the training sets,

while in the testing sets they amount to only a few decimal points.

Our choice of 0.8 as the p-cutoff value was driven by the understanding that confidence

improves as the network undergoes more iterations. Setting a high p-cutoff initially could lead

to inaccuracies due to low confidence in the initial training iterations. However, due to the

proximity of the two CNNs trained with the p-cutoff values and keeping in mind we aim to

achieve the truest results for the x and y values, we decided to set this value to 0.8.
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A. DeepLabCut Parameter Comparison

Figure A.4: Comparison of Train and Test error with and without p-cutoff = 0.1.

Figure A.5: Comparison of Train and Test error with and without p-cutoff = 0.8.
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B

Supplementary Figures of Bonsai

Analysis

Figure B.1: Comparison of distance travelled across gender using Bonsai. Gender
separated analysis of distance travelled in wild-type, Homo YAC PBS and Homo YAC Treated
groups. (a) total distance travelled (cm) among males and (b) total distance travelled (cm)
among females. The data are presented as the mean ± SD. Statistical analysis was performed
using the ANOVA test.
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B. Supplementary Figures of Bonsai Analysis

Figure B.2: Comparison of open field test performance across Wild-Type and Trans-
genic Homo YAC PBS-treated using Bonsai. Comparison of phenotypic features in wild-
type and Homo YAC PBS. Locomotor activity was analysed by measuring: (a) total distance
travelled (cm), (b) average velocity (cm/s) and (c) resting time (min). The data are presented as
the mean± SD. Statistical analysis was performed using the unpaired Student’s t-test, **p<0.01.
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Supplementary Figures of

DeepLabCut Analysis
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Figure C.1: Comparison of distance travelled across gender using DeepLaCut. Gen-
der separated analysis of distance travelled in wild-type, Homo YAC PBS and Homo YAC
Treated groups. (a) total distance travelled (cm) among males and (b) total distance travelled
(cm) among females. The data are presented as the mean ± SD. Statistical analysis was per-
formed using the ANOVA test, *p<0.05.
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Supplementary Figures of

DeepLabCut Keypoint Tracking

Analysis
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D. Supplementary Figures of DeepLabCut Keypoint Tracking Analysis

Wild-type Animal

Figure D.1: Total Distance detailed by a wild-type per body part, nose, body centre
and tail centre. Locomotor activity was analysed by measuring: (a) total distance travelled
(cm), (b) average velocity (cm/s) and (c) resting time (min). Time in divided into 3 time bins
of 10 minutes.
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D. Supplementary Figures of DeepLabCut Keypoint Tracking Analysis

Homo YAC PBS Animal

Figure D.2: Total Distance detailed by a Homo YAC PBS per body part, nose, body
centre and tail centre. Locomotor activity was analysed by measuring: (a) total distance
travelled (cm), (b) average velocity (cm/s) and (c) resting time (min). Time in divided into 3
time bins of 10 minutes.
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D. Supplementary Figures of DeepLabCut Keypoint Tracking Analysis

Keypoint Tracking Results

Table D.1: Values of the measurements for Wild-Type group.

Distance Travelled (cm) Velocity (cm/s) Resting Time (min)

Nose 18 488 ± 4570 8.98 ± 2.66 3.42 ± 1.86

Body Centre 12 972 ± 3591 6.58 ± 1.46 9.8 ± 4.26

Tail Centre 18 921 ± 5118 9.54 ± 2.64 8.91 ± 3.59

Table D.2: Values of the measurements for Homo PBS YAC group.

Distance Travelled (cm) Velocity (cm/s) Resting Time (min)

Nose 9035 ± 1554 5.84 ± 0.52 5.84 ± 1.72

Body Centre 5570 ± 1343 5.41 ± 0.54 15.02 ± 2.99

Tail Centre 8238 ± 1625 7.41 ± 0.62 12.63 ± 2.19
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